MICROCOMPUTERS
 DATA BOOK

MICROCOMPUTERS
ITS INTEGRATED TECHNICAL SALES

2620 Augustine Drive
Suite 210
Santa Clara, CA 95054
(408) 727-3406

FAX: (408) 727-5717

MICROCOMPUTERS

Development and emulation tool
Page
GENERAL INFORMATION
Contents
Alphanumerical index
CHAPTER 1-4 BIT MICROCOMPUTERS
4-bit Microcomputers selection guide 1-3
ETC9410/11•ETC9310/11 Single chip microcontrollers 1-5
ETL9410/11.ETL9310/11 Single chip microcontrollers 1-21
ETL9413.ETL9313 Single chip microcontrollers 1-41
ET9420/21/22ET9320/21/22 Single chip microcontrollers 1-45
ETC9420/21/22。ETC9320/21/22 Single chip microcontrollers 1-69
ETC9444/45•ETC9344/45 Single chip microcontrollers 1-69
ETL9420/21/22.ETL9320/21/22 Single chip microcontrollers 1-91
ETL9444/45.ETL9344/45 Single chip microcontrollers 1-115
TS94104 Single chip microcontroller 1-139
TS94120.TS94144 Single chip microcontrollers 1-153
CHAPTER 2-8-BIT MICROCOMPUTERS
8-bit Microcomputers selection guide 2-3
EF6801 FAMILY
EF6801EF6803 Microcomputer/Microprocessor (MCU/MPU) 2-7
EF6801U4EF6803U4 Microcomputer/Microprocessor (MCU/MPU) 2-47
EF6804 FAMILY
EF6804J2 8-bit microcomputer 2-91
EF6804P2 8-bit microcomputer 2-135
TS68HC04J3 8-bit microcomputer 2-179
EF68HC04P3 8-bit microcomputer 2-181
EF6805 FAMILY
EF6805P2 8-bit microcomputer 2-225
EF6805P6 8-bit microcomputer 2-249
EF6805R2 8-bit microcomputer with A/D 2-273
EF6805R3 8-bit microcomputer with A/D 2-301
EF6805U2 8-bit microcomputer 2-329
EF6805U3 8-bit microcomputer 2-355
MK3870 FAMILY
MK2870 3870 Single chip micro family 2-381
MK3870.MK38P70 3870 Single chip micro family 2-399
MK3873.MK38P73 3870 Single chip micro family 2-427
MK3875.MK38P75 3870 Single chip micro family 2-453
CHAPTER 3-16-BIT MICROCOMPUTERS
16-bit Microcomputers selection guide 3-3
MK68200 FAMILY 16 -bit single chip microcomputer 3-5
MK68HC200 FAMILY 16-bit single chip microcomputer 3-77

CONTENTS

PageCHAPTER 4 - SURFACE MOUNTED DEVICES
Surface mounted devices selection guide 4-3
CHAPTER 5 - DEVELOPMENT AND EMULATION TOOL
INICE-4-8 Development and emulation tool 5-3
EMU-04 Piggy-back emulation tool 5-5

Part number	Page	Part number	Page	Part number	Page
EF6801	$2-7$	ETC9344	$1-69$	ETL9422	$1-91$
EF6801U4	$2-47$	ETC9345	$1-69$	ETL9444	$1-115$
EF6804J2	$2-91$	ETC9410	$1-5$	ETL9445	$1-115$
EF6804P2	$2-135$	ETC9411	$1-5$	MK2870	$2-381$
EF6805P2	$2-225$	ETC9420	$1-69$	MK3870	$2-399$
EF6805P6	$2-249$	ETC9421	$1-69$	MK3873	$2-427$
EF6805R2	$2-273$	ETC9422	$1-69$	MK3875	$2-453$
EF6805R3	$2-301$	ETC9444	$1-69$	MK38P70	$2-399$
EF6805U2	$2-329$	ETC9445	$1-69$	MK38P73	$2-427$
EF6805U3	$2-355$	ETL9310	$1-21$	MK38P75	$2-453$
EF68HC04P3	$2-181$	ETL9311	$1-21$	MK68201	$3-5$
ET9320	$1-45$	ETL9313	$1-41$	MK682111	$3-5$
ET9321	$1-45$	ETL9320	$1-91$	MK68E201	$3-5$
ET9322	$1-45$	ETL9321	$1-91$	MK68E2111	$3-5$
ET9420	$1-45$	ETL9322	$1-91$	MK68E2211	$3-5$
ET9421	$1-45$	ETL9344	$1-115$	MK68HC201	$3-77$
ET9422	$1-45$	ETL9345	$1-115$	MK68HC211	$3-77$
ETC9310	$1-5$	ETL9410	$1-21$	MK68HC2211	$3-77$
ETC9311	$1-5$	ETL9411	$1-21$	TS68HC04J3	$2-179$
ETC9320	$1-69$	ETL9413	$1-41$	TS94104	$1-139$
ETC9321	$1-69$	ETL9420	$1-91$	TS94120	$1-153$
ETC9322	$1-69$	ETL9421	$1-91$	TS94144	$1-153$

4-bit microcomputers

4 BIT MICROCOMPUTERS

Function	Part number	Characteristic		Package	Page
LOW COST MCUs	ETC9410/9310 ETL9410/9310	With their efficient instruction set (1 byte instruction) and wide I/O option list, these MCUs are designed for home appliances and consumer applications. - One 4-bit SIO - Emulation and development on DEVICE	- RAM: $\mathbf{3 2 \times 4}$ - ROM: 512×8 - 19 I/O lines	DIL24	$\begin{aligned} & 1-5 \\ & 1-21 \end{aligned}$
	$\begin{aligned} & \text { ETC9411/9311 } \\ & \text { ETL9411/9311 } \end{aligned}$		- RAM: 32×4 - ROM: 512×8 - 16 I/O lines		$\begin{aligned} & 1-5 \\ & 1-21 \end{aligned}$
	ETL9413 ETL9313		- RAM: 32×4 - ROM: 512×8 - $15 \mathrm{I} / \mathrm{O}$ lines		1-41
	ET9420/9320 ETC9420/9320 ETL9420/9320		- RAM: 64×4 - ROM: 1024×8 - 23 I/O lines	DIL28	$\begin{aligned} & 1-45 \\ & 1-69 \\ & 1-91 \end{aligned}$
	$\begin{aligned} & \text { ET9421/9321 } \\ & \text { ETC9421/9321 } \\ & \text { ETL9421/9321 } \end{aligned}$		- RAM: 64×4 - ROM: 1024×8 - 19 I/O lines		$\begin{aligned} & 1-45 \\ & 1-69 \\ & 1-91 \end{aligned}$
	ET9422/9322 ETC9422/9322 ETL9422/9322		- RAM: 64×4 - ROM: 1024×8 - $15 \mathrm{I} / \mathrm{O}$ lines		$\begin{aligned} & 1-45 \\ & 1-69 \\ & 1-91 \end{aligned}$
	ETC9444/9344 ETL9444/9344		- RAM: 128×4 - ROM: 2048×8 - 23 I/O lines DIL28		$\begin{aligned} & 1-69 \\ & 1-115 \end{aligned}$
	ETC9445/9345 ETL9445/9345		- RAM: 128×4 - ROM: 2048×8 - 23 I/O lines		
MOTOR SPEED CONTROL LOW COST MCUs	TS94104	Well suited for speed measurement, direct triac drive in industrial environment (watchdog feature). Individual clock for MCU, speed measurement timer and triac drive timer. - One 4-bit SIO - Emulation and development on DEVICE	- RAM: 128×4 - ROM: 2048×8 DIL64		1-139
	TS94120		- RAM: 64×4 - ROM: 1024×8 - 23 I/O lines DIL28		1-153
	TS94144		- RAM: 128×4 - ROM: 2048×8 - 23 I/O lines		

The ETC 9410, C9411, C 9310, and C 9311 , fully Static, Single-Chip CMOS Microcontrollers are fully compatible with the COPS ${ }^{(1)}$ family, fabricated using double-poly, silicon gate CMOS technology. These Controller Oriented Processors are complete microcomputers containing all system timing, internal logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The ETC 9411 is identical to the ETC 9410 but with $16 \mathrm{I} / \mathrm{O}$ lines instead of 20 . They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized Controller Oriented Processor at a low end-product cost.

The ETC 9310/C9311 is the extended temperature range version of the ETC 9410/C9411.

- Lowest Power Dissipation (40 WW typical)
- Low Cost
- Power saving HALT mode with Continue function
- Powerful Instrúction Set
- 512×8 ROM, 32×4 RAM
- 20 I/O lines (ETC 9410)
- Two-level subroutine stack
- DC to 4μ s instruction time
- Single supply operation (2.4 V to 5.5 V)
- General purpose and TRI-STATE ${ }^{\text {(6) }}$ outputs
- Internal binary/counter register with MICROWIRE ${ }^{\oplus}$ compatible serial I/O
- LSTTL/CMOS compatible in and out
- Software/hardware compatible with other members of the ET 9400 family
- Extended temperature ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$).

ETC 9410 • ETC 9411

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC)
Voltage at Any Pin Relative to GND
Ambient Operating Temperature
Ambient Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Total Source Current
Total Sink Current

6V
$-0.3 V$ to $V_{c c}+0.3 V$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
25 mA
25 mA

Absolute maximum ratings indicate limits beyond which damage to
the device may occur. DC and AC electrical specifications are not
ensured when operating the device at absolute maximum ratings.
DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Operating Voltage		2.4	5.5	V
Power Supply Ripple (Note 5)	Peak to peak	-	$0.1 \mathrm{~V}_{\mathrm{Cc}}$	
Supply Current (Note 1) HALT Mode Current (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V} \text { tc }=125 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { tc }=16 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \mathrm{tc}=4 \mu \mathrm{~s} \end{aligned}$ (tc is the instruction cycle time) $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \text { Fin }=0 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{cc}}=2.4 \mathrm{~V} \text { Fin }=0 \mathrm{kHz} \end{aligned}$		$\begin{array}{r} 40 \\ 500 \\ 2000 \\ \\ 15 \\ 6 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ μA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Voltage Levels RESET, CKI Logic High Logic Low All other inputs Logic High Logic Low Hi - Z input leakage Input capacitance		$\begin{gathered} 0.9 V_{c c} \\ 0.7 V_{c c} \\ - \\ -1 \end{gathered}$	$0.1 \mathrm{v}_{\mathrm{cc}}$ $0.2 V_{c c}$ $+1$ $+7$	V V V $\mu \mathrm{A}$ pF
Output Voltage Levels LSTTL Operation Logic High Logic Low CMOS Operation Logic High Logic Low	$\begin{aligned} & \text { Standard outputs } \\ & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{OH}=-25 \mu \mathrm{~A} \\ & \mathrm{OH}=400 \mu \mathrm{~A} \\ & \\ & \mathrm{OH}=-10 \mu \mathrm{~A} \\ & \mathrm{O}_{\mathrm{OL}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.7 \\ v_{\mathrm{cc}}-0.2 \end{gathered}$	$\begin{gathered} \overline{-} \\ 0.4 \\ 0.2 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Output current levels Sink (Note 6) Source (standard option) Source (low current option)	(except CKO) $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$, Vout $=\mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\mathrm{cc}}=2.4 \mathrm{~V}$. Vout $=\mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$, Vout $=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{cc}}=2.4 \mathrm{~V}$. Vout $=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$, Vout $=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}$, Vout $=0 \mathrm{~V}$	$\begin{gathered} 1.2 \\ 0.2 \\ 0.5 \\ 0.1 \\ 30 \\ 6 \end{gathered}$	$\begin{array}{r} - \\ - \\ - \\ 330 \\ 80 \end{array}$	mA mA mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
CKO (as clock out) current levels Sink divide by 4 divide by 8 divide by 16 Source divide by 4 divide by 8 divide by 16	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{CKI}=\mathrm{V}_{\mathrm{cc}}, \text { Vout }=\mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} . \mathrm{CKI}=0 . \text { Vout }=0$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 1.2 \\ & 0.3 \\ & 0.6 \\ & 1.2 \end{aligned}$	- - - -	mA mA mA mA $m A$ mA

ETC 9410 • ETC 9411
DC ELECTRICAL CHARACTERISTICS (continued)

Parameter	Conditions	Min.	Max.	Units
Allowable Loading on CKO (as HALT) Current needed to over-ride HALT To continue To halt	$\begin{aligned} & \text { (note 3) } \\ & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{ViN}=.2 \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{ViN}=.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{array}{r} 100 \\ .6 \\ 1.6 \end{array}$	pF mA mA
TRI-STATE ${ }^{\circledR}$ or open drain leakage current		-2	+ 2	$\mu \mathrm{A}$

ETC 9410 • ETC 9411

AC ELECTRICAL CHARACTERISTICS $\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\right.$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Instruction Cycle Time $=\mathrm{tc}$	$\begin{aligned} & V_{c c} \geqslant 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>V_{\mathrm{Cc}} \geqslant 2.4 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 4 \\ 16 \end{array}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Operating CKI Frequency	$\left.\begin{array}{r}4 \text { mode } \\ 8 \text { mode } \\ 16 \text { mode }\end{array}\right\} \quad V_{\mathrm{CC}} \geqslant 4.5 \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & 250 \\ & 500 \\ & 1.0 \end{aligned}$	MHz MHz MHz kHz kHz MHz
Instruction Cycle Time - CKI (RC) (Note 4)	$\begin{aligned} & R=30 \mathrm{k} \pm 5 \%, V_{c \mathrm{CC}}=5 \mathrm{~V} \\ & C=82 \mathrm{pF} \pm 5 \%(\div 4 \text { Mode } \end{aligned}$	8	16	$\mu \mathrm{s}$
INPUTS : (See Fig. 3) tsetup thold	$\left.\begin{array}{l} \mathrm{G} \text { Imputs } \\ \mathrm{SI} \text { Input } \\ \text { All Others } \\ \mathrm{V}_{\mathrm{CC}} \geqslant 4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}} \geqslant 2.4 \mathrm{~V} \end{array}\right\} \mathrm{V}_{\mathrm{CC}} \geqslant 4.5 \mathrm{~V}$	$\begin{gathered} \mathrm{tc} / 4=+0.7 \\ 0.3 \\ 1.7 \\ 0.25 \\ 1.0 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
OUTPUT Propagation delay (see fig. 3) ${ }^{\text {tPD1, }}{ }^{\text {tPDD }}$ tPD1, tpD0	$\begin{aligned} \text { Vout }= & 1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \\ & \mathrm{~V}_{\mathrm{Cc}} \geqslant 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geqslant 2.4 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

Note 1 : Supply current is measured after running for 2000 cycle times with a square -wave clock on CKI, CKO open, and all other pins pulled up to VCC with 20k resistors.
Note 2 : The HALT mode will stop CKI from oscillating in the RC and crystal configurations.
Note 3 : When forcing HALT, current is only needed for a short time (approx. 200 ns) to flip the HALT flip-flop.
Note 4 : This parameter is only sampled and not 100% tested.
Note 5 : Voltage change must be less than 0.5 volt in a 1 ms period.
Note 6: SO output sink current must be limited to keep $V_{O L}$ below $0.2 \mathrm{~V}_{\mathrm{CC}}$ when port is running in order to prevent entering test mode.

ETC 9310 • ETC 9311

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC})
Voltage at any pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total allowable source current
25 mA 25 mA
Absolute maximum ratings indicate limits beyond which damage to the device may occur. $D C$ and $A C$ electrical specifications are not ensured when operating the device at absolute maximum ratings.
Operating temperature range $-40^{\circ} \mathrm{C}$ to
$+85^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature $(\text { soldering, } 10 \mathrm{sec} .)^{\circ} \quad 300^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}$ (Unless otherwise specified).

Parameter	Conditions	Min.	Max.	Units
Operating Voltage		3.0	5.3	V
Power Supply Ripple(Note 5)	Peak to Peak	-	$0.1 \mathrm{~V}_{\mathrm{cc}}$	V
Supply Current (Note 1)	$\begin{aligned} & V_{c C}=3.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=125 \mu \mathrm{~s} \\ & V_{c \mathrm{c}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=16 \mu \mathrm{~s} \\ & V_{C \mathrm{C}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=4 \mu \mathrm{~s} \\ & \mathrm{t}_{\mathrm{c}} \text { is instruction cycle time) } \end{aligned}$	-	$\begin{gathered} 60 \\ 600 \\ 2500 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
HALT Mode Current (Note 2)	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{IN}}=0 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{IN}}=0 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 25 \\ & 13 \end{aligned}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$
Input Voltage Levels RESET, CKI Logic High InpuLogic Low All Other Inputs Logic High Logic Low		$\begin{gathered} 0.9 \mathrm{~V}_{\mathrm{cc}} \\ - \\ 0.7 \mathrm{~V}_{\mathrm{cc}} \\ - \end{gathered}$	$\begin{gathered} 0.1 \overline{\mathrm{~V}} \mathrm{Cc} \\ 0.2 \overline{\mathrm{~V}}_{\mathrm{cc}} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Hi-Z Input Leakage		-2	+2	$\mu \mathrm{A}$
Input Capacitance		-	7	pF
Output Voltage Levels LSTTL Operation Logic High Logic Low CMOS Operation Logic High Logic Low	$\begin{aligned} & \text { Standard Outputs } \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{I}_{\mathrm{OH}}=25 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.7 \\ - \\ v_{c c}-0.2 \end{gathered}$	$\begin{gathered} 0.4^{-} \\ 0.2^{-} \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Output Current Levels Sink (Note 6) Source (Standard Option) Source (Low Current Option)	$V_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ $V_{C C}=4.5 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	$\begin{aligned} & 1.2 \\ & 0.2 \\ & 0.5 \\ & 0.1 \\ & 30 \\ & 8 \end{aligned}$	$\begin{array}{r} - \\ 440 \\ 200 \end{array}$	mA mA mA mA ${ }_{\mu} \mathrm{A}$ $\mu \mathrm{A}$

ETC 9310 - ETC 9311
DC ELECTRICAL CHARACTERISTICS (continued)

Parameter	Conditions	Min.	Max.	Units
CKO Current Levels (As Clock Out)				
Sink $\quad \div 4$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{CKI}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$	0.3	-	mA
$\div 8$		0.6	-	mA
$\div 16$		1.2	-	mA
Source $\div 4$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{CKI}=\mathrm{OV}, \mathrm{V}_{\mathrm{OUT}}=O \mathrm{~V}$	0.3	-	mA
$\div 8$ $\div 16$		0.6	-	mA
$\div 16$		1.2	-	mA
Allowable Loading on CKO (as HALT I/O pin)		-	100	pF
Current Needed to				
To Continue		-	0.8	mA
	$V_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.7 \mathrm{~V}_{\mathrm{CC}}$		2.0	mA
TRI-STATE or Open Drain Leakage Current		-4	+4	$\mu \mathrm{A}$

ETC 9310 • ETC 9311
AC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Instruction Cycle Time (ta)	$\begin{aligned} & V_{c c}<4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>\mathrm{V}_{\mathrm{Cc}}>3.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Operating CKI $\div 4$ mode Frequency $\div 8$ mode $\div 16$ mode $\div 4$ mode $\div 8$ mode $\div 16$ mode	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}>4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>\mathrm{V}_{\mathrm{cc}}>3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & 250 \\ & 500 \\ & 1.0 \\ & \hline \end{aligned}$	MHz MHz MHz kHz kHz MHz
Instruction Cycle Time RC Oscillator (Note 4)	$\begin{aligned} & R=30 k \pm 5 \%, V_{c c}=5 V \\ & C=82 p F \pm 5 \%(\div 4 \text { Mode }) \end{aligned}$	8	16	$\mu \mathrm{s}$
Inputs (See Figure 3) ${ }^{\text {t }}$ setup $t_{\text {HOLD }}$	G Inputs SI Input All Others $\mathrm{V}_{\mathrm{cc}} \geq 4.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{cc}} \geq 3.5 \mathrm{~V}$ 	$\begin{gathered} \text { tc } / 4+0.7 \\ 0.3 \\ 1.7 \\ 0.25 \\ 1.0 \\ \hline \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Output Propagation Delay $t_{P D 1}, t_{P D O}$ $\mathrm{t}_{\text {PDI }}, \mathrm{t}_{\text {PDO }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geqslant 3.0 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

[^0]
FUNCTIONAL DESCRIPTION

To ease reading of this description, only ETC 9410 and/or ETC 9411 are referenced; however, all such references apply equally to ETC 9310 and/or ETC 9311.
A block diagram of the ETC 9410 is given in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is logic " 1 " when a bit is reset, it is a logic " 0 ".

Program Memory

Program memory consists of a 512 -byte ROM. As can be seen by an examination of the ETC $9410 / \mathrm{C} 9411$ instruction set, these words may be program instructions, program data, or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID, and LQID instructions, ROM must often be thought of being organized into 8 pages of 64 words (bytes) each.

ROM addressing

ROM addressing is accomplished by a 9-bit PC register. Its binary value selects one of the 5128 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next
sequential 9-bit binary count value. Two levels of subroutine nesting are implemented by two 9 -bit subroutine save registers, SA and SB.
ROM instruction words are fetched, decoded, and executed by the Instruction Decode, Control and Skip Logic circuitry.

Data Memory

Data memory consists of a 128-bit RAM, organized as 4 data registers of 8×4-bit digits. RAM addressing is implemented by a 6 -bit B register whose upper 2 bits (Br) select 1 of 4 data registers and lower 3 bits of the 4-bit Bd select 1 of eight 4 -bit digits in the selected data register. While the 4-bit contents of the selected RAM digit (M) are usually loaded into or from, or exchanged with, the A register (accumulator), they may also be loaded into the \mathbf{Q} latches or loaded from the L ports. RAM addressing may also be performed directly by the XAD 3,15 instruction. The Bd register also serves as a source register for 4-bit data sent directly to the D outpouts.

The most significant bit of Bd is not used to select a RAM digit. Hence, each physical digit of RAM may be selected by two different values of Bd a shown in Figure 4 below. The skip condition for XIS and XDS instructions will be true if Bd changes between 0 and 15, but NOT between 7 and 8 (see Table 3).

FIGURE 3 - INPUT/OUTPUT TIMING DIAGRAMS
(DIVIDE-BY-8 MODE)

The D register provides 4 general purpose outputs and is used as the destination register for the 4 -bit contents of Bd.
The XAS instruction copies C into the SKL Latch. In the counter mode. SK is the output of SKL ; in the shift register mode, SK is a sync clock, inhibited when SKL is a logic " 0 "

The EN register is an internal 4-bit register loaded under program control by the LEl instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register (EN3-ENO).

1. The least significant bit of the enable register, ENO, selects the SIO register as either a 4-bit shift register or as a 4 -bit binary counter. With ENO set, SIO is an asynchronous binary counter, DECREMENTING its value by one upon each low going pulse (" 1 " to " 0 ") occurring on the SI input. Each pulse must be at least 2 (two) instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of EN3. With ENO reset. SIO is a serial shift register, shifting left each instruction cycle time. The data present at Sl is shifted into the least significant bit of SIO. SO can be enabled to output the
most significant bit of SIO each instruction cycle time. (See 4 below). The SK output becomes a logic controlled clock.
2. EN1 is not used, it has NO effect on the ETC 9410; C 9411 .
3. With EN2 set, the L drivers are enabled to output the data in Q to the $\mathrm{L} 1 / \mathrm{O}$ ports. Resetting EN2 disables the L drivers, placing the LI / O ports in a hight impedance input state.
4. EN3, in conjunction with ENO, affects the SO output. With ENO set (binary counter option selected). SO will output the value loaded into EN3. With ENO reset (serial shift register option selected), setting EN3 enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Fesetting EN3 with the serial shift register option selected, disables SO as the shift register output : data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 "

Enable Register Modes - Bits EN_{3} and EN_{0}

EN_{3}	EN_{0}	SIO	SI	SO	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} \text { If } S K L & =1, S K=\text { Clock } \\ \text { If } S K L & =0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Out	$\begin{aligned} \text { If } S K L & =1, S K=\text { Clock } \\ \text { If } S K L & =0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} \text { If } S K L & =1, S K \\ \text { If } S K L & =0, S K=0 \end{aligned}$
1	1.	Binary Counter	Input to Binary Counter	1	$\begin{aligned} \text { If } S K L & =1, S K \\ \text { If } S K L & =0, S K=0 \end{aligned}$

Internal Logic

The internal logic of the ETC $9410 /$ C 9411 is designed to insure fully static operation of the device.

The 4-bit A register (accumulator) is the source and destination register for most $1 / 0$, arithmetic, logic and data memory access operations. It can also be used to load the Bd portion of the register, to load 4 bits of the 8 -bit Q. latch data and to perform data exchanges with the SIO register.

A 4-bit adder performs the arithmetic and logic functions of the ETC $9410 / \mathrm{C} 9411$, storing its results in A. It also outputs the carry information to a 1 -bit carry register, most often employed to indicate arithmetic overflow. The C registerin conjunction with the 'XAS instruction and the EN register, also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description below).

The G register contents are outputs to 4 general-purpose bidirectional $1 / O$ ports.

The Q register is an internal, latched, 8 -bit register, used to hold data loaded from RAM and A, as well as 8 -bit data from ROM. Its contents are output to the LI/O ports when the L drivers are enabled under program control. (See LEI instruction).
The 8 L drivers, when enabled, output the contents of latched Q data to the $\mathrm{L} / / \mathrm{O}$ ports. Also, the contents of L may be read directly into A and RAM.

FIGURE 4 - RAM DIGIT ADDRESS TO PHYSICAL RAM DIGIT MAPPING

The SIO register functions as a 4-bit serial-in/serial-out shift register or as a binary counter depending upon the contents of the EN register. (See EN register description above). Its contents can be exchanged with A, allowing it to input or output continuous serial data stream. With SIO functioning as a serial-in/serial-out shift register and SK as a syncclock, the ETC $9410 / \mathrm{C} 9411$ is MICROWIRE ${ }^{\circledR}$ compatible.

Initialization

The internal reset logic will initialize the device upon powerup if the power supply rise time is less than 1 ms and if the operating frequency at CKI is greater than 32 kHz , otherwise the external RC network shown in Figure 5 must be connected to the RESET pin. The RESET pin is configured as a Schmitt trigger input. If not used, it should be connected to $V_{C C}$. Initialization will occur whenever a logic " 0 " is applied to the RESET input, providing it stays low for at least three instruction cycle times.
NOTE : If CKI clock is less than 32 kHz , the internal reset logic (option $25=1$) MUST be disabled and the external RC network must be present.

FIGURE 5 - POWER-UP CLEAR CIRCUIT

RC $>5 \times$ Power Supply Rise Time
and RC $>100 \times$ CKI period
Upon iritialization, the PC register is cleared to 0 (ROM address 0) and the $A, B, C, D, E N$, and G registers are cleared. The SK output is enabled as a SYNC output, providıng a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA (clear A register).

HALT Mode

The ETC $9410 / \mathrm{C} 9411$ is a FULLY STATIC circuit ; therefore, the user may stop the system oscillator at any time to halt the chip. The chip may also be halted by the HALT instruction or by forcing CKO high when it is used as an HALT $1 / O$ port. Once in the HALT mode, the internal circuitry does not receive any clock signal, and is therefore frozen in the exact state it was in when halted. All information is retained until continuing. The HALT mode is the minimum power dissipation state.
The HALT mode has slight differences depending upon the type of oscillator used.
a) One-pin oscillator - (RC or External)

The HALT mode may be entered into by either program control (HALT instruction) or by forcing CKO to a logic " 1 " state.
The circuit may be awakened by one of two different methods :
1 - Continue function - by forcing CKO to a logic " 0 ". the system clock is re-enabled and the circuit continues to operate from the point where it was stopped.
2 - Restart - forcing the RESET pin to a logic " 0 " will restart the chip regardless of HALT or CKO (see Initialization).
b) Two-pin oscillator - (Crystal)

The HALT mode may be entered into by program control
(HALT instruction) which forces CKO to a logic " 1 " state.
The circuit can be awakened only by the RESET function.

ETC 9411

If the ETC 9410 is bonded as a 20-pin package, it becomes the ETC 9411 illustrated in Figure 2, ETC $9410 / \mathrm{C} 9411$ Connection Diagrams. Note that the ETC 9411 does not contain D2, D3, G3, or CKO. Use of this option of course precludes use of D2, D3, G3, and CKO options. All other options are available for the ETC 9411.

CKO Pin Options

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. CKO will be forced high during the execution of a HALT instruction, thus inhibiting the crystal network. If a one pin oscillator system is chosen (RC or external), CKO will be a selected as HALT and is an I/ O flip-flop which is an indicator of the HALT status. An external signal can over ride this pin to start and stop the chip. By forcing a high level to CKO; the chip wil stop as soon as CKI is high and the CKO output will go high to keep the chip stopped. By forcing a low level to CKO, the chip will continue and CKO output will go low.

All features associated with the CKO I/O pin are available with the 24-pin package only.

Oscillator Options

There are three options available that define the use of CK and CKO.
a) Crystal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency divided by 16 (cptionally by 8 or 4).
b) External Oscillator. CKI is configured as a LSTTL compatibie input accepting an external clock signal. The external frequency is divided by 16 (optionally by 8 or 4) to give the instruction cycle time. CKO is the HALT $1 / 0$ port.
c) RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is the HALT I/O port.

FIGURE 6 - ETC94 10C OSCILLATOR

Crystal or resonator					R C controlled Oscillator			
Crystal value	R1		ent Valu C1 (pF)	C2 (pF)	R	C	Cycle time	$V_{C C}$
32 kHz	220k	20 M	30	536	15 k	82 pF	4 to $9 \mu \mathrm{~s}$	$\geqslant 4.5 \mathrm{~V}$
455 kHz	ちk	1) M	80	40	30 k	82 pF	8 to $16 \mu \mathrm{~s}$	$\geqslant 4.5 \mathrm{~V}$
2.096 MHz	2 k	1 M	30	536	60 k	100 pF	16 to $32 \mu \mathrm{~s}$	2.4 to 4.5 V
4 MHz	1 k	1 M	30	536				

This circuit and these values are for indication only. As the oscillator characteristics are not guaranteed, please consider and examine the circuit constants carefully on your application.

FIGURE 6 - ETC 9410 OSCILLATOR

1/O Options

ETC 9410/C 9411 outputs have the following optional configurations, illustrated in Figure 7 :
a) Standard - A CMOS push-pull buffer with an N-channel device to ground in conjunction with a P-channel device to V_{CC}. compatible with CMOS and LSTTL.
b) Low Current - This is the same configuration as a) above except that the sourcing current much less.
c) Open Drain - An N-channel device to ground only, allowing external pull-up as required by the user's application.
d) Standard TRI-STATE ${ }^{\circledR}$ L Output - A CMOS output buffer similar to a) which may be disabled by program control.
e) Low-Current TRI-STATE ${ }^{\circledR}$ L Output - This is the same as d) above except that the sourcing current is much less.
f) Open-Drain TRI-STATE ${ }^{\circledR}$ L Output - This has the N channel device to ground only.

The SI and RESET inputs are $\mathrm{Hi}-\mathrm{Z}$ inputs (Fig. 7 g)
When using either the G or L I/O ports as inputs, a pull-up device is necessary. This can be an external device or the following alternative is available: Select the low-current output option. Now, by setting the output registers to a logic " I " level, the P-channel devices will act as the pull-up load. Note that when using the L ports in this fashion the Q registers must be set to a logic " 1 " level and the L drivers MUST BE ENABLED by an LEI instruction.
All output drivers use one or more of three common devices numbered 1 to 3 . Minimum and maximum current $\mathrm{I}_{\text {out }} \mathrm{V}_{\text {out }}$ curves are given in Figure 8 for each of these devices to allow the designer to effectively use these I/O configurations.

a) Standard Push Pull Output

FIGURE 7 - I/O CONFIGURATIONS

b) Low Current Push-Pull Output

c) Open Drain Output

e) Low Current TRI-STATE ${ }^{\circledR}$ "L" Output

g) $\mathrm{Hi}-\mathrm{Z}$ Input

FIGURE 8 - INPUT/OUTPUT CHARACTERISTICS

ETC 9410/C 9411 INSTRUCTION SET

Table 2 is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table 3 provides the mnemonic, operand, machine, code, data flow, skip conditions and description associated with each instfuction in the ETC 9410/C 9411 instruction set.

TABLE 2 - ETC9410/C 9411 INSTRUCTION SET TABLE SYMBOLS

Symbol	Definition	Symbol	Definition
INTERNAL	ARCHITECTURE SYMBOLS	INSTRUCTION OPERAND SYMBOLS	
A	4-bit Accumulator	d	4-bit Operand Field, 0-15 binary (RAM Digit Select)
B	6-bit RAM Address Register	r	2-bit Operand Field, 0-3 binary (RAM Register Select)
Br	Upper 2 bits of B (register address)	a	9 -bit Operand Field, 0-511 binary (ROM Address)
Bd	Lower 4 bits of B (digit address)	y	4-bit Operand Field 0-15 binary (Immediate Data)
C	1-bit Carry Register	RAM(s)	Contents of RAM location addressed by s
D	4-bit Data Output Port	ROM ${ }^{\text {t }}$)	Contents of ROM location addressed by t
EN	4-bit Enable Register		
G	4-bit Register to latch data for G I/O Port	OPERATIONAL SYMBOLS	
M	8-bit TRI-STATE	+	Plus
PC		+	Plus
	9-bit ROM Address Register (program counter)	-	Minus
Q	8-bit Register to latch data for L I/O Port	\rightarrow	Replaces
SA	9-bit Subroutine Save Register A	\leftrightarrow	Is exchanged with
SB	9-bit Subroutine Save Register B	$=$	Is equal to
SIO	4-bit Shift Register and Counter	A	The one's complement of A
SK	Logic-Controlled Clock Output	\oplus	Exclusive-OR
		:	Range of values

TABLE 3 - ETC9410/C 9411 INSTRUCTION SET

| Mnemonic | Operand | Machine
 Hex
 Code | Manguage Code
 (Binary) | Data Flow | Skip Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | Description | D |
| :--- |

ARITHMETIC INSTRUCTIONS

ASC		$30 \underline{0} 011100001$	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry. Skip on Carry
ADD		$31 \quad 10011100011$	$A+R A M(B) \rightarrow A$	None	Add RAM to A
AISC	y		$A+y \rightarrow A$	Carry	Add Immediate, Skip on Carry (y $\neq 0$)
CLRA		$00 \quad 0000,00001$	$0 \rightarrow A$	None	Clear A
COMP		$40 \quad 10100100000$	$\bar{A} \rightarrow A$	None	one's complement of A to A
NOP		$44 \quad 1 \begin{array}{llllllll}01 & 0 & 010 & 0\end{array}$	None	None	No Operation
RC		$32 \quad 001110010$	$\cdots \mathrm{O} \rightarrow \mathrm{C}$	None	Reset C
SC		$22 \underline{10010100101}$	$\cdots 1{ }^{\prime} \rightarrow$ C	None	Set C
XOR		$02 \quad 000010010$	$A \oplus \operatorname{RAM}(B) \rightarrow A$	None	Exclusive-OR RAM with A

TABLE 3 - ETC9410/C 9411 INSTRUCTION SET (continued)

TRANSFER OF CONTROL INSTRUCTIONS					
JID			$R O M\left(P^{8} A, M\right) \rightarrow \mathrm{PC}_{7: 0}$	None	Jum Indirect
JMP	a		$a \rightarrow P C$	None	Jump)
JP	a		$a \rightarrow P C_{6: 0}$ $a \rightarrow P C_{5: 0}$	None	Jump within Page (Note 1)
JSRP	a	$\cdots \quad \left\lvert\, \begin{array}{ll\|l\|} \hline & 0 & a_{5: 0} \\ \hline \end{array}\right.$	$\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB}$ $\begin{aligned} & 010 \rightarrow P_{8: 6} \\ & a \rightarrow P C_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 2)
JSR	a	6- 	$\begin{aligned} & P C+1 \rightarrow S A \rightarrow S B \\ & a \rightarrow P C \end{aligned}$	None	Jump to Subroutine
RET		$48 \quad 10100110001$	$\mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine
RETSK		$49 \quad 101001100011$	$\mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip
HALT		$33 \quad 10011,00111$ $38 \quad\left[\begin{array}{lllllll}0 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\right]$		None	Halt processor

MEMORY REFERENCE INSTRUCTIONS

CAMQ		333 3C $\begin{aligned} & 0 \\ & 3 C\end{aligned}$	$\begin{aligned} & A_{\rightarrow} Q_{7: 4} \\ & \operatorname{RAM}(B) \rightarrow Q_{3: 0} \end{aligned}$	None	Copy A, RAM to 0
LD	r	$-5 \quad 00 \times 10101$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \rightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A, Exclusive-OR Br with r
LOID			$\begin{aligned} & \mathrm{ROM}\left(\mathrm{PC}_{8} A . M\right) \rightarrow 0 \\ & S A \rightarrow S B \end{aligned}$	None	Load Q Indirect
RMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 0 \rightarrow \text { RAM }(\mathrm{B})_{0} \\ & 0 \rightarrow \text { RAM }(\mathrm{B})_{1} \\ & 0 \rightarrow \text { RAM }(\mathrm{B})_{2} . \\ & 0 \rightarrow \text { RAM }(\mathrm{B})_{3} \end{aligned}$	None	Reset RAM Bit
SMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 1 \rightarrow \text { RAM }(\mathrm{B})_{0} \\ & 1 \rightarrow \text { RAM }(\mathrm{B})_{1} \\ & 1 \\ & \\ & 1 \rightarrow \text { RAM }(\mathrm{B})_{2} \\ & 1 \end{aligned} \text { RAM }(\mathrm{B})_{3}$	None	Set RAM Bit
STII	v	7. 0111	$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd
x	r	-6 L001r10 110	$\begin{aligned} & \text { RAM }(\mathrm{B}) \leftrightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Exchange RAM with A, Exclusive-OR Br with r
XAD	3.15		RAM $(3,15) \leftrightarrow A$	None	Exchange A with RAM $(3,15)$
XDS	r	7 LOOUR101111	$\begin{aligned} & R A M(B) \rightarrow \mathrm{A} \\ & \mathrm{Bd}-\mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{~B} \rightarrow \mathrm{Br} \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd . Exclusive-OR Br with r
XIS	1	4 L00 0 [1010 100	RAM $(B) \longrightarrow A$ $\mathrm{Bd}+\mathrm{B} \rightarrow \mathrm{Bd}$ $\mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br}$	Bd increments past 15	Exchange RAM with A and increment Bd . Exclusive Or Br with r

TABLE 3 - ETC9410/C 9411 INSTRUCTION SET (continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

REGISTER REFERENCE INSTRUCTIONS

CAB		50	$\underline{0} 1010110000$	$A \sim B d$	None	Copy A to Bd
CBA		4E		$B d \rightarrow A$	None	Copy Bd to A
L81	f.d		$\frac{00\|r\|(d-1) \mid}{(d=0.915)}$	r.d-B	Skip until not a LBI	Load B Immediate with r.d
LEI	y		$\left.\begin{array}{\|ccccccc\|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right\rvert\,$	$y \rightarrow E N$	None	Load EN Immediate

TEST INSTRUCTIONS

SKC		20	$10010100000]$		$C=\cdot{ }^{\prime} \cdot$	Skip if C is True
SKE		21	[00 1010001]		$A=R A M(B)$	Skip if A Equals RAM
SKGZ		33 21	$\left.\begin{array}{llllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 01 & 0 & 0 & 0 & 1 \end{array}\right]$		$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 bits)
SKGBZ	0 1 2 3	$\begin{aligned} & 33 \\ & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$	$\left[\begin{array}{lllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 \\ \hline\end{array}\right]$ $1000010001]$ $[00010001]$ $\left[\begin{array}{lll}00001001 & 1\end{array}\right]$ $000110011]$	Ist byte 2nd byte	$\begin{aligned} \mathbf{G}_{0} & =0 \\ \mathbf{G}_{1} & =0 \\ \mathbf{G}_{2} & =0 \\ \mathbf{G}_{3} & =0 \end{aligned}$	Skip if G Bit is Zero
SKMBZ	0 1 2 3	01 11 03 13	$\left.\begin{array}{llllllll} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right]$		$\begin{aligned} & \operatorname{RAM}(B)_{0}=0 \\ & \operatorname{RAM}(B)_{1}=0 \\ & \operatorname{RAM}(B)_{2}=0 \\ & \operatorname{RAM}(B)_{3}=0 \end{aligned}$	Skip if RAM Bit is Zero

INPUT/OUTPUT INSTRUCTIONS

ING	33 24	$\left.\begin{array}{ccccc\|ccc\|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{array}\right]$	G - A	None	Input G Ports to A
INL	33 $2 E$	$\begin{array}{lllllllll} {\left[\begin{array}{llllllll} 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{array}\right.} \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{array}$	$\begin{aligned} & \mathrm{L}_{7.4}-\mathrm{RAM}(B) \\ & \mathrm{L}_{3: 0}-\mathrm{A} \end{aligned}$	None	Input L Ports to RAM. A
OBD	33 $3 E$	$\begin{aligned} & {\left[\begin{array}{llllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{array}\right]} \\ & 0 \end{aligned}$	Bd -D	None	Output Bd to D Outputs
OMG	33		RAM(B) - G	None	Output RAM to G Ports
XAS	4F	$001000 \mid 111111]$	$A \longmapsto S I O, C \rightarrow S K L$	None	Exchange A with SIO

Note 1:The JP instruction allows a jump, while in subroutine pages 2 or 3 , to any ROM location within the two-page boundary of pages 2 or 3. The JP instruction, otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page. Nole 2 : A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3. JSRP may not jump to the last word in page 2.

The following information is provided to assist the user in uderstanding the operation of several unique instructions and to provide notes useful to programmers in writing ETC 9410 C 9411.

XAS Instruction

XAS (Exchange A with SIO) exchanges the 4-bit contents of the accumulator with the 4 -bit contents of the SIO register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register, above). If SIO is selected as a shift register, an XAS instruction must be performed once every 4 instruction cycles to effect a continuous data stream.

JID Instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM Addressed by the 9 -bit word, $\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{8}$ is not affected by this instruction.
Note That JID requires 2 instruction cycles to execute.

LQID Instruction

LQID (Load Q Indirect) loads the 8 -bit Q register with the contents of ROM pointed to by the 9 -bit word $\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}$. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LOID instruction "pushes" the stack ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB}$) and replaces the least significant 8 bits of PC as follows: $A \rightarrow \mathrm{PC}_{7: 4} \mathrm{RAM}(\mathrm{B}) \rightarrow \mathrm{PC}_{3: 0}$ leaving PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" ($\mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$), restoring the saved value of PC to continue sequential program execution. Since LQID pusches SA \rightarrow SB, the previous contents of SB are lost. Also, when LQID pops the stack, the previously pushed contents of SA are left in SB. The net result is that the contents of SA are placed in SB (SA \rightarrow SB). Note that LOID takes two instruction cycle times to execute.

Instruction Set Notes

a) The first word of a ETC 9410/C 9411 program (ROM address 0) must be a CLRA (Clear A) instruction.
b) Although skipped instructions are not executed, one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths except JID and LQID take the same number of cycle times whether instructions are skipped or executed. JID and LQID instructions take 2 cycles if executed and 1 cycle if skipped.
c) The ROM is organized into 8 pages of 64 words each. The Program Counter is a 9 -bit binary counter, and will count through page boundaries. If a JP, JSRP, JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the next page. For example : a JP lo'ated in the last word of a page will jump to a location in the next page. Also, a LQID or JID located in the last word of page 3 or 7 will access data in the next group of 4 pages.

OPTION LIST

The ETC 9410 /ETC 9411 mask-programmable options are assigned numbers which correspond with the ETC 9410 pins.
The following is a list of ETC94 10 options. When specifying aETC 941 chip. Options 20,21 , and 22 must be set to 0 . The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various $1 / O$ components using little or no external circuitry.

Option 1: $=0$: Ground Pin. No options available.
Option 2 : CKO I/O Port. Determined by Option 3
Option 3 : CKI Input
$=0$: Crystal controlled oscillator input (- 4).
$=1:$ Single-pin RC-controlled oscillator ($\div 4$).
$=2:$ External oscillator input $(\div 4)$.
$=3$: Crystal oscillator input (- 8).
$=4$: External oscillator input (-8).
$=5$: Crystal oscillator input (- 16).
$=6$: External oscillator input (-16).
Option 4 : RESET Input $=1$: $\mathrm{Hi}-\mathrm{Z}$ input. No option available
Option 5: L7 Driver
= 0 : Standard TRI-STATE push-pull output
$=1$: Low-current TRI-STATE push-pull output
$=2$: Open-drain TRI-STATE output
Option 6: ${ }_{6}$ Driver. (Same as Option 5.)
Option 7 : L_{5}^{6} Driver. (Same as Option 5.).
Option 8 : L_{4} Driver. (Same as Option 5.)
Option 9 : $\mathrm{V}_{\mathrm{cc}} \mathrm{Pin}$.
Option $10: \mathrm{L}_{3}$ Driver. (Same as Option 5.)
Option 11 : L_{2} Driver. (Same as Option5.)
Option 12 : L L_{1} Driver. (Same as Option 5.)
Option 13 : Lo Driver. (Same as Option 5.)
Option 14 : SI Input.
No option available.
$=1$: $\mathrm{Hi}-\mathrm{Z}$ input
Option 15 : SO Output.
= 0 : Standard push-pull output.
$=1$: Low-current push-pull output.
= 2 : Open-drain output
Option 16 : SK Driver. (Same as Option 15.)
Option 17 : $\mathrm{G}_{0} 1 / \mathrm{O}$ Port. (Same as Option 15.)
Option 18 : G_{1} I/O Port. (Same as Option 15.)
Option 19 : $\mathrm{G}_{2} 1 / \mathrm{O}$ Port. (Same as Option 15.)
Option 20 : G_{3} Output. (Same as Option 15.)
Option 21 : D_{3} Output. (Same as Option 15.)
Option 22 : $\mathrm{D}_{\mathbf{2}}$ Output. (Same as Option 15.)
Option 23 : D_{1} Output. (Same as Option 15.)
Option 24 : DoOutput. (Same as option 15.)
Option 25 : Internal Initialization logic.
$=0$: Normal operation.
$=1$: No internal initialization Logic
Option 26 : No option available.
Option 27 : Chip Bonding
$=0:$ ETC 9410 (24 -pin device).
$=1:$ ETC $94111(20-$ pin device).
$=2:$ ETC 9410 and ETC 9411.
$=2$ ETC 9410 and ETC 9411 .

PHYSICAL DIMENSIONS

CB-68

N SUFFIX PLASTIC PACKAGE

CB-194

n SUFFIX PLASTIC PACKAGE

The ETL9410 and ETL9411 Single-Chip N-Channel Microcontrollers are fully compatible with the COPS ${ }^{\oplus}$ family, fabricated using N -channel, silicon gate MOS technology. The Controller Oriented Processors are complete microcomputers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and 1/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The ETL9411 is identical to the ETL9410, but with 16 I/O lines instead of 19 . They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized Cortroller Oriented Processor at a low end-product cost.

The ETL9310 and ETL9311 are exact functional equivalents but extended temperature versions of ETL9410 and ETL9411 respectively.

- Low cost
- Powerful instruction set
- 512×8 ROM. 32×4 RAM
- 19 I/O lines ETL9410-COP
- Two-level subroutine stack
- 16μ s instruction time
- Single supply operation (4.5-6.3V)
- Low current drain (6 mA max.)
- Internal binary counter register with MICROWIRE ${ }^{\left({ }^{(1)}\right.}$ serial I/O capability
- General purpose and TRI-STATE ${ }^{\circledR}$ outputs
- LSTTL/CMOS compatible in and out
- Direct drive of LED digit and segment lines
- Software/hardware compatible with other members of ET9400 family
- Extended temperature range device ETL.9310 ET'L9311
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Wider supply range (4.5-9.5V) optionally available

PIN ASSIGNMENT

ETL9410 • ETL9411

absolute maximum ratings

Voltage at Any Pin Relative to GND
Ambient Operating Temperature
Ambient Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Power Dissipation
ET L 9410

ET L 9411

Totai Source Current
Total Sink Current
-0.5 V to +10 V
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
0.75 Watt at $25^{\circ} \mathrm{C}$
0.4 Watt at $70^{\circ} \mathrm{C}$
0.65 Watt at $25^{\circ} \mathrm{C}$
0.3 Watt at $70^{\circ} \mathrm{C}$

120 mA
100 mA

Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{C}} \leqslant 59.5 \mathrm{~V}$ (Uniess otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Standard Operating Voltage (V_{CC}) Optional Operating Voltage (V_{CC}) Power Supply Ripple Operating Supply Current	Note 1 peak to peak all inputs and outputs open	$\begin{gathered} 4.5 \\ 4.5 \\ - \\ - \end{gathered}$	$\begin{gathered} 6.3 \\ 9.5 \\ 0.5 \\ 6 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ \mathrm{~mA} \end{gathered}$
Input Voltage Levels CKI Input Levels Ceramic Resonator Input ($\div 8$) Logic High (V_{H}) Logic Low ($\mathrm{V}_{1 \mathrm{~L}}$) Schmitt Trigger Input ($\div 4$) Logic High (V_{H}) Logic Low ($\mathrm{V}_{1 \mathrm{~L}}$) RESET Input Levels Logic High Logic Low SO Input Level (Tes! mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	(Schmitt Trigger Input) Note 2 $V_{C C}=$ Max. with TTL trip level options selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ with high trip level options selected	2.0 -0.3 $0.7 V_{c c}$ -0.3 $0.7 V_{C C}$ -0.3 2.0 3.0 2.0 -0.3 3.6 -0.3 - -1	- 0.4 - 0.6 - 0.6 2.5 - - 0.8 - 1.2 7 +1	V v v v v v pF $\mu \mathrm{A}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (V_{OL})	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.36 \mathrm{~mA} \\ & \hline \end{aligned}$	2.7	$\overline{0.4}$	$\begin{aligned} & v \\ & v \end{aligned}$
CMOS Operation Logic High Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 ; \mathrm{A} \\ & \hline \end{aligned}$	$v_{C C}-1$	$\overline{-}$	$\begin{aligned} & v \\ & v \end{aligned}$

Note 1 : $V_{c C}$ voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.
Note 2: SO output " 0 " level must be less than $0,8 \mathrm{~V}$ for normal operation.

ETL 9410 • ETL 9411

DC ELECTRICAL CHARACTERISTICS (continued) $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Output Current Levels Output Sink Current SO and SK Outputs (loL)				
	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.8	-	mA
	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.2	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.9	-	mA
$L_{0}-L_{7}$ Outputs, $G_{0}-\mathrm{G}_{3}$ and	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.8	-	mA
LSTTL $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs (loL)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.4	-	mA
$\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with High	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	15	-	mA
Current Options (loL)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	11	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	7.5	-	mA
$D_{0}-D_{3}$ Outputs with Very	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	30	-	mA
High Current Options (loL)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	22	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	15	-	mA
CKI (Single-pin RC oscillator)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.5 \mathrm{~V}$	2	-	$m A$
Output Source Current				
Standard Configuration,	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-140	-800	$\mu \mathrm{A}$
All Outputs ($\mathrm{IOH}^{\text {) }}$	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-75	-480	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-30	-250	$\mu \mathrm{A}$
Push-Pull Configuration	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.75 \mathrm{~V}$	-1.4	-	mA
SO and SK Outputs ($\mathrm{IOH}_{\text {) }}$	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	-1.4	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.0 \mathrm{~V}$	-1.2	-	mA
LED Configuration, $\mathrm{L}_{0}-\mathrm{L}_{7}$ Outputs, Low Current	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.5	-18	mA
Driver Option (l_{OH})	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.5	-13	mA
LED Configuration, $L_{0}-L_{7}$ Outputs, High Current Driver Option (l_{OH})	$\begin{aligned} & V_{C C}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \\ & V_{C C}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	-3.0 -3.0	-35 -25	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
TRI-STATE ${ }^{\circledR}$ Configuration,	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	-0.75	-	mA
$L_{0}-L_{7}$ Outputs, Low	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V}$	-0.8	-	mA
Current Driver Option (loh)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-0.9	-	mA
TRI-STATE ${ }^{\circledR}$ Configuration,	$V_{\text {CC }}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	-1.5	-	mA
$\mathrm{L}_{0}-\mathrm{L}_{7}$. Outputs, High	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V}$	-1.6	-	mA
Current Driver Option ($\mathrm{IOH}^{\text {) }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-1.8	-	mA
Input Load Source Current	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-140	$\mu \mathrm{A}$
CKO Output				
RAM Power Supply Option Power Requirement	$V_{\text {R }}=3.3 \mathrm{~V}$	-	1.5	mA
TRI-STATE® Output Leakage Current		-2.5	+2.5	$\mu \mathrm{A}$
Total Sink Current Allowed				
All Outputs Combined		-	100	mA
D Port		-	100	mA
$L_{7}-L_{4}, G$ Port		-	4	mA
$L_{3}-L_{0}$		-	4	mA
Any Other Pin		-	2.0	mA
Total Source Current Allowed				
All I/O Combined		-	120	mA
$L_{7}-L_{4}$		-	60	mA
$L_{3}-L_{0}$		-	60	mA
Each L Pin		-	25	mA
Any Other Pin		-	1.5	mA

ETL9310 • ETL9311

ABSOLUTE MAXIMUM RATINGS

Voltage at Any Pin Relative to GND	-0.5 V to +10 V
Ambient Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Ambient Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Power Dissipation	
ET L. 9310	0.75 Watt at $25^{\circ} \mathrm{C}$
	0.25 Watt at $85^{\circ} \mathrm{C}$
ET L 9311	0.65 Watt at $25^{\circ} \mathrm{C}$
	$0.20 \mathrm{Watt} \mathrm{at} 85^{\circ} \mathrm{C}$
Total Source Current	120 mA
Total Sink Current	100 mA
Absolute maximum ratings indicate limits beyond which	
damage to the device may occur. DC and AC electrical specifica-	
tions are not ensured when operating the device at absolute	
maximum ratings.	

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Standard Operating Voltage (V_{CC}) Optional Operating Voltage (V_{CC}) Power Supply Ripple Operating Supply Current	Note 1 peak to peak all inputs and outputs open	$\begin{aligned} & 4.5 \\ & 4.5 \\ & - \end{aligned}$	$\begin{gathered} 5.5 \\ 7.5 \\ 0.5 \\ 8 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ m A \end{gathered}$
Input Voltage Levels Ceramic Resonator Input($\div 8$) Crystal Input Logic High (V_{H}) Logic Low (V_{IL}) Schmitt Trigger Input ($\div 4$) Logic High ($\mathrm{V}_{1 \mathrm{H}}$) Logic Low ($\mathrm{V}_{1 \mathrm{~L}}$) $\overline{\text { RESET Input Levelis }}$ Logic High Logic Low SO Input Level (Test mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	(Schmitt Trigger Input) Note 2 $V_{C C}=$ Max. with TTL trip level options selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ with high trip level options selected	$\begin{gathered} 2.2 \\ -0.3 \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ 2.2 \\ \\ \\ 3.0 \\ 2.2 \\ -0.3 \\ 3.6 \\ -0.3 \\ - \\ -2 \end{gathered}$	$\begin{gathered} - \\ 0.3 \\ - \\ 0.4 \\ - \\ 0.4 \\ 2.5 \\ - \\ - \\ 0.6 \\ - \\ 1.2 \\ 7 \\ +2 \end{gathered}$	V V pF $\mu \mathrm{A}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (VOL)	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.36 \mathrm{~mA} \end{aligned}$	2.7	$\overline{0.4}$	V
CMOS Operation Logic High Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{Cc}}-1$	$\overline{0.2}$	v

Note 1: $V_{C C}$ voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.
Note 2: SO output " 0 " level must be less than 0.6 V for normal operation.

ETL9310 • ETL9311

DC ELECTRICAL CHARACTERISTICS (continued) $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified)

AC ELECTRICAL CHARACTERISTICS

$\begin{array}{ll}\text { ETL 9410/L } 9411 & : 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 9.5 \mathrm{~V} \text { (Unless otherwise specified) } \\ \text { ETL } 9310 / \mathrm{L} 9311 & :-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 7.5 \mathrm{~V} \text { (Unless otherwise specified) }\end{array}$

Parameter	Conditions	Min.	Max.	Units
Instruction Cycle Time - t_{C} CKI Input Frequency - f_{1} Duty Cycle Rise Time Fall Time CKI Using RC $(\div 4)$ Instruction Cycle Time CKO as SYNC Input tsync	$\begin{aligned} & \div 8 \text { mode } \\ & \div 4 \text { mode } \\ & \\ & \mathrm{f}_{\mathrm{I}}=0.5 \mathrm{MHz} \\ & \\ & \mathrm{R}=56 \mathrm{k} \Omega \pm 5 \% \\ & \mathrm{C}=100 \mathrm{pF} \pm 10 \% \end{aligned}$	16 0.2 0.1 30 - - 16 400	40 0.5 0.25 60 500 200 28	
INPUTS: $G_{3}-G_{0}, L_{7}-L_{0}$ ${ }^{\text {tsetup }}$ thold SI ${ }^{\text {tsetup }}$ thold		-	$\begin{aligned} & 8.0 \\ & 1.3 \\ & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mathrm{SS} \\ & \mu \mathrm{~S} \end{aligned}$
OUTPUT PROPAGATION DELAY SO, SK Outputs tpd1, tpdo All Other Outputs tpd1. todo	Test condition: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}$		$\begin{aligned} & 4.0 \\ & 5.6 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$

FIGURE 2 - CONNECTION DIAGRAMS

Pin	Description	Pin	Description
$L_{7}-L_{0}$	8 bidirectional I/O ports with TRI-STATE ${ }^{\circledR}$	SK	Logic-controlled clock (or general purpose output)
$\mathrm{G}_{3}-\mathrm{G}_{0}$	4 bidirectional I/O ports ($\mathrm{G}_{2}-\mathrm{G}_{0}$ for COP411L)	CKI	System oscillator input
$\mathrm{D}_{3}-\mathrm{D}_{0}$	4 general purpose outputs ($D_{1}-D_{0}$ for	CKO	System oscillator output (or RAM power supply or SYNG input) (ETL 9410 only)
	ETL	RESET	System reset input
SI	Serial input (or counter input)	$V_{\text {cc }}$	Power supply
So	Serial output (or general purpose output)	GND	Ground

FIGURE 3 - INPUT/OUTPUT TIMING DIAGRAMS (CERAMIC RESONATOR DIVIDE-BY-8 MODE)

FIGURE 3a-SYNCHRONIZATION TIMING

FUNCTIONAL DESCRIPTION

A block diagram of the ET L 9410 is given in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " (greater than 2 volts). When a bit is reset, it is a logic " 0 " (less than 0.8 volts).
All functional references to the ET L9410 / L9411-also apply to the ET L 9310 / L 9311.

Program Memory

Program Memory consists of a 512-byte ROM.
As can be seen by an examination of the ET L 9410 / L 9411 instruction set, these words may be program instructions, program data or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID and LQID instructions, ROM must often be thought of as being organized into 8 pages of 64 words each.
ROM addressing is accomplished by a 9-bit PC register. Its binary value selects one of the 5128 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 9-bit binary count value. Two levels of subroutine nesting are implemented by the 9 -bit subroutine save registers, SA and SB, providing a last-in, first-out (LIFO) hardware subroutine stack.
ROM instruction words are fetched, decoded and executed by the instruction Decode, Control and Skip Logic circuitry.

Data Memory

Data memory consists of a 128-bit RAM, organized as 4 data registers of 84 -bit digits. RAM addressing is implemented by a 6 -bit B register whose upper 2 bits (Br) select 1 of 4 data registers and lower 3 bits of the 4 -bit Bd select 1 of 84 -bit digits in the selected data
register. While the 4-bit contents of the selected RAM digit (M) is usually loaded into or from, or exchanged with, the A register (accumulator), it may also be loaded into the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the XAD 3,15 instruction. The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.
The most significant bit of Bd is not used to select a RAM digit. Hence each physical digit of RAM may be selected by two different values of Bd as shown in Figure 4 below. The skip condition for XIS and XDS instructions will be true if Bd changes between 0 and 15, but NOT between 7 and 8 (see Table 3).

Internal Logic

The 4 -bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Bd portion of the B register, to load 4 bits of the 8 -bit Q latch data, to input 4 bits of the 8 -bit L I/O port data and to perform data exchanges with the SIO register.

A 4-bit adder performs the arithmetic and logic functions of the ET L 9410 / L 9411, storing its results in A. It also outputs a carry bit to the 1 -bit C register, most often employed to indicate arithmetic overflow. The C register, in conjunction with the XAS instruction and the EN register, also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description, below).

The G register contents are outputs to 4 generalpurpose bidirectional I/O ports.

The Q register is an internal, latched, 8 -bit register, used to hold data loaded from M and A, as well as 8 -bit data from ROM. Its contents are output to the L I/O ports when the L drivers are enabled under program control. (See LEI instruction.)

The 8 L drivers, when enabled, output the contents of latched Q data to the LI/O ports. Also, the contents of L may be read directly into A and M. L I/O ports can be directly connected to the segments of a multiplexed LED display (using the LED Direct Drive output configuration option) with Q data being outputted to the $\mathrm{Sa}-\mathrm{Sg}$ and decimal point segments of the display.
The SIO register functions as a 4 -bit serial-in/serial-out shift register or as a binary counter depending on the contents of the EN register. (See EN register description, below.) Its contents can be exchanged with A, allowing it to input or output a continuous serial data stream. SIO may also be used to provide additional parallet $1 / \mathrm{O}$ by connecting SO to external serial-in/ parallel-out shift registers.

The XAS instruction copies C into the SKL Latch. In the counter mode, SK is the output of SKL in the shift register mode, SK outputs SKL ANDed with internal instruction cycle clock.

The EN register is an internal 4-bit register loaded under program control by the LEI instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register ($\mathrm{EN}_{3}-\mathrm{EN}_{\mathrm{a}}$).

1. The least significant bit of the enable register, EN_{0}. selects the SIO register as either a 4 -bit shift register or a 4-bit binary counter. With $\mathrm{ENO}_{\mathrm{O}}$ set, SIO is an asynchronous binary counter, decrementing its vàlue by one upon each low-going pulse (" 1 " to " 0 ") occurring on the SI input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of EN_{3}. With $E N_{0}$ reset, SIO is a serial shift register shifting left each instruction cycle time. The data present at SI goes into the least significant bit of SIO. SO can be enabled to output the most significant bit of SIO each cycle time. (See 4 below.) The SK output becomes a logic-controlled clock.
2. EN 1 is not used. It has no effect on ET L9410, L 9411-operation.
3. With $E N_{2}$ set, the L drivers are enabled to output the data in Q to the $L / / O$ ports. Resetting $E N_{2}$ disables the L drivers, placing the L I/O ports in a highimpedance input state.
4. $E N_{3}$, in conjunction with $E N_{O}$, affects the SO output. With $E N_{0}$ set (binary counter option selected) SO will output the value loaded into EN_{3}. With $E N_{0}$ reset (serial shift register option selected), setting EN_{3} enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected disables SO as the shift register output; data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ." Table I provides a summary of the modes associated with $E N_{3}$ and $E N_{0}$.

Initialization

The Reset Logic will initialize (clear) the device upon power-up if the power supply rise time is less than 1 ms and greater than $1 \mu \mathrm{~s}$. If the power supply rise time is greater than 1 ms , the user must provide an external RC

Enable Register Modes - Bits EN3 and EN0

EN_{3}	EN_{0}	SIO	SI	So	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=\text { Clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Out	$\begin{aligned} & \text { If } S K L=1, S K=\text { Clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	1	Binary Counter	Input to Binary Counter	1	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$

network and diode to the $\overline{\operatorname{RESET}}$ pin as shown below (Figure 5). The RESET pin is configured as a Schmitt trigger input. If not used it should be connected to V_{cc}. Initialization will occur whenever a logic " 0 " is applied to the RESET input, provided it stays low for at least three instruction cycle times.

RC $\geqslant 5 \times$ POWER SUPPLY RISE TIME

FIGURE 5 - POWER-UP CLEAR CIRCUIT

Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA.

Ceramic Resonator Oscillator

Resonator Value	Component Values			
	R1 (Ω)	R2 ($\Omega)$	C1 (pF)	C2 (pF)
455 kHz	1 k	1 M	80	80

This circuit and these values are for indication only. As the oscillator characteristics are not guaranteed, please consider and examine the circuit constants carefully on your application.

Oscillator

There are four basic clock oscillator configurations available as shown by Figure 6.
a. Resonator Controlled Oscillator. CKI and CKO are connected to an external ceramic resonator. The instruction cycle frequency equals the resonator frequency divided by 8 . This is not available in the ET L 9411.
b. External Oscillator. CKI is an external clock input signal. The external frequency is divided by 8 to give the instruction frequency time. CKO is now available to be used as the RAM power supply (V_{R}), as a SYNC input, or no connection. (Note: No CKO on ET L 9411.
c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is available as the RAM power supply $\left(V_{R}\right)$ or no connection.
d. Externally Synchronized Oscillator. Intended for use in multi-COP systems, CKO is programmed to function as an input connected to the SK output of another chip operating at the same frequency (chip with L or C suffix) with CKI connected as shown. In this configuration, the SK output connected to CKO must provide a SYNC (instruction cycle) signal to CKO, thereby allowing synchronous data transfer between the chips using only the SI and SO serial I/O pins in conjunction with the XAS instruction. Note that on power-up SK is automatically enabled as a SYNC output. (See Functional Description, Initialization, above). This is not available in the ETL 9411.

RC Controlled Oscillator

$R(k \Omega)$	$C(p F)$	Instruction Cycle Time in $\mu \mathbf{s})$
51	100	$19 \pm 15 \%$
82	56	$19 \pm 13 \%$

Note: $200 \mathrm{k} \Omega \geqslant \mathrm{R} \geqslant 25 \mathrm{k} \Omega$
$360 \mathrm{pF} \geqslant \mathrm{C} \geqslant 50 \mathrm{pF}$

CKO Pin Options

In a resonator controlled oscillator system, CKO is used as an output to the resonator network. As an option CKO can be a SYNC input as described above. As another option, CKO can be a RAM power supply pin $\left(\mathrm{V}_{\mathrm{R}}\right)$, allowing its connection to a standby/backup power supply to maintain the integrity of RAM data with minimum power drain when the main supply is inoperative or shut down to conserve power. Using no connection option is appropriate in applications where the ET L 9410 system timing configuration does not require use of the CKO pin.

RAM Keep-Alive Option

Selecting CKO as the RAM power supply $\left(V_{R}\right)$ allows the user to shut off the chip power supply ($V_{C C}$) and maintain data in the RAM. To insure that RAM data integrity is maintained, the following conditions must be met:

1. $\overline{\text { RESET }}$ must go low before $V_{C c}$ goes below spec during power-off; $V_{C C}$ must be within spec before RESET goes high on power-up.
2. During normal operation, V_{R} must be within the operating range of the chip with $\left(V_{C C}-1\right) \leqslant V_{R} \leqslant V_{C C}$.
3. V_{R} must be $\geqslant 3.3 V$ with $V_{C C}$ off.

I/O Options

ET L 9410 / L 9411 inputs and outputs have the following optional configurations, illustrated in Figure
a. Standard - an enhancement-mode device to ground in conjunction with a depletion-mode device to $V_{C C}$, compatible with LSTTL and CMOS input requiremerits. Available on SO, SK, and all D and G outputs.
b. Open-Drain - an enhancement-mode device to ground only, allowing external pull-up as required by the user's application. Available on SO, SK, and all D and G outputs.
c. Push-Pull - an enhancement-mode device to ground in conjunction with a depletion-mode device paralleled by an enhancement-mode device to $V_{c c}$. This configuration has been provided to allow for fast rise and fall times when driving capacitive loads. Available on SO and SK outputs only.
d. Standard L - same as a., but may be disabled. Available on L outputs only.
e. Open Drain L - same as b., but may be disabled. Available on L outputs only.
f. LED Direct Drive - an enhancement mode device to ground and to V_{CC}, meeting the typical current sourcing requirements of the segments of an LED display. The sourcing device is clamped to limit current flow. These devices may be turned off under program control (see Functional Description, EN Register), placing the outputs in a high-impedance state to provide required LED segment blanking for a multiplexed dis. play. Available on L outputs only. 7.

a. Standard Output

b. Open-Drain Output

c. Push-Pull Output

$\triangle I S$ DEPLEIION DEMCE
d. Standard L Output

g. TRI-STATE ${ }^{\circledR}$ Push-Pull (L Output)
e. Open-Drain L Output

f. LED (L Output)

I. HI-Z Input
FIGURE 7 - INPUT AND OUTPUT CONFIGURATIONS
g. TRI-STATE® Push-Pull - an enhancement-mode device to ground and $V_{C C}$. These outputs are TRI-STATE ${ }^{\oplus}$ outputs, allowing for connection of these outputs to a data bus shared by other bus drivers. Available on L outputs only.
h. An on-chip depletion load device to $V_{C C}$.
i. A Hi-Z input which must be driven to a " 1 " or " 0 " by external components.
The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (lout and $V_{\text {OUT }}$) curves are given in Figure 8 for each of these devices to allow the designer to effectivelv use these I/O configurations in designing a ETL 9410 / L 9411 system.
The SO, SK outputs can be configured as shown in a., b., or c. The D and G outputs can be configured as
shown in a. or b. Note that when inputting data to the G ports, the G outputs should be set to "1." The L outputs can be configured as in d., e., f., or g.
An important point to remember if using configuration d. or f. with the L drivers is that even when the L drivers are disabled, the depletion load device will source a small amount of current. (See Figure 8, device 2.) However, when the L port is used as input, the disabled depletion device CANNOT be relied on to source sufficient current to pull an input to a logic " 1 "

ET L 9411

If the ET L 9410 is bonded as a 20-pin device, it becomes the ET L 9411, illustrated in Figure 2, ET L 9410 / ET L 9411 Connection Diagrams. Note that the ET L 9411 does not contain D2, D3, G3, or CKO. Use of this option of course precludes use of D2, D3, G3, and CKO options. All other options are available for the ET L 9411.

TYPICAL PERFORMANCE CURVES

FIGURE 8a-ETL9410/L 9411 - I/O DC CURRENT CHARACTERISTICS

FIGURE 8a-ETL9410 /L 9411 - I/O DC CURRENT CHARACTERISTICS

FIGURE 8b - ETL 9310 / L9311 - INPUT/OUTPUT CHARACTERISTICS

ETL 9410/L 9411 - INSTRUCTION SET

Table 2 is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table 3 provides the mnemonic, operand, machine, code. data flow, skip conditions and description associated with each instruction in the ET L 9410 / L 9411- instruction set.

TABLE 2 - ETL 9410 /L9411-INSTRUCTION SET TABLE SYMBOLS

Symbol	Definition	Symbol	Definition
INTERNAL	ARCHITECTURE SYMBOLS	INSTRUCTION OPERAND SYMBOLS	
A	4-bit Accumulator	d	4-bit Operand Field, 0-15 binary (RAM Digit Select)
B	6-bit RAM Address Register	r	2-bit Operand Field, 0-3 binary (RAM Register Select)
Br	Upper 2 bits of B (register address)	a	9-bit Operand Field, 0-511 binary (ROM Address)
Bd	Lower 4 bits of B (digit address)	y	4-bit Operand Field 0-15 binary (Immediate Data)
C	1-bit Carry Register	RAM(s)	Contents of RAM location addressed by s
D	4-bit Data Output Port	ROM (t)	Contents of ROM location addressed by t
EN	4 -bit Enable Register		
G	4-bit Register to latch data for G.1/O Port	OPERATIONAL SYMBOLS	
M	4-bit contents of RAM Memory pointed to by B Register	+	Plus
PC	9 -bit ROM Address Register (program counter)	-	Minus
Q	8 -bit Register to latch data for L I/O Port	\rightarrow	Replaces
SA	9 -bit Subroutine Save Register A	\rightarrow	Is exchanged with
SB	9 -bit Subroutine Save Register B	=	Is equal to
SIO	4 -bit Shift Register and Counter	A	The one's complement of A
SK	Logic-Controlled Clock Output	\oplus	Exclusive-OR
		:	Range of values

TABLE 3 - ETL9410/L9411-INSTRUCTION SET

Mnemonic	Operand	Mex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

ARITHMETIC INSTRUCTIONS

ASC		30	000110000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry. Skip on Carry
ADD		31	000110001	$A+R A M(B) \rightarrow A$	None	Add RAM to A
AISC	y	5-	001011 y	$A+y \rightarrow A$	Carry	Add Immediate. Skip on Carry (y $=0$)
CLRA		00	1000010000	$0 \rightarrow$ A	None	Clear A
COMP		40	01010010000	$\bar{A} \rightarrow A$	None	One's complement of A to A
NOP		44	0001000101000	None	None	No Operation
RC		32	000110010	$\cdots{ }^{\prime} \rightarrow$ C	None	Reset C
SC		22	0001000010	$\cdots{ }^{\prime} \rightarrow$ C	None	Set C
XOR		02	10000010010	$A \oplus R A M(B) \rightarrow A$	None	Exclusive OR RAM with A

TABLE 3 - ETL 9410 /L9411 - INSTRUCTION SET (continued)

Mnemonic	Operand	Mex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

TRANSFER OF CONTROL INSTRUOTIONS

JID		FF		$\begin{aligned} & \text { ROM }(\text { PC } 8 . A, M) \rightarrow \\ & \text { PC } 7: 0 \end{aligned}$	None	Jump Indirect (Note 2)
JMP	a		$\begin{array}{\|c\|} \hline 011010001 a 8 \\ \hline 27: 0 \\ \hline \end{array}$	$a \rightarrow P C$	None	Jump
JP.	a		$\|$$1 \mid$ (pages 2.3 only) 1$\|$ or (all other pages)	$\mathrm{a} \rightarrow \mathrm{PC}_{6: 0}$ $a \rightarrow P_{5: 0}$	None	Jump within Page (Note 3)
JSRP	a	--	\10 ${ }^{\text {a }}$, ${ }^{\text {a }}$	$\begin{aligned} & P C+1 \rightarrow S A \rightarrow S B \\ & 010 \rightarrow P_{8: 6} \\ & a \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 4)
JSR	a	6-		$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \\ & \mathrm{a} \rightarrow \mathrm{PC} \end{aligned}$	None	Jump to Subroutine
RET		48	010011000	$S B \rightarrow S A \rightarrow P C$	None	Return from Subroutine
RETSK		49	010011001	$S B \rightarrow S A \rightarrow P C$	Always Skip on Return	Return from Subroutine then Skip

MEMORY REFERENCE INSTARUCTIONS

CAMO		33 $3 C$	$\left.\begin{array}{\|llllllll\|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{array}\right)$	$\begin{aligned} & A \rightarrow Q_{7: 4} \\ & R A M(B) \rightarrow Q_{3: 0} \end{aligned}$	None	Copy A, RAM to Q	
LD	r	-5	OO\|r	01011	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \rightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A. Exclusive-OR Br with r
LQID		BF	[10111\|111111	$\begin{aligned} & R O M\left(P_{8}, A, M\right) \rightarrow 0 \\ & S A \rightarrow S B \end{aligned}$	None	Load Q Indirect (Note 2)	
RMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 C \\ & 45 \\ & 42 \\ & 43 \end{aligned}$		$\begin{aligned} & 0 \rightarrow \text { RAM }(B)_{0} \\ & 0 \rightarrow \text { RAM }(B)_{1} \\ & 0 \rightarrow R A M(B)_{2} \\ & 0 \rightarrow R A M(B)_{3} \end{aligned}$	None	Reset RAM Bit	
SMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 D \\ & 47 \\ & 46 \\ & 4 B \end{aligned}$	0 1 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1	$\begin{aligned} & 1 \rightarrow \text { RAM }(B)_{0} \\ & 1 \rightarrow \text { RAM }(B)_{1} \\ & 1 \rightarrow R A M(B)_{2} \\ & 1 \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Set RAM Bit	
STII	y	7-		$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd	
X	r	-6	$00 / \mathrm{rl} 101101$	$\begin{aligned} & R A M(B) \longrightarrow A \\ & B r \oplus r \rightarrow B r \end{aligned}$	None	Exchange RAM with A. Exclusive-OR Br with r	
XAD	3.15	$\begin{aligned} & 23 \\ & \mathrm{BF} \end{aligned}$		RAM $(3.15) \longrightarrow A$	None	Exchange A with RAM $(3,15)$	
XDS	r	-7		$\begin{aligned} & R A M(B) \rightarrow A \\ & B d-1 \rightarrow B d \\ & B r \oplus r \rightarrow B r \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd. Exclusive-OR Br with r	
XIS	「	-4	001r10100)	$\begin{aligned} & \text { RAM }(B) \longleftrightarrow A \\ & B d+1 \rightarrow B d \\ & B r \oplus r \rightarrow B r \end{aligned}$	Bd increments past 15	Exchange RAM with A and Increment Bd, Exclusive-OR Br with r	

TABLE 3 - ETL 9410 /L 9411 - INSTRUCTION SET (continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

REGISTER REFERENCE INSTRUCTIONS

CAB		50	01010110000	A - Bd	None	Copy A to Bd
CBA		4E	$0010100 \mid 111100$	$B d \rightarrow A$	None	Copy Bd to A
LBI	r.d		$\begin{array}{c\|c\|c\|c\|c\|} \hline 0 & 0 & \mathrm{r}\|(\mathrm{l}-1)\| \\ \hline(\mathrm{d}=0.9: 15) \end{array}$	r.d \rightarrow B	Skip until not a LBI	Load B Immediate with r.d (Note 5)
LEI	V	$\begin{aligned} & 33 \\ & 6- \end{aligned}$	$\left.\begin{array}{llllllll} 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array}\right]$	$y \rightarrow E N$	None	Load EN Immediate (Note 6)

TEST INSTRUCTIONS

SKC		20	$1001010000]$		$C=\cdot{ }^{\prime}{ }^{*}$	Skip if C is True
SKE		21	$10010100001]$		$A=R A M(B)$	Skip if A Equals RAM
SKGZ		$\begin{aligned} & 33 \\ & 21 \end{aligned}$	$\left[\begin{array}{llllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right]$		$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 bits)
SKGBZ	0 1 2 3	$\begin{array}{r} 33 \\ 01 \\ \cdot 11 \\ 03 \\ 13 \end{array}$	$\left.\begin{array}{lllllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{array} \right\rvert\,$	1st byte \}2nd byte	$\begin{aligned} & G_{0}=0 \\ & G_{1}=0 \\ & G_{2}=0 \\ & G_{3}=0 \end{aligned}$	Skip if G Bit is Zero
SKMBZ	0 1 2 3	$\begin{aligned} & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$	$\begin{array}{\|lllllll} 00 & 0 & 0 & 01 & 0 & 0 & 0 \end{array} 1$		$\begin{aligned} & \operatorname{RAM}(B)_{0}=0 \\ & \operatorname{RAM}(B)_{1}=0 \\ & \operatorname{RAM}(B)_{2}=0 \\ & \operatorname{RAM}(B)_{3}=0 \end{aligned}$	Skip if RAM Bit is Zero

INPUT/OUTPUT INSTRUCTIONS

ING	$\begin{aligned} & 33 \\ & 2 A \end{aligned}$	$\begin{array}{\|lllll\|llll\|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \hline \end{array}$	$G \rightarrow A$	None	Input G Ports io A	
INL	$\begin{aligned} & 33 \\ & 2 E \end{aligned}$		$\begin{aligned} & L_{7: 4} \rightarrow R A M(B) \\ & L_{3: 0} \rightarrow A \end{aligned}$	None	Input L Ports to RAM. A	
OBD	$\begin{aligned} & 33 \\ & 3 E \end{aligned}$	$\begin{array}{\|llllllll} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$	$B d \rightarrow$ d	None	Output Bd to D Outputs	
OMG	$\begin{aligned} & 33 \\ & 3 A \end{aligned}$		$R A M(B) \sim G$	None	Output RAM to G Poris	
XAS	4F	\|0100	111111	$A \longmapsto S I O, C \rightarrow S K L$	None	Exchange A with SIO (Note 2)

Note 1 : All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example, A_{3} indicates the most significant (left-most) bit of the 4-bit A register.
Note 2 : For additional information on the operation of the XAS, JID, and LQID instructions, see below.
Note 3 : The JP instruction allows a jump, while in subroutine pages 2 or 3, to any ROM location within the two-page boundary of pages 2 or 3.
The JP instruction, otherwise, permits a júmp to a ROM location within the current 64 -word page. JP may not jump to the last word of a page.
Note 4 : A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3 . JSRP may not jump to the last word in page 2.
Note 5 : The machine code for the lower 4 bits of the LBI instruction equals the binary value of the "d" data minus 1, e.g., to load the lower four bits of $B(B d)$ with the value $9\left(1001_{2}\right)$, the lower 4 bits of the LBI instruction equal $8\left(1000_{2}\right)$. To load 0 , the lower 4 bits of the LBI instruction should equal 15 (1111_{2}).
Note 6 : Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register).

The following information is provided to assist the user in uderstanding the operation of several unique instructions and to provide notes useful to programmers in writing ET L 9410 / L 9411.

XAS Instruction

XAS (Exchange A with SIO) exchanges the 4 -bit contents of the accumulator with the 4 -bit contents of the SIO register. The contents of SIO will contain serial-in/serialout shift register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register, above.) If SIO is selected as a shift register, an XAS instruction must be performed once every 4 instruction cycles to effect a continuous data stream.

JID Instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 9 -bit word, $\mathrm{PC}_{8} \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{8}$ is not affected by this instruction.
Note that JID requires 2 instruction cycles to execute.

LQID Instruction

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 9 -bit word $\mathrm{PC}_{8} \mathrm{~A}, \mathrm{M}$. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction "pushes" the stack ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB}$) and replaces the
least significant 8 bits of PC as follows: $A \rightarrow P C 7: 4$, $R A M(B) \rightarrow P_{3: 0}$, leaving PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" (SB \rightarrow SA $\rightarrow P C$), restoring the saved value of PC to continue sequential program execution. Since LQID pushes SA \rightarrow SB, the previous contents of SB are lost. Also, when LQID pops the stack, the previously pushed contents of SA are left in SB. The net result is that the contents of SA are placed in SB (SA \rightarrow SB). Note that LQID takes two instruction cycle times to execute.

Instruction Set Notes

a. The firs word of a ET L 9410 / ET L 9411 program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instructions are not executed, one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths except JID and LQID take the same number of cycle times whether instructions are skipped or executed. JID and LQID instructions take 2 cycles if executed and 1 cycle if skipped.
c. The ROM is organized into 8 pages of 64 words each. The Program Counter is a 9 -bit binary counter, and will count through page boundaries. If a JP, JSRP, JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the next page. For example: a JP located in the last word of a page will jump to a location in the next page. AIso, a LQID or JID located in the last word of page 3 or 7 will access data in the next group of 4 pages.

OPTION LIST

The ET L 9410 / ET L 9411 - mask programmable options are assigned numbers which correspond with the ET L 9410 pins.
The following is a list of ET L 9410 options. When specifying a ET L 9411 chip, Option 2 must be set to 3 , Options 20, 21, and 22 to 0 . The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various $1 / 0$ components using little or no external circuitry.
Option 1=0: Ground Pin - no options available
Option 2: CKO Output (no option available for ET
L9411)
$=0$: Clock output to ceramic resonator
$=1$: Pin is RAM power supply $\left(V_{R}\right)$ input
$=2$: Multi-COP SYNC input
=3: No connection
Option 3: CKI Input
$=0$: Oscillator input divided by $8(500 \mathrm{kHz}$ max.)
$=1$: Single-pin RC controlled oscillatur divided by 4
$=2$: External Schmitt trigger level clock divided by 4
Option 4: $\overline{\text { RESET Input }}$
$=0$: Load device to $V_{C C}$
= 1: Hi-Z input
Option 5: L7 Driver
$=0$: Standard output
= 1: Open-drain output
= 2: High current LED direct segment drive output
= 3: High current TRI-STATE® push-pull output
=4: Low-current LED direct segment drive output
$=5$: Low-current TRI-STATE ${ }^{\circledR}$ push-pull olitput
Option 6: L6 Driver
same as Option 5
Option 7: L5 Driver
same as Option 5
Option 8: L-4 Driver same as Option 5
Option 9: V_{CC} Pin $=0: 4.5 \mathrm{~V}$ to 6.3 V operation
$=1$: 4.5 V to 9.5 V operation
Option 10: L3 Driver same as Option 5

Option 11: L2 Driver same as Option 5

Option 12: L1 Driver same as Option 5
Option 13: Lo Driver same as Option 5
Option 14: SI Input $=0$: load device to $V_{C C}$
=1: HI-Z input

Option 15: SO Driver
$=0$: Standard Output
= 1: Open-drain output
$=2$: Push-pull output
Option 16: SK Driver same as Option 15
Option 17: G0 I/O Port $=0$: Standard output $=1$: Open-drain output
Option 18: G_{1} I/O Port same as Option 17

Option 19: G2 I/O Port same as Option 17
Option 20: G_{3} I/0 Port (no option available for ET L 9411) same as Option 17
Option 21: D_{3} Output (no option available for ET L 9411)
$=0$: Very-high sink current standard output
=1: Very-high sink current open-drain output
=2: High sink current standard output
=3: High sink current open-drain output
= 4: Standard LSTTL output (fanout $=1$)
= 5: Open-drain.LSTTL output (fanout $=1$)
Option 22: \mathbf{D}_{2}.Output (no option available for ET L. 9411) same as Option 21
Option 23: D_{1} Output same as Option 21
Option 24: Do Output same as Option 21
Option 25: L Input Levels $=0$: Standard TTL input levels (" 0 " $=0.8 \mathrm{~V}, " 1 "=2.0 \mathrm{~V}$)
$=1$: Higher voltage input levels ($" 0$ " $=1.2 \mathrm{~V}, " 1 "=3.6 \mathrm{~V}$)
Option 26: G Input Levels
same as Option 25
Option 27: SI Input Levels
same as Option 25
Option 28 : Bonding
= 0: ET L 9410 (24-pin device)
$=1$: ET L 9411 (20-pin device)
$=2$: Both 24- and 20-pin versions

Test Mode (Non-Standard Operation)

The SO output has been configured to provide for standard test procedures for the custom-programmed ET L 9410. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI:
a. RAM and Internal Logic Test Mode $(S I=1)$
b. ROM Test Mode $(\mathrm{SI}=0)$

These special test modes should not be employed by the user; they are intended for manufacturing test only.

PHYSICAL DIMENSIONS

CB-68

n SUFifix PLASTIC PACKAGE

CB-194

N SUFFIX PLASTIC PACKAGE

The ETL9413 and ETL9313 Single-Chip N-Channel Microcontrollers are fully compatible with the COPS © family, fabricated using N -channel, silicon gate MOS technology. The Controller Oriented Processors are complete microcomputers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and 1/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized Controller Oriented Processor at a low end-product cost.

The ETL9413 is identical to the ETL9410, but with $15 \mathrm{I} / \mathrm{O}$ lines instead of 19.

The ETL9313 is exact functional equivalent but extended temperature version of ETL9413.

- Low cost
- Powerful instruction set
- Ceramic or crystal oscillator input/output
- 512×8 ROM. 32×4 RAM
- Two-level subroutine stack
- 16μ s instruction time
- Single supply operation (4.5-6.3V)
- Low current drain (6mA max.)
- Internal binary counter register with serial I/O capability
- General purpose and TRI-STATE ${ }^{\oplus}$ outputs
- LSTTL/CMOS compatible in and out
- Direct drive of LED digit and segment lines
- Software/hardware compatible with other members of ETL9313 family
- Extended temperature range device ETL9310 ETLL9311
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Wider supply range (4.5-9.5V) optionally available

PIN ASSIGMENT

OPTION LIST

The ETL9413/ETL9313 - mask programmable options are assigned numbers which correspond with the ETL9410 pins.
The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various $1 / 0$ components using little or no external circuitry.
Option $1=0$: Ground Pin - no options available
Option 2: CKO Output
$=0$: Clock output to ceramic resonator
= 1: Pin is RAM power supply $\left(V_{R}\right)$ input
$=2$: Multi-COP SYNC input
= 3: No connection
Option 3: CKI Input
$=0$: Oscillator input divided by $8(500 \mathrm{kHz}$ max.)
= 1: Single-pin RC controlled oscillator divided by 4
= 2: External Schmitt trigger level clock divided by 4
Option 4: $\overline{\text { RESET }}$ Input
$=0$: Load device to V_{CC}
$=1$: $\mathrm{Hi}-\mathrm{Z}$ input
Option 5: L 7 Driver
= 0: Standard output
= 1: Open-drain output
= 2: High current LED direct segment drive output
$=3$: High current TRI-STATE ${ }^{\oplus}$ push-pull output
$=4$: Low-current LED direct segment drive output
$=5$: Low-current TRI-STATE ${ }^{(1)}$ push-pull output
Option 6: L Driver 2
same as Option 5
Option 7: L5 Driver
same as Option 5
Option 8: L- Driver
same as Option 5
Option 9: V_{CC} Pin
$=0: 4.5 \mathrm{~V}$ to 6.3 V operation
$=1: 4.5 \mathrm{~V}$ to 9.5 V operation
Option 10: L3 Driver
same as Option 5
Option 11: L2 Driver same as Option 5
Option 12: L Driver same as Option 5
Option 13: Lo Driver same as Option 5
Option 14: SI Input $=0$: load device to $V_{C C}$
$=1$: $\mathrm{HI}-\mathrm{Z}$ input

Option 15: SO Driver =0: Standard Output
$=1$: Open-drain output
= 2: Push-pull output
Option 16: SK Driver same as Option 15
Option 17: Gol/O Port $=0$: Standard output $=1$: Open-drain output
Option 18: G1/O Port same as Option 17
Option 19: G_{2} I/O Port same as Option 17
Option 20: G3 I/O Port same as Option 17

Option 21: must be set to zero
Option 22: same as Option 21
Option 23: same as Option 21
Option 24: same as Option 21
Option 25: L Input Levels $=0$: Standard TTL input levels (" 0 " $=0.8 \mathrm{~V}, " 1 "=$ $2.0 \mathrm{~V})$ $=1$: Higher voltage input levels (" 0 " $=1.2 \mathrm{~V}, " 1 "=$ $3.6 \mathrm{~V})$
Option 26: G Input Levels same as Option 25

Option 27: SI Input Levels same as Option 25
Option 28: Bonding, must be set to 3 for ETL9413/9313

Test Mode (Non-standard Operation)

The SO output has been configured to provide for standard test procedures for the customprogrammed ETL9413. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI :
a. RAM and Internal Logic Test Mode ($\mathrm{SI}=1$)
b. ROM Test Mode $(\mathbf{S I}=0)$

These special test modes should not be employed by the user; they are intended for manufacturing test only.

The ETL9413 is the same chip as the ETL9410 but in a 20-pin package. The four D ports are not bonded. Consequently, the electrical characteristics, the functional description and the instruction set are identical to the ETL9410 but without the D outputs. Please, refer to the ETL9410/9411 data sheet.
Note that the OBD instruction can be used but the D outputs are not available.

The ET9420/9421/9422, ET9320/9321 and 9322 Single-Chip NChannel Microcontrollers are fully compatible with the COPS ${ }^{(8)}$ family, fabricated using \mathbf{N}-channel, silicon gate XMOS technology. They are complete microcomputers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The ET9421 is identical to the ET9420, except with 191/O lines instead of 23 ; the ET9422 has 15 I/O lines. They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized Controller Oriented Processor at a low end-product cost.

The ET9320 is the extended temperature range version of the ET9420 (likewise the ET9321 and ET9322 are the extended temperature range versions of the ET9421/ET9422). The ET9320/9321/ 9322 are exact functional equivalents of the ET9420/9421/9422.

- Low cost
- Powerful instruction set
- 1 K x 8 ROM, 64×4 RAM
- 23 I/O lines (ET9420, ET9320)
- True vectored interrupt, plus restart
- Three-level subroutine stack
- $4.0 \mu \mathrm{~s}$ instruction time
- Single supply operation
- Internal time-base counter for real-time processing
- Internal binary counter register with MICROWIRE (2)
compatible serial I/O capability
- General purpose and TRI-STATE®outputs
- TLLCMOS compatible in and out
- LED direct drive outputs
- MICROBUS © compatible
- Software/hardware compatible with other members of ET9400
- Extended temperature range device ET9320/9321/9322 $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

PIN ASSIGNMENT
GNO

ET9420/9421/9422 and ET9320/9321/9322

ABSOLUTE MAXIMUM RATINGS

Voltage at Any Pin
Operating Temperature Range
ET9420/9421/9422
ETM20/9421/9422
ET9320/9321/9322
Storage Temperature Range
Total Sink Current
Total Source Current

-0.3 V to +7 V	Package Power Dissipation	750 mW at $25^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	24 and 28 pin	400 mW at $70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Package Power Dissipation	250 mW at $85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	20 pin	650 mW at $25^{\circ} \mathrm{C}$
75 mA		300 mW at $70^{\circ} \mathrm{C}$
95 mA	Lead Temperature (soldering, 10 sec.)	200 mW at $85^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$	

Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

ET9420/9421/9422

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, 4.5 \mathrm{C} \leqslant \mathrm{V}_{\mathrm{CC}} \leqslant 6.3 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Operation Voltage		4.5	6.3	V
Power Supply Ripple	Peak to Peak (Note 3)	-	0.4	\checkmark
Supply Current	Outputs Open	-	38	mA
Supply Current	Outputs Open, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	-	30	mA
Input Voltage Levels				
CKI Input Levels				
Crystal Input				
Logic High	$V_{C C}=$ Max.	3.0	-	
Logic High	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	2.0	-	V
Logic Low		-0.3	0.4	V
TTL Input	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$			
Logic High		2.0	-	V
Logic Low		-0.3	0.8	V
Schmitt Trigger Inputs				
RESET, CKI ($\div 4$)				
Logic High		$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	V
Logic Low		-0.3	0.6	V
SO Input Level (Test Mode)		2.0	3.0	V
All Other Inputs				
Logic High	$V_{C C}=$ Max.	3.0	-	V
Logic High	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	2.0	-	V
Logic Low		-0.3	0.8	V
Input Levels High Trip Option				
Logic High		3.6	-	V
Logic Low		-0.3	1.2	V
Input Load Source Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$			
CKO		-4	-800	$\mu \mathrm{A}$
All Others		-100	-800	$\mu \mathrm{A}$
Input Capacitance		-	7	pF
Hi-Z input Leakage	$V_{C C}=5 \mathrm{~V}$	-1	+1	$\mu \mathrm{A}$
Output Voltage levels				
Standard Outputs				
TTL Operation	$V_{C C}=5 \mathrm{~V} \pm 5 \%$			
Logic High	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.4	-	V
Logic Low	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-0.3	0.4	V
CMOS Operation				
Logic High	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-1$	-	V

ET9420/9421/9422

DC ELECTRICAL CHARACTERISTICS (Cont'd) $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 6.3 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Output Current Levels				
LED Direct Drive Output Logic High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	2.5	14	mA
CKI Sink Current (R/C Option)	$\mathrm{V}_{\text {IN }}=3.5 \mathrm{~V}$	2	-	mA
CKO (RAM Supply Current)	$\mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}$	-	3	mA
TRI-STATE ${ }^{(\mathbb{B}}$ or Open Drain Leakage Current		-2.5	+2.5	$\mu \mathrm{A}$
Output Current Levels				
Output Sink Current (lou)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -2.0 \\ & -1.0 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Source Current (${ }_{\text {IOH }}$)				
Standard Configuration				
All Outputs	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V}$	-200	-900	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=2.0 \mathrm{~V}$	-100	-500	$\mu \mathrm{A}$
Push-Pull Configuration				
SO, SK Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -1.0 \\ -0.4 \end{array}$	-	$m A$ mA
TRI-STATE Configuration				
Lo-L7 Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -2.0 \\ & -0.8 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
LED Configuration				
Lo-L7 Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.5 \end{aligned}$	-	mA mA
Allowable Sink Current				
Per Pin (L, D, G)		-	10	mA
Per Pin (All Others)		-	2	mA
Per Port (L)		-	16	mA
Per Port (D, G)		-	10	mA
Allowable Source Current				
Per Pin (L)		-	-15	mA
Per Pin (All Others)		-	-1.5	mA

ET9320/9321/9322

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$ (Unless otherwise specified).

Parameter	Conditions	Min.	Max.	Units
Operation Voltage		4.5	5.5	V
Power Supply Ripple	Peak to Peak (Note 3)	-	0.4	v
Supply Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$. Outputs Open	-	40	mA
Input Voltage Levels				
CKI Input Levels				
Crystal Input				
Logic High		2.2	-	V
Logic Low		-0.3	0.3	V
TTL Input	$V_{C C}=5 \mathrm{~V} \pm 5 \%$			
Logic High		2.2	-	v
Logic Low		-0.3	0.6	v
Schmitt Trigger Inputs				
RESET, CKI $(\div 4)$				
Logic High		$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	v
Logic Low		-0.3	0.4	V
SO Input Level (Test Mode)		2.0	3.0	v
All Other Inputs				
Logic High	$V_{C C}=$ Max.	3.0	-	V
Logic High	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	2.2	-	V
Logic Low		-0.3	0.6	V
Input Levels High Trip Option				
Logic Low		-0.3	1.2	V
Input Load Source Current	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$			
CKO		-4	-800	$\mu \mathrm{A}$
All Others		-100	-800	$\mu \mathrm{A}$
Input Capacitance		-	7	pF
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-2	+2	$\mu \mathrm{A}$
Output Voltage levels				
Standard Outputs				
TTL Operation	$V_{C C}=5 \mathrm{~V} \pm 5 \%$			
Logic High	$\mathrm{l}_{\mathrm{OH}}=-75 \mu \mathrm{~A}$	2.4	-	v
CMOS Operation				
Logic Low	$\mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A}$	-0.3		
Output Current Levels				
LED Direct Drive Output Logic High	$\mathrm{V}_{C C}=5 \mathrm{~V}$ (Note 4) $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$			
Logic High, (Ric Option)	$V_{\mathrm{OH}}=2.0 \mathrm{~V}$			
CKI Sink Current (R/C Option)	$\mathrm{V}_{1 \mathrm{~N}}=3.5 \mathrm{~V}$	2	-	mA
CKO (RAM Supply Current)	$\mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}$	-	4	mA
TRI-STATE or Open Drain Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-5	+5	$\mu \mathrm{A}$
Allowable Sink Current				
Per Pin (L, D, G)		-	10	mA
Per Pin (All Others)		-	2	mA
Per Port (L)		-	16	$m A$
Per Port (D, G)		-	10	mA
Allowable Source Current Per Pin (L)		-	-15	mA
Per Pin (All Others)		-	-1.5	mA

AC ELECTRICAL CHARACTERISTICS

ET9420/9421/9422 $\quad 0{ }^{\prime} C \leqslant T_{A} \leqslant+70^{\prime} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 6.3 \mathrm{~V}$ (Unless otherwise specified) ET9320/9321/9322 $-40^{\prime \prime} C \leqslant T_{A} \leqslant+85{ }^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{C}} \mathrm{C} \leqslant 5.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Instruction Cycle Time		4	10	$\mu \mathrm{S}$
Operating CKI Frequency	$\begin{aligned} & \div 16 \text { mode } \\ & \div 8 \text { mode } \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	4.0 2.0	MHz MHz
CKI Duty Cycle (Note 1)		40	60	\%
Rise Time	Freq. $=4 \mathrm{MHz}$	-	60	ns
Fall Time	Freq. $=4 \mathrm{MHz}$	-	40	ns
CKI Using RC (Figure 8c)	$\div 4$ mode			
Frequency	$\mathrm{R}=15 \mathrm{k} \Omega \pm 5 \%, C=100 \mathrm{pF} \pm 10 \%$	0.5	1.0	MHz
Instruction Cycle Time		4	8	$\mu \mathrm{S}$
CKO as SYNC input (Figure 8d) $t_{\text {SYNC }}$	Figure 3a	50	-	ns
Inputs:				
SI				
${ }^{\text {t }}$ SETUP		0.3	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {HOLD }}$		250	-	ns
All Other Inputs				
${ }^{\text {t SETUP }}$		1.7	-	$\mu \mathrm{S}$
thold		300		ns
Output Propagation Delay	Test Conditions: $R_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	300	-	ns
SO and SK				
${ }^{\text {tpd1 }}$		-	1.0	$\mu \mathrm{S}$
		-	1.0	$\mu \mathrm{S}$
CKO				
${ }^{\text {tpd }} 1$		-	0.25	$\mu \mathrm{S}$
tpdo		-	0.25	$\mu \mathrm{S}$
All Other Outputs				
$t_{\text {pd1 }}$ tpdo		-	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$
MICROBUS ${ }^{\text {® }}$ Timing	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$			
Read Operation (Figure 4)				
Chip Select Stable before $\overline{\mathrm{R}}$ - $\mathrm{t}_{\text {CSA }}$		65	-	ns
Chip Select Hold Time for $\overline{\mathrm{RD}}$ - $\mathrm{t}_{\text {RCS }}$		20	-	ns
RD Pulse Width - $t_{\text {RR }}$		400	-	ns
Data Delay from $\overline{\mathrm{RD}}$ - $\mathrm{t}_{\text {RD }}$		-	375	ns
RD to Data Floating - tof		-	250	ns
Write Operation (Figure 5)				
Chip Select Stable before $\overline{W R}-{ }^{\text {ctasw }}$		65	-	ns
Chip Select Hold Time for WR-twcs		20	-	ns
WR Pulse Width - ${ }_{\text {ww }}$		400	-	ns
Data Set-Up Time for WR-tow		320	-	ns
Data Hold Time for WR - ${ }_{\text {wo }}$		100	-	ns
INTR Transition Time from $\overline{W R}-t_{\text {w }}$		-	700	ns

Note 1: Duty cycle $=t_{w_{1}}\left(t_{w_{1}}+t_{w_{0}}\right)$.
Note 2 : See Figure 9 for additional I/O characteristics.
Note 3 : Voltage change must be less than 0.5 volt in a 1 ms period.
Note 4 : Exercise great care not to exceed maximum device power dissipation limits when direct driving LEDs (or sourcing similar loads) at high temperature.

FIGURE 2 - CONNECTION DIAGRAMS

Order number ET9422/N ET9322/N
Package N20A

FIGURE 3 - INPUT/OUTPUT TIMING DIAGRAMS (CRYSTAL DIVIDE BY 16 MODE)

FIGURE 3a - SYNCHRONIZATION TIMING

FIGURE 3b - CKO OUTPUT TIMING

FIGURE 5 - MICROBUS (8) WRITE OPERATION TIMING

FUNCTIONAL DESCRIPTION

For ease of reading this description, only ET9420 and or ET9421 are referenced; however, all such references apply equally to the ET9422, 9322, 9320 and or ET9321. respectively

A block diagram of the ET9420 is given in figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " (greater than 2 volts). When a bit is reset, it is a logic " 0 " (less than 0.8 volts).

Program Memory

Programm Memory consists of a 1.024 byte ROM. As can be seen by an examination of the ET9420/9421/9422 instruction set, these words may be program instructions, program data or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID and LQID instructions, ROM must often be thought of as being organized into 16 pages of 64 words each.

ROM addressing is accomplished by a 10-bit PC register. Its binary value selects one of the 1,0248 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the $P C$ register is loaded with the next sequential 10 -bit binary count value. Three levels of subroutine nesting are implemented by the 10 -bit subroutine save registers, SA, SB and SC, providing a last-in, first-out (LIFO) hardware subroutine stack.

ROM instruction words are fetched, decoded and executed by the Instruction Decode, Control and Skip Logic circuitry.

Data Memory

Data memory consists of a 256-bit RAM, organized as 4 data registers of 164 -bit digits. RAM addressing is implemented by a 6 -bit \mathbf{B} register whose upper 2 bits (Br) select 1 of 4 data registers and lower 4 bits (Bd) select 1
of 164 -bit digits in the selected dala register. While the 4 -bit contents of the selected RAM digit (M) is usually loaded into or from, or exchanged with, the A register (accumulator), it may also be loaded into or from the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the 6-bit contents of the operand field of these instructions. The Bd register also serves as a source register for 4 -bit data sent directly to the D outputs.

Internal Logic

The 4 -bit \mathbf{A} register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Br and Bd portions of the B register, to load and input 4 bits of the 8 -bit Q latch data, to input 4 bits of the 8-bit L I/O port data and to perform data exchanges with the SIO register.

A 4-bit adder performs the arithmetic and logic functions of the ET9420/9421/9422, storing its results in A. It also outputs a carry bit to the 1 -bit C register, most often employed to indicate arithmetic overflow. The C register, in conjunction with the XAS instruction and the EN register, also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description, below).

Four general-purpose inputs, $\mathbb{N}_{3}-\mathbb{N}_{0}$, are provided; \mathbb{N}_{1}, \mathbb{N}_{2} and \mathbb{N}_{3} may be selected, by a mask-programmable option, as Read Strobe, Chip Select and Write Strobe inputs, respectively, for use in MICROBUS (3) applications.

The D register provides 4 general-purpose outputs and is used as the destination register for the 4 -bit contents of Bd.

The \mathbf{G} register contents are outputs to 4 general-purpose bidirectional I/O ports. Go may be mask-programmed as an output for MICROBUS ${ }^{\circledR}$ applications.

The \mathbf{Q} register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A, as well as 8 -bit data from ROM. Its contents are output to the L I/O ports when the L drivers are enabled under program control. (See LEI instruction). With the PIICROBUS ${ }^{\text {TM }}$ option selected, Q can also be loaded with the 8 -bit contents of the L I/O ports upon the occurence of a write strobe from the host CPU.

The 8 L drivers, when enabled, output the contents of latched Q data to the LI/O ports. Also, the contents of L may be read directly into A and M. As explained above, the MICROBUS ${ }^{\text {TM }}$ option allows L I/O port data to be latched into the Q register. L I/O ports can be directly connected to the segments of a multiplexed LED display (using the LED Direct Drive output configuration option) with Q data being outputted to the $\mathrm{Sa}-\mathrm{Sg}$ and decimal point segments of the display.
The SIO register functions as a 4 -bit serial-in/serial-out shift register or as a binary counter depending on the contents of the EN register. (See EN register description, below.) Its contents can be exchanged with A , allowing it to input or output a continuous serial data stream. SIO may also be used to provide additional parallel I/O by connecting SO to external serial-in/Darallel-out shift registers.

The XAS Instruction copies C into the SKL latch. In the counter mode, SK is the output of SKL; in the shift register modé, SK outputs SKL ANDed with the clock.
The EN register is an internal 4-bit register loaded under. program control by the LEI instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register ($\mathrm{EN}_{3}-\mathrm{EN}_{0}$).

1. The least significant bit of the enable register, $E N_{\mathrm{O}}$. selects the SIO register as either a 4 -bit shift register or a 4 -bit binary counter. With $E N_{0}$ set, SIO is an asynchronous binary counter, decrementing its value by one upon each low-going pulse (" 1 " to " 0 ") ocurring on the SI input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of EN_{3}. With $E N_{0}$ reset, SIO is a serial shift register shifting left each instruction cycle time. The data present at SI goes into the least significant bit of SIO. SO can be enabled to output the most significant bit of SIO each cycle time. (See 4 below.) The SK output becomes a logic-controlled clock.
2. With EN_{1} set the IN_{1} input is enabled as an interrupt input. Immediately following an interrupt, EN_{1} is reset to disable further interrupts.
3. With EN_{2} set, the L drivers are enabled to output the data in Q to the L I/O ports. Resetting EN_{2} disables the L drivers, placing the L I/O ports in a highimpedance input state.
4. EN_{3}, in conjunction with EN_{0}, affects the SO output. With $E N_{0}$ set (binary counter option selected) SO will output the value loaded into $E N_{3}$. With $E N_{0}$ reset (serial shift register option selected), setting $E N_{3}$ enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected disables SO as the shift register output; data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ." The table below provides a summary of the modes associated with EN_{3} and EN_{O}.

Enable Register Modes - Bits EN_{3} and EN_{0}

EN_{3}	ENo	SIO	SI	so	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=\text { CLOCK } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Out	$\begin{aligned} & \text { If } S K L=1, S K=C L O C K \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} \text { If } S K L & =1, S K \\ \text { If } S K L & =0, S K=0 \end{aligned}$
1	1	Binary Counter	Infut to Binary Counter	1	$\begin{aligned} \text { If } S K L & =1, S K=1 \\ \text { If } S K L & =0, S K=0 \end{aligned}$

Interrupt

The following features are associated with the \mathbb{N}_{1} interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.
a. The interrupt, once acknowledged as explained below, pushes the next sequential program counter address ($P C+1$) onto the stack, pushing in turn the contents of the other subroutine-save registers to the next lower level ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$). Any previous contents of SC are lost. The program counter is set to hex address OFF (the last word of page 3) and $E N_{1}$ is reset.
b. An interrupt will be acknowledged only after the following conditions are met:

1. $E N_{1}$ has been set.
2. A low-going pulse (" 1 " to " 0 ") at least two instruction cycles wide occurs on the \mathbb{N}_{1} input.
3. A currently executing instruction has been completed.
4. All successive transfer of control instructions and successive LBIs have been completed (e.g., if the main program is executing a JP instruction which transfers program control to another JP instruction, the interrupt will not be acknowledged until the second JP instruction has been executed.
c. L'pon acknowledgement of an interrupt, the skip logic status is saved and later restored upon popping of the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to "pop" the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines and LQID instructions should not be nested within the interrupt service routine, since their popping the stack will enable any previously saved main program skips, interfering with the orderly execution of the interrupt routine.
d. The first instruction of the interrupt routine at hex address OFF must be a NOP.
e. A LEI instruction can be put immediately before the RET to re-enable interrupts.

Microbus ${ }^{\circledR}$ Interface

The ET9420 has an option which allows it to be used as a peripheral microprocessor device. inputting and outputting data from and to a host microprocessor ($\mu \mathrm{P}$). $\mathbb{N}_{1}, \mathbb{N}_{2}$ and \mathbb{N}_{3} general purpose inputs become MICROBUS ${ }^{\circledR}$ compatible read-strobe, chip-select, and write-strobe lines, respectively. \mathbb{N}_{1} becomes $\overline{\mathrm{RD}}-\dot{\mathrm{a}}$ logic " 0 " on this input will cause Q latch data to be enabled to the L ports for input to the $\mu \mathrm{P}$. \mathbb{N}_{2} becomes $\overline{C S}$ - a logic " 0 " on this line selects the ET9420 as the $\mu \mathrm{P}$ peripheral device by enabling the operation of the $\overline{\mathrm{RD}}$ and $\overline{W R}$ lines and allows for the selection of one of several peripheral components. \mathbb{N}_{3} becomes $\overline{W R}-$ a logic " 0 " on this line will write bus data from the L ports to the Q latches for input to the ET9420. G_{0} becomes INTR a "ready" output, reset by a write pulse from the
$\mu \mathrm{P}$ on the $\overline{\mathrm{WR}}$ line, providing the "handshaking capability necessary for asynchrnnous data transfer between the host CPU and the ET9420.

This option has been designed for compatibility with National's MICROBUS ${ }^{\text {M }}$ - a standard interconnect system for 8 -bit parallel data transfer between MOS/LSI CPUs and interfacing devices. (See MICROBUSTM National Publication.) The functioning and timing relationships between the ET9420 signal lines affected by this option are as specified for the MICROBUS ${ }^{\circledR}$ interface, and are giver, in the AC electrical characteristics and shown in the timing diagrams (figures 4 and 5). Connection of the ET9420 to the MICROBUS ${ }^{\otimes}$ is shown in Figure 6.

FIGURE 6 - MICROBUS ${ }^{\circledR}$ © OPTION INTERCONNECT

Initialization

The Reset Logic, internal to the ET9420/9421/9422, will initialize (clear) the device upon power-up if the power supply rise time is less than 1 ms and greater than $1 \mu \mathrm{~s}$. If the power supply rise time is greater than 1 ms , the user must provide an external RC network and diode to the RESET pin as shown below. The RESET pin is configured as a Schmitt trigger input. If not used it should be connected to V_{Cc}. Initialization will occur whenever a logic " 0 " is applied to the RESET input, provided it stays low for at least three instruction cycle times.
Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA.

FIGURE 7 - POWER-UP CLEAR CIRCUIT

Oscillator

There are four basic clock oscillator configurations available as shown by figure 8 .
a. Crystal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency divided by 16 (optional by 8).
b. External Oscillator. CKI is an external clock input signal. The external frequency is divided by 16 (optional by 8) to give the instruction cycle time. CKO is now available to be used as the RAM power supply $\left(V_{R}\right)$ or as a general purpose input.
c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is available for non-timing functions.
d. Externally Synchronized Oscillator. Intended for use in multi-COP systems, CKO is programmed to function as an input connected to the SK output of another ET9420/9421 /9422 with CKI connected as shown. In this configuration, the SK output connected to CKO must provide a SYNC (instruction cycle) signal to CKO, thereby allowing synchronous data transfer between the COPs using only the SI and SO serial I/O pins in conjunction with the XAS instruction. Note that on power-up SK is automatically enabled as a SYNC output (See Functional Description, Initialization, above).

CKO Pin Options

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. As an option CKO can be a SYNC input as described above. As another option CKO can be a general purpose input, read into bit 2 of A (accumulator) upon execution of an INIL instruction. As another option, CKO can be a RAM power supply pin $\left(V_{R}\right)$, allowing its connection to a standby/backup power supply to maintain the integrity of RAM data with minimum power drain when the main supply is inoperative or shut down to conserve power. Using either option is appropriate in applications where the ET9420/9421/9422 system timing configuration does not require use of the CKO pin.

RAM Keep-Alive Option (Not available on ET9422)
Selecting CKO as the RAM power supply $\left(V_{R}\right)$ allows the user to shut off the chip power supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and maintain data in the RAM. To insure that RAM data integrity is maintained, the following conditions must be met:

1. $\bar{R} \overline{E S E T}$ must go low before $V_{C C}$ goes below spec during power off: $V_{C C}$ must be within spec before RESET goes high on power up.
2. V_{R} must be within the operating range of the chip, and equal to $\mathrm{V}_{\mathrm{CC}} \pm 1 \mathrm{~V}$ during normal operation.
3. V_{R} must be $\geqslant 3.3 V$ with $V_{C C}$ off.

RC Controlled Oscillator

Crystal Oscillator
Crystal Value Component Values $R 1(\Omega)$ $R 2(\Omega)$ $C(p F)$ 4 MHz 1 k 1 M 27 3.58 MHz 1 k 1 M 27 2.09 MHz 1 k 1 M 56

Crystal Oscillator

$\mathbf{R (k} \Omega)$	$\mathbf{C}(\mathbf{p F})$	Instruction Cycle Time $(\mu \mathbf{s})$
12	100	$5 \pm 20 \%$
6.8	220	$5.3 \pm 23 \%$
82	300	$8 \pm 29 \%$
22	100	$8.6 \pm 16 \%$

Note: $50 \mathrm{k} \Omega \geqslant R \geqslant 5 \mathrm{k} \Omega$
$360 \mathrm{pF} \geqslant \mathrm{C} \geqslant 50 \mathrm{pF}$

I/O Options

ET9420/9421/9422 outputs have the following optional configurations, illustrated in Figure 9a :
a. Standard - an enhancement mode device to ground in conjunction with a depletion-mode device to V_{CC}. compatible with TTL and CMOS input requirements. Available on SO, SK, and all D and G outputs.
b. Open-Drain - an enhancement-mode device to ground only, allowing external pull-up as required by the user's application. Available on SO, SK, and all D and G outputs.
c. Push•Pull - An enhancement-mode device to ground in conjunction with a depletion-mode device paralleled by an enhancement-mode device to V_{Cc}. This configuration has been provided to allow for fast rise and fall times when driving capacitive loads. Available on SO and SK outputs only
d. Standard L - same as a., but may be disabled. Available on L outputs only.
e. Open Drain L - same as b., but may be disabled. Available on L outputs only.
f. LED Direct Drive - an enhancement-mode device to ground and to V_{CC}, meeting the .typical current sourcing requirements of the segments of an LED display. The sourcing device is clamped to limit current flow. These devices may be turned off under program control (See Functional Description, EN Register), placing the outputs in a high-impedance state to provide required LED segment blanking for a multiplexed display.
g. TRI-STATE ${ }^{\circledR}$ Push-Pull - an enhancement-mode device to ground and V_{CC}. These outputs are TRI-STATE outputs, allowing for connection of these outputs to a data bus shared by other bus drivers.

ET9420/9421/9422 inputs have the following optional configurations :
h. An on-chip depletion load device to $V_{C C}$
i. A Hi-Z input which must be driven to a " 1 " or " 0 " by external components
The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (lout and $\mathrm{V}_{\text {OUT }}$) curves are given in Figure 9b for each of these devices to allow the designer to effectively use these I/O configurations in designing a ET9420/9421/9422 system.

The SO, SK outputs can be configured as shown in a., b., or c. The D and G outputs can be configured as shown in \mathbf{a}. or b . Note that when inputting data to the G ports, the G outputs should be set to "1." The L outputs can be configured as in d., e., f. or g.

An important point to remember if using configuration d. or f. with the L drivers is that even when the L drivers are disabled, the depletion load device will source a small amount of current (see Figure 9b, device 2); however, when the L lines are used as inputs, the disabled depletion device can not be relied on to source sufficient current to pull an input to logic " 1 ".

ET9421

If the ET9420 is bonded as a 24 -pin device, it becomes the ET9421, illustrated in Figure 2, ET9420/9421 Connection Diagrams. Note that the ET9421 does not contain the four general purpose IN inputs ($\mathbb{N}_{3}-\mathbb{N}_{0}$). Use of this option precludes, of course, use of the IN options, interrupt feature, and the MICROBUS ${ }^{\top M}$ option which uses $\mathbb{N}_{1}-\mathbb{N}_{3}$. All other options are available for the ET9421.

ET9422

If the ET9420 is bonded as a 20 -pin device, it becomes the ET9422, as illustrated in Figure 2. Note that the ETL9422 contains all the ET9421 pins except DO, D1, G0 and G1. ET9422 also does not allow RAM power supply input as a valid CKO pin option.

a. Standard Output

d. Standard L Output

g. TRI-STATE Push-Pull (L Output)

b. Open-Drain Output

h. Input with Load

c. Push-Pull Output

i. Hi-Z input

FIGURE 9b - ET9420/9421/9422 INPUT/OUTPUT CHARACTERISTICS

Led Output Source Current

TRI-STATE ® Output
Source Current

L Output Depletion Load OFF Source Current

Push-Pull Source Current

LED Output Device LED Drive

Input Load Source Current

FIGURE 9c - ET9320/9321/9322 INPUT/OUTPUT CHARACTERISTICS

INSTRUCTION SET

Table 1 is a symbol table providing imernal architecture, instruction operand and operational symbols used in the instruction set table.

Table 2 provides the mnemonic, operand, machine code, data flow, skip conditions, and description associated with each instruction in the ET9420/9421/9422 instruction set.

TABLE 2 - ET9420/9421/9422. ET9320/9321/9322 INSTRUCTION SET TABLE SYMBOLS

Symbol	Definition
INTERNAL ARCHITECTURE SYMBOLS	
A	4-bit Accumulator
B	6-bit RAM Address Register
Br	Upper 2 bits of B (register address)
Bd	Lower 4 bits of B (digit address)
C	1-bit Carry Register
D	4-bit Data Output Port
EN	4-bit Enable Register
G	4-bit Register to latch data for G I/O Port
IL	Two 1-bit latches associated with the IN ${ }_{3}$ or
	IN inputs
IN	4-bit Input Port
L	8-bit TRI-STATE ${ }^{\text {® }}$ I/O Port
M	4-bit contents of RAM Memory pointed to by
	B Register
PC	10-bit ROM Address Register (program
	counter)
Q	8-bit Register to latch data for L I/O Port
SA	10-bit Subroutine Save Register A
SB	10-bit Subroutine Save Register B
SC	10 Subroutine Save Register A
SIO	4-bit Shift Register and Counter
SK	Logic-Controlled Clock Output

Symbol	Definition
inSTRUCTION OPERAND SYMBOLS	
d	4-bit Operand Field. 0-15 binary (RAM Digit Select)
r	2-bit Operand Fie!d. 0-3 binary (RAM Register Select)
a	10-bit Operand Field. $0-1023$ binary (ROM Address)
y	4-bit Operand Field, 0-15 binary (Immediate Data)
RAM(s) Contents of RAM location addressed by s	
ROM(t) Contents of ROM location addressed by t	

OPERATIONAL SYMBOLS	
+	Plus
-	Minus
\rightarrow	Replaces
-	Is exchanged with
$=$	Is equal to
\bar{A}	The one's complement of A
\oplus	Exclusive-OR
$:$	Range of values

TABLE 2 - ET9420/9421/9422. ET9320/9321/9322 INSTRUCTION SET

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

ASC		30	00110000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry, Skip on Carry
ADD		31	001110001	$A+R A M(3) \rightarrow A$	None	Add RAM to A
ADT		4A	$0100 \mid 1010$	$A+10_{10} \rightarrow A$	None	Add Ten to A
AISC	y	5-	0101 y	$A+y \rightarrow A$	Carry	Add Immedıate. Skıp on Carry (y $\neq 0$)
CASC		10	00010000	$\begin{aligned} & \bar{A}+R A M(B)+C \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Complement and Add with Carry. Skıp on Carry
CLRA		00	0000\|0000	$0 \rightarrow A$	None	Clear A
COMP		40	010010000	$\bar{A} \rightarrow A$	None	One's complement of A to A
NOP		44	010010100	None	None	No Operation
RC		32	$0011 / 0010$	$\cdots{ }^{\prime \prime} \rightarrow$ C	None	Reset C
SC		22	001010010	${ }^{*}{ }^{*} \rightarrow \mathrm{C}$	None	Set C
XOR		02	00000010	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A

TABLE 2 - ET9420/9421/9422. ET9320/9321/9322 INSTRUCTION SET (continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

TRANSFER OF CONTROL. INSTRUCTIONS

JID		FF	1 1 1 1 1 1	ROM (PC9:8. $4 . M) \rightarrow \mathrm{PC}_{7: 0}$	None	Jump Indirect (Note 3)
JMP	a	$6-$	$\begin{array}{\|c\|c\|c\|c\|} \hline 01110\|00\| a 9: 8 \\ \hline a 7: 0 \\ \hline \end{array}$	$a * P C$	None	Jump
JP	a	.-	1 $a_{6: 0}$ $\begin{array}{c}\text { (pages } 2,3 \text { only) } \\ \text { or }\end{array}$ 1 1 $a_{5: 0}$ (all other pages)	$a \rightarrow P C_{6: 0}$ $a \rightarrow P C_{5: 0}$	None	Jump within Page (Note 4)
JSRP	a	--	110 ${ }^{\text {a }}$ 5:0	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & 0010 \rightarrow \mathrm{PC}_{9}: 6 \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 5)
JSR	a	6-		$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & \mathrm{a} \rightarrow \mathrm{PC} \end{aligned}$	None	Jump to Subroutine
RET		48	01001000	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine
RETSK		49	0100\|1001	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip

MEMORY REFERENCE INSTRUCTIONS

CAMQ		33 $3 C$		$\begin{aligned} & A \rightarrow Q_{7: 4} \\ & \operatorname{RAM}(B) \rightarrow Q_{3: 0} \end{aligned}$	None	Copy A, RAM to Q				
CQMA		$\begin{aligned} & 33 \\ & 2 C \end{aligned}$		$\begin{aligned} & Q_{7: 4} \rightarrow \text { RAM(B) } \\ & Q_{3: 0} \rightarrow A \end{aligned}$	None	Copy Q to RAM, A				
LD	「	-5	\|00	r	l	l		$\begin{aligned} & R A M(B) \rightarrow A \\ & \mathrm{Br} \oplus \mathrm{~B} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A, Exclusive-OR Br with r
LDD	P,d	23	$\begin{array}{\|l\|l\|l\|l\|} \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 011 \\ \hline 0 & 0 & r & d \\ \hline \end{array}$	$R A M(r, d) \rightarrow A$	None	Load A with RAM pointed to directly by r,d				
LQID		BF	1011\|1111	$\begin{aligned} & \operatorname{ROM}\left(P C_{g} ; 8, A, M\right) \rightarrow Q \\ & S B \rightarrow S C \end{aligned}$	None	Load Q Indirect (Note 3)				
RMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 C \\ & 45 \\ & 42 \\ & 43 \end{aligned}$		$\begin{aligned} & 0 \rightarrow \operatorname{RAM}(B)_{0} \\ & 0 \rightarrow \operatorname{RAM}(B)_{1} \\ & 0 \rightarrow \operatorname{RAM}(B)_{2} \\ & 0 \rightarrow \operatorname{RAM}(B)_{3} \end{aligned}$	None	Reset RAM Bit				
SMB	0 1 2 3	$\begin{aligned} & 4 D \\ & 47 \\ & 46 \\ & 4 B \end{aligned}$		$\begin{aligned} & 1 \rightarrow \operatorname{RAM}(B)_{0} \\ & 1 \rightarrow \operatorname{RAM}(B)_{1} \\ & 1 \rightarrow \operatorname{RAM}(B)_{2} \\ & 1 \rightarrow \operatorname{RAM}(B)_{3} \end{aligned}$	None	Set RAM Bit				

TABLE 2 - ET9420/9421/9422. ET9320/9321/9322 INSTRUCTION SET (continued)

| Mnemonic | Hex
 Operand
 Code
 Conguage Code
 (Binary) | Data Flow | Skip Conditions | Description |
| :--- | :---: | :---: | :---: | :---: | :---: |

MEMORY REFERENCE INSTRUCTIONS (continued)

STII	y		$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd
X	r		$\begin{aligned} & R A M(B) \sim A \\ & B r \oplus r \rightarrow B r \end{aligned}$	None	Exchange RAM with A, Exclusive-OR Br with r
XAD	r.d		RAM $(r, d) \leadsto A$	None	Exchange A with RAM pointed to directly by r,d
XDS	r		$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \leadsto \mathrm{A} \\ & \mathrm{Bd}-1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd, Exclusive-OR Br with r
XIS	r	-4 000	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \cdots \mathrm{A} \\ & \mathrm{Bd}+1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd increments past 15	Exchange RAM with A and Increment Bd, Exclusive-OR Br with r

REGISTER REFERENCE INSTRUCTIONS

CAB		50	01010000	$\mathrm{A} \rightarrow \mathrm{Bd}$	None	Copy A to Bd
CBA		4E	$0100 \mid 1110$	$\mathrm{Bd} \rightarrow \mathrm{A}$	None	Copy Bd to A
LBI	r,d	33		$r, d \rightarrow B$	Skip until not a LBI	Load b immediate with r,d (Note 6)
LEI	y	33	$\left.\begin{array}{\|l\|l\|l\|} \hline 0 & 0 & 1 \\ \hline 0 & 1 & 0 \end{array} \right\rvert\,$	$y \rightarrow E N$	None	Load EN Immediate (Note 7)
XABR		12	$0001 \mid 0010$	$A \rightarrow B r\left(0,0 \rightarrow A_{3}, A_{2}\right)$	None	Exchange A with Br

TEST INSTRUCTIONS

SKC		20	$0010 \mid 0000$		$C=\cdots 1 "$	Skip if C is True
SKE		21	, 001010001		$A=R A M(B)$	Skip if A Equals RAM
SKGZ		33 21			$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 bits)
SKGBZ	0 1 2 3	33 01 11 03 13		1st byte 2nd byte	$\begin{aligned} & \mathrm{G}_{0}=0 \\ & \mathrm{G}_{1}=0 \\ & \mathrm{G}_{2}=0 \\ & \mathrm{G}_{3}=0 \end{aligned}$	Skip if G Bit is Zero
SKMBZ	0 1 2 3	$\begin{aligned} & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$			$\begin{aligned} & \operatorname{RAM}(B)_{0}=0 \\ & \operatorname{RAM}(B)_{1}=0 \\ & \operatorname{RAM}(B)_{2}=0 \\ & \operatorname{RAM}(B)_{2}=0 \end{aligned}$	Skip if RAM Bit is Zero
SKT		41	010010001		A time-base counter carry has occurred since last test	Skıp on Timer (Note 3)

TABLE 2 - ET9420/9421/9422. ET9320/9321/9322 INSTRUCTION SET (continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

INPUT/OUTPUT INSTRUCTIONS

ING		33 24	$0011 \mid 0011$ $00110 \mid 1010$	$G \rightarrow A$	None	Input G Ports to A
ININ		33 28	$0011 \mid 0011$ $0010 \mid 1000$	$I N \rightarrow A$	None	Input IN Inputs to A (Note 2)
INIL		$\begin{aligned} & 33 \\ & 29 \end{aligned}$	0 011 0011 $0010 \mid 1001$	$\mathrm{IL}_{3}, \mathrm{CKO}, ~ " \mathrm{O}$ ", $\mathrm{ILO}^{\text {a }}$ A	Vone	Input IL Latches to A (Note 3)
INL		$\begin{aligned} & 33 \\ & 2 E \end{aligned}$		$\begin{aligned} & \mathrm{L}_{7}: 4 \rightarrow R A M(B) \\ & L_{3}: 0 \rightarrow A \end{aligned}$	None	Input L Ports to RAM, A
OBD		33 $3 E$	$\left.\begin{array}{\|l\|l\|l\|l\|l\|} \hline 0 & 0 & 1 & 1 & 0 \end{array} \right\rvert\,$	$\mathrm{Bd} \rightarrow \mathrm{D}$	None	Output Bd to D Outputs
OGI	y	$\begin{aligned} & 33 \\ & 5- \end{aligned}$	0011 0 011 0101 y 101 y	$y \rightarrow G$	None	Output to G Ports Immediate
OMG		$\begin{aligned} & 33 \\ & 3 A \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 0 & 0 & 1 & 1 & 0 \end{array}\left\|\begin{array}{ll} 1 & 1 \\ \hline 0 & 0 \end{array}\right\|$	$R A M(B)+G$	None	Output RAM to G Ports
XAS		4F	$0100 \mid 1111$	$A \rightarrow S I O, C \rightarrow S K L$	None	Exchange A with SIO (Note 3)

Note 1 : All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example, A_{3} indicates the most significant (left-most) bit of the 4-bit A register.
Note 2 : The ININ instruction is not available on the ET9421/ET9321 and ET9422/ET9322 since these devices do not contain the IN inputs. Note 3 : For additional information on the operation of the XAS, JID, LQID, INIL, and SKT instructions, see below.
Note 4: The JP instruction allows a jump, while in subroutine pages 2 or 3 , to any ROM location within the two-page boundary of pages 2 or 3. The JP instruction, otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page. Note 5 : A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may. not be used when in pages 2 or 3. JSRP may not jump to the last word in page 2.
Note 6 : LBI is a single-byte instruction if $d=0,9,10,11,12,13,14$ or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1, e.g., to load the lower four bits of $B(B d)$ with the value $9\left(1001_{2}\right)$, the lower 4 bits of the LBI instruction equals $8\left(1000_{2}\right)$. To load 0 , the lower 4 bits of the LBI instruction should equal $15\left(1111_{2}\right)$.
Note 7: Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register).

The following information is provided to assist the user in understanding the operation of several unique instructions and to provide notes useful to programmers in writing ET9420/9421/9422 programs.

XAS Instruction

XAS (Exchange A with SIO) exchanges the 4 -bit contents of the accumulator with the 4 -bit contents of the SIO register. The contents of SIO will contain serial-in/ serial-out shift register or binary counter data. depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description. EN Register, above.) If SIO is selected as a shift register. an XAS instruction must be performed once every 4 instruction cycles to effect a continuous data stream.

JID Instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 10 -bit word, $\mathrm{PC}_{9}: 8$, A. M. PC 9 and PC_{8} are not aftected by this instruction.

Note that JID requires 2 instruction cycles to execute.

INIL Instruction

INIL (Input IL Latches to A) inputs 2 latches, IL_{3} and IL_{0} (see figure 10) and CKO into A. The IL3 and ILolatches are set if a low-going pulse (" 1 " to " 0 ") has occurred on the $\mathbb{I N}_{3}$ and \mathbb{N}_{0} inputs since the last INIL instruction. provided the input pulse stays low for at least two instruction times. Execution of an INIL inputs IL3 and $I_{0} 0$ into $A 3$ and $A 0$ respectively, and resets these latches to allow them to respond to subsequent low-going pulses on the \mathbb{N}_{3} and $\mathbb{N} \mathbb{N}_{0}$ lines. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO into A2. If CKO has not been so programmed, a " 1 " will be placed in A2. A " 0 " is always placed in A1 upon the execution of an INIL. The general purpose inputs $\mathrm{N}_{3}-\mathrm{N}_{0}$ are input to A upon execution of an ININ instruction. (See table 2, ININ instruction.) INIL is useful in recognizing pulses of short duration or pulses which occur too often to be read conveniently by an ININ instruction.

Note: IL latches are not cleared on reset.

FIGURE 10.

LQID Instruction

LQID (Load Q Indirect) loads the 8 -bit Q register with the contents of ROM pointed to by the 10 -bit word $\mathrm{PC}_{9}, \mathrm{PC}_{8}$. A. M. LQID can be used tor table lookup or code conversion such as BCD to seven segment. The LQID instruc. tion "pushes" the stack , PC + 1 - SA - SB - SC) and replaces the least significant 8 bits of PC as follows: A $\rightarrow \mathrm{PC}_{7: 4}$, $\mathrm{RAM}(\mathrm{B}) \rightarrow \mathrm{PC}_{3} 0$, leaving PC_{9} and PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Qlatches. Next. the stack is "popped" (SC • SB \rightarrow SA •PC). restoring the saved value of PC to continue sequential program execution. Since LQID pushes SB \rightarrow SC. the previous contents of SC are lost. Also, when LQID pops the stack. the previously pushed contents of SB are left in SC. The net result is that the contents of SB are placed in SC (SB - SC). Note that LQID takes two instruction cycle times to execute.

SKT Instruction

The SKT (Ship On Timer) instruction tests the state of an internal 10 -bit time-base counter. This counter divides the instruction cycle clock frequency by 1024 and provides a latched indication of counter overflow. The SKT instruction tests this latch, executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction, therefore, allow the ET9420/9421/9422 to generate its own time-base for real-time processing rather than relying on an external input signal.

For example. using a 2.097 MHz crystal as the time-base to the clock generator. the instruction cycle clock frequency will be 131 kHz (crystal frequency - 16) and the binary counter output pulse frequency will be 128 Hz . For time-of-day or similar real-time processing, the SKT instruction can call a routine which increments a "seconds" counter every 128 ticks.

Instruction Set Notes

a. The first word of a ET9420/9421/9422 program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instructions are not executed. one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths take the same number of cycle times wiother instructions are skipped or executed except JID and LQID. LQID and JID take two cycle times if executed and one if skipped.
c. The ROM is organized into 16 pages of 64 words each. The Program Counter is an 10 -bit binary counter. and will count through page boundaries. If a JP. JSRP. JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the nevt page. For example: a JP located in the last word of a page will jump to a location in the next page. Also. a LQID or JID located in the !ast word of page 3. 7.11 or 15 will access data in the next group of four pages

OPTION LIST

The ET9420/9421;9422 mask programmable options are assigned numbers which correspond with the ET9420 pins.
The following is a list of ET9420 options. When specifying a ET9421 or ET9422 chip. Options 9, 10, 19, 20 and 29 must all be set to zero. When specifying a ET9422 chip. Options 21, 22, 27 and 28 must also be zero, and Option 2 must not be a 1 . The options are programmed at the same time as the ROM pattern to provide the user with the hard ware flexibility to interface to various $1 / O$ components using little or no external circuitry.

Option 1 $=0$: Ground Pin - no options available
Option 2: CKO Pin
$=0$: clock generator output to crystal (0 not available if option $3=4$ or 5)
$=1$: pin is RAM power supply $\left(V_{R}\right)$ input (Not available on ET9422. ET9322)
=2: general purpose input with load device
=3: multi-COP SYNC input
=4: general purpose Hi Z input
Option 3: CKI Input
$=0$: crystal input divided by 16
$=1$: crystal input divided by 8
=2: TTL external clock input divided by 16
=3: TTL external clock input divided by 8
= 4: single-pin RC controlled oscillator (-4)
$=5$: Schmitt trigger clock input (-4)
Option 4: RESET Pin
$=0$: Load devices to $V_{C C}$
= 1: Hi-Z input
Option 5: L7 Driver
$=0$: Standard output (figure 9D)
= 1: Open-Drain output (E)
= 2: LED direct drive output (F)
$=3$: TRI-STATE © push-pull output (G)
Option 6: L_{6} Driver
same as Option 5
Option 7: L5 Driver same as Option 5
Option 8: L4 Driver same as Option 5
Option 9: \mathbb{N}_{1} Input $=0$: load device to $V_{C C}(H)$
$=1$: Hi-Z input (1)
Option 10: \mathbb{N}_{2} input
same as Option 9
Option $11=0$: $V_{C C} \operatorname{Pin}-$ no options available
Option 12: L3 Driver same as Option 5
Option 13: L-2 Driver same as Option 5
Option 14: L- Driver same as Option 5

Option 15: Lo Driver same as Option 5
Option 16 :SI Input
same as Option 9
Option 17: SO Driver
$=0$: standard output (A)
=1: open-drain output (B)
=2: push-pull output (C)
Option 18: SK Oriver same as Option 17
Option 19: \mathbb{N}_{0} input same as Option 9
Option 20: \mathbb{N}_{3} Input same as Option 9
Option 21: G_{0} I/O Port $=0$: Standard output (A) =1: Open-Drain output (B)
Option 22: G_{1} I/O Port same as Option 21
Option 23: G_{2} I/O Port same as Option 21
Option 24: G3 I/O Port same as Option 21
Option 25: D_{3} Output $=0$: Standard output (A) =1: Open-Drain output (B)
Option 26: D_{2} Output same as Option 25
Option 27: D_{1} Output same as Option 25
Option 28: D_{0} Output same as Option 25
Option 29: Chip Function $=0$: normal operation = 1: MICROBUS ${ }^{(1)}$ option

Option 30: Chip Bonding = 0: ET9420 (28-pin device) =1: ET9421 (24-pin device) =2: 28 and 24 -pin versions = 3: ET9422 (20-pin device) =4: 28 - and 20 -pin versions =5: 24 and 20 -pin versions $=6$: 28 - 24 , and 20 -pin versio

Option 31: IN Input Levels $=0$: normal input levels =1: Higher voltage input leve ($" 0$ " = $1.2 \mathrm{~V},{ }^{\prime \prime} 1 "=3.6 \mathrm{~V}$)
Option 32: G Input Levels same as Option 31
Option 33: L Input Levels same as Option 31
Option 34: CKO Input Levels same as Option 31
Option 35: SI Input Levels same as Option 31

TEST MODE (Non-Standard Operation)

The SO output has been configured to provide for standard test procedures for the custom-programmed ET9420. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI :
a. RAM and Internal Logic Test Mode ($\mathrm{SI}=1$)
b. ROM Test Mode ($\mathrm{SI}=0$)

These special test modes should not be employed by the user: they are intended for manufacturing test only.

APPLICATION EXAMPLE : ET9420 General Controller

Figure 9 shows an interconnect diagram for a ET9420 used as a general controller. Operation of the system is as follows

1. The $L 7-L_{0}$ outputs are configured as LED Direct Drive outputs, allowing direct connection to the segments of the display.
2. The $D_{3}-D_{0}$ outputs drive the digits of the multiplexed display directly and scan the columns of the 4×4 keyboard matrix.
3. The $\mathrm{IN}_{3}-\mathrm{N}_{0}$ inputs are used to input the 4 rows of the keyboard matrix. Reading the iN lines in conjunction with the current value of the D outputs allows detection. debouncing, and decoding of any one of the 16 keyswitches.
4. CKI is configured as a single.pin oscillator input allowing system timing to be controlled by a singlepin RC network. CKO is therefore available for use as a $V_{\text {R }}$ RAM power supply pin. RAM data integrity is thereby assured when the main power supply is shut down (see RAM Keep-Alive Option description).
5. SI is selected as the input to a binary counter incut. With SIO used as a binary counter. SO and SK car be used as general purpose outputs.
6. The 4 bidirectional $\mathrm{G} / / \mathrm{O}$ ports $\left(\mathrm{G}_{3}-\mathrm{G}_{0}\right)$ are available for use as required by the user s application

* SI, SO and SK may also be used for serial I/O

FIGURE 11 - ET9420 KEYBOARD/DISPLAY INTERFACE

COPS, MICROWIRE MICROBUS and TRI-STATE are registered trademarks of National Semiconductor Corp.

PHYSICAL DIMENSIONS

CB-132

N SUFFIX PLASTIC PACKAGE

CB-68

N SUFFIX PLASTIC PACKAGE

PHYSICAL DIMENSIONS

CB-194

N SUFFIX PLASTIC PACKAGE

The ETC 9420, C 9421, C 9422, C 9320, C 9321, C 9322, and ETC 9445, C 9344, C 9345 fully static single-chip CMOS microcontrollers are fully compatible with the COPS ${ }^{\oplus}$ family, fabricated using double-poly, silicon gate complementary MOS technology. These Controller Oriented Processors are complete microcontrollers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications.

Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The ETC 9420, C 9444 are 28 -pin chips. The ETC 9421, C 9445 are 24 -pin versions (4 inputs removed) and C 9422 is a 20 -pin version with 15 I/O lines.
Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized microcontroller at a low end -product cost.

These microcontrollers are appropriate choices in many demanding control environments especially those with human interface.

- Lowest power dissipation ($50 \mu \mathrm{~W}$ typical).
- Power saving IDLE state and HALT mode.
- Fully Static (can turn off the clock).
- 2 K x 8 ROM, 128×4 RAM (ETC 9444, C 9445).
- 1 K x 8 ROM, 64×4 RAM (ETC 9420, C 9421, C 9422).
- True vectored interrupt, plus restart.
- 3-level subroutine stack.
- $4 \mu \mathrm{sec}$ intruction time, plus software selectable clocks.
- 23 I/Olines (ETC 9444, C 9420).
- Single supply operation (2.4 V to 5.5 V).
- Programmable read/write 8-bit timer/event counter.
- Internal binary counter register with MICROWIRE ${ }^{(6)}$ serial I/O Capability.
- General purpose and tri-state ${ }^{(4)}$ outputs.
- LSTTL/C MOS compatible.
- MICROBUS ${ }^{\oplus}$ compatible.
- Software/hardware compatible with other members of ET 9400 family.
- Extended temperature range devices ETC 9320/ETC 9321,ETC 9322 and ETC 9344/ETC 9345 ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$).
- Military devices $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) to be available.

CMOS

ETC9420,ETC9421, ETC 9422 • ETC 9444 , ETC 9445

ABSOLUTE MAXIMUM RATINGS

Supply voltage (Vcc)
Voltage at any pin
Total Allowable Source current
Total Allowable Sink Current Operating Temperature Range Storage Temperature Range Lead Temperature (soldering 10 seconds)
-0.3 V to $\mathrm{V} \mathrm{CC}+\begin{array}{r}6 \mathrm{~V} \\ 0.3 \mathrm{~V}\end{array}$ 25 mA 25 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant i+70^{\circ} \mathrm{C}$ (Unless otherwise specified)

Parameter	Conditions	Min	Max	Units
Operating Voltage Power Supply Ripp!e (Note 5)	Peak to Peak	2.4	$\begin{gathered} 5.5 \\ 0.1 \mathrm{v}_{\mathrm{CC}} . \end{gathered}$	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Supply Current (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{tc}=64 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{tc}=16 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{tc}=4 \mu \mathrm{~s} . \\ & \text { (tc }=\text { instruction cycle time) } \end{aligned}$	-	$\begin{aligned} & 120 \\ & 700 \\ & 3000 \end{aligned}$	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \\ & \mu \mathbf{A} \end{aligned}$
Halt Mode Current (Note 2)	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V}, \text { Fin }=0 \mathrm{kHz} \\ & \mathrm{v}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{Fin}=0 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 40 \\ & 12 \end{aligned}$	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \end{aligned}$
Input Voltage levels RESET CKI (RC or crystal opt.) Do (Clock input) Logic High Logic Low All other inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mid \mathrm{V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{gathered} 0.1 \bar{v}_{c c} \\ \overline{\mathrm{v}}_{\mathrm{cc}} \\ 0.2 \mid \mathrm{v}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Input Pull-up current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$	30	330	$\mu \mathrm{A}$
HI-Z input leakage		-1	+1	$\mu \mathrm{A}$
Input capacitance (Note 4)		-	7	pF
Output Voltage Levels LSTTL Operation Logic High Logic Low CMOS Operation Logic High Logic Low	$\begin{aligned} & \text { Standard Outputs } \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{O}_{\mathrm{OL}}=400 \mu \mathrm{~A} \\ & \\ & \mathrm{O}^{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{O}_{\mathrm{OL}}=10 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$v_{c c}-0.2$	$\begin{aligned} & \overline{0.4} \\ & \overline{0.2} \end{aligned}$	\mathbf{v}
Output current Level (except CKO) Sink (Note 6)	$\begin{aligned} & v_{C C}=4.5 \mathrm{~V}, \text { Vout }=v_{C C} \\ & v_{c C}=2.4 \mathrm{~V}, \mathrm{Vout}=\mathrm{v}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.2 \end{aligned}$	-	$\underset{m A}{m A}$
Source (standard option)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \text { Vout }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{Vout}^{2}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$	-	$\underset{m A}{m A}$
Source (Low current option)	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=4.5 \mathrm{~V}, \text { Vout }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{Vout}^{2}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 6 \end{gathered}$	$\begin{gathered} 330 \\ 80 \end{gathered}$	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
CKO Current level (As clock out) Sink $\left.\begin{array}{rr} \div & 4 \\ \div & 8 \\ \div & 16 \end{array} \right\rvert\,$	$\cdot v_{C C}=4.5 \mathrm{~V}, \mathrm{CKI}=\mathrm{v}_{\mathrm{CC}} \quad \mathrm{v}_{\mathrm{OUT}}=\mathrm{v}_{\mathrm{CC}}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 1.2 \end{aligned}$	-	$\begin{aligned} & m A \\ & m A \\ & m A \\ & \hline \end{aligned}$
Source $\begin{array}{rr} \div & 4 \\ \div & 8 \\ \div & 16 \end{array}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 1.2 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Allowable Sink Source current per pin (Note 6) Allowable loading on CKO (as HALT)		-	5 100	mA
Current needed to over-ride HALT (Note 3) To continue To halt	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Vin}=0.2 \mathrm{VCC} \\ & \mathrm{VCC}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Vin}=0.7 \mathrm{~V} \mathrm{VC} \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$
TRI-STATE or open drain Leakage current		-2.5	+2.5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTIC8 $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$ (Unless otherwise specified)

Parameter	Conditions	Min	Max	Units
Instruction cycle time (tc) $\left.\begin{aligned} & \text { Operating CKI } \begin{array}{l} \text { Frequency } \\ \div 4 \text { mode } \\ \div \\ \div \end{array} \\ & \div 16 \text { mode } \end{aligned} \right\rvert\,$ Duty cycle (Note 4) Rise time (Note 4) Fall time (Note 4)	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>\mathrm{VCC} \geq 2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>\mathrm{V}_{\mathrm{CC}} \geq 2.4 \mathrm{~V} \\ & \mathrm{~F}=4 \mathrm{MHz} \\ & \mathrm{~F} 1=4 \mathrm{MHz} \text { ext. dock } \\ & \mathrm{F}=4 \mathrm{MHz} \text { ext. dock } \end{aligned}$	4 16 DC DC DC $D C$ $D C$ $D C$ 40 -	$\begin{aligned} & D C \\ & D C \\ & \\ & 1.0 \\ & 2.0 \\ & 4.0 \\ & 250 \\ & 500 \\ & 1.0 \\ & 60 \\ & 60 \\ & 40 \end{aligned}$	$\mu \mathrm{s}$ MHz MHz MHz kHZ kHZ MHz \% ns ns
Instruction cycle time (RC oscillator) (Note 4)	$\begin{aligned} & R=30 K V_{C C=5} V \\ & C=82 \mathrm{pF},(\div 4 \text { Mode }) \end{aligned}$	8	16	$\mu \mathrm{s}$
INPUTS (fig. 3) 'setup HOLD OUTPUT PROPAGATION DELAY tpo1, tpDo tpD1, tpoo	$\left.\begin{array}{l\|l} \text { G inputs } & \\ \text { SI input } \\ \text { All others } \end{array} \right\rvert\, \mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	$\begin{gathered} \mathrm{t} \mathrm{c} / 4+.7 \\ 0.3 \\ 1.7 \\ \\ 0.25 \\ 1.0 \end{gathered}$	$\begin{aligned} & \text { - } \\ & 1.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ ${ }_{\mu \mathrm{s}}^{\mu \mathrm{s}}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$
MICROBUS ${ }^{\text {© }}$ TIMING Read operation•(fig. 4) Chip select stable before RD- tcsa Chip select hold time for RD - thcs RD pulse width - ${ }^{\text {thR }}$ Data delay from $\overline{K D}$ - tro RD to data floating - tof (note 4) Write operation (fig. 5) Chip select stable before WR-tcsw Chip select hold time for WR - Wcs WR pulse width - ww Data set-up time for WR - EDW Data hold time for WR - WD INTR transition time for WR - WI	$C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	$\begin{gathered} 65 \\ 20 \\ 400 \\ - \\ - \\ 65 \\ 20 \\ 400 \\ 320 \\ 100 \end{gathered}$	$\begin{array}{r}- \\ \hline \\ 355 \\ \\ \hline\end{array}$	

Nete 1 : Supply current is measured after running for 2000 cycle times with a square-wave clock on CKI, CKO open, and all other pins pulled up to $V_{C C}$ with 20k resistors. See current drain equation on page 17.
Note 2: The HALT mode will stop CKI from oscillating in the RC and crystal configurations. Test conditions : all inputs tied to $V_{C C}, L$ lines in TRI-STATE mode and tied to ground, all output low and tied to ground.
Note 3 : When forcing HALT, current is only needed for a short time (approx. 200 ns) to flip the HALT flip-flop.
Note 4 : This parameter is only sampled and not 100% tested.
Note 5 : Voltage change must be less than 0.5 volt in a 1 ms period.
Note 3 : SO output sink current must be limited to keep $V_{O L}$ below $0.2 \mathrm{~V}_{\mathrm{CC}}$ when port is running in order to prevent entering test mode.

ETC9320, ETC9321,ETC9322 • ETC9344 , ETC9345

ABSOLUTE MAXIMUM RATINGS

Supply voltage	6 V
Voltage at any pin	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Total Allowable Source current	25 mA
Total Allowable Sink Current	25 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10	$300{ }^{\circ} \mathrm{C}$

Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are note insured when operating the device at absolute maximum ratings.

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}{ }^{\prime} \leqslant+85^{\circ} \mathrm{C}$ (Unless otherwise specified)

Parameter	Conditions	Min	Max	Units
Operating Voltage Power Supply Ripple (Note 5)	Peak to Peak	3.0	$\begin{gathered} 5.3 \\ 0.1 \mathrm{v}_{\mathrm{CC}} \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
Supply Current (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{tc}=64 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{tc}=16 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{tc}=4 \mu \mathrm{~s} \\ & \text { (tc }=\text { instruction cycle time) } \\ & \hline \end{aligned}$	-	$\begin{array}{r} 180 \\ 800 \\ 3600 \end{array}$	$\underset{\mu \mathrm{A}}{\underset{\mu}{\mathrm{~A}}}$
Halt Mode Current (Note 2)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \text { Fin }=0 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{Fin}=0 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Voltage levels RESET CKI (RC or crystal opt.) Do (Clock input) Logic High Logic Low All other inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{v}_{\mathrm{CC}} \\ & 0.7 \end{aligned}$	$\begin{gathered} 0.1 \bar{v}_{c c} \\ 0.2 \bar{v}_{c c} \\ \hline \end{gathered}$	\mathbf{v}
Input Pull-up current	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$	30	440	$\mu \mathrm{A}$
HI-Z input leakage		-2	+2	$\mu \mathrm{A}$
input capacitance (Note 4)		-	7	pF
Output Voltage Levels LSTTL Operation Logic High Logic Low CMOS Operation Logic High Logic Low	$\begin{aligned} & \text { Standard Outputs } \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{IOH}^{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A} \\ & \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 2.7 \\ - \\ v_{\mathrm{cc}}-0.2 \\ \hline \end{gathered}$	$\begin{gathered} \overline{0.4} \\ - \\ 0.2 \end{gathered}$	$\stackrel{v}{v}$
Output current Level (except CKO) Sink (Note 6)	$V_{C C}=4.5 \mathrm{~V}$, Vout $=V_{C C}$ $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$, Vout $=\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & 1.2 \\ & 0.2 \end{aligned}$	-	$\begin{gathered} \mathrm{mA} \\ \hline \end{gathered}$
Source (standard option)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \text { Vout }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \text { Vout }=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Source (Low current option)	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=4.5 \mathrm{~V}, \text {, Vout }=0 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CC}}=3.0 \mathrm{~V}, \text { Vout }=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 8 \end{gathered}$	$\begin{aligned} & 440 \\ & 200 \end{aligned}$	$\underset{\mu A}{\mu A}$
CKO Current level (As clock out) Sink $\left.\begin{array}{r} \div 4 \\ \div \\ \div 16 \end{array} \right\rvert\,$	$\mathrm{v}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{CKI}=\mathrm{v}_{\mathrm{CC}}, \mathrm{Vout}=\mathrm{v}_{\mathrm{CC}}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 1.2 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Source $\left.\begin{aligned} & \div \\ & \div \\ & \div \\ & \div \\ & \div 16 \end{aligned} \right\rvert\,$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}$	0.3 0.6 1.2	-	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Allowable Sink / Source current per pin (Note 6) Allowable loading on CKO (as HALT)		-	5 100	mA
Current needed to over-ride HALT (Note 3) To continue To halt	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \mathrm{Vin}=0.2 \mathrm{VCC} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Vin}=0.7 \mathrm{~V} \mathrm{CC} \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
TRI-STATE or open drain Leakage current		-5	+ 5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathbf{A}} \leqslant+85^{\circ} \mathrm{C}$ (Unless otherwise specified)

Parametor	Conditions	Min	Max	Units
Instruction cycle time (tc) $\left.\begin{gathered} \text { Operating CKI Frequency } \\ \vdots 4 \text { mode } \\ \vdots 8 \text { mode } \\ \div 16 \text { mode } \end{gathered} \right\rvert\,$ Duty cycle (Note 4) Rise time (Note 4) Fall time (Note 4)	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>\mathrm{v}_{\mathrm{CC}} \geq 3.0 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V}>\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V} \\ & \mathrm{~F} 1=4 \mathrm{MHz} \\ & \mathrm{~F} 1=4 \mathrm{MHz} \text { ext. clock } \\ & \mathrm{F} 1=4 \mathrm{MHz} \text { ext. clock } \end{aligned}$	4 16 DC DC DC DC DC DC 40 -	DC DC 1.0 2.0 4.0 250 500 1.0 6 C 60 40	$\mu \mathrm{s}$ $\mu \mathrm{s}$ MHz MHz MHz kHZ kHZ MHz \% ns ns
Instruction cycle time (RC oscillator) (Note 4)	$\begin{aligned} & R=30 \mathrm{~K}, V_{C C}=5 \mathrm{~V} \\ & C=82 \mathrm{pF},(\div 4 \text { Mode }) \end{aligned}$	8	16	$\mu \mathrm{s}$
INPUTS (fig. 3) tsetup HOLD OUTPUT PROPAGATION DELAY tpD1, tpoo tpD1, tpoo	G inputs SI input All others $\| V_{C C} \geq 4.5 \mathrm{~V}$.	$\begin{gathered} (\mathrm{tc} / 4)+.7 \\ 0.3 \\ 1.7 \\ 0.25 \\ 1.0 \end{gathered}$ -	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & 1.0 \\ & 4.0 \end{aligned}$	
MIGROBUS ${ }^{\text {® }}$ TIMING Read operation (fig. 4) Chip select stable before $\overline{R D}-\mathrm{t}_{\mathrm{CSR}}$ Chip select hold tome for $\overline{\mathrm{RD}}$ - tras RD pulse width - tin Data delay from $\overline{R D}$ - trD RD to data floating - tDF (note 4) Write operation (fig. 5) Chip select stable before WR - tcsiw Chip select hold time for WR - WCs WR pulse width - ww Data set-up time for WR - tow Data hold time for WR - TWD NTR transition time for WR - wn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	65 20 400 - 65 20 400 320 100		

Note 1: Supply current is measured after running for 2000 cycle times with a square-wave clock on CKI, CKO open, and all other pins pulled up to $V_{\text {CC }}$ with 20k resistors. See current drain equation on page 17
Note 2 : The HALT mode will stop CKI from oscillating in the RC and crystal configurations. Test conditions : all inputs tied to $V_{C C}, L$ lines in TRI-STATE mode and tied to ground, all output low and tied to ground.
Note 3 : When forcing HALT, current is only needed for a short time (approx. 200 ns) to flip the HALT flip-flop.
Note 4 : This parameter is only sampled and not 100% tested.
Note 5 : Voltage change must be less than 0.5 volt in a 1 ms period.
Note 6: SO output sink current must be limited to keep V_{OL} below $0.2 \mathrm{~V}_{\mathrm{CC}}$ when port is running in order to prevent entering test mode.

For ease of reading only the ETC 9420/9421/9422/9444/9445 are referenced. However, all such references apply equally to ETC 9320/9321/9322/9344/9345.
The internal architecture is shown in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " when it is reset, it is a logic " 0 ".

Program memory

Program Memory consists of ROM, 1024 bytes for the ETC 9420/C 9421 / C 9422 and 2048 bytes for the ETC 9444/C 9445. These bytes of ROM may be program instructions, constants or ROM addressing data.
ROM addressing is accomplished by a 11 -bit PC register which selects one of the 8 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 11-bit binary count value.
Three levels of subroutine nesting are implemented by a three level deep stack. Each subroutine call or interrupt pushes the next PC address into the stack. Each return pops the stack back into the PC register.

Data memory

Data memory consists of a 512-bit RAM for the ETC 9444/C 9445, organized as 8 data registers of 16×4-bit digits. RAM addressing is implemented by a 7 -bit B register whose upper 3 bits (Br) select 1 of 8 data registers and lower 4 bits (Bd) select 1 of 16 4-bit digits in the selected data register.
Data memory consists of a 256-bit RAM for the ETC 9420/C $9421 / \mathrm{C} 9422$, organized as 4 data registers of 16×4 bits digits. The B register is 6 bits long. Upper 2 bis (Br) select 1 of 4 data registers and lower 4 bits (Bd) select 1 of 164 -bit digits in the selected data register. While the 4-bit contents of the selected RAM digit (M) are usually loaded into or from, or exchanged with the A register (accumulator), they may also be loaded into the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the immediate operand field of these instructions.

The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.

Internal Logic

The processor contains its own 4-bit A register (accumulator) which is the source and destination register for most I/O, arithmetic, logic, and data memory access operations. It can also be used to load the Br and Bd portions of the B register, to load and input 4 bits of the 8 -bit Q latch, to input 4 bits of a ROM word, L I/O ports data, to input 4-bit G, or IN ports, and to perform data exchanges with the SIO register.
A 4-bit adder performs the arithmetic and logic functions, storing the results in A. It also outputs a carry bit to the 1-bit C register, most often employed to indicate arithmetic overflow. The C register in conjunction with the XAS instruction and the EN register, also serves to control the SK output.
The 8-bit T counter is a binary up counter which can be loaded to and from M and A using CAMT and CTMA instructions. This counter may be operated in two modes depending on a mask-programmable option : as a timer or as an external event counter. When the T counter overflows, an overflow flag will be set (see SKT and IT instructions below). The T counter is cleared on reset. A functional block diagram of the timer/ counter is illustrated in Figure 10 a.
Four general-purpose inputs, IN3-INO, are provided. IN1, IN2 and IN3 may be selected, by a mask-programmable option as Read Strobe, Chip Select, and Write Strobe inputs, respectively, for use in MICROBUS application.
The D register provides 4 general-purpose outputs and is used as the destination register for the 4-bit contents of Bd. In the dual clock mode. DO latch controls the clock selection (see dual oscillator below).
The G register contents are outputs to a 4-bit general-purpose bidirectional I/O port. G0 may be mask-programmed as an output for MICROBUS applications.
The Q register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A , as well as 8 -bit data from ROM. Its contents are outputted to the LI/O ports when the L drivers are enabled under program control (see LEI instruction). With the MICROBUS® ${ }^{(1)}$ option selected, Q can also be loaded with the 8-bit contents of the LI/O ports upon the occurence of a write strobe from the host CPU.

The $\mathbf{8 L}$ drivers, when enabled, output the contents of latched Q data to the LI/O ports. Also, the contents of L may be read directly into A and M. As explained above, the MICROBUS ${ }^{\oplus}$ | 0 option allows LI/O port data to be latched into the Q register.
The SIO register functions as a 4 -bit serial-in/serial-out shift register for MICROWIRE I/O and peripherals, or as a binary counter (depending on the contents of the EN register). Its contents can be exchanged with A.
The XAS Instruction copies C into the SKL Latch. In the counter mode, SK is the output of SKL; in the shift register mode, SK is a sync clock, inhibited when SKL is a logic " O ".
The "EN register is an internal 4-bit register loaded under programm control by the LEI instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register ($\mathrm{EN}_{3}-\mathrm{EN}_{6}$).
0 . The least significant bit of the enable register, $E N_{0}$. selects the SIO register as either a 4 -bit shift register or as a 4-bit binary counter. With EN ${ }_{0}$ set, SIO is as asynchronous binary counter, DECREMENTING its value by one upon each low going pulse (" 1 " to " 0 ") occuring on the SI input. Each pulse must be at least 2 (two) ins-
truction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of EN_{3}. With EN_{0} reset, SIO is a serial shift register, shifting left each instruction cycle time. The data present at SI is shifted into the least significant bit of SIO, SO can be enabled to output the most significant bit of SIO each instruction cycle time. The SK output SKL ANDed with the instruction cycle clock.

1. With EN_{1} set interrupt is enabled. Immediatly following an interrupt, EN_{1} is reset to disable further interrupts.
2. With $E N_{2}$ set, the L drivers are enabled to output the data in Q to the L I/O ports. Resetting EN_{2} disables the L drivers, placing the LI/O ports in a high impedance input state.
3. EN_{3}, in conjunction with EN_{0}, affects the SO output. With EN_{0} set(binary counter option selected), SO will output the value loaded into EN_{3}. With EN_{0} reset (serial shift register option selected), setting EN_{3} enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected, disables SO as the shift register output ; data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ".

FIGURE 3 - INPUT/OUTPUT TIMING DIAGRAMS (Divide-by- 8 Mode)

FIGURE 4 - MICROBUS READ OPERATION TIMING

FIGURE 5 - MICROBUS WRITE OPERATION TIMING

FUNCTIONAL DESCRIPTION (continued)
TABLE 1 - ENABLE REGISTER MODES - BITS EN 0 AND EN 3

$\mathbf{E N}_{0}$	EN $_{3}$	SIO	SI	SO	SK after XAS
0	0	Shift Register	Input to shift Register	0	If $\mathrm{SKL}=1, \mathrm{SK}=\mathrm{clock}$ If $\mathrm{SKL}=0, \mathrm{SK}=0$
0	1	Shift Register	Input to Shift Register	Serial out	If $\mathrm{SKL}=1, \mathrm{SK}=\mathrm{clock}$ If $\mathrm{SKL}=0, \mathrm{SK}=0$
1	0	Binary counter	Input to Counter	0	$\mathrm{SK}=\mathrm{SKL}$
1	1	Binary counter	Input to Counter	1	$\mathrm{SK}=\mathrm{SKL}$

Interrupt

The following features are associated with interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.
a. The interrupt, once acknowiedged as explained below, pushes the next sequential program counter address (PC +1) onto the stack. Any previous contents at the bottom of the stack are lost. The program counter is set to hex address OFF (the last word of page 3) and EN_{1} is reset.
b. An interrupt will be acknowledged only after the following conditions are met

1. $E N_{1}$ has been set.
2. A low-going pulse (" 1 " to " 0 ") at least two instruction cycles wide occurs on the N_{1} input.
3. A currently executing instruction has been completed.
4. ALL successive transfer of control instructions and successive LBIs have been completed (e.g., if the main program is executing a JP instruction which transfers program control to another JP instruction, the interrupt will not be acknowledged until the second JP instruction has been executed.
c. Upon acknowledgement of an interrupt, the skip logic status is saved and later restored upon "popping" of the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to "pop" the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines should not be nested within the interrupt servicing routine since their "popping" of the stack will enable any previously saved main program skips, interfering with the orderly execution of the interrupt routine.
d. The first instruction at hex address OFF must be a NOP.
e. A LEI instruction may be put immediately before the RET to re-enable interrupts.

MICRROBUS interface

The ETC 9420/C 9444 has an option which allows it to be used as a peripheral microprocessor device, inputting and outputting data from to a host microprocessor ($\mu \mathrm{P}) . \operatorname{IN}, \mid N_{2}$ and $I N_{3}$ general purposes input become MICROBUS INTERFACE read-strobe, chip-select, and write-strobe lines, respectively IN_{1} become $\overline{\mathrm{RD}}$ - a logic " 0 " on this input will cause Q latch data to be enabled to the L ports for input to the $\mu \mathrm{P} . \mathrm{IN}_{2}$ becomes $\overline{\mathrm{CS}}-\mathrm{a}$ logic " 0 " on this line selects the ETC $9420 / \mathrm{C} 9444$ as the uP peripheral device by enabling the operation of the $\overline{R D}$ and $\overline{W R}$ lines and allows for the selection of one of several peripheral components. \mathbb{N}_{3} becomes $\overline{W R}$ - a logic " 0 " on this line will write bus data from the L ports to the Q latches for input to the ETC 9420/C 9444 Gobecomes INTR, a "ready" output, reset by a write pulse from the UP on the WR line providing the "handshaking" capability necessary for asynchronous data transfer between the host CPU and the ETC 9420/C 9444

This option has been designed for compatibility with MICROBUS a standard interconnect system for 8 -bit parallel data transfer between MOS/LSI CPUs and interfacing devices. (See MICROBUS National Publication). The functioning and timing relationships between the signal lines affected by this option are as specified for the MICROBUS interface, and are given in the AC electrical characteristics and shown in the timing diagrams (figure 4 and 5). Connection of the ETC 9420/C 9444 to the MICROBUS is shown in figure 6.

FIGURE 6 - MICROBUS ${ }^{\circledR}$ OPTION INTERCONNECT

Initialization

The internal reset logic will initialize the device upon power-up if the power supply rise time is less than 1 ms and if the operating frequency at CKI is greater than 32 kHz , otherwise the external RC network shown in Figure 7 must be connected to the RESET pin. The RESET pin is configured as a Schmitt trigger input. If not used, it should be connected to $\mathrm{V}_{C C}$ Initialization will occur whenever a logic " 0 " " is applied to the RESET input, providing it stays low for at least three instruction cycle times.
NOTE : if CKI clock is less than 32 kHz , the internal reset logic (option $=29=1$) must be disabled and the external RC circuit must be used.

FUNCTIONAL DESCRIPTION (continued)

Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, IL, T and G registers are cleared. The SKL Latch is set, this enabling SK as a clock output. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA (clear A register).

Timer

There are two modes selected by mask option :
a. Time-base counter. In this mode, the instruction cycle frequency generated from CKI passes through a 2-bit di-vide-by-4 prescaler. The output of this prescaler increments the 8 -bit T counter thus providing a 10 -bit timer. The prescaler is cleared during execution of a CAMT instruction and on reset.
For example, using a 4 MHz crystal with a divide-by- 16 option, the instruction cycle frequency of 250 kHz increments the 10 -bit timer every $4 \mu \mathrm{~s}$. By presetting the counter and detecting overflow, accurate timeouts between $16 \mu \mathrm{~s}$ (4 counts) and 4.096 ms (1024 counts) are possible. Longer timeouts can be achieved by accumulating, under software control, multiple overflows.
b. External event counter. In this mode, a low-going pulse ("1" to " 0 ") at least 2 instruction cycles wide on the IN2 input will increment the 8 -bit T counter.
Note : The IT instruction is not allowed in this mode.

Halt mode

The ETC $9420 / 9421 /$ C 9422 /C $9444 /$ C 9445 is a FULLY STATIC circuit ; therefore, the user may stop the system oscillator at any time to halt the chip. The chip may be also halted by the HALT instruction or by forcing CKO high when it is used as an HALT/I/O port. Once in the HALT mode, the internal circuitry does not receive any clocksignal, and is therefore frozen in the exact state it was in when halted. All information is retained until continuing. The chip may be awakened by one of the two different methods.

1. Continue function - by forcing CKO low, if it is maskprogrammed as an HALT I/O port, the system clock is reenabled and the circuit continues to operate from the point where it was stopped.
2. Restart - by forcing the $\overline{\text { RESET }}$ pin low (see initialization). The HALT mode is the mininum power dissipation state.
NOTE : If the user has selected dual clock with DO as external oscillator (option $30=2$) AND the ETC 9444/C. 9420 is running with the DO clock, the HALT mode - either hardware or software - will NOT be entered. Thus, the user should switch to the CKI clock to HALT. Alternatively, the user may stop the D0 clock to minimize power.

R/C controlled Oscillator

R	C	Cycle time	$v_{\text {CC }}$
15 k	82 pF	4 to $9 \mu \mathrm{~s}$	$\geq 4.5 \mathrm{~V}$
30 k	82 pF	8 to $16 \mu \mathrm{~s}$	$\geq 4.5 \mathrm{~V}$
60 k	100 pF	16 to $32 \mu \mathrm{~s}$	2.4 to 4.5 V

Note : $\mathbf{1 5 k} \leq R \leq 150 k ; \mathbf{5 0} \mathrm{pF} \leq \mathrm{C} \leq 150 \mathrm{pF}$

Crystal or resonator

Crystal value	Component Values			
	R1	R2	C1 (pF)	C2 (pF)
32 kHz	220 k	20 M	30	$6-36$
455 kHz	5 k	10 M	80	40
2.086 MHz	2 k	1 M	30	$6-36$
4.0 MHz	1 k	1 M	30	$6-36$

FIGURE 8 - OSCILLATOR COMPONENTS VALUES
This circuit and these values are for indication only. As the oscillator characteristics are not guaranteed, please consider and examine the circuit constants carefully on your application.

FUNCTIONAL DESCRIPTION (continued)

CKO Pin Options

a. Two-pin oscillator - (Crystal). See Figure 9A.

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. The HALT mode may be entered by program control (HALT instruction) which forces CKO high, thus inhibiting the crystal network. The circuit can be awakened only by forcing the RESET pin to a logic " 0 " (restart).
b. One-pin oscillator - (RC or external). See Figure 9B.

If a one-pin oscillator system is chosen, two options are available for CKO :

- CKO can be selected as the HALT I/O port. In that case, it is an I/O flip-flop which is an indicator of the HALT status. An external signal can over-ride this pin to start and stop the chip. By forcing a high level to CKO, the chip will stop as soon as CKI is high and CKO output will stay high to keep the chip stopped if the external driver returns to high impedance state.
By forcing a low level to CKO, the chip will continue and CKO will stay low.
- As another option, CKO can be a general purpose input, read into bit 2 of A (accumulator) upon execution of an INIL instruction.

Oscillator options

There are four basic clock oscillator configuration available as shown by Figure 8.
a. Cyrstal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency optionally divided by 4,8 or 16.
b. External Oscillator. The external frequency is optionally divided by 4,8 or 16 to give the instruction cycle time. CKO is the HALT I/O port or a general purpose input.
c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is the HALT I/O port or a general purpose input.
d. Dual oscillator. By selecting the dual clock option, pin DO is now a single pin oscillator input. Two configurations are available: RC controlled Schmitt trigger oscillator or external oscillator.
The user may software select between the DO oscillator (in that case, the instruction cycle time equals the DO oscillation frequency divided by 4) by setting the DO latch high or the CKI (CKO) oscillator by resetting DO Latch low. Note that even in dual clock mode, the counter, if mask-programmed as a time-base counter, is always connected to the CKI oscillator.
For example, the user may connect up to a 1 MHz RC circuit to DO for faster processing and a 32 kHz watch crystal to CKI and CKO for minimum current drain and time keeping.
Note : CTMA instructions is not allowed when chip is running from DO clock.
Figures 10 A and $10 B$ show the clock and timer diagrams with and without Dual clock.

ETC 9445/C 9421 24-Pin package option

If the ETC 9444/C 9420 is bonded in a 24 -pin pckage, it becomes the ETC 9445/C 9421 illustrated in Figure 2, Connection diagrams. Note that the ETC 9445/C 9421 does not contain the four general purpose \mathbb{N} inputs ($\mathrm{N}_{3}-\mathrm{IN}_{0}$). Use of this option precludes, ocourse, use of th \mathbb{N} optons, interrupt feature, external event counter feature, and the MICROBUS option which uses $\mathbb{N}_{1}-\mathbb{N}_{3}$. All other options are available for the ETC 9445/C 9421.
Note : If user selects 24-pin package, options 9, 10, 19 and 20 must be selected as a " 0 " (load to $V_{C C}$ on the $\mathbb{I N}$ intputs). See option list.

BLOCK DIAGRAMS

FIGURE 9 A - HALT MODE - TWO-PIN OSCILLATOR

FIGURE 9 B - HALT MODE - ONE PIN OSCILLATOR

FIGURE 10 A - CLOCK AND timer block diagram without dual-clock

FIGURE 10 B - CLOCK AND TIMER BLOCK DIAGRAM WITH DUAL-CLOCK

INSTRUCTION SET

Table 2 is a symbol table providing internal architecture, instruction operand and operation symbols used in the instruction set table.
Table 3 provides the mnemonic, operand, machine code data flow, skip conditions and description of each instruction.

TABLE 2 - INSTRUCTION SET TABLE SYMBOLS

Symbol	Definition
Internal Architecture Symbols	
A	4-bit Accumulator
B	7-bit RAM address register (6-bit for ETC 9420)
Br	Upper 3 bits of B (register address) (2-bit for
	ETC 9420)
Bd	Lower 4 bits of B (digit address)
C	1-bit Carry register
D	4-bit Data output port
EN	4-bit Enable register
G	4-bit General purpose I/O port
IL	Two 1-bit (IN ${ }_{0}$ and IN ${ }_{3}$) latches
IN	4-bit input port
L	8-bit TRI-STATE I/Oport
M	4-bit contents of RAM addressed by B
PC	11-bit ROM address program counter
Q.	8-bit latch for L port
SA, SB, SC	
11-bit 3-level subroutine stack	
SK	4 bit Shift register and counter
SK	Logic-controlled clock output
SKL	1-bit lach for SK output
T	8-bit timer

instruction operand symbols

\(\left.$$
\begin{array}{ll}\text { d } & \begin{array}{l}\text { 4-bit operand field, } 0-15 \text { binary (RAM digit select) } \\
\text { r }\end{array}
$$

r(2)-bit operand field, 0-7 (3)binary (RAM

register select)\end{array}\right]\)| 11-bit operand field, $0-2047$ (1023) |
| :--- |
| a |

Operational Symbols

$+\quad$ Plus

- Minus
$\rightarrow \quad$ Replaces
*) is exchanged with
$=\quad$ is equal to
$\bar{A} \quad$ one's complement of A
$\oplus \quad$ exciusive-or
: range of values

TABLE 3 - ETC $9444 / \mathrm{C} 9420$ INSTRUCTION SET

ARITHMETIC INSTRUCTIONS

ASC		30	$1001110000]$	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with CARRY Skip on Carry
ADD		31	10011100011	$A+R A M(B) \rightarrow A$	None	Add RAM to A
ADT		4 A	10100110101	$A+10_{10} \rightarrow A$	None	Add TEN TO A
AISC	y	5-	01011 y	$A+y \rightarrow A$	Carry	Add Immediate Skip on Carry $(\mathrm{y} \boldsymbol{⿻} \boldsymbol{*}$ ($)$
CASC		10	10001100001	$\bar{A}+\operatorname{RAM}(B)+C \ldots A$	Carry	Complement and Add with.
				Carry \rightarrow C		Carry Skip on Carry
CLRA		00	10000100001	$0 \rightarrow A$	None	Clear A
COMP		40	10100100001	$\bar{A} \rightarrow A$	None	Ones complement of A in A
NOP		44	0100101001	None	None	No Operation
RC		32	100110010	$0 \rightarrow \mathrm{C}$	none	Reset C
SC		22	10010100101	$1 \rightarrow C$	None	Set C
XOR		02	10000100101	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A

INSTRUCTION SET (continued)

minemonic	Operend Hx Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

TRANSFER OF CONTROL INSTRUCTIONS

JID		FF		$R O M\left(P C_{10: 8} A . M\right) \rightarrow P C_{7: 0}$	None	Jump Indirect (Note 3)
JMP	a	6.		$a \rightarrow P C$	None	Jump
JP	a	-		$a \rightarrow P C_{6: 0}$ $\mathrm{a} \rightarrow \mathrm{PC}_{5: 0}$	None	Jump within Page (Note 4)
JSRP	a	--	$1{ }^{1}$ Of ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & 00010 \rightarrow \mathrm{PC}_{10}: 6 \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 5)
JSR	a	6.	$\left\lvert\, \begin{array}{lllll} 0 & 1 & 1 & 0\|1\| & a_{10: 8} \\ \\ a_{7: 0} \end{array}\right.$	$\left\{\begin{array}{l} \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ \mathrm{a} \rightarrow \mathrm{PC} \end{array}\right.$	None	Jump to Subroutine
RET		48	010011000	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine
RETSK		49	0100110011	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip
HALT		$\begin{aligned} & 33 \\ & 38 \end{aligned}$	$\begin{array}{llllllll} 10 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 10 & 0 & 1 & 11 & 1 & 0 & 0 & 0 \\ \hline \end{array}$		None	HALT processor
IT		33 39	$\begin{array}{\|llllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 11 \\ 10 & 0 & 1 & 111 & 0 & 0 & 1 \end{array}$		None	IDLE till timer Overtiows then continues

MEMORY REFERENCE INSTRUCTIONS

CAMT		$\begin{aligned} & 33 \\ & 3 F \end{aligned}$	$\begin{array}{\|lllllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & A \rightarrow T_{7: 4} \\ & \operatorname{RAM}(B) \rightarrow T_{3: 0} \end{aligned}$	None	Copy A, RAM to T
CTMA		33 $2 F$	$\left\lvert\, \begin{array}{lllllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \end{array}\right.$	$\begin{aligned} & T_{7: 4} \rightarrow R A M(B) \\ & T_{3: 0} \rightarrow A \end{aligned}$	None	Copy T to RAM, A (Note 9)
CAMO		33. 3C	1001110011 $00111 / 11000$	$\begin{aligned} & A \rightarrow Q_{7: 4} \\ & R A M(B) \rightarrow Q_{3: 0} \end{aligned}$	None	Copy A, RAM to Q
CQMA		33 2C	$100111 \mid 00111$ 001011001	$\begin{aligned} & Q_{7: 4} \rightarrow R A M(B) \\ & Q_{3: 0 \rightarrow A} \end{aligned}$	None	Copy Q to RAM. A
LD	1	. 5	$\frac{10 \text { of } r 101011}{(1-03)}$	$\begin{aligned} & \operatorname{RAM}(B) \rightarrow \mathrm{A} \\ & \mathrm{Br} \odot \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A Exclusive-OR Br with r
LDD	rd	23		$R A M(r d) \rightarrow A$	None	Load A with RAM pointed to directly by r.d
120		BF		$R O M\left(P C_{108} A M\right) \rightarrow 0$	None	Load Q Indirec: (Note 3)
HMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 C \\ & 45 \\ & 42 \\ & 43 \end{aligned}$	$\left\|\begin{array}{llllllll} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{array}\right\|$	$0 . \operatorname{RAM}(B)_{0}$ 0 . RAM $(B)_{1}$ C. RAM $(B)_{2}$ D. RAM $(B)_{3}$	None	Reset RAM Bit

INSTRUCTION SET (continued)

Mnemonic	Operand	$\begin{gathered} \mathrm{Hx} \\ \operatorname{Code} \end{gathered}$	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description
SMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 D \\ & 47 \\ & 46 \\ & 4 B \end{aligned}$	$\left.\begin{array}{\|llllllll} \hline \mathrm{b} & 1 & 0 & 0 & 1 & 1 & 0 & 11 \\ \mathrm{~b} & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline \mathrm{~b} & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline \mathrm{~b} & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{array} \right\rvert\,$	$\begin{aligned} 1 & \rightarrow \operatorname{RAM}(B)_{0} \\ 1 & \rightarrow \operatorname{RAM}(B)_{1} \\ 1 & \rightarrow \operatorname{RAM}(B)_{2} \\ 1 & \rightarrow \operatorname{RAM}(B)_{3} \end{aligned}$	None	Set RAM Bit
STII	y	7 -	D1.1111 y	$\begin{aligned} & \mathrm{y} \rightarrow \operatorname{RAM}(\mathrm{~B}) \\ & \mathrm{Bd} \oplus 1 \rightarrow \mathrm{Bd} \end{aligned}$	None	Store Memory Immediate and increment Bd
x	r	- 6	DOL r 10110 l $(r=0: 3)$	$\begin{aligned} & \operatorname{RAM}(\mathrm{B}) \mapsto \mathrm{A} \\ & \mathrm{Br} \oplus . \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Exchange RAM with A. Exclusive-OR Br with r
XAD	r,d	23 --	$\frac{10010100111}{111}$	RAM $(r, d) \leftrightarrow A$	None	Exchange A with RAM pointed to directly by r, d
XDS	r	-7	oolr 101111 $(r=0.3)$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \leftrightarrow \mathrm{A} \\ & \mathrm{Bd}-1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \rightarrow \mathrm{Br} \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd. Exclusive-Or Br with r
XIS	r	- 4	bolr 10100 a $(r=0: 3)$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \mapsto \mathrm{A} \\ & \mathrm{Bd}+1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd increments past 15	Exchange RAM with A and Increment Bd. Exclusive- Or Br with r

Register reference instructions

CAB		50	010110000	$A \rightarrow B d$	None	Copy A to Bd
CBA		4E	10100011110	$B d \rightarrow A$	None	Copy Bd to A
LBI	r.d	33	 (any r , any d)	$r . d \rightarrow B$	Skip until not a LBI	Load B immediate with r,d (Note 6)
LEI	y	33 $6-1$	100011100011 $\|0.110\| y$	$y \rightarrow E N$	None	Load EN Immediate (Note 7)
XABR		12	000110010	$\mathrm{A} \leftrightarrow \mathrm{Br}$	None	Exchange A with Br (Note 8)

TEST INSTRUCTIONS

SKC		20	10010100001		$C=\cdots 1$	Skip if C is True
SKE		21	10010100011		$A=\operatorname{RAM}(B)$	Skip if A Equals RAM
SKGZ		33 21	10011100011 0010100011		$\mathrm{G}_{3: 0}=0$	Skip if G :s Zero (ali 4 bits)
SKGBZ	0 1 2 3	33 01 11 03 13		ist byte 2nd byte	$\begin{aligned} & \mathrm{G}_{0}=0 \\ & \mathrm{G}_{1}=0 \\ & \mathrm{G}_{2}=0 \\ & \mathrm{G}_{3}=0 \end{aligned}$	Skip if G Bit is Zero

INSTRUCTION SET (continued)

INPUT/OUTPUT INSTRUCTIONS

ING		33 24	$\left.\begin{array}{\|llllllll} 10 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 / 1 & 0 & 1 & 1 \end{array}\right]$	$G \rightarrow A$	None	Input G Ports to A
ININ		33 28	$\left\lvert\, \begin{array}{lllllllll} 10 & 0 & 1 & 1 & 10 & 0 & 1 & 1 \\ 10 & 0 & 1 & 01 & 1 & 0 & 0 & 0 \end{array}\right.$	$\mathbb{N} \rightarrow A$	None	Input \mathbb{N} inputs to A (Note 2)
INIL		33 29	$\left.\begin{array}{llllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 01 & 0 & 0 & 1 \end{array}\right]$	$\mathrm{H}_{3}, \mathrm{CKO}, ~ " 0 ", \mathrm{H}_{0} \rightarrow \mathrm{~A}$	None	Input IL Latches to A (Note 3)
INL		33 $2 E$	$\begin{array}{\|llllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 10 & 0 & 1 & 01 & 1 & 1 & 1 & 0 \end{array}$	$\begin{aligned} & L_{7: 4} \rightarrow \operatorname{RAM}(B) \\ & L_{3: 0} \rightarrow A \end{aligned}$	None	Input L Ports to RAM. A
OBD		33 3E	$\left\lvert\, \begin{array}{lllllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 10 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline \end{array}\right.$	$\mathrm{Bd} \rightarrow \mathrm{D}$	None	Output Bd to D Outputs
OGI	y	33 5.		$y \rightarrow G$	None	Output to G Ports Immediate
OMG		33 3A	$\begin{array}{\|llllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ \hline \end{array}$	RAM $(B) \rightarrow G$	None	Output RAM to G Ports
XAS		4 F	01010001111111	$A \rightarrow S I O C \rightarrow S K L$	None	Exchange A with SIO (Note 3)

Note 1 : All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example; A_{3} indicates the most significant (left-most) blt of the 4-bit A register.
Note 2: The ININ instruction is not available on the 24-pin packages since these devices do not contain the IN inputs.
Note 3 : For additional on the operation of the XAS, JID, LQID, INIL, and SKT instructions, see below.
Note 4 : The JP instruction allows a ןump, while in subroutine page 2 or 3 , to any ROM location within the two-page boundary of pages 2 or 3 The JP instruction. otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page
Note 5 : A JSRP transters program control to subroutine page 2 (0010 is loaded into the upper 4, bits of P). A JSRP may not be used when in pages 2 or 3. JSRP may not jump to the last word in page 2.
Note 6 : LBl is a single-brte instruction if $d=0.9,10,11,12,13.14$, or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1 . e.g., to load the lower four bits of $B(B d)$ with the value $9(10012)$, the lower 4 bits of the LBI instruction equal $8(10002)$. To load 0 . the lower 4 bits of the LBI instruction should equal 15 (11112).
Note 7: Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register)
Note 8 : For $2 K$ ROM devices $\mathrm{A} \mapsto \mathrm{Br}(0 \rightarrow \mathrm{~A} 3)$. For 1 K RUM devices. $\mathrm{A} \mapsto \mathrm{Br}(0.0 \rightarrow \mathrm{~A} 3, \mathrm{~A} 2)$.
Note 9 : Do not use CTMA instruction when dual - option is selected and part is running from DO Clocks.

DESCRIPTION OF SELECTED INSTRUCTIONS

Xas instruction

XAS (Exchange A with SIO) copies C to the SKL latch and exchanges the accumulator with the 4-bit contents of the SIO register. The contents of SIO will contain serial-in/serial-out shift register or binary counter data, depending on the value of the EN register. If SIO is selected as a shift register, an XAS instruction can be performed once every 4 instruction cycles to effect a continuous data stream.

LQID Instruction

LQID (Load Q Indirect) loads the 8 -bit Q register with the contents of ROM pointed to by the 11-bit word PC10:PC8,A,M. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction "pushes" the stack ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$) and replaces the least significant 8 bits of the $P C$ as follows: $A \rightarrow P C(7: 4)$, $R A M(B) \rightarrow P C(3: 0)$, leaving $P C(10), P C(9)$ and $P C(8)$ unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" $(S C \rightarrow S B \rightarrow S A \rightarrow P C)$, restoring the saved value of $P C$ to continue sequential program excecution. Sincé LQID pushes $S B \rightarrow$ SC, the previous contents of SC are lost.

Note: LQID uses 2 instruction cycles if executed, one if skipped.

JID instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 11-bit word, PC10:8,A,M. PC10, PC9 and PC8 are not affected by JID.
Note: JID uses 2 instruction cycles if executed, one if skipped.

SKT instruction

The SKT (Skip On Timer) instruction tests the state of the T counter overtlow latch (see internal logic, above), executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction allow the processor to generate its own time-base for real-time processing, rather than relying on an external input signal.

Note : If the most significant bit of the T counter is a 1 when a CAMT instruction loads the counter, the overflow flag will be set. The following sample of codes should be used when loading the counter:

CAMT : load T counter
SKT : skip if overflow flag is set and reset it
NOP

IT Instruction

The IT (idle till timer) instruction halts the processor and puts it in an idle state until the time-base counter overflows. Upon overflow, the processor will restart with a delay shorter than one cycle time. This idle state reduces current drain since all logic (except the oscillator and time base counter) is stopped. IT instruction is not allowed if the T counter is maskprogrammed as an external event counter (option \#31=1).

INIL Instruction

INIL (Input IL Latches to A) inputs 2 latches, IL3 and ILO, CKO and 0 into A. The IL3 and ILO latches are set if a low-going puise (" 1 " to " 0 ") has occured on the IN3 and INO inputs since the last INIL instruction, provided the input pulse stays low for at least two instruction cycles. Execution of an INIL inputs IL3 and ILO into A3 and AO respectively, and resets these latches to allow them to respond to subsequent low-going pulses on the IN3 and INO lines. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO INTO A2. If CKO has not been so programmed, a "1" will be placed in A2. A 0 is input into A1. IL latches are cleared on reset. IL latches are not available on the ETC 9445/C 9421.

Instruction set notes

a. The first word of a program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instructions are not executed, they are still fetched from the program memory. Thus program pathsi take the same number of cycles whether instructions are skipped or executed except for JID, and LQID.
c. The ROM is organized into pages of 64 words each the Program Counter is a 11-bit binary counter, and will count through page boundaries. If a JP, JSRP, JID, or LQID is the last word of a page, it operates as if it were in the next page. For example: a JP Located in the last word of a page will jump to a location in the next page. Also, a JIO or LQID located in the last word of every fourth page (i.e. hex address $0 F F, 1 F F, 2 F F, 3 F F, 4 F F$, etc.) will access data in the next group of four pages.

Note: The ETC $9420 /$ C 9421 /C 9422 needs only 10 bits to address its ROM. Therefore, the eleventh bit (10) is ignored.

POWER DISSIPATION

The lowest power drain is when the clock is stopped. As the frequency increases so does current. Current is also lower at lower operating voltages. Therefore, the user should run at the lowest speed and voltage that his application will allow. The user should take care that all pins swing to full supply levels to insure that outputs are not loaded down and that inputs are not at some intermediate level which may draw current. Any input with a slow rise or fall time will draw additional current. A crystal or resonator generated clock input will draw additional current. For example, a 500 kHz crystal input will typical draw $100 \mu \mathrm{~A}$ more than a square-wave input. An R/C oscillator will draw even more current since the input is a slow rising signal.

If using an external squarewave oscillator, the following equa tion can be used to calculate the ETC 9444/C 9445 operating current drain.

$$
\mathrm{I}_{\mathrm{CO}}=\mathrm{I}_{\mathrm{Q}}+\mathrm{V} \times 40 \times \mathrm{Fi}+\mathrm{V} \times 1400 \times \mathrm{Fi} / \mathrm{DV}
$$

where ${ }^{1} \mathrm{CO}=$ chip operating current drain in microamps
$\mathrm{I}_{\mathrm{O}}=$ quiescent leakage current (from curve)
$\mathrm{Fi}=$ CKI frequency in MegaHertz
$V=$ chip $V_{C C}$ in volts
$\mathrm{Dv}=$ divide by option selected.
For example at 5 volts $V_{C C}$ and 400 kHz (divide by 4)
${ }^{1} \mathrm{CO}=20+5 \times 40 \times 0.4+5 \times 1400 \times 0.4 / 4$
${ }^{\mathrm{C}} \mathrm{CO}=20+80+700=800 \mu \mathrm{~A}$
At 2.4 volts V_{CC} and 30 kHz (divide by 4) $\mathrm{I}_{\mathrm{CO}}=6+2.4 \times 40 \times 0.03+2.4 \times 1400 \times 0.03 / 4$
$\mathrm{I}_{\mathrm{Co}}=6+2.88+25.2=34.08 \mu \mathrm{~A}$

POWER DISSIPATION (continued)

If an ITinstruction is executed, the chip goes into the IDLE mode until the timer overflows. In IDLE mode, the current drain can be calculated from the following equation :

$$
\mathrm{Ici}=\mathrm{I}_{\mathrm{Q}}+\mathrm{V} \times 40 \times \mathrm{Fi}
$$

For example, at 5 volts V_{CC} and 400 kHz

$$
\mathrm{Ici}=20+5 \times 40 \times 0.4=100 \mu \mathrm{~A}
$$

The total average current will then be the weighted average of the operation current and the idle current :

> where: Ita $=$ total average current
> ${ }^{1} \mathrm{CO}=$ = operating current
> |ci $=$ idle current
> To $=$ operating time
> $\mathrm{Ti}=$ idle time

//O options

ETC 9444/C 9445 outputs have the following optional configuraions, illustrated in Figure 11 :

1. Standard-A CMOS push-pull buffer with an N -channel device to ground in conjunction with a P-channel device to $v_{\text {cc }}$,compatible with CMOS and LSTTL.
I. Low Current-This is the same configuration as a. above except that the sourcing current is much less.
c. Open Drain-An N-channel device to ground only, allowing external pull-up as required by the user's application.
d. Standard TRI-STATE L Ouput-A CMOS output buffer similar to a. witch may be disabled by program control.
e. Low-Current TRI-STATE L Output-This is the same as d. above except that the sourcing current is much less.
f. Open-Drain TRI-STATE L. Output-This has the N-channel device to ground only.

All inputs have the following options :
g. Input with on chip load device to V_{cc}.
h. Hi-Z input which must be driven by the users logic.

When using either the G or L I/O ports as inputs, a pull-up device is necessary. This can be an external device or the following alternative is available : Select the low-current output option. Now, by setting the output registers to a iogic " 1 " level, the P-channel devices will act as the pull-up load. Note that when using the L ports in this fashion the Q registers must be set to a logic " 1 " level and the L drivers MUST BE ENABLED by an LEI instruction (see description above).
All output drivers use one or more of three common devices numbered 1 to 3 . Minimum and maximum current (lout and $\mathrm{V}_{\text {OUT }}$) curves are given in Figure 12 for each of these devices to allow the designer to effectively use these I/O configurations.

a. Standard Push-Pull Output

b. Low Current Push-Pull Output

c. Open-Drain Output

d. Standard TRI-STATE "L" Output

e. Low Current TRI-STATE "L" Output.

f. Open Drain TRI-STATE "L" Output

g. Input with Load

h. HI-Z Input

FIGURE 11 - INPUT/OUTPUT CONFIGURATIONS

FIGURE 12 - INPUT/OUTPUT CHARACTERISTICS

OPTION LIST

The ETC 9444/C 9420/C 9445/C 9421/C 9422 maskprogrammable options are assigned numbers which correspond with the ETC 9344/C 9320/C 9345/C 9321/C 9322 pins.
The following is a list of options. The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.
Option 1=0: Ground Pin - no option available.
Option 2 : CKO Pin
$=0$: clock generator output to crystal/resonator
$=1$: HALT I/O port
$=2$: general purpose input with load device to $V_{C C}$
$=3$: general purpose input, high-Z
Option 3 : CKI input
$=0$: Crystal controlled oscillator input divide by 4
$=1$: Crystal controlled oscillator input divide by 8
$=2$: Crystal controlled oscillator input divide by 16
$=4$: Single-pin RC controlled oscillator (divide by 4)
$=5$: External oscillator input divide by 4
$=6$: External oscillator input divide by 8
$=7$: External oscillator input divide by 16
Option 4 : $\overline{\text { RESET }}$ input
$=0:$ load device to VCC
$=1: H i-Z$ input
$=1$: Hi-Z input
Option 5: L7 Driver
$=0$: Standard TRI-STATE push-pull output
=1: Low-current TRI-STATE push-pull output
$=2$: Open-drain TRI-STATE output
Option 6: L6 Driver-(same as option 5)
Option 7 : L5 Driver-(same as option 5)
Option 8 : L4 Driver-(same as option 5)
Option 9 : IN1 input
$=0$: load device to V_{CC}
$=1$: $\mathrm{Hi}-\mathrm{Z}$ input
Option 10 : IN2 input-(same as option 9)
Option $11=0: v_{c c} P$ Pin-no option available
Option 12 : L3 Driver-(same as option 5)
Option 13 : L2 Driver-(same as eption 5)
Option 14 : L1 Driver-(same as option 5)
Option 15 : L0 Driver-(same as option 5)

Option 16 : Si Input - (same as option 9)
Option 17 : SO Driver
$=0$: Standard push-pull output
$=1$: Low-current push-pull output
$=2$: Open-drain output
Option 18 : SK Driver - (same as option 17)
Option 19 : INO Input - (same as option 9)
Option 20 : IN3 Input - (same as option 9)
Option 21 : GO I/O Port - (same as option 17)
Option 22 : G1 I/O Port - (same as option 17)
Option 23 : G2 I/O Port - (same as option 17)
Option 24 : G3 I/O Port - (same as option 17)
Option 25 : D3 Output - (same as option 17)
Option 26 : D2 Output - (same as option 17)
Option 27 : D1 Output - (same as option 17)
Option 28 : DO Output - (same as option 17)
Option 29 : Internal Initialization Logic
$=0$: Normal operation
$=1$: No internal initialization logic
Option 30 : Dual Clock
$=0$: Normal operation
$\left.\begin{array}{l}=1 \text { : Dual Clock. DO RC oscillator } \\ =2 \text { : Dual Clock. DO ext. clock input }\end{array}\right\}$ (opt. \# 28 must $=2$)
Option 31 : Timer
$=0$: Time-base counter
=1 : External event counter
Option 32 : MICROBUS
$=0$: Normal
$=1$: MICROBUS (opt. \# 31 must $=0$)
Option 33 : Chip bonding
(1 K and 2 K Microcontroller)
= $0: 28$ - pin package
$=1: 24$ - pin package
$=2$: Same die purchased in both 24 and 28 pin version
(1 K Microcontroller only)
$=3: 20-$ pin package
$=4: 28-$ and $20-$ pin package
$=5: 24$ - and 20-pin package
$=6: 28-$, 24- and 20-pin package
Note : - If opt \# 33 = 2 then opt \# $9,10,19,20$ and 32 must $=0$ - If opt \#33 = 3, 4, 5 or 6 then opt \#9, 10, 19, 20, 21, 22, 30 and 32 must $=0$

CROSS REFERENCE	
THOMSON SC	NS
ETC 9420	COP 424 C
ETC 9421	COP 425 C
ETC 9422	COP 426 C
ETC 9444	COP 444 C
ETC 9445	COP 445 C

PHYSICAL DIMENSIONS

CB-132

N SUFFIX PLASTIC PACKAGE

CB-68

N SUFFIX PLASTIC PACKAGE

PHYSICAL DIMENSIONS

CB-194

N SUFFIX PLASTIC PACKAGE

The ETL9420, ETL9421, ETL9422, ELT9320, ETL9321, and ETL9322 Single-Chip N-Channel Microcontrollers are fully compatible with the COPS ${ }^{\circledR}$ family, fabricated using N -channel, silicon gate XMOS technology. These controller oriented processors are complete microcomputers containing all system timing, internal logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture, and I/O scheme designed to facilitate keyboard input, display output, and BCD data manipulation. The ETL9421 and ETL9422 are identical to the ETL9420, but with 19 and 15 I/O lines, respectively, instead of 23 . They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized controller oriented processor at a low end-product cost.

The ETL9320/L9321/L9322 are exact functional equivalents, but extended temperature range versions, of the ETL9420, ETL9421 and ETL9422 respectively.

- Low cost
- Powerful instruction set
- $1 \mathrm{~K} \times 8$ ROM, 64×4 RAM
- 23 I/O lines (ETL9420)
- True vectored interrupt, plus restart
- Three-level subroutine stack
- $16 \mu \mathrm{~s}$ instruction time
- Single supply operation (4.5-6.3V)
- Low current drain (9 mA max.)
- Internal time-base counter for real-time processing
- Internal binary counter register with MICROWIRE © compatible serial I/O
- General purpose and TRI-STATE ${ }^{\text {®3 }}$ outputs
- LSTTL/CMOS compatible in and out
- Direct drive of LED digit and segment lines
- Software/hardware compatible with other members of ET9400 familv
- Extended temperature range device

ETL9320/L9321/L. 9322 ($-40^{\circ} \mathrm{C}$ to $+85^{\circ}$)

- Wider supply range $(4.5 \mathrm{~V}-9.5 \mathrm{~V})$ optionally available

NMOS

PIN ASSIGNMENT

ETL9420/L9421/L9422

absolute maximum ratings

Voltage at Any Pin Relative to GND
Ambient Operating Temperature
Ambient Storage Temperature
Lead Temperature (Solderirg, 10 seconds)
Power Dissipation
ETL9420/L.9421
ETL9422

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { o }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

0.75 Watt at $25^{\circ} \mathrm{C}$ 0.4 Watt at $70^{\circ} \mathrm{C}$ 0.65 Watt at $25^{\circ} \mathrm{C}$ 0.3 Watt at $70^{\circ} \mathrm{C}$ 120 mA
120 mA

Total Source Current
Total Sink Current
Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified).

Parameter	Conditions	Min.	Max.	Units
Standard Operating Voltage (V_{CC}) Optional Operating Voitage (V_{CC}) Power Supply Ripple Operating Supply Current	Note 1 peak to peak all inputs and outputs open	$\begin{aligned} & 4.5 \\ & 4.5 \\ & - \\ & - \end{aligned}$	$\begin{gathered} 6.3 \\ 9.5 \\ 0.5 \\ 9 \end{gathered}$	$\begin{gathered} V \\ V \\ v \\ m A \end{gathered}$
Input Voltage Levels CKI Input Levels Crystal Input $(\div 32, \div 16, \div 8$) Logic High ($\mathrm{V}_{\text {IH }}$) Logic Low (V_{IL}) Schmitt Trigger Input ($\div 4$) Logic High ($\mathrm{V}_{1 \mathrm{H}}$) Logic Low ($V_{1 L}$) RESET input Levels Logic High Logic Low SO Input Level (Test mode) Al: Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	Schmitt Trigger Input $V_{C C}=\operatorname{Max}$ with TTL trip level options selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ with high trip level options selected	$\begin{gathered} 2.0 \\ -0.3 \\ 0.7 \mathrm{~V}_{\mathrm{cc}} \\ -0.3 \\ 0.7 \mathrm{v}_{c c} \\ -0.3 \\ 2.0 \\ \\ 3.0 \\ 2.0 \\ -0.3 \\ 3.6 \\ -0.3 \\ - \\ -1 \end{gathered}$	$\begin{gathered} \overline{0.4} \\ \overline{0.6} \\ \overline{0.6} \\ 0.6 \\ 2.5 \\ \overline{0} .8 \\ \overline{1.2} \\ 7 \\ +1 \end{gathered}$	$\begin{gathered} v \\ p F \\ \mu A \end{gathered}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (V_{OL})	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{l}_{\mathrm{OH}}=-25 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=0.36 \mathrm{~mA} \end{aligned}$	2.7	$\overline{0.4}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
CMOS Operation Logic High Logic Low	$\begin{aligned} & I_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$V_{C C}-1$	$\overline{0.2}$	$\begin{aligned} & v \\ & v \end{aligned}$

[^1]
ETL9420/L9421/L9422

DC ELECTRICAL CHARACTERISTICS (continued) $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Output Current Levels Output Sink Current SO and SK Outputs (IoL)				
	$\mathrm{V}_{\text {CC }}=9.5 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=0.4 \mathrm{~V}$	1.8	-	mA
	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.2	-	mA
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.9	-	mA
Lo-L7 Outputs and Standard	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.8	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}, \mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs (IOL)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.4	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	15	-	mA
High Current Options (loU	$\mathrm{V}_{C C}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	11	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} . \mathrm{V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	7.5	-	mA
$G_{0}-G_{3}$ and $D_{0}-D_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	30	-	mA
Very High Current Options (lOU)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	22	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	15	-	mA
CKI (Single-pin RC oscillator)	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{1 H}=3.5 \mathrm{~V}$	2	-	mA
CKO	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.2	-	mA
Output Source Current				
Standard Configuration.	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-140	-800	$\mu \mathrm{A}$
All Outputs (l)	$V_{C C}=6.3 \mathrm{~V}, V_{O H}=2.0 \mathrm{~V}$	- 75	-480	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-30	-250	$\mu \mathrm{A}$
Push-Pull Configuration	$V_{C C}=9.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=4.75 \mathrm{~V}$	-1.4	-	mA
SO and SK Outputs ($\mathrm{IOH}^{\text {) }}$	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	-1.4	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.0 \mathrm{~V}$	-1.2	-	mA
LED Configuration, L0:L7	- ${ }^{\text {- }}$, $\mathrm{V}^{\text {ar }}$			
Outputs, Low Current	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V} . \mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.5	-18	mA
Driver Option (lOH)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.5	-13	inA
LED Configuration, LO-L7 Outputs, High Current	$\mathrm{V}_{\text {CC }}=9.5 \mathrm{~V} . \mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-3.0	-35	mA
Driver Option (lOH)	$V_{C C}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-3.0	-25	mA
TRI-STATE ${ }^{\circledR}$ Configuration,	$V_{\text {CC }}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	-0.75	-	mA
Lo-L7 Outputs, Low	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V}$	-0.8	-	mA
Current Driver Option (lOH)	$V_{C C}=4.5 \mathrm{~V}, V_{O H}=1.5 \mathrm{~V}$	-0.9	-	$m \cdot A$
TRI.STATE ${ }^{\left.()^{+}\right)}$Configuration,	$\mathrm{V}_{C C}=9.5 \mathrm{~V}, \mathrm{~V}_{O H}=5.5 \mathrm{~V}$	-1.5	-	mA
Lo-L7 Outputs. High	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V} . \mathrm{V}_{\mathrm{OH}}=3.2 \mathrm{~V}$	-1.6	-	mA
Current Driver Option (I_{OH})	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-1.8	-	mA
Input Load Source Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-140	$\mu \mathrm{A}$
CKO Output				
RAM Power Supdly Cption Power Requirement	$V_{\text {R }}=3.3 \mathrm{~V}$	-	3.0	mA
TRI.STATE ${ }^{\circledR}$ Output Leakage Current		-2.5	+2.5	$\mu \mathrm{A}$
Total Sink Current Allowed				
All Outputs Combined		-	120	mA
D. G Ports		-	120	mA
L7-L4		-	4	$m A$
L3-L0		-	4	mA
All Other Pins		-	1.5	mA
Total Source Current Allowed				
All IIO Combined		-	120	mA
L7-L4		-	60	mA
L3-L0		-	60	$m A$
Each L Pir.		-	30	mA
All Other Pins		-	1.5	mA

ETL9320/L9321/L9322

ABSOLUTE MAXIMUM RATINGS

Voltage at Any Pin Relative to GND	-0.5 V to +10 V
Ambient Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Ambient Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Power Dissipation	
ETL9320 L9321	0.75 Watt at $25^{\circ} \mathrm{C}$
	0.4 Watt at $85^{\circ} \mathrm{C}$
ETI 9322	0.65 Watt at $25^{\circ} \mathrm{C}$
	0.20 Watt at $85^{\circ} \mathrm{C}$
Total Source Current	120 mA
Total Sink Current	120 mA

Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{C}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Standard Operating Voltage (V_{CC}) Optional Operating Voltage (V_{CC}) Power Supply Ripple Operating Supply Current	Note 1 peak to peak all inputs and outputs open	$\begin{aligned} & 45 \\ & 4.5 \\ & - \\ & - \end{aligned}$	$\begin{gathered} 5.5 \\ 7.5 \\ 0.5 \\ 11 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ m A \end{gathered}$
Input Voltage Levels CKI Input Levels Crystal Input Logic High ($\mathrm{V}_{\text {IH }}$) Logic Low (V_{IL}) Schmitt Trigger Input Logic High ($\mathrm{V}_{\text {HH }}$) Logic Low (V_{LL}) RESET Input Levels Logic High Logic Low SO Input Level (Test mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	Schmitt Trigger Input $V_{C C}=\text { Max. }$ with TTL trip level options selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ with high trip level options selected	$\begin{gathered} 2.2 \\ -0.3 \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ 2.2 \\ \\ \\ 3.0 \\ 2.2 \\ -0.3 \\ 3.6 \\ -0.3 \\ - \\ -2 \end{gathered}$	$\begin{gathered} \overline{0.3} \\ \overline{0.4} \\ \overline{0.4} \\ 2.5 \\ - \\ \overline{0.6} \\ \overline{1.2} \\ 7 \\ +2 \end{gathered}$	$\begin{aligned} & V \\ & \\ & V \\ & \mathrm{VF} \\ & \mu \mathrm{~A} \end{aligned}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (V_{OL})	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \pm 5 \% \\ & l_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.36 \mathrm{~mA} \\ & \hline \end{aligned}$		$\overline{0.4}$	v
CMOS Operation Logic High Logic Low	$\begin{aligned} & I_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-1$ -	$\overline{0.2}$	v

Note $1: V_{C C}$ voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.

ETL9320/L9321/L9322

DC ELECTRICAL CHARACTERISTICS (continued $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified).

Parameter	Conditions	Min.	Max.	Units
Output Current Levels Output Sink Current SO and SK Outputs (loL)				
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.4	-	mA
	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=0.4 \mathrm{~V}$	1.0	-	in A
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} . \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.8	-	mA
L0-L7 Outputs and Standard	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.6	-	mA
$\mathrm{GO}_{0}-\mathrm{G}_{3}, \mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs (iOL)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=0.4 \mathrm{~V}$	05	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} . \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.4	-	mA
$\mathrm{G}_{1}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	12	-	mA
high Current Options (lou)	$V_{C C}=5.5 \mathrm{~V}, V_{O L}=1.0 \mathrm{~V}$	9	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	7	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	24	-	mA
Very High Current Options (lOU)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	18	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	14	-	mA
CKI (Single-pin RC oscillator)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.5 \mathrm{~V}$	2	-	mA
CKO	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.2	-	mA
Output Source Current				
Standard Configuration.	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	- 100	-900	$\mu \mathrm{A}$
All Outputs (${ }_{\text {OH }}$)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-55	-600	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-28	-350	$\mu \mathrm{A}$
Push-Pull Configuration	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.75 \mathrm{~V}$	-0.85	-	mA
SO and SK Outputs (l_{OH})	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.1	-	mA
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.0 \mathrm{~V}$	-1.2	-	mA
LED Configuration, L0-L7	$V_{C C}=7.5 \mathrm{~V}, V_{O H}=2.0 \mathrm{~V}$	-1.4	-27	mA
Outputs, Low Current	$V_{C C}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.4	-17	mA
Driver Option (l OH)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.7	-15	mA
LED Configuration, L0-L7	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-2.7	-54	mA
Outputs, High Current	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-2.7	-34	mA
Driver Option (l OH)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.4	-30	$m A$
TRI-STATE (8) Configuration,	$V_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-0.7	-	mA
Lo-L7 Outputs, Low	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}$	-0.6	-	mA
Current Driver Option (IOH)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-09	-	mA
TRI-STATE (8) Configuration,	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-1.4	-	mA
L0-L7 Outputs, High	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}$	-1.2	-	mA
Current Driver Cption (1OH)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-1.8	-	$m A$
Input Load Source Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-200	$\mu \mathrm{A}$
CKO Output				
RAM Power Supply Option Power Requirement	$V_{R}=3.3 \mathrm{~V}$	-	4.0	mA
TRI-STATE® Output Leakage Current		-5	+5	$\mu \mathrm{A}$
Total Sink Current Allowed				
All Outputs Combined		-	120	$m A$
D, G Ports		-	120	$m A$
L7-L4		-	4	m m
L3-L0		-	4	mA
All Other Pins		-	1.5	mA
Total Source Current Allowed				
All I/O Combined		-	120	mA
L7-L4		-	60	mA
L3-L0		-	60	$m A$
Each L Pin		-	30	mA
All Other Pins		-	1.5	mA

AC ELECTRICAL CHARACTERISTICS

ETL9420/L9421/L9422: $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{VCC} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified)
ETL9320/L9321/L9322: $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{C}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified).

FIGURE 2 - CONNECTION DIAGRAMS

Order number ETL9420/N ETL9320/N Package N28A

Order Number ETL9421/N, E TL9321/N
Package N24A

Order number ETL9422/N ETL9322/N Package N20A

Pin	Description	Pin	Description
L7-L0	8 bidirectional $1 / O$ ports with TRI-STATE ${ }^{(B)}$	SK	Logic-controlled clock (or general purpose output)
$\mathrm{G}_{3}-\mathrm{G}_{0}$	4 bidirectional I/O ports	CKI	System oscillator input
$\begin{aligned} & \mathrm{D}_{3}-\mathrm{D}_{0} \\ & \mathrm{~N}_{3}-\mathrm{N}_{0} \end{aligned}$	4 general purpose outputs 4 general purpose inputs(ETL9420/L9320 only)	CKO	System oscillator output (or general purpose input, RAM power supply or SYNC input)
	Serial input (or counter input)	RESET	System reset input
SO	Serial output (or general purpose output)	$\mathrm{V}_{\text {CC }}$	Power supply
		GND	Ground

FIGURE 3 - INPUT/OUTPUT TIMING DIAGRAMS (CRYSTAL DIVIDE.BY-16 MODE)

FIGURE 3a - SYNCHRONIZATION TIMING

FUNCTIONAL DESCRIPTION

For ease of reading this description, only ETL9420 and/ or ETL9421 are referenced ; however, all such references apply also to ETL9320, L9321, L9322 or ETL9422.
A block diagram of the ETL9420 is given in Figure 1. Data paths arle illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " (greater than 2 volts). When a bit is reset, it is a logic " 0 " (less than 0.8 volts).

Program Memory

Programm Memory consists of a 1,024 byte ROM. As can be seen by an examination of the ETL9420, L9421, L9422 instruction set, these words may be program instructions, program data or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID and LQUID instructions, ROM must often be thought of as being organized into 16 pages of 64 words each.
ROM addressing is accomplished by a 10 -bit PC register. Its binary value selects one of the 1,0248 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 10-bit binary count value. Three levels of subroutine nesting are implemented by the 10 -bit subroutine save registers, SA, SB and SC, providing a last-in, first-out (LIFO) hardware subroutine stack.

ROM instruction words are fetched, decoded and executed by the Instruction Decode. Control and Skip Logic circuitry.

Data Memory

Data memory consists of a 256 -bit RAM, organized as 4 data registers of 164 -bit digits. RAM addressing is implemented by a 6 -bit B register whose upper 2 bits (Br) select 1 of 4 data registers and lower 4 bits (Bd) select 1 of 164 -bit digits in the selected data register. While the 4-bit contents of the selected RAM digit (M) is usually loaded into or from, or exchanged with, the A register (accumulator), it may also be loaded into or from the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the 6-bit contents of the operand field of these instructions. The Bd register also serves as a source register for 4 -bit data sent directly to the D outputs.

Internal Logic

The 4-bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Br and Bd portions of the B register, to load and input 4 bits of the 8 -bit Q latch data, to input 4 bits of the 8 -bit L I/O port data and to perform data exchanges with the SIO register.

At 4-bit adder performs the arithmetic and logic functions of the ELT9420, L9421, L9422, storing its results in A. It also outputs a carry bit tho the 1 bit C register, most often employed to indicate arithmetic overflow. The C register, in conjuction with the XAS instruction
and the EN register, also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description, below.)

Four general-purpose inputs, $\mathbb{I N}_{3}-1 N_{0}$, are provided.
The D register provides 4 general-purpose outputs and is used as the destination register for the 4-bit contents of Bd. The D outputs can be directly connected to the digits of a multiplexed LED display.
The \mathbf{G} register contents are outputs to 4 general-purpose bidirectional I/O ports. G I/O ports can be directly connected to the digits of a multiplexed LED display.
The Q register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A, as well as 8 -bit data from ROM. Its contents are outputted to the LI/O ports when the L drivers are enabled under program control. (See LEl instruction.)

The 8 L drivers, when enabled, output the contents of latched Q data to the L I/O ports. Also, the contents of L may be read directly into A and M. L I/O ports can be directly connected to the segments of a multiplexed LED display (using the LED Direct Drive output configuration option) with Q data being outputted to the $\mathrm{Sa}-\mathrm{Sg}$ and decimal point segments of the display.

The SIO register functions as a 4-bit serial-in/serial-out shift register or as a binary counter depending on the contents of the EN register. (See EN register description, below.) Its contents can be exchanged with A, al lowing it to input or output a continuous serial data stream. SIO may also be used to provide additional parallel I/O by connecting SO to external serial-in/ parallel-out shift registers.

The XAS instruction copies C into the SKL latch. In the counter mode, SK is the output of SKL; in the shift register mode, SK outputs SKL ANDed with the clock.

The EN register is an internal 4-bit register loaded under program contol by the LEl instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register ($E N_{3}-E N_{0}$).

1. The least significant bit of the enable register, EN_{O}, selects the SIO register as either a 4 -bit shift register or a 4 -bit binary counter. With $E N_{0}$ set, SIO is an asynchronous bina:y counter, decrementing its value by one upon each low-going pulse (" 1 " to " 0 ") occurring on the Sl input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of EN_{3}. With $E N_{0}$ reset, SIO is a serial shift register shifting left each instruction cycle time. The data present at SI goes into the least significant bit of SIO. SO can be enabled to output the most significant bit of SIO each cycle time. (See 4 below.) The SK output becomes a logic-controlled clock.
2. With $E N_{1}$ set the \mathbb{N}_{1} input is enabled as an interrupt input. Immediately following an interrupt, EN_{1} is reset to disable further interrupts.
3. With EN_{2} set, the L drivers are enabled to output the data in Q to the $\mathrm{L} / / \mathrm{O}$ ports. Resetting EN_{2} disables
the L drivers, placing the $L / / O$ ports in a highimpedance input state.
4. EN_{3} in conjunction with $E N_{0}$, affects the SO output. With EN K_{0} set (binary counter option selected) SO will output the value loaded into EN_{3}. With EN_{0} reset (serial shift register option selected), setting $E N_{3}$ enables SO as the output of the SIO shift register
outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected disables SO as the shift register output ; data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ". The table below provides a summary of the modes associated with EN_{3} and EN_{O}.

Enable Register Modes - Bits EN_{3} and EN_{0}

EN_{3}	EN0	SIO	SI	so	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=\text { Clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Oút	$\begin{aligned} & \text { If } S K L=1, S K=\text { Clock } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} \text { If } S K L & =1, S K=1 \\ \text { If } S K L & =0, S K=0 \end{aligned}$
1	1	Binary Counter	Input to Binary Counter	1	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$

Interrupt

The following features are associated with the \mathbb{N}_{1} interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.
a. The interrupt, once acknowledged as explained below, pushes the next sequential program counter address ($\mathrm{PC}+1$) onto the stack, pushing in turn the contents of the other subroutine-save registers to the next lower level ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$). Any previous contents of SC are lost. The program counter is set to hex address OFF (the last word pf page 3) and $E N_{1}$ is reset.
b. An interrupt will be acknowledged only after the following conditions are met:

1. EN , has been set.
2. A low-going pulse (" 1 " to " 0 ') at least two instruction cycles wide occurs on the IN_{1} input.
3. A currently executing instruction has been completed.
4. All successive transfer of control instructions and successive LBIs have been completed (e.g., if the main program is executing a JP instruction which transfers program control to another JP instruction, the interrupt will not be acknowledged until the second JP instruction has been executed).
c. Upon acknowledgement of an interrupt, the skip logic status is saved and later restored upon popping of the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction, whict: results in valry, the skid logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to "pop" the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines and LQID instructions should not be nested
within the interrupt servicing routine since their popping the stack will enable any previously saved main program skips, interfering with the orderly execution of the interrupt routine.
d. The first instruction of the interrupt routine at hex address OFF must be a NOP.
e. A LEI instruction can be put immediately before the RET to re-enable interrupts.

Initialization

The Reset Logic will initialize (clear) the device upon power-up if the power supply rise time is less than 1 ms and greater than $1 \mu \mathrm{~s}$. If the power supply rise time is greater than 1 ms , the user must provide an external RC network and diode to the $\overline{\operatorname{RESET}}$ pin as shown below. The RESET pin is configured as a Schmitt trigger input. If not used it should be connected to V_{cc}. Initialization will occur whenever a logic " 0 " is applied to the RESET input, provided it stays low for at least three instructio cycle times.
Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA.

Power-Up Clear Circuit

Oscillator

There are four basic clock oscillator configurations available as shown by Figure 4.
a. Crystal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency divided by 32 (optional by 16 or 8).
b. External Oscillator. CKI is an external clock input signal. The external frequency is divided by 32 (optional by 16 or 8) to give the instruction cycle time. CKO is now available to be used as the RAM power supply $\left(V_{R}\right)$, as a general purpose input, or as a SYNC input.
c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is available as the RAM power supply $\left(V_{R}\right)$ or as a general purpose input
d. Externally Synchronized Oscillator. Intended for use in multi-COP systems, CKO is programmed to function as an input connected to the SK output of another COP chip operating at the same frequency (COP chip with L or C suffix) with CKI connected as shown. In this configuration, the SK output connected to CKO must provide a SYNC (instruction cycle) signal to CKO, thereby allowing synchronous data transfer between the COPs using only the SI and SO serial I/O pins in conjunction with the XAS instruction. Note that on power-up SK is automatically enabled as a

Crystal Oscillator

Crystal Value	Component Values			
	R1 (Q)	R2 (Q)	C1 (pF)	C2 (pF)
455 kHz	4.7 k	1 M	220	220
2.097 MHz	1 k	1 M	30	$6-36$

SYNC output (See Functional Description, Initialization, above).

CKO Pin Options

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. As an option CKO can be a SYNC input as described above. As another option CKO can be a general purpose input, read into bit 2 of A (accumulator) upon execution of an INIL instruction. As another option, CKO can be a RAM power supply pin (V_{R}), allowing its connection to a standby/backup power supply to maintain the integrity of RAM data with minimum power drain when the main supply is inoperative or shut down to conserve power. Using either option is appropriate in application where the ETL9420/L9421/ L9422 system timing configuration does not require use of the CKO pin.
RAM Keep-Alive Option (Not available on ETL9422)
Selecting CKO as the RAM power supply $\left(V_{R}\right)$ allows the user to shut off the chip power supply ($V_{C C}$) and maintain data in the RAM. To insure that RAM data integrity is maintained, the following conditions must be met:

1. $\overline{\text { RESEX }}$ must go low before $V_{C C}$ goes below spec dur. ing power-off; $V_{C C}$ must be within spec before RESET goes high on power-up.
2. During normal operation V_{R} must be within the operating range of the chip, with $\left(V_{C C}-1\right) \leqslant V_{R} \leqslant V_{C C}$.
3. V_{R} must be $\geqslant 3.3 \mathrm{~V}$ with $V_{C C}$ off.

RC Controlled Oscillator

R (kQ)	C (pF)	Instruction Cycle Time ($\mu \mathbf{8})$
51	100	$19 \pm 15 \%$
82	56	$19 \pm 13 \%$

Note: $200 \mathrm{k} \geqslant \mathrm{R} \geqslant 25 \mathrm{k}$
$360 \mathrm{pF} \geqslant \mathrm{C} \geqslant 50 \mathrm{pF}$

//O Options

ETL9420/L9421/L9422 outputs have the following optional configurations, illustrated in Figure 5 :
a. Standard - an enhancement mode device to ground in conjunction with a depletion-mode device to $V_{C C}$, compatible with LSTTL and CMOS input requirements. Available on SO, SK, and all D and G outputs.
b. Open-Drain - an enhancement-mode device to ground only, allowing external pull-up as required by the user's application. Available on SO, SK, and all D and G outputs.
c. Push-Pull - An enhancement-mode device to ground in conjunction with a depletion-mode device paralleled by an enhancement-mode device to $V_{C c}$. This configuration has been provided to allow for fast rise and fall times when driving capacitive loads. Available on SO and SK outputs only.
d. Standard L - same as a., but may be disabled. Available on L outputs only.
e. Open Drain L - same as b., but may be disabied. Available on L outputs only.
f. LED Direct Drive - an enhancement-mode device to ground and to $V_{C C}$, meeting the typical current sourcing requirements of the segments of an LED display. The sourcing device is clamped to limit current flow. These devices may be turned off under program control (See Functional Description, EN Register), placing the outputs in a high-impedance state to provide required LED segment blanking for a multiplexed display. Available on L outputs only.
g. TRI-STATE (B) Push-Pull - an enhancement-mode device to ground and $V_{C C}$. These outputs are TRISTATE outputs, allowing for connection of these outputs to a data bus shared by other bus drivers. Available on L outputs only.
ETL9420/L9421/L9422 inputs have the following optional configurations.
h. An on-chip depletion load device to $V_{C c}$.
I. A Hi-Z input which must be driven to a " 1 " or " 0 " by external components.

The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (lout and $V_{\text {OUT }}$) curves are given in Figure 6 for each of these devices to allow the designer to effectively use these I/O configurations in designing a ETL9420/L9421 system.

The SO, SK outputs can be configured as shown in a., b., or c. The D and G outputs can be configured as shown in a. or b. Note that when inputting data to the G ports, the G outputs should be set to " 1 ". The L outputs can be configured as in d., e., f. or \mathbf{g}.
An important point to remember if using configuration d. or f. with the L drivers is that even when the L drivers are disabled, the depletion load device will source a small amount of current (see Figure 6, device 2); however, when the L lines are used as inputs, the disabled depletion device cannot be relied on to source sufficient current to pull an input to a logic 1.

ETL9421

If the ETL9420 is bonded as a 24 -pin device, it becomes the ETL9421, illustrated in Figure 2, ETL9420/L9421 Connection Diagrams. Note that the ETL9421 does not contain the four general purpose $\mathbb{I N}$ inputs ($\mathrm{IN}_{3}-\mathrm{IN}_{0}$). Use of this option precludes, of course, use of the IN options and the interrupt feature. All other options are available for the ETL9421.

ETL9422

If the ETL9420is bonded as a 20 -pin device, it becomes the ETL9422, as illustrated in Figure 2. Note that the ETL9422 contains all the ETL9421 pins except D_{0}, D_{1}, G_{0}, and G_{1}, ETL9422 also does not allow RAM power supply input as a valid CKO pin option.

a. Standard Output

d. Standard L Output

g. TRI-STATE © Push-Pull (L Output)

Input current $\boldsymbol{I N}_{\mathbf{0}}-\boldsymbol{I} \mathbf{N}_{\mathbf{3}}$

Source current for SO and SK in push-pull configuration

b. Open-Drain Output
c. Push-Pull Output
. Push-Pull Output

f. LED (L Output)

i. Hi-Z Input

FIGURE 5 - OUTPLT CONFIGURATIONS

LED output source current (for high current LED option)

LED output source current (for low current LED option)

LED Output Direct Segment Drive

Output sink current for SO and SK

LED Output Direct Segment and Digit Drive (High Current Options on LO-L7) (Very High Current Options on D0-D3 or G0-G3)

Output sink current for $L_{0}-L_{7}$ and standard drive option for $\mathrm{D}_{0}-\mathrm{D}_{3}$ and $\mathrm{G}_{0}-\mathrm{G}_{3}$

VOLIVOLIS

FIGURE 6 - ETL9420/L9421/L9422 INPUT/OUTPUT CHARACTERISTICS

Input $\mathbf{I N}_{\mathbf{0}}-\mathbf{I N}_{\mathbf{3}}$

Source current for SO and SK in push-pull configuration

LED output source current (for low current LED option)
 VOH (VOLTS)
Output sink current for $L_{0}-L_{7}$, standard drive option for $D_{0}-D_{3}$ and $G_{0}-G_{3}$

volivolisi

Input Current for LO-L7 when Output Programmed Off by Software

Source Current for L0-L7 in TRI-STATE © Configuration (High Current Option)

$v_{\text {OHiVOLTS }}$
LED output source current (for high current LED option)

VOH ivoltsi
Output Sink Current $\mathrm{G}_{0}-\mathrm{G}_{3}$ and $D_{0}-D_{3}$ with Very High Current Option

Source current for standard output configuration

Source Current for LO-L7 in TRI-STATE (8) Configuration (Low Current Option)

Output sink current for SO and SK

Output sink current for $\mathrm{G}_{0}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ (for high current option)

Volivoltsi

FIGURE 7 - ETL9320/L9321/L9322 INPUT/OUTPUT CHARACTERISTICS

ETL9420/L9421/L9422 - INSTRUCTION SET

Table 1 is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table 2 provides the mnemonic, operand, machine code, data flow, skip conditions, and description associated with each instruction in the ETL9420/ L9421/L9422 instruction set.

TABLE 1 - ETL9420/L9421/L9422 INSTRUCTION SET TABLE SYMBOLS

Symbol	Definition
INTERNAL ARCHITECTURE SYMBOLS	
A	4-bit Accumulator
B	6-bit RAM Address Register
Br	Upper 2 bits of B (register address)
Bd	Lower 4 bits of B (digit address)
C	1-bit Carry Register
D	4-bit Data Output Port
EN	4-bit Enable Register
G	A-bit Register to latch data for G I/O Port
IL	Two 1-bit Latches associated with the IN 3 or
	INO Inputs
IN	4-bit Input Port
L	8-bit TRI-STATE I/O Port
M	4-bit contents of RAM Memory pointed to by
PC	B Register
10-bit ROM Address Register (program	
Q	counter)
SA	10-bit Register to latch data for L I/O Port
SB	10-bit Subroutine Save Register A
SC	10-bit Subroutine Save Register B Register C
SIO	4-bit Shift Register and Counter
SK	Logic-Controlled Clock Output

Symbol	Definition
INSTRUCTION OPERAND SYMBOLS	
d	4-bit Operand Field, 0-15 binary (RAM Digit Select)
r	2-bit Operand Field, 0-3 binary (RAM Register Select)
a	10-bit Operand Field, 0-1023 binary (ROM Address)
y	4-bit Operand Field, 0-15 binary (Immediate Data)
RAM(s)	Contents of RAM location addressed by s
ROM(t)	Contents of ROM location addressed by t
OPERATIONAL SYMBOLS	
+	Plus
-	Minus
\rightarrow	Replaces
\rightarrow	is exchanged with
$=$	Is equal to
$\overline{\text { A }}$	The ones complement of A
\oplus	Exclusive-OR
:	Range of values

TABLE 2 - ETL9420/L9421/L9422 INSTRUCTION SET

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

ARITHMETIC INSTRUCTIONS

ASC		30	00011100000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry. Skip on. Carry		
ADD		31	001110001	$A+R A M(B) \rightarrow A$	None	Add Riam to A		
ADT		4A	\|0100	1010		$A+10_{10} \rightarrow A$	None	Add Ten to A
AISC	y	5-	0101 y	$A+y \rightarrow A$	Carry	Add Immediate, Skip on Carry (y $\neq 0$)		
CASC		10.	000110000	$\begin{aligned} & \bar{A}+R A M(B)+C \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Complement and Add with Carry, Skip on Carry		
CLRA		00	000010000	$0 \rightarrow A$	None	Clear A		
COMP		40	010010000	$\bar{A} \rightarrow A$	None	Ones complement of A to A		
NOP		44	$0100 \mid 0100$	None	None	No Operation		
RC		32	001110010	' $\mathrm{O}^{\prime \prime} \rightarrow \mathrm{C}$	Nọne	Reset C		
SC		22	001000010	$" 1 " \rightarrow C$	None	Set C		
XOR		02	000010019	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A		

TRANSFER OF CONTROL INSTRUCTIONS

| JID | | FF | \|1111|1111 | ROM (PC9:8, A,M) \rightarrow PC7:0 | None | Jump Indirect (Note 3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JMP | a | 6- | | $a \rightarrow P C$ | None | Jump |
| JP | a | | $\begin{gathered} \begin{array}{cc} \begin{array}{\|l\|} 11 \\ \text { (pages } 2,3 \text { only) } \\ \text { or } \end{array} \\ \begin{array}{\|l\|c} 1 & 1 \end{array} \\ \hline \end{array} \\ \hline \end{gathered}$
 (all other pages) | $a \rightarrow P C_{6: 0}$ $a \rightarrow P C_{5: 0}$ | None | Jump within Page (Note 4) |
| JSRP | a | - | \|10| ${ }^{10} 5$ | $\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & 0010 \rightarrow \mathrm{PC}_{9: 6} \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$ | None | Jump to Subroutine Page (Note 5) |
| JSR | a | 6- | $\begin{array}{\|c\|c\|c\|c\|} \hline 0110 \mid 10 a_{9: 8} \\ \hline \mathrm{a} 7: 0 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & \mathrm{a} \rightarrow \mathrm{PC} \end{aligned}$ | None | Jump to Subroutine |
| RET | | 48 | $0100 \mid 1000$ | $\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$ | None | Return from Subroutine |
| RETSK | | 49 | \|0100|1001 | $\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$ | Always Skip on Return | Return from Subroutine then Skip |

TABLE 2 - ETL9420/L9421/L.9422 INSTRUCTION SET (continued)

Mnemonic	Hex Operand Code	Machıne Language Code (Binary)	Data Flow	Sklp Conditions	Description

MEMORY REFERENCE INSTRUCTIONS

CAMO		33 $3 C$		$\begin{aligned} & A \rightarrow Q_{7: 4} \\ & R A M(B) \rightarrow Q_{3: 0} \end{aligned}$	None	Copy A, RAM to Q	
CQMA		33		$\begin{aligned} & Q_{7: 4} \rightarrow R A M(B) \\ & Q_{3: 0} \rightarrow A \end{aligned}$	None	Copy Q to RAM, A	
LD	r	-5	[00\|r10101	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \rightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A, Exclusive-OR Br with r	
LDD	r,d	23	001 $10 \mid 0011$ 0 0 r	$R A M(r, d) \rightarrow A$	None	Load A with RAM pointed to directly by r,d	
LQID		BF	1011/11111	$\begin{aligned} & \mathrm{ROM}\left(\mathrm{PC}_{9: 8}, \mathrm{~A}, \mathrm{M}\right) \rightarrow \mathrm{Q} \\ & \mathrm{SB} \rightarrow \mathrm{SC} \end{aligned}$	None	Load Q Indirect (Note 3)	
RMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	4 C 45 42 43	$0100 \mid 1101$ $0100 \mid 0101$ $0100 \mid 0010$ $0100 \mid 0011$	$\begin{aligned} & 0 \rightarrow \text { RAM }(B)_{0} \\ & 0 \rightarrow \operatorname{RAM}(B)_{1} \\ & 0 \rightarrow \operatorname{RAM}(B)_{2} \\ & 0 \rightarrow \operatorname{RAM}(B)_{3} \end{aligned}$	None	Reset RAM Bit	
SMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 D \\ & 47 \\ & 46 \\ & 4 B \end{aligned}$		$\begin{aligned} & 1 \rightarrow \operatorname{RAM}(B)_{0} \\ & 1 \rightarrow \operatorname{RAM}(B)_{1} \\ & 1 \rightarrow \operatorname{RAM}(B)_{2} \\ & 1 \rightarrow \operatorname{RAM}(B)_{3} \end{aligned}$	None	Set RAM Bit	
STII	y	7 -	\|0111 y	$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd	
X	r	-6	100\|r10110		$\begin{aligned} & \operatorname{RAM}(B) \cdots A \\ & \bullet \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Exchange RAM with A. Exclusive-OR Br with r
XAD	r,d	23		RAM $(r, d) \sim A$	None	Exchange A with RAM pointed to directly by r,d	
XDS	r	-7	(0) 0 P10101111.	$\begin{aligned} & R A M(B) \rightarrow A \\ & B d-1 \rightarrow B d \\ & B r \oplus r \rightarrow B r \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd, Exclusive-OR Br with r	
XIS	r	-4	O0\| 010100	$\begin{aligned} & R A M(B) \leftrightarrow A \\ & B d+1 \rightarrow B d \\ & B r \oplus r \rightarrow B r \end{aligned}$	Bd increments past 15	Exchange RAM with A and Increment Bd , Exclusive-OR Br with r	

REGISTER REFERENCE INSTRUCTIONS

CAB		50	01010000	$A \rightarrow 8 d$	None	Copy A to Bd
CBA		4E	$0100 \mid 1110$	$\mathrm{Bd} \rightarrow \mathrm{A}$	None	Copy Bd to A
LBI	r.d	33		$r, a \rightarrow B$	Skip until not a LBI	Load B Immediate with r,d (Note 6)
LEI	y	33 $6-$		$y \rightarrow E N$	None	Load EN Immediate (Note 7)
XABR		12	1000110010	A $\left.\cdots \mathrm{Br} 10,0 \rightarrow \mathrm{~A}_{3} \mathrm{~A}_{2}\right)$	None	Exchange A with Br

TABLE 2 - ETL9420/L9421/L9422 INSTRUCTION SET (continued)

Mnemonic	Merand Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

TEST INSTRUCTIONS

| SKC | | 20 | \|0010|0000| | | $C=" 1 "$ | Skip if C is True |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKE | | 21 | $00010 \mid 0001$ | | $A=R A M(B)$ | Skip if A Equals RAM |
| SKGZ | | 33 21 | | | $\mathrm{G}_{3: 0}=0$ | Skip if G is Zero (all 4 bits) |
| SKGBZ | 0 1 2 3 | $\begin{aligned} & 33 \\ & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$ | | 1st byte
 2nd byte | $\begin{aligned} & \mathrm{G}_{0}=0 \\ & \mathrm{G}_{1}=0 \\ & \mathrm{G}_{2}=0 \\ & \mathrm{G}_{3}=0 \end{aligned}$ | Skip if G Bit is Zero |
| SKMBZ | 0 1 2 3 | $\begin{aligned} & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$ | $\left.\begin{array}{\|l\|l\|l\|}\hline 0 & 0 & 0 \\ \hline 0 & 0 & 0\end{array}\right)$ | | $\begin{aligned} & \operatorname{RAM}(B)_{0}=0 \\ & \operatorname{RAM}(B)_{1}=0 \\ & \operatorname{RAM}(B)_{2}=0 \\ & \operatorname{RAM}(B)_{3}=0 \end{aligned}$ | Skip if RAM Bit is Zero |
| SKT | | 41 | [0100\|0001] | | 'A time-base counter carry has occurred since last test | Skip on Timer (Note 3) |

INPUT/OUTPUT INSTRUCTIONS

ING		33 24		$G \rightarrow A$	None	Input G Ports to A
ININ		33 28		$I N \rightarrow A$	None	Input IN Inputs to A (Note 2)
INIL		33 29		$\mathrm{IL}_{3}, \mathrm{CKO}, ~ " \mathrm{O}, \mathrm{HL}_{0} \rightarrow \mathrm{~A}$	None	Input IL Latches to A (Note 3)
INL		$\begin{aligned} & 33 \\ & 2 E \end{aligned}$		$\begin{aligned} & L_{7: 4} \rightarrow R A M(B) \\ & L_{3: 0} \rightarrow A \end{aligned}$	None	Input Li Ports to RAM, A
OBD		$\begin{aligned} & 33 \\ & 3 E \end{aligned}$	$\left.\begin{array}{\|l\|lll\|lll\|l\|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{array} \right\rvert\,$	$B d \rightarrow D$	None	Output Bd to D Outputs
OGI	y	33 $5-$	$\begin{array}{\|l\|l\|} \hline 0011 & 0011 \\ \hline 01011 & y \\ \hline \end{array}$	$y \rightarrow$ G	None	Output to G Ports Immediate
OMG		$\begin{aligned} & 33 \\ & 3 A \end{aligned}$		$R A M(B) \rightarrow G$	None	Output RAM to G Ports
XAS		4F	$0100 \mid 1111$	A \rightarrow SIO, C \rightarrow SKL	None	Exchange A with SIO (Note 3)

Note 1 : All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example, A_{3} indicates the most significant (left-most) bit of the 4-bit A register.
Note 2 : The ININ instruction is only available on the 28 -pin ETL9420 as the other devices do not contain the IN inputs.
Note 3 : For additional information on the operation of the XAS. JID. LQID, INIL, and SKT instructions, see below.
Note 4 : The JP instruction allows a jump, while in subroutine pages 2 or 3 , to any ROM location within the two-page boundary of pages 2 or 3. The JP instruction, otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page. Note 5 : A JSRP transters program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3 . JSRP may not jump to the last word in page 2.
Note $6: L B I$ is a single-byte instruction if $d=0,9,10,11,12,13.14$ or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1. e.g., to load the lower four bits of $\mathrm{B}(\mathrm{Bd})$ with the value $9\left(1001_{2}\right)$, the lower 4 bits of the LB instruction equal $8(10002)$. To load 0 , the lower 4 bits of the LBI instruction should equal $15\left(1111_{2}\right)$.
Note 7 : Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description EN Register).

The following information is provided to assist the user in understanding the operation of several unique instructions and to provide note useful to programmers in writing ETL9420/L9421/L9422 programs.

XAS Instruction

XAS (Exchange A with SIO) exchanges the 4 -bit contents of the accumulator with the 4-bit contents of the SIO reg. ister. The contents of SIO will contain serial-in/serial-out shift register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register, above.) If SIO is selected as a shift register, an XAS instruction must be performed once every 4 in . struction cycles to effect a continuous data stream.

JID Instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by \mathbf{A} and M . It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 10-bit word, $\mathrm{PC}_{9}: 8, \mathrm{~A}, \mathrm{M}, \mathrm{PC}_{9}$ and PC_{8} are not affected by this instruction.

Note that JID requires 2 instruction cycles to execute.

INIL Instruction

INIL (Input IL Latches to A) inputs 2 latches, IL3 and ILO (see Figure 8) and CKO into A. The IL3 and ILo latches are set if a low-going pulse (" 1 " to " 0 ") has occurred on the \mathbb{N}_{3} and $\mathbb{I N}_{0}$ inputs since the last INIL instruction, provided the input pulse stays low for at least two instruction times. Execution of an INIL inputs IL_{3} and IL_{0} into A3 and AO respectively, and resets these latchés to allow them to respond to subsequent low-going pulses on the $I N_{3}$ and $I N_{0}$ lines. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO into A2. If CKO has not been so programmed, a " 1 " will be placed in A2. A " O " is always placed in A1 upon the execution of an INIL. The general purpose inputs $\mathrm{IN}_{3}-\mathrm{IN}_{0}$ are input to A upon execution of an ININ instruction. (See Table 2, ININ instruction.) INIL is useful in recognizing pulses of short duration or pulses which occur too often to be read conveniently by an ININ instruction. IL latches are not cleared on reset.

LQID Instruction

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 10 -bit word $\mathrm{PC}_{9}, \mathrm{PC}_{8}$. A, M. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction "pushes" the stack (PC + $1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$) and replaces the least significant 8 bits of PC as follows: A $\rightarrow P_{7: 4}, R A M(B) \rightarrow P_{3: 0}$, leaving P_{9} and P_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" ($S C \rightarrow S B \rightarrow S A \rightarrow P C$), restoring the saved value of PC to continue sequential program execution. Since LQID pushes SB \rightarrow SC, the previous contents of SC are lost. Also, when LQID pops the stack, the previously pushed contents of SB are left in SC. The net result is that the contents of SB are placed in SC (SB \rightarrow SC). Note that LQID takes two instruction cycle times to execute.

FIGURE 8 - INIL HARDWARE IMPLEMENTATION

SKT Instruction

The SKT (Skip On Timer) instruction tests the state of an internal 10-bit time-base counter. This counter divides the instruction cycle clock frequency by 1024 and provides a latched indication of counter overflow. The SKT instruction tests this latch, executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction, therefore, allow the ELT9420/ L9421/L9422 to generate its own tim-base for realtime processing rather than relying on an external input signal.
For example, using a 2.097 MHz crystal as the time-base to the clock generator, the instruction cycle clock frequency will be 65 kHz (crystal frequency -32) and the binary counter output pulse frequency will be 64 Hz . For time-of-day or similar real-time processing, the SKT instruction can call a routine which increments a "seconds" counter every 64 ticks.

Instruction Set Notes

a. The first word of a ETL9420/L9421/L9422 programm (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped insìructions are not executed, one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths except JID and LQID take the same number of cycle times whether instructions are skipped or executed. JID and LQID instructions take 2 cycles if executed and 1 cycle if skipped.
c. The ROM is organized into 16 pages of 64 words each. The Program Counter is a 10 -bit binary counter, and will count through page boundaries. If a JP, JSRP, JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the next page. For example: a JP located in the last word of a page will jump to a location in the next page. Also, a LQID or JID located in the last word of page 3, 7, 11, or 15 will access data in the next group of four pages.

OPTION LIST

The ETL9420/L9421/L9422 mask-programmable options ar assigned numbers which correspond with the ETL9420 pins.

The following is a list of ETL9420 options. When specifying a ETL9421 chip, Options 9, 10, 19, and 20 must all be set to zero. When specifying a ETL9422 chip, options $9,10,19$, and 20 must all be set to zero ; options 21 and 22 may not be set to one, three or five ; and option 2 may not be set to one. The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.

Option $1=0$: Ground Piri - no options available
Option 2: CKO Output
$=.0$: clock generator output to crystal/resonator (0 not allowable value if Option $3=3$)
$=1$: pin is RAM power supply $\left(V_{R}\right)$ input (not available on the ETL9422)
=2: general purpose input with load device to $V_{C C}$
=3: general purpose input, $\mathrm{Hi}-\mathrm{Z}$
=4: multi-COP SYNC input (CKI $\div 32$, CKI $\div 16$)
=5: multi-COP SYNC input (CKI -8)
Option 3: CKI Input
$=0$: oscillator input divided by $32(2 \mathrm{MHz}$ max. $)$
= 1: oscillator input divided by 16 (1 MHz max.)
$=2$: oscillator input divided by 8 (500 kHz max.)
$=3$: single-pin RC controlled oscillator ($\div 4$)
=4: Schmitt trigger clock input ($\div 4$)
Option 4: RESET Input
$=0$: load device to V_{CC}
$=1$: Hi-Z input
Option 5: L7 Driver
=0: Standard output
=1: Open-drain output
=2: High current LED direct segment drive output
= 3: High current TRI-STATE ${ }^{\text {© }}$ push-pull output
=4: Low-current LED direćt segment drive output
$=5$: Low-current TRI-STATE ${ }^{\text {© }}$ push-pult output
Option 6: L- L_{6} Driver
same as Option 5
Option 7: L5 Driver
same as Option 5
Option 8: L4 Driver same as Option 5
Option 9: IN_{1} Input
$=0$: load device to V_{CC}
= 1: Hi-Z input
Option 10: \mathbb{N}_{2} Input: same as Option 9
Option 11: $V_{C C}$ pin
$=0$: Standard $V_{C C}$
$=1$: Optional higher voltage V_{CC}
Option 12: L3 Driver same as Option 5

Option 13: L2 Driver same as Option 5
Option 14: L_{1} Driver same as Option 5
Option 15: Lo Driver same as Option 5

Option 16: SI Input same as Option 9
Option 17: SO Driver $=0$: standard output
$=1$: open drain output
=2: push-pull output

Option 18: SK Driver
same as Option 17
Option 19 : IN_{0} Input same as Option 9
Option 20: \mathbb{N}_{3} Input
same as Option 9
Option 21: Go I/O Port
$=0$: very-high current standard output
$=1$: very-high current open-drain output
=2: high current standard output
$=3$: high current open-drain output
$=4$: standard LSTTL output (fanout $=1$)
$=5$: open-drain LSTTL output (fanout $=1$)
Option 22: G_{1} I/O Port same as Option 21
Option 23: G_{2} 1/O Port same as Option 21
Option 24: G_{3} I/O Port same as Option 21
Option 25: D_{3} Output same as Option 21
Option 26: D_{2} Output same as Option 21
Option 27: D_{1} Output same as Option 21
Option 28: D_{0} Output same as Option 21
Option 29: L Input Levels $=0$: standard TTL input levels

$$
(" 0 "=0.8 \mathrm{~V}, " 1 "=2.0 \mathrm{~V})
$$

$=1$: higher voltage input levels

$$
\left(" 0^{\prime \prime}=1.2 \mathrm{~V}, " 1 "=3.6 \mathrm{~V}\right)
$$

Option 30: IN Input Levels same as Option 29
Option 31: G Input Levels same as Option 29
Option 32: SI Input Levels same as Option 29
Option 33: $\overline{\text { RESET Input }}$
$=0$: Schmitt trigger input
=1: standard TTL input levels
$=2$: higher voltage input levels
Option 34: CKO Input Leve's (CKO = input; Option $2=2,3$)
same as Option 29
Option 35 COP Bonding $=0$: ETL9420 (28-pin device)
= 1: ETL9421 (24-pin device)
=2: 28 and 24 - pin versions
=3: ETL9422 (20-pin device)
=4: 28- and 20 -pin versions
$=5$: 24 - and 20 -pin versions
$=6$: 28-, 24-, and 20 -pin versions

TEST MODE (Non-Standard Operation)

The SO output has been configured to provide for standard test procedures for the custom-programmed ETLS420. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI :
a. RAM and Internal Logic Test Mode $(\mathrm{SI}=1)$
b. ROM Test Mode $(S I=0)$

These special test modes should not be employed by the user; they are intended for manufacturing test only.

APPLICATION 1 : ETL9420 General Controller

Figure 9 shows an interconnect diagram for a ETL9420 used as a general controller. Operation of the system is as foliows :

1. The $L_{7}-L_{0}$ outputs are configured as LED Direct Drive outputs, allowing direct connection to the segments of the disolay.
2. The $D_{3}-D_{0}$ outputs drive the digits of the multiplexed display directly and scan the columns of the 4×4 keyboard matrix.
3. The $I N_{3}-I N_{0}$ inputs are used to input the 4 rows of the keyboard matrix. Reading the \mathbb{N} lines in conjunction with the current value of the D outputs allows detection, debouncing, and decoding of any one of the 16 keyswitches.
4. CKI is configured as a single-pin oscillator input allowing system timing to be controlled by a single-pin RC network. CKO is therefore available for use as a V_{R} RAM power supply pin. RAM data integrity is thereby assured when the main power supply is shut down (see RAM Keep-Alive option description).
5. SI is selected as the input to a binary counter input. With SIO used as a binary counter, SO and SK can be used as general purpose outputs.
6. The 4 bidirectional $\mathrm{G} / / \mathrm{O}$ ports $\left(\mathrm{G}_{3}-\mathrm{G}_{0}\right)$ are available for use as required by the user's application.

*SO. SI. SK MAY ALSO BE USED FOR SERIAL I/O

FIGURE 9 - ETL9420 KEYBOARD/DISPLAY INTERFACE

PHYSICAL DIMENSIONS

CB-132

CB-68

N SUFFIX PLASTIC PACKAGE

PHYSICAL DIMENSIONS

CB-194

N SUFFIX PLASTIC PACKAGE

The ETL9444/L9445 and ETL9344/L9345 Single-Chip N-Channel Microcontrollers are fully compatible with the COPS ${ }^{\circledR}$ family, fabricated using N -channel, silicon gate XMOS technology. They are complete microcomputers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The ETL9445 is identical to the ETL9444, except with $19 \mathrm{I} / \mathrm{O}$ lines instead of 23 : They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techiniques provide the medium to large volume customers with a customized controller oriented processor at a low end-product cost.

The ETL9344/L9345 are exact functional equivalents, but extended temperature range versions of the ETL9444/L9445 respectively.

- Low cost
- Powerful instruction set
- $2 k \times 8$ ROM, 128×4 RAM
- 23 I/O lines (ETL9444)
- True vectored interrupt, plus restart
- Three-level subroutine stack
- $16 \mu \mathrm{~s}$ instruction time
- Single supply operation (4.5-6.3V)
- Low current drain (13mA max.)
- Internal time-base counter for real-time processing
- Internal binary counter register with MICROWIRE ${ }^{\circledR}$ serial I/O capability
- General purpose and TRI-STATE ${ }^{(\sqrt{6 j}}$ outputs
- LSTTL/CMOS compatible in and out
- Direct drive of LED digit and segment lines
- Software/hardware compatible with other members of ET 9400 family
- Extended temperature range devices ETL9344/L9345! (-40 ${ }^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Wider supply range (4.5-9.5V) optionally available

ETL9444/L9445

ABSOLUTE MAXIMUM RATINGS

Voltage at Any Pin Relative to GND	-0.5 V to +10 V
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ambient Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Power Dissipation	0.75 Watt at $25^{\circ} \mathrm{C}$
	0.4 Watt at $70^{\circ} \mathrm{C}$
Total Source Current	120 mA
Total Sink Current	120 mA

Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Standard Operating Voltage (V_{C}) Optional Operating Voltage (V_{CC}) Power Supply Ripple Operating Supply Current	Note 1 peak to peak all inputs and outputs open	$\begin{aligned} & 4.5 \\ & 4.5 \\ & - \end{aligned}$	$\begin{gathered} 6.3 \\ 9.5 \\ 0.5 \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
Input Voltage Levels CKI Input Levels Crystal Input ($\div 32, \div 16, \div 8$) Logic High (V_{IH}) Logic Low (V_{IL}) Schmitt Trigger Input ($\div 4$) Logic High (V_{IH}) Logic Low (V_{IL}) $\overline{\text { RESET Input Levels }}$ Logic High Logic Low SO Input Level (Test mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	Schmitt trigger input $V_{C C}=\operatorname{Max} .$ with TTL trip level options selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ with high trip level options selected	$\begin{gathered} 2.0 \\ -0.3 \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ 2.0 \\ \\ 3.0 \\ 2.0 \\ -0.3 \\ 3.6 \\ -0.3 \\ - \\ -1 \end{gathered}$	$\begin{gathered} - \\ 0.4 \\ - \\ 0.6 \\ \overline{0.6} \\ 2.5 \\ - \\ - \\ 0.8 \\ - \\ 1.2 \\ 7 \\ +1 \end{gathered}$	$\begin{gathered} V \\ \\ \\ V \\ V \\ V \\ V \\ \mathrm{~V} \\ \hline \mathrm{~V} \end{gathered}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (V_{OL})	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=0.36 \mathrm{~mA} \end{aligned}$	2.7	$\overline{0.4}$	
CMOS Operation Logic High Logic Low	$\begin{aligned} & I_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}-1}$	$\overline{0.2}$	

[^2]
ETL9444/L9445

DC ELECTRICAL CHARACTERISTICS (continued) $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Output Current Levels				
Output Sink Current				
SO and SK Outputs (1OL)	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.8	-	mA
	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.2	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.9	-	mA
Lo-L7 Outputs and Standard	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.8	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}, \mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs (IOU)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.4	-	mA
$G_{0}-G_{3}$ and $D_{0}-D_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	15	-	mA
High Current Options (lol)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	11	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	7.5	-	mA
$G_{0}-G_{3}$ and $D_{0}-D_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	30	-	mA
Very High Current Options (lod)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	22	-	mA
	$V_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	15	-	mA
CKI (Single-pin RC oscillator)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.5 \mathrm{~V}$	2	-	mA
CKO	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.2	-	mA
Output Source Current				
Standard Configuration,	$V_{C C}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-140	-800	$\mu \mathrm{A}$
All Outputs ($\mathrm{IOH}^{\text {) }}$	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-75	-480	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=2.0 \mathrm{~V}$	-30	-250	$\mu \mathrm{A}$
Push-Pull Configuration	$V_{\text {CC }}=9.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=4.75 \mathrm{~V}$	-1.4	-	mA
SO and SK Outputs (${ }^{\text {OH}}$)	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	-1.4	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.0 \mathrm{~V}$	-1.2	-	mA
LED Configuration, Lo-L7				
Outputs, Low Current	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.5	-18	mA
Driver Option (${ }_{\text {OH }}$)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.5	-13	mA
LED Configuration, L0-L7				
Outputs, High Current	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-3.0	-35	mA
Driver Option (lor)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-3.0	-25	mA
TRI-STATE Configuration,	$V_{\text {CC }}=9.5 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=5.5 \mathrm{~V}$	-0.75	-	mA
Lo-L7 Outputs, Low	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V}$	-0.8	-	mA
Current Driver Option (O_{OH})	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-0.9	-	mA
TRI-STATE Configuration,	$V_{C C}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	-1.5	-	mA
Lo-L7 Outputs, High	$\mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V}$	-1.6	-	mA
Current Driver Option ($\mathrm{I}_{\mathrm{OH} \text {) }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-1.8	-	mA
Input Lead Source Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-140	$\mu \mathrm{A}$
CKO Output				
RAM Power Supply Option Power Requirement	$\mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}$	-	6.0	mA
TRI-STATEOOutput Leakage Current		-2.5	+2.5	$\mu \mathrm{A}$
Total Sink Current Allowed				
All Outputs Combined		-	120	mA
D, G Ports		-	120	mA
L7-L4		-	4	mA
L3-L0		-	4	mA
All Other Pins		-	1.5	mA
Total Source Current Allowed				
All l/O Combined		-	120	mA
L7-L4		-	60	mA
L3-40		-	60	mA
Each L Pin		-	30	mA
All Other Pins		-	1.5	mA

ETL9344/L9345

ABSOLUTE MAXIMUM RATINGS

Voltage at Any Pin Relative to GND
Ambient Operating Temperature
Ambient Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Power Dissipation
Total Source Current
Total Sink Current
-0.5 V to +10 V
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
0.75 Watt at $25^{\circ} \mathrm{C}$
0.25 Watt at $85^{\circ} \mathrm{C}$

120 mA
120 mA

Absolute maximum ratings indicate limits beyond which damsis: to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified)

Parameter	Conditions	Min.	Max.	Units
Standard Operating Voltage (V_{CC}) Optional Operating Voltage (V_{CC}) Power Supply Ripple Operating Supply Current	Note 1 peak to peak all inputs and outputs open	$\begin{aligned} & 4.5 \\ & 4.5 \\ & - \\ & - \end{aligned}$	$\begin{gathered} 5.5 \\ 7.5 \\ 0.5 \\ 15 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ m A \end{gathered}$
Input Voltage Levels CKI Input Levels Crystal Input Logic High (V_{IH}) Logic Low (V_{iL}) Schmitt Trigger Input Logic High ($\mathrm{V}_{\mathbf{I H}}$) Logic Low (V_{iL}) RESET Input Levels Logic High Logic Low SO Input Level (Test mode) All Other Inputs Logic High Logic High Logic Low Logic High Logic Low Input Capacitance Hi-Z Input Leakage	Schmitt Trigger Input $V_{C C}=\operatorname{Max} .$ with TTL trip level options selected, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ with high trip level options selected	2.2 -0.3 $0.7 \mathrm{~V}_{\mathrm{CC}}$ -0.3 $0.7 \mathrm{~V}_{\mathrm{CC}}$ -0.3 2.2 3.0 2.2 -0.3 3.6 -0.3 - -2	0.3 ${ }^{-}$ - 0.4 2.5 - - - 1.2 7 +2	$\begin{aligned} & V \\ & \\ & V \\ & p F \\ & \mu A \\ & \hline \end{aligned}$
Output Voltage Levels LSTTL Operation Logic High (V_{OH}) Logic Low (VOL)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{IOH}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \mathrm{IOL}_{\mathrm{OL}}=0.36 \mathrm{~mA} \end{aligned}$	2.7	$\overline{0.4}$	v
CMOS Operation Logic High Logic Low	$\begin{aligned} & I_{O H}=-10 \mu \mathrm{~A} \\ & I_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$V_{C C}-1$	$\overline{-}$	v

Note 1 : V_{CC} voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.

ETL9344/L9345

DC ELECTRICAL CHARACTERISTICS (continued) $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified).

Parameter	Conditions	Min.	Max.	Units
Output Current Levels Output Sink Current SO and SK Outputs (IoL)				
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.4	-	mA
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.0	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.8	-	mA
Lo-L7 Outputs, and Standard	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.6	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}, \mathrm{DO}_{0}-\mathrm{D}_{3}$ Outputs (Iol	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.4	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	12	-	mA
High Current Options (lol)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	9	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	7	-	mA
$\mathrm{G}_{0}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ Outputs with	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	24	-	mA
Very High Current Options (loL)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	18	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	14	-	mA
CKI (Single-pin RC oscillator)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=3.5 \mathrm{~V}$	2	-	mA
CKO	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.2	-	mA
Output Source Current				
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-100	-900	
All Outputs (IOH)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-55	-600	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-28	-350	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.75 \mathrm{~V}$	-0.85	-	mA
SO and SK Outputs (IOH)	$V_{C C}=5.5 \mathrm{~V}, V_{O H}=2.0 \mathrm{~V}$	-1.1	-	mA
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.0 \mathrm{~V}$	-1.2	-	mA
LED Configuration, L-L7	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.4	-27	mA
Outputs, Low Current	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.4	-17	mA
Driver Option (${ }_{\text {OH }}$)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.7	-15	mA
LED Configuration, Lo-L7	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-2.7	-54	mA
Outputs, High Current	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-2.7	-34	mA
Driver Option (l_{OH})	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.4	-30	mA
TRI-STATE ${ }^{\circledR}$ Configuration,	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-0.7	-	mA
L0-L7 Outputs, Low	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}$	-0.6	-	mA
Current Driver Option (${ }^{\mathrm{OH}}$)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}$	-0.9	-	mA
TRI-STATE ${ }^{\text {® }}$ Configuration,	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-1.4	-	mA
Lo-L7 Outputs, High	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}$	-1.2	-	mA
Current Driver Option (l_{OH})	$V_{C C}=4.5 \mathrm{~V}, V_{O H}=1.5 \mathrm{~V}$	-1.8	-	mA
Input Load Source Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-200	$\mu \mathrm{A}$
CKO Output				
RAM Power Supply Option Power Requirement	$\mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}$	-	8.0	mA
TRI-STATE ${ }^{\circledR}$ Output Leakage Current		-5	+5	$\mu \mathrm{A}$
Total Sink Current Allowed				
All Outputs Combined		-	120	mA
D. G Ports		-	120	mA
L7-L4		-	4	mA
$\mathrm{L}_{3}-\mathrm{L}_{0}$		-	4	mA
All Other Pins		-	1.5	mA
Total Source Current Allowed				
All I/O Combined		-	120	mA
L7-L4		-	60	mA
$\mathrm{L}_{3}-\mathrm{L}_{0}$		-	60	mA
Each L Pin		-	30	mA
All Other Pins		-	1.5	mA

AC ELECTRICAL CHARACTERISTICS

ETL.9444/L.9445: $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 9.5 \mathrm{~V}$ (Unless otherwise specified)
ETL9344/L9345: $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 7.5 \mathrm{~V}$ (Unless otherwise specified).

FIGURE 2 - CONNECTION DIAGRAMS

FIGURE 3 - INPUT/OUTPUT TIMING DIAGRAMS (CRYSTAL DIVIDE-BY-16 MODE)

FIGURE 3a - SYNCHRONIZATION TIMING

FUNCTIONAL DESCRIPTION

A block diagram of the ETL9444 is given in Figure 1 Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " (greater than 2 volts). When a bit is reset, it is a logic " 0 " (less than 0.8 volts).

All functional references to the ETL9444/L9445 also apply to the ETL9344/L9345.

Program Memory

Program Memory consists of a 2048 byte ROM. As can be seen by an examination of theETL9444 19445 instruction set, these words may be program instructions, program data or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID, and LQID instructions, ROM must often be thought of as being organized into 32 pages of 64 words each.

ROM addressing is accomplished by a 11 -bit PC register. Its binary value selects one of the 20488 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 11-bit binary count value. Three levels of subroutine nesting are implemented by the 11 -bit subroutine save registers, SA, SB, and SC; providing a last-in, first-out (LIFO) hardware subroutine stack.

ROM instruction words are fetched, decoded and executed by the Instruction Decode, Control and Skip Logic circuitry.

Data Memory

Data memory consists of a 512-bit RAM, organized as 8 data registers of 164 -bit digits. RAM addressing is implemented by a 7 -bit B register whose upper 3 bits (Br) select 1 of 8 data registers and lower 4 bits (Bd) select 1 of 164 -bit digits in the selected data register. While the 4 -bit contents of the selected RAM digit (M) is usually loaded into or from, or exchanged with, the A register (accumulator), it may also be loaded into or from the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the 7-bit contents of the operand field of these instructions. The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.

Internal Logic

The 4-bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Br and Bd portions of the B register, to load and input 4 bits of the 8 -bit Q latch data, to input 4 bits of the 8 -bit L I/O port data and to perform data exchanges with the SIO register.
A, 4-bit adder performs the arithmetic and logic functions, storing its results in A . It also outputs a carry bit to the 1 -bit C register, most often employed to indicate arithmetic overflow. The C register, in conjunction with the XAS instruction and the EN register,
also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description, below.)

Four general-purpose inputs, $\mathrm{IN}_{3}-1 \mathrm{~N}_{\mathrm{O}}$, are provided.
The D register provides 4 general-purpose outputs and is used as the destination register for the 4 -bit contents of Bd. The D outputs can be directly connected to the digits of a multiplexed LED display.

The G register contents are outputs to 4 generalpurpose bidirectional $1 / O$ ports. G I/O ports can be directly connected to the digits of a multiplexed LED display.

The Q register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A, as well as 8 -bit data from ROM. Its contents are output to the L I/O ports when the L drivers are enabled under program control. (See LEl instruction.)

The 8 L drivers, when enabled, output the contents of latched Q data to the LI/O ports. Also, the contents of L may be read directly into A and M. LI/O ports can be directly connected to the segments of a multiplexed LED display (using the LED Direct Drive output configuration option) with Q data being outputted to the $\mathrm{Sa}-\mathrm{Sg}$ and decimal point segments of the display.

The SIO register functions as a 4 -bit serial-in/serialout shift register or as a binary counter depending on the contents of the EN register. (See EN register description, below.) Its contents can be exchanged with A, allowing it to input or output a continuous serial data stream. SIO may also be used to provide additional parallel I/O by connecting SO to external serial-in/parallel-out shift registers.

The XAS instruction copies C into the SKL latch. In the counter mode, SK is the output of SKL; in the shift register mode, SK outputs SKL ANDed with the clock.

The EN register is an internal 4 -bit register loaded under program control by the LEI instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register $\left(E N_{3}-E N_{0}\right)$

1. The least significant bit of the enable register, $E N_{0}$, selects the SIO register as either a 4 -bit shift register or a 4 -bit binary counter. With $E N_{0}$ set, SIO is an asynchronous binary counter, decrementing its value by one upon each low-going pulse (" 1 " to " 0 ") ocurring on the SI input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of $E N_{3}$. With $E N_{0}$ reset, SIO is a serial shift register shifting left each instruction cycle time. The data present at SI goes into the least significant bit of SIO. SO can be enabled to output the most significant bit of SIO each cycle time. (See 4 below.) The SK output becomes a logic-controlled clock.
2. With $E N_{1}$ set the $I N_{1}$ input is enabled as an interrupt input. Immediately following an interrupt. EN 1 is reset to disable further interrupts.
3. With $E N_{2}$ set, the L drivers are enabled to output the data in Q to the $L / / O$ ports. Resetting EN_{2} disables the L drivers, placing the LI/O ports in a high-impedance input state.
4. $E N_{3}$, in conjunction with $E N_{O}$, affects the SO output. With EN_{0} set (binary counter option selected) SO will output the value loaded into $E N_{3}$. With $E N_{0}$ reset (serial shift register option selected), setting
EN_{3} enables SO as the output of the SIO shift register, outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected disables SO as the shift register output; data continues to be shifted through SIO and can, be exchanged with A via an XAS instruction but SO remains reset to " 0 ". The table below provides a summary of the modes associated with $E N_{3}$ and $E N_{0}$.

Enable Register Modes - Bits EN_{3} and EN_{0}

EN_{3}	EN0	SIO	SI	SO	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=C L O C K \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Out	$\begin{aligned} & \text { If } S K L=1, S K=C L O C K \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	1	Binary Counter	Input to Binary Counter	1	$\begin{aligned} \text { If } S K L & =1, S K=1 \\ \text { If } S K L & =0, S K=0 \end{aligned}$

Interrupt

The following features are associated with the \mathbb{N}_{1} interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.
a. The interrupt, once acknowledged as explained below, pushes the next sequential program counter address ($\mathrm{PC}+1$) onto the stack, pushing in turn the contents of the other subroutine-save registers to the next lower level ($\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$). Any previous contents of SC are lost. The program counter is set to hex address OFF (the last word of page 3) and $E N_{1}$ is reset.
b. An interrupt will be acknowleuged only after the following conditions are met:

1. $E N_{1}$ has been set.
2. A low-going pulse ("1" to " 0 ") at least two instruction cycles wide occurs on the \mathbb{N}_{1} input.
3. A currently executing instruction has been completed.
4. All successive transfer of control instructions and successive LBIs have been completed (e.g.. if the main program is executing a JP instruction which transtels program control to another JP instruction, the interrupt will not be acknow. ledged until the second JP instruction has been executed.
c. Upon acknowledgement of an interrupt. the skip logic status is saved and later restored upon popping of the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip togic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruct.on is executed to
"pop" the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines and LQID instructions should not be nested within the interrupt service routine, since their popping the stack will enable any previously saved main program skips, interfering with the orderly execution of the interrupt routine.
d. The first instruction of the interrupt routine at hex address OFF must be a NOP.
e. A LEI instruction can be put immediately before the RET to re-enable interrupts.

Initialization

The Reset Logic will initialize (clear) the device upon power-up if the power supply rise time is less than 1 ms and greater than $1 \mu \mathrm{~s}$. If the power supply rise time is greater than 1 ms , the user use provide an external RC network and diode to the RESET pin as shown below. If the RC network is not used, the $\overline{R E S E T}$ pin must be pulled up to $V_{C c}$ either by the internal load or by an external resistor ($\geqslant 40 \mathrm{k} \Omega$) to V_{CC}. The RESET pin is configured as a Schmitt trigger input. Initialization will occur whenever a logic " 0 " is applied to the $\overline{R E S E T}$ input, provided it stays low for at least three instruction cycle times.

Upon initialization, the PC register is cleared to 0 (ROM address 0) and the A, B, C, D, EN, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA.

Oscillator

There are four basic clock oscillator configurations available as shown by Figure 4.
a. Crystal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency divided by 32 (optional by 16 or 8).
b. External Oscillator. CKI is an external clock input signal. The external frequency is divided by 32 (optional by 16 or 8) to give the instruction cycle time. CKO is now available to be used as the RAM power supply (V_{R}), as a general purpose input, or as a SYNC input.

c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is available as the RAM power supply (V_{R}) or as a general purpose input.
d. Externally Synchronized Oscillator. Intended for use in multi-COP systems, CKO is programmed to function as an input connected to the SK output of another COP chip operating at the same frequency (COP chip with L or C suffix) with CKI connected as shown. In this configuration, the SK output connected to CKO must provide a SYNC (instruction cycle) signal to CKO, thereby allowing synchronous data transfer between the COPs using only the SI and SO serial I/O pins in conjunction with the XAS instruction. Note that on power-up SK is automatically enabled as a SYNC output. (See Functional Description, Initialization, above.)

Crystal Oscillator

Crystal Value	Component Values				
	R1 (Ω)	R2 ($\Omega)$	C1 (pF)	C2 (pF)	
455 kHz	47 k	1 M	220	220	
2.097 MHz	1 k	1 M	30	$6-36$	

RC Controlled Oscillator

$\mathbf{R (k Q)}$	$\mathbf{C}(\mathbf{p F})$	Instruction Cycle TIme ($\mathbf{~ s}$)
51	100	$19 \pm 15 \%$
82	56	$19 \pm 13 \%$

Note: $200 \mathrm{k} \Omega \geqslant \mathrm{R} \geqslant 25 \mathrm{k} \Omega$
$360 \mathrm{pF} \Rightarrow \mathrm{C} \geqslant 50 \mathrm{pF}$

CKO Pin Options

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. As an option CKO can be a SYNC input as described above. As another option CKO can be a general purpose input, read into bit 2 of A (accumulator) upon execution of an INIL instruction. As another option, CKO can be a RAM power supply pin (V_{R}), allowing its connection to a standby/backup power supply to maintain the integrity of RAM data with minimum power drain when the main supply is inoperative or shut down to conserve power. Using either option is appropriate in applications where the ETL9444/L9445 system timing configuration does not require use of the CKO pin.

I/O Options

ETL9444/L9445 outputs have the following optional configurations, illustrated in Figure 5 :
a. Standard - an enhancement mode device to ground in conjunction with a depletion-mode device to V_{CC}, compatible with LSTTL and CMOS input requirements. Available on SO, SK, and all D and G outputs.
b. Open-Drain - an enhancement-mode device to ground only, allowing external pull-up as required by the user's application. Available on SO, SK, and all D and G outputs.
c. Push-Pull - An enhancement-mode device to ground in conjunction with a depletion-mode device paralleled by an enhancement-mode device to V_{CC}. This configuration has been provided to allow for fast rise and fall times when driving capacitive loads. Available on SO and SK outputs only.
d. Standard L - same as a., but may be disabled. Available on L outputs only.
e. Open Drain L - same as b., but.may be disabled. Available on L outputs only.
f. LED Direct Drive - an enhancement-mode device to ground and to V_{Cc}, meeting the typical current sourcing requirements of the segments of an LED display. The sourcing device is clamped to limit current flow. These devices may be turned off under program control (See Functional Description, EN Register), placing the outputs in a highimpedance state to provide required LED segment blanking for a multiplexed display. Available on L outputs only.
g. TRI-STATE ${ }^{\text {® }}$ Push-Pull - an enhancement-mode device to ground and V_{CC}. These outputs are TRISTATE outputs, allowing for connection of these outputs to a data bus shared by other bus drivers. Available on L outputs only.

ETL9444; L9445 inputs have the following optional configurations
h. An on-chip depletion load device to $V_{C C}$.
i. A Hi-Z input which must be driven to a " 1 " or " 0 " by external components.
The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (lout and $V_{\text {Out }}$ curves are given in Figure 6 for each of these devices to allow the designer to effectively use these I/O configurations in designing a system.

The SO, SK outputs can be configured as shown in a., b., or c. The D and G outputs can be configured as shown in a. or b. Note that when inputting data to the G ports, the G outputs should be set to "1." The L outputs çan be configured as in d., e., f. or g.

An important point to remember if using configuration d. or f. with the L drivers is that even when the L drivers are disabled, the depletion load device will source a small amount of current (see Figure 6, device 2); however, when the L-lines are used as inputs, the disabled depletion device can not be relied on to source sufficient current to pull an input to logic " 1 ".

RAM Keep-Alive Option

Selecting CKO as the RAM power supply $\left(V_{R}\right)$ allows the user to shut off the chip power supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and maintain data in the RAM.
To insure that RAM data integrity is maintained, the following conditions must be met:

1. RESET must go low before $V_{C C}$ goes low during power off; $V_{C C}$ must go high before RESET goes high on power-up.
2. V_{R} must be within the operating range of the chip, and equal to $\mathrm{V}_{\mathrm{CC}} \pm 1 \mathrm{~V}$ during normal operation.
3. V_{R} must be $\geqslant 3.3 \mathrm{~V}$ with $V_{C C}$ off.

ETL9445

If the ETL9444 Is bonded as a 24 -pin device, it becomes the ETL9445, illustrated in Figure 2, ETL9444 Connection Diagrams. Note that the ETL9445 does not contain the four general purpose $\mathbb{I N}$ inputs ($\mathrm{IN}_{3}{ }^{-}$ N_{O}). Use of this option precludes, of course, use of the IN options and the interrupt feature, which uses IN_{1}. All other options are available for the ETL9445.

a. Standard Output

d. Standard L Output

g. TRI-STATE®)Push-Pull (L Output)

b. Open-Drain Output

e. Open-Drain L Output

h. Input with Load

FIGURE 5 - OUTPUT CONFIGURATIONS

Source Current for L_{0} through L_{7} in TRI-STATE $®$ Configura tion (High Current Option)

c. Push-Pull Output

f. LED (L Output)

i. Hi-Z Input

Source Current for Standard Output Configuration

FIGURE 6a-ETL9444/L9445 INPUT/OUTPUT CHARACTERISTICS

Input Current for L0-L7

Source Current for Standard Output Configuration

Voh ivolis)
Source Current for LO-L7 in TRI-STATE® Configuration (Low Current Option)

Output Sink Current for SO and SK

VOLIVOLTS
Output Sink Current for $\mathrm{G}_{0}-\mathrm{G}_{3}$ and $\mathrm{D}_{0}-\mathrm{D}_{3}$ (for High Current Option)

VOIIVOLTSI

ETL9444/L9445,ETL9344/L9345 Instruction Set

Table 1 is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table 2 provides the mnemonic, operand, machine code, data flow, skip conditions, and description associated with each instruction in the ETL9444/L9445 instruction set.

TABLE 1 - ETL.9444/L9445 ETL.9344/L9345 INSTRUCTION SET TABLE SYMBOLS

Symbol	Definition
INTERNAL ARCHITECTURE SYMBOLS	
A	4-bit Accumulator
B	7-bit RAM Address Register
Br	Upper 3 bits of B (register address)
Bd	Lower 4 bits of B (digit address)
C	1-bit Carry Register
D	4-bit Data Output Port
EN	4-bit Enable Register
G	4-bit Register to latch data for G I/O Port
IL	Two 1-bit latches associated with the N_{3} or N_{0} inputs
IN	4-bit Input Port
L	8-bit TRI-STATE ${ }^{\text { }}$ //O Port
M	4 -bit contents of RAM Memory pointed to by B Register
PC	11-bit ROM Address Register (program counter)
Q	8-bit Register to latch data for L I/O Port
SA	11-bit Subroutine Save Register A
SB	11-bit Subroutine Save Register B
SC	11-bit Subroutine Save Register C
SIO	4-bit Shift Register and Counter
SK	Logic-Controlled Clock Output

Symbol	Definition
INSTRUCTION OPERAND SYMBOLS	
d	4-bit Operand Field, $0-15$ binary (RAM Digit Select)
r	3-bit Operand Field, 0-7 binary (RAM Register Select)
a	11-bit Operand Field, 0-2047 binary (ROM Address)
y	4-bit Operand Field, 0-15 binary (Immediate Data)
RAM(s)	Contents of RAM location addressed by s
ROM(t)	Contents of ROM location addressed by t
OPERATIONAL SYMBOLS	
$+$	Plus
-	Minus
\rightarrow	Replaces
\longleftrightarrow	Is exchanged with
$=$	Is equal to
\bar{A}	The one's complement of A
\oplus	Exclusive-OR
:	Range of values

TABLE 2 - ETL9444/L9445 INSTRUCTION SET

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

ARITHMETIC INSTRUCTIONS

ASC		30	001110000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry. Shis on Carry
ADD		31	00110001	$A+R A M(B) \sim A$	None	Ldd RAM 10 A
ADT		4A	010011010	$A+10_{10}-A$	None	Add Ten to A
AISC	y	$5-$	$0101 \mathrm{y}^{1}$	$A+y \rightarrow A$	Carry	Add Immediate. Skip on Carry (y +0)
CASC		10	00010000	$\begin{aligned} & \bar{A}+R A M(B)+C \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Complement and Add with Carry. Skip on Carry
CLRA		00	000010000	$0 \rightarrow A$	None	Clear A
COMP		40	$0100 \mid 0000$	$\bar{A} \rightarrow A$	None	Ones complement of A to A
NOP		44	010010100	None	None	No Operation
RC		32	001110010	$\cdots{ }^{\prime} \rightarrow$ C	None	Reset C
SC		22	001010010	$\cdots{ }^{\prime \prime} \rightarrow$ C	None	Set C
XOR		02	00000010	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A

TRANSFER OF CONTROL INSTRUCTIONS

JID		FF	\|1111191111	$\operatorname{ROM}\left(\mathrm{PC}_{10} 08, \mathrm{~A}, \mathrm{M}\right) \rightarrow \mathrm{PC}_{7}: 0$	None	Jump Indirect (Note 3)
JMP	a		$\begin{gathered} 01110\|0\| a_{10: 8} \\ a_{7: 0} \\ \hline \end{gathered}$	$a \rightarrow P C$	None	Jump
JP	a		$\begin{gathered} \begin{array}{\|l\|} \hline 1 \end{array} a_{6: 0} \\ \begin{array}{c} \text { (pages } 2,3 \text { only) } \\ \text { or } \end{array} \\ \begin{array}{\|ll\|} 1 & 1 \end{array} a_{5: 0} \\ \hline \end{gathered}$ all other pages)	$\begin{aligned} & a \rightarrow P C_{6: 0} \\ & a \rightarrow P C_{5: 0} \end{aligned}$	None	Jump within Page (Note 4)
JSRP	a			$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & 00010 \rightarrow \mathrm{PC}_{10: 6} \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 5)
JSR	a	6-		$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & \mathrm{a} \rightarrow \mathrm{PC} \end{aligned}$	None	Jump to Subroutine
RET		48	010011000	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine
RETSK		49	010011001	$S C \rightarrow S B \rightarrow S A \rightarrow P C$	Always Skip on Return	Return from Subroutine then Skip

TABLE 2 - ETL9444/L9445 INSTRUCTION SET (continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

MEMORY REFERENCE INSIRUCTIONS

CAMQ		33 $3 C$	$\begin{array}{\|llll\|llll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & A \rightarrow Q_{7}{ }^{4} \\ & R A M(B) \rightarrow Q_{30} 0 \end{aligned}$	None	Copy A. RAM to O	
COMA		$\begin{aligned} & 33 \\ & 2 \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{O}_{74} \rightarrow \mathrm{RAM}(\mathrm{~B}) \\ & \mathrm{O}_{3} \rightarrow \mathrm{~A} \end{aligned}$	None	Copy C to RAM. A	
LD	r			$\begin{aligned} & R A M(B) \rightarrow A \\ & B r \oplus r \rightarrow B r \end{aligned}$	None	Load RAM into A. Exclusive OR Br with r	
LDD	r.d	23		$R A M(\mathrm{r} . \mathrm{d}) \rightarrow \mathrm{A}$.	None	Load A with RAM pointed to directly by rid	
LQID		BF	1011\|1111	$\begin{aligned} & R O M\left(P C_{10 .} . A . M\right) \rightarrow 0 \\ & S B \rightarrow S C \end{aligned}$	- None	Load Q Indirect (Note 3)	
RMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 C \\ & 45 \\ & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & \|0100\| 1100 \\ & 010100 \mid 0101 \\ & \hline 0100 \mid 0010 \\ & \hline 0100 \mid 0011 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \rightarrow \text { RAM }(B)_{0} . \\ & 0 \rightarrow \text { RAM }(B)_{1} \\ & 0 \rightarrow \text { RAM }(B)_{2} . \\ & 0 \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Reset RAM Bit	
SMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$4 D$ 47 46 $4 B$		$\begin{aligned} & 1 \rightarrow \text { RAM }(B)_{0} \\ & 1 \rightarrow \text { RAM }(B)_{1} \\ & 1 \rightarrow \text { RAM }(B)_{2} \\ & 1 \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Set RAM Bit	
STII	y	$7-$	\|0111	y	$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \rightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd
X	「		$\begin{array}{ll} \begin{array}{ll\|l\|llll} 0 & 0 & r & 0 & 1 & 1 & 0 \\ (r=0.3) \end{array} \\ \hline \end{array}$	RAM $(B) \rightarrow A$ $\mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br}$	None	Exchange RAM with A. Exclusive-OR Br with r	
XAD	r.d	23	$\begin{array}{\|l\|l\|l\|l\|} \hline 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline \end{array}$	RAM (r.d) \rightarrow A	None	Exchange A with RAM pointed to directly by r.d	
XDS	r		$\frac{00\|r\| 01}{00 \mid}$	$\begin{aligned} & R A M(B) \rightarrow A \\ & B d-1 \rightarrow B d \\ & B r \oplus r \rightarrow B r \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd. Exclusive-OR Br with ?	
XIS	r		$\begin{gathered} 00\|r\| l \mid l l l l \\ \hline 0 \end{gathered}$	$\begin{aligned} & R A M(B) \rightarrow A \\ & B d+1 \rightarrow B d \\ & B r \oplus r \rightarrow B r \end{aligned}$	Bd increments past 15	Exchange RAM with A and Increment Bd. Exclusive -OR Br with ;	

REGISTER REFERENCE INSTRUCTIONS

CAB		50	0101 0000	$\mathrm{A} \rightarrow \mathrm{Bd}$	None	Copy A to Bd	
CBA		4E	\|0100	1110	Bd - A	None	Copy Bd to A
LBI	r.d	33		$r . d \rightarrow B$	Skip until not a LBI	Load B Immediate with r.d (Note 6)	
LEI	y	$\begin{aligned} & 33 \\ & 6- \end{aligned}$	00110001	$y \rightarrow E N$	None	Load EN Immediate (Note 7)	
XABR		12	000110010	$A \div B r\left(0 \rightarrow A_{3}\right)$	None	Exchange A with Br	

TABLE 2 - ETL9444/L9445 INSTRUCTION SET (continued)

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

SKC		20	1001010000		$C={ }^{\prime} 1{ }^{\prime}$	Skip if C is True
SKE		21	1001010001		$A=R A M(B)$	Skıp if A Equals RAM
SKGZ		$\begin{aligned} & 33 \\ & 21 \end{aligned}$			$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 bits)
SKGBZ	0 1 2 3	$\begin{aligned} & 33 \\ & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$		1st byte 2nd byte	$\begin{aligned} \mathrm{G}_{0} & =0 \\ \mathrm{G}_{1} & =0 \\ \mathrm{G}_{2} & =0 \\ \mathrm{G}_{3} & =0 \end{aligned}$	Skıp if G Bit is Zero
SKMBZ	0 1 2 3	$\begin{aligned} & 01 \\ & 11 \\ & 03 \\ & 13 \end{aligned}$	$\begin{array}{\|llllllll\|} \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ \hline \end{array}$		$\begin{aligned} \operatorname{RAM}(B)_{0} & =0 \\ \operatorname{RAM}(B)_{1} & =0 \\ \operatorname{RAM}(B)_{2} & =0 \\ \operatorname{RAM}(B)_{3} & =0 \end{aligned}$	Skip if RAM Bit is Zero
SKT		41	1010010001		A time-base counter carry has occurred since last test	Skip on Timer (Note 3)

INPUTIOUTPUT INSTRUCTIONS

ING		33 24	0 0 1 1 0 0 0 0 1 $1 / 1$ 0 1	$G \rightarrow A$	None	Input G Ports to A
ININ		$\begin{aligned} & 33 \\ & 28 \end{aligned}$	$\begin{array}{\|lllll\|llll\|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ \hline \end{array}$	$I N \rightarrow A$	None	Input IN Inputs to A (Note 2)
INIL		33 29		$\mathrm{IL}_{3}, \mathrm{CKO},{ }^{\prime} \mathrm{O}$ ", $\mathrm{IL} \mathrm{IL} \rightarrow \mathrm{A}$	None	Input IL Latches to A (Note 3)
INL		$\begin{aligned} & 33 \\ & 2 \mathrm{E} \end{aligned}$	0 0 1 0 0 1 0 0 1 $0\|111110\|$	$\begin{aligned} & \mathrm{L}_{7: 4} \rightarrow \mathrm{RAM}(B) \\ & \mathrm{L}_{3: 0} \rightarrow \mathrm{~A} \end{aligned}$	None	Input L Ports to RAM. A
OBD		$\begin{aligned} & 33 \\ & 3 E \end{aligned}$		$B d \rightarrow$ d	None	Output Bd to D Outputs
OGI	y	$\begin{aligned} & 33 \\ & 5 \end{aligned}$	0 0 1 1 0 0.11 010 1 y	$y \rightarrow G$	None	Output to G Ports Immediate
OMG		$\begin{aligned} & 33 \\ & 3 A \end{aligned}$		$R A M(B) \rightarrow G$	None	Output RAM to G Ports
XAS		4F	010011111	$\mathrm{A} \rightarrow \mathrm{SIO}, \mathrm{C} \rightarrow$ SKL	None	Exchange A with SIO (Note 3)

Note 1 : All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example, A_{3} indicates the most significant (left-most) bit of the 4-bit A register.
Note 2 : The ININ instruction is not available on the 24 -pin ETL.9445 or ETL9345 since these devices do not contain the IN inputs.
Note 3 : For additional information on the operation of the XAS, JID, LQUID, INIL, and SKT instructions, see below.
Note 4 : The JP instruction allows a jump, while in subroutine pages 2 or 3 , to any ROM location within the two-page boundary of pages 2 or 3 . The JP instruction, otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page.
Note 5: A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3. JSRP may not jump to the last word in page 2.
Note 6 : LBI is a single-byte instruction if $d=0,9,10,11,12,13,14$ or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1, e.g., to load the lower four bits of $B(\mathrm{Bd})$ with the value $9(10012)$, the lower 4 bits of the LBI instruction equal $8(1000)$. To load 0 , the lower 4 bits of the LBI instruction should equal $15\left(1111_{2}\right)$.
Note 7 : Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register).

The following information is provided to assist the user in understanding the operation of several unique instructions and to provide notes useful to programmers in writing ETL9444/L9445 programs.

XAS Instruction

XAS (Exchange A with SIO) exchanges the 4-bit contents of the accumulator with the 4 -bit contents of the SIO register. The contents of SIO will contain serial-in/serial-out shift register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register, above.) If SIO is selected as a shift register, an XAS instruction must be performed once every 4 instruction cycles to effect a continuous data stream.

JID Instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 11 -bit word, $\mathrm{PC}_{10: 8} \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{10}, \mathrm{PC}_{9}$ and PC_{8} are not affected by this instruction.

Note that JID requires 2 instruction cycles to execute.

INIL Instruction

INIL (Input IL Latches to A) inputs 2 latches, IL3 and I_{0} (see Figure 7) and CKO into A . The IL_{3} and IL_{0} latches are set if a low-going pulse (" 1 " to " 0 ") has occurred on the \mathbb{N}_{3} and \mathbb{N}_{0} inputs since the last INIL instruction, provided the input pulse stays low for at least two instruction times. Execution of an INIL inputs IL_{3} and IL_{0} into A 3 and AO respectively, and resets these latches to allow them to respond to subsequent low-going pulses on the \mathbb{N}_{3} and $\mathbb{I N}_{0}$ lines. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO into A2. If CKO has not been so programmed, a " 1 " will be placed in A2. A " 0 " is always placed in A1 upon the. execution of an INIL. The general purpose inputs $\mathbb{I N}_{3}-I N_{0}$ are input to A upon execution of an ININ instruction. (See Table 2, ININ instruction.) INIL is useful in recognizing pulses of short duration or pulses which occur too often to be read conveniently by an ININ instruction.
Note: IL latches are not cleared on reset : IL_{3} and IL_{0} not input on ETL9444/L9445.

LQID Instruction

LQID (Load Q Indirect) loads the 8 -bit Q register with the contents of ROM pointed to by the 11-bit word $\mathrm{PC}_{10}, \mathrm{PC}_{9}, \mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}$. LQID can be used for table lookup or code conversion such as BCD to sevensegment. The LQID instruction "pushes" the stack $(P C+1 \rightarrow S A \rightarrow S B \rightarrow S C)$ and replaces the least significant 8 bits of PC as follows: $A-P_{7: 4}, R A M(B) \rightarrow$ $\mathrm{PC}_{3: 0}$, leaving $\mathrm{PC}_{10}, \mathrm{PC}_{9}$ and PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" (SC \rightarrow SB \rightarrow SA $\rightarrow P C$), restoring the saved

FIGURE 7 - INIL HARDWARE IMPLEMENTATION
value of PC to continue sequential program execution. Since LQID pushes SB \rightarrow SC, the previous contents of SC are lost. Also, when LQID pops the stack, the previously pushed contents of SB are left in SC. The net result is that the contents of SB are placed in SC (SB $\rightarrow \mathrm{SC}$). Note that LQID takes two instruction cycle times to execute.

SKT Instruction

The SKT (Skip On Timer) instruction tests the state of an internal 10 -bit time-base counter. This counter divides the instruction cycle clock frequency by 1024 and provides a latched indication of counter overflow. The SKT instruction tests this latch, executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction, therefore, allow the ETL9344/L.9345 to generate its own time-base for real-time processing rather than relying on an external input signal.

For example, using a 2.097 MHz crystal as the timebase to the clock generator, the instruction cycle clock frequency will be 65 kHz (crystal frequency $\div 32$) and the binary counter output pulse frequency will be 64 Hz . For time-of-day or similar real-time processing, the SKT instruction can call a routine which increments a "seconds" counter every 64 ticks.

Instruction Set Notes

a. The first word of a ETL9444/L9445program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instructions are not executed, one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths except JID and LQID take the same number of cycle times whether instructions are skipped or executed. JID and LQID instructions take 2 cycles if execuied and 1 cycle if skipped.
c. The ROM is organized into 32 pages of 64 words each. The Program Counter is an 11-bit binary counter, and will count through page boundaries. !! a JP, JSRP, JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the next page. For example: a JP located in the last work of a page will jump to a location in the next page. Also, a LQID or JID located in the last word of page $3,7,11,15,19,23$, or 27 will access data in the next group of four pages.

OPTION LIST

The ETL9444/L9445 mask-programmable options are assigned numbers which correspond with the ETL9444 pins.
The following is a list of ETL9444 options. When spe cifying ETL9445 chip. Options 9, 10, 19, and 20 must all be set to zero. The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.

Option $1=0$: Ground Pin - no options available
Option 2: CKO Output
$=0$: clock generator output to crystal/resonator (0 not allowable value if option $3=3$)
$=1$: pin is RAM power supply $\left(V_{R}\right)$ input
=2: general purpose input. load device to V_{CC}
=3: general purpose input. Hi-Z
= 4: multi-COP SYNC input (CKI $\div 32$, CKI $\div 16$)
=5: multi-COP SYNC input (CKI $\div 8$)
Option 3: CKI Input
$=0$: oscillator input divided by $32(2 \mathrm{MHz}$ max. $)$
$=1$: oscillator input divided by $16(1 \mathrm{MHz}$ max. $)$
=2: oscillator input divided by $8(500 \mathrm{kHz}$ max.)
=3: single-pin RC controlled oscillator divided by 4
=4: oscillator input divided by 4 (Schmitt)
Option 4: $\overline{\operatorname{RESET}}$ Input
$=0$: load device to $V_{C C}$
$=1$: Hi-Z input
Optiorr 5: Ly Driver
$=0$: Standard output
= 1: Open-drain output
= 2: High current LED direct segment drive output
=3: High current TRI-STATE ${ }^{\oplus}$ push-pull output
=4: Low-current LED direct segment drive output
$=5$: Low-current TRI-STATE ${ }^{\circledR}$ push-pull output
Option 6: L6 Driver same as Option 5

Option 7: L5 Driver same as Option 5

Option 8: L4 Driver same as Option 5

Option 9: $\mathbb{I N}_{1}$ Input $=0$: load device to $V_{C C}$ = 1: Hi-Z input
Option 10: \mathbb{N}_{2} Input same as Option 9
Option 11: V_{Cc} pin $=0: 4.5 \mathrm{~V}$ to 6.3 V operation
$=1: 4.5 \mathrm{~V}$ to 9.5 V operation
Option 12: L3 Driver same as Option 5

Option 14: L2 Driver same as Option 5

Option 14: L1 Driver same as Option 5

Option 15: Lo Driver same as Option 5

Option 16: SI Input same as Option 9

Option 17: SO Driver
$=0$: standard output
$=1$: open drain output
= 2: push-pull output
Option 18: SK Driver same as Option 17
Option 19: \mathbb{N}_{0} Input same as Option y

Option 20: \mathbb{N}_{3} Input same as Option 9

Option 21: Go I/O Port
$=0$: very-high current standard output
$=1$: very-high current open-drain output
$=2$: high current standard output
= 3: high current open-drain output
$=4$: standard LSTTL output (fanout $=1$)
=5: open-drain LSTTL output (fanout $=1$)
Option 22: G_{1} I/O Port same as Option 21

Option 23: G_{2} I/O Port same as Option 21
Option 24: $\mathrm{G}_{3} \mathrm{I} / \mathrm{O}$ Port same as Option 21
Option 25: D_{3} Output same as Option 21

Option 26: D_{2}.Output same as Option 21

Option 27: D_{1} Output same as Option 21

Option 28: D_{0} Output same as Option 21

Option 29: L Input Levels $=0$: standard TTL input lievels ($" 0 "=0.8 \mathrm{~V}, \cdots 1 "=2.0 \mathrm{~V}$) $=1$: higher voltage input levels $\left({ }^{\prime} 0^{\prime \prime}=1.2 \mathrm{~V},{ }^{\prime \prime}{ }^{\prime \prime}=3.6 \mathrm{~V}\right)$

Option 30: IN Input Leveis same as Option 29

Option 31: G input Levels same as Option 29

Option 32: Si Input Leveis same as Option 29

Option 33: RESET Input =0: Schmitt trigge: inout
$=1$: standard TiL input levels
=2: higher voltage input levels
Option 34: CKO Input Levels (CKO $=$ input. Option $2=2.3$) same as Option 29

Option 35 COP•Bonding $=0$: ETL9444 (28-pin device)
= 1: ETL9445 (24-pin device)
$=2:$ both 28 and 24 pin versions

TEST MODE (Non-Standard Operation)

The SO output has been configured to provide for standard test procedures for the custom-programmed ETL9444. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI
a. RAM and Internal Logic Test Mode $(\mathrm{SI}=1)$
b. ROM Test Mode $(\mathrm{SI}=0)$

These special test modes should not be employed by the user; they are intended for manufacturing test only.

APPLICATION EXAMPLE :
 ETL9444 General Controller

Figure 8 shows and interconnect diagram for a ETL9444 used as a general controller. Operation of the system is as follows:

1. The $L_{7}-L_{0}$ outputs are configured as LED Direct Drive outputs, allowing direct connection to the segments of the display.
2. The $D_{3}-D_{0}$ outputs drive the digits of the multiplexed display directly and scan the columns of the 4×4 keyboard matrix.
3. The $I N_{3}-I N_{0}$ inputs are used to input the 4 rows of the keyboard matrix. Reading the $\mathbb{I N}$ lines in conjunction with the current value of the D outputs allows detection, debouncing, and decoding of any one of the 16 keyswitches.
4. CKI is configured as a single-pin oscillator input allowing system timing to be controlled by a single-pin RC network. CKO is therefore available for use as a general-purpose input.
5. SI is selected as the input to a binary counter input. With SIO used as a binary counter, SO and SK can be used as general purpose outputs.
6. The 4 bidirectional $G 1 / O$ ports $\left(G_{3}-G_{0}\right)$ are available for use as required by the user's application.
7. Normal reset operation is selected.

FIGURE 8 - ETL9444 KEYBOARD/DISPLAY INTERFACE

PHYSICAL DIMENSIONS

CB-132

N SUFFIX
PLASTIC PACKAGE

CB-68

N SUFFIX PLASTIC PACKAGE

ADVANCE INFORMATION

GENERAL DESCRIPTION

The TS94104 ROMless N -channel microcontroller is a member of the TS94100 family, fabricated using N-channel, silicon gate XMOS technology.
The TS94104 contains the internal logic of the TS94100 microcontroller family except ROM.

This internal logic is identical to the TS94144 except that the ROM is removed and extra pins are added to output the ROM address and to input the ROM data. The TS94104 can be configured, by means of external pins, to function as a TS94120 or TS94144. Pins have been added to allow the user to select the various functional options that are available on TS94100 family. The TS94104 is primarily entended for a program development and debug for the TS94120 and TS94144 devices prior to masking the final part.
The TS94104 is also appropriate in low volume applications or when the program might be evolutive.

FEATURES

- Accurate emulation of the TS94100 family.
- Powerful instruction set (52 instructions).
- Addresses $2 \mathrm{~K} \times 8$ external ROM.
- 128×4 RAM.
- Interrupt sources: external, internal counter or dual-time peripheral.
- 3-level subroutine stack.
- $4 \mu \mathrm{~s}$ instruction cycle.
- Single supply operation (4.5 V-5.5 V).
- Low-current drain (15 mA max.).
- Programmable read/write 8 bit internal counter.
- Internal shift register with serial I/O.
- Watch-dog feature.
- Dual timer peripheral for complex waveforms generation and measurements.
- General purpose and tri-state outputs.
- TTL compatible.
- Direct drive of LED digit and segment line.
- Direct drive of TRIAC.
- Extended temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ available.
- Software compatible with the other member of ET9400, TS94100 families.

NMOS

PIN ASSIGNMENT

IP1 ${ }^{10}$	64 P IPO
$1 \mathrm{P}_{2} \mathrm{C}^{2}$	63 DEVG
$1 \mathrm{P} 3 \mathrm{Cl}^{3}$	62 G2
$194 \mathrm{C}^{4}$	61 61
IP5 C_{5}	60 ¢0
IP6 ${ }^{6}$	$59 \square \mathrm{IN} 3$
IP7 8^{7}	58 ¢ino
AD/ $\overline{\text { DATA }}$ C ${ }^{8}$	57ص perint
not used 5^{9}	56 PrasBo
g3 C^{10}	550 PRSB 1
D3 611	54 not used
Not USED d 12	$53 . \mathrm{nOT}$ USED
D2 5^{13}	52 Ps
D1 014	51 so
D0 15	50 Ps
GND 5^{16}	49 GND
CKO C-17	48 尸L0
CK1 5^{18}	47 ص 4
RESET [19	46 PL
NOT USED 5^{20}	45 ص ${ }^{\text {L3 }}$
$17 \mathrm{CH}^{21}$	44 pvcc
$16 \mathrm{C}_{2}$	43日1N2
not used - 23	42 P PRSAO
NOT USED \square^{24}	41 صPRSA1
NOT USED C^{25}	$40 \square$ MODE
NOT USED ${ }^{26}$	39 INI
A10 \square^{27}	38 ص 4
A9 ${ }^{28}$	37 صL5
A8 5^{29}	36 PKIP
WAD 530	35 ص TIN
SEL20 ${ }^{\text {c }} 31$	34 D INT
SELT0 C 32	33 B EMUL

FUNCTIONAL DESCRIPTION

The internal architecture is shown in Figure 1. Data paths are illustred in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " when it is reset, it is a logic " 0 ".

PROGRAM MEMORY

Program memory consists of a 2 K byte external ROM memory (typically an EPROM).
These bytes of ROM may be program instructions, constants or ROM addressing data.

ROM addressing is accomplished by a 11 -bit PC register which selects one of the 8 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 11-bit binary count value.
Three levels of subroutine nesting are implemented by a three levels deep stack. Each subroutine call (or interrupt) pushes the next PC address into the stack. Each return pops the stack back into the PC register.

DATA MEMORY

Data memory consists of a 512-bit RAM organized as 8 data registers of 16×4-bit digits. RAM addressing is implemented by a 7 -bit B register whose upper 3 bits (Br) select 1 or 8 data registers and lower 4 bits (Bd) select 1 of 164 -bit digits in the selected data register.

To emulate with accuracy the TS94120, the size of the RAM available to the user may be reduced by using SEL10 and SEL20 pins to obtain the following configurations:

- a 128 digits RAM is available, thus emulating an TS94144,
- the user RAM is physically halved to 64 digits (256 bits) thus emulating an TS94120,

The upper most bit of $\mathrm{Br}(\mathrm{Br} 3)$ register is only used to select between the RAM and the peripheral.

While the 4 -bit contents of the selected RAM digit (M) are usually loaded into or from, or exchanged with the A register (accumulator), they may also be loaded into the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the immediate operand field of these instructions.

The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.

INTERNAL LOGIC

A 4-bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Br and Bd field of the B register, to load and input 4 bits out of the 8 -bits Q latch, to input 4 bits out of a ROM word, to input G or \mathbb{N} ports, and to perform data exchanges with the SIO register.

A 4-bit adder performs the arithmetic and logic functions, storing the results in A with eventually a carry bit in the 1 -bit C register. The C register in conjunction with the XAS instruction and the EN register is also related to the SK output control.

The 8-bit T counter is a binary up counter which can be loaded to and from M and A using CAMT and CTMA instructions. This counter may be running in two modes depending on TIN: as a timer or as an external event counter. When the T counter overflows, an overflow flag will be set (see SKT instruction below). Note that T counter is cleared on reset. A functional block diagram of the timer/counter is illustrated in Figure 4.

3 general-purpose inputs, IN3-IN1, are provided. Note that IN3 can be considered as a dual-timer input. INO is an analog input connected to an internal comparator.

The D register provides, 4 general-purpose outputs and is used as the destination register for the 4 -bit contents of Bd. D3 is also used as the watchdog iriput when the watchdog option is selected.

The G register is a 2-bit general-purpose bidirectional I/O port (G3-G2). G0-G1 are the outputs of the peripheral and can also be used as general-purpose inputs.

The Q register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A , as well as 8 -bit data from ROM. Q register contents are transferred to the L I/O ports when the L drivers are enabled under program control (see LEI instruction).

L driver, when enabled, outputs the content of latched Q data to the LI/O ports. Contents of L may be read directly into A and M .

The SIO register is a 4-bit serial-in/serial-out shift register for the serial out. SIO content can be exchanged with A.

The XAS instruction copies C into the SKL Latch.
When $S K L=1, S K$ is a clock output
When $S K L=0$, SK outputs a value depending upon the contents of ENO and EN3.

The «EN register» is an internal 4-bit register loaded under program control by the LEI instruction. Each bit selects or inhibits the dedicated feature associated with each bit of the EN register (EN3-ENO).

- With EN1 set, the CPU interrupt is enabled.
- With EN2 set, the L drivers are enabled to output the data in Q to the L I/O ports. Resetting EN2 disables the L drivers, setting the L port as high impedance inputs.
- EN3, in conjunction with ENO, affects the SO and the SK outputs (see table 1).
- When EN3 $=0$, SO outputs ENO and SK outputs the clock anded with the content of the SKL latch,
- when EN3 $=1, \mathrm{SO}$ is the output of the serial shifter, while SK outputs the clock (if SKL $=1$) or the ENO bit (if $S K L=0$).
Even when SO is disabled (as SIO output), data goes on shifting through SIO and can be exchanged with A via an XAS.

TABLE 1. ENABLE REGISTER MODES - BITS ENO AND EN3

EN3	EN0	SO	SK after XAS
0	0	0	If $S K L=1, S K=$ Clock If $S K L=0, S K=0$
0	1	1	
1	0	Serial out	If $S K L=1, S K=$ Clock If $S K L=0, S K=$ EN0
1	1	Serial out	

INTERRUPT SOURCES

There are 3 possible interrupt sources (see Figure 4).

- Counter overflow or external interrupt (INT pin).

External interrupt is triggered on the falling edge of a zero pulse. The zero pulse must be at least 2 instruction cycles wide on the external pin IN1 (or internal counter overflow).

- 2 peripheral interrupt sources (see peripheral description).

Each interrupt source has its own enable bit (EN1 for the CPU interrupt, ENA and ENB for the peripheral interrupts) and its own flag (F1 for the CPU interrupt, FA and FB for the peripheral interrupts, see Figure 15). An interrupt is enabled when its associated enable bit is set. Its associated flag is set when the interrupt is requested (for example, timer overflow for the CPU interrupt).

Note that the FA, FB, ENA, ENB bits, but also the F1 bit are implemented in the peripheral registers.

The following features are associated with interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.

- The interrupt, once acknowledged as explained below, pushes the next sequential program counter address ($\mathrm{PC}+1$) onto the stack:
$\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$. Any previous contents of SC is lost. The program counter is set to hex address OFF (the last word of page 3) and all incoming interrupts are disabled without clearing the enable bits.
- An interrupt will be acknowledged only after the following conditions:
- An interrupt request has been generated.
- The associated enable bit is set.
- A currently executing instruction has been completed.
- All successive transfer of control instructions and successive LBIs have been completed (e.g., if the main program is executing a JP instruction which transfers program control to another JP instruction, the interrupt will not be acknowledged until the second JP instruction has been executed).
- Upon acknowledgement of an interrupt, bit Br 3 of the B register is saved (and later restored upon "popping " off the stack by a RET instruction), then Br 3 is cleared, allowing the user to begin his interrupt subroutine in the RAM space addressing.
- Upon acknowledgement of an interrupt, the skip logic status is saved and later restored upon " popping " off the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to "pop" the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines should not be nested within the interrupt servicing routine since " popping » the stack will enable any previously saved main program skips, interfering with the orderly execution sequence of the interrupt routine.
- The first instruction at hex address OFF must be a NOP.
- When an interrupt is acknowledged, other interrupt sources are internally disabled until the end of the interrupt servicing routine.

RESET

The RESET pin is configured as a Schmitt trigger input. If not used it should be connected to Vcc. Initialization will occur whenever a logic $" 0 n$ is applied to the RESET input for at least three instruction cycles.

Upon initialization, the PC register is cleared to 0 (ROM address 0) the A, B, C, D, EN, G2-G3, T counter, IL latches registers and the peripheral registers CRA, CRB, IMR are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA. RC must be greather than 5 times power supply rise time.

T COUNTER

There are two modes selected by TIN pin.
$-\mathrm{TIN}=0$: TIME BASE COUNTER
Instruction cycle clock (CKI divided by 10) is divided by $4 \times 256=1024$ (see figure 6). For example, using a 1.0 MHz crystal, therefore getting a $10 \mu \mathrm{~s}$ instruction cycle period, TS94104 allows accurate timings between $10 \mu \mathrm{~s}^{*}$ (1 count) and 10.24 ms (1024 counts). Longer timings can be achieved with software control (count of multiple overflows).
$-\overline{T I N}=1$: EXTERNAL EVENT COUNTER
Any pulse lasting more than 2 instructions cycle on IN2 will increment the T counter (on falling edge).

FIGURE 3: POWER-UP CLEAR CIRCUIT

FIGURE 4: CLOCK AND CPU COUNTER BLOCK DIAGRAM

OSCILLATOR

CKI is configured as a TTL compatible external clock input (equivalent to option 3.2 for a TS94100). Instruction cycle time is the external frequency divided by 10. (equivalent to option 4.1 for a TS94100).

WATCHDOG

Watchdog mode is selected with WAD input
WAD $=0$ NO WATCHDOG
WAD $=1$ D3 IS THE WATCHDOG INPUT

FIGURE 5: D3 AS WATCHDOG INPUT

In the watchdog mode, a " 1 " on pin D3 activates the internal reset (see Figure 5). The user needs only to connect a pull-up resistor and a capacitor on D3, and insert a watchdog loop in his program. This software loop will periodically outputs a " 0 " on D3 when the program is normally executed. When the microcontroller is trapped in
another loop, the watchdog loop is not any more efficient and $\mathrm{C}_{\text {ext }}$ is charged up to Vcc , thus triggering the chip reset.
Open-drain option is selected on D3. The REXT \times CEXT time constant on D3 is related to the period of the software watchdog loop. DEXT speeds up the CEXT discharge time during power off.

EXTERNAL MEMORY INTERFACE

The TS94104 is designed to be running with an external program memory. This memory requires the following characteristics:

- random addressing,
- TTL compatible 3-STATE OUTPUTS,
- TTL compatible inputs
- access time (from CS to output): 800 ns max.

These requirements are typically met with most EPROMS.
During operation, the address of the next instruction is
sent out on A8, A9 and A10 and IPO-IP7 while $\overline{\text { AD/DATA }}$ is high (logic " 1 " = address mode).
Address data on the IP lines is stored into an external latch on the high to low transition of the AD/DATA line. When $\overline{A D / D A T A}$ is low (logic " 0 " = data mode) the output of the memory is sent on the IPO-IP7 bus, and is latched inside the microcontroller on the rising edge of $\overline{\text { AD/DATA }}$. Note that $\overline{\text { AD/DATA }}$ output has a period of one instruction time, and specifies whether the IP bus is outputing addresses or inputing data. A simplified block diagram of the external memory interface is shown on Figure 6.

Ident. number	Characteristics	Symbol	Min.	Typ.	Max.	Unit
1	SK propagation delay	$\mathrm{t}_{\mathbf{s} 1}$	-	-	2	$\mu \mathrm{s}$
2	Input set up delay	${ }^{\text {tsetup }}$	$\begin{aligned} & \mathrm{t}_{\mathrm{c} / 10} \\ & +1.3 \end{aligned}$	-	-	$\mu \mathrm{s}$
3	Input Hold time	thold	100	-	-	ns
4	Output propagation delay	tpd1	$t_{c / 10}$	-	1.0	$\mu \mathrm{s}$
5	SO propagation delay (SO as SIO output)	$t_{\text {pdO }}$	$t_{c / 10}$	-	1.0	$\mu \mathrm{s}$
6	IP set up delay (Opcode)	$t_{\text {opcod }}$	-	-	-	-
7	IP buffer propagation delay	tbuff	-	-	-	-

(*) SO AS AN OUTPUT WHEN (ENO, EN3) $=(0,0)$ OR $(1,0)$ OR $(1,1)$

- SK has 50\% duty cycle when used as a clock.
- Outputs are sampled (by MCU) on the rising edge of SK (except IPO-IP7, A8-A10).
- Inputs are sampled on the SK falling edge.
- The external address bus (IPO-IP7, A8-A10) is sampled on the falling edge of AD/DATA.
- The IPO-IP7 inputs have to be referenced to the rising edge of AD/ $\overline{\text { DATA }}$.

Note:

- Consider we are executing an instruction (from /1 to /5). The address sampled on $/ 5$ on the address bus is the address of next instruction, but the SKIP status sampled on the SKIP output is the status of the instruction currently under execution.
- The SKIP output = 1 when the current instruction is skipped, except for LBI's skipped after an LBI.

DUAL TIMER

Dual Timer is identical to TS94100 family. Please refer to the TS94100 specification.

INSTRUCTION SET

TS94104 instruction set is identical to the TS94100 instruction set. Please refer to the TS94100 specification.

ELECTRICAL CHARACTERISTICS

TS94104 electrical characteristics are identical to the TS94100. Please refer to the TS94100 specifications.

MODE SELECTION

TS94104 can emulate the whole TS94100 family (i.e. 1 K and 2 K ROM) by simply connecting SEL10 and SEL2O pins to Vcc or GND. In addition, most TS94100 family mask options can be choosen by setting extra pins to Vcc or GND as shown on figure 7, figure 8.

	TS94144	TS94120
SELTO	1	1
SELLO	1	0

MCU SIZE

COUNTER INPUT

WATCHDOG

	External interrupt	Timer overflow
$\overline{\text { INT }}$	0	1

INTERRUPT SOURCE

FIGURE 7

	$\div 1$	$\div 5$	$\div 20$	$\div 40$
PRSAO	0	1	0	1
PRSA1	0	0	1	1

TIMER A PRESCALER

	$\div 1$	$\div 5$	$\div 20$	$\div 40$
PRSB0	0	1	0	1
PRSB1	0	0	1	1

TIMER B PRESCALER

TIMER B: PERIOD/DUTY CYCLE (MRBO = 0)
$($ MRB1 $=0)$

INO TRANSITION

FIGURE 8

PIN NAME

IPO-IP7	1/O for ROM address and data
A8-A9-A10	Address Most Significant Bits
SKIP	SKIP status output
AD/ $\overline{\text { DATA }}$	Address out/data in (demux special)
$\overline{\text { INT }}$	Select pin for external interrupt or timer overflow (CPU)
TIN	Select pin for prescaler or event counter (CPU)
SEL10-SEL20	Select pin for the RAM size (TS94210 or TS94144)
$\overline{\text { DBUG }}$	Output enable signal for external EPROM, and select pin for debug modes (not to be used by the customer)
EMUL	Emulation pin: internal timer and peripheral halt, interrupts masking
WAD	Select pin for watchdog option
MODE	Select pin for period measurement or duty cycle measurement
PERINT	Select pin for high to low or every transition of INO (dual timer)
$\begin{aligned} & \text { PRSAO } \\ & \text { PRSA1 } \end{aligned}$	Select pin for prescaler division of TIMER A
$\begin{aligned} & \text { PRSBO } \\ & \text { PRSB1 } \end{aligned}$	Select pin for prescaler division of TIMER B

		OPTION
CKO PIN CONFIGURATION	GENERAL PURPOSE INPUT, LOAD DEVICE TO Vcc	$1-1$
CKO INPUT LEVEL	STANDARD TTL INPUT LEVELS	$2-0$
CKI INPUT CONFIGURATION	EXTERNAL CLOCK	$3-2$
CKI DIVIDER	CKI FREQUENCY DIVIDED BY 10	$4-1$
RESET PIN CONFIGURATION	LOAD DEVICE TO Vcc	$5-0$
IN1-IN3 INPUT CONFIGURATION	LOAD DEVICE TO Vcc	$6-0$
IN1-IN3 INPUT LEVELS	STANDARD TTL INPUT LEVELS	$7-0$
S1 INPUT LEVELS	STANDARD TTL INPUT LEVELS	$8-0$
SO OUTPUT CONFIGURATION	GENERAL PURPOSE TTL OUTPUT	$9-0$
SK OUTPUT CONFIGURATION	GENERAL PURPOSE HIGH CURRENT OUTPUT	$10-1$
LO, L1, L2 OUTPUT DRIVER	3 STATE PUSH-PULL OUTPUT	$11-5,12-5,13-5$
L3 OUTPUT CONFIGURATION	3 STATE GENERAL PURPOSE TTL OUTPUT	$14-0$
L4 OUTPUT CONFIGURATION	3 STATE GENERAL PURPOSE VERY HIGH	
L5 OUTPUT CONFIGURATION	CURRENT OUTPUT	$15-1$
L6 OUTPUT CONFIGURATION	OPEN DRAIN TTL OUTPUT	$16-2$
L7 OUTPUT CONFIGURATION	OPEN DRAIN VERY HIGH CURRENT OUTPUT	$17-3$
LINPUT LEVEL	3 STATE PUSH-PULL TTL OUTPUT	$18-4$
G2-G3 OUTPUT CONFIGURATION	HIGHER VOLTAGE INPUT LEVEL	$19-1$
G INPUT LEVEL	GENERAL PURPOSE OUTPUT	$20-0,21-0$
D0-D3 OUTPUT CONFIGURATION	STANDARD TTL INPUT LEVELS	$22-0$
G0 OUTPUT LEVEL FOR STA=0	OPEN-DRAIN OUTPUT	$23-1,24-1,25-1,26-1 ~$
G1 OUTPUT LEVEL FOR STB=0	LOGICAL 1	$34-1$

PHYSICAL DIMENSIONS

CB-506

PLASTIC PACKAGE

ADVANCE INFORMATION

The TS94120/144 single chip NMOS microcontrollers are members of the TS94000 family, fabricated using N-channel silicon gate XMOS technology. The TS94120/144 contain the internal logic of the microcontrollers ET9410/20/44 (system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions). Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture, and I/O scheme designed to facilitate keyboard input, display output, BCD data manipulation and triac drive. They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized low cost controller. TS94100 family offers a dual 16-bit timer perfectly suited for universal motor speed control (phase control), accurate time measurements and waveform generation.

- Low cost
- 23 I/O lines
- Single supply operation (4.5 V to 5.5 V)
- Low-current drain (13 mA max)
- General purpose and 3-state outputs
- TTL compatible inputs
- TTL compatible outputs
- Temperature range $\left(0^{\circ}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
- Extended temperature range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) available.

CPU

- Powerful instruction set (52 instructions)
- ROM: $2 \mathrm{~K} \times 8$ (TS94144), $1 \mathrm{~K} \times 8$ (TS94120)
- RAM: 128×4 (TS94144), 64×4 (TS94120)
- 2 interrupt sources: external pin or internal timer overflow
- 3-level subroutine stack
- $4 \mu \mathrm{~s}$ instruction cycle time
- Programmable read/write 8 -bit internal timer/event counter
- Internal shift register with serial I/O
- Watchdog feature
- Direct drive of LED digit and segment line
- Software compatible with the other members of ET9400, ETL9400 and ETC9400 families.

DUAL TIMER PERIPHERAL

- Two 8 -bit and one 16 -bit independent timers/counters
- 2 independent programmable prescalers
- Maximum working frequency: 1.25 MHz
- 16 software programmable working modes including delayed and calibrated pulse triggering, complex waveform generation, period and duty-cycle measurements
- 3 interrupt sources
- Zero-crossing detector
- Direct drive of triac

NMOS

CPU FUNCTIONAL DESCRIPTION

The internal architecture is shown in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device: Positive logic is used. A bit set is a logic $\alpha 1 »$, when a bit reset is a logic $\alpha 0 »$.

PROGRAM MEMORY

Program memory consists of ROM:

- 1024 bytes for the TS94120
- 2048 bytes for the TS94144

These bytes of ROM can be either program instructions, constants or ROM addressing data.

ROM addressing is accomplished by a 11-bit PC register which selects one of the 8 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 11-bit binary count value.

- For TS94120 the 10 lower bits of PC are used to address the internal ROM

Three levels of subroutine nesting are implemented by a three level deep stack. Each subroutine call (or interrupt) pushes the next PC address onto the stack. Each return (RET) pops off the stack back into the PC register.

DATA MEMORY

Data memory consists of a 512-bit RAM for the TS94144 organized as 8 data registers of 16×4-bit digits. RAM addressing is implemented by a 8 -bit B register whose upper 3 bits $\mathrm{BrO}, \mathrm{Br} 1, \mathrm{Br} 2$ select 1 of 8 data registers and lower 4 bits (Bd) select 1 of 16 4-bit digits in the selected data register.

Data memory consists of a 256-bit RAM for the TS94120 organized as 4 data registers of 16×4 bits digits. The B register is 8 bits long. Upper 2 bits $\mathrm{BrO}, \mathrm{Br} 1$ select 1 of 4 data registers and lower 4 bits (Bd) select 1 of 16×4-bit digits in the selected data register. Br 2 is not used to address the RAM and so 2 addresses with a different value of Br 2 will access the same word in the RAM.

For TS94120/144, the uppermost bit Br 3 of B register is only used to select either the peripheral or RAM.

While the 4-bit contents of the selected RAM digit (M) are usually loaded into or from, or exchanged with the A register (accumulator), they may also be loaded into the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the immediate operand field of these instructions.

The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.

INTERNAL LOGIC

A 4-bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Br and Bd field of the B register, to load and input 4 bits out of the 8 -bits Q latch, to input 4 bits out of a ROM word, to input G or \mathbb{N} ports, and to perform data exchanges with the SIO register.

A 4-bit adder performs the arithmetic and logic functions, storing the results in A with eventually a carry bit in the 1 -bit C register. The C register in conjunction with the XAS instruction and the EN register is also related to the SK output control.

The 8 -bit T counter is a binary up counter which can be loaded to and from M and A using CAMT and CTMA instructions. This counter may be running in two modes depending on a mask-programmable option: as a timer or as an external event counter. When the T counter overflows, an overflow flag will be set (see SKT instruction below). Note that T counter is cleared on reset. A functional block diagram of the timer/counter is illustrated in Figure 4.

3 general-purpose inputs, IN3-IN1, are provided. Note that IN3 can be considered as a dual-timer input.

INO is an analog input connected to an internal comparator.
-The D register provides, 4 general-purpose outputs and is used as the destination register for the 4-bit contents of Bd. D3 is also used as the watchdog input when the watchdog option is selected.

The G register is a 2-bit general-purpose bidirectional I/O port (G3-G2). G0-G1 are the outputs of the peripheral and can also be used as general-purpose inputs.

The Q register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A, as well as 8 -bit data from ROM. Q register contents are transferred to the L I/O ports when the L drivers are enabled under program control (see LEI instruction).
L driver, when enabled, outputs the content of latched Q data to the LI/O ports. Contents of L may be read directly into A and M.

The SIO register is a 4-bit serial-in/serial-out shift register for the serial out. SIO content can be exchanged with A.

The XAS instruction copies C into the SKL Latch.
When SKL $=1$, SK is a clock output
When $S K L=0, S K$ outputs a value depending upon the contents of ENO and EN3.

THE \& EN register» is an internal 4-bit register loaded under program control by the LEI instruction. Each bit selects or inhibits the dedicated feature associated with each bit of the EN register (EN3-ENO).

- With EN1 set, the CPU interrupt is enabled.
- With EN2 set, the L drivers are enabled to output the data in Q to the LI/O ports. Resetting EN2 disables the L drivers, setting the L port as high impedance inputs.
- EN3, in conjunction with ENO, affects the SO and the SK outputs (see table 1).
- When EN3 $=0$, SO outputs ENO and SK outputs the clock anded with the content of the SKL latch,
- when EN3 $=1$, SO is the output of the serial shifter, while SK outputs the clock (if SKL =1) or the ENO bit (if $\mathrm{SKL}=0$).
Even when SO is disabled (as SIO output), data goes on shifting through SIO and can be exchanged with A via an XAS.

TABLE 1. ENABLE REGISTER MODES - BITS ENO AND EN3

EN3	EN0	SO	SK after XAS
0	0	0	If SKL $=1$, SK $=$ Clock
0	1	1	
1	0	Serial out	If $S K L=0$, SK $=0$
1	1	Serial out	If SKL $=0$, SK $=$ Clock

INTERRUPT SOURCES

There are 3 possible interrupt sources (see Figure 2).

- Counter overflow or external interrupt (mask option). External interrupt is triggered on the falling edge of a zero pulse. The zero pulse must be at least 2 instruction cycles wide on the external pin IN1 (or internal counter overflow).
- 2 peripheral interrupt sources (see peripheral description).

Each interrupt source has its own enable bit (EN1 for the CPU interrupt, ENA and ENB for the peripheral interrupts) and its own flag ($F 1$ for the CPU interrupt, FA and FB for the peripheral interrupts, see Figure 13). An interrupt is enabled when its associated enable bit is set. Its associated flag is set when the interrupt is requested (for example, timer overflow for the CPU interrupt).

Note that the FA, FB, ENA, ENB bits, but also the F1 bit are implemented in the peripheral registers.

FIGURE 2: INTERRUPT BLOCK DIAGRAM

The following features are associated with interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.

- The interrupt, once acknowledged as explained below, pushes the next sequential program counter address (PC +1) onto the stack:
$\mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$. Any previous contents of SC is lost. The program counter is set to hex address OFF (the last word of page 3) and all incoming interrupts are disabled without clearing the enable bits.
- An interrupt will be acknowledged only after the following conditions:
- An interrupt request has been generated.
- The associated enable bit is set.
- A currently executing instruction has been completed.
- All successive transfer of control instructions and successive LBIs have been completed (e.g., if the main program is executing a JP instruction which transfers program control to another JP, instruction, the interrupt will not be acknowledged until the second JP instruction has been executed).
- Upon acknowledgement of an interrupt, bit Br 3 of the B register is saved (and later restored upon « popping * off the stack by a RET instruction), then Br3 is cleared, allowing the user to begin his interrupt subroutine in the RAM space addressing.
- Upon acknowledgement of an interrupt, the skip logic status is saved and later restored upon « popping » off the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to « pop» the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines should not be nested within the interrupt servicing routine since « popping » the stack will enable any previously saved main program skips, interfering with the orderly execution sequence of the interrupt routine.
- The first instruction at hex address OFF must be a NOP.
- When an interrupt is acknowledged, other interrupt sources are internally disabled until the end of interrupt servicing subroutine.

RESET

TheRESET pin is configured as a Schmitt trigger input. If not used it should be connected to Vcc. Initialization will occur whenever a logic $\propto 0 \infty$ is applied to the RESET input for at least three instruction cycles.

Upon initialization, the PC register is cleared to 0 (ROM address 0) the A, B, C, D, EN, G2-G3, T counter, IL latches registers and the peripheral registers CRA, CRB, IMR are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data

Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA. RC must be greather than 5 times power supply rise time.

FIGURE 3: POWER-UP CLEAR CIRCUIT

T COUNTER ${ }^{*}$

There are two modes selected by mask option:

- Time-base counter. In this mode, the instruction cycle frequency generated from CKI passes through a 2-bit (divide-by-4) prescaler. The output of this prescaler increments the 8 -bit counter thus providing a 10 -bit timer. T counter prescaler is cleared by a CAMT instruction or on reset.

For example, using a 1.25 MHz crystal with a divide-by- 5 option, the instruction cycle frequency of 250 KHz increments the 10 -bit timer every $4 \mu \mathrm{~s}$. By presetting the counter and detecting overflow, accurate timeouts between $16 \mu \mathrm{~s}$ (4 counts) and 4.096 ms (1024 counts) are possible. Longer timeouts can be achieved by accumulating, under software control, multiple overflows.

- External event counter. With this option, a low-going pulse ($\alpha 1 »$ to $\alpha 0 »$) lasting more than 2 instruction cycles on the $\operatorname{IN} 2$ input will increment the 8 -bit T counter.

FIGURE 4: CLOCK AND CPU COUNTER BLOCK DIAGRAM

OSCILLATOR

There are three basic clock oscillator configurations available as shown in Figures 5 and 6.

- Crystal Controller Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency divided by 20 (optional by 10 or 5).
- External Oscillator. CKI is an external clock input
signal. The external frequency is divided by 10 to give the instruction cycle time. CKO is available to be used as a general purpose input.
- RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency_divided by 10 to give the instruction cycle time. CKO is in this case available to be used as a general purpose input (see INIL instruction).

FIGURE 6: OSCILLATOR MASK OPTIONS

WATCHDOG (Figure 7)
This mode may be chosen by mask option. In this case, D3 becomes the watchdog input. This mode is a basic
need for microcontrollers working in a noisy environment, where parasitics may crash the program.

FIGURE 7: D3 AS WATCHDOG INPUT

In|the|watchdog/mode, ${ }^{\text {a }}$ « $1 »$ on pin D3 activates the internal reset (see Figure 7).| The user needs only to connect a pull-up resistor and a capacitor on D3, and insert a watchdog loop in his program. This software loop will periodically outputs a $\alpha 0$ n on D3 when the program is normally executed. When the microcontroller is trapped in
another loop, the watchdog loop is not any more efficient and $\mathrm{C}_{\text {ext }}$ is charged up to Vcc, thus triggering the chip reset.
Open-drain option has to be selected on D3 when the watchdog mode is chosen. The REXT \times CEXT time constant on D3 is related to the period of the software watchdog loop. DEXT speeds up the|CEXT discharge time during power off.

DUAL TIMER

FUNCTIONAL OVERVIEW

A block diagram of the peripheral is given in Figure 8. It consists of two truly independent blocks. Block A consists of two 8-bit registers (RW0-RW1, RD0-RD1) and two 8 bit binary down-counters (CWO-CW1, CDO-CD1) organized as two register-counter pairs. The block B consists of a sixteen bit register (RB0-RB3) and a 16-bit binary down counter (CBO-CB3). The operating modes are software programmable through CRA and CRB control registers. Most of the modes are driven by block A and B clocks (CLKA, CLKB) which are respectively generated by the A or B prescalers. These prescalers are mask-option programmable. The following options are available: the system clock (CLK) may be divided by 1, 5, 20, 40.

Block \mathbf{A} is a complex waveform generator. In most of the modes, each 8 bit pair is running alternatively, using the autoreload procedure. The CD counter starts to run. It counts down to zero, at which time the output flip-flop of block \mathbf{A} is toggled. The data in the RD register is then reloaded automatically into the CD counter, which stays idle. In the same time, the RW/CW 8 bit pair starts running. When CW counts down to zero, the output flip-flop is toggled again, CW is reloaded with RW contents and stays idle. The RD/CD pair can start running again and
so on. In the pulse burst generation mode, the CD/RD pair is running alone: the output flip-flop is toggled each time the CD counter counts down to zero. The CW/RW pair does not drive the output flip-flop, but counts the pulses generated by the CD/RD pair. Block A output is GO, input is INO.

Block B performs measurement and generation functions. In the frequency generation and frequency divider mode, the 16 -bit pair is running, using the autoreload procedure. In the measurement mode, while the counter is running, an automatic transfer to the register is performed each time a measure is ended. This is determined by a maskoption: if the period measurement mode is selected, a measure is ended each time a high to low transition occurs on the IN3 pin. If the duty-cycle measurement mode is selected, a measure is ended each time a high to low or low to high transition occurs on the IN3 pin. In the external event counter mode, the counter counts down the external pulses, register RB latching up counter CB state every instruction cycle tc. Block B output is G 1 , input is IN3.

In all modes of blocks A and B, there is no initial autoreload, and the counters start, regardless of their content.

FIGURE 8

PERIPHERAL REGISTERS

The Dual-Timer contains several registers that interface with the CPU :

- two 8-bit data registers (RDO-RD1) and (RW0-RW1) for block A, and one-16 bit data register (RB0-RB1-RB2RB3) for block B.

CRA: Control Register

F1	STA	MRA1	MRA0
3	2	1	0

STA: Start/Stop bit and output enable on pin GO
MRA1-MRAO: Block A mode selection
F1: CPU interrupt flag

CRB: Control Register

CSB	STB	MRB1	MRB0
3	2	1	0

STB: Start/Stop bit
CSB: Output enable on pin G1
MRB1-MRB0: Block B mode selection

- two 4-bit control registers (1 per block) CRA and CRB managing the selection mode, the output on the pins G0 and G1 and start-up for both blocks.
- One 4-bit interrupt management register (IMR). This register contains the enable bits and the interrupt flags.

IMR: Interrupt Management Register

ENB	ENA	FB	FA
3	2	1	0

FA, FB: Interrupt flag of blocks A and B ENA, ENB : Interrupt enable bits of blocks A and B

FIGURE 9: CONTROL REGISTERS (CRA AND CRB) AND INTERRUPT MANAGEMENT REGISTER (IMMR)

All these registers are memory mapped as 4-bit memory lower bit BrO of Br (See Figure 11). words (See Figure 10) and are addressed by Bd and the

$B \mathrm{Bd}$	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	RD1	RDO	RW1	RW0												
1	RB3	RB2	RB1	RB0			IMR									

All the instructions referenced to the RAM may be used for the peripheral, including bit manipulation instructions. Br3, the uppermost bit of Br controls the switching between the RAM and the peripheral when using memory reference instructions.

Two instructions are able to alter the content of Br 3 :

- XABr , that exchanges A with Br , and in particular A 3 with Br 3 ,
- TMB, that complements Br3.

When $\mathrm{Br} 3=0$, RAM is accessed
When $\operatorname{Br} 3=1$, peripheral registers are accessed

FIGURE 11: PERIPHERAL AND RAM ADDRESSING BLOCK DIAGRAM

Note that, as Br 1 and Br 2 are not used to address the registers, there is redundancy in the addressing: that is, 2 addresses where only Br 1 (or Br 2) is different will access the same register.

- Each peripheral memory word may be read at any time, even during reloading: the value read is always valid.
- On the other hand, the user cannot write in a peripheral memory word while the peripheral internal logic is trying to reload it.

To ensure a good start of the timer, the Start/Stop bit (STA, STB) should not be set while setting a new mode (MRAO-MRA1, MRB0-MRB1): one instruction cycle is required, for stabilization.

Counters access:

Data transfer between counters and registers (RD $\leftrightarrow C D$, RW $\leftrightarrow C W$, RB $\leftrightarrow C B$) exchanges words of 16 bits (or 8
bits). This transfer is done with a single instruction (2 bytes opcode) as shown on table 2.

MNEMONIC	OPCODE	DATA FLOW
TRCA	23	RD $\rightarrow \mathrm{CD}$
	8 A	RW $\rightarrow \mathrm{CW}$
TCRA	23	$\mathrm{CD} \rightarrow \mathrm{RD}$
	8 B	$\mathrm{CW} \rightarrow \mathrm{RW}$
TRCB	23	RB $\rightarrow \mathrm{CB}$
	9 A	
TCRB	23	CB \rightarrow RB
	$9 B$	

TABLE 2: 16-BIT TRANSFER INSTRUCTIONS

Opcodes of these 16 bits transfer instructions are XAD opcodes addressing unused peripheral addresses, and are valid only when $\mathrm{Br} 3=1$. TRCA, TCRA, TRCB and TCRB instructions load accumulator A with F (Rex).

Important remark

Note that transfer is equivalent to:
XAD OA for transfer (RW, RD) towards (CW, CD)
XAD OB for transfer (CW, CD) towards (RW, RD)
XAD 1A for transfer RB towards CB
XAD 1B for transfer CB towards RB
These four transfer instructions are therefore compatible with the ET9400 set of instructions. XAD instruction has a different meaning when $\mathrm{Br} 3=1$.

CONTROL REGISTERS CRA AND CRB

- The MRAO-MRA1 and MRBO-MRB1 bits select the operating mode of block A and block B. The mode selected
by MRB0 $=$ MRB1 $=0$ is mask option programmable: period measurement, or duty-cycle measurement.

Block A

MRA1	MRAO	OPERATING MODE
0	0	Triggered pulse generation
0	1	Pulse burst generation
1	0	Duty cycle generation
1	1	Analog period counter

Block B

MRB1	MRBO	OPERATING MODE		
0	0	$\begin{array}{l}\text { Period measurement } \\ \text { Duty-cycle measurement }\end{array}$	$\}$	mask
:---:				
programmable option				
0				

TABLE 3: OPERATING MODE CODING THROUGH MRAO- MRA1 AND MRBO-MRB1 BITS

- Setting STA and STB to zero stops the counters which stays idle. At the same time, the A and B flip flop outputs are forced to predefined values (* 0 » or « $1 \times$ selectable by mask option).
- Setting STA and STB to 1 , makes the respective counters run in the selected mode. In the pulse burst mode, STA is automatically reset when the burst is generated.

FIGURE 12: OUTPUT CONTROL

Setting the CSB bit to zero disconnects the pin G1 from the CB counter: counter is running and G1 is forced to 1 or 0 (depending on mask option)

G0 (and G1) pins can be used as a general purpose CPU input, as long as it has been previously set to output a 1.

If proper start is required, the counters should be initialized before the start up. In other words, the first G0 (or G1) transition (counter underflow) occurs at a defined time after start up only if the counter C was previously loaded (see nota-1).

SYSTEM RESET
Upon reset CRA, CRB and IMR peripheral registers are cleared. CD/RD, CW/RW and CB/RB are unchanged.

DUAL TIMER INTERRUPT MANAGEMENT
The Dual Timer interrupts are controlled by the IMR register.

* : ZCA is the Zero crossing detector output (see Option 32)

FIGURE 13: INTERRUPT MANAGEMENT

The Dual Timer interrupt sources, one for each block, are software selectable through the enable bits ENA and ENB (IMR register). Each interrupt in turn sets the FA or FB flag in the IMR register when activated. F1 (bit 3 of CRA register) is set when a CPU interrupt is generated. These flags will be used in the interrupt subroutine to locate the interrupt source. These flags will have to be reset by the user interrupt subroutine. It should be noted that Timer B interrupt is disabled through the start bit STB, when
this block is not running. The peripheral interrupt requests are enabled by the ENA bit, or by the ENB and STB bits. The block A interrupt source is mask option programmable: an interrupt request is generated either on each transition of the zero crossing detector output or on high to low transition of the zero crossing detector output. Block B interrupt requests are generated on each pulse on OUTB.

BLOCK A MODE DESCRIPTION

Remark: all the following timings are drawn in the case where I.V. (Initial value) of G0 is 0 .

Triggered pulse generation

This mode outputs a pulse triggered by the zero-crossing of a signal at INO. The delay from the zero-crossing is specified by the content of RD. The pulse width is specified by the content of RW.
${ }^{\mathrm{t}} \mathrm{D}=\mathrm{D} . \mathrm{t}_{\mathrm{CLK}}$ + 2.5 t CLK
${ }^{t} w=(W+1)$. tCLKA
Where tCLK = System clock period;
tCLKA = Block A clock period
$\mathrm{D}=$ Content of register RD.
W = Content of register RW
$1 \leqslant \mathrm{D} \leqslant 255$
$0 \leqslant W \leqslant 255$

Nota 2: initial value of GO can either be 1 or 0 (depending on mask option 3.4).

Pulse burst generation

This mode outputs on G0 a specified number of pulses of a specified width. The number of pulses is specified by the contents of register RW, while the pulse width is specified by the contents of register RD. The pulse burst is generated each time STA is set to a $\alpha 1 \mathrm{n}$. CD is automatically loaded from register RD, at each transition of G0. After the W pulses are transmitted, counter CW is automatically loaded from register RW, and STA is reset. Setting STA to 1 will repeat the previous sequence.

$t_{D}=(D+1)$. CLKA
tCLKA $=$ Block A clock period
$N=(W+1)$
$\overline{\mathrm{D}}=\overline{\text { Content }}$ of register $\overline{\mathrm{R} D}$
W = Content of register RW
d: delay (see nota 1)
$0 \leqslant D, W \leqslant 255$
Nota 1: If counter CD is not loaded with a defined value before start up, d will be tCLKA $\leqslant d \leqslant 255$. tCLKA. Note that this undefined value of d is equivalent to an undefined delay in outputing the waveform. In order to control this delay time d, user should load counter CD (in addition to register RD).

Duty-cycle generation

This mode generates a rectangular waveform on GO. Pulse width is specified by the contents of register RW, interpulse length is specified by the content of register RD (be carefull with I.V: see nota 2)

tD $=(D+1)$. tCLKA $\quad W=$ Content of register RW tw $=(\mathbf{W}+1)$. tCLKA d: delay (see nota 1) $D=$ Content of register RD $0 \leqslant D, W \leqslant 255$
tCLKA $=$ Block A clock period

Analog period counter

This mode generates a rectangular waveform on GO. The pulse width is specified by the contents of register RW, and inter-pulse length is specified by the contents of register RD.

The counter is not controlled by the clock of block \mathbf{A}, but decrements each INO falling edge. GO transition is synchronised on SK. Maximum delay between INO = OV and G0 transition is therefore less than equal to one SK period ($4 \mu \mathrm{~s} \leqslant \mathrm{t} \mathrm{SK} \leqslant 10 \mu \mathrm{~s}$).

Remark: analog signal frequency should not exceed $1 / 2$ tc. FINO $\leqslant 1 / 2 t c$.

BLOCK B MODE DESCRIPTION

Remark: all the following timings are drawn in the case where I.V (initial value) fo $\mathbf{G 1}$ is $\mathbf{0}$.

Measurement mode

This mode is mask-option programmable: period measurement mode, or duty-cycle measurement mode.
Period measurement mode: This mode measures the period of an external waveform on IN3.
On the high to low transition, counter CB is transferred to register RB, and then cleared. As the counter is counting down from zero, the value read from the register is a two's complement value. The register can be read at any time, even when being changed: the data is always valid.

$t=(N+1)$ tCLKB
Where tCLKB = Block B clock period
$\mathrm{N}=$ Two's complement value of register RB
$0 \leqslant N \leqslant 2^{16.1}$
$\Delta=1,5 \times$ tCLK
tCLK $=$ System clock period

The output G1 toggles each time a counter to register transfer is performed.

Duty-cycle measurement mode: From an external signal on IN3, the counter CB starts, counting the pulse width high. On the falling edge of IN3, CB is transferred to the register RB, and then cleared. Then, counter CB starts counting the IN3 inter-pulse length. On rising edge, CB is transfered to RB, CB is cleared, and duty cycle measurement starts again. G1 output toggles each time a counter to register transfer is performed. The user has to read the register contents before it is changed by the next measurement. This can be done by an interrupt, or by monitoring IN3 or G1.

$t_{H}=(N H+1) . t^{2}$ CLKB
$\mathrm{t}_{\mathrm{L}}=(\mathrm{NL}+1) \cdot \mathrm{t}_{\mathrm{CLK}} \mathrm{KB}$
${ }^{\text {t}}$ CLKB $=$ Block B clock perdiod
$\Delta=1,5 \times$ tCLK
NL, NH = Two's complement value of register RB contents

$$
0 \leqslant N L, N H \leqslant 2^{16-1}
$$

Nota 3: initial value of G1 can either be 1 or 0 (depending on mask option 35)

External event counter

In this mode, counter CB is an external events (or pulses) counter. There is no automatic clear of the counter: it counts down from whatever state it was. Thus, to ease the reading of the information, the counter should be preloaded. Preloading the counter with all zeroes will give the two's complement of the count, preloading the counter with all ones will give the one's complement of the count. The counter decrements on the falling edge of IN3 pin. The counter, counts down and eventually rolls over from 0000 to FFFF (Hex).

The register RB acts as a « capture-latch », being loaded by the counter's value every instruction cycle. Thus, it enables a simple monitoring of the count.

G1 toggles every time counter CB counts through « $0 »$.

Frequency generation

This mode generates a square wave on G1. The period is determined by the contents of register RB. Using the autoreload procedure, the counter is only loaded when it counts down through zero. Therefore, it may be necessary to initially load the counter (see nota 1). IN3 has no effect in this mode.

$$
\begin{aligned}
& t=(N+1) \text { tCLKB; Period }=2(N+1) \text { t CLKB } \\
& \text { Where } N=\text { Content of counter RB } \\
& 0 \leqslant N \leqslant 2^{16-1} \\
& \text { tCLKB }=\text { Block B clock period }
\end{aligned}
$$

Frequency divider

This mode generates a square wave on G1. The period is determined by the contents of register RB, and by the external frequency applied on IN3 pin. The counter decrements on the high to low transition of IN3 pin. Using the autoreload procedure, the counter is only loaded when it counts down through zero. Therefore, it may be necessary to initially load the counter.

$\Delta=2,5$ tCLK
$t=(N+1) t_{\text {IN3 }}$; Period $=2(N+1) t_{\text {IN3 }}$
Where $\mathbf{N}=$ contents of counter RB
$0 \leqslant N \leqslant 2^{16-1}$
${ }^{\text {t}}$ CLK $=$ System clock period

Symbol	Dofinition	Instruction operand symbols	
Intornal Architecture Symbols		d	4-bit operand field, 0-15 binary (RAM digit select)
		r	3 -bit operand field, 0-7 (RAM
A	4-bit Accumulator		register select)
B	8 -bit RAM address register	a	11-bit operand field, 0-2047 (1023)
Br	Upper 4 bits of B (register address)	y	4-bit Operand field, 0-15 (immediate data)
Bd	Lower 4 bits of B (digit address)	RAM(x)	RAM addressed by variable x
C	1 -bit Carry register	ROM(x)	ROM addressed by variable x
EN	4-bit Enabie register		
		Operational Symbols	
G	4 -bit General purpose I/O port		
12	One 1-bit (IN_{3}) latch	+	Plus
IN	4-bit input port	-	Minus
L	8 -bit 3-state I/O port	\rightarrow	Replaces
M	4-bit contents of RAM addressed by B	\rightarrow	is exchanged with
PC	11-bit ROM address program counter	$\underline{\square}$	is equal to
0	8 -bit latch for L port	$\overline{\text { a }}$	one's complement of A
SA, SB,	11-bit 3-level subroutine stack	\oplus	exclusive-or
SIO	4 bit Shift register	:	range of values
sk	Logic-controlled clock output		
SKL	1 -bit lach for SK output		
T	8 -bit timer		

TS94100 INSTRUCTION SET

Mnemonic	Operand	Hx Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description

ARITHMETIC INSTRUCTIONS

ASC		30	001110000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with carry, Skip on Carry
ADD		31	10011100011	$A+R A M(B) \rightarrow A$	None	Add RAM to A
ADT		4A	10100110101	$A+1_{10}{ }_{10} A$	None	Add TEN to A
AISC	y	5-	01011	$A+y \rightarrow A$	Carry	Add Immediate Skip on Carry ($\mathrm{y} \neq 0$)
CASC		10	000110000	$\begin{aligned} & \bar{A}+\operatorname{RAM}(B)+C \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Complement and Add with Carry, Skip on Carry
CLRA		00	10000100001	$0 \rightarrow A$	None	Clear A
COMP		40	1010010000	$\bar{A} \rightarrow A$	None	Ones complement of A to A
NOP		44	010010100	None	None	No Operation
RC		32	10011100101	' 0 ' ${ }^{\prime}$ C	none	Reset C
SC		22	10010100101	" 1 " \rightarrow C	None	Set C
XOR		02	10000100101	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A

INSTRUCTION SET (continued)

Mnemonic	Operand	Hx Code	Machine Language Code (Binary)	Data Flow	Skip Conditions

MEMORY REFERENCE INSTRUCTIONS

CAMT		$\begin{aligned} & 33 \\ & 3 F \end{aligned}$	$\begin{aligned} & 0011,0011 \\ & 0011,1111 \end{aligned}$	$\begin{aligned} & A \rightarrow T_{7: 4} \\ & \operatorname{RAM}(B) \rightarrow T_{3: 0} \end{aligned}$	None	Copy A, RAM to T
CTMA		$\begin{aligned} & 33 \\ & 2 F \end{aligned}$	$\begin{aligned} & 0011,0011 \\ & 0010,1111 \end{aligned}$	$\begin{aligned} & \mathrm{T}_{7: 4} \rightarrow \mathrm{RAM}(\mathrm{~B}) \\ & \mathrm{T}_{3: 0} \rightarrow \mathrm{~A} \\ & \hline \end{aligned}$	None	Copy T to RAM, A
CAMQ		$\begin{aligned} & \hline 33 \\ & 3 \mathrm{C} \end{aligned}$	$\begin{aligned} & 0011,0011 \\ & 0011,1100 \end{aligned}$	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{Q}_{7}: 4 \\ & \mathrm{RAM}(\mathrm{~B}) \rightarrow \mathrm{Q}_{3: 0} \\ & \hline \end{aligned}$	None	Copy A, RAM to Q
CQMA		$\begin{aligned} & 33 \\ & 2 \mathrm{C} \end{aligned}$	$\begin{aligned} & 0011,0011 \\ & 001011100 \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{7: 4} \rightarrow \mathrm{RAM}(\mathrm{~B}) \\ & \mathrm{Q}_{3: 0} \rightarrow \mathrm{~A} \\ & \hline \end{aligned}$	None	Copy Q to RAM, A
LD	r	-5	$\begin{gathered} 00 r 10101 \\ (r=0,3) \end{gathered}$	$\begin{aligned} & \operatorname{RAM}(\mathrm{B}) \rightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A Exclusive-OR Br with r
LDD	r.d	23	$\begin{array}{\|cc\|} \hline 0010,0011 \\ 0 & 1 \\ \hline \end{array}$	RAM (r,d) \rightarrow A	None	Load A with RAM pointed to directly by r, d
LQID		BF	10111111	$\mathrm{ROM}\left(\mathrm{PC}_{10} 08, \mathrm{~A}, \mathrm{M}\right) \mid \rightarrow \mathrm{Q}$	None	Load Q indirect (Note 3)
RMB	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \\ & 42 \\ & 43 \end{aligned}$	$\begin{array}{\|l\|} \hline 0100,1100 \\ 010010101 \\ 010000010 \\ 0100,0011 \\ \hline \end{array}$	$\begin{aligned} & 0 \rightarrow \operatorname{RAM}(B)_{0} \\ & 0 \rightarrow \operatorname{RAM}(B)_{1} \\ & 0 \rightarrow \text { RAM }(B)_{2} \\ & 0 \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Reset RAM Bit
SMB	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{D} \\ & 47 \\ & 46 \\ & 4 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 010011101 \\ & 0100010111 \\ & 010010110 \\ & 010001011 \end{aligned}$	$\begin{aligned} & 1 \rightarrow \operatorname{RAM}(\mathrm{~B})_{0} \\ & 1 \rightarrow \operatorname{RAM}(\mathrm{~B})_{1} \\ & 1 \rightarrow \operatorname{RAM}(\mathrm{~B})_{2} \\ & \left.1 \rightarrow \text { RAM }^{2}\right)_{3} \end{aligned}$	None	Set RAM Bit
STII	y	7-	01111	$\begin{aligned} & y \rightarrow \operatorname{RAM}(\mathrm{~B}) \\ & \mathrm{Bd}+1 \rightarrow \mathrm{Bd} \end{aligned}$	None	Store Memory immediate and increment Bd
TCRA		$\begin{aligned} & 23 \\ & 8 B \end{aligned}$	$\begin{aligned} & 0010,0011 \\ & 10001011 \end{aligned}$	$\begin{aligned} & \mathrm{CD} \rightarrow \mathrm{RD} 1111 \rightarrow \mathrm{~A} \\ & \mathrm{CW} \rightarrow \mathrm{RW} \end{aligned}$	None	Transfer Counter to Register (Timer A) (Note 8)
TCRB		$\begin{aligned} & 23 \\ & 9 B \\ & \hline \end{aligned}$	$\begin{aligned} & 0010,0011 \\ & 1001,1011 \end{aligned}$	$\mathrm{CB} \rightarrow \mathrm{RB} 1111 \rightarrow \mathrm{~A}$	None	Transfer Counter to Register (Timer B) (Note 8)
TMB		$\begin{aligned} & 33 \\ & 35 \end{aligned}$	$\begin{aligned} & 0011,0011 \\ & 0011,0101 \end{aligned}$	$\overline{\mathrm{Br} 3} \rightarrow \mathrm{Br}^{3}$	None	One's complement of Br_{r} to $\mathrm{Br}_{\mathrm{r}}{ }^{3}$ (Toggle memory bank)
TRCA		$\begin{aligned} & 23 \\ & 8 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0010,0011 \\ & 1000,1010 \end{aligned}$	$\begin{aligned} & \mathrm{RD} \rightarrow \mathrm{CD} 1111 \rightarrow \mathrm{~A} \\ & \mathrm{RW} \rightarrow \mathrm{CW} \end{aligned}$	None	Transfer Register to Counter (Timer A) (Note 8)
TRCB		$\begin{aligned} & 23 \\ & 9 A \end{aligned}$	$\begin{aligned} & 0010,0011 \\ & 1001,1010 \end{aligned}$	$\mathrm{RB} \rightarrow \mathrm{CB} 1111 \rightarrow \mathrm{~A}$	None	Transfer Register to Counter (Timer B) (Note 8)
X	r	-6	$\begin{gathered} \hline 00 r 10110 \\ (r=0,3) \\ \hline \end{gathered}$	$\begin{aligned} & \text { RAM }(\mathrm{B}) \leftrightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \\ & \hline \end{aligned}$	None	Exchange RAM with A Exclusive OR Br with r
XAD	rd	23	$\begin{array}{\|cc\|} \hline 0010,0011 \\ 1 & \mathrm{r} \\ \hline \end{array}$	RAM (r,d) $\leftrightarrow A$	None	Exchange A with RAM pointed to directly by rd
XDS	r	-7	$\frac{00 r, 0111}{(r=0,3)}$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \leftrightarrow \mathrm{A} \\ & \mathrm{Bd}-1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd decrements past 0	Exchange RAM with A and Decrement Bd. Exclusive Or Br with r
XIS	r	-4	$\begin{gathered} 00 r 10100 \\ (r=0,3) \end{gathered}$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \leftrightarrow \mathrm{A} \\ & \mathrm{Bd}+1 \rightarrow \mathrm{Bd} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	Bd increments past 15	Exchange RAM with A and increment Bd Exclusive Or Br with r

TS94120•TS94144

INSTRUCTION SET (continued)

Mnemonic	Operand	Mx Code	Machine Language Code (BInary)	Data Flow	8tip Conditions

TRANBFER OF CONTROL INSTRUCTIONS

JID		FF		$R O M\left(P_{10: 8} A, M\right) \rightarrow P C_{7: 0}$	None	Jump Indirect (Note 3)
JMP	a	6.	$\left.\left\|\begin{array}{lll} 10 & 1 & 1 \end{array} 0\right\| 0 \right\rvert\, a_{10}: 8$	$a \rightarrow P C$	None	Jump
JP	a	-.		$a \rightarrow P C_{6: 0}$ $a \rightarrow P C_{5: 0}$	None	Jump within Page (Note 4)
JSRP	a	--	11 이 as:0 ${ }^{1}$	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC} \\ & 00010 \rightarrow \mathrm{PC}_{10: 6} \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \\ & \hline \end{aligned}$	None	Jump to Subroutine Page (Note 5)
JSR	a	6 -		$\left\{\begin{array}{l} P C+1 \rightarrow S A \rightarrow S B \rightarrow S C \\ a \rightarrow P C \end{array}\right.$	None	Jump to Subroutine
RET		48	010011000	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine
PETSK		49		$\mathrm{SC} \rightarrow \mathbf{S B} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip

REGISTER REFERENCE INSTRUCTIONS

CAB		50	0100110000	$A \rightarrow B d$	None	Copy A to Bd
CBA		4E	0100011110	$\mathrm{Bd} \rightarrow \mathrm{A}$	None	Copy Bd to A
LBI	r,d	33		$r, d \rightarrow B$	Skip until not a LBI	Load B immediate with r,d (Note 6)
LEI	y	33 $6-$	100011100011 $010101 \quad y$	$y \rightarrow E N$	None	Load EN Immediate (Note 7)
XABR		12	000110010	$\mathrm{A} \leftrightarrow \mathrm{Br} \mathrm{O} \rightarrow \mathrm{A}_{3}$	None	Exchange A with Br

SKC		20	10010100001		$C=" 1 "$	Skip if C is True
SKE		21	10010100011		$A=R A M(B)$	Skip if A Equals RAM
SKGZ		33 21			$\mathrm{G}_{3: 0}=0$	Skip if G is Zero (all 4 bits)
SKGBZ	0 1 2 2	33 01 11 03 13	0011100111 0000100011 10001100011 0000100111 0001100111	1st byte 2nd byte	$\begin{aligned} & G_{0}=0 \\ & G_{1}=0 \\ & G_{2}=0 \\ & G_{3}=0 \end{aligned}$	Skip if G Bit is Zero

INSTRUCTION SET (continued)

inPUT/OUTPUT INSTRUCTIONS

ING		33 24	$\left.\left\lvert\, \begin{array}{llllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & & 0 & 1 & 0 \mid 1 & 0 & 1 & 0 \end{array}\right.\right]$	$G \rightarrow A$	None	Input G Ports to A (Note 9)
ININ		33 28	$\begin{array}{\|lllllllll} 10 & 0 & 1 & 1 & 10 & 0 & 1 & 1 \\ 10 & 0 & 1 & 0 \mid 1 & 0 & 0 & 0 \end{array}$	IN3, IN2, IN1, ' 0 " \rightarrow A	None	Input IN inputs to A
INIL		33 29	$\left\lvert\, \begin{array}{llllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & & & & & & & \\ \hline & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline \end{array}\right.$	IL_{3}, CKO, ' 0 ', ' 0 ' ' \rightarrow A	None	Input IL_{3} Latch to A (Note 3)
INL		33 2E	$\left\lvert\, \begin{array}{llllllll} 10 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 10 & 0 & 1 & 01 & 1 & 1 & 1 & 0 \\ \hline \end{array}\right.$	$\begin{aligned} & L_{7: 4} \rightarrow \text { RAM }(B) \\ & L_{3: 0} \rightarrow A \end{aligned}$	None	Input L Ports to RAM, A
OBD		33 $3 E$	$\left\|\begin{array}{lllllllll} 10 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{array}\right\|$	$B d \rightarrow D$	None	Output Bd to D Outputs
OGI	y	33 $5 \text { - }$	$\begin{array}{llllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 11 & y & y \end{array}$	$\begin{aligned} & \mathrm{Y} 2 \rightarrow \mathrm{G} 2 \\ & \mathrm{Y} 3 \rightarrow \mathrm{G} 3 \end{aligned}$	None	Output to G Ports Immediate
OMG		33 3A	$\left[\begin{array}{llllllll} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ {\left[\begin{array}{lllllllll} 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{array}\right]} \end{array}\right.$	$\begin{aligned} & \operatorname{RAM}(B)_{2} \rightarrow G_{2} \\ & \operatorname{RAM}(B)_{3} \rightarrow G_{3} \end{aligned}$	None	Output RAM to G Ports
XAS		4F	101001111111	$A \leftrightarrow S I O, C \rightarrow S K L$	None	Exchange A with SIO (Note 3)

Note 1 : All subscripts for alphabetical symbols indicate bit numbers uniess explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least aignificant bit (low-order, right-most bit). For example; A_{3} indicates the most significant (left-most) blt of the 4-bit A regiater.
Note 3 : For additional on the operation of the XAS, JID, LQID, INIL, and SKT instructions, see below.
Note 4 : The JP instruction allows a jump, while in subroutine page 2 or 3, to any ROM location within the two-page boundary of pages 2 or 3. The JP instruction, otherwise, permits a jump to a ROM location within the current 64-word page. JP may not jump to the last word of a paga.
Note 5 : A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3. JSRP may not jump to the last word in page 2.
Note 6 : LBI is a single-byte instruction if $\mathrm{d}=0,9,10,11,12,13,14$, or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1, e.g., to load the lower four bits of $\mathrm{B}(\mathrm{Bd})$ with the value $9(10012)$, the lower 4 bits of the LBI instruction equal $8(1000 \mathrm{~g})$. To load 0 , the lower 4 bits of the LBI instruction should equal 15 (11112).
Nete 7 : Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a " 1 " or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Regiater).
Note 8: All transfer instructions (TRCA, TCRA, TRCB, TCRB) must be selected when $B_{r} 3=1$. If $B_{r} 3=0$, these transfer instructions will be decoded as XAD instruction.
Note 9: G0 and G1 can be used as inputs only with options 34.1 and 35.2.

DESCRIPTION OF SELECTED INSTRUCTIONS

XAS Instruction

XAS (Exchange A with SIO) copies C to the SKL lateh and exchanges the accumulator with the 4-bit contents of the SIO serial-in/serial-out shift register. An XAS instruction can be performed once every 4 instruction cycles to effect a continuous data stream.

LQID Instruction

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 11-bit word PC_{10} : PC_{8}, A,M. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction « pushes » the stack (PC + $1 \rightarrow \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$) and replaces the least significant 8 bits of the PC as follows: $A \rightarrow P C_{7: 4}, R A M_{(B)} \rightarrow P C_{3: 0}$, leaving $P_{10}, P C_{9}$ and PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is « popped» $(S C \rightarrow S B \rightarrow S A \rightarrow P C)$, restoring the saved value of PC to continue sequential program execution. Since LQID pushes SB into SC, the previous contents of SC are lost.

Note: LQID uses 2 instruction cycles if executed, one if skipped.

JID instruction

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M . It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 11 -bit word, $\mathrm{PC}_{10: 8}, \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{10}, \mathrm{PC}_{9}$ and PC_{8} are not affected by JID.

Note: JID uses 2 instruction cycles if executed, one if skipped.

SKT Instruction

The SKT (Skip On Timer) instruction tests the state of the T counter overflow latch (see internal logic, above), executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction allow the processor to generate its own time-base for real-time processing, rather than relying on an external input signal.
SKT can be used (when the option selected for CPU interrupt source is the timer overflow) during the interrupt service routine to clear the overflow latch.

INIL Instruction

INIL (Input IL Latch to A) inputs latch IL3, CKO and 0 into A. The IL3 latch is set if a low-going pulse ($1 \times$ to * 0) has occured on the IN3 input since the last INIL in-
struction, provided the input pulse stays low for at least two instruction cycles. Execution of an INIL inputs IL 3 into A3, and resets this latch to allow it to respond to subsequent low-going pulses on the IN3. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO into A2. If CKO has not been so programmed, $a \times 1 »$ will be placed in A2. A1 and A0 are cleared. IL latch is cleared on reset.

FIGURE 14: INIL HARDWARE IMPLEMENTATION

RET and RETSK Instructions

When a RET instruction is executed at the end of the interrupt subroutine, it restores the state of bit Br 3 that was saved at the beginning of the interrupt subroutine. When used at the end of a software subroutine, a RET instruction will clear bit Br3. The RETSK instruction never modifies bit Br 3 .

Instruction set notes

- The first word of a program (ROM address 0) must be a CLRA (Clear A) instruction.
- Although skipped instructions are not executed, they - are still fetched from the program memory. Thus program paths take the same number of cycles whether instructions are skipped or executed except for JID, and LQID.
- The ROM is organized into pages of 64 words each. The Program Counter is a 11-bit binary counter, and will count through page boundaries. If a JP is the last word of a page, it operates as if it were in the next page. For example, a JP Located in the last word of a page will jump to a location in the next page. JID or LQID located in the last word of every fourth page (i.e. hex address 0FF, 1FF, 2 FF , 3 FF , 4 FF , etc.) will access data in the next group of four pages.

Note: TS94120 needs only 10 bits to address its ROM. Therefore, the eleventh bit (10) is ignored.

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
Input voltage INO SI	VI	$\begin{aligned} & -0.8 \text { to }+10 \\ & -0.5 \text { to }+14 \\ & \hline \end{aligned}$	V
Voltage on any other Pin		-0.5 to +10	
Ambient operating temperature $\begin{aligned} & \text { TS94100CP } \\ & \text { TS94100TP } \end{aligned}$	T_{A}	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Ambient storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead temperature (soldering 10s)		300	${ }^{\circ} \mathrm{C}$
Power dissipation $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	P_{D}	$\begin{gathered} 1 \\ 550 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} \end{gathered}$
Total source current		36	mA
Total sink current		200	mA

D.C. AND OPERATING CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V (Unless otherwise specifed)

Characteristic	Symbol	Min	Typ	Max	Unit
Power supply ripple (peak to peak) - Note A	$\mathrm{V}_{\mathrm{ppl}}$	-	-	0.5	V
Operating supply current (all inputs set to 1) (all outputs set to 1) (all inputs set to 1) (all outputs set to 0)	ICC	-	-	15	mA
		-	-	15.5	

INPUT

CKI input level					
Crystal or RC Logic high	V_{IH}	$0.5 \mathrm{~V}_{\mathrm{CC}}$	-	-	
Logic low	V_{IL}	-	-	1	v
External clock Logic high	$\mathrm{V}_{\text {IH }}$	0.7 V CC	-	-	
Logic low	$V_{\text {IL }}$	-	-	0.2	V
$\overline{\text { RESET }}$ and WATCHDOG (D3) SCHMITT trigger input level Logic high Logic low					
	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	
	$V_{\text {IL }}$	-	-	0.6	V
INO offset voitage (note B, Fig. 15)		-	-	150	mV
Input level on all other inputs				-	
	V_{IH}	2	-	-	v
Logic low	$V_{\text {IL }}$	-	-	0.8	v
With high voltage option selected Logic high	V_{IH}	3.6	-	-	V
Logic low	$V_{\text {IL }}$	-	-	1.2	V
Input capacitance	C_{1}	-	-	7	pF
High impedance input leakage	1	-2	-	+2	$\mu \mathrm{A}$

OUTPUT

```TTL load Logic high (lOH = -100\muA) Logic low (lOL = 1.6 mA)```	$\mathrm{V}_{\mathrm{OH}}$ $\mathrm{V}_{\mathrm{OL}}$	2.4	-	0.4	V
CMOS load Logic high ( $\mathrm{IOH}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$ )   Logic low ( $\mathrm{lOL}_{\mathrm{OL}}=+10 \mu \mathrm{~A}$ )	$\mathrm{V}_{\mathrm{OH}}$ $\mathrm{V}_{\mathrm{OL}}$	${ }_{0}^{0.7 V_{C C}}$	-	0.2	v

OUPUT SINK CURRENT

Characteristic	Symbol	Min	Typ	Max	Unit
SO,SK and L0-7 outputs with TTL option $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{VOL}_{\mathrm{OL}}=0.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOL} \end{aligned}$	$\begin{gathered} 2 \\ 1.6 \end{gathered}$	$\begin{gathered} 4.6 \\ 4 \end{gathered}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
G1-G3, D0-D3, LO-L7 outputs with very high current option $\left.\begin{array}{rl} \left(\mathrm{VCC}_{\mathrm{CC}}\right. & =5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \end{array}=1.0 \mathrm{~V}\right)$	$\begin{aligned} & \mathrm{lOL} \\ & \mathrm{lOL} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
G0 output (Triac driver) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{lOL} \\ & \mathrm{lOL} \end{aligned}$	50 28	70 40	$\begin{aligned} & 90 \\ & 46 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
CKI (Single-pin RC oscillator) $V_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{I H}=3.5 \mathrm{~V}$	${ }^{1 / H}$	2	4,6	10	mA

OUTPUT SOURCE CURRENT

G2, G3, DO-D3 standard output and SO, SK output with TTL option $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & -250 \\ & -100 \end{aligned}$	$\begin{array}{r} -700 \\ -350 \\ \hline \end{array}$	$\begin{array}{r} -1900 \\ -1000 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
SO, SK outputs with high current option, G0, G1 and LO-L7 outputs $\begin{aligned} & v_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{OH}}=2.0 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{array}{r} -1.2 \\ -1.2 \\ \hline \end{array}$	$\begin{array}{r} -2.8 \\ -2.8 \\ \hline \end{array}$	-7 -7	mA mA
Input load source current $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { iiil } \\ & \text { IIL } \end{aligned}$	-1i -10	$\begin{aligned} & -45 \\ & -45 \end{aligned}$	$\begin{aligned} & -150 \\ & -150 \end{aligned}$	$\mu \dot{A}$ $\mu \mathrm{~A}$


Characteristic	Symbol	Min	Typ	Max	Unit
3-State Output leakage current (Available on L only)	L	-	-5	+5	$\mu \mathrm{~A}$
Total Sink Current allowed	$\Sigma I_{\text {sink }}$	-	-	200	mA
All outputs combined		-	-	120	
D, G Ports		-	-	160	
L Port		-	-	30	
each LO-L7, G1-G3, DO-D3 pin		-	-	60	
G0 pin		-	5		
Each other pin					
Total Source Current allowed					
All I/O combined		-	-	36	mA
Each LO-L7, G0, G1, SO, SK pin		-	-	4	
All other pins combined		-	4		

Note $\mathrm{A}: \mathrm{V}_{\mathrm{CC}}$ change must be less than 0.5 V in a 1 ms period to maintain proper operations.
Note B: INO Offset Voltage is the absolute value of the difference between the voltage at INO and GROUND.

## MCU AND DUAL TIMER ELECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 7 \mathbf{7 0}^{\circ} \mathrm{C} ; \mathbf{4 . 5 V} \leqslant \mathrm{V}_{\mathrm{CC}} \leqslant \mathbf{5 . 5 V}$（Unless otherwise specified）

Characteristic	Symbol	Min	Typ	Max	Unit
Instruction cycle time    XTAL（Fig．16） $\mathbf{+ 2 0}$（option 4．2）    $\mathbf{+ 1 0}$（option 4．1）    $\mathbf{+ 5}$（option 4．0）   RC Oscillator $\mathbf{+ 1 0}$（option 4．1）   External clock $\mathbf{+ 1 0}$（option 4．1）	$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 4 \end{aligned}$	二	$\begin{aligned} & 11 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
Rise time，fall time on CKI input   （External waveform generator   on CKI）   +10 mode   CKI duty cycle（Fig．17）	$t_{r}, t_{f}$	$\overline{0.4}$	二	$\begin{aligned} & 50 \\ & 0.6 \end{aligned}$	ns
Input set up time All inputs	$\mathrm{t}_{\text {set }}$ up	$\mathrm{tc}^{1} / 10+1.3$	－	－	$\mu \mathrm{S}$
Input hold time All inputs	thold	100	－	－	ns
Output propagation delay（Load $=$ one TTL load）   SK（ENO $=0, S K=1$ ）   SK as an output（ $\mathrm{SK}=0$ ）   SO as an output（ENO，EN3）$=(00,10,11)$   SO as SIO output（ENO，EN3）$=01$   All other outputs	$\begin{gathered} \mathrm{t}_{\mathbf{s} 1}, \mathrm{t}_{\mathrm{s} 0} \\ \mathrm{t}_{\mathrm{pd1}} \mathrm{t}_{\mathrm{pdO}} \\ \mathrm{t}_{\mathrm{pdd} 1} \mathrm{t}_{\mathrm{pdd}} \\ \mathrm{t}_{\mathrm{pdd} 1}^{\mathrm{t} d \mathrm{pdo}} \\ \mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pdd}} \\ \hline \end{gathered}$	$\begin{array}{r} - \\ -t_{c^{\prime}} 10 \\ -t_{\mathrm{c}} / 10 \\ \mathrm{t}_{1} / 10 \\ -\mathrm{t}_{\mathrm{c}} / 10 \end{array}$	二	$\begin{gathered} 2 \\ 0.6 \\ 0.6 \\ t_{c} / 5+0.6 \\ 1.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \hline \end{aligned}$
G0，G1 rise time G0，G1 fall time	${ }_{\mathrm{t}_{\mathrm{HL}}}$	－	二	$\begin{aligned} & 1.0 \\ & 200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$

## Dual timer

System clock（Fig．19）		${ }_{\text {f CLK }}$	450	－	1250	kHz
Timer A and timer B Prescaler	＋ 1	fCLKA，f＇${ }^{\text {f }}$ LKB	450	－	1250	kHz
Prescaler Prescaler Prescaler	$\begin{aligned} & +5 \\ & +20 \\ & +40 \end{aligned}$	fCLKA，fCLKB fCLKA，tCLKB flLKA，fclkB	$\begin{gathered} 90 \\ 22,5 \\ 11250 \end{gathered}$	二	$\begin{gathered} 250 \\ 62,5 \\ 31250 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{~Hz} \end{aligned}$
INO，IN3 INPUT   All modes   INO in analog period counter mode		fino，fin3	0	二	$\begin{gathered} \mathrm{f} \mathrm{C} L / \mathrm{K} / 2 \\ 1 / 2 \mathrm{t}_{\mathrm{c}} \\ \hline \end{gathered}$	二



Voffset＞ 0


FIGURE 15：ZERO CROSSING DETECTOR OUTPUT

Characteristic	Symbol	Min	Typ	Max	Unit
External C value	C	250	-	-	pF
External $R$ value ( $C=250 \mathrm{pF}$ )	R	4	-	8	k $\Omega$
External C values$\mathrm{f} \mathrm{CKI}=5 \mathrm{MHz}$					
	C1	-	15	-	pF
	C2	-	15	-	pF
${ }^{\text {f CKI }}=455 \mathrm{kHz}$	C1	-	30	-	pF
	C2	-	30	-	pF



FIGURE 16 |


FIGURE 17


SK is a 0.5 duty cycle signal.
Inputs are sampled (by MCU) on the falling edge of SK. Outputs may be sampled on the rising edge to SK.

Note that $\Phi 1, \Phi 2, \Phi 3, \Phi 4, \Phi 5$ are MCU internal.

FIGURE 18: I/O TIMINGS ( $\div 10$ MODE)

6 -


## FIGURE 19: PRESCALERS MASK-OPTIONS

## I/O OPTIONS

TS $\$ 4100$ outputs have the following optional configurations illustrated by figure 20:
a. General purpose - an enhancement-mode device to ground in conjunction with a depletion-mode paralleled by an enhancement-mode device to Vcc.
On G2-G3 and SO-SK with TTL option, this configuration is compatible with TTL and CMOS input requirements. On G1 and SO-SK with high current option, it allows fast rising and falling edges when driving capacitive loads. On G0, the enhancement-mode device to ground meets the typical current sinking requirements to directly trigger a triac.
b. Open-drain - an enhancement mode device to ground only, allowing external pull-up, as required by the user's application. Available on SO, SK, D, G2-G3 outputs.
c. 3-state general purpose - same as[a., ;but may be disabled.

The sinking devices meet the typical current sinking requirements of a LED display. These devices may be turned off under program control (see functional description, EN register) in a high-impedance state to provide required LED segments blanking for a multiplexed display. Available on L outputs only.
d. Open-drain L - same as b. but may be disabled available on $L$ only.
e. 3-state push-pull - an enhancement-mode device to ground and $V_{C C}$. Available on L outputs only.

TS94100 inputs have the following optional configurations:
f. An on-chip depletion load device to Vcc.
g. A Hi-Z input which must be driven to $\mathrm{a} \times 1 \approx$ or $\approx 0 »$ by external components.

## OUTPUT CONFIGURATIONS


a. GENERAL PURPOSE OUPTUT

c. 3 STATE GENERAL PURPOSE L OUTPUT

b. OPEN DRAIN OUTPUT

d. OPEN DRAIN L OUTPUT

e. 3-STATE PUSH-PULL L OUTPUT

FIGURE 20

INPUT CONFIGURATIONS

f. INTPUT WITH LOAD

g. Hi -Z INPUT

The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of 7 devices (numbered \# 1 to \# 7 respectively).

The SO, SK, D, G2-G3 outputs can be configured as shown in $\mathbf{a}, \mathbf{b}$.

The G0-G1 are configured as general purpose output, as shown in a.

Note that when inputing data to the G ports, the G out-
puts should be set to a * 1 n. The L outputs can be configured as shown in $\mathbf{c}, \mathbf{d}, \boldsymbol{e}$.

An important point to remember if using configuration $\mathbf{c}$ with the $L$ drivers is that even when the $L$ drivers are disabled, the depletion load device will source a small amount of current (see figure 20 device 5) ; however, when the $L$ lines are used as inputs, the disabled depletion device cannot source a sufficient current to pull up an external input to a togic 1.

INO is configured as an Hi-Z input.

Output	Output scheme	Mask option	Transistor type				
			12	2	4	5	7
SO, SK	$\begin{aligned} & \mathbf{a} \\ & \mathbf{a} \\ & \mathbf{b} \end{aligned}$	opt. 9-0   opt. 9-1   opt. 9-2	$\bullet$ -	-	-	$\bullet$	
$\begin{aligned} & \text { G2, G3 } \\ & \text { D0, D1, D2, D3 } \end{aligned}$	$\begin{aligned} & \mathbf{a} \\ & \mathbf{b} \end{aligned}$	opt. 20-0   opt. 20-1		$\bullet \bullet$		-	
G0	a				-	-	-
G1	a			-	-	-	
L0, L1... L7		opt. 11-0   opt. 11-1   opt. 11-2   opt. 11-3   opt. 11-4   opt. 11-5	-	-	$\bullet \cdot$	$\bullet \cdot$	

## OPTION LIST

OPTION 1: CKO Pin configuration
0: clock generator output to crystal/resonator
: general purpose input, load device to Vcc
2: general purpose input, high-Z
OPTION 2: CKO intput levels
0 : standard $T \mathrm{LL}$ input levels ( $0=0.8 \mathrm{~V}, 1=2.0 \mathrm{~V}$ )
1 : higher voltage input levels $(0=1.2 \mathrm{~V}, 1=3.6 \mathrm{~V})$
OPTION 3: CKI input configuration
0 : single pin RC controlled oscillator (option 4 must be +10 )
1: crystal input
2: external clock (option 4 must be +10 )
OPTION 4: CKI divider
0 : CKI frequency divided by 5
1: CKI frequency divided by 10
2: CKI frequency divided by 20
OPTION 5: Reset pin configuration
0 : load device to Vcc
1: high-Z input
OPTION 6: IN input configuration (IN1-IN3)
0 : load device to Vcc
1: high-Z input
OPTION 7: IN input levels (IN1-IN3)
0 : standard TTL input levels ( $0=0.8 \mathrm{~V}, 1=2.0 \mathrm{~V}$ )
1: higher voltage input levels $(0=1.2 \mathrm{~V}, 1=3.6 \mathrm{~V})$

* Note: INO has no option

OPTION 8: SI input levels
0 : standard $T T L$ input levels ( $0=0.8 \mathrm{~V}, 1=2.0 \mathrm{~V}$ )
1: higher voltage input levels $(0=1.2 \mathrm{~V}, 1=3.6 \mathrm{~V})$
OPTION 9: SO output configuration -
0 : general purpose TTL output
1: general purpose high current output
2: open drain output
OPTION 10: SK output configuration
same as OPTION 9
OPTION 11: LO output driver
0: 3-state general purpose TTL output
1: 3-state general purpose very high current output
2: open drain TTL output
3: open drain very high current output
4: 3-state push-pull TTL output
5: 3-state push-pull very high current output
OPTION 12: L1 output driver same as OPTION 11
OPTION 13: L2 output driver same as OPTION 11
OPTION 14: L3 output driver same as OPTION 11
OPTION 15: L4 output driver same as OPTION 11
OPTION 16: L5 output driver same as OPTION 11
OPTION 17: L6 output driver same as OPTION 11
OPTION 18: L7 output driver same as OPTION 11

OPTION 19: L input level L0-L7
0 : standard $T T L$ input levels ( $0=0.8 \mathrm{~V}, 1=2.0 \mathrm{~V}$ )
1: higher voltage input levels ( $0=1.2 \mathrm{~V}, 1=3.6 \mathrm{~V}$ )
OPTION 20: G2 output driver
0 : general purpose output
1: open drain output
OPTION 21: G3 output driver same as OPTION 20
OPTION 22: G input level (G0-G3)
0 : standard TTL input levels ( $0=0.8 \mathrm{~V}, 1=2 \mathrm{~V}$ )
1: higher voltage input levels $(0=1.2 \mathrm{~V}, 1=3.6 \mathrm{~V})$
OPTION 23: DO output configuration same as OPTION 20
OPTION 24: D1 output configuration same as OPTION 20
OPTION 25: D2 output configuration same as OPTION 20
OPTION 26: D3 output configuration same as OPTION 20
OPTION 27: CPU interrupt source
0 : external interrupt
1: timer overflow
OPTION 28: timer input
0 : prescaler output
1: event counter
OPTION 29: watchdog
0: no watchdog
1: D3 pin as watchdog input (OPTION 26 must be open drain)
OPTION 30: Dual timer block A clock (CLKA)
0 : system clock (CLK) divided by 1
1: system clock (CLK) divided by 5
2: system clock (CLK) divided by 20
3: system clock (CLK) divided by 40
OPTION 31: Dual timer block B clock (CLKB)
0 : system clock (CLK) divided by 1
1: system clock (CLK) divided by 5
2: system clock (CLK) divided by 20
3: system clock (CLK) divided by 40
OPTION 32: Dual timer interrupt source (block A)
0 : zero crossing detector output falling edge (ZCA)
1: zero crossing detector output rising edge and falling edge (ZCA)
OPTION 33: Mode selection for MRBO $=0$
and MRB1 $=0$
0 : period measurement
1: duty cycle measurement
OPTION 34: G0 output for STA $=0$
0 : logical 0
1: logical 1
OPTION 35: G1 output for STB = 0 or when G1
is disabled (see CSB on fig. 14)
0 : logical 0
1: logical 1

## PIN ASSIGNMENTS

## PIN NAMES

L7-LO	8 bi-directionnal I/O ports with 3-state output
G3-G2	2 bi-directionnal I/O ports
G0-G1	2 dual timer peripheral outputs or 2 general purpose inputs
INO	Dual timer peripheral analog input (Zero crossing detector input)
IN1-IN2	2 general purpose inputs
IN3	General purpose or dual timer peripheral input
SI	Serial input
SO	Serial output (or general purpose output)
DO- D2	3 general purpose outputs
D3	General purpose output (or watch dog input)
SK	Logic controlled clock (or general purpose output)
CKI	Oscillator input
CKO	Oscillator output (or general purpose input)
RESET	RESET input
VCC	Power supply
GND	Ground



## ORDERING INFORMATION



## PHYSICAL DIMENSIONS



CB-132


These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different products.


8-bit microcomputers

## 8-BIT MICROCOMPUTERS SELECTION GUIDE

## EF6801 FAMILY

Function	Part number	Characteristic		Package	Page
HIGH PERFORMANCE MCUs	EF6801	Dedicated MCUs for applications where high computing facilities are required such as personal/home computers, injection/trip computers, data transmission computers.   - $8 \times 8$ multiply instruction   - 29 I/O lines and 2 control lines   - 16-bit programmable timer   - Single-chip or expanded operation up to 64 Kbytes addressing space   - Serial Communication Interface (SCI)   - Emulation and development on DEVICE ${ }^{\circ}$	- RAM : 128 bytes ( 64 standby)   - ROM : 2 Kbytes   - RAM : 128 bytes ( 64 standby)	,	2-7
	EF6803			DIL40	2-7
	EF681U4*		- RAM : 192 bytes (32 standby)   - ROM 4 Kbytes		2-47
	EF6803U4*		- RAM : 192 bytes (32 standby)	PLCC44	2-47

* DIL only


## EF6804 FAMILY

Function	Part number	Characteristic		Package	Page
LOW-END MCU	EF6804J2	The highest improvement in cost reduction for low-end applications An MCU at a TTL/LS price level.   - 12 bidirectional I/O lines (8 LED compatible)   - Self check mode   - 8-bit timer with 7-bit software programmable prescaler   - Emulation and development on DEVICE ${ }^{\circledR}$	- RAM : 32 bytes   - ROM : 1012 bytes	Rispypyin   DIL. 20	2-91
LOW COST MCU	EF6804P2	High on-chip feature integration well suited for additional 4-bit application extensions.   - 20 bidirectional I/O lines (8 LED compatible)   - Self check mode   - 8-bit timer with 7-bit software programmable prescaler   - Emulation and development on DEVICE ${ }^{\circledR}$	- RAM : 32 bytes   - ROM: 1020 bytes		2-135
LOW POWER MCUs	EF68HC04P3 Dedicated to power and data saving applications or requiring protection against mains failures.   - Pin to pin and software compatible with EF6804P2   - Self check mode   - 8-bit timer with 7-bit software programmable prescaler   - Emulation and development on DEVICE ${ }^{\circledR}$		- RAM : 124 bytes   - ROM : 2 Kbytes   - 20 I/O lines		
	TS68HC04J3		- RAM : 124 bytes   - ROM : 2 Kbytes   - 12 I/O lines	Ayyyyyi   DIL20	2-179

## 8-BIT MICROCOMPUTERS SELECTION GUIDE

## EF6805 FAMILY

Function	Part number	Characteristic		Package	Page
PROCESS CONTROL MCUs	EF6805P2	General purpose MCUs covering a wide range of applications such as electronic ignition, keyboard encoding, home appliances, electronic games,...   - Self check mode   - 8-bit timer with 7-bit programmable prescaler   - Emulation and development on   DEVICE ${ }^{\circledR}$	- RAM : 64 bytes - ROM: 1 Kbyte 20 1/O lines (8 LED compatible)	$\begin{aligned} & \text { yiby } \\ & \text { DIL28 } \end{aligned}$	2-225
	EF6805P6		- RAM : 64 bytes   - ROM: 1796 Kbytes   - 20 I/O lines (8 LED compatible)	$\begin{aligned} & \text { Wenelotibilill } \\ & \text { PLCC28 } \end{aligned}$	2-249
	EF6805U2		- RAM : 64 bytes   - ROM: 2 Kbytes   - 32 I/O lines:   - 24 bidirectional ( 8 LED compatible)   - 8 input only		2-329
	EF6805U3		- RAM : 112 bytes   - ROM: 3776 bytes   - 32 I/O lines:   - 24 bidirectional (8 LED compatible)   - 8 input only	PLCC44	2-355
A/D CONVERSION MCUs	EF6805R2	Dedicated MCUs for industrial control and applications where low cost analog signal computing is required such as automotive motor control.   - 32 I/O lines:   - 24 bidirectional (8 LED compatible) 8 input only   - Self check mode   - 8-bit timer with 7-bit programmable prescaler   - A/D converter with 8-bit conversion and 4 multiplexed analog inputs   - Emulation and development on DEVICE ${ }^{\circledR}$	- RAM : 64 bytes   - ROM : 2 Kbytes   - Mask programmable prescaler		2-273
	EF6805R3		- RAM : 112 bytes   - ROM : 3776 bytes   - Software programmable prescaler	DIL40      PLCC44	2-301

## 8-BIT MICROCOMPUTERS SELECTION GUIDE

## MK3870 FAMILY



The EF6801 is an 8 -bit single-chip microcomputer unit (MCU) which significantly enhances the capabilities of the $\mathbf{6 8 0 0}$ family of parts. It includes an upgraded 6800 microprocessor unit (MPU) with upward-source and object-code compatibility. Execution times of key instructions have been improved and several new instructions have been added including an unsigned multiply. The MCU can function as a monolithic microcomputer or can be expanded to a 64 K byte address space. It is TTL compatible and requires one +5 -volt power supply. On-chip resources include 2048 bytes of ROM, 128 bytes of RAM, a Serial Communications Interface (SCI), parallel I/O, and a three function Programmable Timer. The EF6803 can be considered as an EF6801 operating in Modes 2 or 3. EF6801 MCU Family features include :

- Enhanced EF6800 Instruction Set
- $8 \times 8$ Multiply Instruction
- Serial Communications Interface (SCI)
- Upward Source and Object Code Compatibility with the 6800
- 16-Bit Three-Function Programmable Timer
- Single-Chip or Expanded Operation to 64 K Byte Address Space
- Bus Compatibility with the 6800 Family
- 2048 Bytes of ROM (EF6801)
- 128 Bytes of RAM
- 64 Bytes of RAM Retainable During Powerdown
- 29 Parallel I/O and Two Handshake Control Lines
- Internal Clock Generator with Divide-by-Four Output.
- Complete Development System Support on DEVICE ${ }^{\circledR}$.
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature range
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Temperature range



PIN ASSIGMENT	
$v _ { s s } \llbracket \longdiv { 1 }$	40 aE
xtalid 2	39 JSCl
Extal2 ${ }^{\text {a }}$	$38 \mathrm{JSC2}$
तला 14	37 P P 30
IROIO 5	${ }_{36} \mathrm{P}^{\text {P }} 1$
RESET 06	${ }_{35} \mathrm{P}_{\text {P32 }}$
$v \mathrm{cc}$ ¢7	34 P ${ }^{3} 3$
P20 8	33 P 34
P2109	32 P P35
P22 10	31.8836
P23 11	30 P37
P24 12	291840
P10 13	${ }_{28} \mathrm{P}^{\text {P41 }}$
P11 14	${ }_{27} \mathrm{IP}_{\mathrm{P} 42}$
P12 15	${ }_{26} \mathrm{P}^{2} 43$
P13 16	${ }_{25} \mathrm{P}^{2} 4$
P14 17	${ }_{24} \mathrm{P}^{\text {P45 }}$
P15 018	${ }_{23} \mathrm{P}^{\text {P46 }}$
P16 19	${ }_{22} \mathrm{P}^{2} 47$
P17420	$21 \int_{\text {Standby }}^{v_{c c}}$

FIGURE 1 -6801/6803 BLOCK DIAGRAM

(1) No functioning ROM in EF6803

## POWER CONSIDERATIONS

The average chip-junction temperature, $\mathrm{T}_{\mathrm{J}}$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right) \tag{1}
\end{equation*}
$$

Where:
$\mathrm{T}_{\mathrm{A}} \equiv$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{J A} \equiv$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{PD}_{\mathrm{D}} \equiv$ PINT + PPORT
PINT $=$ ICC $\times$ VCC, Watts - Chip Internal Power
PPORT $=$ Port Power Dissipation, Watts - User Determined

For most applications PPORT < PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between $P_{D}$ and $T_{J}$ (if PPORT is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A^{\bullet} \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation 3 by measuring $P_{D}$ (at equilibrium) for a known $T_{A}$. Using this value of $K$ the values of $P D$ and $T J$ can be obtained by solving equations (1) and (2) iteratively for any value of $T_{A}$.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage	$V_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range EF6801/03, EF6801/03-1, EF68A01/03   EF6801/03, EF6801/03-1 : V suffix   EF6801/03, EF6801/03-1 : A suffix	TA	$\begin{gathered} T_{L} \text { to } T_{H} \\ 0 \text { to } 70 \\ -40 \text { to } 85 \\ -40 \text { to } 105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs aganst damage due to high static voltages or electric fieids; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{C C}$ Input protection is enhanced by connecting unused inputs to either $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}}$.

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Rating
Thermal Resistance			
Plastic	$\theta$ JA	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
PLCC		100	

CONTROL TIMING $\left(V_{C C}=5.0 \vee \pm 5 \%, V_{S S}=0, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	EF6801		EF6801-1		EF68A01		EF68B01		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Frequency of Operation	$f_{0}$	0.5	1.0	0.5	1.25	0.5	1.5	0.5	2.0	MHz
Crystal Frequency	${ }^{\text {f XTAL }}$	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
External Oscillator Frequency	$4 \mathrm{f}_{0}$	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
Crystal Oscillator Start Up Time	tre	-	100	-	100	-	100	-	100	ms
Processor Control Setup Time	tPCS	200	-	170	-	140	-	110	-	ns

DC ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{Vdc} \pm 5 \%, V_{S S}=0, T_{A}=T_{L}\right.$ to $T_{H}$, unless othervise noted)

Characteristic	Symbol	$\begin{gathered} \text { EF6801/03 } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { EF6801/03 } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		$\begin{array}{c\|} \text { EF6801/03 } \\ -40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C} \end{array}$		Unit
		Min	Max	Min	Max	Min	Max	
Input High Voltage $\begin{array}{r}\overline{\text { RESET }} \\ \text { Other Inputs }\end{array}$	$V_{\text {IH }}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{SS}}+4.0 \\ \mathrm{~V}_{\mathrm{SS}}+2.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{SS}}+4.0 \\ \mathrm{~V}_{\mathrm{SS}}+2.2 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{SS}}+4.0 \\ \mathrm{~V}_{\mathrm{SS}}+2.2 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	V
Input Low Voltage All Inputs	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	V
Input Load Current Port 4   $\left(\mathrm{V}_{\text {in }}=0\right.$ to 2.4 V$)$ SCl	1 in	-	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	- -	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mA
Input Leakage Current   $\left(\mathrm{V}_{\text {in }}=0\right.$ to 5.25 V$)$ $\overline{\text { NMI, }} \overline{\mathrm{RQ} 1}, \overline{\mathrm{RESET}}$	1 in	-	2.5	-	5.0	-	5.0	$\mu \mathrm{A}$
Hi-Z (Off State) Input Current    $\left(\mathrm{V}_{\text {in }}=0.5\right.$ to 2.4 V$)$ Ports 1, 2, and 3	ITSI	-	10	-	20	-	20	$\mu \mathrm{A}$
Output High Voltage    (ILoad $=-65 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=$ Min)* E, Port 4, SC1, SC2   (LLoad $=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=$ Min) Other Outputs	V OH	$\left\|\begin{array}{l} \mathrm{V}_{\mathrm{SS}}+2.4 \\ \mathrm{~V}_{\mathrm{SS}}+2.4 \end{array}\right\|$	-	$\begin{array}{\|} \mathrm{V}_{\mathrm{SS}}+2.4 \\ \mathrm{v}_{\mathrm{SS}}+2.4 \end{array}$	-	$\left\|\begin{array}{l} \mathrm{V}_{\mathrm{SS}}+2.4 \\ \mathrm{v}_{\mathrm{SS}}+2.4 \end{array}\right\|$	-	V
Output Low Voltage   ( ${ }_{\text {Load }}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$ )   All Outputs	$\mathrm{V}_{\mathrm{OL}}$	-	$\mathrm{NSS}+0.5$	-	V SS +0.6	-	$\mathrm{NSS}^{+}+0.6$	V
Darlington Drive Current ( $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$ ) Port 1	IOH	1.0	4.0	1.0	5.0	1.0	5.0	mA
Internal Power Dissipation (Measured at $T_{A}=T_{L}$ in Steady-State Operation)	Pint	-	1200	-	1500	-	1500	mW
Input Capacitance Port 3, Port 4, SCl   $\left(\mathrm{V}_{\text {in }}=0, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{O}}=1.0 \mathrm{MHz}\right)$ Other Inputs	$\mathrm{C}_{\text {in }}$	-	$\begin{gathered} 12.5 \\ 10 \end{gathered}$	-	$\begin{gathered} 12.5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} 12.5 \\ 10 \\ \hline \end{gathered}$	pF .
  $V_{\text {CC }}$ Standby $\begin{array}{r}\text { Powerdown } \\ \text { Powerup }\end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SBB}} \\ & \mathrm{~V}_{\mathrm{SB}} \end{aligned}$	$\begin{gathered} 4.0 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	$\begin{gathered} 4.0 \\ 4.75 \\ \hline \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	V
Standby Current Powerdown	ISBB	-	6.0	-	8.0	-	8.0	mA

*Negotiable to $-100 \mu \mathrm{~A}$ (for further information contact the factory)

PERIPHERAL PORT TIMING (Refer to Figures 2-5)

Characteristics	Symbol	EF6801   EF6803		$\begin{aligned} & \text { EF6801-1 } \\ & \text { EF6803-1 } \end{aligned}$		EF68A01 EF68A03		$\begin{aligned} & \text { EF68B01 } \\ & \text { EF68B03 } \end{aligned}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Peripheral Data Setup Time	tPDSU	200	-	200	-	150	-	100	-	ns
Peripheral Data Hold Time	tPDH	200	-	200	-	150	-	100	-	ns
Delay Time, Enable Positive Transition to $\overline{\mathrm{OS} 3}$ Negative Transition	tosD1	-	350	-	350	-	300	-	250	ns
Delay Time, Enable Positive Transition to $\overline{\mathrm{OS3}}$ Positive Transition	tosD2	-	350	-	350	-	300	-	250	ns
Delay Time, Enable Negative Transition to Peripheral Data Valid	tpWD	-	350	-	350	-	300	-	250	ns
Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid	${ }^{\text {t }}$ CMOS	-	2.0	-	2.0	-	2.0	-	2.0	$\mu \mathrm{S}$
Input Strobe Pulse Width	tPWIS	200	-	200	-	150	-	100	-	ns
Input Data Hold Time	${ }_{\text {I }} \mathrm{H}$	50	-	50	-	40	-	30	-	ns
Input Data Setup Time	IIS	20	-	20	-	20	-	20	-	ns

FIGURE 2 - DATA SETUP AND HOLD TIMES (MPU READ)

*Port 3 Non-Latched Operation (LATCH ENABLE $=0$ )

FIGURE 4 - PORT 3 OUTPUT STROBE TIMING (EF6801 SINGLE-CHIP MODE)

"Access matches Output Strobe Select (OSS = O, a read; $O S S=1$, a write)

FIGURE 3 - DATA SETUP AND HOLD TIMES (MPU WRITE)


NOTES:
110 k Pullup resistor required for Port 2 to reach 0.7 VCC
2 Not applicable to P21
3 Port 4 cannot be pulled above VCC

FIGURE 5 - PORT 3 LATCH TIMING
(EF6801 SINGLE-CHIP MODE)


[^3]BUS TIMING (See Notes 1 and 2)

Ident.   Number	Characteristics	Symbol	$\begin{aligned} & \text { EF6801 } \\ & \text { EF6803 } \end{aligned}$		$\begin{aligned} & \text { EF6801-1 } \\ & \text { EF6803-1 } \end{aligned}$		EF68A01EF68A03		$\begin{aligned} & \text { EF68B01 } \\ & \text { EF68B03 } \end{aligned}$		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
1	Cycle Time	${ }^{\text {t }}$ cyc	1.0	2.0	0.8	2.0	0.667	2.0	0.5	2.0	$\mu \mathrm{S}$
2	Pulse Width, E Low	PW EL	430	1000	360	1000	300	1000	210	1000	ns
3	Pulse Width, E High	PWEH	450	1000	360	1000	300	1000	220	1000	ns
4	Clock Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}} . \mathrm{tf}^{\text {f }}$	-	25	-	25	-	25	-	20	ns
9	Address Hold Time	${ }_{\text {taH }}$	20	-	20	-	20	-	10	-	ns
12	Non-Muxed Address Valid Time to E*	${ }^{\text {t }}$ AV	200	-	150	-	115	-	70	-	ns
17	Read Data Setup Time	${ }^{\text {t DSR }}$	80	-	70	-	60	-	40	-	ns
18	Read Data Hold Time	${ }^{\text {t }}$ DHR	10	-	10	-	10	-	10	-	ns
19	Write Data Delay Time	t DDW	-	225	-	200	-	170	-	120	ns
21	Write Data Hold Time	tohw	20	-	20	-	20	-	10	-	ns
22	Muxed Address Valid Time to E Rise*	tavM	200	-	150	-	115	-	80	-	ns
24	Muxed Address Valid Time to AS Fall*	${ }^{\text {t }}$ ASL	60	-	50	-	40	-	20	-	ns
25	Muxed Address Hold Time	${ }^{\text {t }}$ AHL	20	-	20	-	20	-	10	-	ns
26	Delay Time, E to AS Rise*	${ }^{\text {t }}$ ASD	90**	-	$70^{\circ}$	-	$60^{\circ}$	-	45**	-	ns
27	Pulse Width, AS High*	PWASH	220	-	170	-	140	-	110	-	ns
28	Delay Time, AS to E Rise*	tASED	90	-	70	-	60	-	45	-	ns
29	Usable Access Time******	${ }^{\text {t }}$ ACC	595	-	465	-	380	-	270	-	ns

- At specified cycle time.
" " t ASD parameters listed assume external TTL clock drive with $50 \% \pm 5 \%$ duty cycle. Devices driven by an external TTL clock with $50 \%$ $\pm 1 \%$ duty cycle or which use a crystal have the following $t$ ASD specifications : $100 \mathrm{~ns} \min .(1.0 \mathrm{MHz}$ devices) , 80 ns min . ( 1.25 MHz devices). $65 \mathrm{~ns} \min$. (1.5 MHz devices), $50 \mathrm{~ns} \min$. (2.0 MHz devices).

FIGURE 6 - BUS TIMING


FIGURE 8 - TIMING TEST LOAD PORTS 1, 2, 3, 4

$\mathrm{C}=90 \mathrm{pF}$ for P30-P37, P40-P47, E, SC1, SC2
$=30 \mathrm{pF}$ for P10-P17, P20-P24
$R=37 \mathrm{k} \Omega$ for P40-P47, E, SC1, SC2
$=24 \mathrm{k} \Omega$ for P10-P17, P20-P24
$=24 \mathrm{k} \Omega$ for P30-P37

## INTRODUCTION

TheEF6801 is an 8-bit monolithic microcomputer which can be configured to function in a wide variety of applications. The facility which provides this extraordinary flexibility is its ability to be hardware programmed into eight different operating modes. The operating mode controls the configuration of 18 of the 40 MCU pins, available on-chip resources, memory map, location (internal or external) of interrupt vectors, and type of external bus. The configuration of the remaining 22 pins is not dependent on the operating mode.

Twenty-nine pins are organized as three 8 -bit ports and one 5-bit port. Each port consists of at least a Data Register and a write-only Data Direction Register. The Data Direction Register is used to define whether corresponding bits in the Data Register are configured as an input (clear) or output (set).

The term "port," by itself, refers to all of the hardware associated with the port. W!hen the port is used as a "data port" or "I/O port," it is controlled by the port Data Direction Register and the programmer has direct access to the port pins using the port Data Register. Port pins are labled as Pij where i identifies one of four ports and j indicates the particular bit.

The Microprocessor Unit (MPU) is an enhanced EF6800 MPU with additional capabilities and greater throughput. It is upward source and object code compatible with the EF6800. The programming model is depicted in Figure 9, where Accumulator D is a concatenation of Accumulators A and $B$. A list of new operations added to the 6800 instruction set are shown in Table 1.

The EF6803 can be considered an EF6801 that operates in Modes 2 and 3 only.

FIGURE 9 - PROGRAMMING MODEL


## OPERATING MODES

The EF6801 provides eight different operating modes (Modes 0 through 7), the EF6803 provides two operating modes (Modes 2 and 3). The operating modes are hardware selectable and determine the device memory map, the configuration of Port 3, Port 4, SC1, SC2, and the physical location of the interrupt vectors.

## FUNDAMENTAL MODES

The eight operating modes can be grouped into three fundamental modes which refer to the type of bus it supports: Single Chip, Expanded Non-Multiplexed, and Expanded Multiplexed. Single chip modes include 4 and 7, Expanded

Non-Multiplexed is Mode 5 and the remaining five are Expanded Multiplexed modes. Table 2 summarizes the characteristics of the operating modes.

## EF6801 Single-Chip Modes $(4,7)$

In the Single-Chip Mode, the four MCU ports are configured as parallel input/output data ports, as shown in Figure 10. The MCU functions as a monolithic microcomputer in these two modes without external address or data buses. A maximum of 29 I/O lines and two Port 3 control lines are provided. Peripherals or another MCU can be interfaced to Port 3 in a loosely coupled dual processor configuration, as shown in Figure 11.

TABLE 1 - NEW INSTRUCTIONS

Instruction	Description
ABX	Unsigned addition of Accumulator B to Index Register
ADDD	Adds (without carry) the double accumulator to memory and leaves the sum in the double accumulator
ASLD or LSLD	Shifts the double accumulator left (towards MSB) one bit; the LSB is cleared and the MSB is shifted into the C-bit
BHS	Branch if Higher or Same; unsigned conditional branch (same as BCC)
BLO	Branch if Lower; Unsigned conditional branch (same as BCS)
BRN	Branch Never
JSR	Additional addressing mode: direct
LDD	Loads double accumulator from memory
LSL	Shifts memory or accumulator left (towards MSB) one bit; the LSB is cleared and the MSB is shifted into the C-bit (same as
ASL)	Shifts the double accumulator right (towards LSB) one bit; the MSB is cleared and the LSB is shifted into the C-bit
LSRD	Unsigned multiply; multiplies the two accumulators and leaves the product in the double accumulator
MUL	Pushes the Index Register to stack
PSHX	Pulls the Index Register from stack
PULX	Stores the double accumulator to memory
SUBD	Subtracts memory from the double accumulator and leaves the difference in the double accumulator
CPX	Internal processing modified to permit its use with any conditional branch instruction

In Single-Chip Test Mode (4), the RAM responds to $\$ \times \times 80$ through $\$$ XXFF and the ROM is removed from the internal address map. A test program must first be loaded into the RAM using modes $0,1,2$, or 6 . If the MCU is Reset and then programmed into Mode 4, execution will begin at \$XXFE: XXFF. Mode 5 can be irreversibly entered from Mode 4 without asserting RESET by setting bit 5 of the Port 2 Data Register. This mode is used primarily to test Ports 3 and 4 in the Single-Chip and Non-Multiplexed Modes.

## EF6801 Expanded Non-Multiplexed Mode (5)

A modest amount of external memory space is provided in the Expanded Non-Multiplexed Mode while significant onchip resources are retained. Port 3 functions as an 8 -bit
bidirectional data bus and Port 4 is configured initially as an input data port. Any combination of the eight leastsignificant address lines may be obtained by writing to the Port 4 Data Direction Register. Stated alternatively, any combination of A0 to A7 may be provided while retaining the remainder as input data lines. Internal pullup resistors pull the Port 4 lines high until the port is configured.

Figure 12 illustrates a typical system configuration in the Expanded Non-Multiplexed Mode. The MCU interfaces directly with 6800 family parts and can access 256 bytes of external address space at $\$ 100$ through $\$ 1 \mathrm{FF}$. IOS provides an address decode of external memory ( $\$ 100-\$ 1 \mathrm{FF}$ ) and can be used as a memory page select or chip select line.

TABLE 2 - SUMMARY OF EF6801/03 OPERATING MODES

Common to all Modes:
Reserved Register Area
Port 1
Port 2
Programmable Timer
Serial Communications Interface

## Single Chip Mode 7

128 bytes of RAM: 2048 bytes of ROM
Port 3 is a parallel I/O port with two control lines
Port 4 is a parallel I/O port
SC1 is Input Strobe 3 (IS3)
SC2 is Dutput Strobe 3 (OS3)

## Expended Non-Multiplexed Mode 5

128 bytes of RAM; 2048 bytes of ROM
256 bytes of external memory space
Port 3 is an 8 -bit data bus
Port 4 is an input port/address bus
SC1 is Input/Output Select (IOS)
SC2 is Read/Write (R/W)
Expanded Multiplexed Modes 1, 2, 3, 6*
Four memory space options ( 64 K address space):
(1) No internal RAM or ROM (Mode 3)
(2) Internal RAM, no ROM (Mode 2)
(3) Internal RAM and ROM (Mode 1)
(4) Internal RAM, ROM with partial address bus (Mode 6 )

Port 3 is a multiplexed address/data bus
Port 4 is an address bus (inputs/address in Mode 6)
SC1 is Address Strobe (AS)
SC2 is Read/Write (R/W)

## Test Modes 0 and 4

Expanded Multiplexed Test Mode 0
May be used to test RAM and ROM
Single Chip and Non-Multiplexed Test Mode 4
(1) May be changed to Mode 5 without going through Reset
(2) May be used to test Ports 3 and 4 as $1 / 0$ ports
*The EF6803 operates only in modes 2 and 3

FIGURE 10 - SINGLE-CHIP MODE


FIGURE 11 - SINGLE-CHIP DUAL PROCESSOR CONFIGURATION

FIGURE 12 - EXPANDED NON-MULTIPLEXED CONFIGURATION


## Expanded-Multiplexed Modes (0, 1, 2, 3, 6

A 64 K byte memory space is provided in the expanded multiplexed modes. In each of the expanded multiplexed modes Port 3 functions as a time multiplexed address/data bus with address valid on the negative edge of Address Strobe (AS), and data valid while E is high. In Modes 0 to 3 Port 4 provides address lines A8 to A15. In Mode 6, however, Port 4 initially is configured at RESET as an input data port. The port 4 Data Direction Register can then be changed to provide any combination of address lines, A8 to A15. Stated alternatively, any subset of A8 to A15 can be provided while retaining the remaining port 4 lines as input data lines. Internal pullup resistors pull the Port 4 lines high until software configures the port.
In Mode 0, the Reset vector is external for the first two E -cycles after the positive edge of $\overline{\mathrm{RESET}}$, and internal thereafter. In addition, the internal and external data buses are connected so there must be no memory map overlap in order to avoid potential bus conflicts. Mode 0 is used primarily to verify the ROM pattern and monitor the internal data bus with the automated test equipment.

Only the EF6801 can operate in each of the expanded multiplexed modes. The EF6803 operates only in Modes 2 and 3.

Figure 13 depicts a typical configuration for the Expanded-

Multiplexed Modes. Address Strobe can be used to control a transparent D-type latch to capture addresses AO-A7, as shown in Figure 14. This allows Port 3 to function as a Data Bus when E is high.

## PROGRAMMING THE MODE

The operating mode is determined at $\overline{\text { RESET }}$ by the levels asserted on P22, P21, and P20. These levels are latched into $\mathrm{PC} 2, \mathrm{PC} 1$, and PC0 of the program control register on the positive edge of $\overline{\text { RESET. The operating mode may be read }}$ from the Port 2 Data Register as shown below, and programming levels and timing must be met as shown in Figure 15. A brief outline of the operating modes is shown in Table 3.


Circuitry to provide the programming leveis is dependent primarily on the normal system usage of the three pins. If configured as outputs, the circuit shown in Figure 16 may be used; otherwise, three-state buffers can be used to provide isolation while programming the mode.

TABLE 3 - MODE SELECTION SUMMARY

Mode*	P22   PC2	P21   PC1	P20   PCO	ROM	RAM	Interrupt   Vectors	Bus   Mode	Operating   Mode
7	H	H	H	I	I	I	I	Single Chip
6	H	H	L	I	1	1	MUX $^{(5,6)}$	Multiplexed/Partial Decode
5	H	L	H	I	1	1	NMUX $^{(5,6)}$	Non-Multiplexed/Partial Decode
4	H	L	L	$\mathrm{I}^{(2)}$	$\mathrm{I}^{(1)}$	1	I	Single Chip Test
3	L	H	H	E	E	E	MUX	
2	L	H	L	E	I	E	Multiplexed/No RAM or ROM	
1	L	L	H	I	I	E	MUX	Multiplexed/RAM
O	L	L	L	I	I	K3)	Multiplexed/RAM \& ROM	

Legend:
1 -Internal
Notes:
E-External
MUX - Multiplexed
NMUX - Non-Multiplexed
L - Logic " 0 "
H - Logic " 1 "
(1) Internal RAM is addressed at \$XX80
(2) Internal ROM is disabled
(3) RESET vector is external for 2 cycles after RESET goes high
(4) Addresses associated with Ports 3 and 4 are considered external in Modes 0 . 1, 2, and 3
5) Addresses associated with Port 3 are considered external in Modes 5 and 6
(6) Port 4 default is user data input; address output is optional by writing to Port 4 Data Direction Register

[^4]FIGURE 13 - EXPANDED MULTIPLEXED CONFIGURATION


NOTE: To avoid data bus (Port 3) contention in the expanded multiplexed modes, memory devices should be enabled only during $E$ high time.

FIGURE 14 - TYPICAL LATCH ARRANGEMENT


Figure 15 - MODE PROGRAMMING TIMING


See Figure 16


MODE PROGRAMMING (Refer to Figure 15)

Characteristic	Symbol	Min	Max	Unit
Mode Programming Input Voltage Low*	$V_{\text {MPL }}$	-	1.8	V
Mode Programming Input Voltage High	$\mathrm{V}_{\mathrm{MPH}}$	4.0	-	V
Mode Programming Diode Differential (If Diodes are Used)	VMPDD	0.6	-	V
RESET Low Pulse Width	PWRSTL	3.0	-	E-Cycles
Mode Programming Setup Time	${ }_{\text {t MPS }}$	2.0	-	E-Cycles
Mode Programming Hold Time RESET Rise Time $\geq 1 \mu \mathrm{~S}$ RESET Rise Time $<1 \mu \mathrm{~S}$	${ }^{\text {t MPH }}$	$\begin{gathered} 0 \\ 100 \\ \hline \end{gathered}$	-	ns

[^5]FIGURE 16 - TYPICAL MODE PROGRAMMING CIRCUIT


## MEMORY MAPS

The 6801 Family can provide up to 64 K byte address space depending on the operating mode. A memory map for each operating mode is shown in Figure 17.

The first 32 locations of each map are reserved for the internal register area, as shown in Table 4, with exceptions as indicated.

FIGURE 17 - EF6801/03 MEMORY MAPS (Sheet 1 of 3)

FIGURE 17 - EF6801/03 MEMORY MAPS (Sheet 2 of 3)


FIGURE 17 - EF6801/03 MEMORY MAPS (Sheet 3 of 3 )


## E F6801/03 INTERRUPTS

The 6801 Family supports two types of interrupt requests: maskable and non-maskable. A Non-Maskable Interrupt ( $\overline{\mathrm{NMI}}$ ) is always recognized and acted upon at the completion of the current instruction. Maskable interrupts are controlled by the Condition Code Register I-bit and by individual enable bits. The I-bit controls 'all maskable interrupts. Of the maskable interrupts, there are two types: $\overline{\mathrm{RQ1}}$ and IRQ2. The Programmable Timer and Serial Communications Interface use an internal $\overline{\mathrm{RQ} 2}$ interrupt line, as shown in Figure 1. External devices (and IS3) use $\overline{\mathrm{RQ1}}$. An $\overline{\mathrm{RQ1}} \mathrm{in}$ terrupt is serviced before $\overline{\mathrm{RQ2}}$ if both are pending.

All IRQ2 interrupts use hardware prioritized vectors. The single SCl interrupt and three timer interrupts are serviced in a prioritized order and each is vectored to a separate location. All interrupt vector locations are shown in Table 5.

The Interrupt flowchart is depicted in Figure 18 and is common to every interrupt excluding reset. During interrupt servicing the Program Counter, Index Register, A Accumulator, B Accumulator, and Condition Code Register are pushed to the stack. The l-bit is set to inhibit maskable interrupts and a vector is fetched corresponding to the current highest priority interrupt. The vector is transferred to the Program Counter and instruction execution is resumed. Interrupt and RESET timing are illustrated in Figures 19 and 20.

## FUNCTIONAL PIN DESCRIPTIONS

## Vcc AND Vss

$V_{C C}$ and VSS provide power to a large portion of the MCU. The power supply should provide +5 volts $( \pm 5 \%)$ to $V_{C C}$, and VSS should be tied to ground. Total power dissipation lincluding $V_{C C}$ Standby), will not exceed PD milliwatts.

## VCC STANDBY

$\mathrm{V}_{\mathrm{CC}}$ Standby provides power to the standby portion $(\$ 80$ through \$BF) of the RAM and the STBY PWR and RAME bits of the RAM Control Register.. Voltage requirements depend on whether the device is in a powerup or powerdown state. In the powerup state, the power supply should provide +5 volts ( $\pm 5 \%$ ) and must reach VSB volts before $\overline{\text { RESET }}$ reaches 4.0 volts. During powerdown, VCC Standby must remain above $V_{S B B}(\min )$ to sustain the standby RAM and STBY PWR bit. While in powerdown operation, the standby current will not exceed ISBB.

It is typical to power both $V_{C C}$ and $V_{C C}$ Standby from the same source during normal operation. A diode must be used
between them to prevent supplying power to $V_{C C}$ during powerdown operation. VCC Standby should be tied to ground in Mode 3.

TABLE 4 - INTERNAL REGISTER AREA

Register	Address
Port 1 Data Direction Register   Port 2 Data Direction Register ${ }^{\text {... }}$   Port 1 Data Register   Port 2 Data Register	$\begin{aligned} & 00 \\ & 01 \\ & 02 \\ & 03 \end{aligned}$
Port 3 Data Direction Register   Port 4 Data Direction Register ${ }^{\text {. }}$.   Port 3 Data Register   Port 4 Data Register	$\begin{aligned} & 04 * \\ & 05^{* *} \\ & 06^{*} \\ & 07^{* *} \end{aligned}$
Timer Control and Status Register   Counter (High Byte)   Counter (Low Byte)   Output Compare Register (High Byte)	$\begin{aligned} & 08 \\ & 09 \\ & 0 A \\ & 0 B \end{aligned}$
Output Compare Register (Low Byte) Input Capture Register (High Byte) Input Capture Register (Low Byte) Port 3 Control and Status Register	$\begin{aligned} & O C \\ & O D \\ & O E \\ & O F^{*} \end{aligned}$
Rate and Mode Control Register   Transmit/Receive Control and Status Register   Receive Data Register   Transmit Data Register	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$
RAM Control Register Reserved	$\begin{gathered} 14 \\ 15-1 F \end{gathered}$

${ }^{\bullet}$ External addresses in Modes 0, 1, 2, 3, 5, 6; cannot be accessed in Mode 5 ( $\mathrm{No} \overline{\mathrm{IOS} \text { ) }}$
"External addresses in Modes 0, 1, 2, 3
$\cdots 1=$ Output, $0=$ Input

TABLE 5 - MCU INTERRUPT VECTOR LOCATIONS

MSB	LSB	Interrupt
FFFE	FFFF	$\overline{\text { RESET }}$
FFFC	FFFD	$\overline{\text { NMI }}$
FFFA	FFFB	Software Interrupt (SWI)
FFF8	FFF9	$\overline{\text { IRQ1 }}$ (or $\overline{\text { IS3 }}$ )
FFF6	FFF7	ICF (Input Capture)*
FFF4	FFF5	OCF (Output Compare)*
FFF2	FFF3	TOF (Timer Overflow)*
FFFO	FFF1	SCI (RDRF + ORFE + TDRE)

- IRQ2 Interrupt




## XTAL1 AND EXTAL2

These two input pins interface either a crystal or TTL compatible clock to the MCU internal clock generator. Divide-byfour circuitry is included which allows use of the inexpensive 3.58 MHz or 4.4336 MHz Color Burst TV crystals. A 20 pF capacitor should be tied from each crystal pin to ground to ensure reliable startup and operation. Alternatively, EXTAL2 may be driven by an external TTL compatible clock at $4 f_{0}$ with a duty cycle of $50 \%( \pm 5 \%)$ with XTAL1 connected to ground.

The internal oscillator is designed to interface with an ATcut quartz crystal resonator operated in parallel resonance mode in the frequency range specified for IXTAL. The crystal should be mounted as close as possible to the input pins to minimize output distortion and startup stabilization time.* The MCU is compatible with most commercially available crystals. Nominal crystal parameters are shown in Figure 21.

## RESET

This input is used to reset the internal state of the device and provide an orderly startup procedure. During powerup, RESET must be held below 0.8 volts: (1) at least tRC after $V_{C C}$ reaches 4.75 volts in order to provide sufficient time for the clock generator to stabilize, and (2) until $V_{C C}$ Standby reaches 4.75 volts. RESET must be held low at least three E-cycles if asserted during powerup operation.

## E (ENABLE)

This is an output clock used primarily for bus synchronization. It is TTL compatible and is the slightly skewed divide-by-four result of the device input clock frequency. It will drive one Schottky TTL load and 90 pF, and all data given in cycles is referenced to this clock unless otherwise noted.

## $\overline{\mathrm{NMI}}$ (NON-MASKABLE INTERRUPT)

$A n \cdot \overline{\mathrm{NMI}}$ negative edge requests an MCU interrupt sequence, but the current instruction will be completed before it responds to the request. The MCU will then begin an interrupt sequence. Finally, a vector is fetched from \$FFFC and \$FFFD, transferred to the Program Counter and instruction execution is resumed. $\overline{\mathrm{NMI}}$ typically requires a $3.3 \mathrm{k} \Omega$ (nominal) resistor to $V_{C C}$. There is no internal $\overline{N M I}$ pullup resistor. $\overline{\mathrm{NMI}}$ must be held low for at least one E-cycle to be recognized under all conditions.

## IRQ1 (MASKABLE INTERRUPT REQUEST 1)

$\overline{\text { IRQ1 }}$ is a level-sensitive input which can be used to request an interrupt sequence. The MPU will complete the current instruction before it responds to the request. If the interrupt mask bit (l-bit) in the Condition Code Register is clear, the MCU will begin an interrupt sequence. A vector is fetched from \$FFF88 and \$FFF9, transferred to the Program Counter, and instruction execution is resumed.
$\overline{\text { IRQ1 }}$ typically requires an external $3.3 \mathrm{k} \mathrm{\Omega}$ (nominal) resistor to $\mathrm{V}_{\mathrm{CC}}$ for wire-OR applications. $\overline{\mathrm{RQ1}}$ has no internal pullup resistor.

## SC1 AND SC2 (STROBE CONTROL 1 AND 2)

The function of SC1 and SC2 depends on the operating mode. SC1 is configured as an output in all modes except single chip mode, whereas SC2 is always an output. SC1 and SC2 can drive one Schottky load and 90 pF .

## SC1 and SC2 In Single-Chip Mode

In Single-Chip Mode, SC1 and SC2 are configured as an input and output, respectively, and both function as Port 3 control lines. SC1 functions as $\overline{\mathrm{S} 3}$ and can be used to indicate that Port 3 input data is ready or output data has been accepted. Three options associated with IS3 are controlled by Port 3 Control and Status Register and are discussed in the Port 3 description. If unused, IS3 can remain unconnected.

SC2 is configured as $\overline{0 S 3}$ and can be used to strobe output data or acknowledge input data. It is controlled by Output Strobe Select (OSS) in the Port 3 Control and Status Register. The strobe is generated by a read (OSS =0) or write (OSS $=1$ ) to the Port 3 Data Register. $\overline{O S 3}$ timing is shown in Figure 4.

## SC1 And SC2 In Expanded Non-Multiplexed Mode

In the Expanded Non-Multiplexed Mode, both SC1 and SC2 are configured as outputs. SC1 functions as Input/Output Select ( $\overline{\mathrm{IOS}}$ ) and is asserted only when $\$ 0100$ through $\$ 01 \mathrm{FF}$ is sensed on the internal address bus.

SC2 is configured as Read/Write and is used to control the direction of data bus transfers. An MPU read is enabled when Read/Write and E are high.

## SC1 And SC2 In Expanded Multiplexed Mode

In the Expanded Multiplexed Modes, both SC1 and SC2 are configured as outputs. SC1 functions as Address Strobe and can be used to demultiplex the eight least significant addresses and the data bus. A latch controlled by Address Strobe captures address on the negative edge, as shown in Figure 14.

SC2 is configured as Read/Write and is used to control the direction of data bus transfers. An MPU read is enabled when Read/Write and E are high.

## P10-P17 (PORT 1)

Port 1 is a mode independent 8 -bit $1 / O$ port with each line an input or output as defined by the Port 1 Data Direction Register. The TTL compatible three-state output buffers can drive one Schottky TTL load and 30 pF , Darlington transistors, or CMOS devices using external pullup resistors. It is configured as a data input port by $\overline{\mathrm{RESET}}$. Unused lines can remain unconnected.

## P20-P24 (PORT 2)

Port 2 is a mode-independent, 5 -bit, multipurpose I/O port. The voltage levels present on P20, P21, and P22 on the rising edge of RESET determine the operating mode of the MCU. The entire port is then configured as a data input port. The Port 2 lines can be selectively configured as data output lines by setting the appropriate bits in the Port 2 Data Direction Register. The Port 2 Data Register is used to move data through the port. However, if P21 is configured as an output, it will be tied to the timer Output Compare function and cannot be used to provide output from the Port 2 Data Register.

Port 2 can also be used to provide an interface for the Serial Communications Interface and the timer Input Edge function. These configurations are described in the Programmable Timer and Serial Communications Interface (SCI) section.

The Port 2 three-state, TTL-compatible output buffers are capable of driving one Schottky ${ }^{\top}$ TL load and 30 pF , or CMOS devices using external pullup resistors.

PORT 2 DATA REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P C 2$ | $P C 1$ | $P C 0$ | $P 24$ | $P 23$ | $P 22$ | $P 21$ | $P 20$ |

## FIGURE 21-6801 FAMILY OSCILLATOR CHARACTERISTICS

(a) Nominal Recommended Crystal Parameters

Nominal Crystal Parameters*

	3.58 MHz	4.00 MHz	5.0 MHz	6.0 MHz	8.0 MHz
RS	$60 \Omega$	$50 \Omega$	$30-50 \Omega$	$30-50 \Omega$	$20-40 \Omega$
$\mathrm{C}_{0}$	3.5 pF	6.5 pF	$4-6 \mathrm{pF}$	$4-6 \mathrm{pF}$	$4-6 \mathrm{pF}$
$\mathrm{C}_{1}$	0.015 pF	0.025 pF	$0.01-0.02 \mathrm{pF}$	$0.01-0.02 \mathrm{pF}$	$0.01-0.02 \mathrm{pF}$
Q	$>40 \mathrm{~K}$	$>30 \mathrm{~K}$	$>20 \mathrm{~K}$	$>20 \mathrm{~K}$	$>20 \mathrm{~K}$

- NOTE: These are representative AT-cut crystal parameters only. Crystals of other types of cut may also be used

$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (typical)


Equivalent Circuit
(b) Oscillator Stabilization Time ( $\mathbf{t}_{\mathbf{R C}}$ )


## P30-P37 (PORT 3)

Port 3 can be configured as an I/O port, a bidirectional 8 -bit data bus, or a multiplexed address/data bus depending on the operating mode. The TTL compatible three-state output buffers can drive one Schottky TTL load and 90 pF . Unused lines can remain unconnected.

## Port 3 In Single-Chip Mode

Port 3 is an 8 -bit I/O port in the Single-Chip Mode, with each line configured by the Port 3 Data Direction Register. There are also two lines, $\overline{\mathrm{S} 3}$ and $\overline{\mathrm{OS} 3}$, which can be used to control Port 3 data transfers.

Three Port 3 options are controlled by the Port 3 Control and Status Register and are available only in Single-Chip Mode: (1) Port 3 input data can be latched using IS3 as a control signal, (2) $\overline{\mathrm{OS} 3}$ can be generated by either an MPU read or write to the Port 3 Data Register, and (3) an IRQ1 interrupt can be enabled by an IS3 negative edge. Port 3 latch timing is shown in Figure 5.

PORT 3 CONTROL AND STATUS REGISTER


Bit 0-2
Bit 3

Bit 5
Bit 6

Bit 7
Not used.
LATCH ENABLE. This bit controls the input latch for Port 3 . If set, input data is latched by an IS3 negative edge. The latch is transparent after a read of the Port 3 Data Register. LATCH ENALBLE is cleared during reset.
Bit 4
OSS (Output Strobe Select). This bit determines whether $\overline{0 S 3}$ will be generated by a read or write of the Port 3 Data Register. When clear, the strobe is generated by a read; when set, it is generated by a write. OSS is cleared during reset.

IS3 IRQ1 ENABLE. When set, an $\overline{\mathrm{RQ1}}$ interrupt will be enabled whenever IS3 FLAG is set; when clear, the interrupt is inhibited. This bit is cleared during reset.
IS3 FLAG. This read-only status bit is set by an $\overline{\mathrm{S3}}$ negative edge. It is cleared by a read of the Port 3 Control and Status Register (with IS3 FLAG set) followed by a read or write to the Port 3 Data Register or during reset.

## Port 3 In Expanded Non-Multiplexed Mode

Port 3 is configured as a bidirectional data bus (D7-D0) in the Expanded Non-Multiplexed Mode. The direction of data transfers is controlled by Read/Write (SC2). Data is clocked by E (Enable).

## Port 3 In Expanded Multiplexed Mode

Port 3 is configured as a time multiplexed address (AO-A7) and data bus (D7-D0) in the Expanded Multiplexed Modes, where Address Strobe (AS) can be used to demultiplex the two buses. Port 3 is held in a high impedance state between valid address and data to prevent bus conflicts.

## P40-P47 (PORT 4)

Port 4 is configured as an 8 -bit $1 / O$ port, as address outputs, or as data inputs depending on the operating mode. Port 4 can drive one Schottky TTL load and 90 pF and is the only port with internal pullup resistors. Unused lines can remain unconnected.

## Port 4 In Single-Chip Mode

In Single-Chip Mode, Port 4 functions as an 8 -bit I/O port with each line configured by the Port 4 Data Direction Register. Internal pullup resistors allow the port to directly interface with CMOS at 5 volt levels. External pullup resistors to more than 5 volts, however, cannot be used.

## Port 4 In Expanded Non-Multiplexed Mode

Port 4 is configured from reset as an 8 -bit input port, where the Port 4 Data Direction Register can be written to provide any or all of eight address lines, AO to A7. Internal pullup resistors pull the lines high until the Port 4 Data Direction Register is configured.

## Port 4 In Expanded Multiplexed Mode

In all Expanded Multiplexed modes except Mode 6, Port 4 functions as half of the address bus and provides A8 to A15. In Mode 6, the port is configured from reset as an 8 -bit parallel input port, where the Port 4 Data Direction Register can be written to provide any or all of upper address lines A8 to A15. Internal pullup resistors pull the lines high until the Port 4 Data Direction Register is configured, where bit 0 controls A8.

## RESIDENT MEMORY

The EF6801 provides 2048 bytes of on-board ROM and 128 bytes of on-board RAM.

One half of the RAM is powered through the $V_{C C}$ standby pin and is maintainable during $V_{C C}$ powerdown. This standby portion of the RAM consists of 64 bytes located from $\$ 80$ through \$BF.

Power must be supplied to $\mathrm{V}_{\mathrm{CC}}$ standby if the internal RAM is to be used regardless of whether standby power operation is anticipated.

The RAM is controlled by the RAM Control Register.

## RAM CONTROL REGISTER (\$14)

The RAM Control Register includes two bits which can be used to control RAM accesses and determine the adequacy of the standby power source during powerdown operation. It is intended that RAME be cleared and STBY PWR be set as part of a powerdown procedure.

RAM CONTROL REGISTER


Bit 0-5
Bit 6 RAME

Bit 7 STBY PWR

Not used.
RAM Enable. This read/write bit can be used to remove the entire RAM from the internal memory map. RAME is set (enabled) during reset provided standby power is available on the positive edge of RESET. If RAME is clear, any access to a RAM address is external. If RAME is set and not in mode 3, the RAM is included in the internal map.

Standby Power. This bit is a read/write status bit which, when once set, remains set as long as $\mathrm{V}_{\mathrm{CC}}$ standby remains above $\mathrm{V}_{\mathrm{SBB}}$ (minimum). As long as this bit is set following a period of standby operation, the standby power supply has adequately preserved the data in the standby RAM. If this bit is cleared during a period of standby operation, it indicates that $\mathrm{V}_{\mathrm{CC}}$ standby had fallen to a level sufficiently below VSBB (minimum) to suspect that data in the standby RAM is not valid. This bit can be set only by software and is not affected during reset.

## PROGRAMMABLE TIMER

The programmable timer can be used to perform input waveform measurements while independently generating an output waveform. Pulse widths can vary from several microseconds to many seconds. A block diagram of the timer is shown in Figure 22.

## COUNTER (\$09:0A)

The key timer element is a 16 -bit free-running counter which is incremented by E (enable). It is cleared during reset and is read-only with one exception: a write to the counter (\$09) will preset it to \$FFF8. This feature, intended for testing, can disturb serial operations because the counter provides the SCI internal bit rate clock. TOF is set whenever the counter contains all ones.

## OUTPUT COMPARE REGISTER (\$0B:0C)

The output compare register is a 16 -bit read/write register used to control an output waveform or provide an arbitrary timeout flag. It is compared with the free-running counter on each $E$ cycle. When a match occurs, OCF is set and OLVL is clocked to an output level register. If port 2 , bit 1 , is configured as an output, OLVL will appear at P21 and the output compare register and OLVL can then be changed for the next

FIGURE 22 - BLOCK DIAGRAM OF PROGRAMMABLE TIMER

and OLVL is clocked to an output level register. If Port 2 , bit 1 , is configured as an output, OLVL will appear at P21 and the Output Compare Register and OLVL can then be changed for the next compare. The function is inhibited for one cycle after a write to its high byte ( $\$ 0 \mathrm{~B}$ ) to ensure a valid compare. The Output Compare Register is set to SFFFF at RESET.

## INPUT CAPTURE REGISTER (\$OD:OE)

The Input Capture Register is a 16 -bit read-only register used to store the free-running counter when a "proper" input transition occurs as defined by IEDG. Port 2, bit 0 should be configured as an input, but the edge detect circuit always senses P20 even when configured as an output. An input capture can occur independently of ICF: the register always contains the most current value. Counter transfer is inhibited, however, between accesses of a double byte MPU read. The input pulse width must be at least two E-cycles to ensure an input capture under all conditions.

## TIMER CONTROL AND STATUS REGISTER (\$08)

The Timer Control and Status Register (TCSR) is an 8 -bit register of which ail bits are readable, while only bits $0-4$ can be written. The three most significant bits provide the timer status and indicate if:

- a proper level transition has been detected,
- a match has occured between the free-running counter and the output compare register, and
- the free-running counter has overflowed.

Each of the three events can generate an $\overline{\mathrm{RQ2}}$ interrupt and is controlled by an individual enable bit in the TCSR.

TIMER CONTROL AND STATUS REGISTER (TCSR)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICF | OCF | TOF | EICI | EOCI | ETOI | IEDG | OLVL |

Bit 0 OLVL Output level. OLVL is clocked to the output level register by a successful output compare and will appear at P21 if Bit 1 of the Port 2 Data Direction Register is set. It is cleared during reset.
Bit 1 EIDG

Bit 2 ETOI

Bit 3 EOCI
Input Edge. IEDG is cleared during reset and controls which level transition will trigger a counter transfer to the Input Capture Register:
IEDG $=0$ Transfer on a negative-edge IEDG = 1 Transfer on a positive-edge. Enable Timer Overflow Interrupt. When set, an IRO2 interrupt is enabled for a timer overflow; when clear, the interrupt is inhibited. It is cleared during reset. Nable Outpu Compare interupt. When set, an IRO2 interrupt is enabled for an output compare; when clear, the interrupt is inhibited. It is cleared during reset.

Bit 4 ElCl

Bit 5 TOF Timer Overflow Flag. TOF is set when the counter contains all 1 's. It is cleared by reading the TCSR (with TOF set) then reading the counter high byte (\$09), or during reset.
Bit 6 OCF
Output Compare Flag. OCF is set when the Output Compare Register matches the free-running counter. It is cleared by reading the TCSR . (with OCF set) and then writing to the Output Compare Register (\$0B or $\$ 0 \mathrm{C}$ ), or during reset.
Bit 7 ICF
Input Capture Flag. ICF is set to indicate a proper level transition; it is cleared by reading the TCSR (with ICF set) and then the Input Capture Register High Byte (\$OD), or during reset.

## SERIAL COMMUNICATIONS INTERFACE (SCI)

A full-duplex asynchronous Serial Communications Interface (SCI) is provided with two data formats and a variety of rates. The SCl transmitter and receiver are functionally independent, but use the same data format and bit rate. Serial data formats include standard mark/space (NRZ) and Biphase and both provide one start bit, eight data bits, and one stop bit. "Baud" and "bit rate" are used synonymously in the following description.

## WAKE-UP FEATURE

In a typical serial loop multi-processor configuration, the software protocol will usually identify the addressee(s) at the beginning of the message. In order to permit uninterested MPU's to ignore the remainder of the message, a wake-up feature is included whereby all further SCl receiver flag (and interrupt) processing can be inhibited until its data line goes idle. An SCl receiver is re-enabled by an idle string of ten consecutive 1's or during reset. Software must provide for the required idle string between consecutive messages and prevent it within messages.

## PROGRAMMABLE OPTIONS

The following features of the SCl are programmable:

- format: standard mark/space (NRZ) or Bi-phase
- clock: external or internal bit rate clock
- Baud: one of 4 per E-clock frequency, or external clock ( $\times 8$ desired baud)
- wake-up feature: enabled or disabled
- interrupt requests: enabled individually for transmitter and receiver
- clock output: internal bit rate clock enabled or disabled to P22


## SERIAL COMMUNICATIONS REGISTERS

The Serial Communications Interface includes four addressable registers as depicted in Figure 23. It is controlled by the Rate and Mode Control Register and the Transmit/Receive Control and Status Register. Data is transmitted and received utilizing a write-only Transmit Register and a read-only Receive Register. The shift registers are not accessible to software.

## Rate and Mode Control Register (RMCR) (\$10)

The Rate and Mode Control Register controls the SCI bit rate, format, clock source, and under certain conditions, the configuration of P22. The register consists of four write-only bits which are cleared during reset. The two least significant bits control the bit rate of the internal clock and the remaining two bits control the format and clock source.

RATE AND MODE CONTROL REGISTER (RMCR)

7	6	5	4	3	2	1	0
X	X	X	X	CC 1	CCO	SS 1	SSO

SS1:SSO Speed Select. These two bits select the Baud rate when using. the internal clock. Four rates may be selected which are a function of the MCU input frequency. Table 6 lists bit time and rates for three selected MCU frequencies.
CC1:CCO Clock Control and Format Select. These two bits control the format and select the serial clock source. If CC1 is set, the DDR value for P22 is forced to the complement of CCO and cannot be altered until CC1 is cleared. If CC 1 is cleared after having been set, its DDR value is unchanged. Table 7 defines the formats, clock source, and use of P22.
If both CC1 and CCO are set, an external TTL compatible clock must be connected to P22 at eight times (8X) the desired bit rate, but not greater than E, with a duty cycle of $50 \%( \pm 10 \%)$. If $\mathrm{CC} 1: \mathrm{CC} 0=10$, the internal bit rate clock is provided at P22 regardless of the values for TE or RE.
NOTE: The source of SCI internal bit rate clock is the timer free running counter. An MPU write to the counter can disturb serial operations.

FIGURE 23 - SCI REGISTERS


## Transmit/Receive Control And Status Register (TRCSR) (\$11)

The Transmit/Receive Control and Status Register controls the transmitter, receiver, wake-up feature, and two individual interrupts and monitors the status of serial operations. All eight bits are readable while bits 0 to 4 are also writable. The register is initialized to $\$ 20$ by $\overline{\operatorname{RESET}}$.

## TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER (TRCSR)



Bit 0 WU

Bit 1 TE

Bit 2 TIE

Bit 3 RE

Bit 4 RIE
Bit 4 RIE
"Wake-up" on Idle Line. When set, WU enables the wake-up function; it is cleared by ten consecutive 1's or during reset. WU will not set if the line is idle.
Transmit Enable. When set, P24 DDR bit is set, cannot be changed, and will remain set if TE is subsequently cleared. When TE is changed from clear to set, the transmitter is connected to P 24 and a preamble of nine consecutive 1 's is transmitted. TE is cleared during reset.

Transmit Interrupt Enable. When set, an $\overline{\mathrm{RQ} 2}$ interrupt is enabled when TDRE is set; when clear, the interrupt is inhibited. TE is cleared during reset. Receive Enable. When set, the P23 DDR bit is cleared, cannot be changed, and will remain clear if RE is subsequently cleared. While RE is set, the SCl receiver is enabled. RE is cleared during reset.
Receiver Interrupt Enable. When set, an $\overline{\mathrm{RQ2}}$ interrupt is enabled when RDRF and/or ORFE is set; when clear, the interrupt is inhibited. RIE is cleared during reset.

Bit 5 TDRE

Bit 6 ORFE

Bit 7 RDRF

Transmit Data Register Empty. TDRE is set when the Transmit Data Register is transferred to the output serial shift register or during reset. It is cleared by reading the TRCSR (with TDRE set) and then writing to the Transmit Data Register. Additional data will be transmitted only if TDRE has been cleared.
Overrun Framing Error. If set, ORFE indicates either an overrun or framing error. An overrun is a new byte ready to transfer to the Receiver Data Register with RDRF still set. A receiver framing error has occurred when the byte boundaries of the bit stream are not synchronized to the bit counter. An overrun can be distinguished from a framing error by the state of RDRF: if RDRF is set, then an overrun has occurred; otherwise a framing error has been detected. Data is not transferred to the Receive Data Register in an overrun condition. Unframed data causing a framing error is transferred to the Receive Data Register. However, subsequent data transfer is blocked until the framing error flag is cleared." ORFE is cleared by reading the IRCSR (with ORFE set) then the Receive Data Register, or during reset. Receive Data Register Full. RDRF is set when the input serial shift register is transferred to the Receive Data Register. It is cleared by reading the TRCSR (with RDRF set), and then the Receive Data Register, or during reset.

TABLE 6 - SCI BIT TIMES AND RATES

SS1:SS0		$4 \mathrm{o}-$	2.4576 MHz	4.0 Mhz	4.9152 MHz
	E	614.4 kHz	1.0 MHz	1.2288 MHz	
0	0	+16	$26 \mu \mathrm{~s} / 38,400$ Baud	$16 \mu \mathrm{~s} / 62,500$ Baud	$13.0 \mu \mathrm{~s} / 76,800$ Baud
0	1	+128	$208 \mu \mathrm{~s} / 4,800$ baud	$128 \mu \mathrm{~s} / 7812.5$ Baud	$104.2 \mu \mathrm{~s} / 9,600$ Baud
1	0	+1024	$1.67 \mathrm{~ms} / 600$ Baud	$1.024 \mathrm{~ms} / 976.6$ Baud	$833.3 \mu \mathrm{~s} / 1,200$ Baud
1	1	+4096	$6.67 \mathrm{~ms} / 150$ Baud	$4.096 \mathrm{~ms} / 244.1$ Baud	$3.33 \mathrm{~ms} / 300 \mathrm{Baud}$
'External (P22)		$13.0 \mu \mathrm{~s} / 76,800$ Baud	$8.0 \mu \mathrm{~s} / 125,000$ Baud	$6.5 \mu \mathrm{~s} / 153,600$ Baud	

[^6]TABLE 7 - SCI FORMAT AND CLOCK SOURCE CONTROL

CC1:CC0	Format	Clock   Source	Port 2   Bit 2
00	Bi-Phase	Internal	Not Used
01	NRZ	Internal	Not Used
10	NRZ	Internal	Output
11	NRZ	External	Input

## SERIAL OPERATIONS

The SCI is initialized by writing control bytes first to the Rate and Mode Control Register and then to the Transmit/Receive Control and Status Register. When TE is set, the output of the transmit serial shift register is connected to P24 and serial output is initiated by transmitting a 9 -bit preamble of 1 's.
At this point one of two situations exist: 1) if the Transmit Data Register is empty (TDRE = 1), a continuous string of 1's will be sent indicating an idle line, or 2 ) if a byte has been written to the Transmit-Data Register (TDRE $=0$ ), it will be transferred to the output serial shift register (synchronized with the bit rate clock), TDRE will be set, and transmission will begin.
The start bit ( 0 ), eight data bits (beginning with bit 0 ) and a stop bit (1), will be transmitted. If TDRE is still set when the next byte transfer should occur, 1's will be sent until more data is provided. In Bi-phase format, the output toggles at the start of each bit and at half-bit time when a " 1 " is sent. Receive operation is controlled by RE which configures P23 as an input and enables the receiver. SCl data formats are illustrated in Figure 24.

## instruction set

The EF6801/03 is upward source and object code compatible with the EF6800. Execution times of key instructions have been reduced and several new instructions have been added, including a hardware multiply. A list of new operations added to the EF6800 instruction set is shown in Table 1.
In addition, two new special opcodes, 4 E and 5 E , are provided for test purposes. These opcodes force the Program Counter to increment like a 16 -bit counter, causing address lines used in the expanded modes to increment until the device is reset. These opcodes have no mnemonics.
The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction and the addressing mode. The hexadecimal equivalents of the binary codes, which result from the translation of the 82 instructions in all valid modes of addressing, are shown in Table 8. There are 220 valid machine codes, 34 unassigned codes, and 2 codes reserved for test purposes.

## PROGRAMMING MODEL

A programming model for the EF6801/03 is shown in Figure 10. Accumulator A can be concatenated with accumulator $B$ and jointly referred to as accumulator $D$ where $A$ is the most significant byte. Any operation which modifies the double accumulator will also modify accumulator A and/or B. Other registers are defined as follows:

Program Counter - The program counter is a 16 -bit register which always points to the next instruction.

Stack Pointer - The stack pointer is a 16 -bit register which contains the address of the next available location in a pushdown/pullup (LIFO) queue. The stack resides in random access memory at a location defined by the programmer.

Index Register - The Index Register is a 16 -bit register which can be used to store data or provide an address for the indexed mode of addressing.

Accumulators - The MPU contains two 8-bit accumulators, $A$ and $B$, which are used to store operands and results from the arithmetic logic unit (ALU). They can also be concatenated and referred to as the D (double) accumulator.

Condition Code Registers - The condition code register indicates the results of an instruction and includes the following five condition bits: Negative (N), Zero (Z), Overflow (V), Carry/Borrow from MSB (C), and Half Carry from bit $3(\mathrm{H})$. These bits are testable by the conditional branch instructions. Bit 4 is the interrupt mask (1-bit) and inhibits all maskable interrupts when set. The two unused bits, $B 6$ and $B 7$, are read as ones.


## ADDRESSING MODES

Six addressing modes can be used to reference memory. A summary of addressing modes for all.instructions is presented in Tables 9, 10, 11, and 12, where execution times are provided in E-cycles. Instruction execution times are summarized in Table 13. With an input frequency of 4 MHz , E -cycles are equivalent to microseconds. A cycle-by-cycle description of bus activity for each instruction is provided in Table 14 and a description of selected instructions is shown in Figure 25.

Immediate Addressing - The operand or "immediate byte(s)" is contained in the following byte(s) of the instruction where the number of bytes matches the size of the register. These are two or three byte instructions.

Direct Addressing - The least significant byte of the operand address is contained in the second byte of the instruction and the most significant byte is assumed to be $\$ 00$. Direct addressing allows the user to access $\$ 00$ through $\$ F F$ using two byte instructions and execution time is reduced by eliminating the additional memory access. In most applica-
tions, the 256-byte area is reserved for frequently referenced data.

Extended Addressing - The second and third bytes of the instruction contain the absolute address of the operand. These are three byte instrutions.

Indexed Addressing - The unsigned offset contained in the second byte of the instruction is added with carry to the Index Register and used to reference memory without changing the Index Register. These are two byte instructions.

Inherent Addressing - The operand(s) are registers and no memory reference is required. These are single byte instructions.

Relative Addressing - Relative addressing is used only for branch instructions. If the branch condition is true, the Program Counter is overwritten with the sum of a signed single byte displacement in the second byte of the instruction and the current Program Counter. This provides a branch range of -126 to 129 bytes from the first byte of the instruction. These are two byte instructions.

TABLE 8 - CPU INSTRUCTION MAP

OP	MNEM	MODE	$\sim$	$\cdots$	OP	MNEM	MODE	$\sim$	\#	OP	MNEM	MODE	$\sim$	\#	OP	MNEM	MODE	$\sim$	$\pm$	OP	MNEM	MODE	$\sim$	\%
00	-				34	DES	INHER	3	1	68	ASL	INDXD	6	2	9C	CPX	DIR	5	2	DO	SUBB	DiR	3	2
01	NOP	INHER	2	1	35	TXS		3	1	69	ROL	A	6	2	90	JSR		5	2	D1	CMPB		3	2
02	-				36	PSHA		3	1	6A	DEC		6	2	9E	LDS		4	2	D2	SBCB		3	2
03	-				37	PSHB		3	1	68	-				9 F	STS	din	4	2	D3 ${ }^{\text {- }}$	ADDD		5	2
04	LSRD		3	1	38	PULX			1	6C	INC		6	2	40	SUBA	INDXD	4	2	D4	ANDB		3	2
03	ASLD		3	1	39	RTS		5	1	60	TST		6	2	A1	CMPA	A	4	2	D5	BITB		3	2
06	TAP		2	1	3A	ABX			1	$6 E$	JMP		3	2	A2	SBCA		4	2	D6	LDAB		3	2
07	TPA		2	1	38	RTI		10	1	6F	CLR	INDXD	6	2	A3	SUBD		6	2	D7	STAB		3	2
08	INX		3	1	3 C	PSHX		4	1	70	NEG	EXTNO	6	3	A4	ANDA		4	2	D8	EORB		3	2
09	DEX		3	1	3D	MUL		10	1	71	NES				A5	BITA		4	2	D9	ADCB		3	2
OA	CLV		2	1	3E	WAI		9	1	72	-				A6	LDAA		4	2	DA	ORAB		3	2
OB	SEV		2	1	3 F	SWI		12	1	73	COM		6	3	A7	STAA		4	2	DB	ADDB		1	2
OC	CLC		2	1	40	NEGA		2	1	74	LSA		6	3	A8	EORA		4	2	DC	LOD		4	,
00	SEC		2	1	41	,				75					A9	ADCA		4	2	DO	Sto		4	,
OE	CLI		2	1	42					76	ROR		6	3	AA	ORAA		4	2	DE	LDX		4	,
OF	SEI		2	1	43	COMA		2	1	77	ASR		6	3	AB	ADDA		4	2	DF	STX	din	4	2
10	SBA		2	1	44	LSRA		2	1	78	ASL		6	3	AC	CPX		6	2	EO	SUB8	INDXD	1	,
11	CBA		2	1	45	-				79	ROL		6	3	$A D$	JSR		6	2	E1	CMPB		4	,
12	-				46	RORA		2	1	7 A	DEC		6	3	AE	LDS		5	2	E2	SBCB		4	
13	-				47	ASRA		2	1	78	-				AF	STS	INDXD	5	2	E3	ADDD		${ }^{\circ}$	,
14	-				48	ASLA		2	1	7 C	INC		6	3	B0	SUBA	EXIND	4	3	E4	ANDB		4	2
15	-				49	ROLA		2	1	70	TST		6	3	B 1	CMPA	-	4	3	E5	BITB		4	2
16	TAB		2	1	4A	DEECA		2	1	7E	JMP		3	3	B2	SBCA		4	3	E6	LDAB		4	2
17	TBA		2	1	4B	-				7 F	CLR	EXTND	6	3	B3	SUBD		6	3	E7	STAB		4	2
18	D				4 C	INCA		2	1	80	SUBA	IMMED	2	2	B4	ANDA		4	3	E8	EORB		4	2
19	DAA	INHER	2	1	40	TSTA		2	1	81	CMPA	A	2	2	B5	BITA		4	3	E9	ADCB		4	2
1 A	.				4 E	T				82	SBCA		2	2	B6	LDAA		4	3	EA	ORAB		4	2
1 B	ABA	INHER	2	1	4F	CLRA		2	1	83	Subd		4	3	B7	STAA		4	3	EB	ADOB		4	2
1 C	-				50	NEGB		2	1	84	ANDA		2	2	B8	EORA		4	3	EC	LDD		5	2
10	-				51	-				85	Bita		2	2	B9	ADCA		4	3	ED	STD		5	2
1 E	-				52	-				86	LDAA		2	2	BA	ORAA		4	3	EE	LOX		5	2
$1 F$	-				53	COMB		2	1	87	-				BB	ADDA		4	3	EF	STX	INDXD	5	2
20	BRA	REL	3	2	54	LSRB		2	1	88	EORA		2	2	BC	CPX		6	3	FO	SUBB	EXTND	4	3
21	BRN	,	3	2	55					89	ADCA			2	BD	JSR		6	3	F1	CMPB	,	4	3
22	BHI		3	2	56	RORB		2	1	8 A	ORAA			2	BE	LDS		5	3	F2	SBCB		4	3
23	BLS		3	2	57	ASRB		2	1	88	ADDA		2	2	BF	STS	EXTND	5	3	F3	ADDD		6	3
24	BCC		3	2	58	ASLB		2	1	8C	CPX	IMMED	4	3	CO	SUBB	IMMED	2	2	F4	ANDB		4	3
25	BCS		3	2	59	ROLB		2	1	80	BSR	REL	6	2	Cl	CMPB		2	2	'5	BITB		4	3
26	BNE		3	2	5A	OECB		2	1	BE	LOS	IMMED	3	3	C2	SBCB		,	2	F6	LDAB		4	3
27	BEO		3	2	58	-				BF					C3	ADDD		4	3	F7	StAB		4	3
28	BvC		3	2	5C	INCB		2	1	90	SUBA		3	2	C4	ANDB		2	2	F8	EORB		4	3
29	Bvs		3	2	50	TSTB		2	1	91	CMPA	-	3	2	C.5	BITB		2	2	F9	$A D C B$		4	3
2A	BPL		3	2	5E	$\dagger$				92	SBCA		3	2	C6	LDAB		2	2	FA	ORAB		4	3
28	BMI		3	2	5 F	CLRB	INHER	2	1	93	SUBD		5	2	C7					FB	ADDB		4	3
2 C	BGE		3	2	60	NEG	INOXD	6	2	34	ANDA		3	2	C8	EORB		2	2	FC	LDD		5	3
20	BLT		3	2	61	-	A			95	BITA		3	2	C9	ADCB		2	2	FD	STD	1	5	3
2 E	BGT		3	2	62	-				96	LDAA		3	2	CA	ORAB		2	2	FE	LDX	-	5	3
$2 F$	BLE	REL	3	2	63	COM			2	97	STAA		3	2	CB	ADDB		2	2	FF	STX	EXTND	5	3
30	TSX	INHER	3	1	64	LSR			2	98	EORA			2	CC	LOD		3	3					
31	INS	-	3	1	65	-				99	ADCA		3	2	CD		-							
32	PULA	1	4	1	66	ROR		6	2	9A	ORAA	1	3	2	CD	LDX	IMMED	3	3		defined	OP CODE		
33	PULB		4	1	67	ASR	INDXD	6	2	98	ADDA		3	2	CF	-								

NOTES:

1. Addressing Modes

$$
\begin{array}{lll}
\text { INHER = Inherent } & \text { INDXD }=\text { Indexed } & \text { IMMED }=\text { Immediate } \\
\text { REL }=\text { Relative } & \text { EXTND }=\text { Extended } & D I R=\text { Direct }
\end{array}
$$

2. Unassigned opcodes are indicated by """ and should not be executed
3. Codes marked by " T " force the PC to function as a 16 -bit counter.

TABLE 9 - INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

Pointer Operations	Mnemonic	Immed			Direct			Index			Extnd			Inherent			Boolean/ Arithmetic Operation	Condition Codes											
					5	4	3				2	1	0																
		OP		\#				OP $\sim$		\#				OP	$\sim$	\#			$\sim$	0	OP		\#	H	1	N	2	V	C
Compare Index Reg	CPX	8C	4	3	9C	5	2	AC	6	2	BC	6	3				X-M : M + 1	$\bullet$	$\bullet$				1						
Decrement Index Reg	DEX													09	3	1	$x-1-x$	-	-	$\bullet$		-	$\bullet$						
Decrement Stack Pntr	DES													34	3	1	$S P-1 \rightarrow S P$	$\bullet$	-	-	$\bullet$	-	$\bigcirc$						
Increment Index Reg	INX													08	3	1	$x+1-x$	$\bullet$	-	$\bullet$	1	-	$\bullet$						
Increment Stack Pntr	INS													31	3	1	$1 S P+1 \rightarrow S P$	$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	-	$\bullet$						
Load Index Reg	LDX	CE	3	3	DE	4	2	EE	5	2	FE	5	3				$M \rightarrow X_{H}(M+1)-X_{L}$	-	$\bullet$			R	$\bullet$						
Load Stack Pntr	LDS	8E	3	3	9E	4	2	AE	5	2	BE	5	3				$M-S P_{H}(M+1)-S P_{L}$	$\bullet$	$\bullet$			R	$\bullet$						
Store Index Reg	STX				DF	4	2	EF	5	2	FF	5	3				$X_{H} \rightarrow M, X_{L} \rightarrow(M+1)$	$\bullet$	$\bullet$			R	$\bigcirc$						
Store Stack Pntr	STS				9 F	4	2	AF	5	2	BF	5	3				$S P_{H}-M, S P_{L}-(M+1)$	$\bullet$	$\bullet$			R	$\bigcirc$						
Index Reg - Stack Pntr	TXS													35	3	1	$X-1 \rightarrow$ SP	-	$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$						
Stack Pntr $\rightarrow$ Index Reg	TSX													30	3	1	SP + $1-X$	$\bigcirc$	-	-	$\bigcirc$	-	-						
Add	ABX													3A	3	1	$\mathbf{B}+\mathrm{X}-\mathrm{X}$	$\bullet$	-	-	$\bullet$	$\bigcirc$	$\bigcirc$						
Push Data	PSHX													3C	4	1	$\begin{aligned} & X_{L}-M S P, S P-1-S P \\ & X_{H}-M S P, S P-1-S P \end{aligned}$	$\bullet$	-	-	$\bullet$	-	-						
Pull Data	PULX													38	5	1	$\begin{aligned} & S P+1-S P, M_{S P}-X_{H} \\ & S P+1-S P, M_{S P}-X_{L} \end{aligned}$	$\bullet$	-	-	-	-	-						

TABLE 10 - ACCUMULATOR AND MEMORY INSTRUCTIONS

Accumulator and Memory Operations	MNE	Immed			Direct			Index			Extend			Inher			Boolean Expression	Condition Codes					
		Op	$\sim$	\#		H	1	N	2	V	C												
Add Acmitrs	ABA													1B	2	1	$A+B-A$		$\bullet$		1		
Add B to X	ABX													3A	3	1	$00: B+X \rightarrow X$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	-	$\bigcirc$
Add with Carry	ADCA	89	2	2	99	3	2	A9	4	2	B9	4	3				$A+M+C-A$		$\bullet$	1			
	ADCB	C9	2	2	D9	3	2	E9	4	2	F9	4	3				$B+M+C-B$		$\bullet$		1		
Add	ADDA	88	2	2	98	3	2	AB	4	2	BB	4	3				$A+M-A$		$\bullet$				
	ADDB	CB	2	2	DB	3	2	EB	4	2	FB	4	3				$B+M-A$		$\bullet$				
Add Double	ADDD	C3	4	3	D3	5	2	E3	6	2	F3	6	3				$D+M: M+1-D$	$\bigcirc$	$\bigcirc$				1
And	ANDA	84	2	2	94	3	2	A4	4	2	B4	4	3				$A \cdot M-A$	$\bigcirc$	$\bigcirc$			R	$\bigcirc$
	ANDB	C4	2	2	D4	3	2	E4	4	2	F4	4	3				$B \cdot M-B$	$\bigcirc$	$\bigcirc$			R	$\bigcirc$
Shift Left, Arithmetic	ASL							68	6	2	78	6	3					-	$\bigcirc$				
	ASLA													48	2	1		$\theta$	$\bigcirc$				
	ASLB													58	2	1		Q	$\bigcirc$			I	I

- Continued -

TABLE 10 - ACCUMULATOR AND MEMORY INSTRUCTIONS (CONTINUED)

Accumulator and Memory Operations	MNE	Immed			Direct			Index			Extond			Inher			Boolean Expression	Condition Codes					
		Op	$\sim$	*	Op	$\sim$	\#	Op	~	*	Op	-	*	Op	$\sim$	\#		H	1	N	2	V	C
Shift Left Dbl	ASLD													05	3	1		$\bigcirc$	$\bigcirc$	1		1	1
Shift Right. Arithmetic	ASR							67	6	2	77	6	3					$\bullet$	$\bigcirc$	1	1		1
	ASRA													47	2	1	-	-	$\bigcirc$	,	1	1	1
	ASRB													57	2	1		$\bigcirc$	$\bigcirc$	1	1	1	1
Bit Test	BITA	85	2	2	95	3	2	A5	4	2	B5	4	3				A.M	$\bullet$	$\bigcirc$	1	1	R	$\bullet$
	BITB	C5	2	2	D5	3	2	E5	4	2	F5	4	3				B $\cdot \mathrm{M}$	$\bullet$	$\bigcirc$	1	1	R	$\bigcirc$
Compare Acmitrs	CBA													11	2	1	A - B	$\bullet$	-	1	1	1	1
Clear	CLR							6F	6	2	7F	6	3				OO-M	-	-	R	S	R	R
	CLRA													4F	2	1	00-A	-	-	R	S	R	R
	CLRB													5 F	2	1	00-8	-	-	R	S	R	R
Compare	CMPA	81	2	2	91	3	2	A1	4	2	B1	4	3				A M M	$\bigcirc$	$\bigcirc$	1		1	+
	CMPB	C1	2	2	D1	3	2	E1	4	2	F1	4	3				B - M	$\bigcirc$	$\bigcirc$			1	1
1's Complement	COM							63	6	2	73	6	3				$M-M$	$\bullet$	$\bullet$			R	S
	COMA													43	2	1	A-A	-	$\bigcirc$			R	S
	COMB													53	2	1	$B-B$	$\bullet$	$\bigcirc$			R	S
Decimal Adj. A	DAA													19	2	1	Adj binary sum to BCD	-	$\bigcirc$				1
Decrement	DEC							6A	6	2	7A	6	3				$M-1-M$	-	$\bigcirc$		,		$\bigcirc$
	DECA													4A	2	1	$A-1-A$	-	$\bullet$		1		$\bigcirc$
	DECB													5A	2	1	$B-1-B$	$\bigcirc$	$\bigcirc$	1	1		$\bullet$
Exclusive OR	EORA	88	2	2	98	3	2	AB	4	2	B8	4	3				$A \oplus M-A$	$\bullet$	$\bigcirc$	1	1	R	$\bullet$
	EORB	C8	2	2	D8	3	2	E8	4	2	F8	4	3				$B \oplus M-B$	-	$\bigcirc$		1	R	$\bullet$
Increment	INC							6C	6	2	7 C	6	3				$M+1-M$	$\bullet$	$\bigcirc$	1	1		$\bigcirc$
	INCA													4 C	2	1	$A+1-A$	$\bullet$	$\bigcirc$		,		$\bigcirc$
	INCB													5 C	2	1	$B+1-B$	-	$\bigcirc$	1			$\bigcirc$
Load Acmitrs	LDAA	86	2	2	96	3	2	A6	4	2	B6	4	3				$\mathrm{M}-\mathrm{A}$	$\bullet$	$\bigcirc$			R	$\bigcirc$
	LDAB	C6	2	2	D6	3	2	E6	4	2	F6	4	3				$M-B$	$\bullet$	$\bigcirc$			R	$\bigcirc$
Load Double	LDD	CC	3	3	DC	4	2	EC	5	2	FC	5	3				$\mathrm{M}: \mathrm{M}+1-\mathrm{D}$	$\bullet$	$\bigcirc$	1	1	R	$\bigcirc$
$\begin{gathered} \text { Logical Shift, } \\ \text { Left } \end{gathered}$	LSL							68	6	2	78	6	3					$\bullet$	$\bigcirc$		1		
	LSLA													48	2	1		$\bullet$	$\bigcirc$			1	
	LSLB													58	2	1		$\bullet$	$\bullet$		1		
	LSLD													05	3	1		$\bullet$	$\bigcirc$	1	,		
Shift Right, Logical	LSR							64	6	2	74	6	3				$0 \rightarrow \prod_{57} \overrightarrow{D I D}_{50} \rightarrow \text { 回 }$	-	-	R			
	LSRA													44	2	1		$\bigcirc$	$\bigcirc$	R			1
	LSRB													54	2	1		$\bullet$	$\bigcirc$	R	1		1
	LSRD													04	3	1		$\bullet$	$\bigcirc$	R	1		1
Multiply	MUL													3D	10	1	A $\times$ B - D	$\bullet$	$\bigcirc$	-	$\bullet$	$\bullet$	1
2's Complement (Negate)	NEG							60	6	2	70	6	3				$00 \cdot M \rightarrow M$	-	$\bigcirc$		1	1	1
	NEGA													40	2	1	O0-A - A	$\bigcirc$	$\bigcirc$	1	1	1	1
	NEGB													50	2	1	00-B-B	$\bigcirc$	$\bigcirc$	1	1	1	1
No Operation	NOP													01	2	1	$P C+1-P C$	$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$
Inclusive OR	ORAA	8A	2	2	9A	3	2	AA	4	2	BA	4	3				$A+M-A$	-	$\bigcirc$			R	$\bigcirc$
	ORAB	CA	2	2	DA	3	2	EA	4	2	FA	4	3				$B+M-B$	$\bullet$	$\bigcirc$		1	R	$\bullet$
Push Data	PSHA													36	3	1	A - Stack	$\bullet$	$\bigcirc$	-	-	$\bigcirc$	$\bigcirc$
	PSHB													37	3	1	B-Stack	$\bullet$	$\bigcirc$	-	$\bigcirc$	$\bigcirc$	$\bigcirc$
Pull Data	PULA													32	4	1	Stack - A	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	-	$\bigcirc$
	PULB													33	4	1	Stack - 8	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
Rotate Left	ROL							69	6	2	79	6	3				$0-\sqrt{57}$	$\bullet$	$\bigcirc$		1	1	1
	ROLA													49	2	1		-	$\bigcirc$	1	1	1	1
	ROLB													59	2	1		$\bullet$	$\bigcirc$	1	1	+	1
Rotate Right	ROR							66	6	2	76	6	3					$\bigcirc$	$\bigcirc$	1			1
	RORA													46	2	1		-	$\bigcirc$	-	1	,	1
	RORB													56	2	1		-	$\bigcirc$	1	1	1	1
Subtract Acmitr	SBA													10	2	1	$A-B-A$	-	$\bigcirc$	-	1		1
Subtract with Carry	SBCA	82	2	2	92	3	2	A2	4	2	B2	4	3				$A-M-C-A$	-	$\bigcirc$				1
	SBCB	C2	2	2	D2	3	2	E2	4	2	F2	4	3				$B-M-C-B$	$\bullet$	$\bigcirc$			1	1
Store Acmitrs	STAA				97	3	2	A7	4	2	B7	4	3				$A-M$	-	$\bigcirc$		1	R	$\bigcirc$
	STAB				D7	3	2	E7	4	2	F7	4	3				$B-M$	-	$\bigcirc$	-	1	R	$\bullet$
	STD				DD	4	2	ED	5	2	FD	5	3				$D-M: M+1$	-	$\bigcirc$	1	1	R	$\bigcirc$
Subtract	SUBA	80	2	2	90	3	2	AO	4	2	BO	4	3				$A \cdot M-A$	$\bullet$	$\bigcirc$	-	1	1	1
	SUBB	CO	2	2	DO	3	2	EO	4	2	FO	4	3				$B-M-B$	-	$\bigcirc$		-		1
Subtract Double	SUBD	83	4	3	93	5	2	A3	6	2	B3	6	3				$D \cdot M: M+1-D$	$\bullet$	$\bigcirc$		1	1	1
Transfer Acmitr	TAB													16	2	1	$A-B$	$\bigcirc$	$\bigcirc$	1		R	$\bigcirc$
	TBA													17	2	1	B - A	-	$\bullet$	1		R	$\bigcirc$
Test, Zero or Minus	TST							6D	6	2	70	6	3				M - 00	$\bigcirc$	$\bigcirc$			R	R
	TSTA													4D	2	1	A-00	$\bullet$	$\bigcirc$			R	R
	TSTB													50	2	1	B - 00	$\bullet$	$\bullet$	1	1	R	R

The Condition Code Register notes are listed after Table 12.

TABLE 11 - JUMP AND BRANCH INSTRUCTIONS

Operations	Mnemonic	. Direct			Relative			Index			Extnd			Inherent				Branch Test	Cond. Code Reg.											
					5	4	3				2	1	0																	
		OP $\sim$						OP						OP	$\sim$	\# 0	OP		- \#		$\#$	OP	- \#		H	1	N	2	V	C
Branch Always	BRA				20	3	2											None	-	$\bigcirc$	$\bigcirc$	$\bullet$	-	$\bullet$						
Branch Never	BRN				21	3	2											None	-	-	-	-	$\bigcirc$	$\bullet$						
Branch If Carry Clear	BCC				24	3	2											$\mathrm{C}=0$	$\bullet$	-	-	-	-	$\bigcirc$						
Branch If Carry Set	BCS				25	3	2											$\mathrm{C}=1$	-	$\bullet$	-	$\bigcirc$	-	$\bigcirc$						
Branch If = Zero	BEQ				27	3	2											$Z=1$	$\bullet$	$\bullet$	-	-	-	$\bigcirc$						
Branch If $\geq$ Zero	BGE				2C	3	2											$N \oplus \cdot \mathrm{~V}=0$	-	$\bigcirc$	-	$\bullet$	$\bigcirc$	$\bullet$						
Branch If $>$ Zero	BGT				2E	3	2											$Z+(N \oplus V)=0$	-	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$						
Branch If Higher	BHI				22	3	2											$C+Z=0$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$	$\bullet$						
Branch If Higher or Same	BHS				24	3	2											$C=0$	$\bullet$	-	-	$\bullet$	-	$\bullet$						
Branch If $\leq$ Zero	BLE				2F	3	2											$Z+(N \oplus V)=1$	$\bigcirc$	$\bigcirc$	$\theta$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
Branch If Carry Set	BLO				25	3	2											$\mathrm{C}=1$	$\bullet$	$\bigcirc$	$\bullet$	-	$\bigcirc$	$\bigcirc$						
Branch If Lower Or Same	BLS				23	3	2											$C+Z=1$	$\bigcirc$	-	$\bullet$	-	-	$\bigcirc$						
Branch If < Zero	BLT				20	3	2											$\mathrm{N} \oplus \mathrm{V}=1$	$\bigcirc$	-	$\bullet$	$\bullet$	-	$\bigcirc$						
Branch If Minus	BMI				2B	3	2											$\mathrm{N}=1$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$						
Branch If Not Equal Zero	BNE				26	3	2											$\mathrm{Z}=0$	$\bullet$	-	-	$\bullet$	$\bigcirc$	$\bigcirc$						
Branch If Overflow Clear	BVC				28	3	2											$V=0$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	-	$\bigcirc$						
Branch If Overflow Set	BVS				29	3	2											$V=1$	$\bigcirc$	0	$\bigcirc$	-	$\bigcirc$	$\bigcirc$						
Branch If Plus	BPL				2A	3	2											$\mathrm{N}=0$	-	$\bullet$	-	$\bullet$	-	$\bullet$						
Branch To Subroutine	BSR				8 D	6	2											See Special	$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$						
Jump	JMP							6E	3	2	7 E	3	3					Operations -	-	$\bullet$	$\bullet$	-	$\bullet$	$\bigcirc$						
Jump To Subroutine	JSR	90	5	2				AD	6	2	BD	6	3					Figure 26	$\bigcirc$	$\bigcirc$	-	$\bigcirc$	$\bigcirc$	$\bigcirc$						
No Operation	NOP													0		2	1		$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$						
Return From Interrupt	RTI													38		10	1			1	1	1	1	1						
Return From Subroutine	RTS													39		5	1	See Special	$\bigcirc$	-	$\bigcirc$	-	$\bigcirc$	$\bigcirc$						
Software Interrupt	SWI													3 F		12	1	Operations Figure 26	-	S	-	$\bullet$	-	$\bullet$						
Wait For Interrupt	WAI													3E		9	1		$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$						

TABLE 12 - CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

Operations	Inherent				Boolean Operation	Cond. Code Reg.						
						1	N	2   2	$\begin{array}{\|l\|} \hline 1 \\ \hline \mathrm{v} \\ \hline \end{array}$	O		
	Mnemonic	OP	-	\#							H	
Clear Carry	CLC	OC	2	1		$0-\mathrm{C}$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	R
Clear Interrupt Mask	CLI	OE	2	1	$0-1$	$\bigcirc$	R	-	-	-	$\bigcirc$	
Clear Overflow	CLV	OA	2	1	$0-\mathrm{V}$	$\bigcirc$	$\bullet$	$\bullet$	-	R	$\bigcirc$	
Set Carry	SEC	OD	2	1	$1-\mathrm{C}$	-	$\bullet$	-	-	-	S	
Set Interrupt Mask	SEI	OF	2	1	1-1	-	S	-	-	$\bullet$	$\bigcirc$	
Set Overflow	SEV	OB	2	1	$1-\mathrm{V}$	$\bullet$	-	-	-	S	$\bullet$	
Accumulator $A$ - CCR	TAP	06	2	1	$A-C C R$	1	1	1	1	1	1	
CCR $\rightarrow$ Accumulator $A$	TPA	07	2	1	CCR - A	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	

## LEGEND

OPOperation Code (Hexadecimal)
~ Number of MPU Cycles
Msp Contents of memory location pointed to by Stack Pointer
\# Number of Program Bytes

+ Arithmetic Plus
- Arithmetic Minus
- Boolean AND

X Arithmetic Multiply

+ Boolean Inclusive OR
$\oplus$ Boolean Exclusive OR
M Complement of M
- Transfer Into

0 Bit = Zero
00 Byte = Zero

## CONDITION CODE SYMBOLS

H Half-carry from bit 3
I Interrupt mask
N Negative (sign bit)
Z Zero (byte)
$V$ Overflow, 2's complement
C Carry/Borrow from MSB
R Reset Always
S Set Always
Affected

- Not Affected

TABLE 13 - INSTRUCTION EXECUTION TIMES IN E-CYCLES

	ADDRESSING MODE					
	E	\%	8 $\mathbf{8}$ 区 K	\% \% ¢ ¢	E   8	䨌
ABA	-	-	-	-	2	-
ABX	-	-	-	-	3	-
ADC	2	3	4	4	-	-
ADD	2	3	4	4	-	-
ADDD	4	5	6	6	-	-
AND	2	3	4	4	-	-
ASL	$\bigcirc$	$\bigcirc$	6	6	2	-
ASLD	-	$\bigcirc$	$\bigcirc$	$\bigcirc$	3	$\bigcirc$
ASR		-	6	6	2	-
BCC	-	-	-	-	-	3
BCS		-	-	-	-	3
BEO		-	-	-	-	3
BGE		-	-	-	-	3
BGT		$\bigcirc$	-	$\bigcirc$	$\bigcirc$	3
BHI			-	-	$\bigcirc$	3
BHS	-	-	-	-	-	3
BIT	2	3	4	4	-	-
BLE		-	-	-	-	3
BLO		-	-	-	-	3
BLS		-	-	-	-	3
BLT	-	$\bigcirc$	-	$\bigcirc$	-	3
BMI	-			-		3
BNE	-		-	-	-	3
BPL	-	-	-	-	-	3
BRA	-	-	-	-	-	3
BRN	-	-	-	-	-	3
BSR	-	-	-	-	-	6
BVC	-	-	-	-	-	3
BVS	$\bigcirc$	$\bigcirc$	$\bigcirc$	-		3
CBA	-	-	-	-	2	-
CLC	$\bigcirc$	-	-	$\bigcirc$	2	-
CLI	-	-	-	-	2	-
CLR	-	-	6	6	2	-
CLV			$0$	$\bigcirc$	2	-
CMP	2	3	4	4	$\bigcirc$	-
COM	$\bigcirc$	$\bigcirc$	6	6	2	$\bigcirc$
CPX	4	5	6	6	-	-
DAA	-	-	-	-	2	-
DEC	-	-	6	6	2	-
DES	-	-	-	-	3	-
DEX	-	-	-	-	3	-
EOR	2	3	4	4	-	-
INC	-	-	6	6	-	-
INS	-	-	$\bigcirc$	$\bigcirc$	3	-


	ADDRESSING MODE					
-	$\begin{aligned} & \text { © } \\ & \text { 훙 } \\ & \text { E } \\ & \text { E } \end{aligned}$	\%	Extended	8 8 8 8	\%	9 3 8 8
INX	-	-	-	-	3	-
JMP	-	-	3	3	-	-
JSR	-	5	6	6	-	-
LDA	2	3	4	4	-	-
LDD	3	4	5	5	-	-
LDS	3	4	5	5	-	-
LDX	3	4	5	5	-	-
LSL		$\bigcirc$	6	6	2	-
LSLD	-	-	-	-	3	-
LSR	$\bigcirc$	-	6	6	2	-
LSRD	-	-	-	-	3	-
MUL		-	-	-	10	
NEG		-	6	6	2	
NOP		$\bigcirc$	$\bigcirc$	$\bigcirc$	2	
ORA	2	3	4	4	$\bigcirc$	
PSH		-	-	-	3	
PSHX		-	-	-	4	-
PUL	-	-	-	-	4	-
PULX		-	-	-	5	-
ROL	-	-	6	6	2	-
ROR	-	$\bigcirc$	6	6	2	
RTI			$\bigcirc$	$\bigcirc$	10	
RTS		-	-	-	5	
SBA		-	-	-	2	-
SBC	2	3	4	4	-	-
SEC	-	-	-	-	2	-
SEI	-	-	-	-	2	-
SEV		$\bigcirc$	$\bigcirc$	-	2	
STA	-	3	4	4	-	
STD	-	4	5	5	-	
STS	-	4	5	5	-	
STX	-	4	5	5	-	-
SUB	2	3	4	4	-	-
SUBD	4	5	6	6	0	-
SWI	-	$\bigcirc$	$\bigcirc$	-	12	
TAB	-	$\bigcirc$	$\bigcirc$	$\bigcirc$		-
TAP	-	-	-	-	2	-
TBA	-	-	-	-	2	$\bigcirc$
TPA	-	-	-	-	2	-
TST	-	-	6	6	2	-
TSX	-	-	-	-	3	-
TXS	-	-	-	-	3	-
WAI	-	-	-	-	9	-

## SUMMARY OF CYCLE-BY-CYCLE OPERATION

Table: 14 provides a detailed description of the information present on the address bus, data bus, and the read/write $(R / \bar{W})$ line during each cycle of each instruction.

The information is useful in comparing actual with expected results during debug of both software and hardware as the program is executed The information is categorized in groups according to addressing mode and number of cycles
per instruction. In general, instructions with the same addressing mode and number of cycles execute in the same manner. Exceptions are indicated in the table.
Note that during MPU reads of internal locations, the resultant value will not appear on the external data bus except in mode 0. "High order" byte refers to the mostsignificant byte of a 16 -bit value.

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 1 of 5)

Address Mode and Instructions	Cycles	Cycle   \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
IMMEDIATE					
ADC EOR   ADD LDA   AND ORA   BIT SBC   CMP SUB	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address   Opcode Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode Operand Data
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Upcode   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
DIRECT					
ADC EOR   ADD LDA   AND ORA   BIT SBC   CMP SUB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand Operand Data
STA	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1   Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Destination Address   Data from Accumulator
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Address of Operand   Address of Operand + 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Address of Operand   Register Data (High Order Byte)   Register Data (Low Order Byte)
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Operand Address   Operand Address + 1   Address Bus FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
JSR	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Subroutine Address   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Irrelevant Data   First Subroutine Opcode   Return Address (Low Order Byte)   Return Address (High Order Byte)

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 2 of 5)

Address Mode and Instructions	Cycles	Cycle	'Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
EXTENDED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	```Opcode Jump Address thigh Order Byter Jump Address IL ow Order Bytel```
ADC EOR   ADD LDA   AND ORA   BIT SBC   CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand   Address of Operand (1. ow Orde: Bite:   Operand Data
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Operand Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Destination Address (High Order Byte) Destination Address (L.ow Order Byte) Data from Accumulator
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand   Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Operand Data (High Order Byte) Operand Data (Low Order Byte)
$\begin{array}{\|l\|} \hline \text { STS } \\ \text { STX } \\ \text { STD } \end{array}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand   Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Operand Data (High Order Byte) Operand Data (Low Order Byte)
  ASL LSR   ASR NEG   CLR ROL   COM ROR   DEC TST*   INC	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand   Address Bus FFFF   Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Address of Operand (High Order Byte)   Address of Operand (Low Order Byte)   Current Operand Data   Low Byte of Restart Vector   New Operand Data
CPX SUBD ADDD	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Operand Address   Operand Address + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Address (High Order Byte) Operand Address (Low Order Byte) Operand Data (High Order Byte) Operand Data (Low Order Byte) Low Byte of Restart Vector
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Subroutine Starting Address   Stack Pointer   Stack Pointer-1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Address of Subroutine (High Order Byte)   Address of Subroutine (Low Order Byte)   Opcode of Next Instruction   Return Address (Low Order Byte)   Return Address (High Order Byte)

*TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus= \$FFFF.

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 3 of 5)

Address Mode and Instructions		Cycles	Cycle \#	Address Bus	$\begin{aligned} & \hline R / \bar{W} \\ & \text { Line } \end{aligned}$	Data Bus
INDEXED						
JMP		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector
$\begin{array}{\|l\|} \hline \text { ADC } \\ \text { ADD } \\ \text { AND } \\ \text { BIT } \\ \text { CMP } \\ \hline \end{array}$	$\begin{aligned} & \text { EOR } \\ & \text { LDA } \\ & \text { ORA } \\ & \text { SBC } \\ & \text { SUB } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data
STA		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector Operand Data
$\begin{array}{\|l\|} \hline \text { LDS } \\ \text { LDX } \\ \text { LDD } \end{array}$		5	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset   Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
$\begin{array}{\|l\|} \hline \text { STS } \\ \text { STX } \\ \text { STD } \end{array}$		5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset   Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
ASL ASR CLR COM DEC INC	LSR   NEG   ROL   ROR   TST*	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset   Address Bus FFFF   Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Current Operand Data   Low Byte of Restart Vector   New Operand Data
CPX SUBD ADDD		6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register + Offset   Index Register + Offset + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
JSR		6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1   Address Bus FFFF   Index Register + Offset   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   First Subroutine Opcode   Return Address (Low Order Byte)   Return Address (High Order Byte)

[^7]TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 4 of 5)

Address Mode and Instructions			Cycles	Cycle "	Address Bus	$\begin{aligned} & R / \bar{W} \\ & \text { Line } \end{aligned}$	Data Bus
INHERENT							
ABA   ASL   ASA   CBA   CLC   CLI   CLR   CLV   COM	DAA   DEC   INC   LSR   NEG   NOP   ROL   ROR   SBA	SEC   SEI   SEV   TAB   TAP   TBA   TPA   TST	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address   Opcode Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode   Opcode of Next Instruction
ABX			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
$\begin{aligned} & \text { ASLD } \\ & \text { LSRD } \end{aligned}$			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
$\begin{array}{\|l\|} \hline \text { DES } \\ \text { INS } \end{array}$			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Previous Stack Pointer Contents	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction Irrelevant Data
$\begin{array}{\|l\|} \hline \text { INX } \\ \text { DEX } \end{array}$			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction Low Byte of Restart Vector
$\begin{aligned} & \text { PSHA } \\ & \text { PSHB } \end{aligned}$			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Opcode of Next Instruction Accumulator Data
TSX			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Opcode of Next Instruction Irrelevant Data
TXS			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Opcode of Next Instruction Low Byte of Restart Vector
PULA PULB			4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Opcode of Next Instruction   Irrelevant Data   Operand Data from Stack
PSHX			4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	```Opcode Irrelevant Data Index Register (Low Order Byte) Index Register (High Order Byte)```
PULX			5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer +1   Stack Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Irrelevant Data   Index Register (High Order Byte)   Index Register (Low Order Byte)
RTS			5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer + 1   Stack Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Irrelevant Data   Address of Next Instruction (High Order Byte)   Address of Next Instruction (Low Order Byte)
WAI			9	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer - 1   Stack Pointer - 2   Stack Pointeı-3   Stack Pointer-4   Stack Pointer - 5   Stack Pointer-6	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Opcode of Next Instruction Return Address (Low Order Byte) Return Address (High Order Byte) Index Register (Low Order Byte) Index Register (High Order Byte)   Contents of Accumulator $A$ Contents of Accumulator B Contents of Condition Code Register

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 5 of 5)

Address Mode and   Instructions	Cycles	Cycle   $\#$	Address Bus	$R / \bar{W}$   Line	Data Bus

## INHERENT

MUL	10	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \end{gathered}$	Opcode Address   Opcode Address + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
RTI	10	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{gathered}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer +1   Stack Pointer +2   Stack Pointer +3   Stack Pointer +4   Stack Pointer +5   Stack Pointer +6   Stack Pointer + 7	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Irrelevant Data   Contents of Condition Code Register from Stack   Contents of Accumulator B from Stack   Contents of Accumulator A from Stack   Index Register from Stack (High Order Byte)   Index Register from Stack (Low Order Byte)   Next Instruction Address from Stack (High Order Byte)   Next Instruction Address from Stack (Low Order Byte)
SWI	12	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer - 1   Stack Pointer-2   Stack Pointer-3   Stack Pointer-4   Stack Pointer - 5   Stack Pointer-6   Stack Pointer-7   Vector Address FFFA (Hex)   Vector Address FFFB (Hex)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Return Address (Low Order Byte)   Return Address (High Order Byte)   Index Register (Low Ordor Byte)   Index Register (High Order Byte)   Contents of Accumulator $A$   Contents of Accumulator B   Contents of Condition Code Register   Irrelevant Data   Address of Subroutine (High Order Byte)   Address of Subroutine (Low Order Byte)

## RELATIVE

BCC	BHT	BNE'	BLO	3	1	Opcode Address	1	Opcode
BCS	BLE	BPL	BHS		2	Opcode Address + 1	1	Branch Offset
BEO	BLS	BRA	BRN		3	Address Buss FFFF	1	Low Byte of Restart Vector
BGE	BLT	BVC						
BGT	BMI	BVS						
BSR				6	1	Opcode Address	1	Opcode
					2	Opcode Address + 1	1	Branch Offset
					3	Address Bus FFFF	1	Low Byte of Restart Vector
					4	Subroutine Starting Address	1	Opcode of Next Instruction
					5	Stack Pointer	0	Return Address (Low Order Byte)
					6	Stack Pointer - 1	0	Return Address (High Order Byte)

JSR, Jump to Subroutine
INDXD
RTS, Return from Subroutine


Legend:
RTN = Address of next instruction in Main Program to be execited upon return from subroutine RTN $_{\mathrm{H}}=$ Most significant byte of Return Address
RTN $\mathrm{L}_{\mathrm{L}}=$ Least significant byte of Return Address
Pointer After Execution
$K=8$-bit Unsigned Value


## PHYSICAL DIMENSIONS



CB-521


FN SUFFIX PLCC 44


## ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

## EPROMs

Two 2708 or one 2716 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :


After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

## VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

## ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUCTEURS. Quality Assurance, and should be discarded after verification is completed.

## FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the : 6801 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DIVI CE/EXORciser loadable format) and filename .SA (ASC:II Source Code). These files will of course be kept confide:n tial and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

## ORDE RING INFORMATION

Device   Package $\qquad$ $\qquad$ Screening level $\qquad$ Oper. temp.   The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilitiles on request.													
DEVICE		PACKAGE					OPER. TEMP.			SCREENING LEVEL			
		c	J	P	E	FN	L*	v	M	Std	D	G/B	B/B
1.0 MHz	EF6801/03			$\bullet$		$\bullet$	$\bullet$			$\bullet$			
				$\bullet$				-		$\bullet$			
	EF6803	$\bullet$						-		$\bullet$			
1.25 MHz	EF6801/03-1			$\bullet$		$\bullet$	$\bullet$			$\bullet$			
				-				$\bullet$		$\bullet$			
	EF6803-1	-						-		-			
1.5 MHz	EF88A01/03			$\bullet$			-			$\bullet$			
	EF68A03	$\bullet$						$\bullet$		$\bigcirc$			
2.0 MHz	EF68B01/03			-			-			$\bullet$			
Examples : EF6801P, EF6801FN, EF6801PV, EF6803CV													
Package Oper. te Screening	C: Ceramic   p. : L* : $0^{\circ} \mathrm{C}$   level : Std :   G/B			P:   $0^{\circ} \mathrm{C}$   NFC   , B/	$\begin{aligned} & \text { 18tic } \\ & +8 \\ & 688 \\ & \text { NF } \end{aligned}$	IL, E:   C, M   evel   96883	$\begin{aligned} & \text { CCC } \\ & -55 \\ & \text { gvel } \end{aligned}$	N:   to   and	C. $25^{\circ}$ L-ST			itte	

## ADVANCE INFOR MATION

The EF6801U4 is an 8-bit single-chip microcomputer unit (MCU) which enhances the capabilities of the EF6801 and significantly enhances the capabilities of the EF6800 Family of parts. It includes an EF6801 microprocessor unit (MPU) with direct object-code compatibility and upward object-code compatibility with the EF6800. Execution times of key instructions have been improved over the EF6800 and the new instructions found on the EF6801 are included. The MCU can function as a monolithic microcomputer or can be expanded to a 64 K byte address space. It is TTL compatible and requires one +5 -volt power supply. On-chip resources include 4096 bytes of ROM, 192 bytes of RAM, a serial communications interface (SCI), parallel I/O, and a 16 -bit six-function programmable timer. The EF6803U4 can be considered as an EF6801U4 operating in modes 2 or 3 ; i.e., those that do not use internal ROM.

- Enhanced EF6800 Instruction Set
- Upward Source and Object Code Compatibility with the EF6800 and EF6801
- Bus Compatibility with the EF6800 Family
- $8 \times 8$ Multiply Instruction
- Single-Chip or Expanded Operation to 64 K Byte Address Space
- Internal Clock Generator with Divide-by-Four Output
- Serial Communications Interface (SCI)
- 16-Bit Six-Function Programmable Timer
- Three Output Compare Functions
- Two Input Capture Functions
- Counter Alternate Address
- 4096 Bytes of ROM (EF6801U4)
- 192 Bytes of RAM
- 32 Bytes of RAM Retainable During Power Down
- 29 Parallel I/O and Two Handshake Control Lines
- $\overline{N M I}$ Inhibited Until Stack Load
- Complete Development System Support on DEVICE ${ }^{\circledR}$.
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Temperature Range


## HMOS



## EF6801U4 MICROCOMPUTER FAMILY BLOCK DIAGRAM



NOTE : No functioning ROM in EF6803U4.

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	$\mathrm{T}_{\mathrm{H} \text { to } \mathrm{T}_{\mathrm{L}}}$	${ }^{\circ} \mathrm{C}$
EF6801/03U4, EF6801/03U4-1,		0 to 70   EF68A01/03U44	
EF6801/03U4, EF6801/03U4-1 : V suffix		-40 to 85	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Rating
Thermal Resistance			
Plastic	$\theta$ JA	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
PLCC		100	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{C C}$ input protection is enhanced by connecting unused inputs to etther $V_{D D}$ or $V_{S S}$.

## POWER CONSIDERATIONS

The average chip-junction temperature, $T_{J}$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D} \bullet \theta J A\right) \tag{1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \text { TA } \equiv \text { Ambient Temperature, }{ }^{\circ} \mathrm{C} \\
& \theta \mathrm{JA} \equiv \text { Package Thermal Resistance, Junction-to-Ambient, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{PD}_{\mathrm{D}} \equiv \text { PINT }+ \text { PPORT } \\
& \text { PINT } \equiv \text { ICC } \times \text { VCC, Watts }- \text { Chip Internal Power } \\
& \text { PPORT } \equiv \text { Port Power Dissipation, Watts - User Determined }
\end{aligned}
$$

For most applications PPORT \&PINT and can be neglected. PPORT may become significant if the device is configunel $1 /$, drive Darlington bases or sink LED loads.
An approximate relationship between $P_{D}$ and $T_{J}$ (if PPORT is neglected) is:

$$
\begin{equation*}
P_{D}=K \div\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
\mathrm{K}=\mathrm{PD}_{\mathrm{D}} \cdot\left(\mathrm{~T}_{\mathrm{A}}+273^{\circ} \mathrm{C}\right)+\theta_{J A} \cdot \mathrm{PD}^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation 3 by measuring $P_{D}$ (at equilibrium) for a known $T_{A}$. Using this value of $K$ the values of $P D$ and $T J$ can be obtained by solving equations (1) and (2) iteratively for any value of $T_{A}$.

CONTROL TIMING $\left(V_{C C}=5.0 V_{ \pm} 5 \%, V_{S S}=0, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	EF6801U4EF6803U4		$\begin{aligned} & \text { EF6801U4-1 } \\ & \text { EF6803U4-1 } \end{aligned}$		$\begin{aligned} & \text { EF68A01U4 } \\ & \text { EF68A03U4 } \end{aligned}$		Unit
		Min	Max	Min	Max	Min	Max	
Frequency of Operation	$\mathrm{f}_{0}$	0.5	1.0	0.5	1.25	0.5	1.5	MHz
Crystal Frequency	${ }^{\text {f XTAL }}$	2.0	4.0	2.0	5.0	2.0	6.0	MHz
External Oscillator Frequency	$4 \mathrm{f}_{0}$	2.0	4.0	2.0	5.0	2.0	6.0	MHz
Crystal Oscillator Startup Time	$t_{r c}$	-	100	-	100	-	100	ms
Processor Control Setup Time	tPCS	200	-	170	-	140	-	ns

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}=5.0 \mathrm{Vdc} \pm 5 \%, \mathrm{~V}_{S S}=0, T_{A}=T_{L}\right.$ to $T_{H}$ unless otherwise noted)

Characteristic	Symbol	$\left\|\begin{array}{c}\text { EF6801/03U4-A01/03U4 } \\ 0^{\circ} \text { to }+70^{\circ} \mathrm{C}\end{array}\right\|$		$\begin{gathered} \text { EF6801U4/6803U4 } \\ -40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit
		Min	Max	Min	Max	
Input High Voltage(   EESET   Other Inputs*	$\mathrm{V}_{\mathrm{IH}}$	$\begin{array}{r} \hline \mathrm{VSS}_{\mathrm{SS}}+4.0 \\ \mathrm{~V}_{\mathrm{SS}}+2.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{SS}}+4.0 \\ & \mathrm{~V}_{\mathrm{SS}}+2.2 \\ & \hline \end{aligned}$	$V_{\text {CC }}$ $V_{C C}$	v
Input Low Voltage All Inputs*	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	V
Input Load Current ( $\mathrm{V}_{\text {in }}=0$ to 2.4 V$)$ Port 4    SCl	lin	-	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mA
Input Leakage Current $\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right)$	1 in	-	2.5	-	5.0	$\mu \mathrm{A}$
Hi-Z (Off-State) Input Current   $\left(\mathrm{V}_{\text {in }}=0.5\right.$ to 2.4 V$)$ Port 1, Port 2, Port 3	ITSI	-	10	-	20	$\mu \mathrm{A}$
Output High Voltage    (ILoad $=-65 \mu \mathrm{~A}, \mathrm{~V}_{C C}=$ Min) Port 4, SC1, SC2   (ILoad $=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=$ Min) Other Outputs	VOH	$\begin{aligned} & v_{\mathrm{SS}}+2.4 \\ & \mathrm{v}_{\mathrm{SS}}+2.4 \\ & \hline \end{aligned}$	-	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \end{aligned}$	-	V
Output Low Voltage    (load $=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=$ Min) All Outputs	VOL	-	$\mathrm{V}_{\text {SS }}+0.5$	-	$\mathrm{V}_{\text {SS }}+0.6$	V
Darlington Drive Current $\left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}\right)$   Port 1	$\mathrm{IOH}^{2}$	1.0	4.0	1.0	5.0	mA
Internal Power Dissipation (Measured at $T_{A}=T_{\mathrm{L}}$ in Steady-State Operation)***	Pint	-	1200	-	1500	mW
Input Capacitance    $\left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}\right.$, Port 3, Port 4, SC1   $\mathrm{f}_{0}=1.0 \mathrm{MHz}$ ) Other Inputs	$\mathrm{C}_{\text {in }}$	-	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	-	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	pF
$\mathrm{V}_{\text {CC }}$ Standby $\quad \begin{array}{r}\text { Powerdown } \\ \text { Powerup }\end{array}$	$\begin{aligned} & \hline \mathrm{v}_{\mathrm{SBB}} \\ & \mathrm{v}_{\mathrm{SB}} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	V
Standby Current Powerdown	ISBB	-	3.0	-	3.5	mA

*Except mode programming levels; see Figure 16.

*     * Negotiable to $-100 \mu \mathrm{~A}$ (for further information contact the factory).
** * For the EF6801U4/EF6803U4 $T_{L}=0^{\circ} \mathrm{C}$ and for the EF6801U4/EF6803U4: V suffix $T_{L}=-40^{\circ} \mathrm{C}$
PERIPHERAL PORT TIMING (Refer to Figures 1-4)

Characteristic	Symbol	$\begin{aligned} & \text { EF6801/03U4 } \\ & \text { EF6801/03U4-1 } \end{aligned}$			EF68A01/03U4			Unit
		Min	Typ	Max	Min	Typ	Max	
Peripheral Data Setup Time	tPDSU	200	-	-	150	-	-	ns
Peripheral Data Hold Time	tPDH	200	-	-	150	-	-	ns
Delay Time, Enable Positive Transition to $\overline{\mathrm{OS} 3}$ Negative Transition	toSD1	--	-	350	-	-	300	ns
Delay Time, Enable Positive Transition to $\overline{\mathrm{OS} 3}$ Positive Transition	tosD2	-	-	350	-	-	300	ns
Delay Time, Enable Negative Transition to Peripheral Data Valid Port 1   Port 2. 3. 4	tpWD	-	-	$\begin{array}{r} 350 \\ 350 \\ \hline \end{array}$	-	-	$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$	ns
Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid	${ }^{\text {C }}$ CMOS	-	-	2.0	-	-	2.0	$\mu \mathrm{S}$
Input Strobe Pulse Width	tPWIS	200	-	-	150	-	-	ns
Input Data Hold Time	${ }^{1} \mathrm{H}$	50	-	-	40	-	-	ns
Input Data Setup Time	tis	20	-	-	20	-	-	ns

FIGURE 1 - DATA SETUP AND HOLD TIMES (MPU READ)

*Port 3 non-latched operation (Latch enable $=0$ )

FIGURE 2 - DATA SETUP AND HOLD TIMES (MPU WRITE)


NOTES:

1. 10 k pullup resistor required for port 2 to reach $0.7 \mathrm{~V}_{\mathrm{CC}}$
2. Not applicable to P21
3. Port 4 cannot be pulled above $\mathrm{V}_{\mathrm{CC}}$

FIGURE 3 - PORT 3 OUTPUT STROBE TIMING (E F6801U4 SINGLE-CHIP MODE)


FIGURE 4 - PORT 3 LATCH TIMING (EF6801U4 SINGLE-CHIP MODE)


* Access matches output strobe select (OSS $=0$, a read; $O S S=1$, a write)

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted.

FIGURE 5 - CMOS LQAD


FIGURE 6 - TIMING TEST LOAD PORTS 1, 2, 3, AND 4

$\mathrm{C}=90 \mathrm{pF}$ for P30-P37, P40-P47, E, SC1, SC2
$=30 \mathrm{pF}$ for P10-P17, P20-P24
$R=37 \mathrm{k} \Omega$ for P40-P47, SC1, SC2
$=24 \mathrm{k} \Omega$ for P10-P17, P20-P24
$=24 \mathrm{k} \Omega$ for P30-P37, E

BUS TIMING (See Notes 1 and 2, and Figure 7)

Ident.   Number	Characteristics	Symbol	$\begin{aligned} & \text { EF6801U4 } \\ & \text { EF6803 U4 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { EF6801U4-1 } \\ \text { EF6803U4-1. } \\ \hline \end{array}$		$\begin{aligned} & \text { EF68A01U4 } \\ & \text { EF68A03U4 } \\ & \hline \end{aligned}$		Unit
			Min	Max	Min	Max	Min	Max	
1	Cycle Time	${ }_{\text {t }}^{\text {cyc }}$	1.0	2.0	0.8	2.0	0.66	2.0	$\mu \mathrm{s}$
2	Pulse Width, E Low	PWEL	430	1000	360	1000	300	1000	ns
3	Pulse Width, E High	PWEH	450	1000	360	1000	300	1000	ns
4	Clock Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}} . \mathrm{tf}^{\text {f }}$	-	25	-	25	-	25	ns
9	Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	20	-	20	-	20	-	ns
12	Non-Muxed Address Valid Time to E*	${ }^{\text {t }}$ AV	200	-	150	-	115.	-	ns
17	Read Data Setup Time	tDSR	80	-	70	-	60	-	ns
18	Read Data Hold Time	tDHR	10	-	10	-	10	-	ns
19	Write Data Delay Time	tDDW	-	225	-	200	-	160	ns
21	Write Data Hold Time	tDHW	20	-	20	-	20	-	ns
22	Muxed Address Valid Time to E Rise*	${ }^{\text {taVM }}$	160	-	120	-	100	-	ns
24	Muxed Address Valid Time to AS Fall*	${ }^{\text {t }}$ ASL	40	-	30	-	30	-	ns
25	Muxed Address Hold Time	${ }^{\text {t }} \mathrm{AHL}$	20	-	20	-	20	-	ns
26	Delay Time, E to AS Rise*	${ }^{\text {t }}$ ASD	200	-	170	-	130	-	ns
27	Pulse Width, AS High*	PWASH	100	-	80	-	60	-	ns
28	Delay Time, AS to E Rise*	tased	90	-	70	-	60	-	ns
29	Usable Access Time* (See Note 3)	${ }^{\text {t } A C C}$	555	-	435	-	385	-	ns

*At specified cycle time.
FIGURE 7 - BUS TIMING


NOTES:

1. Voltage levels shown are $\mathrm{V}_{\mathrm{L}} \leq 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}} \geq 2.4 \mathrm{~V}$, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V , unless otherwise specified.
3. Usable access time is computed by $22+3-17+4$.
4. Memory devices should be enabled only during E high to avoid port 3 bus contention.
5. Item 26 is different from the EF6801 but it is upward compatible.

## INTRODUCTION

The EF6801U4 is an 8 -bit monolithic microcomputer which can be configured to function in a wide variety of applications. The facility which provides this extraordinary flexibility is its ability to be hardware programmed into eight different operating modes. The operating mode controls the configuration of 18 of the 40 MCU pins, available on-chip resources, memory map, location (internal or external) of interrupt vectors, and type of external bus. The configuration of the remaining 22 pins is not dependent on the operating mode.
Twenty-nine pins are organized as three 8 -bit ports and one 5 -bit port. Each port consists of at least a data register and a write-only data direction register. The data direction register is used to define whether corresponding bits in the data register are configured as an input (clear) or output (set).

The term "port" by itself refers to all of the hardware associated with the port. When the port is used as a "data port" or "I/O port," it is controlled by the port data direction register and the programmer has direct access to the port pins using the port data register. Port pins are labeled as Pij where $i$ identifies one of four ports and $j$ indicates the particular bit.

The microprocessor unit (MPU) is an enhanced EF6800 MPU with additional capabilities and greater throughput. It is upward source and object code compatible with the EF6800 and the EF6801. The programming model is depicted in Figure 8 where accumulator $D$ is a concatenation of accumulators $A$ and $B$. A list of new operations added to the EF6800 instruction set are shown in Table 1.

The EF6803U4 can be considered an EF6801U4 that operates in modes 2 and 3 only.

FIGURE 8 - PROGRAMMING MODEL


TABLE 1 - NEW INSTRUCTIONS

Instruction	Description
ABX	Unsigned addition of accumulator B to index register
ADDD	Adds (without carry) the double accumulator to memory and leaves the sum in the double accumulator
ASLD or LSLD	Shifts the double accumulator left (towards MSB) one bit, the LSB is cleared, and the MSB is shifted into the C bit
BHS	Branch if higher or same, unsigned conditional branch (same as BCC)
BLO	Branch if lower, unsigned conditional branch (same as BCS)
BRN	Branch never
JSR	Additional addressing mode direct
LDD	Loads double accumulator from memory
LSL	Shifts memory or accumulator left (towards MSB) one bit, the LSB is cleared, and the MSB is shifted into the C bit
	(same as ASL)
LSRD	Shifts the double accumulator right (towards LSB) one bit, the MSB is cleared, and the LSB is shifted into the C bit
MUL	Unsigned multiply, multiplies the two accumulators and leaves the product in the double accumulator
PSHX	Pushes the index register to stack
PULX	Pulls the index register from stack
STD	Stores the double accumulator to memory
SUBD	Subtracts memory from the double accumulator and leaves the difference in the double accumulator
CPX	Internal processing modified to permit its use with any conditional branch instruction

## OPERATING MODES

The EF6801U4 provides seven different operating modes (modes 0 through 3 and 5 through 7) and the EF6803U4 provides two operating modes (modes 2 and 3 ). The operating modes are hardware selectable and determine the device memory map, the configuration of port 3, port 4, SC1, SC2, and the physical location of the interrupt vectors.

## FUNDAMENTAL MODES

The seven operating modes ( $0-3,5-7$ ) can be grouped into three fundamental modes which refer to the type of bus it supports: single chip, expanded non-multiplexed, and ex-
panded multiplexed. Single chip is mode 7, expanded nonmultiplexed is mode 5 , and the remaining 5 are expanded multiplexed modes. Table 2 summarizes the characteristics of the operating modes.

EF6801U4 SINGLE-CHIP MODE (7) -- In the single-chip mode, the four MCU ports are configured as parallel input/output data ports, as shown in Figure 9. The MCU functions as a monolithic microcomputer in this mode without external address or data buses. A maximum of 29 I/O lines and two port 3 control lines are provided. Peripherals or another MCU can be interfaced to port 3 in a loosely coupled dual-processor configuration, as shown in Figure 10.

TABLE 2 - SUMMARY OF EF6801U4/EF6803U4 OPERATING MODES
Single-Chip (Mode 7)
192 bytes of RAM, 4096 bytes of ROM
Port 3 is a parallel I/O port with two control lines
Port 4 is a parallel I/O port

Expanded Non-Multiplexed (Mode 5)
192 bytes of RAM, 4096 bytes of ROM
256 bytes of external memory space
Port 3 is an 8-bit data bus
Port 4 is an input port/address bus
Expanded Multiplexed (Modes 0, 1, 2, 3, $6^{*}$ )
Four memory space options (total 64 K address space)
(1) Internal RAM and ROM with partial address bus (mode 1)
(2) Internal RAM, no ROM (mode 2)
(3) Extended addressing of internal I/O and RAM
(4) Internal RAM and ROM with partial address bus (mode 6)

Port 3 is multiplexed address/data bus
Port 4 is address bus (inputs/address in mode 6)
Test mode (mode 0):
May be used to test internal RAM and ROM
May be used to test ports 3 and 4 as $I / O$ ports by writing into mode 7
Only modes 5, 6, and 7 can be irreversibly entered from mode 0
Resources Common to All Modes
Reserved register area
Port 1 input/output operation
Port 2 input/output operation
Timer operation
Serial communications interface operation
*The EF6803U4 operates only in modes 2 and 3.


FIGURE 10 - SINGLE-CHIP DUAL PROCESSOR CONFIGURATION


## EF6801U4 EXPANDED NON-MULTIPLEXED MODE (5)

- A modest amount of external memory space is provided in the expanded non-multiplexed mode while significant onchip resources are retained. Port 3 functions as an 8 -bit bidirectional data bus and port 4 is configured initially as an input data port. Any combination of the eight least significant address lines may be obtained by writing to the port 4 data direction register. Stated alternatively, any combination of A0 to A7 may be provided while retaining the remainder as input data lines. Internal pullup resistors pull the port 4 lines high until the port is configured

Figure 11 illustrates a typical system configuration in the expanded non-multiplexed mode. The MCU interfaces directly with EF6800 family parts and can access 256 bytes of external address space at $\$ 100$ through $\$ 1$ FF. IOS provides an address decode of external memory ( $\$ 100-\$ 1 \mathrm{FF}$ ) and can be used as a memory-page select or chip-select line.

EXPANDED MULTIPLEXED MODES (0, 1, 2, 3, 6) - A 64 K byte memory space is provided in the expanded multiplexed modes. In each of the expanded multiplexed modes, port 3 functions as a time multiplexed address/data bus with address valid on the negative edge of address strobe (AS) and data valid while E is high. In modes 0,2 , and 3 , port 4 provides address lines A8 to A15. In modes 1 and 6, however, port 4 initially is configured at reset as an input data port. The port 4 data direction register can then be changed to provide any combination of address lines A8 to A15. Stated alternatively, any subset of A8 to A15 can be provided while retaining the remaining port 4 lines as input data lines. Internal pullup resistors pull the port 4 lines high until software configures the port. In mode 1, the internal pullup resistors will hold the upper address lines high producing a value of $\$ F F X X$ for a reset vector. A simple method of getting the desired address lines configured as outputs is to have an external EPROM not fully decoded so it appears at
two address locations (t.e., $\$ F X X X$ and $\$ B X X X$ ). Then, when the reset vector appears as \$FFFE, the EPROM will be accessed and can point to an address in the top $\$ 100$ bytes of the internal or external ROM/EPROM that will configure port 4 as desired.
In mode 0 , the reset and interrupt vectors are located at \$BFFO-\$BFFF. In addition, the internal and external data buses are connected, so there must be no memory map overlap in order to avoid potential bus conflicts. By writing the PCO-PC2 bits in the port 2 data register, modes 5,6 , and 7 can be irreversibly entered from mode 0 . Mode 0 is used
primarily to verify the ROM pattern and monitor the internal data bus with the automated test equipment.

Only the EF6801U4 can operate in each of the expanded multiplexed modes. The EF6803U4 operates only in modes 2 and 3.

Figure 12 depicts a typical configuration for the expanded multiplexed modes. Address strobe can be used to control a transparent D-type latch to capture addresses A0-A7, as shown in Figure 13. This allows port 3 to function as a data bus when $E$ is high.

FIGURE 11 - EXPANDED NON-MULTIPLEXED CONFIGURATION


FIGURE 12 - EXPANDED MULTIPLEXED CONFIGURATION


NOTE: To avoid data bus (port 3) contention in the expanded multiplexed modes, memory devices should be enabled only during E high time.


## PROGRAMMING THE MODE

The operating mode is determined at $\overline{\text { RESET }}$ by the levels asserted on P22, P21, and P20. These levels are latched into $\mathrm{PC} 2, \mathrm{PC1}$, and PCO of the program control register on the positive edge of RESET. The operating mode may be read from the port 2 data register, as shown below, and programming levels and timing must be met as shown in Figure 14. A brief outline of the operating modes is shown in Table 3.

## PORT 2 DATA REGISTER

7	6	5	4	3	2	1	0	
PC 2	PC 1	PCO	P 24	P 23	P 22	P 21	P 20	

Circuitry to provide the programming levels is dependent primarily on the normal system usage of the three pins. If configured as outputs, the circuit shown in Figure 15 may be used; otherwise, three-state buffers can be used to provide isolation while programming the mode.

## MEMORY MAPS

The EF6801U4/EF6803U4 can provide up to 64 K byte address space depending on the operating mode. A memory map for each operating mode is shown in Figure 16. The first 32 locations of each map are reserved for the internal register area, as shown in Table 4, with exceptions as indicated.


MODE PROGRAMMING (Refer to Figure 14)

Characteristic	Symbol	Min	Max	Unit
Mode Programming Input Voltage Low	$\mathrm{V}_{\text {MPL }}$	-	1.8	V
Mode Programming Input Voltage High	VMPH	4.0	-	V
Mode Programming Diode Differential (If Diodes are Used)	$\mathrm{V}_{\text {MPDD }}$	0.6	-	V
RESET Low Puise Width	PWRSTL	3.0	-	E Cycles
Mode Programming Setup Time	tMPS	2.0	-	E Cycles
$\begin{aligned} & \hline \text { Mode Programming Hold Time } \\ & \text { RESET Rise Time } 21 \mu \mathrm{~s} \\ & \text { RESET Rise Time }<1 \mu \mathrm{~s} \\ & \hline \end{aligned}$	${ }^{\text {m MPH }}$	$\begin{gathered} 0 \\ 100 \end{gathered}$	-	ns

TABLE 3 - MODE SELECTION SUMMARY

Mode*	$\begin{aligned} & \mathrm{P} 22 \\ & \mathrm{PC} 2 \end{aligned}$	$\begin{aligned} & \text { P21 } \\ & \text { PC1 } \end{aligned}$	$\begin{aligned} & \text { P20 } \\ & \text { PC0 } \end{aligned}$	ROM	RAM	Interrupt Vectors	Bus Mode	Operating Mode
7	H	H	H	1	1	1	1	Single Chip
6	H	H	L	1	1	1	MUX ${ }^{(2,3)}$	Multiplexed/Partial Decode.
5	H	L	H	1	1	1	NMUX ${ }^{(2,3)}$	Non-Multiplexed/Partial Decode
4	H	L	L	-	-	-	-	Undefined ${ }^{(4)}$
3	L	H	H	E	1	E	MUX ${ }^{(1,5)}$	Multiplexed/RAM
2	L	H	L	E	1	E	MUX ${ }^{(1)}$	Multiplexed/RAM
1	L	L	H	1	1	E	MUX ${ }^{(1,3)}$	Multiplexed/RAM and ROM
0	L	L	L	1	1	E	MUX ${ }^{(1)}$	Multiplexed Test

LEGEND

$$
\begin{aligned}
& \text { 1- Internal } \\
& \text { E - External } \\
& \text { MUX - Multiplexed } \\
& \text { NMUX - Non-Multiplexed } \\
& \text { L - Logic "0"' } \\
& \text { H - Logic "1" }
\end{aligned}
$$

## NOTES:

1. Addresses associated with ports 3 and 4 are considered external in modes $0,1,2$, and 3.
2. Addresses associated with port 3 are considered external in modes 5 and 6.
3. Port 4 default is user data input; address output is optional by writing to port 4 data direction register.
4. Mode 4 is a non-user mode and should not be used as an operating mode.
5. Mode 3 has the internal RAM and internal registers relocated at \$D000-\$DOFF.
*The EF6803U4 operates only in modes 2 and 3.

FIGURE 15 -- TYPICAL MODE PROGRAMMING CIRCUIT


FIGURE 16 - EF6801U4/EF6803U4 MEMORY MAPS (Sheet 1 of 4)
OTES:

1. Mode 7 as shown
2. R2•C=Reset time constant
3. $\mathrm{R} 1=10 \mathrm{k}$ (typical)
4. $D=1$ N914, 1N4001 (typical)
5. Diode $V_{f}$ should not exceed $V_{M P D D}$ min.

Multiplexed Test Mode


NOTES:

1) Excludes the following addresses which may be used externally: \$04, \$05, \$06, \$07, and \$0F.
2) The interrupt vectors are at $\$ B F F O-\$ B F F F$.
3) There must be no overlapping of internal and external memory spaces to avoid driving the data bus with more than one device.
4) This mode is the only mode which may be used to examine the entire ROM using an external $\overline{\text { RESET }}$ vector.
5) Modes 5-7 can be irreversibly entered from mode 0 by writing to the PCO-PC2 bits of the port 2 data register.

FIGURE 16 - EF6801U4/EF6803U4 MEMORY MAPS (Sheet 2 of 4)


FIGURE 16 - EF6801U4/EF6803U4 MEMORY MAPS (Sheet 3 of 4)


FIGURE 16 - EF6801U4/EF6803U4 MEMORY MAPS (Sheet 4 of 4)

$\begin{aligned} & \text { EF6801U4 } \\ & \text { Mode } \end{aligned}$   Multiplexed/Partial Decode	EF6801U4   Mode   Single Chip
NOTES:   1) Excludes the following addresses which may be used externally: $\$ 04, \$ 06, \$ 0 F$.   2) Address lines A8-A15 will not contain addresses until the data direction register for port 4 has been written with " 1 s " in the appropriate bits. These address lines will assert " 1 s " until made outputs by writing the data direction register.	

TABLE 4 - INTERNAL REGISTER AREA

Register	Address	
	Other   Modes	Mode 3
Port 1 Data Direction Register * * *	0000	D000
Port 2 Data Direction Register***	0001	D001
Port 1 Data Register	0002	D002
Port 2 Data Register	0003	D003
Port 3 Data Direction Register ***	0004*	D004*
Port 4 Data Direction Register***	0005**	D005**
Port 3 Data Register	0006*	D006*
Port 4 Data Register	0007**	D007* *
Timer Control and Status Register	0008	D008
Counter (High Byte)	0009	D009
Counter (Low Byte)	000A	D00A
Output Compare Register (High Byte)	000B	D00B
Output Compare Register (Low Byte)	000C	D00C
Input Capture Register (High Byte)	000D	DOOD
Input Capture Register (Low Byte)	OODE	DOOE
Port 3 Control and Status Register	000F*	DOOF*
Rate and Mode Control Register	0010	D010
Transmit/Receive Control and Status Register	0011	D011
Receive Data Register	0012	D012
Transmit Data Register	0013	D013
RAM Control Register	0014	D014
Counter Alternate Address (High Byte)	0015	D015
Counter Alternate Address (Low Byte)	0016	D016
Timer Control Register 1	0017	D017
Timer Control Register 2	0018	D018
Timer Status Register	0019	D019
Output Compare Register 2 (High Byte)	001A	D01A
Output Compare Register 2 (Low Byte)	001B	D01B
Output Compare Register 3 (High Byte)	001C	D01C
Output Compare Register 3 (Low Byte)	001D	D01D
Input Capture Register 2 (High Byte)	001E	D01E
Input Capture Register 2 (Low Byte)	001F	D01F

* External addresses in modes 0, 1, 2, 3, 5, and 6 cannot be accessed in mode 5 (no IOS).
*     * External Addresses in Modes 0, 2, and 3.
***1=Output, $0=$ Input


## EF6801U4/EF6803U4 INTERRUPTS

The EF6801 Family supports two types of interrupt requests: maskable and non-maskable. A non-maskable interrupt ( $\overline{\mathrm{NM}}$ ) is always recognized and acted upon at the completion of the current instruction. Maskable interrupts are controlled by the condition code register I bit and by individual enable bits. The I bit controls all maskable interrupts. Of the maskable interrupts, there are two types: $\overline{\mathrm{IQQ1}}$ and $\overline{\mathrm{RQ} 2}$. The programmable timer and serial communications interface use an internal $\overline{\mathrm{RQ} 2}$ interrupt line, as shown in the block diagram. External devices and IS3 use $\overline{\mathrm{RQ1}}$. An $\overline{\mathrm{RQ} 1}$ interrupt is serviced before $\overline{\mathrm{RQ} 2}$ if both are pending.

## NOTE

After reset, an $\overline{N M I}$ will not be serviced until the first program load of the stack pointer. Any $\overline{\mathrm{NMI}}$ generated before this load will be remembered by the processor and serviced subsequent to the stack pointer load.

All $\overline{\mathrm{RQ2}}$ interrupts use hardware prioritized vectors. The single SCl interrupt and three timer interrupts are serviced in a prioritized order and each is vectored to a separate location. All interrupt vector locations are shown in Table 5. In mode 0 , reset and interrupt vectors are defined as $\$ B F F O-$ \$BFFF.

The interrupt flowchart is depicted in Figure 17 and is common to every interrupt excluding reset. During interrupt servicing, the program counter, index register, A accumulator, B accumulator, and condition code register are pushed to the stack. The I bit is set to inhibit maskable interrupts and a vector is fetched corresponding to the current highest priority interrupt. The vector is transferred to the program counter and instruction execution is resumed. Interrupt and $\overline{\text { RESET }}$ timing are illustrated in Figures 18 and 19.

TABLE 5 - MCU INTERRUPT VECTOR LOCATIONS

Mode 0		Modes 1-3, 5-7		Interrupt * *
MSB	LSB	MSB	LSB	
BFFE	BFFF	FFFE	FFFF	$\overline{\text { RESET }}$
BFFC	BFFD	FFFC	FFFD	Non-Maskable Interrupt**
BFFA	BFFB	FFFA	FFFB	Software Interrupt
BFF8	BFF9	FFF8	FFF9	Maskable Interrupt Request 1
BFF6	BFF7	FFF6	FFF7	Input Capture Flag*
BFF4	BFF5	FFF4	FFF5	Output Compare Flag*
BFF2	BFF3	FFF2	FFF3	Timer Overflow Flag*
BFFO	BFF1	FFFO	FFF1	Serial Communications Interface*
			cessns	stack pointer) before an




FIGURE 19 - $\overline{\text { RESET }}$ timing




## FUNCTIONAL PIN DESCRIPTIONS

## $V_{C C}$ AND $V_{S S}$

$V_{C C}$ and $V_{S S}$ provide power to a large portion of the MCU . The power supply should provide +5 volts $( \pm 5 \%)$ to $V_{C C}$ and $V_{S S}$ should be tied to ground. Total power dissipation (including $V_{C C}$ standby) will not exceed PD milliwatts.

## Vcc STANDBY

$\mathrm{V}_{\mathrm{CC}}$ standby provides power to the standby portion $(\$ 40$ through \$5F in all modes except mode 3 which is \$D040 through \$D05F) of the RAM and the STBY PWR and RAME bits of the RAM control register. Voltage requirements depend on whether the device is in a power-up or power-down state. In the power-up state, the power supply should provide +5 volts $( \pm 5 \%)$ and must reach $V_{S B}$ volts before $\overline{\text { RESET }}$ reaches 4.0 volts. During power down, $V_{C C}$ standby must remain above $V_{S B B}$ (minimum) to sustain the standby RAM and STBY PWR bit. While in power-down operation, the standby current will not exceed ISBB.

It is typical to power both $V_{C C}$ and $V_{C C}$ standby from the same source during normal operation. A diode must be used between them to prevent supplying power to $\mathrm{V}_{\mathrm{CC}}$ during power-down operation.

## XTAL1 AND EXTAL 2

These two input pins interface either a crystal or TTLcompatible clock to the MCU internal clock generator. Divide-by-four circuitry is included which allows use of the inexpensive 3.58 MHz or 4.4336 MHz color burst TV crystals. A 20 pF capacitor should be tied from each crystal pin to ground to ensure reliable startup and operation. Alternatively, EXTAL2 may be driven by an external TTL-compatible clock at $4 f_{0}$ with a duty cycle of $50 \%( \pm 5 \%)$ with XTAL1 connected ground.

The internal oscillator is designed to interface with an ATcut quartz crystal resonator operated in parallel resonance mode in the frequency range specified for fXTAL. The crystal should be mounted as close as possible to the input pins to minimize output distortion and startup stabilization time. The MCU is compatible with most commercially available crystals. Nominal crystal parameters are shown in Figure 20.

## RESET

This input is used to reset the internal state of the device and provide an orderly startup procedure. During power up, $\overline{R E S E T}$ must be held below 0.8 volt : (1) at least $t_{R C}$ after $V_{\text {CC }}$ reaches 4.75 volts in order to provide sufficient time for the clock generator to stabilize, and (2) until $V_{C C}$ standby reaches 4.75 volts. RESET must be held low at least three $E$ cycles if asserted during power-up operation.

## E (ENABLE)

This is an output clock used primarily for bus synchronization. It is TTL compatible and is the slightly skewed divide-by-four result of the device input clock frequency. It will drive one Schottky TTL load and 90 pF , and all data given in cycles is referenced to this clock unless otherwise noted.

## $\overline{\mathrm{NM}}$ ( $N O N$-MASKABLE INTERRUPT)

An $\overline{\mathrm{NMI}}$ negative edge requests an MCU interrupt sequence, but the current instruction will be completed before
it responds to the request. The MCU will then begin an interrupt sequence. Finally, a vector is fetched from \$FFFC and \$FFFD (\$BFFC and \$BFFD in mode 0), transferred to the program counter, and instruction execution is resumed. $\overline{\mathrm{NMI}}$ typically requires a $3.3 \mathrm{k} \Omega$ (nominal) resistor to $\mathrm{V}_{\mathrm{CC}}$. There is no internal $\overline{\text { NMI }}$ pullup resistor. $\overline{\text { NMI }}$ must be held low for at least one $E$ cycle to be recognized under all conditions.

## NOTE

After reset, an NMI will not be serviced until the first program load of the stack pointer. Any $\overline{\mathrm{NMI}}$ generated before this load will remain pending by the processor.

## $\overline{\mathrm{IRO1}}$ (MASKABLE INTERRUPT REQUEST 1)

IRQ1 is a level-sensitive input which can be used to request an interrupt sequence. The MPU will complete the current instruction before it responds to the request. If the interrupt mask bit (I bit) in the condition code register is clear, the MCU will begin an interrupt sequence. A vector is fetched from \$FFF8 and \$FFF9 (\$BFF8 and \$BFF9 in mode 0), transferred to the program counter, and instruction execution is resumed.
$\overline{\mathrm{RQ1}}$ typically requires an external $3.3 \mathrm{k} \mathrm{\Omega}$ (nominal) resistor to $\mathrm{V}_{\mathrm{CC}}$ for wire-OR applications. $\overline{\mathrm{RQ1}}$ has no internal pullup resistor.

## SC1 AND SC2 (STROBE CONTROL 1 AND 2)

The function of SC1 and SC2 depends on the operating mode. SC1 is configured as an output in all modes except single-chip mode, whereas SC2 is always an output. SC1 and SC2 can drive one Schottky load and 90 pF .

SC1 AND SC2 IN SINGLE-CHIP MODE - In single-chip mode, SC1 and SC2 are configured as an input and output, respectively, and both function as port 3 control lines. SC1 functions as IS3 and can be used to indicate that port 3 input data is ready or output data has been accepted. Three options associated with IS3 are controlled by the port 3 control and status register and are discussed in the port 3 description; refer to P30-P37 (PORT 3). If unused, IS3 can remain unconnected.

SC2 is configured as OS3 and can be used to strobe output data or acknowledge input data. It is controlled by output strobe select (OSS) in the port 3 control and status register. The strobe is generated by a read $(O S S=0)$ or write $(\mathrm{OSS}=1)$ to the port 3 data register. OS3 timing is shown in Figure 3.

SC1 AND SC2 IN EXPANDED NON-MULTIPLEXED MODE - In the expanded non-multiplexed mode, both SC1 and SC2 are configured as outputs. SC1 functions as input/output select (IOS) and is asserted only when $\$ 0100$ through \$01FF is sensed on the internal address bus.

SC2 is configured as read/write and is used to control the direction of data bus transfers. An MPU read is enabled when read/write and $E$ are high.

SC1 AND SC2 IN EXPANDED MULTIPLEXED MODE In the expanded multiplexed modes, both SC1 and SC2 are configured as outputs. SC1 functions as address strobe and can be used to demultiplex the eight least significant addresses and the data bus. A latch controlled by address strobe captures the lower address on the negative edge, as shown in Figure 13.

FIGURE 20 - EF6801U4/EF6803U4 FAMILY OSCILLATOR CHARACTERISTICS
(a) Nominal Recommended Crystal Parameters

	Nominal Crystal Parameters*		
	3.58 MHz	4.00 MHz	5.0 MHz
RS	$60 \Omega$	$50 \Omega$	$30-50 \Omega$
C0	3.5 pF	6.5 pF	$4-6 \mathrm{pF}$
C1	0.015 pF	0.025 pF	$0.01-0.02 \mathrm{pF}$
Q	$>40 \mathrm{~K}$	$>30 \mathrm{~K}$	$>20 \mathrm{~K}$

*NOTE: These are representative AT-cut crystal parameters only. Crystals of other types of cut may also be used

(b) Oscillator Stabilization Time ( $\mathrm{t}_{\mathrm{RC}}$ )


SC2 is configured as read/write and is used to control the direction of data bus transfers. An MPU read is enabled when read/write and $E$ are high.

## P10-P17 (PORT 1)

Port 1 is a mode independent 8 -bit $1 / 0$ and timer port. Each line can be configured as either an input or output as defined by the port 1 data direction register. Port 1 bits 0,1 , and 2 (P10, P11, and P12) can also be used to exercise one input edge function and two output compare functions of the timer. The TTL compatible three-state buffers can drive one Schottky TTL load and 30 pF , Darlington transistors, or CMOS devices using external pullup resistors. It is configured as a data input port during RESET. Unused pins can remain unconnected.

## P20-P24 (PORT 2)

Port 2 is a mode-independent, 5 -bit, multipurpose $1 / \mathrm{O}$ port. The voltage levels present on P20, P21, and P22 on the rising edge of RESET determine the operating mode of the MCU. The entire port is then configured as a data input port. The port 2 lines can be selectively configured as data output lines by setting the appropriate bits in the port 2 data direction register. The port 2 data register is used to move data through the port. However, if P21 is configured as an output, it is tied to the timer output compare 1 function and cannot be used to provide output from the port 2 data register unless output enable 1 (OE1) is cleared in timer control register 1.

Port 2 can also be used to provide an interface for the serial communications interface and the timer input edge function. These configurations are described in SERIAL COMMUNICATIONS INTERFACE and PROGRAMMABLE TIMER.

The port 2 three-state TTL-compatible output buffers are capable of driving one Schottky TTL load and 30 pF , or CMOS devices using external pullup resistors.

PORT 2 DATA REGISTER

7	6	5	4	3	2	1	0
PC2	PC1	PC0	P24	P23	P22	P21	P20

## P30-P37 (PORT 3)

Port 3 can be configured as an $1 / O$ port, a bidirectional 8-bit data bus, or a multiplexed address/data bus depending on the operating mode. The TTL compatible three-state output buffers can drive one Schottky TTL load and 90 pF . Unused lines can remain unconnected.

PORT 3 IN SINGLE-CHIP MODE - Port 3 is an 8-bit I/O port in the single-chip mode with each line configured by the port 3 data direction register. There are also two lines, IS3 and OS3, which can be used to control port 3 data transfers.

Three port 3 options are controlled by the port 3 control and status register and are available only in single-chip mode: 1) port 3 input data can be latched using IS3 as a control signal, 2) OS3 can be generated by either an MPU read or write to the port 3 data register, and 3) an $\overline{\mathrm{RQ1}}$ interrupt can be enabled by an IS3 negative edge. Port 3 latch timing is shown in Figure 4.

PORT 3 CONTROL AND STATUS REGISTER

7	6	5	4	3	2	1	0
IS3   Flag	$\frac{\text { IS3 }}{\text { IRQ1 }}$	$\times$	OSS	Latch   Enable	$\times$	$x$	$\times$
SOF							

Bits 0-2 Not used.
Bit 3 Latch Enable - This bit controls the input latch for port 3. If set, input data is latched by an IS3 negative edge. The latch is transparent after a read of the port 3 data register. Latch enable is cleared during reset.
Bit 4 OSS (Output Strobe Select) - This bit determines whether OS3 will be generated by a read or write of the port 3 data register. When clear, the strobe is generated by a read; when set, it is generated by a write. OSS is cleared during reset.
Bit 5 Not used.
Bit $6 \quad$ IS3 $\overline{\mathrm{IRQ1}}$ Enable - When set, an $\overline{\mathrm{TRO1}}$ interrupt will be enabled whenever the IS3 flag is set; when clear, the interrupt is inhibited. This bit is cleared during reset.
Bit $7 \quad$ IS3 Flag - This read-only status bit is set by an IS3 negative edge. It is cleared by a read of the port 3 data register or during reset.

PORT 3 IN EXPANDED NON-MULTIPLEXED MODE -
Port 3 is configured as a bidirectional data bus (D7-D0) in the expanded non-multiplexed mode. The direction of data transfers is controlled by read/write (SC2). Data is clocked by $E$ (enable).

PORT 3 IN EXPANDED MULTIPLEXED MODE - Port 3 is configured as a time multiplexed address (A7-AO) and data bus (D7-D0) in the expanded multiplexed mode where address strobe (AS) can be used to demultiplex the two buses. Port 3 is held in a high-impedance state between valid address and data to prevent bus conflicts.

## P40-P47 (PORT 4)

Port 4 is configured as an 8 -bit $\mathrm{I} / \mathrm{O}$ port, as address outputs, or as data inputs depending on the operating mode. Port 4 can drive one Schottky TTL load and 90 pF , and is the only port with internal pullup resistors. Unused lines can remain unconnected.

PORT 4 IN SINGLE-CHIP MODE - In single-chip mode, port 4 functions as an 8-bit 1/O port with each line configured by the port 4 data direction register. Internal pullup resistors allow the port to directly interface with CMOS at 5 -volt levels. External pullup resistors to more than 5 volts, however, cannot be used.

PORT 4 IN EXPANDED NON-MULTIPLEXED MODE Port 4 is configured from reset as an 8-bit input port where the port 4 data direction register can be written to provide any or all of eight address lines A0 to A7. Internal pullup resistors pull the lines high until the port 4 data direction register is configured.

PORT 4 IN EXPANDED MULTIPLEXED MODE - In all expanded multiplexed modes except modes 1 and 6 , port 4 functions as half of the address bus and provides A8 to A15. In modes 1 and 6 , the port is configured from reset as an 8 -bit parallel input port where the port 4 data direction register can be written to provide any or all of upper address lines A8 to A15. Internal pullup resistors pull the lines high until the port 4 data direction register is configured where bit 0 controls A8

## RESIDENT MEMORY

The EF6801U4 provides 4096 bytes of on-chip ROM and 192 bytes of on-chip RAM.

Thirty-two bytes of the RAM are powered through the $\mathrm{V}_{\mathrm{CC}}$ standby pin and are maintainable during $\mathrm{V}_{\mathrm{CC}}$ power down. This standby portion of the RAM consists of 32 bytes located from $\$ 40$ through $\$ 5 F$ in all modes except mode 3 which is \$D040 through \$D05F.

Power must be supplied to $\mathrm{V}_{\mathrm{CC}}$ standby if the internal RAM is to be used regardless of whether standby power operation is anticipated.

The RAM is controlled by the RAM control register.

## RAM CONTROL REGISTER (\$14)

The RAM control register includes two bits which can be used to control RAM accesses and determine the adequacy of the standby power source during power-down operation. It is intended that RAME be cleared and STBY PWR be set as part of a power-down procedure.

## RAM CONTROL REGISTER



Bits 0-5 Not used.
Bit 6 RAM Enable - This read/write bit can be used to remove the entire RAM from the internal memory map. RAME is set (enabled) during reset provided standby power is available on the positive edge of $\overline{R E S E T}$. If RAME is clear, any access to a RAM address is external. If RAME is set, the RAM is included in the internal map.
Bit 7 Standby Power - This bit is a read/write status bit which when cleared indicates that $\mathrm{V}_{\mathrm{CC}}$ standby has decreased sufficiently below $\mathrm{V}_{\text {SBB }}$ (minimum) to make data in the standby RAM suspect. It can be set only by software and is not affected during reset.

## PROGRAMMABLE TIMER

The programmable timer can be used to perform measurements on two separate input waveforms while independently generating three output waveforms. Pulse widths can vary from several microseconds to many seconds. A block diagram of the timer is shown in Figure 21.

## COUNTER ( $\$ 09: 0 \mathrm{~A})$, $(\$ 15, \$ 16)$

The key timer element is a 16 -bit free-running counter
which is incremented by $E$ (enable). It is cleared during reset and is read-only with one exception: in mode 0 a write to the counter $(\$ 09)$ will configure it to $\$ F F F 8$. This feature, intended for testing, can disturb serial operations because the counter provides the SCI internal bit rate clock. The TOF is set whenever the counter contains all ones. If ETOI is set, an interrupt will occur when the TOF is set. The counter may also be read as $\$ 15$ and $\$ 16$ to avoid inadvertently clearing the TOF.

OUTPUT COMPARE REGISTERS ( $\$ 0 \mathrm{~B}: 0 \mathrm{C}$ ), ( $\$ 1 \mathrm{~A}: 1 \mathrm{~B}$ ), (\$1C:1D)
The three output compare registers are 16 -bit read/write registers, each used to control an output waveform or provide an arbitrary time-out flag. They are compared with the free-running counter during the negative half of each E . cycle. When a match occurs, the corresponding output compare flag (OCF) is set and the corresponding output level (OLVL) is clocked to an output level register. If both the corresponding output enable bit and data direction register bit are set, the value represented in the output level register will appear on the corresponding port pin. The appropriate OLVL bit can then be changed for the next compare.
The function is inhibited for one cycle after a write to its high byte ( $\$ 0 \mathrm{~B}, \$ 1 \mathrm{~A}$, or $\$ 1 \mathrm{C}$ ) to ensure a valid compare after a double byte write. Writes can be made to either byte of the output compare register without affecting the other byte. The OLVL value will be clocked out independently of whether the OCF had previously been cleared. The output compare registers are set to \$FFFF during reset.

## INPUT CAPTURE REGISTERS (\$OD:0E), (\$1E:1F)

The two input capture registers are 16 -bit read-only registers used to store the free-running counter when a "proper" input transition occurs as defined by the corresponding input edge bit (IEDG1 or IEDG2). The input pin's data direction register should be configured as an input, but the edge detect circuit always senses P10 and P20 even when configured as an output. The counter value will be latched into the input capture registers on the second negative edge of the E clock following the transition.
An input capture can occur independently of ICF; the register always contains the most current value. Counter transfer is inhibited, however, between accesses of a double byte MPU read. The input pulse width must be at least two E cycles to ensure an input capture under all conditions.

## TIMER CONTROL AND STATUS REGISTERS

Four registers are used to provide the EF6801U4/ EF6803U4 with control and status information about the three output compare functions, the timer overflow function, and the two input edge functions of the timer. They are:

Timer Control and Status Register (TCSR)
Timer Control Register 1 (TCR1)
Timer Control Register 2 (TCR2)
Timer Status Register (TSR)


TIMER CONTROL AND STATUS REGISTER (TCSR) ( $\$ 08$ ) -. The timer control and status register is an 8 -bit register of which all bits are readable, while only bits $0-4$ can be written. All the bits in this register are also accessible through the two timer control registers and the timer status register. The three most significant bits provide the timer status and indicate if:
a proper level transition has been detected at P20,
2. a match has occurred between the free-running c.ounter and output compare register 1 , or
3. the free-running counter has overflowed.

Each of the three events can generate an $\overline{\mathrm{RQ2}}$ interrupt and is controlled by an individual enable bit in the TCSR.

## TIMER CONTROL AND STATUS REGISTER

7	6	5	4	3	2	1	0
ICF1	OCF1	TOF	EICI1	EOCII	ETOI	IEDG1	OLVL1

Bit 0 Output Level 1 - OLVL1 is clocked to output level register 1 by a successful output compare and will appear at P21 if bit 1 of the port 2 data direction register is set and the OE1 control bit in timer control register 1 is set. OLVL1 and output level register 1 are cleared during reset. Refer to TIMER CONTROL REGISTER 1 (TCR1) (\$17).
Bit 1 Input Edge 1 - IEDG1 is cleared during reset and controls which level transition on P20 will trigger a counter transfer to input capture register 1 :

IEDG1 = 0 transfer on a negative-edge
IEDG1 = 1 transfer on a positive-edge Refer to TIMER CONTROL REGISTER 1 (TCR1) (\$17).

Bit 2 Enable Timer Overflow Interrupt - When set, an $\overline{\text { IRQ2 }}$ interrupt will be generated when the timer overflow flag is set; when clear, the interrupt is inhibited. ETOI is cleared during reset. Refer to TIMER CONTROL REGISTER 2 (TCR2) (\$18).
Bit 3 Enable Output Compare Interrupt 1 - When set, an $\overline{\mathrm{RQ2}}$ interrupt will be generated when output compare flag 1 is set; when clear, the interrupt is inhibited. EOCI1 is cleared during reset. Refer to TIMER CONTROL REGISTER 2 (TCR2) (\$18).

Bit 4 Enable Input Capture Interrupt 1 - When set, an $\overline{\mathrm{RQ2}}$ interrupt will be generated when input capture flag 1 is set; when clear, the interrupt is inhibited. EICl1 is cleared during reset. Refer to TIMER CONTROL REGISTER 2 (TCR2) (\$18).
Bit 5 Timer Overflow Flag - The TOF is set when the counter contains all ones (\$FFFF). It is cleared by reading the TCSR or the TSR (with TOF set) and the counter high byte ( $\$ 09$ ), or during reset. Refer to TIMER STATUS REGISTER (TSR) (\$19).

Bit 6 Output Compare Flag 1 - OCF1 is set when output compare register 1 matches the free-running counter. OCF1 is cleared by reading the TCSR or the TSR (with OCF1 set) and then writing to output compare register 1 ( $\$ 0 B$ or $\$ 0 C$ ), or during reset. Refer to TIMER STATUS REGISTER (TSR) (\$19).

Bit 7 Input Capture Flag - ICF1 is set to indicate that a proper level transition has occurred; it is cleared by reading the TCSR or the TSR (with ICF1 set) and the input capture register 1 high byte (\$OD), or during reset. Refer to TIMER STATUS REGISTER (TSR) (\$19).

TIMER CONTROL REGISTER 1 (TCR1) (\$17) - Timer control register 1 is an 8-bit read/write register which contains the control bits for interfacing the output compare and input capture registers to the corresponding I/O pins.

## TIMER CONTROL REGISTER 1

7	6	5	4	3	2	1	0
OE3	OE2	OE1	IEDG2	IEDG1	OLVL3	OLVL2	OLVL1

$\$ 17$

Bit 0 Output Level 1 - OLVL1 is clocked to output level register 1 by a successful output compare and will appear at P21 if bit 1 of the port 2 data direction register is set and the OE1 control bit is set. OLVL1 and output level register 1 are cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 1 Output Level 2 - OLVL2 is clocked to output level register 2 by a successful output compare and will appear at P11 if bit 1 of port 1 data direction register is set and the OE2 control bit is set. OLVL2 and output level register 2 are cleared during reset.
Bit 2 Output Level 3 - OLVL3 is clocked to output level register 3 by a successful output compare and will appear at P12 if bit 2 of port 1 data direction register is set and the OE3 control bit is set. OLVL3 and output level register 3 are cleared during reset.

Bit 3 Input Edge 1 - IEDG1 is cleared during reset and controls which level transition on P20 will trigger a counter transfer to input capture register 1.

IEDG1 $=0$ transfer on a negative-edge
IEDG1 = 1 transfer on a positive-edge Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 4 Input Edge 2 - IEDG2 is cleared during reset and controls which level transition on P10 will trigger a counter transfer to input capture register 2.

IEDG2 = 0 transfer on a negative-edge
IEDG2 $=1$ transfer on a positive-edge
Bit 5 Output Enable 1 - OE1 is set during reset and enables the contents of output level register 1 to be connected to P21 when bit 1 of port 2 data direction register is set.

OE1 $=0$ port 2 bit 1 data register output
$O E 1=1$ output level register 1
Bit 6 Output Enable 2 - OE2 is cleared during reset and enables the contents of output level register 2 to be connected to P11 when bit 1 of port 1 data direction register is set.

OE2 $=0$ port 1 bit 1 data register output
$O E 2=1$ output level register 2

Bit 7 Output Enable 3 - OE3 is cleared during reset and enables the contents of output level register 3 to be connected to P 12 when bit 2 of port 1 data direction register is set

OE3 $=0$ port 1 bit 2 data register output
OE3 $=1$ output level register 3
TIMER CONTROL REGISTER 2 (TCR2) (\$18) - Timer control register 2 is an 8 -bit read/write register (except bits 0 and 1) which enable the interrupts associated with the freerunning counter, the output compare registers, and the input capture registers. In test mode 0, two more bits (clock and test) are available for checking the timer.

## TIMER CONTROL REGISTER 2 <br> (Non-Test Modes)

7	6	5	4	3	2	1	0
$E I C I 2$	$E I C I 1$	$E O C I 3$	$E O C I 2$	$E O C I 1$	$E T O I$	1	1

Bits 0-1 Read-Only Bits - When read, these bits return a value of 1 . Refer to TIMER CONTROL REGISTER 2 (Test Mode).
Bit 2 Enable Timer Overflow Interrupt - When set, an $\overline{\mathrm{RO} 2}$ interrupt will be generated when the timer overflow flag is set; when clear, the interrupt is inhibited. ETOI is cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 3 Enable Output Compare Interrupt 1 - When set, an $\overline{\mathrm{RQ} 2}$ interrupt will be generated when the output compare flag 1 is set; when clear, the interrupt is inhibited. EOCI1 is cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 4 Enable Output Compare Interrupt 2 - When set, an $\overline{\mathrm{RQ} 2}$ interrupt will be generated when the output compare flag 2 is set; when clear, the interrupt is inhibited. EOCl2 is cleared during reset.
Bit 5 Enable Output Compare Interrupt 3 - When set, an $\overline{\mathrm{RQ} 2}$ interrupt will be generated when the output compare flag 3 is set; when clear, the interrupt is inhibited. EOCl 3 is cleared during reset.
Bit 6 Enable Input Capture Interrupt 1 - When set, an IRO2 interrupt will be generated when the input capture flag 1 is set; when clear, the interrupt is inhibited. EICI1 is cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 7 Enable Input Capture Interrupt 2 - When set, an $\overline{\mathrm{RO} 2}$ interrupt will be generated when the input capture flag 2 is set; when clear, the interrupt is inhibited. EICl 2 is cleared during reset.

The timer test bits (test and clock) allow the free-running counter to be tested as two separate 8 -bit counters to speed testing.

## TIMER CONTROL REGISTER 2 (Test Mode)

7	6	5	4	3	2	1	0
EICI2	EICI1	EOCI3	EOCI2	EOCI1	ETOI	TÉST	CLOCK

Bit 0 CLOCK - The CLOCK control bit selects which half of the 16 -bit free-running counter (MSB or LSB) should be clocked with $E$. The CLOCK bit is a $\mathrm{read} / \mathrm{write}$ bit only in mode 0 and is set during reset.

CLOCK $=0$ - Only the eight most significant bits of the free-running counter run with $T E S T=0$.
CLOCK $=1$ - Only the eight least significant bits of the free-running counter run when TEST $=0$.
Bit 1 TEST - the TEST control bit enables the timer test mode. TEST is a read/write bit in mode 0 and is set during reset.

TEST $=0$ - Timer test mode enabled:
a) The timer LSB latch is transparent which allows the LSB to be read independently of the MSB.
b) Either the MSB or the LSB of the timer is clocked by E , as defined by the CLOCK bit.
TEST $=1$ - Timer test mode disabled.
Bits 2-7 See TIMER CONTROL REGISTER 2 (Non-Test Modes). (These bits function the same as in the non-test modes.)

TIMER STATUS REGISTER (TSR) (\$19) - The timer status register is an 8 -bit read-only register which contains the flags associated with the free-running counter, the output compare registers, and the input capture registers.

## TIMER STATUS REGISTER

7	6	5	4				
ICF2	ICF1	OCF3	OCF2	OCF1	TOF	1	1

Bits 0-1 Not used.
Bit 2. Timer Overflow Flag - The TOF is set when the counter contains all ones (\$FFFF). It is cleared by reading the TSR or the TCSR (with TOF set) and then the counter high byte (\$09), or during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).

Bit 3 Output Compare Flag 1 - OCF1 is set when output compare register 1 matches the free-running counter. OCF1 is cleared by reading the TSR or the TCSR (with OCF1 set) and then writing to output compare register 1 ( $\$ 0 B$ or $\$ 0 C$ ), or during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 4 Output Compare Flag 2 - OCF2 is set when output compare register 2 matches the free-running counter. OCF2 is cleared by reading the TSR (with OCF2 set) and then writing to output compare register 2 ( $\$ 1 \mathrm{~A}$ or $\$ 1 \mathrm{~B}$ ), or during reset.
Bit 5 Output Compare Flag 3 - OCF3 is set when output compare register 3 matches the free-running counter. OCF3 is cleared by reading the TSR (with OCF3 set) and then writing to output compare register 3 (\$1C or \$1D), or during reset.
Bit 6 Input Capture Flag 1 - ICF1 is set to indicate that a proper level transition has occurred; it is cleared by reading the TSR or the TCSR (with ICF1 set) and the input capture register 1 high byte ( $\$ 0 \mathrm{D}$ ), or during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).

Bit 7 Input Capture Flag 2 - ICF2 is set to indicate that a proper level transition has occurred; it is cleared by reading the TSR (with ICF2 set) and the input capture register 2 high byte ( $\$ 1 E$ ), or during reset.

## SERIAL COMMUNICATIONS INTERFACE

A full-duplex asynchronous serial communications interface (SCl) is provided with two data formats and a variety of rates. The SCI transmitter and receiver are functionally independent but use the same data format and bit rate. Serial data formats include standard mark/space (NRZ) and biphase and both provide one start bit, eight data bits, and one stop bit. "Baud" and "bit rate" are used synonymously in the following description.

## WAKE-UP FEATURE

In a typical serial loop multiprocessor configuration, the software protocol will usually identify the addressee(s) at the beginning of the message. In order to permit uninterested MPUs to ignore the remainder of the message, wake-up feature is included whereby all further SCl receiver flag (and interrupt) processing can be inhibited until its data line goes idle. An SCl receiver is re-enabled by an idle string of ten consecutive ones or during reset. Software must provide for
the required idle string between consecutive messages and prevent it within messages.

## PROGRAMMABLE OPTIONS

The following features of the SCl are programmable:

- Format: standard mark/space (NRZ) or bi-phase
- Clock: external or internal bit rate clock
- Baud: one of eight per E clock frequency or external clock ( $\times 8$ desired baud)
- Wake-Up Feature: enabled or disabled
- Interrupt Requests: enabled individually for transmitter and receiver
- Clock Output: internal bit rate clock enabled or disabled to P22


## SERIAL COMMUNICATIONS REGISTERS

The serial communications interface includes four addressable registers as depicted in Figure 22. It is controlled by the rate and mode control register and the transmit/receive control and status register. Data is transmitted and received utilizing a write-only transmit register and a read-only receive register. The shift registers are not accessible to software.

## FIGURE 22 - SCI REGISTERS



## EF6801U4 • EF6803U4

RATE AND MODE CONTROL REGISTER (RMCR) (\$10) - The rate and. mode control register controls the SCI bit rate, format, clock source, and under certain conditions, the configuration of P22. The register consists of five write-only bits which are cleared during reset. The two least significant bits in conjunction with bit 7 control the bit rate of the internal clock and the remaining two bits control the format and clock source.

RATE AND MODE CONTROL REGISTER

7	6	5	4	3	2	1	0
EBE	X	X	X	CC 1	CCO	SS 1	SSO

Bit 1:Bit 0 SS1:SS0 Speed Select - These two bits select the baud when using the internal clock. Eight rates may be selected (in conjunction with bit 7) which are a function of the MCU input frequency. Table 6 lists bit time and rates for three selected MCU frequencies.
Bit 3:Bit 2 CC1:CC0 Clock Control and Format Select These two bits control the format and select the serial clock source. If CC1 is set, the DDR value
for P22 is forced to the complement of CCO and cannot be altered until CC1 is cleared. If CC1 is cleared after having been set, its DDR value is unchanged. Table 7 defines the formats, clock source, and use of P22.
Bits 4-6
Not used.
EBE Enhanced Baud Enable - EBE selects the standard EF6801 baud rates when clear and the additional baud rates when set (Table 6). This bit is cleared by reset and is a write-only control bit.
$\mathrm{EBE}=0$ standard EF 6801 baud rates
$\mathrm{EBE}=1$ additional baud rates

If both CC 1 and CCO are set, an external TTL-compatible clock must be connected to P22 at eight times ( $8 \times$ ) the desired bit rate, but not greater than E , with a duty cycle of $50 \%( \pm 10 \%)$. If $C C 1: C C 0=10$, the internal bit rate clock is provided at P22 regardless of the values for TE or RE.

## NOTE

The source of SCl internal bit rate clock is the timer free-running counter. An MPU write to the counter in mode 0 can disturb serial operations.

TABLE 6 - SCI BIT TIMES AND RATES

EBE	SS1:SS0		$4 f_{0} \rightarrow$	2.4576 MHz		4.0 MHz		4.9152 MHz		
			E	614.4 kHz		1.0 MHz		1.2288 MHz		
			Baud	Time	Baud	Time	Baud	Time		
0	0	0		+16	38400.0	$26 \mu \mathrm{~s}$	62500.0	16.0 \%	76800.0	$13.0 \mu \mathrm{~s}$
0	0	1	+ 128	4800.0	$208.3 \mu \mathrm{~S}$	7812.5	$128.0 \mu \mathrm{~s}$	9600.0	$104.2 \mu \mathrm{~s}$	
0	1	0	+ 1024	600.0	1.67 ms	976.6	1.024 ms	1200.0	$833.3 \mu \mathrm{~s}$	
0	1	1	+4096	150.0	6.67 ms	244.1	4.096 ms	300.0	3.33 ms	
1	0	0	+64	9600.0	$104.2 \mu \mathrm{~s}$	15625.0	$64 \mu \mathrm{~s}$	19200.0	$52.0 \mu \mathrm{~s}$	
1	0	1	+256	2400.0	$416.6 \mu \mathrm{~s}$	3906.3	$256 \mu \mathrm{~s}$	4800.0	$208.3 \mu \mathrm{~s}$	
1	1	0	+512	1200.0	$833.3 \mu \mathrm{~S}$	1953.1	$512 \mu \mathrm{~s}$	2400.0	$416.6 \mu \mathrm{~s}$	
1	1	1	+2048	300.0	3.33 ms	488.3	2.05 ms	600.0	1.67 ms	
External (P22)*				76800.0	$13.0 \mu \mathrm{~s}$	125000.0	$8.0 \mu \mathrm{~s}$	153600.0	$6.5 \mu \mathrm{~s}$	

* Using maximum clock rate

TABLE 7 - SCI FORMAT AND CLOCK SOURCE CONTROL

CC1:CC0	Format	Clock   Source	Port 2   Bit 2
00	Bi-Phase	Internal	Not Used
01	NRZ	Internal	Not Used
10	NRZ	Internal	Output
11	NRZ	External	Input

TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER (TRCSR) (\$11) - The transmit/receive control and status register controls the transmitter, receiver, wakeup feature, and two individual interrupts, and monitors the status of serial operations. All eight bits are readable while bits 0 to 4 are also writable. The register is initialized to $\$ 20$ by $\overline{\operatorname{RESET}}$
TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER
7
7 $\mathbf{6}$

Bit 0 "Wake-Up" on Idle Line - When set, WU enables the wake-up function; it is cleared by ten consecutive ones or during reset. WU will not be set if the line is idle. Refer to WAKE-UP FEATURE.

Bit 1 Transmit Enable - When set, P24 DDR bit is set, cannot be changed, and will remain set if TE is subsequently cleared. When TE is changed from clear to set, the transmitter is connected to P24 and a preamble of nine consecutive ones is transmitted. TE is cleared during reset.
Bit 2 Transmit Interrupt Enable - When set, an $\overline{\mathrm{RQ} 2}$ is set; when clear, the interrupt is inhibited. TE is cleared during reset.

Bit 3 Receive Enable - When set, the P23 DDR bit is cleared, cannot be changed, and will remain clear if RE is subsequently cleared. While RE is set, the SCl receiver is enabled. RE is cleared during reset.
Bit 4 Receiver Interrupt Enable - When set, an $\overline{\mathrm{RO} 2}$ interrupt is enabled when RDRF and/or ORFE is set; when clear, the interrupt is inhibited. RIE is cleared during reset.
Bit 5 Transmit Data Register Empty - TDRE is set when the transmit data register is transferred to the output serial shift register or during reset. It is cleared by reading the TRCSR (with TDRE set) and then writing to the transmit data register. Additional data will be transmitted only if TDRE has been cleared.

Bit 6 Overrun Framing Error - If set, ORFE indicates either an overrun or framing error. An overrun is a new byte ready to transfer to the receiver data register with RDRF still set. A receiver framing error has occurred when the byte boundaries of the bit stream are not synchronized to the bit counter. An overrun can be distinguished from a framing error by the state of RDRF: if RDRF is set, then an overrun has occurred; otherwise, a framing error has been detected. Data is not transferred to the receive data register in an overrun condition. Unframed data causing a framing error is transferred to the receive data register. However, subsequent data transfer is blocked until the framing error flag is cleared. ORFE is cleared by reading the TRCSR (with ORFE set) then the receive data register, or during reset.

Bit 7 Receive Data Register Full - RDRF is set when the input serial shift register is transferred to the receive data register, or during reset.

## SERIAL OPERATIONS

The SCl is initialized by writing control bytes first to the rate and mode control register and then to the transmit/receive control and status register. When TE is set, the output of the transmit serial shift register is connected to P24 and serial output is initiated by transmitting a 9 -bit preamble of ones.

At this point, one of two situations exists: 1 ) if the transmit data register is empty (TDRE $=1$ ), a continuous string of ones will be sent indicating an idle line; or 2 ) if a byte has been written to the transmit data register (TDRE $=0$ ), it will be transferred to the output serial shift register (synchronized with the bit rate clock), TDRE will be set, and transmission will begin.

The start bit ( 0 ), eight data bits (beginning with bit 0 ), and a stop bit (1) will be transmitted. If TDRE is still set when the next byte transfer occurs, ones will be sent until more data is provided. In bi-phase format, the output toggles at the start of each bit and at half-bit time when a one is sent. Receive operation is controlled by RE which configures P23 as an input and enables the receiver. SCl data formats are illustrated in Figure 23.

FIGURE 23 - SCI DATA FORMATS


Data: 01001101 (\$4D)

## INSTRUCTION SET

The EF6801U4/EF6803U4 is directly source compatible with the EF6801 and upward source and object code compatible with the EF6800. Execution times of key instructions have been reduced and several instructions have been added, including a hardware multiply. A list of new operations added to the EF6800 instruction set is shown in Table 1.
In addition, two special opcodes, 4E and 5E, are provided for test purposes. These opcodes force the program counter
to increment like a 16 -bit counter causing address lines used in the expanded modes to increment until the device is reset. These opcodes have no mnemonics.
The coding of the first (or only) byte corresponding to an executable instruction is sufficient to identify the instruction and the addressing mode. The hexadecimal equivalents of the binary codes, which result from the translation of the 82 instructions in all valid modes of addressing, are shown in Table 8. There are 220 valid machine codes, $34^{\circ}$ unassigned codes, and 2 codes reserved for test purposes.

TABLE 8 - CPU INSTRUCTION MAP

OP	MNEM	MODE	$\sim$	*	OP	MNEM	MODE	$\sim$	\#	OP	MNEM	MODE	$\sim$	*	OP	MNEM	MODE	$\sim$	$\#$	OP	MNEM	MODE	$\sim$	1
$\infty$	-				34	DES	INHER	3	1	68	ASL	INDXD	6	2	9 C	CPX	DIR	5	2	D0	SUBB	DIR	3	2
01	NOP	INHER	2	1	35	TXS	A	3	1	69	ROL	A	6	2	9D	JSR		5	2	D1	CMPB		3	2
02	-	A			36	PSHA		3	1	6A	DEC		6	2	9E	LDS		4	2	D2	SBCB		3	2
03	-				37	PSHB		3	1	6B	-				9F	STS	DIR	4	2	D3	ADDD		5	2
04	LSRD		3	1	38	PULX		5	1	6 C	INC		6	2	A0	SUBA	INDXD	4	2	D4	ANDB		3	2
05	ASLD		3	1	39	RTS		5	1	6D	TST		6	2	A1	CMPA	4	4	2	D5	BITB		3	2
06	TAP		2	1	3A	ABX		3	1	6 E	JMP	1	3	2	A2	SBCA		4	2	D6	LDAB		3	2
07	TPA		2	1	3 B	RTI		10	1	6F	CLR	INDXD	6	2	A3	SUBD		6	2	D7	STAB		3	2
08	INX		3	1	3C	PSHX		4	1	70	NEG	EXTND	6	3	A4	ANDA		4	2	D8	EORB		3	2
09	DEX		3	1	3D	MUL		10	1	71	-	A			A5	BITA		4	2	D9	ADCB		3	2
OA	CLV		2	1	3E	WAI		9	1	72	-				A6	LDAA		4	2	DA	ORAB		3	2
OB	SEV		2	1	3F	SWI		12	1	73	COM		6	3	A7	STAA		4	2	DB	ADDB		3	2
OC	CLC		2	1	40	NEGA		2	1	74	LSR		6	3	A8	EORA		4	2	DC	LDD		4	2
OD	SEC		2	1	41	-				75	-				A9	ADCA		4	2	DD	STD		4	2
OE	CLI		2	1	42	-				76	ROR		6	3	AA	ORAA		4	2	DE	LDX	$V$	4	2
OF	SEI		2	1	43	COMA		2	1	77	ASR		6	3	$A B$	ADDA		4	2	DF	STX	DIR	4	2
10	SBA		2	1	44	LSRA		2	1	78	ASL		5	3	$A C$	CPX		6	2	EO	SUBB	INDXD	4	2
11	CBA		2	1	45	-				79	ROL		6	3	AD	JSR		6	2	E1	CMPB	A	4	2
12	-				46	RORA		2	1	7 A	DEC		6	3	$A E$	LDS		5	2	E2	SBCB		4	2
13	-				47	ASRA		2	1	7 B	-				AF	STS	INDXD	5	2	E3	ADDD		6	2
14	-				48	ASLA		2	1	7 C	INC		6	3	B0	SUBA	EXTND	4	3	E4	ANDB		4	2
15	$\bullet$				49	ROLA		2	1	70	TST		6	3	B1	CMPA	A	4	3	E5	BITB		4	2
16	TAB		2	1	4A	DECA		2	1	7 F	JMP		3	3	B2	SBCA		4	3	E6	LDAB		4	2
17	TBA		2	1	4B	-				7 F	CLR	EXTND	6	3	B3	SUBD		6	3	E7	STAB		4	2
18	-	,			4 C	INCA		2	1	80	SUBA	IMMED	2	2	B4	ANDA		4	3	E8	EORB		4	2
19	DAA	INHER	2	1	4 D	TSTA		2	1	81	CMPA		2	2	B5	BITA		4	3	E9	ADCB		4	2
1 A	-				4E	T				82	SBCA		2	2	B6	LDAA		4	3	EA	ORAB		4	2
1 B	ABA	INHER	2	1	4F	CLRA		2	1	83.	SUBD		4	3	B7	STAA		4	3	EB	ADDB		4	2
1 C	-				50	NEGB		2	1	84	ANDA		2	2	B8	EORA		4	3	EC	LDD		5	2
1D	-				51	-				85	BITA		2	2	B9	ADCA		4	3	ED	STD		5	2
1 E	-				52	-				86	LDAA		2	2	BA	ORAA		4	3	EE	LDX		5	2
1 F	-				53	COMB		2	1	87	-				BB	ADDA		4	3	EF	STX	INDXD	5	2
20	BRA	REL	3	2	54	LSRB		2	1	88	EORA		2	2	BC	CPX		6	3	FO	SUBB	EXTND	4	3
21	BRN	,	3	2	55	-				89	ADCA		2	2	BD	JSR		6	3	F1	CMPB	4	4	3
22	BHI		3	2	56	RORB		2	1	8A	ORAA		2	2	BE	LDS	$V$	5	3	F2	SBCB		4	3
23	BLS		3	2	57	ASRB		2	1	8B	ADDA		2	2	BF	STS	EXTND	5	3	F3	ADDD		6	3
24	BCC		3	2	58	ASLB		2	1	8 C	CPX	IMMED	4	3	CO	SUBB	IMMED	2	2	F4	ANDB		4	3
25	BCS		3	2	59	ROLB		2	1	8 D	BSR	REL	6	2	C1	CMPB	A	2	2	F5	BITB		4	3
26	BNE		3	2	5A	DECB		2	1	8 E	LDS	IMMED	3	3	C2	SBCB		2	2	F6	LDAB		4	3
27	BEO		3	2	5B	-				8 F	-				C3	ADDD		4	3	F7	STAB		4	3
28	BVC		3	2	5C	INCB		2	1	90	SUBA	DIR	3	2	C4	ANDB		2	2	F8	EORB		4	3
29	BVS		3	2	5D	TSTB		2	1	91	CMPA	A	3	2	C5	BITB		2	2	F9	ADCB		4	3
2A	BPL		3	2	5E	T	V			92	SBCA		3	2	C6	LDAB		2	2	FA	ORAB		4	3
2 B	BMI		3	2	5 F	CLRB	INHER	2	1	93	SUBD		5	2	C7	-				FB	ADDB		4	3
2 C	BGE		3	2	60	NEG	INDXD	6	2	94	ANDA		3	2	C8	EORB		2	2	FC	LDD		5	3
2D	BLT		3	2	61	-	$\uparrow$			95	BITA		3	2	C9	ADCB		2	2	FD	STD		5	3
2 E	BGT	V	3	2	62	-				96	LDAA		3	2	CA	ORAB		2	2	FE	LDX		5	3
2 F	BLE	REL	3	2	63	COM		6	2	97	STAA		3	2	CB	ADDB		2	2	FF	STX	EXTND	5	3
30	TSX	INHER	3	1	64	LSR		6	2	98	EORA		3	2	CC	LDD		3	3					
31	INS	4	3	1	65	-				99	ADCA		3	2	CD	-	$V$				* UNDEF	INED OP	CODE	
32	PULA	$\downarrow$	4	1	66	ROR		6	2	9 A	ORAA	$\downarrow$	3	2	CE	LDX	IMMED	3	3					
33	PULB	1	4	1	67	ASR	INDXD	6	2	98	ADDA	1	3	2	CF	-								

## NOTES:

[^8]
## PROGRAMMING MODEL

A programming model for the EF6801U4/EF6803U4 is shown in Figure 8. Accumulator A can be concatenated with accumulator $B$ and jointly referred to as accumulator $D$ where A is the most significant byte. Any operation which modifies the double accumulator will also modify accumulators A and/or B. Other registers are defined as follows:

PROGRAM COUNTER - The program counter is a 16 -bit register which always points to the next instruction.

STACK POINTER - The stack pointer is a 16 -bit register which contains the address of the next available location in a pushdown/pullup (LIFO) queue. The stack resides in random-access memory at a location defined by the programmer.

INDEX REGISTER - The index register is a 16 -bit register which can be used to store data or provide an address for the indexed mode of addressing.

ACCUMULATORS - The MPU contains two 8 -bit accumulators, $A$ and $B$, which are used to store operands and results from the arithmetic logic unit (ALU). They can also be concatenated and referred to as the D (double) accumulator.

CONDITION CODE REGISTER - The condition code register indicates the results of an instruction and includes the foilowing five condition bits: negative ( $N$ ), zero ( $Z$ ), overflow (V), carry/borrow from MSB (C), and half carry from bit $3(\mathrm{H})$. These bits are testable by the conditional branch instructions. Bit 4 is the interrupt mask (1 bit) and inhibits all maskable interrupts when set. The two unused bits, B6 and B7, are read as ones.

## ADDRESSING MODES

Six addressing modes can be used to reference memory. A summary of addressing modes for all instructions is presented in Tables 9, 10, 11, and 12 where execution times are provided in E cycles. Instruction execution times are summarized in Table 13. With an input frequency of 4 MHz , one E cycle is equivalent to one microsecond. A cycle-bycycle description of bus activity for each instruction is provided in Table 14 and descriptions of selected instructions are shown in Figure 24.

IMMEDIATE ADDRESSING - The operand or "immediate byte(s)" is contained in the following byte(s) of the
instruction where the number of bytes matches the size of the register. These are two or three byte instructions.

DIRECT ADDRESSING - The least significant byte of the operand address is contained in the second byte of the instruction and the most significant byte is assumed to be $\$ 00$. Direct addressing allows the user to access \$00 through \$FF using two byte instructions and execution time is reduced by eliminating the additional memory access. In most applications, the 256 -byte area is reserved for frequently referenced data.

EXTENDED ADDRESSING - The second and third bytes of the instruction contain the absolute address of the operand. These are three byte instructions.

INDEXED ADDRESSING - The unsigned offset contained in the second byte of the instruction is added with carry to the index register and is used to reference memory without changing the index register. These are two byte instructions.

INHERENT ADDRESSING - The operand(s) is a register and no memory reference is required. These are single byte instructions.

RELATIVE ADDRESSING - Relative ạddressing is used only for branch instructions. If the branch condition is true, the program counter is overwritten with the sum of a signed single byte displacement in the second byte of the instruc: tion and the current program counter. This provides a branch range of -126 to +129 bytes from the first byte of the instruction. These are two byte instructions.

## SUMMARY OF CYCLE-BY-CYCLE OPERATION

Table 14 provides a detailed description of the information present on the address bus, data bus, and the read/write $(R / \bar{W})$ line during each cycle of each instruction.

The information is useful in comparing actual with expected results during debug of both software and hardware as the program is executed. The information is categorized $\mathrm{i}: i$ groups according to addressing mode and number of cycles per instruction. In general, instructions with the same addressing mode and number of cycles execute in the same manner. Exceptions are indicated in the table.

Note that during MPU reads of internal locations, the resultant value will not appear on the external data bus except in mode 0 . "High order" byte refers to the most significant byte of a 16 -bit value.

TABLE 9 - INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

Pointer Operations	MNEM	Immed			Direct			Index			Extnd			Inherent			Boolean/   Arithmetic Operation	Condition Codes											
					5	4	3				2	1	0																
		Op	$\sim$	*				Op	-	\#				Op	-	"		Op	-	\#	Op	$\sim$	$\#$	H	1	N	2	V	C
Compare Index Register	CPX	8C	4	3	9C	5	2	AC	6	2	BC	6	3				$X-M: M+1$	-	-	1	1	7	1						
Decrement Index Register	DEX													09	3	1	$X-1 \rightarrow X$	$\bullet$	-	$\bullet$	$t$	$\bullet$	-						
Decrement Stack Pointer	DES													34	3	1	$S P-1 \rightarrow$ SP	-	-	$\bullet$	-	$\bullet$	$\bullet$						
Increment Index Register	INX													08	3	1	$X+1 \rightarrow x$	-	$\bullet$	$\bullet$	1	-	$\bullet$						
Increment Stack. Pointer	INS													31	3	1	$1 S P+1 \rightarrow$ SP	-	$\bullet$	$\bullet$	-	-	$\bullet$						
Load Index Register	LDX	CE	3	3	DE	4	2	EE	5	2	FE	5	3				$M \rightarrow X_{H}(M+1) \rightarrow X_{L}$	-	$\bullet$	1	1	R	-						
Load Stack Pointer	LDS	8 E	3	3	9 E	4	2	AE	5	2	BE	5	3				$M \rightarrow S P_{H_{1}}(M+1) \rightarrow S P_{L}$	-	$\bullet$	1	1	R	-						
Store Index Register	STX				DF	4	2	EF	5	2	FF	5	3				$X_{H} \rightarrow M, X_{L} \rightarrow(M+1)$	$\bullet$	-	1	1	R	-						
Store Stack Pointer	STS				9F	4	2	AF	5	2	BF	5	3				$S P_{H} \rightarrow M, S P_{L} \rightarrow(M+1)$	-	-	1	7	R	$\bullet$						
Index Reg $\rightarrow$ Stack Pointer	TXS													35	3	1	$X-1 \rightarrow$ SP	-	-	-	-	-	$\bullet$						
Stack Pntr $\rightarrow$ Index Register	TSX													30	3	1	$S P+1 \rightarrow X$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	-	$\bullet$						
Add	ABX													3A	3	1	$B+X \rightarrow X$	-	$\bullet$	-	-	-	-						
Push Data	PSHX													3C	4	1	$\begin{aligned} & X_{L} \rightarrow M_{S P}, S P-1 \rightarrow S P \\ & X_{H} \rightarrow M_{S P}, S P-1 \rightarrow S P \end{aligned}$	$\bullet$	-	-	$\bullet$	$\bullet$	$\bullet$						
Pull Data	PULX													38	5	1	$\begin{aligned} & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{H} \\ & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{L} \end{aligned}$	-	$\bullet$	-	-	$\bullet$	$\bullet$						

TABLE 10 - ACCUMULATOR AND MEMORY INSTRUCTIONS (Sheet 1 of 2)

Accumulator and Memory Operations	MNEM	Immed			Direct				Index			Extend				Inher			Boolean   Expression   $A+B C A$	Condition Codes						
					[ 5	$\begin{array}{\|l\|} \hline 4 \\ \hline 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ \hline \mathrm{~N} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ \hline z \\ \hline \end{array}$				$\begin{array}{\|c\|} \hline 1 \\ \hline \mathrm{v} \\ \hline \end{array}$	C													
		Op	$\sim$ \#							Op	$\sim$			Op		\#		Op		~	\#	Op	$-1$	\#		
Add Accumulators	ABA																1B	2	1	$A+B \rightarrow A$	1	-	1	1	1	1
Add B to X	ABX															3 A	3	1	$00: B+X \rightarrow X$	$\bullet$	-	$\bullet$	$\bullet$	$\bullet$	$\bullet$	
Add with Carry	ADCA	89	2	2		99	3	2	A9	4	2	B9	9	4	3				$A+M+C \rightarrow A$	1	-	1	1	1	1	
	ADCB	C9	2	2		D9	3	2	E9	4	2	F9		4	3				$B+M+C \rightarrow B$	1	-	1	1	1	1	
Add	ADDA	8 B	2	2		98	3	2	AB	4	2	BB	B	4	3				$A+M \rightarrow A$	1	$\bullet$	1	1	1	1	
	ADDB	CB	2	2		DB	3	2	EB	4	2	FB	B	4	3				$B+M \rightarrow A$	1	$\bullet$	1	1	1	1	
Add Double	ADDD	C3	4	3		D3	5	2	E3	6	2	F3	3	6	3				$D+M: M+1 \rightarrow D$	-	-	1	1	1	1	
And	ANDA	84	2	2		94	3	2	A4	4	2	B4		4	3				$A \cdot M \rightarrow A$	$\bullet$	$\bullet$	1	1	R	-	
	ANDB	C4	2	2		D4	3	2	E4	4	2	F4		4	3				$B \cdot M \rightarrow B$	$\bullet$	-	1	1	R	$\bullet$	
Shift Left, Arithmetic	ASL								68	6	2	78		6	3				$\text { C } \leftarrow \prod_{b 7}^{-} \prod_{\square} \prod_{b 0} \leftarrow 0$	-	-	1	1	1	1	
	ASLA															48	2	1		-	-	1	1	1	1	
	ASLB															58	2	1		-	-	1	1	1	1	
Shift Left Double	ASLD															05	3	1		-	-	1	1	1	-	
Shift Right, Arithmetic	ASR								67	6	2	77		6	3					$\bullet$	-	1	1	1	1	
	ASRA															47	2	1		$\bullet$	-	1	1	1	1	
	ASRB															57	2	1		-	-	$t$	1	1	1	
Bit Test	BITA	85	2	2		95	3	2	A5	4	2	B5		4	3				A.M	$\bullet$	$\bullet$	1	1	R	$\bullet$	
	BITB	C5	2	2		D5	3	2	E5	4	2	F5		4	3				B.M	-	-	1	1	R	$\bullet$	
Compare Accumulators	CBA															11	2	1	A-B	-	-	1	1	1	$\downarrow$	
Clear	CLR								6 F	6	2	7 F		6	3				$00 \rightarrow \mathrm{M}$	-	-	R	S	R	R	
	CLRA															4F	2	1	$00 \rightarrow A$	$\bullet$	-	R	S	R	R	
	CLRB															5 F	2	1	$00 \rightarrow B$	$\bullet$	-	R	S	R	R	
Compare	CMPA	81	2	2		91	3	2	A1	4	2	B1		4	3				$A-M$	-	-	1	1	1	1	
	CMPB	C1	2	2		D1	3	2	E1	4	2	F1		4	3				B-M	-	-	1	1	1	1	
1's Complement	COM								63	6	2	73		6	3				$M \rightarrow M$	$\bullet$	-	1	1	R	S	
	COMA															43	2	1	$A \rightarrow A$	$\bullet$	-	1	$!$	R	S	
	COMB															53	2	1	$B \rightarrow B$.	-	-	1	1	R	S	

TABLE 10 - ACCUMULATOR AND MEMORY INSTRUCTIONS (Sheet 2 of 2)

Accumulator and Memory Operations	MNEM	Immed			Direct			Index			Extend			Inher			Boolean Expression	Condition Codes					
					[ 5	4	N					V	C										
		Op						Op	- ${ }^{\prime \prime}$						- ${ }^{\prime \prime}$			Op	-	\#	Op	-	\#
Decimal Adjust, A	DAA													19	2	1	Adj binary sum to BCD	-	-	1	1	1	1
Decrement	DEC							6 A	6	2	7A	6	3				$\mathrm{M}-1 \rightarrow \mathrm{M}$	-	-	1	1	1	-
	DECA													4A	2	1	A-1 $\rightarrow$ A	-	-	1	1	1	$\bullet$
	DECB													5A	2	1	$B-1 \rightarrow B$	-	-	1	1	1	$\bullet$
Exclusive OR	EORA	88	2	2	98	3	2	A8	4	2	B8	4	3				$A \oplus M \rightarrow A$	-	-	1	$!$	R	$\bullet$
	EORB	C8	2	2	D8	3	2	E8	4	2	F8	4	3				$B \oplus M \rightarrow B$	-	-	1	1	R	$\bullet$
Increment	INC							6C	6	2	7 C	6	3				$\mathrm{M}+1 \rightarrow \mathrm{M}$	-	-	1	$!$	1	$\bullet$
	INCA													4C	2	1	$A+1 \rightarrow A$	-	-	1	1	1	$\bullet$
	INCB													5C	2	1	$B+1 \rightarrow B$	-	-	1	1	$t$	$\bullet$
Load Accumulators	LDAA	86	2	2	96	3	2	A6	4	2	B6	4	3				$M \rightarrow A$	-	-	$!$	1	R	$\bullet$
	LDAB	C6	2	2	D6	3	2	E6	4	2	F6	4	3				$M \rightarrow B$	-	-	1	1	R	$\bullet$
Load Double	LDD	CC	3	3	DC	4	2	EC	5	2	FC	5	3				$M: M+1 \rightarrow D$	-	-	1	1	R	$\bullet$
Logical Shift, Left	LSL							68	6	2	78	6	3					-	-	1	1	1	1
	LSLA													48	2	1		-	-	1	1	1	1
	LSLB													58	2	1		-	-	1	1	$t$	1
	LSLD													05	3	2		-	-	1	$t$	$t$	1
Shift Right, Logical	LSR							64	6	2	74	6	3				$0 \rightarrow \prod_{\mathrm{b} 7}^{\square \prod \prod_{\mathrm{b}}} \rightarrow \mathrm{C}$	-	-	R	1	1	1
	LSRA													44	2	1		-	-	R	1	$t$	1
	LSRB													54	2	1		-	-	R	1	1	1
	LSRD													04	3	1		-	-	R	1	1	1
Multiply	MUL													3 D	10	1	$A \times B \rightarrow D$	-	-	-	-	-	1
2's Complement (Negate)	NEG							60	6	2	70	6	3				$00-\mathrm{M} \rightarrow \mathrm{M}$	-	-	1	1	1	1
	NEGA													40	2	1	$00-A \rightarrow A$	-	-	1	1	1	1
	NEGB													50	2	1	OO-B $\rightarrow$ B	-	-	1	1	1	1
No Operation	NOP													01	2	1	$P C+1 \rightarrow P C$	-	-	$\bullet$	-	-	-
Inclusive OR	ORAA	8 A	2	2	9A	3	2	AA	4	2	BA	4	3				$A+M \rightarrow A$	-	-	1	1	R	$\bullet$
	ORAB	CA	2	2	DA	3	2	EA	4	2	FA	4	3				$B+M \rightarrow B$	-	-	1	1	R	-
Push Data   Pull Data	PSHA													36	3	1	$A \rightarrow$ Stack	-	-	-	-	-	$\bullet$
	PSHB													37	3	1	$\mathrm{B} \rightarrow$ Stack	-	-	-	-	-	-
	PULA													32	4	1	Stack $\rightarrow$ A	-	-	-	-	-	$\bullet$
	PULB													33	4	1	Stack $\rightarrow$ B	-	-	-	-	-	$\bullet$
Rotate Left	ROL							69	6	2	79	6	3				$\text { (c) }-\prod_{b 7} \prod_{n} \prod_{b 0}-\text { c }$	$\bullet$	-	1	1	1	1
	ROLA													49	2	1		-	-	1	1	1	1
	ROLB													59	2	1		-	-	1	1	1	1
Rotate Right	ROR							66	6	2	76	6	3				$\mathrm{C} \rightarrow \square_{\mathrm{b} 7} \prod_{\square} \prod_{\mathrm{b}} \rightarrow \mathrm{C}$	-	-	1	1	1	1
	RORA													46	2	1		$\bullet$	-	1	1	1	1
	RORB													56	2	1		-	-	1	1	1	1
Subtract Accumulator	SBA													10	2	1	$A-B \rightarrow A$	$\bullet$	-	1	1	1	1
Subtract with Carry	SBCA	82	2	2	92	3	2	A2	4	2	B2	4	3				$A-M-C \rightarrow A$	-	-	1	1	1	1
	SBCB	C2	2	2	D2	3	2	E2	4	2	F2	4	3				$B-M-C \rightarrow B$	$\bullet$	-	1	1	1	1
Store Accumulators	STAA				97	3	2	A7	4	2	B7	4	3				$A \rightarrow M$	-	-	1	1	R	$\bullet$
	STAB				D7	3	2	E7	4	2	F7	4	3				$B \rightarrow M$	-	-	1	1	R	$\bullet$
	STD				DD	4	2	ED	5	2	FD	5	3				$D \rightarrow M: M+1$	-	-	1	1	R	-
Subtract	SUBA	80	2	2	90	3	2	A0	4	2	BO	4	3				$A-M \rightarrow A$	-	-	1	1	1	1
	SUBB	CO	2	2	DO	3	2	EO	4	2	F0	4	3				$B-M \rightarrow B$	-	-	1	1	1	1
Subtract Double	SUBD	83	4	3	93	5	2	A3	6	2	B3	6	3				$D-M: M+1 \rightarrow D$	-	-	1	1	1	$\dagger$
Transfer Accumulator	TAB													16	2	1	$A \rightarrow B$	-	-	1	1	R	-
	TBA													17	2	1	$B \rightarrow A$	-	-	1	1	R	$\bullet$
Test, Zero or Minus	TST							6 D	6	2	7D	6	3				M-00	-	-	1	1	R	R
	TSTA													4D	2	1	A -00	$\bullet$	-	1	1	R	R
	TSTB													5 D	2	1	B-00	-	-	1	$\dagger$	R	R

[^9]TABLE 11 - JUMP AND BRANCH INSTRUCTIONS

Operations	MNEM	Direct			Relative			Index			Extend			Inherent			Branch Test	Condition Code Reg.											
					5	4	3				2	1	0																
		Op	-	\#				Op	-	\#				Op	-	"		Op	-	\#	Op	-	"	H	1	N	Z	V	C
Branch Always	BRA				20	3	2										None	-	-	-	-	$\bullet$	-						
Branch Never	BRN				21	3	2										None	-	-	-	-	$\bullet$	$\bullet$						
Branch If Carry Clear	BCC				24	3	2										$C=0$	-	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$						
Branch If Carry Set	BCS				25	3	2										$C=1$	-	$\bullet$	-	$\bullet$	$\bullet$	$\bullet$						
Branch If = Zero	BEQ				27	3	2										$Z=1$	-	-	-	$\bullet$	$\bullet$	-						
Branch If $\geq$ Zero	BGE				2C	3	2										$N \oplus \mathrm{~V}=0$	-	$\bullet$	-	-	$\bullet$	$\bullet$						
Branch If $>$ Zero	BGT				2E	3	2										$Z+(N \oplus V)=0$	-	-	-	-	$\bullet$	$\bullet$						
Branch If Higher	BHI				22	3	2										$C+Z=0$	$\bullet$	-	-	$\bullet$	$\bullet$	-						
Branch If Higher or Same	BHS				24	3	2										$C=0$	-	$\bullet$	-	$\bullet$	$\bullet$	$\bullet$						
Branch if $\leq$ Zero	BLE				2F	3	2										$Z+(N \oplus V)=1$	-	-	-	-	$\bullet$	$\bullet$						
Branch If Carry Set	BLO				25	3	2										$C=1$	-	-	$\bullet$	-	$\bullet$	-						
Branch If Lower Or Same	BLS				23	3	2										$C+Z=1$	-	-	-	$\bullet$	$\bullet$	-						
Branch If < Zero	BLT				2D	3	2										$\mathrm{N} \oplus \mathrm{V}=1$	-	-	-	-	-	-						
Branch If Minus	BMI				2B	3	2										$N=1$	-	$\bullet$	-	$\bullet$	$\bullet$	$\bullet$						
Branch If Not Equal Zero	BNE				26	3	2										$Z=0$	-	-	$\bullet$	-	$\bullet$	$\bullet$						
Branch If Overflow Clear	BVC				28	3	2										$V=0$	-	-	$\bullet$	-	-	-						
Branch If Overflow Set	BVS				29	3	2										$V=1$	-	$\bullet$	-	$\bullet$	-	-						
Branch If Plus	BPL				2A	3	2										$\mathrm{N}=0$	-	-	$\bullet$	$\bullet$	-	$\bullet$						
Branch To Subroutine	BSR				8D	6	2											$\bullet$	-	$\bullet$	$\bullet$	-	$\bullet$						
Jump	JMP							6 E	3	2	7 E	3	3				See Special Operations-Figure 24	$\bullet$	-	-	-	$\bullet$	$\bullet$						
Jump To Subroutine	JSR	90	5	2				AD	6	2	BD	6	3					-	$\bullet$	-	-	-	$\bullet$						
No Operation	NOP													01	2	1		-	-	-	-	-	$\bullet$						
Return From Interrupt	RTI													3B	10	1		1	1	1	1	1	1						
Return From Subroutine	RTS													39	5	1	See Special Operations-Figure 24	-	-	$\bullet$	$\bullet$	-	$\bullet$						
Software Interrupt	SWI													3F	12	1		-	S	-	-	-	$\bullet$						
Wait For Interrupt	WAI													3 E	9	1		-	-	-	-	-	-						

TABLE 12 - CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

Operations	Inherent				Boolean Operation	Condition Code Register						
					5	4	3	2	1	0		
	MNEM	Op	-	\#		H	1	N	2	V	C	
Clear Carry	CLC	OC	2	1		$0 \rightarrow C$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	R
Clear Interrupt Mask	CLI	OE	2	1	$0 \rightarrow 1$	$\bullet$	R	$\bullet$	-	$\bullet$	$\bullet$	
Clear Overflow	CLV	OA	2	1	$\mathrm{O} \rightarrow \mathrm{V}$	-	$\bullet$	-	$\bullet$	R	$\bullet$	
Set Carry	SEC	OD	2	1	$1 \rightarrow \mathrm{C}$	-	$\bullet$	-	$\bullet$	$\bullet$	S	
Set interrupt Mask	SEI	OF	2	1	$1 \rightarrow 1$	$\bullet$	S	-	$\bullet$	-	-	
Set Overflow	SEV	OB	2	1	$1 \rightarrow V$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	S	$\bullet$	
Accumulator $\mathrm{A} \rightarrow \mathrm{CCR}$	TAP	06	2	1	$A \rightarrow C C R$	1	$\ddagger$	1	1	$\dagger$	1	
$\mathrm{CCR} \rightarrow$ Accumulator $A$	TPA	07	2	1	$\mathrm{CCR} \rightarrow \mathrm{A}$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$	-	

## LEGEND

Op Operation Code (Hexadecimal)
~ Number of MPU Cycles
MSP Contents of memory location pointed to by Stack Pointer
\# Number of Program Bytes

+ Arithmetic Plus
- Arithmetic Minus
- Boolean AND
$X$ Arithmetic Multiply
+ Boolean Inclusive OR
$\oplus$ Boolean Exclusive OR
M Complement of M
$\rightarrow$ Transfer Into
0 Bit=Zero
00 Byte $=$ Zero


## CONDITION CODE SYMBOLS

H Half-carry from bit 3
I Interrupt mask
N Negative (sign bit)
Z Zero (byte)
$\checkmark$ Overflow, 2's complement
C Carry/Borrow from MSB
R Reset Always
S Set Always
1 Affected

- Not Affected

TABLE 13 - INSTRUCTION EXECUTION TIMES IN E-CYCLES

	ADDRESSING MODE					
		-	O. ¢ ¢ ¢ ¢ ¢	O O X O O C	¢ ¢ ¢ ¢ ¢ ¢	
ABA	-	-	-	-	2	-
$A B X$	-	-	-	-	3	-
ADC	2	3	4	4	-	-
ADD	2	3	4	4	-	-
ADDD	4	5	6	6	-	-
AND	2	3	4	4	-	-
ASL	-	-	6	6	2	-
ASLD	-	$\cdots$	$\bigcirc$	$\bigcirc$	3	-
ASR	-	-	6	6	2	-
BCC	-	-	-	-	-	3
BCS	-	-	-	-	-	3
BEQ	-		-	-	-	3
BGE	-		-	-	-	3
BGT	-	-	-	-	-	3
BHI	-				-	3
BHS	-		-	-	-	3
BIT	2	3	4	4	-	-
BLE	-	-	-	-	-	3
BLO	-	-	-	-	-	3
BLS	-	-	-	-	-	3
BLT	$\bigcirc$	-	-	$\bigcirc$	$\bigcirc$	3
BMI	-	-	-	-	-	3
BNE	-	-	-	-	-	3
BPL	-	-	-	-	-	3
BRA	-	-	-	-	-	3
BRN	-	-	-	-	-	3
BSR	-	-	-	-	-	6
BVC	-	$\bigcirc$	$\bigcirc$	-	-	3
BVS	-	-	-	-	$\bigcirc$	3
CBA	-	-	-	-	2	-
CLC	-	-	-	-	2	-
CLI	-	-	-	-	2	-
CLR	-	-	6	6	2	-
CLV	-	-	-	-	2	-
CMP	2	3	4	4	-	-
COM	-	$\bigcirc$	6	6	2	-
CPX	4	5	6	6	-	-
DAA	-	-	-	-	2	-
DEC	-	-	6	6	2	-
DES	-	-	-	-	3	-
DEX	-	-	-	-	3	-
EOR	2	3	4	4	-	-
INC	-	-	6	6	-	-
INS	-	-	-	-	3	-


	ADDRESSING MODE					
	$\begin{aligned} & \stackrel{\Phi}{\mathbf{\otimes}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\otimes}{E} \\ & \underline{E} \end{aligned}$	-		O - 人 ¢ O c	¹   ¢   E   E   c	¢
INX	$\bigcirc$	-	-	-	3	-
JMP	-	-	3	3	-	-
JSR	,	5	6	6	-	-
LDA	2	3	4	4	-	-
LDD	3	4	5	5	-	-
LDS	3	4	5	5	-	-
LDX	3	4	5	5	-	-
LSL	-	$\bigcirc$	6	6	2	-
LSLD		-	-	-	3	-
LSR	-	-	6	6	2	-
LSRD	-	-	-	-	3	-
MUL	-	-	-	-	10	-
NEG	-	-	6	6	2	$\bigcirc$
NOP		-	-	-	2	-
ORA	2	3	4	4	-	
PSH	-	-	-	-	3	
PSHX	-	-	-	-	4	
PUL		-	-	-	4	-
PULX		-	-	-	5	-
ROL	-	-	6	6	2	-
ROR	-	-	6	6	2	-
RTI			$\bigcirc$	-	10	-
RTS		-	-	-	5	-
SBA		-	-	-	2	-
SBC	2	3	4	4	-	-
SEC	-	-	-	-	2	-
SEI		-	-	-	2	-
SEV	-	-	-	-	2	앙
STA		3	4	4	-	
STD		4	5	5	-	-
STS	-	4	5	5	-	-
STX		4	5	5	-	*
SUB	2	3	4	4	-	-
SUBD	4	5	6	6	-	-
SWI	-	-	-	$\bigcirc$	12	-
TAB	-	-	-	$\bigcirc$	2	-
TAP	-	-	-	-	2	-
TBA	-	-	-	-	2	-
TPA	-	-	-	-	2	-
TST	-	-	6	6	2	-
TSX	-	-	-	-	3	-
TXS	-	-	-	-	3	-
WAI	-	-	-	-	9	-

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 1 of 5)

Address Mode and Instructions		Cycles	Cycle   \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
IMMEDIATE						
ADC ADD AND BIT CMP	$\begin{aligned} & \text { EOR } \\ & \text { LDA } \\ & \text { ORA } \\ & \text { SBC } \\ & \text { SUB } \end{aligned}$	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Opcode } \\ & \text { Operand Data } \end{aligned}$
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \\ & \hline \end{aligned}$		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Operand Data (High Order Byte) Operand Data (Low Order Byte)
		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Upcode   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
DIRECT						
ADC ADD AND BIT CMP	$\begin{aligned} & \text { EOR } \\ & \text { LDA } \\ & \text { ORA } \\ & \text { SBC } \\ & \text { SUB } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand Operand Data
STA		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Destination Address   Data from Accumulator
LDS   LDX   LDD		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Address of Operand   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Address of Operand   Address of Operand + 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Address of Operand   Register Data (High Order Byte)   Register Data (Low Order Byte)
CPX   SUBD   ADDD		5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Operand Address   Operand Address + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
JSR		5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Subroutine Address   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Irrelevant Data   First Subroutine Opcode   Return Address (Low Order Byte)   Return Address (High Order Byte)

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 2 of 5)

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{array}{\|l\|} \mathrm{R} / \overline{\mathrm{W}} \\ \text { Line } \end{array}$	Data Bus
EXTENDED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Jump Address (High Order Byte) Jump Address (Low Order Byte)
ADC EOR   ADD LDA   AND ORA   BIT SBC   CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand   Address of Operand (Low Order Byte) Operand Data
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Operand Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Destination Address (High Order Byte) Destination Address (Low Order Byte) Data from Accumulator
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand   Address of Operand + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Address of Operand (High Order Byte)   Address of Operand (Low Order Byte)   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
$\begin{array}{\|l\|} \hline \text { STS } \\ \text { STX } \\ \text { STD } \end{array}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand   Address of Operand + 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Address of Operand (High Order Byte)   Address of Operand (Low Order Byte)   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
ASL LSR   ASR NEG   CLR ROL   COM ROR   DEC TST*   INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Address of Operand   Address Bus FFFF   Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Address of Operand (High Order Byte)   Address of Operand (Low Order Byte)   Current Operand Data   Low Byte of Restart Vector   New Operand Data
CPX SUBD ADDD	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Operand Address   Operand Address + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Address (High Order Byte)   Operand Address (Low Order Byte)   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Subroutine Starting Address   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Address of Subroutine (High Order Byte)   Address of Subroutine (Low Order Byte)   Opcode of Next Instruction   Return Address (Low Order Byte)   Return Address (High Order Byte)

[^10]TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 3 of 5)

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \text { R/W } \\ & \text { Line } \end{aligned}$	Data Bus
INDEXED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector
  ADC EOR   ADD LDA   AND ORA   BIT SBC   CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector Operand Data
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector Operand Data
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset   Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
STS   STX   STD	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset   Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Operand Data (High Order Byte)   Operand Data (Low Order Byte)
ASL LSR   ASR NEG   CLR ROL   COM ROR   DEC TST*   INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register Plus Offset   Address Bus FFFF   Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Current Operand Data Low Byte of Restart Vector New Operand Data
CPX   SUBD   ADDD	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register + Offset   Index Register + Offset + 1   Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   Operand Data (High Order Byte)   Operand Data (Low Order Byte)   Low Byte of Restart Vector
JSR	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Address Bus FFFF   Index Register + Offset   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Offset   Low Byte of Restart Vector   First Subroutine Opcode   Return Address (Low Order Byte)   Return Address (High Order Byte)

[^11]TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 4 of 5)

Address Mode and Instructions		Cycles	Cycle	Address Bus	$\begin{aligned} & R / \bar{W} \\ & \text { Line } \end{aligned}$	Data Bus
INHERENT						
ABA   ASL   ASR   CBA   CLC   CLI   CLR   CLV   COM	DAA SEC   DEC SEI   INC SEV   LSR TAB   NEG TAP   NOP TBA   ROL TPA   ROR TST   SBA	2	$2$	Opcode Address Opcode Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction
ABX		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Low Byte of Restart Vector
$\begin{array}{\|l\|} \hline \text { ASLD } \\ \text { LSRD } \end{array}$		3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
$\begin{array}{\|l\|} \hline \text { DES } \\ \text { INS } \\ \hline \end{array}$		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Previous Stack Pointer Contents	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Opcode of Next Instruction Irrelevant Data
$\begin{array}{\|l\|} \hline \operatorname{INX} \\ \text { DEX } \end{array}$		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Opcode of Next Instruction Low Byte of Restart Vector
$\begin{array}{\|l\|} \hline \text { PSHA } \\ \text { PSHB } \end{array}$		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Opcode of Next Instruction   Accumulator Data
TSX		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Opcode of Next Instruction Irrelevant Data
TXS		3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Opcode of Next Instruction Low Byte of Restart Vector
PULA PULB		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer + 1	$\begin{array}{r} \hline 1 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	Opcode   Opcode of Next Instruction Irrelevant Data Operand Data from Stack
PSHX		4	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Irrelevant Data   Index Register (Low Order Byte)   Index Register (High Order Byte)
PULX		5	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer Stack Pointer + 1 Stack Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Irrelevant Data   Index Register (High Order Byte)   Index Register (Low Order Byte)
RTS		5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer + 1   Stack Pointer + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode   Irrelevant Data   Irrelevant Data   Address of Next Instruction (High Order Byte)   Address of Next Instruction (Low Order Byte)
WAI		9	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer - 1   Stack Pointer-2   Stack Pointer-3   Stack Pointer-4   Stack Pointer-5   Stack Pointer-6	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Opcode   Opcode of Next Instruction   Return Address (Low Order Byte)   Return Address (High Order Byte)   Index Register (Low Order Byte)   Index Register (High Order Byte)   Contents of Accumulator $A$   Contents of Accumulator $B$   Contents of Condition Code Register

TABLE 14 - CYCLE-BY-CYCLE OPERATION (Sheet 5 of 5)

Address Mode and Instructions	Cycles	Cycle	Address Bus	$\begin{aligned} & R / \bar{W} \\ & \text { Line } \end{aligned}$	Data Bus
INHERENT					
MUL	10	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
RTI	10	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer + 1   Stack Pointer +2   Stack Pointer + 3   Stack Pointer +4   Stack Pointer +5   Stack Pointer +6   Stack Pointer + 7	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Irrelevant Data   Contents of Condition Code Register from Stack   Contents of Accumulator B from Stack   Contents of Accumulator A from Stack   Index Register from Stack (High Order Byte)   Index Register from Stack (Low Order Byte)   Next Instruction Address from Stack (High Order Byte)   Next Instruction Address from Stack (Low Order Byte)
SWI	12	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	Opcode Address   Opcode Address + 1   Stack Pointer   Stack Pointer - 1   Stack Pointer-2   Stack Pointer-3   Stack Pointer - 4   Stack Pointer - 5   Stack Pointer-6   Stack Pointer-7   Vector Address FFFA (Hex)   Vector Address FFFB (Hex)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrelevant Data   Return Address (Low Order Byte)   Return Address (High Order Byte)   Index Register (Low Order Byte)   Index Register (High Order Byte)   Contents of Accumulator A   Contents of Accumulator B   Contents of Condition Code Register   Irrelevant Data   Address of Subroutine (High Order Byte)   Address of Subroutine (Low Order Byte)

RELATIVE

BCC	BHT	BNE		3	1	Opcode Address	1	Opcode
BCS	BLE	BPL	BHS		2	Opcode Address + 1	1	Branch Offset
BEO	BLS	BRA	BRN		3	Address Buss FFFF	1	Low Byte of Restart Vector
BGE	BLT	BVC						
BGT	BMI	BVS						
BSR				6	1	Opcode Address	1	Opcode
				2	Opcode Address + 1	. 1	Branch Offset	
				3	Address Bus FFFF	1	Low Byte of Restart Vector	
				4	Subroutine Starting Address	1	Opcode of Next Instruction	
				5	Stack Pointer	0	Return Address (Low Order Byte)	
				6	Stack Pointer - 1	0	Return Address (High Order Byte)	

## FIGURE 24 - SPECIAL OPERATIONS

JSR, Jump to Subroutine


BSR, Branch To Subroutine


RTS, Return from Subroutine


SWI, Software Interrupt



JMP, Jump


Legend:
RTN = Address of next instruction in Main Program to be executed upon return from subroutine RTN $_{H}=$ Most significant byte of Return Address
RTN $\mathrm{L}_{\mathrm{L}}=$ Least significant byte of Return Addres

- Stack Pointer After Execution
$\mathrm{K}=8$-bit Unsigned Value


## PHYSICAL DIMENSIONS



CB-182


CB-521


PLCC 44
PLCC 44


## ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

## EPROMs

Two ET2716 or one ET2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :


After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

## VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

## ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUCTEURS. Quality Assurance, and should be discarded after verification is completed:

## FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6801 cross assembler, must be on the disk. An object file: made from a memory dump using the ROLLOUT corn mand is also acceptable. Consider submitting a source listing as well as the following files: filename .LX (DEV)CE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

## ADVANCE INFORMATION

The EF6804J2 microcomputer unit (MCU) is a member of the EF6804 Family of very low-cost single-chip microcomputers. This 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the EF6800-based instruction set.

The following are some of the hardware and software features of the EF6804J2 MCU.

## HARDWARE FEATURES

- 5-Volt Single Supply
- 32 Bytes of RAM
- Memory Mapped I/O
- 1012 Bytes of Program ROM
- 64 Bytes of Data ROM
- 12 Bidirectional I/O Lines (Eight Lines with High Current Sink Capability)
- On-Chip Clock Generator
- Self-Test Mode
- Master Reset
- Complete Development System Support on DEVICE ${ }^{(8)}$
- Software Programmable 8-Bit Timer Control Register and Timer Presca$\operatorname{ler}(7$ Bits, 2 n )
- Timer Pin is Programmable as Input or Output
- On-Chip Circuit for ROM Verify.


## SOFTWARE FEATURES

- Similar to EF6805 HMOS Family
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instruction
- Separate Flags for Interrupt and Normal Processing
- Versatile Indirect Registers
- Conditional Branches
- Single Instruction Memory Examine/Change
- True LIFO Stack Eliminates Stack Pointer
- Nine Powerful Addressing Modes
- Any Bit in Data Space Memory May be Tested
- Any Bit in Data Space Memory Capable of Being Written to May be Set or Cleared


## USER SELECTABLE OPTIONS

- 12 Bidirectional I/O Lines with LSTTL, LSTTL/CMOS, of Open-Drain Interface
- Crystal or Low-Cost Resistor-Capacitor Oscillator
- Mask Selectable Edge- or Level- Sensitive Interrupt Pin.

DEVICE ${ }^{\circledR}$ is is THOMSON SEMICONDUCTEURS' development/emulation tool.

## HMOS



## BLOCK DIAGRAM



NOTE: 8 -Bit indirect registers $X$ and $Y$, although shown as part of the CPU, are actually located in the $32 \times 8$ RAM at locations $\$ 80$ and $\$ 81$.

## SECTION 2 <br> FUNCTIONAL PIN DESCRIPTION, MEMORY, CPU, AND REGISTERS

This section provides a description of the functional pins, memory spaces, the central processing unit (CPU), and the various registers and flags.

### 2.1 FUNCTIONAL PIN DESCRIPTION

### 2.1.1 VCC and VSS

Power is supplied to the MCU using these two pins. $V_{C C}$ is power and VSS is the ground connection.

### 2.1.2 $\overline{\mathrm{IRQ}}$

This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to 4.1 INTERRUPT for additional information.

### 2.1.3 XTAL and EXTAL

These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor and capacitor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoff:; Lead lengths and stray capacitance on these two pins should be minimized. Refer to 4.4 INTERNAL CLOCK GENERATOR OPTIONS for recommendations concerning these inputs.

### 2.1.4 TIMER

In the input mode, the timer pin is connected to the prescaler input and serves as the timer clock. In the output mode, the timer pin signals that a time out of the timer has occurred. Refer to SECTION 3 TIMER for additional information.

### 2.1.5 RESET

The RESET pin is used to restart the processor of the EF6804J2 to the beginning of a program. This pin, together with the MDS pin, is also used to select the operating mode of the EF6804J2. If the MDS pin is at zero volts, the normal mode is selected and the program counter is loaded with the user restart vector. However, if the MDS pin is at +5 volts, then pins PA6 and PA7 are decoded to allow selection of the operating mode. Refer to 4.3 RESET for additional information.

### 2.1.6 MDS

The MDS (mode select) pin is used to place the MCU into special operating modes. If MDS is held at +5 volts at the exit of the reset state, the decoded state of PA6 and PA7 is latched to determine the operating mode (single-chip, self-test, or ROM verify). However, if MDS is held at zero volts at the exit of the reset state, the single-chip operating mode is automatically selected (regardless of PA6 and PA7 state).

For those users familiar with the EF6801 microcomputer, mode selection is similar but much less complex in the EF6804J2. No special external diodes, switches, transistors, etc. are required in the EF6804J2.

### 2.1.7 Input/Output Lines (PA4-PA7, PB0-PB7)

These 12 lines are arranged into one 4 -bit port (A) and one 8 -bit port (B). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to SECTION 5 INPUT/OUTPUT PORTS for additional information.

### 2.2 MEMORY

The MCU operates in three different memory spaces: program space, data space, and stack space. A representation of these memory spaces is shown in Figure 2-1. The program space (Figure 2-1a) contains all of the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, and the self-test and user vectors. The data space (Figure 2-1b) contains all of the RAM locations, plus I/O locations and some ROM used for storage of tables and constants. The stack space (Figure 2-1c) contains RAM which is used for stacking subroutine and interrupt return addresses.

The MCU is capable of addressing 4096 bytes of program space memory with its program counter and 256 bytes of data space memory with its instructions. The data space memory contains three bytes for port data registers, three bytes for port data direction registers, one byte for timer status/control, 64 bytes ROM, 32 bytes RAM (which includes two bytes for $X$ and $Y$ indirect registers), two bytes for timer prescaler and count registers, and one byte for the accumulator. The program space section includes 304 bytes of self-test ROM, 1008 by tes program ROM, and eight bytes of vectors for self-test and user programs.

### 2.3 CENTRAL PROCESSING UNIT

The CPU of the EF6804 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal addresses, data, and control buses.
(a) Program Space Memory Map

Reserved (All Ones)	\$000
	$\begin{aligned} & \text { \$ADF } \\ & \text { \$AEO } \end{aligned}$
Self-Test ROM	
	$\begin{aligned} & \$ C O F \\ & \$ C 10 \end{aligned}$
Program ROM	
	\$FF7
Self-Test $\overline{\mathrm{RRQ}}$ Vector	\$FF8-\$FF9
Self-Test Restart Vector	\$FFA-\$FFB
User İRQ Vector	\$FFC-\$FFD
User Restart Vector	\$FFE-\$FFF

(c) Stack Space Memory Map

Level 1
Level 2
Level 3
Level 4

(b) Data Space Memory Map


Figure 2-1. EF6804J2 MCU Address Map

### 2.4 REGISTERS

The EF6804 Family CPU has four registers and two flags available to the programmer. They are shown in Figure 2-2 and are explained in the following paragraphs.


Figure 2-2. Programming Model

### 2.4.1 Accumulator (A)

The accumulator is an 8 -bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is implemented as the highest RAM location (\$FF) in data space and thus implies that several instructions exist which are not explicitly implemented. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.

### 2.4.2 Indirect Registers (X, Y)

These two indirect registers are used to maintain pointers to other memory locations in data space. They are used in the register-indirect addressing mode, and can be accessed with the direct, indirect, short direct, or bit set/clear addressing modes. These registers are implemented as two of the 32 RAM locations ( $\$ 80, \$ 81$ ) and as such generate implied instructions and may be manipulated in a manner similar to any RAM memory location in data space. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.

### 2.4.3 Program Counter (PC)

The program counter is a 12 -bit register that contains the address of the next ROM word to be used (may be opcode, operand, or address of operand). The 12-bit program counter is contained in PCL (low byte) and PCH (high nibble).

### 2.4.4 Flags (C, Z)

The carry (C) bit is set on a carry or a borrow out of the ALU. It is cleared if the result of an arithmetic operation does not result in a carry or a borrow. The (C) bit is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.

The zero $(Z)$ bit is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.

There are two sets of these flags, one set is for interrupt processing, the other for all other routines. When an interrupt occurs, a context switch is made from the program flags to the interrupt flags (interrupt mode). An RTI forces the context switch back to the program flags (program mode). While in either mode, only the flags for that mode are available. Further, the interrupt flags will not be cleared upon entering the interrupt mode. Instead, the flags will be as they were at the exit of the last interrupt mode. Both sets of flags are cleared by reset.

### 2.4.5 Stack

There is a true LIFO stack incorporated in the EF6804J2 which eliminates the need for a stack pointer. Stack space is implemented in separate RAM (12-bits wide) shown in Figure 2-1c. Whenever a subroutine call (or interrupt) occurs, the contents of the PC are shifted into the top register of the stack. At the same time (same cycle), the top register is shifted to the next level deeper. This happens to all registers with the bottom register falling out the bottom of the stack.

Whenever a subroutine or interrupt return occurs, the top register is shifted into the PC and all lower registers are shifted up one level higher. The stack RAM is four levels deep. If the stack $1:$; pulled more than four times without any pushes, the address that was stored in the bottom level will be shifted into the PC.

## SECTION 3 <br> TIMER

### 3.1 INTRODUCTION

A block diagram of the EF6804J2 timer circuitry is shown in Figure 3-1. The timer logic in the MCU is comprised of a simple 8-bit counter (timer count register, TCR) with a 7 -bit prescaler, and a timer status/ control register (TSCR). The timer count register, which may be loaded under program control, is decremented towards zero by a clock input (prescaler output). The prescaler is used to extend the maximum interval of the overall timer. The prescaler tap is selected by bits 0-2 (PS0-PS2) of the timer status/control register. Bits PS0-PS2 control the actual division of the prescaler within the range of divide-by-1 (20) to divide-by-128 (27). The timer count register (TCR) and prescaler are decremented on rising clock edges. The coding of the TCSR PSO-PS2 bits produce a division in the prescaler as shown in Table 3-1.

Table 3-1. Prescaler Coding Table

PS2	PS1	PS0	Divide By
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8


PS2	PS1	PS0	Divide By
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

The TIMER pin may be programmed as either an input or an output depending on the status of TOUT (TSCR bit 5). Refer to Figure 3-1. In the input mode, TOUT is a logic zero and the TIMER pin is connected directly to the prescaler input. Therefore, the timer prescaler is clocked by the signal applied from the TIMER pin. The prescaler then divides its clock input by a value determined by the coding of the TSCR bits PS0-PS2 as shown in Table 3-1. The divided prescaler output then clocks the 8 -bit timer count register (TCR). When the TCR is decremented to zero, it sets the TMZ bit in the timer status/control register (TSCR). The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The frequency of the external clock applied to the TIMER pin must be less than tbyte ( $\mathrm{f}_{\mathrm{osc}} / 48$ ).

In the output mode, TOUT is a logic one and the TIMER pin is connected to the DOUT latch. Therefore, the timer prescaler is clocked by the internal sync pulse (divide-by-48 of the internal oscillator). Operation is similar to that described above for the input mode. However, in the output mode, the low-to-high TMZ bit transition is used to latch the DOUT bit of the TSCR and provide it as output for the TIMER pin.

## NOTE

TMZ is normally set to logic one when the timer times out (TCR decrements to \$00); however, it may be set by a write of $\$ 00$ to the TCR or by a write to bit 7 of the TSCR.


Figure 3-1. Timer Block Diagram

During reset, the timer count register and prescaler are set to \$FF, while the timer status/control register is cleared to $\$ 00$ and the DOUT LATCH (TIMER pin is in the high-impedance input mode) is forced to a logic high. The prescaler and timer count register are implemented in data space RAM locations (\$FD, \$FE); therefore, they are both readable and writeable. A write to either will predominate over the TCR decrement-to-\$00 function; i.e., if a write and a TCR decrement-to-\$00 occur simultaneously, the write will take precedence, and the TMZ bit is not set until the next timer time out.

### 3.2 TIMER REGISTERS

### 3.2.1 Timer Count Register (TCR)



The timer count register indicates the state of the internal 8 -bit counter.

### 3.2.2 Timer Status/Control Register (TSCR)

7	6	5	4	3	2	1	0
TMZ	Not Used	TOUT	DOUT	$\overline{\text { PSI }}$	PS2	PS1	PS0

TSCR Address $=\$ 09$
b7, TMZ Low-to-high transition indicates the timer count register has decremented to zero since the timer status/control register was last read. Cleared by a read of TSCR register if TMZ was read as a logic one.
b6
Not used.
b5, TOUT When low, this bit selects the input mode for the timer. When high, the output mode is selected.
b4, DOUT Data sent to the timer output pin when TMZ is set high (output mode only).
b3, $\overline{\mathrm{PSI}} \quad$ Used to initialize the prescaler and inhibit its counting while $\overline{\mathrm{PSI}}=0$. The initialized value is set to \$FF. The timer count register will also be inhibited (contents unchanged). When $\mathrm{PSI}=1$ the prescaler begins to count downward.
b0, b1, b2 These bits are used to select the prescaler divide-by ratio; therefore, effecting PSO-PS1-PS2 the clock input frequency to the timer count register.

### 3.2.3 Timer Prescaler Register

MSB	0
	TPR Address $=$ \$FD

The timer prescaler register indicates the state of the internal 7-bit prescaler. This 7-bit prescaler divide ratio is normally determined by bits PSO-PS2 of the timer status/control register (see Table 3-1).

## SECTION 4 <br> INTERRUPT, SELF-TEST, RESET, AND INTERNAL CLOCK GENERATOR

### 4.1 INTERRUPT

The EF6804 22 can be interrupted by applying a logic low signal to the $\overline{\mathrm{R} \bar{Q}}$ pin ; however, a mask option selected at the time of manufacture determines whether the negative-going edge or the actual low level is sensed to indicate an interrupt.

### 4.1.1 Edge-Sensitive Option

When the $\overline{\mathrm{RO}}$ pin is pulled low, the internal interrupt request latch is set. Prior to each instruction fetch, the interrupt request latch is tested and, if its output is high, an interrupt sequence is initiated at the end of the current instruction (provided the interrupt mask is cleared). Figure 4-1 contains a flowchart which illustrates both the reset and interrupt sequence. The interrupt sequence consists of one cycle during which: the interrupt request latch is cleared, the interrupt mode flags are selected, the PC is saved on the stack, the interrupt mask is set, and the $\overline{\mathrm{RO}}$ vector (single chip mode $=$ \$FFC/ $\$$ FFD, self-test mode $=\$ F F 8 / \$ F F 9$ ) is loaded into the PC. Internal processing of the interrupt continues until an RTI (return from interrupt) instruction is processed. During the RTI instruction, the interrupt mask is cleared and the program mode flags are selected. The next instruction of the program is then fetched and executed. Once the interrupt was initially detected and the interrupt sequence started, the interrupt request latch is cleared so that the next (second) interrupt may be detected even while the previous (first) one is being serviced. However, even though the second interrupt sets the interrupt request latch during processing of the first interrupt, the second interrupt sequence will not be initiated until completion of the interrupt service routine for the first interrupt. Completion of an interrupt service routine is always accomplished using an RTI instruction to return to the main program. The interrupt mask (which is not directly available to the programmer) is cleared during the last cycle of the RTI instruction.

### 4.1.2 Level-Sensitive Option

The actual operation of the level-sensitive and edge-sensitive options are similar except that the level-sensitive option does not have an interrupt request latch. With no interrupt request latch, the logic level of the $\overline{\mathrm{RO}}$ pin is checked for detection of the interrupt. Also, in the interrupt sequence, there is no need to clear the interrupt request latch. These differences are illustrated in the flowchart of Figure 4-1.

### 4.1.3 Power Up and Timing

During the power-up sequence the interrupt mask is set to preclude any false or "ghost" interrupts from occurring. To clear the interrupt mask, the programmer should write a JSR (instead of a JMP) instruction to an initialization routine as the first instruction in a program. The initialization routine


Figure 4-1. Reset and Interrupt Processing Flowchart
should end with an RTI (instead of RTS). Maximum interrupt response time is eight machine (t byte) cycles (see 4.4 INTERNAL CLOCK GENERATOR OPTIONS). This includes five machine cycles for the longest instruction, plus one machine cycle for stacking the PC and switching flags, plus two machine cycles for synchronization of the $\overline{\operatorname{RO}}$ input with the internal clock. Minimum response time is one machine cycle for stacking PC and switching flags (see 2.4.4 Flags (C, Z)).

### 4.2 SELF-TEST

The EF6804J2 MCU has a unique internal ROM-based off-line self-test capability using signature analysis techniques. A test program stored in the on-chip ROM is initiated by configuring pins PA6 and PA7 during reset. The test results are sampled on a cycle-by-cycle basis by a 16 -bit on-chip signature analysis register configured as a linear feedback shift register (LFSR) using the standard CCITT CRC16 polynomial. A schematic diagram of the self-test connections is shown in Figure 4-2. To perform a test of the MCU, connect it as shown in Figure 4-2a and monitor the LEDs for a 1101 (\$D) pattern.

A special ROM self-test utilizing the signature analysis circuitry is also included. To initiate a test of the ROM, connect the circuit as shown in Figure 4-2b. This mode also uses the on-chip signature analysis register to verify the contents of the custom ROM by monitoring an internal bus. The "Good" LED indicates that all ROM words have been read and that the result was the correct signature.

The on-chip self-test and the ROM test are the basis of THOMSON SEMICONDUCTEURS production testing for the EF6804J2. These tests have been fault graded using statistical methods and have been found to provide high fault coverage using automatic test equipment (ATE) or the circuit of Figure 4-2.

### 4.3 RESET

The MCU can be reset in two ways: by initial power up (see Figure 4-1) and by the external reset input ( $\overline{\mathrm{RESET}}$ ). During power up, a delay of tRHL is needed before allowing the $\overline{\mathrm{RESET}}$ input to go high. This time delay allows the internal clock generator to stabilize. Connecting a capacitor and resistor to the RESET input, as shown in Figure 4-3, typically provides sufficient delay.

### 4.4 INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. $A$ crystal, a resistor-capacitor, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The different clock generator option connection methods are shown in Figure 4-4, crystal specifications and suggested PC board layouts are given in Figure 4-5, resistor-capacitor selection graph is given in Figure 4-6, and a timing diagram is illustrated in Figure 4-7. The crystal oscillator startup time is a function of many variables: crystal parameters (especially $\mathrm{R}_{\mathrm{S}}$ ), oscillator load capacitance (CL), IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations.

The oscillator output frequency is internally divided by four to produce the internal $\phi 1$ and $\phi 2$ clocks. The $\phi 1$ clock is divided by twelve to produce a machine byte (cycle) clock. A byte cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to execute.


* Used with crystal option only.
(b) Simple ROM Verify Test

Figure 4-2. Self-Test Circuit


Figure 4-3. Power-Up Reset Delay Circuit


Figure 4-4. Clock Generator Options
(a)

Piezoelectric ceramic resonators which have the equivalent specifications may be used instead of crystal oscillators. Follow ceramic resonator manufacturer's suggestions for $C_{0}, C_{1}$, and $R_{S}$ values.

NOTE: Keep crystal leads and circuit connections as short as possible.

Figure 4-5. Crystal Motional Arm Parameters and Suggested PC Board Layout


Figure 4-6. Typical Frequency Selection For Resistor-Capacitor Oscillator Option ( $\mathrm{C}_{\mathrm{L}}=17 \mathrm{pF}$ )


Figure 4-7. Clock Generator Timing Diagram

## SECTION 5 INPUT/OUTPUT PORTS

### 5.1 INPUT/OUTPUT

There are 12 input/output pins. All pins (port $A$ and $B$ ) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset, all the DDRs are initialized to a logic zero state to put the ports in the input mode. The port output registers are not initialized on reset but should be initialized before changing the DDR bits to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading; see Figure 5-1. All input/output pins are LSTTL compatible as both inputs and outputs. In addition, both ports may have one of two mask options: 1) internal pullup resistor for CMOS output compatibility, or 2) open drain output. The address map in Figure 2-1 gives the address of data registers and DDRs. The register configuration is discussed under the registers paragraph below and Figure 5-2 provides some examples of port connections.


Figure 5-1. Typical I/O Port Circuitry


LSTTL Driving Port A Directly


Port A, bit 7 programmed as output, driving CMOS loads and bit 4 driving one LSTTL load directly (using CMOS output option).
(a) Input Mode


CMOS or LSTTL Driving Port B Directly


Port B, bit 0, and bit 1 programmed as output, driving LEDs directly.
(b) Output Mode

Figure 5-2. Typical Port Connections

The latched output data bit (see Figure 5-1) may always be written. Therefore, any write to a port writes to all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input (0) and corresponds to the latched output data when the DDR is an output (1). The 12 bidirectional lines may be configured by port to be LSTTL (standard configuration), LSTTL/CMOS (mask option), or open drain (mask option). Port B outputs are LED compatible.

## NOTE

The mask option only allows changes by port. For example, if the customer wishes PA7 to be open drain, then PA4-PA7 must all be open drain.

### 5.2 REGISTERS

The registers described below are implemented as RAM locations and thus may be read or written.

### 5.2.1 Port Data Register

MSB	
	Port A Address $=\$ 00$
Port B Address $=\$ 01$	

The source of data read from the port data register will be the port I/O pin or previously latched output data depending upon the contents of the corresponding data direction register (DDR). The destination of data written to the port data register will be an output data latch. If the corresponding data direction register (DDR) for the port I/O pin is programmed as an output, the data will then appear on the port pin.

### 5.2.2 Port Data Direction Register

7	0

Port A Address $=\$ 04$
Port B Address $=\$ 05$
The port DDRs configure the port pins as either inputs or outputs. Each port pin can be programmed individually to act as an input or an output. A zero in the pins corresponding bit position will program that pin as an input while a one in the pins corresponding bit position will program that pin as an output.

## SECTION 6 SOFTWARE AND INSTRUCTION SET

### 6.1 SOFTWARE

### 6.1.1 Bit Manipulation

The EF6804, 22 MCU has the ability to set or clear any register or single random access memory (RAM) writable bit with a single instruction (BSET, BCLR). Any bit in data space, including ROM, can be tested, using the BRSET and BRCLR instructions, and the program may branch as a result of its state. The carry bit is set to the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.

The coding example in Figure 6-1 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line (to clock data one bit at a time, MSB first, out of the device). The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag ( C bit); clears the clock line, and finally accumulates the data bit in the accumulator.


Figure 6-1. Bit Manipulation Example

## EF6804J2

### 6.1.2 Addressing Modes

The EF6804J2 MCU has nine addressing modes which are explained briefly in the following paragraphs. The EF6804J2 deals with objects in three different address spaces : program space, data space, and stack space. Program space contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains all of the RAM locations, $X$ and $Y$ registers, accumulator, timer, I/O locations, and some ROM (for storage of tables and constants). Stack space contains RAM for use in stacking the return addresses for subroutines and interrupts.

The term "Effective Address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
6.1.2.1 IMMEDIATE. In the immediate addressing mode, the operand is located in program ROM and is contained in a byte following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
6.1.2.2 DIRECT. In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the 256 bytes in data space memory with a single two-byte instruction.
6.1.2.3 SHORT DIRECT. The MCU also has four locations in data space RAM ( $\$ 80, \$ 81, \$ 82, \$ 83$ ) which may be used in a short-direct addressing mode. In this mode the lower two bits of the opcode determine the data space. RAM location, and the instruction is only one byte. Short direct addressing is a subset of the direct addressing mode. (The $X$ and $Y$ registers are at locations $\$ 80$ or $\$ 81$ respectively.)
6.1.2.4 EXTENDED. In the extended addressing mode, the effective address is obtained by concatenating the four least significant bits of the opcode with the byte following the opcode (12-bit address). Instructions using the extended addressing mode (JMP, JSR) are capable of branching anywhere in program space. An extended addressing mode instruction is two bytes long.
6.1.2.5 RELATIVE. The relative addressing mode is only used in conditional branch instructions. In relative addressing, the address is formed by adding the sign extended lower five bits of the opcode (the offset) to the program counter if and only if the condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -15 to +16 from the opcode address. The programmer need not worry about calculating the correct offset when using the Motorola assembler since it calculates the proper offset and checks to see if it is within the span of the branch.
6.1.2.6 BIT SET/CLEAR. In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any bit in the 256 locations of data space memory, which can be written to, can be set or cleared.
6.1.2.7 BIT TEST AND BRANCH. The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested is included in the opcode, and the data space address of the byte to be tested is in the single byte immediately following the opcode byte. The third byte is sign extended to twelve bits and becomes the offset added to the program counter if the condition is true. The single three-byte instruction allows the program to branch based on the condition of any bit in data space memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry flag.
6.1.2.8 REGISTER-INDIRECT. In the register-indirect addressing mode, the operand is at the address (in data space) pointed to by the contents of one of the indirect registers (X or Y). The particular $X$ or $Y$ register is selected by bit 4 of the opcode. Bit 4 of the opcode is then decoded into an address which selects the desired X or Y register ( $\$ 80$ or $\$ 81$ ). A register-indirect instruction is one byte long.
6.1.2.9 INHERENT. In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

### 6.2 INSTRUCTION SET

The EF6804J2 MCU has a set of 42 basic instructions, which when combined with nine addressing modes produce 242 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

### 6.2.1 Register/Memory Instructions

Most of these instructions use two operands. One operand is the accumulator and the other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to Table 6-1.

### 6.2.2 Read-Modify-Write Instructions

These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. There are ten instructions which utilize read-modify-write cycles. All INC and DEC forms along with all bit manipulation instructions use this method. Refer to Table 6-2.

### 6.2.3 Branch Instructions

The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 6-3.

### 6.2.4 Bit Manipulation Instructions

These instructions are used on any bit in data space memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to Table 6-4.

Table 6-1. Register/Memory Instructions

		Addressing Modes																			
		Indirect				Immediate			Direct			Inherent			Extended			Short-Direct			
Function	Mnem	-	de	$\begin{array}{\|c} \# \\ \text { Bytes } \end{array}$	$\stackrel{\pi}{\text { Cycles }}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	Opcode	$\stackrel{\#}{\text { Bytes }}$	$\begin{gathered} \text { Cycles } \end{gathered}$	Opcode	$\begin{array}{\|c\|} \# \# \\ \text { Bytes } \end{array}$	$\begin{gathered} \text { \# } \\ \text { Cycles } \end{gathered}$	Opcode	$\stackrel{\text { \# }}{\text { Bytes }}$	$\begin{gathered} \text { \# } \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \# \\ \text { Bytes } \end{gathered}$	\# Cycles	Special Notes
Load A from Memory	LDA	E0	FO	1	4	E8	2	4	F8	2	4	-	-	-	-	-	-	AC-AF	1	4	1
Load XP from Memory	LDXI	--	-	-	-	80	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Load YP from Memory	LDYI	-	-	-	-	B0	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Store A in Memory	STA	E1	F1	1	4	-	-	-	F9	2	4	-	-	-	-	-	-	BC-BF	1	4	2
Add to A	ADD	E2	F2	1	4	EA	2	4	FA	2	4	-	-	-	-	-	-	-	-	-	-
Subtract from A	SUB	E3	F3	1	4	EB	2	4	FB	2	4	-	-	-	-	-	-	-	-	-	-
Arithmetic Compare with Memory	CMP	E4	F4	1	4	EC	2	4	FC	2	4	-	-	-	-	-	-	-	-	-	-
AND Memory to A	AND	E5	F5	1	4	ED	2	4	FD	2	4	-	-	-	-	-	-	-	-	-	-
Jump to Subroutine	JSR	-	-	-	-	-	-	-	-	-	-	-	-	-	8 (TAR)	2	4	-	-	-	3
Jump Unconditional	JMP	-	-	-	-	-	-	-	-	-	-	-	-	-	9 (TAR)	2	4	-	-	-	3
Clear A	CLRA	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear XP	CLRX	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear YP	CLRY	-	-	-	-	-	-	-	FB	2	4	-			-	-	-	-	-	-	-
Complement A	COMA	-	-	-	-	-	-	-	-	-	-	B4	1	4	-	-	-	-	-	-	-
Move Immediate Value to Memory	MVI	-	-	-	-	B0	3	4	B0	3	4	-	-	-	-	-	-	-	-	-	5
Rotate A Left and Carry	ROLA	-	-	-	-	-	-	-	-	-	-	B5	1	4	-	-	-	-	-	-	-
Arithmetic Left Shift of A	ASLA	-	-	-	-	-	-	-	FA	2	4	-	-	-	-	-	-	-	-	-	-

## SPECIAL NOTES

1. In Short-Direct addressing, the LDA mnemonic represents opcode AC, AD, AE, and AF. This is equivalent to RAM locations 580 (AC), 581 (AD), 582 (AE), and $\$ 83$ (AF) 2. In Short-Direct addressing, the STA mnemonic represents opcode BC. BD. BE, and BF. This is equivalent to RAM locations 580 (BC). S81 (BD), S82 (BE), and S83 (BF). 3. In Extended addressing, the four LSBs of the opcode (Mnemonic JSR and JMP) are formed by the four MSBs of the target address. (TAR)
2. In Immediate addressing, the LDXI and LDYI are mnemonics which are recognized as follows:

LDXI $=$ MVI' se0.data
LDYI = MVI s81,data
Where data is a onebyte hexadecimal number.
5. The MVI instruction refers to both Immediate and Direct addressing.

Table 6-2. Read-Modify-Write Instructions

		Addressing Modes										Special Notes
					\# Cycles	Direct			Short-Direct			
Function	Mnem	Opcode		$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$			\#	\#		\#	\#	
		X	$Y$			Opcode	Bytes	Cycles	Opcode	Bytes	Cycles	
Increment Memory Location	- INC	E6	F6	1	4	FE	2	4	A8-AB	1	4	1,3
Increment A	INCA	-	-	-	-	FE	2	4	-	-	-	-
Increment XP	INCX	-	-	-	-	-	-	-	A8	1	4	-
Increment YP	INCY	-	-	-	-	-	-	-	A9	1	4	-
Decrement Memory Location	DEC	E7	F7	1	4	FF	2	4	B8-BB	1	4	2, 4
Decrement A	DECA	-	-	-	-	FF	2	4	-	-	-	-
Decrement XP	DECX	-	-	-	-	-	-	-	B8	1	4	-
Decrement YP	DECY	-	-	-	-	-	-	-	B9	1	4	-

SPECIAL NOTES

1. In Shori-Direct addressing, the INC mnemonic represents opcode A8, A9, AA, and AB. These are equivalent to RAM locations $\$ 80(A 8), \$ 81(A 9), \$ 82(A A)$, and $\$ 83(\mathrm{AB})$.
2. In Short-Direct addressing, the DEC mnemonic represents opcode B8, B9, BA, and BB. These are equivalent to RAM locations $\$ 80$ (B8), $\$ 81$ (B9), $\$ 82$ (BA), and $\$ 83$ (BB)
3. In Indirect addressing, the INC mnemonic represents opcode E6 or F6, and causes the location pointed to by $X$ (E6 opcode) or $Y$ (F6 opcode) to be incremented 4. In Indirect addressing, the INC mnemonic represents opcode E7 or F7, and causes the location pointed to by $X$ (E7 opcode) or Y (F7 opcode) to be incremented.

Table 6-3. Branch Instructions

		Relative Addressing Mode			
Function	Mnem	Opcode	$\begin{gathered} \\ \text { Bytes } \end{gathered}$	\# Cycles	Special Notes
Branch if Carry Clear	BCC	40-5F	1	2	1
Branch if Higher or Same	.(BHS)	40-5F	1	2	1, 2
Branch if Carry Set	BCS	60-7F	1	2	1
Branch if Lower	(BLO)	60-7F	1	2	1, 3
Branch if Not Equal	BNE	00-1F	1	2	1
Branch if Equal	3EQ	20-3F	1	2	1

1. Each mnemonic of the Branch Instructions covers a range of 32 opcodes; e.g., BCC ranges from 40 through 5 F . The actual memory location (target address) to which the branch is made is formed by adding the sign extended lower five bits of the opcode to the contents of the program counter.
2. The BHS instruction (shown in parentheses) is identical to the BCC instruction. The $C$ bit is clear if the register was higher or the same as the location in the memory to which it was compared.
3. The BLO instruction (shown in parentheses) is identical to the BCS instruction. The $C$ bit is set if the register was lower than the location in memory to which it was compared.

Table 6-4. Bit Manipulation Instructions

Function	Mnem	Addressing Modes						Special Note
		Bit Set/Clear			Bit Test and Branch			
		Opcode	Bytes	Cycles	Opcode	Bytes	Cycles	
Branch IFF Bit $n$ is set	BRSET $n(n=0 \ldots 7)$	-	-	-	$\mathrm{C} 8+\mathrm{n}$	3	5	1
Branch IFF Bit $n$ is clear	BRCLR $n(n=0 \ldots 7)$	-	-	-	$\mathrm{C} 0+n$	3	5	1
Set Bit $n$	BSET $n(n=0 \ldots 7)$	D8+n	2	4	-	-	-	1
Clear Bit $n$	BCLR $n(n=0 \ldots 7)$	$D 0+n$	2	4	-	-	-	1

## SPECIAL NOTE

1. The opcode is formed by adding the bit number $(0-7)$ to the basic opcode. For example: to clear bit six using the BSET6 instruction the opcode becomes DE (D8+6); BCLR5 becomes $(C 0+5)$; etc.

### 6.2.5 Control Instructions

The control instructions control the MCU operations during program execution. Refer to Table 6-5.

### 6.2.6 Alphabetical Listing

The complete instruction set is given in alphabetical order in Table 6-6. There are certain mnemonics recognized by the assembler and converted to other instructions. The fact that all registers and accumulator are in RAM allows many implied instructions to exist. The implied instructions recognized by the assembler are identified in Table 6-6.

### 6.2.7 Opcode Map Summary

Table 6-7 contains an opcode map for the instructions used on the MCU.

### 6.3 IMPLIED INSTRUCTIONS

Since the accumulator and all other registers are located in RAM many implied instructions exist. The assembler-recognized implied instructions are given in Table 6-6. Some examples not recognized by the assembler are shown below.

BCLR, 7 \$FF Ensures accumulator is plus
BSET, 7 \$FF Ensures accumulator is minus
BRCLR, 7 \$FF Branch iff accumulator is plus
BRSET, 7 \$FF Branch iff accumulator is minus
BRCLR, 7 \$80 Branch iff $X$ is plus (BXPL)
BRSET, $7 \$ 80 \quad$ Branch iff $X$ is minus (BXMI)
BRCLR, 7 \$81 Branch iff $Y$ is plus (BYPL)
BRSET,7 \$81 Branch iff $Y$ is minus (BYMI)

Table 6-5. Control Instructions

		Addressing Modes									Special Notes
		Short-Direct			Inherent			Relative			
Function	Mnem	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	
Transfer A to X	TAX	BC	1	4	-	-	-	-	-	-	-
Transfer A to $Y$	TAY	BD	1	4	-	-	-	-	-	-	-
Transfer $X$ to $A$	TXA	AC	1	4	-	-	-	-	-	-	-
Transfer $Y$ to $A$	TYA	AD	1	4	-	-	-	-	-	-	-
Return from Subroutine	RTS	-	-	-	B3	1	2	-	-	-	-
Return from Interrupt	RTI	-	-	-	B2	1	2	-	-	-	-
No-Operation	NOP	-	-	-	-	-	-	-	-	-	1

SPECIAL NOTE

1. The NOP instruction is equivalent to a branch if equal (BEQ) to the location designated by $P C+1$

Table 6-6. Instruction Set


Fiag Symbols: $Z=$ Zero. $C=$ Carry/Borrow, $A=$ Test and Set if True. Cleared Otherwise, $=$ Not Affected

Table 6-7 - EF6804P2 Microcomputer Instruction Set Opcode Map


Abbreviations for Address Modes
INH Inherent * Indicates Instruction Reserved for Future Use
S-D Short Direct \# Indicates Illegal Instruction
B-T-B Bit Test and Branch
IMM Immediate
DIR Direct
EXT Extended
REL Relative
BSC Bit Set/Clear
R-IND Register Indirect

Instruction Set Opcode Map


LEGEND


Address Mode

## SECTION 7 <br> ELECTRICAL SPECIFICATIONS

### 7.1 INTRODUCTION

This section contains the electrical specifications and associated timing for the EF6804J2.

### 7.2 MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to $/ 7.0$	V
$\begin{array}{l}\text { Operating Temperature Range } \\ \begin{array}{l}\text { Standard or L suffix } \\ \text { V suffix } \\ \text { T suffix }\end{array} \\ \mathrm{T}_{\mathbf{A}}\end{array}$	$\begin{array}{c}\mathrm{TL} \text { to } \mathrm{TH} \\ 0 \text { to } 70 \\ -40 ~ t o ~ \\ \hline\end{array}$	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	-40 to 105		

This device contains circuitry to protect the inputs against damage due to high static voltages of electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {CC }}$. Reliability of operation is enhanced if unused inputs except EXTAL are connected to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{CC}}$ ).

### 7.3 THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance   Plastic	$\theta \mathrm{JA}$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$



Figure 7-1. LSTTL Equivalent Test Load (Port B)


Figure 7-2. CMOS Equivalent Test Load (Ports A and B)


Figure 7-3. LSTTL. Equivalent Test Load (Port A and TIMER)

### 7.4 POWER CONSIDERATIONS

The average chip-junction temperature, $\mathrm{T} J$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{equation*}
T J=T A+(P D \cdot \theta J A) \tag{1}
\end{equation*}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta \mathrm{JA}=$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD $=$ PINT + PPORT
PINT $=$ ICC $\times$ VCC, Watts - Chip Internal Power
PPORT = Port Power Dissipation, Watts - User Determined
For most applications PPORT «PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between PD and $T J$ (if PPORT is neglected) is:

$$
\begin{equation*}
P D=K \div\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P D \cdot\left(T A+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. K can be determined from equation 3 by measuring $P_{D}$ (at equilibrium) for a known $T_{A}$. Using this value of $K$ the values of $P_{D}$ and $T_{J}$ can be obtained by solving equations (1) and (2) iteratively for any value of $\mathrm{T}_{\mathrm{A}}$.

### 7.5 ELECTRICAL CHARACTERISTICS $\operatorname{VCC}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{VSS}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $T_{H}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{array}{\|ll} \hline \text { Internal Power Dissipation - No Port Loading } & T_{A}=0^{\circ} \mathrm{C} \\ T_{A}=-40^{\circ} \mathrm{C} \end{array}$	$P_{\text {INT }}$	-	135 -	$\begin{aligned} & 170 \\ & 210 \end{aligned}$	mV
Input High Voltage	$V_{\text {IH }}$	4.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$V_{\text {IL }}$	VSS	-	0.8	V
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	10	-	pF
Input Current (1)	In	-	2	20	$\mu \mathrm{A}$

### 7.6 SWITCHING CHARACTERISTICS $\operatorname{VCC}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to

 $T_{H}$ unless otherwise noted)| Characteristic | Symbol | Min | TYp | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oscillator Frequency | fosc | 4.0 | - | 11.0 | MHz |
| Bit Time | tbit | 0.364 | - | 1.0 | $\mu \mathrm{S}$ |
| Byte Cycle Time | tbyte | 4.36 | - | 12.0 | $\mu \mathrm{S}$ |
| IRO and TIMER Pulse Width | WL. TWH | 2 xt byte | - | - | - |
| RESET Pulse Width | trwL | 2xtbyte | - | - | - |
| RESET Delay Time (External Capacitance $=1.0 \mu \mathrm{~F}$ ) | ${ }^{\text {t }} \mathrm{H} \mathrm{HL}$ | 100 | - | - | ms |

7.7 PORT DC ELECTRICAL CHARACTERISTICS $\operatorname{IVCC}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{VSS}_{\mathrm{S}}=\mathrm{GND}$, $T_{A}=T_{L}$ to $T_{H}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Timer and Ports A (Standard)					
Output Low Voltage, Load $=0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output High Voltage, I Load $=-50 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.3	-	-	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	V SS	-	0.8	V
Hi-Z State Input Current	ITSI	-	4	40	$\mu \mathrm{A}$
Timer and Ports A (Open Drain)					
Output Low Voltage, Load $=0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	V/SS	-	0.8	V
Hi-Z State Input Current	ITSI	-	4	40	$\mu \mathrm{A}$
Open Drain Leakage ( $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {CC }}$ )	ILOD	-	4	40	$\mu \mathrm{A}$
Timer and Ports A (CMOS Drive)					
Output Low Voltage, ${ }_{\text {L }}$ Load $=0.4 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\text {CC }}-1.0$	-	-	V
Output High Voltage, ${ }_{\text {Load }}=-50 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.3	-	-	V
Input High Voltage, Load $=-300 \mu \mathrm{~A}$ Max	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	$\mathrm{V}_{\text {CC }}$	V
Input Low Voltage, L Load $=-300 \mu \mathrm{~A}$ Max	$\mathrm{V}_{\mathrm{IL}}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-Z State Input Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	ITSI	-	-	-300	$\mu \mathrm{A}$
Port B (Standard)					
Output Low Voltage, Load $=1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output Low Voltage, ILoad $=10 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\mathrm{OL}}$	-	-	1.5	V
Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	$\mathrm{VOH}^{\text {O }}$	2.3	-	-	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	V SS	-	0.8	$\checkmark$
Hi-2 State Input Current	${ }^{\text {ITSI }}$	-	8	80	$\mu \mathrm{A}$
Port B (Open Drain)					
Output Low Voltage, ${ }_{\text {Load }}=1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output Low Voltage. ILoad $=10 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\mathrm{OL}}$	-	-	1.5	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	VSS	-	0.8	V
Hi-Z State Input Current	ITSI	-	8	80	$\mu \mathrm{A}$
Open Drain Leakage ( $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {CC }}$ )	ILOD	-	8	80	$\mu \mathrm{A}$
Port B (CMOS Drive)					
Output Low Voltage, Load $=1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output High Voltage, LLoad $=10 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\mathrm{OL}}$	-	-	1.5	V
Output High Voltage, ${ }_{\text {Load }}=-10 \mu \mathrm{~A}$	VOH	$\mathrm{V}_{\text {CC }}-1.0$	-	-	V
Output High Voltage, LLoad $=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.3	-	-	V
Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage, ILoad $=-300 \mu \mathrm{~A}$ Max	$\mathrm{V}_{\text {IL }}$	VSS	-	0.8	$v$
Hi-2 State Input Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{VCC}^{\text {l }}$	ITSI	-	-	-300	$\mu \mathrm{A}$

## SECTION 8 MECHANICAL DATA

This section contains the pin assignment and package dimension diagrams for the EF6804J2 microcomputer.

### 8.1 PIN ASSIGNMENT



### 8.2 PHYSICAL DIMENSIONS



CB-194


## SECTION 9 ORDERING INFORMATION

### 9.1 INTRODUCTION

The following information is required when ordering a custom MCU. The information may be transmitted to THOMSON SEMICONDUCTEURS in the following media:

EPROM(s), 2716 or 2732
EFDOS/MDOS*, disk file
To initiate a ROM pattern for the MCU, it is neœssary to first contact your local field serviœ offiœ, local sales person, or your local THOMSON SEMICONDUCTEURS representative.

### 9.1.1 EPROMs

One 2716 or one 2732 type EPROM, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. Since all program and data space information will fit on one 2716 or 2732 EPROM, the EPROM must be programmed as follows in order to emulate the EF6804J2 MCU. For a 2716, start the data space ROM1 at EPROM address $\$ 020$ and start program space ROM at EPROM address $\$ 410$ and continue to memory space $\$ 7 F F$. Memory spaces $\$ 7 F 8$ through $\$ 7 F B$ are reserved for THOMSON SEMICONDUCTEURS self-test vectors. For a 2732, the memory map shown in Figure 2-1 can be used. All unused bytes, including the user's space, must be set to zero. For shipment to THOMSON SEMICONDUCTEURS the EPROMs should be placed in a conductive IC carrier and packed securely. Do not use styrofoam.

### 9.1.2 EFDOS/MDOS* Disk File

An EFDOS/MDOS* disk, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. When using the EFDOS/MDOS* disk, include the entire memory image of both data and program space. All unused bytes, including the user's space, must be set to zero.

### 9.2 VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the contractural agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program a blank 2716, 2732, or EFDOS/MDOS* disk (supplied by the customer) from the data file used to create the custom mask to aid in the verification process.

[^12]
### 9.3 ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually tested only at room temperature, five volts and may be unmarked and packaged in ceramic. These RVUs are included in the mask charge and are not production parts.

These RVUs. are not backed nor guaranteed by THOMSON SEMICONDUCTEURS Quality Assurance.

### 9.4 FLEXIBLE DISKS

The disk media submitted must be single-sided single density, 8-inch, EFDOS/MDOS* compatible floppies. The customer must clearly label the disk with the ROM pattern file name. The minimum EFDOS/MDOS* system files as well as the absolute binary object file (file name. LO type of file) from the 6804 cross assembler must be on the disk. An object file made from a memory dump, using the ROLLOUT command is also admissable. Consider submitting a source listing as well as: file name, .LX (DEVICE/EXORciser loadable format). This file will of course be kept confidential and is used 1) to speed up the process in house if any problems arise, and 2) to speed up our customer to factory interface if a user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS Disk Operating System available on development systems such as DEVICE.
MDOS is MOTOROLA's Disk Operating System available on development systems such as EXORciser. .
*Requires prior factory approval.
Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet SEMICONDUCTEURS representative.

ORDERING INFORMATION


EXORciser is a registered trademark of Motorola Inc.

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different products.

## ADVANCE INFORMATION

The EF6804P2 Microcomputer Unit (MCU) is a member of the EF6804 Family of very low-cost single-chip microcomputers. This 8bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the EF6800-based instruction set. The following are some of the hardware and software highlights of the EF6804P2 MCU.

## HARDWARE FEATURES

- 8-Bit Architecture
- Pin Compatible with the EF6805P2 and EF68HC04P3
- 32 Bytes of RAM
- Memory Mapped I/O
- 1020 Bytes of User ROM
- 64 Bytes of ROM for Look-Up Tables
- 20 TTL/CMOS Compatible Bidirectional I/O Lines (Eight Lines are LED Compatible)
- 8-Bit Timer with 7-Bit Software Programmable Prescaler
- On-Chip Clock Generator
- Self-Check Mode and ROM Verify Mode
- Master Reset
- Complete Development System Support on DEVICE ${ }^{\circledR}$
- 5 Volt Single Supply
- TIMER Pin is Programmable as Input or Output


## SOFTWARE FEATURES

- Similar to EF6805 HMOS Family
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instruction
- Separate Flags for Interrupt and Normal Processing
- Versatile Indirect Registers
- Conditional Branches
- Single Instruction Memory Examine/Change
- True LIFO Stack Eliminates Stack Pointer
- Eight Powerful Addressing Modes
- Any Bit in Data Space Memory May be Tested
- Any Bit in Data Space Memory Capable of Being Written to May be Set or Cleared.


## USER SELECTABLE OPTIONS

- 20 Bidirectional I/O Lines with LSTTL, LSTTL/CMOS, or Open-Drain Interface
- Crystal or Low-Cost Resistor-Capacitor Oscillator
- Mask Selectable Edge- or Level-Sensitive Interrupt Pin

DEVICE ${ }^{\circledR}$ is THOMSON SEMICONDUCTEURS' development/emulation tool.


## PIN ASSIGNMENT

VSS 41	28	] $\overline{\text { RESET }}$
IRO $\mathrm{O}_{2}$	27	1- PA7
$v_{\text {CC }} \mathrm{O}_{3}$	26	p PA6
EXTAL 04	25	1 PA5
XTAL 5	24	1 PA4
MDS ¢ 6	23	$\square \mathrm{PA} 3$
TIMER [ 7	22	0 PA 2
PCO 08	21	$\square \mathrm{PA} 1$
PC1 9	20	$\square \mathrm{PaO}$
PC2 10	19	[ PB7
PC3 11	18	1 PB6
PBO 12	17	[ PB5
PB1 13	16	1 PB4
PB2 14	15	] PB3

## EF6804P2

## BLOCK DIAGRAM



NOTE: 8-Bit indirect registers XP and YP, although shown as part of the CPU, are actually located in the $32 \times 8$ RAM at locations $\$ 80$ and $\$ 81$.

## SECTION 2 <br> FUNCTIONAL PIN DESCRIPTION, MEMORY, CPU, AND REGISTERS

This section provides a description of the functional pins, memory spaces, the central processing unit (CPU), and the various registers and flags.

### 2.1 FUNCTIONAL PIN DESCRIPTION

### 2.1.1 VCC and VSS

Power is supplied to the MCU using these two pins. VCC is power and VSS is the ground connection.

### 2.1.2 $\overline{\mathrm{RO}}$

This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to 4.1 INTERRUPT for additional information.

### 2.1.3 XTAL and EXTAL

These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor and capacitor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to 4.4 INTERNAL CLOCK GENERATOR OPTIONS for recommendations concerning these inputs.

### 2.1.4 TIMER

In the input mode, the timer pin is connected to the prescaler input and serves as the timer clock. In the output mode, the timer pin signals that a time out of the timer has occurred. Refer to SECTION 3 TIMER for additional information.

### 2.1.5 $\overline{\text { RESET }}$

The RESET pin is used to restart the processor of the EF6804P2 to the beginning of a program. This pin, together with the MDS pin is also used to select the operating mode of the EF6804P2. If the MDS pin is at zero volts, the normal mode is selected and the program counter is loaded with the user restart vector. However, if the MDS pin is at +5 volts, then pins PA6 and PA7 are decoded to allow selection of the operating mode. Refer to 4.3 RESET for additional information.

### 2.1.6 MDS

The MDS (mode select) pin is used to place the MCU into special operating modes. If MDS is held at +5 volts at the exit of the reset state, the decoded state of PA6 and PA7 is latched to determine the operating mode (single-chip, self-check, or ROM verify). However, if MDS is held at zero volts at the exit of the reset state, the single-chip operating mode is automatically selected (regardless of PA6 and PA7 state).

For those users familiar with the EF6801 microcomputer, mode selection is similar but much less complex in the EF6804P2. No special external diodes, switches, transistors, etc. are required in the EF6804P2.

### 2.1.7 Input/Output Lines (PAO-PA7, PB0-PB7, PC0-PC3)

These 20 lines are arranged into two 8 -bit ports ( A and B ) and one 4-bit port ( $C$ ). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to SECTION 5 INPUT/OUTPUT PORTS for additional information.

### 2.2 MEMORY

The MCU operates in three different memory spaces: program space, data space, and stack space. A representation of these memory spaces is shown in Figure 2-1. The program space (Figure 2-1a) contains all of the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, and the self-check and user vectors. The data space (Figure 2-1b) contains all of the RAM locations, plus I/O locations and some ROM used for storage of tables and constants. The stack space (Figure 2-1c) contains RAM which is used for stacking subroutine and interrupt return addresses.

The MCU is capable of addressing 4096 bytes of program space memory with its program counter and 256 bytes of data space memory with its instructions. The data space memory contains three bytes for port data registers, three bytes for port data direction registers, one byte for timer status/control, 64 bytes ROM, 32 bytes RAM (which includes two bytes for XP and YP indirect registers), two bytes for timer prescaler and count registers, and one byte for the accumulator. The program space section includes 288 bytes of self-check ROM, 1016 bytes program ROM, and eight bytes of vectors for self-check and user programs.

### 2.3 CENTRAL PROCESSING UNIT

The CPU of the EF6804 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal addresses, data, and control buses.
(a) Program Space Memory Map

Reserved (All Ones)	\$000   SADF   SAEO
Self-Check ROM	
SBFF	
\$C00	

(c) Stack Space Memory Map

Level 1
Level 2
Level 3
Level 4

(b) Data Space Memory Map

Port A Data Register				\$00
Port B Data Register				\$01
1	1	1	Port C Data Reg.	\$02
Not Used				\$03
Port A Data Direction Register				\$04
Port B Data Direction Register				\$05
1	1	1	Port C DDR	\$06
Not Used				
Timer Status Control Register				\$09
Future Expansion				
				\$1F
User Data Space ROM				$\$ 20$
				\$5F
Future Expansion				
Indirect Register $X$				\$80
Indirect Register $Y$				\$81
Data Space RAM				
Future Expansion				
Prescaler Register				\$FD
Timer Count Register				\$FE
Accumulator				SFF

Figure 2-1. E F6804P2 MCU Address Map

### 2.4 REGISTERS

The EF6804 Family CPU has four registers and two flags available to the programmer. They are. shown in Figure 2-2 and are explained in the following paragraphs.


Figure 2-2. Programming Model

### 2.4.1 Accumulator (A)

The accumulator is an 8 -bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is implemented as the highest RAM location (\$FF) in data space and thus implies that several instructions exist which are not explicitly implemented. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.

### 2.4.2 Indirect Registers (XP, YP)

These two indirect registers are used to maintain pointers to other memory locations in data space. They are used in the register-indirect addressing mode, and can be accessed with the direct, indirect, short direct, or bit set/clear addressing modes. These registers are implemented as two of the 32 RAM locations ( $\$ 80, \$ 81$ ) and as such generate implied instructions and may be manipulated in a manner similar to any RAM memory location in data space. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.

### 2.4.3 Program Counter (PC)

The program counter is a 12-bit register that contains the address of the next ROM word to be used (may be opcode, operand, or address of operand). The 12-bit program counter is contained in PCL (low byte) and PCH (high nibble).

### 2.4.4 Flags (C, Z)

The carry (C) bit is set on a carry or a borrow out of the ALU. It is cleared if the result of an arithmetic operation does not result in a carry or a borrow. The (C) bit is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.

The zero $(Z)$ bit is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.

There are two sets of these flags, one set is for interrupt processing, the other for all other routines. When an interrupt occurs, a context switch is made from the program flags to the interrupt flags (interrupt mode). An RTI forces the context switch back to the program flags (program mode). While in either mode, only the flags for that mode are available. Further, the interrupt flags will not be cleared upon entering the interrupt mode. Instead, the flags will be as they were at the exit of the last interrupt mode. Both sets of flags are cleared by reset.

### 2.4.5 Stack

There is a true LIFO stack incorporated in the EF6804P2 which eliminates the need for a stack pointer. Stack space is implemented in separate RAM (12-bits wide) shown in Figure 2-1c. Whenever a subroutine call (or interrupt) occurs, the contents of the PC are shifted into the top register of the stack. At the same time (same cycle), the top register is shifted to the next level deeper. This happens to all registers with the bottom register falling out the bottom of the stack.

Whenever a subroutine or interrupt return occurs, the top register is shifted into the PC and all lower registers are shifted up one level higher. The stack RAM is four levels deep. If the stack is pulled more than four times without any pushes, the address that was stored in the bottom level will be shifted into the PC.

## SECTION 3 TIMER

### 3.1 INTRODUCTION

A block diagram of the EF6804P2 timer circuitry is shown in Figure 3-1. The timer logic in the MCU is comprised of a simple 8-bit counter (timer count register, TCR) with a 7-bit prescaler, and a timer status/control register (TSCR). The timer count register, which may be loaded under program control, is decremented towards zero by a clock input (prescaler output). The prescaler is used to extend the maximum interval of the overall timer. The prescaler tap is selected by bits 0-2 (PS0-PS2) of the timer status/control register. Bits PS0-PS2 control the actual division of the prescaler within the range of divide-by-1 (20) to divide-by-128 (27). The timer count register (TCR) and prescaler are decremented on rising clock edges. The coding of the TCSR PSO-PS2 bits produce a division in the prescaler as shown in Table 3-1.

Table 3-1. Prescaler Coding Table

PS2	PS1	PS0	Divide By					
0	0	0	1					
0	0	1	2					
0	1	0	4					
0	1	1	8	$\quad$	PS2	PS1	PS0	Divide By
:---:	:---:	:---:	:---:					
1	0	0	16					
1	0	1	32					
1	1	0	64					
1	1	1	128					

The TIMER pin may be programmed as either an input or an output depending on the status of TOUT (TSCR bit 5). Refer to Figure 3-1. In the input mode, TOUT is a logic zero and the TIMER pin is connected directly to the prescaler input. Therefore, the timer prescaler is clocked by the signal applied from the TIMER pin. The prescaler then divides its clock input by a value determined by the coding of the TSCR bits PSO-PS2 as shown in Table 3-1. The divided prescaler output then clocks the 8 -bit timer count register (TCR). When the TCR is decremented to zero, it sets the TMZ bit in the timer status/control register (TSCR). The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The frequency of the external clock applied to the TIMER pin must be less than tbyte ( $\mathrm{fosc}^{\mathrm{c}} / 48$ ).

In the output mode, TOUT is a logic one and the TIMER pin is connected to the DOUT latch. Therefore, the timer prescaler is clocked by the internal sync pulse (divide-by-48 of the internal oscillator). Operation is similar to that described above for the input mode. However, in the output mode, the low-to-high TMZ bit transition is used to latch the DOUT bit of the TSCR and provide it as output for the TIMER pin.

## NOTE

TMZ is normally set to logic one when the timer times out (TCR decrements to \$00); however, it may be set by a write of $\$ 00$ to the TCR or by a write to bit 7 of the TSCR.


Figure 3-1. Timer Block Diagram

During reset, the timer count register and prescaler are set to \$FF, while the timer status/control register is cleared to $\$ 00$ and the DOUT LATCH (TIMER pin is in the high-impedance input mode) is forced to a logic high. The prescaler and timer count register are implemented in data space RAM locations (\$FD, \$FE); therefore, they are both readable and writeable. A write to either will predominate over the TCR decrement-to- $\$ 00$ function; i.e., if a write and a TCR decrement-to-\$00 occur simultaneously, the write will take precedence, and the TMZ bit is not set until the next timer time out.

### 3.2 TIMER REGISTERS

### 3.2.1 Timer Count Register (TCR)

7	0
MSB	LSB

The timer count register indicates the state of the internal 8-bit counter.

### 3.2.2 Timer Status/Control Register (TSCR)

7	6	5	4	3	2	1	0
TMZ	Not Used	TOUT	DOUT	$\overline{\text { PSI }}$	PS2	PS1	PSO
TSCR Address $=\$ 09$							

b7,TMZ Low-to-high transition indicates the timer count register has decremented to zero since the timer status/control register was last read. Cleared by a read of TSCR register if TMZ was read as a logic one.

Not used.
b5, TOUT When low, this bit selects the input mode for the timer. When high, the output mode is selected.
b4, DOUT Data sent to the timer output pin when TMZ is set high (output mode only).
$\mathrm{b} 3, \overline{\mathrm{PSI}} \quad$ Used to initialize the prescaler and inhibit its counting while $\overline{\mathrm{PSI}}=0$. The initialized value is set to \$FF. The timer count register will also be inhibited (contents unchanged). When $\overline{\mathrm{PSI}}=1$ the prescaler begins to count downward.
b0, b1, b2 These bits are used to select the prescaler divide-by ratio; therefore, effecting PS0-PS1-PS2 the clock input frequency to the timer count register.

### 3.2.3 Timer Prescaler Register



The timer prescaler register indicates the state of the internal 7-bit prescaler. This 7-bit prescaler divide ratio is normally determined by bits PS0-PS2 of the timer status/control register (see Table 3-1).

## SECTION 4 INTERRUPT, SELF-CHECK, RESET, AND INTERNAL CLOCK GENERATOR

### 4.1 INTERRUPT

The EF6804P2 can be interrupted by applying a logic low signal to the $\overline{\mathrm{IRO}}$ pin ; however, a mask option selected at the time of manufacture determines whether the negative-going edge or the actual low level is sensed to indicate an interrupt.

### 4.1.1 Edge-Sensitive Option

When the $\overline{\mathrm{RO}}$ pin is pulled low, the internal interrupt request latch is set. Prior to each instruction fetch, the interrupt request latch is tested and, if its output is high,an interrupt sequence is initiated at the end of the current instruction (provided the interrupt mask is cleared). Figure 4-1 contains a flowchart which illustrates both the reset and interrupt sequence. The interrupt sequence consists of one cycle during which: the interrupt request latch is cleared, the interrupt mode flags are selected, the PC is saved on the stack, the interrupt mask is set, and the $\overline{\mathrm{RO}}$ vector (single chip mode $=\$ F F C / \$ F F D$, self-check mode $=\$ F F 8 / \$ F F 9$ ) is loaded into the PC. Internal processing of the interrupt continues until an RTI (return from interrupt) instruction is processed. During the RTI instruction, the interrupt mask is cleared and the program mode flags are selected. The next instruction of the program is then fetched and executed. Once the interrupt was initially detected and the interrupt sequence started, the interrupt request latch is cleared so that the next (second) interrupt may be detected even while the previous (first) one is being serviced. However, even though the second interrupt sets the interrupt request latch during processing of the first interrupt, the second interrupt sequence will not be initiated until completion of the interrupt service routine for the first interrupt. Completion of an interrupt service routine is always accomplished using an RTI instruction to return to the main program. The interrupt mask (which is not directly available to the programmer) is cleared during the last cycle of the RTI instruction.

### 4.1.2 Level-Sensitive Option

The actual operation of the level-sensitive and edge-sensitive options are similar except that the level-sensitive option does not have an interrupt request latch. With no interrupt request latch, the logic level of the $\overline{\mathrm{RO}}$ pin is checked for detection of the interrupt. Also, in the interrupt sequence, there is no need to clear the interrupt request latch. These differences are illustrated in the flowchart of Figure 4-1.

### 4.1.3 Power Up and Timing

During the power-up sequence the interrupt mask is set to preclude any false or "ghost" interrupts from occurring. To clear the interrupt mask, the programmer should write a JSR (instead of a JMP) instruction to an initialization routine as the first instruction in a program. The initialization routine


Figure 4-1. Reset and Interrupt Processing Flowchart
should end with an RTI (instead of RTS). Maximum interrupt response time is eight machine ( $t_{\text {byte }}$ ) cycles (see 4.4 INTERNAL CLOCK GENERATOR OPTIONS). This includes five machine cycles for the longest instruction, plus one machine cycle for stacking the PC and switching flags, plus two machine cycles for synchronization of the IRQ input with the internal clock. Minimum response time is one machine cycle for stacking PC and switching flags (see 2.4.4 Flags (C, Z)).

### 4.2 SELF-CHECK

The self check capability of the EF6804P2 MCU provides an internal check to determine if the part is functional. A schematic diagram of the self-check connections is shown in Figure 4-2. To perform a functional check of the MCU, connect it as shown in Figure 4-2a and monitor the LEDs for a 00100 (\$04) pattern on port A. To initiate a ROM self-check of the memory simply connect the circuit as shown in Figure 4-2b and check that the "good" LED turns on to indicate a good memory. The ROM verify uses a cyclical redundancy check (CRC) to conduct a ROM check by means of signature analysis circuit. This circuit consists of two 8-bit shift registers configured to perform the check using the CCITT polynominal.

### 4.3 RESET

The MCU can be reset in two ways: by initial power up (see Figure 4-1) and by the external reset input ( $\overline{\mathrm{RESET}}$ ). During power up, a delay of trHL is needed before allowing the $\overline{\mathrm{RESET}}$ input to go high. This time delay allows the internal clock generator to stabilize. Connecting a capacitor and


### 4.4 INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor-capacitor, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The different clock generator option connection methods are shown in Figure 4-4, crystal specifications and suggested PC board layouts are given in Figure 4-5, resistor-capacitor selection graph is given in Figure 4-6, and a timing diagram is illustrated in Figure 4-7. The crystal oscillator startup time is a function of many variables: crystal parameters (especially RS), oscillator load capacitance (CL), IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations.

The oscillator output frequency is internally divided by four to produce the internal $\phi 1$ and $\phi 2$ clocks. The $\phi 1$ clock is divided by twelve to produce a machine byte (cycle) clock. A byte cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to execute.

(b) Simple ROM Verity Check

Figure 4-2. Self-Check Circuit


Figure 4-3. Power-Up Reset Delay Circuit


Figure 4-4. Clock Generator Options

AT - Cut Parallel Resonance Crystal
$\mathrm{C}_{0}=7 \mathrm{pF}$ Maximum
Freq. $=11 \mathrm{MHz}$
$\mathrm{R}_{\mathrm{S}}=50$ Ohms Maximum
Piezoelectric ceramic resonators which
(b)

have the equivalent specifications may be used instead of crystal oscillators. Follow ceramic resonator manufacturer's suggestions for $C_{0}, C_{1}$, and $R_{S}$ values.
(c)


NOTE: Keep crystal leads and circuit connections as short as possible.

Figure 4-5. Crystal Motional Arm Parameters and Suggested PC Board Layout


Figure 4-6. Typical Frequency Selection For Resistor-Capacitor Oscillator Option ( $\mathrm{C}_{\mathrm{L}}=17 \mathrm{pF}$ )


Figure 4-7. Clock Generator Timing Diagram

## SECTION 5 <br> INPUT/OUTPUT PORTS

### 5.1 INPUT/OUTPUT

There are 20 input/output pins. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset, all the DDRs are initialized to a logic zero state to put the ports in the input mode. The port output registers are not initialized on reset but should be initialized before changing the DDR bits to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading; see Figure 5-1. All input/output pins are LSTTL compatible as both inputs and outputs. In addition, all three ports may have one of two mask options: 1) internal pullup resistor for CMOS output compatibility, or 2) open drain output. The address map in Figure 2-1 gives the address of data registers and DDRs. The register configuration is discussed under the registers paragraph below and Figure 5-2 provides some examples of port connections.


Figure 5-1. Typical I/O Port Circuitry


LSTTL Driving Port A Directly

PA7	27	- (CMOS Loads)
PA6	26	
PA5	25	
PA4	24	$\longleftarrow$ (1 LSTTL Load)
PA3	23	
PA2	22	
PA1	21	
PAO	20	

Port A, bit 7 programmed as output, driving CMOS loads and bit 4 driving one LSTTL load directly (using CMOS output option).


CMOS or LSTTL Driving Port B Directly
(a) Input Mode


Port B, bit 0 , and bit 1 programmed as output, driving LEDs directly.

(Typical)
CMOS and LSTTL Driving Port C Directly

## (b) Output Mode

Figure 5-2. Typical Port Connections

## EF6804P2

The latched output data bit (see Figure 5-1) may always be written. Therefore, ariy write to a port writes to all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input (0) and corresponds to the latched output data when the DDR is an output (1). The 20 bidirectional lines may be configured by port to be LSTTL (standard configuration), LSTTL/CMOS (mask option), or open drain (mask option). Port B outputs are LED compatible.

## NOTE

The mask option only allows changes by port. For example, if the customer wishes PA7 to be open drain, then PAO-PA7 must all be open drain.

### 5.2 REGISTERS

The registers described below are implemented as RAM locations and thus may be read or written.

### 5.2.1 Port Data Register

MSB	
	Port A Address $=\$ 00$
Port B Address $=\$ 01$	
	Port C Address $=\$ 02($ Bits $0-3)$

The source of data read from the port data register will be the port I/O pin or previously latched output data depending upon the contents of the corresponding data direction register (DDR). The destination of data written to the port data register will be an output data latch. If the corresponding data direction register (DDR) for the port I/O pin is programmed as an output, the data will then appear on the port pin.

### 5.2.2 Port Data Direction Register



The port DDRs configure the port pins as either inputs or outputs. Each port pin can be programmed individually to act as an input or an output. A zero in the pins corresponding bit position will program that pin as an input while a one in the pins corresponding bit position will program that pin as an output.

## SECTION 6 SOFTWARE AND INSTRUCTION SET

### 6.1 SOFTWARE

### 6.1.1 Bit Manipulation

The EF6804P2 MCU has the ability to set or clear any register or single random access memory (RAM) writable bit with a single instruction (BSET, BCLR). Any bit in data space, including ROM, can be tested, using the BRSET and BRCLR instructions, and the program may branch as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.

The coding example in Figure 6-1 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line (to clock data one bit at a time, MSB first, out of the device). The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in the accumulator.


Figure 6-1. Bit Manipulation Example

### 6.1.2 Addressing Modes

The EF6804P2 MCU has nine addressing modes which are explained briefly in the following paragraphs. The EF6804P2 deals with objects in three different address spaces : program space, data space, and stack space. Program space contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains all of the RAM locations, XP and YP registers, accumulator, timer, I/O locations, and some ROM (for storage of tables and constants). Stack space contains RAM for use in stacking the return addresses for subroutines and interrupts.

The term "Effective Address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
6.1.2.1 IMMEDIATE. In the immediate addressing mode, the operand is located in program ROM and is contained in a byte following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
6.1.2.2 DIRECT. In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the 256 bytes in data space memory with a single two-byte instruction.
6.1.2.3 SHORT DIRECT. The MCU also has four locations in data space RAM ( $\$ 80, \$ 81, \$ 82, \$ 83$ ) which may be used in a short-direct addressing mode. In this mode the opcode determines the data space RAM location, and the instruction is only one byte. Short direct addressing is a subset of the direct addressing mode. (The XP and YP registers are at locations $\$ 80$ and $\$ 81$ respectively.)
6.1.2.4 EXTENDED. In the extended addressing mode, the effective address is obtained by concatenating the four least significant bits of the opcode with the byte following the opcode (12-bit address). Instructions using the extended addressing mode (JMP, JSR) are capable of branching anywhere in program space. An extended addressing mode instruction is two bytes long.
6.1.2.5 RELATIVE. The relative addressing mode is only used in conditional branch instructions. In relative addressing, that address is formed by adding the sign extended lower five bits of the opcode (the offset) to the program counter if and only if the condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -15 to +16 from the opcode address. The programmer need not worry about calculating the correct offset when using the assembler since it calculates the proper offset and checks to see if it is within the span of the branch.
6.1.2.6 BIT SET/CLEAR. In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any bit in the 256 locations of data space memory, which can be written to, can be set or cleared.
6.1.2.7 BIT TEST AND BRANCH. The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the data space address of the byte to be tested is in the single byte immediately following the opcode byte. The third byte is sign extended to twelve bits and becomes the offset added to the program counter if the condition is true. The single three-byte instruction allows the program to branch based on the condition of any bit in data space memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry flag.
6.1.2.8 REGISTER-INDIRECT. In the register-indirect addressing mode, the operand is at the address (in data space) pointed to by the contents of one of the indirect registers ( X or Y ). The particular $X$ or $Y$ register is selected by bit 4 of the opcode. Bit 4 of the opcode is then decoded into an address which selects the desired $X$ or $Y$ register ( $\$ 80$ or $\$ 81$ ). A register-indirect instruction is one byte long.
6.1.2.9 INHERENT. In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

### 6.2 INSTRUCTION SET

The EF6804P2 MCU has a set of 42 basic instructions which when combined with nine addressing modes produce 242 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

### 3.2.1 Register/Memory instructions

Most of these instructions use two operands. One operand is the accumulator and the other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to Table 6-1.

### 6.2.2 Read-Modify-Write Instructions

These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. There are ten instructions which utilize read-modify-write cycles. All INC and DEC forms along with all bit manipulation instructions use this method. Refer to Table 6-2.

### 6.2.3 Branch Instructions

The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 6-3.

### 6.2.4 Bit Manipulation Instructions

These instructions are used on any bit in data space memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to Table 6-4.

Table 6-1. Register/Memory Instructions

		Addressing Modes																			
		Indirect				Immediate			Direct			inherent			Extended			Short-Direct			
Function	Mnem	Opcode					*			*	"		*	*		\%	\%		\#	-	
		XP	YP	Bres	Crcles	Opcode	Bytes	Cycles	Opcode	Brtes	Crcles	Opcode	Bytes	Cycles	Opcode	Bytes	Cycles	Opcode	Bytes	Cycles	Notes
Loed A from Memory	LDA	EO	F0	1	4	$E 8$	2	4	F8	2	4	-	-	-	-	-	-	AC-AF	1	4	1
Load XP from Memory	LDXI	-	-	-	-	80	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Load YP from Mernory	LDYI	-	-	-	-	80	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Store A in Memory	STA	E1	F1	1	4	-	-	-	F9	2	4	-	-	-	-	-	-	BC-BF	1	4	2
Add to A	ADD	$E 2$	F2	1	4	EA	2	4	FA	2	4	-	-	-	-	-	-	-	-	-	-
Subtract from A	SUB	E3	F3	1	4	EB	2	4	FB	2	4	-	-	-	-	-	-	-	-	-	-
Arithmetic Compare with Memory	CMP	E4	F4	1	4	EC	2	4	FC	2	4	-	-	-	-	-	-	-	-	-	-
AND Memory to A	AND	E5	F5	1	4	ED	2	4	FD	2	4	-	-	-	-	-	-	-	-	-	-
Jump to Subroutine	JSR	-	-	-	-	-	-	-	-.	-	-	-	-	-	8 (TAR)	2	. 4	-	-	-	3
Jump Unconditional	JMP	-	-	-	-	-	-	-	-	-	-	-	-	-	9 (TAR)	2	4	-	-	-	3
Clear A	CLRA	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear XP	CLRX	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear YP	CLRY	-	-	-	-	-	-	-	FB	2	4	-			-	-	-	-	-	-	-
Complement A	COMA	-	-	-	-	-	-	-	-	-	-	B4	1	4	-	-	-	-	-	-	-
Move Immediate Value to Memory	MVI	-	-	-	-	B0	3	4	B0	3	4	-	-	-	-	-	-	-	-	-	5
Rotate A Left and Carry	ROLA	-	-	-	-	-	-	-	-	-	-	B5	1	4	-	-	-	-	-	-	-
Arithmetic Left Shift of A	ASLA	-	-	-	-	-	-	-	FA	2	4	-	-	-	-	-	-	-	-	-	-

SPECIAL NOTES

1. In Short-Direct addressing, the LDA mnemonic represents opcode AC, AD, AE, and AF. This is equivalent to RAM locations $\$ 80$ (AC), \$81 (AD), \$82 (AE), and $\$ 83$ (AF) 2. In Short-Direct addressing, the STA mnemonic represents opcode BC, BD, BE, and BF. This is equivalent to RAM locations $\$ 80$ (BC). $\$ 81$ (BD), $\$ 82$ (BE), and $\$ 83$ (BF).
2. In Extended addressing, the four LSBs of the opcode (Mnemonic JSR and JMP) are formed by the four MSBs of the target address. (TAR)
3. In Immediate addressing, the LDXI and LDYI are mnemonics which are recognized as follows:

LDXI $=$ MVI $\$ 80$, data
LDYI = MVI \$81,data
Where data is a one-byte hexadecimal number
5. The MVI instruction refers to both Immediate and Direct addressing.

Table 6-2. Read-Modify-Write Instructions

		Addressing Modes										Special Notes
						Direct			Short-Direct			
Function	Mnem	Opcode		$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$		\#	\#		\#	\#	
		XP	YP			Opcode	Bytes	Cycles	Opcode	Bytes	Cycles	
Increment Memory Location	INC	E6	F6	1	4	FE	2	4	A8-AB	1	4	1,3
Increment A	INCA	-	-	-	-	FE	2	4	-	-	-	-
Increment XP	INCX	-	-	-	-	-	-	-	A8	1	4	-
Increment YP	INCY	-	-	-	-	-	-	-	A9	1	4	-
Decrement Memory Location	DEC	E7	F7	1	4	FF	2	4	B8-BB	1	4	2, 4
Decrement A	DECA	-	-	-	-	FF	2	4	-	-	-	-
Decrement XP	DECX	-	-	-	-	-	-	-	B8	1	4	-
Decrement YP	DECY	-	-	-	-	-	-	-	B9	1	4	-

## SPECIAL NOTES

1. In Short-Direct addressing, the INC mnemonic represents opcode A8, A9, AA, and AB. These are equivalent to RAM locations $\$ 80$ (A8), $\$ 81$ (A9), $\$ 82$ (AA), and $\$ 83(\mathrm{AB})$.
2. In Short-Direct addressing, the DEC mnemonic represents opcode B8, B9, BA, and BB. These are equivalent to RAM locations $\$ 80$ (B8), $\$ 81$ (B9), $\$ 82$ (BA), and $\$ 83$ (BB).
3. In Indirect addressing, the INC mnemonic represents opcode E6 or F6, and causes the location pointed to by XP (E6 opcode) or YP (F6 opcode) to be incremented. 4. In Indirect addressing, the INC mnemonic represents opcode E7 or F7, and causes the location pointed to by XP (E7 opcode) or YP (F7 opcode) to be incremented.

Table 6-3. Branch Instructions

		Relative Addressing Mode			
Function	Mnem	Opcode	\#   Bytes	\#   Cycles	Special   Notes
Branch if Carry Clear	BCC	$40-5 \mathrm{~F}$	1	2	1
Branch if Higher or Same	(BHS)	$40-5 \mathrm{~F}$	1	2	1,2
Branch if Carry Set	BCS	$60-7 \mathrm{~F}$	1	2	1
Branch if Lower	(BLO)	$60-7 \mathrm{~F}$	1	2	1,3
Branch if Not Equal	BNE	$00-1 \mathrm{~F}$	1	2	1
Branch if Equal	BEQ	$20-3 F$	1	2	1

## SPECIAL NOTES

1. Each mnemonic of the Branch Instructions covers a range of 32 opcodes; e.g., BCC ranges from 40 through $5 F$. The actual memory location (target address) to which the branch is made is formed by adding the sign extended lower five bits of the opcode to the contents of the program counter.
2. The BHS instruction (shown in parentheses) is identical to the BCC instruction. The $C$ bit is clear if the register was higher or the same as the location in the memory to which it was compared.
3. The BLO instruction (shown in parentheses) is identical to the BCS instruction. The $C$ bit is set if the register was lower than the location in memory to which it was compared.

Table 6-4. Bit Manipulation Instructions

		Addressing Modes						Special Note
		Bit Set/Clear			Bit Test and Branch			
Function	Mnem	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	
Branch IFF Bit n is set	BRSET $n(n=0 \ldots .7)$	-	-	-	C8+n	3	5	1
Branch IFF Bit $n$ is clear	BRCLR $n(n=0 \ldots 7)$	-	-	-	$\mathrm{C} 0+\mathrm{n}$	3	5	1
Set Bit $n$	BSET $n(n=0 \ldots .7)$	D8+n	2	4	-	-	-	1
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 \ldots .7)$	D0+n	2	4	-	-	-	1

## SPECIAL NOTE

1. The opcode is formed by adding the bit number ( $0-7$ ) to the basic opcode. For example: to clear bit six using the BSET6


### 6.2.5 Control Instructions

The control instructions control the MCU operations during program execution. Refer to Table 6-5.

### 6.2.6 Alphabetical Listing

The complete instruction set is given in alphabetical order in Table 6-6. There are certain mnemonics recognized by the assember and converted to other instructions. The fact that all registers and accumulator are in RAM allows many implied instructions to exist. The implied instructions recognized by the assembler are identified in Table 6-6.

### 6.2.7 Opcode Map Summary

Table 6-7 contains an opcode map for the instructions used on the MCU.

### 6.3 IMPLIED INSTRUCTIONS

Since the accumulator and all other registers are located in RAM many implied instructions exist. The assembler-recognized implied instructions are given in Table 6-6. Some examples not recognized by the assembler are shown below.

BCLR, 7 \$FF Ensures accumulator is plus
BSET, 7 \$FF Ensures accumulator is minus
BRCLR, 7 \$FF Branch iff accumulator is plus
BRSET, 7 \$FF Branch iff accumulator is minus
BRCLR, 7 \$80 Branch iff $X$ is plus ( $B X P L$ )
BRSET, 7 \$80 Branch iff $X$ is minus ( $B X M I$ )
BRCLR, 7 \$81 Branch iff $Y$ is plus (BYPL)
BRSET,7 \$81 Branch iff Y is minus (BYMI)

Table 6-5. Control Instructions

		Addressing Modes									
		Short-Direct			Inherent			Relative			
Function	Mnem	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Special Notes
Transfer A to XP	TAX	BC	1	4	-	-	-	-	-	-	-
Transfer A to YP	TAY	BD	1	4	-	-	-	-	-	-	-
Transfer XP to A	TXA	AC	1	4	-	-	-	-	-	-	-
Transfer YP to A	TYA	AD	1	4	-	-	-	-	-	-	-
Return from Subroutine	RTS	-	-	-	B3	1	2	-	-	-	-
Return from Interrupt	RTI	-	-	-	B2	1	2	-	-	-	-
No-Operation	NOP	-	-	-	-	-	-	-	-	-	1

SPECIAL NOTE

1. The NOP instruction is equivalent to a branch if equal (BEQ) to the location designated by $P C+1$.

Table 6-6. Instruction Set

	Addressing Modes									Flags	
Mnemonic	Inherent	Immediate	Direct	Short Direct	Bit/Set Clear	Bit-TestBranch	Register Indirect	Extended	Relative	z	C
ADD		X	X				X			$\wedge$	$\wedge$
AND		X	X				X			$\wedge$	-
ASLA			Assembler converts this to "ADD \$FF"							-	-
BCC									X	$\wedge$	$\wedge$
BCLR					X					-	-
BCS									X	-	-
BEQ									$\times$	-	-
BHS			Assembler converts this to "BCC"							-	,
BLO			Assembler converts this to "BCS"							-	$\bullet$
BNE									X	-	-
BRCLR						X				-	$\wedge$
BRSET						X				-	$\wedge$
BSET					X					-	$\bullet$
CLRA			Assembler converts this to "SUB \$FF"							$\wedge$	$\wedge$
CLRX			Assembler converts this to "MVI \# 0, $\$ 80$ "							-	-
CLRY			Assembler converts this to "MVI\# $0, \$ 81$ "							-	-
CMP		X	X				X			$\wedge$	$\wedge$
COMA	X									$\wedge$	$\wedge$
DEC			X	X			$\times$			$\wedge$	-
DECA			Assembler converts this to "DEC \$FF"							$\wedge$	-
DECX			Assembler converts this to "DEC $\$ 80^{\prime \prime}$							$\wedge$	-
DECY			Assembler converts this to "DEC \$81"							$\wedge$	-
INC			X	X			X			$\wedge$	$\bullet$
INCA			Assembler converts this to "INC \$FF"							$\wedge$	-
INCX			Assembler converts this to "INC \$80"							$\wedge$	-
INCY			Assembler converts this to "INC \$81"							$\wedge$	-
JMP								X		-	-
JSR								X		-	$\bullet$
LDA		X	X	X			X			$\wedge$	$\bullet$
LDXI			Assembler converts this to "MVI DATA, \% ${ }^{\text {P30' }}$							-	-
LDYI			Assembler converts this to "MVI DATA, ${ }^{\text {SB1" }}$							-	$\bullet$
MVI		X	X							-	-
NOP			Assembler converts this to "BEQ (PC) + 1"							-	-
ROLA	X									$\wedge$	$\wedge$
RTI	X									$\wedge$	$\wedge$
RTS	X									-	-
STA			X	X			X			$\wedge$	-
SUB		X	X				X			$\wedge$	$\wedge$
TAX			Assembler converts this to "STA \$80"							$\wedge$	-
TAY			Assembler converts this to "STA \$81"							$\wedge$	-
TXA			Assembler converts this to "LDA \$80"							$\wedge$	-
TYA			Assembler converts this to "LDA \$81"							$\Lambda$	-

## Instruction Set Opcode Map

Register/Memory, Control, and Read/Modify/Write Instructions								Bit Manipulation Instructions				Register/Memory and Read/Modify/Write			
	$\begin{gathered} 8 \\ 1000 \end{gathered}$		$\begin{gathered} 9 \\ 1001 \end{gathered}$		$\begin{gathered} \text { A } \\ 1010 \end{gathered}$		$\begin{gathered} \hline \text { B } \\ 1011 \end{gathered}$		$\underset{1100}{C}$		$\begin{gathered} c \\ 1101 \end{gathered}$		$\begin{gathered} \text { E } \\ 1110 \end{gathered}$	$\begin{gathered} \hline F \\ 1111 \end{gathered}$	
4	JSRn EXT	4	JMPn   EXT		*		MVI   IMM		BRCLRO   B-т-B	4	BCLRO BSC	4 1	LDA R-IND	$\begin{array}{\|ll} \hline 4 & \text { LDA } \\ 1 & R-\text { IND } \end{array}$	$\begin{gathered} 0 \\ 0000 \end{gathered}$
${ }^{4}$	${\underset{\text { EXT }}{ }}^{\text {JSRn }}$	4	JMPn   EXT		*		*		BRCLR1   B-T-B	2	BCLR1 BSC	4   1	STA   R-IND	$\begin{array}{\|lr} \hline 4 & \text { STA } \\ 1 & \text { R-IND } \end{array}$	$\begin{gathered} 1 \\ 0001 \end{gathered}$
${ }_{4}$	$J_{\text {EXT }}$	4	JMPn EXT		*		RTI   INH		BRCLR2 BT. B	4	BCLR2 BSC	4   1	ADD R-IND	$\begin{array}{\|ll} \hline 4 & \text { ADD } \\ 1 & \text { R-IND } \end{array}$	$\begin{gathered} 2 \\ 0010 \end{gathered}$
4   2	$\begin{aligned} \text { JSRn } \\ \\ \hline \end{aligned}$	4	JMPn EXT		*		RTS   INH		BRCLR3   B-T-B	4	BCLR3 BSC	[ 4	SUB   R-IND	$\begin{array}{\|ll} \hline 4 & \text { SUB } \\ 1 & \text { R-IND } \end{array}$	$\begin{gathered} 3 \\ 0011 \end{gathered}$
4   2	JSRn   EXT	4	JMPn   EXT		*		COMA   INH		BRCLR4   B-T-B	4	BCLR4 BSC		CMP   R-IND	$\begin{array}{\|ll} 4 & \text { CMP } \\ 1 & \text { R-IND } \end{array}$	$\begin{gathered} 4 \\ 0100 \end{gathered}$
4	JSRn EXT	4	JMPn   Ext		*		ROLA   INH		BRCLR5   B-T-B	4	BCLR5 BSC	4	AND   R-IND	$\begin{array}{\|ll} \hline 4 & \text { AND } \\ 1 & \text { R-IND } \end{array}$	$\begin{gathered} 5 \\ 0101 \end{gathered}$
4   2	$\begin{gathered} J_{\text {EXT }} \\ \hline \end{gathered}$	4	JMPn   EXT		*		*		BRCLR6   B-T-B	4	BCLR6 BSC	4   1	INC R-IND	$\begin{array}{\|ll} \hline 4 & \text { INC } \\ 1 & R-\text { IND } \end{array}$	$\begin{gathered} 6 \\ 0110 \end{gathered}$
4 2	$\underbrace{J^{\prime}}_{\text {EXT }}$	4	JMPn   EXT		*		*		BRCLR7   B-T-B	4   2	BCLR7	4   1	$\begin{aligned} & \text { DEC } \\ & \text { R-IND } \end{aligned}$	$\begin{array}{\|ll} \hline 4 & \text { DEC } \\ 1 & \text { R-IND } \\ \hline \end{array}$	$\begin{gathered} 7 \\ 0111 \end{gathered}$
2	$\operatorname{JSRT}^{\mathrm{JSR}}$	4	JMPn   EXT	4	$\mathrm{INC}$		$\begin{array}{ll} \text { DEC } & \\ & \text { s-D } \end{array}$		BRSETO   B-т-B	2	BSETO   BSC	4	LDA   IMM	$\begin{array}{\|lll} \hline 4 & \text { LDA } \\ 2 & & \\ \hline \end{array}$	$\begin{gathered} 8 \\ 1000 \end{gathered}$
4 2	$\operatorname{JSRn}_{\text {EXT }}$	4	JMPn   EXT	1	$\begin{array}{ll}  & \\ & \text { S-D } \\ \hline \end{array}$		$\text { DEC }_{\text {S-D }}$		BRSET1   B-T-B	2	BSET1   BSC		\#	$\begin{array}{ll} \hline 4 & \text { STA } \\ 2 & \\ \text { DIR } \end{array}$	$\begin{gathered} 9 \\ 1001 \end{gathered}$
4 2	$\begin{gathered} J_{\text {EXT }} \\ \hline \end{gathered}$	4	JMPn   EXT	1 1	$\begin{array}{ll} \text { INC } & \\ & \text { S-D } \\ \hline \end{array}$		$\text { DEC } \begin{array}{ll}  & \\ & \text { s-D } \end{array}$	5	BRSET2   B-T-B	4	BSET2   BSC	4	$\begin{gathered} \text { ADD } \\ \\ \quad \text { IMM } \\ \hline \end{gathered}$	$\begin{array}{ll} 4 & \text { ADD } \\ 2 & \\ \text { DIR } \end{array}$	$\begin{gathered} \text { A } \\ 1010 \end{gathered}$
4 2	JSRn   EXT	4	JMPn   EXT	1	INC   S-D	4 1	$\text { DEC } \begin{aligned} & \\ & \\ & \text { S-D } \end{aligned}$	3	BRSET3   B-T-B	2	BSET3   BSC	4	SUB   IMM	$2_{2} \text { SUB }$	$\begin{gathered} \text { B } \\ 1011 \end{gathered}$
4	$\begin{gathered} \text { JSRT } \\ \hline \end{gathered}$	4	JMPn   EXT	4	$\begin{array}{ll} \text { LDA } & \\ & \mathrm{s}-\mathrm{D} \end{array}$		$\begin{array}{ll} \text { STA } & \\ & \text { S-D } \\ \hline \end{array}$	5	BRSET4   B-т-B	4	BSET4 BSC	[4	CMP   IMM	$\begin{array}{\|ll} \hline 4 & \\ 2 & \text { CMP } \\ \hline \end{array}$	$\begin{gathered} \text { C } \\ 1100 \end{gathered}$
4   2	$\begin{aligned} & \text { JSRn } \\ & \text { EXT } \end{aligned}$	4	JMPn   EXT	4	$\begin{array}{cc} \text { LDA } & \\ & \text { S-D } \\ \hline \end{array}$		$\begin{array}{ll} \text { STA } & \\ & \text { S-D } \end{array}$	5	BRSET5   B-T-B	4	BSET5   BSC	[4	AND IMM	$\begin{array}{ll} 4 & \text { AND } \\ 2 & \\ \text { DIR } \end{array}$	$\underset{1101}{c}$
4   2	$\operatorname{JRSn}_{\text {EXT }}$	4	JMPn   EXT	4	$\begin{array}{ll} \text { LDA } & \\ & \mathrm{s}-\mathrm{D} \\ \hline \end{array}$		$\begin{array}{ll} \text { STA } & \\ & \text { S-D } \\ \hline \end{array}$		BRSET6   B-T-B	4   2	BSET6   BSC		\#	$\begin{array}{\|lll} \hline 4 & & \\ 2 & & \text { DIRC } \\ \hline \end{array}$	$\begin{gathered} \text { E } \\ 1110 \\ \hline \end{gathered}$
4   2	$\mathrm{JSRn}_{\text {EXT }}$	4	JMPn EXT	1	$\operatorname{LDA}^{\mathrm{s}-\mathrm{D}}$	4 1	$\text { STA }_{\text {S-D }}$	5	BRSET7   B-T-B	4	BSET7   BSC		\#	$\begin{array}{\|lll} \hline 4 & \text { DEC } & \\ 2 & & \text { DIR } \end{array}$	$\begin{gathered} \text { F } \\ 1111 \end{gathered}$



## SECTION 7 <br> ELECTRICAL SPECIFICATIONS

### 7.1 INTRODUCTION

This section contains the electrical specifications and associated timing for the EF6804P2

### 7.2 MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	TL to TH	${ }^{\circ} \mathrm{C}$
Standard or L Luffix		0 to 70	
V suffix		-40 to 85	
T suffix		-40 to 105	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	$\mathrm{Tj}^{\mathrm{C}}$	150	${ }^{\circ} \mathrm{C}$
Plastic		150	

This device contains circuitry to protect the inputs against damage due to high static voltages of electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {CC }}$. Reliability of operation is enhanced if unused inputs except EXTAL are connected to an appropriate logic voltage level (e.g., either $\mathrm{v}_{\mathrm{SS}}$ or $\mathrm{v}_{\mathrm{CC}}$ ).

### 7.3 THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance	$\theta$ JA		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic		70	
PLCC		90	



Figure 7-1. LSTTL Equivalent Test Load (Port B)


Figure 7-3. LSTTL Equivalent Test Load (Ports A, C, and TIMER)

### 7.4 POWER CONSIDERATIONS

The average chip-junction temperature, $\mathrm{T}_{\mathrm{J}}$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{equation*}
T J=T A+(P D \cdot \theta J A) \tag{1}
\end{equation*}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta J A=$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD = PINT + PPORT
PINT $=$ ICC $\times$ VCC, Watts - Chip Internal Power
PPORT $=$ Port Power Dissipation, Watts - User Determined
For most applications PPORT $<$ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between PD and $T J$ (if PPORT is neglected) is:

$$
\begin{equation*}
P D=K \div\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation 3 by measuring $P_{D}$ (at equilibrium) for a known $T_{A}$. Using this value of $K$ the values of $P_{D}$ and $T_{J}$ can be obtained by solving equations (1) and (2) iteratively for any value of TA.

### 7.5 ELECTRICAL CHARACTERISTICS $\operatorname{VCC}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{VSS}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to <br> $\mathrm{T}_{\mathrm{H}}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Internal Power Dissipation-No Port Loading$\mathrm{T}_{A}$   $=\mathbf{T}^{\circ} \mathrm{C}$   $\mathrm{T}_{\mathrm{A}}$$=-40^{\circ} \mathrm{C}$	PINT		$135$	$\begin{aligned} & 170 \\ & 210 \end{aligned}$	mV
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	4.0	-	VCC	V
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	10	-	pF
Input Current ( $\overline{\mathrm{RO}}, \overline{\mathrm{RESET}}$ )	1 in	-	2	20	$\mu \mathrm{A}$

### 7.6 SWITCHING CHARACTERISTICS $\operatorname{VCC}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{VSS}=\mathrm{GND}, \mathrm{TA}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to <br> $\mathrm{T}_{\mathbf{H}}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Oscillator Frequency	fosc	4.0	-	11.0	MHz
Bit Time	tbit	0.364	-	1.0	$\mu \mathrm{S}$
Byte Cycle Time	tbyte	4.36	-	12.0	$\mu \mathrm{S}$
IRQ and TIMER Pulse Width	tWL.tWH	2xtbyte	-	-	-
RESET Pulse Width	trwL	2xtbyte	-	-	-
$\overline{\text { RESET }}$ Delay Time (External Capacitance $=1.0 \mu$ F)	trHL	100	-	-	ms

## EF6804P2

### 7.7 PORT DC ELECTRICAL CHARACTERISTICS $\operatorname{VCC}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{VSS}=\mathrm{GND}$, $T_{A}=T_{L}$ to $T_{H}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Timer and Ports A and C (Standard)					
Output Low Voltage, ${ }_{\text {Load }}=0.4 \mathrm{~mA}$	V ${ }_{\text {OL }}$	-	-	0.5	V
Output High Voltage, ${ }_{\text {Load }}=-50 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.3	-	-	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	$\checkmark$
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	$\checkmark$
Hi-Z State Input Current	ITSI	-	4	40	$\mu \mathrm{A}$
Ports A and C (Open Drain)					
Output Low Voltage, ${ }_{\text {L Load }}=0.4 \mathrm{~mA}$	V OL	-	-	0.5	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-Z State Input Current	ITSI	-	4	40	$\mu \mathrm{A}$
Open Drain Leakage ( $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}$ )	ILOD	-	4	40	$\mu \mathrm{A}$
Ports A and C (CMOS Drive)					
Output Low Voltage, $\mathrm{I}_{\text {Load }}=0.4 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output High Voltage, ILoad $=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\text {CC }}-1.0$	-	-	V
Output High Voltage, ${ }_{\text {Load }}=-50 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.3	-	-	V
Input High Voltage, ILoad $=-300 \mu \mathrm{~A} \mathrm{Max}$	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	VCC	V
Input Low Voltage, ${ }^{\text {L }}$ Load $=-300 \mu \mathrm{~A} \mathrm{Max}$	$\mathrm{V}_{\mathrm{IL}}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-Z State Input Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	ITSI	-	-	-300	$\mu \mathrm{A}$
Port B (Standard)					
Output Low Voltage, ${ }_{\text {Load }}=1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output Low Voltage, I Load $=10 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\mathrm{OL}}$	-	-	1.5	V
Output High Voltage, ${ }_{\text {Load }}=-100 \mu \mathrm{~A}$	VOH	2.3	-	-	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{SS}}$	-	0.8	$\checkmark$
Hi-Z State Input Current	ITSI	-	8	80	$\mu \mathrm{A}$
Port B (Open Drain)					
Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Output Low Voltage, I Load $=10 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\text {OL }}$	-	-	1.5	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-Z State Input Current	ITSI	-	8	80	$\mu \mathrm{A}$
Open Drain Leakage ( $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}$ )	LOD	-	8	80	$\mu \mathrm{A}$
Port B (CMOS Drive)					
Output Low Voltage, ${ }^{\text {L }}$ Load $=1.0 \mathrm{~mA}$	VOL	-	-	0.5	V
Output High Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ ( Sink)	VOL	-	-	1.5	V
Output High Voltage, ILoad $=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\text {CC }}-1.0$	-	-	V
Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.3	-	-	V
Input High Voltage, ${ }_{\text {Load }}=-300 \mu \mathrm{~A}$ Max	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage, L Load $=-300 \mu \mathrm{~A}$ Max	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-Z State Input Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	ITSI	-	-	-300	$\mu \mathrm{A}$

## SECTION 8 <br> MECHANICAL DATA

This section contains the pin assignment and package dimension diagrams for the EF6804P2 microcomputer.

### 8.1 PIN ASSIGNMENTS

VSS 1	28	$\overline{R E S E T}$
IROU2	27	]PA7
$\mathrm{v}_{\mathrm{CCC}} \mathrm{O}_{3}$	26	-PA6
EXTAL 4	25	7PA5
XTAL 5	24	]PA4
MDS 6	23	$\square \mathrm{PA} 3$
TIMER 7	22	]PA2
PCO 0	21	DPA1
PC109	20	$\square \mathrm{PaO}$
PC2-10	19	- PB7
PC3-11	18	]PB6
PB0 12	17	]PB5
PB1 13	16	]PB4
PB2 14	15	$\square \mathrm{PB} 3$



### 8.2 PHYSICAL DIMENSIONS



CB-132


PSUFFIX
PLASTIC PACKAGE

CB-520


FN SUFFIX
PLCC 28

## SECTION 9 ORDERING INFORMATION

### 9.1 INTRODUCTION

The following information is required when ordering a custom MCU. The information may be transmitted to THOMSON SEMICONDUCTEURS in the following media:

EPROM(s), 2716 or 2732
EFDOS/MDOS* disk file
To initiate a ROM pattem for the MCU, it is necessary to first contact your local field service office, local sales person, or your local THOMSON SEMICONDUCTEURS representative.

### 9.1.1 EPROMs

One 2716 or one 2732 type EPROM, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. Since all program and data space information will fit on one 2716 EPROM, the EPROM must be programmed as follows in order to emulate the EF6804P2 MCU: start the data space ROM at EPROM address $\$ 020$ and start program space ROM at EPROM address $\$ 400$ and continue to memory space \$7FF. All unused bytes, including the user's space, must be set to zero, memory space \$7F8 to \$7FB is reserved for self-check vectors. When using one 2732 EPROM, the memory map shown in Figure 2-1 can be used. For shipment to THOMSON SEMICONDUCTEURS the EPROMs should be placed in a conductive IC carrier and packed securely. Do not use styrofoam.

### 9.1.2 EFDOS/MDOS* Disk File

An EFDOS/MDOS* disk, programmed with the customer program (positive logic sense for address and data) may be submitted for pattern generation. When using the EFDOS/MDOS* disk, include the entire memory image of both data and program space. All unused bytes, including the user's space, must be set to zero.

### 9.2 VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the contractural agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program a blank 2716,2732 , or EFDOS/MDOS* disk (supplied by the customer) from the data file used to create the custom mask to aid in the verification process.

[^13]
### 9.3 ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and five volts. These RVUs are included in the mask charge and are not production parts. These RVUs are not backed nor guaranteed by THOMSON SEMICONDUCTEURS Quality Assurance.

### 9.4 FLEXIBLE DISKS

The disk media submitted must be single-sided, single density, 8 -inch, EFDOS/MDOS* compatible floppies. The customer must clearly label the disk with the ROM pattern file name. The minimum EFDOS/MDOS* system files as well as the absolute binary object file (file name. LO type of file) from the 6804 cross-assembler must be on the disk. An object file made from a memory dump, using the ROLLOUT command is also admissable. Consider submitting a source listing as well as: file name, .LX (DEVICE/EXORciser loadable format). This file will of course be kept confidential and is used 1) to speed up the process in house if any problems arises, and 2) to speed up our customer to factory interface if an user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCTEURS factory representatives.

MDOS* (fully compatible with EFDOS) is Motorola's Disk Operating System available on development systems Such as EXORcisers, EXORsets, etc.

EFDOS is THOMSON SEMICONDUCTEURS Disk Operating System available on development systems such as DEVICE/EXOR...

Whenever ordering a custom MCU is required, please contact your local THOMSON-SEMICONDUCTEURS representative or THOMSON-SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON-SEMICONDUCTEURS representative.

* Requires prior factory approval

ORDERING INFORMATION


EXORciser is a registered trademark to Motorola Inc.

These specifications are subject to change without notice. Please inquire with our sales offices about the availability of the different products.

## PRODUCT PREVIEW

The TS68HC04J3 microcomputer unit (MCU) is a member of the $68 \mathrm{HCO4}$ family of very low cost and low power single chip microcomputers. This 8 bit microcomputer contains a CPU, on-chip clock, ROM, RAM, I/O, and timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the $\mathbf{6 8 0 0}$ based instruction set. The following are some of the hardware and software highlights of the TS68HC 04J3 MCU.

## HARDWARE FEATURES

- Low power HCMOS
- Power saving stop and wait modes
- Single 2.0 to 6.0 volt power supply
- 8-bit architecture
- Fully static operation
- Pin compatible with 6804J2
- 124 bytes of on-chip RAM with standby mode
- 2 Kbytes of program ROM including 356 bytes for self-check program
- 72 bytes of user data ROM for look-up tables
- 12 TTL/CMOS compatible bidirectional I/O lines
- On-chip clock generator
- Extensive self-check capability allowing complete functional test of the chip (including ROM content)
- Master RESET and power-on-reset
- 8-bit timer with software programmable 7-bit prescaler
- TIMER pin programmable as input or output
- Complete development system support on DEVICE ${ }^{\circledR}$.


## SOFTWARE FEATURES

- Similar to 6800 family
- Byte efficient instruction set
- Easy to program
- True bit manipulation
- Stop, Wait and bit manipulation instructions
- Bit test and branch instructions
- Versatile interrupt handling
- Separate flags for normal and interrupt processing
- True LIFO 4-level stack eliminating stack pointer
- Maskable timer interrupt
- Versatile indirect registers
- Conditional branches
- Single instruction memory examine/change
- 9 powerful addressing modes.


## USER SELECTABLE OPTIONS

- Crystal or low-cost resistor oscillator option
- Mask selectable internal clock gene rator options
- Mask selectable edge or level sensitive interrupt pin
- Program ROM protection option
- Optional pull-down devices on I/O lines.


## HCMOS




## BLOCK DIAGRAM



NOTE : 8-Bit Indirect Registers $X$ and $Y$, although shown as part of the CPU are actually located in the $124 \times 8$ RAM at locations $\$ 80$ and $\$ 81$.

## ADVANCE INFORMATION

The EF68HC04P3 microcomputer unit (MCU) is a member of the EF68HC 04 family of very low cost and low power single chip microcomputers. This 8 bit microcomputer contains a CPU, on-chip clock, ROM, RAM, I/O, and timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the EF6800 based instruction set. The following are some of the hardware and software highlights of the EF68HC04P3 MCU.

## HARDWARE FEATURES

- Low power HCMOS
- Power saving stop and wait modes
- Single 2.0 to 6.0 volt power supply
- 8-bit architecture
- Fully static operation
- Pin compatible with the EF6805P2 and EF6804P2
- 124 bytes of on-chip RAM with standby mode
- 2 Kbytes of program ROM including 356 bytes for self-check program
- 72 bytes of user data ROM for look-up tables
- 20 open-collector TTL/CMOS compatible bidirectional I/O lines
- On-chip clock generator
- Extensive self-check capability allowing complete functional test of the chip (including ROM content)
- Master RESET and power-on-reset
- 8-bit timer with 7-bit software programmable prescaler
- TIMER pin programmable as input or output
- Complete development system support on DEVICE ${ }^{\circledR}$.


## SOFTWARE FEATURES

- Similar to EF6800 family
- Byte efficient instruction set
- Easy to program
- True bit manipulation
- Stop, Wait and bit manipulation instructions
- Bit test and branch instructions
- Versatile interrupt handling
- Separate flags for normal and interrupt processing
- True LIFO 4-level stack eliminating stack pointer
- Maskable timer interrupt
- Versatile indirect registers
- Conditional branches
- Single instruction memory examine/change
- 9 powerful addressing modes.


## USER SELECTABLE OPTIONS

- Crystal or low-cost resistor oscillator option
- Mask selectable internal clock generator options
- Mask selectable edge or level sensitive interrupt pin
- Program ROM protection option
- Optional pull-down devices on I/O lines. DEVICE ${ }^{\circledR}$ iṣ THOMSON SEMICONDUCTEURS' development/emulation tool.

HCMOS


## EF68HC04P3

## BLOCK DIAGRAM



## SECTION 2 <br> FUNCTIONAL PIN DESCRIPTION, MEMORY, CPU, AND REGISTERS

This section provides a description of the functional pins, memory spaces, the central processing unit (CPU), and the various registers and flags.

### 2.1 FUNCTIONAL PIN DESCRIPTION

### 2.1.1 VCC and VSS

Power is supplied to the MCU using these two pins. VCC is power and $V_{S S}$ is the ground connection.

### 2.1.2 $\overline{\mathrm{RO}}$

This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to 4.1 INTERRUPT for additional information.

### 2.1.3 XTAL and EXTAL

These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor and capacitor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to 4.4 INTERNAL CLOCK GENERATOR OPTIONS for recommendations concerning these inputs.

### 2.1.4 TIMER

In the input mode, the timer pin is connected to the prescaler input and serves as the timer clock or as an enable input for the internal clock. In the output mode, the timer pin signals that a time out of the timer has occurred. Refer to SECTION 3 TIMER for additional information.

### 2.1.5 RESET

The $\overline{\operatorname{RESET}}$ pin is used to restart the processor of the EF68HCO4P3 to the beginning of a program. This pin, together with the MDS pin is also used to select the operating mode of the EF68HC04P3.If the MDS pin is at zero volts, the normal mode is selected and the program counter is loaded with the user restart vector. However, if the MDS pin is at +5 volts, then pins PA6 and PA7 are decoded to allow selection of the operating mode. Refer to 4.3 RESET for additional information.

## EF68HC04P3

### 2.1.6 MDS

The MDS (mode select) pin is used to place the MCU into special operating modes. If MDS is held at +5 volts at the exit of the reset state, the decoded state of PA6 and PA7 is latched to determine the operating mode (single-chip, self-check, or ROM verify). However, if MDS is held at zero volts at the exit of the reset state, the single-chip operating mode is automatically selected (regardless of PA6 and PA7 state).

For those users familiar with the EF6801 microcomputer, mode selection is similar but much less complex in the EF68HCO4P3. No special external diodes, switches, transistors, etc. are required in the EF68HC04P3.

### 2.1.7 Port Input/Output Lines (PA0-PA7, PB0-PB7, PCO-PC3)

These 20 lines are arranged into two 8 -bit ports ( $A$ and $B$ ) and one 4 -bit port ( $C$ ). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to SECTION 5 INPUT/OUTPUT PORTS for additional information.

### 2.2 MEMORY

The MCU operates in three different memory spaces: program space, data space, and stack space. A representation of these memory spaces is shown in Figure 2-1. The program space (Figure 2-1a) contains all of the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, and the self-check and user vectors. The data space (Figure 2-1b) contains all of the RAM locations, plus I/O locations and some ROM used for storage of tables and constants. The stack space (Figure 2-1c) contains RAM which is used for stacking subroutine and interrupt return addresses.

The MCU is capable of addressing 4096 bytes of program space memory with its program counter and 256 bytes of data space memory with its instructions. The data space memory contains three bytes for port data registers, three bytes for port data direction registers, one byte for timer status/control, 72 by tes ROM, 124 bytes RAM (which includes two bytes for XP and YP indirect registers), two bytes for timer prescaler and count registers, and one byte for the accumulator. The program space section contains 2048 bytes of ROM including 356 bytes of self-check ROM and 8 bytes of vectors for self-check and user programs.

### 2.3 CENTRAL PROCESSING UNIT

The CPU of the EF68HCO4 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal addresses, data, and control buses.
(a) Program Space Memory Map

(c) Stack Space Memory Map

Level 1
Level 2
Level 3
Level 4

(b) Data Space Memory Map

Port A Data Register				\$00
Port B Data Register				\$01
1	1	1	Port C Data Reg.	\$02
Not Used				\$03
Port A Data Direction Register				\$04
Port B Data Direction Register				\$05
1	1	1	Port C DDR	\$06
Not Used				
Timer Status Control Register				\$09
CRC LSB				\$0A
CRC MSB				\$0B
Not Used				C
Reserved				
User Data Space ROM				
Future Expansion				
Indirect Register X *				\$80
Indirect Register $Y$ *				\$81
Data Space RAM				
Reserved				$\$ F C$
Prescaler Register				\$FD
Timer Count Register				\$FE
Accumulator				\$FF

* $\$ 80, \$ 81, \$ 82, \$ 83$ are used for short direct addressing.

Figure 2-1. E F68HC04P3 MCU Address Map

### 2.4 REGISTERS

The EF68HCO4 Family CPU has four registers and two flags available to the programmer. They are shown in Figure 2-2 and are explained in the following paragraphs.


Figure 2-2. Programming Model

### 2.4.1 Accumulator (A)

The accumulator is an 8 -bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is implemented as the highest RAM location (\$FF) in data space and thus implies that several instructions exist which are not explicitly implemented. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.

### 2.4.2 Indirect Registers (XP, YP)

These two indirect registers are used to maintain pointers to other memory locations in data space. They are used in the register-indirect addressing mode, and can be accessed with the direct, indirect, short direct, or bit set/clear addressing modes. These registers are implemented as two of the 124 RAM locations ( $\$ 80, \$ 81$ ) and as such generate implied instructions and may be manipulated in a manner similar to any RAM memory location in data space. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.

### 2.4.3 Program Counter (PC)

The program counter is a 12-bit register that contains the address of the next ROM word to be used (may be opcode, operand, or address of operand). The 12-bit program counter is contained in PCL (low byte) and PCH (high nibble).

### 2.4.4 Flags (C, Z)

The carry (C) bit is set on a carry or a borrow out of the ALU. It is cleared if the result of an arithmetic operation does not result in a carry or a borrow. The (C) bit is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.

The zero $(Z)$ bit is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.

There are two sets of these flags, one set is for interrupt processing, the other for all other routines. When an interrupt occurs, a context switch is made from the program flags to the interrupt flags (interrupt mode). An RTI forces the context switch back to the program flags (program mode). While in either mode, only the flags for that mode are available. Further, the interrupt flags will not be cleared upon entering the interrupt mode. Instead, the flags will be as they were at the exit of the last interrupt mode. Both sets of flags are cleared by reset.

### 2.4.5 Stack

There is a true LIFO stack incorporated in the EF68HCO4P3 which eliminates the need for a stack pointer. Stack space is implemented in separate RAM (12-bits wide) shown in Figure 2-1c. Whenever a subroutine call (or interrupt) occurs, the contents of the PC are shifted into the top register of the stack. At the same time (same cycle), the top register is shifted to the next level deeper. This happens to all registers with the bottom register falling out the bottom of the stack.

Whenever a subroutine or interrupt return occurs, the top register is shifted into the PC and all lower registers are shifted up one level higher. Stack level 4 is loaded with the previous content of stack level 3. The stack RAM is four levels deep.


Figure 2-3. Stack Operation when RTS or RTI occurs

## SECTION 3 TIMER

### 3.1 INTRODUCTION

A block diagram of the EF68HC04P3 timer circuitry is shown in Figure 3-1. The timer logic in the MCU is comprised of a simple 8-bit counter ( timer count register, TCR) with a 7-bit prescaler, and a timer status/control register (TSCR). The timer count register, which may be loaded under program control is decremented towards zero by aclock input (prescaler output). The prescaler is used toextend the maximum interval of the overall timer. The prescaler tap is selected by bits 0-2 (PSO-PS2) of the timer status/control register. Bits PSO-PS2 control the actual division of the prescaler within the range of divide-by-1 (20) to divide-by-128 (27). The timer count register (TCR) and prescaler are decremented on rising clock edges. The coding of the TCSR PSO-PS2 bits produces a division in the prescaler as shown in Table 3-1.

Table 3-1. Prescaler Coding Table

PS2	PS1	PS0	Divide By
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8


PS2	PS1	PS0	Divide By
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

TIMER pin may be programmed as either an output or an input depending on the status of DOUT and TOUT bits. Three modes are available.

## Output mode (TOUT =1)

The TIMER pin is connected to the DOUT latch. Therefore, the timer prescaler is clocked by the internal SYNC pulse. (Divide-by-12, -24 or -48 of the internal oscillator according to selected mask option, refer to 4.4 INTERNAL CLOCK GENERATOR OPTIONS). The prescaler then divides its clock input by a value determined by the coding of the TSCR bits PSO - PS2 as shown in table 3-1. The divided prescaler output then clocks the 8-bit timer count register (TCR). When the TCR count reaches zero, it sets the TMZ bit in the TSCR. The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The low-to-high TMZ bit transition is used to latch the DOUT bit of the TSCR and provides it for the TIMER pin.

## Controlled mode (TOUT $=\mathbf{0}$, DOUT $=1$ )

The TIMER pin is an input which controls the counting by the prescaler-timer. When high, it enables counting Counting is disabled as long as this input remains low. Operation is similar to that described for the output mode.
Clock input mode (TOUT $=\mathbf{0}$. DOUT $=0$ )
The TIMER pin is connected directly to the prescaler input. Therefore the timer prescaler is clocked by the signal applied•from the TIMER pin. Operation is similar to that described for the output mode. The frequency of the signal applied to the TIMER pin must be less than $1 / \mathrm{t}_{\mathrm{b}}$. $\mathrm{f}_{\mathrm{osc}} \div 12$, $\div 24$ or $\div 48$ according to selected mask option) because of internal synchronization.

## NOTE

TMZ is normally set to logic one when the timer times out (TCR count reaches \$00) ; however, it may be set by a write of $\$ 00$ to the TCR or by a write to bit 7 of the TSCR.
TMZ bit is cleared by a read-only of the TSCR even if TMZ bit is not concerned by this read.


Figure 3-1. Timer Block Diagram

During reset, the timer count register and prescaler are set to \$FF, while the timer status/control register is cleared to $\$ 00$ and the DOUT LATCH (TIMER pin is in the high-impedance input mode) is forced to a logic high. The prescaler and timer count register are implemented in data space RAM locations (\$FD, \$FE); therefore, they are both readable and writeable. A write to either will predominate over the TCR decrement-to- $\$ 00$ function; i.e., if a write and a TCR decrement-to- $\$ 00$ occur simultaneously, the write will take precedence, and the TMZ bit is not set until the next timer time out.

### 3.2 TIMER REGISTERS

### 3.2.1 Timer Count Register (TCR)



The timer count register indicates the state of the internal 8 -bit counter.

### 3.2.2 Timer Status/Control Register (TSCR)

7	6	5	4	3	2	1	0
TMZ	ETI	TOUT	DOUT	$\overline{\text { PSI }}$	PS2	PS1	PS0
TSCR Address $=\$ 09$							

b7,TMZ Low-to-high transition indicates the timer count register has decremented to zero since the timer status/control register was last read. Cleared by a read of TSCR register if TMZ was read as a logic one.
b6, ETI This bit, when set, enables the timer interrupt.
b5, TOUT When low, this bit selects the input modes for the timer. When high, the output mode is selected.
b4, DOUT Data sent to the timer output pin when TMZ is set high (output mode only). Choice of input mode (input mode only).
b3, $\overline{\text { PSI }} \quad$ Used to initialize the prescaler and inhibit its counting while $\overline{\mathrm{PSI}}=0$. The initialized value is set to \$FF. The timer count register will also be inhibited (contents unchanged). When $\overline{\mathrm{PSI}}=1$ the prescaler begins to count downward.
b0, b1, b2 These bits are used to select the prescaler divide-by ratio; therefore, effecting PSO-PS1-PS2 the clock input frequency to the timer count register.

### 3.2.3 Timer Prescaler Register



TPR Address $=\$$ FD
The timer prescaler register indicates the state of the internal 7-bit prescaler. This 7-bit prescaler divide ratio is normally determined by bits PSO-PS2 of the timer status/control register (see Table 3-1).

## SECTION 4 INTERRUPT, SELF-CHECK, RESET, AND INTERNAL CLOCK GENERATOR

### 4.1 INTERRUPT

The EF68HC04P3 can be interrupted by applying a logic low signal to the $\overline{\mathrm{RQ}}$ pin ; however, a mask option selected at the time of manufacture determines whether the negative-going edge or the actual low level is sensed to indicate an interrupt The EF68HC04P3 can also be interrupted by the timer if ETI bit in TCSR register is set.

### 4.1.1 Edge-Sensitive Option

When the $\overline{\mathrm{RO}}$ pin is pulled low, the internal interrupt request latch is set after a maximum of 3 machine cycles for internal synchronization. Prior to each instruction fetch, the interrupt latch is tested and, if its output is high, an interrupt sequence is initiated (provided the interrupt mask is cleared). Figure 4-1 contains a flowchart which illustrates both the reset and interrupt sequence. The interrupt sequence consists of one cycle during which the interrupt request latch is cleared, the interrupt mode flags are selected, the PC is saved on the stack, the interrupt mask is set, and the IRQ vector (single chip mode = \$FFC/\$FFD, self-check mode $=\$$ FF8 $/ \$ F F 9$ ) is loaded into the PC. Internal processing of the interrupt continues until an RTI (return from interrupt) instruction is processed. During the RTI instruction, the interrupt mask is cleared and the program mode flags are selected. The next instruction of the program is then fetched and executed unless the IRQ pin has been pulled low at least 3 cycles before the end of the RTI instruction (see above). In this case, another interrupt sequence is initiated. Once the interrupt was initially detected and the interrupt sequence started, the interrupt request latch is cleared so that the next (second) interrupt may be detected even while the previous (first) one is being serviced. However, even though the second interrupt sets the interrupt request latch during processing of the first interrupt, the second interrupt sequence will not be initiated until completion of the interrupt service routine for the first interrupt. Completion of an interrupt service routine is always accomplished using an RTI instruction to return to the main program. The interrupt mask (which is not directly available to the programmer) is cleared during the last cycle of the RTI instruction.

### 4.1.2 Level-Sensitive Option

The actual operation of the level-sensitive and edge-sensitive options are similar except that the level-sensitive option does not have an interrupt request latch. With no interrupt request latch, the logic level of the $\overline{\mathrm{RO}}$ pin is checked for detection of the interrupt. Also, in the interrupt sequence, there is no need to clear the interrupt request latch. These differences are illustrated in the flowchart of Figure 4-1.

### 4.1.3 Power Up and Timing

During the power-up sequence the interrupt mask is set to preclude any false or "ghost" interrupts from occurring. To clear the interrupt mask, the programmer should write a JSR (instead of a JMP) instruction to an initialization routine as the first instruction in a program. The initialization routine

*Timer prescaler then divides by $1,2,4$ according to the selected internal clock generator option independently of TSCR content. Delay for oscillator to stabilize is constant and equal to 1920 oscillator clock periods.

*     * EXT. IRQ or enabled TIMER IRQ. Or EXT. IRQ are the internal synchronized signals.


Figure 4-1. STOP, VVAIT, INTERRUPT and RESET processing flowchart
should end with an RTI (instead of RTS) or with a STOP or WAIT instruction which clears the interrupt mask. Maximum interrupt response time is eight machine (tbyte) cy cles (see 4.4 INTERNAL CLOCK GENERATOR OPTIONS). This includes five machine cycles for the longest instruction, plus one machine cycle for stacking the PC and switching flags and plus two machine cycles for synchronization of the IRQ input with internal machine cycles. Minimum response time is four machine cycles for internal synchronization ( 3 cycles) and for stacking PC and switching flags (see 2.4.4 Flags (C, Z)).

### 4.2 SELF-CHECK

The self-check capability of the EF68HCQ4P3 MCU provides an intemal check to determine if the part a functional check of the MCU, connect it as shown in Figure 4-2a and monitor the LEDs for a 00100 ( $\$ 04$ ) pattem on port A. The MCU is left in the WAIT mode. A logical low signal applied to the $\bar{R} \mathrm{RO}$ pin places the MCU in the STOP mode. A 00101 ( $\$ 05$ ) pattern appears on port A. Another logical low signal applied on the IRQ pin enables exit from the STOP mode. The "final good" pattern (00110-\$06) appears on port A). To Initiate a ROM self-check of the memory simply connect the circuit as shown in Figure 4-2b and check that the "good" LED tums on to indicate a good memory. The ROM verify uses a cyclical redundancy check (CRC) to conduct a ROM check by means of signature analysis circuit. This circuit consists of two 8 -bit shift registers configured to perform the check using the CCITT polynominal. A manufacturing mask option inhibits the outputs of the CRC data and the ROM data until the final result is available in order to protect the program ROM when the option is selected.

### 4.3 RESET

The MCU can be reset in two ways: by the external reset input ( $\overline{\text { RESET }}$ ) and by power-up detect (PUD).

### 4.3.1. $\overline{\operatorname{RESET}}$ input

This input can be used to reset the MCU internal state and provides an orderly software start-up procedure.

### 4.3.2 PUD

It occurs when a positive transition is detected on VCC on initial power-up. No external RC network is needed. PUD is used strictly for power turn-on conditions and should not be used to detect any drops in the power supply voltage. There is no provision in this block for power-down detect. When the MCU is reset by means of PUD, an internal delay of 1920 oscillator clock periods is generated for the oscillator to stabilize. The MCU emerges from the reset condition at the end of this temporization.


Figure 4-2. ROM Verify Circuit

(Beware of $\overline{\mathrm{RQ}}$ pulse width when using level -
Figure 4-3. Self-Check Circuit
Sensitive option - 10 machine cycles max. length).

### 4.4 INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor-capacitor, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The different clock generator option connection methods are shown in Figure 4-4, crystal specifications and suggested PC board layouts are given in Figure 4-5, resistor-capacitor selection graph is given in Figure 4-6, and a timing diagram is illustrated in Figure $4-7$. The crystal oscillator startup time is a function of many variables: crystal parameters (especially RS), oscillator load capacitance (CL), IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations.

The oscillator output frequency is internally divided by four, two or one depending upon a manufacturing mask option selection to produce the internal $\phi 1$ and $\phi 2$ clocks. The $\phi 1$ clock is divided by twelve to produce a machine byte (cycle) clock (internal SYNC pulse). A byte cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to be executed.


Figure 4-4. Clock Generator Options


Figure 4-5. Crystal Motional Arm Parameters and Suggested PC Board Layout


Figure 4-6. Typical Frequency Selection For Resistor-Capacitor Oscillator Option
(a) Oscillator $-\phi 1-\phi 2$ Timing (divide-by-four option)

(b) $\phi 1$ - Sync Timing


Figure 4-7. Clock Generator Timing Diagram

## SECTION 5 INPUT/OUTPUT PORTS

### 5.1 INPUT/OUTPUT

There are 20 input/output pins. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset, all the DDRs are initialized to a logic zero state to put the ports in the input mode. The port output registers are not initialized on reset but should be initialized before changing the DDR bits to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading; see Figure 5-1. All input/output pins are open collector LSTTL/CMOS compatible as both inputs and outputs. A manufacturing mask option enables the choice of additional pull-down devices on all I/O pins (Selection in 5 groups: PA7, PA(5:6), PA(1:4), Port B, PAO + Port C).
The address map in Figure 2-1 gives the address of data registers and DDRs. The register configuration is discussed under the registers paragraph below.


Data   Direction   Register   Bit	Output   Data   Bit	Output   State	Input   To
1	0	0	MCU
1	1	1	0
0	X	$\mathrm{Hi}-\mathrm{Z}$	1

Figure 5-1. Typical I/O Port Circuitry

The latched output data bit (see Figure 5-1) may always be written. Therefore, ariy write to a port writes to all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input ( 0 ) and corresponds to the latched output data when the DDR is an output (1).

### 5.2 REGISTERS

The registers described below are implemented as RAM locations and thus may be read or written.

### 5.2.1 Port Data Register

7		0
MSB		Port A Address $=\$ 00$
Port B Addres $=\$ 01$		
	Port $C$ Address $=\$ 02($ Bits $0-3)$	

The source of data read from the port data register will be the port I/O pin or previously latched output data depending upon the contents of the corresponding data direction register (DDR). The destination of data written to the port data register will be an output data latch. If the corresponding data direction register (DDR) for the port I/O pin is programmed as an output, the data will then appear on the port pin.

### 5.2.2 Port Data Direction Register



The port DDRs configure the port pins as either inputs or outputs. Each port pin can be programmed individually to act as an input or an output. A zero in the pins corresponding bit position will program that pin as an input while a one in the pins corresponding bit position will program that pin as an output.

## SECTION 6 SOFTWARE AND INSTRUCTION SET

### 6.1 SOFTWARE

### 6.1.1 Bit Manipulation

The EF68HCO4P3 MCU has the ability to set or clear any register or single random access memory (RAM) writable bit with a single instruction (BSET, BCLR). Any bit in data space, including ROM, can be tested, using the BRSET and BRCLR instructions, and the program may branch as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.

The coding example in Figure 6-1 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line (to clock data one bit at a time, MSB first, out of the device). The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in the accumulator.



Figure 6-1. Bit Manipulation Example

### 6.1.2 Addressing Modes

The EF68HC04P3 MCU has nine addressing modes which are explained briefly in the following paragraphs. The EF68HCO4P3 deals with objects in three different address spaces : program space, data space, and stack space. Program space contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains all of the RAM locations, XP and YP registers, accumulator, timer, I/O locations, and some ROM (for storage of tables and constants). Stack space contains RAM for use in stacking the return addresses for subroutines and interrupts.

The term "Effective Address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
6.1.2.1 IMMEDIATE. In the immediate addressing mode, the operand is located in program ROM and is contained in a byte following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
6.1.2.2 DIRECT. In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the 256 bytes in data space memory with a single two-byte instruction.
6.1.2.3 SHORT DIRECT. The MCU also has four locations in data space RAM $(\$ 80, \$ 81, \$ 82, \$ 83)$ which may be used in a short-direct addressing mode. In this mode the opcode determines the data space RAM location, and the instruction is only one byte. Short direct addressing is a subset of the direct addressing mode. (Note : $\$ 80$ and $\$ 81$ are the X and Y register locations).
6.1.2.4 EXTENDED. In the extended addressing mode, the effective address is obtained by concatenating the four least significant bits of the opcode with the byte following the opcode (12-bit address). Instructions using the extended addressing mode (JMP, JSR) are capable of branching anywhere in program space. An extended addressing mode instruction is two bytes long.
6.1.2.5 RELATIVE. The relative addressing mode is only used in conditional branch instructions. In relative addressing, that address is formed by adding the sign extended lower five bits of the opcode (the offset) to the program counter if and only if the condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -15 to +16 from the opcode address. The programmer need not worry about calculating the correct offset when using the assembler since it calculates the proper offset and checks to see if it is within the span of the branch.
6.1.2.6 BIT SET/CLEAR. In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any bit in the 256 locations of data space memory, which can be written to, can be set or cleared.
6.1.2.7 BIT TEST AND BRANCH. The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the data space address of the byte to be tested is in the single byte immediately following the opcode byte. The third byte is sign extended to twelve bits and becomes the offset added to the program counter if the condition is true. The single three-byte instruction allows the program to branch based on the condition of any bit in data space memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry flag.
6.1.2.8 REGISTER-INDIRECT. In the register-indirect addressing mode, the operand is at the address (in data space) pointed to by the contents of one of the indirect registers ( X or Y ). The particular $X$ or $Y$ register is selected by bit 4 of the opcode. Bit 4 of the opcode is then decoded into an address which selects the desired X or Y register ( $\$ 80$ or $\$ 81$ ). A register-indirect instruction is one byte long.
6.1.2.9 INHERENT. In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

### 6.2 INSTRUCTION SET

The EF68HCO4P3 MCU has aset of 44 basic instructions, which when combined with nine addressing modes produce 244 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

### 6.2.1 Register/Memory Instructions

Most of these instructions use two operands. One operand is the accumulator and the other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to Table 6-1.

### 6.2.2 Read-Modify-Write Instructions

These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. There are ten instructions which utilize read-modify-write cycles. All INC and DEC forms along with all bit manipulation instructions use this method. Refer to Table 6-2.

### 6.2.3 Branch Instructions

The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 6-3.

### 6.2.4 Bit Manipulation Instructions

These instructions are used on any bit in data space memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to Table 6-4.

Table 6-1. Register/Memory Instructions

		Addressing Modes																			
		Indirect				Immediate			Direct			Inherent			Extended			Short-Direct			
Function	Mnem	${ }^{\mathrm{O}} \mathrm{P}$	de YP	Bytes	Cycles	Opcode	$\stackrel{*}{B}$	Cycles	Special Notes												
Load A from Memory	LDA	E0	F0	1	4	E8	2	4	F8	2	4	-	-	-	-	-	-	AC-AF	1	4	1
Load XP from Memory	LDXI	-	-	-	-	80	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Load YP from Memory	LDYI	-	-	-	-	B0	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Store A in Memory	STA	E1	F1	1	4	-	-	-	F9	2	4	-	-	-	-	-	-	BC-BF	1	4	2
Add to A	ADD	E2	F2	1	4	EA	2	4	FA	2	4	-	-	-	-	-	-	-	-	-	-
Subtract from A	SUB	E3	F3	1	4	EB	2	4	FB	2	4	-	-	-	-	-	-	-	-	-	-
Arithmetic Compare with Memory	CMP	E4	F4	1	4	EC	2	4	FC	2	4	-	-	-	-	-	-	-	-	-	-
AND Memory to A	AND	E5	F5	1	4	ED	2	4	FD	2	4	-	-	-	-	-	-	-	-	-	-
Jump to Subroutine	JSR	-	-	-	-	-	-	-	-	-	-	-	-	- 8	8 (TAR)	2	4	-	-	-	3
Jump Unconditional	JMP	-	-	-	-	-	-	-	-	-	-	-	-	- 9	9 (TAR)	2	4	-	-	-	3
Clear A	CLRA	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear XP	CLRX	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear YP	CLRY	-	-	-	-	-	-	-	FB	2	4	-			-	-	-	-	-	-	-
Complement A	COMA	-	-	-	-	-	-	-	-	-	-	B4	1	4	-	-	-	-	-	-	-
Move Immediate Value to Memory	MVI	-	-	-	-	B0	3	4	B0	3	4	-	-	-	- :	-	-	-	-	-	5
Rotate A Left and Carry	ROLA	-	-	-.	-	-	-	-	-	-	-	B5	1	4	-	-	-	-	-	-	-
Arithmetic Left Shift of A	ASLA	-	-	-	-	-	-	-	FA	2	4	-	-	-	-	-	-	-	-	-	-

## SPECIAL NOTES

1. In Short-Direct addressing, the LDA mnemonic represents opcode AC, AD, AE, and AF. This is equivalent to RAM locations $\$ 80$ (AC), $\$ 81$ (AD), $\$ 82$ (AE), and $\$ 83$ (AF) 2. In Short-Direct addressing, the STA mnemonic represents opcode BC, BD, BE, and BF. This is equivalent to RAM locations $\$ 80$ ( $B C$ ), $\$ 81$ (BD), $\$ 82$ (BE), and $\$ 83$ (BF).
2. In Extended addressing, the four LSBs of the opcode (Mnemonic JSR and JMP) are formed by the four MSBs of the target address (TAR).
3. In Immediate addressing, the LDXI and LDYI are mnemonics which are recognized as follows:

Table 6-2. Read-Modify-Write Instructions

		Addressing Modes										Special   Notes
					$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Direct			Short-Direct			
Function	Mnem	Opcode		$\stackrel{\#}{\text { Bytes }}$			\#	\#		\#	\#	
		XP	YP			Opcode	Bytes.	Cycles	Opcode	Bytes	Cycles	
Increment Memory Location	INC	E6	F6	1	4	FE	2	4	A8-AB	1	4	1,3
Increment A	INCA	-	-	-	-	FE	2	4	-	-	-	-
Increment XP	INCX	-	-	-	-	-	-	-	A8	1	4	-
Increment YP	INCY	-	-	-	-	-	-	-	A9	1	4	-
Decrement Memory Location	DEC	E7	F7	1	4	FF	2	4	B8-BB	1	4	2, 4
Decrement A	DECA	-	-	-	-	FF	2	4	-	-	-	-
Decrement XP	DECX	-	-	-	-	-	-	-	B8	1	4	-
Decrement YP	DECY	-	-	-	-	-	-	-	B9	1	4	-

SPECIAL NOTES

1. In Short-Direct addressing, the INC mnemonic represents opcode A8, A9, AA, and AB. These are equivalent to RAM locations $\$ 80$ (AB), $\$ 81$ (A9), $\$ 82$ (AA), and $\$ 83$ (AB)
2. In Short-Direct addressing, the DEC mnemonic represents opcode B8, B9, BA, and BB. These are equivalent to RAM locations $\$ 80$ (B8), $\$ 81$ (B9), $\$ 82$ (BA), and $\$ 83$ (BB)
3. In Indirect addressing, the INC mnemonic represents opcode E6 or F6, and causes the location pointed to by XP (E6 opcode) or YP (F6 opcode) to be incremented 4. In Indirect addressing, the INC mnemonic represents opcode E7 or F7, and causes the location pointed to by XP (E7 opcode) or YP (F7 opcode) to be incremented.

Table 6-3. Branch Instructions

		Relative Addressing Mode			
Function	Mnem	Opcode	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$	Cycles	Special Notes
Branch if Carry Clear	BCC	40-5F	1	2	1
Branch if Higher or Same	(BHS)	40-5F	1	2	1,2
Branch if Carry Set	BCS	60-7F	1	2	1
Branch if Lower	(BLO)	60-7F	1	2	1,3
Branch if Not Equal	BNE	00-1F	1	2	1
Branch if Equal	BEQ	20-3F	1	2	1

## SPECIAL NOTES

1. Each mnemonic of the Branch instructions covers a range of 32 opcodes; e.g., BCC ranges from 40 through 5 F . The actual memory location (target address) to which the branch is made is formed by adding the sign extended lower five bits of the opcode to the contents of the program counter.
2. The BHS instruction (shown in parentheses) is identical to the BCC instruction. The $C$ bit is clear if the register was higher or the same as the location in the memory to which it was compared.
3. The BLO instruction (shown in parentheses) is identical to the BCS instruction. The C bit is set if the register was lower than the location in memory to which it was compared.

Table 6-4. Bit Manipulation Instructions

Function	Mnem	Addressing Modes						Special Note
		Bit Set/Clear			Bit Test and Branch			
		Opcode	Bytes	Cycles	Opcode	Bytes	Cycles	
Branch IFF Bit n is set	BRSET $n(n=0 \ldots 7)$	-	-	-	C8+n	3	5	1
Branch IFF Bit $n$ is clear	BRCLR $n(n=0 \ldots 7)$	-	-	-	$\mathrm{C} 0+\mathrm{n}$	3	5	1
Set Bit $n$		D8+n	2	4	-	-	-	1
Clear Bit n	BCLR $n(n=0 \ldots 7)$	$\mathrm{D} 0+\mathrm{n}$	2	4	-	-	-	1

## SPECIAL NOTE

1. The opcode is formed by adding the bit number $(0-7)$ to the basic opcode. For example: to clear bit six using the BSET6 instruction the opcode becomes DE (D8+6); BCLR5 becomes $(C 0+5)$; etc.

### 6.2.5 Control Instructions

The control instructions control the MCU operations during program execution. Refer to Table 6-5.

### 6.2.5.1 Stop instruction

The STOP instruction places the EF68HC04P3 in its lowest power consumption mode. In STOP mode the internal oscillator is turned off causing all internal processing and the timer to be hal ted. In STOP mode, timer STATUS/CONTROL register bits 6 (ETI) and 7 (TMZ) are cleared to remove any pending timer interrupt requests and to disable any further timer interrupts. External interrupts are enabled. All I/O lines remain unchanged. The processor can only be brought out of the STOP mode by pulling low $\overline{\mathrm{IRQ}}$ or $\overline{\mathrm{RESET}}$ input pins. During the exit from the STOP mode, the timer is used to provide a delay of 1920 oscillator clock periods for the oscillator to stabilize. If an external clock is used, it should be kept high during all the time the MCU is in STOP mode.

### 6.2.5.2 Wait instruction

The WAIT instruction places EF68HC04P3 in a low-power consumption mode, but WAIT mode consumes more power than the STOP mode. In WAIT mode the clock is disabled from all internal circuitry except the timer circuit. Thus all internal processing is halted. The timer may, if desired, continue to count down ( $\overline{\mathrm{PSI}}$ bit of TCSR).
During the WAIT mode, external interrupts are enabled. All other registers memory, and I/O lines remain in their last state. Timer interrupt (ETI bit) may be enabled by software prior to entering the WAIT mode to allow an exit from the WAIT mode via a Timer Interrupt.

### 6.2.6 Alphabetical Listing

The complete instruction set is given in alphabetical order in Table 6-6. There are certain mnemonics recognized by the assember and converted to other instructions. The fact that all registers and accumulator are in RAM allows many implied instructions to exist. The implied instructions recognized by the assembler are identified in Table 6-6.

### 6.2.7 Opcode Map Summary

Table 6-7 contains an opcode map for the instructions used on the MCU.

### 6.3 IMPLIED INSTRUCTIONS

Since the accumulator and all other registers are located in RAM many implied instructions exist. The assembler-recognized implied instructions are given in Table 6-6. Some examples not recognized by the assembler are shown below.

BCLR,7 \$FF	Ensures accumulator is plus
BSET,7 \$FF	Ensures accumulator is minus
BRCLR,7 \$FF	Branch iff accumulator is plus
BRSET,7 \$FF	Branch iff accumulator is minus
BRCLR,7 \$80	Branch iff $X$ is plus (BXPL)
BRSET,7 \$80	Branch iff $X$ is minus (BXMI)
BRCLR,7 \$81	Branch iff $Y$ is plus (BYPL)
BRSET,7 \$81	Branch iff $Y$ is minus (BYMI)

Table 6-5. Control Instructions

		Addressing Modes									
		Short-Direct			Inherent			Relative			
Function	Mnem	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	Special Notes
Transfer A to XP	TAX	BC	1	4	-	-	-	-	-	-	-
Transfer A to YP	TAY	BD	1	4	-	-	-	-	-	-	-
Transfer XP to A	TXA	AC	1	4	-	-	-	-	-	-	-
Transfer YP to A	TYA	AD	1	4	-	-	-	-	-	-	-
Return from Subroutine	RTS	-	-	-	B3	1	2	-	-	-	-
Return from Interrupt	RTI	-	-	-	B2	1	2	-	-	-	-
No-Operation	NOP	-	-	-	-	-	-	-	-	-	1
Stop	STOP	-	-	-	B6	1	2	-	-	-	-
Wait	WAIT	-	-	-	B7	1	2	-	-	-	-

SPECIAL NOTE

1. The NOP instruction is equivalent to a branch if equal ( $B E Q$ ) to the location designated by $P C+1$.

Table 6-6. Instruction Set

	Addressing Modes									Flags	
Mnemonic	inherent	Immediate	Direct	Short Direct	Bit/Set Clear	Bit-TestBranch	Register Indirect	Extended	Relative	z	C
ADD		X	X				X			$\wedge$	$\wedge$
AND		$\times$	X				X			$\wedge$	$\bullet$
ASLA			Assembler converts this to "ADD SFF"							$\wedge$	$\wedge$
BCC									X	-	-
BCLR					X					-	-
BCS									X	-	-
BEQ									X	$\bullet$	-
BHS			Assembler converts this to "BCC"							-	-
BLO			Assembler converts this to "BCS"							-	-
BNE									X	-	$\bullet$
BRCLR						$x$				-	$\wedge$
BRSET						X				-	$\wedge$
BSET					$\times$					-	-
CLRA			Assembler converts this to "SUB SFF"							$\wedge$	$\wedge$
CLRX			Assembler converts this to "MVI \# 0, \$80"							-	-
CLRY			Assembler converts this to " $\mathrm{MV} 1 \# 0, \$ 81$ "							-	-
CMP		X	X				X			$\wedge$	$\wedge$
COMA	X									$\wedge$	$\wedge$
DEC			X	X			X			$\wedge$	-
DECA			Assembler converts this to "DEC \$FF"							$\wedge$	$\bullet$
DECX			Assembler converts this to "DEC $\$ 80$ "							$\wedge$	-
DECY			Assembler converts this to "DEC \$81"							$\wedge$	-
INC			X	X			X			$\wedge$	$\bullet$
INCA			Assembler converts this to "INC \$FF',							$\wedge$	-
INCX			Assembler converts this to "INC $\$ 80$ "							$\wedge$	-
INCY			Assembler converts this to "INC \$81"							$\wedge$	-
JMP								$x$		$\bullet$	-
JSR								X		-	-
LDA		X	X	X			X			$\wedge$	-
LDXI			Assembler converts this to "MVI DATA, $\$ 80$ "							$\bullet$	-
LDYI			Assembler converts this to "MVI DATA, \$81"							$\bullet$	-
MVI		x	X							$\bullet$	-
NOP			Assembler converts this to "BEQ (PC) + 1"							-	$\bullet$
ROLA	X									$\wedge$	$\wedge$
RTI	X									$\wedge$	$\wedge$
RTS	X									-	-
STA			X	X			X			$\wedge$	-
STOP	$\times$									-	$\bullet$
SUB		X	x				X			$\wedge$	$\wedge$
TAX	Assembler converts this to "STA \$80"									$\wedge$	-
TAY	Assembler converts this to "STA \$81"									$\wedge$	-
TXA	Assembler converts this to "LDA $\$ 80$ "									$\wedge$	-
TYA	Assembler converts this to "LDA \$81"									$\wedge$	-
WAIT	$\times$									$\bullet$	-

[^14]Table 6-7. EF68HC04P3 Microcomputer


Abbreviations for Address Modes
INH Inherent * Indicates Instruction Reserved for Future Use
S-D Short Direct \# Indicates Illegal Instruction
B-T-B Bit Test and Branch
IMM Immediate
DIR Direct
EXT Extended
REL Relative
BSC Bit Set/Clear
R-IND Register Indirect

## Instruction Set Opcode Map



LEGEND


## SECTION 7 ELECTRICAL SPECIFICATIONS

### 7.1 INTRODUCTION

This section contains the electrical specifications and associated timing for the EF68HC04P3.

### 7.2 MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Vol tage	$V_{\text {in }}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+0.3$	$\checkmark$
Current Drain per Pin	1	10	mA
Total Current for Ports A, B, C and XTAL, TIMER Pins	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{gathered} 30 \\ -15 \end{gathered}$	mA
Operating Temperature Range   L Range   D Range   V Range	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} T_{L} \text { to } T_{H} \\ 0 \text { to } 70 \\ -25 \text { to } 70 \\ -40 \text { to } 85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Thermal Resistance   Plastic   PLCC ${ }_{1}$	$\theta$ JA	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltages of electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {CC }}$. Reliability of operation is enhanced if unused inputs except EXTAL are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{C C}$.

### 7.3 THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$		${ }^{\circ} \mathrm{C}$
Plastic		150	
PLCC		150	



Figure 7-2. CMOS Equivalent Test Load (Ports A, B, C)

## EF68HC04P3

### 7.4 POWER CONSIDERATIONS

The average chip-junction temperature, $\mathrm{T}_{\mathrm{J}}$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:
$T J=T_{A}+\left(P D \cdot \theta_{J A}\right)$
Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta \mathrm{JA}=$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD $=P_{I N T}+$ PPORT
PINT $=$ ICC $\times V_{C C}$, Watts - Chip Internal Power
PPORT $=$ Port Power Dissipation, Watts - User Determined
For most applications PPORT $<$ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between PD and $T_{J}$ (if PPORT is neglected) is:

$$
\begin{equation*}
P D=K \div\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P D \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D} 2 \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of $K$ the values of $P D$ and $T J$ can be obtained by solving equations (1) and (2) iteratively for any value of TA.

### 7.5 ELECTRICAL CHARACTERISTICS @ 5.0 V

( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\mathrm{T}_{\mathrm{H}}$ unless otherwise noted).

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output voltage } \\ & \qquad \begin{array}{l} \left(I_{\text {Load }}=10 \mu \mathrm{~A}\right) \\ \left(I_{\text {Load }}=-10 \mu \mathrm{~A}\right) \end{array} \end{aligned}$	$V_{\mathrm{OL}}$   VOH	$v_{C C}-0.1$	-	$0.1$	V
$\begin{aligned} \text { Output Low Voltage }\left(I_{\text {Load }}=\right. & 0.8 \mathrm{~mA}) \\ & \text { PAO-PA7, PBO-PB7, PCO-PC3 } \end{aligned}$	$\mathrm{VOL}_{\text {OL }}$	-	-	0.4	V
$\begin{aligned} \text { Output High Voltage }\left(I_{\text {Load }}=\right. & -0.8 \mathrm{~mA}) \\ & \text { PAO-PA7, PB0-PB7, PCO-PC3 } \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	VCC -0.4	-	-	V
Input Low Voltage   PAO-PA7, PB0-PB 7, PCO-PC3, TIMER XTAL, MDS, $\overline{\mathrm{IRQ}}, \overline{\mathrm{RESET}}$	$\begin{aligned} & V_{\text {IL }} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	$-$	$\begin{aligned} & 0.3 V_{C C} \\ & 0.2 V_{C C} \end{aligned}$	V
Input High Voltage   PAO-PA7, PBO-PB7, PCO-PC3, TIMER XTAL, MDS, $\overline{\mathrm{IRQ}}, \overline{\text { RESET }}$	$\begin{aligned} & V_{I H} \\ & V_{I H} \end{aligned}$	$\begin{aligned} & 0.7 V_{C C} \\ & 0.8 V_{C C} \end{aligned}$	-	$\begin{aligned} & v_{\mathrm{CC}} \\ & v_{\mathrm{CC}} \end{aligned}$	V
Total Supply Current (No dc Loads,   (No dc Loads, $\mathrm{V}_{\mathrm{IL}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ )   RUN Mode   $\div 1$ Option ( $\mathrm{f}_{\mathrm{osc}}=5.5-\mathrm{MHz}$ )   $\div 2$ Option ( $\mathrm{f}_{\text {osc }}=11.0 \mathrm{MHz}$ )   $\div 4$ Option ( $\mathrm{f}_{\text {osc }}=11.0 \mathrm{MHz}$ )   WAIT Mode (See Note)   $\div 1$ Option ( $\mathrm{f}_{\mathrm{osc}}=5.5 \mathrm{MHz}$ )   $\div 2$ Option ( $\mathrm{f}_{\mathrm{osc}}=11.0 \mathrm{MHz}$ )   $\div 4$ Option ( $\mathrm{f}_{\text {osc }}=11.0 \mathrm{MHz}$ )   STOP Mode (See Note)	$\begin{aligned} & \text { IDD } \\ & \text { IDD } \end{aligned}$	- - - - - -	$\begin{gathered} 2 \\ 2.4 \\ 1.6 \\ \\ 0.7 \\ 1.1 \\ 0.9 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 3.3 \\ 3.9 \\ 2.6 \\ \\ 1.1 \\ 1.8 \\ 1.5 \\ 5 \end{gathered}$	mA   $m A$   $m A$   $m A$   mA   mA   $\mu \mathrm{A}$
I/O Hi-Z Leakage Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$ ) Timer, PAO-PA7, PBO-PB7, PCO-PC3 (with no pull-downs)	ITSI	-10	-	10	$\mu \mathrm{A}$
Hi-Z State Input Current ( $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$ ) PAO-PA7, PB0-PB7, PCO-PC3 (with pull-downs)	ITSI	40	-	300	$\mu \mathrm{A}$
Input Current $\overline{\text { IRQ}}, \overline{\text { RESET }}$, XTAL, MDS	In	-1	-	+ 1	$\mu \dot{\mathrm{A}}$
I/O Output Capacitance Timer, PAO-PA7, PB0-PB7, PCO-PC3	$\mathrm{C}_{\text {out }}$	-	-	12	pF
Input Capacitance $\overline{\text { IRQ}, ~ R E S E T, ~ X T A L, ~ M D S ~}$	$\mathrm{C}_{\text {in }}$	-	-	8	pF

NOTE: Test conditions for IDD as follows :
XTAL input is a square wave from 0.2 V to $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.
EXTAL output load $=10 \mathrm{pF}$
Circuit in self check-mode
In WAIT and STOP Modes, Port A is programmed as output, Ports B and C are programmed as inputs.
In STOP Mode : all inputs are tied to $V_{I L}$ excepted $\overline{\operatorname{IRQ}}, \overline{\mathrm{RST}}, \mathrm{MDS}, \mathrm{XTAL}$, EXTAL which are tied to $\mathrm{V}_{\mathrm{IH}}$.

### 7.6 CONTROL TIMING @ 5.0 V

$\left(V_{C C}=5.0 \mathrm{Vdc} \pm 10 \% ; V_{S S}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ unless otherwise noted).

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Oscillator Frequency } \\ & \quad \div 2, \div 4 \text { options } \\ & \div 1 \text { option } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { fosc } \\ \mathrm{f}_{\mathrm{osc}} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{gathered} 11.0 \\ 5.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Bit Time	$t_{\text {bit }}$	0.182	-	-	$\mu \mathrm{s}$
Bit Cycle Time	tbyte	2.18	-	-	$\mu \mathrm{s}$
$\overline{\mathrm{IRO}}$ and TIMER Puise Width	tWL. TWM	2	-	-	tbyte
RESET Pulse Width	${ }^{\text {t }}$ RWL	2	-	-	tbyte
Oscillator Pulse Width $\div 2, \div 4$ options $\div 1$ option	${ }^{\text {t }} \mathrm{OL} .{ }^{\text {t }} \mathrm{OH}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	-	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

### 7.7 ELECTRICAL CHARACTERISTICS @ 3.3V <br> $\left(V_{C C}=3.3 \mathrm{Vdc} \pm 10 \% ; V_{S S}=0 \mathrm{Vdc} ; T_{A}=T_{L}\right.$ to $T_{H}$ unless otherwise noted).

Charscteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \hline \text { Output voltage } \\ &\text { ( } \text { Load }=10 \mu \mathrm{~A}) \\ &\left(I_{\text {Load }}\right.=-10 \mu \mathrm{~A}) \end{aligned}$	$v_{\mathrm{OL}}$   VOH	$\stackrel{-}{-}$	-		v
$\begin{aligned} \text { Output Low Voltage ( } 1 \text { Load }= & 0.4 \mathrm{~mA}) \\ & \text { PAO-PA7, PB0-PB7, PC0 PC3 } \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	v
$\begin{aligned} \hline \text { Output High Voltage (1Load }= & -0.4 \mathrm{~mA}) \\ & \text { PAO-PA7, PBO-PB7, PCOPC3 } \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	Vcc -0.4	-	-	$v$
Input Low Voltage   PAO-PA7. PBO-PB 7, PCOPC3, TIMER XTAL, MDS, $\overline{\mathrm{IRQ}}, \overline{\text { RESET }}$	$\begin{aligned} & v_{I L} \\ & v_{I L} \end{aligned}$	$\begin{aligned} & \mathbf{v}_{\text {SS }} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$		$\begin{aligned} & 0.3 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V} \mathrm{CC} \\ & \hline \end{aligned}$	$v$
Input High Voltage $\begin{aligned} & \text { PAOPA7, PBO-PB7, PCO-PC3, TIMER } \\ & \text { XTAL, MDS, IRO, } \overline{\text { RESET }} \end{aligned}$	$\begin{aligned} & v_{1 H} \\ & v_{I H} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.8 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & \mathrm{v}_{\mathrm{Cc}} \\ & \mathrm{v}_{\mathrm{Cc}} \end{aligned}$	$v$
Total Supply Current (No dc Loads,   (No de Loads, $\mathrm{V}_{\mathrm{IL}}=0.2 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ )   RUN Mode   $\div 1$ Option (f ${ }_{\text {osc }}=3.0 \mathrm{MHz}$ )   $\div 2$ Option (f ${ }_{\text {osc }}=6.0 \mathrm{MHz}$ )   $\div 4$ Option (fosc $=6.0 \mathrm{MHz}$ )   WAIT Mode (See Note)   $\div 1$ Option ( $\mathrm{f}_{\text {osc }}=3.0 \mathrm{MHz}$ ).   $\div 2$ Option (f ${ }_{\text {osc }}=6.0 \mathrm{MHz}$ )   $\div 4$ Option (fosc $=6.0 \mathrm{MHz}$ )   STOP Mode (See Note)	$\begin{aligned} & \text { IDD } \\ & \hline \end{aligned}$	- - - - - - -	$\begin{gathered} 0.7 \\ 0.9 \\ 0.6 \\ \\ 0.25 \\ 0.40 \\ 0.35 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \text { TBD } \\ \text { TBD } \\ \text { TBD } \\ \\ \text { TBD } \\ \text { TBD } \\ \text { TBD } \\ 2 \\ \hline \end{gathered}$	mA   mA   mA   mA   mA   mA   $\mu \mathrm{A}$
1/O Hi-Z Leakage Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=0.4 \mathrm{~V}$ ) Timer, PAO-PA7, PBO-PB7, PCO-PC3 (with no pull-downs)	ITSI	-10	-	10	$\mu \mathrm{A}$
Hi-Z State Input Current ( $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$ ) PAO-PA7, PBO-PB7, PC0-PC3 (with pull-downs)	ITSI	-	125	-	$\mu \mathrm{A}$
Input Current $\overline{\text { RQ }}, \overline{\text { RESET, XTAL, MDS }}$	1 in	-1	-	+ 1	$\mu \mathrm{A}$
1/O Output Capacitance Timer, PAO-PA7, ṔB0-PB7, PCO-PC3	Cout	-	-	12	pF
Input Capacitance $\overline{\mathrm{R} \mathrm{O}}$. $\overline{\mathrm{RESET}}$, XTAL, MDS	$\mathrm{C}_{\text {in }}$	-	-	8	pF

NOTE: Test conditions for IDD as follows:
XTAL input is a square wave from 0.2 V to $\mathrm{V}_{\mathrm{C}}-0.2 \mathrm{~V}$.
EXTAL output load $=10 \mathrm{pF}$
Circuit in self check-mode
In WAIT and STOP Modes, Port A is programmed as output, Ports B and $C$ are programmed as inputs.
In STOP Mode : all inputs are tied to $V_{\text {IL }}$ excepted IRQ, RST, MDS, XTAL, EXTAL which are tied to $V_{\text {IH }}$.

### 7.8 CONTROL TIMING@ 3.3 V

$\left(V_{C C}=3.3 \mathrm{Vdc} \pm 10 \% ; V_{S S}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ unless otherwise noted).

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Oscillator Frequency } \\ & \div 2, \div 4 \text { options } \\ & \div 1 \text { option } \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{fose} \\ \mathrm{f}_{\mathrm{osc}} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 3.0 \\ & \hline \end{aligned}$	MHz   MHz
Bit Time	$t_{\text {bit }}$	0.333	-	-	$\mu \mathrm{s}$
Bit Cycle Time	tbyte	4.0	-	-	$\mu \mathrm{s}$
$\overline{\text { IRQ and TIMER Pulse Width }}$	tWL, TWM	2	-	-	tbyte
RESET Pulse Width	${ }_{\text {t }}^{\text {RWL }}$	2	-	-	tbyte
Oscillator Pulse Width $\div 2, \div 4$ options $\div 1$ option	${ }^{\text {T OL, }}{ }^{\text {I OH }}$	$\begin{gathered} \hline 80 \\ 160 \end{gathered}$	-	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

### 7.9 ELECTRICALCHARACTERISTICS @ 2.2 V

$\left(\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{Vdc} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{H}$ unless otherwise noted).

Charscteristic	Symbol	Min	Typ	Max	Unit	
Output voltage $\begin{aligned} & \left(\\|_{\text {Load }}=10 \mu \mathrm{~A}\right) \\ & \left(I_{\text {Load }}=-10 \mu \mathrm{~A}\right) \end{aligned}$	$v_{\text {OL }}$ VOH	-	$\begin{gathered} 0.1 \\ v_{\mathrm{CC}}-0.1 \\ \hline \end{gathered}$	-	V	
$\begin{aligned} \text { Output Low Voltage }(\text { l Load }= & 0.2 \mathrm{~mA}) \\ & \text { PAO-PA7, PB0-PB7, PCOPC3 } \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	0.4	-	$v$	
$\begin{aligned} \hline \text { Output High Voltage (lload }= & 0.2 \mathrm{~mA}) \\ & \text { PAO-PA 7, PB0-PB7, PCO-PC3 } \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	-	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	$v$	
Input Low Voltage   PAO-PA7, PBO.PB 7, PCOPC3, TIMER XTAL, MDS, IRQ, $\overline{\text { RESET }}$	$\begin{aligned} & v_{\text {IL }} \\ & v_{\text {IL }} \end{aligned}$	-	$\begin{aligned} & 0.3 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	-	v	
Input High Voltage   PAO-PA7, PBO-PB7, PCO-PC3, TIMER XTAL, MDS, $\overline{\mathrm{IRO}}, \overline{\mathrm{RESET}}$	$\begin{aligned} & v_{I H} \\ & v_{I H} \end{aligned}$		$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.8 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	$v$	
```Total Supply Current (No dc Loads, ( N o dc Loads, \(\mathrm{V}_{\mathrm{IL}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\) ) RUN Mode \(\div 1\) Option ( \(\mathrm{f}_{\mathrm{osc}}=1.0 \mathrm{MHz}\) ) \(\div 2\) Option (fosc \(=2.0 \mathrm{MHz}\) ) \(\div 4\) Option (fosc \(=2.0 \mathrm{MHz}\) ) \\ WAIT Mode (See Note) \\ \(\div 1\) Option ( \(\mathrm{f}_{\mathrm{osc}}=1.0 \mathrm{MHz}\) ) \\ \(\div 2\) Option (f \(\mathrm{f}_{\mathrm{osc}}=2.0 \mathrm{MHz}\) ) \\ \(\div 4\) Option ( \(\mathrm{f}_{\mathrm{osc}}=2.0 \mathrm{MHz}\) ) \\ STOP Mode (See Note)```	$\begin{aligned} & \text { IDD } \\ & \text { IDD } \end{aligned}$	- - - - - - -	$\begin{aligned} & 150 \\ & 175 \\ & 115 \\ & 50 \\ & 80 \\ & 70 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & 2 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$	
I/O Hi-Z Leakage Current ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$) Timer, PAO-PA7, PBO-PB7, PCO-PC3 (with no pull-downs)	ITSI	-10	-	10	$\mu \mathrm{A}$	
Hi-Z State Input Current ($\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$) PAO-PA7, PB0-PB7, PC0.PC3 (with pull-downs)	ITSI	-	75	-	$\mu \mathrm{A}$	
Input Current $\overline{\text { RQQ }}$, $\overline{\mathrm{RESET}}, \mathrm{XTAL}$, MDS	1 in	-1	-	$+1$	$\mu \mathrm{A}$	
1/O Output CapacitanceTimer, PAO-PA7, PBO-PB7, PCO-PC3	Cout	-	-	12	pF	
Input Capacitance $\overline{\mathrm{R} Q}, \overline{\text { RESET, XTAL, MDS }}$	$\mathrm{C}_{\text {in }}$	-	-	8	pF	

NOTE : Test conditions for IDD as follows :
XTAL input is a square wave from 0.2 V to $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.
EXTAL output load $=10 \mathrm{pF}$
Device in self check-mode
In WAIT and STOP Modes, Port A is programmed as output, Ports B and C are programmed as inputs.
In STOP Mode : all inputs are tied to $V_{\text {IL }}$ excepted $\overline{\mathrm{RQ}}, \overline{\mathrm{RST}}, \mathrm{MDS}, ~ X T A L$. EXTAL which are tied to $\mathrm{V}_{\text {IH }}$.

7.10 CONTROL TIMING @ 2.2 V

$\left(\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{Vdc} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted).

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Oscillator Frequency } \\ & \div 2, \div 4 \text { options } \\ & \quad \div 1 \text { option } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{Osc}} \\ & \mathrm{f}_{\mathrm{OSC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Bit Time	$t_{\text {bit }}$	-	1.0	-	$\mu \mathrm{s}$
Bit Cycle Time	tbyte	-	12.0	-	$\mu 5$
$\overline{\mathrm{RQ}}$ and TIMER Pulse Width	tWL. TWM	2	-	-	tbyte
RESET Pulse Width	$t_{\text {trwL }}$	2	-	-	tbyte
Oscillator Pulse Width $\div 2, \div 4$ options $\div 1$ option	${ }^{\text {t }} \mathrm{OL}, \mathrm{t}^{\text {OH}}$	-	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

SECTION 8 MECHANICAL DATA

This section contains the pin assignment and package dimension diagrams for the EF68HCO4P3 microcomputer.

8.1 PIN ASSIGNMENTS

8.2 PHYSICAL DIMENSIONS

CB-132

CB-520

FN SUFFIX

SECTION 9 ORDERING INFORMATION

9.1 INTRODUCTION

The following information is required when ordering a custom MCU. The information may be transmitted to THOMSON SEMICONDUCTEURS in the following media:

EPROM(s), ET2716 or ET2732
EFDOS/MDOS*, disk file

To initiate a ROM pattern for the MCU, it is necessary to first contact your local field service office, local sales person, or your local THOMSON SEMICONDUCTEURS representative.

9.1.1 EPROMs

A 2716 or 2732 type EPROM, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. Since all program and data space information will fit on one 2716 or 2732 EPROM, the EPROM must be programmed as follows in order to emulate the EF68HCO4P3 MCU. Start the data space ROM at EPROM address \$018 and start program space ROM at EPROM address $\$ 960$ and continue to memory space \$FFF. All unused bytes, including the user's space, must be set to zero. For shipment to THOMSON SEMICONDUCTEURS the EPROMs should be placed in a conductive IC carrier and packed securely. Do not use styrofoam.

9.1.2 EFDOS/MDOS* Disk File

An EFDOS/MDOS* disk, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. When using the EFDOS/MDOS* disk, include the entire memory image of both data and program space. All unused bytes, including the user's space, must be set to zero.

9.2 VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the contractural agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program a blank 2716, 2732, or EFDOS disk (supplied by the customer) from the data file used to create the custom mask to aid in the verification process.

* Requires prior factory approval.

9.3 ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and five volts. These RVUs are included in the mask charge and are not production parts. These RVUs are not backed nor guaranteed by THOMSON SEMICONDUCTEURS Quality Assurance.

9.4 FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies. The customer must clearly label the disk with the ROM pattern file name. The minimum EFDOS/MDOS* system files as well as the absolute binary object files (filename.LO type of file) and filename. DO if necessary from the EF6804 cross-assembler must be on the disk. An object file made from a memory dump, using the ROLLOUT command is also admissable. Consider submitting a source listing as well as : filename,..LX (DEVICE ${ }^{(\mathbb{1} / E X O R}$ ciser ${ }^{\text {P/ }}$ loadable.format) . This file will of course be kept confidential and is used 1) to speed up the process in house if any problems arise, and 2) to speed up our customer to factory interface if a user finds any software errors and needs assistance quickly from the factory representative.

* Requires prior factory approval.

DEVICE ${ }^{\circledR}$ is a registered trademark from THOMSON SEMICONDUCTEURS.
EXORciser ${ }^{\circledR}$ is a registered trademark of MÓTOROLA INC.

ORDERING INFORMATION

A reduced-packaged version of the EF68HC04P3 (28 pins) will be available in a $\mathbf{2 0}$-pin package : EF68HC04J3.

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different products.

ADVANCE INFORMATION

The EF6805P2 Microcomputer Unit (MCU) is a member of the EF6805 Family of low-cost single-chip microcomputers. This 8-bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800 -based instruction set.A comparison of the key features of several members of the 6805 Family is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805P2 MCU.

HARDWARE FEATURES

- 8-Bit Architecture
- 64 Bytes of RAM
- Memory Mapped I/O
- 1100 Bytes of User ROM
- 20 TTL/CMOS Compatible Bidirectional I/O Lines 18 Lines are LED Compatible)
- On-Chip Clock Generator
- Self-Check Mode
- Zerò Crossing Detection
- Master Reset
- Complete Development System Support on DEVICE ${ }^{\circledR}$
- 5 V Single Supply

SOFTWARE FEATURES

- Similar to 6800 Family
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instruction
- Versatile Interrupt Handling
- Versatile Index Register
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Register/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM, and I/O

USER SELECTABLE OPTIONS

- Internal 8-Bit Timer with Selectable Clock Source External Timer Input or Internal Machine Clock)
- Timer Prescaler Option (7 Bits, 2 n)
- 8 Bidirectional I/O Lines with TTL or TTL/CMOS Interface Option
- Crystal or Low-Cost Resistor Oscillator Option
- Low Voltage Inhibit Option
- Vectored Interrupts: Timer, Software, and External

DEVICE ${ }^{\circledR}$ is THOMSON SEMICONDUCTEURS' development/emulation tool.

PIN ASSIGNMENT

FIGURE 1 - EF6805P2 HMOS MICROCOMPUTER BLOCK DIAGRAM
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage (Except Pin 6)	$V_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range $\text { (} T_{L} \text { to } T_{H} \text {) } \quad V \text { suffix }$	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Plastic PLCC	TJ	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance	$\theta \mathrm{JA}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic		70	
PLCC		110	

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:
$T_{J}=T_{A}+\left(P_{D}{ }^{\bullet}{ }^{\prime} J A\right)$
Where:

> TA \equiv Ambient Temperature, ${ }^{\circ} \mathrm{C}$
> $\theta J A \equiv$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
> PD \equiv PINT + PPORT
> PINT \equiv ICC \times VCC, Watts - Chip Internal Power
> PPORT \equiv Port Power Dissipation, Watts - User Determined

For most applications PPORT \&PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P_{D} \bullet\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A^{\bullet} \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{S S}=0 \mathrm{Vdc}, T_{A}=T_{L}$ to T_{H} unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit.
Input High Voltage $\begin{gathered} \overline{\operatorname{RESET}}\left(4.75 \leq V_{C C} \leq 5.75\right) \\ \left.1 \mathrm{~V}_{\mathrm{CC}}<4.75\right) \\ \overline{\text { INT }\left(4.75 \leq V_{C C} \leq 5.75\right)} \\ \left(\mathrm{V}_{\mathrm{CC}}<4.75\right) \end{gathered}$ All Other (Exept TIMER)	$\mathrm{V}_{\text {IH }}$	$\begin{gathered} 4.0 \\ v_{C C}-0.5 \\ 4.0 \\ v_{C C}-0.5 \\ 2.0 \\ \hline \end{gathered}$		V_{CC} $V_{C C}$ $V_{C C}$ $V_{C C}$ V_{CC}	V
Input High Voltage Timer Timer Mode Self-Check Mode	$\mathrm{V}_{\text {IH }}$	$\begin{array}{r} 2.0 \\ 9.0 \\ \hline \end{array}$	10.0	$\begin{gathered} V_{C C}+1 \\ 150 \end{gathered}$	V
input Low Voltage $\overline{\text { INT }}$ All Other	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & v_{\text {SS }} \\ & v_{\text {SS }} \end{aligned}$	*	$\begin{array}{r} 1.5 \\ 0.8 \\ \hline \end{array}$	V
$\overline{\mathrm{RESET}}$ Hysteresis Voltage (See Figures 10, 11, and 12) "Out of Reset" "Into Reset"	VIRES + VIRES -	$\begin{aligned} & 2.1 \\ & 0.8 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 4.0 \\ 2.0 \\ \hline \end{array}$	V
$\overline{\text { INT }}$ Zero Crossing Input Voltage, Through a Capacitor	VINT	2.0	-	4.0	$V_{\text {ac p-p }}$
Internal Power Dissipation - No Port Loading $\mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	PINT	-	400	690	mW
Input Capacitance XTAL All Other	$\mathrm{C}_{\text {in }}$	-	$\begin{aligned} & 25 \\ & 10 \\ & \hline \end{aligned}$	-	pF
Low Voltage Recover	$V_{\text {LVR }}$	-	-	4.75	V
Low Voltage Inhibit 0 to $+70^{\circ} \mathrm{C}$ -40 to $+85^{\circ} \mathrm{C}$	VLVI	$\begin{gathered} 2.75 \\ 3.1 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	-	v
Input Current TIMER ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$) $\overline{\mathbb{N T}}\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$ EXTAL ($\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$ to V_{CC}. Crystal Option) ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$. Crystal Option) $\overline{\operatorname{RESET}}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)$ (External Capacitor Charging Current)	In	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & -4.0 \end{aligned}$	$\begin{gathered} - \\ 20 \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	μ

* Due to internal biasing. this input (when unused) floats to approximately 2.0 Vdc .

PORT DC ELECTRICAL CHARACTERISTICS $\operatorname{V} C C=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V} S S=0 \mathrm{Vdc}, T_{A}=T_{L}$ to T_{H} unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Port A with CMOS Drive Enabled					
Output Low Voltage. 'Load $=1.6 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output High Voltage, ILoad $=-100 \mu \mathrm{~A}$	V_{OH}	2.4	-	-	V
Output High Voltage, ILoad $=-10 \mu \mathrm{~A}$	V_{OH}	$\mathrm{V}_{\mathrm{cc}}-1.0$	-	-	V
Input High Voltage, I Load $=-300 \mu \mathrm{~A}$ (max. 1	V_{IH}	2.0	-	$V_{\text {CC }}$	V
Input Low Voltage, 'Load $=-500 \mu \mathrm{~A}$ (max.)	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
$\mathrm{H}_{1}-2$ State Input Current ($\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$ to V_{CC})	IIH	-	-	-300	$\mu \mathrm{A}$
Hi-Z State Input Current ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$)	116	-	-	-500	$\mu \mathrm{A}$
Port B					
Output Low Voltage, $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output Low Voltage, ILoad $=10 \mathrm{~mA}$ (sink)	V_{OL}	-	-	1.0	V
Output High Voltage, LLoad $=-200 \mu \mathrm{~A}$	$\mathrm{VOH}^{\text {OH}}$	2.4	-	-	V
Darlington Current Drive (Source), $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	IOH	-1.0	-	-10	mA
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	$V_{\text {CC }}$	V
Input Low Voltage	V_{16}	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-2 State Input Current	ITSI	$\underline{-}$	2	10	$\mu \mathrm{A}$
Port C and Port A with CMOS Drive Disabled					
Output Low Voltage, 'Load $=1.6 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output High Voltage, ${ }_{\text {Load }}=-100 \mu \mathrm{~A}$	V_{OH}	2.4	-	-	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	V_{CC}	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi.Z State Input Current	ITSI	-	2	10	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS $\left(V_{C C}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{S S}=0 \mathrm{Vdc}, \mathrm{T}_{A}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{array}{lr}\text { Oscillator Frequency } & \text { EF6805P2 } \\ \\ \text { EF68A05P2 } \\ \text { EF68B05P2 }\end{array}$	$f_{\text {osc }}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 4.2 \\ & 6.0 \\ & 8.0 \\ & \hline \end{aligned}$	MHz
Cycle Time ($4 / \mathrm{f}_{\text {osc }}$)	$\mathrm{t}_{\mathrm{cyc}}$	0.95	-	10	$\mu \mathrm{S}$
INT and TIMER Puise Width (See Interrupt Section)	tWL, tWH	$\mathrm{t}_{\mathrm{cyc}}+250$	-	-	ns
RESET Pulse Width	trwL	$\mathrm{t}_{\mathrm{cyc}}+250$	-	-	ns
RESET Delay Time (External Capacitance $=1.0 \mu \mathrm{~F}$)	trin	-	100	-	ms
$\overline{\text { INT }}$ Zero Crossing Detection Input Frequency ($\pm 5^{\circ}$ Accuracy)	fint	0.03	-	1.0	kHz
External Clock Input Duty Cycle (EXTAL)	-	40	50	60	\%

FIGURE 2 - TTL EQUIVALENT TEST LOAD|FIGURE 3 - CMOS EQUIVALENT TEST LOAD FIGURE 4 - TTL EQUIVALENT TEST LOAD (PORT B)
(PORT A)

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in Figure 1, are described in the following paragraphs.

VCC AND VSS

Power is supplied to the MCU using these two pins. $V_{C C}$ is power and V_{SS} is the ground connection.

$\overline{\text { INT }}$

This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts section for additional information.

XTAL AND EXTAL

These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options section for recommendations about these inputs.

TIMER

This pin allows an external input to be used to decrement the internal timer circuitry. Refer to Timer section for additional information about the timer circuitry

$\overline{\text { RESET }}$

This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. Refer to Resets section for additional information.

NUM

This pin is not for user application and must be connected to V SS

INPUT/OUTPUT LINES (PA0-PA7, PB0-PB7, PCO-PC3)
These 20 lines are arranged into two 8-bit ports (A and B)
and one 4-bit port (C). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to Inputs/Outputs section for additional information.

MEMORY

As shown in Figure 5, the MCU is capable of addressing 2048 bytes of memory and I/O registers with is program counter. The EF6805P2 MCU has implemented 1288 of these locations. This consists of: 1100 bytes of user ROM, (from \$080 to \$OFF and from \$3CO to $\$ 783$) 116 bytes of self-check ROM, 64 bytes of user RAM, 6 bytes of port I/O, and 2 timers registers. The ROM division allows 128 bytes of ROM to be addressed with direct instructions.
The stack area is used during the processing of interrupt and subroutine calls to save the processor state. The register contents are pushed onto the stack in the order shown in Figure 6. Because the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first; then the high order three bits (PCH) are stacked. This ensures that the program counter is loaded correctly, during pulls from the stack, since the stack pointer increments during pulls. A subroutine call results in only the program counter ($\mathrm{PCL}, \mathrm{PCH}$) contents being pushed onto the stack. The remaining CPU registers are not pushed.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the $1 / 0$ or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory vía internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in Figure 7 and are explained in the following paragraphs.

* Caution: Data direction registers (DDRs) are write-only; they read as \$FF.

FIGURE 5 - MCU ADDRESS MAP

FIGURE 6 - INTERRUPT STACKING ORDER
FIGURE 7 - PROGRAMMING MODEL

INDEX REGISTER (X)

The index register is an 8-bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The index register may also be used as a temporary storage area.

PROGRAM COUNTER (PC)

The program counter is an 11-bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP)

The stack pointer is an 11-bit register that contains the address of the next free location on the stack. Initially, the stack pointer is set to location \$07F and is decremented as data is pushed onto the stack and incremented as data is pulled from the stack. The six most significant bits of the stack pointer are permanently configured to 000011 . During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F. Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls.

CONDITION CODE REGISTER (CC)

The condition code register is a 5-bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each individual condition code register bit is explained in the following paragraphs.

HALF CARRY (H) - Set during ADD and ADC instructions to indicate that a carry occurred between bits 3 and 4 .

INTERRUPT (I) - This bit is set to mask (disable) the timer and external interrupt (INT). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt is cleared.

NEGATIVE (N) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in result equal to a logical one).

ZERO (Z) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was zero.

CARRY/BORROW (C) - Used to indicate that a carry or borrow out of the arithmetic logic unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The EF6805P2 MCU timer circuitry is shown in Figure 8. The 8-bit counter may be loaded under program control and is decremented toward zero by the clock input (prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (1 bit) in the condition code register also prevents a timer interrupt from being processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$7F8 and \$7F9, and executing the interrupt routine; see the Interrupts section. THE TIMER INTERRUPT REQUEST BIT MUST BE CLEARED BY SOFTWARE.
The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin or it can be the internal $\phi 2$ signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled tWL. tWH. The pin logic that recognizes the high (or low) state on the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows: (assumes 50/50 duty cycle for a given period)

$$
t_{c y c} \times 2+250 n s=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply tWL + tWH. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 ns twice).

When the $\phi 2$ signal is used as the source. it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. (NOTE: For

FIGURE 8 - TIMER BLOCK DIAGRAM
ungated $\phi 2$ clock inputs to the timer prescaler, the TIMER pin should be tied to $V_{C C}$.) The source of the clock input is one of the mask options that is specified before manufacture of the MCU

A prescaler option can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer counter register is written to a logic one. (This bit always needs a logic 0).
The timer continues to count past zero, falling from \$00 to $\$ \mathrm{FF}$ and then continuing the countdown. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred without disturbing the counting process.
At power-up or reset, the prescaler and counter are initialized with all logical ones, the timer interrupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

SELF-CHECK

The self-check capability of the EF6805P2 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 9 and monitor the output of port C bit 3 for an oscillation of approximately 7 Hz . A 10 volt level on the TIMER input, pin 7, energizes the ROMbased self-check feature. The self-check program exercises the RAM, ROM. TIMER, interrupts, and I/O ports.

RESETS

The MCU can be reset three ways: by initial power-up, by the external reset input (RESET) and by optional, internal, low-voltage detect circuits. The RESET input consists mainly of a Schmitt trigger that senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in Figure 11. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.

POWER-ON RESET (POR)

An internal reset is generated upon power-up that allows the internal clock generator to stabilize. A delay of ${ }^{\text {t RHL }}$ milliseconds is required before allowings the RESET input to go high. See the power and reset timing diagram (see Figure 10). Connecting a capacitor to the RESET input (see Figure 12) typically provides sufficient delay. During power-up, the Schmitt trigger switches on (removes reset) when RESET rise to $\mathrm{V}_{\text {IRES }}{ }^{+}$.

EXTERNAL RESET INPUT

The MCU is reset when a logic zero is applied to the RESET input for a period longer than one machine cycle ($\mathrm{t}_{\mathrm{cyc}}$). Under this type of reset, the Schmitt trigger switches off are VIRES- to provide an internal reset voltage.

LOW VOLTAGE INHIBIT (LVI)

The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level (V_{LV}). The only requirement is that the V_{CC} must remain at or below the $\mathrm{V}_{\mathrm{LVI}}$ threshold for one $\mathrm{t}_{\mathrm{cyc}}$ minimum.

FIGURE 9 - SELF-CHECK CONNECTIONS

In typical applications, the VCC bus filter capacitor will eliminate negative-going voltage glitches of less than one ${ }^{t}$ cyc. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset is removed once the power supply voltage rises above a recovery level (VLVR) at which time a normal power-one reset occurs.

INTERNAL CLOCK GENERATORS OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs.
A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in Figure 13. Crystal specifications and suggested PC board layouts are given in Figure 14. A resistor selection graph is given in Figure 15.

The crystal oscillator start-up time is a function of many variables: crystal parameters (especially RS, oscillator load capacitances, IC parameters, ambient temperature, supply voltage and supply voltage turn-on time). To ensure rapid oscillator start-up, neither the crystal characteristics nor the load capacitances should exceed recommendations.
When utilizing the on-board oscillator, the MCU should remain in the reset condition (RESET pin voltage below $V_{\text {IRES }}{ }^{+}$) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating current specifications.
One VCC minimum is reached, the external RESET capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{C C}$ through a large resistor, so it functions almost like a constant current source until the reset voltages rises above VIRES+. Therefore, the RESET pin will charge a approximately

$$
\left(\mathrm{V}_{\text {IRES }}+1 \cdot \mathrm{C}_{\text {ext }}=\text { IRES } \cdot \mathrm{t}_{\mathrm{RHL}}\right.
$$

FIGURE 10 - POWER AND RESET TIMING

FIGURE 11 - TYPICAL RESET SCHMITT TRIGGER HYSTERESIS

FIGURE 12 - POWER-UP RESET DELAY CIRCUIT

Approximately 25% to 50% Accuracy
Typical $\mathrm{t}_{\mathrm{cyc}}=1.25 \mu \mathrm{~s}$
External Jumper

Approximately 10% to 25% Accuracy External Resistor
(Excludes Resistor Tolerence)

NOTE: The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than $4 \mathrm{MHz}_{\text {; }}$ the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.

FIGURE 13 - CLOCK GENERATOR OPTIONS

AT - Cut Parallel Resonance Crystal $\mathrm{C}_{\mathrm{O}}=7 \mathrm{pF}$ Max.
Freq. $=4.0 \mathrm{MHz} @ C_{L}=24 \mathrm{pF}$
$R_{S}=50$ ohms Max.

Piezoelectric ceramic resonators which have the equivalent specifications may be use instead of crystal oscillators. Follow ceramic resonator manufacturer's suggestions for $\mathrm{C}_{\mathrm{O}}, \mathrm{C}_{1}$ and R_{S} values.

FIGURE 14 - CRYSTAL MOTIONAL ARM PARAMETERS AND SUGGESTED PC B्OARD LAYOUT

FIGURE 15 - TYPICAL FREQUENCY SELECTION FOR RESISTOR OSCILLATOR OPTION

INTERRUPTS

The EF6805P2 MCU can be interrupted three different ways: through the external interrupt (INT) input pin, the internal timer interrupt request, or the software interrupt instruction (SWI). When any interrupt occurs, the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address and the interrupt routine is executed. Stacking the CPU registers, setting the I bit, and vector fetching requires a total of $11 \mathrm{t}_{\text {cyc }}$ periods for completion.

A flowchart of the interrupt sequence is shown in Figure 16. The interrupt service routine must end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.
The external interrupt is internally synchronized and then
latched on the falling edge of $\overline{\mathrm{NT}}$. A sinusoidal input signal (finT maximum) can be used to generate an external interrupt, as shown in Figure 17(a), for use as a zerocrossing detector (for negative transitions of the ac sinusoid). This allows applications such as servicing time-ofday routines and engaging/disengaging ac power control devices. Off-chip full-wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a 2 f clock.

For digital applications, the INT pin can be driven by a digital signal. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled $\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\mathrm{WH}}$. The pin logic that recognizes the high (or low) state on the pin must also recognize the low (or high) state on the pin in order to "rearm" the internal logic. Therefore, the period can be calculated as follows: (assumes 50/50 duty cycle for a given period)

$$
\mathrm{t}_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply $\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}$. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 ns twice). See Figure 17(b).

A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. Note that if the I bit is zero, SWI executes after the other interrupts. SWIs are usually used as break-points for debugging or as system calls.

FIGURE 16 - $\overline{R E S E T}$ AND INTERRUPT PROCESSING FLOWCHART
(a) Zero-Crossing Interrupt

(b) Digital-Signal Interrupt

FIGURE 17 - TYPICAL INTERRUPT CIRCUITS

INPUT/OUTPUT

There are 20 input/output pins. The $\overline{\operatorname{NT}}$ pin may also be polled with branch instructions to provide an additional input pin. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding write-only data direction register (DDR). The port 1/O programming is accomplished by writing the corresponding bit in the port DDR to a logic " 1 " for output or a logic " 0 " for input. On reset, all the DDRs are initialized to a logic " 0 " state to put the ports in the input mode. To avoid undefined levels, the port output registers are not initialized on reset, but may be written before setting the DDR bits. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading; see Figure 18. When port B is programmed for outputs, it is capable of sinking 10 mA and sourcing 1 mA on each pin.

All input/output lines are TTL compatible as both inputs and outputs. Ports B and C are CMOS compatible as inputs. Port A may be made CMOS compatible as outputs with a mask option. The address map in Figure 5 gives the address
of data registers and DDRs. The register configuration is provided in Figure 19 and Figure 20 provides some examples of port connections.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see Figure 18) may always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input (" 0 ") and corresponds to the latched output data when the DDR is an output (" 1 ").

Data Direction Register Bit	Output Data Bit	Latched Output State	Input To
1	0	0	MCU
1	1	1	0
0	X	High-Z**	1

*DDR is a write-only register and reads as all " 1 s ".
** Ports A (with CMOS drive disabled), B, and C are three state ports. Port A has optional internal pullup devices to provide CMOS drive capability. See Electrical Characteristics tables for complete information.

FIGURE 18 - TYPICAL PORT I/O CIRCUITY

FIGURE 19 - MCU REGISTER CONFIGURATION

Port A, bit 7, programmed as output, driving CMOS loads and bit 4 driving one TTL load directly using CMOS output option.

Port B, bit 5 programmed as output, driving
Darlington-base directly.

Port B, bit 0 and bit 1 programmed as output, driving LEDs directly.

Port C, bits $0-3$ programmed as output, driving CMOS loads, using external pullup resistors.

TTL driving port A directly.

CMOS or TTL driving port B directly.

CMOS and TTL driving port C directly.

FIGURE 20 (b) - TYPICAL OUTPUT MODE PORT CONNECTIONS

SOFTWARE

BIT MANIPULATION

The EF6805P2 MCU has the ability to set or clear any single random access memory or input/output bit (except the data direction register, see Caution below), with a single instruction (BSET, BCLR). Any bit in page zero including ROM, except the DDRs, can be tested, using the BRSET and BRCLR instructions, and the program branches as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in Figure 21 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device.

The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, LSB first, out of the device. The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in a RAM location.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store in.struction.

FIGURE 21 - BIT MANIPULATIONS EXAMPLE

ADDRESSING MODES

The EF6805P2 MCU has 10 addressing modes which are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the 6805 Family User's Manual.

The term "effective address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.

IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This includes the on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.

EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions using extended addressing are capable of referencing arguments anywhere in memory with a single 3 -byte instruction. When using the Motorola assembler, the programmer need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.

RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset when using the Motorola assembler since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - in the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

INDEXED, 8-BIT OFFSET - In the indexed, 8-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1$ FE is the last location at which the instruction may begin).

INDEXED, 16-BIT OFFSET - in the indexed, 16 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset, except that this 3 -byte instruction allows tables to be anywhere in memory. As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing.

BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset is in the third byte and is added to the value of the PC if the branch condition is true. This single 3 -byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code register.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instruction with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805P2 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch,
bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The 'jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to Table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is included in read-modify-write instructions through it does not perform the write. Refer to Table 2.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 3.

BIT MANIPULATION INSTRUCTIONS - These instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to Table 4.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

CONTROL INSTRUCTIONS - The control instructions control the MCU operations during program execution. Refer to Table 5.

ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in Table 6.

OPCODE MAP SUMMARY - Table 7 is an opcode map for the instructions used on the MCU.

TABLE 1 - REGISTER/MEMORY INSTRUCTIONS

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed(No Offset)			$\begin{gathered} \text { Indexed } \\ \text { (8-Bit Offset) } \end{gathered}$			Indexed (16-Bit Offset)		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \hline \neq \\ \text { Bytes } \\ \hline \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \\ \hline \end{array}$	Bytes	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \text { \# } \\ \text { By:es } \\ \hline \end{gathered}$	$\begin{gathered} \text { \# } \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	Cycles	$\begin{array}{\|c\|} \hline \text { OP } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	Cycles
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA	-	-	-	87	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX	-	-	-	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	$A B$	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	B0	2	4	CO	3	5	FO	1	4	EO	2	5	DO	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	Cl	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR	-	-	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

TABLE 2 - READ-MODIFY-WRITE INSTRUCTIONS

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			Indexed(No Offset)			Indexed $(8$ Bit Offset)		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \hline \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \\ \hline \end{array}$	Bytes	Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	Bytes		$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	Bytes	Cycles	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	Bytes	Cycles
Increment	INC	4C	1	4	5C	1	4	3 C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6 A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2's Complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	30	2	6	70	1	6	6D	2	7

TABLE 3 - BRANCH INSTRUCTIONS

		Relative Addressing Mode		
Function	Mnemonic	Op Code		Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFFHigher	BHI	22	2	4
Branch IFFLower or Same	BLS	23	2	4
Branch IFFCarry Clear	BCC	24	2	4
(BranchIFFHigher or Same)	(BHS)	24	2	4
Branch IFFCarry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
Branch IFFNot Equal	BNE	26	2	4
Branch IFFEqual	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
BranchifF Plus	BPL	2A	2	4
BranchIFF Minus	BMI	2B	2	4
Branch IFFInterupt Mask Bit is Clear	BMC	2C	2	4
Branch IFFInterrupt Mask Bit is Set	BMS	2D	2	4
Branch IFFInterrupt Line is Low	BIL	2 E	2	4
Branch IFFInterrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

TABLE 4 - BIT MANIPULATION INSTRUCTIONS

		Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
Function	Mnemonic	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles
Branch IFF Bit n is set	BRSET $n(\mathrm{n}=0 \ldots 7)$	-	-	-	2•n	3	10
Branch IFF Bit n is clear	BRCLR n ($\mathrm{n}=0 \ldots 7$)	-	-	-	$01+2 \cdot n$	3	10
Set Bit n	BSET n ($\mathrm{n}=0 \ldots 7$)	$10+2 \cdot n$	2	7	-	-	-
Clear bit n	BCLR $n(\mathrm{n}=0 \ldots 7)$	$11+2 \bullet n$	2	7	-	-	-

TABLE 5 - CONTROL INSTRUCTIONS

		Inherent		
Function	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	$9 B$	1	2
Clear Interrupt Mask Bit	CLI	$9 A$	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	9 C	1	2
No-Operation	NOP	$9 D$	1	2

TABLE 6 - INSTRUCTION SET

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\left\lvert\, \begin{aligned} & \text { Indexed } \\ & (16 \text { Bits }) \end{aligned}\right.$	Bit Set/ Clear	Bit Branch	H	1	N	Z	C
ADC		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	-
ASL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
ASR	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
BCC					X						\bullet	-	\bullet	\bullet	\bullet
BCLR									X		\bullet	-	-	-	\bullet
BCS					X						\bullet	-	-	-	\bullet
BEO					X						\bullet	\bullet	\bullet	-	\bullet
BHCC					X						\bullet	-	-	-	\bullet
BHCS					X						\bullet	-	\bullet	-	\bullet
BHI					X						\bullet	-	-	\cdots	\bigcirc
BHS					X						-	-	-	\bullet	\bullet
BIH					X						\bullet	\bullet	-	-	\bullet
BIL					X						-	-	\bullet	\bullet	\bullet
BIT		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
BLO					X						\bullet	-	\bigcirc	\bullet	\bullet
BLS					X						-	-	\bullet	-	\bullet
BMC					X						\bullet	-	\bullet	-	\bullet
BMI					X						\bullet	-	-	-	\bullet
BMS					X						-	-	-	-	\bullet
BNE					X						-	-	\bigcirc	-	\bigcirc
BPL					X						\bullet	-	\bullet	\bullet	\bullet
BRA					X						-	-	\bigcirc	-	\bullet
BRN					X						-	-	\bullet	-	\bullet
BRCLR										X	\bullet	\bullet	\bullet	\bullet	\wedge
BRSET										X	\bullet	-	\bullet	-	\wedge
BSET									X		-	-	-	-	\bullet
BSR					X						-	-	-	-	\bullet
CLL	X										-	-	\bigcirc	-	0
CLI	X										-	0	\bullet	-	\bullet
CLR	X		X			X	X				\bullet	\bullet	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
COM	X		X			X	X				\bullet	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
DEC	X		X			X	X				-	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
INC	X		X			X	X				-	-	\wedge	\wedge	\bullet
JMP			X	X		X	X	X			-	-	\bullet	\bullet	\bullet
JSR			X	X		X	X	X			-	-	\bullet	\bullet	\bullet
LDA		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
LSR	X		X			X	X				-	-	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
NOP	X										\bullet	-	-	\bullet	\bullet
ORA		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
ROL	\bar{X}		X			X	X				\bullet	-	\wedge	\wedge	\wedge
RSP	X										\bullet	\bullet	\bullet	\bigcirc	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
I Interrupt Mask
$\mathrm{N} \quad$ Negative (Sign Bit)
\wedge Test and Set if True, Cleared Otherwise
$\begin{array}{ll}\mathrm{N} & \text { Nega } \\ Z & \text { Zero }\end{array}$

TABLE 6 - INSTRUCTION SET (CONTINUED)

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	Bit Set/ Clear		H	1	N	Z	C
RTI	X										?	?	?	?	?
RTS	X	'									\bigcirc	\bigcirc	\bullet	\bigcirc	\cdots
SBC		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
SEC	X										-	\bullet	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	X										\bullet	1	\bullet	\bullet	\bullet
TAX	X										\bullet	\bullet	\bullet	\bullet	\bullet
TST	X		X			X	$\bar{\chi}$				\bullet	-	\wedge	\wedge	\bullet
TXA	X										\bullet	\bullet	\bullet	\bullet	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
I Interrupt Mask
\wedge Test and Set if True, Cleared Otherwise
N Negative (Sign Bit)

- Not Affected

Z Zero
? Load CC Register From Stack

HMOS 6805 FAMILY

Features	EF6805CT	EF6805P2	EF6805P4	EF6805P6	EF6805R2	EF6805R3	EF6805T2	EF6805U2	EF6805U3	EF6805TV
Technology	HMOS									
Number of Pins	40	28	28	28	40	40	28	40	40	40
On-Chip RAM (Bytes)	240	64	112	64	64	112	64	64	112	96
On-Chip User ROM (Bytes)	4096	1100	1100	1796	2048	3776	2508	2048	3776	6144
External Bus	Yes	None								
Bidirectional 1/O Lines	29	20	20	20	24	24	19.	24	24	32
Unidirectional I/O Lines	None	None	None	None	6 Inputs	6 Inputs	None	8 Inputs	8 Inputs	None
Other 1/O Features	Timer, UART	Timer	Timer	Timer	Timer,A/D	Timer,A/D	Timer, PLL	Timer	Timer	Timer,D/A
External Interrupt Inputs	3	1	1	1	2	2	2	2	2	1
STOP and WAIT	No									

TABLE 7 - 6805 HMOS FAMILY OPCODE MAP

	Bit Manipulation		Branch	Read-Modity-Write					Control		Register/Memory						
Low ${ }^{\text {Hi }}$	$\begin{aligned} & \frac{8 T 8}{0} \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { BSC } \\ & \text { م } 0001 \end{aligned}$	$\begin{aligned} & \text { REL } \\ & 0.10 \\ & \hline 0.0 \end{aligned}$	$\begin{gathered} \hline 01 R \\ -\frac{1}{3} \\ 0011 \end{gathered}$	$\begin{aligned} & \text { INH } \\ & 0 \\ & 0100 \end{aligned}$	$\frac{\mathrm{INH}}{5}$	$\begin{gathered} \frac{1 \times 1}{6} \\ 0110 \end{gathered}$	IX 7 7111	$\begin{gathered} \text { INH } \\ 8 \\ 1000 \end{gathered}$	$\begin{aligned} & \text { INH } \\ & 9 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IMM } \\ & \text { A } \\ & \hline 1010 \end{aligned}$	$\begin{gathered} \text { DIR } \\ \hline 1 \\ \hline 1011 \\ \hline \end{gathered}$	$\begin{gathered} \text { EXT } \\ C \\ 1100 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{1 \times 2}{0} \\ & 1101 \\ & 1 \end{aligned}$	$\begin{gathered} \frac{1 \times 1}{E} \\ \underline{1} 10 \\ \hline \end{gathered}$		Hi Low
000	$\begin{aligned} & 10 \\ & \text { BRSETO } \\ & 3 \quad \text { BTE } \end{aligned}$	BSETO	${ }_{2}^{4} \text { BRA }$	$\begin{array}{\|ll\|} \hline 6 & \text { NEG } \\ 2 & \\ \hline \end{array}$	${ }_{1}^{4}$ NEG ${ }_{\text {INH }}$	${ }_{1}^{4}{ }^{\text {NEG }}$ INH	${ }^{\text {NEG }}{ }_{\|x\|}$	${ }_{1}^{6}$ NEG ${ }^{\text {IX }}$	RTI inh		${ }_{2}^{2} \text { SUB }$	${ }_{2}{ }_{2} \mathrm{SUB} \mathrm{DIR}_{\mathrm{DIR}}$	$\int_{3}^{5} \text { SUB }$	${ }_{3}^{6}$ SUB ${ }_{1 \times 2}$	${ }_{2}^{\text {SUB }}{ }_{\mid \times 1}$	${ }_{1}^{4}$ SUB ${ }_{1 \times}$	0_{0}^{0}
$0^{1} 0_{1}$	$\begin{aligned} & 10 \\ & \text { BRCLRO } \\ & 3 \quad \text { BTB } \\ & \hline 10 \end{aligned}$	$\begin{gathered} \text { BCLRO } \\ 2 \\ \hline 2 \end{gathered}$	$\begin{array}{ccc} \hline & & \mathrm{HEL} \\ \hline & \mathrm{BRN} \\ \hline \end{array}$						$\begin{array}{ll} 6 \\ \text { RTS } \\ \\ & \text { NH } \\ \hline \end{array}$		$\begin{array}{ll} 2 & \text { CMP } \\ 2 & \text { IMM } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} 4 \\ 2 & \text { CMP } \\ \hline \end{array}$	${ }_{3}^{5} \text { CMP }$	$\begin{array}{ll} { }_{3}^{6} & \text { CMP } \\ \hline \end{array}$	$\mathrm{CMP}_{\|x\|}$	CMP ${ }_{\text {IX }}$	$0^{1} 01$
-2	$\begin{aligned} & 10 \\ & \text { BRSET1 } \\ & 3 \quad \text { BTB } \end{aligned}$	$\begin{array}{r} \text { BSET1 } \\ \hline \end{array}$	${ }_{2}^{4} \mathrm{BHI}$								$2 \quad \mathrm{SBC}$	${ }_{2}{ }_{2 B C}$	${ }_{3}{ }^{S B C} E X T$	${ }_{3}{ }^{\text {SBC }}{ }_{1 \times 2}$	$\begin{array}{ll} { }_{2}^{5} & S B C_{\|x\|} \\ \hline \end{array}$	${ }_{1}^{4}{ }_{4}^{4}{ }^{\text {SBC }}$	0_{0}^{2}
2011	${ }^{10}$ BRCLR1 $3 \text { BTB }$	BCLR1 2 BSC	$\begin{array}{lll} 4 & & \\ \hline 2 & \mathrm{BLS}_{2 E L} \\ \hline \end{array}$	${ }_{2}^{6} \mathrm{COM}$	$\begin{array}{\|l\|} \hline{ }_{1} \mathrm{COMA} \\ 1 \\ \hline \end{array}$	${ }_{1}^{4} \mathrm{COMX}$	${ }_{2}^{7} \operatorname{com} M_{\|x\|}$	${ }_{1}^{6} \operatorname{com}$	${ }_{1}^{11}{ }^{\text {SWI }}$		$\begin{array}{\|ll\|} \hline 2 & \mathrm{CPX} \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	${ }_{2}^{4} \mathrm{CPX}$	$\frac{3}{3} \quad \begin{array}{r} \text { EPX } \\ \frac{5}{5} \\ \hline \end{array}$	$3_{3}{ }^{\text {PPX }}$	${ }^{\text {CPX }}$	${ }_{1}^{4} \mathrm{CPX}{ }_{1 \mathrm{X}}$	$\stackrel{3}{3}_{0}$
4 0100		$2_{2}^{\text {BSET2 }}$	$\begin{aligned} & \frac{4}{4} \\ & { }_{2} \\ & B C C \\ & \hline \end{aligned}$	$\begin{array}{ll} \mathrm{S}_{2} & \mathrm{LSR} \\ \hline \end{array}$	${ }_{1}^{4} \text { LSRA } \text { INH }$	${ }_{1}^{4} \text { LSRX }$	$\begin{array}{\|ll\|} \hline 7 & \\ \hline 2 & \text { LSR } \\ \hline \end{array}$	$\begin{array}{lll} \mathrm{C}_{1} & \text { LSR } \\ \hline \end{array}$			$\begin{array}{\|cc\|} \hline 2 & \text { AND } \\ 2 & \text { IMM } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{AND} \\ \times \quad \mathrm{UIF} \\ \hline \end{array}$	${ }_{3} \text { AND }$	${ }^{\text {AND }}$	${ }^{A N D}(X \mid$	$\begin{aligned} & { }^{4} \text { AND } \\ & 1 \end{aligned}$	$\begin{gathered} 4 \\ 0100 \end{gathered}$
$\begin{gathered} 5 \\ 0101 \end{gathered}$	$\begin{aligned} & 100 \\ & 3 R C L R 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{BCLR2} \\ -2 \\ \hline \end{gathered}$	${ }_{2} \mathrm{BCS}_{\mathrm{RE}}$								$\begin{array}{\|cc\|} \hline 2 & \mathrm{BIT} \\ 2 & \mathrm{IMMM} \\ \hline \end{array}$	$\begin{array}{\|lll} 2_{4}^{4} & & \\ 2 & & \\ \hline \end{array}$	BIT	${ }^{\mathrm{BIT}}$	${ }_{1 \times 1}$	$\begin{array}{ll} \frac{4}{4} \text { BIT } \\ \hline 1 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 2101 \\ 21 \end{gathered}$
6 0110	$\begin{aligned} & \text { BRSETS } \\ & 3 \quad \text { BTB } \end{aligned}$	$\begin{gathered} \text { BSET3 } \\ -2 \\ \hline \end{gathered}$	${ }_{2}^{4} \mathrm{BNE}^{2}$	$\begin{array}{ll} \hline 6 & \text { ROR }^{2} \\ 2 & D_{1 R} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline{ }^{4} \text { RORA } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline{ }^{4} \text { RORXX } \\ \hline \end{array}$	${ }_{2}{ }_{2}^{\text {ROR }}$	$\begin{array}{\|ll\|} \hline 6 & \text { ROR } \\ \hline \end{array}$			$\begin{array}{ll} 2 & \text { LDA } \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	$2_{D I B}^{\text {LDA }}$	$\operatorname{LDA}_{\text {EXI }}$	$\operatorname{LDA}_{1 \times 2}$	${ }^{\text {LDA }_{\|x\|}}$	${ }^{\text {LDA }} 1 \times$	${ }_{0}^{6} 10$
7 0111	$\begin{aligned} & 10 \\ & \text { BRCLR3 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{gathered} \text { BCLR3 } \\ -8 S C \\ \hline \end{gathered}$	${ }_{2}^{4} \mathrm{BEO} \text { REL }$	$\begin{array}{ll} 6 & A S R \\ 2 & D I R \\ \hline \end{array}$	${ }_{1}^{4}$ ASRA ${ }^{\text {a }}$	${ }^{\frac{1}{4}}{ }_{1}^{\text {ASRX }}$	${ }_{2} A S R_{\|x\|}$	${ }_{1}$ ASR ${ }_{\text {IX }}$		$\begin{array}{ll} 2 & \text { TAX } \\ 1 & \text { INH } \\ \hline \end{array}$		${ }_{2} \text { STA }$	$\begin{aligned} & \text { STA } \\ & \text { EXT } \end{aligned}$	$\text { STA }_{1 \times 2}$	STA $\|x\|$	STA	$\begin{gathered} 7 \\ 0111 \end{gathered}$
8 1000 8	$\begin{aligned} & 10 \\ & \text { BRSET4 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{gathered} \text { BSET4 } \\ 2_{7} \quad \text { BSC } \\ \hline \end{gathered}$	${ }_{2}^{4} \quad \mathrm{BHCC}$	${ }_{2}^{0} \quad{ }_{2}^{L S L}$	${ }_{1}^{4} \text { LSLA }$	$\begin{array}{\|c\|} \hline 4 \\ 1 \\ 1 \end{array}$	$L_{\|x\|}$	${ }_{1}^{6}{ }^{6}$ LSL ${ }^{\text {a }} \times$		$\begin{array}{\|lll} 2 & \mathrm{CLC} \\ 1 & & \mathrm{INH} \\ \hline \end{array}$	$\begin{array}{ll} 2 & \text { EOR } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }_{2}^{4} E_{D I R}$	${ }_{3}^{E O R}{ }_{E X I}$	${ }_{-1 \times 2}$	${ }^{\text {EOR }}{ }_{\mid \times 1}$	${ }_{1}^{4}$ EOR ${ }_{4}$	$\begin{gathered} 8 \\ 1000 \\ \hline \end{gathered}$
${ }_{100}^{9}$	$\begin{aligned} & 10 \\ & \text { BRCLR4 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{gathered} \text { BCLR4 } \\ \frac{2}{7} \quad \text { BSC } \\ \hline \end{gathered}$	${ }_{2}^{4} \text { BHCS }$	${ }_{2}^{0}{ }_{2}^{\mathrm{ROL}}$	$\begin{aligned} & { }^{4} \text { ROLA } \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l} { }^{4} \text { ROLX } \\ { }_{1} \\ \hline \end{array}$	${ }^{\text {ROL }}{ }_{1 \times 1}$	$\begin{array}{ll} 6 \\ 1 \\ \mathrm{R}_{6} & \mathrm{IX} \\ \hline \end{array}$		$\int_{1}^{2} \mathrm{SEC}_{\mathrm{INH}}$	${ }_{2}^{2} A D C$	${ }_{2}^{4} A D C_{D I R}$	${ }_{3}^{5} A D C$	${ }^{A D C} C_{1 \times 2}$	${ }_{2}^{5} A D C^{1 \times 1}$	$A D C$	${ }_{1001}^{9}$
$\underset{1010}{A}$	${ }^{10}$ BRSET5 ${ }_{3} \quad$ BTB	$\begin{gathered} \text { BSET5 } \\ { }_{2} \\ \hline \text { BSC } \end{gathered}$	$\mathrm{BPL}_{\mathrm{PEL}}$	${ }_{2} \mathrm{DEC}_{\mathrm{DIR}}$	DECA 1 INH	${ }_{1}^{4} \text { DECX }$	$\begin{array}{lll} 7 & D E C_{1 \times 1} \\ 2 & & \\ \hline \end{array}$	DEC		$\mathrm{Cl}^{2} \mathrm{CLI}_{\mathrm{INH}}$		$\begin{array}{\|c\|c\|} \hline O_{O R A} \\ \hline \end{array}$	$\begin{aligned} & \text { ORA } \\ & \text { EXI } \end{aligned}$	$\text { ORA }_{1 \times 2}$	${ }^{\text {ORA }}{ }_{\mid \times 1}$	$\mathrm{ORA}_{\mathrm{Ix}}$	$\begin{gathered} \text { A } \\ 1010 \end{gathered}$
${ }_{1011}$	$\begin{gathered} 10 \\ \text { BRCLR5 } \\ 3 \\ 3 \end{gathered}$	BCLR5 BSC	$\mathrm{BMI}_{\mathrm{AEL}}$							$\mathrm{SEI}_{\mathrm{INH}}$	$\begin{array}{ll} 2 & \mathrm{ADD} \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	${ }_{\text {DIR }}$	${ }_{\text {EXT }}$	${ }^{A D D_{1 \times 2}}$	$\operatorname{ADD}_{1 \times 1}$	${ }^{\text {ADO }}{ }_{1 \times}$	$\begin{gathered} 8 \\ 1011 \end{gathered}$
$\underset{1100}{ }$	$\begin{aligned} & 10 \\ & { }_{3}^{10} \text { BRETE } \\ & 3 \quad \text { BTR } \end{aligned}$	$\begin{aligned} & \text { BSET6 } \\ & \hline 8 \end{aligned}$	${ }^{B M C}$	${ }_{2}{ }^{I N C} C_{D I B}$	$\begin{array}{\|l\|l\|} \hline 4 & \mathrm{INCA} \\ 1 & \mathrm{INH} \\ \hline \end{array}$	$\begin{array}{\|l\|} { }^{4} \\ \text { INCX } \\ \text { INH } \end{array}$	${ }_{2} \quad{ }^{I N C} \mid$	$\begin{array}{\|ll\|} \hline 6 & \text { INC } \\ 1 & \\ \hline \end{array}$		$\begin{array}{ll} 2 & \text { RSP } \\ 1 & \mathrm{INH} \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline \frac{3}{3} & \mathrm{JMP} \\ \hline \end{array}$	$M_{\text {EXT }}$	$\mathrm{JMP}_{1 \times 2}$	${ }^{J M P}{ }_{\|x\|}$	$\begin{array}{lll\|} \hline \frac{1}{3} & \text { JMP } & \\ 1 & & 1 \times \\ \hline \end{array}$	$\begin{gathered} c \\ 1100 \end{gathered}$
$\begin{gathered} D \\ 1101 \end{gathered}$	- ${ }_{3}^{10}{ }^{\text {BRCLR6 }}$	${ }_{2}{ }^{\text {BCLR6 }}$	${ }_{2}^{4} \text { BMS }$	$\begin{array}{\|ll\|} \hline 6 & \\ \hline & \\ \hline & \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { TSTA } \\ 1 & \quad \mathrm{INH} \\ \hline \end{array}$	$\begin{aligned} & { }^{4} \text { TSTX } \\ & 1 \\ & \text { INH } \\ & \hline \end{aligned}$	$\begin{array}{\|lll\|} \hline \frac{4}{7} & \text { TST } \\ 2 & & \\ \hline \end{array}$	TST			$\begin{array}{\|lr\|} \hline 8 & \mathrm{BSR} \\ 2 & \mathrm{REL} \\ \hline \end{array}$	$\underbrace{}_{D I R}$	${\underset{\text { EXT }}{ }}^{\text {JSR }}$	$\mathrm{JSR}_{1 \times 2}$	${ }_{\|l\|}^{\text {JSR }}$	${ }^{\text {JSR }} 1 \times$	${ }_{1101}^{D}$
${ }_{1110}$	$\begin{array}{\|c} \hline 10 \\ \text { BRSET7 } \\ 3 \quad \text { BTB } \\ \hline \end{array}$	BSET7	BIL REL								$\begin{array}{\|ll} \hline 2 & \text { LDX } \\ 2 & \text { IMM } \\ \hline \end{array}$	$\operatorname{LDX}_{\mathrm{DIR}}$	${\underset{E X I}{L D X}}^{L_{i}}$	$\operatorname{LDX}_{1 \mathrm{IX}_{2}}$		${ }^{\text {LDX }}{ }_{\text {\|x }}$	${ }_{11}$
${ }_{1111}$	$\begin{aligned} & 10 \\ & \text { BRCLR7 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{gathered} 8 C L R 7 \\ 2_{8 S C} \end{gathered}$	$L_{2}^{4}{ }^{81 H_{R E L}}$	$\begin{array}{\|ll\|} \hline 6 & \\ \hline & \mathrm{CLR} \\ \hline \end{array}$	${ }^{4} \text { CLRA }$	${ }_{1}^{4} \mathrm{CLRX}$	$\begin{array}{\|ll\|} \hline & \\ \hline & \text { CLR } \\ \hline \end{array}$	CLR		$\begin{array}{\|cc\|} \hline 2 & \text { TXA } \\ 1 & \\ \hline \end{array}$		${ }^{5} \text { STX }$	$\begin{array}{\|lll} \hline 6 & \text { STX } \\ 3 & \text { EXT } \\ \hline \end{array}$	$\operatorname{stx}_{1 \times 2}$	$\begin{array}{lll} \hline 6 & & \\ 2 & \text { STX } \\ \hline \end{array}$	${ }_{1}^{5} \text { STX } \mid x$	${ }_{111}$

Abbreviations for Address Modes

Inherent Immediate
Direct Extended
Relative
Bit Set/Clear
Bit Test and Branch
Indexed (No Offset)
Indexed, 1 Byte (8 -Bit) Offset
Indexed, 2 Byte (16-Bit) Offset

LEGEND

Address Mode

PHYSICAL DIMENSIONS

CB-132

CB-520

FN SUFFIX
PLCC28

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

EPROMs

One 2716 or 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation.

$\mathrm{XXX}=$ Customer 1 D

After the EPROM is marked, it should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUCTEURS. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename . LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development sẏstems such as EXORciser....
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative,

ORDERING INFORMATION

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Examples : EF6805P2P , EF6805P2FN, EF6805P2 PLD, EF6805P2FNLD.
Package: C: Ceramic DIL, P: Plastic DIL, FN: PLCC.
Oper. temp.: L^{*} : $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C},{ }^{*}$: may be omitted.
Screening level: Std: (no-end suffix), D: NFC 96883 level D.
**: Requires prior factory approval.

ADVANCE INFORMATION

The EF6805P6 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip microcomputers. This 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800 -based instruction set. The following are some of the hardware and software highlights of the EF6805P6 MCU.

HARDWARE FEATURES

- 8-Bit Architecture
- 64 Bytes of RAM
- Memory Mapped I/O
- 1796 Bytes of User ROM
- 20 TTL./CMOS Compatible Bidirectional I/O Lines (8 Lines are LED Compatible)
- On-Chip Clock Generator
- Self-Check Mode
- Zero Crossing Detection
- Master Reset
- Complete Development System Support on DEVICE ${ }^{\circledR}$.
- 5 V Single Supply.

SOFTWARE FEATURES

- Similar to 6800 Family
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instruction
- Versatile Interrupt Handling
- Versatile Index Register
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Register/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM, and I/O

USER SELECTABLE OPTIONS

- Internal 8-Sit Timer with Selectable Clock Source (External Timer Input or Internal Machine Clock)
- Timer Prescaler Option (7 Bits, 2^{n})
- 8 Bidirectional I/O Lines with TTL or TTL/CMOS Interface Option
- Crystal or Low-Cost Resistor Oscillator Option
- Low Voltage Inhibit Option
- Vectored Interrupts : Timer, Software, and External.
- Port B Open Drain Drive Option

HMOS

PIN ASSIGNMENT

DEVICE ${ }^{\circledR}$ is ${ }^{\text {is }}$ THOMSON SEMICONDUCTEURS' development/emulation tool.

EF6805P6

FIGURE 1 -- EF6805P6 HMOS MICROCOMPUTER BLOCK DIAGRAM
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage IExcept Pin 6)	$V_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range $\text { (} T_{L} \text { to } T_{H} \text {) } \quad V \text { suffix }$	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Plastic PLCC	TJ	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance			
Plastıc		70	
PLCC	θ_{JA}	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta J A\right)
$$

Where:

$$
\begin{aligned}
& T_{A} \equiv \text { Ambient Temperature, }{ }^{\circ} \mathrm{C} \\
& \theta J A \equiv \text { Package Thermal Resistance, Junction-to-Ambient, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& P_{D} \equiv P_{\text {INT }}+\text { PPORT. } \\
& \text { PINT } \equiv I C C \times V C C \text {, Watts }- \text { Chip Internal Power } \\
& \text { PPORT } \equiv \text { Port Power Dissipation, Watts }- \text { User Determined }
\end{aligned}
$$

For most applications PPORT \&PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P_{D} \bullet\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A^{\bullet} \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage $\begin{gathered} \overline{\text { RESET }}\left(4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.75\right) \\ \left(\mathrm{V}_{\mathrm{CC}}<4.75\right) \\ \overline{\text { INT }}\left(4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.75\right) \\ \left(\mathrm{V}_{\mathrm{CC}}<4.75\right) \\ \text { All Other (Exept TIMER) } \\ \hline \end{gathered}$	V_{IH}	$\begin{gathered} 4.0 \\ V_{C C}-0.5 \\ 4.0 \\ V_{C C}-0.5 \\ 2.0 \\ \hline \end{gathered}$		$V_{C C}$ $v_{\text {CC }}$ $v_{\text {CC }}$ $v_{C C}$ $V_{C C}$	V
Input High Voltage Timer Timer Mode Self-Check Mode	$V_{\text {IH }}$	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	10.0	$\begin{gathered} v_{\mathrm{CC}}+1 \\ 15.0 \\ \hline \end{gathered}$	V
Input Low Voltage INT All Other	$V_{\text {IL }}$	$\begin{aligned} & v_{\mathrm{SS}} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$	*	$\begin{array}{r} 1.5 \\ 0.8 \\ \hline \end{array}$	V
$\overline{\text { RESET }}$ Hysteresis Voltage (See Figures 10, 11, and 12) "Out of Reset" "Into Reset"	$V_{\text {IRES }}+$ VIRES -	$\begin{aligned} & 2.1 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{array}{r} 4.0 \\ 2.0 \\ \hline \end{array}$	V
$\overline{\mathrm{INT}}$ Zero Crossing Input Voltage, Through a Capacitor	VINT	2.0	-	4.0	$V_{\text {ac p-p }}$
Internal Power Dissipation - No Port Loading $\mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	PINT	-	400	690	mW
Input Capacitance XTAL All Other	$\mathrm{C}_{\text {in }}$	$-$	$\begin{aligned} & 25 \\ & 10 \\ & \hline \end{aligned}$	-	pF
Low Voltage Recover	$V_{\text {LVR }}$	2.75	3.5	4.75	V
Low Voltage Inhibit0 to $+70^{\circ} \mathrm{C}$ -40 to $+85^{\circ} \mathrm{C}$	VLVI	$\begin{gathered} 2.75 \\ 3.1 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	-	v
$\begin{aligned} & \text { Input Current } \\ & \begin{array}{l} \text { TIMER }\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\right) \\ \overline{\text { INT }}\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\ \text { EXTAL }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {CC }} \text {. Crystal Option }\right) \\ \left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V} . \text { Crystal Option }\right) \\ \overline{\text { RESET }}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right) \end{array} \end{aligned}$	lin	$\begin{gathered} - \\ - \\ - \\ - \\ -4.0 \end{gathered}$	$\begin{gathered} - \\ 20 \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

* Due to internal biasing, this input (when unused) floats to approximately 2.0 Vdc .

PORT DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{A}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Port A with CMOS Drive Enabled					
Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output High Voltage, ${ }_{\text {L Load }}=-100 \mu \mathrm{~A}$	VOH	2.4	-	-	V
Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	V_{OH}	$\mathrm{V}_{\mathrm{Cc}}{ }^{-1.0}$	-	-	V
Input High Voltage, $\mathrm{L}_{\text {Load }}=-300 \mu \mathrm{~A}$ (max.)	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	V_{CC}	V
Input Low Voltage, ${ }_{\text {Load }}=-500 \mu \mathrm{~A}$ (max.)	$\mathrm{V}_{\text {IL }}$	0.3	-	0.8	V
Hi-Z State Input Current ($\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$ to V_{CC})	$\mathrm{IIH}^{\text {H }}$	-	-	-300	$\mu \mathrm{A}$
Hi-Z State Input Current ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$)	116	-	-	-500	$\mu \mathrm{A}$
Port B					
Output Low Voltage, $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output Low Voltage, ' Load $=10 \mathrm{~mA}$ (sink)	V_{OL}	-	-	1.0	V
Output High Voltage, ILoad $=-200 \mu \mathrm{~A}$	$\mathrm{VOH}^{\text {OH}}$	2.4	-	-	V
Darlington Current Drive (Source), $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	${ }^{\mathrm{I}} \mathrm{OH}$	-1.0	-	-10	mA
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	V_{CC}	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Hi-Z State Input Current	ITSI	-	2	10	$\mu \mathrm{A}$
Port B with Open Drain Option					
Output High Voltage Hi-Z State Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{TSI}} \end{aligned}$	$\begin{gathered} 2.4 \\ - \end{gathered}$	$-$	$\begin{gathered} 13.0 \\ 20 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
Port C and Port A with CMOS Drive Disabled					
Output Low Voltage, I Load $=1.6 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output High Voltage, ${ }_{\text {Load }}=-100 \mu \mathrm{~A}$	V_{OH}	2.4	-	-	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	V_{CC}	V
Input Low Voltage	V_{IL}	-0.3	-	0.8	V
Hi-Z State Input Current	ITSI	-	2	10	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS $\left(\mathrm{V} C C=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{S S}=0 \mathrm{Vdc}, T_{A}=T_{L}\right.$ to T_{H} unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Oscillator Frequency EF6805P6 EF68A05P6 EF68B05P6	$\mathrm{f}_{\text {osc }}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 4.2 \\ & 6.0 \\ & 8.0 \\ & \hline \end{aligned}$	MHz
Cycle Time ($4 / \mathrm{fosc}_{\text {c }}$)	$\mathrm{t}_{\text {cyc }}$	0.95	-	10	$\mu \mathrm{S}$
INT and TIMER Pulse Width (See Interrupt Section)	tWL. TWH	$\mathrm{t}_{\mathrm{cyc}}+250$	-	-	ns
RESET Pulse Width	trwL	${ }^{\text {cyc }}+250$	-	-	ns
$\overline{R E S E T}$ Delay Time (External Capacitance $=1.0 \mu \mathrm{~F}$)	${ }_{\text {t }}^{\text {RHL }}$	-	100	-	ms
INT Zero Crossing Detection Input Frequency	fint	0.03	-	1.0	kHz
External Clock Input Duty Cycle (EXTAL)	-	40	50	60	\%

FIGURE 2 - TTL EQUIVALENT TEST LOAD FIGURE 3 - CMOS EQUIVALENT TEST LOAD FIGURE 4 - TTL EQUIVALENT TEST LOAD (PORT B)
 (PORT A)

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in Figure 1, are described in the following paragraphs.

$V_{C C}$ AND $V_{S S}$

Power is supplied to the MCU using these two pins. $V_{C C}$ is power and V_{SS} is the ground connection.

$\overline{\text { INT }}$

This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts section for additional information.

XTAL AND EXTAL

These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options section for recommendations about these inputs.

TIMER

This pin allows an external input to be used to decrement the internal timer circuitry. Refer to Timer section for additional information about the timer circuitry.

RESET

This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. Refer to Resets section for additional information.

NUM

This pin is not for user application and must be connected to V_{SS}.

INPUT/OUTPUT LINES (PAO-PA7, PB0-PB7, PC0-PC3)

These 20 lines are arranged into two 8 -bit ports (A and B) and one 4 -bit port (C). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to Inputs/Outputs section for additional information.

MEMORY

As shown in Figure 6, the MCU is capable of addressing 2048 bytes of memrry and I/O registers with its program counter. The EF6805P6 MCU has implemented 1984 of these locations. This consists of: 1796 bytes of user ROM, (from $\$ 080$ to $\$ 783$) 116 bytes of self-check ROM, 64 bytes of user RAM, 6 bytes of port I/O, and 2 timers registers.

The stack area is used during the processing of interrupt and subroutine calls to save the processor state. The register contents are pushed onto the stack in the order shown in Figure 7. Because the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first; then the high order three bits (PCH) are stacked. This ensures that the program counter is loaded correctly, during pulls from the stack, since the stack pointer increments during pulls. A subroutine call results in only the program counter (PCL, PCH) contents being pushed onto the stack. The remaining CPU registers are not pushed.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in Figure 8 and are explained in the following paragraphs.

* Caution: Data direction registers (DDRs) are write-only; they read as \$FF.

FIGURE 5 - MCU ADDRESS MAP

*For subroutine calls, only PCL and PCH are stacked.

FIGURE 6 - INTERRUPT STACKING ORDER

ACCUMULATOR (A)

The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.

FIGURE 7 - PROGRAMMING MODEL

INDEX REGISTER (X)

The index register is an 8-bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The index register may also be used as a temporary storage area.

PROGRAM COUNTER (PC)

The program counter is an 11-bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP)

The stack pointer is an 11-bit register that contains the address of the next free location on the stack. Initially, the stack pointer is set to location \$07F and is decremented as data is pushed onto the stack and incremented as data is pulled from the stack. The six most significant bits of the stack pointer are permanently configured to 000011 . During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F. Subroutines and interrupts may be nested down to location $\$ 061$ (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls.

CONDITION CODE REGISTER (CC)

The condition code register is a 5-bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each individual condition code register bit is explained in the following paragraphs.

HALF CARRY (H) - Set during ADD and ADC instructions to indicate that a carry occurred between bits 3 and 4.

INTERRUPT (I) - This bit is set to mask (disable) the tumer and external interrupt (INT). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt is cleared.

NEGATIVE (N) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in result equal to a logical one).

ZERO (Z) - Used to indicate that the result of the last arithmetic, logical, or daṭa manipulation was zero.

CARRY/BORROW (C) - Used to indicate that a carry or borrow out of the arithmetic logic unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The EF6805P6 MCU timer circuitry is shown in Figure 8. The 8-bit counter may be loaded under program control and is decremented toward zero by the clock input (prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (1 bit) in the condition code register also prevents a timer interrupt from being, processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$7F8 and \$7F9, and executing the interrupt routine; see the Interrupts section. THE TIMER INTERRUPT REQUEST BIT MUST BE CLEARED BY SOFTWARE.
The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin or it can be the internal $\phi 2$ signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled tWL. tWH. The pin logic that recognizes the high (or low) state on the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows: (assumes 50/50 duty cycle for a given period)

$$
t_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply tWL + tWH. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 ns twice).

When the $\phi 2$ signal is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. (NOTE: For

FIGURE 8 - TIMER BLOCK DIAGRAM
ungated $\phi 2$ clock inputs to the timer prescaler, the TIMER pin should be tied to $\mathrm{V}_{\text {CC. }}$.) The source of the clock input is one of the mask options that is specified before manufacture of the MCU.
A prescaler option can be applied to the clock input that extends the timing interval up 10 a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer counter register is written to a logic one. (This bit always needs a logic 0).
The timer continues to count past zero, falling from $\$ 00$ to\$FF and then continuing the countdown. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred without disturbing the counting process.
At power-up or reset, the prescaler and counter are initialized with all logical ones, the timer interrupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

SELF-CHECK

The selfcheck capability of the EF6805P6 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 9 and monitor the output of port C bit 3 for an oscillation of approximately 7 Hz . A 10 volt level on the TIMER input, pin 7, energizes the ROMbased self-check feature. The self-check program exercises the RAM, ROM, TIMER, interrupts, and I/O ports.

RESETS

The MCU can be reset three ways: by initial power-up, by the external reset input (RESET) and by optional, internal. low-voltage detect circuits. The RESET input consists mainly of a Schmitt trigger that senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in Figure 11. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.

POWER-ON RESET (POR)

An internal reset is generated upon power-up that allows the internal clock generator to stabilize. A delay of trHL milliseconds is required before allowings the RESET input to go high. See the power and reset timing diagram (see Figure 10). Connecting a capacitor to the RESET input (see Figure 12) typically provides sufficient delay. During power-up, the Schmitt trigger switches on (removes reset) when RESET rise to $\mathrm{V}_{\text {IRES }}{ }^{+}$.

EXTERNAL RESET INPUT

The MCU is reset when a logic zero is applied to the RESET input for a period longer than one machine cycle ($\mathrm{t}_{\mathrm{cyc}}$). Under this type of reset, the Schmitt trigger switches off are VIRES- to provide an internal reset voltage.

LOW VOLTAGE INHIBIT (LVI)

The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level (V_{LV}). The only requirement is that the V_{CC} must remain at or below the $\mathrm{V}_{\mathrm{LVI}}$ threshold for one $\mathrm{t}_{\mathrm{cyc}}$ minimum.

FIGURE 9 - SELF-CHECK CONNECTIONS

In typical applications, the VCC bus filter capacitor will eliminate negative-going voltage glitches of less than one $\mathrm{t}_{\text {cyc. }}$. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset is removed once the power supply voltage rises above a recovery level (VLVR) at which time a normal power-one reset occurs.

INTERNAL CLOCK GENERATORS OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs.
A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in Figure 13. Crystal specifications and suggested PC board layouts are given in Figure 14. A resistor selection graph is given in Figure 15.

The crystal oscillator start-up time is a function of many variables: crystal parameters (especially RS, oscillator load capacitances, IC parameters, ambient temperature, supply voltage and supply voltage turn-on time). To ensure rapid oscillator start-up, neither the crystal characteristics nor the load capacitances should exceed recommendations.
When utilizing the on-board oscillator, the MCU should remain in the reset condition (RESET pin voltage below $V_{\text {IRES }}{ }^{+}$) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating current specifications.
One VCC minimum is reached, the external $\overline{\operatorname{RESET}}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from V_{CC} through a large resistor, so it functions almost like a constant current source until the reset voltages rises above VIRES+. Therefore, the RESET pin will charge a approximately
$\left(V_{\text {IRES }}{ }^{+}\right) \cdot$ Cext $=$ IRES \cdot trhL $^{\text {R }}$

FIGURE 10 - POWER AND RESET TIMING

FIGURE 11 - TYPICAL RESET SCHMITT TRIGGER HYSTERESIS

FIGURE 12 - POWER-UP RESET DELAY CIRCUIT

Approximately 25\% to 50\% Accuracy
Typical $\mathrm{t}_{\text {cyc }}=1.25 \mu \mathrm{~S}$
External Jumper

(See Figure 16) 4
Approximately 10\% to 25\% Accuracy External Resistor
(Excludes Resistor Tolerence)

NOTE: The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz ; the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF . on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.

FIGURE 13 - CLOCK GENERATOR OPTIONS

AT - Cut Parallel Resonance Crystal
$\mathrm{C}_{\mathrm{O}}=7 \mathrm{pF}$ Max.
Freq. $=4.0 \mathrm{MHz} @ C_{L}=24 \mathrm{pF}$
$\mathrm{R}_{\mathrm{S}}=50$ ohms Max.

Piezoelectric ceramic resonators which have the equivalent specifications may be use instead of crystal oscillators. Follow ceramic resonator manufacturer's suggestions for $\mathrm{C}_{\mathbf{0}}, \mathrm{C}_{\mathbf{1}}$ and $\mathrm{R}_{\mathbf{S}}$ values.

FIGURE 14 - CRYSTAL MOTIONAL ARM PARAMETERS
AND SUGGESTED PC BOARD LAYOUT

INTERRUPTS

The EF6805P6 MCU can be interrupted three different ways: through the external interrupt (INT) input pin, the internal timer interrupt request, or the software interrupt instruction (SW1). When any interrupt occurs, the current instruction (including SW1) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (1) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address and the interrupt routine is executed. Stacking the CPU registers, setting the I bit, and vector fetching requires a total of $11 \mathrm{t}_{\text {cyc }}$ periods for completion.

A flowchart of the interrupt sequence is shown in Figure 16. The interrupt service routine must end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.
The external interrupt is internally synchronized and then
latched on the falling edge of $\overline{\mathrm{INT}}$. A sinusoidal input signal (fINT maximum) can be used to generate an external interrupt, as shown in Figure 17(a), for use as a zerocrossing detector (for negative transitions of the ac sinusoid). This allows applications such as servicing time-ofday routines and engaging/disengaging ac power control devices. Off-chip full-wave rectification provides an interrupt at every zero-crossing of the ac signal and thereby provides a $2 f$ clock.

For digital applications, the $\overline{\mathbb{N T}}$ pin can be driven by a digital signal. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled ${ }^{W}$ WL, ${ }^{W} \mathrm{WH}$. The pin logic that recognizes the high (or low) state on the pin must also recognize the low (or high) state on the pin in order to "rearm" the internal logic. Therefore, the period can be calculated as follows: (assumes 50/50 duty cycle for a given period)

$$
\mathrm{t}_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply $\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}$. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 ns twice). See Figure 17(b).
A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. Note that if the I bit is zero, SWI executes after the other interrupts. SWIs are usually used as break-points for debugging or as system calls.

FIGURE 16 - RESET AND INTERRUPT PROCESSING FLOWCHART
(a) Zero-Crossing Interrupt

(b) Digital-Signal Interrupt

FIGURE 17 - TYPICAL INTERRUPT CIRCUITS

INPUT/OUTPUT

There are 20 input/output pins. The $\overline{\mathbb{N T}}$ pin may also be polled with branch instructions to provide an additional input pin. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding write-only data direction register (DDR). The port 1/O programming is accomplished by writing the corresponding bit in the port DDR to a logic "1" for output or a logic " 0 " for input. On reset, all the DDRs are initialized to a logic " 0 " state to put the ports in the input mode. To avoid undefined levels, the port output registers are not initialized on reset, but may be written before setting the DDR bits. When programmed as outputs, the latched output data is readable as input data.regardless of the logic levels at the output pin due to output loading; see Figure 18. When port B is programmed for outputs, it is capable of sinking 10 mA and sourcing 1 mA on each pin.

All input/output lines are TTL compatible as both inputs and outputs. Ports B and C are CMOS compatible as inputs. Port A may be made CMOS compatible as outputs with a mask option. The address map in Figure 5 gives the address
of data registers and DDRs. The register configuration is provided in Figure 19 and Figure 20 provides some examples of port connections.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see Figure 18) may always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input (" 0 ") and corresponds to the latched output data when the DDR is an output (" 1 ").

Data Direction Register Bit	Output Data Bit	Latched Output State	Input To MCU
1	0	0	0
1	1	1	1
0	x	High-Z**	Pin

* DDR is a write-only register and reads as all " 1 s ".
** Ports A (with CMOS drive disabled), B, and C are three state ports. Port A has optional internal pullup devices to provide CMOS drive capability. See Electrical Characteristics tables for complete information.

(1) Write Only; reads as all " 1 s "
(2) $1=$ Output; $0=$ Input. Cleared to 0 by reset.

13) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006($ Bits $0 \rightarrow 3)$
TIMER DATA REGISTER (TDR)

FIGURE 19 - MCU REGISTER CONFIGURATION

PA7	27	- (CMOS Loads)
PA6	26	
PA5	25	
PA4	24	(1 TTL Load)
PA3	23	$1.6 \mathrm{~mA}$
PA2	22	
PA1	21	
PAO	20	

Port A, bit 7, programmed as output driving CMOS loads and bit 4 driving one TTL load directly using CMOS output option.

Port B, bit 5 programmed as output, driving Darlington-base directly.

Port B, bit 0 and bit 1 programmed as output, driving LEDs directly.

Port C, bits 0-3 programmed as output, driving CMOS loads, using external pullup resistors.

FIGURE 20 (a) - TYPICAL OUTPUT MODE PORT CONNECTIONS

TTL driving port A directly.

CMOS or TTL driving port B directly.

CMOS and TTL driving port C directly.

FIGURE 20 (b) - TYPICAL INPUT MODE PORT CONNECTIONS

SOFTWARE

BIT MANIPULATION

The EF6805P6 MCU has the ability to set or clear any single random access memory or input/output bit (except the data direction register, see Caution below), with a single instruction (BSET, BCLR). Any bit in page zero including ROM, except the DDRs, can be tested, using the BRSET and BRCLR instructions, and the program branches as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in Figure .21 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device.

The external device has a data ready signal. a data output line, and a clock line to clock data one bit at a time, LSB first, out of the device. The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in a RAM location.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

FIGURE 21 - BIT MANIPULATION EXAMPLE

ADDRESSING MODES

The EF6805Pf MCU has 10 addressing modes which are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the 6805 Family User's Manual.

The term "effective address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.

IMMEDIATE - in the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2 -byte instruction. This includes the on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.

EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions using extended addressing are capable of referencing arguments anywhere in memory with a single 3 -byte instruction. When using the Motorola assembler, the programmer need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.

RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset when using the Motorola assembler since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

INDEXED, 8 -BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 $(\$ 1 F E$ is the last location at which the instruction may begin).

INDEXED, 16-BIT OFFSET - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset, except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing.

BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including 1/O, can be selectively set or cleared with a single 2-byte instruction.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the address of the byte to be tested is in the single byte immediately follow. ing the opcode byte. The signed relative 8 -bit offset is in the third byte and is added to the value of the PC if the branch condition is true. This single 3 -byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code register.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instruction with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805P6 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch,
bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to Table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is included in read-modify-write instructions through it does not perform the write. Refer to Table 2.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 3.

BIT MANIPULATION INSTRUCTIONS - These instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to Table 4.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit lall "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

CONTROL INSTRUCTIONS - The control instructions control the MCU operations during program execution. Refer to Table 5.

ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in Table 6.

OPCODE MAP SUMMARY - Table 7 is an opcode map for the instructions used on the MCU.

TABLE 1 - REGISTER/MEMORY INSTRUCTIONS

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed (No Offset)			$\begin{gathered} \text { Indexed } \\ \text { (8.Bit Offset) } \end{gathered}$			$\begin{gathered} \text { Indexed } \\ \text { (16. Bit Offset) } \\ \hline \end{gathered}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline 0 p \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{O p} \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{\|c\|} \hline \# \\ \text { Cycles } \end{array}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{aligned} & \text { Op } \\ & \text { Coda } \end{aligned}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{aligned} & \text { OP } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \hline \\ \text { Bytes } \\ \hline \end{gathered}$	Cycles
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	$\overline{A E}$	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA	-	-	-	B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX	-	-	-	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	B0	2	4	CO	3	5	FO	1	4	EO	2	5	DO	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	84	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C.8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	81	2	4	Cl	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	83	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	85	2	4	C5	3	5	f5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR	-	-	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

TABLE 2 - READ-MODIFY-WRITE INSTRUCTIONS

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			Indexed(No Offset)			$\begin{gathered} \text { Indexed } \\ \text { (8 Bit Offset) } \end{gathered}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \hline \text { Op } \\ \text { Code } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \# } \\ \text { Bytes } \\ \hline \end{array}$	Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{array}{c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Increment	INC	4C	1	4	5C	1	4	3C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2's Complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	3D	2	6	70	1	6	6 D	2	7

TABLE 3 - BRANCH INSTRUCTIONS

Function	Mnemonic	Relative Addressing Mode		
		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$		\# Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFFHigher	BHI	22	2	4
Branch IfFLower or Same	BLS	23	2	4
Branch IFFCarry Clear	BCC	24	2	4
(BranchIFFHigher or Same)	(BHS)	24	2	4
Branch IFFCarry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
BranchIFFNot Equal	BNE	26	2	4
Branch IFF Equal	BEO	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
BranchifF Plus	BPL	2A	2	4
BranchIFF Minus	BMI	2B	2	4
Branch IFFInterupt Mask Bit is Clear	BMC	2 C	2	4
Branch IFFInterrupt Mask Bit is Set	BMS	2D	2	4
Branch IFFInterrupt Line is Low	BIL	2 E	2	4
Branch IFFInterrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

TABLE 4 - BIT MANIPULATION INSTRUCTIONS

		Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
Function	Mnemonic	Op Code	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$	\# Cycles	Op Code	Bytes	
Branch IFF Bit n is set	BRSET n ($\mathrm{n}=0 . \ldots 7$)	-	-	-	$2 \cdot n$	3	10
Branch IFF Bit n is clear	BRCLR $n(n=0 \ldots 7)$	-	-	-	$01+2 \cdot n$	3	10
Set Bit n	BSET $n(n=0.7)$	$10+2 \cdot n$	2	7	-	-	-
Clear bit n	BCLR n ($\mathrm{n}=0 \ldots .7$)	$11+2 \cdot n$	2	7	-	-	-

TABLE 5 - CONTROL INSTRUCTIONS

	Inherent			
Function	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	98	1	2
Clear Interrupt Mask Bit	CLI	$9 A$	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	$9 C$	1	2
No-Operation	NOP	$9 D$	1	2

TABLE 6 - INSTRUCTION SET

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	$\begin{aligned} & \text { Indexed } \\ & (8 \mathrm{Bits}) \end{aligned}$	$\begin{array}{\|l\|} \text { Indexed } \\ \text { (16 Bits) } \\ \hline \end{array}$	Bit Set/ Clear	Bit Test -8 Branch	H	1	N	2	C
ADC		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
ASL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
ASR	X		X			X	X				-	-	\wedge	\wedge	\wedge
BCC					X						\bullet	-	\bullet	\bullet	\bullet
BCLR									X		\bullet	\bigcirc	-	\bullet	\bullet
BCS					X						-	-	-	-	\bullet
BEQ					X						\bullet	-	-	\bullet	\bullet
BHCC					X						-	-	-	-	\bullet
BHCS					X						\bullet	-	-	-	\bullet
BHI					X						-	-	-	-	\bullet
BHS					X						-	-	-	-	\bullet
BIH					X						-	-	-	-	\bullet
BIL					X						-	-	\bullet	\bullet	\bullet
BIT		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
BLO					X						-	-	\bullet	\bullet	\bullet
BLS					X						-	-	\bullet	-	\bullet
BMC					\bar{X}						-	-	\bullet	\bullet	\bullet
BMI					X						-	-	-	-	\bullet
BMS					X						-	-	-	-	\bullet
BNE					x						\bigcirc	-	\bigcirc	-	\bullet
BPL					X						-	-	-	\bullet	\bullet
BRA					X						-	-	-	-	\bullet
BRN					X						-	-	-	-	\bullet
BRCLR										X	\bullet	-	-	-	\wedge
BRSET										X	-	-	-	-	\wedge
BSET									X		\bullet	-	\bullet	\bullet	\bullet
BSR					X						-	-	\bullet	-	\bullet
CLL	X										\bullet	-	\bullet	\bullet	0
CLI	X										\bullet	0	\bullet	\bullet	\bullet
CLR	X		X			X	X				\bullet	\bullet	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			\bar{x}	X				-	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
DEC	X		X			X	X				-	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
INC	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
JMP			X	X		X	X	X			-	\bullet	\bullet	\bigcirc	\bullet
JSR			X	X	,	X	X	X			\bullet	-	\bullet	\bullet	\bullet
LDA		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				-	-	\wedge	\wedge	\wedge
LSR	- x		X			X	X				\bullet	-	0	\wedge	\wedge
NEQ	X		X			X	X				-	-	\wedge	\wedge	\wedge
NOP	\times										\bullet	-	\bullet	\bullet	\bullet
ORA		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
ROL	X		X			X	X				-	-	\wedge	\wedge	\wedge
RSP	X										\bullet	-	\bullet	\bullet	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
$\begin{array}{ll}\text { I } & \text { Interrupt Mask } \\ \mathrm{N} & \text { Negative (Sign Bit) }\end{array}$
\wedge Test and Set if True, Cleared Otherwise
Z Zero

TABLE 6 - INSTRUCTION SET (CONTINUED)

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{array}{\|c\|} \text { Indexed } \\ \text { (16 Bits) } \\ \hline \end{array}$	Bit Set/ Clear	Bit Test 8 Branch	H	1	N	2	C
RTI	X										?	?	?	?	?
RTS	X										\bigcirc	\bullet	\bigcirc	\bullet	\bullet
SBC		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
SEC	X										-	-	-	\bigcirc	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			X	X		X	\bar{x}	X			-	\bullet	\wedge	\wedge	\bullet
STX			X	X		X	X	X			-	-	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
SWI	X										-	1	\bullet	\bullet	\bigcirc
TAX	X										-	-	-	\bullet	\bullet
TST	X		X			X	X				-	-	\wedge	\wedge	\bigcirc
TXA	X										\bullet	\bullet	\bullet	\bullet	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
I Interrupt Mask
\wedge Test and Set if True, Cleared Otherwise
N Negative (Sign Bit)

- Not Affected
Z Zero
? Load CC Register From Stack

EF6805 HMOS FAMILY

Features	EF6805CT	EF6805P2	EF6805P4	EF6805P6	EF6805R2	EF6805R3	EF6805T2	EF6805U2	EF6805U3	EF6805TV
Technology	HMOS									
Number of Pins	40	28	28	28	40	40	28	40	40	40
On-Chip RAM (Bytes)	240	64	112	64	64	112	64	64	112	96
On-Chip User ROM (Bytes)	4096	1100	1100	1796	2048	3776	2508	2048	3776	6144
External Bus	Yes	None								
Bidirectional I/O Lines	29	20	20	20	24	24	19	24	24	32
Unidirectional I/O Lines	None	None	None	None	6 Inputs	6 Inputs	None	8 Inputs	8 Inputs	None
Other I/O Features	Timer,UART	Timer	Timer	Timer	Timer,A/D	Timer,A/D	Timer, PLL	Timer	Timer	Timer, D/A
External Interrupt Inputs	3	1	1	1	2	2	2	2	2	1
STOP and WAIT	No									

TABLE 7 - EF6805 HMOS FAMILY OPCODE MAP

	Bit Manipulation		Branch	Read-Modity-Write					Control		Repinter/Memory						
Low ${ }^{\text {Hi }}$	$\frac{8 \mathrm{BIB}}{0}$	$\begin{aligned} & \text { BSC } \\ & 0001 \end{aligned}$	$\begin{aligned} & \text { REI } \\ & \frac{2}{2} 10 \end{aligned}$	$\begin{aligned} & \frac{D 1 R}{3} \\ & 001 \end{aligned}$	$\frac{\mathrm{INH}}{4}$	$\frac{\text { INH }}{5}$	$\frac{1 \times 1}{6}$	$\frac{1 x}{7}$	$\frac{\mathrm{INH}}{8}$	$\frac{\text { INH }}{9}$	$\frac{\operatorname{IMM}}{A}$	$\frac{\text { DIR }}{8}$	$\begin{gathered} \text { EXI } \\ 1100 \end{gathered}$	$\frac{1 \times 2}{0}$	$\frac{\mathrm{XIV}_{1}}{{ }_{1110}^{E}}$	$\frac{\bar{X}}{\underset{111}{f}}$	${ }^{\text {Hi Low }}$
${ }_{0}^{0}$	$\begin{aligned} & 10 \\ & { }^{10} \text { BRSETO } \\ & 3 \quad \text { BTB } \end{aligned}$	${ }_{2}^{3} \text { BSETO }$	${ }_{2}^{4} \text { BRA }$	${ }_{2}^{6} \mathrm{NEG}_{\mathrm{DIR}}$	$\begin{array}{\|l\|l\|} \hline 4 & 0100 \\ \hline & \mathrm{NEG} \\ \hline \end{array}$	NEG	${ }_{2}^{7}{ }^{\text {NEG }{ }_{\|x\|}}$	${ }_{1}^{6} \text { NEG }$			$\begin{array}{ll} 2 & 1010 \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline & \\ \hline & S \cup B \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 5 & 100 \\ { }_{3} & \text { SUB } \\ \hline \end{array}$	SUB ${ }_{1 \times 2}$	$\operatorname{SUB}_{1 \times 1}$	${ }_{1}^{4}$ SUB ${ }_{4}$	-000
$\begin{array}{r} 1 \\ 0001 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ \text { BRCLRO } \\ 3 \\ \hline 10 \end{array}$	$\begin{gathered} 8 C L R O \\ \hline 2 \\ \hline 2 \end{gathered}$	$\begin{array}{ll} 4 \\ 2 & \text { BRN } \\ \hline 2 & \text { REL } \\ \hline \end{array}$						$\begin{array}{\|l\|l\|} \hline 6 & \text { RTS } \\ 1 & \text { INH } \\ \hline \end{array}$		${ }_{2}^{2} \mathrm{CMP}$	$\begin{array}{lll} { }^{4} & \text { CMP } \\ \hline \end{array}$	$\begin{array}{ll} 5 & \mathrm{CMP} \\ 3 & \text { EXT } \\ \hline \end{array}$	${ }^{\text {CMP }}{ }_{1 \times 2}$	${ }^{\text {CMP }}{ }_{\text {\|x\| }}$	${ }_{1}^{4}$ CMP ${ }^{4}$	0001
0210	$\begin{aligned} & 10 \\ & 3 \text { BRSET1 } \\ & 3 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { BSET1 } \\ & \hline 2 \end{aligned}$	${ }_{2}^{4} \mathrm{BHI}$								$\begin{array}{\|cc} 2 & \mathrm{SBC} \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	$\begin{array}{ll} 4 & S B C^{4} \\ 2 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 5 & S B C \\ 3 & \\ \hline \end{array}$	$\begin{array}{lll\|} \hline 6 & & \\ 3 & \text { SBC } & \\ \hline \end{array}$	${ }^{\mathrm{SBC}}{ }_{1 \times 1}$	$1_{1}^{\text {SBC }} 1 \times$	0010
3 0011 4	$\begin{aligned} & 10 \\ & \text { BRCLR1 } \\ & 3 \quad \text { BTB } \end{aligned}$	$\begin{array}{r} B C L R 1 \\ 2 \\ \hline 2 \end{array}$	${ }_{2}^{4} \mathrm{BLS}$	${ }_{2}^{6} \mathrm{COM}$	COMA $1 .$	$\begin{array}{\|l\|l\|} \hline{ }^{4} \mathrm{COMX} \\ \mathrm{INH} \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 7 & & \\ 2 & & \\ \hline \end{array}$	${ }_{1}^{6} \operatorname{com}_{1 \times}$	${ }_{1}^{11} \mathrm{SWI}$		$\begin{array}{\|ll} 2 & \mathrm{CPX} \\ 2 & \text { IMM } \\ \hline \end{array}$	$\underbrace{}_{\mathrm{DPD}_{1 R}}$	${ }_{3}^{C P X}$	${ }_{3}{ }^{\text {CPX }}{ }_{1 \times 2}$	${ }^{\text {CPX }}$	${ }_{1}^{\text {CPX }}{ }_{1 \times}$	$0_{0}^{3} 11$
${ }^{4}$	${ }^{10}$ BRSET2 3 BTB	$\begin{aligned} & \text { BSET2 } \\ & \hline \end{aligned}$	${ }_{2}^{4} \mathrm{BCC} \mathrm{REL}^{2}$	$\begin{array}{\|cc} \hline 6 & \text { LSR } \\ 2 & \text { DTR } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 4 \\ \hline \end{array}$	LSRX	$2^{\text {LSR }}{ }_{\mid \times 1}$	$\begin{array}{\|lll} \hline 6 & \text { LSR } \\ \hline \end{array}$			$\begin{array}{ll} { }_{2}^{2} & \text { AND } \\ \hline \end{array}$	${ }_{2}^{\mathrm{AND}} \mathrm{DIHA}^{2}$	$\begin{array}{\|l\|l\|} \hline 5 & \text { AND } \\ { }_{3}^{5} & \text { EXT } \\ \hline \end{array}$	${ }^{\text {AND }}{ }_{1 \times 2}$	${ }^{\text {AND }}$ IX	${ }^{\text {AND }}{ }_{1 \times}$	${ }_{0}^{4} 0$
$\begin{gathered} 5 \\ 0101 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & \text { BRCLR2 } \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} \mathrm{BCLR2} \\ { }_{2} \\ \hline S S C \\ \hline \end{gathered}$	${ }_{2}^{4} \text { BCS }$								$\begin{array}{lll} 2_{2}^{2} & \text { BIT } \\ 2 & & 1 M M \\ \hline \end{array}$	${ }^{B I T}{ }_{D I R}$	${ }^{B 1 T_{E X T}}$	${ }^{B 1 T_{1 \times 2}}$	${ }^{\text {BIT }}$	BIT_{1}	5 0.101
${ }_{0}^{6}$	$\begin{aligned} & 10 \\ & \text { BRSET3 } \\ & 3 \quad B T B \end{aligned}$	$\begin{gathered} \text { BSET3 } \\ 2 \end{gathered}$	${ }_{2}^{4} \mathrm{BNE}_{\mathrm{PEL}}$	$\mathrm{ROR}_{\mathrm{DIR}}$			$\underbrace{}_{\mathrm{RO}_{1}}$	$\int_{1}^{6} \text { ROR }$			$\int_{2}^{2} \text { LDA }$	$\mathrm{LDA}_{\mathrm{DIR}}$	$\text { LDA }_{\text {EXT }}$	${ }_{\text {LDA }}^{1 \times 2}$	${ }^{\text {LDA }}{ }_{\|x\|}$	LDA ${ }^{1 \times}$	${ }_{011}^{6}$
9711	$\begin{aligned} & 10 \\ & \text { BRCLR3 } \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{BCLR} 3 \\ & 2 \\ & \hline \end{aligned}$	${ }_{2}^{4} B E Q_{\text {RE }}$	ASR DIR	${ }_{1}^{4} \text { ASRA }$	$\begin{array}{\|ll\|} \hline 4 & \text { ASRX } \\ 1 & \\ \text { INH } \\ \hline \end{array}$	${\underset{\mid \times 1}{ }{ }^{\text {ASR }}}^{2}$	$\int_{1}^{6} \text { ASR }$		$\int_{1}^{2} \text { TAX }$		STA	$\begin{aligned} & \text { STA } \\ & \text { EXT } \end{aligned}$	${ }_{3} \mathrm{STA}_{1 \times 2}$	$\operatorname{STA}_{1 x_{1}}$	${ }_{1}^{5}$ STA ${ }_{4}$	7 0 111
$\begin{gathered} 8 \\ -1000 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 10 \\ 3 \\ 3 & \text { BRSETA } \\ \hline \end{array}$	$\begin{aligned} & \text { BSET4 } \\ & 2 \end{aligned}$	${ }_{2}^{4} \mathrm{BHCC}$	$L^{L S I R}$	${ }^{4} \text { LSLA }$	$\begin{array}{\|lll\|} \hline{ }^{4} & \text { ISLX } \\ { }_{-1} & & \text { INH } \\ \hline \end{array}$	$\stackrel{L S L}{\|x\|}$	LSL		$\int_{1}^{2} \mathrm{CLC}$		$\underbrace{E O R}_{D I R}$	$\underbrace{E O R}_{E X T}$	${ }^{E O R}{ }_{1 \times 2}$	$\underbrace{}_{\mid \mathrm{EX}_{1}}$	${ }^{\text {EOR }} 1 \times$	8 1000
${ }_{1001}$	$\begin{aligned} & 10 \\ & \text { BRCLR4 } \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} \text { BCLR4 } \\ -2 \\ \hline \end{gathered}$	${ }_{2} \mathrm{BHCS} \text { REL }$	$\underbrace{\mathrm{ROL}}_{\mathrm{OIR}}$	${ }_{1}^{4}$ ROLA ${ }_{\text {INH }}$		ROL	$\begin{array}{\|l\|l\|} \hline 6 \\ \hline & \mathrm{ROL} \\ \hline \end{array}$		$\begin{array}{lll} 2 & \text { SEC } \\ 1 & \text { INH } \\ \hline \end{array}$	$\begin{array}{ll} 2 & A D C \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }^{A D C} C_{D R}$	$A D C_{E X T}$	$A_{1 \times 2}$	${ }^{A D C}{ }_{\text {\|X1 }}$	${ }^{\text {ADC }}{ }_{\text {IX }}$	${ }_{1001}$
$\stackrel{\text { A }}{\text { A }}$	$\begin{aligned} & 10 \\ & \text { BRSETS } \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} \text { BSET5 } \\ \hline \text { BSC } \end{gathered}$	${ }^{B P L} \mathrm{REL}^{2}$	$\mathrm{CEC}_{\mathrm{DIR}}^{0}$	${ }_{1}^{4}$ DECA	$\begin{array}{\|l\|l\|} \hline{ }^{4} & \mathrm{DECX} \\ \hline \end{array}$	${ }_{2}{ }^{D E C}{ }_{\mid \times 1}$	$\begin{array}{\|ll\|} \hline 6 & \text { DEC } \\ \hline \end{array}$		$\underbrace{2}_{1} \quad \mathrm{CLI}_{\mathrm{NH}}$	$\begin{array}{\|ll\|} \hline 2 & \text { ORA } \\ 2 & \text { IMMM } \\ \hline \end{array}$	$\mathrm{ORA}_{\mathrm{DIR}}$	$\begin{aligned} & \text { ORA } \\ & \text { EXT } \\ & \hline \end{aligned}$	ORA ${ }_{1 \times 2}$	${ }^{\text {ORA }}{ }_{1 \times 1}$	${ }^{\text {ORA }} 1 \times$	A
$\begin{gathered} 8 \\ 1011 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 3 R C L R 5 \\ & 3 \\ & \hline \end{aligned}$	$\stackrel{\text { BCLR5 }}{2}$	${ }^{8 M I_{\text {REL }}}$							$\begin{array}{lll} \int_{1}^{2} & \mathrm{SEI} \\ \hline 1 & & \\ \hline \end{array}$	$\begin{array}{ll} \frac{2}{2} & \mathrm{ADD} \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	${ }_{\mathrm{DIR}}^{\mathrm{ADD}}$	${\underset{\text { EXI }}{ }}^{\text {ADD }}$	${ }^{A D D_{1 \times 2}}$	${ }^{A D D}{ }_{\|x\|}$	${ }^{\text {ADD }}{ }_{\text {IX }}$	${ }_{1011}$
$\underset{1100}{\text { C }}$	$\begin{aligned} & 10 \\ & \text { BRSET6 } \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} \text { BSET6 } \\ \text { BSC } \end{gathered}$	BMC	${ }_{2}^{0} \quad{ }_{2}^{N C_{D I R}}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { INCA } \\ 1 & \text { INH } \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \\ & 1 \mathrm{INCX} \\ & \hline \end{aligned}$	${ }{ }^{N} C_{\|x\|}$	$\begin{aligned} & 6 \\ & 1 \\ & 1 \end{aligned}$		${ }_{1}^{2}{ }^{2}{ }^{\text {RSP }}$		JMP DIR	$\mathrm{JMP}_{\text {EXT }}$	$J_{M P_{1 \times 2}}$	${ }^{J M P_{1 \times 1}}$	${ }_{1}^{3}$ JMP ${ }^{3}$	${ }_{11}$
${ }_{1}{ }_{1}$	$\begin{aligned} & 10 \\ & \text { BRCLR6 } \\ & 3 \\ & 3 \end{aligned}$	${ }_{8}^{\text {BCLR6 }}$	$\mathrm{BMS}_{\text {REL }}$	$\begin{array}{ll} { }^{6} & \\ { }_{2}^{T S T} \\ \text { DIR } \end{array}$	${ }_{1}^{4} \text { TSTA }$	$\begin{array}{\|ll\|} \hline 4 & \text { TSTX } \\ 1 & \text { INH } \\ \hline \end{array}$	$2_{2}^{T S T}{ }_{\|x\|}$			$\int_{1}^{2}{ }^{\mathrm{NOP}}{ }_{\mathrm{INH}}$	$\begin{array}{ll} 8 & \mathrm{BSR}_{2} \\ \hline \end{array}$	JSR DIR	$J S_{E X I}$	${ }^{J S R_{1 \times 2}}$	$J S R_{\mid \times 1}$	$\underbrace{J S R}_{1 X}$	¢
$\underset{1110}{E}$	${ }_{3}^{10}$ BRSETT	BSET7	BIL									LDX DIR	$\operatorname{LDXXT}^{\text {EXT }}$	$\operatorname{LDX}_{1 \times 2}$	$\operatorname{LDX}_{1 \times 1}$	${ }^{\text {LDX }}{ }_{1 x}$	${ }_{11}{ }^{\text {E }}$
F		$\begin{gathered} \text { BCLR7 } \\ { }_{2} \\ \hline \end{gathered}$	${ }_{2}^{4} \mathrm{BIH}$	${ }_{2}^{6} \mathrm{CLR}_{\mathrm{DIR}}$	$\int_{1}^{4} \text { CLRA }$	$\begin{array}{\|l\|l\|} \hline{ }^{4} & \text { CLRX } \\ 1 & \\ \hline \end{array}$	$$	$\begin{aligned} & \hline 6 \\ & \hline \\ & \\ & \hline \end{aligned}$		$\begin{array}{\|ll} \hline 2 & \text { TXA } \\ 1 & \text { INH } \\ \hline \end{array}$		${ }_{2}^{5} \operatorname{STX} X_{D I R}$	$\int_{3}^{0} S T X_{E X T}$	$\int_{3}^{1} \operatorname{STX}_{1 \times 2}$	${ }_{2}^{6} \operatorname{sTx}{ }_{\mid \times 1}$	${ }_{1}^{5}$ STX $_{1 \times}$	${ }_{111}$

Abbreviations for Address Modes

INH
IMM
DIR
EXT
REL
BSC
BTB
IX
IX1
IX2

```
Inherent
Immediate
Direct
Extended
Relative
Bit Set/Clear
Bit Test and Branch
Indexed (No Offset)
Indexed, 1 Byte (8-Bit) Offset
Indexed, 2 Byte (16-Bit) Offset
```


PHYSICAL DIMENSIONS

CB-132

CB-520

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

XXX = Customer ID
After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUCTEURS. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE....
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

[^15]
ORDERING IN FORMATION

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Examples : EF6805P6P, EF6805P6FN, EF6805P6PLD, EF6805P6FNLD
Package: C: Ceramic DIL, P: Plastic DIL, FN: PLCC.
Oper. temp.: $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, ${ }^{*}$: may be omitted.
Screening level: Std: (no-end suffix), D: NFC 96883 level D.
**: Requires prior factory approval.

ADVANCE INFORMATION

The EF6805R2 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8-bit microcomputer contains a CPU, on-chip CLOCK, FOM, RAM, I/O, 4-channel 8 -bit A/D, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800-based instruction set. A comparison of the key features of several members of the 6805 Family of Microcomputers is shown at this end of this data sheet. The following are some of the hardware and software highlights of the EF6805R2 MCU.

HARDWARE FEATURES

- A/D Converter

8-Bit Conversion, Monotonic
4 Multiplexed Analog Inputs
Ratiometric Conversion

- 32 TTL/CMOS Compatible I/O Lines

24 Bidirectional (8 Lines are LED Compatible)
8 Input-Only

- 2048 Bytes of User ROM
- 64 Bytes of RAM
- Self-Check Mode .
- Zero-Crossing Detect/Interrupt
- Internal 8-Bit Timer with 7-Bit Mask Programmable Prescaler and Clock Source
- 5 V Single Supply

SOFTWARE FEATURES

- 10 Powerful Addressing Modes
- Byte Efficient Instruction Set with True Bit Manipulation, Bit Test, and Branch Instructions
- Single Instruction Memory Examine/Change
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Register/Flags
- Complete Development System Support on DEVICE ${ }^{(8)}$

USER SELECTABLE OPTIONS

- Internal 8-Bit Timer with Selectable Clock Source (External Timer Input or Internal Machine Clock)
- Timer Prescaler Option (7 Bits, 2n)
- 8 Bidirectional I/O Lines with TTL or TTL/CMOS Interface Option
- 8 Bidirectional I/O Lines with TTL or Open-Drain Interface Option
- Crystal or Low-Cost Resistor Oscillator Option
- Low Voltage Inhibit Option
- Vectored Interrupts: Timer, Software, and External
- User Callable Self-Check Subroutines

DEVICE ${ }^{\circledR}$ is THOMSON SEMICONDUCTEURS' development/emulation tool.

HMOS

PIN ASSIGNMENT

VSS_{1}	40	$7 \mathrm{Pa7}$
RESET 42	39]PA6
INT \square_{3}	38]PA5
VCCO4	37]PA4
EXTAL 5	36	PPA3
XTAL 6	35]PA2
($\mathrm{V}_{\text {SS }}$) NUM ${ }^{\text {P }}$	34]PA1
TIMER 8	33	PPAO
PCO 9	32]PB7
PC10 10	31]PB6
PC2 il	30]PB5
PC3 12	29	1 PB 4
PC4 13	28	$]$ PB3
PC5 14	27	1PB2
PC6 15	26]PB1
PC70 16	25]PB0
PD7 17	24	IPDO/ ANO
PD6/INT2 18	23	IPD1/AN1
PD5/VRH 19	22	IPD2/AN2
PD4/VRLO 20	21	PD3/AN3

EF6805R2

FIGURE 1 - EF6805R2 HMOS MICROCOMPUTER BLOCK DIAGRAM

MAXIMUM RATING

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage (Except TIMER in Self-Check Mode and Open-Drain Inputs)	$V_{\text {in }}$	-0.3 to +7.0	V
Input Voltage (Open-Drain Pins, TIMER Pin in Self-Check Model	$V_{\text {in }}$	-0.3 to +15.0	V
Operating Temperature Range $\left(T_{L}\right.$ to $\left.T_{H}\right)$ \mathbf{V} suffix 	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Plastic Package PLCC	TJ	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance	$\theta_{\text {JA }}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic		50	
PLCC		80	

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{\text {SS }} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq$ $V_{C C}$. Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{CC}.

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:
$T_{J}=T_{A}+\left(P_{D} \theta_{J A}\right)$
Where:

```
TA # Ambient Temperature, 趷
0JA = Package Thermal Resistance, Junction-to-Ambient, }\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
PD=PINT + PPORT
PINT = ICC }\times\mp@subsup{V}{CC}{C}\mathrm{ . Watts - Chip Internal Power
PPORT = Port Power Dissipation, Watts - User Determined
```

For most applications PPORT $\&$ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is:

$$
\begin{equation*}
P D=K+\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P_{D} \bullet\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_{D} (at equilibrium) for a known TA. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input High Voltage } \\ & \overline{\text { RESET }}\left(4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.75\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}<4.75\right) \\ & \overline{\operatorname{INT}\left(4.75 \leqslant \mathrm{VCC}_{\mathrm{C}} \leqslant 5.75\right)} \\ & \text { } \left.\mathrm{V}_{\mathrm{CC}}<4.75\right) \\ & \text { All Other (Except Timer) } \end{aligned}$	$\mathrm{V}_{\text {IH }}$	$\begin{gathered} 4.0 \\ v_{C C}-0.5 \\ v_{C C}-0.0 \\ 2.0 \end{gathered}$	-	$V_{C C}$ $V_{C C}$ $V_{C C}$ $V_{C C}$ $V_{C C}$	V
Input High Voltage Timer Timer Mode Self-Check Mode	$\mathrm{V}_{1 \mathrm{H}}$	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	$\overline{10.0}$	$V_{C C}+1.0$	V
```Input Low Voltage RESET INT All Other (Except A/D Inputs)```	$V_{\text {IL }}$	$\begin{aligned} & \mathbf{v}_{\mathrm{SS}} \\ & \mathbf{v}_{\mathrm{SS}} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	V
$\overline{\text { RESET }}$ Hysteresis Voltages (See Figures 10,11 and 12)   "Out of Reset"   "Into Reset"	$V_{\text {IRES }}+$ VIRES-	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	V
INT Zero Crossing Input Voltage, Through a Capacitor	VINT	2	-	4	$V_{\text {ac p-p }}$
$\begin{array}{rr} \hline \text { Power Dissipation }-\left(\text { No Port Loading, } \mathrm{V}_{C C}=5.75 \mathrm{~V}\right) \\ \begin{array}{r} T_{A}=0^{\circ} \mathrm{C} \\ T_{A}=-40^{\circ} \mathrm{C} \end{array} \end{array}$	$P_{\text {D }}$	-	$\begin{aligned} & 520 \\ & 580 \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \end{aligned}$	mW
Input Capacitance   EXTAL   All Other Except Analog Inputs (See Note)	$\mathrm{C}_{\text {in }}$	-	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	-	pF
Low Voltage Recover	VLVR	-	-	4.75	V
Low Voltage Inhibit	$V_{\text {LVI }}$	2.75	3.75	4.70	V
```Input Current TIMER ( \(\mathrm{V}_{\mathrm{in}}=0.4 \mathrm{~V}\) ) \(\overline{\text { INT }}\left(V_{\text {in }}=2.4 V\right.\) to \(\left.V_{C C}\right)\) EXTAL \(\left(V_{\text {in }}=2.4 \mathrm{~V}\right.\) to \(\mathrm{V}_{\mathrm{CC}}\) - Crystal Option) ( \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) - Crystal Option) \(\overline{\text { RESET }}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)\) - External Capacitor Charging Current```	I in		$20$	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

NOTE : Port D Analog Inputs, when selected, $\mathrm{C}_{\mathrm{in}}=25 \mathrm{pF}$ for the first 5 out of 30 cycles.
*Due to internal biasing this input (when unused) floats to approximately 2.2 V .

SWITCHING CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Oscillator Frequency	$\mathrm{f}_{\text {osc }}$	0.4	-	4.2	MHz
Cycle Time ($4 / \mathrm{f}_{\mathrm{Osc}}$)	$\mathrm{t}_{\text {cyc }}$	0.95	-	10	$\mu \mathrm{s}$
$\overline{\text { INT, }} \overline{\text { INTV }}$, and TIMER Pulse Width (See Interrupt Section)	tWL, TWH	$\mathrm{t}_{\text {cyc }}+250$	-	-	ns
RESET' Pulse Width	trwL	$\mathrm{t}_{\text {cyc }}+250$	-	-	ns
INT Zero-Crossing Detection Input Frequency	fint	0.03	-	1	kHz
External Clock Input Duty Cycle (EXTAL)	-	40	50	60	\%
Crystal Oscillator Start-Up Time *	-	-	-	100	ms

* See Figure 16 for typical crystal parameters

A/D CONVERTER CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Min	Typ	Max	Unit	Comments
Resolution	8	8	8	Bits	
Non-Linearity	-	-	$\pm 1 / 2$	LSB	For $\mathrm{V}_{\mathrm{RH}}=4.0$ to 5.0 V and $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
Quantizing Error	-	-	$\pm 1 / 2$	LSB	
Conversion Range	$\mathrm{V}_{\text {RL }}$	-	$\mathrm{V}_{\text {RH }}$	V	
$V_{\text {RH }}$	-	-	$V_{\text {CC }}$	V	A/D accuracy may decrease proportionately as
V_{RL}	VSS	-	0.2	V	V_{RH} is reduced below 4.0 V . The sum of V_{RH} and $V_{\text {RL }}$ must not exceed $V_{C C}$
Conversion Time	30	30	30	${ }_{\text {che }}$	Includes sampling time
Monotonicity	Inherent (within total error)				
Zero Input Reading	00	00	01	hexadecimal	$V_{\text {in }}=0$
Ratiometric Reading	FE	FF	FF	hexadecimal	$V_{\text {in }}=V_{\text {RH }}$
Sample Time	5	5	5	${ }^{\text {che }}$ c	
Sample/Hold Capacitance, Input	-	-	25	pF	
Analog Input Voltage	$\mathbf{V}_{\text {RL }}$	-	V_{RH}	V	Negative transients on any analog lines (Pins 19-24) are not allowed at any time during conversion

PORT ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Port A with CMOS Drive Enabled					
Output Low Voltage (Load $^{\text {(}} 1.6 \mathrm{~mA}$)	V_{OL}	-	-	0.4	V
Output High Voltage $I_{\text {Load }}=-100 \mu \mathrm{~A}$ $I_{\text {Load }}=-10 \mu \mathrm{~A}$	V_{OH}	$\begin{gathered} 2.4 \\ v_{C c}-1.0 \end{gathered}$	-	-	V
Input High Voltage (Load $^{\text {a }}$ - $\mathbf{3 0 0} \mu \mathrm{A}$ max.)	$V_{\text {IH }}$	2.0	-	V_{CC}	V
Input Low Voltage (Load $=-500 \mu$ s max.)	VIL	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current ($\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$ to V_{CC})	$\mathrm{I}_{1 \mathrm{H}}$	-	-	-300	$\mu \mathrm{A}$
High Z State Input Current ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$)	IIL	-	-	-500	$\mu \mathrm{A}$
Port B					
Output Low Voltage $\begin{aligned} & I_{\text {Load }}=3.2 \mathrm{~mA} \\ & \mathrm{I}_{\text {Load }}=10 \mathrm{~mA}(\text { Sink }) \end{aligned}$	V_{OL}	-	-	$\begin{aligned} & 0.4 \\ & 1.0 \\ & \hline \end{aligned}$	V
Output High Voltage $\mathrm{I}_{\text {Load }}=-200 \mu \mathrm{~A}$	V_{OH}	2.4	-	-	V
Darlington Current Drive (Source) $\mathrm{V}_{\mathbf{O}}=1.5 \mathrm{~V}$	${ }^{1} \mathrm{OH}$	-1.0	-	-10	mA
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	V_{CC}	V
Input Low Voltage	VIL	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current	ITSI	-	<2	10	$\mu \mathrm{A}$

PORT ELECTRICAL CHARACTERISTICS (Cont'd)

Port C and Port A with CMOS Drive Disabled					
Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output High Voltage $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	V_{OH}	2.4	-	-	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	V_{CC}	V
Input Low Voltage	$\mathrm{V}_{1} \mathrm{l}$	$V_{S S}$	-	0.8	V
High Z State Input Current	ITSI	-	<2	10	$\mu \mathrm{s}$
Port C (Open-Drain Option)					
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0	-	13.0	V
Input Low Voltage	$V_{\text {IL }}$	$V_{\text {SS }}$	-	0.8	V
Input Leakage Current	ILOD	-	<3	15	$\mu \mathrm{A}$
Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	V
Port D (Digital Inputs Only)					
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	V_{CC}	V
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Input Current *	1 in	-	<1	5	$\mu \mathrm{A}$

*PD4/VRL -PD5/VRH: The A/D conversion resistor (15 k Ω typical) is connected internally between these two lines, impacting their use as digital inputs in some applications.

FIGURE 2 - TTL EQUIVALENT TEST LOAD (PORT B)

FIGURE 4 - TTL EQUIVALENT TEST LOAD (PORTS A AND C)

SIGNAL DESCRIPTION
The input and output signals for the MCU, shown in Figure 1, are described in the following paragraphs.

VCC AND VSS - Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.

INT - This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.

FIGURE 3 - CMOS EQUIVALENT TEST LOAD
(PORT A)

FIGURE 5 - OPEN - DRAIN EQUIVALENT TEST LOAD (PORT C)

NUM (NOM USER MODE) - This pin is not for user application and must be connected to $\mathrm{V}_{\text {SS }}$.

XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.

TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.
$\overline{\text { RESET }}$ - This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling RESET low. Refer to Resets Section for additional information.

INPUT/OUTPUT LINES (PAO-PA7, PBO-PB7, PCO-PC7, PDO-PD7) - These 32 lines are arranged into four 8 -bit ports (A, B, C, and D). Ports A, B, and C are programmable as either inputs or outputs under software control of the data direction registers (DDRs). Port D has up to four analog inputs, plus two voltage reference inputs when the A/D converter is used (PD5/NRH, PD4/VRL), and an INT2 input, and from one to eight digital inputs. If any analog input is used, then the voltage reference pins (PD5/VRH, PD4/VRL) must be used in the analog mode. Refer to Input/Output Section, A/D Converter Section, and Interrupts Section for additional information.

MEMORY - The MCU is capable of addressing 4096 bytes of memory and I/O registers with its program counter. The EF6805R2 MCU has implemented 2316 of these bytes. This consists of: 2048 user ROM bytes, 192 self-
check ROM bytes, 64 user RAM bytes, 7 port I/O bytes, 2 timer registers. 2 A/D registers, and a miscellaneous register; see Figure 6 for the Address map. The user ROM has been split into three areas. The main user ROM area is from \$080 to \$OFF and from \$7C0 to \$F37. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.

The MCU reserves the first 16 memory locations for I/O features, of which 12 have been implemented. These locations are used for the ports, the port DDRs, the timer, the INT2 miscellaneous register, and the A/D. Of the 64 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.

The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in Figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order four bits (PCH) are stacked. This ensures that the program counter is loaded correctly during pulls from the stack since the stack pointer increments when it pulls data from the stack. A subroutine call results in only the program counter (PCL, PCH) contents being pushed onto the stack; the remaining CPU registers are not pushed.

> * Caution: Data direction registers (DDRs) are write-only. they read as \$FF.

FIGURE 7 - INTERRUPT STACKING ORDER

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the $1 / 0$ or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in Figure 8 and are explained in the following paragraphs.

ACCUMULATOR (A) - The accumulator is a general purpose 8 -bit register used to hold operands and results of arithmetic calculations or data manipulations.

INDEX REGISTER (X) - The index register is an 8-bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.

FIGURE 8 - PROGRAMMING MODEL

PROGRAM COUNTER (PC) - The program counter is a 12 -bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP) - The stack pointer is a 12 -bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F.

The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack: The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).

CONDITION CODE REGISTER. (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.

Half Carry (H) - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4 .
Interrupt (1) - When this bit is set, the timer and external interrupts (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical " 1 ").
Zero (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The timer circuitry for the MC6805R2 is shown in Figure 10 . The 8 -bit counter may be loaded under program control and is decremented toward zero by the clock input (or prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (I bit) in the condition code register also prevents a timer interrupt from being processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$FF8 and \$FF9 and executing the interrupt routine (see RESET, CLOCK, AND INTERRUPT STRUCTURE SECTIONS). The timer interrupt request bit must be cleared by software. The TIMER and INT2 share the same interrupt vector. The interrupt routine must check the request bits to determine the source of the interrupt.

The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the

TIMER input pin, or it can be the internal phase two signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER pin logic is dependent on the parameter labeled tWH. The pin logic that recognizes the high state on the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows (assumes 50/50 duty cycle for a given period):

$$
\mathrm{t}_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply tWL + tWH. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 nanoseconds times two).

When the phase two signal is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. The source of the clock input is one of the mask options that is specified before manufacture of the MCU.

NOTE

For ungated phase two clock input to the timer prescaler, the TIMER pin should be tied to V_{CC}.

A prescaler option, divide by 2^{n}, can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer control register is written to a logic one (this bit always reads a logic zero). See Figure 9.

TCR7- Timer Interrupt Request Status Bit: Set when TDR goes to zero; must be cleared by software. Cleared to 0 by Reset.
TCR6-Timer Interrupt Mask Bit: $1=$ timer interrupt masked (disabled). Set to 1 by Reset.
TCR3-Clear prescaler always reads as a 0; clears prescaler when written to a logic " 1 ".
TCR Bits 5, 4, 2, 1, 0 reads " $1 s^{\prime \prime}$ - unused bits.
FIGURE 9 - TIMER CONTROL REGISTER (TCR)

FIGURE 10 - TIMER BLOCK DIAGRAM

The timer continues to count past zero, falling through to $\$ F F$ from $\$ 00$ and then continuing the countdown. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred, and not disturb the counting process.

At power up or reset, the prescaler and counter are initialized with all logic ones; the timer interrupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

SELF-CHECK

The self-check capability of the EF6805R2MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check program exercises the RAM, ROM, TIMER,A/D, interrupts, and I / O ports.

Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM, and 4 -channel A/D tests. The timer routine may also be called if the timer input is the internal $\phi 2$ clock.
please contact your local THOMSON SEMICONDUCTEURS sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.

RAM SELF-CHECK SUBROUTINE - The RAM selfcheck is called at location $\$ F 6 F$ and returns with the Z bit clear if any error is detected; otherwise the Z bit is set. The watking diagnostic pattern method is used on the EF6805R2.

The RAM test must be called with the stack pointer at \$0\%F. When run, the test checks every RAM cell except for $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ which are assumed to contain the return address.

The A and X registers and all RAM locations except $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ are modified.

ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F8A. If any error is detected, it returns with the Z bit cleared; otherwise $Z=1, X=0$ on return, and A is zero if the test passes. RAM location $\$ 040$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.

To call those subroutines in customer applications,

[^16]FIGURE 11 - SELF-CHECK CONNECTIONS

LED Meanings					
PC0 PC1 PC2 PC3 Remarks [1:LED ON; 0:LED OFF] 1 0 1 0 0 1 0 0 Bad I/O 1 1 0 0 1 0 1 0 Bad Timer 1 0 0 0 0 0 0 Bad ROM					
Any Flashing A/D					

Anything else bad Device, Bad Port C_{i} etc.

ANALOG-TO-DIGITAL CONVERTER SELF-CHECK -
The A/D self-check is called at location \$FA4 and returns with the Z bit cleared if any error was found; otherwise $Z=1$.

The A and X register contents are lost. The X register must be set to 4 before the call. On return, $X=8$ and A/D channel 7 is selected. The A/D test uses the internal voltage references and confirms port connections.

TIMER SELF-CHECK SUBROUTINE - The timer selfcheck is called at location \$FCF and returns with the Z bit cleared if any error was found; otherwise $Z=1$.

In order to work correctly as a user subroutine, the internal $\phi 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if necessary.

The A and X register contents are lost. The timer selfcheck routine counts how many times the clock counts in 128 cycles. The number of counts should be a power of 2 since the prescaler is a power of 2 . If not, the timer is probably not counting correctly. The routine also detects a timer which is not running.

RESET

The MCU can be reset three ways : by initial powerup, by the external reset input ($\overline{\mathrm{RESET}}$) and by an optional internal low-voltage detect circuit. The RESET input consists mainly of a Schmitt trigger which senses the $\overline{R E S E T}$ line logic level. A typical reset Schmitt trigger hysteresis curve is shown in Figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.

Power-On Reset (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of trHL milliseconds is required before allowing the $\overline{\operatorname{RESET}}$ input to go high. Refer to the power and reset timing diagram of Figure 13. Connecting a capacitor to the RESET input (as illustrated in Figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to VIRES+

FIGURE 12 - TYPICAL RESET SCHMITT TRIGGER HYSTERESIS

FIGURE 13 - POWER AND RESET TIMING

FIGURE 14 - $\overline{\text { RESET CONFIGURATION }}$

External Reset Input - The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle ($\mathrm{t}_{\mathrm{cyc}}$). Under this type of reset, the Schmitt trigger switches off at VIRES - to provide an internal reset voltage.

Low-Voltage Inhibit (LVI) - The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level (VLVI). The only requirement is that $V_{C C}$ remains at or below the $V_{\text {LVI }}$ threshold for one $\mathrm{t}_{\mathrm{cyc}}$ minimum. In typical applications, the V_{CC} bus filter capacitor will eliminate negative-going voltage glitches of less than one $\mathrm{t}_{\text {cyc }}$. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level (VLVR), at which time a normal power-on-reset occurs.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in Figure 15. Crystal specifications and suggested PC board layouts are given in Figure 16. A resistor selection graph is given in Figure 17.

The crystal oscillator start-up time is a function of many variables : crystal parameters (especially RS), oscillator load capacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.

When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage beluw VIRES +) until the oscillator has stabilized at its opetdtum frequency. Several factors are involved in calculating the, external reset capacitor required to satisfy this conditum: the oscillator start-up voltage, the oscillator stabilization time, the minimum VIRES $_{+}$, and the reset charging curtent specification.

Once V_{CC} minimum is reached, the external $\overline{\mathrm{RESET}}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{C C}$ through a large resistor, so it appears almost like a constant current source until the reset voltage rises above VIRES + . Therefore, the $\overline{\operatorname{RESET}}$ pin will charge at approximately:

$$
\left(V_{\text {IRES }}+1 \cdot C_{\text {ext }}=I_{\text {RES }} \bullet t_{\text {RHL }}\right.
$$

Assuming the external capacitor is initially discharged.

FIGURE 15 - CLOCK GENERATOR OPTIONS

NOTE: The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.
figure 15 - CLOCK generator options (Cont'd)

AT - Cut Parallel Resonance Crystal
$\mathrm{C}_{\mathrm{O}}=7 \mathrm{pF}$ Max
Freq. $=4.0 \mathrm{MHz} @ \mathrm{C}_{\mathrm{L}}=24 \mathrm{pF}$ $\mathrm{R}_{\mathrm{S}}=50$ ohms Max.
(b)

EXTAL (5)

Piezoelectric ceramic resonators which have the equivalent specifications may be used instead of crystal oscillators. Follow ceramic resonator manufacturer's suggestions for $\mathrm{C}_{0}, \mathrm{C}_{1}$, and R_{S} values.

NOTE: Keep crystal leads and circuit connections as short as possible.

FIGURE 16 - CRYSTAL MOTIONAL ARM PARAMETERS
AND SUGGESTED PC BOARD LAYOUT

FIGURE 17 - TYPICAL FREQUENCY SELECTION FOR RESISTOR (OSCILLATOR OPTION)

EF6805R2

INTERRUPTS

The microcomputers can be interrupted four different ways : through the external interrupt ($\overline{\mathrm{INT}}$) input pin, the internal timer interrupt request, the external port D bit 6 ($\overline{\mathrm{NT} 2}$) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of $11 \mathrm{t}_{\mathrm{cyc}}$ periods for completion. A flowchart of the interrupt sequence is shown in Figure 18. The interrupt service routine must
end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike $\overline{\operatorname{RESET}}$, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.

FIGURE 18 - RESET AND INTERRUPT PROCCESSING FLOWCHARD

NOTE

The timer and $\overline{\text { INT2 }}$ interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.

The external interrupt, INT and $\overline{\text { NT2 }}$, are synchronized and then latched on the falling edge of the input signal. The $\overline{\mathrm{NT} 2}$ interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The $\overline{\mathrm{NT} 2}$ interrupt is inhibited when the mask bit is set. The $\overline{\mathrm{NT} 2}$ is always read as a digital input on port D. The $\overline{\mathbb{N T} 2}$ and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.

A sinusoidal input signal (fINT maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-ofday routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a 2 f clock. See Figure 19.

NOTE

The $\overline{\mathrm{INT}}$ (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.

A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as breakpoints for debugging or as system calls.

Bit 7-Conversion Complete Status Flag: Set when conversion is complete; cleared only on a write to ACR.
Readable, not writable.
Bits 2, 1. 0 - A/D input Mux Selection (See Table 2). Bits 6, 5, 4, 3 read as " $1 s^{\prime \prime}$ - unused bits.

FIGURE 19 - TYPICAL INTERRUPT CIRCUITS

INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The $\overline{\mathrm{NT}}$ pin may be polled with branch instructions to provide an additional input pin. All pins on ports A, B, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at the output pin, due to output loading. Refer to Figure 20.

PORT DATA REGISTER

(1) Write Only; reads as all " 1 s "
(2) $1=$ Output, $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$

FIGURE 20 - TYPICAL PORT I/O CIRCUITRY

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.

Port D provides the reference voltage, $\overline{\mathrm{INT} 2}$, and multiplexed analog inputs. All of these lines are shared with the port D digital inputs. Port D may always be used as digital inputs and may also be used as analog inputs providing $V_{R H}$ and $V_{R L}$ are connected to the appropriate reference voltages. The $V_{R L}$ and $V_{R H}$ lines (PD4 and PD5) are internally connected to the A/D resistor. Analog inputs may be prescaled to attain the $V_{R L}$ and $V_{R H}$ recommended input voltage range.

The address map (Figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

The latched output data bit (see Figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).
(a) Output Modes

Port B, bit 0 and bit 1 programmed as output, driving LEDs directly.

Port B, bit 5 programmed as output, driving Darling-ton-base directly.

Port C, bits 0.3 programmed as output. driving CMOS loads, using external pullup resistors trequired if Port C is open-drain).
(b) Input Modes

TTL driving Port A directly.

Port D used as 4-channel A/D input with bit 7 used as CMOS digital input.

FIGURE 21 - TYPICAL PORT CONNECTIONS

ANALOG-TO-DIGITAL COUVERTER

The EF6805R2 has an 8-bit analog-to-digital (A/D) converter implemented on the chip using a successive approximation technique, as shown in Figure 22. Up to four external analog inputs, via port D, are connected to the A/D through a multiplexer. Four internal analog channels may be selected for calibration purposes (VRH-VRL,
$\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}} / 2, \mathrm{~V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}} / 4$, and $\left.\mathrm{V}_{\mathrm{RL}}\right)$. The accuracy of these internal channels will not necessarily meet the accuracy specifications of the external channels.

The multiplexer selection is controlled by the A/D control register (ACR) bits 0,1 , and 2 ; see Table 1. This register is cleared during any reset condition.

FIGURE 22 - A/D BLOCK DIAGRAM

A/D Control Register			Input Selected	A/D Output (Hex)				
	ACR2	ACR1			Min	Typ	Max	ANO
:---:								
0								

*Internal (Calibration) levels

TABLE 1 - A/D INPUT MUX SELECTION

7	6						
		1	1	1	1	1	1

MR7 Bit $7-\overline{\mathbb{N T} T 2}$ Interrupt Request Bit: Set when falling edge detected on $\overline{\mathbb{N T} T 2}$ pin, must be cleared by software. Cleared to 0 by Reset MR6 Bit 6- $\overline{\mathrm{NTT} 2}$ Interrupt Mask Bit: $1=\overline{\mathrm{INT} 2}$ Interrupt masked (disabled). Set to 1 by Reset.
MR Bits 5, 4, 3, 2, 1, 0-Read as " $1 \mathrm{~s}^{\prime}$ "-unused bits.
A/D RESULT REGISTER (ARR)

$\$ 00 F$

Whenever the ACR is written, the conversion in progress is aborted, the conversion complete flag (ACR bit 7) is cleared, and the selected input is sampled for five machine cycles and held internally. During these five cycles, the
analog input will appear approximately like a 25 picofarad (maximum) capacitor (plus approximately 10 pF for packaging) charging through a 2.6 kiloohm resistor (typical). Refer to Figure 23.

FIGURE 23 - EFFECTIVE ANALOG INPUT IMPEDANCE (DURING SAMPLING ONLY)

The converter operates continuously using 30 machine cycles to complete a conversion of the sampled analog input. When the conversion is complete, the digitized sample of digital value is placed in the A/D result register (ARR), the conversion complete flag is set, the selected input is sampled again, and a new conversion is started.

The A/D is ratiometric. Two reference voltages (VRH and $V_{R L}$) are supplied to the converter via port D pins. An input voltage equal to V_{RH} converts to $\$ \mathrm{FF}$ (full scale) and an input voltage equal to $V_{\text {RL }}$ converts to $\$ 00$. An input voltage greater than $V_{R H}$ converts to SFF and no overflow indication is provided. Similarly, an input voltage less than V_{RL}, but greater than V_{SS} converts to $\$ 00$. Maximum and minimum ratings must not be exceeded. For ratiometric conversion, the source of each analog input should use V_{RH} as the supply voltage and be refe-
renced to $V_{R L}$. To maintain the full accuracy on the A/D, $\mathrm{V}_{\text {RH }}$ should be equal to or less than $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {RL }}$ should be equal to or greater than VSS but less than the maximum specification and ($\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$) should be equal to or greater than 4 volts.

The A/D has a built-in $1 / 2$ LSB offset intended to reduce the magnitude of the quantizing error to $\pm 1 / 2$ LSB, rather than $+0,-1$ LSB with no offset. This implies that, ignoring errors, the transition point from $\$ 00$ to $\$ 01$ occurs at $1 / 2$ LSB above VRL. Similarly, the transition from \$FE to \$FF occurs 1 1/2 LSB below $V_{R H}$, ideally. Refer to Figure 24 and 25.

On release of reset, the A/D control register (ACR) is cleared therefore after reset, channel zero will be selected and the conversion complete flag will be clear.

FIGURE 24 - IDEAL CONVERTER TRANSFER CHARACTERISTIC
(a) Offset Error

(b) Full Scale Error
(c) Non-Linearity

FIGURE 25 - TYPES OF CONVERSION ERRORS

BIT MANIPULATION

The EF6805R2 as the ability to set or clear any single RAM or 1/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single 1/O bits as control lines.

CAUTION

The corresponding data direction registers for ports A, B, and C are write-only registers (locations \$004, \$005, and \$006). A read operation on these registers is undefined. Since BSET
and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.

The coding examples shown in Figure 26 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first out,of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.

FIGURE 26 - BIT MANIPULATION EXAMPLE

ADDRESSING MODES

The EF6805R2 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.

IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.

EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3 -byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.
RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset if he uses the assembler. since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument $1:$; contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These: $I 1$ structions are only one byte long. This mode is often used 10 move a pointer through a table or to hold the address of a frequently referenced RAM or 1/O location.

INDEXED, 8-BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the k th element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1 \mathrm{FE}$ is the last location at which the instruction may begin).

INDEXED, 16 -BIT OFFSET - In the indexed, 16 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3 -byte instruction allows tables to be anywhere. in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.
BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since

BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be must written using a singlestore instruction.
BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3 -byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be must written using a singlestore instruction.

INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805R2 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs
briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to Table 2.

BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 3.
BIT MANIPULATION INSTRUCTIONS - The instructinns are used on any bit in the first 256 bytes of the memory; One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 4.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be must written using a singlestore instruction.

CONTROL INSTRUCTION - The control instructions control the MCU operations during program execution. Refer to Table 5
ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in Table 6.

OPCODE MAP - Table 8 is an opcode map for the instruction used on the MCU.

TABLE 1 - REGISTER/MEMORY INSTRUCTIONS

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed(No Offset)			Indexed(8.Bit Offset)			$\begin{gathered} \text { Indexed } \\ \text { (16. Bit Offiset) } \\ \hline \end{gathered}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	Cycies	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \hline \text { Bytes } \\ \hline \end{array}$	Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \text { B } \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	Bytes	Cycles	$\begin{array}{\|c\|} \hline \text { OP } \\ \text { Code } \\ \hline \end{array}$	Bytes	
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	T 1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA	-	-	-	B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX	-	-	-	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	B0	2	4	CO	3	5	FO	1	4	EO	2	5	DO	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	04	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	88	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	C 1	3	5	F1	1	4	E1	2	5	01	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR	-	--	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

TABLE 2 - READ-MODIFY-WRITE INSTRUCTIONS

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			Indexed(No Offset)			Indexed$(8 \mathrm{Bit}$ Offset)		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	\# Cycles	$\begin{gathered} \mathrm{Op} \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	H Cycles	$\begin{gathered} \hline \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles	$\begin{gathered} \mathrm{Op} \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	
Increment	INC	4 C	1	4	5C	1	4	3C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2's Complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	\checkmark	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	50	.	\therefore	\vdots	2	6	7 D	1	6	6D	2	7

TABLE 3 - BRANCH INSTRUCTIONS

		Relative Addressing Mode		
Function	Mnemonic	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	\# Bytes	\# Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFFHigher	BHI	22	2	4
Branch IFF Lower or Same	BLS	23	2	4
Branch IFFCarry Clear	BCC	24	2	4
(BranchiFFHigher or Same)	(BHS)	24	2	4
Branch IFFCarry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
Branch IFF Not Equal	BNE	26	2	4
BranchIFFEqual	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branchiff Plus	BPL	2A	2	4
BranchIFF Minus	BMI	2B	2	4
Branch IFFInterupt Mask Bit is Clear	BMC	2 C	2	4
Branch IFFInterrupt Mask Bit is Set	BMS	2D	2	4
Branch IFF Interrupt Line is Low	BIL	2E	2	4
BranchIFFInterrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

TABLE 4 - BIT MANIPULATION INSTRUCTIONS

		Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
Function	Mnemonic	Op Code	Bytes		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	Bytes	
Branch IFF $\mathrm{Btt}^{\mathrm{n}}$ is set	BRSET $n(\mathrm{n}=0 . \ldots 7$)	-	-	-	$2 \cdot n$	3	10
Branch IFF Bit n is clear	BRCLR $n(\mathrm{n}=0.7)$	-	-	-	$01+2 \cdot n$	3	10
Set Bit n	BSET $n(\mathrm{n}=0.7)$	$10+2 \cdot n$	2	7	-	-	-
Clear bit n	BCLR n ($\mathrm{n}=0 \ldots 7$)	$11+2 \cdot n$	2	7	-	-	-

TABLE 5 - CONTROL INSTRUCTIONS

		Inherent		
Function	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	98	1	2
Clear Interrupt Mask Bit	CLI	$9 A$	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	$9 C$	1	2
No-Operation	NOP	$9 D$	1	2

TABLE 6 - INSTRUCTION SET

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	Bit Set/ Clear	Bit Branch	H	1	N	2	C
ADC		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
ASL	X		X			X	X				-	-	\wedge	\wedge	\wedge
ASR	X		\times			X	X				\bullet	-	\wedge	\wedge	\wedge
BCC					X						\bullet	\bullet	-	\bullet	\bullet
BCLR									X		\bullet	-	\bullet	\bullet	\bullet
BCS					X						\bullet	-	\bullet	-	\bullet
BEQ					X						\bullet	-	-	-	\bullet
BHCC					X						-	\bullet	\bullet	-	\bullet
BHCS					X						\bullet	-	-	-	\bullet
BHI					X						\bullet	-	-	-	\bullet
BHS					X						\bullet	-	-	-	\bullet
BIH					X						\bullet	\bullet	-	-	\bullet
BIL					X						\bullet	-	-	-	\bullet
BIT		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
BLO					X						-	-	\bullet	-	-
BLS					X						\bullet	-	-	-	\bullet
BMC					X						-	-	-	-	\bullet
BMI					X						-	-	-	-	\bullet
BMS					X						-	-	-	-	\bullet
BNE					X						\bullet	-	-	-	\bullet
BPL					X						\bullet	-	-	-	\bullet
BRA					X						\bullet	-	-	-	-
BRN					X						\bullet	\bullet	\bullet	-	\bullet
BRCLR										X	\bullet	\bullet	\bullet	-	\wedge
BRSET										X	\bullet	-	\bullet	-	\wedge
BSET									X		-	-	-	-	\bullet
BSR					X						-	-	-	-	\bullet
CLL	X										-	-	-	-	0
CLI	X										-	0	-	-	-
CLR	X		X			X	X				\bullet	-	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				\bullet	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
DEC	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	-
INC	X		X			X	X				-	-	\wedge	\wedge	\bullet
JMP			X	X.		X	X	X			\bullet	-	\bullet	\bullet	\bullet
JSR			X	X		X	X	X			-	-	-	-	\bullet
LDA		x	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
LSR	X		X			X	X				\bullet	-	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
NOP	X										\bullet	-	-	-	-
ORA		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
ROL	$\bar{\chi}$		X			X	X				-	-	\wedge	\wedge	\wedge
RSP	X										\bullet	-	\bullet	\bullet	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
Interrupt Mask
\wedge Test and Set if True, Cleared Otherwise
N Negative (Sign Bit)

- Not Affected
Z Zero

TABLE 6 - INSTRUCTION SET (CONTINUED)

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{gathered} \text { Indexed } \\ (16 \text { Bits) } \end{gathered}$	Bit Set/ Clear	Bit Test \& Branch	H	1	N	z	C
RTI	X										?	?	?	?	?
RTS	X										\bigcirc	\bullet	\bullet	\bullet	\bullet
SBC		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
SEC	X										\bullet	-	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			X	\bar{X}		X	X	X			-	-	\wedge	\wedge	\bullet
STX			X	X		x	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
SWI	X										\bullet	1	\bullet	\cdots	\bullet
TAX	X										-	-	-	\bullet	\bullet
TST	X		X			X	X				\bullet	-	\wedge	\wedge	\bigcirc
TXA	X										\bullet	-	\bullet	\bullet	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
I Interrupt Mask
\wedge Test and Set if True, Cleared Otherwise
N Negative (Jign Bit)

- Not Affected

Z Zero
? Load CC Register From Stack

EF6805 HMOS FAMILY

Features	EF6805CT	E F6805P2	EF6805P4	EF6805P6	EF6805R2	EF6805R3	EF6805T2	EF6805U2	EF6805U3	EF6805TV
Technology	HMOS									
Number of Pins	40	28	28	28	40	40	28	40	40	40
On-Chip RAM (Bytes)	240	64	112	64	64	112	64	64	112	96
On-Chip User ROM (Bytes)	4096	1100	1100	1796	2048	3776	2508	2048	3776	6144
External Bus	Yes	None								
Bidirectional 1/O Lines	29	20	20	20	24	24	19	24	24	32
Unidirectional I/O Lines	None	None	None	None	6 Inputs	6 Inputs	None	8 Inputs	8 Inputs	None
Other 1/O Features	Timer,UART	Timer	Timer	Timer	Timer,A/D	Timer,A/D	Timer, PLL	Timer	Timer	Timer, D/A
External Interrupt Inputs	3	1	1	1	2	2	2	2	2	1
STOP and WAIT	No									

TABLE 7-6805 HMOS FAMILY INSTRUCTION SET OPCODE MAP

	Bit Manipulation		Branch	Read-Modity-Write					Control		Repister/Memory							
Low ${ }^{\text {Mi }}$	$\frac{B T B}{0}$	BSC		$\begin{aligned} & \hline \text { Din } \\ & 3 \\ & \text { coll } \end{aligned}$	$\begin{aligned} & \text { INH } \\ & 01000 \end{aligned}$	$\begin{gathered} \text { INH } \\ 5 \\ 0101 \end{gathered}$	$\begin{gathered} \frac{1 \times 1}{} \\ 6 \\ 0110 \end{gathered}$	$\begin{gathered} 1 X \\ \hline 7 \\ 0111 \end{gathered}$	INH	[INH 9 9 1001	IM:A	$\begin{gathered} \hline \text { DIR } \\ 8 \\ 1011 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{5 \times I}{C} \\ & 1100 \end{aligned}$	$\begin{aligned} & \frac{112}{6} \\ & 1101 \end{aligned}$	$\begin{gathered} \overline{X 1} 1 \\ \xi \\ \hline 1010 \end{gathered}$	$\begin{gathered} \frac{\mid x}{f} \\ 111 \\ \hline \end{gathered}$	${ }_{\text {Hi }}^{\text {Low }}$	
0000	16 ${ }_{3}^{\text {BRSETO }}$ ATB	$\begin{array}{\|l\|} \hline \text { BSETO } \\ { }_{2} \\ \hline \end{array}$	$\begin{array}{lll} 4 & B R A \\ 2 & & A E L \\ \hline \end{array}$	${ }_{2}^{6} \quad \text { NEG }$	$\begin{array}{ll} \hline & \text { NEG } \\ \text { INH } \\ \hline \end{array}$	$1{ }^{4} \text { NEG }$	${ }_{2}{ }^{N E G_{1 \times 1}}$	${ }_{1}^{6}$ NEG ${ }_{1 \times}$	$\begin{array}{\|lll} \hline 9 & \text { RTI } \\ \frac{1}{6} & { }_{1 N H} \\ \hline \end{array}$		$\int_{2}^{2} \text { suB }$	${ }_{2}^{4} \mathrm{SUB}_{\mathrm{D}, \mathrm{~A}}$		$\begin{array}{ll} 6 \\ { }_{3} & \text { SuB }_{1 \times 2} \\ \hline \end{array}$	sub	${ }_{1}^{4}$ SUB ${ }_{\text {IX }}$	0	
${ }_{0}^{1}$	$\begin{aligned} & 10 \\ & \text { BRCLRO } \\ & \hline \end{aligned}$	${ }_{2}{ }_{2}{ }^{\text {BCLRO}} \mathrm{BSC}$	$\begin{array}{\|cc\|} \hline & \text { BRN } \\ 2 & \mathrm{AEL} \\ \hline \end{array}$						$\begin{array}{\|l\|l\|} \hline 6 & \text { RTS } \\ \hline \\ \hline \end{array}$		$\int_{2}^{2} \text { CMP }$	${ }_{2}^{4} \mathrm{CMP}_{\mathrm{PIR}}$	${ }_{3}^{\text {CMP }}$		$\text { CMP }{ }_{1 \times}$	${ }_{1}^{4}$ CMP ${ }^{\text {Cx }}$	0^{1}	
0_{0}^{210}	$\begin{aligned} & 10 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\underset{2}{8 S E T 1}$	$\begin{array}{lll} 4 & \mathrm{BHI}_{2} \\ \hline \end{array}$								$\int_{2}^{2} \mathrm{SBC}$	$\mathrm{SBC}_{\mathrm{D} \mid \mathrm{R}}$	$\mathrm{SBC}_{E \times 1}$	$\mathrm{SBC}_{1 \times 2}$	$S_{1 \times 1}$	$\mathrm{SBC}_{1 \times}$	2010	
${ }_{0}^{3}$	$\begin{aligned} & 100 \\ & 8 R C L A 1 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BCLR } \\ & 2 \end{aligned}$		${ }_{2}^{6} \mathrm{COM}{ }_{\mathrm{DIA}}$	COMA inm	${ }^{4} \operatorname{comX}$	${ }_{2}^{7} \operatorname{com}_{1 \times 1}$	${ }_{1}^{6} \mathrm{COM}_{1 \mathrm{x}}$	$\begin{array}{\|l\|} \hline i 1 \\ { }^{11} \\ \text { SWI } \\ \hline \end{array}$		$\int_{2}^{2} \text { CPX }$	${ }_{2}{ }_{2}^{C P X_{D I R}}$	${ }_{3}{ }^{\text {CPX }} \text { EXI }$	$\mathrm{CPX}_{1 \times 2}$	$C_{\|\times 1\|}$	$\int_{1} \operatorname{CPX}_{1 \mathrm{IX}}$	${ }_{c}^{3}$	
${ }_{0100}^{4}$	$\begin{aligned} & \frac{10}{10}{ }_{c}^{\text {BRSET2 }} \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	BSET2	${ }_{2}^{4} \mathrm{BCC}$	$\begin{array}{\|ll\|} \hline 6 & \text { SSR } \\ \hline 2 & \text { DTR } \\ \hline \end{array}$	$\begin{array}{\|l} 4 \\ \hline \end{array} \text { LSRA }$	$\begin{array}{\|l\|l\|} \hline 4 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 7 & \text { LSR } \\ 2 & \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 6 & & \\ \hline & \text { LSR } & \\ \hline \end{array}$			$\int_{2}^{\frac{1}{2}} \text { AND }$	ANC	$\mathrm{AND}_{\text {EXI }}$		${ }^{\text {AND }}{ }_{\text {\|x\| }}$	${ }_{1}^{4}{ }_{4}^{4 N D}{ }_{1 \times}$	-4	
$\stackrel{5}{0101}$	$\begin{aligned} & 10 \\ & \text { BRCLR2 } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{BCLR2} \\ & 2 \\ & \hline \end{aligned}$	${ }_{2}^{4} \mathrm{BCS}_{\mathrm{REL}}$								$\begin{array}{lll} 2_{2}^{2} & \text { BIT } \\ \hline \end{array}$	${ }^{81 T_{\text {DIR }}}$	${ }_{{ }_{E X I T}}$	${ }^{B 1 T_{1 \times 2}}$	${ }^{\text {BIT }}{ }_{\text {IXII }}$	$\begin{array}{\|lll} \hline & \text { BIT } \\ \hline & & \\ \hline \end{array}$	$\stackrel{5}{0101}$	
${ }_{0}^{6}$	$\begin{aligned} & 10 \\ & 3 R S E T 3 \\ & 3 \end{aligned}$	BSET3 2 BSC	${ }_{2} \mathrm{BNE}_{\mathrm{AEL}}$	${ }_{2}^{R O R}$	$\begin{array}{\|l\|} \hline 4 \text { RORA } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$		$\begin{array}{\|lll\|} \hline 6 & \text { ROR } \\ \hline & & 1 \times \\ \hline \end{array}$			$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$2_{2}^{\text {LDA }}$	${ }_{3} \text { LDA EXT }$	$\frac{6}{6} \text { LDA }$	$\operatorname{LDA}_{\|x\|}$	${ }_{1}^{4}$ LDA ${ }_{1 \times}$	${ }_{0}^{6}$	
${ }^{7} 111$	$\begin{array}{\|c\|} \hline 10 \\ 3 R C L R 3 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { BCLR } 3 \\ \hline \end{array}$	${ }_{2}^{4} \mathrm{BEO} \mathrm{REL}^{2}$	${ }_{2}{ }^{\mathrm{ASR}}$	${ }_{1}^{4} \text { ASRA }$	$\int_{\text {INH }}^{4}$	${ }^{\text {ASR }}{ }_{\mid \times 1}$	${ }^{\text {ASA }}{ }_{1 \times}$		$\int_{1}^{2} \text { TAX }$		$\text { STA }_{\mathrm{DIR}}$	STA EXI	STA ${ }_{1 \times 2}$	${ }^{\text {STA }}$ \|x		${ }_{1}^{5}$ STA ${ }^{\text {IX }}$	$\stackrel{7}{0} 11$
${ }_{100}^{8}$	$\begin{aligned} & 10 \\ & 3 R S E T 4 \\ & 3 \quad \text { BRS } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { BSET4 } \\ & 2 \\ & 2 \end{aligned}$	${ }_{2}^{4} \mathrm{BHCC}$	${ }_{2} \mathrm{LSL}_{\mathrm{DIR}}$	$\begin{array}{\|c\|} \hline \text { LSLA } \\ \hline \end{array}$	$\int_{1}^{4} \text { LSLX }{ }_{\text {INH }}$	$\underline{L S L}_{\|x\|}$	$\begin{array}{\|lll\|} \hline 6 & \text { LSL } \\ 1 & & \\ \hline \end{array}$		${ }^{2} \mathrm{CLC}$	$\int_{2}^{2} \text { EOR }$	${ }^{E O R_{D I R}}$	${\underset{E X T}{E O R}}^{E_{E T}}$	${ }_{3}^{E O R}{ }_{1 \times 2}$	${ }^{\text {EOR }}{ }_{\|x\|}$	${ }_{1}^{\text {EOR }}{ }_{1 \times}$	${ }_{1000}^{8}$	
9 1001	$\begin{aligned} & 10 \\ & \text { BRCLR4 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{array}{cc} \\ 8 C L R 4 \\ 2 & 8 S C \\ \hline 2 \end{array}$	BHCS 2 AEL	${ }^{\mathrm{ROL}} \mathrm{DOR}_{\mathrm{D}}$	ROLA	$\begin{array}{\|l} 4^{4} \text { ROLX } \\ \hline \end{array}$	$\mathrm{ROL}_{1 \times 1}$	${ }_{1}^{6}$ ROL		$\int_{1}^{2} \mathrm{SEC}_{\mathrm{INH}}$	$\begin{array}{ll} 2 & A D C \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }_{2}^{4} A D C_{D I B}$	$\underbrace{}_{\text {EXT }}$	${ }_{3} A D C_{1 \times 2}$	${ }^{A D C} C_{\|x\|}$	${ }_{1}^{4}{ }^{4}{ }^{\text {d }}$	1091	
${ }_{1010}$		${ }_{2}^{\text {BSET5 }}$	$\mathrm{BPL}_{\mathrm{REL}}$	${ }_{2}^{0} D E C_{D I R}$	${ }_{1}^{4}$ DECA ${ }_{\text {inh }}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \\ 1 \\ \hline \end{array}$	${ }_{2}{ }^{D E C} C_{\mid \times 1}$	${ }^{6}$ DEC ${ }_{\text {: }}$		$\int_{1}^{2} \mathrm{CLI}{ }_{\mathrm{INH}}$	$\begin{gathered} 2 \\ \hline 2 \\ \hline \end{gathered}$	$\text { ORA }_{\text {OIA }}$	$\begin{gathered} \text { ORA } \\ \text { EXT } \end{gathered}$	$\text { ORA }{ }_{1 \times 2}$	$O_{\mid \times 1}^{O R A}$	${ }^{\text {ORA }} 1 \times$	A	
8 1011	$\begin{array}{\|l\|} \hline 10 \\ \text { BRCLR5 } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|cc\|} 7 & \text { BCLR5 } \\ 2 & \text { BSE } \\ \hline \end{array}$	$B M_{R \in L}$							$\begin{array}{\|ll\|} \hline 2 & \text { SEI } \\ 1 & { }_{\mathrm{INH}} \\ \hline \end{array}$	${ }_{2}^{A D D}$	${ }^{A D D_{D I R}}$	${\underset{\text { EXI }}{ }{ }^{\text {ADD }}}^{2}$	${ }^{A D D_{1 \times 2}}$	${ }^{A D D_{\|x\|}}$	${ }^{\text {ADD }}{ }_{1 \times}$	${ }_{1011}$	
${ }_{1100}$	$\begin{aligned} & \text { io } \\ & 3 R S E T 6 \\ & 3 \\ & \hline 10 \end{aligned}$	$\begin{gathered} \text { BSET6 } \\ \hline \end{gathered}$	${ }_{B M C}$	${ }_{2}{ }^{I N C^{01 R}}$	$\begin{array}{\|lll\|} \hline 4 & \text { INCA } \\ 1 & & \text { INH } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & \\ \mathrm{INCX}^{2} \\ \hline & \\ \hline \end{array}$	${ }^{I N C_{\|x\|}}$	$\begin{array}{lll} 0 & \text { INC } & \\ \hline & & \\ \hline 6 & & \\ \hline \end{array}$		$\begin{array}{\|ll} \hline 2 & \text { RSP } \\ 1 & \\ { }_{1} \\ \hline 1 \mathrm{NH} \end{array}$		$J M P_{D I R}$	$\mathrm{JMP}_{\text {EXI }}$	$\begin{aligned} & J M P \\ & \\ & \\ & \hline \end{aligned}$	${ }^{J M P} \mid \times 1$	${ }_{1}^{3}$ JMP ${ }^{\text {IX }}$	\xrightarrow{C}	
${ }_{1} 1101$	$\begin{aligned} & 100 \\ & \text { BRCLR6 } \\ & 3 \text { BTB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BCLR6 } \\ & 2 \end{aligned}$	$2 \text { BMS }$	$\begin{array}{ll} 6 & \\ { }_{2}^{2} \mathrm{TST}^{2} \\ & \\ \hline \end{array}$	${ }_{1}^{3}$ TSTA ${ }^{\text {T }}$	$\begin{array}{\|ll\|} \hline 4 & \\ \hline & \text { TSTX } \\ \hline \end{array}$	$2^{T S T}{ }_{1 \times 1}$	$\begin{array}{\|lll\|} \hline 6 & \text { TST } & \\ \hline & & 1 \times \\ \hline \end{array}$		$\begin{array}{ll} { }^{2} & \text { NOP } \\ 1 & \\ \hline \end{array}$	${\underset{\mathrm{REL}}{ }}_{\mathrm{BS}_{2}}$	${ }^{J S R_{\text {DIP }}}$	${ }_{\text {JSRI }}^{\text {EXI }}$	$\begin{array}{ll} 9_{3}^{3} & \text { JSR } \\ 3 \\ \hline \end{array}$	${ }^{J S R_{\|x\|}}$	${ }^{\text {JSR }}{ }_{10}$	${ }_{101}$	
${ }_{1} \mathrm{E}$	$\begin{aligned} & { }^{100} \\ & 3 R S E T 7 \\ & 3 \end{aligned}$	${ }_{2}^{1} \text { BSET7 }$	${ }_{2}^{4} \mathrm{BIL}_{\mathrm{REL}}$								${ }_{2}^{\frac{2}{2}} \mathrm{CDX}$	${\underset{\text { DIA }}{ }}^{\text {LDX }}$	LDX	LDX	LDX	LDX $_{\text {Ix }}$	${ }_{1110}$	
${ }_{17}$		$\begin{gathered} \text { BCLR7 } \\ 2 \end{gathered}$	$2^{B I H_{\mathrm{REL}}}$	$\begin{array}{\|l\|l\|} \hline 6 & \mathrm{CLR} \\ 2 & \\ \hline \end{array}$	$\begin{array}{\|l\|} 4 \\ { }^{4} \text { CLRA } \\ \text { INH } \\ \hline \end{array}$	${ }^{4} \text { CLRX }{ }_{\text {INH }}$	${ }_{2}^{C L R}{ }_{1 \times 1}$	${ }^{6}{ }^{6} \text { CLR }{ }_{\text {Ix }}$		$\begin{aligned} & 2^{2} \text { TXA } \\ & 1 \\ & \hline \end{aligned}$		${ }_{2}^{3} S T X_{D I A}$	$\underbrace{}_{E X T}$	$\operatorname{stx}_{1 \times 2}$	${ }_{2}^{0} \operatorname{STX} X_{1 \times 1}$	${ }_{1}^{5} \operatorname{six}{ }_{1 \times}$	${ }_{111}$	

Abbreviations for Address Modes

Extended
Relative
Bit Set/Clear
Bit Test and Branch
Bit Test and Branch
Indexed (No Offset)
Indexed (No Offset)
Indexed, 1 Byte (8-Bit) Offse
Indexed. 2 Byte (16-Bit) Offset

PHYSICAL DIMENSIONS

CB-182

P SUFFIX
PLASTIC PACKAGE

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

XXX = Customer ID
After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUCTEURS. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files: filename .LX (DEVI CE/EXORciser loadable format) and filename . SA (ASi: II Source Code). These files will of course be kept confisen tial and are used 1) to speed up the process in-house if imy problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUC. TEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

ORDERING INFORMATION

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

DEVICE	PACKAGE					OPER. TEMP				SCREENING LEVEL			
	C	\mathbf{J}	\mathbf{P}	\mathbf{E}	FN	\mathbf{L}	\mathbf{V}	\mathbf{T}	Std	\mathbf{D}	G/B	B/B	
EF6805R2			\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet			

Examples : EF6805R2P, EF6805R2FN, EF6805R2PV, EF6805R2FNV
Package : C : Ceramic DIL, J : Cerdip DIL, P : Plastic DIL, E: LCCC, FN: PLCC.
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, $:$ may be omitted.
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.

ADVANCE INFORMATION

The EF6805R3 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, 4 -channel 8 -bit A/D, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800 -based instruction set. A comparison of the key features of several members of the 6805 Family of Microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805R3 MCU.

HARDWARE FEATURES

- A/D Converter 8-Bit Conversion, Monotonic 4 Multiplexed Analog Inputs Ratiometric Conversion
- 32 TTL/CMOS Compatible I/O Lines 24 Bidirectional (8 Lines are LED Compatible) 8 Input-Only
- 3776 Bytes of User ROM
- 112 Bytes of RAM
- Self-Check Mode
- Zero-Crossing Detect/Interrupt
- Internal 8-Bit Timer with 7-Bit Software Programmable Prescaler and Clock Source
- 5 V Single Supply

SOFTWARE FEATURES

- 10 Powerful Addressing Modes
- Byte Efficient Instruction Set with True Bit Manipulation, Bit Test, and Branch Instructions
- Single Instruction Memory Examine/Change
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Register/Flags
- Complete DevelopmentSystem Support on DEVICE ${ }^{\circledR}$

USER SELECTABLE OPTIONS

- 8 Bidirectional I/O Lines with TTL or TTL/CMOS Interface Option
- 8 Bidirectional I/O Lines with TTL or Open-Drain Interface Option
- Crystal or Low-Cost Resistor Oscillator Option
- Low Voltage Inhibit Option
- Vectored Interrupts: Timer, Software, and External
- User Callable Self-Check Subroutines DEVICE ${ }^{\circledR}$ is ${ }^{\text {is }}$ THOMSON SEMICONDUCTEURS' development/emulation tool.

HMOS

FIGURE 1 - EF6805R3 HMOS MICROCOMPUTER BLOCK DIAGRAM

MAXIMUM RATING

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage (Except TIMER in Self-Check Mode and Open-Drain Inputs)	$V_{\text {in }}$	-0.3 to +7.0	V
Input Voltage (Open-Drain Pins, TIMER Pin in Self-Check Mode)	$V_{\text {in }}$	-0.3 to +15.0	V
Operating Temperature Range (T_{L} to T_{H}) $\quad V$ suffix T suffix	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Plastic Package PLCC	TJ	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq$ $V_{\text {CC }}$. Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level le.g., either V_{SS} or V_{CC}).

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance	$\theta_{\text {JA }}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic		50	
PLCC		80	

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:
$T_{J}=T_{A}+\left(P_{D}{ }^{\bullet} \theta_{J A}\right)$
Where:

```
TA ## Ambient Temperature, }\mp@subsup{}{}{\circ}\textrm{C
0JA = Package Thermal Resistance, Junction-to-Ambient, }\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
PD =PINT + PPORT
PINT }=\textrm{I}CC\times\mp@subsup{V}{CC}{\prime}\mathrm{ , Watts - Chip Internal Power
PPORT =Port Power Dissipation, Watts - User Determined
```

For most applications PPORT \&PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is:

$$
\begin{equation*}
P D=K+\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P_{D} \bullet\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A^{\bullet} \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of $T A$.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input High Voltage } \\ & \text { RESET }\left(4.75 \leqslant \mathrm{~V}_{\mathrm{cc}} \leqslant 5.75\right) \\ & \left(\mathrm{V}_{\mathrm{Cc}}<4.75\right) \\ & \overline{\text { INT }}\left(4.75 \leqslant \mathrm{VCC}_{\mathrm{cc}} \leqslant 5.75\right) \\ & \text { (} \mathrm{CC}<44.75) \\ & \text { All Other (Except Timer) } \end{aligned}$	$\mathrm{V}_{\text {IH }}$	$\begin{gathered} 4.0 \\ v_{C C}-0.5 \\ 4.0 \\ v_{C C}-0.5 \\ 2.0 \end{gathered}$	$\begin{aligned} & \text { - } \\ & * \end{aligned}$	VCC $V_{C C}$ $V_{C C}$ $V_{C C}$ $V_{C C}$	V
Input High Voltage Timer Timer Mode Self-Check Mode	$\mathrm{V}_{1 \mathrm{H}}$	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	$\overline{10.0}$	$V_{15.0}+1.0$	V
```Input Low Voltage RESET INT All Other (Except A/D Inputs)```	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}} \\ & \mathrm{v}_{\mathrm{SS}} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	V
$\overline{\text { RESET }}$ Hysteresis Voltages (See Figures 10,11 and 12) "Out of Reset"   "Into Reset"	VIRES +   VIRES-	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	V
INT Zero Crossing Input Voltage, Through a Capacitor	VINT	2	-	4	$V_{\text {ac p-p }}$
	$P_{\text {D }}$	-	$\begin{aligned} & 520 \\ & 580 \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \end{aligned}$	mW
Input Capacitance   EXTAL   All Other Except Analog Inputs (See Note)	$C_{\text {in }}$	-	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	-	pF
Low Voltage Recover	$\mathrm{V}_{\text {LVR }}$	-	-	4.75	V
Low Voltage Inhibit	$\mathrm{V}_{\text {LVI }}$	2.75	3.75	4.70	V
$\begin{aligned} & \text { Input Current } \\ & \text { TIMER }\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\right) \\ & \text { INT }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\ & \text { EXTAL }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {CC }}-\text { Crystal Option }\right) \\ & \quad\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}-\text { Crystal Option }\right)^{\text {RESET }\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)-\text { External Capacitor Charging Current }} \end{aligned}$	$\mathrm{I}_{\text {in }}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & -4.0 \end{aligned}$	- 20 - - - - -	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

NOTE : Port D Analog Inputs, when selected, $\mathrm{C}_{\mathrm{in}}=\mathbf{2 5} \mathrm{pF}$ for the first 5 out of $\mathbf{3 0}$ cycles.
*Due to internal biasing this input (when unused) floats to approximately 2.2 V .

## EF6805R3

SWITCHING CHARACTERISTICS $\quad\left(V_{C C}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Oscillator Frequency	$\mathrm{f}_{\text {osc }}$	0.4	-	4.2	MHz
Cycle Time (4/fosc)	${ }^{\text {c }}$ cyc	0.95	-	10	$\mu \mathrm{s}$
$\overline{\text { INT, }}$ /NT2, and TIMER Pulse Width (See Interrupt Section)	tWL, tWH	$\mathrm{t}_{\mathrm{cyc}}+250$	-	-	ns
RESET Pulse Width	trwL	$\mathrm{t}_{\mathrm{cyc}}+250$	-	-	ns
INT Zero-Crossing Detection Input Frequency	fint	0.03	-	1	kHz
External Clock Input Duty Cycle (EXTAL)	-	40	50	60	\%
Crystal Oscillator Start-Up Time *	-	-	-	100	ms

* See Figure 16 for typical crystal parameters

A/D CONVERTER CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ Unless Otherwise Noted)

Characteristic	Min	Typ	Max	Unit	Comments
Resolution	8	8	8	Bits	
Non-Linearity	-	-	$\pm 1 / 2$	LSB	For $\mathrm{V}_{\mathrm{RH}}=4.0$ to 5.0 V and $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
Quantizing Error	-	-	$\pm 1 / 2$	LSB	
Conversion Range	$\mathrm{V}_{\text {RL }}$	-	$\mathrm{V}_{\text {RH }}$	V	
$\mathrm{V}_{\text {RH }}$	-	-	$\mathrm{V}_{\mathrm{CC}}$	V	A/D accuracy may decrease proportionately as
$\mathrm{V}_{\mathrm{RL}}$	$\mathrm{V}_{\text {SS }}$	-	0.2	V	$\mathrm{V}_{\mathrm{RH}}$ is reduced below 4.0 V . The sum of $\mathrm{V}_{\mathrm{RH}}$ and $\mathrm{V}_{\text {RL }}$ must not exceed $\mathrm{V}_{\mathrm{C}}$
Conversion Time	30	30	30	${ }_{\text {t }}^{\text {cyc }}$	Includes sampling time
Monotonicity	Inherent (within total error)				
Zero Input Reading	00	00	01	hexadecimal	$V_{\text {in }}=0$
Ratiometric Reading	FE	FF	FF	hexadecimal	$V_{\text {in }}=V_{\text {RH }}$
Sample Time	5	5	5	${ }^{\text {c }}$ cyc	
Sample/Hold Capacitance, Input	-	-	25	pF	
Analog Input Voltage	$\mathrm{V}_{\mathrm{RL}}$	-	$\mathrm{V}_{\mathrm{RH}}$	V	Negative transients on any analog lines (Pins 19-24) are not allowed at any time during conversion

PORT ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Port A with CMOS Drive Enabled					
Output Low Voltage ( Load $^{\text {a }}=1.6 \mathrm{~mA}$ )	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	v
Output High Voltage   $I_{\text {Load }}=-100 \mu \mathrm{~A}$   $I_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$\begin{gathered} 2.4 \\ \mathrm{v}_{\mathrm{Cc}}-1.0 \\ \hline \end{gathered}$	-	-	V
Input High Voltage ( Load $^{\prime}=-300 \mu \mathrm{~A}$ max.)	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$V_{\text {cc }}$	V
Input Low Voltage ( Load $=-500 \mu \mathrm{~s}$ max.)	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current ( $\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	${ }_{1 / \mathrm{H}}$	-	-	-300	$\mu \mathrm{A}$
High Z State Input Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ )	IIL	-	-	-500	$\mu \mathrm{A}$
Port B					
Output Low Voltage   $!_{\text {Load }}=3.2 \mathrm{~mA}$   $I_{\text {Load }}=10 \mathrm{~mA}$ (Sink)	$\mathrm{V}_{\text {OL }}$	-		$\begin{aligned} & 0.4 \\ & 1.0 \\ & \hline \end{aligned}$	v
Output High Voitage ILoad $=-200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V
Darlington Current Drive (Source) $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	${ }^{1} \mathrm{OH}$	-1.0	-	-10	mA
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{Cc}}$	V
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current	${ }^{\text {ITSI }}$	-	<2	10	$\mu \mathrm{A}$

PORT ELECTRICAL CHARACTERISTICS (Cont'd)

Port C and Port A with CMOS Drive Disabled					
Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	V
Output High Voltage $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	VOH	2.4	-	-	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{1} \mathrm{~L}$	VSS	-	0.8	V
High Z State Input Current	ITSI	-	$<2$	10	$\mu \mathrm{s}$
Port C (Open-Drain Option)					
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0	-	13.0	V
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Input Leakage Current	ILOD	-	$<3$	15	$\mu \mathrm{A}$
Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	V
Port D (Digital Inputs Only)					
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Input Current *	1 in	-	<1	5	$\mu \mathrm{A}$

*PD4/V RL -PD5/V RH : The $\mathrm{A} / \mathrm{D}$ conversion resistor ( $15 \mathrm{k} \Omega$ typical) is connected internally between these two lines, impacting their use as digital inputs in some applications.


FIGURE 2 - TTL EQUIVALENT TEST LOAD (PORT B)


FIGURE 4 - TTL EQUIVALENT TEST LOAD (PORTS A AND C)

## SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in Figure 1, are described in the following paragraphs.
$V_{C C}$ AND VSS - Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.

INT - This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.


FIGURE 3 - CMOS EQUIVALENT TEST LOAD (PORT A)


FIGURE 5 - OPEN - DRAIN EQUIVALENT TEST LOAD (PORT C)

XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.

NOTE: Pin 7 in DIL package/Pin 8 in PLCC package is connected to internal protection.

TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.
$\overline{\text { RESET }}$ - This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling RESET low. Refer to Resets Section for additional information.

INPUT/OUTPUT LINES (PAO-PA7, PBO-PB7, PCO-PC7, PDO-PD7) - These 32 lines are arranged into four 8 -bit ports (A, B, C, and D). Ports A, B, and C are programmable as either inputs or outputs under software control of the data direction registers (DDRs). Port D has up to four analog inputs, plus two voltage reference inputs when the $A / D$ converter is used (PD5/VRH, PD4/VRL), and an INT2 input, and from one to eight digital inputs. If any analog input is used, then the voltage reference pins (PD5/ $\mathrm{V}_{\mathrm{RH}}$, PD4/VRL) must be used in the analog mode. The two analog reference inputs are tied together internally with a resistor, therefore, if they are both used as digital inputs problems may occur. Refer to Input/Output Section, A/D Converter Section, and Interrupts Section for additional information.

MEMORY - The MCU is capable of addressing 4096 bytes of memory and I/O registers with its program coun-
ter. The EF6805R3 MCU has implemented 4092 of these bytes. This consists of : 3776 user ROM bytes, 192 selfcheck ROM bytes, 112 user RAM bytes, 7 port I/O bytes, 2 timer registers, 2 A/D registers, and a miscellaneous register ; see Figure 6 for the Address map. The user ROM has been split into two areas. The main user ROM area is from $\$ 080$ to $\$ F 37$. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.
The MCU reserves the first 16 memory locations for $1 / 0^{\prime}$ features, of which 12 have been implemented. These locations are used for the ports, the port DDRs, the timer, the INT2 miscellaneous register, and the A/D. Of the 112 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.
The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in Figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order four bits (PCH) are stacked. This ensures that the program counter is loaded correctly during pulls from the stack since the stack pointer increments when it pulls data from the stack. A subroutine call results in only the program counter (PCL, PCH) contents being pushed onto the stack; the remaining CPU registers are not pushed.



FIGURE 7 - INTERRUPT STACKING ORDER

## C̣ENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal address, data, and control buses.

## REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in Figure 8 and are explained in the following paragraphs.

ACCUMULATOR (A) - The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.

INDEX REGISTER (X) - The index register is an 8-bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used'as a temporary storage area.


FIGURE 8 - PROGRAMMING MODEL

PROGRAM COUNTER (PC) - The program counter is a 12 -bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP) - The stack pointer is a 12 -bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F.

The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).

CONDITION CODE REGISTER. (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.

Half Carry (H) - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4 .
Interrupt (1) - When this bit is set, the timer and external interrupts ( $\overline{\mathrm{NT}}$ and $\overline{\mathrm{NT} 2}$ ) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.

Negative (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical " 1 ").
Zero (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

## TIMER

The timer circuitry for the EF6805R3 is shown in Figure 10 . The timer contains a single 8 -bit software programmable counter with a 7 -bit software selectable prescaler. The counter may be preset under program control and decrements toward zero. When the counter decrements to zero, the timer interrupt request bit, i.e., bit 7 of the timer control register (TCR), is set. Then if the timer interrupt is not masked, i.e., bit 6 of the TCR and the I bit in the condition code register are both cleared, the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack, and then fetches the timer interrupt vector from locations \$FF8 and \$FF9 in order to begin servicing the interrupt.

The counter continues to count after it reaches zero, allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter become stable prior to the read portion of a cycle and do not change during the read. The timer interrupt request bit remains set until cleared by the software. If a write occurs before the timer interrupt is serviced, the interrupt is lost. TCR7 may also be used as a scanned status bit in a non-interrupt mode of operation (TCR6 $=1$ ).

The prescaler is a 7 -bit divider which is used to extend the maximum length of the timer. Bit 0 , bit 1, and bit 2 of the TCR are programmed to choose the appropriate prescaler output which is used as the counter input. The processor cannot write into or read from the prescaler ; however, its contents are cleared to all zeros by the write operation into TCR when bit 3 of the written data equals one, which allows for truncation-free counting.

The timer input can be configured for three different operating modes, plus a disable mode, depending on the value written to the TCR4 and TCR5 control bits. For further information see Figure 9.

Timer Input Mode 1 - If TCR5 and TCR4 are both programmed to a zero, the input to the timer is from an internal clock and the external TIMER input is disabled. The internal clock mode can be used for periodic interrupt generation, as well as a reference in frequency and event
measurement. The internal clock is the instruction cycle clock.

Timer Input Mode 2 - With TCR5 $=0$ and TCR4 =1, the internal clock and the TIMER input pin are ANDed to form the timer input signal. This mode can be used to measure external pulse widths. The external timer input pulse simply turns on the internal clock for the duration of the pulse widths.

Timer Input Mode 3 - If TCR5 $=1$ and TCR4 $=0$, then all inputs to the timer are disabled.

Timer Input Mode 4 - If TCR5 $=1$ and TCR4 $=1$, the internal clock input to the timer is disabled and the TIMER input pin becomes the input to the timer. The external TIMER pin can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts.

7	6	5	4	3	2	1	0
TCR7	TCR6	TCR5	TCR4	TCR3*	TCR2	TCR1	TCRO

*Write only (read as zero).
TCR7 - Timer Interrupt Request Bit :
1-Set when TDR goes to zero, or under program control
0 - Cleared on external Reset, Power-On-Reset, or under Program Control.

TCR6 - Timer Interrupt Mask Bit :
1 - Timer Interrupt masked (disabled) Set on external Reset, Power-On-Reset, or under Program Control 0 - Cleared under Program Control.

TCR5 - External or Internal Clock Source Bit :
1 - External Clock Source. Set on external Reset, Power On-Reset, or under Program Control
0 - Cleared under Program Control.
TCR4 - External Enable Bit :
1 - Enable external TIMER pin. Set on external Reset, Power-On-Reset, or under Program Control.
0 - Cleared under Program Control.

TCR5	TCR4	Result
0	0	Internal clock to timer
0	1	AND of internal clock and TIMER pin to timer
1	0	Input to timer disabled
1	1	TIMER pin to timer

TCR3 - Timer prescaler reset bit : A read of TCR3 always indicates a zero.
1 - Set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.
TCR2, TCR1, and TCRO - Prescaler address bits :
1 - All set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.

TCR2	TCR1	TCRO	Result
0	0	0	+1
0	0	1	+2
0	1	0	+4
0	1	1	+8


TCR2	TCR1	TCRO	Result
1	0	0	+16
1	0	1	+32
1	1	0	+64
1	1	1	+128

FIGURE 9 - TIMER CONTROL REGISTER (TCR)


FIGURE 10 - TIMER BLOCK DIAGRAM

[^17]
## SELF-CHECK

The self-check capability of the EF6805R3 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check program exercises the RAM, ROM, TIMER,A/D, interrupts, and I/O ports.
Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM, and 4 -channel A/D tests. The timer routine may also be called if the timer input is the internal $\phi 2$ clock.

To call those subroutines in customer applications, please contact your local THOMSON SEMICONDUCTEURS sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.

RAM SELF-CHECK SUBROUTINE - The RAM self-
check is called at location \$F84 and returns with the Z bit clear if any error is detected; otherwise the $Z$ bit is set. The RAM test causes each byte to count from 0 up to 0 again with a check after each. count.

The RAM test must be called with the stack pointer at $\$ 07 \mathrm{~F}$ and $\mathrm{A}=0$. When run, the test checks every RAM cell except for \$07F and \$07E which are assumed to contain the return address.

The $A$ and $X$ registers and all RAM locations except $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ are modified.

ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F95. The A register should be cleared before calling the routine. If any error is detected, it returns with the $Z$ bit cleared ; otherwise $Z=1, X=0$ on return, and $A$ is zero if the test passes. RAM location $\$ 40$ to $\$ 043$ is overwritten. The cheksum is the complement of the execution OR of the contents of the user ROM.

*This connection depends on clock oscillator user selectable mask option. Use jumper if the RC mask option is selected.
LED Meanings

PC0	PC1	PC2	PC3	Remarks [1:LED ON; 0:LED OFF]
1	0	1	0	Bad I/O
0	0	1	0	Bad Timer
1	1	0	0	Bad RAM
0	1	0	0	Bad ROM
1	0	0	0	Bad A/D
0	0	0	0	Bad Interrupts or Request Flag
All Flashing				

Anything else bad Device, Bad Port C, etc.
FIGURE 11 - SELF-CHECK CONNECTIONS

## ANALOG-TO-DIGITAL CONVERTER SELF-CHECK-

The A/D self-check is called at location \$FAE. It returns with the $Z$ bit cleared if any error was found ; otherwise the $Z$ 'bit is set. The $A$ and $X$ register contents are lost. The $X$ register must be set to four before the call. On return, $X=8$ and $A / D$ channel 7 is selected. The A/D test uses the internal voltage references and confirms port connections.

TIMER SELF-CHECK SUBROUTINE - The timer selfcheck is called at location \$F6D and returns with the Z bit cleared if any error was found; otherwise $Z=1$.

In order to work correctly as a user subroutine, the internal $\phi 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if necessary.

The $A$ and $X$ register contents are lost. This routine sets the prescaler for divide-by-128 and the timer data register is cleared. The $X$ register is configured to count down the same as the timer data register. The two registers are then compared every 128 cycles until they both count down to zero. Any mismatch during the count down is considered as an error. The A and X registers are cleared on exit from the routine.

## RESET

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET) and by an optional internal low-voltage detect circuit. The $\overline{R E S E T}$ input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in Figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the $\overline{\text { RESET }}$ pin.

Power-On Reset (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of trHL milliseconds is required before allowing the RESET input to go high. Refer to the power and reset timing diagram of Figure 13. Connecting a capacitor to the $\overline{\text { RESET }}$ input (as illustrated in Figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to VIRES+.


FIGURE 12 - TYPICAL RESET SCHMITT TRIGGER HYSTERESIS


FIGURE 13 - POWER AND RESET TIMING


FIGURE 14 - $\overline{\text { RESET CONFIGURATION }}$

External Reset Input - The MCU will be reset if a logical zero is applied to the $\overline{\operatorname{RESET}}$ input for a period longer than one machine cycle ( $\mathrm{t}_{\text {cyc }}$ ). Under this type of reset; the Schmitt trigger switches off at VIRES - to provide an internal reset voltage.

Low-Voltage Inhibit (LVI) - The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level (VLVI). The only requirement is that $V_{C C}$ remains at or below the $V_{L V I}$ threshold for one $\mathrm{t}_{\mathrm{cyc}}$ minimum. In typical applications, the $\mathrm{V}_{\mathrm{CC}}$ bus filter capacitor will eliminate negative-going voltage glitches of less than one $t_{\text {cyc }}$. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level (VLVR), at which time a normal power-on-reset occurs.

## INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in Figure 15. Crystal specifications and suggested PC board layouts are given in Figure 16. A resistor selection graph is given in Figure 17.

The crystal oscillator start-up time is a function of many variables: crystal parameters (especially RS), oscillator load capacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.

When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below VIRES + ) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition: the oscillator start-up voltage, the oscillator stabilization time, the minimum VIRES ${ }^{\prime}$, and the reset charging current specification.

Once $V_{C C}$ minimum is reached, the external $\overline{\operatorname{RESET}}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{\text {CC }}$ through a large resistor, so it appears almost like a constant current source until the reset voltage rises above VIRES +. Therefore, the RESET pin will charge at approximately:

$$
\left(V_{\text {IRES }}+\right) \bullet C_{e x t}=I_{R E S} \bullet t_{R H L}
$$

Assuming the external capacitor is initially discharged.


Approximately $25 \%$ to $50 \%$ Accuracy
Typical $\mathrm{t}_{\mathrm{cyc}}=1.25 \mu \mathrm{~s}$
External Jumper


NOTE: The recommended $C_{L}$ value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.


FIGURE 16 - CRYSTAL MOTIONAL ARM PARAMETERS
AND SUGGESTED PC BOARD LAYOUT


FIGURE 17 - TYPICAL FREQUENCY SELECTION FOR RESISTOR (OSCILLATOR OPTION)

## INTERRUPTS

The microcomputers can be interrupted four different ways : through the external interrupt (INT) input pin, the internal timer interrupt request, the external port D bit 6 (INT2) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of $11 \mathrm{t}_{\text {cyc }}$ periods for completion. A flowchart of the interrupt sequence is shown in Figure 18. The interrupt service routine must
end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike $\overline{\text { RESET, hardware interrupts do not cause the cur- }}$ rent instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.


FIGURE 18 - $\overline{R E S E T}$ AND INTERRUPT PROCCESSING FLOWCHARD

## NOTE

The timer and $\overline{\mathrm{NT} 2}$ interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.

The external interrupt, $\overline{\mathrm{NT}}$ and $\overline{\mathrm{NT} 2}$, are synchronized and then latched on the falling edge of the input signal. The INT2 interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The $\overline{\mathrm{INT2}}$ interrupt is inhibited when the mask bit is set. The INT2 is always read as a digital input on port D. The $\overline{\mathrm{NT} 2}$ and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.

A sinusoidal input signal (fINT maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-ofday routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a 2 f clock. See Figure 19.

## NOTE

The $\overline{\mathrm{INT}}$ ( pin 3 ) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.

A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as breakpoints for debugging or as system calis.

A/D CONTROL REGISTER (ACR)


Bit 7-Conversion Complete Status Flag: Set when conversion is complete; cleared only on a write to ACR.
Readable, not writable.
Bits 2, 1.0-A/D input Mux Selection (See Table 2) Bits 6, 5, 4, 3 read as " 1 s "-unused bits.


FIGURE 19 - TYPICAL INTERRUPT CIRCUITS

## INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The $\overline{I N T}$ pin may be polled with branch instructions to provide an additional input pin. All pins on ports $A, B$, and $C$ are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below' I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at the output pin, due to output loading. Refer to Figure 20.

PORT DATA REGISTER
70


Port A Addr $=\$ 000$
Port B Addr $=\$ 001$
Port C Addr $=\$ 002$
Port D Addr $=\$ 003$
PORT DATA DIRECTION REGISTER (DDR)

(1) Write Only; reads as all " 1 s "
(2) $1=$ Output, $0=$ Input. Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$


## FIGURE 20 - TYPICAL PORT I/O CIRCUITRY

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.

Port D provides the reference voltage, $\overline{\mathrm{NT} 2}$, and multiplexed analog inputs. All of these lines are shared with the port D digital inputs. Port D may always be used as digital inputs and may also be used as analog inputs providing $\mathrm{V}_{\mathrm{RH}}$ and $\mathrm{V}_{\mathrm{RL}}$ are connected to the appropriate reference voltages. The $V_{R L}$ and $V_{\text {RH }}$ lines (PD4 and PD5) are internally connected to the A/D resistor. Analog inputs may be prescaled to attain the $V_{R L}$ and $V_{\text {RH }}$ recommended input voltage range.

The address map (Figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.

## CAUTION

The corresponding DDRs for ports $A, B$, and $C$ are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

The latched output data bit (see Figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

## (a) Output Modes

 LEDs directly.


Port C, bits $0-3$ programmed as output, driving CMOS loads, using external pullup resistors (required if Port C is open-drain).
(b) Input Modes


CMOS or TTL driving Port B directly.


Port D used as 4 -channel A/D input with bit 7 used as. CMOS digital input.

FIGURE 21 - TYPICAL PORT CONNECTIONS

## ANALOG-TO-DIGITAL COUVERTER

The EF6805R2 has an 8-bit analog-to-digital (A/D) converter implemented on the chip using a successive approximation technique, as shown in Figure 22. Up to four external analog inputs, via port D, are connected to the A/D through a multiplexer. Four internal analog channels may be selected for calibration .purposes $\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$,
$\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}} / 2, \mathrm{~V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}} / 4$, and $\mathrm{V}_{\mathrm{RL}}$ ). The accuracy of these internal channels will not necessarily meet the accuracy specifications of the external channels.

The multiplexer selection is controlled by the A/D control register (ACR) bits 0,1 , and 2 ; see Table 1. This register is cleared during any reset condition.


FIGURE 22 - A/D BLOCK DIAGRAM

A/D Control Register			Input Selected	A/D Output (Hex)		
ACR2	ACR1	ACRO		Min	Typ	Max
0	0	0	ANO			
0	0	1	ANI			
0	1	0	AN2			
0	1	1	AN3			
1	0	0	$\mathrm{V}_{\text {RH }}{ }^{*}$	FE	FF	FF
1	0	1	$\mathrm{V}_{\mathrm{RL}}{ }^{*}$	00	00	01
1	1	0	$\mathrm{V}_{\text {RH/4 }}{ }^{*}$	3 F	40	41
1	1	1	$\mathrm{V}_{\mathrm{RH} / 2}{ }^{*}$	7 F	80	81

* Internal (Calibration) levels

TABLE 1 - A/D INPUT MUX SELECTION


MR7 Bit $7-\overline{N T T}$ Interrupt Request Bit: Set when falling edge detected on $\overline{\operatorname{INT} 2}$ pin, must be cleared by software. Cleared to 0 by Reset
MR6 Bit 6- $\overline{\mathbb{N T} T 2}$ Interrupt Mask Bit: $1=\overline{\mathbb{N} T 2}$ Interrupt masked (disabled). Set to 1 by Reset.
MR Bits 5, 4, 3, 2, 1, 0-Read as "1s"-unused bits.
A/D RESULT REGISTER (ARR)

7	0
MSB	LSB

Whenever the ACR is written, the conversion in progress is aborted, the conversion complete flag (ACR bit 7) is cleared, and the selected input is sampled for five machine cycles and held internally. During these five cycles, the
analog input will appear approximately like a 25 picofarad (maximum) capacitor (plus approximately 10 pF for packaging) charging through a 2.6 kiloohm resistor (typical). Refer to Figure 23.


## EF6805R3

The converter operates continuously using 30 machine cycles to complete a conversion of the sampled analog input. When the conversion is complete, the digitized sample of digital value is placed in the A/D result register (ARR), the conversion complete flag is set, the selected input is sampled again, and a new conversion is started.

The A/D is ratiometric. Two reference voltages (VRH and $V_{R L}$ ) are supplied to the converter via port $D$ pins. An input voltage equal to $\mathrm{V}_{\mathrm{RH}}$ converts to $\$ \mathrm{FF}$ (full scale) and an input voltage equal to $\mathrm{V}_{\mathrm{RL}}$ converts to $\$ 00$. An input voltage greater than $\mathrm{V}_{\mathrm{RH}}$ converts to SFF and no overflow indication is provided. Similarly, an input voltage less than $\mathrm{V}_{\text {RL }}$, but greater than $\mathrm{V}_{\text {SS }}$ converts to $\$ 00$. Maximum and minimum ratings must not be exceeded. For ratiometric conversion, the source of each analog input should use $\mathrm{V}_{\mathrm{RH}}$ as the supply voltage and be refe-
renced to $V_{R L}$. To maintain the full accuracy on the $A / D$, $V_{\text {RH }}$ should be equal to or less than $V_{D D}, V_{R L}$ should be equal to or greater than $V_{\text {SS }}$ but less than the maximum specification and ( $\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$ ) should be equal to or greater than 4 volts.

The A/D has a built-in $1 / 2$ LSB offset intended to reduce the magnitude of the quantizing error to $\pm 1 / 2$ LSB, rather than + $0,-1$ LSB with no offset. This implies that, ignoring errors, the transition point from \$00 to \$01 occurs at $1 / 2$ LSB above $V_{\text {RL }}$. Similarly, the transition from \$FE to \$FF occurs $11 / 2$ LSB below $V_{R H}$, ideally. Refer to Figure 24 and 25.

On release of reset, the A/D control register (ACR) is cleared therefore after reset, channel zero will be selected and the conversion complete flag will be clear.


FIGURE 24 - IDEAL CONVERTER TRANSFER CHARACTERISTIC
(a) Offset Error

(b) Full Scale Error

(c) Non-Linearity


FIGURE 25 - TYPES OF CONVERSION ERRORS

## EF6805R3

## BIT MANIPULATION

The EF6805 R3 has the ability to set or clear any single RAM or I/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines.

## CAUTION

The corresponding data direction registers for ports $A, B$, and C are write-only registers (locations \$004, \$005, and \$006). A read operation on these registers is undefined. Since BSET
and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.

The coding examples shown in Figure 26 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first,out of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.


FIGURE 26 - BIT MANIPULATION EXAMPLE

## ADDRESSING MODES

The EF6805R3 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter)

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.

EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3 -byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.
RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

INDEXED, 8-BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the $k$ th element in an $n$ element table. With this 2-byte instruction, $k$ would typically be in $X$ with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ( $\$ 1 \mathrm{FE}$ is the last location at which the instruction may begin).
INDEXED, 16-BIT OFFSET - In the indexed, 16 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.
BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including $1 / 0$, can be selectively set or cleared with a single 2 -byte instruction.

## CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$ ). A read operation on these registers is undefined. Since

BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a singlestore instruction.

BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3 -byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

## CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a singlestore instruction.

INHERENT -- In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

## INSTRUCTION SET

The EF6805R3 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs
briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to Table 2.
BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 3.
BIT MANIPULATION INSTRUCTIONS - The instructinns are used on any bit in the first 256 bytes of the memory; One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 4.

## CAUTION

The corresponding DDRs for ports $\mathrm{A}, \mathrm{B}$, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a singlestore instruction.

CONTROL INSTRUCTION - The control instructions control the MCU operations during program execution. Refer to Table 5.
ALPHABETICAL LISTING -- The complete instruction set is given in alphabetical order in Table 6.
OPCODE MAP - Table 8 is an opcode map for the instruction used on the MCU.

TABLE 1 - REGISTER/MEMORY INSTRUCTIONS

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed   (No Offset)			Indexed(8. Bit Offset)			$\begin{gathered} \text { Indexed } \\ \text { (16. Bit Offset) } \\ \hline \end{gathered}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Cycles } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Bytes } \end{array}$	\# Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \text { \# } \\ \text { Bytes } \end{gathered}$	\# Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { OP } \\ \text { Code } \end{array}$	$\begin{array}{\|c\|} \hline \not 二 \\ \text { Bytes } \\ \hline \end{array}$	
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA	-	-		B7	2	5	C7	3	6	F7	1	5	E 7	2	6	D7	3	7
Store X in Memory	STX	-	-	$\cdots$	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to $A$	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	BO	2	4	CO	3	5	FO	1	4	EO	2	5	DO	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	Cl	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR	-	-	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

TABLE 2 - READ-MODIFY-WRITE INSTRUCTIONS

		Addressing Modes														
		Inherent (A)			Inherent ( X )			Direct			Indexed(No Offset)			Indexed(8 Bit Offset)		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$	\# Cycles	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	\# Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$	\# Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c}  \\ \text { Bytes } \\ \hline \end{array} \\ \hline \end{array}$	
Increment	INC	4 C	1	4	5 C	1	4	3C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
$\begin{aligned} & \text { Negate } \\ & \text { (2's Complement) } \end{aligned}$	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	40	1	4	50	1	4	30	2	6	70	1	6	6 D	2	7

TABLE 3 - BRANCH INSTRUCTIONS

Function	Mnemonic	Relative Addressing Mode		
		Op Code	\# Bytes	\# Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFFHigher	BHI	22	2	4
Branch IFFLower or Same	BLS	23	2	4
Branch IFFCarry Clear	BCC	24	2	4
(BranchiFFHıgher or Same)	(BHS)	24	2	4
Branch IFFCarry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
BranchIFF Not Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branchiff Plus	BPL	2A	2	4
Branchiff Minus	BMI	2B	2	4
Branch IFF Interupt Mask Bit is Clear	BMC	2 C	2	4
Branch IFFInterrupt Mask Bit is Set	BMS	2D	2	4
Branch IFF Interrupt Line is Low	BIL	2 E	2	4
Branch IFFInterrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

TABLE 4 - BIT MANIPULATION INSTRUCTIONS

Function	Mnemonic	Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	\# Bytes	\# Cycles	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	Bytes	
Branch IFF Bit $n$ is set	BRSET $\mathrm{n}(\mathrm{n}=0.7)$	-	-	-	2•n	3	10
Branch IFF Bit $n$ is clear	BRCLR $n(\mathrm{n}=0 \quad 7)$	-	-	-	$01+2 \cdot n$	3	10
Set Bit $n$	BSET $\mathrm{n}(\mathrm{n}=0 \quad 7)$	$10+2 \cdot n$	2	7	-	-	-
Clear bit $n$	BCLR $n(n=0.7)$	$11+2 \cdot n$	2	7	-	-	-

TABLE 5 - CONTROL INSTRUCTIONS

		Inherent		
Function	Mnemonic	Op   Code	$\#$   Bytes	$\#$   Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bıt	SEi	$9 B$	1	2
Clear Interrupt Mask Bıt	CLI	$9 A$	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Poınter	RSP	$9 C$	1	2
No-Operatıon	NOP	$9 D$	1	2

TABLE 6 - INSTRUCTION SET

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	Bit   Set/   Clear	Bit Test \& Branch	H	1	N	Z	C
ADC		X	X	X		X	X	X			$\wedge$	$\bullet$	$\wedge$	$\wedge$	$\wedge$
ADD		X	X	X		X	X	X			$\wedge$	-	$\wedge$	$\wedge$	$\wedge$
AND		X	X	X		X	X	X			$\bullet$	$\bullet$	$\wedge$	$\wedge$	$\bullet$
ASL	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
ASR	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
BCC					X						$\bullet$	-	$\cdots$	$\bullet$	$\bullet$
BCLR									X		$\bullet$	$\bullet$	-	$\bullet$	$\bullet$
BCS					X						$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
BEQ					X						$\bullet$	$\bullet$	-	$\bullet$	$\bullet$
BHCC					X						$\bullet$	-	$\bullet$	-	$\bullet$
BHCS					X						$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
BHI					X						$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
BHS					X						$\bullet$	-	-	-	$\bullet$
BIH					X						$\bullet$	-	-	$\bullet$	$\bullet$
BIL					X						$\bullet$	-	-	$\bullet$	$\bullet$
BIT		X	X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
BLO					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BLS					X						$\bullet$	-	-	-	$\bullet$
BMC					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BMI					X						$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bullet$
BMS					X						$\bullet$	-	-	-	$\bullet$
BNE					X						$\bullet$	-	$\bigcirc$	-	$\bigcirc$
BPL					X						$\bullet$	-	$\bullet$	$\bullet$	-
BRA					X						$\bullet$	-	-	-	$\bullet$
BRN					X						$\bullet$	-	-	-	$\bullet$
BRCLR										X	$\bullet$	-	-	-	$\wedge$
BRSET										X	$\bullet$	-	-	-	$\wedge$
BSET									X		$\bullet$	-	$\bullet$	-	$\bullet$
BSR					X						$\bullet$	-	-	-	$\bullet$
CLL	X										$\bullet$	$\bigcirc$	$\bullet$	-	0
CLI	X										$\bullet$	0	-	$\bullet$	$\bullet$
CLR	X		X			X	X				$\bullet$	-	0	1	$\bullet$
CMP		X	X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
COM	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	1
CPX		X	$\bar{X}$	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
DEC	X		X			X	X				-	-	$\wedge$	$\wedge$	$\bullet$
EOR		X	X	X		X	X	X			-	-	$\wedge$	$\wedge$	$\bigcirc$
INC	$x$		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
JMP			X	X		X	X	X			$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
JSR			X	$\bar{X}$		$X$	X	X			-	-	$\bullet$	$\bullet$	-
LDA		X	X	X		X	X	X			-	-	$\wedge$	$\wedge$	$\bullet$
LDX		X	X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
LSL	$X$		X			X	X				-	-	$\wedge$	$\wedge$	$\wedge$
LSR	X		X			X	X				-	-	0	$\wedge$	$\wedge$
NEQ	X		X			X	X				-	$\bigcirc$	$\wedge$	$\wedge$	$\wedge$
NOP	X										$\bullet$	-	-	$\bullet$	$\bullet$
ORA		X	X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
ROL	$X$		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
RSP	X										$\bullet$	-	$\bullet$	$\bullet$	$\bullet$

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
$\begin{array}{ll}\text { I } & \text { Interrupt Mask } \\ \mathrm{N} & \text { Negative (Sign Bit) }\end{array}$
$\wedge$ Test and Set if True, Cleared Otherwise
$\begin{array}{ll}\mathrm{N} & \text { Nega } \\ \mathrm{Z} & \text { Zero }\end{array}$

- Not Affected


## EF6805R3

TABLE 6 - INSTRUCTION SET (CONTINUED)

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	$\left\|\begin{array}{c} \text { Indexed } \\ (8 \text { Bits }) \end{array}\right\|$	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	Bit Set/ Clear	Bit   Test \& Branch	H	1	N	Z	C
RTI	X										?	?	?	?	?
RTS	X										$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
SBC		X	X	X		X	X	X			$\bullet$	$\bullet$	$\wedge$	$\wedge$	$\wedge$
SEC	$\bar{X}$										$\bullet$	$\bullet$	$\bullet$	$\bullet$	1
SEI	X										$\bullet$	1	$\bullet$	$\bullet$	$\bullet$
STA			X	X		X	X	X			$\bullet$	$\bullet$	$\wedge$	$\wedge$	$\bullet$
STX			X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
SUB		X	X	X		$\times$	$\times$	X			$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
SWI	X										-	1	$\bullet$	$\bullet$	$\bullet$
TAX	X										$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
TST	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
TXA	X										$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$


Condition Code Symbols:	
H Half Carry (From Bit 3)	C Carry/Borrow
I Interrupt Mask	$\wedge$ Test and Set if True, Cleared Otherwise
N Negative (Sign Bit)	- Not Affected
Z Zero	? Load CC Register From Stack

EF6805 HMOS FAMILY

Features	EF6805CT	EF6805P2	E F6805P4	EF6805P6	EF6805R2	EF6805R3	EF6805T2	EF6805U2	EF6805U3	EF6805TV
Technology	HMOS									
Number of Pins	40	28	28	28	40	40	28	40	40	40
On-Chip RAM (Bytes)	240	64	112	64	64	112	64	64	112	96
On Chip User ROM (Bytes)	4096	1100	1100	1796	2048	3776	2508	2048	3776	6144
External Bus	Yes	None								
Bidirectional 1/O Lines	29	20	20	20	24	24	19	24	24	32
Unidirectional I/O Lines	None	None	None	None	6 Inputs	6 Inputs	None	8 Inputs	8 Inputs	None
Other 1/O Features	Timer,UART	Timer	Timer	Timer	Timer,A/D	Timer, A/D	Timer, PLL	Timer	Timer	Timer, D/A
External Interrupt Inputs	3	1	1	1	2	2	2	2	2	1
STOP and WAIT	No									


	Bit Manipulation		Branch	Read-Modity-Write					Control		Register/Memory							
$\mathrm{Low}^{\mathrm{Hi}}$	$\begin{aligned} & \frac{8 T B}{0} \\ & 0.000 \end{aligned}$	$\begin{aligned} & \frac{3 S C}{0} \\ & \hline 001 \end{aligned}$	$\begin{aligned} & \text { REL } \\ & 0,010 \end{aligned}$	$\begin{aligned} & \hline 018 \\ & 3 \\ & \hline 011 \end{aligned}$	$\begin{aligned} & \text { INH } \\ & 01000 \end{aligned}$	$\begin{aligned} & \text { INH } \\ & 5 \\ & 0101 \end{aligned}$	$\begin{aligned} & \frac{1 \times 1}{1 \times 1} \\ & 0110 \\ & \hline 1 \end{aligned}$	$\begin{gathered} 1 \times \\ \frac{1 x}{7} \\ 0111 \end{gathered}$	$\begin{gathered} \text { INH } \\ 8 \\ \hline 000 \end{gathered}$	$\begin{aligned} & \text { INH } \\ & \hline 9 \\ & \hline \end{aligned}$	$\frac{\mathrm{IMiA}}{\mathrm{~A}}$	$\begin{gathered} \hline \text { DIR } \\ 8 \\ 1011 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{E X T}{C T} \\ & 1100 \end{aligned}$	$\begin{gathered} -\frac{102}{D} \\ 1101 \\ \hline 1 \end{gathered}$	$\begin{aligned} & \overline{X 1} \\ & \xi \\ & \hline 110 \end{aligned}$	$\begin{gathered} \frac{1 X}{F} \\ \underline{1} 11 \end{gathered}$	$\xrightarrow{\text { Hi }}$	
-0000	$\begin{aligned} & 10 \text { cocer } \\ & \text { BRSETO } \\ & 3 \text { BTB } \\ & \hline \end{aligned}$	$2 \text { BSETO }$	$\text { BRA }_{\mathrm{AEL}}$	${ }_{2}^{6} \mathrm{NEG}_{\mathrm{D}: \mathrm{R}}$	${ }_{1}^{4} \text { NEG }$	$\begin{array}{ll} 4 & \mathrm{NEG} \\ \mathrm{INH}^{2} \\ \hline \end{array}$	${ }_{2}{ }^{\text {NEG }}{ }_{1 \times 1}$	${ }_{1}^{6}$ NEG ${ }^{\text {IX }}$	$\begin{array}{\|lll} \hline 9 & \mathrm{RTI} \\ 1 \\ \hline \end{array}$		$\begin{array}{ll} 2 & \text { SUB } \\ 2 & \text { IMM } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 \\ 2 & \text { SuB }_{\text {DIA }} \\ \hline \end{array}$	${ }^{\frac{3}{5}} \text { SUB }_{E \times X I}$	$\mathrm{SUB}_{1 \times 2}$	$\operatorname{sub}_{\|x\|}$	$\mathrm{SUB}_{1 \times}$	${ }_{0}^{0} 0$	
0001	$\begin{aligned} & 10 \\ & \text { BRCLRO } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 C L R O \\ & 2 \end{aligned}$	$\begin{array}{\|ll\|} \hline{ }_{2} & \text { BRN } \\ \hline \end{array}$						$\begin{array}{\|ll} \hline 6 & \text { RTS } \\ 1 & \text { INiH } \\ \hline \end{array}$		${ }_{2}^{2} \mathrm{CMP}$	${ }_{2}^{4} \mathrm{CMP}_{\mathrm{OIA}}$	${ }_{3}^{5} \mathrm{CMP} \text { EXT }$	$\mathrm{CMP}_{1 \times 2}$	${ }^{\text {CMP }}{ }_{1 \times 1}$	$\mathrm{CMP}_{\text {IX }}$	$\begin{gathered} 1 \\ 0001 \end{gathered}$	
$0010$	$\begin{aligned} & 10 \\ & 3 \\ & \hline \end{aligned}$	${ }_{2}{ }_{2}^{\text {BSET1 }} \text { BSC }$	${ }_{2}{ }^{8 H} \mathrm{REL}_{2}$								$\begin{array}{\|cc} 2 & \mathrm{SBC} \\ 2 & \mathrm{IMM} \\ \hline 2 \end{array}$	${ }_{2}^{4} \mathrm{SBC}_{\mathrm{DIR}}$	${ }_{\text {SXT }}^{\text {SBC }}$	$\mathrm{SBC}_{1 \times 2}$	$\mathrm{SBC}_{1 \times 1}$	${ }^{\text {SBC }}{ }_{1 \times}$	$0_{0}^{210}$	
${ }_{0}{ }^{3} 11$	$\begin{aligned} & \begin{array}{l} 10 \\ \text { BRCLR1 } \\ 3 \\ 3 \end{array} \text { BTB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BCLR1 } \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{ll} 4 & \mathrm{BLS} \\ 2 & \mathrm{PEL} \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & { }_{2} \operatorname{COM} \\ & D, R \\ & \end{aligned}$	${ }^{4} \text { COMA }$	$\begin{array}{\|l\|l\|} \hline{ }_{1}^{4} \text { COMX } \\ { }_{1} \\ \hline \end{array}$	$\operatorname{COM} \mathrm{M}_{\mid \times 1}$	$\int_{1}^{6} \operatorname{COM}_{1 x}$	${ }^{11}{ }_{1} \text { SWI INH }^{2}$		$\begin{array}{\|ll} 2_{2}^{2} & \mathrm{CPX} \\ \hline \end{array}$	${ }_{2}^{4} \mathrm{CPX}$	${\underset{E X I}{C P}}^{C_{E X}}$	$\mathrm{CPX}_{1 \times 2}$	$\operatorname{cPx}_{\mid \times 1}$	${ }^{\text {CPX }}$ IX	${ }_{0}{ }^{3} 11$	
${ }_{0100}^{4}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 3 \\ 3 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \text { BSET2 } \\ & 2 \end{aligned}$	$B C C_{\text {AEL }}$	$\begin{array}{\|lll} \hline 6 & \text { LSRR } \\ 2 & & \text { DTR } \\ \hline \end{array}$	${ }_{1}^{4}$ LSRA	$\begin{array}{\|lll\|} \hline 4 & \text { LSRX } \\ 1 & \text { INH } \\ \hline \end{array}$	$\stackrel{\text { LSR }}{1 \times 1}$	$\begin{array}{\|lll} \hline 6 & \text { LSR } & \\ 1_{1} & & \\ \hline \end{array}$			$\begin{array}{ll} 2 & \text { AND } \\ \frac{2}{2} & \text { IMM } \\ \hline \end{array}$	$\int_{2}^{4} \text { ANC }$	${ }_{3} \text { AND }$	${ }^{\text {AND }}{ }_{1 \times 2}$	${ }^{\text {AND }}{ }_{\|\mathrm{x}\|}$	${ }^{\text {AND }}{ }_{\text {IX }}$	${ }_{0100}^{4}$	
${ }_{0}^{5}$	$\begin{array}{\|l\|} \hline 10 \\ \hline \\ \hline \end{array}$	$\begin{array}{r} \text { BCLR2 } \\ 2 \\ \hline \end{array}$	${ }_{2} \mathrm{BCS}_{\mathrm{REL}}$								$\begin{array}{\|ll\|} \hline 2 & \text { BIT } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }^{B I T}{ }_{D I R}$	${ }^{B 1 T_{E X T}}$	${ }^{81 T}{ }_{1 \times 2}$	${ }^{B 1 T_{1}}$	${ }^{\text {BIT }}$	$\stackrel{5}{0101}$	
${ }^{6}$	$\begin{aligned} & 10 \\ & \hline \text { BRSET3 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{gathered} \text { BSET3 } \\ \hline \end{gathered}$	BNE REL	$\begin{array}{\|ll\|} \hline 6 & \text { ROR }_{\text {DIR }} \\ \hline \end{array}$	$\begin{aligned} & \text { RORA } \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$	$\mathrm{ROR}_{\|\times 1\|}$	$\begin{array}{\|ll\|} \hline 6 & \text { ROR }_{1 \times} \\ \hline \end{array}$			$\begin{array}{\|cc\|} \hline 2 & \text { LDA } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }^{4} \text { LDA }$	$\text { LDA }_{\text {EXT }}$	$\operatorname{LDA}_{1 \times 2}$	${ }^{\text {LDA }}{ }_{\|x\|}$	${ }^{\text {LDA }} 1 \times$	${ }_{0110}^{6}$	
7 011	$\begin{aligned} & 10 \\ & \hline{ }_{3}^{10} \text { BRCLAB } \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} { }_{2}^{B C L R 3} \\ \hline 8 S C \\ \hline \end{gathered}$	$\mathrm{BEO}_{\mathrm{REL}}$	$\begin{array}{\|cc\|} \hline 6 & A S R \\ 2_{2} & \text { DIR } \\ \hline \end{array}$	$\int_{1}^{4} \text { ASRA }$	$\begin{array}{\|l\|} \hline{ }^{4} \text { ASRX } \\ \hline \end{array}$	${ }^{\text {ASR }}{ }_{\mid \times 1}$	$\int_{1}^{6}{ }^{1}{ }^{\text {ASR }}$		$\begin{array}{\|lll} 2 & \text { TAX }_{1 N H} \\ 1 & \\ \hline \end{array}$		$\begin{array}{\|ll\|} \hline 5 & \text { STA } \\ 2 & \\ \hline \end{array}$	$\text { STA }_{\text {EXI }}$	${ }^{\text {STA }} 1 \times 2$	${ }^{\text {STA }}$ \|x		STA $1 \times$	7111
${ }_{1000}^{8}$	$\begin{array}{\|l\|} \hline 10 \\ \text { BRSET4 } \\ 3 \\ \hline \end{array}$	$\begin{array}{r} \text { BSET4 } \\ \hline \end{array}$	${ }_{2}^{\mathrm{BHCC}}$	${ }^{L S L}{ }_{D 1 R}$	$\begin{array}{\|l\|} \hline 4 \\ \frac{1}{4} \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 4 & \text { LSLX } \\ -1 & & \text { INH } \\ \hline \end{array}$	${ }^{\text {SLL }_{1 \times 1}}$			${ }_{2}^{2} \mathrm{CLC}$	$\begin{array}{\|ll\|} \hline 2 & \text { EOR } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }^{E O R}{ }_{D \mid R}$	${ }^{E O R}$	${ }^{E O R}{ }_{1 \times 2}$	$\mathrm{EOR}_{\mid \times 1}$	${ }^{\text {EOR }} 1 \times$	8 1000	
$\begin{gathered} 9 \\ 1001 \\ \hline 1 \end{gathered}$	$\begin{array}{\|l\|} \hline 10 \\ 8 R C L R 4 \\ 3 \\ \hline \end{array}$	$\begin{gathered} \text { BCLR4 } \\ -2 \\ \hline \end{gathered}$	${ }_{2}^{4} \text { BHCS }$	$\mathrm{ROL}_{\mathrm{DIR}}$	$\begin{aligned} & \text { ROLA } \\ & \text { RNH } \end{aligned}$	$\begin{array}{\|l\|} \hline{ }^{4} \text { ROLX } \\ 1 \\ \hline \end{array}$	$\begin{aligned} \mathrm{ROL} \\ \hline \mathbf{x \|} \mid \\ \hline \end{aligned}$	$\begin{array}{\|lll} \hline 6 & \mathrm{ROL}_{1} \\ \hline & \\ \hline \end{array}$		$\begin{array}{\|ll} 2 & \text { SEC } \\ 1 & \\ \hline \end{array}$	$\begin{array}{ll} 2 & A D C \\ 2 & \\ \hline \end{array}$	${ }^{A D C} C_{D, R}$	${ }^{A D C} C_{E X T}$	${ }^{A D C} C_{1 \times 2}$	${ }_{1 \times 1}$	${ }^{A D C}{ }_{1 \times}$	${ }_{1001}^{9}$	
$\stackrel{\text { A }}{\text { A }}$	$\begin{array}{\|l\|} \hline 10 \\ \text { BRSET5 } \\ 3 \\ \hline \end{array}$	$\begin{gathered} \text { BSET5 } \\ \text { QSC } \\ \hline \end{gathered}$	$\mathrm{BPL}_{\mathrm{REL}}$	$\begin{array}{\|ll\|} \hline 6 & D E C \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & \text { DECA } \\ 1 & \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \text { DECX } \\ 1 \\ \hline \end{array}$	${ }_{2} \quad D E C_{1 \times 1}$	$\begin{array}{\|lll} 6 & \text { DEC }^{1} \mathrm{x} \\ \hline \end{array}$		$\begin{array}{\|ll} 2 & \mathrm{CLI}_{\mathrm{INH}} \\ \hline 1 & \\ \hline \end{array}$	$\begin{gathered} \text { ORA } \\ \text { IMM } \end{gathered}$	$\begin{aligned} \text { ORA }_{\text {DIR }} \\ \hline \end{aligned}$	$3 \text { ORA }$	$\text { ORA }_{1 \times 2}$	${ }_{\text {ORA }}^{\|x\|}$	$\mathrm{ORA}_{1 \times}$	${ }_{1010}$	
8   1011	$\begin{array}{\|l\|} \hline 10 \\ \text { BRCLR5 } \\ 3 \\ \hline 10 \end{array}$	$\begin{gathered} \text { BCLR5 } \\ \hline 8 S C \\ \hline \end{gathered}$	${ }_{2}{ }^{B M I}$							$\begin{array}{lll} 2 & \mathrm{SEI}_{\mathrm{INH}} \\ 1 & & \\ \hline 2 \end{array}$	${ }_{2}^{2} \begin{array}{ll} \mathrm{ADD} \\ \mathrm{IMM} \\ \hline \end{array}$	${ }^{A D D_{D I R}}$	${ }^{A D D_{E X T}}$	${ }^{A D D_{1 \times 2}}$	${ }_{1 \times 1}$	${ }^{A D D_{1 x}}$	$\stackrel{8}{1011}$	
$\stackrel{C}{\text { C }}$	$\begin{aligned} & { }^{10} 8 \\ & \text { BRETG } \\ & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} \text { BSET6 } \\ \quad \begin{array}{c} \text { SCC } \end{array} \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & B M C \\ \hline 2 & C_{R E L} \\ \hline \end{array}$	${ }_{2}{ }^{I N C} C_{0, R}$	$\begin{array}{\|ll\|} \hline 4 & \\ & \text { INCA } \\ 1 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & I N C X \\ 1 & \\ \hline \end{array}$	${ }^{\mathrm{N} C}{ }_{\|x\|}$	$\begin{array}{\|lll} \hline 6 & \text { INC } \\ \frac{1}{6} & & \\ \hline \end{array}$		$\begin{array}{lll} 2 & \text { RSP } \\ 1 & & \\ \hline \end{array}$		${ }_{2}^{J M P_{D I R}}$	${\underset{\text { EXT }}{ }}$	$\mathrm{JMP}_{1 \times 2}$	${ }^{J M P_{\|x\|}}$	${ }^{\prime M P}{ }_{1 X}$	$\underset{1100}{\text { C }}$	
$\begin{gathered} D \\ 1101 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 10 \\ \text { BRCLR6 } \\ 3 \\ \hline 10 \\ \hline \end{array}$	$\begin{gathered} \text { BCLR6 } \\ \hline 8 S C \\ \hline \end{gathered}$	$\begin{aligned} & 4 \\ & \frac{2}{4} \mathrm{BMS} \\ & \hline \end{aligned}$	$\begin{array}{\|lll\|} \hline 6 & \mathrm{TST}^{2} \\ 2 & & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array} \text { TSTA }$	$\begin{array}{\|ll\|} \hline 4 & \\ \hline & \text { TSTX } \\ 1 & \\ \hline \end{array}$	$2^{\text {TST }} \quad{ }^{\|x\|} \mid$	$\begin{array}{\|lll} \hline 6 & \mathrm{TST}_{1} \\ \hline \end{array}$		${ }_{1}^{2}{ }_{1}^{N O P}$	$\begin{array}{\|ll\|} \hline 8 & \text { BSR } \\ 2 & \\ \hline \end{array}$	$\mathrm{JSR}_{\mathrm{DIR}}$	${ }^{\text {JSR }}$	${ }_{\substack{\text { JX2 } \\ \hline}}$	${ }^{\mathrm{JSR}}{ }_{\mid \times 1}$	${ }^{\text {JSA }}{ }_{1 \times}$	101	
${ }_{1110}$	$\begin{array}{\|l\|} \hline 10 \\ \hline \text { BRSETT } \\ 3 \\ \hline 30 \\ \hline 0 \end{array}$	$\begin{aligned} & \text { BSET7 } \\ & \hline \end{aligned}$	$\begin{array}{ll} 4 & \mathrm{BIL} \\ \hline & \\ \hline \end{array}$								$\begin{array}{\|ll\|} \hline 2 & \text { LOX } \\ 2 & \text { IMM } \\ \hline \end{array}$	$2_{2}^{\text {LDX }}$	$\underset{E \times T}{L D X}$	$\operatorname{LDX}_{\mathrm{ix}_{2}}$	$\operatorname{LDX}_{\|x\|}$	$\operatorname{LOX}_{\mathrm{IX}}$	${ }_{1110}^{E}$	
${ }_{111}$	$\begin{aligned} & 100 \\ & \text { BRCLR7 } \\ & 3 \quad B T B \\ & \hline \end{aligned}$	$\begin{gathered} \text { BCLR7 } \\ { }_{2} \\ \hline \end{gathered}$	$\begin{array}{ll} 4_{2}^{4} & 8 \mathrm{BIH} \\ { }_{2} & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 6 & { }_{2} \\ & \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { CLRA } \\ 1 \end{array}$	$\begin{array}{\|lll\|} \hline{ }^{4} & \text { CLRX } \\ 1 & \\ & \\ \hline N N H \end{array}$	$\begin{array}{\|ll\|} \hline 7 & \\ \hline & \\ \hline \end{array}$	$\int_{1 x}^{0}$		$\begin{array}{\|lll} \hline 2 & \text { TXA } \\ 1 & & \\ \hline \end{array}$		$\int_{2}^{5} S T X_{\text {DIR }}$	${ }_{3} \mathrm{STX}_{\text {EXT }}$	$\begin{array}{\|lll} \hline 7 & & \\ 3 & & \\ \hline \end{array}$	${ }_{2} \mathrm{STX}_{1 \times 1}$	$\int_{1}^{\text {STX }}$	${ }_{1111}$	

## Abbreviations for Address Modes

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
REL	Relative
BSC	Bit Set/Clear
BTB	Bit Test and Branch
IX	Indexed (No Offset)
IX1	Indexed, 1 Byte (8-Bit) Offset
IX2	Indexed, 2 Byte (16-Bit) Offset

PHYSICAL DIMENSIONS


CB-521


FN SUFFIX PLCC 44


## ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

## EPROMs

Two 2716 or one :2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :


After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

## VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

## ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUCTEURS. Quality Assurance, and should be discarded after verification is completed.

## FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files: filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDU்CTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

EXORciser is a registered trademark of MOTOROLA Inc.
ORDERING INFORMATION

Device   Screening level   Package $\qquad$ $\qquad$ Oper. temp.   The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.												
DEVICE	PACKAGE					OPER. TEMP			SCREENING LEVEL			
	c	$J$	P	E	FN	L*	v	T	Std	D	G/B	B/B
EF6805R3			$\bullet$		$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$		
Examples : EF6805R3P, EF6805R3FN, EF6805R3PV, EF6805R3FNV												
Package : C : Ceramic DIL, J : Cerdip DIL, P : Plastic DIL, E : LCCC, FN : PLCC.   Oper. temp. : L*: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, *: may be omitted.   Screening level : Std: (no-end suffix), D: NFC 96883 level D,   G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.												

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different products.

## ADVANCE INFORMATION

The EF6805U2 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8-bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800-based instruction set. A comparison of the key features of several members of the 6805 Family of microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805U2 MCU.

## HARDWARE FEATURES

- 32 TTL/CMOS Compatible I/O Lines

24 Bidirectional (8 Lines are LED Compatible)
8 Input-Only

- 2048 Bytes of User ROM
- 64 Bytes of RAM
- Self-Check Mode
- Zero-Crossing Detect/Interrupt
- Internal 8-Bit Timer with 7-Bit Mask Programmable Prescaler and Clock Source
- 5 V Single Supply


## SOFTWARE FEATURES

- 10 Powerful Addressing Modes
- Byte Efficient Instruction Set with True Bit Manipulation, Bit Test, and Branch Instructions
- Single Instruction Memory Examine/Change
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Register/Flags
- Complete Development System Support on DEVICE ${ }^{\circledR}$.


## USER SELECTABLE OPTIONS

- Internal 8-Bit Timer with Selectable Clock Source (External Timer Input or Internal Machine Clock)
- Timer Prescaler Option (7 Bits, $2^{n}$ )
- 8 Bidirectional I/O Lines with TTL or TTL/CMOS Interface Option
- 8 Bidirectional I/O Lines with TTL or Open-Drain Interface Option
- Crystal or Low-Cost Resistor Oscillator Option
- Low Voltage Inhibit Option
- Vectored Interrupts Timer, Software, and External
- User Callable Self-Check Subroutines

DEVICE ${ }^{\circledR}$ is THOMSON SEMICONDUCTEURS' development/emulation tool.
hmos




FIGURE 1 - EF6805U2 HMOS MICROCOMPUTER BLOCK DIAGRAM

MAXIMUM RATING

Rating	Symbol	Value	Unit
Supply Voitage	$V_{\text {cc }}$	-0.3 to +7.0	V
Input Voltage (Except TIMER in Self-Check Mode and Open-Drain Inputs)	$V_{\text {in }}$	-0.3 to +7.0	V
Input Voltage (Open-Drain Pins, TIMER Pin in Self-Check Mode)	$V_{\text {in }}$	-0.3 to +15.0	V
Operating Temperature Range    $\left(T_{L}\right.$ to $\left.T_{H}\right)$ $\mathbf{V}$ suffix   Suffix	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Plastic Package PLCC	TJ	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq$ $V_{C C}$. Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{CC}}$.

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance	$\theta_{\text {JA }}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic		50	
PLCC		80	

## POWER CONSIDERATIONS

The average chip-junction temperature, $\mathrm{T}_{\mathrm{J}}$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{aligned}
& T_{J}=T_{A}+\left(P_{D} \theta_{J A}\right) \\
& \text { Where: }
\end{aligned}
$$

$T_{A} \equiv$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
${ }^{\boldsymbol{\theta}} \mathrm{JA}=$ Package Thermal Resistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD $=$ PINT + PPORT
PINT $=$ ICC $\times V_{\text {CC }}$. Watts - Chip Internal Power
PPORT $=$ Port Power Dissipation, Watts - User Determined
For most applications PPORT $\varangle$ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between $P_{D}$ and $T_{J}$ (if PPORT is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation 3 by measuring $P_{D}$ (at equilibrium) for a known $T_{A}$. Using this value of $K$ the values of $P_{D}$ and $T_{J}$ can be obtained by solving equations (1) and (2) iteratively for any value of $T_{A}$.

ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\mathrm{T}_{\mathrm{H}}$ Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
	$\mathrm{V}_{\mathrm{IH}}$	$\begin{gathered} 4.0 \\ v_{c c}^{4.0 .5} \\ v_{C c}-0.0 .5 \\ 2.0 \end{gathered}$		Vcc   Vcc   V cc   Vcc   VCC	V
Input High Voltage Timer Timer Mode Self-Check Mode	$\mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	$\overline{10.0}$	$\underset{15.0}{\mathrm{v}_{\mathrm{CC}}+1.0}$	$v$
Input Low Voltage RESET INT All Other	VIL	$\begin{aligned} & \mathrm{v}_{\mathrm{ss}} \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \\ & \hline \end{aligned}$	v
$\overline{\text { RESET }}$ Hysteresis Voltages (See Figures 10,11 and 12)   "Out of Reset"   "Into Reset"	VIRES + VIRES-	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	v
INT Zero Crossing Input Voltage, Through a Capacitor	VINT	2	-	4	$\mathrm{Vac}_{\text {ac-p }}$
	PD	-	$\begin{aligned} & 520 \\ & 580 \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \end{aligned}$	mW
Input Capacitance EXTAL All Other	$\mathrm{c}_{\text {in }}$	-	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	-	pF
Low Voltage Recover	$V_{\text {LVR }}$	-	-	4.75	V
Low Voltage Inhibit	$\mathrm{V}_{\text {LVI }}$	2.75	3.75	4.70	V
```Input Current TIMER ( \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) ) \(\overline{\text { INT }}\left(V_{i n}=2.4 \mathrm{~V}\right.\) to \(\left.\mathrm{V}_{\mathrm{cc}}\right)\) EXTAL ( \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{cc}} \cdot\) Crystal Option) \(\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\right.\)-Crystal Option) \(\overline{\operatorname{RESET}}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)\) - External Capacitor Charging Current```	$\mathrm{I}_{\text {in }}$		- 20 - - - -	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

- Due to internal biasing this input (when unused) floats to approximately 2.2 V .

SWITCHING CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Oscillator Frequency	$f_{\text {OSC }}$	0.4	-	4.2	MHz
Cycle Time ($4 / \mathrm{fosc}^{\text {) }}$	${ }^{\text {cheyc }}$	0.95	-	10	$\mu \mathrm{s}$
$\overline{\text { INT, INT2, and TIMER Pulse Width (See Interrupt Section) }}$	tWL. TWH	$\mathrm{t}_{\text {cyc }}+250$	-	-	ns
RESEFP Pulse Width	trwL	$\mathrm{t}_{\text {cyc }}+250$	-	-	ns
INT Zero-Crossing Detection Input Frequency	fint	0.03	-	1	kHz
External Clock Input Duty Cycle (EXTAL)	-	40	50	60	\%
Crystal Oscillator Start-Up Time *	-	-	-	100	ms

* See Figure 16 for typical crystal parameters

PORT ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Port A with CMOS Drive Enabled					
Output Low Voltage (${ }^{\text {Load }}$ = 1.6 mA)	$\checkmark \mathrm{V}_{\mathrm{OL}}$	-	-	0.4	V
Output High Voltage Lload $=-100 \mu \mathrm{~A}$ Load= $-17 \mu \mathrm{~A}$	V_{OH}	$\begin{gathered} 2.4 \\ v_{C c}-1.0 \end{gathered}$	-	-	V
Input High Voltage (ILoad" $\mathbf{- 3 0 0} \mu \mathrm{A}$ max.)	VIH	2.0	-	$V_{\text {cc }}$	V
Input Low Voltage (Load $^{\text {m }}=-500 \mu \mathrm{~s}$ max.)	VIL	VSS	-	0.8	V
High Z State Input Current ($\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$)	IIH	-	-	-300	$\mu \mathrm{A}$
High ZState Input Current ($\mathrm{Vin}_{\text {in }} \mathbf{0 . 4} \mathrm{V}$)	IIL	-	-	-500	$\mu \mathrm{A}$
Port B					
Output Low Voltage $I_{\text {Load }}=3.2 \mathrm{~mA}$ LLoad $=10 \mathrm{~mA}$ (Sink)	V_{OL}	-	-	$\begin{aligned} & 0.4 \\ & 1.0 \\ & \hline \end{aligned}$	V
Output High Voltage ILoad ${ }^{\text {- }} 200 \mu \mathrm{~A}$	V_{OH}	2.4	-	-	V
Darlington Current Drive (Source) $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	${ }_{\mathrm{OH}}$	-1.0	-	-10	mA
Input High Voltage	$\mathrm{VIH}^{\text {I }}$	2.0	-	V_{CC}	V
Tnput Low Voltage	VIL	VSS	-	0.8	V
High Z State Input Current	ITSI	-	<2	10	$\mu \mathrm{A}$
Port C and Port A with CMOS Drive Disabled					
Output Low Voltage ILoad ${ }^{\text {d }} 1.6 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Output High Voltage ILoad ${ }^{\text {m }} \mathbf{- 1 0 0 \mu \mathrm { A }}$	VOH	2.4	-	-	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	VCC	V
Input Low Voltage	V_{1}	VSS	-	0.8	V
High 2 State Input Current	ITSI	-	<2	10	μs
Port C (Open-Drain Option)					
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	13.0	V
Tnput Low Voltage	$V_{\text {IL }}$	VSS	-	0.8	V
Tnput Leakage Current	ILOD	-	<3	15	$\mu \mathrm{A}$
Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	VOL	-	-	0.4	V
Port D					
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	V_{Cc}	V
Input Low Voltage	VIL	VSS	-	0.8	V
Input Current	Iin	-	<1	5	$\mu \mathrm{A}$

FIGURE 2 - TTL EQUIVALEṄT TEST LOAD (PORT B)

FIGURE 4 - TTL EQUIVALENT TEST LOAD (PORTS A AND C)

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in Figure 1, are described in the following paragraphs.

VCC AND VSS - Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.

INT - This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.

XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.

NUM (NOM USER MODE) - This pin is not for user application and must be connected to V_{SS}.

TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.

RESET - This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling $\overline{R E S E T}$ low. Refer to Resets Section for additional information.

FIGURE 3 - CMOS EQUIVALENT TEST LOAD (PORT A)

FIGURE 5 - OPEN - DRAIN EQUIVALENT TEST LOAD (PORT C)

INPUT/OUTPUT LINES (PAO-PA7, PBO-PB7, PCO-PC7, PDO-PD7) - These 32 lines are arranged into four 8-bit ports (A, B, C, and D). Ports A, B, and C are programmablu as either inputs or outputs under software contrel of thu dota direction registers (DDRs). Port D is for digital Input only and bit 6 may be used for a second interrupt INT2. Refer to Input/Output Section and Interrupts Section for additional information.

MEMORY - The MCU is capable of addressing 4096 bytes of memory and I/O registers with its program counter. The EF6805U2 MCU has implemented 2314 of these bytes. This consists of: 2048 user ROM bytes, 192 selfcheck ROM bytes, 64 user RAM bytes, 7 port I/O bytes, 2 timer registers, and a miscellaneous register; see Figure 6 for the Address map. The user ROM has been split into three areas. The main user ROM area is from $\$ 080$ to \$OFF and from \$7CO to \$F37. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.

The MCU reserves the first 16 memory locations for $1 / 0$ features, of which 10 have been implemented. These locations are used for the ports, the port DDRs, the timer and the INT2 miscellaneous register, and the 64 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.

The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in Figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program.

FIGURE 6 - EF6805U2 MCU ADDRESS MAP

FIGURE 7 - INTERRUPT STACKING ORDER

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in Figure 8 and are explained in the following paragraphs.

ACCUMULATOR (A) - The accumulator is a general purpose 8 -bit register used to hold operands and results of arithmetic calculations or data manipulations.

INDEX REGISTER (X) - The index register is an 8 -bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.

FIGURE 8 - PROGRAMMING MODEL

PROGRAM COUNTER (PC) - The Program Counter is a 12 bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP) - The stack pointer is a 12 -bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F. The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).

CONDITION CODE REGISTER (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.
Half Carry (H) - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4 .
Interrupt (1) - When this bit is set, the timer and external interrupts (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical " 1 ").
Zero (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The timer circuitry for the MC6805U2 is shown in Figure 10. The 8 -bit counter may be loaded under program control and is decremented toward zero by the clock input (or prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control reg ister (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (1 bit) in the condition code register also prevents a timer interrupt from being processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$FF8 and \$FF9 and executing the interrupt routine (see RESET, CLOCK, AND INTERRUPT STRUCTURE SECTIONS). The timer interrupt request bit must be cleared by software. The TIMER and INT2 share the same interrupt vector. The interrupt routine must check the request bits to determine the source of the interrupt.

The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin, or it can be the internal phase two signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER pin logic is dependent on the parameter labeled tWH. The pin logic that recognizes the high state on the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows (assumes 50/50 duty cycle for a given period):

$$
\mathrm{t}_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The periods is not simply tWH + tWL. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 nanoseconds times two).

When the phase two signal is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. The source of the clock input is one of the mask options that is specified before manufacture of the MCU.

NOTE

For ungated phase two clock input to the timer prescaler, the TIMER pin should be tied to V_{CC}.

A prescaler option, divide by 2^{n}, can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer control register is written to a logic one (this bit always reads a logic zero). See Figure 9.

$\$ 009$
TCR7-Timer Interrupt Request Status Bit: Set when TDR goes to zero; must be cleared by software. Cleared to 0 by Reset.
TCR6-Timer Interrupt Mask Bit: $1=$ timer interrupt masked (disabled). Set to 1 by Reset.
TCR3 - Clear prescaler always reads as a 0; clears prescaler when written to a logic " 1 ".
JCR Bits 5, 4, 2, 1, 0 reads " 1 s "- unused bits.

FIGURE 9 - TIMER CONTROL REGISTER (TCR)

The tumer continues to count past zero, falling through to $\$ F F$ from $\$ 00$ and then continuing the countdown. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred, and not disturb the counting process.

At power up or reset, the prescaler and counter are initialized with all logic ones; the timer interrupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

FIGURE 10 - TIMER BLOCK DIAGRAM

SELF-CHECK

The self-check capability of the EF6805U2MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check program exercises the RAM, ROM, TIMER, interrupts, and I/O ports.
Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM, tests. The timer routine may also be called if the timer input is the internal $\phi 2$ clock.

To call those subroutines in customer applications, please contact your local THOMSON SEMICONDUC. TEURS sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.

RAM SELF-CHECK SUBROUTINE - The RAM self-
check is called at location \$F6F and returns with the Z bit clear if any error is detected ; otherwise the Z bit is set. The walking diagnostic pattern method is used on the EF6805U2.

The RAM test must be called with the stack pointer at $\$ 07 F$. When run, the test checks every RAM cell except for \$07F and \$07E which are assumed to contain the return address.

The A and X registers and all RAM locations except $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ are modified.

ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F8A. If any error is detected, it returns with the Z bit cleared ; otherwise $Z=1, X=0$ on return, and A is zero if the test passes. RAM location $\$ 040$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.

FIGURE 11 - SELF-CHECK CONNECTIONS

PC0	PC1	PC2	PC3	Remarks [1:LED ON; 0:LED OFF]		
1	0	1	0	Bad I/O		
0	0	1	0	Bad Timer		
1	1	0	0	Bad RAM		
0	1	0	0	Bad ROM		
0	0	0	0	Bad Interrupts or Request Flag		
All Flashing						Good Device

Anything else bad Device, Bad Port C, etc

TIMER SELF-CHECK SUBROUTINE - The timer self check is called at location SFCF and returns with the Z bit cleared if any error was found; otherwise $Z=1$.

In order to work correctly as a user subroutiné, the internal $\$ 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if
necessary.
The A and X register contents are lost. The timer selfcheck routine counts how many times the clock counts in 128 cycles. The number of counts should be a power of 2 since the prescaler is a power of 2 . If not, the timer is probably not counting correctly. The routine also detects a timer which is not running.

RESET

The MCU can be reset three ways : by initial powerup, by the external reset input ($\overline{\mathrm{RESET}}$) and by an optional internal low-voltage detect circuit. The $\overline{\operatorname{RESET}}$ input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in Figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the $\overline{\text { EESET pin. }}$

Power-On Reset (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of tRHL milliseconds is required before allowing the RESET input to go high. Refer to the power and reset timing diagram of Figure 13. Connecting a capacitor to the $\overline{R E S E T}$ input (as illustrated in Figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to VIRES_{+}.

FIGURE 12 - TYPICAL RESET SCHMITT TRIGGER HYSTERESIS

FIGURE 13 - POWER AND RESET TIMING

FIGURE 14 - $\overline{\text { RESET CONFIGURATION }}$

External Reset Input - The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle ($\mathrm{t}_{\mathrm{cyc}}$). Under this type of reset, the Schmitt trigger switches off at $V_{\text {IRES }}$ - to provide an internal reset voltage.

Low-Voltage Inhibit (LVI) - The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level (VLVI). The only requirement is that $V_{C C}$ remains at or below the $V_{\text {LVI }}$ threshold for one tyc minimum. In typical applications, the V_{CC} bus filter capacitor will eliminate negative-going voltage glitches of less than one $\mathrm{t}_{\text {cyc. }}$. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the $\overline{\operatorname{RESET}}$ pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level (VLVR), at which time a normal power-on-reset occurs.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in Figure 15. Crystal specifications and suggested PC board layouts are given in Figure 16. A resistor selection graph is given in Figure 17.

The crystal oscillator start-up time is a function of many variables : crystal parameters (especially RS), oscillator load capacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.

When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below $V_{\text {IRES }}^{+}$) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition: the oscillator start-up voltage, the oscillator stabilization time, the minimum $\mathrm{V}_{\text {IRES }}+$, and the reset charging current specification.

Once $V_{C C}$ minimum is reached, the external $\overline{\operatorname{RESET}}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{C C}$ through a large resistor, so it appears almost like a constant current source until the reset voltage rises above VIRES + . Therefore, the $\overline{\operatorname{RESET}}$ pin will charge at approximately :

$$
\left(V_{\text {IRES }}+1 \cdot C_{e x t}=I_{\text {RES }} \bullet t_{\text {RHL }}\right.
$$

Assuming the external capacitor is initially discharged.

Approximately 25% to 50% Accuracy
Typical $\mathrm{t}_{\mathrm{cyc}}=1.25 \mu \mathrm{~s}$
External Jumper

NOTE: The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and ap. proximately 25 pF on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.

AT - Cut Parallel Resonance Crystal
$\mathrm{C}_{\mathrm{O}}=7 \mathrm{pF}$ Max
Freq. $=4.0 \mathrm{MHz} @ C_{L}=24 \mathrm{pF}$ $\mathrm{R}_{\mathrm{S}}=50$ ohms Max.

Piezcelectric ceramic resonators which have the equivalent specifications may be used instead of crystal oscillators. Follow cera mic resonator manufacturer's suggestions for $\mathrm{C}_{0}, \mathrm{C}_{1}$, and R_{S} values.

NOTE: Keep crystal leads and circuit connections as short as possible.

FIGURE 16 - CRYSTAL MOTIONAL ARM PARAMETERS AND SUGGESTED PC BOARD LAYOUT

FIGURE 17 - TYPICAL FREQUENCY SELECTION FOR RESISTOR (OSCILLATOR OPTION)

INTERRUPTS

The microcomputers can be interrupted four different ways: through the external interrupt (INT) input pin, the internal timer interrupt request, the external port D bit 6 (INT2) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of $11 \mathrm{t}_{\text {cyc }}$ periods for completion. A flowchart of the interrupt sequence is shown in Figure 18. The interrupt service routine must
end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.

FIGURE 18 - RESET AND INTERRUPT PROCCESSING FLOWCHARD

NOTE

The timer and INT2 interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.

The external interrupt, INT and INT2, are synchronized and then latched on the falling edge of the input signal. The $\overline{\operatorname{NNT} 2}$ interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The $\overline{\mathrm{INT2}}$ interrupt is inhibited when the mask bit is set. The $\overline{\mathrm{NT} 2}$ is always read as a digital input on port D. The $\overline{\mathrm{NTT2}}$ and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.

A sinusoidal input signal (fINT maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-ofday routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a 2 f clock. See Figure 19.

NOTE

The $\overline{\operatorname{INT}}$ (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.

A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as breakpoints for debugging or as system calls.

Bit 7-Conversion Complete Status Flag: Set when conversion is complete; cleared only on a write to ACR.
Readable, not writable.
Bits 2, 1, 0 - A/D input Mux Selection (See Table 2). Bits 6, 5, 4, 3 read as "1s"- unused bits.

FIGURE 19 - TYPICAL' INTERRUPT CIRCUITS

INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The $\overline{\mathrm{INT}}$ pin may be polled with branch instructions to provide an additional input pin. All pins on ports A, B, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at the output pin, due to output loading. Refer to Figure 20.

PORT DATA REGISTER

(1) Write Only; reads as all " 1 s"
(2) $1=$ Output, $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$

FIGURE 20 - TYPICAL PORT I/O CIRCUITRY

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.

The address map (Figure 6) gives ine adaresses of data registers and data direction registers. Figure 21 provides somè examples of port connections.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006).

A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

The latched output data bit (see Figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

(a) Output Modes

Port B, bit 5 programmed as output. driving Darling-ton-base directly.

Port B, bit 0 and bit 1 programmed as output, driving LEDs directly.

Port C, bits $0-3$ programmed as output, driving CMOS loads, using external pullup resistors (required if Port C is open-drain).
(b) Input Modes

TTL driving Port A directly.

CMOS and TTL driving Port C directly

CMOS or TTL driving Port B directly.

CMOS or TTL driving Port D directly

FIGURE 21 - TYPICAL PORT CONNECTIONS

BIT MANIPULATION

The EF6805U2 as the ability to set or clear any single RAM or I/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single 1/O bits as control lines.

CAUTION

The corresponding data direction registers for ports A, B, and C are write-only registers (locations $\$ 004, \$ 005$, and $\$ 006$). A read operation on these registers is undefined. Since BSET
and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.

The coding examples shown in Figure 22 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit firstout of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.

FIGURE 22 - BIT MANIPULATION EXAMPLE

ADDRESSING MODES

The EF6805U2 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations. refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g. a constant used to initialize a loop counter).

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.

EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3 -byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.

RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

INDEXED, 8-bIT OFFSET - In the indexed, 8-bit offiset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the k th element in an n element table. With this 2 -byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1$ FE is the last location at which the instruction may begin).

INDEXED, 16-BIT OFFSET - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode: can be used in a manner similar to indexed, 8 -bit offset ex cept that this 3 -byte instruction allows tables to be anywheme: in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.

BIT SET/CLEAR - In the bit set/clear addressing mode. the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including $1 / 0$, can be selectively set or cleared with a single 2 -byte instruction.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.

BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3 -byte
instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.

INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805U2 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The
jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to Table 2.

BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 3.

BIT MANIPULATION INSTRUCTIONS - The instructions are used on any bit in the first 256 bytes of the memory; One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 4.

CAUTION

The corresponding DDRs for ports A. B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.

CONTROL INSTRUCTION - The control instructions control the MCU operations during program execution. Refer to Table 5.

ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in Table 6.

OPCODE MAP - Table 7 is an opcode map for the instruction used on the MCU.

TABLE 1 - REGISTER/MEMORY INSTRUCTIONS

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed (No Offset)			Indexed (8-Bit Offset)			$\begin{aligned} & \text { Indexed } \\ & \text { (16. Bit Offset) } \\ & \hline \end{aligned}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \hline \text { \# } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{Op} \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{c\|} \hline \neq \\ \text { Cycles } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \mathrm{c}-\mathrm{de} \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \neq \\ \text { Bytes } \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} 4 \\ \text { Cycles } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OP} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} 7 \\ \text { Bytes } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \\ \text { Cycles } \end{array} \\ \hline \end{array}$
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA	-	-		B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX	-	-	.	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	80	2	4	CO	3	5	FO	1	4	EO	2	5	DO	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	83	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	85	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP				BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR	-	-		BD	2	7	CD	3	8	FD	1	7	ED	2	8	0	3	9

TABLE 2 - READ-MODIFY-WRITE INSTRUCTIONS

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			Indexed(No Offset)			\qquad		
Function	Mnemonic	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \hline \mathrm{Op} \\ \text { Code } \end{gathered}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	\# Cycles	$\begin{gathered} \mathrm{Op} \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{gathered} \hline \text { \# } \\ \text { Bytes } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	\# Cycles
Increment	INC	4C	1	4	5C	1	4	3 C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
$\begin{aligned} & \text { Negate. } \\ & \text { (2 s Complement) } \end{aligned}$	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Lefl	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negalive or Zero	TST	40	1	4	5 D	1	4	3 D	2	6	70	1	6	6 D	2	7

TABLE 3 - BRANCH INSTRUCTIONS

		Relative Addressing Mode		
Function	Mnemonic	Op Code	\# Bytes	Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFFHigher	BHI	22	2	4
BranchIFFLower or Same	BLS	23	2	4
Branch IFFCarry Clear	BCC	24	2	4
(BranchiFFHigher or Same)	(BHS)	24	2	4
Branch IFFCarry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
Branch IFF Not Equal	BNE	26	2	4
BranchIFFEqual	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branchiff Plus	BPL	2A	2	4
Branchiff Minus	BMI	2B	2	4
Branch IFFinterupt Mask Bit is Clear	BMC	2C	2	4
Branch IFF Interrupt Mask Bit is Set	BMS	2D	2	4
Branch IFFInterrupt Line is Low	BIL	2E	2	4
BranchIFFInterrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

TABLE 4 - BIT MANIPULATION INSTRUCTIONS

		Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
Function	Mnemonic	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	Bytes		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	Bytes	 Cycles
Branch IFF Bit n is set	BRSET n ($\mathrm{n}=0 \ldots 7$)	-	-	-	$2 \cdot n$	3	10
Branch IFF Bit n is clear	BRCLR $n(\mathrm{n}=0 \quad 7)$	-	-	-	$01+2 \cdot n$	3	10
Set Bit n	BSET $n(n=0 \quad 7)$	$10+2 \cdot n$	2	7	-	-	-
Clear bit n	BCLR \cap ($\mathrm{n}=0.7)$	$11+2 \cdot n$	2	7	-	-	-

TABLE 5 - CONTROL INSTRUCTIONS

		Inherent		
Function	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bıt	SEC	99	1	2
Clear Carry Bıt	CLC	98	1	2
Set Interrupt Mask Bıt	SEI	98	1	2
Clear Interrupt Mask Bıt	CLI	$9 A$	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	$9 C$	1	2
No Operatıon	NOP	$9 D$	1	2

TABLE 6 - INSTRUCTION SET

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	$\left\lvert\, \begin{gathered} \text { Indexed } \\ \text { (No Offset) } \end{gathered}\right.$	Indexed (8 Bits)	$\begin{aligned} & \text { Indexed } \\ & (16 \text { Bits }) \end{aligned}$		Bit Branch	H	1	N	Z	C
ADC		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
ASL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
ASR	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
BCC					X						\bullet	-	-	-	\bullet
BCLR									X		\bullet	\bigcirc	\bullet	\bullet	\bullet
BCS					X						\bullet	-	\bullet	-	\bullet
BEO					X						\bullet	\bullet	\bullet	-	\bullet
BHCC					X						\bullet	-	-	-	\bullet
BHCS					X						\bullet	-	\bigcirc	\bullet	\bullet
BHI					X						\bullet	-	\bullet	\bullet	\bullet
BHS					X						-	-	-	-	\bullet
BIH					X						\bullet	-	-	-	\bullet
BIL					X						\bullet	-	\bullet	\bullet	\bullet
BIT		X	$\bar{\chi}$	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
BLO					\bar{X}						\bullet	-	-	\bullet	\bullet
BLS					X						\bullet	-	-	-	\bullet
BMC					X						\bullet	-	\bullet	-	\bullet
BMI					X						\bullet	-	-	-	\bullet
BMS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BNE					X						\bigcirc	-	\bigcirc	-	\bullet
BPL					X						\bullet	-	-	-	\bullet
BRA					X						\bullet	-	\bullet	-	\bullet
BRN					X						\bullet	-	-	-	\bullet
BRCLR										X	\bullet	-	-	-	\wedge
BRSET										X	\bullet	-	-	-	\wedge
BSET									X		\bullet	-	-	-	\bullet
BSR					X						-	\bullet	\bullet	\bullet	\bullet
CLL	X										\bullet	-	-	-	0
CLI	X										\bullet	0	-	\bullet	\bullet
CLR	X		X			X	X				\bullet	-	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				\bullet	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
DEC	X		\bar{X}			X	X				\bullet	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
INC	X		X			X	X				-	-	\wedge	\wedge	\bullet
JMP			X	\bar{X}		X	X	X			\bullet	-	-	\bullet	\bullet
JSR			X	X		X	X	X			\bullet	-	-	\bullet	\bullet
LDA		\bar{X}	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bigcirc
LDX		X	X	X		X	X	X			-	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
LSR	X		X			X	X				-	-	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
NOP	X										\bullet	-	\bullet	\bullet	\bullet
ORA		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	-
ROL	X		X			\bar{X}	X				\bullet	\bigcirc	\wedge	\wedge	\wedge
RSP	X										\bullet	\bullet	\bullet	\bullet	\bigcirc

Condition Code Symbols

[^18]C Carry/Borrow
\wedge Test and Set if True, Cleared Otherwise

EF6805U2

TABLE 6 - INSTRUCTION SET (CONTINUED)

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	$\left\|\begin{array}{l} \text { Indexed } \\ (8 \text { Bits }) \end{array}\right\|$	$\begin{array}{\|l\|} \text { Indexed } \\ \text { (16 Bits) } \end{array}$	Bit Set/ Clear	Bit Test 8 Branch	H	1	N	2	C
RTI	X										$?$?	?	?	?
RTS	X										-	\bigcirc	-	\bigcirc	\bullet
SBC		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
SEC	X										\bigcirc	-	-	\bullet	1
SEI	X										\bullet	1	-	\bullet	\bullet
STA			X	X		X	X	X			-	-	\wedge	\wedge	\bullet
STX			X	X		X	X	X			-	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
SWI	X										-	1	\bullet	\bullet	\bullet
TAX	X										-	-	-	-	\bullet
TST	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\bullet
TXA	X										-	\bullet	\bullet	\bullet	\bullet

Condition Code Symbols:
H Half Carry (From Bit 3)
C Carry/Borrow
I Interrupt Mask
\wedge Test and Set if True. Cleared Otherwise
N Negative (Sign Bit)

- Not Affected

Z Zero
? Load CC Register From Stack

EF6805 HMOS FAMILY

Features	EF6805CT	E F6805P2	EF6805P4	EF6805P6	EF6805R2	EF6805R3	EF6805T2	E F6805U2	EF6805U3	EF6805TV
Technology	HMOS									
Number of Pins	40	28	28	28	40	40	28	40	40	40
On-Chip RAM (Bytes)	240	64	112	64	64	112	64	64	112	96
On-Chip User ROM (Bytes)	4096	1100	1100	1796	2048	3776	2508	2048	3776	6144
External Bus	Yes	None								
Bidirectional 1/O Lines	29	20	20	20	24	24	19	24	24	32
Unidirectional I/O Lines	None	None	None	None	6 Inputs	6 Inputs	None	8 Inputs	8 Inputs	None
Other 1/O Features	Timer,UART	Timer	Timer	Timer	Timer,A/D	Timer, A/D	Timer, PLL	Timer	Timer	Timer, D/A
External Interrupt Inputs	3	1	1	1	2	2	2	2	2	1
STOP and WAIT	No									

	Bit Manipulation		Branch	Roed-Modity-Write					Control		Register/Memory						
$L_{\text {Low }}{ }^{\text {Mi }}$	$\frac{818}{0}$	$\begin{gathered} \frac{1}{8 S C} \\ 1 \end{gathered}$	$\begin{aligned} & \text { AEG1} \\ & \text { م80 } \end{aligned}$	$\begin{aligned} & 011 \\ & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & \text { INH } \\ & \text { O100 } \end{aligned}$	$\begin{aligned} & \frac{1 N H}{5} \\ & 0101 \end{aligned}$	$\begin{aligned} & \frac{1 \times 1}{1 \times 1} \\ & \frac{6}{2} 110 \end{aligned}$	$\begin{gathered} 18 \\ 7 \\ 0111 \end{gathered}$	$\begin{aligned} & \text { INH } \\ & 8 \\ & \hline 1000 \end{aligned}$	$\begin{gathered} \mathrm{INH} \\ 9 \\ \hline 1021 \end{gathered}$	$\begin{aligned} & \mathrm{IMMM} \\ & \text { AMO } \end{aligned}$	$\begin{gathered} \hline \text { DIR } \\ 8 \\ \hline 1011 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{B X I}{C} \\ & 1,0 \end{aligned}$	$\begin{aligned} & \frac{1 x^{2}}{6} \\ & 1101 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1 \times 1}{\underline{E}} \\ & \underline{110} \end{aligned}$	$\begin{aligned} & \frac{\sqrt{x}}{5} \\ & \underline{1111} \end{aligned}$	${ }_{\text {Hi }}^{\text {Low }}$
-	$\begin{aligned} & \text { BRSETO } \\ & 3 \\ & \hline \end{aligned}$	BSETO	${ }_{2}^{2}$ BRA ${ }_{\text {aEL }}$	${ }_{2}^{5}$ NEG	${ }^{4}$, NEG ${ }^{\text {a }}$	${ }^{1}$, NEG ${ }^{\text {a }}$	${ }_{2}^{7}{ }^{1} \mathrm{NEG}_{\|x\|}$	${ }_{1}^{6}$ NEG ${ }^{\text {a }}$	$\begin{array}{\|l\|l\|} \hline 9 & R T I \\ 1 & \\ \hline \end{array}$		${ }_{2}$ SUB	${ }_{2}^{1}$ SUB ${ }_{\text {P1R }}$	${ }_{3}^{5} \text { SUB }$	$3 \text { SuB }$	${ }_{2}^{5}$ SUB $\|x\|$	SUB	-
${ }_{0}{ }^{1}$	$\begin{aligned} & 10 \\ & \text { BRCLRO } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	BCLRO	$\begin{array}{\|cc\|} \hline & B R N \\ 2 & \mathrm{BEL} \\ \hline \end{array}$						$\begin{array}{ll} \hline 0 & \text { RTS } \\ \hline \end{array}$		$\int_{2}^{2} \mathrm{CMP}$	$\begin{array}{ll} \\ & C M P \\ 2 & \\ \hline \end{array}$	${ }_{3} \text { CMP }$	$\begin{array}{ll} { }^{6} & \text { CMP } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 5 & \text { CMP } \\ 2 \end{array}$	$\mathrm{CMP}_{1 \times}$	0001
$0_{0}^{2} 10$	$\begin{aligned} & \text { BRSEI } \\ & 3 \text { BREIT } \\ & \hline \end{aligned}$	${ }_{2}^{\text {BSET1 }}$	$2^{8 H}$								${ }_{2}^{2} \mathrm{SBC}$	$\frac{S B C_{01 A}}{}$	${ }_{\text {SXI }}^{\text {SBC }}$	$\mathrm{SBC}_{1 \times 2}$	${ }^{\text {SBC }}{ }_{1 \times 1}$	${ }^{\text {SBC }}{ }_{1 \times}$	$0^{2} 10$
$\stackrel{3}{0}$		$\begin{array}{r} \text { BCLR1 } \\ 2 \\ \hline \end{array}$	$\begin{array}{ll} 4 & \mathrm{BLS} \\ 2 & \\ \hline \end{array}$	${ }_{2}^{6} \operatorname{COM}$	$\begin{array}{\|l\|} \hline{ }^{4} \text { COMA } \\ \hline \end{array}$	COMX , inm	$\operatorname{CoM}_{1 \times 1}$	${ }_{1}^{6}$ COM ${ }_{\text {cix }}$	${ }^{\prime \prime} \mathrm{SWI}_{\mathrm{NH}}$		$\begin{array}{ll} 2 & \text { CPX } \\ 2 & \text { IMM } \end{array}$	$\begin{array}{ll} 1 \\ \hline & C P x_{0, R} \\ \hline & \\ \hline \end{array}$	CPX ExT	CPX $\hat{N}_{1 \times 2}$	${ }^{\text {CPX }}{ }_{1 \times 1}$	$\mathrm{CPX}^{\text {c }}$	0_{0}^{3}
${ }_{0}^{4}$	$\begin{aligned} & 10 \\ & 80 \\ & 3 \text { BRET2 } \\ & 3 \\ & \hline \end{aligned}$	BSET2	${ }_{2} \mathrm{BCC}$	$\begin{array}{\|c} 6_{2}^{6} \text { LSR } \\ 2 \\ \hline \end{array}$	${ }_{1}^{4}$ LSRA ${ }_{\text {L }}^{\text {LSM }}$	$\int_{1}^{4} \text { LSRX }$	$2^{\text {LSR }} \quad{ }_{1 \times 1}$	${ }_{1}^{6}$ LSR ${ }_{1}$			$\int_{2}^{2} \text { AND }$	${ }^{\text {ANC }}$ - ${ }_{\text {in }}$	${ }^{\text {AND }}{ }_{E X T}$	${ }_{3}{ }^{\text {AND }}{ }_{1 \times 2}$	${ }^{\text {AND }}{ }_{\text {\|x }}$	${ }^{\text {AND }}{ }_{1 \times}$	${ }_{0100}^{4}$
${ }_{0}^{5}$	$\begin{aligned} & 100 \\ & 3 \text { BCLLR2 } \\ & 3 \end{aligned}$	$\begin{gathered} \text { BCLR2 } \\ 2 \\ \hline \end{gathered}$	$\begin{array}{ll} 4 & \mathrm{BCS}_{\mathrm{AEL}} \\ \hline \end{array}$								$\begin{array}{ll} 2 & \text { BIT } \\ 2 & \text { IMM } \\ \hline \end{array}$		${ }^{B 1 T} E X T$	$\begin{array}{lll\|} \hline 6 & \text { BIT } \\ \hline \end{array}$	$\mathrm{BIT}_{1 \times 1}$	${ }^{\text {BIT }}$ IX	$\stackrel{5}{0101}$
${ }_{0}^{6}$	$\begin{aligned} & 10 \\ & { }_{3}^{10} \text { BRSET3 } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 78 E T 3 \\ & 2 \\ & 2 \end{aligned}$	${ }_{2} \mathrm{BNE}_{\mathrm{gEL}}$	$\begin{array}{\|l\|} \hline 6 \\ 2^{R O R} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline A \\ \text { RORA } \\ \hline \end{array}$	$\int_{1}^{4} \text { RORX }$	${ }^{R O R} \quad{ }_{1 \times 1}$	$\begin{array}{\|ll\|} \hline 6 & \text { ROK } \\ \hline 1 & \\ \hline \end{array}$			$\begin{gathered} 2 \\ 2 \\ \hline \end{gathered}$	${ }_{2}{ }^{2 D A}$	$\operatorname{LDA}_{E \times T}$	$\operatorname{LDA}_{1 \times 2}$	${ }^{L D A_{\mid \times 1}}$	LDA ${ }^{\text {a }}$	${ }_{0}^{6}$
${ }_{0}^{711}$	$\begin{aligned} & 10 \\ & 8 R C L R 3 \\ & 3 \\ & 3 \\ & \hline 10 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{BCLR3} \\ -\quad \mathrm{SC} \\ \hline \end{array}$	$2{ }_{2}^{4} \mathrm{BEO}_{\mathrm{REL}}$	${ }_{2}{ }_{2} A S R_{D I R}$		${ }_{1}^{4}$ ASRX	${ }^{\text {ASR }}{ }_{\|x\|}$	${ }_{1}^{6}$ ASR ${ }_{\text {a }}$		${ }_{1}^{2}$ TAX		$\begin{array}{cc} 3 \\ 2 & \text { STA } \\ \hline & \\ \hline \end{array}$	$\text { STA }{ }^{5 \times I}$	${ }_{\text {STA }} \times 2$	STA ${ }_{\text {\| }}$ \|	STA ${ }_{\text {IX }}$	717
${ }_{1000}^{8}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 3 \\ \hline 3 \\ \hline 10 \end{array}$	$\begin{aligned} & \text { BSET4 } \\ & 2 \\ & \hline \end{aligned}$	${ }_{2}^{4} \mathrm{BHCC}$	${ }_{2}{ }^{\text {LSL }}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { LSLA } \\ \hline & \\ \hline \end{array}$	$\int_{1}^{4} \text { LSLX }$	$\operatorname{LSL}_{\mid \times 1}$	${ }_{1}^{6} \mathrm{LSL}_{1 \mathrm{x}}$		${ }_{\frac{1}{2}}^{2} \mathrm{CLC}$	$\begin{array}{lll} 2 & \text { EOR } \\ 2 & \text { IMM } \\ \hline \end{array}$	$2 E O R$	${ }_{E \times T}$	${ }^{\text {EOR }} 1 \times 2$	${ }^{E O R}{ }_{\mid x_{1}}$	${ }^{\text {EOR }} 1 \times$	${ }_{1000}^{8}$
$\stackrel{9}{1001}$	$\begin{aligned} & 10 \\ & 8 \text { BCLRA } \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { BCLR4 } \\ 2 \\ \hline \end{array}$	${ }_{2} \text { BHCS }$	$\int_{2}^{0}{ }_{2}^{\mathrm{ROL}}$	$\begin{array}{\|l\|} \hline \text { ROLA } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$	$\int_{2}{ }^{\mathrm{ROL}}{ }_{1 \times 1}$	$\mathrm{ROL}_{\mathrm{ix}}$		$\int_{1}^{2} \mathrm{SEC}_{\mathrm{INH}}$	$\begin{array}{\|ll\|} \hline 2 & A D C \\ 2 & \\ \hline \end{array}$	${ }_{2} A D C_{D, B}$	${ }^{A D C} C_{E \times T}$	$A D C_{1 \times 2}$	${ }^{A D C} C_{1 \times 1}$	${ }^{\text {ADC }}{ }_{\text {IX }}$	${ }_{1001}^{9}$
$\stackrel{\text { A }}{10}$	$\begin{array}{\|r\|} \hline 10 \\ \hline 3 R S E T 5 \\ \hline 30 \\ \hline 10 \\ \hline \end{array}$	$\begin{aligned} & \text { BSET5 } \\ & \hline \end{aligned}$	$2^{\mathrm{BPL}} \mathrm{AEL}$	${ }_{2}^{\circ} D E C_{0,1 R}$	${ }^{4}$ DECA	$\begin{array}{\|c\|} 4 \\ 1 \\ 1 \\ \hline \end{array}$	${ }_{2}{ }^{\text {DEC }} 1 \times 1$	$\begin{array}{\|lll} \hline 6 & D E C^{1} \\ \hline \end{array}$		${ }_{1}^{2} \mathrm{CLI}_{1} \mathrm{INH}^{2}$	$\begin{array}{\|ll\|} \hline 2 & \text { ORA } \\ 2 & \text { IMM } \\ \hline \end{array}$	$\begin{aligned} & \text { ORA } \\ & \hline 0,1 \end{aligned}$	$\mathrm{ORA}_{E \times I}$	${ }_{\text {ORA }}{ }^{1 \times 2}$		ORA $1 \times$	${ }_{1010}$
$\stackrel{8}{8}$	$\begin{aligned} & 100 \\ & { }_{3}^{10} \text { BRCLR5 } \\ & 3 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { BCLRS } \\ & 2 \end{aligned}$	$\begin{array}{ll} 4 & 8 M 1 \\ 2 & \mathrm{AEL}_{2} \\ \hline \end{array}$							$\begin{array}{lll} \int_{1}^{2} & \mathrm{SEI} \\ \hline \end{array}$	$\begin{array}{cc} 2 & A D D \\ , & \mathrm{IMM} \\ \hline \end{array}$	${ }_{2}^{A D D_{\text {PIR }}}$	${ }^{A D D_{\text {EXT }}}$	${ }_{3} A D D_{1 \times 2}$	${ }^{A D D_{1 \times 1}}$	${ }^{\text {ADO }}{ }_{\text {ix }}$	101 1
$\underset{110}{ }$		$\begin{gathered} \text { BSET6 } \\ { }_{8 S C} \end{gathered}$	${ }_{2}^{4} B M C_{R E L}$	${ }^{I N C^{0,1}}$	$\left\lvert\, \begin{gathered} \text { INCA } \\ 1 \\ 1 \\ \hline \end{gathered}\right.$	$\frac{\mathrm{INCX}}{1}$	${ }^{1 N C}{ }_{1 \times 1}$	${ }_{\frac{1}{6} \text { INC }}{ }_{\text {Ix }}$		$\begin{array}{\|ll\|} \hline 2 & \text { RSP } \\ 1 & \\ \hline \end{array}$		${ }_{\quad \mathrm{MP}}^{\mathrm{DIR}}$	$\begin{aligned} & \text { JMP } \\ & E \times T \\ & \hline \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \hline 1 \times 2 \\ & \hline \end{aligned}$	${ }^{J M P_{\mid \times 1}}$	${ }^{\text {JMP }} 1 \times$	$\underset{110}{\text { C }}$
${ }_{101}$	$\begin{array}{\|l\|} \hline 10 \\ \hline \text { BRCLRE } \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{BCLRG} \\ & 2 \\ & \hline 2 S C \\ & \hline \end{aligned}$	${ }_{2}^{4} \mathrm{BMS}$	$\begin{array}{\|lll\|} \hline 6 & & \\ 2 & & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 1 & \\ \hline & \text { TSTA } \\ \hline & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & T S T X \\ 1 & \\ \hline \end{array}$	$2^{T S T}{ }_{1 \times 1}$	$\begin{array}{\|llll} \hline 6 & & & \\ 1 & & & \\ \hline \end{array}$		$\begin{array}{\|ll\|} \hline 2 & \mathrm{NOP} \\ 1 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 8 & \mathrm{BSR} \\ 2 & \\ \hline & \\ \hline \end{array}$	JSR	JSR	JSR	$\underbrace{J S_{1}}_{1 \times 1}$	${ }^{\text {JSA }} 1 \times$	100
${ }_{110}$	$\begin{array}{\|l\|} \hline 10 \\ 3 R S E T 7 \\ 3 \\ \hline \end{array}$	${ }_{2}^{3} \quad \text { BSET7 }$	$2 \mathrm{BIL}_{\mathrm{REL}}$								$\begin{array}{lll} 2 & & L O X \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }_{2}^{\text {LDX }}$	${\underset{E X T}{L D X}}^{\text {Lit }}$	${ }_{3}^{6} \mathrm{LOX}_{\mathrm{ix} \times 2}$	$\operatorname{lox}_{\mid \times 1}$	$\mathrm{LDX}_{1 \times}$	${ }_{1110}$
111		$\begin{gathered} \text { BCLR7 } \\ \hline \end{gathered}$	$2^{B I H} \mathrm{AEL}$	${ }_{2}^{6} \mathrm{CLR}_{\mathrm{DIR}}$	${ }_{9}^{4} \text { CLRA }$	$\begin{array}{\|l\|l\|} \hline 4 & \text { CLAX } \\ 1 \end{array}$	${ }_{2}^{7} C L R_{1 \times 1}$	${ }^{6} \mathrm{CLR}_{\mathrm{Ix}}$		$\begin{array}{lll} 2 & \text { TXA } \\ & & \text { INH } \\ \hline \end{array}$		$\int_{2}^{5} \mathrm{STX} \mathrm{D}_{\mathrm{DIA}}$	$\begin{array}{\|ll\|} \hline 6 & \\ \hline & \text { STX } \\ \hline \end{array}$	$\int_{3}^{7} \operatorname{six}_{1 \times 2}$	$\begin{array}{\|lll} \hline 6 & & S T X \\ 2 & & \\ \hline \end{array}$	$\operatorname{STX}_{1 \times}$	F/11

Abbreviations for Address Modes

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
REL	Relative
BSC	Bit Set/Clear
BTB	Bit Test and Branch
IX	Indexed (No Offset)
IX1	Indexed, 1 Byte (8-Bit) Offset
IX2	Indexed. 2 Byte (16-Bit) Offset

PHYSICAL DIMENSIONS

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

XXX = Customer ID
After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUC. TEURS. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files: filename .LX (DEVI. CE/EXORciser loadable format) and filename .SA (ASC.II Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if "lly problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEUR'' Disk Operating System available on development s s'stems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

ORDERING INFORMATION

ADVANCE INFORMATION

The EF6805U3 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800 -based instruction set. A comparison of the key features of several members of the 6805 Family of Microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805U3 MCU.

HARDWARE FEATURES

- $32 \mathrm{TTL} / \mathrm{CMOS}$ Compatible I/O Lines

24 Bidirectional (8 Lines are LED Compatible)
8 Input-Only

- 3776 Bytes of User ROM
- 112 Bytes of RAM
- Self-Check Mode
- Zero-Crossing Detect/Interrupt
- Internal 8-Bit Timer with 7-Bit Software Programmable Prescaler and Clock Source
- 5 V Single Supply

SOFTWARE FEATURES

- 10 Powerful Addressing Modes
- Byte Efficient Instruction Set with True Bit Manipulation, Bit Test, and Branch Instructions
- Single Instruction Memory Examine/Change
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Register/Flags
- Complete Development System Support on DEVICE ${ }^{\circledR}$

USER SELECTABLE OPTIONS

- 8 Bidirectional I/O Lines with TTL or TTL/CMOS Interface Option
- 8 Bidirectional I/O Lines with TTL or Open-Drain Interface Option
- Crystal or Low-Cost Resistor Oscillator Option
- Low Voltage Inhibit Option
- Vectored Interrupts: Timer, Software, and External
- User Callable Self-Check Subroutines

DEVICE ${ }^{\circledR}$ is THOMSON SEMICONDUCTEURS' development/emulation tool.

HMOS

PIN ASSIGNMENT
PESET 2

FIGURE 1 - EF6805U3 HMOS MICROCOMPUTER BLOCK DIAGRAM

MAXIMUM RATING

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage (Except TIMER in Self-Check Mode and Open-Drain Inputs)	$V_{\text {in }}$	-0.3 to +7.0	V
Input Voltage (Open-Drain Pins, TIMER Pin in Self-Check Model	$V_{\text {in }}$	-0.3 to +15.0	V
Operating Temperature Range (T_{L} to T_{H}) V suffix T suffix	T_{A}	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Plastic Package PLCC	TJ	$\begin{array}{r} 150 \\ 150 \\ \hline \end{array}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq$ $V_{C C}$. Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{CC}).

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance	$\theta_{\text {JA }}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic		50	
PLCC		80	

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{align*}
& T_{J}=T_{A}+\left(P D^{\bullet} \theta J A\right) \tag{1}\\
& \text { Where: }
\end{align*}
$$

$$
\begin{aligned}
& T_{A} \equiv \text { Ambient Temperature, }{ }^{\circ} \mathrm{C} \\
& \theta J A \equiv \text { Package Thermal Resistance, Junction-to-Ambient, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{P}_{\mathrm{D}} \equiv \mathrm{PINT}+\mathrm{PPORT} \\
& \text { PINT }_{\mathrm{W}}=\mathrm{ICC} \times V_{C C} \text {. Watts }- \text { Chip Internal Power } \\
& \text { PPORT }=\text { Port Power Dissipation, Watts - User Determined }
\end{aligned}
$$

For most applications PPORT $<$ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P_{D} \bullet\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A^{\bullet} \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of $P D$ and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
```Input High Voltage RESET \(\left(4.75 \leqslant V_{C C} \leqslant 5.75\right)\) ( \(\mathrm{V}_{\mathrm{cc}}<4.75\) ) INT \(\left(4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.75\right)\) ( \(\mathrm{V}_{\mathrm{CC}}<4.75\) ) All Other (Except Timer)```	$\mathrm{V}_{\mathrm{IH}}$	$\begin{gathered} 4.0 \\ \mathrm{v}_{\mathrm{cc}}^{4.0}-0.5 \\ \mathrm{v}_{\mathrm{c}} \mathrm{c}_{2.0}-0.5 \end{gathered}$		$\begin{aligned} & v_{c c} \\ & v_{c c} \\ & v_{c c} \\ & v_{c c} \\ & v_{c c} \end{aligned}$	V
Input High Voltage Timer Timer Mode Self-Check Mode	$V_{\text {IH }}$	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	$\overline{10.0}$	$\underset{15.0}{V_{c c}+1.0}$	v
Input Low Voltage RESET INT All Other	$V_{\text {IL }}$	$\begin{aligned} & v_{S S} \\ & v_{S S} \\ & v_{S S} \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	v
$\overline{\text { RESET }}$ Hysteresis Voltages (See Figures 10,11 and 12)   "Out of Reset"   "Into Reset"	$V_{\text {IRES }}+$   $V_{\text {IRES- }}$	$\begin{aligned} & 2.1 \\ & 0.8 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 4.0 \\ 2.0 \\ \hline \end{array}$	v
$\overline{\mathrm{NTT}}$ Zero Crossing Input Voltage, Through a Capacitor	VINT	2	-	4	$\mathrm{V}_{\text {ac p-p }}$
Power Dissipation - (No Port Loading, $\left.\mathrm{V}_{\mathbf{C C}}=5.75 \mathrm{~V}\right)$	$P_{\text {D }}$	-	$\begin{aligned} & 520 \\ & 580 \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \\ & \hline \end{aligned}$	mW
Input Capacitance EXTAL All Other	$c_{\text {in }}$	-	25   10	-	pF
Low Voltage Recover	$\mathrm{V}_{\text {LVR }}$	-	-	4.75	V
Low Voltage Inhibit	$\mathrm{V}_{\text {LVI }}$	2.75	3.75	4.70	V
$\begin{aligned} & \text { Input Current } \\ & \text { TIMER }\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\right) \\ & \overline{\operatorname{INT}}\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\ & \text { EXTAL }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {CC }} \cdot \text { Crystal Option }\right)^{\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}-\mathrm{C}_{\text {rystal }}\right. \text { Option) }} \\ & \overline{\text { RESET }}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right) \text { - External Capacitor Charging Current } \end{aligned}$	$\mathrm{I}_{\text {in }}$	-   -   -   $-4.0$	$20$	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

[^19]SWITCHING CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Oscillator Frequency	$f_{\text {osc }}$	0.4	-	4.2	M Mz
Cycle Time (4/fosc)	${ }_{\text {t }}^{\text {cy }}$ c	0.95	-	10	$\mu \mathrm{s}$
INT, INT2, and TIMER Pulse Width (See Interrupt Section)	tWL, tWH	$\mathrm{t}_{\mathrm{cyc}}+250$	-	-	ns
RESET Pulse Width	trwL	${ }^{\text {t }}{ }_{\text {cyc }}+250$	-	-	ns
INT Zero-Crossing Detection Input Frequency	fint	0.03	-	1	kHz
External Clock Input Duty Cycle (EXTAL)	-	40	50	60	\%
Crystal Oscillator Start-Up Time *	-	-	-	100	ms

${ }^{\text { }}$ See Figure 16 for typical crystal parameters

PORT ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\mathrm{T}_{\mathrm{H}}$ Unless Otherwise Noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Port A with CMOS Drive Enabled					
Output Low Voltage ( L Load $=1.6 \mathrm{~mA}$ )	$\mathrm{V}_{\text {OL }}$	-	-	0.4	v
Output High Voltage $I_{\text {Load }}=-100 \mu \mathrm{~A}$ Load $=-13 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$\begin{gathered} 2.4 \\ v_{c c}-1.0 \end{gathered}$	-	-	v
Input High Voltage ( Load $^{\prime}=-300 \mu \mathrm{~A}$ max.)	$V_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{cc}}$	v
Input Low Voltage ( Load $^{\prime}=-500 \mu$ s max.)	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current ( $\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	${ }_{1 / 1}$	-	-	-300	$\mu \mathrm{A}$
High Z State Input Current ( $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ )	IIL	-	-	-500	$\mu \mathrm{A}$
Port B					
Output Low Voltage $I_{\text {Load }}=3.2 \mathrm{~mA}$   ILoad $=10 \mathrm{~mA}$ (Sink)	Vol	-	-	$\begin{aligned} & 0.4 \\ & 1.0 \\ & \hline \end{aligned}$	v
Output High Voltage I Load $=-200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V
Darlington Current Drive (Source) $\mathrm{V}_{\mathbf{O}}=1.5 \mathrm{~V}$	$\mathrm{IOH}^{\text {O }}$	-1.0	-	-10	mA
Input High Voltage	$\mathrm{V}_{\mathrm{iH}}$	2.0	-	$\mathrm{V}_{\text {cc }}$	V
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current	ITSI	-	$<2$	10	$\mu \mathrm{A}$
Port C and Port A with CMOS Drive Disabled					
Output Low Voltage ${ }^{\text {L }}$ Load $=1.6 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	V
Output High Voltage $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	v
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{Cc}}$	v
Input Low Voltage	$\mathrm{V}_{16}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
High Z State Input Current	'TSI	-	<2	10	$\mu \mathrm{s}$
Port C (Open-Drain Option)					
Input High Voltage	$V_{\text {IH }}$	2.0	-	13.0	$v$
Input Low Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.8	V
Input Leakage Current	ILOD	-	$<3$	15	$\mu \mathrm{A}$
Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$	VOL	-	-	0.4	V
Port D					
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{Cc}}$	v
Input Low Voltage	$V_{\text {IL }}$	VSS	-	0.8	$v$
Input Current	In	-	$<1$	5	$\mu \mathrm{A}$


figure 2 - ttil equivalent test load (PORT B)


Figure 4 - ttl equivalent test load (PORTS A AND C)

## SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in Figure 1, are described in the following paragraphs.
$V_{C C}$ AND $V_{S S}$ - Power is supplied to the MCU using these two pins. $\mathrm{V}_{\mathrm{CC}}$ is power and $\mathrm{V}_{\mathrm{SS}}$ is the ground connection.
$\overline{\mathbb{N T}}$ - This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.

XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.

NOTE: Pin 7 in DIL package/Pin 8 in PLCC package is connected to internal protection.

TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.
$\overline{\text { RESET }}$ - This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling $\overline{R E S E T}$ low. Refer to Resets Section for additional information.

INPUT/OUTPUT LINES (PAO-PA7, PBO-PB7, PCO-PC7, PDO-PD7) - These 32 lines are arranged into four 8 -bit ports (A, B, C, and D). Ports A, B, and C are programmable as


FIGURE 3 - CMOS EQUIVALENT TEST LOAD (PORT A)


FIGURE 5 - OPEN - DRAIN EQUIVALENT TEST LOAD
(PORT C)
either inputs or outputs under software contrel of the data direction registers (DDRs). Port $D$ is for digital input only and bit 6 may be used for a second interrupt $\overline{N T} 2$. Refer to Input/Output Section and Interrupts Section for additional information.

MEMORY - The MCU is capable of addressing 4096 bytes of memory and $1 / O$ registers with its program counter. The EF6805U3 MCU has implemented 4090 of these bytes. This consists of : 3776 user ROM bytes, 192 selfcheck ROM bytes, 112 user RAM bytes, 7 port I/O by tes, 2 timer registers, and a miscellaneous register ; see Figure 6 for the Address map. The user ROM has been split into two areas. The main user ROM area is from $\$ 080$ to $\$$ F37. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.

The MCU reserves the first-16 memory locations for I/O features, of which 10 have been implemented. These locations are used for the ports, the port DDRs, the timer and the $\overline{\mathrm{NT} 2}$ miscellaneous register, and the 112 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.

The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in Figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order four bits (PCH) are stacked. This ensures that the program counter is loaded correctly during pulls from the stack since the stack pointer increments when it pulls data from the stack. A subroutine call results in only the program counter (PCL, PCH) contents being pushed onto the stack; the remaining. CPU registers are not pushed.
 write-only: they read as SFF

FIGURE 6 - EF6805U3 MCU ADDRESS MAP

*For subroutine calls, only PCH and PCL are stacked

FIGURE 7 - INTERRUPT STACKING ORDER

## CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal address, data, and control buses.

## REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in Figure 8 and are explained in the following paragraphs.

ACCUMULATOR (A) - The accumulator is a general purpose 8 -bit register used to hold operands and results of arithmetic calculations or data manipulations.

INDEX REGISTER ( X ) - The index register is an 8 -bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.


## FIGURE 8 - PROGRAMMING MODEL

PROGRAM COUNTER (PC) - The Program Counter is a 12 bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP) - The stack pointer is a 12 -bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F. The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).

CONDITION CODE REGISTER. (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.
Half Carry $(H)$ - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4 .
Interrupt (1) - When this bit is set, the timer and external interrupts (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative ( $N$ ) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical " 1 ").

Zero (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

## TIMER

The timer circuitry for the EF6805U3 is shown in Figure 10 . The timer contains a single 8 -bit software programmable counter with a 7-bit software selectable prescaler. The counter may be preset under program control and decrements toward zero. When the counter decrements to zero, the timer interrupt request bit, i.e., bit 7 of the timer control register (TCR), is set. Then if the timer interrupt is not masked, i.e., bit 6 of the TCR and the I bit in the condition code register are both cleared, the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack, and then fetches the timer interrupt vector from locations \$FF8 and \$FF9 in order to begin servicing the interrupt.

The counter continues to count after it reaches zero, allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter become stable prior to the read portion of a cycle and do not change during the read. The timer interrupt request bit remains set until cleared by the software. If a write occurs before the timer interrupt is serviced, the interrupt is lost. TCR7 may also be used as a scanned status bit in a non-interrupt mode of operation (TCR6 $=1$ ).

The prescaler is a 7 -bit divider which is used to extend the maximum length of the timer. Bit 0 , bit 1 , and bit 2 of the TCR are programmed to choose the appropriate prescaler output which is used as the counter input. The processor cannot write into or read from the prescaler : however, its contents are cleared to all zeros by the write operation into TCR when bit 3 of the written data equals one, which allows for truncation-free counting.

The timer input can be configured for three different operating modes, plus a disable mode, depending on the value written to the TCR4 and TCR5 control bits. For further information see Figure 9.

Timer Input Mode 1 - If TCR5 and TCR4 are both programmed to a zero, the input to the timer is from an
internal clock and the external TIMER input is disabled. The internal clock mode can be used for periodic interrupt generation, as well as a reference in frequency and event measurement. The internal clock is the instruction cycle clock.

Timer Input Mode 2 - With TCR5 = 0 and TCR4 = 1 , the internal clock and the TIMER input pin are ANDed to form the timer input signal. This mode can be used to measure external pulse widths. The external timer input pulse simply turns on the internal clock for the duration of the pulse widths.

Timer Input Mode 3 - If TCR5 $=1$ and TCR4 $=0$, then all inputs to the timer are disabled.

Timer Input Mode 4 - If TCR5 $=1$ and TCR4 $=1$. the internal clock input to the timer is disabled and the TIMER input pin becomes the input to the timer. The external TIMER pin can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts.

7	6	5	4	3	2	1	0
TCR7	TCR6	TCR5	TCR4	TCR3*	TCR2	TCR1	TCRO

*Write only (ruad as zero).
TCR7 - Timer Interrupt Request Bit :
1 - Set when TDR goes to zero, or under program control
0 - Cleared on external Reset, Power-On-Reset, or under Program Control.

TCR6 - Timer Interrupt Mask Bit :
1 - Timer Interrupt masked (disabled) Set on external Reset, Power-On-Reset, or under Program Control
0 - Cleared under Program Control.

TCR5 - External or Internal Clock Source Bit
1 - External Clock Source. Set on external Reset, Power On-Reset, or under Program Control
0 - Cleared under Program Control.
TCR4 - External Enable Bit :
1-Enable external TIMER pin. Set on external Reset, Power-On-Reset, or under Program Control.
0 - Cleared under Program Control.

TCR5	TCR4	Result
0	0	Internal clock to timer
0	1	AND of internal clock and TIMER pin to timer
1	0	Input to timer disabled
1	1	TIMER pin to timer

TCR3 - Timer prescaler reset bit : A read of TCR3 always indicates a zero.
1 - Set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.
TCR2, TCR1, and TCRO - Prescaler address bits :
1 - All set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.

TCR2	TCR1	TCRO	Result
0	0	0	+1
0	0	1	+2
0	1	0	+4
0	1	1	+8


TCR2	TCR	TCRO	Result
1	0	0	+16
1	0	1	+32
1	1	0	+64
1	1	1	+128

FIGURE 9 - TIMER CONTROL REGISTER (TCR)


FIGURE 10 - TIMER BLOCK DIAGRAM
NOTES:

1. Prescaler and 8 -bit counter are clocked on the failing edge of the internal clock (AS) or external input
2. Counter is written to during data strobe (DS) and counts down continuously.

SELF-CHECK - The self-check capability of the EF6805U3 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the $\overline{\text { RESET }}$ button, energizes the ROM-based self-check feature. The self-check program exercices the RAM, ROM, TIMER, interrupts, and I/O ports.

Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM. The timer routine may also be called if the timer input is the internal $\phi 2$ clock.

To call those subroutines in customer applications, please contact your local THOMSON SEMICONDUCTEURS sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.

RAM SELF-CHECK SUBROUTINE - The RAM selfcheck is called at location $\$ F 84$ and returns with the $Z$ bit clear if any error is detected ; otherwise the $Z$ bit is set The RAM test causes each byte to count from 0 up to 0 again with a check after each count.

The RAM test must be called with the stack pointer at $\$ 07 F$ and $A=0$. When run, the test checks every RAM cell except for $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ which are assumed to contain the return address.

The $A$ and $X$ registers and all RAM locations except \$07F and \$07E are modified.

ROM CHECKSUM SUBROUTINE -- The ROM selfcheck is called at location \$F95. The A register should be cleared before calling the routine. If any error is detected, it returns with the $Z$ bit cleared ; otherwise $Z=1, X=0$ on return, and $A$ is zero if the test passes. RAM location $\$ 040$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.


[^20]FIGURE 11 - SELF-CHECK CONNECTIONS

LED Meanings				
PC0 PC1 PC2 PC3	Remarks [1:LED ON; 0:LED OFF]			
1	0	1	0	Bad I/O
0	0	1	0	Bad Timer
1	1	0	0	Bad RAM
0	1	0	0	Bad ROM
0	0	0	0	Bad Interrupts or Request Flag
All Flashing		Good Device		

Anything else bad Device, Bad Port C, etc.

TIMER SELF-CHECK SUBROUTINE - The timer selfcheck is called at location \$F6D and returns with the $Z$ bit cleared if any error was found; otherwise $Z=1$.

In order to work correctly as a user subroutine, the internal $\phi 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if necessary.

The $A$ and $X$ register contents are lost. This routine sets the prescaler for divide-by-128 and the timer data register is cleared. The $X$ register is configured to count down the same as the timer data register. The two registers are then compared every 128 cycles until they both count down to zero. Any mismatch during the count down is considered as an error. The A and X registers are cleared on exit from the routine.

## RESET

The MCU can be reset three ways : by initial powerup,
by the external reset input ( $\overline{\text { RESET }}$ ) and by an optional internal low-voltage detect circuit. The RESET input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in Figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the $\overline{\operatorname{RESET}}$ pin.

Power-On Reset (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of trHL milliseconds is required before allowing the $\overline{\operatorname{RESET}}$ input to go high. Refer to the power and reset timing diagram of Figure 13. Connecting a capacitor to the $\overline{\operatorname{RESET}}$ input (as illustrated in Figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to VIRES+.


FIGURE 14 - $\overline{\text { RESET }}$ CONFIGURATION

External Reset Input - The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle ( $\mathrm{t}_{\mathrm{cyc}}$ ). Under this type of reset, the Schmitt trigger switches off at VIRES- to provide an internal reset voltage.

Low-Voltage Inhibit (LVI) - The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level (VLVI). The only requirement is that $V_{C C}$ remains at or below the $V_{\text {LVI }}$ threshold for one $\mathrm{t}_{\mathrm{cyc}}$ minimum. In typical applications, the $V_{C C}$ bus filter capacitor will eliminate negative-going voltage glitches of less than one $t_{c y c}$. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the $\overline{\operatorname{RESET}}$ pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level ( $V_{\text {LVR }}$ ), at which time a normal power-on-reset occurs.

## INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in Figure 15. Crystal specifications and suggested PC board layouts are given in Figure 16. A resistor selection graph is given in Figure 17.

The crystal oscillator start-up time is a function of many variables : crystal parameters (especially RS), oscillator load capacitances, IC parameters, ambient temperature. and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.

When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below VIRES + ) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition: the oscillator start-up voltage, the oscillator stabilization time, the minimum $\mathrm{V}_{\text {IRES }}+$, and the reset charging current specification.

Once $V_{C C}$ minimum is reached, the external $\overline{\text { RESET }}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{\text {CC }}$ through a large resistor, so it appears almost like a constant current source until the reset voltage rises above VIRES + . Therefore, the $\overline{\operatorname{RESET}}$ pin will charge at approximately :

$$
\left(V_{\text {IRES }}+i \bullet C_{e x t}=I \text { RES } \bullet t_{\text {RHL }}\right.
$$

Assuming the external capacitor is initially discharged.


NOTE: The recommended $C_{L}$ value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.

(b)

EXTAL (5)


Piezoelectric ceramic resonators which have the equivalent specifications may be used instead of crystal oscillators. Follow ceramic resonator manufacturer's suggestions for $\mathrm{C}_{0}, \mathrm{C}_{1}$, and $\mathrm{R}_{\mathrm{S}}$ values.


NOTE: Keep crystal leads and circuit connections as short as possible.

AND SUGGESTED PC BOARD LAYOUT


FIGURE 17 - TYPICAL FREQUENCY SELECTION FOR RESISTOR (OSCILLATOR OPTION)

## INTERRUPTS

The microcomputers can be interrupted four different ways: through the external interrupt (INT) input pin, the internal timer interrupt request, the external port $D$ bit 6 ( $\overline{\mathrm{NT} 2}$ ) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (1) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of $11 \mathrm{t}_{\mathrm{cyc}}$ periods for completion. A flowchart of the interrupt sequence is shown in Figure 18. The interrupt service routine must
end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike $\overline{\operatorname{RESET}}$, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.


FIGURE 18 - $\overline{\text { RESET }}$ AND INTERRUPT PROCCESSING FLOWCHARD

## NOTE

The timer and $\overline{\mathrm{INT} 2}$ interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.

The external interrupt, $\overline{\mathrm{NT}}$ and $\overline{\mathrm{NT} 2}$, are synchronized and then latched on the falling edge of the input signal. The $\overline{\mathbb{N} T 2}$ interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The INT2 interrupt is inhibited when the mask bit is set. The $\overline{\mathrm{NT} 2}$ is always read as a digital input on port D . The $\overline{\mathrm{NTT} 2}$ and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.

A sinusoidal input signal (fINT maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-ofday routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a 2 f clock. See Figure 19.

## NOTE

The $\overline{\mathrm{INT}}$ (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.

A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as breakpoints for debugging or as system calls.
A/D CONTROL REGISTER (ACR)

7	6	5	4	3	2	1	0
	1	1	1	1			

Bit 7-Conversion Complete Status Flag: Set when conversion is complete; cleared only on a write to ACR .
Readable, not writable.
Bits 2, 1. 0 - A/D input Mux Selection (See Table 2). Bits 6, 5, 4, 3 read as "1s"- unused bits.


FIGURE 19 - TYPICAL INTERRUPT CIRCUITS

## INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The $\overline{\mathrm{NT}}$ pin may be polled with branch instructions to provide an additional input pin. All pins on ports $\mathrm{A}, \mathrm{B}$, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at the output pin, due to output loading. Refer to Figure 20.

PORT DATA REGISTER

(1) Write Only; reads as all " 1 s "
(2) $1=$ Output, $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$


FIGURE 20 - TYPICAL PORT I/O CIRCUITRY

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only; thus, there is no corresponding DDR. When programmed as outputs, port $B$ is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.

The address map (Figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.

## CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since

BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

The latched output data bit (see Figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

## (a) Output Modes



Port B, bit 0 and bit 1 programmed as output, driving LEDs directly.



Port C, bits $0-3$ programmed as output, driving CMOS loads, using external pullup resistors (required if Port C is open-drain).

## (b) Input Modes



CMOS or TTL driving Port B directly.


CMOS or TTL driving Port D directly

FIGURE 21 - TYPICAL PORT CONNECTIONS

## BIT MANIPULATION

The EF6805' 3 has the ability to set or clear any single RAM or $1 / \mathrm{O}$ bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines.

## CAUTION

The corresponding data direction registers for ports A, B, and $C$ are write-only registers (locations \$004, \$005, and \$006). A read operation on these registers is undefined. Since BSET
and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.

The coding examples shown in Figure 22 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first out of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.


## FIGURE 22 - BIT MANIPULATION EXAMPLE

## ADDRESSING MODES

The EF6805U3 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.

IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.

EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3 -byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.

RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These in structions are only one byte long. This mode is often used io move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.
INDEXED, 8-BIT OFFSET - In the indexed, 8-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the $k$ th element in an $n$ element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ( $\$ 1$ FE is the last location at which the instruction may begin).

INDEXED, 16-BIT OFFSET - In the indexed, 16 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.
BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2 -byte instruction.

## CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$ ). A read operation on these registers is undefined. Since

BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

## CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

## INSTRUCTION SET

The EF6805U3 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs
briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to Table 2.

BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 3.

BIT MANIPULATION INSTRUCTIONS - The instructinns are used on any bit in the first 256 bytes of the memory: One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 4.

## CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$ ). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.

CONTROL INSTRUCTION - The control instructions control the MCU operations during program execution. Refer to Table 5.
ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in Table 6.

OPCODE MAP - Table 7 is an opcode map for the instruction used on the MCU.

TABLE 1 - REGISTER/MEMORY INSTRUCTIONS

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed (No Offset)			Indexed(8.Bit Offset)			$\begin{gathered} \text { Indexed } \\ (16 . \text { Bit Offset }) \end{gathered}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycies } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{O p} \\ \text { Code } \end{array}$	$\begin{array}{\|c\|} \hline \text { } \\ \text { Bytes } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Cycles } \end{array}$	$\begin{array}{c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \text { \# } \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \text { \# } \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \mathrm{Op} \\ \text { Code } \end{gathered}$	$\begin{gathered} \text { \# } \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{\|c\|} \hline \text { OP } \\ \text { Code } \\ \hline \end{array}$	Bytes	
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	06	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA	-	-		87	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX	-	-	-	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	A0	2	2	80	2	4	CO	3	5	FO	1	4	EO	2	5	DO	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	84	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	c. 8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	81	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP	-	-	-	BG	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR	-	--		BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

TABLE 2 - READ-MODIFY-WRITE INSTRUCTIONS

		Addressing Modes														
		Inherent (A)			Inherent ( X )			Direct			Indexed(No Offset)			Indexed( 8 Bit Offset)		
Function	Mnemonic	$\begin{array}{c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{\|c\|} \hline \# \\ \text { Cycles } \end{array}$	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \# } \\ \text { Bytes } \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Cycles } \\ \hline \end{array}$	Op   Code	$\begin{array}{c\|} \hline \begin{array}{c}  \\ \text { Bytes } \end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{\|c\|} \hline \# \\ \text { Cycles } \end{array}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	Cycles
Increment	INC	4C	1	4	5C	1	4	3 C	2	6	7C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2's Complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
$\begin{aligned} & \text { Test for Negative } \\ & \text { or Zero } \end{aligned}$	TST	40	1	4	50	1	4	3D	2	6	70	1	6	6 D	2	7

TABLE 3 - BRANCH INSTRUCTIONS

		Relative Addressing Mode		
Function	Mnemonic	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	Bytes	\# Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFFHıgher	BHI	22	2	4
Branch IFFLower or Same	BLS	23	2	4
Branch IFFCarry Clear	BCC	24	2	4
(BranchIFFHıgher or Same)	(BHS)	24	2	4
Branch IFF Carry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
BranchIFFNot Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branchiff Plus	BPL	2A	2	4
BranchIFF Minus	BMI	2B	2	4
Branch IFFInterupt Mask Bit is Clear	BMC	2 C	2	4
Branch IFFInterrupt Mask Bit is Set	BMS	2D	2	4
Branch IFFInterrupt Line is Low	BIL	2 E	2	4
Branch IFFInterrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

TABLE 4 - BIT MANIPULATION INSTRUCTIONS

Function	Mnemonic	Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
		$O p$ Code		Cycles	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	Bytes	Cycles
Branch IFF Bit $n$ is set	BRSET $n(n=0.7)$	-	-	-	$2 \cdot n$	3	10
Branch IFF Bit n is clear	BRCLR $n(\mathrm{n}=0 \quad 7)$	-	-	-	$01+2 \cdot n$	3	10
Set Bit $n$	BSET $n(\mathrm{n}=0.7)$	$10+2 \cdot n$	2	7	-	-	-
Clear bit n	BCLR $n$ ( $\mathrm{n}=0 \ldots 7$ )	$11+2 \bullet n$	2	7	-	-	-

TABLE 5 - CONTROL INSTRUCTIONS

		Inherent		
Function	Mnemonic	Op   Code	$\#$   Bytes	$\#$   Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bıt	SEC	99	1	2
Clear Carry Bıt	CLC	98	1	2
Set Interrupt Mask Bıt	SEI	98	1	2
Clear Interrupt Mask Bıt	CLI	$9 A$	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutıne	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Poınter	RSP	$9 C$	1	2
No-Operation	NOP	$9 D$	1	2

TABLE 6 - INSTRUCTION SET

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative		$\left\|\begin{array}{c} \text { Indexed } \\ (8 \text { Bits) } \end{array}\right\|$	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	Bit   Set/   Clear		H	I.	N	2	C
ADC		X	X	X		X	X	X			$\wedge$	$\bigcirc$	$\wedge$	$\wedge$	$\wedge$
ADD		$\bar{X}$	X	$\bar{X}$		X	X	X			$\wedge$	$\bullet$	$\wedge$	$\wedge$	$\wedge$
AND		X	$\bar{X}$	X		X	X	X			$\bullet$	$\bigcirc$	$\wedge$	$\wedge$	$\bullet$
ASL	X		$\bar{X}$			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
ASR	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
BCC		.			$\bar{X}$						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BCLR									X		$\bullet$	-	-	-	$\bigcirc$
BCS					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BEO					X						$\bullet$	-	$\bullet$	$\bullet$	-
BHCC					X						$\bullet$	-	-	$\bullet$	$\bullet$
BHCS					X						$\bullet$	-	-	$\bullet$	$\bigcirc$
BHI					$\bar{X}$						$\bullet$	0	-	$\bullet$	$\bigcirc$
BHS					X						-	-	-	-	$\bullet$
BIH					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BIL					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BIT		X	X	X		$\bar{X}$	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
BLO					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BLS					X						$\bullet$	$\bigcirc$	-	-	$\bullet$
BMC					X						$\bullet$	-	-	$\bullet$	$\bullet$
BMI					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BMS					X						-	-	-	-	$\bullet$
BNE					X						-	-	-	$\bigcirc$	$\bigcirc$
BPL					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BRA					X						$\bullet$	-	-	$\bullet$	$\bullet$
BRN					X						$\bullet$	-	-	$\bullet$	$\bullet$
BRCLR										$\bar{x}$	$\bullet$	-	-	$\bigcirc$	$\wedge$
BRSET										X	$\bullet$	-	$\bullet$	$\bullet$	$\wedge$
BSET									X		$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
BSR					X						$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
CLL	X										$\bullet$	-	-	$\bullet$	0
CLI	X										$\bullet$	0	$\bullet$	$\bullet$	$\bullet$
CLR	X		X			$\bar{X}$	X				$\bullet$	-	0	1	$\bigcirc$
CMP		X	X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
COM	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	1
CPX		X	$\bar{X}$	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
DEC	X		X	.		X	X				$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
EOR		X	$\bar{X}$	$\bar{X}$		$\bar{X}$	X	$\bar{X}$			-	-	$\wedge$	$\wedge$	$\bigcirc$
INC	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
JMP			X	X		X	X	X			$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
JSR			$X$	X		X	X	X			$\bullet$	-	$\bullet$	$\bullet$	$\bullet$
LDA		X	X	X		$\bar{X}$	X	X			$\bigcirc$	-	$\wedge$	$\wedge$	$\bigcirc$
LDX		X	X	X		X	X	X			$\bullet$	$\bigcirc$	$\wedge$	$\wedge$	-
LSL	$\bar{X}$		$\bar{X}$			X	X				-	$\bigcirc$	$\wedge$	$\wedge$	$\wedge$
LSR	X		X			$\bar{X}$	X				-	-	0	$\wedge$	$\wedge$
NEQ	X		X		-	X	X				$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
NOP	X										-	-	-	$\bullet$	$\bullet$
ORA		X	$\bar{X}$	X		X	X	X			$\bullet$	$\bigcirc$	$\wedge$	$\wedge$	$\bigcirc$
ROL	X		X			$X$	X				$\bullet$	-	1	$\wedge$	$\wedge$
RSP	X										$\bigcirc$	-	$\bullet$	$\bullet$	-

[^21]TABLE 6 - INSTRUCTION SET (CONTINUED)

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	$\begin{aligned} & \text { Indexed } \\ & \text { (8 Bits) } \end{aligned}$	$\begin{gathered} \text { Indexed } \\ \text { (16 Bits) } \end{gathered}$	Bit Set/ Clear	Bit Test \& Branch	H	1	N	2	C
RTI	X										?	?	?	?	?
RTS	X										-	-	$\bigcirc$	$\bigcirc$	$\bigcirc$
SBC		X	X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\wedge$
SEC	X		.								-	$\bullet$	$\bigcirc$	$\bullet$	1
SEI	X										-	1	$\bullet$	$\bullet$	$\bullet$
STA			X	X		X	X	X			-	$\bullet$	$\wedge$	$\wedge$	$\bullet$
STX			X	X		X	X	X			$\bullet$	-	$\wedge$	$\wedge$	$\bullet$
SUB		X	X	X		X	X	X			-	-	$\wedge$	$\wedge$	$\wedge$
SWI	X										-	1	$\bullet$	$\bullet$	$\bullet$
TAX	X										$\bullet$	-	-	$\bullet$	$\bullet$
TST	X		X			X	X				$\bullet$	-	$\wedge$	$\wedge$	$\bigcirc$
TXA	X										$\bullet$	-	$\bullet$	$\bullet$	$\bullet$

Condition Code Symbols:
H Half Carry (From Bit $3^{\prime}$
C Carry/Borrow
I Interrupt N.ask
$\wedge$ Test and Set if True, Cleared Otherwise
N Negative (Sign Bit)

- Not Affected
? Load CC Register From Stack

EF6805 HMOS FAMILY

Features	EF6805CT	E F6805P2	EF6805P4	EF6805P6	EF6805R2	EF6805R3	EF6805T2	EF6805U2	EF6805U3	EF6805TV
Technology	HMOS									
Number of Pins	40	28	28	28	40	40	28	40	40	40
On-Chip RAM (Bytes)	240	64	112	64	64	112	64	64	112	96
On-Chip User ROM (Bytes)	4096	1100	1100	1796	2048	3776	2508	2048	3776	6144
External Bus	Yes	None								
Bidirectional I/O Lines	29	20	20	20	24	24	19	24	24	32
Unidirectional I/O Lines	None	None	None	None	6 Inputs	6 Inputs	None	8 Inputs	8 Inputs	None
Other 1/O Features	Timer, UART	Timer	Timer	Timer	Timer, A/D	Timer,A/D	Timer, PLL	Timer	Timer	Timer, D/A
External Interrupt Inputs	- 3	1	1	1	2	2	2	2	2	1
STOP and WAIT	No									


	Bit Manipulation		Branch	Read-Modity-Write					Control		Register/Memory						
$L_{\text {Low }}{ }^{\text {Hi}}$	$\begin{aligned} & \frac{8 T 8}{6} \\ & 0000 \end{aligned}$	$\begin{gathered} \text { BSC } \\ \infty 001 \\ \hline \end{gathered}$	$\begin{aligned} & \text { REL } \\ & \text { مow } \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{018}{3} \\ & 0.1 \end{aligned}$	$\begin{aligned} & \frac{1 N H}{4} \\ & 01000 \end{aligned}$	$\begin{aligned} & \hline \frac{1 \mathrm{NH}}{5} \\ & 0.101 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{11 \times 1}{6} \\ & 0110 \end{aligned}$	$\begin{aligned} & \frac{1 x}{7} \\ & 011 \end{aligned}$	$\begin{aligned} & \text { INH } \\ & \hline 1000 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{INH} \\ 9 \\ \hline 1001 \end{gathered}$	$\begin{aligned} & \mathrm{IMM} \\ & \text { A } \\ & \hline 1010 \end{aligned}$	$\begin{gathered} \hline \text { DIR } \\ \frac{1}{8} \\ \hline 1011 \end{gathered}$	$\begin{aligned} & \frac{E X T}{C} \\ & 1100 \end{aligned}$	$\begin{gathered} -\frac{112}{0} \\ 1101 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{1 \times 1}{1 \times 1} \\ & 1110 \end{aligned}$	$\begin{gathered} \frac{1 x}{5} \\ \frac{1111}{} \end{gathered}$	${ }^{\text {Hi }}$
0000	$\begin{aligned} & 10 \\ & \text { BRSETO } \\ & 3 \quad \text { 日TB } \\ & \hline \end{aligned}$	${ }_{2}^{7}$ BSETO ${ }_{\text {BSC }}$	${ }_{2}^{4} \mathrm{BRA}_{\mathrm{REL}}$	${ }_{2}^{6} \mathrm{NEG}_{\mathrm{D}: \mathrm{R}}$	${ }_{1}^{4} \mathrm{NEG}_{\text {INH }}$	${ }_{1}^{4}$ NEG	${ }_{2}{ }^{\text {NEG }}{ }_{\text {\|x\| }}$	${ }_{1}^{6}$ NEG ${ }^{\text {IX }}$	$\begin{aligned} & 9 \\ & R_{1 N H} \\ & \hline \end{aligned}$		$\int_{2}^{2} \text { SUB }$	$\begin{array}{\|l\|l\|} \hline & \text { SUB } \\ 2 & \text { OIR } \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & { }_{3} \text { SUB } \\ & E \times T \end{aligned}$	$\begin{array}{\|lll} \hline 0 & \text { SUB }_{1 \times 2} \\ \hline \frac{3}{6} & \\ \hline \end{array}$	$\text { SUB }_{1 \times 1}$	${ }_{\text {SUB }}$	000
	$\begin{aligned} & 10 \\ & \text { BRCLRO } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & 2 \end{aligned}$	${ }_{2} \text { BRN }$						$\begin{array}{\|l\|l\|} \hline 6 \\ \\ \text { RTS } \\ \hline \end{array}$		${ }_{3}^{2} \mathrm{CMP}$	${ }_{2}^{\mathrm{CMP}}$	${ }_{3} \mathrm{CMP}$	${ }_{3}^{6} \mathrm{CMP}_{1 \times 2}$	CMP ${ }_{1 \times 1}$	CMP ${ }_{\text {IX }}$	0001
${ }_{0}^{2} 10$	$\begin{aligned} & 10 \\ & \text { BRSETI } \\ & 3 \end{aligned}$	${ }_{2}^{\text {BSET1 }}$	${ }_{2}^{4} \text { BHI }$								$\int_{2}^{2} \mathrm{SBC}$	${ }^{2}{ }^{S B C_{\text {OIA }}}$	${ }_{3} \mathrm{SBC}_{E \times T}$	${ }^{\text {SBC }}{ }_{1 \times 2}$	${ }^{\text {SBC }}{ }_{\text {\|x\| }}$	$\mathrm{SBC}_{\text {IX }}$	$\infty_{0}^{2} 10$
${ }_{0}{ }^{3}$	$\begin{aligned} & 10 \\ & \text { BRCLR1 } \\ & 3 \quad \text { BTB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BCLR1 } 1 \\ & 2 \end{aligned}$	${ }_{2}^{4} \text { BLS }$	$\begin{array}{\|cc\|} \hline 6 & \mathrm{COM} \\ 2 \end{array}$	COMA   1 INH	${ }^{4} \operatorname{comx}$	$\begin{array}{ll} 7 & \\ { }_{2}^{7} & \\ \hline 1 \times 1 \\ \hline \end{array}$	${ }_{1}^{6} \mathrm{COM}_{1 \mathrm{Ix}}$	${ }^{11} \text { SWI }$		$\int_{2}^{2} \mathrm{CPX}$	${ }_{2}^{4} \mathrm{CPX}$	$\begin{array}{ll} \frac{5}{5} & E x I \\ 3 & \text { EPX } \\ \hline \end{array}$	$\mathrm{CPX}_{1 \times 2}$	$\begin{gathered} \text { CPX } \\ \|x\| \\ \hline \end{gathered}$	${ }_{1}^{1} \mathrm{CPX}^{\text {ax }}$	$\stackrel{3}{3}_{0}$
${ }^{4}$	${ }^{10} 8 \mathrm{BRSET} 2$   3 BTB	${ }_{2}^{\text {BSET2 }} \text { OSC }$	${ }_{2}^{4} \mathrm{BCC}$	$\begin{array}{\|ll} 6 \\ 2 & \text { LSR } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ 1 \\ \hline \end{array}$	$\begin{array}{ll} 4 & \text { LSRX } \\ 1 & \text { INH } \\ \hline \end{array}$	$2_{2}{ }^{\text {LSR }}{ }_{1 \times 1}$	$\begin{array}{\|lll\|} \hline 6 & \text { LSR } & \\ \hline \end{array}$			$\int_{2}^{2} \text { AND }$	$\mathrm{ANC}_{\mathrm{ill}}$	${ }^{\text {AND }}{ }_{E X T}$	${ }_{3}{ }^{A N D} D_{1 \times 2}$	${ }^{\text {AND }}{ }_{\text {\|x] }}$	${ }^{\text {AND }}{ }_{1 \times}$	${ }_{01}^{4}$
5   0101	$\begin{aligned} & 10 \\ & \text { BRCLR2 } \\ & 3 \\ & 3 \end{aligned}$	${ }_{2} \mathrm{BCLR2}$	${ }_{2}^{4} \mathrm{BCS}$								$\left.\right\|_{2} \quad \text { BIT }$	${ }^{81 T}{ }_{D 1 R}$	${ }^{\text {BIT }}{ }_{\text {EXT }}$	${ }^{817}{ }_{1 \times 2}$	${ }^{817}{ }_{\|x\|}$	${ }_{i x}^{B I T}$	$\stackrel{5}{0101}$
${ }_{0}^{6} 110$	$\begin{array}{\|l\|} \hline 10 \\ \text { BRSET3 } \\ 3 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 2 \\ 2 \end{gathered}$	${ }_{2} \mathrm{BNE}_{\mathrm{AEL}}$	$\begin{array}{\|ll\|} \hline 6 & R O R \\ 2 & \\ \hline \end{array}$	RORA   mora	$\begin{array}{\|l\|} \hline 4 \\ { }_{1} \text { RORX } \\ \hline \end{array}$	${ }^{R_{1 \times 1}}$	ROR			${ }_{2}^{2} \text { LDA }$	$\frac{4}{4} \text { LDA }$	$\begin{array}{ll} \frac{1}{5} & \text { EAI } \\ 3 & \text { EXT } \\ \hline \end{array}$	$\operatorname{LDA}_{1 \times 2}$	${ }^{\text {LDA }}{ }_{\|1\|}$	LDA ${ }^{\text {IX }}$	${ }_{0}^{6} 10$
7 011	$\begin{aligned} & 10 \\ & \text { BRCLR3 } \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} 8 B L R 3 \\ 3 \\ \hline \end{gathered}$	${ }_{2}^{B E O_{A E L}}$	${ }_{2}^{6} A S R_{D I R}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { ASRA } \\ \hline 1 & \text { INH } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline{ }^{4} & \text { ASRX } \\ 1 & \\ \text { NH } \\ \hline \end{array}$	$\operatorname{ASR}_{\mid \times 1}$	$\begin{array}{\|l\|l\|} \hline{ }^{6} & \text { ASR } \\ \hline \end{array}$		$\begin{array}{\|cc\|} \hline 2 & \text { TAX } \\ 1 & { }_{\mathrm{INH}} \\ \hline \end{array}$		${ }_{2}^{5} \text { STA }{ }_{O I B}$	$\text { STA }_{\text {EXT }}$	STA   $1 \times 2$	$\text { STA }_{\mid \times 1}$	${ }_{\text {STA }}{ }_{1 \times}$	$\quad 7$
8   1000	$\begin{array}{\|l\|} 10 \\ \hline \text { BRSETA } \\ 3 \\ \hline \end{array}$	$\stackrel{\text { BSET4 }}{8}$	${ }_{2}^{3} \mathrm{BHCC}$	${ }_{2}^{6} \text { LSL }$	${ }^{4} \text { LSLA }$	$\begin{array}{\|ll\|} \hline 4 & \text { LSLX } \\ 1 & \text { INH } \\ \hline \end{array}$	$\operatorname{LSL}_{\mid \times 1}$			$\begin{array}{\|ll\|} \hline 2 & \mathrm{CLC} \\ \hline \end{array}$	$\begin{array}{\|ll} 2 & \text { EOR } \\ 2 & \text { IMMM } \\ \hline \end{array}$	${ }_{2}{ }_{2}^{\text {EOR }}$	${ }_{3} \text { EOR }$	${ }^{\text {EOR }}{ }_{1 \times 2}$	${ }^{E O R}{ }_{\mid \times 1}$	${ }^{\text {EOR }}{ }^{1 \times}$	$\stackrel{8}{1000}$
${ }_{1001}$	$\begin{array}{\|l\|} \hline 10 \\ \text { BRCLR4 } \\ 3 \\ \hline \end{array}$	${ }_{8}^{\text {BCL. } 84}$	${ }_{2}^{\mathrm{BHCS}} \mathrm{AEL}^{2}$	$\mathrm{ROL}_{\mathrm{OLR}}$	$\begin{array}{\|l\|} \hline 4 \\ { }_{1} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 1 & \text { ROLX } \\ \hline & \\ \hline \end{array}$	$\mathrm{ROL}_{1 \times 1}$	$\frac{\mathrm{ROL}}{1 \mathrm{x}}$		$\begin{array}{\|ll\|} \hline 2 & \mathrm{SEC} \\ 1 & \\ \hline \end{array}$	${ }_{2}^{2} A D C$	${ }_{2}^{4} A D C$	${ }_{3}^{A D C} C_{\text {EXT }}$	$A D C_{1 \times 2}$	${ }^{A D C} C_{1 \times 1}$	${ }_{1}^{4} \mathrm{ADC}$	${ }_{1001}$
A	$\begin{array}{\|c\|} \hline 10 \\ 8 R S E T 5 \\ 3 \\ \hline \end{array}$	BSET5 $\frac{2058}{2}$	${ }_{2}^{4}{ }^{\mathrm{BPL}} \mathrm{BEL}^{2}$	$2{ }_{2} \mathrm{DEC} C_{0, R}$	${ }^{4} \text { DECA }$	$\begin{array}{\|ll\|} \hline 4 & \mathrm{DECX} \\ 1 \\ \hline \end{array}$	$\begin{array}{lll\|} { }_{2}^{\prime} & \text { DEC } \\ \hline \end{array}$	${ }_{1}^{6}$ DEC :x		$\begin{array}{\|ll\|} \hline 2 & \mathrm{CLI} \\ 1 & \\ \hline \end{array}$	$\begin{array}{ll} \frac{1}{2} & \text { ORA } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }_{2}^{4} O R A_{D I A}$	${ }^{5}{ }^{3}{ }^{O R A} A_{E X T}$	$\text { ORA }_{1 \times 2}$	$\text { ORA }_{\|x\|}$	${ }^{\text {ORA }} 1 \times$	${ }_{1010}$
${ }_{1011}$	BRCLR5   ${ }^{3}$ BTB	BCLR5 $2 \quad \text { OSC }$	${ }_{2} \mathrm{BMI}_{\mathrm{REL}}$							$\begin{array}{\|ll\|} \hline 2 & S E \\ \hline 1 & \\ \hline \end{array}$	$\int_{2}^{2} A D D$	${ }_{2}^{4} A D D_{D I R}$	${ }_{3}^{5} A D D_{E X T}$	${ }^{A D D_{1 \times 2}}$	${ }^{A D D_{\|x\|}}$	${ }_{\text {ADD }}^{1 \times}$	8
$\stackrel{C}{100}$	BRSET6   3 BTB	BSET6	${ }_{2}^{4} \text { BMC }$	${ }^{I N C} C_{01 R}$	$\begin{array}{\|ll\|} \hline 1 & \text { INCA } \\ 1 & \text { INH } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \\ & \mathrm{INCX} \\ 1 & \\ \mathrm{INM} \end{array}$	$\operatorname{INC}_{\|x\|}$	$\begin{array}{\|lll\|} \hline 6 & \text { INC } & \\ \hline & & \\ \hline 6 & & \\ \hline \end{array}$		$\begin{array}{\|ll\|} \hline 2 & \text { RSP } \\ 1 & \\ \hline \end{array}$		$J M P^{\mathrm{P}_{1 / R}}$	${ }_{3}{ }^{J M P_{E X T}}$	$\mathrm{JMP}_{\mathrm{I} \times 2}$	${ }^{J M P}{ }_{\|x\|}$	${ }_{1}^{3}$ JMP ${ }_{\text {IX }}$	$\stackrel{\text { c }}{1100}$
C	$\begin{array}{\|c\|} 10 \\ \text { 8RCLRE } \\ 3 \end{array}$	$\begin{gathered} \text { BCLR6 } \\ \hline \end{gathered}$	${ }_{2}^{4} \mathrm{BMS}$	${ }_{2}^{0}{ }^{\mathrm{TST}} \mathrm{~S}_{0,1 \mathrm{R}}$	$\begin{array}{\|l\|} \hline 4 \\ \text { TSTA } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & \text { TSTX } \\ 1 & \\ \hline \end{array}$	${ }_{2}{ }^{T S T} T_{1 \mathrm{x},}$	$\begin{array}{\|lll} \hline 6 & \text { TST } \\ \hline \end{array}$		$\begin{array}{ll} 2 \\ \mathrm{NOP}_{1} \\ 1 \end{array}$	${ }_{2}^{8} \mathrm{BSR}$	$\underset{\text { JSP }}{ }$	${ }_{3} \text { JSR } \text { EXI }^{2}$	${ }^{J S R}{ }_{1 \times 2}$	$\begin{aligned} & \text { JSR } \\ & { }^{\prime \times \times 1} \\ & \hline \end{aligned}$	${ }^{\text {JSA }}{ }_{\text {Ix }}$	D
${ }_{1110}$	$\begin{array}{ll\|} \hline 10 \\ \text { BRSETT } \\ 3 & \text { AIB } \end{array}$	${ }_{2}^{\text {BSET7 }}$	$2^{4} \mathrm{BIL}_{\mathrm{REL}}$								$\begin{array}{ll} 2 & \text { LOX } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }_{2}^{L D X_{D 1 R}}$	$\operatorname{LOXXI}^{\text {EXI }}$	$\operatorname{LDX}_{1 \times 2}$	$\operatorname{LOX}_{1 \times 1}$		${ }_{110}^{E}$
${ }_{111}$	$\begin{aligned} & 101 \\ & \text { BRCLR7 } \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} \text { BCLR7 } \\ \hline \end{gathered}$	$2 \mathrm{BIH}_{\mathrm{REL}}$	${ }_{2}^{6} \mathrm{CLR}_{\mathrm{DIR}}$	${ }^{4} \text { CLRA }$	$\begin{aligned} & \hline{ }^{4} \text { CLRX } \\ & 1 \\ & \hline \end{aligned}$	${ }_{2}^{1} \mathrm{CLR}_{1 \times 1}$	$\begin{array}{\|l\|l\|} \hline 6 \\ \hline \end{array}{ }^{\text {CLR }}{ }_{10}$		$\begin{array}{\|ll\|} \hline 2 & \text { TXA } \\ 1 & \\ \hline \end{array}$			${ }_{3} s T X_{E X T}$	$\operatorname{sTX}_{1 \times 2}$	${ }_{2} \operatorname{six}{ }_{\|x\|}$	${ }_{1}^{5}$ STX ${ }_{1 \times}$	${ }_{1} 11$

## Abbreviations for Address Modes

LEGEND

## Inherent

Immediate
Direct
Extended
Relative
Bit Set/Clear
Bit Test and Branch
Indexed (No Offset)
Indexed. 1 Byte ( 8 -Bit) Offset
Indexed, 2 Byte (16-Bit) Offset


## PHYSICAL DIMENSIONS



CB-182


## ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to THOMSON SEMICONDUCTEURS on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is necessary to first contact your local THOMSON SEMICONDUCTEURS representative or distributor.

## EPROMS

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :


XXX = Customer ID
After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

## VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to THOMSON SEMICONDUCTEURS. The signed verification form constitutes the
contractual agreement for creation of the customer mask. If desired, THOMSON SEMICONDUCTEURS will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

## ROM VERIFICATION UNITS (RVUS)

Ten MCUs containing the customer's R.OM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by THOMSON SEMICONDUC. TEURS. Quality Assurance, and should be discarded after verification is completed.

## FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/ MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEV). CE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from THOMSON SEMICONDUCCTEURS factory representatives.

EFDOS is THOMSON SEMICONDUCTEURS' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local THOMSON SEMICONDUCTEURS representative or THOMSON SEMICONDUCTEURS distributor and/or complete and send the attached "MCU customer ordering sheet" to your local THOMSON SEMICONDUCTEURS representative.

## ORDERING INFORMATION

DeviceThe table below horizontally shows all available suffix combinations for package, operating temperature and screeninglevel. Other possibilities on request.												
DEVICE	PACKAGE					OPER. TEMP			SCREENING LEVEL			
	C	J	P	E	FN	L*	V	T	Std	D	G/B	B/B
EF6805U3			-		-	$\bullet$	-	$\bullet$	$\bullet$	-		
Examples : EF6805U3P, EF6805U3FN, EF6805U3PV, EF6805U3FNV												
Package : C : Ceramic DIL, J: Cerdip DIL, P : Plastic DIL, E: LCCC, FN : PLCC.   Oper. temp.: $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, *: may be omitted. Screening level : Std : (noend suffix), D: NFC 96883 level D, G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.												

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different products.

## MK2870 FEATURES

- 28-pin version of the industry standard MK3870 single chip microcomputer
- Available with 1 K bytes of mask programmable ROM memory
- 64 bytes scratchpad RAM
- 20 bits TTL compatible I/O
- Programmabie binary timer

Interval timer mode
Pulse width measurement mode
Event counter mode

- External interrupt input
- Crystal, LC, RC, or external time base options
- Low power (275 mW typ.)
- Single +5 volt supply



## PIN ASSIGNMENT



## MK2870 BLOCK DIAGRAM



Figure 1

## GENERAL DESCRIPTION

The MK2870 is the 28-pin version of the industry standard Mostek MK3870 single chip microcomputer. It is offered as a low cost device which can be used in those applications that do not require the entire I/O capability of the 40 pin MK3870. The compact 28-pin package makes the MK2870 ideally suited for applications where PC board space is a premium.

The MK2870 can execute more than 70 instructions, and is completely software compatible with the rest of the devices in the 3870 family. The MK2870 features 1 K bytes of ROM. The MK2870 also features 64 bytes of scratchpad RAM, a
programmable binary timer, and 20 bits of I/O.
The programmable binary timer operates by itself in the interval timer mode or in conjunction with the external interrupt input in the pulse width measurement and the event counter modes of operation. Two sources of vectored, prioritized interrupt are provided with the binary timer and the external interrupt input. The user has the option of specifying one of four clock sources for the MK2870: Crystal, LC, RC, or external clock. In addition, the user can specify either a $\pm 10 \%$ power supply tolerance or a $\pm 5 \%$ power supply tolerance.

## FUNCTIONAL PIN DESCRIPTION

$\overline{\mathrm{PO}} \mathbf{7}, \overline{\mathrm{P} 1-1}-\overline{\mathrm{P} 1-3}, \overline{\mathrm{P} 4-0}--\overline{\mathrm{P} 4-7}$, and $\overline{\mathrm{P} 5-0}--\overline{\mathrm{P} 5-7}$ are 20 lines which can bu individually used as either TTL compatible inputs or as latched outputs.

STROBE is a ready strobe associated with 1/O Port 4. This pin, which is normally high, provides a single low pulse after valid data is present on the $\overline{\mathrm{P} 4-0}-\overline{\mathrm{P} 4-7}$ pins during an output instruction.

RESET may be used to externally reset the MK2870. When pulled low the MK2870 will reset. When then allowed to go high the MK2870 will begin program execution at program location H '000'.

EXT INT is the external interrupt input. Its active state is software programmable. This input is also used in conjunction with the timer for pulse width measurement and event counting.

XTL 1 and XTL 2 are the time base inputs to which a crystal, LC network, RC network, or an external single-phase clock may be connected. The time base network must be specified when ordering a mask ROM MK2870.

TEST is an input, used only in testing the MK2870. For normal circuit functionality this pin may be left unconnected, but it is recommended that TEST be grounded.
$\mathrm{V}_{\mathrm{CC}}$ is the power supply input (single +5 V ).

## MK2870 ARCHITECTURE

The basic functional elements of the MK2870 are shown in Figure 1. A programming model is shown in Figure 2. The MK2870 is instruction set compatible. The unique features of the MK2870 are discussed in the following sections. The user is referred to the 3870 Family Technical Manual for a thorough discussion of the architecture, instruction set, and other features.

## MK2870 MAIN MEMORY

There are four address registers used to access main memory. These are the Program Counter (PO), the Stack Register ( P ), the Data Counter (DC), and the Auxiliary Data Counter (DC1). The Program Counter is used to address instructions or immediate operands. The Stack Register is used to save the contents of the Program Counter during an interrupt or subroutine call. Thus, the Stack Register contains the return address at which processing is to resume upon completion of the subroutine or interrupt routine. The Data Counter is used to address data tables. This register is auto-incrementing. Of the two data counters, only Data Counter (DC), can access the ROM. However, the SDC instruction allows the Data Counter and Auxiliary Data Counter to be exchanged.

Figure 3 shows the amounts of ROM and executable RAM in the MK2870/10 pin configuration.

## I/O PORTS

The MK2870 provides four, 8 bit bidirectional Input/Output ports. These are ports $0,1,4,5$. However, only 20 of the bits are connected to $1 / O$ pins. The remaining bits are storage elements. In addition, the Interrupt Control Port is addressed as Port 6 and the binary timer is addressed as Port 7. The programming of Ports 6 and 7 and the bidirectional 1/O pin are covered in the 3870 Family Technical Manual. The schematic of an 1/O pin and available output drive options are shown in Figure 4.

An output ready strobe is associated with Port 4. This flag may be used to signal a peripheral device that the MK2870 has just completed an output of new data to Port 4. The strobe provides a single low pulse shortly after the output operation is completely finished, so either edge may be used to signal the peripheral. $\overline{\text { STROBE may also be used as an }}$ input strobe to Port 4 after completing the input operation.

MK2870 PROGRAMMABLE REGISTERS, PORTS, AND MEMORY MAP


NOTE: All 32 parallel I/O port pins are available in the MK2870. However, only 20 of the bits are connected to I/O pins. Refer to the pin diagram for complete definition.


Figure 2

## MK2870 MAIN MEMORY

SIZE AND TYPE


This device contains 64 bytes of scratchpad RAM.
NOTE:

Data derived from addressing any locations other than those within a part's specified ROM space or RAM space (if any) is not tested nor is it guaranteed. Users should refrain from entering this area of the memory map.

Device	Scratchpad   RAM Size   (Decimal)	Address   Register Size   (PO, P, DC, DC1)	ROM   Size   (Decimal)	Executable   RAM Size   (Decimal)
MK2870/10	64 bytes	12 bits	1024 bytes	0 bytes

Figure 3

To use a port pin as an input, the large transistor which pulls the pin to $V_{S S}$ must be turned off. This is accomplished by writing a ' 0 ' to that bit of the port. This applies to Ports $0,1,4$, and 5 only.

## MK2870 TIME BASE OPTIONS

The MK2870 contains an on-chip oscillator circuit which provides an internal clock. The frequency of the oscillator circuit is set from the external time base network. The time base for the MK2870 may originate from one of four sources:

1) Crystal
2) LC Network
3) RC Network
4) External Clock

The type of network which is to be used with the mask ROM MK2870 must be specified at the time when mask ROM devices are ordered.

The specifications for the four configurations are given in the following text. There is an internal capacitor between

XTL 1 and GND and an internal capacitor between XTL 2 and GND. Thus, external capacitors are not necessarily required. In all clock modes the external time base frequency is divided by two to form the internal PHI clock.

## CRYSTAL SELECTION

The use of a crystal as the time base is highly recommended as the frequency stability and reproducability from system to system is unsurpassed. The MK2870 has an internal divide by two to allow the use of inexpensive and widely available TV Color Burst Crystals ( 3.58 MHz ). Figure 6 lists the required crystal parameters for use with the MK2870. The Crystal Mode time base configuration is shown in Figure5.

Through careful buffering of the XTL 1 pin it may be possible to amplify this waveform and distribute it to other devices. However, Mostek re-ommends that a separate active device (such as a 740 series TTL gate) be used to oscillate the crystal and the waveform from that oscillator be buffered and supplied to all devices, including the MK2870, in the event that a single crystal is to provide the time base for more than just a single MK2870.

I/O PIN CONCEPTUAL DIAGRAM WITH OUTPUT BUFFER OPTIONS


Ports $\mathbf{O}$ and 1 are Standard Output type only.
Ports 4 and 5 may both be any of the three output options (mask programmable bit by bit)
The $\overline{\text { STROBE }}$ output is always configured similar to a Direct Drive Output except that it is capable of driving $\mathbf{3}$ TTL loads.
$\overline{\text { RESET }}$ and EXT INT may have standard 6K $\Omega$ (typical) pull-up or may have no pull-up (mask programmable).
When Direct Drive option is selected, it should be used as an Output only (not as an input).

Figure 4

## CRYSTAL MODE CONNECTION



AT - CUT

NOTE: Lead lengths from the crystal to the $\mathbf{2 8 7 0}$ pins should be kept reasonably short to reduce stray capacitance load.

Figure 5

## CRYSTAL PARAMETERS

a) Parallel resonance, fundamental mode AT-Cut
b) Shunt capacitance $\left(\mathrm{C}_{0}\right)=7$ pf max.
c) Series resistance $\left(R_{s}\right)=$ See table
d) Holder $=$ See table below.

Frequency	Series Resistance	Holder
$f=2-2.7 \mathrm{MHz}$	Rs $=300$ ohms $\max$	HC-6
		HC-33

$f=2.8-4 \mathrm{MHz} \quad$ Rs $=150$ ohms max $\quad$ HC -6
HC-18*
HC-25*
HC-33
*This holder may not be available at frequencies near the lower end of this range.
Figure 6

While a ceramic resonator may work with the MK2870 crystal oscillator, it was not designed specifically to support the use of this component. Thus, Mostek does not support the use of a ceramic resonator either through proper testing, parametric specification, or applications support.

## LC NETWORK

The LC time base configuration can be used to provide a less expensive time base for the MK2870 than can be provided with a crystal. However, the LC configuration is much less accurate than is the crystal configuration. The LC time base configuration is shown in Figure 7. Also shown in the figure are the specified parameters for the LC components, along with the formula for calculating the resulting time base frequency. The minimum value of the inductor which is required for proper operation of the LC time base network is
0.1 millihenries. The inductor must be a $Q$ factor which is no less than 40 . The value of $C$ is derived from $C$ external, the internal capacitance of the MK2870 $\mathrm{C}_{\mathrm{XTL}}$, and the stray capacitances, $\mathrm{C}_{\mathrm{S} 1}$ ařd $\mathrm{C}_{\mathrm{S} 2} \cdot \mathrm{C}_{\mathrm{XTL}}$ is the capacitance looking into the internal two port network at XTL 1 and XTL 2. $\mathrm{C}_{\text {XTL }}$ is listed under the "Capacitance" section of the Electrical Specifications. $\mathrm{C}_{\mathrm{S}_{1}}$ and $\mathrm{C}_{\mathrm{S}_{2}}$ are stray capacitances from XTL 1 to ground and from XTL 2 to ground, respectively. C external should also include the stray shunt capacitance across the inductor. This is typically in the 3 to 5 pf range and significant error can result if it is not included in the frequency calculation.
Variation in time base frequency with the LC network can arise from one of four sources: 1) Variation in the value of the inductor. 2) Variation in the value of the external capacitor. 3) Variation in the value of the internal capacitance of the MK2870 at XTL 1 and XTL 2 and 4)

Variation in the amount of stray capacitance which exists in the circuit. Therefore, the actual frequency which is qenerated by the LC circuit is within a range of possible rrequencies, where the range of frequencies is determined by the worst case variation in circuit parameters. The des ler must select component values such that the range of possible frequencies with the LC mode does not go outside of the specified operating frequency range for the MK2870.

## RC CLOCK CONFIGURATION

The time base for the MK2870 may be provided from an RC network tied to the XTL 2 pin, when XTL 1 is grounded. A schematic picturing the RC clock configuration is shown in

Figure 8 . The RC time base configuration is intended to provide an inexpensive time base source for applications in which timing is not critical. Some users have elected to tune each unit using a variable resistor or external capacitor thus reducing the variation in frequency: However, for increased time base accuracy Mostek recommends the use of the Crystal or LC time base configuration. Figure 9 illustrates a curve which gives the resulting operating frequency for a particular RC value. The x-axis represents the product of the value of the resistor times the value of the capacitor. Note that three curves are actually shown. The curve in the middle represents the nominal frequency obtained for a given value of $R C$. A maximum curve and a minimum curve for different types of MK2870 devices are also shown in the diagram.

LC MODE CONNECTION


NOTE: The LC options uses the same mask option as the crystal option.

$$
f=\sqrt{2 \pi \sqrt{L C}}
$$

Figure 7
RC MODE CONNECTION


Figure 8

## FREQUENCY VS. RC



Figure 9

The designer must select the RC product such that a frequency of less than 2 MHz is not possible taking into account the maximum possible RC product and using the minimum curve shown in Figure 9 . Also, the RC product must not allow a frequency of more than 4 MHz taking into account the minimum possible $R$ and $C$ and using the Maximum curve shown below. Temperature induced variations in the external components should be considered in calculating the RC Product.

Frequency variation from unit to unit due to switching speed and level at constant temperature and $\mathrm{V}_{\mathrm{CC}}=+$ or -5 percent.

Frequency variation due to $\mathrm{V}_{\mathrm{CC}}$ with all other parameters constant with respect to $+5 \mathrm{~V}=+7$ percent to -4 percent on all devices.

Frequency variation due to temperature with respect to 25 C (all other parameters constant) is as follows:

PART \#	VARIATION
287X-00, -05	+6 percent to -9 percent
$287 X-10,-15$	+9 percent to -12 percent

Variations in frequency due to variations in RC components may be calculated as follows:

Maximum $R C=(R \max )\left(C\right.$ external max $+C_{X T L}$ max $)$

Minimum $R C=(R \min )\left(C\right.$ external $\left.\min +C_{X T L} \min \right)$
Typical $R C=(R$ typ $)(C$ external typ +

$$
\left.\left\{C_{X T L} \max _{2}+C_{X T L} \min \right\}\right)
$$

Positive Freq. Variation = RC typical - RC minimum RC typicel

Netative Freq. Variation = RC maximum - RC typical due to RC Components

RC typical
Total frequency variation due to all factors:

287X-00,-05
+18 percent plus positive
frequency variation due to RC components
$=-18$ percent minus nega- $=-21$ percent minus tive frequency variation due negative frequency variation to RC components due to RC components

Total frequency variation due to $\mathrm{V}_{\mathrm{CC}}$ and temperature of a unit tuned to frequenc. at $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}, 25 \mathrm{C}$
$\begin{array}{ll}287 X-00,-05 & \text { 287X-10, }-15 \\ =+13 \text { percent } & =+16 \text { percent }\end{array}$

## EXTERNAL MODE CONNECTION



Figure 10

## EXTERNAL CLOCK CONFIGURATION

The connection for the external clock time base configuration is shown in Figure 10 . Refer to the DC Characteristics section for proper input levels and current
requirements.
Refer to the Capacitance section for input capacitance.

ELECTRICAL SPECIFICATIONS MK2870

OPERATING VOLTAGES AND TEMPERATURES

Dash   Number   Suffix	Operating   Voltage   $\mathbf{V}_{\mathbf{C C}}$	Operating   Temperature   $\mathrm{T}_{\mathbf{A}}$
-00	$+5 \mathrm{~V} \pm 10 \%$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
-05	$+5 \mathrm{~V} \pm 5 \%$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
-10	$+5 \mathrm{~V} \pm 10 \%$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
-15	$+5 \mathrm{~V} \pm 5 \%$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$

See Ordering Information for explanation of part numbers.

## MAXIMUM RATINGS*

	-00, -05	-10, -15
Temperature Under Bias	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage an any Pin With Respect to Ground (Except open drain pins and TEST)	-1.0 V to +7 V	-1.0 V to + 7 C
Voltage on TEST with Respect to Ground	-1.0 V to +9 V	-1.0 V to +9 V
Voltage on Open Drain Pins With Respect to Ground	-1.0 V to +13.5 V	-1.0 V to +13.5 V
Power Dissipation.	1.5 W	1.5 W
Power Dissipation by any one I/O pin	60 mW	60 mW
Power Dissipation by all I/O pins	600 mW	600 mW

"Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## AC CHARACTERISTICS

$T_{A}, V_{C C}$ within specified operating range.
I/O power dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SIGNAL	SYM	PARAMETER	-00, -05		-10, -15		UNIT	NOTES
			MIN	MAX	MIN	MAX		
$\begin{aligned} & \hline \text { XTL } 1 \\ & \text { XTL } 2 \end{aligned}$	$\begin{aligned} & \hline t_{0} \\ & t_{\text {ex }(H)} \\ & t_{\text {ex }(L)} \end{aligned}$	Time Base Period, all clock modes External clock pulse width high External clock pulse width low	$\begin{gathered} 250 \\ 90 \\ 100 \end{gathered}$	$\begin{aligned} & 500 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 500 \\ & 390 \\ & 390 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	4 MHz - 2 MHz
¢	${ }_{\text {t }}^{\text {¢ }}$	Internal $\Phi$ clock	$2 \mathrm{t}_{0}$		$2 \mathrm{t}_{0}$			
WRITE	$\mathrm{t}_{\mathrm{w}}$	Internal WRITE Clock period	$\begin{aligned} & \hline 4 \mathrm{t} \Phi \\ & 6 \mathrm{t} \Phi \end{aligned}$		$\begin{aligned} & \hline 4 \mathrm{t} \Phi \\ & 6 \mathrm{t} \Phi \end{aligned}$			Short Cycle Long Cycle
1/0	$\mathrm{t}_{\mathrm{d} / 2}$	Output delay from internal WRITE clock	0	1000	0	1200	ns	50 pF plus one TTL load
	$\mathrm{t}_{\mathrm{s} 1 / \mathrm{O}}$	Input setup time to internal WRITE clock	1000		1200		ns	
STROBE	t/o-s	Output valid to STROBE delay	$\begin{array}{\|c\|} \hline \text { 3t } \Phi \\ -1000 \end{array}$	$\begin{array}{\|c\|} \hline 3 t \Phi \\ +250 \end{array}$	$\begin{array}{\|c\|} \hline 3 t \Phi \\ -1200 \\ \hline \end{array}$	$\begin{gathered} \text { 3t } \Phi \\ +300 \end{gathered}$	ns	1/0 load =   $50 \mathrm{pF}+1 \mathrm{TLL}$ load
	$\mathrm{t}_{\text {sL }}$	STROBE low time	$\begin{gathered} \hline 8 \mathrm{t} \Phi \\ -250 \end{gathered}$	$\begin{array}{\|l} 12 t \Phi \\ +250 \end{array}$	$\begin{gathered} \hline 8 \mathrm{t} \Phi \\ -300 \end{gathered}$	$\begin{aligned} & 12 t \Phi \\ & +300 \end{aligned}$	ns	$\begin{array}{l\|} \hline \text { STROBE load }= \\ 50 \mathrm{pF}+3 \mathrm{TL} \text { loads } \end{array}$
$\overline{\text { RESET }}$	$\mathrm{t}_{\mathrm{RH}}$	RESET hold time, low	$\begin{gathered} \hline 6 t \Phi \\ +750 \end{gathered}$		$\begin{array}{\|c\|} \hline 6 t \Phi \\ +1000 \end{array}$		ns	
	$\mathrm{t}_{\text {RPOC }}$	$\overline{\text { RESET }}$ hold time, low for power clear					ms	
EXT INT	$\mathrm{t}_{\mathrm{EH}}$	EXT INT hold time in active and inactive state	$\begin{gathered} \hline 6 \mathrm{t} \Phi \\ +750 \end{gathered}$		$\begin{array}{\|c\|} \hline 6 t \Phi \\ +1000 \end{array}$		ns	To trigger interrupt
			2 t ¢		$2 \mathrm{t} \Phi$		ns	To trigger timer

## DC CHARACTERISTICS

$\mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}$ within specified operating range
1/O power dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SYMBOL	PARAMETER	-00, -05		-10, -15		UNIT	DEVICE
		MIN	MAX	MIN	MAX		
${ }^{\text {cc }}$	Average Power Supply Current		85		110	mA	MK2870/10   Outputs Open
$P_{D}$	Power Dissipation		400		525	mW	MK2870/10 Outputs Open
$\mathrm{V}_{\text {IHEX }}$	External Clock input high level	2.4	5.8	2.4	5.8	V	
$\mathrm{V}_{\text {ILEX }}$	External Clock input low level	-. 3	. 6	-. 3	. 6	V	
$\mathrm{I}_{\text {IHEX }}$	External Clock input high current		100		130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IHEX }}=\mathrm{V}_{\text {CC }}$
IILEX	External Clock input low current		-100		-130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {ILEX }}=\mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\mathrm{IHI} / \mathrm{O}}$	Input high level, I/O pins	2.0	5.8	2.0	5.8	V	Standard pull-up
		2.0	13.2	2.0	13.2	V	Open drain (1)
$\mathrm{V}_{\mathrm{IHR}}$	Input high level, $\overline{\text { RESET }}$	2.0	5.8	2.2	5.8	V	Standard pull-up
		2.0	13.2	2.2	13.2	V	No Pull-up
$\mathrm{V}_{\text {IHEI }}$	Input high level, EXT INT	2.0	5.8	2.2	5.8	V	Standard pull-up
		2.0	13.2	2.2	13.2	V	No Pull-up
$\mathrm{V}_{\text {IL }}$	Input low level	-. 3	. 8	-. 3	. 7	V	(1)
I/L	Input low current, all pins with standard pull-up resistor		-1.6		-1.9	mA	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{L}}$	Input leakage current, open drain pins, and inputs with no pull-up resistor		$\begin{gathered} +10 \\ -5 \end{gathered}$		$\begin{gathered} +18 \\ -8 \end{gathered}$	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathrm{A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
${ }^{\text {IOH}}$	Output high current pins with standard pull-up resistor	$\begin{array}{r} -100 \\ -30 \end{array}$		$\begin{aligned} & -89 \\ & -25 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=3.9 \mathrm{~V} \end{aligned}$

## DC CHARACTERISTICS (cont.)

$T_{A}, V_{C C}$ within specified operating range, $1 / O$ power dissipation $\geq 100 \mathrm{~mW}$ (Note 2)

SYM	PARAMETER	-00, -05		-10, -15		UNIT	CONDITIONS
		MIN	MAX	MIN	MAX		
${ }^{\text {OHDD }}$	Output high current, direct drive pins	$\begin{aligned} & -100 \\ & -1.5 \end{aligned}$	-8.5	$\begin{aligned} & \hline-80 \\ & -1.3 \end{aligned}$	-11	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V} \end{aligned}$
${ }^{\text {IOHS }}$	$\overline{\text { STROBE Output High current }}$	-300		-270		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
${ }_{\mathrm{OL}}$	Output low current	1.8		1.65		mA	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$
IoLs	$\overline{\text { STROBE }}$ Output Low current	5.0		4.5		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$

## TIMER AC CHARACTERISTICS

## Definitions:

Error = Indicated time value - actual time value
tpsc $=t \Phi \times$ Prescale Value

## Interval Timer Mode:

Single interval error, free running (Note 3) ..... $\pm 6 \mathrm{t} \Phi$
Cumulative interval error, free running (Note 3) ..... 0
Error between two Timer reads (Note 2) ..... $\pm($ tpsc $+\mathbf{t} \Phi)$
Start Timer to stop Timer error (Notes 1, 4) ..... $+t \Phi$ to - (tpsc $+\mathbf{t} \Phi)$
Start Timer to read Timer error (Notes 1, 2). ..... $-5 t \Phi$ to - $(\mathrm{tpsc}+7 \mathrm{t} \Phi)$
Start Timer to interrupt request error (Notes 1, 3) ..... $-2 t \Phi$ to $-8 \mathrm{t} \Phi$
Load Timer to stop Timer error (Note 1) ..... $.+t \Phi$ to - $\mathbf{t p s c}+2 \mathrm{t} \Phi)$
Load Timer to read Timer error (Notes 1, 2) ..... $-5 t \Phi \pm$ to $-(\mathrm{tpsc}+8 \mathrm{t} \Phi)$
Load Timer to interrupt request error (Notes 1, 3) ..... $-2 \mathrm{t} \Phi$ to $-9 \mathrm{t} \Phi$
Pulse Width Measurement Mode:
Measurement accuracy (Note 4) ..... $+\mathbf{t} \Phi$ to $-(\mathrm{tpsc}+2 \mathrm{t} \Phi)$
Minimum pulse width of EXT INT pin ..... $2 t \Phi$
Event Counter Mode:
Minimum active time of EXT INT pin ..... $2 \mathrm{t} \Phi$
Minimum inactive time of EXT INT pin ..... $2 \mathrm{t} \Phi$

## NOTES:

1. All times which entail loading, starting, or stopping the Timer are referenced from the end of the last machine cycle of the OUT or OUTS instruction.
2. All times which entail reading the Timer are referenced from the end of the last machine cycle of the $\mathbb{I N}$ or INS instruction.
3. All times which entail the generation of an interrupt request are referenced from the start of the machine cycle in which the appropriate interrupt request latch is set. Additional time may elapse if the interrupt request occurs during a privileged or multicycle instruction.
4. Error may be cumulative if operation is repetitively performed.

## AC TIMING DIAGRAM


$\overline{\text { RESET }}$


EXT INT


Note: All AC measurements are referenced to $\mathrm{V}_{\mathrm{IL}}$ max., $\mathrm{V}_{\mathrm{IH}}$ min., $\mathrm{V}_{\mathrm{OL}}(.8 \mathrm{v})$, or $\mathrm{V}_{\mathrm{OH}}(2.0 \mathrm{v})$.

Figure 11

## MK2870

## INPUT/OUTPUT AC TIMING


internal WRITE CLOCK

C. INPUT ON PORT OOR 1

D. OUTPUT ON PORT 0,1

Figure 12

STROBE SOURCE CAPABILITY (TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Figure 13

STROBE SINK CAPABILITY
(TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 14

STANDARD I/O PORT SOURCE CAPABILITY (TYPICAL AT V ${ }_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 15
S
O
$U$
R
C
$\mathbf{E}$
$\mathbf{C}$
$\mathbf{U}$
$R$
$R$
$\mathbf{E}$
$\mathbf{N}$
$\mathbf{T}$
$\mathbf{M}$
A


DIRECT DRIVE I/O PORT SOURCE CAPABILITY
(TYPICAL AT V ${ }_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 16


I/O PORT SINK CAPABILITY
(TYPICAL AT V ${ }_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}^{\prime}}=25^{\circ} \mathrm{C}$ )
Figure 17


MAXIMUM OPERATING TEMPERATURE VS. I/O POWER DISSIPATION
Figure 18


## ORDERING INFORMATION

There are two types of part numbers for the 2870 family of devices. The generic part number describes the basic device type, the amount of ROM and Executable RAM, the desired package type, temperature range, and power supply tolerance. For each customer specific code, additional information defining I/O options and oscillator options will be combined with the information described in the generic part number to define a customer/code specific device order number.

## GENERIC PART NUMBER

An example of the generic part number is shown below.
MK 2870 / 1 ON-1 0

$0=5 \mathrm{~V} \pm 10 \%$
$5=5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
$\mathrm{N}=$ Plastic
$0=$ None
$2=64$ bytes
$1=1 \mathrm{~K}$ bytes
$2=2 \mathrm{~K}$ bytes

## DEVICE ORDER NUMBER

An example of the device order number is shown below.

$0=5 \mathrm{~V} \pm 10 \%$
$5=5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
$N=$ Plastic

The Customer/Code specific number defines the ROM bit pattern, I/O configuration, oscillator type, and generic part type to be used to satisfy the requirements of a particular customer purchase order. For further information on the ordering of mask ROM devices, the customer should refer to the 3870 Family Technical Manual.

## MK3870 FEATURES

- Available with $1 K, 2 K$, or $4 K$ bytes of mask programmable ROM memory
- 64 bytes scratchpad RAM
- Available with 64 bytes executable RAM
- 32 bits (4 ports) TTL compatible I/O
- Programmable binary timer Interval timer mode
Pulse width measurement mode
Event counter mode
- External interrupt input
- Crystal, LC, RC, or external time base options
- Low power (275 mW typ.)
- Single +5 volt supply


## MK38P70 FEATURES

- EPROM version of MK3870
- Piggyback PROM (P-PROM) ${ }^{\text {TM }}$ package
- Accepts 24 pin or 28 pin EPROM memories
- Identical pinout as MK3870
- In-Socket emulation of MK3870



## MK3870 BLOCK DIAGRAM



Figure 1

## PIN ASSIGNMENTS



## GENERAL DESCRIPTION

The MK3870 is a complete 8-bit microcomputer on a single MOS integrated circuit. The MK3870 can execute a set of more than 70 instructions, and is completely software compatible with the rest of the devices in the 3870 family. The MK3870 features $1-4 \mathrm{~K}$ bytes of ROM and optional additional executable RAM depending on the specific part type designated by a slash number suffix. The MK3870 also features 64 bytes of scratchpad RAM, a programmable binary timer, and 32 bits of $1 / 0$.

The programmable binary timer operates by itself in the interval timer mode or in conjunction with the external interrupt input in the pulse width measurement and the event counter modes of operation. Two sources of vectored, prioritized interrupt are provided with the binary timer and the external interrupt input. The user has the option of
specifying one of four clock sources for the MK3870 and MK38P70: Crystal, LC, RC, or external clock. In addition, the user can specify either a $\pm 10 \%$ power supply tolerance or a $\pm 5 \%$ power supply tolerance.

The MK38P70 microcomputer is the PROM based version of the MK3870. It is called the piggyback PROM (P-PROM) ${ }^{\text {TM }}$ because of its packaging concept. This concept allows a standard 24-pin or 28 pin EPROM to be mounted directly on top of the microcomputer itself. The EPROM can be removed and reprogrammed as required with a standard PROM programmer. The MK38P70 retains exactly the same pinout and architectural features as other members of the 3870 family. The MK38P70 is discussed in more detail in a later section.

## FUNCTIONAL PIN DESCRIPTION

$\overline{\mathrm{P} 0-0}-\overline{\mathrm{P} 0-7}, \overline{\mathrm{P} 1-0-\mathrm{P} 1-7}, \overline{\mathrm{P} 4-0}-\overline{\mathrm{P} 4-7}$, and $\overline{\mathrm{P} 5-0}-\overline{\mathrm{P} 5-7}$ are 32 lines which can be individually used as either TTL compatible inputs or as latched outputs.
$\overline{\text { STROBE }}$ is a ready strobe associated with I/O Port 4. This pin, which is normally high, provides a single low pulse after valid data is present on the P4-0--P4-7 pins during an output instruction.
$\overline{\text { RESET }}$ may be used to externally reset the MK3870. When pulled low the MK3870 will reset. When then allowed to go high the MK3870 will begin program execution at program location H 'OOO'.

EXT INT is the external interrupt input. Its active state is software programmable. This input is also used in conjunction with the timer for pulse width measurement and event counting.

XTL 1 and XTL 2 are the time base inputs to which a crystal, LC network, RC network, or an external single-phase clock may be connected. The time base network must be specified when ordering a mask ROM MK3870. The MK38P70 will operate with any of the four configurations.

TEST is an input, used only in testing the MK3870. For normal circuit function this pin may be left unconnected, but it is recommended that TEST be grounded. On MK38P70 devices, the TEST must be grounded.
$\mathrm{V}_{\mathrm{CC}}$ is the power supply input (single +5 v ).

## MK3870 ARCHITECTURE

The basic functional elements of the MK3870 are shown in Figure 1. A programming model is shown in Figure 2. The
architecture is common to all members of the 3870 family. All 3870 devices are instruction set compatible and differ only in amount and type of ROM, RAM, and I/O. The unique features of the MK3870 are discussed in the following sections. The user is referred to the 3870 Family Technical Manual for a thorough discussion of the architecture, instruction set, and other features which are common to all 3870 family devices.

## MK3870 MAIN MEMORY

There are four address registers used to access main memory. These are the Program Counter (PO), the Stack Register ( P ), the Data Counter (DC), and the Auxiliary Data Counter (DC1). The Program Counter is used to address instructions or immediate operands. The Stack Register is used to save the contents of the Program Counter during an interrupt or subroutine call. Thus, the Stack Register contains the return address at which processing is to resume upon completion of the subroutine or interrupt routine. The Data Counter is used to address data tables. This register is auto-incrementing. Of the two data counters, only Data Counter (DC), can access the ROM. However, the XDC instruction allows the Data Counter and Auxiliary Data Counter to be exchanged.

The graph in Figure 3 shows the amounts of ROM and executable RAM for every available slash number in the MK3870 pin configuration.

## EXECUTABLE RAM

The upper bytes of tıre address space in some of the MK3870 devices are RAM memory. As with the ROM memory, the RAM may be addressed by the PO and the DC address registers. The executable RAM may be addressed by all MK3870 instructions which address Main Memory.

## MK3870 PROGRAMMABLE REGISTERS, PORTS, AND MEMORY MAP



Figure 2

## MK3870 MAIN MEMORY

 SIZES AND TYPES BY SLASH NUMBERS

All devices contain 64 bytes of scratchpad RAM.

NOTE: Data derived from addressing any locations other than those within a part's specified ROM space or RAM space (if any) are not tested nor are the data guaranteed. Users should refrain from entering this area of the memory map.

Device	Scratchpad   RAM Size   (Decimal)	Address   Register Size   (PO, P, DC, DC1)	ROM   Size   (Decimal)	Executable   RAM Size
MK3870/20*	64 bytes	12 bits	2048 bytes	0 bytes
MK3870/22	64 bytes	12 bits	2048 bytes	64 bytes
MK3870/40	64 bytes	12 bits	4096 bytes	0 bytes
MK3870/42	64 bytes	12 bits	4032 bytes	64 bytes

*The MK3870/20 is equivalent to the original 3870 device in memory size; however, the original 3870 had an 11 -bit Address Register. The original 3870 with 11 -bit Address Register is available where required. Consult the section describing ROM Code Ordering Information for additional information.

Figure 3

Additionally, the MK3870 may execute an instruction sequence which resides in the executable RAM. Note this cannot be done with the scratchpad RAM memory, which is the reason the term "executable RAM" is given to this additional memory.

## I/O PORTS

The MK3870 provides four, 8 bit bidirectional Input/Output ports. These are ports $0,1,4,5$. In addition, the Interrupt Control Port is addressed as Port 6 and the binary timer is addressed as Port 7. The programming of Ports 6 and 7 and
the bidirectional I/O pin are covered in the 3870 Famil Technical Manual. The schematic of an $1 / \mathrm{O}$ pin an available output drive options are-shown in Figure 4.

An output ready strobe is associated with Port 4. This fla may be used to signal a peripheral device that the MK387 has just completed an output of new data to Port 4. Th strobe provides a single low pulse shortly after the outpt operation is completely finished, so either edge may be use to signal the peripheral. $\overline{\text { STROBE may also be used as a }}$ input strobe to Port 4 after completing the input operatior

## I/O PIN CONCEPTUAL DIAGRAM WITH OUTPUT BUFFER OPTIONS



Ports 0 and 1 are Standard Output type only.
Ports 4 and 5 may both be any of the three output options (mask programmable bit by bit)

$\overline{\text { RESET }}$ and EXT INT may have standard 6K $\Omega$ (typical) pull-up or may have no pull-up. (mask programmable).
$\overline{\text { RESET }}$ and EXT INT do not have internal pull up on the MK38P70.
Figure 4

## MK38P70 GENERAL DESCRIPTION

The MK38P70 is the EPROM version of the MK3870. It retains an identical pinout with the MK3870, which is documented in the section of this data sheet entitled "FUNCTIONAL PIN DESCRIPTION". The MK38P70 is housed in two packages which incorporate a 28 or 24 -pin socket located directly on top of the package. A number of standard EPROMs may be plugged into this socket.
The MK38P70 can act as an emulator for the purpose of verification of user code prior to the ordering of mask ROM MK3870 devices. Thus, the MK38P70 eliminates the need for emulator board products. In addition, several MK38P70s
can be used in prototype systems in order to test design concepts in field service before committing to high-volume production with mask ROM MK3870s. The compact size of the MK38P70/EPROM combination allows the packaging of such prototype systems to be the same as that used in production. Finally, in low-volume applications, the MK38P70 can be used as the actual production device.

Most of the material which has been presented for the MK3870 in this document applies to the MK38P70. This includes the description of the pin.configuration, architecture, programming model, and I/O ports. Additional information is presented in the following sections.

MK38P70 BLOCK DIAGRAM


Figure 5

## MK38P70 MAIN MEMORY

There are two basic versions of the MK38P70. These are the 97400 series and the 97500 series. The 97400 series parts have twelve bit address capability thus a total 4 K memory map like the MK3870 ROM devices. The 97500 series has 16 bit address capability. The 97400 series accepts 24 pin EPROMs, and the 97500 series accepts 28 pin EPROMs.

As can be seen from Figure 6, both the 97400 series and the 97500 series contain on-chip RAM in the upper portion of their memory maps and no on-chip ROM. Instead of on-chip ROM, address and dat lines are brought out to the 28 pin socket located directly on top of the 40 pin package so that external memory devices (principally EPROMs) are addressed.

By using an external EPROM, the 38P70 may be used to

## MK38P70 MAIN MEMORY MAP



MK38P70   TYPE	SCRATCHPAD   RAM SIZE   (DECIMAL)	ADDRESS   REGISTER   SIZE	EXTERNALLY   ADDRESSABLE   MEMORY   SIZE	INTERNAL   EXECUTABLE   RAM   SIZE
97400 Series	64 bytes	12 bits	4032 bytes	64 bytes
97500 Series	64 bytes	16 bits	65472 bytes	64 bytes

MK38P70 devices have no internal ROM memory.

Figure 6
emulate the 3870 ROM devices. The 97400 series can directly emulate the following devices.

> MK3870/10
> MK3870/20
> MK3870/22
> MK3870/42

The MK3870/40 cannot be emulated exactly by the 97400 series because the 97400 devices have the 64 bytes of RAM in the upper memory map while the 3870/40 provides ROM memory in this address space.

Besides the difference in the size of the address registers, 97500 series can also emulate many of the 3870 ROM devices. This difference in address capability should not cause any functional difference as long as normal programming practice is used. That is, as long as address roll-over or automatic truncation is not used. One such usage would be an end around branch (branching forward at upper memory to get to lower memory). Another case would be in using automatic truncation of data loaded into the 12 bit address registers on the ROM devices. For example, to access some particular location (O3FF hex for example) via the data counter, one could load that address into DC using the DCl instruction. The instruction

DCI '73FF'
would cause 3FF to be loaded into the DC of the 3870 RON device because the upper bits of the DC (bits 12-15) do no exist. If that instruction was followed by the LM instruction the data stored at location 3FF would be obtained. Th 97500 series devices would not truncate the 73FF addres to 3FF. As previously stated, this type of programming i generally not done and thus the 97500 devices can be use to emulate the following devices directly.

MK3870/10
MK3870/20
MK3870/40

The 97500 series can also be used to emulate th remainder of the 3870 devices as long as one accounts fo the difference in the location of the RAM memory. In th 97500 devices, RAM is located at FFCO through FFFF While in 3870 devices this RAM (when it exists) is located OFCO through OFFF. When this minor difference accounted for, the 97500 series will also emulate th following devices.

MK3870/22
MK3870/42

## MK38P70 EPROM SOCKET

A 28 or 24 pin socket is located on top of the 40 pin package, depending on the specific device. A 28 pin top socket array was used so that the same package could be used for all 38P70 devices but could accommodate both 24 pin and 28 pin. Due to pin-out differences between various common memory devices, several different versions of the MK38P70 are provided with differing signals connected to particular pins on the socket. Figure 7 shows the various options available. When 24 pin memories are used, they are inserted so that pin 1 of the memory device is plugged into pin 3 of the array (the 24 pin memory is lower justified in the 28 pin array).

## MK38P70 I/O PORTS

For custom 3870 ROM codes, the user is given a bit by bit selection of I/O options on I/O ports 4 and 5. Additionally, the user has the option of selecting whether or not either RESET or EXT INT has an internal pull-up resistor. This flexibility allows about 172 million possible variations in I/O port and RESET and EXT INT configurations. Obviously, it is not practical to offer this variety in an "off the shelf" product like the 38P70. Thus a few variations are offered which still give some flexibility to the designer. The available I/O options are also shown in Figure 7.

MK38P70 VERSIONS

DEVICE	PORT 4   I/O TYPE	PORT 5   I/O TYPE	SUPPORTS THESE   MEMORY DEVICES	TOP 28 PIN   SOCKET ARRAY   WIRING VERSION
MK97400	TTL	TTL	$2716,2516,2532,2758$   MK34000 ROM	
MK97410	Open   Drain	Open   Drain	2716, 2516, 2532,2758   MK34000 ROM	A
MK97501	TTL	TTL	2764, 2732, MK37000 ROM   MK34000 ROM	A
MK97521	TTL	Open   Drain	2764,2732,   MK37000 ROM MK34000 ROM	B


$\mathrm{V}_{\text {cc }}$	-1	28	
$V_{\text {ss }}$	- 2	27	
$A_{7}$	- 3 (1)*	(24) 26	
$A_{6}$	- 4 (2)	(23) 25	
$A_{5}$	- 5 (3)	(22) 24	
$A_{4}$	- 6 (4)	(21) 23	
$A_{3}$	- 7 (5)	(20) 22	
$A_{2}$	- 8 (6)	(19) 21	
$A_{1}$	- 9 (7)	(18) 20	
$A_{0}$	- 10 (8)	(17) 19	
$\mathrm{D}_{0}$	- 11 (9)	(16) 18	
$\mathrm{D}_{1}$	- 12 (10)	(15) 17	
$\mathrm{D}_{2}$	- 13 (11)	(14) 16	
$\mathrm{V}_{\text {ss }}$	- 14 (12)	(13) 15	

VERSION A


Figure 7

## 28 PIN SOCKET SIGNALS

The 40 package pins are the identical signals that are provided with the MK3870 ROM devices. In addition to these 40 inputs and outputs, various other signals are implemented on the 38P70 die which are available for connection to the top socket. Depending upon the particular version, some subset of these signals are connected to the 28 or 24 pin socket. These signals are described below.

## $A_{0}-A_{11}$ (97400 Series) <br> $A_{0}$ - $A_{15}$ ( 97500 Series)

These are the address buses. They are always outputs and a new address will appear on this bus during each machine cycle. Normally this is the address of op-codes or operands, but there are machine cycles wherein no op-code or operand is required by the CPU. During these cycles, an address is still provided but the data that may be read from that address is not used.

## $D_{0}-D_{7}$ (97400 and 97500 Series)

This is the bi-directional data bus for the external memory. Normally these lines are high impedance inputs. During op-code or operand reads, they receive data from the external memory and conduct it onto the internal 38P70 data bus. During those cycles wherein the operation is strictly internal to the 38P70, they remain hi-z inputs. Data may be presented to the 38P70 by an external memory device but it is not conducted onto the internal data bus. This includes machine cycles wherein op-codes or operands are read from the internal executable RAM. During the operand write machine cycle that occurs in the ST (store) instruction, they become push-pulloutputs to conduct data to be written out to the external memory. However, if data is written to the internal executable RAM, this transaction is strictly internal and thus the data bus lines remain in their hi-z state. It, therefore, depends upon the address as to whether this bus becomes ân active output bus or remains high impedance. If the address of the operand is not within the internal executable RAM space when a ST instruction is executed, $D_{0}-D_{7}$ will become active outputs at the appropriate time, or else they will remain in the hi-z state. The 97400 devices do not provide a RD (read) control signal, nor is this signal provided on all versions of the 97500 series. Thus if a ST is executed with the operand address being that of external memory, that memory may access data and drive it onto $D_{0}-D_{7}$ while the 38P70 is also driving data onto $D_{0}-D_{7}$ and a bus conflict will result. This condition should be avoided; thus the user should note whether or not his external memory will drive $D_{0}-D_{7}$ in this event. If it will drive $D_{0}-D_{7}$, an $S T$ with that operand address should be
avoided. In general, one would not normally execute a writ to a memory location where there is ROM or EPRON memory instead of RAM. However, some 3870 users hav found the ST instruction useful even in devices like th 3870/20 which have no executable RAM. In this case causes the data counter to increment (to perhaps totaliz some event) but otherwise does nothing as one cannc write the internal ROM. No internal conflicts will occur one attempts to write a 3870 ROM location. Most 9750 versions place a $\overline{\mathrm{RD}}$ (read, active low) signal on the to| socket pin which matches the $\overline{O E}$ (output enable, active lon input on most memories. Since $\overline{\mathrm{RD}}$ will remain high durin an operand write, the external memory would not have it: data outputs enabled and no conflict will occur.

## MREQ (97500 Series Only)

This is an active low output which occurs during eact machine cycle. It goes high at the start of each cycle ther goes low for the remainder of the cycle.

## $\overline{\text { RD }}$ (97500 Series Only)

This is the active low read output which goes high at the start of each cycle then goes low if data (op-codes ol operands) are to be read from external memory. During cycles wherein a strictly internal operation occurs, $\overline{\mathrm{RD}}$ wil remain high. It will also remain high during an operand write cycle.

## $\overline{\text { WR }} \mathbf{( 9 7 5 0 0}$ Series Only)

This is the active low write control output. It is normally higt but will go low then return high during an operand write the address is not that of internal executable RAM.

## FETCH (97500 Series Only)

This is the active low fetch status signal which signals tha an op-code fetch occurred during that cycle. It is generate for use of the 97500 as a development system component

It will go low during all op-code fetches whether fron internal or external memory.

## 38P70 EXTERNAL MEMORY TIMING

The following Figures show the relative waveforms for the signals used to interface with external memory. The timing parameters are labeled. Their values are given in the A.C Characteristics section of the Electrical Specifications.

## 97400 SERIES TIMING

Read Cycle

= Actively driven by 38P70 but not necessarily in valid state.
$=$ Not actively driven by the 38P70. May be actively driven by external memory but does not have to be in a valid state or may be placed in hi-z state by external memory.

Figure 8

## 97500 SERIES TIMING



## Figure 9

97500 SERIES TIMING (Continued)


Figure 9

## 97500 SERIES TIMING (Continued)



Figure 9

## 3870 TIME BȦSE OPTIONS

The 3870 contains an on-chip oscillator circuit which provides an internal clock. The frequency of the oscillator circuit is set from the external time base network. The time base for the $\mathbf{3 8 7 0}$ may originate from one of four sources:

1) Crystal
2) LC, Network
3) RC Network
4) External Clock

The type of network which is to be used with the mask ROM MK3870 must be specified at the time when mask ROM devices are ordered. However, the MK38P70 may operate with any of the four configurations so that it may emulate any configuration used with a mask ROM device.

The specifications for the four configurations are given in the following text. There is an internal 26 pF capacitor between XTL 1 and GND and an internal 26 pF capacitor between XTL 2 and GND. Thus, external capacitors are not necessarily required. In all external clock modes the external time base frequently is divided by two to form the internal PHI clock.

## CRYSTAL SELECTION

The use of a crystal as the time base is highly recommended as the frequency stability and reproduction from system to system is unsurpassed. The 3870 has an internal divide by two to allow the use of inexpensive and widely available TV Color Burst Crystals ( 3.58 MHz ). Figure 11 lists the required crystal parameters for use with the 3870. The Crystal Mode time base configuration is shown in Figure 10.

Through careful buffering of the XTL1 pin it may be possible to amplify this waveform and distribute it to other devices. However, Mostek recommends that a separate active device (such as a 7400 series TTL gate) be used to oscillate the crystal and that the waveform from that oscillator be buffered and supplied to all devices, including the 3870 , if a single crystal is to provide the time base for more than just a single 3870.

While a ceramic resonator may work with the 3870 crystal oscillator, it was designed specifically to support the use of this component. Thus, Mostek does not support the use of a ceramic resonator either through proper testing, parametric specification, or applications support.

## LC NETWORK

The LC time base configuration can be used to provide a les expensive time base for the 3870 than can be provided wit a crystal. However, the LC configuration is much les accurate than is the crystal configuration. The LC time bas configuration is shown in Figure 12. Also shown in th figure are the specified parameters for the LC component: along with the formula for calculating the resulting tim base frequency. The minimum value of the inductor whic is required for proper operation of the LC time base networ is 0.1 millihenries. The inductor must have a Q factor whic is no less than 40 . The value of $C$ is derived from $C$ externa the internal capacitance of the $3870, \mathrm{C}_{\mathrm{XTL}}$, and the stra

## CRYSTAL MODE CONNECTION



Figure 10

## CRYSTAL PARAMETERS

a) Parallel resonance, fundamental mode AT-Cut
b) Shunt capacitance $\left(C_{0}\right)=7 \mathrm{pf}$ max.
c) Series resistance $\left(\mathrm{R}_{\mathrm{S}}\right)=$ See table
d) Holder $=$ See table below.

Frequency	Series Resistance	Holder
$\mathrm{f}=2-2.7 \mathrm{MHz}$	Rs $=300$ ohms max	HC-6
		HC-33
$\mathrm{f}=2.8-4 \mathrm{MHz}$	Rs $=150$ ohms max	HC-6
		HC-18*
		HC-25*
		HC-33

*This holder may not be available at frequencies near the lower end of this range.

Figure 11

## LC MODE CONNECTION



Figure 12
capacitances, $\mathrm{C}_{\mathrm{S} 1}$ and $\mathrm{C}_{\mathrm{S} 2} \cdot \mathrm{C}_{\mathrm{XTL}}$ is the capacitance looking into the internal two port network at XTL1 and XTL2. $\mathrm{C}_{\mathrm{XTL}}$ is listed under the "Capacitance" section of the Electrical Specifications. $\mathrm{C}_{\mathrm{S} 1}$ and $\mathrm{C}_{\mathrm{S} 2}$ are stray capacitances from XTL1 to ground and from XTL2 to ground, respectively. C external should also include the stray shunt capacitance across the inductor. This is typically in the 3 to 5 pf range and significant error can result if it is not included in the frequency calculation.

Variation in time base frequency with the LC network can arise from one of four sources: 1) Variation in the value of the inductor. 2) Variation in the value of the external capacitor. 3) Variation in the value of the internal capacitance of the 3870 at XTL1 and XTL2 and 4) Variation in the amount of stray capacitance which exists in the circuit. Therefore, the actual frequency which is generated by the LC circuit is within a range of possible frequencies, where the range of frequencies is determined by the worst case variation in circuit parameters. The designer must select component values such that the range of possible frequencies with the LC mode does not go outside of the specified operating frequency range for the 3870.

## RC CLOCK CONFIGURATION

The time base for the $\mathbf{3 8 7 0}$ may be provided from an RC network tied to the XTL2 pin, when XTL1 is grounded. A schematic picturing the RC clock configuration is shown in Figure 13. The RC time base configuration is intended to provide an inexpensive time base source for applications in which timing is not critical. Some users have elected to tune each unit using a variable resistor or external capacitor thus reducing the variation in frequency. However, for increased time base accuracy, Mostek recommends the use of the

Crystal or LC time base configuration. Figure 14 illustrates a curve which gives the resulting operating frequency for a particular RC value. The x-axis represents the product of the value of the resistor times the value of the capacitor. Note that three surves are actually shown. The curve in the middle represents the nominal frequency obtained for a given value of RC. A maximum curve and a minimum curve for different types of 3870 devices are also shown in the diagram.

The designer must select the RC product such that a frequency of less than 2 MHz is not possible, taking into account the maximum possible RC product and using the minimum curve shown in Figure 14 below. Also, the RC product must not allow a frequency of more than 4 MHz , taking into account the minimum possible $R$ and $C$ and using the Maximum curve shown below. Temperature induced variations in the external components should be considered in calculating the RC product.

Frequency variation from unit to unit owing to switching speed and level at constant temperature and $V_{C C}=+$ or -5 percent.

Frequency variation due to $\mathrm{V}_{\mathrm{CC}}$ with all other parameters constant with respect to $+5 \mathrm{~V}=+7$ percent to -4 percent on all devices.

Frequency variation due to temperature with respect to 25 C (all other parameter! constant) is as follows:

PART \# VARIATION
$\begin{array}{ll}387 X-00,-05 & +6 \text { percent to }-9 \text { percent } \\ 387 \mathrm{X}-10,-15 & +9 \text { percent to }-12 \text { percent }\end{array}$

## RC MODE CONNECTION

RC MODE


MINIMUM R $=\mathbf{4 K} \Omega$


C = 26.5 pF $\pm \mathbf{2 . 6 p F}+$ Cexternal

Figure 13

FREQUENCY VS. RC


Figure 14

Variations in frequency due to variations in RC components may be calculated as follows:

Maximum $R C=(R \max )\left(C\right.$ external max $+C_{X T L}$ max $)$
Minimum $R C=(R \min )\left(C\right.$ external $\left.\min +C_{X T L} \min \right)$
Typical RC = (R typ) (C external typ +

$$
\frac{\left.\left\{C_{x T L} \max +C_{X T L} \min \right\}\right)}{2}
$$

Positive Freq. Variation = RC typical - RC minimum RC typical

Negative Freq. Variation $=$ RC maximum - RC typical due to RC Components

RC typical

Total frequency variation due to all factors:

387X-00, -05
$=+18$ percent plus positive frequency variation due to RC components

387X-10, -15
$=+21$ percent plus positive frequency variation due to RC components
$=-18$ percent minus negative frequency variation due to RC components
$=-21$ percent minus negative frequency variation due to RC components

Total frequency variation due to $\mathrm{V}_{\mathrm{CC}}$ and temperature of a unit tuned to frequency at $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}, 25 \mathrm{C}$

$$
\begin{array}{rlr} 
& 387 X-00,-05 & 387 X-10,-15 \\
= & +13 \text { percent } & =+16 \text { percent }
\end{array}
$$

## EXTERNAL CLOCK CONFIGURATION

The connection for the external clock time base configuration is shown in Figure 15. Refer to the DC Characteristics section for proper input levels and current requirements.

Refer to the Capacitance section of the appropriate 3870 Family device data sheet for input capacitance.

## EXTERNAL MODE CONNECTION



Figure 15

ELECTRICAL SPECIFICATIONS MK3870, MK38P70

OPERATING VOLTAGES AND TEMPERATURES
Dash   Number   Suffix
Operating   Voltage   $\mathbf{V}_{\mathbf{C C}}$
-00
-05

See Ordering Information for explanation of part numbers.

MAXIMUM RATINGS*

MAXIMUM RATINGS	-00, -05	-10, -15
Temperature Under Bias .	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin With Respect to Ground (Except open drain pins and TEST)	-1.0 V to +7 V	-1.0 V to +7 V
Voltage on TEST with Respect to Ground	-1.0 V to +9 V	-1.0 V to +9 V
Voltage on Open Drain Pins With Respect to Ground	-1.0 V to +13.5 V	-1.0 V to +13.5 V
Power Dissipation	1.5W	1.5 W
Power Dissipation by any one I/O pin	60 mW	60 mW
Power Dissipation by all 1/O pins	600 mW	600 mW

"Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}$ within specified operating range.
I/O power dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SIGNAL	SYM	PARAMETER	-00,-05		-10,-15		UNIT	NOTES
			MIN	MAX	MIN	MAX		
$\begin{aligned} & \text { XTL1 } \\ & \text { XTL2 } \end{aligned}$	$t_{0}$   ${ }^{t} \mathrm{ex}(\mathrm{H})$   tex(L)	Time Base Period, all clock modes   External clock pulse width high External clock pulse width low	$\begin{gathered} 250 \\ 90 \\ 100 \end{gathered}$	$\begin{aligned} & 500 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 500 \\ & 390 \\ & 390 \end{aligned}$	ns ns ns	$4 \mathrm{MHz}-2 \mathrm{MHz}$
$\boldsymbol{\Phi}$	${ }^{\text {t }}$ ¢	Internal $\Phi$ clock	2 C		$2 \mathrm{t}_{0}$			
WRITE	${ }^{t} w$	Internal WRITE Clock period	$\begin{aligned} & 4 \mathrm{t} \Phi \\ & 6 \mathrm{t} \Phi \end{aligned}$		$\begin{aligned} & 4 t \Phi \\ & 6 t \Phi \end{aligned}$			Short Cycle Long Cycle
1/0	$\mathrm{t}_{\mathrm{d} /} / \mathrm{O}$	Output delay from internal WRITE clock	0	1000	0	1200	ns	50pF plus one TTL load
	$\mathrm{t}_{\mathrm{sl}} / \mathrm{O}$	Input setup time to internal WRITE clock	1000		1200		ns	
$\overline{\text { STROBE }}$	t/0-s	Output valid to STROBE delay	$\begin{gathered} 3 t \Phi \\ -1000 \end{gathered}$	$\begin{gathered} 3 \mathrm{t} \Phi \\ +250 \end{gathered}$	$\begin{array}{\|c\|} \hline 3 \mathrm{t} \Phi \\ -1200 \end{array}$	$\begin{gathered} 3 \mathrm{t} \Phi \\ +300 \end{gathered}$	ns	$\begin{aligned} & 1 / \mathrm{O} \text { load }= \\ & 50 \mathrm{pF}+1 \mathrm{TL} \text { load } \end{aligned}$
	$\mathrm{t}_{\text {SL }}$	STROBE low time	$\begin{gathered} 8 \mathrm{t} \Phi \\ -250 \end{gathered}$	$\begin{array}{r} 12 \mathrm{t} \Phi \\ +250 \end{array}$	$\begin{gathered} 8 \mathrm{t} \Phi \\ -300 \end{gathered}$	$\begin{array}{r} 12 t \Phi \\ +300 \end{array}$	ns	STROBE load= 50pF + 3TTL loads
RESET	${ }_{\text {tr }}$	RESET hold time, low	$\begin{array}{r} 6 t \Phi \\ +750 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 6 t \Phi \\ +1000 \\ \hline \end{array}$		ns	
	${ }^{\text {tr PPOC }}$	$\overline{\text { RESET }}$ hold time, low for power clear	$\begin{array}{\|c\|c\|} \hline \text { power } \\ \text { supply } \\ \text { time } \\ \text { time } 0.0 \end{array}$		$\begin{array}{\|l\|} \hline \text { powor } \\ \text { suppoly } \\ \text { time } \\ \text { time } .15 \\ \hline \end{array}$		ms	
EXT INT	${ }_{\text {teH }}$	EXT INT hold time in active and inactive state	$\begin{array}{\|c\|} \hline 6 t \Phi \\ +750 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 6 t \Phi \\ +1000 \\ \hline \end{array}$		ns	To trigger interrupt
			2t $\Phi$		2t¢		ns	To trigger timer

AC CHARACTERISTICS FOR MK38P70 Signals brought to top 28 pin socket.
$T_{A}, V_{C C}$ within specified operating range.
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)
97400 Series (See Note 3)

SYMBOL	PARAMETER	-00, -05		-10, -15		UNIT	CONDITION
		MIN	MAX	MIN	MAX		
$t_{\text {aas }}$	External memory required access time from $\mathrm{A}_{0}-\mathrm{A}_{11}$ stable	$\begin{gathered} 3 t \Phi \\ -850 \end{gathered}$		$\begin{array}{\|c\|} \hline 3 t \Phi \\ -850 \end{array}$		ns	$\begin{aligned} & C_{L} A_{0}-A_{11}= \\ & 50 \mathrm{pF} \end{aligned}$

97500 Series (See Note 3)

SIGNAL	SYMBOL	PARAMETER	-00, -05		-10, -15		UNITS	CONDITION
			MIN	MAX	MIN	MAX		
$\overline{\text { MREO }}$	$\mathrm{T}_{\mathrm{hm}}$	$\overline{\text { MREQ }}$ high time	$\begin{array}{\|c} 2 \mathrm{t} \Phi \\ -100 \end{array}$		$\begin{gathered} 2 t \Phi \\ -100 \end{gathered}$		ns	$\text { Load }=50 \mathrm{pF}+1$   TTL load
$\overline{\mathrm{RD}}$	$\mathrm{T}_{\mathrm{hr}}$	$\overline{\mathrm{RD}}$ high time	$\begin{gathered} 2 \mathrm{t} \Phi \\ -100 \end{gathered}$		$\begin{gathered} 2 \mathrm{t} \Phi \\ -100 \end{gathered}$		ns	Load $=50 \mathrm{pF}+1$   TTL load
$\overline{W R}$	$\mathrm{T}_{\mathrm{w}}$	$\overline{\mathrm{WR}}$ low from MREQ low	$\begin{array}{r} 3 \text { to } \\ -200 \end{array}$	$\begin{array}{r} 3 \text { to } \\ +100 \end{array}$	$\begin{array}{r} 3 \text { to } \\ -200 \end{array}$	$\begin{array}{r} 3 \text { to } \\ +100 \end{array}$	ns	$\text { Load }=50 \mathrm{pF}+1$   TTL load
	$\mathrm{T}_{\mathrm{wl}}$	$\overline{\text { WR }}$ low time	$\begin{gathered} \text { to } \\ -100 \end{gathered}$	$\begin{gathered} \text { to } \\ +100 \end{gathered}$	$\begin{gathered} \text { to } \\ -100 \end{gathered}$	$\begin{gathered} \text { to } \\ +100 \end{gathered}$	ns	
$\overline{\text { FETCH }}$	$\mathrm{T}_{\mathrm{ft}}$	$\overline{\mathrm{FETCH}}$ stable prior to rising MREQ	650	650	650	650	ns	Load $=50 \mathrm{pF}+1$ TTL Load
	$\mathrm{T}_{\text {fh }}$	$\overline{\text { FETCH }}$ hold time after MREQ high	20		20		ns	Load $=20 \mathrm{pF}$
$A_{0}-A_{15}$	$\mathrm{T}_{\mathrm{a}}$	Address stable prior to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{MREO}}$ falling	$\begin{gathered} \mathrm{t} \Phi \\ -400 \end{gathered}$		$\begin{gathered} t \Phi \\ -400 \end{gathered}$		ns	Load $=50 \mathrm{pF}+1$ TTL load
	$\mathrm{T}_{\text {ah }}$	Address hold time after $\overline{M R E Q}, \overline{R D}$, or $\overline{W R}$ high	15		15		ns	Load $=20 \mathrm{pF}$
$D_{0}-D_{7}$	$\mathrm{T}_{\text {ass }}$	External memory required access time from	$\begin{array}{\|c\|} \hline \text { 3t } \Phi \\ -850 \end{array}$		$\begin{gathered} 3 \mathrm{t} \Phi \\ -850 \end{gathered}$		ns	
	$\mathrm{T}_{\text {mas }}$	External memory required access time from $\overline{\text { MREO }}$ or $\overline{R D}$ low	$\begin{gathered} 2 t \Phi \\ -450 \end{gathered}$		$\begin{gathered} 2 t \Phi \\ -450 \end{gathered}$		ns	
	$\mathrm{T}_{\mathrm{dhr}}$	Required data hold time after $\overline{\text { MREO}}$ rising	0		0		ns	
	$\mathrm{T}_{\text {da }}$	Data bus active after $\overline{\mathrm{MREQ}}$ or $\overline{\mathrm{RD}}$ high	t $\Phi$		t $\Phi$			
	$\mathrm{T}_{\mathrm{dw}}$	Data stable prior to $\overline{\mathrm{WR}}$ falling	$\left\lvert\, \begin{gathered} 5 t \Phi \\ -2250 \end{gathered}\right.$		$\begin{gathered} 5 t \Phi \\ -2250 \end{gathered}$		ns	Load $=50 \mathrm{pF}+1$ TTL load
	$\mathrm{T}_{\text {dhr }}$	Data hold after $\overline{W R}$ high	15		15		ns	Load $=20 \mathrm{pF}$
	$\mathrm{T}_{\text {dfw }}$	Data bus delay to float after MREQ rising		200		200	ns	

## CAPACITANCE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
All Part Numbers

SYM	PARAMETER	MIN	MAX	UNIT	NOTES
$C_{\text {IN }}$	Input capacitance		10	pF	unmeasured   pins grounded
C $_{\text {XTL }}$	Input capacitance; XTL1, XTL2	23.5	29.5	pF	

## DC CHARACTERISTICS

$T_{A}, V_{C C}$ within specified operating range
I/O power dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SYMBOL	PARAMETER	-00, -05		-10, -15		UNIT	DEVICE
		MIN	MAX	MIN	MAX		
${ }^{\text {cc }}$	Average Power Supply Current		85		110	mA	MK3870/10 Outputs Open
			85		110	mA	MK3870/20   Outputs Open
			94		125	mA	MK3870/22   Outputs Open
			100		130	mA	MK3870/40   Outputs Open
			100		130	mA	MK3870/42   Outputs Open
			125		150	mA	MK38P70/X02 No EPROM, Outputs Open

DC CHARACTERISTICS (cont.)

SYMBOL	PARAMETER	-00, -05		-10, -15		UNIT	DEVICE
		MIN	MAX	MIN	MAX		
$\mathrm{P}_{\mathrm{D}}$	Power Dissipation		400		525	mW	MK3870/10   Outputs Open
			400		525	mW	MK3870/20   Outputs Open
			440		575	mW	MK3870/22   Outputs Open
			475		620	mW	MK3870/40   Outputs Open
			475		620	mW	MK3870/42   Outputs Open
			600		750	mW	MK38P70/X02   No EPROM, Outputs Open

DC CHARACTERISTICS (cont.)
$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}$ within specified operating range, I/O power dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SYM	PARAMETER	-00,-05		-10,-15		UNIT	CONDITIONS
		MIN	MAX	MIN	MAX		
$V_{\text {IHEX }}$	External Clock input high level	2.4	5.8	2.4	5.8	V	
$\mathrm{V}_{\text {ILEX }}$	External Clock input low level	-. 3	. 6	-. 3	. 6	v	
IIHEX	External Clock input high current		. 100		130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IHEX }}=\mathrm{V}_{\text {CC }}$
ILLEX	External Clock input low current		-100		-130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {ILEX }}=\mathrm{V}_{\text {SS }}$
VIHI/O	Input high level, I/O pins	2.0	5.8	2.0	5.8	V	Standard pull-up
		2.0	13.2	2.0	13.2	v	Open drain (1)
VIHR	Input high level, $\overline{\text { RESET }}$	2.0	5.8	2.2	5.8	V	Standard pull-up
		2.0	13.2	2.2	13.2	V	No Pull-up
$\mathrm{V}_{\text {IHEI }}$	Input high level, EXT INT	2.0	5.8	2.2	5.8	v	Standard pull-up
		2.0	13.2	2.2	13.2	V	No Pull-up
$\mathrm{V}_{\text {IL }}$	Input low level	-. 3	. 8	-. 3	. 7	v	(1)
IIL	Input low current, all pins with standard pull-up resistor		-1.6		-1.9	mA	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
L	Input leakage current, open drain pins, and inputs with no pull-up resistor		$\begin{gathered} +10 \\ -5 \end{gathered}$		$\begin{gathered} +18 \\ -8 \end{gathered}$	${ }_{\mu \mathrm{A}}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OH}$	Output high current pins with standard pull-up resistor	$\begin{array}{\|r\|} \hline-100 \\ -30 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline-89 \\ -25 \\ \hline \end{array}$		$\mu \mathrm{A}$   $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=3.9 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OHDD}$	Output high current, direct drive pins	$\begin{gathered} \hline-100 \\ -1.5 \end{gathered}$	-8.5	$\begin{array}{\|l\|} \hline-80 \\ -1.3 \\ \hline \end{array}$	-11	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V} \end{aligned}$
${ }^{\text {IOHS }}$	$\overline{\text { STROBE }}$ Output High current	-300		-270		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
IOL	Output low current	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
lols	STROBE Output Low current	5.0		4.5		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$

DC CHARACTERISTICS FOR MK38P70
Signals brought to top 25 pin socket
$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}$ within specified range
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)
97400, 97500 Series

SYMBOL	PARAMETER	-00, -05		-10, -15		UNIT	CONDITION
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\mathrm{IH}}$	Input high level ( $\mathrm{D}_{0}-D_{7}$ )	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & +.3 \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & +.3 \end{aligned}$	V	$D_{0}-D_{7} \text { in } \mathrm{Hi}-\mathrm{z}$   input mode
$\mathrm{V}_{\text {IL }}$	Input low level ( $\left.D_{0}-D_{7}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & -.3 \end{aligned}$	. 8	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & -.3 \end{aligned}$	. 7	V	
$I_{L}$	Input Leakage ( $\mathrm{D}_{0}-D_{7}$ )		$\pm 10$		$\pm 15$	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OH}}$	Output high level (all outputs and $D_{0}-D_{7}$ in output mode)	2.4		2.4		V	
$\mathrm{V}_{\mathrm{OL}}$	Output low level (all outputs and $D_{0}-D_{7}$ in output mode)		. 4		4	V	
${ }^{\text {OH }}$	Output source current (all outputs and $D_{0}-D_{7}$ in output mode)	-100		-90		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output sink current (all outputs and $D_{0}-D_{7}$ in output mode)	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=.4 \mathrm{~V}$
$\mathrm{R}_{\text {cc }}$	Package resistance from device pin 40 to top socket $V_{\text {CC }}$ pin(s)					$\Omega$	Pin 28, 27, or 26 when $V_{c c}$
						$\Omega$	Pin 1 if $\mathrm{V}_{\mathrm{cc}}$
						$\Omega$	Pin 23 if $\mathrm{V}_{\text {cc }}$
$\mathrm{R}_{\text {SS }}$	Package resistance from device pin 20 to top socket $\mathrm{V}_{\mathrm{SS}}$ pin(s)					$\Omega$	Pin 14 when $\mathrm{V}_{\text {SS }}$
						$\Omega$	Pin 2 or 22 when $\mathrm{V}_{\mathrm{SS}}$
${ }^{\text {cc }}$	Supply current available from top socket $\mathrm{V}_{\mathrm{CC}}$ pin(s)		-185		-185	mA	El pin 28 27, 26 when $V_{c c}$
			-20		-20	mA	Pin 1 if $\mathrm{V}_{\mathrm{CC}}$
			-10		-10	mA	Pin 23 if $\mathrm{V}_{\mathrm{CC}}$
Iss	Supply current available from top socket $\mathrm{V}_{\mathrm{SS}}$ pin(s)		190		190	mA	Pin 14 if $\mathrm{V}_{\text {SS }}$
			2		2	mA	Pin 2 if $\mathrm{V}_{S S}$
			2		2	mA	Pin 22 if $\mathrm{V}_{\text {SS }}$

## NOTES:

1. $\overline{\operatorname{RESET}}$ and EXT INT have internal Schmit triggers giving minimum .2 V hysteresis.
2. Power dissipation for $1 / O$ pins is calcualted by $\Sigma\left(V_{C C}-V_{\mid L}\right)\left(\|_{\mathrm{IL}} \mid\right)=\Sigma\left(\mathrm{V}_{\mathrm{CC}}{ }^{-}\right.$ $\left.\mathrm{V}_{\mathrm{OH}}\right)\left(\left|I_{\mathrm{OH}}\right|\right)=\Sigma\left(\mathrm{V}_{\mathrm{OH}}{ }^{\prime \prime} \mathrm{I}_{\mathrm{OL}}\right)$
3. AC timing for external memory signals on 38P70 are measured from either the $\mathbf{8}$ or $\mathbf{2 . 0}$ volt points as applicable. High means at or above 2.0 volts. Low
means at or below .8 volts. Stable means high or low as appropriate. Rising means signal is no longer below $\mathbf{8}$ volts. Falling means signal is no longer above 2.0 volts. Hold times on outputs assume full rated load on reference signal and 20 pf load on specified signal. For 97400 series, only applicable specification is Taas as no other signals are available to reference to other than $A_{0}-A_{11}$

## TIMER AC CHARACTERISTICS

Definitions:
Error = Indicated time value - actual time value
$t \mathrm{psc}=\mathbf{t} \Phi \times$ Prescale Value

## Interval Timer Mode

Single interval error, free running (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 6 t \Phi$
Cumulative interval error, free running (Note 3)
Error between two Timer reads (Note 2) ..... $\pm($ tpsc $+t \Phi)$
Start Timer to stop Timer error (Notes 1, 4) ..... $+t \Phi$ to - (tpsc $+t \Phi)$
Start Timer to read Timer error (Notes 1, 2) ..... $-5 t \Phi$ to - (tpsc $+7 t \Phi)$
Start Timer to interrupt request error (Notes 1, 3) ..... $2 t \Phi$ to $-8 t \Phi$
Load Timer to stop Timer error (Note 1) $+t \Phi$ to - (tpsc $+2 t \Phi)$
Load Timer to read Timer error (Notes 1, 2) ..... $-5 t \pm$ to $-(\operatorname{tpsc}+8 t \pm)$
Load Timer to interrupt request error (Notes 1, 3) ..... $-2 t \Phi$ to $-9 t \Phi$
Pulse Width Measurement Mode:
Measurement accuracy (Note 4) ..... $+t \Phi$ to $-(t p s c+2 t \Phi)$
Minimum pulse width of EXT INT pin ..... $2 t \Phi$
Event Counter Mode:
Minimum active time of EXT INT pin ..... $2 t \Phi$
Minimum inactive time of EXT INT pin ..... $2 t \Phi$
Notes:1. All times which entail loading, starting, or stopping the Timer are referenced from the end of the last machine cycle of the OUT or OUTS instruction.2. All times which entail reading the Timer are referenced from the end of the last machine cycle of the in or iNS instruction.3. All times which entail the generation of an interrupt request are referenced from the start of the machine cycle in which the appropriate interrupt request latch isset. Additional time may elapse if the interrupt request occurs during a privileged or multicycle instruction.
4. Error may be cumulative if operation is repetitively performed.

## AC TIMING DIAGRAM

External Clock


Intemal $\Phi$ Clock


## I/O Port Output



RESET


EXT INT


Note: All AC measurements are referenced to $\mathrm{V}_{\mathrm{IL}}$ max., $\mathrm{V}_{\mathrm{IH}}$ min., $\mathrm{V}_{\mathrm{OL}}(.8 \mathrm{v})$, or $\mathrm{V}_{\mathrm{OH}}$ (2.Ov).
Figure 16

INPUT/OUTPUT AC TIMING


Figure 17

STROBE SOURCE CAPABILITY
(TYPICAL AT V ${ }_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 18


STROBE SINK CAPABILITY
(TYPICAL AT V ${ }_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Figure 19


STANDARD I/O PORT SOURCE CAPABILITY (TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

## Figure 20



DIRECT DRIVE I/O PORT SOURCE CAPABILITY
(TYPICAL AT $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 21
3 tzmox


I/O PORT SINK CAPABILITY
(TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 22


MAXIMUM OPERATING TEMPERATURE VS. I/O POWER DISSIPATION
Figure 23

## ORDERING INFORMATION

There are two types of part numbers for the 3870 family of devices. The generic part number describes the basic device type, the amount of ROM and Executable RAM, the desired package type, temperature range, and power supply tolerance. For each customer specific code, additional

information defining I/O options and oscillator options will be combined with the information described in the generic part number to define a customer/code specific device order number. Note: the specific device order number will be used to differentiate between the MK3870/20 with 12-bit Address Registers and the original 3870 with 11 -bit Address Register, as mentioned in an earlier section.

## GENERIC PART NUMBER

An example of the generic part number is shown below.
$0=5 \mathrm{~V} \pm 10 \%$
$5=5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
$\mathbf{P}=$ Ceramic
$N=$ Plastic
$0=$ None
$2=64$ bytes
$2=2 \mathrm{~K}$ bytes
$4=4 K$ Bytes

## DEVICE ORDER NUMBER

An example of the device order number is shown below.


The Customer/Code specific number defines the ROM bit pattern, I/O configuration, oscillator type, and generic part type to be used to satisfy the requirements of a particular customer purchase order. For further information on the ordering of mask ROM devices, the customer should refer to the 3870 Family Technical Manual.

Examples of a 38P70 device order number is shown below.
MK 97400 R 00

$0=5 \mathrm{~V} \pm 10 \%$
$5=5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
$\mathrm{P}=$ Ceramic
$\mathrm{N}=$ Plastic
$0=5 \mathrm{~V} \pm 10 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
R = Piggyback
See Figure 7
See Figure 7

## MK3873 FEATURES

- Available with 2K byte mask programmable ROM
- Software compatible with 3870 instruction set
- 64 byte scratchpad RAM
-64 byte Executable RAM
- 29 bits (4 ports) TTL compatible parallel I/O
- Serial Input/Output port

External or Internal Serial Port Clock
Transmit and Receive registers double buffered Internal Baud rate generator
Synchronous or Asynchronous serial I/O
Data rates to 9600 bits per second (ASYNC)
I/O pins dedicated as SERIAL IN, SERIAL OUT, and
SERIAL CLOCK
Variable duty cycle waveform generation

- Vectored interrupts
- Programmable binary timer

Internal timer mode
Pulse width measurement mode
Event counter mode

- External Interrupt
- Crystal, LC, RC or external time base options available
- Low power (325 mW typ.)
- Single +5 V power supply
- Pinout compatible with the 3870 Family members


## MK38P73 FEATURES

- EPROM version of MK3873
- Piggyback PROM (P-PROM) ${ }^{\text {TM }}$ package
- Accepts 24 pin or 28 pin EPROM memories
- Identical pinout as MK3873
- In-Socket emulation of MK3873

NMOS

CASES

MK3873

MK38P73


## MK3873 BLOCK DIAGRAM



Figure 1

PIN ASSIGNMENTS

\begin{tabular}{|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& x \times 11 \longrightarrow 15 \\
& x+12 \longrightarrow 2
\end{aligned}
$$ \& \multirow{16}{*}{MK3873} \& $\square^{40}$ - $\mathrm{v}_{\mathbf{c c}}$ \& PIN NAME \& DESCRIPTION \& TYPE <br>
\hline  \& \& $\square^{38} 3^{37} ¢$ EXT INT \& $\overline{\mathrm{PO}} \mathbf{0}, \overline{\mathrm{PO}} \mathbf{7}$ \& 1/O Port 0 \& Bidirectional <br>
\hline $\underline{\mathrm{PO}} \mathrm{O} \longrightarrow 5 \mathrm{SH}$ \& \& ] $36 \leftrightarrow$ SACLK \& $\overline{\text { P1-3- }} \overline{\text { P1-7 }}$ \& 1/O Port 1 \& Bidirectional <br>
\hline P0.3 $\longrightarrow 6{ }^{\text {a }}$ \& \& ³5-s 51 \&  \& 1/O Port 4 \& Bidirectional <br>
\hline TTROEE $¢ 7$. \& \& 34

33 $\rightarrow$ SO \& P5-0 - P5-7 \& 1/O Port 5 \& Bidirectional <br>
\hline P4.1 $¢ 9$. \& \& 煺 $32 \rightarrow$ P5.0 \& STROBE \& Ready Strobe \& Output <br>
\hline  \& \& $31 \rightarrow$ P5.2 \& EXT INT \& External Interrupt \& Input <br>
\hline $\overline{\text { P4.3 }} \longrightarrow 11 \mathrm{C}$ \& \& $\square 30 \leftrightarrow$ P5.3 \& RESET \& External Reset \& Input <br>
\hline $84.4 \leftrightarrow 12 \square$ \& \& $\mathrm{P} 29 \rightarrow$ P5.4 \& SI' \& Serial Input \& Input <br>
\hline  \& \& $\mathrm{P}^{28} \rightarrow$ P5.5 \& SO \& Serial Output \& Output <br>
\hline  \& \& 27 \& SRCLK \& Serial Clock \& Bidirectional <br>
\hline ¢. $7 \rightarrow 16$ - \& \& 25 $\rightarrow$ ¢1.7 \& TEST \& Test Line \& Input <br>
\hline P0.6 $\rightarrow 17 \square$ \& \& ] $24 \rightarrow$ P. 6 \& XTL 1, XTL 2 \& Time Base \& Input <br>
\hline ¢0.5 $\rightarrow 18$ - \& \& $\bigcirc 23 \leftrightarrow$ P. 5 \& $V_{\text {CC }}$, GND \& Power Supply \& Input <br>
\hline $\overline{P 0.4} \leftrightarrow 19 \square$ \& \& $\square^{22} \rightarrow$ P. 4 \& \& Lines \& <br>
\hline GND $\rightarrow 20$ L \& \& $\square 21 \sim$ TEST \& \& \& <br>
\hline
\end{tabular}



## GENERAL DESCRIPTION

The MK3873 single chip microcomputer introduces a major addition to the 3870 microcomputer family, a serial input/output port. This serial port is capable of either synchronous or asynchronous serial data transfers. The heart of the serial port is a 16 -bit Shift Register that is doublebuffered on transmit and receive. The Shift Register clock source can be either the internal baud rate generator or an external clock. An end-of-word vectored interrupt is generated in either transmit or receive mode so that the CPU overhead is only at the word rate and not at the serial bit rate. This serial channel can be used to provide a low-cost data channel for communicating between 3873 microcomputers or between a 3873 and another host computer. The serial port is also very flexible so that it could be used for other purposes such as an interface to external serial logic or serial memory devices.

The MK3873 retains commonality with the 3870 family of single chip ricicrocomputers. It has 2048 bytes of mask ROM for program storage, and 64 bytes of scratchpad random-access memory. Certain versions also include up to 64 bytes of Executable RAM. Also, the 3870's sophisticated programmable binary timer is included and provides for
system flexibility by operating in 3 different modes. The MK3873 has a large number of parallel I/O lines available to the user. Twenty nine pins of the MK3873 are dedicated to parallel I/O. In addition, three pins are dedicated to the serial I/O port. These pins provide input, output, and clock for the serial port. The serial clock pin can be driven externally or programmed to provide a $50 \%$ duty cycle TTL compatible serial clock. No additional CPU instructions are necessary for use with the serial port. Thus, the MK3873 is instruction set compatible with the rest of the 3870 family.

The MK38P73 microcomputer is the PROM based version of the MK3873 single-chip microcomputer. The MK38P73 is called the Piggyback PROM (P-PROM) ${ }^{\mathrm{TM}}$ microcomputer because of a new packaging concept. This concept allows a 24 or $\mathbf{2 8}$ pin EPROM to be mounted directly on top of the microcomputer itself. The EPROM can then be removed and reprogrammed as required with a standard PROM programmer. The MK38P73 retains exactly the same pinout and architectural features as other members of the MK3873 Family. The MK38P73 is discussed in more detail in a later section of this document.

## FUNCTIONAL DESCRIPTION

$\overline{\mathrm{P} 0-0}-\overline{\mathrm{P} 07}, \overline{\mathrm{P} 1-3}-\overline{\mathrm{P} 1-7}, \overline{\mathrm{P} 4-0}-\overline{\mathrm{P} 4-7}, \overline{\mathrm{P} 5-0}-\overline{\mathrm{P} 5-7}$ are 29 bidirectional I/O lines which can either be used as TTL compatible inputs or latch outputs.

SI - SERIAL IN is a TTL compatible Schmitt Trigger input pin for either serial synchronous or asynchronous data.

SO - SERIAL OUT is an output line for either serial synchronous or asynchronous data.

SRCLK is the clock for the serial port operations. It can be configured by software to be an input or output depending upon whether an internal baud rate or external clock is desired. It has a Schmitt trigger input and can be used to drive up to $3 T \mathrm{~L}$ loads.

STROBE is a ready strobe associated with I/O Port 4. This pin which is normally high provides a single low pulse after valid data is present on the $\overline{\mathbf{P 4}-0}$ - $\overline{\text { P4-7 }}$ pins during an output instruction. STROBE can be used to drive up to 3 TTL loads.
$\overline{\text { RESET }}$ may be used to externally reset the MK3873. When pulled low the MK3873 will reset. When allowed to go high the MK3873 will begin program execution at program location $\mathrm{H}^{\prime} 000^{\prime}$.

EXT INT is the external interrupt input. Its active state is software programmable as described in the 3870 Family Technical Manual. This input is also used in conjunction with the timer for pulse width measurement and event counting.

XTL 1 and XTL 2 are the time base inputs ( 2 MHz to 4 MHz ) to which a crystal, LC network, RC network, or an external single-phase clock may be connected. The time base mode must be specified when submitting an order for a mask ROM MK3873. The MK38P73 will operate with any of the four configurations.

## MK3873 ARCHITECTURE

The architecture of the MK3873 is identical to that of the rest of the devices in the 3870 family, with the exception of the serial port logic. The serial port logic is shown in the block diagram of the MK3873 (Figure 1). Addressing of the serial port logic is accomplished through 1/O instructions. Operation and programming of the serial port is thoroughly discusssed below. A programming-model of the MK3873 is shown in Figure 2. For a more complete discussion of the 3870 family architecture, the user is referred to the $\mathbf{3 8 7 0}$ Family Technical Manual.

## MAIN MEMORY

The main memory section on the MK3873 consists of a combination of ROM and executable RAM.

There are four registe:s associated with the main memory section. These are the Program Counter (PO), the Stack Register ( P ), the Data Counter (DC), and the Auxiliary Data Counter (DC1). The Program Counter is used to address instructions during program execution. $P$ is used to save the contents of PO during an interrupt or subroutine call. Thus,
$P$ contains the return address at which processing is to resume upon completion of the subroutine or the interrupt routine. The Data Counter (DC) is used to address data tables. This register is auto-incrementing. Of the two data cquanters, only DC can access memory directly. However,
the XDC instruction allows DC and DC1 to be exchanged. The length of the PO, P, DC, and DC1 registers for the MK3873/22 device is listed in the table shown in Figure 3. The graph and table in Figure 3 also shows the amounts of ROM and executable RAM.

MK3873 PROGRAMMABLE REGISTERS, PORTS, AND MEMORY MAP


Figure 2

## MK3873 MAIN MEMORY SIZE AND TYPE



This device contains 64 bytes of Scratchpad RAM.
*Data derived from addressing these intermediate locations is not tested nor is it guaranteed. Users should refrain from entering this area of the memory map.

Device	Scratchpad   RAM Size   (Decimal)	Address Register   Size   PO, P, DC, DC1	ROM   Size   (Decimal)	Executable   RAM   Size
MK3873/22	64 bytes	12 bits	2048 bytes	64 bytes

Figure 3

## EXECUTABLE RAM

The upper bytes of the total address space in certain MK3873 devices is RAM memory. As with the ROM memory the RAM may be addressed by the PO and DC address registers. The executable RAM may be accessed by all 3870 instructions which address main memory indirectly through the Data Counter (DC) register. Additionally, the MK3873 may execute an instruction sequence which resides in the Executable RAM. Note that this cannot be done with the scratchpad RAM memory, which is the reason the term "Executable RAM" is given to this additional memory.

## I/O PORTS

On the MK3873, 29 lines are provided for bidirectional, parallel I/O. These lines are addressable as faur parallel I/O ports at locations $0,1,4$, and 5 . Note that Ports 0,4 , and 5 are 8 bits wide, while Port 1 contains only 5 bits of $1 / O$ in bit positions 3, 4,5,6, and 7. Bits 0-2 on Port 1 are not available for use as $1 / O$ port pins or as storage elements. The remaining three pins are used to provide the serial 1/O function. A conceptual schematic of a bidirectional I/O port pin and available output drive options are shown in Figure 4.

As in all other 3870 family devices, an output ready strobe is
associated with Port 4. This flag may be used to signal a peripheral device that the MK3873 has just completed an output of new data to port 4. The strobe provides a single low pulse shortly after the output operation is completely finished, so either edge may be used to signal the peripheral. STROBE may also be used as an input strobe by doing a dummy output of H 'OO' to port 4 after completing the input operation.

## SERIALIIO OPERATION

The Serial Input/Output Port consists of a serial Shift Register, baud rate generator and control logic as shown in Figure 1. Together these elements provide the MK3873 with a half duplex asynchronous, or a full duplex synchronous, variable bit length serial port. Data is shifted into or out of the shift register at a rate determined by the internal baud rate generator or external clock. An end-of-word interrupt is generated in transmit or receive mode so that the CPU overhead is only at the word rate and not the serial bit rate.

## SHIFT CLOCK

The internal clock is used to clock data transfers into and out of the $\mathbf{1 6}$ bit Shift Register. It is also used as an input to an

I/O PIN CONCEPTUAL DIAGRAM WITH OUTPUT BUFFER OPTIONS


OUTPUT BUFFER OPTIONS


Ports 0 and 1 are Standard Output type only.
Ports 4 and 5 may both be any of the three output options (mask programmable bit by bit)
The STROBE output is always configured similar to a Direct Drive Output except that it is capable of driving 3 TTL loads.
$\overline{\text { RESET }}$ and EXT INT may have standard 6K $\Omega$ (typical) pull-up or may have no pull-up (mask programmable). These two inputs have Schmitt trigger inputs with a minimum of 0.2 volts of hysteresis.

Serial In is a Schmitt trigger input with a minimum of 0.2 V hysterisis.
Serial Out (SO) is the Standard Output type.
SRCLK output is capable of driving 3 TTL loads.

Figure 4
internal counter which keeps track of the number of bits which have been shifted into or out of the Shift Register. Input data is sampled on the SERIAL INPUT, (SI), line on the rising edge of the SHIFT clock and is clocked into the most significant bit of the shift register. Output data is gated to the SERIAL OUTPUT line on the falling edge of the internal SHIFT clock.

The clock is derived from the SRCLK pulse. The SRCLK pulse may be generated from the internal baud rate generator or it may be programmed as an input. The internal SHIFT clock operates at the same frequency as the SRCLK pulse when the Sync mode is selected, and at a rate which is divided by 16 $(\div 16)$ from the SRCLK pulse when the Async mode is selected.

## SHIFT REGISTER

The Serial Port Shift Register is a 16 -bit serial to parallel, parallel to serial shift register. This register is addressed and double-buffered by ports $E$ and $F$ as shown in Figure 5A.

## PORT D SERIAL PORT CONTROL REGISTER

The Serial Port Control register is write only and is addressed as Port D. The bit assignment is pictured in Figure 5C. The function of each bit is described below.

SERIAL PORT REGISTERS
TRANSMIT BUFFER


## N2, N1, No - WORD LENGTH SELECT

These bits select one of the eight possible word lengths which are available with the MK3873 serial port. The serial port will shift the programmed number of bits through the Shift Register. If the Transmit mode is selected, data will be shifted out of the least significant bit (SRO) of the Shift Register to the Serial Out line (SO) while data is simultaneosly sampled at the Serial Input (SI) line and shifted into the most significant bit (SR15) of the Shift Register. When the Receive mode is selected, data will be sampled at SI and shifted in, but the SO line will be disabled such that it remains in a marking condition (Logic " 1 "). After the programmed number of bits have been shifted, the serial port logic will generate an end-of-word condition. This end-of-word condition will cause an interrupt if the serial port INTERRUPT ENABLE bit has been set.

It should be noted that the word values have been chosen so that the MK3873 can be programmed to send and receive a wide variety of asynchronous serial codes with various combinations of start and stop bits. Shown in Figure 6 is a table which gives the word length.

Values which would be programmed into the MK3873 Serial Port Register for Baudot, ASCII and 8 bit binary codes in an asynchronous word format are shown in the table of Figure 6. Shown in the table are word length values for various combinations of data bits, start and stop bits, and parity. It can be seen that the MK3873 serial port can accommodate many different word lengths of asynchronous or synchronous data.

## START DETECT

When the START DETECT bit is enabled the serial port will not shift data through the Shift Register until a valid start bit is detected at the SI input pin. The Start Detect mode is operative only when the Async mode has been selected by programming bit 2 of the Serial Port Control Register to a logic " 0 ". By selecting the Async mode, the internal SHIFT clock frequency is divided by 16 from the clock frequency at the SRCLK pin. (Recall that SRCLK can be an input or an output depending on whether the internal baud rate generator or the external clock is selected). When the START DETECT bit is set, the serial port logic looks for a high to low transition on the Sl input. Until this transition occurs, the internal SHIFT clock is held low and no data is shifted in through the shift register. Once the transition is sensed, the SI input will be sampled on every SRCLK pulse for seven clock periods. If the logic level remains at zero on the SI input for each of the seven clock periods, the serial port logic will begin shifting data into the Shift Register on the eighth SRCLK pulse. Data will be shifted in at the $\div 16$ or SHIFT clock rate until the number of bits which have been programmed into the word length select have been shifted in. Once the programmed number of bits have been shifted in, the start detect cire sitry will be rearmed and will begin searching for the next high-to-low transition on SI. This operation is pictured in the example shown in Figure 7.

When the START DETECT bit is disabled, data is continuously shifted through the Shift Register. An end-of-

## ASYNCHRONOUS WORD LENGTHS

DATA   WORD	\# OF   BITS	START   BITS	STOP   BITS	PARITY	WORD   LENGTH (BITS)
BAUDOT	5	1	1	No	7
	5	1	2	No	8
	5	1	1	Yes	8
ASCII	5	1	2	Yes	9
	7	1	1	No	9
	7	1	2	No	10
	7	1	1	Yes	10
	7	1	2	Yes	11
	8	1	1	No	10
	8	1	2	11	
	8	1	1	No	11
	8	1	2	Yes	12

Figure 6

## MK3873 SERIAL PORT START BIT DETECTION



SHIFT


		I		1			I		1		I		1		1
BIT	00	1	01	1	02	03	1	N-1	1	N	1	00	1	01	1
COUNT		1	01	1	02	03	1		I		1	0	1		1
		1		1			1		1		1		1		1

where $\mathbf{N}$ is the word length value selected by programming bits $\mathbf{N} 2-\mathrm{NO}$ in the serial port control register

Figure 7
word condition will be generated each time the programmed number of bits has been shifted into or out of the Shift Register. A serial port interrupt will be generated when the end of word condition occurs if it has been enabled.

## SEARCH

The SEARCH bit is enabled by programming it to a logic " 1 ".

When enabled, the SEARCH bit causes the serial port logic to generate an interrupt at every bit time if the serial port interrupt has been enabled. This interrupt will occur regardless of whether the Transmit or Receive mode has been selected and whether the Synchronous or Asynchronous mode has been selected. The Search mode is usually used for recognition of a sync cłaracter in synchronous serial data transmission. The MK3873 serial port does not automatically detect sync characters.

## SYNC/ASYNC

The SYNC/ $\overline{\operatorname{ASYNC}}$ bit is used to select either the Synchronous mode of operation or the Asynchronous mode of operation. In the Synchronous mode of operation data is shifted through the Shift Register at a rate which is $\div 1$ the rate of SRCLK. When the Synchronous mode is selected, the start bit detect circuitry cannot be enabled, even if the START DETECT bit is programmed to a " 1 ". In the Asynchronous mode (SYNC/ $\overline{\text { ASYNC }}=0$ ) the internal SHIFT clock operates at a rate which is $\div 16$ the rate of SRCLK

## XMIT/ $\overline{\text { REC }}$

The XMIT/ $\overline{\operatorname{REC}}$ bit is used to select either the Transmit or Receive modes of operation. When programmed to a " 1 " XMIT is selected and the serial port will shift data on the SO line as well as shift data into the SI input. Transmitted data will be enabled on the SO output on the falling edge of the internal SHIFT clock. When the Receive mode is selected (by programming XMIT $/ \overline{\operatorname{REC}}=0$ ), data will be clocked into the Shift Register on the rising edge of SHIFT, as it is when the Transmit mode is enabled, but data will be disabled from being shifted out on Serial Out. Serial Out will be held at a marking, or logic " 1 ", condition.

## SERIAL PORT INTERRUPT ENABLE

By programming this bit to a " 1 ", the serial port interrupt will be enabled. A serial port interrupt may then occur when an end-of-word condition is generated. Program control will be vectored to one of two locations upon a serial port
 programmed. If the Transmit mode has been selected by programming XMIT/ $\overline{\operatorname{REC}}$ bit to $a$ " 1 ", then program control will be vectored to location EO (Hex). For the Receive mode (XMIT/ $\overline{\operatorname{REC}}=0$ ) program control will be vectored to 60 (Hex) when the serial port interrupt occurs. With the addition of the Serial Port Interrupt, the MK3873 has three sources of interrupt. If these three interrupts were to occur simultaneously, priority between them would be such that they would be serviced in the following order:

1) Serial Port
2) Timer
3) External Interrupt

## STATUS REGISTER

Reading port D of the MK3873 by performing an Input or Input Short (IN or INS) instruction will load the contents of the Serial Port Status Register into the Accumulator. The two bits which make up the Status Register are shown in Figure 5B. The operation of these two bits is described below:

READY - The meaning of the READY flag depends on whether the Transmit or Receive mode is selected. When the Transmit mode has been selected, the READY flag is set when a Transmit Buffer empty condition occurs. This means that any previous data which may have been loaded
into the Transmit Buffer register pair has been transferred into the Shift Register. Loading either byte of the Transmit Buffer will clear the READY flag until the time that the Transmit Buffer register pair is loaded into the Shift Register during an end-of-word condition

In the Receive mode (XMIT $/ \overline{\operatorname{REC}}=0$ ), the READY flag is used to indicate a Receive Buffer full condition. This means that a word of the programmed length has been shifted in and has been loaded into the receive buffer register pair. Reading one of the ports $E$ or $F$ which make up the receive buffer register pair will clear the READY flag. The READY flag will remain a 0 until the next word is completely shifted in and loaded into the receive buffer.

OVFL/UNDFL is like the READY flag; the meaning of OVFL/UNDFL depends on the programming of the XMIT/ $\overline{\operatorname{REC}}$ bit in the Serial Port Control Register. When the Transmit mode has been selected OVFL/UNDFL is used to indicate a transmitter underflow condition.

A transmitter underflow condition can occur as follows: Assume that the Transmit mode is selected. Suppose that a word is loaded into the Transmit Buffer register. The serial port logic will load the contents of the Transmit Buffer into the Shift Register and will begin to shift the word out on the SO pin. When the contents of the Transmit Buffer are loaded into the Shift Register, the serial port logic will signal the Transmit Buffer empty condition by setting the READY flag to a " 1 ". When the word in the Shift Register is completely shifted out, an end-of-word condition will be generated. The serial port logic will then check to see if new data has been loaded into the Transmit Buffer. If it has not, the OVFL/UNDFL flag will be set, indicating that the serial port logic has run out of data to send. The OVFL/UNDFL flag can be used to signal an error condition to the firmware, or it can be used to signal that all data has been cleared out of the Shift Register for the purposes of line turnaround.

The OVFL/UNDFL flag which, in this case, represents a transmitter underflow condition, is reset by reading the Status Register.

When the Receive mode is programmed, OVFL/UNDFL is used to signal that the Receive Buffer has overflowed. This overflow condition can occur as follows: Suppose that a serial word is shifted in, generating an end-of-word condition. The serial port logic will load the contents of the Shift Register into the Receive Buffer, and will set the READY flag to a " 1 " to indicate that the Receive Buffer is full. When the next word being received is completely shifted in, generating the next end-of-word condition, the serial port logic will check to see if the Receive Buffer has been read by examining the state of the READY flag. If the READY flag $=0$, then the previous word has already been read from the Receive 'uffer by the software and the serial port logic will load the current word into the Receive Buffer and will again set the READY flag. If the READY flag $=1$, then the previous word has not been read from the Receive Buffer. The serial port logic will load the new word into the

Receive Buffer, destroying the previous word. This action is signalled by the serial port logic setting the OVFL/UNDFL to a " 1 " signalling a receive buffer overflow condition. In this case reading the status register also clears the OVFL/UNDFL flag.

## BAUD RATE CONTROL REGISTER

Port C is designated as the Baud Rate Control register. Four bits, 0-3, are used to select nine different internal baud rates or an external clock. When an internal baud rate is programmed, the SRCLK output is generated at a frequency which is divided from the MK3873's time base frequency. The SRCLK frequency can be calculated by dividing the time base frequency by the divide factor shown in Figure 8 for the bit pattern which is programmed into bits C3-CO. Also shown in Figure 7 is the programming of bits C3-CO to obtain a set of standard baud rates when a 3.6864 MHz crystal is used as a time base.

## BAUD RATE CONTROL PORT PORT C WRITE ONLY

PORTC WRITE
Shift Clock Rate

$\triangle \times \times$ c3	C2	C1	Co	SRCLK   Divide Factor	SYNC	ASYNC
1	0	1	1	$\div 24$	153.6 kbs	9600 bps
1	0	1	0	$\div 48$	76.8 kbs	4800 bps
1	0	0	1	$\div 96$	38.4 kbs	2400 bps
1	0	0	0	$\div 192$	19.2 kbs	1200 bps
0	1	1	1	$\div 384$	9600 bps	600 bps
0	1	1	0	$\div 768$	4800 bps	300 bps
0	1	0	1	$\div 1536$	2400 bps	150 bps
0	1	0	0	$\div 2096$	1758.8 bps	110 bps
0	0	1	1	$\div 3072$	1200 bps	75 bps
0	0	0	0	Ext	lock Mode	

Figure 8

When any of the internal baud rates are selected, pin 36 becomes an output port pin. This pin is capable of driving three standard TTL inputs and provides a square wave output from the frequency selected in port $C$. The SYNC/ $\overline{A S Y N C}$ bit in the Serial I/O Control register has no effect on the output clock rate. The output will always be $\div 1$ directly from the baud rate generator.

If all zeros are loaded into this port, the External Clock mode is selected. Pin 36 becomes an input. Any TTL compatible square wave input can be used to generate the clock for the serial port.

## TRANSMIT AND RECEIVE BUFFERS

The Receive Buffer registers are two eight bit registers which are addressed as ports $E$ and $F$ (Hex) and are read only. The Receive Buffer registers may be read at any time. The Transmit Buffer registers are also two 8-bit registers which are write only and addressed as ports E and F (Hex).

In the Receive mode, the contents of the 16 bit Shift Register are transferred to the Receive Buffer Register pair when a complete word has been shifted in. Bits SR15-SR8
of the Shift Register are loaded into bits $7-0$ of port E while bits SR7-SRO are loaded into bits 7-0 of Port F.

When entering the Transmit mode, the first data transfer from the Transmit Buffer to the 16 bit Shift Register won't occur until a 1 word time delay after entering Transmit Mode.

In the Receive mode, no transfers between the Transmit Buffer and the 16 bit Shift Register can occur.

The serial port does not automatically right justify incoming data, nor does it insert or strip start and stop bits from an asynchronous data word. Therefore, it is usually necessary to right justify incoming data read from the Receive Buffer registers in software through shift instructions, as well as strip start and stop bits if an asynchronous data format is being used. Likewise, in transmitting an asynchronous data word, it is usually necessary to insert start and stop bits in software into the 16 bit word which is to be loaded in two halves into the Transmit Buffer register.

## RESET

The reset circuit on the MK3873 is used to initialize the device to a known condition either during the course of program execution or on a power on condition. This section discusses the effect of RESET on the serial port logic. A more complete description of $\overline{\text { RESET }}$ may be found in the 3870 Family Technical Manual.

Upon reset, both the serial port control register (port D ) and the Baud Rate Control register (port C) are loaded with zeroes. This action sets the serial port control logic in the following state:

N2, N1, NO (word length) $=4$ bits
START DETECT disabled
SEARCH disabled
Asynchronous Receive mode
Serial port interrupt disabled
External Clock mode (SRCLK = 1).
Ports E and F are undefined

After the first control word is written to the Serial Port Control Register which selects an internal clock mode, the SRCLK will become an output and will remain high for one-half of a clock period as programmed into port C. It will then go low and produce a clock output waveform with the selected frequency.

## ASYNCHRONOUS RECEIVE OPERATION

Figure 7 illustrates the timing for an example using the serial port in the Asynchronous mode. When operating in this mode, the Seria' Port Control Register should be programmed for receive (XMIT/ $\overline{\operatorname{REC}}=0$ ) and the START DETECT bit should be enabled. Also, the Async mode should be selected, which allows the start detect circuitry to operate and sets the internal SHIFT clock at a rate which is divided by $16(\div 16)$ from the SRCLK rate. Upon selecting the

Async mode and the START DETECT bit, the internal SHIFT clock is held low until a negative transition occurs on the SI pin. After a valid edge has been detected (see the START DETECT bit operation section) the SHIFT clock will go high and data will be shifted in at the middle of each bit time. When the programmed number of bits have been shifted in, an end-of-word condition is generated and a serial port receive interrupt will occur if it has been enabled.

After the falling edge of SHIFT following the end-of-word interrupt, the start detect circuitry will be enabled in preparation for the next word. Thus, if a start bit is present immediately following the time when the start detect circuitry is enabled, SHIFT Clock will again go high approximately one bit-time after the rising edge of SHIFT which clocked in the last bit of the preceeding word and caused the end-of-word interrupt. In other words. SHIFT can go high again on the eighth SRCLK pulse as soon as the start detect circuitry is rearmed.

The Shift Register may be read before the next end-of-word condition; otherwise, a receiver overrun error will occur. For a 9600 bps data rate, this would require reading the Receive Buffer within $N \times 104 \mu$ s from the time that the end-of-word condition is generated, where $N$ is the number of bits in the data word.

The example in Figure 7 shows the timing required for asynchronous data reception from a device such as a teletype. Within this data stream are start, data and stop bits. A typical format requires 1 start bit, 8 data bits and 2 stop bits for a total of 11 bits. All of these bits will be residing in the 16 bit Shift Register when the end-of-word interrupt is generated. It is, therefore, necessary to strip the start and stop bits from the data.

## SYNCHRONOUS RECEIVE OPERATION

For synchronous operation, the START DETECT bit should not be enabled and the XMIT/ $\overline{R E C}$ bit should be programmed to a zero. Also the Sync mode should be enabled so that the internal SHIFT clock is divided by 1 , or is equivalent to, SRCLK. Once a control word is written to port D specifying START DETECT $=0$, Receive mode, and Sync mode, then the Serial Port will continuously shift data into the MSB of the upper half of the Shift Register at the SRCLK rate and will generate an end-of-word condition when the programmed number of bits have been shifted in.

An illustration of synchronous receive timing is shown in Figure 9. This diagram is a synchronous receive sequence for a word which is $N$ bits in length, where $N$ corresponds to the number of bits which have been programmed into the Serial Port Control Register. Note the relationship of SHIFT clock, the synchronous data stream, and the bit count. Since the START DETECT bit is not enabled, the serial port logic will continuously shift data in and generate end-of-word conditions at regular intervals. When the end-of-word condition occurs, a serial port receive interrupt occurs if it has been enabled, and the contents of the Shift Register will be loaded into the Receive Buffer. The serial port logic will set the READY flag in the Serial Port Status Register, indicating that the receive buffer is full. Since the serial port is double-buffered on receive, the program has entire word time to read the Receive Buffer. At 9600 bps this corresponds to a word time of $N \times 104 \mu \mathrm{~s}$, where N is the number of bits in a word.

Note that if a new control word is written to port $D$ during the time that a serial word is shifted in, the bit count will be reset.

## SYNCHRONOUS TRANSMIT OR RECEIVE TIMING



Figure 9

When using the Synchronous Receive mode on the MK3873, it is usually necessary to establish word synchronization in the data stream. The SEARCH bit, when enabled, causes the serial port logic to interrupt on each rising edge of SHIFT so that the data stream can be examined on a bit by bit basis. When the last bit of a sync word is found, the Search mode can be disabled and the serial port logic will shift in data and interrupt at the word rate.

## ASYNCHRONOUS TRANSMIT OPERATION

The Asynchronous Transmit mode of operation is initiated by setting the XMIT/ $\overline{\operatorname{REC}}$ bit to a " 1 ", and by programming the SYNC/ $\overline{\operatorname{ASYNC}}$ bit to a " 0 ". Also, there must be an SRCLK pulse by selecting an internal or external source for
 a " 1 ", there will be a 1 word length delay prior to the actual transfer of the first word from the Transmit Buffer to the 16 bit Shift Register. Serial data will then be shifted to the right on each rising edge of the internal SHIFT clock, and each new bit in the data stream will be enabled onto the SERIAL OUTPUT pin (SO) at the time of the falling edge of the internal SHIFT clock.

As mentioned, one word time delay is generated between the time that the Transmit mode is initiated by programming $X M I T / \overline{R E C}=1$ and the time that the contents of the Transmit Buffer are transferred into the Shift Register. This word time delay is generated internally to the MK3873 by counting the number of SHIFT clock pulses which correspond to the number of bits programmed into the word length select section of the Serial Port Control Register (N2, N1, NO). Therefore, the word time delay is equivalent to the time it takes to shift a complete serial data word out of the Shift Register. The same word time delay will result if data had been loaded prior to programming the XMIT/ $\overline{\operatorname{REC}}$ bit to a " 1 ". As mentioned in the "START DETECT" bit description, the internal SHIFT clock is disabled when this bit is programmed to a " 1 ". Since the serial port logic counts SHIFT clock pulses to generate the word time delay, the Transmit Buffer contents will never be transferred to the Shift Register and shifted out when the START DETECT bit is enabled. Also, the Transmit Buffer contents cannot be loaded into the Shift Register when XMIT $/ \overline{\text { REC }}$ bit $=0$.

When the initial serial data word has been transferred into the Shift Register, the READY flag is set in the Serial Port Status Register which is used to indicate the Transmit Buffer is empty. A transmit interrupt will be generated if the INTERRUPT ENABLE bit has been set in the Serial Port Control Register, and program control will be vectored to location EO (hex). When operating the serial port in a polled environment with the serial port interrupt disabled, the READY bit can be used as a flag which indicates that new data may be loaded into the Transmit Buffer. In an interrupt driven software configuration, new data may be loaded into the Transmit Buffer at the beginning of the serial port interrupt service routine.

INPUT pin(SI) is sampled and shifted into the Shift Register. However, since the START DETECT bit must be disabled during a transmit sequence, there is no way of establishing bit synchronization on any incoming serial data. Therefore, in the Asynchronous mode, the serial port can only be used in a half-duplex configuration.

After a block of data has been sent, it is sometimes useful for the program to know when the last serial word has been sthifted out of the shift register. This is especially useful when operating the MK3873 with a bidirectional halfduplex transmission line. Once the block of serial data has been completely shifted out of the port, then it is usually desirable to reverse the direction of the line so that data may be received.

One way of determining when the last word has been shifted out of the Shift Register is through the use of the OVFL/UNDFL status bit in the Serial Port Status Register. The sequence would take place as follows: The program loads the Transmit Buffer with the last serial data word which is to be sent out either when the "READY" bit is set or during a transmit interrupt service routine. Loading the Transmit Buffer clears the READY flag. At the next end-ofword condition, the last serial data word is transferred from the Transmit Buffer into the Shift Register, which sets the READY flag once again. At this point the program would not load any more data into the Transmit Buffer and the READY flag will remain set. When the last word is completely shifted out of the Shift Register, the serial port logic will check to see if any new data has been loaded into the Transmit Buffer register pair. When it determines that there is no new data in the Transmit Buffer, the serial port logic will set the OVFL/UNDFL bit in the serial port status register and will return the SERIAL OUTPUT pin (SO) to a marking condition (logic " 1 "). The SERIAL OUTPUT pin (SO) is always returned to a marking condition on transmitter underflow when the ASYNC mode is selected. Since the OVFL/UNDFL bit is set when the last serial data word has completely been sent out, it can be used as a signal to indicate the end of transmission and that the direction of the transmission line may be set for receive.

## SYNCHRONOUS TRANSMIT OPERATION

The Synchronous Transmit mode of operation is selected by programming bit 2 (XMIT/ $\overline{\operatorname{REC}}$ ) of the Serial Port Control register to a " 1 " and setting the SYNC/ $\overline{A S Y N C}$ bit to a " 1 "

Figure 9 illustrates serial output timing relationships in the Synchronous mode. Data is shifted to the right on each rising edge of the internal SHIFT clock. Output data is not enabled to the SERIAL OUTPUT pin (SO) until the falling edge of the SHIFT clock. In a 16 bit data word, SRO, the least significant bit of the Shift Register is shifted out first, and SR15, the most signifirant bit of the Shift Register, is shifted out last. While the Shi. Register contents are being output on a bit by bit basis, data is simultaneously shifted in to the Shift Register through the SI pin.

During the operation of the Transmit Mode the SERIAL

OPERATION" section, a word time delay is generated between the time that data is written to the Transmit Buffer and the time that the contents of the Transmit Buffer are loaded into the Shift Register once the XMIT/ $\overline{\operatorname{REC}}$ bit has been programmed to a one (1).

Another way of loading the initial data word into the Transmit Buffer requires the word synchronization having been achieved through recognition of a received sync character. Recall that in the Transmit mode, data is sampled at SI and shifted into the Shift Register at the same time that data is shifted out through SO. Upon power up or reset, a control word may be written to Port D which specifies Transmit and Synchronous modes. Word synchronization can then be achieved through the use of the SEARCH bit as described in the section which covers Synchronous Receive mode. Once word synchronization is achieved, the SEARCH bit is disabled and the serial port shifts in data and generates an end-of-word condition at the word rate.

Each time the end of word condition is reached, receive data is transferred 'rom the shift register into the Receive Buffer. At the same time, data is transferred from the Transmit Buffer into the Shift Register.

Therefore, in the Synchronous Transmit mode, the serial port may be used in a full duplex mode if word synchronization is established. At each end of word condition, output data is transferred to the Shift Register from the Transmit Buffer. At the same time, an incoming data word is transferred from the Shift register to the Receive Buffer register pair. In this case, the End-of-Word transmit routine would be used for sending data by loading the Transmit Buffer register, and for receiving data by reading the Receive Buffer register. Note that once word synchronization is established, an amount of time which is equal to one word time is available following the end-ofword interrupt for loading data into the Transmit Buffer.

The serial port operates differently in the Transmit mode for Synchronous operation than it does for Asynchronous operation. In the Asynchronous mode, after a word has been shifted out, the SO line is returned to a marking condition if no new data has been loaded into the Transmit Buffer.

In the Synchronous mode, after a word has been shifted out, the contents of the Transmit Buffer are loaded into the Shift Register regardless of whether or not new data was loaded into the Transmit Buffer. If new data was not loaded since the last time the transmit buffer was read, the OVFL/UNDFL flag is set which signals a transmitter underflow condition. This feature of always reloading the Shift Register with the contents of the Transmit Buffer when an end-of-word condition occurs allows a sync word to be continuously generated without CPU intervention when the transmitter is idle. This feature also allows variable duty cycle, variable frequency waveforms to be generated on the Serial Output line.

## MK3873 CLOCKS

The time base network used with the MK3873 may be one of the four different types listed below.

Crystal
LC
RC
External Clock

The type of network which is to be used with the MK3873 is to be specified at the time when mask ROM MK3873 devices are ordered. The time base specification for each of the four modes are covered in the 3870 Family Technical Manual.

## MK38P73 GENERAL DESCRIPTION

The MK38P73 is the EPROM version of the MK3873. It retains an identical pinout with the MK3873. The MK38P73 is housed in the " $R$ " package which incorporates a 28 pin socket located directly on top of the package.

The MK38P73 can act as an emulator for the purpose of verification of user code prior to the ordering of mask ROM MK3870 devices. Thus, the MK38P73 eliminates the need for emulator board products. In addition, several MK38P73s can be used in prototype systems in order to test design concepts in field service before committing to high-volume production with mask ROM MK3873s. The compact size of the MK38P73/EPROM combination allows the packaging of such prototype systems to be the same as that used in production.

Finally, in low-volume applications the MK38P73 can be used as the actual production device.

Most of the material which has been presented for the MK3873 applies to the MK38P73. The MK38P73 has the same architecture and pinout as the MK3873. Additional information is presented in the following sections.

## MK38P73 MAIN MEMORY

As can be seen from the block diagram in Figure 10, the MK38P73 contains no on-chip ROM. The memory address and data lines are brought out to the 28 pin socket located directly on top of the 40 pin package. The MK38P73 will address up to 4096 bytes of external EPROM memory.

There is one memory version of the MK38P73, and it is designated as the MK38P73/02. The MK38P73/02 contains 64 bytes of on-chip executable RAM. The MK38P73/02 can emulate the mask ROM MK3873/22 device.

Addressing of main memory on the MK38P73 is accomplished in the se ne way as it is for the MK3873. See Figure 12 for Main Memory addresses and for address register size in the MK38P73.

MK38P73 BLOCK DIAGRAM


Figure 10

## MK38P73 EPROM SOCKET

A 28 pin EPROM socket is located on top of the MK38P73 " $R$ " package. The socket and compatible EPROM memories is shown in Figure 11. When 24 pin memories are used in the 28 pin socket, they should be inserted so that pin 1 of the memory device is plugged into pin 3 of the socket. (The memory should be lower justified in the 28 pin socket.)

The 28-pin socket has been provided to allow use of both 24-pin and 28-pin memory devices. Minor pin-out differences in the memory devices must be accommodated by providing different versions of the MK38P73.

Initially, the MK38P73 that is compatible with the MK2716 is available. The MK38P73 designed to accommodate the 28pin memory devices will be available at a later date.

## MK38P73 I/O PORTS

The MK38P73 is offered with open drain type output buffers on Ports 4 and 5. This open drain version is provided so that user-selected open drain port pins on the mask ROM MK38P73 can be emulated prior to ordering those mask ROM parts. Figure 11 lists the part ordering number for an MK38P73/02.

MK38P73 "R" PACKAGE PINOUT


MK97310 (Open Drain)
Compatible Memories
2758
MK2716
25162532

Figure 11

## MK38P73 MAIN MEMORY MAP



	Scratchpad   RAM Size   (Decimal)	Address Register   Size   PØ, P, DC, DC1)	ROM   Size   (Decimal)	Executable   RAM   Size
MK38PP73/02   97300,97310	64 bytes	12 bits	$\varnothing$ bytes	64 bytes

Figure 12

## MEMORY ACCESS TIMING

A timing diagram depicting the memory access timing of the MK38P73 is shown in Figure 13. The $\Phi$ clock signal is derived internally in the MK38P73 by dividing the time base frequency by two and is used to establish all timing frequencies. The WRITE signal is another internal signal to the MK38P73 which corresponds to a machine cycle during which time a memory access may be performed. Each machine cycle is either $4 \Phi$ clock periods or $6 \Phi$ clock periods long. These machine cycles are termed short cycles and long cycles respectively. The worst case memory cycle is the short cycle, during which time an op code fetch is performed. This is edge of the WRITE pulse. The total access time available for the MK38P73 is shown as $\mathrm{t}_{\text {aas, }}$, or the time when address is stable until data must be valid on the data bus lines.

An equation for calculating available memory access time along with some calculated access times based on the listed time base frequencies is also shown in Figure 13.

## MK38P73 CLOCKS

The MK38P73 has the ability to operate with any one of the following time base configurations.

```
Crystal
LC
RC
External Clock
```

This capability has been provided in the MK38P73 so that it can emulate a mask ROM MK3873 operating in any of the possible clock configurations.

MEMORY ACCESS SHORT CYCLE OP CODE FETCH MK38P73

(FROM ADDRESS STABLE)

	4 MHz	3.58 MHz	3 MHz	2.5 MHz	2 MHz
ACCESS   TIME	650 ns	825 ns	$1.15 \mu \mathrm{~s}$	$1.55 \mu \mathrm{~s}$	$2.15 \mu \mathrm{~s}$

Figure 13

## ELECTRICAL SPECIFICATIONS <br> MK3873/MK38P73

OPERATING VOLTAGES AND TEMPERATURES

Dash   Number   Suffix	Operating   Voltage   $\mathbf{V C C}^{2}$	Operating   Temperature   $\mathbf{T A}_{\mathbf{A}}$
-00	$+5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ} \mathrm{C}$
-05	$+5 \mathrm{~V} \pm 5 \%$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
-10	$+5 \mathrm{~V} \pm 10 \%$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
-15	$+5 \mathrm{~V} \pm 5 \%$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$

## MAXIMUM RATINGS*

	-00.-05	-10.-15
Temperature Under Bias	$.20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin With Respect to Ground		
(Except open drain pins and TEST)	. -1.0 V to +7 V	-1.0 V to +7V
Voltage on TEST with Respect to Ground	-1.0 V to +9 V	-1.0 V to +9 V
Voltage on Open Drain Pins With Respect to Ground	-1.0V to +13.5V	-1.0 V to +13.5 V
Power Dissipation.	.1.5W	1.5 W
Power Dissipation by any one 1/O pin ${ }^{2}$	.60mW	60 mW
Power Dissipation by all I/O pins ${ }^{2}$	. 600 mW	600 mW

"Stresses above those listed under "Absolu:e Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AC CHARACTERISTICS
$T_{A}, V_{C C}$ within specified operating range.
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SIGNAL	SYM	PARAMETER	-00,-05		-10,-15		UNIT	NOTES
			MIN	MAX	MIN	MAX		
$\begin{aligned} & \text { XTL1 } \\ & \text { XTL2 } \end{aligned}$	$\mathrm{t}_{\mathrm{O}}$   tex(H)   tex(L)	Time Base Period, all clock modes   External clock pulse width high External clock pulse width low	$\begin{gathered} 250 \\ \\ 90 \\ 100 \end{gathered}$	$\begin{aligned} & 500 \\ & \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 500 \\ & 390 \\ & 390 \end{aligned}$	ns   ns   ns	$4 \mathrm{MHz}-2 \mathrm{MHz}$
¢	${ }^{\text {t }}$ ¢	Internal $\Phi$ clock	$2 \mathrm{t}_{0}$		$2{ }^{5}$			
WRITE	${ }^{\text {w }}$ w	Internal WRITE Clock period	$\begin{aligned} & 4 t \Phi \\ & 6 t \Phi \end{aligned}$		$\begin{aligned} & 4 \mathrm{t} \Phi \\ & 6 \mathrm{t} \Phi \end{aligned}$			Short Cycle Long Cycle
1/0	${ }^{\mathrm{t}} \mathrm{d} / \mathrm{O}$	Output delay from internal WRITE clock	0	1000	0	1200	ns	50pF plus one TTL load
	$\mathrm{t}_{\mathrm{s} 1 / \mathrm{O}}$	Input setup time to internal WRITE clock	1000		1200		ns	
$\overline{\text { STROBE }}$	t/0-s	Output valid to STROBE delay	$\begin{array}{\|c\|} \hline 3 t \Phi \\ -1000 \end{array}$	$\begin{gathered} 3 \mathrm{t} \Phi \\ +250 \end{gathered}$	$\begin{array}{\|c\|} \hline 3 t \Phi \\ -1200 \\ \hline \end{array}$	$\begin{gathered} 3 t \Phi \\ +300 \end{gathered}$	ns	$\begin{aligned} & \text { 1/O load }= \\ & 50 \mathrm{pF}+1 \mathrm{TL} \text { load } \end{aligned}$
	${ }^{\text {s }}$ L	STROBE low time	$\begin{gathered} 8 \mathrm{t} \Phi \\ -250 \end{gathered}$	$\begin{aligned} & 12 t \Phi \\ & +250 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 t \Phi \\ -300 \end{array}$	$\begin{aligned} & 12 t \Phi \\ & +300 \end{aligned}$	ns	$\overline{\text { STROBE }}$ load $=$ 50pF +3 TTL loads
RESET	${ }^{\text {trin }}$	RESET hold time, low	$\begin{array}{r} 6+9 \\ +750 \\ \hline \end{array}$		$\begin{array}{r} \text { bt } \phi \\ +1000 \\ \hline \end{array}$		ns	
	${ }^{\text {t RPOC }}$	$\overline{R E S E T}$ hold time, low for power clear	$\begin{aligned} & \text { power } \\ & \text { suppor } \\ & \text { silse } \\ & \text { nime } \\ & \text { "me } \\ & \hline \end{aligned}$				ms	
EXT INT	${ }^{t} \mathrm{EH}$	EXT INT hold time in active and inactive state	$\begin{array}{r} 6 \mathrm{t} \Phi \\ +750 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 6 t \Phi \\ +1000 \\ \hline \end{array}$		ns	To trigger interrupt
			2t $\Phi$		2 t ¢		ns	To trigger timer

## CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C}$
All Part Numbers

SYM	PARAMETER	MIN	MAX	UNIT	NOTES
CIN	Input capacitance; I/O, $\overline{\text { RESET, EXT INT, TEST }}$		10	pF	unmeasured   pins grounded
CXTL	Input capacitance; XTL1, XTL2	23.5	29.5	pF	

AC CHARACTERISTICS FOR SERIAL I/O PINS
$T_{A}, V_{C C}$ within specified operating range.
1/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SIGNAL	SYM	PARAMETER	-00, -05		-10, -15		UNIT	CONDITIONS
			MIN	MAX	MIN	MAX		
SRCLK	${ }^{\text {t }}$ (SRCLK)	Serial Clock Period in External Clock Mode	3.3	$\infty$	$\infty$		$\mu \mathrm{s}$	
	tW(SRCLKH)	Serial Clock Pulse Width, High. External Clock Mode	1.3	$\infty$		$\infty$	$\mu \mathrm{s}$	
	'W(SRCLKL)	Serial Clock Pulse Width, Low. External Clock Mode	1.3	$\infty$		$\infty$	$\mu \mathrm{s}$	
	$\mathrm{t}_{\mathrm{r}}$ SRRCLK)	Serial Clock Rise Time Internal Clock Mode	60		60		ns	$\begin{aligned} & 0.8 \mathrm{~V}-2.0 \mathrm{~V} \\ & C_{L}=100 \mathrm{pf} \end{aligned}$
	$t_{\text {f(SRCLK }}$ )	Serial Clock Fall Time Internal Clock Mode	30		30		ns	$\begin{aligned} & 2.4 \mathrm{~V}-0.4 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \end{aligned}$
SI	${ }^{\text {tS }}$ S(SI)	Setup Time To Rising Edge of SRCLK (SYNC Mode)	0		0		ns	
	${ }^{\text {th(SI) }}$	Hold Time From Rising Edge of SRCLK (SYNC Mode)	1500		1500		ns	
SO	${ }^{t} \mathrm{D}(\mathrm{SO})$	Data Output Delay From Falling Edge of SRCLK (SYNC Mode)	1190		1190		ns	

## AC CHARACTERISTICS FOR MK38P73

(Signals brought out at socket)
$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}$ within specified operating range.
1/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

	PARAMETER	-00, -05		-10, -15		UNIT	CONDITION
SYMBOL		MIN	MAX	MIN	MAX		
taas*	Access time from Address $\mathrm{A}_{11}-\mathrm{A}_{01}$ stable until data must be valid at $D_{7}-D_{0}$	650				ns	$\boldsymbol{\Phi}=2.0 \mathrm{MHz}$

[^22]
## DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}$ within specified operating range
I/O power dissipation $\leq 100 \mathrm{~mW}$

SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNIT DEVICE	
ICC	Average Power Supply   Current		103		138	mA	MK3873/12   Outputs Open
PD				138		165	mA

## DC CHARACTERISTICS

$T_{A}, V_{C C}$ within specified operating range
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SYM	PARAMETER	-00,-05		-10,-15		UNIT	CONDITIONS
		MIN	MAX	MIN	MAX		
$V_{\text {IHEX }}$	External Clock input high level	2.4	5.8	2.4	5.8	V	
VILEX	External Clock input low level	-. 3	.6	-. 3	. 6	V	
IIHEX	External Clock input high current		100		130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IHEX }}=\mathrm{V}_{\text {CC }}$
IILEX	External Clock input low current		-100		-130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {ILEX }}=\mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\mathrm{IHI} / \mathrm{O}}$	1/O input high level	2.0	5.8	2.0	5.8	V	standard pull-up (1)
		2.0	13.2	2.0	13.2	V	open drain (1)
$\mathrm{V}_{\text {IHR }}$	Input high level, $\overline{\text { RESET }}$	2.0	5.8	2.2	5.8	V	standard pull-up (1)
		2.0	13.2	2.2	13.2	V	No pull-up
$\mathrm{V}_{\text {IHEI }}$	Input high level, EXT INT	2.0	5.8	2.2	5.8	V	standard pull-up (1)
		2.0	13.2	2.2	13.2	V	No pull-up
$\mathrm{V}_{\text {IL }}$	I/O ports, $\overline{\text { RESET }}{ }^{1}$, EXT INT ${ }^{1}$ input low level	-. 3	. 8	-. 3	0.7	V	(1)
IIL	Input low current, standard pull-up pins		-1.6		-1.9	mA	$V_{1 N}=0.4 \mathrm{~V}$
LL	Input leakage current, open drain pins RESET and EXT INT inputs With no pull-up resistor		$\begin{gathered} +10 \\ -5 \end{gathered}$		$\begin{gathered} +18 \\ -8 \end{gathered}$	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \end{aligned}$	$\begin{aligned} & V_{I N}=13.2 \mathrm{~V} \\ & V_{I N}=0.0 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OH}$	Output high current, standard pull-up pins	-100		-89		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
		-30		-25		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=3.9 \mathrm{~V}$
IOHDD	Output high current, direct drive pins	-100		-80		$\mu \mathrm{A}$	$\mathrm{VOH}=2.4 \mathrm{~V}$
		-1.5	-8.5	$-1.3$	-11	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V} \end{aligned}$
IOL	Output low current, I/O ports	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
IOHS	STROBE Output High current	-300		-270		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=2.4 \mathrm{~V}$
'OLS	STROBE output low current	5.0		4.5		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$

## DC CHARACTERISTICS FOR MK38P73

(Signals brought out at socket)
$T_{A}, V_{C C}$ within specifiec operating range, I/O Power Dissipation $\leq 100 \mathrm{~mW}$. (Note 2)

SYM	PARAMETER	-00, -05		-10, -15		UNIT	CONDITION
		MIN	MAX	MIN	MAX		
${ }^{\text {I CCE }}$	Power Supply Current for EPROM		-185		-185	mA	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Level Data bus in	-0.3	0.8	-0.3	0.7	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Level Data bus in	2.2	5.8	2.2	5.8	V	
${ }^{\mathrm{I} O H}$	Output High Current	$\begin{array}{\|c\|} \hline-100 \\ -30 \end{array}$		$\begin{aligned} & -90 \\ & -25 \end{aligned}$		$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=3.9 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OL}$	Output Low Current	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
IIL	Input Leakage Current		10		10	$\mu \mathrm{A}$	Data Bus in Float

DC CHARACTERISTICS FOR SERIAL PORT I/O PINS
$T_{A}, V_{C C}$ within specified operating range
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SYM	PARAMETER	-00, -05		-10, -15		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\mathrm{IHS}}$	Input High for SI, SRCLK	2.0	5.8	2.0	5.8	V	
$V_{\text {ILS }}$	Input Low level for SI, SRCLK	-. 3	. 8	-. 3	0.7	V	
ILS	Input low current for SI, SRCLK		-1.6		-1.9	mA	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$
IOHSO	Output High Current SO	$\begin{gathered} -100 \\ -30 \end{gathered}$		$\begin{aligned} & -90 \\ & -25 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=3.9 \mathrm{~V} \end{aligned}$
IOLSO	Output Low Current SO	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
IOHSRC	Output High Current SRCLK	-300		-270		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
IOLSRC	Output Low Current	5.0		4.5		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$

[^23]Definitions:
Error = Indicated time value - actual time value

## tpsc $=t \Phi \times$ Prescale Value

## Interval Timer Mode:

Single interval error, free running (Note 3)
$\pm 6 t \Phi$
Cumulative interval error, free running (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
Error between two Timer reads (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm$ (tpsc $+\mathbf{t \Phi}$
Start Timer to stop Timer error (Notes 1,4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + t $\Phi$ to -(tpsc + t $\Phi$ )
Start Timer to read Timer error (Notes 1,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -5t $\Phi$ to -(tpsc +7 7t $\Phi$ )
Start Timer to interrupt request error (Notes $\mathbf{1 , 3}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2t $\boldsymbol{2} \boldsymbol{t}$ to -8t $\Phi$ )
Load Timer to stop Timer error (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t $\boldsymbol{t} \Phi$ to - $-($ tpsc $+2 t \Phi)$
Load Timer to read Timer error (Notes 1,2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 t $\Phi$ to -(tpsc +8 8t )
Load Timer to interrupt request error (Notes 1,3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2t $\mathbf{2 t}$ to -9tФ)

## Pulse Width Measurement Mode:

Measurement accuracy (Note 4) $+t \Phi$ to -(tpsc $+2 \mathrm{t} \Phi$ )Minimum pulse width of EXT INT pin$2 t \Phi$
Event Counter Mode:
Minimum active time of EXT INT pin ..... $2 t \Phi$
Minimum inactive time of EXT INT pin ..... $2 t \Phi$
Notes:All times which entail loading, starting, or stopping the Timer are referenced from the end of the last machine cycle of the OUT or OUTS instruction.2. All times which entail reading the Timer are referenced from the end of the last machine cycle of the IN or INS instruction.3. All times which entail the generation of an interrupt request are referenced from the start of the machine cycle in which the appropriate interrupt request latch is set. Additionaltime may elapse if the interrupt request occurs during a privileged or multicycle instruction.
4. Error may be cumulative if operation is repetitively performed.

## AC TIMING DIAGRAM



I/O Port Output

$\overline{\text { RESET }}$


EXT INT


Note: All measurements are referenced to $\mathrm{V}_{\mathrm{IL}}$ max., $\mathrm{V}_{\mathrm{IH}}$ min., $\mathrm{V}_{\mathrm{OL}} \max$. , or $\mathrm{V}_{\mathrm{OH}} \min$.
Figure 14

INPUT/OUTPUT AC TIMING

B. OUTPUT ON PORT 4 OR 5


Figure 15

AC TIMING DIAGRAM FOR SERIALI/O PINS.


Figure 16

STROBE SOURCE CAPABILITY (TYPICAL AT $\left.V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}\right)_{\text {s }}$ S
$\mathbf{O}$
$U$
$R$
$C$
$E$
$C$
$\mathbf{C}$
$\mathbf{R}$
$R$
$\mathbf{E}$
$\mathbf{N}$
$\mathbf{T}$
$M$
$M$


Figure 17
STROBE SINK CAPABILITY
(TYPICAL AT $V_{C C}=\mathbf{5 V}, \mathbf{T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )


Figure 18

STANDARD I/O PORT SOURCE CAPABILITY (TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 19

DIRECT DRIVE I/O PORT SOURCE CAPABILITY (TYPICAL AT VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Figure 20

## I/O PORT SINK CAPABILITY

(TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ )
Figure 21



output voltage

MAXIMUM OPERATING TEMPERATURE VS. I/O POWER DISSIPATION
Figure 22
$T_{A}$


## ORDERING INFORMATION

There are two types of part numbers for the 3870 family of devices. The generic part number describes the basic device type, the amount of ROM and Executable RAM, the desired package type, temperature range, and power supply
tolerance. For each customer specific code, additional information defining 1/O options and oscillator options will be combined with the information described in the generic part number to define a customer/code specific device order number.

## GENERIC PART NUMBER

An example of the generic part number is shown below.

MK 3873/2 2 P-10

$0=5 \mathrm{~V} \pm 10 \%$
$5=5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
$\mathrm{P}=$ Ceramic
$J=$ Cerdip
$\mathrm{N}=$ Plastic
$0=$ None
$2=64$ bytes
$2=2 \mathrm{~K}$ bytes

An example of the generic part number for the PPROM device is shown below.

MK38P73/02 R-05

## DEVICE ORDER NUMBER

An example of the device order number is shown below.

$0=5 \mathrm{~V} \pm 10 \%$
$5=5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
P = Ceramic
J = Cerdip
$\mathrm{N}=$ Plastic
The Customer/Code specific number defines the ROM bit pattern, I/O configuration, oscillator type, and generic part type to be used to satisfy the requirements of a particular customer purchase order. For further information on the ordering of mask ROM devices, the customer should refer to the 3870 Family Technical Manual.

## MK3875 FĖATURES

- Available with 2 K or 4 K bytes of mask programmable ROM memory
- 64 bytes scratchpad RAM
- 64 bytes of Executable RAM
- Standby feature for low power data retention of executable RAM including:
Low standby power
Low standby supply voltage
No external components required to trickle charge battery.
- Software compatible with 3870 family
- 30 bits (4 ports) TTL compatible I/O
- Programmable binary Timer Interval Timer Mode Pulse Width Measurement Mode Event Counter Mode
- External Interrupt Input
- Crystal, LC, RC, or external time base options available
- Low power under normal operation ( 285 mW typ.)
- +5 volt main power supply
- Pinout compatible with 3870 family


## MK38P75 FEATURES

- EPROM version of MK3875
- Piggyback RPOM (P-PROM) ${ }^{\text {TM }}$ package
- Accepts 24 pin or 28 pin EPROM memories
- Identical pinout as MK3875
- In-socket emulation of MK3875

NMOS


MK3875

$\begin{array}{ll} x+11 \rightarrow & 1 \\ \times 112 \longrightarrow & 2 \end{array}$	MK3875	$\begin{aligned} & \square_{30}^{40} \simeq v_{\text {ce }} \\ & \text { RESET } \end{aligned}$			
$v_{S B} \rightarrow 4$ -		可37 4 90	PIN NAME	DESCRIPTION	TYPE
		$\square^{36} \leftrightarrow \mathrm{P}^{36}$	$\overline{\mathrm{PO}} \mathrm{-}$ - $\overline{\mathrm{P}} \mathbf{0 - 7}$	1/O Port 0	
$\stackrel{\overline{\mathrm{PO}}}{5}$			$\overline{\text { P1-0 }} \cdot \overline{\text { P1-7 }}$	1/O Port 1	Bidirectional
$\stackrel{\text { STROBE }}{\text { P40 }} \div \square^{4}$		$\text { 目 } 34 \leftrightarrow \overline{F_{13}}$	$\overline{\text { P4-0 }}$. $\overline{\text { P4-7 }}$	1/O Port 4	Bidirectional Bidirectional
		$\square 32 \longrightarrow$ P51	$\overline{\text { P5-0. }} \overline{\text { P5-7 }}$	1/O Port 5	Bidirectional
बन $\rightarrow 10{ }^{4}$		$\bigcirc 31 \rightarrow \overline{\text { P52 }}$	STROBE	Ready Strobe	Output
$\overline{43} \leftrightarrow 110$		$30 \leftrightarrow$ 553	EXT INT	External Interrupt	Input
$\overline{944} \leftrightarrow 12 \mathrm{G}$		Q29 $\rightarrow$ P54	RESET	External Reset	Input
$\overline{945} \ldots 13 \square^{1}$		$\square 28 \leftrightarrow$ P55	TEST	Test Line	Input
$\overline{946} \propto 14 \square$		$\mathrm{F}^{27} \rightarrow{ }^{27}$	XTL 1, XTL 2	Time Base	Input
$\overline{\text { P4, }} 415$			$V_{\text {CC }}$, GND	Power Supply Lines	Input
कन $\rightarrow 166$		Q25 $\rightarrow$ 917	$V_{\text {SB }}$	Standby Power	Input
क6 $\leftrightarrow 110$		$\square 24 \leftrightarrow \overline{\text { P16 }}$	$\mathrm{V}_{\mathrm{BB}}$	Substrate Decoupling	Input

MK38P75


## MK3875 BLOCK DIAGRAM



Figure 1

## GENERAL DESCRIPTION

The MK3875 Single Chip Microcomputer offers a Low Power Standby mode of operation as an addition to the 3870 Family. The Low Power Standby feature provides a means of retaining data in the executable RAM on the MK3875 while the main power supply line ( $\mathrm{V}_{\mathrm{CC}}$ ) is at 0 volts and the rest of the MK3875 microcomputer is shut down. The executable RAM is powered from an auxiliary power supply input ( $\mathrm{V}_{\mathrm{SB}}$ ) while operating in the Lower Power Standby mode. When $V_{S B}$ is maintained at or above its minimum level, data is retained in the executable RAM memory with a very low power dissipation.

The MK3875 retains commonality with the rest of the industry standard 3870 family of single chip microcomputers. It has the same central processing unit, oscillator and clock circuits, and 64 byte scratchpad memory array. Also, the 3870's sophisticated programmable binary timer is included which provides three different operating modes. Two ;ins on the MK3875 are dedicated to the Low

Power Standby mode and are designated as $V_{S B}$ and $V_{B B}$. The RESET line serves to reset the MK3875 and place it in a protected state so that the contents of the Executable RAM will remain unchanged when $\mathrm{V}_{\mathrm{CC}}$ is being powered down to 0 volts. All other pins on the MK3875 are identical in function to corresponding pins on the MK3870, so that pin compatibility is maintained. The MK3875 executes the entire 3870 instruction set.

The MK38P75 microcomputer is the PROM based version of the MK3875. It is called the piggyback PROM (P-PROM) ${ }^{\text {M }}$ because of its packaging concept. This concept allows a standard 24-pin or 28-pin EPROM to be mounted directly on top of the microcomputer itself. The EPROM can be removed and reprogrammed as required with a standard PROM programmer. The MK38P75 retains the pinout and architectural features as other members of the 3870 family. The MK38P75 is discussed in more detail in a later section.

## FUNCTIONAL PIN DESCRIPTION

$\overline{\mathrm{PO}-2}$ - $\overline{\mathrm{P} 0-7}, \overline{\mathrm{P} 1-\mathrm{O}}-\overline{\mathrm{P} 1-7}, \overline{\mathrm{P} 4-0}-\overline{\mathrm{P} 4-7}$, and $\overline{\mathrm{P} 5-0}-\overline{\mathrm{P} 5-7}$ are 30 lines which can be individually used as either TTL compatible inputs or as latched outputs.
$\overline{\text { STROBE }}$ is a ready strobe associated with I/O Port 4. This pin, which is normally high, provides a single low pulse after valid data are present on the $\overline{\mathrm{P4}-0}-\overline{\mathrm{P4-7}}$ pins during an output instruction.
RESET - may be used to externally reset the MK3875. When pulled low, the Mk3875 will reset. When allowed to go high the MK3875 will begin program execution at program location H '000'. Additionally, when RESET is brought low all accesses of the executable RAM are prevented and the RAM is placed in a protected state for powering down $V_{C C}$ without loss of data.
EXT INT is the external interrupt input. Its active state is software programmable. This input is also used in conjunction with the timer for pulse width measurement and event counting.

XTL 1 and XTL 2 are the time base inputs to which a crystal ( 2 to 4 MHz ), LC network, RC network, or an external singlephase clock may be connected. The time base network must be specified when ordering an MK3875.

TEST is an input used only in testing the MK3875. For normal circuit function this pin may be left unconnected but it is recommended that TEST be grounded.
$\mathrm{V}_{\mathrm{CC}}$ is the power supply input +5 V .
$\mathrm{V}_{\mathrm{SB}}$ is the RAM standby power supply input.
$V_{B B}$ is the substrate decoupling pin. A 01 micro-Farad capacitor is required which is tied between $V_{B B}$ and GND.

## MK3875 ARCHITECTURE

The basic functional elements of the mask ROM MK3875 single chip microcomputer are shown in the block daagram in Figure 1. A programming model is shown in Figure 2 Much of the Mk3875 architecture is identical with the resst of the devices in the 3870 family. The significant features of the MK3875 are discussed in the following sections. The user is referred to the 3870 Family Technical Manual for a thorough discussion of the architecture, instruction set, and other features which are common to the 3870 family.

## MAIN MEMORY

The main memory section on the MK3875 consists of a combination of ROM and executable RAM.

There are four registers associated with the main memory section. These are the Program Counter (PO), the Stack Register ( P ), the Data Counter (DC) and the Auxiliary Data Counter (DC1). The Program Counter is used to address instructions during program execution. $P$ is used to save the contents of PO during an interrupt or subroutine call. Thus, $P$ contains the return address at which processing is to resume upon completion of the subroutine or the interrupt routine.

The Data Counter (DC) is used to address data tables. This register is auto-incrementing. Of the two data counters only DC can access the memory. However, the XDC instruction allows DC and DC1 to be exchanged.

The length of the PC P, DC, and DC1 registers for all MK3875 devices is 12 bits. Figure 3 shows the amounts of ROM and Executable RAM for each device in the MK3875 family.

## 3875 PROGRAMMABLE REGISTERS, PORTS AND MEMORY MAP

1 OPORTS



Figure 2

## EXECUTABLE RAM

The upper bytes of the total address space in all MK3875 devices are RAM memory. As with the ROM memory, the RAM may be addressed by the PO and DC address registers. The executable RAM may be accessed by all 3870 instructions which address main memory indirectly through the Data Counter (DC) register. Additionally, the

MK3875 may execute an instruction sequence which resides in the executable RAM. Note that this sequence cannot be done with the scratchpad RAM memory, which is the reason the term "executable RAM" is given to this additional memory. The contents of the executable RAM memory are preserved when the Low Power Standby mode is in operation.

## MK3875 MAIN MEMORY SIZES AND TYPES BY SLASH NUMBER



Data derived from addressing any locations other than within the specified ROM or RAM space is not tested nor is it guaranteed. Users should refrain from entering this area of the memory map.

Device	Scratchpad   RAM Size   (Decimal)	Address   Register   Size   (PO,P,DC,DC1)	ROM   Size   (Decimal)	Executable   RAM   Size
MK3875/22	64 bytes	12 bits	2048 bytes	64 bytes   MK3875/42   64 bytes
12 bits	4032 bytes	64 bytes		

Figure 3

## I/O PORTS

The MK3875 provides 30 bits of bidirectional parallel I/O. These lines are addressed as Ports $0,1,4$ and 5 . In addition, the Interrupt Control Port is addressed as Port 6 and the binary timer is addressed as Port 7. The programming of Ports 6 and 7 and the bidirectional I/O pins are covered in the 3870 Family Technical Manual.

Since two pins are dedicated to serve the Standby Power mode ( $V_{\mathrm{SB}}$ ), port 0 has only the upper 6 bits, $\overline{\mathrm{PO}-2}-\overline{\mathrm{PO}-7}$, available for use as general purpose $\mathrm{I} / \mathrm{O}$ pins. Ports 1,4 , and 5 are all a full 8 bits wide.

The schematic of an I/O pin and available output drive options are shown in Figure 4.

An output ready strobe is associated with Port 4. This flag may be used to signal a peripheral device that the MK3875 has just completed an output of new data to Port 4. The strobe provides a single low pulse shortly after the output operation is completely finished, so either edge may be used
to signal the peripheral. $\overline{\text { STROBE may be used as an input }}$ strobe simply by doing a dummy output of H ' 00 ' to Port 4 after completing the input operation.

## STANDBY POWER MODE

On the MK3875, the contents of the on-chip executable RAM can be saved when the Standby Power mode is operative. The Standby Power mode allows the MK3875's main power supply to drop all way down to 0 volts while the on-chip executable RAM is powered from the auxiliary low power supply input, $\mathrm{V}_{\text {SB }}$. Thus, key variables may be maintained within the MK3875 executable RAM during the time that the rest of the microcomputer is powered down.

On the MK3875, two of the pins which are used as bidirectional port pins on the MK3870 are used for the Standby Power feature. Port 0, Bit 0 (PO-O), remains readable and writeable although it is not connected to a package pin. The logic level being applied to the auxiliary power supply input ( $\mathrm{V}_{\mathrm{SB}}$ ) can be read at Port 0, Bit 1 ( $\overline{\mathrm{PO}-1}$ ). Writing to $\overline{\mathrm{PO}-1}$ has no effect.

## I/O PIN CONCEPTUAL DIAGRAM WITH OUTPUT BUFFER OPTIONS



Ports 0 and 1 are Standard Output type only.
Ports 4 and 5 may both be any of the three output options (mask programmable bit by bit)
The $\overline{\text { STROBE }}$ output is always configured similar to a Direct Drive Output except that it is capable of driving 3 TTL loads.
$\overline{\text { RESET and EXT INT may have standard 6Kת (typical) pull-up or may have no pull-up (mask programmable). These two inputs have Schmitt trigger }}$ inputs with a minimum of 0.2 volts of hysteresis.
$\overline{\text { RESET }}$ and EXT INT do not have internal pull up on the MK38P75.

Figure 4

A capacitor (. 01 microfarads) must be connected between pin $3\left(\mathrm{~V}_{\mathrm{BB}}\right)$ and ground. $\mathrm{V}_{\mathrm{BR}}$ is bonded directly to the substrate of the MK3875. The purpose of the capacitor is to decouple noise on the substrate of the circuit when $\mathrm{V}_{\mathrm{CC}}$ is switched on and off.

It is recommended that Nickel Cadmium batteries (typical voltage of 3 series cells $=3.6 \mathrm{~V}$ ) be used for standby power, since the MK3875 can automatically trickle charge the three NiCads. If more than three cells in series are used, the charging circuit must be provided outside the MK3875.

Whenever $\overline{\text { RESET }}$ is brought low, the executable RAM is placed in a protected state. Also the RAM is switched from $\mathrm{V}_{\mathrm{CC}}$ power to the $\mathrm{V}_{\mathrm{SB}}$ power. When powering down, it may be desirable to interrupt the MK3875 when an impending power down condition is detected, so that the necessary data can be saved before $\mathrm{V}_{\mathrm{CC}}$ falls below the minimum level. After the save is completed, RESET can fall, which prevents any further access of the RAM. The timing for this power down sequence is illustrated in Figure 5A.

A second power down sequence is illustrated in Figure 5B, and may be used if a special save data routine is not needed. The EXT INT line need not be used. Note that for both cases shown in Figures 5A and 5B, $\overline{\text { RESET must be low before }}$ $\mathrm{V}_{\mathrm{CC}}$ drops below the minimum specified operating voltage for the MK3875. This is to ensure that the contents of the executable RAM are not altered during the power down sequence.

There may be a set of variables stored in the RAM memory which is continually updated during the tme when the MK3875 is in its normal operating mode. If a particular variable occupies more than one byte of RAM, there can be a problem if a reset occurs in response to an impending power down condition during the time that the multi-byte variable was being modified. If such a reset occurs, then only part of the variable may contain the updated value, while the rest contains the old value. An example of this case would be when a double precision (2 byte) binary number is being saved in the executable RAM. Suppose that a new value of the number has been calculated in the


Figure 5a

NO SAVE ROUTINE REQUIRED, $\mathbf{V}_{\text {SB }}>3.2$ VOLTS


Figure 5b
program, and that this new value is to replace the old value contained in the executable RAM; note that a reset could occur just after the program wrote one byte of the new value into the RAM. When power is restored following the Standby Power mode, the double precision variable would contain an erroneous value.

This problem can be avoided if the external interrupt is used to signal the MK3875 of an impending power down condition. The user's system should be designed so that the MK3875 can properly save all variables between the time that the external interrupt occurs and RESET falls. If multibyte variables must be saved during the Standby Power mode and it is not desirable to use the external interrupt in the manner described above, then each byte of a multi-byte variable may be kept with an associated flag. The method of updating a two byte variable would be as follows:

- Clear Flag Word 1
- Update Byte 1
- Set Flag Word 1
- Clear Flag Word 2
- Update Byte 2
- Set Flag Word 2

Now if $\overline{\operatorname{RESET}}$ goes low during the update of a byte of a variable, the flag word associated with that byte of data will be reset. Any byte of the variable where the flag word is "set" is a good byte of data. While this method significantly encumbers the data storage process, it eliminates the need for a power fail interrupt which both reduces external circuitry and leaves the external interrupt pin completely free for other use.

Often it is necessary to distinguish between an initial power-on condition wherein there is no valid data stored in the RAM (or where $\mathrm{V}_{\mathrm{SB}}$ has dropped below the minimum required stand-by level) and a re-application of power wherein valid RAM data has been maintained during the power outage. One method of distinguishing between these two conditions is to reserve several memory locations for key words and checksums. When $\mathrm{V}_{\mathrm{CC}}$ is applied and processor operation begins, these locations can be checked for proper contents. However, this method may not be perfectly accurate as those locations holding key codes may be maintained even though $\mathrm{V}_{\mathrm{SB}}$ drops below its minimum required level while other RAM locations may lose data, or they could power up with the exact data required to match the key codes. Also a checksum may be matched on occasion even though RAM data has been corrupted. The accuracy of this method is improved by increasing the number of memory locations used and the variety of key codes and or checksums used.
A more reliable method is the external $\mathrm{V}_{\mathrm{SB}}$ flip-flop. The flip-flop is designed to power up in a known first state and hold that first state until forced into a second state. As long as $V_{S B}$ is above the minimum operating level, the flip-flop can hold the second state, but, if $\mathrm{V}_{\mathrm{SB}}$ drops below the minimum level, the flip-flop will flip back to the first state. Thus when power is initially applied or if $V_{S B}$ drops below the minimum level during a $\mathrm{V}_{\mathrm{CC}}$ outage, the flip-flop will be
in the first state. The flip-flop output can be read through a port pin by the processor when processor operation begins to determine whether the RAM data is valid (second state) or invalid (first state). If the flip-flop is found to be in the first state it can be forced to the second state by the processor. If it holds the second state, $\mathrm{V}_{\mathrm{SB}}$ is above the minimum level (batteries are charged).

A conceptual diagram is shown in Figure 6.

CONCEPTUAL DIAGRAM


Figure 6

## MK38P75 GENERAL DESCRIPTION

The MK38P75 is the EPROM version of the MK3875. It retains an identical pinout with the MK3875, which is documented in the section of this data sheet entitled "FUNCTIONAL PIN DESCRIPTION". The MK38P75 is housed in the "R" package which incorporates a 28-pin socket located directly on top of the package. A number of standard EPROMs may be plugged into this socket.

The MK38P75 can act as an emulator for the purpose of verification of user code prior to the ordering of mask ROM MK3875 devices. Thus, the MK38P75 eliminates the need for emulator board products. In addition, several MK38P75s can be used in prototype systems in order to test design concepts in field service before commiting to high-volume production with mask ROM MK3875s. The compact size of the MK38P75/EPROM combination allows the packaging of such prototype systems to be the same as that used in production. Finally, in low-volume applications, the MK38P75 can be used as the actual production device.

Most of the material which has been presented for the MK3875 in this document applies to the MK38P75. This includes the description of the pin configuration, architecture, and programming mode. Additional information is presented in the following sections.

## MK38P75 I/O PORTS

The MK38P75 is offered with two types of output buffer
options on Ports 4 and 5. These are the open drain output buffer and the standard output buffer which are pictured in Figure 4. The open drain version of the MK38P75 is provided so that user-selected open drain port pins on the MK3875 can be emulated prior to ordering those mask ROM devices. Figure 9 lists which version(s) of the MK38P75 has open drain output buffers and which has standard output buffers in parentheses following the specified MK38P75 part ordering number (MK9XXXX).

## MK38P75 MAIN MEMORY

As can be seen from the block diagram in Figure 7, the MK38P75 contains executable RAM in the main memory map. The MK38P75 contains no on-chip ROM. Instead, the memory address lines are brought out to the 28-pin socket located directly on top of the 40-pin package, so the external

ERPOM memory is addressed as main memory.
There is one memory version of the MK38P75 and it is designated as the MK38P75/02. The MK38P75/02 contains 64 bytes of on-chip executable RAM. The MK38P75/02 can emulate the following devices.

MK3875/22
MK3875/42
The MK38P75/02 cannot exactly emulate the MK3875/40 because of the 64 bytes of executable RAM in the upper ROM space of the MK3875/40.

Addressing of main memory on the MK38P75 is accomplished in the same way as it is for the MK3875. See Figure 8 for main memory addresses and for address register size in the MK38P75.

## MK38P75 BLOCK DIAGRAM



Figure 7

## MK38P75 MAIN MEMORY MAP



Device	Scratchpad   RAM Size   (Decimal)	Address Register   Size   PO, P, DC, DC1)	ROM   Size   (Decimal)	Executable   RAM   Size
MK38P75 $/ 02$   97403	64 bytes	12 bits	0 bytes	64 bytes

Figure 8

## MK38P75 EPROM SOCKET

A 28-pin ERPOM socket is located on top of the MK38P75 " $R$ " package. The socket and compatible ERPOM memories are shown in Figure 9. When 24-pin memories are used in the 28-pin socket, they should be inserted so that pin 1 of the memory device is plugged into pin 3 of the socket (the 24 -pin memory should be lower justified in the 28 -pin socket).

The 28 -pin socket has been provided to allow use of both 24 -pin and 28 -pin memory devices. Minor pin-out differences in the memory devices must be accommodated by providing different versions of the MK38P75.

Initially, the MK38P75 that is compatible with the MK2716 is available. The MK38P75 designed to accommodate the 28-pin memory devices will be available at a later date.

## MK38P75 "R" PACKAGE SOCKET PINOUT



MK97413 (Open Drain Outputs) Compatible Memories 2758 MK2716

MK97403 (Standard Outputs) Compatible Memories

Figure 9

## MEMORY ACCESS TIMING

A timing diagram depicting the memory access timing of the MK38P75 is shown in the next table. The $\Phi$ clock signal is derived internally in the MK38P75 by dividing the time base frequency by two and is used to establish all timing frequencies. The WRITE signal is another internal signal to the MK38Pi 5 which corresponds to a machine cycle, during which time a memory access may be performed. Each machine cycle is either $4 \boldsymbol{\Phi}$ clock periods or $\mathbf{6} \boldsymbol{\Phi}$ clock periods long. These machine cycles are termed short cycles and long cycles, respectively. The worst case memory cycle
is the short cycle, during which time an op code fetch is performed. This is the cycle which is pictured in the timing diagram. After a delay from the falling edge of the WRITE clock, the address lines become stable. Data must be valid at the data out lines of the PROM for a setup time prior to the next falling edge of the WRITE pulse. The total access time available for the MK38P75 version is shown as $t_{\text {aas }}$ or the time when address is stable until data must be valid on the data bus lines. The equation for calculating available memory access time along with some calculated access times based on the listed time base frequencies is shown in the following table.

MEMORY ACCESS SHORT CYCLE OP CODE FETCH MK38P75


## 3875 TIME BASE OPTIONS

The 3875 contains an on-chip oscillator circuit which provides an internal clock. The frequency of the oscillator circuit is set from the external time base network. The time base for the $\mathbf{3 8 7 5}$ may originate from one of four sources:

1) Crystal
2) LC Network
3) RC Network
4) External Clock

The type of network which is to be used with the mask ROM MK3875 must be specified at the time when mask ROM devices are ordered. However, the MK38P75 may operate with any of the four configurations so that it may emulate any configuration used with a mask ROM device.

The specifications for the four configurations are given in the following text. There is an internal 26 pF capacitor between XTL 1 and GND and an internal 26 pF capacitor between XTL 2 and GND. Thus, external capacitors are not necessarily required. In all external clock modes the external time base frequently is divided by two to form the internal PHI clock.

## CRYSTAL SELECTION

The use of a crystal as the time base is highly recommended as the frequency stability and reproducability from system to system is unsurpassed. The 3875 has an internal divide by two to allow the use of inexpensive and widely available TV Color Burst Crystals ( 3.58 MHz ). Figure 12 lists the required crystal parameters for use with the 3875 . The Crystal Mode time base configuration is shown in Figure 11.

Through careful buffering of the XTL1 pin it may be possible to amplify this waveform and distribute it to other devices. However, Mostek recommends that a separate active device (such as a 7400 series TTL gate) be used to oscillate the crystal and that the waveform from that oscillator be buffered and supplied to all devices, including the 3875 , in the event that a single crystal is to provide the time base for more than just a single 3875.

While a ceramic resoncior may work with the 3875 crystal oscillator, it was not designed specifically to support the use of this component. Thus, Mostek does not support the use of a ceramic resonator either through proper testing, parametric specification, or applications support.

## CRYSTAL MODE CONNECTION



Figure 11

## CRYSTAL PARAMETERS

a) Parallel resonance, fundamental mode AT-Cut
b) Shunt capacitance $\left(C_{0}\right)=7 \mathrm{pf}$ max.
c) Series resistance $\left(\mathbf{R}_{\mathbf{S}}\right)=$ See table
d) Holder $=$ See table below.

Frequency	Series Resistance	Holder
$f=2-2.7 \mathrm{MHz}$	Rs $=300$ ohms max	HC-6   HC-33
$f=2.8-4 \mathrm{MHz}$	Rs = 150 ohms max	HC-6   HC-18*
		HC-25*   HC-33

*This holder may not be available at frequencies near the lower end of this range.

Figure 12

## LC NETWORK

The LC time base configuration can be used to provide a less expensive time base for the 3875 than can be provided with a crystal. However, the LC configuration is much less accurate than is the crystal configuration. The LC time base configuration is shown in Figure 13. Also shown in the figure are the specified parameters for the LC components, along with the formula for calculating the resulting time base frequency. The minimum value of the inductor which is required for proper operation of the LC time base network
is 0.1 millihenries. The inductor must have a Q factor which is no less than 40 . The value of $C$ is derived from $C$ external, the internal capacitance of the $3875, \mathrm{C}_{\mathrm{XTL}}$, and the stray capacitances, $\mathrm{C}_{\mathrm{S} 1}$ and $\mathrm{C}_{\mathrm{S} 2} . \mathrm{C}_{\mathrm{XTL}}$ is the at XTL1 and capacitance looking into the internal two port network XTL2. C $_{\text {XTL }}$ is listed under the "Capacitance" section of the Electrical Specifications. $\mathrm{C}_{\mathrm{S} 1}$ and $\mathrm{C}_{\mathrm{S} 2}$ are stray capacitances from XTL1 to ground and from XTL2 to ground, respectively. C external should also include the stray shunt capacitance across the inductor. This is typically in the 3 to 5 pf range and significant error can result if it is not included in the frequency calculation.

## LC MODE CONNECTION



Figure 13

Variation in time base frequency with the LC network can arise from one of four sources: 1) Variation in the value of the inductor. 2) Variation in the value of the external capacitor. 3) Variation in the value of the internal capacitance of the 3875 at XTL1 and XTL2, and 4) Variation in the amount of stray capacitance which exists in the circuit. Therefore, the actual frequency which is generated by the LC circuit is within a range of possible frequencies, where the range of frequencies is determined by the worst case variation in circuit parameters. The designer must select component values such that the range of possible frequencies with the LC mode does not go outside of the specified operating frequency range for the 3875.

## RC CLOCK CONFIGURATION

The time base for the $\mathbf{3 8 7 5}$ may be provided from an RC
network tied to the XTL2 pin, when XTL1 is grounded. A schematic picturing the RC clock configuration is shown ir. Figure 14. The RC time base configuration is intended to provide an inexpensive time base source for applications in which timing is not critical. Some users have elected to tune each unit using a variable resistor or external capacitor thus reducing the variation in frequency. However, for increased time base accuracy Mostek recommends the use of the Crystal or LC time base configuration. Figure 15 illustrates a curve which gives the resulting operating frequency for a particular RC value. The $x$-axis represents the product of the value of the resistor times the value of the capacitor. Note that three curves are actually shown. The curve in the middle represents the nominal frequency obtained for a given value of RC. A maximum curve and a minimum curve for different types of 3875 devices are also shown in the diagram.

## RC MODE CONNECTION



MINIMUM R $=\mathbf{4 K} \Omega$

C $=\mathbf{2 6 . 5} \mathrm{pF} \pm \mathbf{2 . 6 p F}+$ Cexternal

RC MODE


Figure 14


Figure 15

The designer must select the RC product such that a frequency of less than 2 MHz is not possible taking into account the maximum possible RC product and using the minimum curve shown in Figure 15. Also, the RC product must not allow a frequency of more than 4 MHz taking into account the minimum possible $R$ and $C$ and using the Maximum curve shown. Temperature induced variations in the external components should be considered in calculating the RC product.

Frequency variation from unit to unit due to switching speed and level at constant temperature and $\mathrm{V}_{\mathrm{CC}}=+$ or -5 percent.

Frequency variation due to $\mathrm{V}_{\mathrm{CC}}$ with all other parameters constant with respect to $+5 \mathrm{~V}=+7$ percent to -4 percent on all devices.

Frequency variation due to temperature with respect to 25 C (all other parameters constant) is as follows:

## PART \#

## VARIATION

$\begin{array}{ll}387 X-00,-05 & +6 \text { percent to }-9 \text { percent } \\ 387 X-10,-15 & +9 \text { percent to }-12 \text { percent }\end{array}$
Variations in frequency due to variations in RC components may be calculated as follows:

$$
\begin{aligned}
& \text { Maximum } R C=(R \max )\left(C \text { external max }+C_{X T L} \max \right) \\
& \text { Minimum } R C=(R \min )\left(C \text { external min }+C_{X T L} \min \right) \\
& \text { Typical } R C=(R \text { typ })(C \text { external typ }+ \\
& \frac{\left.\left\{C_{X T L} \max +C_{X T L} \min \right\}\right)}{2}
\end{aligned}
$$

> Positive Freq. Variation $=$ RC typical - RC minimum RC typical
> Negative Freq. Variation $=$ RC maximum - RC typical due to RC Components
> RC typical

Total frequency variation due to all factors:

	$387 \mathrm{X}-00,-05$
$=+18$ percent plus positive	$387 \mathrm{X}-10,-15$   $=+21$ percent plus positive   frequency variation due   frequency variation due   to $R C$ components
$=-18$ percent minus negative	$=-21$ percent minus
frequency variation due to	negative frequency   variation due to $R C$
RC components	components

Total frequency variation due to $\mathrm{V}_{\mathrm{CC}}$ and temperature of a unit tuned to frequency at $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}, 25 \mathrm{C}$

$$
\begin{array}{rlrl} 
& 387 \mathrm{X}-00,-05 & & 387 \mathrm{X}-10,-15 \\
= & +13 \text { percent } & =+16 \text { percent }
\end{array}
$$

## EXTERNAL CLOCK CONFIGURATION

The connection for the external clock time base configuration is shown in Figure 16. Refer to the DC Characteristics section for proper input levels and current requirements.

Refer to the Capacitarice section of the appropriate 3875 Family device data sheet for input capacitance.

## EXTERNAL MODE CONNECTION



Figure 16

## MK3875, MK38P75

ELECTRICAL SPECIFICATIONS
OPERATING VOLTAGES AND TEMPERATURES
Dash

Operating	Operating	
Number	Voltage	Temperature
Suffix	VCC $^{\text {C }}$	$\mathbf{T}_{\text {A }}$
-00	$-\mathrm{V} \pm 10 \%$	$\mathrm{O}^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
-05	$+5 \mathrm{~V} \pm 5 \%$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
-10	$+5 \mathrm{~V} \pm 10 \%$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
-15	$+5 \mathrm{~V} \pm 5 \%$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$

## MAXIMUM RATINGS*

	-00, -05	-10, -15
Temperature Under Bias	$-20^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin With Respect to Ground (Except open drain pins and TEST)	-1.0 V to +7 V	-1.0 V to +7 V
Voltage on TEST with Respect to Ground	-1.0 V to +9 V	-1.0 V to +9 V
Voltage on Open Drain Pins with Respect to Ground	-1.0 V to +13.5 V	-1.0 V to 13.5 V
Power Dissipation	1.5W	1.5W
Power Dissipation by any one I/O pin	60 mW	60 mW
Power Dissipation by all 1/O pins ........	600 mW	600 mW

"Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating and conditions for extended periods may affect device reliability.

## AC CHARACTERISTICS

$T_{A}, V_{C C}$ within specified operating range
I/O Power Dissipation $<100 \mathrm{~mW}$ (Note 4)

SIGNAL	SYM	PARAMETER	-00,-05		-10,-15		UNIT	NOTES
			MIN	MAX	MIN	MAX		
$\begin{aligned} & \text { XTL1 } \\ & \text { XTL2 } \end{aligned}$	$\mathrm{t}_{0}$	Time Base Period, all clock modes	250	500	250	500	ns	$4 \mathrm{MHz}-2 \mathrm{MHz}$
	$t_{\text {ex(H) }}$	External clock pulse width high	90	400	100	390	ns	
	${ }_{\text {tex (L) }}$	External clock pulse width low	100	400	110	390	ns	
$\boldsymbol{\Phi}$	${ }^{\boldsymbol{t}}{ }_{\Phi}$	Internal $\Phi$ clock	$2 \mathrm{t}_{0}$		$2 \mathrm{t}_{0}$			
WRITE	${ }^{\text {tw }}$	Internal WRITE Clock period	$\begin{aligned} & 4 \mathrm{t} \Phi \\ & 6 \mathrm{t} \Phi \end{aligned}$		$\begin{aligned} & 4 \mathrm{t} \Phi \\ & 6 \mathrm{t} \Phi \end{aligned}$			Short Cycle Long Cycle
1/0	${ }^{t_{d l} / 0}$	Output delay from internal WRITE clock	0	1000	0	1200	ns	50pF plus one TTL load
	$\mathrm{t}_{\mathbf{s} 1 / 0}$	Input setup time to internal WRITE clock	1000		1200		ns	
$\overline{\text { STROBE }}$	t/0-s	Output valid to $\overline{\text { STROBE }}$ delay	$\begin{gathered} 3 t \Phi \\ -1000 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3 t \Phi \\ +250 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 t \Phi \\ -1200 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 t \Phi \\ +3 \Omega 0 \\ \hline \end{array}$	ns	```1/O load = 5OfF + 1 TTL load```
	$\mathrm{t}_{\text {SL }}$	STROBE low time	$\begin{gathered} 8 \mathrm{t} \Phi \\ -250 \end{gathered}$	$\begin{aligned} & 12 \mathrm{t} \Phi \\ & +250 \end{aligned}$	$\begin{gathered} 8 \mathrm{t} \Phi \\ -300 \end{gathered}$	$\begin{aligned} & 12 £ \Phi \\ & +300 \end{aligned}$	ns	STROBE load = $50 \mathrm{pF}+3$ TTL loads
$\overline{\text { RESET }}$	${ }_{\text {tr }}$	RESET hold time, low	$\begin{array}{r} 6 t \Phi \\ +750 \\ \hline \end{array}$		$\begin{array}{r} 6 t \Phi \\ +1000 \\ \hline \end{array}$		ns	
	${ }^{\text {tr PPOC }}$	RESET hold time, low for power clear	$\begin{gathered} \text { power } \\ \text { supor } \\ \text { sume } \\ \text { time }+5.0 \end{gathered}$		$\begin{gathered} \begin{array}{c} \text { power } \\ \text { supur } \\ \text { sispe } \\ \text { ime }+5.5 \end{array} \end{gathered}$		ms	
EXT INT	${ }^{\text {teH }}$	EXT INT hold time in active and inactive state	$\begin{array}{r} 6 t \Phi \\ +750 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 6 t \Phi \\ +1000 \\ \hline \end{array}$		ns	To trigger interrupt
			2t $\Phi$		$2 \mathrm{t} \Phi$		r	Tratic

## AC CHARACTERISTICS FOR MK38P75

(Signals brought out at socket)
$T_{A}, V_{C C}$ within specified operating range.
I/O Power Dissipation $\leq 100 \mathrm{~mW}$. (Note 2)

SYMBOL	PARAMETER	-00, -05		-10, -15		UNIT	CONDITION
		MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {a }}{ }^{*}$	Access time from Address $\mathrm{A}_{11}-\mathrm{A}_{0}$ stable until data must be valid at $D_{7}-D_{0}$	650		650		ns	$\Phi=2.0 \mathrm{MHz}$

*See Table in Figure 10

CAPACITANCE
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ All Part Numbers

SYM	PARAMETER	MIN	MAX	UNIT	NOTES
$C_{I N}$	Input capacitance; I/O $\overline{\text { RESET, EXT INT, }}$   TEST		10	pF	unmeasured   pins grounded
CXTL	Input capacitance; XTL1, XTL2	23.5	29.5	pF	

## DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}$ within specified operating range
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 4)

SYM	PARAMETER	-00,-05		-10,-15		UNIT	NOTES
		MIN	MAX	MIN	MAX		
${ }^{1} \mathrm{CC}$	Average Power Supply Current		94		125	mA	Outputs Open (5)
$P_{\text {D }}$	Average Power Dissipation		440		575	mW	Outputs Open (6)
$\mathrm{V}_{\text {IHEX }}$	External Clock input high level	2.4	5.8	2.4	5.8	V	
VILEX	External Clock input low level	-. 3	. 6	-. 3	6	V	
IIHEX	External Clock input high current		100		130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IHEX }}=\mathrm{V}_{\text {CC }}$
IILEX	External Clock input low current		-100		-130	$\mu \mathrm{A}$	$\mathrm{V}_{\text {ILEX }}=\mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\mathrm{IHI} / \mathrm{O}}$	Input high level, 1/O pins	2.0	5.8	2.0	5.8	V	Standard Pull-Up (1,2)
		2.0	13.2	2.0	13.2	V	Open Drain (1,3)
$\mathrm{V}_{\text {IHR }}$	Input high level, $\overline{\text { RESET }}$	2.0	5.8	2.2	5.8	V	Standard Pull-Up(1, 2)
		2.0	13.2	2.2	13.2	V	No Pull-Up (1,3)
$\mathrm{V}_{\text {IHEI }}$	Input high level, EXT INT	2.0	5.8	2.2	3.8	V	Standard Pull-Up(1, 2)
		2.0	13.2	2.2	13.2	V	No Pull-Up (1,3)
$\mathrm{V}_{\mathrm{IL}}$	I/O ports, $\overline{\text { RESET, EXT INT input }}$ low level	- 3	. 8	-. 3	. 7	V	
VILRPT	$\overline{\text { RESET input low level to protect }}$ RAM during loss at $\mathrm{V}_{\mathrm{CC}}$	-. 3	4	-. 3	. 4	V	
IIL	Input low current, standard pull-up pins		-1.6		-1.9	mA	$\begin{gathered} V_{I N}=0.4 V \\ \text { (2) } \end{gathered}$

## DC CHARACTERISTICS (Continued)

$T_{A}, V_{C C}$ within specified operating range
I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 4)

SYM	PARAMETER	-00, -05		-10, -15		UNIT	NOTES
		MIN	MAX	MIN	MAX		
${ }^{\prime} \mathrm{L}$	Input leakage current, open drain pins Reset and EXT INT inputs With no pull-up resistor		$\begin{gathered} +10 \\ -5 \end{gathered}$		$\begin{gathered} +18 \\ -8 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{~N}}=0.0 \mathrm{~V} \\ & (3) \end{aligned}$
${ }^{1} \mathrm{OH}$	Output high current, standard Pull-Up pins	$\begin{array}{\|c\|} \hline-100 \\ -30 \end{array}$		$\begin{aligned} & -89 \\ & -25 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=3.9 \mathrm{~V} \end{aligned}$
IOHDD	Output high current Direct Drive pins	$\begin{aligned} & -100 \\ & -1.5 \end{aligned}$	-8.5	$\begin{gathered} -80 \\ -1.3 \end{gathered}$	-11	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V} \end{aligned}$
${ }^{\text {OLI }}$	Output low current, I/O ports	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
IOHS	STROBE Output High current	-300		-270		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=2.4 \mathrm{~V}$
IOLS	STROBE output low current	5.0		4.5		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$

## DC CHARACTERISTICS FOR STANDBY POWER PINS

$\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}$ within operating range I/O Power Dissipation $\leq 100 \mathrm{~mW}$ (Note 4)

SYMBOL	PARAMETER	-00, -05		-10,-15		UNIT	NOTES
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {SB }}$	Standby $\mathrm{V}_{\mathrm{CC}}$ for RAM	3.2	$\begin{aligned} & V_{C C} \\ & M A X \end{aligned}$	3.2	$\mathrm{V}_{\mathrm{CC}}$   MAX	V	
${ }^{\prime} \mathrm{SB}$	Standby Current		6		7.5	mA	$V_{S B}=V_{S B} M A X$
			3.7		5.0	mA	$\mathrm{V}_{\text {SB }}=\mathrm{V}_{\text {SB }} \mathrm{MIN}$
'CHARGE	Trickle charge available on $\mathrm{V}_{\mathrm{SB}}$ with $\mathrm{V}_{\mathrm{CC}}$ in operating range.	-. 8		-. 7		mA	$\mathrm{V}_{\mathrm{SB}}=3.8 \mathrm{~V}$
			-15		-19	mA	$\mathrm{V}_{\mathrm{SB}}=3.2 \mathrm{~V}$

## DC CHARACTERISTICS FOR MK38P75

(Signals brought out at socket)
$T_{A}, V_{C C}$ within specified operating range, $1 / O$ power dissipation $\leq 100 \mathrm{~mW}$ (Note 2)

SYM	PARAMETER	-00, -05		-10, -15		UNIT	CONDITION
		MIN	MAX	MIN	MAX		
Icce	Power Supply Current for EPROM		-185		-185	mA	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Level Data bus in	-0.3	0.8	-0.3	0.8	V	
$\mathrm{V}_{\mathrm{IH}}$	Input High Level Data bus in	2.2	5.8	2.2	5.8	V	
IOH	Output High Current	-100		-90		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
		-30		-25		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=3.9 \mathrm{~V}$
IOL	Output Low Current	1.8		1.65		mA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
IIL	Input Leakage Current		10		10	$\mu \mathrm{A}$	Data Bus in Float

[^24]
## TIMER AC CHARACTERISTICS

Definitions:
Error $=$ Indicated time value - actual time value
tpsc $=\mathbf{t \Phi} \times$ Prescale Value
Interval Timer Mode

Single interval error, free running (Note 3)	$\pm 6 \mathrm{t} \Phi$
Cumulative interval error, free running (Note 3)	
Error between two Timer reads (Note 2)	tpsc $+\mathrm{t} \Phi)$
Start timer to stop Timer error (Notes 1, 4)	$+t \Phi$ to - (tpsc $+\mathrm{t} \Phi)$
Start Timer to read Timer error (Notes 1, 2)	$-5 t \Phi$ to $-(t p s c+7 t \Phi)$
Start Timer to interrupt request error (Notes 1, 3)	$-2 t \Phi$ to -8t $\Phi$
Load Timer to stop Timer error (Note 1)	$+\mathrm{t} \Phi$ to -(tpsc $+2 \mathrm{t} \Phi)$
Load Timer to read Timer error (Notes 1, 2)	$-5 t \Phi$ to $-(t p s c+8 t \Phi)$
Load Timer to interrupt request error (Notes 1, 3)	$-2 t \Phi$ to -9

Pulse Width Measurement Mode
Measurement accuracy (Note 4) $+t \Phi$ to -(tpsc $+2 \mathrm{t} \Phi$
Minimum pulse width of EXT INT pin ..... $2 t \Phi$ ..... $2 t \Phi$
Event Counter Mode
Minimum active time of EXT INT pin ..... 2t $\Phi$
Minimum inactive time of EXT INT pin ..... 2t $\Phi$

## Notes:

1. All times which entail loading, starting, or stopping the Timer are referenced from the end of the last machine cycle of the OUT or OUTS instruction.
2. All times which entail reading the Timer are referenced from the end of the last machine cycle of the IN or INS instruction.
3. All times which entail the generation of an interrupt request are referenced from the start of the machine cycle in which the appropriate interrupt request latch is set. Additional time may elapse if the interrupt request occurs during a privileged or multicycle instruction.
4. Error may be cumulative if operation is repetitively performed.


Input capacitance; I/O, $\overline{R E S E T}, ~ E X T ~ I N T, ~$

$\overline{\text { RESET }}$

EXT INT


Note: All $A C$ measurements are referenced to $V_{I L} \max ., V_{I H} \min ., V_{O L}(.8 v)$, or $V_{O H}(2.0 v)$.
Figure 17

## INPUT/OUTPUT AC TIMING



Figure 18

STROBE SOURCE CAPABILITY
(TYPICAL AT $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$ ) Figure 19

## STROBE SINK CAPABILITY

(TYPICAL ATV $\mathbf{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Figure 20

STANDARD I/O PORT SOURCE CAPABILITY (TYPICAL AT $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Figure 21

DIRECT DRIVE I/O PORT SOURCE CAPABILITY (TYPICAL AT $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$ ) Figure 22


OUTPUT VOLTAGE

I/O PORT SINK CAPABILITY
(TYPICAL AT VCC $=\mathbf{5 V}, \mathbf{T}_{A}=25^{\circ} \mathrm{C}$ )
Figure 23


MAXIMUM OPERATING TEMPERATURE VS.
I/O POWER DISSIPATION
Figure 24


## PHYSICAL DIMENSIONS



NOTE: Overell lenget inctucter. 008 meth in ather and of oestege
40-Pin Dual-in-Line Plastic Package (N)


40-Pin Dual-in-Line Ceramic Package (P)


40-Pin Dual-in-Line Cerdip Package (J)

## ORDERING INFORMATION

There are two types of part numbers for the 3870 family of devices. The generic part number describes the basic device type, the amount of ROM and executable RAM, the desired package type, temperature range and power

## GENERIC PART NUMBER

An example of the generic part number is shown below.


## DEVICE ORDER NUMBER

An example of the device order number is shown below.

The customer/code specific number defines the ROM bit pattern, I/O configuration, oscillator type, and generic part type to be used to satisfy the requirement of a particular customer purchase order. For further information on the ordering of mask ROM devices, the customer should refer to the 3870 Family Technical Manual.
supply tolerance. For each customer specific code, additional information defining I/O options and oscillator options will be combined with the information described in the generic part number to define a customer/code specific device order number.

$0=+5 V \pm 10 \%$
$5=+5 \mathrm{~V} \pm 5 \%$
$0=0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
P = Ceramic
$N=$ Plastic


## 16-bit microcomputers

- 

| Function | Part <br> number | Characteristic |
| :--- | :--- | :--- | :--- |

16-bit, high performance, single-chip microcomputer

- 14 address and data registers
- Eight 16-bit or sixteen 8-bit data registers
- Six 16-bit address registers
- Advanced 16-bit instruction set
- Bit, byte, and word operands
- Nine addressing modes
- Byte and word BCD arithmetic
- High performance ( 6 MHz instruction clock)
- 500 ns register-to-register move or add
$-3.5 \mu \mathrm{~s} 16 \times 16$ multiply
$-4.0 \mu \mathrm{~s} 32 / 16$ divide
- Available with $0,4 \mathrm{~K}(2 \mathrm{~K} \times 16)$ of ROM
- $256(128 \times 16)$ or $512(256 \times 16)$ byte RAM
- Up to 1 K byte RAM on MK68E221
- Three 16-bit timers
- Interval modes
- Event modes
- One-shot modes
- Pulse and period measurement modes
- Two input and two output pins
- Serial channel
- Double-buffered receive and transmit
- Asynchronous to 375 Kbps
- Synchronous to 1.5 Mbps
- Address wake-up recognition and generation
- Internal/external baud rate generation
- Parallel I/O
- Up to 40 pins
- Direction programmable by bit
- One 16-bit or two 8-bit port(s) with handshaking
- Interrupt controller
- 16 independent vectors
- Eight external interrupt sources
- One non-maskable interrupt
- Individual interrupt masking
- Optional external bus
- 16-bit, multiplexed address/data bus
- Automatic bus request/grant arbitration
- Two control bus versions:
- 68000-compatible bus (UPC)
- General Purpose Bus (GP)
- 8 and 12 MHz time base versions produce 4 and 6 MHz instruction clock rates, respectively.
- Crystal or external TTL clock
- Single +5 volt power supply
- DIP, chip carrier or pin-grid packaging



## BLOCK DIAGRAM



## FUNCTIONAL DESCRIPTION

MK68200 designates a series of new, high-performance, 16-bit, single-chip microcomputers from Thomson Mostek. Implemented in Scaled Poly-5 NMOS, they incorporate an architecture designed for superior performance in computation-intensive control applications. A modern, comprehensive instruction set (which features both high speed execution and code space efficiency) is combined on-chip with extensive, flexible I/O capabilities. On-chip RAM and optional on-chip ROM are provided within a full 64 K byte addressing space.

The MK68200 is designed to serve the needs of a wide variety of control applications, which require high performance operation with a minimal parts count implementation. Industrial controls, instrumentation, and intelligent computer peripheral controls are all examples of applications served by the MK68200. High speed mathematical ability, rapid I/O addressing and interrupt response, and powerful bit manipulation instructions provide the .secessary tools for these applications. In addition to its single-chip microcomputer configuration, both distributed intelligence and parallel multiprocessing system configurations are supported by the MK68200, as illustrated in Figures 10 and 11.

In applications requiring loosely-coupled distributed intelligence, several MK68200's may be interconnected on a common serial network. The on-chip USART supports a wake-up mode in which an additional bit is appended to the data stream to distinguish a serial data word as address or data. The wake-up logic prevents the serial channel from generating interrupts unless certain criteria have been met. The wake-up options available are: Wake-up on any address or data character, wake-up on any address, or wake-up on address match.

Alternately, the MK68200 may be configured as an expandable CPU device which can access external memory and I/O resources. In this operating mode, parallel I/O pins are replaced by multiplexed address/ data and control lines. Bus arbitration logic is incorporated on the chip to support a direct interface in parallel shared bus multiprocessor system configurations. Two versions exist which support two types of control signals present on the expanded bus configuration. The General Purpose (GP) bus option allows the MK68200 to operate either as an executive or a peripheral processor. As an executive procesor, the MK68200 can control
an external system bus and grant the use of it to requesting devices, such as DMA controllers and/or peripheral processors. As a peripheral control processor, the MK68200 can provide intelligent local control of an I/O device in a computer system and, thereby, relieve the executive processor of these tasks. In this configuration, the MK68200 has the capability of effectively performing DMA transfers between system memory and the I/O device. The on-chip resources of ROM, RAM, and I/O are accessed within the MK68200 without affecting utilization of the shared system bus. Therefore, only external communications compete for bus bandwidth.

The Universal Peripheral Controller (UPC) bus option supports a direct interface to a 68000 executive processor. Thus, the MK68200 can be used as a cost-effective, intelligent peripheral controller in 68000 systems. The UPC version's direct bus interface to the 68000 makes the MK68200 particularly well-suited for performing many intelligent I/O functions in a 68000 system. For example, since the MK68200 includes both a serial channel and an external bus capable of performing DMA transfers, it can be programmed to act as serial protocol controller with DMA capability, as shown in Figure 1.

Table 1 summarizes the specific MK68200 device types that are discussed in this data sheet. A complete guide to the part numbering scheme used throughout this document may be found in the Ordering Information section. All MK68200 devices retain most of the I/O features when they are used in the expanded bus mode; however, 24 pins of parallel I/O are sacrificed when this mode is used. When the expanded bus mode is selected, the MK68201/XX generates UPC (68000-compatible) control signals, while the MK68211/XX generates GP control signals. Also available are 84-pin emulator versions of these devices that do not have on-chip ROM, but instead have additional pins to support a second complete address/data bus to access off-chip ROM, RAM, EPROM, or I/O devices. This bus is referred to as the private bus and is not bonded out on 48-pin versions.

For additional information on the MK68200, refer to the MK68200 Principles of Operation Manual, publication number 4420399.


Figure 1. Serial DMA Controller

Device Type	Expanded   Bus Version	ROM   (Bytes)	RAM   (Bytes)	PKG.
MK68201/04	UPC	0	256	48 -pin DIP
MK68201/44	UPC	$4 K$	256	48 -pin DIP
MK68E201/04	UPC	0	256	$84-$ pin LCC
MK68211/04	GP	0	256	48 -pin DIP, 52-pin PLCC
MK68211/44	GP	$4 K$	256	48 -pin DIP, 52-pin PLCC
MK68E211/04	GP	0	256	84 -pin LCC
MK68E221/0C	UPC/GP	0	1024	84 -pin LCC, PGA

Table 1. Device Type Summary

## SINGLE-CHIP DESCRIPTION

Figure 2 illustrates the functions of specific pins for an MK68201 or MK68211, operating in a single-chip mode. When the device is operating in one of the expanded bus modes, the pins on Port 0 become the multiplexed address/data bus, and the upper half of Port 1 becomes the control signals (GP or UPC) for the bus. ${ }^{\text {. The }}$ following description applies to the pins only when the device is used in the non-expanded or single-chip mode. Descriptions of the pin functions for the expanded bus modes are in the Expanded Bus Operation section of this data sheet.

## $V_{\text {CC }}$, GND

(Power, Ground)
Power Supply pins.
(single +5 V )

## RESET

Input, active low. $\overline{R E S E T}$ input overrides ongoing execution (including interrupts) and resets the chip to its initial power-up condition. RESET cannot be masked.

## CLKOUT

## (Clock Output)

Output. CLKOUT will output the instruction clock rate, which is one-half of the frequency provided on CLK1 and CLK2.

## CLK1, CLK2

## (Time base Inputs)

Inputs. CLK1 and CLK2 may be connected to a crystal, or CLK1 may be connected to an external TTLcompatible oscillator while CLK2 is left floating. The instruction clock rate is one-half of the frequency provided on CLK1 and CLK2.

## $\overline{\text { NMI }}$

## (Non-Maskable Interrupt)

Input, active low, negative edge triggered. The NMI request line has a higher priority than all of the maskable interrupts. NMI is always enabled regardless of the state of the L1E (Level 1 Interrupt Enable) bit in the Status Register.

## MODE

Input. The MODE pin is used to configure the MK68200 on power-up and reset to one of the following states:

Mode Pin
$V_{C C}$ - No expansion (single chip mode)
GND - Partial Expansion
CLKOUT - Full Expansion
P0-0 - P0-15
(Port 0)
Input/Output. Each bit in Port 0 may be individually programmed for general purpose input or output. Port 0 also has several handshaking modes to allow parallel, asynchronous communication with other devices. The high and low bytes may be programmed individually or jointly to be inputs, outputs, or bidirectional.

## P1-0 - P1-15

(Port 1)
Input/Output. Each of the 16 bits in Port 1 may be individually programmed for input or output. Additionally, the lowest seven bits of Port 1 may be programmed to serve specific alternate functions, as listed below.

## P1-6/XI2

(External Interrupt 2)
Input, rising or falling edge triggered. The programmer may select the rising or falling edge as active for XI2.

## P1-5/XI1

(External Interrupt 1)
Input, fixed falling edge triggered. The XI1 interrupt may be used to interrupt the MK68200 on the falling edge of an input pulse.

P1-4/XI0
(External Interrupt 0)
Input, low level triggered. The XIO interrupt input is leveltriggered (unlike XI1, XI2). It may be used to produce an internally vectored interrupt or to cause an external fetch of an interrupt vector number when the MK68200 is used in an expanded mode with the GP bus.

P1-3/SI
(Serial Input)
Input, active high. SI is used to input receive serial data when the receiver is enabled.


Figure 2. MK68200 Logical Pinout, Single-Chip Mode

## P1-2/RCLK

## (Receive Clock)

Input/Output, active high. Depending on the mode programmed, RCLK can be used by the serial port as either an input or an output pin. When used as an input pin, RCLK provides the receive clock and/or the transmit clock. When RCLK is not providing the transmit or receive clock, it can be used as an output for Timer C. In this mode, the receive clock is being provided by Timer C.

## P1-1/TCLK

## (Transmit-Clock)

Input/Output, active high. Depending on the mode programmed, TCLK can be used by the serial port as either an input or an output pin. When used as an input pin, TCLK provides the transmit clock. When TCLK is not providing the transmit clock, it can be used as an output for Timer C. In this mode, the transmit clock is being provided by either Timer C or RCLK.

## P1-1/SO

(Serial Output)
Output, active high. SO is used to output transmit serial data when the transmitter is enabled.

## P4-8 - P4-15

## (Port 4)

Inputs and Outputs. P4-8, P4-9, P4-14, and P4-15 may be used as general purpose outputs, and P4-10, P4-11, P4-12, and P4-13 may be used as general purpose inputs. Interrupts may be generated on the positive tran-
sitions on P4-10 and P4-11. Depending on the mode selected, interrupts may be generated on the positive or negative transitions on P4-12, or they may be generated on the positive, negative, or combined transitions on P4-13. Additionally, these bits may be programmed to serve specific alternate functions, as listed below.

## P4-15/TAO

## (Timer A Output)

Output. TAO may be programmed for special functions in the interval, event, and pulse modes for Timer A. In the interval mode, TAO's state is determined by the Timer A latch (high or low) that is currently active. That is, if the counter is using the high latch for comparison, TAO is high. If the counter is using the low latch for comparison, TAO is low. In the event mode, TAO is initialized to a " 1 " state and toggles each time the counter matches the Timer A high latch. In the pulse/period modes, TAO is initiated to a "1" state and toggles on positive transitions on TAI.

## P4-14/TBO

(Timer B Ouput)
Output. TBO may be programmed for special functions in the interval and one-shot modes for Timer B. In the interval mode, TBO is initialized to a " 1 " state and toggles each time the counter matches the Timer $\mathbf{B}$ latch value. In the one-shot modes, TBO is initialized to a " 1 " state, and the counter begins counting in response to the occurrence of an active edge on TBI. TBO will not go low until the counter matches the value loaded into the Timer B latch.

## P4-13/TAI

(Timer A Input)
Input, positive and/or negative edge triggered. TAl may be programmed for special functions in the event mode or pulse/period modes for Timer A. In the event mode, the counter is incremented on each active transition (positive or negative edge programmable) on TAI. In the pulse/period modes, the counter measures the time during which the signal on TAI remains high and low.

## P4-12/TBI

(Timer B Input)
Input, positive or negative edge triggered. TBI may be programmed for special functions for the Timer $B$ oneshot modes. In the one-shot modes, TBI acts as a trigger input.

## P4-11/STRH, P4-10/STRL

(Strobe High Byte, Strobe Low Byte)
Input, active high. STRH and STRL are both used for input, output, and bidirectional handshaking on Port 0.

1) Output mode: The positive edge of this strobe is issued by the peripheral to acknowledge the receipt of data made available by the MK68200.
2) Input mode: The strobe is issued by the peripheral to load data from the peripheral into the Port 0 input register. Data is latched into the MK68200 on the negative edge of this signal.
3) Bidirectional mode: When the STRH signal is active, data from the Port 0 output register is gated onto the Port 0 bidirectional data bus.

The negative edge of STRH acknowledges the receipt of the output data. The negative edge of the signal applied to the STRL signal is used to latch input data into Port 0.

P4-9/RDYH, P4-8/RDYL
(Ready High Byte, Ready Low Byte)
Output, active high. RDYH and RHYL are used for input, output, and bidirectional handshaking on Port 0.

1) Output mode: The ready signal goes active to indicate that the Port 0 output register has been loaded, and the peripheral data is stable and ready for transfer to the peripheral device.
2) Input mode: The ready signal is active when the Port 0 input register is empty and is ready to accept data from the peripheral device.
3) Bidirectional mode: The RDYH signal is active when data is available in Port 0 output register for transfer to the peripheral device. In this mode, data is not placed on the Port 0 data bus unless STRH is active. The RDYL signal is active when the Port 0 input register is empty and is ready to accept data from the peripheral device.

## PROCESSOR ARCHITECTURE

The MK68200 microcomputer contains an advanced processor architecture, combining the best properties of both 8 - and 16 -bit processors. A large majority of instructions operate on either byte or word operands.

## REGISTERS

The MK68200 register set includes three system registers, six address registers, and eight data registers. The three 16-bit system registers (Figure 3) include a Program Counter, a Status Register, and a Stack Pointer. The six address registers may be used either for 16 -bit data or for memory addressing. The eight 16-bit data registers are used for data and may be referenced as sixteen 8 -bit registers, providing great flexibility in register allocation.

## ADDRESSING

The MK68200 directly addresses a 64K byte memory space, which is organized as 32 K 16 -bit words. The memory is byte-addressable, but most transfers occur 16 bits at a time, for increased performance over 8-bit microcomputers. All input/output is memory-mapped, and the on-chip I/O is situated in the top 1 K bytes of the address space. In the single-chip mode, all resources including ROM, RAM, and I/O, are accessed via an internal or private bus. The memory map, which is accessed by this bus in the single-chip mode, is depicted in Figure 4. Note on-chip RAM always begins at \$FBFF and extends downward. ROM always begins at zero and extends upward.

Nine addressing modes provide ease of access to data in the MK68200, as depicted in Table 2. The four register indirect forms utilize the address registers and the Stack Pointer and support many common data structures such as arrays, stacks, queues, and linked lists. I/O Port addressing is a short form addressing mode for the first 16 words of the I/O port space and allows most instructions to access the most often referenced I/O ports in just one word. Many microcomputer applications are I/O intensive and short, fast addressing of I/O has a significant impact on performance.

> Register
> Register Indirect
> Register Indirect with Post-increment
> Register Indirect with Pre-decrement
> Register Indirect with Displacement
> Program Counter Relative
> Memory Abso' te
> Immediate
> I/O Port

Table 2. Addressing Modes

DATA REGISTERS:


ADDRESS REGISTERS:


SYSTEM REGISTERS:


Figure 3. Register Set


ADDRESS
sFFFF
SFC28
SFC27
\$FC00 SFBFF
\$F800
CONTENTS
FUTURE I/O EXPANSION AREA (RESERVED)

PORT 0 THROUGH PORT 19

ON-CHIP RAM (UP TO 1024 BYTES)

FUTURE RAM AND ROM EXPANSION


Figure 4. Addressing Space For Single-Chip Configuration

## INSTRUCTION SET

The MK68200 instruction set has been designed with regularity and ease of programming in mind. In addition, instructions have been encoded to minimize code space, a feature which is especially important in singlechip microcomputers. Small code space is related to execution speed, and most instructions execute in either three or six instruction clock periods. (An instruction clock period is equal to 167 ns with a 6 MHz instruction clock). See Table 3.

In addition to operations on bytes and words, the MK68200 has rapid bit manipulation instructions that can operate on registers, memory, and ports. The bit to be affected may be an immediate operand of the instruction, or it may be dynamically specified in a register. Operations available include bit set, clear, test, change, and exchange; and all bit operations perform a bit test as well. Since each instruction is indivisible, this provides the necessary test-and-set function for the implementation of semaphores.

Instruction Type	Clock   Periods	Execution Time   with $6 \mathbf{M H z}$   Clock ( $\mu \mathrm{s})$
Move Register-to-register	3	0.5
Add Register-to-register (binary or BCD)	3	0.5
Move Memory-to-register	6	1.0
Add Register-to-memory	9	1.5
Multiply (16 $\times 16$ )	21	3.5
Divide (32/16)	55	3.84
Move Multiple (save or restore all registers)	9.2	

Table 3. Instruction Execution Times

The MOVE group of instructions has the most extensive capabilities. A wide variety of addressing mode combinations is supported including memory-tomemory transfers. A special move multiple is included to save and restore a specified portion of the registers rapidly.

In total, the MK68200 instruction set provides a programming environment, similar to the 68000, which has been optimized for the needs of the single-chip microcomputer marketplace. A summary of the instruction set is provided in Table 4.

INSTRUCTION	DESCRIPTION	INSTRUCTION	DESCRIPTION
ADD	ADD	HALT	HALT
ADD. $B$	ADD BYTE	JMPA	JUMP ABSOLUTE
ADDC	ADD WITH CARRY	JMPR	JUMP RELATIVE
ADDC.B	ADD WITH CARRY BYTE	LIBA	LOAD INDEXED BYTE ADDRESS
AND	LOGICAL AND	LIWA	LOAD INDEXED WORD ADDRESSED
AND. ${ }^{\text {a }}$	LOGICAL AND BYTE	LSR	LOGICAL SHIFT RIGHT
ASL	ARITHMETIC SHIFT LEFT	LSR.B	LOGICAL SHIFT RIGHT BYTE
ASL.B	ARITHMETIC SHIFT LEFT BYTE	MOVE	MOVE
ASR	ARITHMETIC SHIFT RIGHT	MOVE.B	MOVE BYTE
ASR.B	ARITHMETIC SHIFT RIGHT BYTE	MOVEM	MOVE MULTIPLE REGISTERS
BCHG	BIT CHANGE	MOVEM.B	MOVE MULTIPLE REGISTERS BYTE
BCLR	BIT CLEAR	MULS	MULTIPLY SIGNED
BEXG	BIT EXCHANGE	MULU	MULTIPLY UNSIGNED
BSET	BIT SET	NEG	NEGATE
BTST	BIT TEST	NEG.B	NEGATE BYTE
CALLA	CALL ABSOLUTE	NEGC	NEGATE WITH CARRY
CALLR	CALL RELATIVE	NEGC.B	NEGATE WITH CARRY BYTE
CLR	CLEAR	NOP	NO OPERATION
CLR.B	CLEAR BYTE	NOT	ONE'S COMPLEMENT
CMP	COMPARE	NOT.B	ONE'S COMPLEMENT BYTE
CMP.B	COMPARE BYTE	OR	LOGICAL OR
DADD	DECIMAL ADD	OR.B	LOGICAL OR BYTE
DADD.B	DECIMAL ADD BYTE	POP	POP
DADDC	DECIMAL ADD WITH CARRY	POPM	POP MULTIPLE REGISTERS
DADDC.B	DECIMAL ADD WITH CARRY BYTE	PUSH	PUSH
DI	DISABLE INTERRUPTS	PUSHM	PUSH MULTIPLE REGISTERS
DIVU	DIVIDE UNSIGNED	RET	RETURN FROM SUBROUTINE
DJNZ	DECREMENT COUNT AND JUMP	RETI	RETURN FROM INTERRUPT
	IF NON-ZERO	ROL	ROTATE LEFT
DJNZ.B	DECREMENT COUNT BYTE AND	ROL.B	ROTATE LEFT BYTE
	JUMP IF NON-ZERO	ROLC	ROTATE LEFT THROUGH CARRY
DNEG	DECIMAL NEGATE	ROLC.B	ROTATE LEFT THROUGH CARRY
DNEG.B	DECIMAL NEGATE BYTE		BYTE
DNEGC	DECIMAL NEGATE WITH CARRY	ROR	ROTATE BYTE
DNEGC.B	DECIMAL NEGATE WITH CARRY	ROR.B	ROTATE RIGHT BYTE
	BYTE	RORC	ROTATE RIGHT THROUGH CARRY
DSUB	DECIMAL SUBTRACT	RORC.B	ROTATE RIGHT THROUGH CARRY
DSUB.B	DECIMAL SUBRTRACT BYTE		BYTE
DSUBC	DECIMAL SUBTRACT WITH CARRY	SUB	SUBTRACT
DSUBC.B	DECIMAL SUBTRACT WITH CARRY	SUB.B	SUBTRACT BYTE
	BYTE	SUBC	SUBTRACT WITH CARRY
El	ENABLE INTERRUPTS	SUBC.B	SUBTRACT WITH CARRY BYTE
EOR	EXCLUSIVE OR	TEST	TEST
EOR.B	EXCLUSIVE OR BYTE	TEST.B	TEST BYTE
EXG	EXCHANGE	TESTN	TEST NOT
EXG.B	EXCHANGE BYTE	TESTN.B	TEST NOT BYTE
EXT	EXTEND SIGN		

[^25]
## INPUT/OUTPUT ARCHITECTURE

The I/O capabilities of the MK68200 are extensive, encompassing timers, a serial channel, parallel I/O, and an interrupt controller. All of these devices are accessible to the programmer as ports within the top 1 K bytes of the address space, and the most commonly accessed ports may be accessed with the short port addressing mode. A description of these ports is given in Table 5.

In total, 40 pins of the 48 are used for $1 / O$, and their functions are highly programmable by the user. In particular, many pins can perform multiple functions, and the programmer selects which ones are to be used. For example, TAI may be used as an input for Timer A, an interrupt source, or a general purpose input pin. The interrupt source may be selected simultaneously with either of the other functions.

PORT	ADDRESS	READ/WRITE	BYTEADDRESSABLE	FUNCTION
0	\$FC00	READ/WRITE	YES	16 EXTERNAL I/O PINS OR ADDRESS/DATA BUS
1	\$FC02	READ/WRITE	YES	16 EXTERNAL I/O PINS (INCLUDING INTERRUPT, SERIAL I/O PINS, AND BUS CONTROL)
2	\$FC04	-	-	(RESERVED)
3	\$FC06	LOW BYTE: READ/WRITE HIGH BYTE: READ	YES	SERIAL TRANSMIT (LOW BYTE) AND RECEIVE (HIGH BYTE) BUFFER
4	\$FC08	INPUTS: READ ONLY OUTPUTS: READ/WRITE	NO	8 EXTERNAL I/O PINS (TIMER CONTROL AND PORT 0 HANDSHAKE CONTROL)
5	\$FCOA	- R	-	(RESERVED)
6	\$FCOC	-	-	(RESERVED)
7	\$FCOE	READ/WRITE	NO	INTERRUPT LATCH REGISTER
8	\$FC10	READ/WRITE	NO	INTERRUPT MASK REGISTER
9	\$FC12	STATUS: READ ONLY CONTROL: READ/WRITE	NO	SERIAL I/O RECEIVE CONTROL AND STATUS
10	\$FC14	STATUS: READ ONLY CONTROL: READ/WRITE	NO	SERIAL I/O TRANSMIT CONTROL AND STATUS
11	\$FC16	READ GETS COUNTER WRITE GOES TO LATCH	NO	TIMER B LATCH
12	\$FC18	READ GETS COUNTER		
		OR LATCH   WRITE GOES TO LATCH	NO	TIMER A, LOW LATCH
13	\$FC1A	READ GETS COUNTER		
		OR LATCH   WRITE GOES TO LATCH	NO	TIMER A, HIGH LATCH
14	\$FC1C	READ/WRITE	NO	TIMER CONTROL, INTERRUPT EDGE SELECT
15	\$FC1E	READ/WRITE	NO	PORT O HANDSHAKE MODE BITS, FAST/ STANDARD, BUS LOCK, BUS SEGMENT BITS
16	\$FC20	READ/WRITE	NO	PORT 0 DIRECTION CONTROL (DDRO)
17	\$FC22	READ/WRITE	NO	PORT 1 DIRECTION CONTROL (DDR1)
18	\$FC24	READ/WRITE	NO	SERIAL I/O MODE AND SYNC REGISTER
19	\$FC26	READ GETS COUNTER WRITE GOES TO LATCH AND COUNTER	NO	TIMER C LATCH

Table 5. Port Descriptions

## TIMERS

The MK68200 includes three on-chip timers, each with unique features. They are denoted Timer A, Timer B, and Timer C. All three timers are a full 16 bits in width, and count at the instruction clock rate of the MK68200 processor. Thus, this rate provides a resolution equal to the instruction clock period (tc) of the MK68200. The maximum count interval is equal to tc $* 2^{16}$. For a 6 MHz MK68200, a 167 nanosecond clock is provided with a maximum count interval of 10.945 milliseconds. Each timer has the capability to interrupt the processor when it matches a predetermined value stored in an associated latch.

Timer A is capable of operating in interval, event, or two pulse/period modes. There is one 16-bit counter and two 16-bit latches (high and low) associated with Timer A. Once Timer A is initialized in the interval mode, the counter is reset, then increments at the instruction clock rate until the value loaded into the high latch is reached. The counter is then reset, increments until the low latch value is reached, and the cycle is repeated. In the event mode, the counter is incremented for every active edge on TAI (programmable as positive or negative) until the value in the high latch is reached. The counter is then reset, and the cycle repeats. In the pulse/period modes, the times are measured during which the pulse applied stays high and low. The counter is reset on the occurrence of any transition on TAI, and increments at the instruction clock rate until the occurrence of the next transition. The value in the counter at the end of the high level or low level time is loaded into the appropriate latch. Interrupts may be generated each time the
counter reaches the high latch or low latch value in the interval mode or when the counter reaches the high latch in the event mode. Also, an interrupt is generated whenever the counter overflows. See the Pin Description section of this data sheet for TAI and TAO functions in the various Timer A modes.

Timer B is capable of operating in interval and one-shot modes. There is one 16 -bit counter and one 16-bit latch associated with Timer B. In the interval mode, the counter is initially reset and incremented at the instruction clock rate until the value in the latch is reached. The counter is then reset, and the cycle repeats. In the oneshot modes, the counter begins incrementing in response to an active transition (programmable as positive or negative) on TBI. The counter is reset when the value in the Timer $B$ latch is reached. In the retriggerable one-shot mode, active transitions on TBI always cause the counter to reset and begin incrementing. In the non-retriggerable one-shot mode, active transitions on TBI have no effect until the counter reaches the latch value. Interrupts may be generated each time the counter reaches the latch value. See the Pin Description section of this data sheet for TBI and TBO functions in the various Timer $B$ modes.

Timer C has a 16-bit down counter and latch associated with it and operates only in the interval mode. The output of Timer C toggles each time the counter value rolls over from 0 to the latch value and may be used to in ternally supply the baud rate clock for the serial port. Also, an interrupt may be generated each time the counter rolls over to the latch value. Timer C may be output on the TCLK pin (P1-3), depending on the mode programmed.

Timer	Modes
A	Interval
A	Event
A	Pulse Width and Period Measurement
B	Interval
B	Retriggerable One-shot
B	Non-retriggerable One-shot
C	Interval
C	Baud Rate Generation

Table 6. Timer Modes

## SERIAL CHANNEL

The serial channel on the MK68200 (Figure 5) is a fullduplex USART with double buffering on both transmit and receive. Word length, parity, stop bits, and modes
are fully programmable. The asynchronous mode supports bit rates up to 375 Kbps , and the byte synchronous mode operates up to 1.5 Mbps . Either internal or external clocks may be used.


Figure 5. Serial Channel

In addition to the typical USART functions, the serial channel can operate in a special wake-up mode with a wake-up bit appended to each data word, as illustrated in Figure 6. This wake-up bit is used to differentiate normal data words and special address words. The receiver can be programmed to receive only address words or
only address words with a specific data value. In this way, the processor can be interrupted only when it receives its particular address and can then change mode to receive the following data words. Wake-up capability is especially useful when several MK68200 microcomputers are interconnected on one serial link.

tUSED IN ASYNCHRONOUS MODE ONLY

Figure 6. Serial Frame Format

## PARALLEL I/O

Two 16-bit ports, P0 and P1, may be used for parallel I/O. If individual bits are desired, each of the 32 bits may be separately defined as input or output. Bits may be grouped to provide the exact data widths desired. Port 0 has the additional capability of operating under the control of external handshaking signals. Eight- or sixteen-bit sections of PO may be individually controlled as input, output, or bidirectional I/O. Two pairs of Ready and Strobe signals, which are available as programmable options on Port 4, provide the necessary control.

## INTERRUPT CONTROLLER

The MK68200 interrupt controller provides rapid service of up to 15 interrupt sources, each with a unique internal vector. The lowest 16 words of the address space contain the starting addresses of the service routines of each potential interrupt source and reset, as shown in Figure 7.

Interrupt sources and RESET are prioritized in the order shown in Figure 7, with RESET having the highest priority. NMI is the only non-maskable interrupt. All of

VECTOR NUMBER	NAME	MNEMONIC	VECTOR LOCATION	
0	RESET	RESET	0000	
1	NON-MASKABLE INTERRUPT	NMI	0002	LEVEL 2
2	SPARE	SPARE	0004	
3	EXTERNAL INTERRUPT 2	$\mathbf{X 1 2}$	0006	
4	STROBE LOW	StRL	0008	
5	TIMER A OUTPUT	TAO	000A	
6	TIMER A INPUT	tal	OOOC	
7	StROBE HIGH	STRH	OOOE	
8	RECEIVE SPECIAL CONDITION	RSC	0010	
9	RECEIVE NORMAL	RN	0012	
A	EXTERNAL INTERRUPT 1	XI1	0014	
B	TIMER B OUTPUT	тво	0016	
C	TIMER B INPUT	TBI	0018	
D	EXTERNAL INTERRUPT 0	xı0	001A	
E	TRANSMIT	XMT	001C	
F	timer C	TC	O01E	

Figure 7. Interrupt and Reset Vectors
the other sources share an interrupt enable bit in the processor Status Register. This bit is automatically cleared whenever an interrupt is acknowledged. Also, each of these sources has a corresponding individual mask bit. This feature allows selective masking of particular interrupts, including the ability to choose (with minimal software overhead) any priority scheme desired. In fact, 15 levels of nested priority may be programmed.

## EXPANDED BUS OPERATION

When it is necessary to expand beyond the on-chip complement of RAM, ROM, or I/O, or when operation in a parallel multiprocessing system is desired, the

MK68200 may be placed in an external bus mode. The MODE pin is used to select the expansion capability on reset. The MODE pin has three states, which select fully expanded external bus, partially expanded external bus, or no expanded bus (single-chip configuration). The MK68200 may also be reconfigured dynamically through software. In an expansion mode, Port 0 becomes the 16-bit multiplexed, address/data bus, and eight bits from Port 1 become control signals which handle data transfer and bus arbitration. Sixteen lines are still available for I/O functions, including eight lines from Port 1 and all eight lines of Port 4.

As shown in Figure 8, two different control bus versions are available: a Universal Peripheral Controller (UPC),


Figure 8. MK68200 Logical Pinout Expanded Bus


Figure 9 :. MK68200 Expanded Bus
which generates 68000-compatible signals, and a General Purpose (GP) bus, which can be used to interface to a wide variety of existing microprocessor buses. With the selection of an expanded bus mode, the MK68200 can act either as a general purpose CPU chip (bus grant device) or as an intelligent peripheral I/O controller to a host CPU (bus request device). These two system configurations are illustrated in Figures 10 and 11 .

With the GP bus option, the user may configure the MK68200 in either of the two ways shown in Figures 10 and 11. As a host CPU (Figure 10), the MK68200 bus arbitration logic causes the device to act as the system bus grantor. In other words, the MK68200 would normally have control of the system bus and would grant its use to DMA devices or peripheral CPUs. Alternately. the MK68200 may be configured as a peripheral CPU (Figure 11) that must issue a request to the bus grant device before being allowed to use the system bus. The selection of one of these two configurations is accomplished by the P4-11 pin at reset time. During reset, P4-11 serves as the R/G input ( $0=$ bus grantor. $1=$ bus requestor). Following reset and at all times during program execution, P4-11 may be used as a general purpose input pin.

With the GP bus operating in the host CPU configuration, the MK68200 may be used to interface with external memory and I/O devices in a manner that is analogous to any general purpose microprocessor. Additionally, the MK68200 retains its on-chip RAM and I/O resources, with on-chip ROM as an option.


Figure 10. Host CPU Hardware Configuration


Figure 11. Peripheral I/O Controller Configuration
depending on the expansion configuration selected. $\overline{B U S I N}$ and BUSOUT are used to perform the bus arbitration handshake function, where BUSIN acts as the bus request input and BUSOUT as the bus grant output.

In the full expansion configuration, any on-chip ROM is disabled, and program memory starting at location $\$ 0000$ is located off-chip and is addressed via the expanded bus, as shown in Figure 12. In effect, the internal bus from locations $\$ 0000-\$ F A F F$ is mapped onto the external bus. In the partially expanded configuration (Figure 13), on-chip ROM may be accessed on the internal bus. To gain greater addressability in the partial expansion configuration, a scheme is implemented to allow access of a full 64 K -byte address space in four segments on the expanded system bus through the 16 K byte "window" on the internal bus. Basically, the most significant two bits of address on the expanded bus are replaced with two user-defined segment bits available to the programmer in an internal I/O control port location.

As a peripheral I/O controller, the MK68200 operates as a bus requestor that gains mastership of the system bus from the bus grant CPU. The GP bus version may
be selected to implement this system configuration in cases where an interface to a general purpose CPU is desired. In this case, the BUSIN and BUSOUT lines are again used to perform the bus arbitration handshake function, where BUSOUT now acts as bus request out put, and BUSIN acts as bus grant input. In this configuration, the MK68200 can conceivably act as a complete peripheral I/O control subsystem on a single chip, with 16 lines of I/O and its on-chip ROM, RAM, timers, and serial I/O performing the necessary interface to the I/O device. The UPC bus version provides the peripheral I/O control function with a direct interface to a 68000 bus grant CPU. Note that the UPC bus version can operate only as a bus request device. Once the MK68200 has gained mastership of the system bus via the 68000 bus arbitration handshake lines ( $\overline{\mathrm{BR}}, \overline{\mathrm{BG}}$, and $\overline{\text { BGACK }}$ ), it may proceed to perform DMA transfers and communicate with system memory or other I/O devices in the system.

As in the case of the GP bus grant configuration, the portion of the internal (or private) bus address space that is mapped onto the expanded bus when the part is operating as either a GP or a UPC bus request device is determined by the expansion configuration selected. In the partial expansion bus requestor case, the


Figure 12. Full Expansion Bus Grantor Memory Map (256 byte RAM version shown)
resulting memory map is identical to that shown for the GP bus grant configuration in Figure 13. During the time the MK68200 is executing its programs from ROM and accessing internal RAM and I/O resources, the expanded bus is held in a tri-state condition. The bus arbitration logic within the MK68200 monitors each memory reference to detect external bus addresses (referenced in segments via the 16K byte DMA window). Whenever such an external reference occurs, the logic automatically holds the processor in a wait state as it proceeds to obtain mastership of the bus. When use of the system bus is obtained, the processor is allowed to continue the reference. This procedure is transparent to the programmer. In case of successive external references, the expanded bus is retained until an internal reference is encountered.

Finally, if the on-chip resources are insufficient to perform the control task in the bus requestor configuration, the internal bus address range (excluding on-chip RAM, I/O) may be mapped onto an external local bus, which is physically the same as the system bus but logically separated with bus buffers. This is the full expansion bus requestor configuration. The memory map for this configuration is shown in Figure 14 The bus arbitration sequence is performed only when the system bus is referenced through the DMA window. In this manner, the I/O subsystem is isolated from the host CPU.

When operating as a bus request device, it is possible to retain the external bus for an indefinite duration by using a bus lock feature. This will help facilitate the
transfer of large blocks of data. Thus, the on-chip bus arbitration logic allows (with a minimum of hardware and software overhead) a maximum of concurrent processing in parallel, multiprocessing configurations. The bus lock feature may be used by the MK68200 in a bus grantor mode to keep any peripheral from gaining mastership of the bus.

In any of the GP expanded bus modes, the MK68200 may respond to peripheral devices on the expanded bus which generate an interrupt request on XIO. The MK68200 will obtain the XIO interrupt vector number from the requesting peripheral on the bus during an interrupt acknowledge cycle. When responding to an interrupt on XIO, the MK68200 will wait for the bus arbitration logic to gain control of the bus and then asserts neither $\overline{\mathrm{HB}}$ nor $\overline{\mathrm{LB}}$ while asserting $\overline{\mathrm{AS}}$ to signify that an interrupt acknowledge cycle is in progress.

Timing diagrams and design parameters for the read, write, and bus arbitration cycles are given in the AC Electrical Specifications section for both the GP and the UPC bus options. Bus timing for the interrupt acknowledge cycle is given for the GP device in the AC Electrical Specifications section. There is a userprogrammable speed selection associated with the read and write cycles for both the UPC and GP mask option parts. A bit in an internal I/O port allows the user to select either the standard or the fast read/write cycle on the expanded bus. The standard bus cycle is four clock periods, while the fast bus cycle is three clock periods.


Figure 13. Partial Expansion Memory Map (256 byte RAM, 4K byte ROM version shown)


Figure 14. Full Expansion Bus Requestor Memory Map (256 byte RAM version shown)

## EXPANDED BUS SIGNALS (Common for GP and UPC Options)

## R/ $\bar{W}$

## (Read/Write)

Output, active high and low. R/ $\bar{W}$ determines whether a read or a write is being performed during the current bus cycle. It is stable for the entire bus operation. A high signal denotes a read, and a low signal denotes a write.

## DTACK

## (Data Transfer Acknowledge)

Input, active low. When the addressed device has either placed the requested read data on the bus or taken the write data from the bus, DTACK should be brought low to signify completion. The data portion of the bus cycle will be extended indefinitely until this signal is asserted. For systems using the GP bus, in which no devices need wait states, DTACK may be strapped low.

## $\overline{\text { AS }}$

## (Address Strobe)

Output, active low. $\overline{\mathrm{AS}}$ is used to signify that the address is stable on the multiplexed bus. $\overline{\text { AS }}$ is high at the beginning of each bus cycle, goes low after the address has stabilized, and returns to the high state near the end of the bus cycle.

## UPC BUS SIGNALS

## $\overline{\text { UDS }}$ <br> (Upper Data Strobe)

Output, active low. UDS is used to signify the data portion of the bus cycle for the upper byte of the data bus. For read operations, UDS should be used by the external device to gate its most significant byte onto the multiplexed address/data bus. For writes, UDS signifies that the upper byte of the bus contains valid data to be written from the processor.

## $\overline{\text { LDS }}$

## (Lower Data Strobe)

Output, active low. $\overline{L D S}$ is used to signify the data portion of the bus cycle for the lower byte of the data bus. For read operations, $\overline{\text { LDS }}$ should be used by the external device to gate its least significant byte onto the multiplexed address/data bus. For writes, $\overline{\mathrm{LDS}}$ signifies that the lower byte of the bus contains valid data to be written from the processor.

## $\overline{B R}$

## (Bus Request)

Output, active low, open drain. $\overline{B R}$ goes low when the MK68200 requires external bus master status.

## $\overline{B G}$

(Bus Grant)
Input, active low. $\overline{B G}$ notifies that the MK68200 has been granted the external bus master status.
$\overline{B G A C K}$
(Bus Grant Acknowledge)
Output, active low, open drain. The MK68200 will assert BGACK when it assumes mastership of the system bus.

## GP BUS SIGNALS

## P4-11 / R/G

(Request/Grant)
During reset, P4-11 serves as the R/ $\overline{\mathrm{G}}$ input ( $0=$ bus grantor, 1 = bus requestor). Following reset, and at all times during program execution, P4-11 may be used as a general purpose input pin.

## $\overline{\mathbf{D S}}$

## (Data Strobe)

Output, active low. $\overline{\mathrm{DS}}$ is used to signify the data portion of the bus cycle. For read operations, $\overline{\mathrm{DS}}$ should be used by the external device to gate its contents onto the multiplexed address/data bus. For writes, $\overline{\mathrm{DS}}$ signifies that valid data from the processor is on the bus.

## $\overline{H B}$

(High Byte)
Output, active low. $\overline{\mathrm{HB}}$ signifies that the upper byte of the data is to be read or written. $\overline{\mathrm{HB}}$ remains active for the entire bus cycle.

## $\overline{L B}$

(Low Byte)
Output, active low. $\overline{\mathrm{LB}}$ signifies that the lower byte of the data bus is to be read or written. (Both $\overline{\mathrm{HB}}$ and $\overline{\mathrm{LB}}$ active imply that an entire word is to be read or written). $\overline{L B}$ remains active for the entire bus cycle.

## BUSIN

(Bus Input)
Input, active low. $\overline{\mathrm{BUSIN}}$ provides either bus request or bus grant. When the MK68200 is the bus grant device, its $\overline{B U S I N}$ signal is a bus request input from a requesting device on the bus. When the MK68200 is a bus request device, its $\overline{B U S I N}$ signal is a bus grant from the granting device on the bus.

## BUSOUT

## (Bus Output)

Output, active low. BUSOUT provides the opposite function of BUSIN. When BUSIN is a bus request signal, $\overline{B U S O U T}$ is the corresponding bus grant, and vice versa.

## EMULATOR VERSION

The emulator versions of the MK68200 are available in 84-pin, leadless or leaded chip carrier packages or pingrid array packages. Figure 15 illustrates the logical pinout of the emulator version. Table 1 summarizes the emulator parts described in this data sheet. The emulator versions have no on-chip ROM, but instead include
a second complete bus, referred to as the private bus. The private bus includes a multiplexed address/data bus as well as bus control signals. There are $\mathbf{2 2}$ pins associated with the private bus. All 40 I/O port pins that exist on the 48 -pin versions are available to the user for configuration either as general purpose or special l/O pins, or as expanded bus pins.


+ AVAILABLE ON MK68E221 (1K RAM VERSION)

Figure 15. MK68E200 Logical Pinout


LCC	FUNCTION		LCC	FUNCTION	LCC	FUNCTION	LCC
FUNCTION							
1	P1-4/XIO	24	P4-8/RDYL	44	P0-6	65	PB-9
2	P1-5/XI1	25	P4-9/RDYH	45	P0-5	66	PB-10
3	P1-6/XI2	26	P4-10/STRL	46	P0-4	67	PB-11
4	P1-7	27	P4-11/STRH	47	P0-3	68	PB-12
5	P1-8	28	MODE	48	P0-2	69	PB-13
6	P1-9	29	CLK2	49	P0-1	70	PB-14
7	P1-10	30	CLK2	50	P0-0	71	PB-15
8	P1-11	31	CLKOUT	51	FC2 +	72	P4-13/TAI
13	GP/UPC	32	FC1 +	54	VCC	73	P4-12/TBI
14	P1-12	34	GROUND	55	GROUND	76	P4-15/TAO
15	P1-13	35	P0-15	56	PB-0	77	P4-14/TBO
16	P1-14	36	P0-14	57	PB-1	78	RESET
17	P1-15	37	P0-13	58	PB-2	79	NMI
18	PBLB	38	P0-12	59	PB-3	80	P1-0/SO
19	PBHB	39	P0-11	60	PB-4	81	P1-1/TCLK
20	PBR/	40	P0-10	61	PB-5	82	P1-2/RCLK
21	PBDTACK	41	P0-9	62	PB-6	83	P1-3/SI
22	PBAS	42	P0-8	63	PB-7	84	VCC
23	PBDS	43	P0-7	64	PB-8		

[^26]Figure 16. MK68E200 Pin Assignment, Emulator Version

## PRIVATE BUS OPERATION

The address/data lines and control signals that constitute the private bus are functionally equivalent to the internal signals used to access internal resources on the 48-pin versions of the MK68200. Thus, the private bus may be used to interface EPROM memory in emulating mask ROM versions of the MK68200. Alternately, any combination of ROM, RAM, and I/O may reside on the private bus.

The address that is generated on the private bus is identical to that which is internally generated for 48-pin versions. When the part is used in a configuration that supports system bus addressing through the DMA window, any references in this region of the memory map produce an address on the private bus identical to that specified by the programmer. In other words, the segment bits have no effect on the private bus address. Write data appears on the private bus pins for all write operations, regardless of whether the reference is onchip or off-chip. The MK68200 emulator version reads data from the private bus unless data is read from onchip RAM, I/O, or the external bus formed by the Port 0 and Port 1 I/O pins.

The I/O port range of the memory map (\$FC00-\$FFFF) is actually subdivided into space which is exclusively reserved for on-chip I/O (\$FCOO-\$FDFF) and space which is exclusively reserved for in-circuit-emulator, or AIM, use (\$FE00-\$FFFF). The user should ensure that no external devices reside in the in-circuit-emulator area.

The private bus interface is the same as that for the GP expanded bus. All read/write transfers made exclusively on the private bus are three clock periods, regardless of the state of the Fast/Standard (F/S) bus timing selection bit. The user should ignore all activity on the pri-
vate bus while accesses are in progress on the expanded bus. Care should also be taken that no external devices reside on the private bus in the memory space intended for expanded bus accesses.

## FUNCTION CODE PINS

Function code pins will be available on some versions of the emulator to define the memory cycle currently being executed. They are valid during the time private bus address strobe (PBAS*) is active. The cycle types are interrupt, data fetch, branch, and program fetch. The branch cycle is defined as the first program fetch after a branch occurs. A branch can occur as a result of a jump or call instruction, or an interrupt. For internal interrupts, the interrupt cycles are defined as the two writes to the stack and the read of the vector location which occur during the interrupt acknowledge routine. For external interrupts, the interrupt cycles are defined as the 3 cycles above plus the read of the vector number. The interrupt cycle is a special case of the data fetch cycle. The function code pins are defined below.

TYPE OF CYCLE	FC1	FC2
Interrupt	0	0
Data Fetch	0	1
Branch	1	0
Program Fetch	1	1

## CRYSTAL SELECTION

The wide frequency range of crystals that can be chosen for the MK68200 offers the user a large degree of flexibility. To aid in the selection of a suitable crystal, the suggestions shown in Figure 18 should be considered by the user. The MK68200 offers an output pin that will provide a system clock signal at one-half of the crystal frequency.


Figure 17. Crystal Connection


Figure 18. Summary of Crystal Specifications

## ASSEMBLER DIRECTIVES

Directive	Function	Assembler Syntax		
DC	Define constant	[label:]	DC[.size]*1	expr \{,expr $\}$
DS	Define storage	[label:]	DS[.size]*1	expr
DUP	Duplicate constant block	[label:]	DUP[.size]*1	length, value
END	Program end		END	[start address]
EQU	Equate symbol value	label:	EQU	expr
FAIL	Programmer generated error		FAIL	expr
FORMAT	Format the source listing		FORMAT	
IDNT	Generate module ID	module_name:	IDNT	version, revision
LIST	Enable the assembly listing		LIST	
LLEN	Specify line length		LLEN	length
NOFORMAT	Do not format listing		NOFORMAT	
NOLIST	Disable assembly listing		NOLIST	
NOOBJ	Disable object code generation		NOOBJ	
NOPAGE	Suppress paging		NOPAGE	
OFFSET	Define Offsets		OFFSET	expr
OPT	Assembler output options		OPT	option ${ }^{2}$ \{, option $\}$
ORG	Define absolute origin		ORG	expr
PAGE	Eject a page in the listing		PAGE	
REG	Define register list	reg_list_name:	REG[.size]	register list
SECTION	Define relocatable program section	[section_name:]	SECTION	number
SET	Set symbol value	label:	SET	expr
SPC	Space between source lines		SPC	number
TTL	Specify heading title string		TTL	title string
XDEF	External symbol definition		XDEF	symbol $\{$, symbol $\}$
XREF	External symbol reference		XREF	[sect no:] symbol \{,[sect no]: symbol\}

## NOTES:

1. $\cdot$ size $=$.B or.$W$ (byte or word size)
2. Options for the OPT directive include:

CEX Print DC expansions
NOCEX Do not print DC expansions (default)
$\mathrm{CL} \quad$ Print conditional assembly directives (default)
NOCL Do not print conditional assembly directives
CRE Print cross-reference table
IMM.L Forces immediate operands for arithmetic instructions ADD, SUB, DADD, and DSUB to use the long instruction form
IMM.S Allows the assembler to select automatically the short form of the arithmetic instructions for small immediate values ( $0-15$ ) (default)

MC Print macro calls (default)
NOMC Do not print macro calls
MD

MEX Print macro expansions
NOMEX Do not print macro expansions (default)
Print macro definitions (default)
Do not print macro definitions

Create object module (default)
Do not create object module
Print code generated by structured statements Do not print code generated by structured statements (default)

GENERAL SYMBOL DEFINITIONS

SYMBOL	GENERAL SYMBOL DEFINITIONS
Rn	General Purpose Registers - DO-D7, A0-A5, SP, SR, DHO-DH7, DLO-DL7.
RPn	Register Pairs - D0-D1, D2-D3, D4-D5, D6-D7, AO-A1, A2-A3, A4-A5.
An	Address Registers - A0-A5, SP.
Pn	Ports - P0-P15, PH0-PH3, PLO-PL3.
CC	Condition Code - See Table.
d16	16-Bit Address Displacement Field In Words.
d13	13-Bit Address Displacement Field In Bytes.
d9	9-Bit Address Displacement Field In Bytes.
d8	8-Bit Address Displacement Field In Bytes.
\#nx	Immediate Data Field - x Number of Bits.
s	Size Bit - '1 = Word, '0' = Byte.
REGn	4-Bit Register Field - See Table.
PORT]	4-Bit Port Field - See Table.
An	3-Bit Address Register Field - See Table.
PRTE	3-Bit Port Field - See Table.
RGn	3-Bit Register Pair Field - See Table.
M	Register Mask Field - See Table.
COND	Condition Code Field - See Table.
$\mathrm{CO}^{\text {c }}$	3-Bit Class Field - See Table.
c2	2-Bit Class Field - See Table
C1	1-Bit Class Field-See Table
a	Address Field-16 Bits.
\#	Immediate Data Field.
n	3 -Bit Shift Field - $2 \leq n \leq 7$.
b\#	4-Bit Bit Select Field.
d	Displacement Field.
. $B$	Byte Attribute.
. W	Word Attribute.
.L	Long Attribute.
. 5	Short Attribute.
[ ]	Optional Field.

## FIELD DEFINITIONS

REGn		1 4-Bit Register Map			Bit Field
Register		Bit Field	Register		
D0	DHO	0000	AO	DLO	1000
D1	DH1	0001	A1	DL1	1001
D2	DH2	0010	A2	DL2	1010
D3	DH3	0011	A3	DL3	1011
D4	DH4	0100	A4	DL4	1100
D5	DH5	0101	A5	DL5	1101
D6	DH6	0110	SP	DL6	1110
D7	DH7	01111	SR	DL7	1111


PORTn 4-Bit Port Map				
Port		Bit Field	Port	Bit   Field
P0	PH0	0000	P8	1000
P1	PLO	0001	P9	1001
P2	PH1	0010	P10	1010
P3	PL1	0011	P11	1011
P4	PH2	0100	P12	1100
P5	PL2	0101	P13	1101
P6	PH3	0110	P14	1110
P7	PL3	01111	P15	1111


An 3-Bit Addr Reg Map	
Register	Bit   Field
A0	000
A1	001
A2	010
A3	011
A4	100
A5	101
SP	110


PTRn	3-Bit Port Map
Port	Bit   Field
PH0	0000
PLO	0011
PH1	010
PL1	0111
PH2	100
PL2	101
PH3	110
PL3	111


RGn 3-Bit Reg Pair Map	
Register	Bit Field
D0-D1	000
D2-D3	001
D4-D5	010
D6-D7	011
A0-A1	100
A2-A3	101
A4-A5	110


M-REGISTER MASK MAP FOR MOVEM, PUSHM, AND POPM																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Inc   Word	SR	SP	A5	A4	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0
Dec   Word	D0	D1	D2	D3	D4	D5	D6	D7	A0	A1	A2	A3	A4	A5	SP	SR
Inc Byte	DH7	DL7	DH6	DL6	DH5	DL5	DH4	DL4	DH3	DL3	DH2	DL2	DH1	DL1	DHO	DLO
Dec   Byte	DLO	DHO	DL1	DH1	DL2	DH2	DL3	DH3	DL4	DH4	DL5	DH5	DL6	DH6	DL7	DH7


COND CONDITION CODE TABLE			
Condition Code	Bit   Field	Description	Test
$\begin{gathered} \mathbf{Z} \\ \mathrm{EQ} \end{gathered}$	0000	Zero Equal	Z
MI	0001	Minus	N
$\begin{gathered} \mathrm{LO}^{2} \\ \mathrm{CS} \end{gathered}$	0010	Lower Carry Set	C
VS	00011	Overflow Set	V
$\mathrm{GE}^{2}$	0100	Greater than or Equal	N.EOR. V
GT ${ }^{2}$	0101	Greater than	$\overline{\mathbf{Z}}$.AND. ( $\overline{\mathrm{N} . E O R . ~ V})$
$\mathrm{HI}^{2}$	01110	Higher	$\overline{\mathbf{C}}$. AND. $\overline{\mathbf{Z}}$
$\mathrm{F}^{1}$	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	False	Always False
$\begin{aligned} & \mathrm{NE} \\ & \mathrm{NZ} \end{aligned}$	1000	Not Equal Not Zero	$\overline{\mathbf{Z}}$
PL	1001	Plus	$\bar{N}$
$\begin{gathered} \mathrm{HS}^{2} \\ \mathrm{CC} \end{gathered}$	1010	Higher or Same Carry Clear	$\overline{\mathrm{C}}$
VC	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	Overflow Clear	$\overline{\mathrm{V}}$
$\mathrm{LT}^{2}$	$\begin{array}{lllll}1 & 1 & 0 & 0\end{array}$	Less than	N .EOR. V
LE ${ }^{2}$	11001	Less than or Equal	Z .OR. (N .EOR. V)
LS ${ }^{2}$	$1 \begin{array}{llll}1 & 1 & 0\end{array}$	Lower or Same	C .OR. Z
$\mathrm{T}^{1}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	True	Always True

## NOTES:

1. The assembler does not recognize the $T$ and $F$ condition codes.
2. LT, LE, GT, and GE are used for unsigned conditions; LO, LS, HI, and HS are for unsigned conditions.

INSTRUCTION CLASS FIELDS									
c3]-3-Bit Field			C2-2-Bit Field			[c] - 1-Bit Field			
Bit Field	Shift Instr	Bit ${ }^{1}$ Instr	Bit Field	Arith ${ }^{2}$   Instr	Logical Instr	Bit Field	Arith ${ }^{2}$ Instr	Test Instr	$\mathrm{Neg}^{2}$ Instr
000	ROR	BSET	00	ADDC	OR	0	ADD	TESTN	NEGC
001	ROL	BCHG	01	SUBC	EOR	1	SUB	TEST	NEG
010	RORC	BCLR	10	ADD	AND				
011	ROLC	BTST	11	SUB	-				
100	ASR	-							
101	ASL	-							
110	LSR	-							
111	-	BEXG							

## NOTES:

1. The bit fields do not apply to bit instructions using a port operand.
2. These fields also apply to BCD instructions.

## INSTRUCTION FORMAT

15	PREFIX WORD   (used only in some forms of the decimal and bit instructions)
OPERATION WORD	
(contains the opcode and possibly the operands)	
EXTENSION WORD	
(optional - specified by the operation word to be	
immediate operand, mask field, displacement or absolute address)	


INSTRUCTION MNEMONIC	$\begin{aligned} & \text { ATTR } \\ & \text { SIZE } \end{aligned}$	OPERAND ASSEMBLER SYNTAX   Source $=$ Src   Destination =Dst   Sec, Dst	OPERATION				$\begin{aligned} & \text { W } \\ & 0 \\ & \text { R } \\ & \mathbf{D} \\ & \mathbf{S} \end{aligned}$	EEXENSSION	$\mathbf{C}$$\mathbf{Y}$$\mathbf{C}$$\mathbf{L}$$\mathbf{E}$$\mathbf{S}$	operation	status FLAGS		
			$15\|14\| 1312$	11 10\|9 9	7 5 5	$3{ }_{3} \mathbf{2} \mid 10$					$N$	2	$v$ c
ADD ADDC SUB SUBC	$\stackrel{.8}{[i W]}$	Ry,Rx	2	REGX	$\square^{02} 0$	REGY	1	-	3	ADD:   $\mathrm{Src}+\mathrm{Dst}-\mathrm{Dst}$   ADDC:   Src + Dst + C - Dst   SUB:   Dst - Src - Ost   SUBC:   Dst - Src - C - Dst   Note: For addressing modes $4 n, R x$ and $\# n,(A x)$ with the ADD and SUB instructions, the assembler uses the short version for immediate values $\leq 4$ bits.	* * * *		
	$\stackrel{\mathrm{B}}{[\mathrm{w}]}$	(Ay), Ax	2	REGX	$\mathrm{s}^{\text {c2 }}{ }^{1}$	0 A ${ }^{\text {a }}$	1	-	6				
	$\stackrel{\mathrm{B}}{(\mathrm{~W})}$	d16(Ay), Px	2	REGX	(c2 ${ }^{1}$	$1{ }^{\text {a }}$ Ay	2	d	9				
	$\begin{aligned} & \mathbf{8} \\ & {[\mathcal{W}]} \end{aligned}$	Addr,Rx	2	REGX	$\square^{1}$	F	2	a	9				
	$\stackrel{\mathrm{B}}{[\mathrm{i}]}$	\#n16.18	2	REGX	$3^{4}{ }^{1}$	7	2	*	6				
	$\begin{gathered} \stackrel{\text { B }}{ } \\ {[. \mathrm{w}]} \\ \hline \end{gathered}$	Ry, (Ax)	3	0 Ax	(c2 0	REGy	1	-	9				
	$\stackrel{\mathrm{B}}{\mathrm{~W}]}$	(Ax), (Ay)	3	0 Ax	$0^{-2} 1$	0 Ay	1	-	12				
	$\stackrel{8}{[i, ~}]$	\#n16,(Ax)	3	0 Ax	$\mathrm{s}^{()^{2} 1}$	7	2	\#	12				
	$\stackrel{8}{(\cdot)]}$	(Ax) +, (Ay) +	3	1 Ax	(c2 1	0 Ay	1	-	12				
	$\stackrel{\mathrm{B}}{[\mathrm{~W}]}$	\#n16.(Ax) +	3	1 Ax	4 $\mathrm{c}^{1}$	7	2	\#	12				
	$\begin{aligned} & \mathbf{B} \\ & {[W]} \end{aligned}$	-(Ax), -(Ay)	3	1 Ax	(c2 1	$1{ }^{\text {a }}$	1	-	12				
	$\stackrel{B}{[i \cdot W]}$	4n16, -(Ax)	3	1 Ax	$\mathrm{s}^{4}{ }^{1}$	F	2	"	12				
	$\stackrel{B}{[\mathrm{w}]}$	Ry,d16(Ax)	3	1 Ax	(c2 0	REGY	2	$d$	12				
	$\underset{[. \mathrm{B}]}{[.}$	Ry,Addr	3	$F$	s c2 0	REGy	2	a	12				







INSTRUCTION MNEMONIC	$\begin{aligned} & \text { ATTR } \\ & \text { SIZE } \end{aligned}$	OPERAND ASSEMBLER SYNTAX   Source $=$ Sre   Destination = Dst   Src, Dst	OPERATION				$\begin{aligned} & \mathbf{W} \\ & \mathbf{O} \\ & \mathbf{R} \\ & \mathbf{D} \\ & \mathbf{D} \end{aligned}$	E   X   T   T   N   N   S   I   O   N     	C$\mathbf{Y}$$\mathbf{C}$$\mathbf{L}$ES	operation	Status FLAGS		
			$15\|14\| 13 \mid 12$	11 10998	$77_{7} 68544$	3 2110					$N$	$z$	$v$ c
CLR	$\begin{gathered} 8 \\ {[W]} \end{gathered}$	Rx	1	REGx	(5) 011	7	1	-	3	0-Dst	- - - -		
	$\underset{[\mathrm{W}]}{\mathrm{B}}$	$\mathrm{P}_{\mathrm{x}}$	1	PORTX	S 010	7	1	-	6				
	$\begin{gathered} \stackrel{B}{8} \\ {[\mathrm{~W}]} \end{gathered}$	(Ax)	1	0 $A x$	(5) 011	F	1	-	6				
	$\begin{aligned} & \text { B } \\ & (\mathrm{W}) \end{aligned}$	di6(Ax)	1	1 Ax	S 011	F	2	$\checkmark$	9				
	$\begin{gathered} \stackrel{B}{B} \\ \{\mathrm{~W} \mid \end{gathered}$	Addr	1	F	S 0011	F	2	a	9				
CMP	$\stackrel{B}{(W)}$	Ry, Rx	6	REGx	[s) 110	REGY	1	-	3	Dst - Src	* * *		
	$\stackrel{\stackrel{B}{B}}{[\mathrm{~W} \mid}$	Py, Rx	5	REGX	[ 110	PORTI	1	-	6				
	$\begin{gathered} \mathrm{B} \\ {[\mathrm{~W} \mid} \end{gathered}$	(Ay), Bx	6	REGX	[s) 1110	0 Ay	1	-	6				
	$\stackrel{\mathrm{B}}{\mathrm{~B}\|\mathrm{w}\|}$	(Ay) + , Ax	4	AEGX	(s) 10	0 Ay	1	-	6				
	$\stackrel{: \mathbf{B}}{[W]}$	-(Ay), Ax	4	REGX	(3) 10	1 Ay	1	-	6				
	$\stackrel{. \mathrm{B}}{[\mathrm{~W}]}$	d16(Ay), Ax	6	REGX	(s) 11	1 Ay	2	d	9				
	$\stackrel{B}{\text { B }}$	Addr:Rx	6	REGx	(5) 11	F	2	a	9				
	. 8	${ }^{\text {m }} 8.8 \mathrm{Ax}$	c	REGX	\#	$\square$	1	-	3				
Continued on next page	(w)	7n16, 1 x	6	REGX	F	7	2	\#	6				













The following symbols are used to describe the state of the Status Register flags:

- Set according to result of operation.

0 Cleared.
1 Set.

- Not affected.

U Undefined.

Port Map											
Port		Addr	Description	15	14	13	12	11	10	9	8
P0	$\begin{aligned} & \mathrm{PHO} \\ & \mathrm{PLO} \end{aligned}$	\$FCOO	16 External I/O or Addr/Data Bus In Expanded Bus Mode								
P1	$\begin{array}{\|l\|} \mathrm{PH} 1 \\ \mathrm{PL} 1 \end{array}$	\$FC02	16 Ext I/O, Ext Interrupts, Serial Port I/O, Bus Control	$\begin{aligned} & \text { LB } \\ & \text { LDS } \end{aligned}$	$\begin{aligned} & \text { HB } \\ & \text { UDS } \end{aligned}$	R/W	DS BGACK	DTACK	AS	$\begin{gathered} \text { BUSIN } \\ \text { BG } \end{gathered}$	$\begin{gathered} \text { BUSOUT } \\ \text { BR } \end{gathered}$
P2	$\left\lvert\, \begin{aligned} & \mathrm{PH} 2 \\ & \mathrm{PL} 2 \end{aligned}\right.$	\$FC04	Reserved	RESERVED							
P3	$\begin{aligned} & \mathrm{PH} 3 \\ & \mathrm{PL} 3 \end{aligned}$	\$FC06	Serial Receive and Serial Transmit Buffers	RECEIVE BUFFER							
P4		\$FC08	8 External I/O or Timer and Port 0 Handshake	TAO	TBO	TAI	TBI	$\begin{gathered} \text { STRH } \\ \text { R/G } \end{gathered}$	STRL	RDYH	RDYL
P5		\$FCOA	Reserved	$\longrightarrow$ R $\longrightarrow$,							
P6		\$FCOC	Reserved	4 R 4 RESERVED $\longrightarrow$							
P7		\$FCOE	Interrupt Latch Register	RES	NMI	SPARE	XI21	STRLI	TAOI	TAll	STRHI
P8		\$FC10	Interrupt Mask Register	RESERVED		SPARE	XI2M	STRLM	TAOM	TAIM	STRHM
P9		\$FC12	Serial I/O Receive Control and Status Register	RE	IS	RW1	RWO	RC	SIS	RESERVED	
P10		\$FC14	Serial I/O Transmit Control and Status Register	TE	AT	LM	TW1	TW0	TC	P/S	RES
P11		\$FC16	Timer B Latch								
P12		\$FC18	Timer A Low Latch								
P13		\$FC1A	Timer A High Latch								
P14		\$FC1C	Timer Control, Interrupt Edge Select	TEST	RESERVED		XI2C	RESERVED		TCOC	TAM1
P15		\$FC1E	Port 0 Handshake mode, Bus Lock, Bus Segment Bits	SEG1	SEGO	BLCK	F/S	PM3	PM2	PM1	PMO
P16		\$FC20	Port 0 Direction Control   (DDRO)								
P17		\$FC22	Port 1 Direction Control   (DDR1)								
P18		\$FC24	Serial I/O Mode and   Sync Register	A/S	WL1	WLO	ST	PAR1	PARO	TCO	WS
P19		\$FC26	Timer C Latch								



NOTE:
When a reserved bit is read, it is read as a zero.

## PORT DESCRIPTIONS

Important note: All port bits that are not explicitly defined are reserved for possible use in future MK68200 family members. If reserved bits are written, they should be written with zero values. When reserved bits are read, they are read as zeros.

PORT 0-16 External I/O Bits; read/write
\$FC00 (used as address/data lines in external bus configurations)


PORT 1-16 External I/O Bits, including Interrupt, Serial I/O,
\$FC02 and Bus Control (shown for GP bus); read/write

$\begin{aligned} & \bar{L} \\ & B \end{aligned}$	$\begin{aligned} & \overline{\mathrm{H}} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & R \\ & \frac{1}{W} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{D}} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{D}} \\ & \mathrm{~T} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \overline{\bar{A}} \\ & S \end{aligned}$	$\begin{aligned} & \bar{B} \\ & U \\ & S \\ & I \\ & N \end{aligned}$	$\begin{aligned} & \bar{B} \\ & U \\ & S \\ & O \\ & U \\ & \hline T \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{I} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & 1 \\ & 0 \end{aligned}$	S	$\begin{aligned} & \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{~L} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{C} \\ & \mathrm{~L} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{O} \end{aligned}$
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PORT 2 -Reserved
PORT 3 -Serial I/O:Transmit Buffer (Low byte; read/write)
\$FC06 Receive Buffer (High Byte; read only)


PORT 4-8 External I/O Pins (Timer and Port 0 Handshake Lines);
\$FC08 inputs: read only
Outputs: read/write


Note: STRH is also R/ $\overline{\mathrm{G}}$ in the expanded bus modes.
PORT 5 -Reserved
PORT 6 -Reserved

PORT 7 -Interrupt Latch Register; read/write \$FC0E


PORT 8 -Interrupt Mask Register; read/write \$FC10


## INTERRUPT AND RESET VECTORS

VECTOR NUMBER	NAME	MNEMONIC	VECTOR LOCATION	
0	RESET	RESET	\$0000	
1	NON-MASKABLE INTERRUPT	NMI	\$0002	LEVEL 2
2	SPARE	SPARE	\$0004	
3	EXTERNAL INTERRUPT 2	XI2	\$0006	
4	STROBE LOW	STRL	\$0008	
5	TIMER A OUTPUT	TAO	\$000A	
6	TIMER A INPUT	TAI	\$000C	
7	STROBE HIGH	STRH	\$000E	
8	RECEIVE SPECIAL CONDITIO'N	RSC	\$0010	
9	RECEIVE NORMAL	RN	\$0012	
A	EXTERNAL INTERRUPT 1	XI1	\$0014	
B	TIMER B OUTPUT	TBO	\$0016	
C	TIMER B INPUT	TBI	\$0018	
D	EXTERNAL INTERRUPT 0	XIO	\$001A	
E	TRANSMIT	XMT	\$001C	
F	TIMER C	TC	\$001E	

NOTE: Reset and Interrupt sources are listed in order of decreasing priority with RESET having the highest priority.

PORT 9 -Serial I/O Receive Control and Status Register;
\$FC12 High byte: control register; read/write Low byte: status register; read only


Bit Descriptions:

RE
(Receiver Enable control)
IS
(Ignore Syncs control)

RW1, RW0
(Receiver Wake-up control)
$0=$ Disabled; all status flags cleared.
1 = Enabled.
$0=$ Disabled; interrupts may occur on all characters received.
1 = Enabled; interrupts cannot occur on sync characters received after the sync match is found.

The receiver wake-up control bits operate as follows.

MODE	RW1	RW0	APPENDED WAKE-UP	BUFFER   LOADED	INTERRUPT GENERATED
No Wake up	0	0	no	$\begin{gathered} \text { any } \\ \text { character } \end{gathered}$	RN
Wake-up on Any Character	0	1	yes	$\begin{gathered} \text { any } \\ \text { character } \end{gathered}$	RN
Wake-up on Address Match	1	0	yes	address match	RSC
Wake-up on Any Address	1	1	yes	$\begin{gathered} \text { any } \\ \text { address } \end{gathered}$	RSC

RC
(Receive Clock control)
$0=$ Selects external receive clock applied on RCLK.
$1=$ Selects internal clock from the onchip baud rate generator (Timer C) for the receive clock.

This bit is ignored when either the TCO bit or the LM (Loopback Mode) bit is set.

SIS   (Single Interrupt Select control)					$0=$ Separate vectors are generated for the Receive Normal and the Receive Special Condition interrupts.   $1=$ The Receive Normal vector is generated for all receive character interrupts.
BF   (Buffer Full status)					$0=$ Receive data buffer empty; cleared when receive buffer is read.   1 = Receive buffer full; set when an incoming word is loaded into the receive data buffer.
OE   (Overrun Error status)					$0=$ No overrun error; cleared when the status register is read.   1 = Overrun error; set when a new word has been received and the previous word has not been read from the receive data buffer.
PE   (Parity Error status)					$0=$ No Parity Error; cleared when the status register is read.   $1=$ Parity Error; set when a parity error has been detected on an incoming character in the data stream.
FE   (Frame Error status)					$0=$ No frame error; cleared when the status register is read.   1 = Frame error; set when a word is transferred to the receive data and no stop bit has been recognized.
					This flag applies to async formats only.
SFIAF   (Sync Found or Address Found status)					This flag is used for both sync character match conditions and address found conditions in some wake-up modes as follows.
MODES					
SS	IS	RW1	RWO	CON	DITIONS THAT SET SFIAF
1	x	x	X	Sync	Found on any bit boundry
0	1	$x$	$x$	unaf	fected
0	0	0	0	una	fected
0	0	1	1	Any	Address
0	0	1	0	Add	ess Match
0	0	0	1		fected

PORT 10-Serial I/O Transmit Control and Status Register
\$FC14 High byte: control register; read/write
Low byte: status register; read only


Bit Descriptions:

TE
(Transmitter Enable control)

AT
(Automatic Turn Around control)
LM
(Loopback Mode control)
TW1, TWO
(Transmit Wake-up control)

## TC

(Transmit Clock control)
$0=$ Disable the transmitter; any word being shifted out will continue until completion.
$1=$ Enable the transmitter.
$0=$ No effect on TE or RE.
1 = Causes RE to be set to a " 1 " and TE to be set to a " 0 " automatically at the end of a transmission.
$0=$ Disables loopback mode.
1 = Causes the transmitter output to be internally connected to receiver input. Also causes Timer $C$ to be used for both the transmit and receive clocks regardless of the state of TC, RC, TCO, and TCOC.

These bits provide control for wakeup operation as follows.

TW1		TW0		OPERATION
1	1		Transmit Data	
0	X		No Wake-up	

$0=$ Selects the external clock signal applied on TCLK for the transmit clock.
1 = Selects the internal baud rate generator output (Timer C) for the transmit clock.

This bit is ignored if either the TCO bit or the LM bit is set.

PI/   (Previous/Sync control)	$0=$ Selects continuous transmission of the contents of the sync character register in the synchronous mode when there is no data to transmit.   $1=$ Selects continuous transmission of the transmit data buffer in synchronous mode when there is no data to transmit.
BE   (Buffer Empty status)	$0=$ Transmit Buffer is full; reset to this condition after the transmit buffer is reloaded.   $1=$ Transmit Buffer is empty; set to this condition after the transmit buffer contents are transferred to the output shift register.
UE   (Underrun Error status)	$0=$ No underrun error; cleared following a read of the transmit buffer.   $1=$ Underrun error; set only in the synchronous mode when the last word has been shifted out and transmit buffer has not been reloaded.
END   (End of Transmission status)	$0=$ No end of transmission; cleared by enabling the transmitter.   $1=$ End of transmission detected; set when the transmitter is disabled and the last character has been shifted out.

PORT 11-Timer B Latch; read gets counter value;
\$FC16 write goes to latch


PORT 12-Timer A, Low Latch; read gets counter or latch value; \$FC18 write goes to latch


PORT 13-Timer A, High Latch; read gets counter or latch value;
\$FC1A write goes to latch


PORT 14-Timer Control, Interrupt Edge Select; read/write \$FC1C

T		X		T	T	T	T	T	T	T	T	T	T
E		1		C	A	A	A	A	A	B	B	B	B
S	(res)	2	(res)	0	M	M	E	I	0	M	M	E	1
T		C		C	1	0		C	C	1	0		C
15	-	12		9	8	7	6	5	4	3	2	1	0

Bit Descriptions:

TEST
(Test mode control)
$\mathrm{XI2C} \quad 0=$ Interrupt on falling edge of $\mathrm{XI2}$.
(External Interrupt 2 Control) $1=$ Interrupt on rising edge of XI2.
TCOC
(Timer C Output Control)
$0=$ Normal operation; cleared on user control and on reset.
$1=$ Selects test mode; not to be used during normal operation.
$0=$ When TCO $=1$, TCLK is selected for use as a general purpose I/O pin.
$1=$ When TCO $=1$, TCLK is selected for use as an output for Timer C.

TCOC has no effect when $T C O=0$.

TAM1, TAMO
(Timer A Mode control)
TAE
(Timer A Enable control)

TAIC
(Timer A Input Control)

TAOC
(Timer A Output Control)

TBM1, TBMO.
(Timer B Mode control)

TBE
(Timer B Enable control)

TBIC
(Timer B Input Control)

These bits select the operating mode of Timer A as follows.

TAM1	TAMO	MODE
0	0	Interval
0	1	Event
1	0	Pulse/period
1	1	Pulse/period

0= Disables Timer A; all Timer A operations are inhibited, and the timer counter is initialized.
$1=$ Enables Timer A; the timer begins operation as defined by the other Timer A control bits.
$0=$ Selects a negative transition as the active edge for TAI.
$1=$ Selects a positive transition as the active edge for TAI.
$0=$ Selects TAO as a general purpose output pin.
$1=$ Selects TAO as an ouput pin associated with Timer A; TAO is initialized low when TAOC is a one and TAE is zero.

These bits select the operating mode of Timer B as described below.

TBM1	TBMO	MODE
0	0	Interval 0 (TBO is not used)
0	1	Interval 1 (TBO is used)
1	0	Retriggerable one-shot
1	1	Non-retriggerable one-shot
$0=$ Disables Timer B; all operations are inhibited, and the timer counter is initialized.   1= Enables Timer B; the timer begins operation as defined by the other Timer B control bits.		
```0= Selects a negative transition as active on TBI. 1= Selects a positive transition as active on TBI.```		

PORT 15-Port 0 Handshake Mode, Fast/Standard, Bus Lock, and Bus
\$FC1E Segment Bits; read/write

Bit Descriptions:

SEG1, SEG0
(Segment bits)

BLCK
(Bus Lock control)
FIS
(Fast/Standard timing control)

Used in the expanded bus mode when a reference is made to the DMA window. The contents of SEG1 and SEG0 are then output on pins AD15 and AD14, respectively.
$0=$ Disables the bus lock function.
$1=$ Enables the bus lock function.
$0=$ Selects standard timing of read/write cycles on the external bus (4 clock periods).
1 = Selects fast timing of read/write cycles on the external bus (3 clock periods.)

PM0, PM1, PM2, PM3 (Port Mode control)

PM3	PM2	PM1	PMO	HIGH HANDSHAKE	LOW HANDSHAKE
0	0	0	0	Inactive	PLO or PO output
0	0	0	1	PHO output	PLO output
0	0	1	0	Inactive	PLO input
0	0	1	1	PHO input	PLO input
0	1	0	0	PHO input	PLO ouput
0	1	0	1	Inactive	PO input (word only)
0	1	1	0	PLO output	PLO input (bidirectional)
0	1	1	1	PO output	PO input (bidirectional)
1	1	0	0	Inactive	Inactive
-	-	-			
1	1	1	0	Full Expansion (62 K external bus) Partial Expansion (16K external bus)	
1	1	1	1		

PORT 16-Port 0 Data Direction Control (DDR0); read/write \$FC20

0 -Corresponding Port 0 bit is input.
1 -Corresponding Port 0 bit is output.
PORT 17-Port 1 Data Direction Control (DDR1); read/write \$FC22

0 -Corresponding Port 1 bit is input.
1-Corresponding Port 1 bit is output.
PORT 18—Serial I/O Mode and Sync Register; read/write \$FC24

Bit Descriptions:

A/ \bar{S}
(Asynchronous/Synchronous mode control)

WL1, WLO
(Word Length control)
$0=$ Selects synchronous operation for the serial port; transmit and receive clocks are divided by 1.
$1=$ Selects asynchronous operation for serial port; transmit and receive clocks are divided by 16.

These two bits select the length of the data word as follows.

WL1	WLO	Word Length
0	0	8 bits
0	1	7 bits
1	0	6 bits
1	1	5 bits

ST
(Stop Bit control)

PAR1, PAR0 (Parity control)

TCO
(Timer C Output mode control)

WS
(Wake-up Sense)

SYNC7-SYNC0

(Sync character bits)

This bit is only used in the asynchronous mode. It selecfs the number of stop bits transmitted.

$\begin{array}{cc}\frac{\text { ST }}{0} & \\ & \text { Number of Stop Bits } \\ 1 & 1 \\ 2\end{array}$

These two bits provide parity control for both the synchronous and asynchronous modes.

PAR1	PARO	Parity
0	0	no parity
0	1	fixed " 0 " parity
1	0	odd parity
1	1	even parity

Note that even parity is defined such that the sum of the data and parity bits is even.
$0=$ Disables Timer C output mode.
1= Enables Timer C output mode; disables Timer C's use as a baud rate generator when LM = 0 ; causes transmit and receive clocks to be internally connected to RCLK so that TCLK may be used either as general purpose I/O or as an output for Timer C.

The following table lists the effects of the WS bit.

WS	Wake-up bit	Meaning
0	0	Address Word
0	1	Data Word
1	0	Data Word
1	1	Address Word

These eight bits are used to store the sync character or the device address for the wake-up mode.

PORT 19-Timer C Latch; read gets counter, write goes to latch and counter \$FC26

ELECTRICAL SPECIFICATIONS

Abstract

mAXIMUM RATINGS Temperature Under Bias . $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage on Any Pin with Respect to Ground. -0.3 V to +7 V Power Dissipation.. 1.5 W

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MK68200 DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IL}	Input low voltage; all inputs	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input high voltage; all inputs	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{OL}	Output low voltage; all outputs		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output high voltage; all outputs	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
I_{CC}	Input power supply current		220	mA	Outputs Open
I_{LI}	Input leakage current		± 10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to V_{CC}
I_{LO}	Three-state output leakage current in float		± 10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0.4 \mathrm{~V}$ to
V_{CC}					

CAPACITANCE

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=12 \mathrm{MHz}$ with unmeasured pins returned to ground.

SYMBOL	PARAMETER	MAX	UNIT	TEST CONDITION
$\mathrm{C}_{\text {IN }}$	Input Capacitance	10	pF	Unmeasured pins returned to ground
$\mathrm{C}_{\text {OUT }}$	Three-state Output Capacitance	10	pF	

MK68200 AC ELECTRICAL SPECIFICATIONS

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.
$A C$ measurements are referenced from minimum V_{IH} or maximum V_{IL} for inputs and from minimum V_{OH} or maximum V_{OL} for outputs.

NO.	DESCRIPTION	4 MHz		6 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
1	RESET low time	20		20		state times	1
2	CLK 1 width high (external clock input)	45		30		ns	
3	CLK 1 width low (external clock input)	45		30		ns	
4	CLK 1 period (external clock input)	125	1000	83	1000	ns	
5	Crystal input frequency	1.000	8.000	1.000	12.000	MHz	
6	Clock Period (PHI 1)	250		167		ns	
7	PHI 1 low to PHI 1 high	125		83		ns	
8	PHI 1 high to PHI 1 low	125		83		ns	
9	PHI 1 low to CLKOUT low		40		27	ns	
10	PHI 1 high to CLKOUT high		40		27	ns	

MK68200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (UPC, GP, AND PRIVATE BUSES)

NO.	DESCRIPTION	4MHz		6 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
11	PHI 1 low to $\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{HB}}$, or $\overline{\mathrm{LB}}$ valid		115		76	ns	2
12	PHI 1 high to $\overline{\text { AS }}$ low		115		76	ns	2
13	PHI 1 low to address valid		115		76	ns	2
14	$\overline{\text { AS }}$ low to address invalid	70		50		ns	2
15	PHI 1 low to tri-state address		90		60	ns	2
16	Tri-state address to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or UDS starting low (fast cycle)	10		10		ns	2
17	PHI 1 low to $\overline{\mathrm{SS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ low (fast cycle)		165		110	ns	2
18	PHI 1 low to data out valid during write		115		76	ns	2
19	PHI 1 low to R $\bar{W}, \overline{H B}, \overline{L B}$ invalid	0		0		ns	2
20	PHI 1 low to address/data bus driven	0		0		ns	2
21	$\overline{\mathrm{AS}}$ low to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{DDS}}$ starting low (fast cycle)	100	225	70	150	ns	2

MK68200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS
(UPC AND GP BUSES)

NO.	DESCRIPTION	4 MHz		6MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
22	Tri-state address to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or UDS starting low (standard cycle)	135		90		ns	
23	PHI 1 high to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ low (standard cycle)		165		110	ns	2
24	Valid Data Setup to PHI 1 low	10		5		ns	2
25	$\overline{\mathrm{AS}}$ low to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ starting low (standard cycle)	225	350	150	230	ns	2
26	$\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{HB}}$, or $\overline{\mathrm{LB}}$ valid to $\overline{\mathrm{AS}}$ starting low	60		60		ns	
27	Address valid to $\overline{\text { AS }}$ starting low	60		60		ns	
28	Irput data hold time from PHI 1 low	45		30		ns	
29	Input data hold time from $\overline{\mathrm{DS}}$, $\overline{\text { LDS }}$, or UDS high	0		0		ns	
30	PHI 1 low to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ high		180		120	ns	
31	DTACK low setup to PHI 1 high	15		10		ns	
32	$\overline{\text { LDS }}, \overline{\text { UDS }}$, or $\overline{\mathrm{DS}}$ high to DTACK high (hold time)	-30		-30		ns	
33	$\overline{\text { LDS, }} \overline{\text { UDS, }}$, or $\overline{\text { DS }}$ pulse width	240		150		ns	
34	PHI 1 high to $\overline{\text { AS }}$ high		90		60	ns	
35	PHI 1 low to data out invalid	0		0		ns	
36	$\overline{\text { AS }}$ inactive	235		150		ns	
37	$\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{DDS}}$ high to data out invalid	180		110		ns	
38	$\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ high to $\overline{\mathrm{AS}}$ high	5		5		ns	

MK68200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (UPC BUS)

NO.	DESCRIPTION	4 MHz		6 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
39	$\overline{\text { BGACK }}$ low to $\overline{\text { BR }}$ high	100	450	100	300	ns	
40	$\overline{\text { BG }}$ low to $\overline{\text { BGACK }}$ low	50	600	50	400	ns	
41	$\overline{\text { BGACK, }} \overline{\text { AS }}, \overline{\mathrm{DTACK}}$, inactive to $\overline{B G A C K}$ low; $\overline{B G}$ already low	0	600	0	400	ns	
42	$\overline{\text { BGACK low to } \overline{A S}, \overline{U D S}, \overline{\text { LDS }},}$ or address/data bus driven	40	135	40	90	ns	
43	$\overline{\mathrm{AS}}, \overline{\mathrm{LDS}}, \overline{\mathrm{UDS}}$ or address/data bus tri-state to BGACK high	0	180	0	120	ns	

MK68211 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (GP BUS)

NO.	DESCRIPTION	4 MHz		6 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
44	Tri-state $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} \overline{\mathrm{W}}, \overline{\mathrm{LB}}, \overline{\mathrm{HB}}$ to BUSOUT low (bus grantor, fast cycle, (no wait states)	175		100		ns	
45	BUSIN low to BUSOUT low (bus grantor, fast cycle, no wait states)		1900		1200	ns	
46	$\overline{B U S O U T}$ high to $\overline{A S}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{LB}}$, $\overline{\mathrm{HB}}$ driven (bus grantor)	15		15		ns	
47	$\overline{B U S I N}$ high to BUSOUT high (bus grantor)	520	900	300	600	ns	
48	Tri-state address/data bus to BUSOUT low (bus grantor)	70		70		ns	
49	BUSOUT high to address/data bus driven (bus grantor)	50		50		ns	
50	$\overline{\text { BUSOUT }}$ low to $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}$, $\overline{\mathrm{LB}}, \overline{\mathrm{HB}}$ driven (bus requestor, BUS!' low)	240		150		ns	
51	$\overline{\text { BUSIN }}$ low to $\overline{A S}, \overline{D S}, R / \bar{W}, \overline{L B}$, $\overline{\mathrm{HB}}$ driven (bus requestor, BUSOUT low)	270	650	180	500	ns	
52	Tri-state $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{LB}}, \overline{\mathrm{HB}}$, to BUSOUT high (bus requestor)	180		100		ns	
53	$\overline{B U S O U T}$ high to $\overline{B U S I N}$ high (bus requestor)		530	-	400	ns	
54	$\overline{\text { BUSIN }}$ low to address/data bus driven (bus requestor)	350		250		ns	
55	Tri-state address/data bus to BUSOUT high (bus requestor)	100		65		ns	

MK68E200 BUS AC ELECTRICAL SPECIFICATIONS (PRIVATE BUS)

NO.	DESCRIPTION	4 MHz		6 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
56	Valid Data Setup to PHI 1 low	30		20		ns	
57	PBR/ \bar{W} valid to $\overline{\text { PBAS }}$ starting low	40		40		ns	
58	Address valid to $\overline{\text { PBAS }}$ starting low	35		35		ns	
59	Input data hold time from PHI 1 low	0		0		ns	
60	Input data hold time from $\overline{\text { PBDS }}$ high	-25		-25		ns	

MK68E200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (PRIVATE BUS) (Cont.)

NO.	DESCRIPTION	4 MHz		6 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX		
61	PHI 1 low to PBDS high		160		105	ns	
62	PBDTACK low setup to PHI 1 high	20		15		ns	
63	$\overline{\text { PBDS }}$ high to $\overline{\text { PBDTACK }}$ high (hold time)	-15		-15		ns	
64	PBDS pulse width	190		125		ns	
65	PHI 1 high to $\overline{\text { PBAS }}$ high		115		75	ns	
66	PHI 1 low to data out invalid	10		10		ns	
67	$\overline{\text { PBAS }}$ inactive	200		135		ns	
68	$\overline{\text { PBDS }}$ high to data out invalid	200		135		ns	
69	$\overline{\text { PBDS }}$ high to $\overline{\text { PBAS }}$ high	15		15		ns	

MK68200 INPUT/OUTPUT AC ELECTRICAL CHARACTERISTICS

NO.	DESCRIPTION		4 MHz		6 MHz		UNITS	NOTES
			MIN	MAX	MIN	MAX		
70	Active and inactive pulse times	XI2, XI1, RH, STRL, TBI, NMI	5		5		state times	1
		XIO	3		3			
71	Input data setup to falling edge of STRH, STRL		15		10		ns	
72	Input data hold from the falling edge of STRH, STRL		60		40		ns	
73	RDYH, RDYL low time		1	3	1	3	state times	1
74	Delay from STRH, STRL high to RDYH, RDYL low			110		75	ns	
75	Delay from data valid to RDYH, RDYL high (output mode)			3		3	state times	1
76	Delay from STRH high to data out (bidirectional mode)			90		60	ns	
77	Port 0 data hold time from STRH low (bidirectional mode)		25		20		ns	
78	Delay to Port 0 float from STRH low (bidirectional mode)			85		55	ns	
79	TCLK,RCLK period (asynchronous)	as input	. 250	DC	. 167	DC		
		as output	. 500	DC	. 334	DC	$\mu \mathrm{S}$	
	TCLK,RCLK period (synchronous)		1.0	DC	. 667	DC		
80	TCLK, RCLK width low	as input	1	DC	1	DC	state	1
		as output	2	DC	2	DC		
81	TCLK, RCLK width high	as input	1	DC	1	DC	state	1
		as output	2	DC	2	DC		

MK68200 INPUT/OUTPUT AC ELECTRICAL SPECIFICATIONS

NO.	DESCRIPTION		4 MHz		6 MHz		UNITS	NOTES
			MIN	MAX	MIN	MAX		
82	TCLK low to SO delay (sync mode)	TCLK as input	330		220		ns	
		TCLK as output	75		50			
83	SI to RCLK high setup time (sync mode)	RCLK as input	30		20		ns	
		RCLK as output	180		120			
84	SI hold time from RCLK high (sync mode)	RCLK as input	45		30		ns	
		RCLK as output	0		0			

NOTES

1. One state time is equal to one-half of the instruction clock (PHI 1) period.
2. For the private bus case, the signals referenced apply to the equivalent private bus signals.

LOAD 1

IN914

TEST LOAD 1 IS APPLICABLE TO
ALL PINS EXCEPT P1-12 AND P1-8.

LOAD 2

Figure 19. Output Test Load

CLK 1
(EXTERNAL CLOCK SIGNAL)

Figure 20. MK68200 AC Timing

Figure 21. MK68201 UPC Bus Timing (Fast Cycle)

Figure 22. MK68201 UPC Bus Timing (Standard Cycle)

Figure 23. MK68201 UPC Bus Arbitration Timing

Figure 24. MK68211 GP Bus Timing (Fast Cycle)

Figure 25. MK68211 GP Bus Timing (Standard Cycle)

Figure 26. MK68211 GP Bus Timing (Interrupt Acknowledge Timing)

Figure 27، MK68211 GP Bus Arbitration Timing (Bus Grantor)

CLKOUT

Figure 28. MK68211 GP Bus Arbitration Timing (Bus Requestor)

Figure 29. MK68200 Private Bus Timing (Fast Cycle)

Figure 30. Input/Output AC Timing (Data Input)

Figure 31. Input/Output AC Timing (Data Output)

Figure 32 . Input/Output AC Timing (Bidirectional I/O)

Figure 33. Input/Output AC Timing (Serial I/O)

PHYSICAL DIMENSIONS

MK68200 48-Pin Plastic Dual-In-Line Package (N)

	MILLIMETERS		INCHES	
DIM.	MIN	MAX	MIN	MAX
A	61.468	62.738	2.420	2.470
B	14.986	16.256	0.590	0.640
C	13.462	13.97	0.530	0.550
D	3.556	4064	0.140	0.160
E	0.381	1.524	0.015	0.060
F	3048	3.81	0.120	0.150
G	1.524	2.286	0.060	0.090
H	1.186	1.794	0.090	0.110
J	15.24	17.78	0.600	0.700
K	0.381	0.533	0.015	0.021
L	0.203	0.305	0.008	0.012
M	1.143	1.778	0.045	0.070

MK68200 48-Pin Ceramic Dual-In-Line Package (P)

	INCHES		
DIM.	MIN.	MAX.	
A	.085	.190	
A_{1}	.020	.070	1
B	.015	.023	
B_{1}	.038	.060	
C	.008	.012	
D	2.370	2.430	
E	.595	.625	
E_{1}	.580	.610	
B	.590	.700	2
Q_{1}	.100		
L	.120	.170	
Q_{1}	.010		
S	.035		065

MK68E200 84-Pin
Ceramic Leadless Chip Carrier (E)

DIM.	INCHES	
	MIN	MAX
A	1.138	1.167
B	1.138	1.167
C	0.070	0.090
D	0.080	0.110
E	0.044	0.056
F	0.044	0.056
G	0.075	0.095
H	0.048	0.052
J	0.033	0.039
K	0.010	0.018
L	0.495	0.505
M	0.495	0.505

ORDERING INFORMATION

There are two types of part numbers for the 68200 family of devices. The generic part number describes the basic device type, the amount of ROM and RAM, the desired package type, temperature range, power
supply tolerance, and expandable bus interface type. The device order number indicates the specific mask set Mostek will use to manufacture the device, along with package type, speed grade and temperature range.

Generic Part Number

An example of the generic part number is shown below:

NOTES

1. Available for emulator only.
2. Must be " 0 " when specifying the emulator.
3. Contact Mostek for availability.

Device Order Number

An example of the device order number is shown below:

Denotes maximum instruction clock frequency.
$4=4 \mathrm{MHz}$
$6=6 \mathrm{MHz}$
Denotes operating temperature range.
$0=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$1=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{3}$
Package Type. $\mathbf{P}=$ Ceramic DIP2
N = Plastic DIP
$E=$ Ceramic Leadless Chip Carrier ${ }^{1}$
Q $=$ Plastic Leaded Chip Carrier ${ }^{3}$
G = Ceramic Pin Grid Array ${ }^{1,3}$
Version/Code Specific Number.
For MK68201, MK68211:
002 = No ROM version (standard catalog item)
$0 x x=$ Reserved for catalog codes
100-999 = Customer Code (Mostek Assigned)
For MK68E201, MK68E211, MK68E221:
$000=$ UPC, 256 bytes RAM, no ROM
010 = GP, 256 bytes RAM, no ROM
$020=$ GP/UPC, 1024 bytes RAM, no ROM ${ }^{3}$
Basic Device Type.
40 = Emulator Version
$41=$ UPC, 0 or $4 K$ bytes ROM, 256 bytes RAM
$42=$ GP, 0 or 4 K bytes ROM, 256 bytes RAM

notes

1. Available for emulator only.
2. Intended for prototype orders only.
3. Contact Mostek for availability.

PART NUMBER EXAMPLES (A noninclusive list)	
MK68201/44N-04	Device Order Number $=$ MK41XXXN-04
	Speed $=4 \mathrm{MHz}$
	Temperature $=0^{\circ}$ to $70^{\circ} \mathrm{C}$
	Package $=48$ pin plastic
	RAM $=256$ bytes
	ROM $=4096$ bytes
	Bus $=$ UPC
MK68211/04N-06	Device Order Number $=$ MK42002N-06
	Speed $=6 M H z$
	Temperature $=0^{\circ}$ to $70^{\circ} \mathrm{C}$
	Package $=48$ pin plastic
	RAM $=256$ bytes
	ROM $=$ None
	Bus $=$ GP
	Device Order Number $=$ MK40010E-14
	Speed $=4 M H z$
	Temperature $=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
	Package $=84$ pin ceramic LCC
	RAM $=256$ bytes
	ROM $=$ None
	Bus $=$ GP
	Device Order Number $=$ MK40020G-06
	Speed $=6 \mathrm{MHz}$
	Temperature $=0^{\circ}$ to $70^{\circ} \mathrm{C}$
	Package $=84$ lead PGA
	RAM $=1024$ bytes
	ROM $=$ None
	Bus $=$ GP/UPC

ADVANCE INFORMATION

FEATURES

- 16-bit high performance, single-chip microcomputer
- Modular architecture
- Power saving stop and idle modes
- 14 address and data registers
- Eight 16-bit or sixteen 8-bit data registers
- Six 16-bit address registers
- Advanced 16-bit instruction set
- Bit, pyte and word operands
- Nine addressing modes
- Byte and word BCD arithmetic
- High performance (10 MHz instruction clock)
- $0.3 \mu \mathrm{~s}$ register-to-register move or add
$-2.1 \mu \mathrm{~s} 16 \times 16$ multiply
$-2.3 \mu \mathrm{~s} 32 / 16$ divide
- Available with 0 or 4 k bytes of ROM
- 256 bytes of RAM
- Three 16 -bit timers
- Interval modes
- Event modes
- One-shot modes
- Pulse and period measurement modes
- Serial channel
- Double buffered receive and transmit
- Asynchronous to 625 Kbps
- Synchronous to 2.5 Mbps
- Address wake-up recognition and generation
- Internal/external baud rate generation
- Parallel I/O on first version
- Up to 40 pins
- Direction programmable by bit
- One 16-bit or 28 -bit port(s) with handshaking
- Interrupt controller
- 16 independent vectors on first version
- Expandable to handle 64 independent interrupts
- Eight external interrupt sources
- One non-maskable interrupt
- Individual interrupt masking
- Optional external bus
- 16-bit multiplexed address/data bus
- Automatic bus request/grant arbitration

HCMOS

- Two control bus versions
- 68000 compatible bus (UPC) (MK68HC201)
- General Purpose bus (GP) (MK68HC211)
- Emulator version available
- Added private bus
- No on-chip ROM
- 512 bytes on-chip RAM
- GP or UPC bus version with one part (MK68HC221)
- 16, 20, and 25 MHz time base versions produce 8 , 10 and 12.5 MHz instruction clock rates respectively
- Crystal or external TTL clock
- Single +5 volt po. er supply
- Plastic or Ceramic Chip carrier packaging

PIN ASSIGNMENT

SINGLE-CHIP DESCRIPTION

Figure 1 illustrates the functions of specific pins for an MK68HC201 or MK68HC211, operating in a single-chip mode. When the device is operating in one of the expanded bus modes, the pins on Port 0 become the multiplexed address/data bus, and the upper half of

Port 1 becomes the control signals (GP or UPC) for the bus. The following description applies to the pins only when the device is used in the non-expanded or singlechip mode. Descriptions of the pin functions for the expanded bus modes are in the Expanded Bus Operation section of this data sheet.

Figure 1. MK68HC201, MK68HC211 Logical Pinout, Single-Chip Mode

MNEMONIC	PIN FUNCTIONS FOR SINGLE-CHIP OPERATION
$\mathrm{V}_{\text {CC }}$	Supply voltage 4.5 to 5.5 V
GND	Ground
RESET	Reset (input, active low) - $\overline{\text { RESET}}$ input overrides ongoing execution (including interrupts) and resets the chip to its initial power-up condition. $\overline{\text { RESET cannot be masked. }}$
CLKOUT	Clock Output (output) - CLKOUT will output the instruction clock rate, which is one-half of the frequency provided on CLK1 and CLK2.
CLK1, CLK2	Time base inputs (inputs) - CLK1 and CLK2 may be connected to a crystal, or CLK1 may be connected to an external TTL-compatible oscillator while CLK2 is left floating.
$\overline{\mathrm{NMI}}$	Non-maskable interrupt (input, active low, negative edge triggered) - The $\overline{\mathrm{NMI}}$ request line has a higher priority than all of the maskable interrupts. $\overline{\text { NMI }}$ is always enabled regardless of the state of the L1E (Level 1 Interrupt Enable) bit in the Status Register.
MODE	Mode (input) - The MODE pin has three states, which select fully expanded external bus, partially expanded external bus, or no expanded bus (single-chip configuration).
P0-0 - P0-15	Port 0 (input/output) - Each bit in Port 0 may be individually programmed for general purpose input or output. Port 0 also has several handshaking modes to allow parallel, asynchronous communication with other devices. The high and low bytes may be programmed individually or jointly to be inputs, outputs, or bidirectional.
P1-0-P1-15	Port 1 (input/output) - Each of the 16 bits in Port 1 may be individually programmed for input or output. Additionally, the lowest seven bits of Port 1 may be programmed to serve specific alternate functions as shown below.
P1-6/XI2	External Interrupt 2 (input, rising or falling edge triggered) - The programmer may select the rising or falling edge as active for XI2.

MNEMONIC	PIN FUNCTIONS FOR SINGLE-CHIP OPERATION
P1-5/XI1	External Interrupt 1 (input, falling edge triggered) - The XI1 may be used to interrupt the MK68HC200 on the falling edge of an input pulse.
P1-4/X10	External Interrupt 0 (input, low level triggered) - The XIO interrupt input is level triggered (unlike XI1 and XI2). It may be used to produce an internally vectored interrupt or to cause an external fetch of an interrupt vector number when the MK68HC200 is used in an expanded mode with the GP bus.
P1-3/SI	Serial Input (input, active high) - SI is used to receive serial data when the receiver is enabled.
P1-2/RCLK	Receive Clock (input/output, active high) - Depending on the mode programmed, RCLK can be used by the serial port as either an input or an output pin. When used as an input pin, RCLK provides the receive clock and/or the transmit clock. When RCLK is not providing the transmit or receive clock, it can be used as an output for Timer C. In this mode, the receive clock is being provided by Timer C.
P1-1/TCLK	Transmit Clock (input/output, active high) - Depending on the mode programmed, TCLK can be used by the serial port as either an input or an output pin. When used as an input pin, TCLK provides the transmit clock. When TCLK is not providing the transmit clock, it can be used as an output for the Timer C . In this mode, the transmit clock is being provided by either Timer C or RCLK.
P1-0/SO	Serial Output (output, active high) - SO is used to transmit serial data when the transmitter is enabled.
P4-8 - P4-15	Port 4 (inputs and outputs) - P4-8, P4-9, P4-14, and P4-15 may be used as general purpose outputs, and P4-10, P4-11, P4-12, and P4-13 may be used as general purpose inputs. Interrupts may be generated on the positive transitions on P4-10 and P4-11. Depending on the mode selected, interrupts may be generated on the positive or the negative transitions on P4-12, and they may be generated on the positive, negative or combined transitions on P4-13. Additionally, these bits may be programmed to serve specific alternate functions, as listed below.
P4-15/TAO	Timer A Output (output) - TAO may be programmed for special functions in the interval, event, and pulse/period modes for Timer A. In the interval mode, TAO's state is determined by the Timer A latch (high and low) that is currently active. That is, if the counter is using the high latch for comparison, TAO is high. In the event mode, TAO is initialized to a " 1 " state and toggles each time the counter matches the Timer A high latch. In the pulse/period modes, TAO is initialized to a " 1 " state and toggles on positive transitions on TAI.
P4-14/TBO	Timer B Output (output) - TBO may be programmed for special functions in the interval and one-shot modes for Timer B. In the interval mode, TBO is initialized to a " 1 " state and toggles each time the counter matches the Timer B latch value. In the one-shot modes TBO is initialized to a " 1 " state, and the counter begins counting in response to the occurrence of an active edge on TBI. TBO will not go low until the counter matches the value loaded into the Timer B latch.
P4-13/TAI	Timer A Input (input, positive and/or negative edge triggered) - TAl may be programmed for special functions in the event mode or the pulse/period modes for Timer A. In the event mode, the counter is incremented on each active transition (positive or negative edge programmable) on TAI. In the pulse/period modes, the counter measures the time during which the signal on TAI remains high and low.
P4-12/TBI	Timer B Input (input, positive or negative edge triggered) - TBI may be programmed for special functions for the Timer B one-shot modes. In the one-shot modes, TBI acts as a trigger input.
$\begin{aligned} & \text { P4-11/STRH, } \\ & \text { P4-10/STRL } \end{aligned}$	Strobe High Byte, Strobe Low Byte (input, active high) - STRH and STRL are both used for input, output and bidirectional handshaking on Port 0 . These signals are issued by the peripheral to acknowledge the receipt of data made availai le by the MK68HC200, or are issued by the peripheral to load data from the peripheral into the Port 0 input register.
$\begin{aligned} & \text { P4-9/RDYH, } \\ & \text { P4-8/RDYL } \end{aligned}$	Ready High Byte, Ready Low Byte (output, active high) - RDYH and RDYL are used for input, output, and bidirectional handshaking on Port 0 . The ready signal goes active to indicate that peripheral data is stable and ready for transfer to the peripheral or is used when Port 0 is empty and is ready to accept data from the peripheral.

GENERAL DESCRIPTION

MK68HC200 designates a series of new highperformance, 16 -bit, single-chip microcomputers from Thomson Components - Mostek Corporation. Implemented in 1.5 micron HCMOS technology, they incorporate an architecture designed for superior performance in computation-intensive control applications. A modern, comprehensive instruction set (which features both high speed execution and code space efficiency) is combined on-chip with extensive, flexible I/O capabilities. On-chip RAM and optional on-chip ROM are provided with a full 64 K byte addressing space.

The MK68HC200 can be used to design a true appli-
cation specific microcontroller. The circuit is partitioned into three major functional blocks: CPU, memory, and I/O. The CPU is the core of the circuit and communicates with the memory via the memory address and data bus, and with the I/O via the I/O bus. New I/O or memory modules can be designed and added to the CPU core to customize the MK68HC200 for a particular application. The initial product offerings in the MK68HC200 family will contain I/O and memory features listed above. This is consistent with the features available on the NMOS MK68200. Future product offerings will contain various assortments of on-chip I/O and memory modules.

Figure 2. MK68HC200 - Modular Architecture Concept

FUNCTIONAL DESCRIPTION

MK68HC200 APPLICATIONS

The MK68HC200 is designed to serve the needs of a wide variety of control applications, which require high performance operation with a minimal parts count implementation. Industrial controls, instrumentation, and intelligent computer peripheral controls are all examples of applications served by the MK68HC200. High speed mathematical ability, rapid I/O addressing and interrupt response, and powerful bit manipulation instructions provide the necessary tools for these applications. In addition to its single-chip microcomputer configuration, both distributed intelligence and parallel multiprocessing system configurations are supported by the MK68HC200, as illustrated in Figures 9 and10.

In applications requirirg loosely-coupled distributed intelligence, several MK68HC200's may be interconnected on a common serial network. The on-chip USART supports a wake-up mode in which an additional bit is appended to the data stream to distinguish a serial data word as address or data. The wake-up logic prevents the serial channel from generating interrupts unless certain criteria have been met. The wake-up options available are: Wake-up on any address or data character, wake-up on any address, or wake-up on address match.

Alternately, the MK68HC200 may be configured as an expandable CPU device which can access external memory and I/O resources. In this operating mode, parallel I/O pins are replaced by multiplexed address/data and control lines. Bus arbitration logic is incorporated on the chip to support a direct interface in parallel shaded bus multiprocessor system configurations. Two versions exist which support two types of control signals present on the expanded bus configuration.

The General Purpose (GP) bus option allows the MK68HC200 to operate either as an executive or a peripheral processor. As an executive processor, the MK68HC200 can control an external system bus and grant the use of it to requesting devices, such as DMA controllers and/or peripheral processors. As a peripheral control processor, the MK68HC200 can provide intelligent local control of an I/O device in a computer system and, thereby, relieve the executive processor of these taks. In this configuration, the MK68HC200 has the capability of effectively performing DMA transfers between system memory and the I/O device. The onchip resources of ROM, RAM, and I/O are accessed within the MK68HC200 without affecting utilization of the shared system bus. Therefore, only external communications compete for bus bandwidth.

The Universal Peripheral Controller (UPC) bus option supports a direct interface to a 68000 executive processor. Thus, the MK68HC200 can be used as a costeffective intelligent peripheral controller in 68000 systems. The UPC version's direct bus interface to the 68000 makes the MK68HC200 particularly well-suited for performing many intelligent I/O functions in a 68000 system. For example, since the MK68HC200 includes both a serial channel and an external bus capable of performing DMA transfers, it can be programmed to act as serial protocol controller with DMA capability.

For additional information on the MK68HC200 refer to the MK68HC200 Principles of Operation Manual, publication number 4430196.

PROCESSOR ARCHITECTURE

The MK68HC200 microcomputer contains an advanced processor architecture, combining the best properties of both 8 - and 16 -bit processors. A large majority of instructions operate on either byte or word operands.

REGISTERS

The MK68HC200 register set includes three system registers, six address registers, and eight data registers. The three 16 -bit system registers (Figure 3) include a Program Counter, a Status Register, and a Stack

Pointer. The six address registers may be used either for 16 -bit data or for memory addressing. The eight 16-bit data registers are used for data and may be referenced as sixteen 8 -bit registers, providing great flexibility in register allocation.

DATA REGISTERS:

ADDRESS REGISTERS:

SYSTEM REGISTERS:

Figure 3. Register Set

ADDRESSING

The MK68HC200 directly addresses a 64 K byte memory space, which is organized as 32 K 16 -bit words. The memory is byte-addressable, but most transfers occur 16 bits at a time, for increased performance over 8 -bit microcomputers. All input/output is memorymapped, and the on-chip I/O is situated in the top 1 K bytes of the address space. In the single-chip mode, all resources including ROM, RAM, and I/O, are accessed via an internal or private bus. The memory map, which is accessed by this bus in the single-chip mode, is depicted in Figure 4. Note on-chip RAM always begins at \$FBFF and extends downward. ROM always begins at zero and extends upward.

Nine addressing modes provide ease of access to data in the MK68HC200, as depicted in Table 1. The four register indirect forms utilize the address registers and the Stack Pointer and support many common data structures suih as arrays, stacks, queues, and linked lists. I/O Port addressing is a short form addressing mode for the first 16 words of the I/O port space and allows most instructions to access the most often referenced I/O ports in just one word. Many microcomputer applications are I/O intensive and short, fast addressing of I/O has a significant impact on performance.

Table 1. Addressing Modes

Register

Register Indirect
Register Indirect with Post-increment
Register indirect with Pre-decrement
Register Indirect with Displacement
Program Counter Relative
Memory Absolute
Immediate
I/O Port

CONTENTS

FUTURE I/O EXPANSION AREA (RESERVED)

PORT 0 THROUGH PORT 19

ON-CHIP RAM (UP TO 512 BYTES)

FUTURE RAM AND ROM EXPANSION

Figure 4. Addressing Space For Single-Chip Configuration

MK68HC200

INSTRUCTION SET

The MK68HC200 instruction set has been designed with regularity and ease of programming in mind. In addition, instructions have been encoded to minimize code space, a feature which is especially important in single-chip microcomputers. Small code space is related to execution speed, and most instructions execute in either three or six instruction clock periods. See Table 2.

In addition to operations on bytes and words, the MK68HC200 has rapid bit manipulation instructions that can operate on registers, memory, and ports. The bit to be affected may be an immediate operand of the instruction, or it may be dynamically specified in a register. Operations available include bit set, clear, test,
change, and exchange; and all bit operations perform a bit test as well. Since each instruction is indivisible, this provides the necessary test-and-set function for the implementation of semaphores.

The MOVE group of instructions has the most extensive capabilities. A wide variety of addressing mode combinations is supported including memory-tomemory transfers. A special move multiple is included to save and restore a specified portion of the registers rapidly.

In total, the MK68HC200 instruction set provides a programming environment, similar to the 68000, which has been optimized for the needs of the single-chip microcomputer marketplace. A summary of the instruction set is provided in Table 3.

Table 2. Instruction Execution Times

Instruction Type	Clock Periods	Execution Time with 8 MHz Clock $(\mu \mathbf{s})$	Execution Time with $\mathbf{1 0 ~ M H z}$ Clock $(\mu \mathbf{s})$	Execution Time with 12.5 MHz Clock ($\mu \mathbf{s})$
Move Register-to-register	3	0.38	0.30	0.24
Add Register-to-register (binary or BCD)	3	0.38	0.30	0.24
Move Memory-to-register	6	0.75	0.60	0.48
Add Register-to-memory	9	1.13	0.90	0.72
Multiply (16 $\times 16)$	21	2.63	2.10	1.68
Divide (32/16)	23	2.88	2.30	1.84
Move Multiple (save or restore all registers)	55	6.88	5.50	4.40

Table 3. Instruction Set Summary

INSTRUCTION	DESCRIPTION	INSTRUCTION	DESCRIPTION
ADD	ADD	JMPA	JUMP ABSOLUTE
ADD. ${ }^{\text {B }}$	ADD BYTE	JUMPR	JUMP RELATIVE
ADDC	ADD WITH CARRY	LIBA	LOAD INDEXED BYTE ADDRESS
ADDC.B	ADD WITH CARRY BYTE	LINK	LINK
AND	LOGICAL AND	LIWA	LOAD INDEXED WORD ADDRESSED
AND.B	LOGICAL AND BYTE	LSR	LOGICAL SHIFT RIGHT
ASL	ARITHMETIC SHIFT LEFT	LSR.B	LOGICAL SHIFT RIGHT BYTE
ASL.B	ARITHMETIC SHIFT LEFT BYTE	MOVE	MOVE
ASR	ARITHMETIC SHIFT RIGHT	MOVE.B	MOVE BYTE
ARS.B	ARITHMETIC SHIFT RIGHT BYTE	MOVEM	MOVE MULTIPLE REGISTERS
BCHG	BIT CHANGE	MOVEM. ${ }^{\text {B }}$	MOVE MULTIPLE REGISTERS BYTE
BCLR	BIT CLEAR	MULS	MULTIPLY SIGNED
BEXG	BIT EXCHANGE	MULU	MULTIPLY UNSIGNED
BSET	BIT SET	NEG	NEGATE
BTST	BIT TEST	NEG.B	NEGATE BYTE
CALLA	CALL ABSOLUTE	NEGC	NEGATE WITH CARRY
CALLR	CALL RELATIVE	NEGC.B	NEGATE WITH CARRY BYTE
CLR	CLEAR	NOP	NO OPERATION
CLR.B	CLEAR BYTE	NOT	ONE'S COMPLEMENT
CMP	COMPARE	NOT.B	ONE'S COMPLEMENT BYTE
CMP.B	COMPARE BYTE	OR	LOGICAL OR
DADD	DECIMAL ADD	OR.B	LOGICAL OR BYTE
DADD.B	DECIMAL ADD BYTE	POP	POP
DADDC	DECIMAL ADD WITH CARRY	POPM	POP MULTIPLE REGISTERS
DADDC. ${ }^{\text {B }}$	DECIMAL ADD WITH CARRY BYTE	PUSH	PUSH
DI	DISABLE INTERRUPTS	PUSHM	PUSH MULTIPLE REGISTERS
DIVU	DIVIDE UNSIGNED	RET	RETURN FROM SUBROUTINE
DJNZ	DECREMENT COUNT AND JUMP	RETI	RETURN FROM INTERRUPT
	If NON-ZERO	ROL	ROTATE LEFT
DJNZ.B	DECREMENT COUNT BYTE AND	ROL. ${ }^{\text {B }}$	ROTATE LEFT BYTE
	JUMP IF NON-ZERO	ROLC	ROTATE LEFT THROUGH CARRY
DNEG	DECIMAL NEGATE	ROLC.B	ROTATE LEFT THROUGH CARRY
DNEG.B	DECIMAL NEGATE BYTE		BYTE
DNEGC	DECIMAL NEGATE WITH CARRY	ROR	ROTATE BYTE
DNEGC.B	decimal negate with carry	ROR.B	ROTATE RIGHT BYTE
	BYTE	RORC	ROTATE RIGHT THROUGH CARRY
DSUB	DECIMAL SUBTRACT	RORC.B	ROTATE RIGHT THROUGH CARRY
DSUB.B	DECIMAL SUBTRACT BYTE		BYTE
DSUBC	DECIMAL SUBTRACT WITH CARRY	STOP	STOP
DSUBC.B	DECIMAL SUBTRACT WITH CARRY	SUB	SUBTRACT
	BYTE	SUB. ${ }^{\text {b }}$	SUBTRACT BYTE
El	ENABLE INTERRUPTS	SUBC	SUBTRACT WITH CARRY
EOR	EXCLUSIVE OR	SUBC.B	SUBTRACT WITH CARRY BYTE
EOR.B	EXCLUSIVE OR BYTE	TEST	TEST
EXG	EXCHANGE	TEST.B	TEST BYTE
EXG.B	EXCHANGE BYTE	TESTN	TEST NOT
EXT	EXTEND SIGN	TESTN.B	TEST NOT BYTE
HALT	HALT	UNLINK	UNLINK
IDLE	IDLE		

INPUT/OUTPUT ARCHITECTURE

The I/O capabilities of the MK68HC200 are extensive, encompassing timers, a serial channel, parallel I/O, and an interrupt controller. All of these devices are accessible to the programmer as ports within the top 1 K bytes of the address space, and the most commonly accessed ports may be accessed with the short port addressing mode. A description of these ports is given in Table 4.

In total, 40 pins of the 48 are used for I/O, and their functions are highly programmable by the user. In particular, many pins can perform multiple functions, and the programmer selects which ones are to be used. For example, TAI may be used as an input for Timer A, an interrupt source, or a general purpose input pin. The interrupt source may be selected simultaneously with either of the other functions.

Table 4. Port Descriptions

PORT	ADDRESS	READ/WRITE	BYTEADDRESSABLE	FUNCTION
0	\$FC00	READ/WRITE	YES	16 EXTERNAL I/O PINS OR ADDRESS/DATA BUS
1	\$FC02	READ/WRITE	YES	16 EXTERNAL I/O PINS (INCLUDING INTERRUPT, SERIAL I/O PINS, AND BUS CONTROL)
2	\$FC04	-	-	(RESERVED)
3	\$FC06	LOW BYTE: READ/WRITE	YES	SERIAL TRANSMIT (LOW BYTE) AND
		HIGH BYTE: READ		RECEIVE (HIGH BYTE) BUFFER
4	\$FC08	INPUTS: READ ONLY OUTPUTS: READ/WRITE	NO	8 EXTERNAL I/O PINS (TIMER CONTROL AND PORT 0 HANDSHAKE CONTROL)
5	\$FCOA	-	-	(RESERVED)
6	\$FCOC	-	- '	(RESERVED)
7	\$FCOE	READ/WRITE	NO	INTERRUPT LATCH REGISTER
8	\$FC10	READ/WRITE	NO	INTERRUPT MASK REGISTER
9	\$FC12	STATUS: READ ONLY CONTROL: READ/WRITE	NO	SERIAL I/O RECEIVE CONTROL AND STATUS
10	\$FC14	STATUS: READ ONLY CONTROL: READ/WRITE	NO	SERIAL I/O TRANSMIT CONTROL AND STATUS
11	\$FC16	READ GETS COUNTER WRITE GOES TO LATCH	NO	TIMER B LATCH
12	\$FC18	READ GETS COUNTER		
		OR LATCH WRITE GOES TO LATCH	NO	TIMER A, LOW LATCH
13	\$FC1A	READ GETS COUNTER		
		OR LATCH	NO	TIMER A, HIGH LATCH
		WRITE GOES TO LATCH		
14	\$FC1C	READ/WRITE	NO	TIMER AND HANDSHAKE CONTROL
15	\$FC1E	STATUS: READ ONLY CONTROL: READ/WRITE	NO	EXPANDED BUS CONTROL AND STATUS
16	\$FC20	READ/WRITE	NO	PORT 0 DIRECTION CONTROL (DDRO)
17	\$FC22	READ/WRITE	NO	PORT 1 DIRECTION CONTROL (DDR1)
18	\$FC24	READ/WRITE	NO	SERIAL I/O MODE AND SYNC REGISTER
19	\$FC26	READ GETS COUNTER	NO	TIMER C LATCH
		WRITE GOES TO LATCH AND COUNTER		

TIMERS

The MK68HC200 includes three on-chip timers, each with unique features. They are denoted Timer A, Timer B, and Timer C. All three timers are a full 16 bits in width, and count at the instruction clock rate of the MK68HC200 processor. Thus, this rate provides a resolution equal to the instruction clock period (tc) of the MK68HC200. The maximum count interval is equal to tc $* 2^{16}$. Each timer has the capability to interrupt the processor when it matches a predetermined value stored in an associated latch.

Timer A is capable of operating in interval, event, or two pulse/period modes. There is one 16-bit counter and two 16-bit latches, a high latch (Port 13), and a low latch (Port 12), associated with Timer A. Once Timer A is initialized in the interval mode, the counter is reset, then increments at the instruction clock rate until the value loaded into the high latch is reached. The counter is then reset, increments until the low latch value is reached, and the cycle is repeated. In the event mode, the counter is incremented for every active edge on TAI (programmable as positive or negative) until the value in the high latch is reached. The counter is then reset, and the cycle repeats. In the pulse/period modes, the times are measured during which the applied pulse stays high and low. The counter is reset on the occurrence of any transition on TAI, and increments at the instruction clock rate until the occurrence of the next transition. The value in the counter at the end of the high level or low level time is loaded into the appropriate latch. Interrupts may be generated each time the counter reaches the high latch or low latch value in the interval mode or when the counter reaches the high latch in the event mode. Also, an interrupt is generated
whenever the counter overflows. See the Pin Description section of the data sheet for TAI and TAO functions in the various Timer A modes.

Timer B is capable of operating in interval or one-shot modes. There is one 16 -bit counter and one 16 -bit latch (Port 11) associated with Timer B. In the interval mode, the counter is initially reset and incremented at the instruction clock rate until the value in the latch is reached. The counter is then reset, and the cycle repeats. In the one-shot modes, the counter begins incrementing in response to an active transition (programmable as positive or negative) on TBI. The counter is reset when the value in the Timer B latch is reached. In the retriggerable one-shot mode, active transitions on TBI always cause the counter to reset and begin incrementing. In the non-retriggerable one-shot mode, active transitions on TBI have no effect until the counter reaches the latch value. Interrupts may be generated each time the counter reaches the latch value. See the Pin Description section of this data sheet for TBI and TBO functions in the various Timer B modes.

Timer C has a 16-bit down counter and latch (Port 19) associated with it and operates only in the interval mode. The output of Timer C toggles each time the counter value rolls over from 0 to the latch value and may be used to internally supply the baud rate clock for the serial port. Also, an interrupt may be generated each time the counter rolls over to the latch value. Timer C may be output on the TCLK pin (P1-3), depending on the mode programmed.

A detailed description of the Timer Control Port is given on the next page.

Table 5. Timer Modes

Timer	Modes
A	Interval
A	Event
A	Puise Width and Period Measurement
B	Interval
B	Retriggerable One-shot
B	Non-retriggerable One-shot
C	Interval
C	Baud Rate Generation

PORT 14-Timer Control Register; read/write $\$ \mathrm{FCl} 1 \mathrm{C}$

TAM1, TAM0
(Timer A Mode control)

TAE
(Timer A Enable control)

TAIC

(Timer A Input control)

TAOC
(Timer A Output control)

TBM1, TBM0
(Timer B Mode control)

TCOC has no effect when TCO (Port
18) $=0$.

These bits select the operating mode of Timer A as follows.

TAM1		TAM0		MODE
		0		Interval
0		1		Event
1		0		Pulse/period 1
1		1		Pulse/period 2

$0=$ Disables Timer A; all Timer A operations are inhibited, and the timer counter is initialized.
1= Enables Timer A; the timer begins operation as defined by the other Timer A control bits.
$0=$ Selects a negative transition as the active edge for TAI.
$1=$ Selects a positive transition as the active edge for TAI.
$0=$ Selects TAO as a general
, purpose output pin.
$1=$ Selects TAO as an ouput pin associated with Timer A; TAO is initialized low when TAOC is a one and TAE is zero.

These bits select the operating mode of Timer B as described below.

TBM1		TBMO		MODE
		0		Interval 0 (TBO is not ised)
0	1		Interval 1 (TBO is used)	
1		0		Retriggerable one-shot 1
1			Non-retriggerable one-shot	

TBE
(Timer B Enable control)

TBIC

(Timer B Input control)
$0=$ Disables Timer B; all operations are inhibited, and the timer counter is initialized.
1 = Enables Timer B; the timer begins operation as defined by the other Timer B control bits.
$0=$ Selects a negative transition as active on TBI.
$1=$ Selects a positive transition as active on TBI.

INTERRUPT CONTROLLER

The MK68HC200 interrupt controller provides rapid service of up to 15 interrupt sources, each with a unique internal vector. The lowest 16 words of the address space contain the starting addresses of the service routines of each potential interrupt source and reset, as shown in Figure 5.

Interrupt sources and RESET are prioritized in the order shown in Figure 5, with RESET having the highest priority. When an interrupt is pending it sets the corresponding bit in the interrupt latch located in Port 7. NMI is the only non-maskable interrupt. All of the other sources share an interrupt enable bit in the processor

Status Register. This bit is automatically cleared whenever an interrupt is acknowledged. Also, each of these sources has a corresponding individual mask bit located in Port 8. This feature allows selective masking of particular interrupts, including the ability to choose (with minimal softwware overhead) any priority scheme desired. In fact, 15 levels of nested priority may be programmed.

Note that the XI2 interrupt is detected on either a rising or falling edge, depending upon the status of the XI2C bit (bit 12 in Port 14). An interrupt will be generated on the falling edge if this bit is set to a " 0 "; however, if the bit is set to a " 1 ", an interrupt will be generated on the rising edge.

PORT 7 -Interrupt Latch Register; read/write \$FCOE

	N	S	X	S	T	T	S	R	R	X	T	T	X	X	T
r	M	P	I	T	A	A	T	S	N	I	B	B	I	M	C
e	I	A	2	R	O	I	R	C	I	I	O	I	O	T	I
S		R	I	L	I	I	H	I		I	I	I	I	I	I
		E		I			I							I	

PORT 8 -Interrupt Mask Register; read/write \$FC10

VECTOR NUMBER	NAME	MNEMONIC	VECTOR LOCATION	
0	RESET	RESET	0000 I	LEVEL 2
1	NON-MASKABLE INTERRUPT	NMI	0002 1	LEVEL 2
2	SPARE	SPARE	0004	
3	EXTERNAL INTERRUPT 2	XI2	0006	
4	STROBE LOW	STRL	0008	
5	TIMER A OUTPUT	TAO	000A	
6	TIMER A INPUT	TAI	000C	
7	STROBE HIGH	STRH	O00E	
8	RECEIVE SPECIAL CONDITION	RSC	0010	EVEL 1
9	RECEIVE NORMAL	RN	0012	EVEL 1
A	EXTERNAL INTERRUPT 1	XI1	0014	
B	TIMER B OUTPUT	TBO	0016	
C	TIMER B INPUT	TBI	0018	
D	EXTERNAL INTERRUPT 0	XIO	001A	
E	TRANSMIT	XMT	001C	
F	TIMER C	TC	v01E	

Figure 5. Interrupt and Reset Vectors

SERIAL CHANNEL

The serial channel on the MK68HC200 (Figure6) is a full-duplex USART with double buffering on both transmit and receive. Port 3 High Byte is the Receive Buffer, and Port 3 Low Byte is the Transmit Buffer.

Word length, parity, stop bits, and modes are fully programmable. The asynchronous mode supports bit rates up to 781 Kbps with an external clock and up to 390 Kbps with an internal clock. The byte synchronous mode operates up to 3.125 Mbps with either an internal or an external clock.

Figure 6. Serial Channel

In addition to the typical USART functions, the serial channel can operate in a special wake-up mode with a wake-up bit appended to each data word, as illustrated in Figure 7. This wake-up bit is used to differentiate normal data words and special address words. The receiver can be programmed to receive only address words or only address words with a specific data value. In this way, the processor can be interrupted only when
it receives its particular address and can then change mode to receive the following data words. Wake-up capability is especially useful when several MK68HC200 microcomputers are interconnected on one serial link.

A detailed description of the serial channel control ports is given on the following pages.

START \dagger	DATA	PARITY (OPTIONAL)	WAKE-UP (OPTIONAL)	STOP \dagger

Figure 7. Serial Frame Format

PORT 9 -Serial I/O Receive Control and Status Register;
\$FC12 High byte: control register; read/write
Low byte: status register; read only

$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{E} \end{aligned}$	S	$\begin{gathered} \hline R \\ W \\ 1 \end{gathered}$	R W 0	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{C} \end{aligned}$	S 1 S	(res)	B	O	E	E	$\begin{aligned} & \text { SF } \\ & 1 \\ & \text { AF } \end{aligned}$	B		
						,								
15	14	13	12	11	10	9	7	6	5	4	3	2	1	0

Bit Descriptions:

RE
(Receiver Enable control)
IS
(Ignore Syncs control)

RW1, RW0
(Receiver Wake-up control)
$0=$ Disabled; all status flags cleared.
1 = Enabled.
$0=$ Disabled; interrupts may occur on all characters received.
1 = Enabled; interrupts cannot occur on sync characters received after the sync match is found.

The receiver wake-up control bits operate as follows.

MODE	RW1	RWO	APPENDED WAKE-UP	BUFFER LOADED	INTERRUPT GENERATED
No Wake up	0	0	no	any character	RN
Wake-up on Any Character	0	1	yes	any character	RN
Wake-up on Address Match	1	0	yes	address match	RSC
Wake-up on Any Address	1	1	yes	any address	RSC

RC

(Receive Clock control) \quad| $0=$ Selects external receive clock |
| :--- |
| applied on RCLK. |
| $1=$ |
| Selects internal clock from the |
| on-chip baud rate generator |
| |
| (Timer C) for the receive clock. |
| |
| |
| This bit is ignored when either |
| the TCO bit or the LM (Loopback |
| Mode) bit is set. |

PORT 10-Serial I/O Transmit Control and Status Register
\$FC14 High byte: control register; read/write
Low byte: status register; read only

Bit Descriptions:
TE
(Transmitter Enable control)
AT
(Automatic Turn Around con
LM
(Loopback Mode control)
TW1, TW0
(Transmit Wake-up control)

TC

(Transmit Clock control)

P/S
(Previous/Sync control)
$0=$ Disable the transmitter; any woid being shifted out will continue until completion.
$1=$ Enable the transmitter.
$0=$ No effect on TE or RE.
1 = Causes RE to be set to a " 1 " and TE to be set to a " 0 " automatically at the end of a transmission
$0=$ Disables loopback mode.
1 = Causes the transmitter output to be internally connected to receiver input. Also causes Timer C to be used for both the transmit and receive clocks regardless of the state of TC, RC, TCO, and TCOC.

These bits provide control for wake-up operation as follows.

TW1	TW0		OPERATION
	0		
1	1		Transmit Data
0	X		No Wake-up

$0=$ Selects the external clock signal applied on TCLK for the transmit clock.
$1=$ Selects the internal baud rate generator output (Timer C) for the transmit clock.

The TC bit is ignored if either the TCO bit or the LM bit is set.
$0=$ Selects continuous transmission of the contents of the sync character register in the synchronous mode when there is no data to transmit.
1 = Selects continuous transmission of the transmit de'a buffer in synchronous mode when there is no data to transmit.

BE
(Buffer Empty status)
(Underrun Error status)
END
(End of Transmission status)

$0=$ Transmit Buffer is full; reset to this condition after the transmit buffer is reloaded.
$1=$ Transmit Buffer is empty; set to this condition after the transmit buffer contents are transferred to the output shift register.
$0=$ No underrun error; cleared following a read of the transmit buffer.
1 = Underrun error; set only in the synchronous mode when the last word has been shifted out and transmit buffer has not been reloaded.
$0=$ No end of transmission; cleared by enabling the transmitter.
1 = End of transmission detected; set when the transmitter is disabled and the last character has been shifted out.

PORT 18-Serial I/O Mode and Sync Register: read/write \$FC24

A	W	W	S	P	P	T	W	S	S	S	S	S	S	S	S
l	L	L	T	A	A	C	S	Y	Y	Y	Y	Y	Y	Y	Y
	1	0		R	R	O		N	N	N	N	N	N	N	N
				1	0			C	C	C	C	C	C	C	C

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Bit Descriptions:
A / \bar{S}
 control)

WL1, WLO
(Word Length control)

ST
(Stop Bit control)
$0=$ Selects synchronous operation for the serial port; transmit and receive clocks are divided by 1.
$1=$ Selects asynchronous operation for serial port; transmit and receive clocks are divided by 16.

These two bits select the length of the data word as follows.

WL1	WLO	Word Length
0	0	8 bits
0	1	7 bits
1	0	6 bits
1	1	5 bits

This bit is only used in the asynchronous mode. It selects the number of stop bits transmitted.

$\frac{\text { ST }}{0}$	Number of Sto : Bits
1	1
1	2

PAR1, PAR0
(Parity control)

TCO
(Timer C Output mode control)

WS

(Wake-up Sense)

SYNC7-SYNC0
(Sync character bits)

These two bits provide parity control for both the synchronous and asynchronous modes.

PAR1		PAR0		Parity
0				no parity
0	1		fixed "0" parity	
1	0		odd parity	
1		1		even parity

Note that even parity is defined such that the sum of the data and parity bits is even.
$0=$ Disables Timer C output mode.
$1=$ Enables Timer C output mode; disables Timer C's use as a baud rate generator when $\mathrm{LM}=0$; causes transmit and receive clocks to be internally connected to RCLK so that TCLK may be used either as general purpose I/O or as an output for Timer C.

The following table lists the effects of the WS bit.

$\frac{\text { WS }}{0}$		Wake-up bit	
	0		Meaning
0	1		Address Word Data Word
1	0		Data Word
1	1		Address Word

These eight bits are used to store the sync character or the device address for the wake-up mode.

PARALLEL I/O AND HANDSHAKING

Two 16-bit ports, P0 and P1, may be used for parallel I/O. If individual bits are desired, each of the 32 bits may be separately defined an input or output. This is achieved by setting the corresponding bits in the Data Direction Registers, Port 16 (Data Direction Register for Port 0) and Port 17 (DDR for Port 1). Bits may be grouped to provide the exact data widths desired.

Eight additional I/O bits are provided in Port 4. Bits 15, 14,9 and 8 are output only, and bits $13,12,11$ and 10 are input only.

Port 0 has the additional capability of operating under the control of external handshaking signals. Eight-bit or sixteen-bit sections of PO may be individually controlled as input, output or bidirectional I/O. This is achieved by programming the handshake control bits as detailed below.

PORT 14- Handshake Control Register; read/write \$FC1C

Bit Descriptions:

HSE	$0=$ Handshaking is disabled.
(Handshake enable control)	$1=$ Handshaking is enabled.

HSM2, HSM1, HSM0 The handshake mode bits operate as (Handshake Mode control) follows:

HSM2	HSM1	HSMO	HIGH HANDSHAKE	LOW HANDSHAKE
0	0	0	Inactive	PLO or PO output
0	0	1	PHO output	PLO output
0	1	0	Inactive	PLO input
0	1	1	PHO input	PLO input
1	0	0	PHO input	PLO output
1	0	0	Inactive	PO input (word only)
1	1	0	PLO output	PLO input (bidirectional)
1	1	1	PO output	PO input (bidirectional)

Two pairs of Ready and Strobe signals, which are available as programmable options on Port 4, provide the necessary control for handshaking.

P4-9/RDYH, P4-8/RDYL

(Ready High Byte, Ready Low Byte)
Output, active high. RDYH and RHYL are used for input, output, and bidirectional handshaking on Port 0.

1) Output mode: The ready signal goes active to indicate that the Port 0 output register has been loaded, and the peripheral data is stable and ready for transfer to the peripheral device.
2) Input mode: The ready signal is active when the Port 0 input register is empty and is ready to accept data from the peripheral device.
3) Bidirectional mode: The RDYH signal is active when data is available in Port 0 output register for transfer to the peripheral device. In this mode, data is not
placed on the Port 0 data bus unless STRH is active. The RDYL signal is active when the Port 0 input register is empty and is ready to accept data from the peripheral device.

P4-11/STRH, P4-10/STRL

(Strobe High Byte, Strobe Low Byte)
Input, active high. STRH and STRL are both used for input, output, and bidirectional handshaking on Port 0.

1) Output Mode; The positive edge of this strobe is issued by the peripheral to acknowledge the receipt of data made available by the MK68HC200.
2) Input mode: The strobe is issued by the peripheral to load data from the peripheral into the Port 0 input register. Data is latch. d into the MK68HC200 on the negative edge of this signal.
3) Bidirectional mode: When the STRH signal is active, data from the Port 0 output register is gated onto the Port 0 bidirectional data bus.

The negative edge of STRH acknowledges the receipt of the output data. The negative edge of the signal applied to the STRL signal is used to latch input data into Port 0.

EXPANDED BUS OPERATION

When it is necessary to expand beyond the on-chip complement of RAM, ROM, or I/O, or when operation in a parallel multiprocessing system is desired, the MK68HC200 may be placed in an external bus mode. The MODE pin is used to select the expansion capability on power-up and reset to one of the following states:

MODE PIN
$\begin{array}{ll}V_{C C} & \text { - No expansion (single chip mode) } \\ G N D & \text { - Partial Expansion } \\ \text { CLKOUT } & \text { - Full Expansion }\end{array}$
By programming the appropriate bits in Port 15 (which are described below), the MK68HC200 may be reconfigured dynamically. In an expansion mode Port 0 becomes the 16 -bit multiplexed address/data bus and eight bits from Port 1 become control signals which handle data transfer and bus arbitration. Sixteen lines are still available for I/O functions, including eight lines from Port 1 and all eights lines of Port 4. See figure 8 for the expanded bus pinout. The following page describes the functions of the expanded bus pins.
PORT 15- Expanded bus control and status register
\$FCIE \quad High byte: read/write
Low byte: read only

Bit Descriptions:

SEG1, SEG0
(Segment bits)

BLCK
(Bus Lock control)
F/ \bar{S}
(Fast// Standard timing control)

EXP
(Expanded Mode control)
F/ \bar{P}
(Full/Partial control)
UPC/GP
(UPC/ $\overline{\mathrm{GP}}$ status)
R/G
(Request/Grant status)

Used in the expanded bus mode when a reference is made to the DMA window. The contents of SEG1 and SEG0 are then output on pins AD15 and AD14, respectively.
$0=$ Disables the bus lock function.
1 = Enables the bus lock function.
$0=$ Selects standard timing of read/write cycles on the external bus (4 clock periods).
$1=$ Selects fast timing of read/write cycles on the external bus (3 clock periods.)
$0=$ Expanded mode is disabled.
$1=$ Expanded mode is enabled.
$0=$ Partial expand when EXP bit is set to 1.
$1=$ Full expand when EXP bit is set to 1.
$0=$ Part is programmed in GP mode.
1 = Part is programmed in UPC mode.
$0=$ Part is programmed bus grantor.
$1=$ Part is programmed bus r questor.

MNEMONIC	PIN FUNCTIONS FOR EXPANDED BUS OPERATION (Common for GP and UPC options)
$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write (output, active high and low) - R/ \bar{W} determines whether a read or a write is being performed during the current bus cycle. It is stable for the entire bus operation. A high signal denotes a read, and a low signal denotes a write.
$\overline{\text { DTACK }}$	Data Transfer Acknowledge (input, active low) - When the addressed device has either placed the requested read data on the bus or taken the write data from the bus, DTACK should be brought low to signify completion. The data portion of the bus cycle will be extended indefinitely until this signal is asserted. For systems using the GP bus, in which no devices need wait states, DTACK may be strapped low.
$\overline{\text { AS }}$	Address Strobe (output, active low) - $\overline{\mathrm{AS}}$ is used to signify that the address is stable on the multiplexed bus. $\overline{A S}$ is high at the beginning of each bus cycle, goes low after the address has stabilized, and returns to the high state near the end of the bus cycle.
MNEMONIC	PIN FUNCTIONS FOR UPC BUS OPERATION
$\overline{U D S}$	Upper Data Strobe (output, active low) - $\overline{U D S}$ is used to signify the data portion of the bus cycle for the upper byte of the data bus. For read operations, UDS should be used by the external device to gate its most significant byte onto the multiplexed address/data bus. For writes, UDS signifies that the lower byte of the bus contains valid data to be written from the processor.
$\overline{L D S}$	Lower Data Strobe (output, active low) - $\overline{\mathrm{LDS}}$ is used to signify the data portion of the bus cycle for the lower byte of the data bus. For read operations, $\overline{\mathrm{LDS}}$ should be used by the external device to gate its least significant byte onto the multiplexed address/data bus. For writes, $\overline{\mathrm{LDS}}$ signifies that the lower byte of the bus contains valid data to be written from the processor.
$\overline{\mathrm{BR}}$	Bus Request (output, active low, open drain) - $\overline{\mathrm{BR}}$ goes low when the MK68HC200 requires external bus master status.
$\overline{\mathrm{BG}}$	Bus Grant (input, active low) - $\overline{\mathrm{BG}}$ notifies that the MK68HC200 has been granted the external bus master status.
$\overline{\text { BGACK }}$	Bus Grant Acknowledge (output, active low, open drain) - The MK68HC200 will assert $\overline{\text { BGACK }}$ when it assumes mastership of the system bus.
MNEMONIC	PIN FUNCTIONS FOR GP BUS OPERATION
P4-11/R/G	Request/Grant (input) - During reset, P4-11 served as the $\mathrm{R} / \overline{\mathrm{G}}$ input ($0=$ bus grantor, $1=$ bus requestor). Following reset, and at all times during program execution, P4-11 may be used as a general purpose input pin.
$\overline{\mathrm{DS}}$	Data Strobe (output, active low) - $\overline{\mathrm{DS}}$ is used to signify the data portion of the bus cycle. For read operations, $\overline{\mathrm{DS}}$ should be used by the external device to gate its contents onto the multiplexed address/data bus. For writes, $\overline{D S}$ signifies that valid data from the processor is on the bus.
$\overline{\mathrm{HB}}$	High Byte (output, active low) - $\overline{\mathrm{HB}}$ signifies that the upper byte of the data is to be read or written. $\overline{\mathrm{HB}}$ remains active for the entire bus cycle.
$\overline{L B}$	Low Byte (output, active low) - $\overline{L B}$ signifies that the lower byte of the data bus is to be read or written). $\overline{\mathrm{LB}}$ remains active for the entire bus cycle.
$\overline{\text { BUSIN }}$	Bus Input (input, active low) - $\overline{\text { BUSIN }}$ provides either bus request or bus grant. When the MK68HC200 is the bus grant device, its BUSIN signal is a bus request input from a requesting device on the bus. When the MK68HC200 is a bus request device, its $\overline{B U S I N}$ signal is a bus grant from the granting device on the bus.
BUSOUT	Bus Output (output, active low) - BUSOUT provides the oppos te function of BUSIN. When $\overline{B U S I N}$ is a bus request signal, BUSOUT is a corresponding bus grant, and vice versa.

Figure 8. MK68HC201, MK68HC211 Logical Pinout Expanded Bus

As shown in figure 8, two different control bus versions are available: a Universal Peripheral Controller (UPC), and which generates 68000 compatible bus signals, and a General Purpose (GP) bus, which can be used to interface to a wide variety of existing microprocessor buses. With the selection of an expanded bus mode, the MK68HC200 can act either as a general purpose CPU chip (bus grant device) or as an intelligent peripheral I/O controller to a host CPU (bus request device). These two system configurations are illustrated in figures 9 and 10.

With the GP bus option, the user may configure the MK68HC200 in either of the two ways shown in figures 9 and 10. As a host CPU (Figure 9), the MK68HC200 bus arbitration logic causes the device to act as the system bus grantor. In other words, the MK68HC200 would have control of the system bus and would grant its use
to DMA devices or peripheral CPUs. Alternately the MK68HC200 may be configured as a peripheral CPU (Figure 10) that must issue a request to the bus grant device before being allowed to use the system bus. The selection of one of these two configurations is accomplished by the P4-11 pin at reset time. During reset, P4-11 serves as the R/G input ($0=$ bus grantor, $1=$ bus requestor). Following reset and at all times during program execution, P4-11 may be used as a general purpose input pin.

With the GP bus opera: ng in the host CPU configuration, the MK68HC200 may be used to interface with external memory and I/O devices in a manner that is analagous to any general purpose microprocessor. Additionally, the MK68HC200 retains its on chip RAM and I/O resources, with on-chip ROM as an option,

Figure 9. Host CPU Hardware Configuration

Figure 10. Peripheral I/O Controller Configuration
depending on the expansion configuration selected. $\overline{B U S I N}$ and BUSOUT are used to perform the bus arbitration handshake function, where $\overline{B U S I N}$ acts as the bus request input and BUSOUT as the bus grant output.

In the full expansion configuration, any on-chip ROM is disabled, and program memory starting at iocation $\$ 0000$ is located off-chip and is addressed via the expanded bus, as shown in Figure 12. In effect, the internal bus from locations $\$ 0000-\$ F A F F$ is mapped onto the external bus. In the partially expanded configuration (Figure 11), on-chip ROM may be accessed on the internal bus. To gain greater addressability in the partial expansion configuration, a scheme is implemented to allow access of a full 64 K -byte address space in four segments on the expanded system bus through the 16 K byte "window" on the internal bus. Basically, the most significant two bits of address on the expanded bus are replaced with two user-defined segment bits available to the programmer in the expanded bus control and status register, Port 15.

As a peripheral I/O controller, the MK68HC200 operates as a bus requestor that gains mastership of the system bus from the bus grant CPU. The GP bus version may be selected to implement this system configuration in cases where an interface to a general purpose CPU is desired. In this case, the BUSIN and BUSOUT lines are again used to perform the bus arbitration handshake function, where BUSOUT now acts as bus request output, and BUSIN acts as bus grant input. In this configuration, the MK68HC200 can conceivably act as a complete peripheral I/O control subsystem on a single chip, with 16 lines of I/O and its on-chip ROM, RAM, timers, and serial I/O performing the necessary interface to the I/O device. The UPC bus version provides the peripheral I/O control function with a direct interface to a 68000 bus grant CPU. Note that the UPC bus version can operate only as a bus request device. Once the MK68HC200 has gained mastership of the system bus via the 68000 bus arbitration handshake lines ($\overline{\mathrm{BR}}, \overline{\mathrm{BG}}$, and $\overline{\text { BGACK }}$), it may proceed to perform DMA transfers and communicate with system memory or other I/O devices in the system.

As in the case of the GP bus grant configuration, the portion of the internal (or private) bus address space that is mapped onto the expanded bus when the part is operating as either a GP or a UPC bus request device is determined by the expansion configuration selected. In the partial expansion bus requestor case, the resulting memory map is identical to that shown for the GP bus grant configuration in Figure 11. During the time the MK68HC200 is executing its programs from ROM and accessing internal RAM and I/O resources, the expanded bus is held in a tri-state condition. The bus arbitration logic within the MK68HC200 monitors each
memory reference to detect external bus addresses (referenced in segments via the 16K byte DMA window). Whenever such an external reference occurs, the logic automatically holds the processor in a wait state as it proceeds to obtain mastership of the bus. When use of the system bus is obtained, the processor is allowed to continue the reference. This procedure is transparent to the programmer. In case of successive external references, the expanded bus is retained until an internal reference is encountered.

Finally, if the on-chip resources are insufficient to perform the control task in the bus requestor configuration, the internal bus address range (excluding on-chip RAM, I/O) may be mapped onto an external local bus, which is physically the same as the system bus but logically separated with bus buffers. This is the full expansion bus requestor configuration. The memory map for this configuration is shown in Figure 13. The bus arbitration sequence is performed only when the system bus is referenced through the DMA window. In this manner, the I/O subsystem is isolated from the host CPU.

When operating as a bus request device, it is possible to retain the external bus for an indefinite duration by using a bus lock feature. This will help facilitate the transfer of large blocks of data. Thus, the on-chip bus arbitration logic allows (with a minimum of hardware and software overhead) a maximum of concurrent processing in parallel, multiprocessing configurations. The bus lock feature may be used by the MK68HC200 in a bus grantor mode to keep any peripheral from gaining mastership of the bus.

In any of the GP expanded bus modes, the MK68HC200 may respond to peripheral devices on the expanded bus which generate an interrupt request on XIO. The MK68HC200 will obtain the XIO interrupt vector number from the requesting peripheral on the bus during an interrupt acknowledge cycle. When responding to an interrupt on XIO, the MK68HC200 will wait for the bus arbitration logic to gain control of the bus and then asserts neither $\overline{\mathrm{HB}}$ nor $\overline{\mathrm{LB}}$ while asserting $\overline{\mathrm{AS}}$ to signify that an interrupt acknowledge cycle is in progress. The X10 interrupt will be the lowest priority interrupt when operating in any of the GP expanded bus modes.

There is a user-programmable speed selection associated with the read and write cycles for both the UPC and GP mask option parts. A bit in the expanded bus control and status register, Port 15, allows the user to select either the standard or the fast read/write cycle on the expanded bus. ' 'ee standard bus cycle is four clock periods, while the fast bus cycle is three clock periods.

Figure 11. Parial Expansion Memory Map (256 byte RAM, 4K byte ROM version shown)

Figure 12. Full Expansion Bus Grantor Memory Map (256 byte RAM version shown)

Figure 13. Full Expansion Bus Requestor Memory Map (256 byte RAM version shown)

EMULATOR VERSION

The emulator versions of the MK68HC200 are available in 84-pin, leadless or leaded chip carrier packages. Figure 14 illustrates the logical pinout of the emulator version. The emulator versions have no on-chip ROM, but instead include a second complete bus, referred to
as the private bus. The private bus includes a multiplexed address/data bus as well as bus control signals. There are 22 pins associated with the private bus. All 40 I/O port pins that exist on the 48 -pin versions are available to the user for configuration either as general purpose or special I/O pins, or as expanded bus pins.

Figure 14. Logical Pinout for MK68HC221

PRIVATE buS OPERATION

The address/data lines and control signals that constitute the private bus are functionally equivalent to the internal signals used to access internal resources on the ROM versions of the MK68HC200. Thus, the private bus may be used to interface to EPROM memory in emulating mask ROM versions of the MK68HC200. Alternately, any combination of ROM, RAM, and I/O may reside on the private bus.

The address that is generated on the private bus is identical to that which is internally generated for 48 -pin versions. When the part is used in a configuration that supports system bus addressing through the DMA window, any references in this region of the memory map produce an address on the private bus identical to that specified by the programmer. In other words, the segment bits have no effect on the private bus address. The DMODE pin will go active during a reference to the DMA window. Write data appears on the private bus pins for all write operations, regardless of whether the reference is on-chip or off-chip. The MK68HC221 emu-
lator version reads data from the private bus unless data is read from on-chip RAM, I/O, or the external bus formed by the Port 0 and Port 1 I/O pins.

The I/O port range of the memory map (\$FC00-\$FFFF) is actually subdivided into space which is exclusively reserved for on-chip I/O (\$FC00-\$FDFF) and space which is exclusively reserved for in-circuit-emulator use (\$FE00-\$FFFF). The user should ensure that no external devices reside in the in-circuit-emulator area.

The private bus interface is the same as that for the GP expanded bus. All read/write transfers made exclusively on the private bus are three clock periods, regardless of the state of the Fast/Standard (F/S) bus timing selection bit. In systems using the expanded bus. the user should be sure to tie the FPRIV pin low so that expanded bus operation is not effected. The user should ignore all activity on the private bus while accesses are in progress on the expanded bus. Care should also be taken that no external devices reside on the private bus in the memory space intended for expanded bus accesses.

There are six additional control pins available on the emulator version that are not on the ROM version Five of these pins are meant to be used by the development system. FC1, FC2, $\overline{\text { DMODE, }}$, and $\overline{\text { EXPMC }}$ are used to define the memory cycle currently being executed FPRIV will affect the memory cycle currently being executed. These signals are made available to simplify the design of the development system. Using these signals, the development system only has to interface to the private bus and not also to the expanded bus. The user might also be able to use these signals to simplify his design. however care should be taken when using FPRIV since this input will affect expanded bus memory cycles.

MNEMONIC	ADDITIONAL PIN FUNCTIONS FOR THE EMULATOR
UPC/GP	UPC/ $\overline{\mathrm{GP}}$ (input, active high and low). This pin is used to select either the UPC or GP control bus configuration for the expanded bus. ($1=$ UPC bus, $0=$ GP bus). It is sampled only when reset is active
FC1, FC2	Function Code 1. Function Code 2 (outputs, active high and low). These pins (FC1 and FC2) define the memory cycle currentiy being executed. They are valid during the time private bus address strobe ($\overline{\mathrm{PBAS}}$) is active. The cycle types are interrupt, data, branch, and program fetch. The branch cycle is defined as the first program fetch after a branch occurs. A branch can occur as a result of a jump or call instruction, or an interrupt. For internal interrupts, the interrupt cycles are defined as the two writes to the stack and the read of the vector location which occur during the interrupt acknowledge routine. For external interrupts, the interrupt cycles are defined as the 3 cycles above plus the read of the vector number. The interrupt cycle is a special case of the data cycle. The function code pins are defined below.
	TYPE OF CYCLE FC1 FC2
	Interrupt 0
	Data 0
	Branch 10
	Program Fetch 1
$\overline{\text { DMODE }}$	DMA Mode (output, active low). This pin goes low when the segment bits are being output on AD14 and AD15 on the expanded bus. (The address output on the private bus will not contain the segment bits.) $\overline{\text { DMODE }}$ is stable for the entire bus operation.
$\overline{\text { EXPMC }}$	Expanded Memory Cycle (output, active low). This pin goes low when the expanded bus is being accessed. EXPMC is stable for the entire bus operation.
FPRIV	Force Private (input, active high). This pin is used to force the MK68HC200 to read data from the private bus when the address is actually located on the expanded bus. In normal operation this pin should be tied low and the expanded bus operation will be unaffected.

LCC	FUNCTION	LCC	FUNCTION	LCC	FUNCTION	LCC	FUNCTION
1	P1-4/XIO	22	$\overline{\text { PBAS }}$	43	PO-7	64	PB-8
2	P1-5/XI1	23	$\overline{\text { PBDS }}$	44	P0-6	65	PB-9
3	P1-6/XI2	24	P4-8/RDYL	45	P0-5	66	PB-10
4	P1-7	25	P4-9/RDYH	46	P0-4	67	PB-11
5	P1-8	26	P4-10/STRL	47	P0-3	68	PB-12
6	P1-9	27	P4-11/STRH	48	P0-2	69	PB-13
7	P1-10	28	MODE	49	PO-1	70	PB-14
8	P1-11	29	CLK2	50	P0-0	71	PB-15
9	EXPMC	30	CLK1	51	FC2	72	P4-13/TAI
10	VCC	31	CLKOUT	52	DMODE	73	P4-12/TBI
11	NO CONNECT	32	FC1	53	FPRIV	74	VCC
12	GROUND	33	VCC	54	VCC	75	GROUND
13	UPC/GP	34	GROUND	55	GROUND	76	P4-15/TAO
14	P1-12	35	P0-15	56	PB-0	77	P4-14/TBO
15	P1-13	36	P0-14	57	PB-1	78	RESET
16	P1-14	37	P0-13	58	PB-2	79	NMI
17	P1-15	38	P0-12	59	PB-3	80	P1-0/SO
18	PBLB	39	P0-11	60	PB-4	81	P1-1/TCLK
19	PBHB	40	P0-10	61	PB-5	82	P1-2/RCLK
20	PBR/	41	P0-9	62	PB-6	83	P1-3/SI
21	PBDTACK	42	P0-8	63	PB-7	84	VCC

Figure 15. MK68HC221 Pin Assignment, Emulator Ver on

CRYSTAL SELECTION

The wide frequency range of crystals that can be chosen for the MK68HC200 offers the user a large degree of flexibility. To aid in the selection of a suitable crystal,
the suggestions shown in Figure 16 should be considered by the user. The MK68HC200 offers an output pin that will provide a system clock signal at one-half of the crystal frequency.

Figure 16. Crystal Connection

ASSEMBLER DIRECTIVES

Directive	Function	Assembler Syntax		
DC	Define constant	[label:]	DC[.size]*1	expr $\{$, expr $\}$
DS	Define storage	[label:]	DS[.size]*1	expr
DUP	Duplicate constant block	[label:]	DUP[.size]*1	length, value
END	Program end		END	[start address]
EQU	Equate symbol value	laiel:	EQU	expr
FAIL	Programmer generated error		FAIL	expr
FORMAT	Format the source listing		FORMAT	
IDNT	Generate module ID	module_name:	IDNT	version, revision
LIST	Enable the assembly listing		LIST	
LLEN	Specify line length		LLEN	length
NOFORMAT	Do not format listing		NOFORMAT	
NOLIST	Disable assembly listing		NOLIST	
NOOBJ	Disable object code generation		NOOBJ	
NOPAGE	Suppress paging		NOPAGE	
OFFSET	Define Offsets		OFFSET	expr
OPT	Assembler output options		OPT	option ${ }^{2}\{$, option $\}$
ORG	Define absolute origin		ORG	expr
PAGE	Eject a page in the listing		PAGE	
REG	Define register list	reg__list__name:	REG[.size]	register list
SECTION	Define relocatable program section	[section_name:]	SECTION	number
SET	Set symbol value	label:	SET	expr
SPC	Space between source lines		SPC	number
TTL	Specify heading title string		TTL	title string
XDEF	External symbol definition		XDEF	symbol \{, symbol\}
XREF	External symbol reference		XREF	[sect no:] symbol \{,[sect no]: symbol\}

NOTES:

.siz	B or W (byte or word size)	MC	Print macro calls (default)
2. Options for	or the OPT directive include:	NOMC	Do not print macro calls
CEX	Print DC expansions	MD	Print macro definitions (default)
NOCEX	Do not print DC expansions (default)	NOMD	Do not print macro definitions
CL	Print conditional assembly directives (default)	MEX	Print macro expansions
NOCL	Do not print conditional assembly directives	NOMEX	Do not print macro expansions (default)
CRE	Print cross-reference table	0	Create object module (default)
IMM.L	Forces immediate operands for arithmetic instructions ADD, SUB, DADD, and DSUB to use the long instruction form	NOO STR NOSTR	Do not create object module Print code gen rated by structured statements Do not print ccue generated by structured
IMM.S	Allows the assembler to select automatically the short form of the arithmetic instructions for small		statements (default)

Options for the OPT directive include
$\mathrm{CL} \quad$ Print conditional assembly directives (default)
NOCL Do not print conditional assembly directives
Print cross-relerence table Forces immediate operands for arthmetic instrucinstruction form short form of the arithmetic instructions for smal immediate values (0-15) (default)

Print macro calls (detaul)
ND
Do not prime macro calls
MD
Print macro definitions (default)

MEX
0
NOO
STR
NOSTR
statements (default)

GENERAL SYMBOL DEFINITIONS

SYMBOL	GENERAL SYMBOL DEFINITIONS
Rn	General Purpose Registers - DO-D7, AO-A5, SP, SR, DHO-DH7, DLO-DL7.
RPn	Register Pairs - D0-D1, D2-D3, D4-D5, D6-D7, A0-A1, A2-A3, A4-A5.
An	Address Registers - A0-A5, SP.
Pn	Ports - P0-P15, PH0-PH3, PLO-PL3.
CC	Condition Code - See Table.
d16	16-Bit Address Displacement Field In Words.
d13	13-Bit Address Displacement Field In Bytes.
d9	9-Bit Address Displacement Field In Bytes.
d8	8-Bit Address Displacement Field In Bytes.
\#nx	Immediate Data Field - x Number of Bits. ${ }^{1}$
s	Size Bit - '1' = Word, '0' = Byte.
REGn	4-Bit Register Field - See Table.
PORTn	4-Bit Port Field - See Table.
An	3-Bit Address Register Field - See Table.
PRTn	3-Bit Port Field - See Table
RGn	3-Bit Register Pair Field - See Table.
M	Register Mask Field - See Table.
COND	Condition Code Field - See Table.
c3	3-Bit Class Field - See Table.
c2	2-Bit Class Field - See Table
C1	1-Bit Class Field-See Table
a	Address Field - 16 Bits.
\#	Immediate Data Field.
n	3 -Bit Shift Field - $2 \leq n \leq 7$.
b\#	4-Bit Bit Select Field.
d	Displacement Field.
. B	Byte Attribute.
W	Word Attribute.
. L	Long Attribute.
. S	Short Attribute.
[]	Optional Field.

NOTE

1. When using the byte format of an instruction with a 16 -bit immediate data field, both the high and low byte of the data field must contain the same 8 -bit data.

FIELD DEFINITIONS

PORTn 4-Bit Port Map				
Port		Bit Field	$\frac{\text { Port }}{\text { P8 }}$	Bit Field
P0	PHO	0000		1000
P1	PLO	0001	P9	1001
P2	PH1	0010	P10	1010
P3	PL1	0011	P11	1011
P4	PH2	0100	P12	1100
P5	PL2	0101	P13	1101
P6	PH3	0110	P14	1110
P7	PL3	0111	P15	1111

An 3-Bit Addr Reg Map	
Register	Bit Field
A0	0

PTRn	3-Bit Port Map
Port	Bit Field
PH0	000
PLO	001
PH1	010
PL1	011
PH2	100
PL2	101
PH3	110
PL3	111

RGn 3-Bit Reg Pair Map	
Register	Bit Field
D0-D1	000
D2-D3	001
D4-D5	010
D6-D7	011
A0-A1	100
A2-A3	101
A4-A5	110

M-REGISTER MASK MAP FOR MOVEM, PUSHM, AND POPM																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Inc Word	SR	SP	A5	A4	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0
Dec Word	D0	D1	D2	D3	D4	D5	D6	D7	AO	A1	A2	A3	A4	A5	SP	SR
Inc Byte	DH7	DL7	DH6	DL6	DH5	DL5	DH4	DL4	DH3	DL3	DH2	DL2	DH1	DL1	DH0	DLO
Dec Byte	DLO	DHO	DL1	DH1	DL2	DH2	DL3	DH3	DL4	DH4	DL5	DH5	DL6	DH6	DL7	DH7

COND CONDITION CODE TABLE			
Condition Code	Bit Field	Description	Test
$\underset{E Q}{z}$	0000	Zero Equal	Z
MI	0001	Minus	N
$\begin{gathered} \mathrm{LO}^{2} \\ \mathrm{CS} \end{gathered}$	0010	Lower Carry Set	C
VS	000111	Overflow Set	V
GE^{2}	0100	Greater than or Equal	N.EOR. V
GT ${ }^{2}$	011.01	Greater than	$\overline{\mathrm{Z}}$.AND. ($\overline{\mathrm{N} . E O R . ~} \mathrm{~V}$)
HI^{2}	01010	Higher	$\overline{\mathrm{C}}$. AND. $\overline{\mathrm{Z}}$
F^{1}	01111	False	Always False
$\begin{aligned} & \text { NE } \\ & \text { NZ } \end{aligned}$	1000	Not Equal Not Zero	\bar{Z}
PL	1001	Plus	\bar{N}
$\begin{aligned} & \mathrm{HS}^{2} \\ & \mathrm{CC} \end{aligned}$	1010	Higher or Same Carry Clear	\bar{C}
VC	10101	Overflow Clear	V
LT^{2}	1100	Less than	N .EOR. V
LE ${ }^{2}$	1101	Less than or Equal	Z OR. (N .EOR. V)
LS ${ }^{2}$	1110	Lower or Same	C .OR. Z
T^{1}	1111	True	Always True

NOTES:

1. The assembler does not recognize the T and F condition codes.
2. LT, LE, GT, and GE are used for unsigned conditions; LO, L‘ HI, and HS are for unsigned conditions.

INSTRUCTION CLASS FIELDS									
c3] - 3-Bit Field			C2]-2-Bit Field			[c] - 1-Bit Field			
Bit Field	Shift Instr	$\begin{aligned} & \text { Bit }^{1} \\ & \text { Instr } \end{aligned}$	Bit Field	Arith ${ }^{2}$ Instr	Logical Instr	Bit Field	Arith ${ }^{2}$ Instr	Test Instr	Neg^{2} Instr
000	ROR	BSET	00	ADDC	OR	0	ADD	TESTN	NEGC
001	ROL	BCHG	01	SUBC	EOR	1	SUB	TEST	NEG
010	RORC	BCLR	10	ADD	AND				
011	ROLC	BTST	11	SUB	-				
100	ASR	-							
101	ASL	-							
110	LSR	-							
111	-	BEXG							

NOTES:

1. The bit fields do not apply to bit instructions using a port operand.
2. These fields also apply to BCD instructions.

INSTRUCTION FORMAT

15
PREFIX WORD
(used only in some forms of the decimal and bit instructions)
OPERATION WORD
(contains the opcode and possibly the operands)
EXTENSION WORD
(optional - specified by the operation word to be
immediate operand, mask field, displacement or absolute address)

INSTRUCTION MNEMONIC	ATTR SIZE	OPERAND ASSEMBLER SYNTAX Source $=$ Src Destination =Dst Sre, Dst																
BTST (cont.)	-	Ry.Px		0 7	PORTX			+		7 0		2	-	9	Dst (bM) - C			
CALLA	[니 [.ㄴ) [L]	(Ax) (unconditional) Addr (unconditional) CC. Addr		5	F COND		D B B	+ + +		F	+	1 2 2	a a	9 9 F6 T:12	$\begin{aligned} & P C \cdot 2 \underset{(A x)}{ }{ }^{(S P)} \cdot \mathrm{PC} \\ & P C+4 \underset{A d d r}{(S P)} \cdot P C \end{aligned}$ If COND is true. PC + 4 - (SP): Addr - PC NOTE The intial PC value is the location of the CALLA instruction			
CALLR	[S] L L	d13 (unconditional) d16 (urconditional) CC. $d 16$		F 5 5	F COND		d 9 9	,		F		1 2 2		10 9 F6 T 12	$\begin{aligned} & P C \cdot 2 \cdot(S P) \\ & P C \cdot 4 \cdot 2 \cdot(d) \cdot P C \\ & P C \cdot 4 \cdot(S P) \\ & P C \cdot 4 \cdot d \cdot P C \\ & \text { If COND is true } P C \cdot 4 \cdot \\ & \text { (SP): PC } \cdot 4^{4} \cdot d \cdot P C \end{aligned}$ NOTE The intial PC value is the location of the CALLLR instruction The displacement. d13. is in signed magnitude represe ${ }^{-5}$ ation, and the displace ont. d16. is in two's col.,plement representation			

INSTRUCTION MNEMONIC	ATTR SIZE	OPERAND ASSEMBLER SYNTAX Source=Src Destination=Dat Src, Dst	OPERATION WORD					$\begin{aligned} & \text { W } \\ & 0 \\ & \text { R } \\ & \text { D } \\ & \text { S } \end{aligned}$	E \mathbf{X} \mathbf{T} \mathbf{E} \mathbf{N} \mathbf{S} $\mathbf{1}$ \mathbf{O} \mathbf{N}	$\begin{aligned} & \mathrm{C} \\ & \mathrm{Y} \\ & \mathrm{C} \\ & \mathrm{~L} \\ & \mathrm{E} \\ & \mathrm{~S} \end{aligned}$	OPERATION	STATUS FLAGS N z \qquad C
$E 1$	-	-	4	F		1	7	1	-	3	$\begin{aligned} & \text { 1.- L1E } \\ & \text { Enable Interrupts } \end{aligned}$	- - -
EOR		see ${ }^{\circ}$ AND (page 9)										
EXG	$\stackrel{.}{\mathrm{B}} \mid$	Rx, Ry	0			100	REGy	1	-	4	Src - Dst	, - - - -
	$\stackrel{. B}{[. W]}$	Rx, (Ay)	0	REGx		101	0 Ay	1	-	9		
	$\stackrel{B}{[\mathrm{~W}]}$	Rx, (Ay) +	0	REGx	s	111	0 L Ay	1	-	9		
	$\stackrel{. B}{[W]}$	$8 \mathrm{x},-(A y)$	0	REGx	s	111	1 . Ay	1	-	9		
	$\stackrel{B}{\mathrm{~B}}]$	Rx,d16(Ay)	0	REGX		101	1 Ay	2	d	12		
	$\stackrel{. B}{[W]}$	Rx,Addr	0	PEGX	s	101	F	2	a	12		
EXT	-	Rx	0	REGx		D	7	1	-	3	SIGN EXTEND: SignBit(RLx) - RHx	$----$
HALT	-	-	1	7		3	F	1	-	-	$\mathrm{PC}+2-\mathrm{PC}$ Fetch continuously	$---$
IDLE	-	-	1	7		1	F	1	-	-	PC + 2 - PC Pause: CPU clocks off 1/O still active	$----$
JMPA	[. 4]	(Ax) (unconditional)	5	1 Ax		D	F	1	-	6	(Ax) - PC	- - -
	[.L.]	Addr (unconditional)	5	F		B	7	2	a	6	Addr --	
	[4]	CC.Addr	5	COND		B	7	2	a	$\begin{aligned} & \mathrm{F}: 6 \\ & \mathrm{~T}: 9 \end{aligned}$	If COND is true. Addr - PC	
LINK	-	Ax.\#d16	5	1 Ax		9	D	2	a	9	$\begin{aligned} & A x--(S P): S P-A x: \\ & S P+d-S P \end{aligned}$	$---$

INSTRUCTION MNEMONIC	ATTR SIZE	OPERAND ASSEMBLER SYNTAX Source $=$ Src Destination =Dst Src. Dst			0 11	PE 109	R ${ }^{1}$		3	210	$\begin{gathered} \text { W } \\ 0 \\ \text { R } \\ \mathrm{D} \\ \mathrm{~S} \end{gathered}$	$\begin{aligned} & \hline \mathbf{E} \\ & \mathbf{X} \\ & \mathbf{T} \\ & \mathbf{E} \\ & \mathbf{N} \\ & \mathbf{S} \\ & \mathbf{1} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & C \\ & Y \\ & C \\ & L \\ & E \\ & S \end{aligned}$	OPERATION	$$
ROL ROLC ROR RORC		see ASL													
STOP	-	-		1		7		9		F	1	-	-	Pause: CPU \& I/O CLOCKS OFF	- - - -
$\begin{aligned} & \text { SUB } \\ & \text { SUBC } \end{aligned}$		see ADD	$!$												
TEST TESTN	$\begin{gathered} B \\ {[W]} \\ B \\ {[W]} \\ B \\ {[W]} \end{gathered}$	an16.Ry ${ }^{4}$ ni6.Py *n16. (Ay)		7 7 7		7 F 7		$\begin{aligned} & \begin{array}{llll} s \operatorname{cic} & 0 & 0 \\ \hline s c 1 & 0 & 1 \\ s & c 1 & 0 & 1 \end{array} \end{aligned}$		REGy \qquad PORTy Ay	2 2 2	* ${ }^{*}$	6 9 9	TEST: Src AND. Dst TESTN: Src AND. NOT.(Dst)	* * 00
UNLK	-	Ax	!	5	1	Ax		9		5	1	-	6	$\begin{aligned} & A x-S P: \\ & (S P)+\cdots A x \end{aligned}$	- - - -

[^27]| Port Map | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Port | | Addr | Description
 16 External I/O or Addr/Data Bus In Expanded Bus Mode | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| P0 | $\begin{array}{\|l} \hline \text { PHO } \\ \text { PLO } \end{array}$ | \$FCOO | | | | | | | | | |
| P1 | $\begin{aligned} & \mathrm{PH} 1 \\ & \mathrm{PL1} \end{aligned}$ | \$FC02 | 16 Ext I/O, Ext Interrupts, Serial Port I/O, Bus Control | $\begin{gathered} \text { LB } \\ \text { LDS } \end{gathered}$ | $\begin{aligned} & \text { HB } \\ & \text { UDS } \end{aligned}$ | R/W | $\begin{gathered} \text { DS } \\ \text { BGACK } \end{gathered}$ | DTACK | AS | $\begin{gathered} \text { BUSIN } \\ \text { BG } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { BUSOUT } \\ \text { BR } \end{array}$ |
| P2 | $\begin{array}{\|l\|} \mathrm{PH} 2 \\ \mathrm{PL} 2 \end{array}$ | \$FC04 | Reserved | \longleftarrow RESERVED \longrightarrow | | | | | | | |
| P3 | $\begin{aligned} & \text { PH3 } \\ & \text { PL3 } \end{aligned}$ | \$FC06 | Serial Receive and Serial Transmit Buffers | RECEIVE BUFFER | | | | | | | |
| P4 | | \$FC08 | 8 External I/O or Timer and Port 0 Handshake | TAO | TBO | TAI | TBI | $\begin{gathered} \text { STRH } \\ R / G \end{gathered}$ | STRL | RDYH | RDYL |
| P5 | | \$FCOA | Reserved | \downarrow RESERVED $\longrightarrow \square$ | | | | | | | |
| P6 | | \$FCOC | Reserved | \longleftarrow RESERVED \longrightarrow - | | | | | | | |
| P7 | | \$FCOE | Interrupt Latch Register | RES | NMI | SPARE | XI21 | STRLI | TAOI | TAll | STRHI |
| P8 | | \$FC10 | Interrupt Mask Register | RESERVED | | SPARE | XI2M | STRLM | TAOM | TAIM | STRHM |
| P9 | | \$FC12 | Serial I/O Receive Control and Status Register | RE | IS | RW1 | RWO | RC | SIS | RES | RVED |
| P10 | | \$FC14 | Serial I/O Transmit Control and Status Register | TE | AT | LM | TW1 | TWO | TC | P/S | RES |
| P11 | | \$FC16 | Timer B Latch | | | | | | | | |
| P12 | | \$FC18 | Timer A Low Latch | | | | | | | | |
| P13 | | \$FC1A | Timer A High Latch | | | | | | | | |
| P14 | | \$FC1C | Timer and Handshake Control Register | HSM2 | HSM1 | HSMO | XI2C | HSE | TCE | TCOC | TAM1 |
| P15 | | \$FC1E | Expanded Bus Control and Status Register | SEG1 | SEGO | BLCK | F/S | EXP | F/P | TEST 1* | TEST 0* |
| P16 | | \$FC20 | Port 0 Direction Control (DDRO) | | | | | | | | |
| P17 | | \$FC22 | Port 1 Direction Control (DDR1) | | | | | | | | |
| P18 | | \$FC24 | Serial I/O Mode and
 Sync Register | A/S | WL1 | WLO | ST | PAR1 | PARO | TCO | WS |
| P19 | | \$FC26 | Timer C Latch | | | | | | | | |

*NOTE: Both test bits should remain a 0 during normal operation.

Port Map								
7	6	5	4	3	2	1	0	Initial Condition
								-
I/O	X12	XI1	XIO	SI	RCLK	TCLK	so	-
\longleftarrow RESERVED \longrightarrow								-
TRANSMIT BUFFER								-
- RESERVED								High Byte $00---00$
RESERVED \longrightarrow								-
RESERVED \longrightarrow								-
RSCI	RNI	X111	TBOI	TBII	X101	XMTI	TCI	\$0000
RSCM	RNM	XITM	твом	твIM	XIOM	XMTM	TCM	\$0000
BF	OE	PE	FE	SFIAF	BRK	\leftarrow RESERVED \rightarrow		\$0000
BE	UE	END	\longleftarrow RESERVED \longrightarrow					\$00AO
								-
								-
								-
TAMO	TAE	TAIC	TAOC	TBM1	твмо	TBE	TBIC	50000
UPC/GP R/G		\longleftarrow RESERVED \longrightarrow						Mode pin: VCC-S0400 CLKOUT.SOC00 GND-S0800
								50000
								50000
SYNC7	SYNC6	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNCO	\$0000
								-

NOTE:

When a reserved bit is read, it is read as a zero.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin relative to GND . -1.0 V to +7.0 V
Total Device Power Dissipation. 1 Watt
Ambient Storage Temperature . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature ($T_{L}<T_{A}<T_{H}$)
Commercial MK68HC2xx/xxx-Cx . $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial MK68HC2xx/xxx-Vx . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military MK68HC2xx/xxx-Mx . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MK68200 DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IL}	Input low voltage; all inputs	-0.3	0.8	V	
V_{IH}	Input high voltage; all inputs except CLK1	2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	v	
V_{IH}	Input high voltage; CLK1	$0.7 \times \mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
V_{OL}	Output low voltage; all outputs		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	Output high voltage; all outputs	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
V_{OH}	Output high voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}-0.1$		V	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
l_{LI}	Input leakage current		± 1	uA	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}
${ }_{\text {LO }}$	Three-state output leakage current in float		± 10	$\mu \mathrm{A}$	$\begin{gathered} V_{\text {OUT }}=0.4 \mathrm{~V} \text { to } \\ V_{\mathrm{CC}} \end{gathered}$
$\mathrm{I}_{\mathrm{CC} 1}$	Input power supply current CLKOUT $=12.5 \mathrm{MHz}$ CLKOUT $=10 \mathrm{MHz}$ CLKOUT $=8 \mathrm{MHz}$ CLKOUT $=0.5 \mathrm{MHz}$		$\begin{aligned} & 75 \\ & 65 \\ & 55 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Outputs Open
$\mathrm{I}_{\mathrm{CC2}}$	Power supply current in IDLE mode. CLKOUT $=12.5 \mathrm{MHz}$ CLKOUT $=10 \mathrm{MHz}$ CLKOUT $=8 \mathrm{MHz}$ CLKOUT $=0.5 \mathrm{MHz}$		$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Outputs Open. All I/O functions active.
${ }^{\text {ccc3 }}$	Power supply current in STOP mode		5	mA	Outputs Open

CAPACITANCE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX	UNIT	TEST CONDITION
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	10	pF	Unmeasured pins returned to ground
$\mathrm{C}_{\text {OUT }}$	Three-state Output Capacitance	10	pF	

MK68HC200 AC ELECTRICAL SPECIFICATIONS

$T_{A}=T_{L}$ to $T_{H}, V_{C C}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise specified.
$A C$ measurements are referenced from minimum $V_{I H}$ or maximum 'viL for inputs and from minimum $V_{O H}$ or maximum $V_{\text {OL }}$ for outputs.

NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
1	RESET low time	20		20		20		state times	1
2	CLK 1 width high (external clock input)	22		18		14		ns	
3	CLK 1 width low (external clock input)	22		18		14		ns	
4	CLK 1 period (external clock input)	62	1000	50	1000	40	1000	ns	
5	Crystal input frequency	1.000	16.000	1.000	20.000	1.000	25.000	MHz	
6	Clock Period (PHI 1) (tc)	125		100		80		ns	
7	PHI 1 low to PHI 1 high	62		50		40		ns	
8	PHI 1 high to PHI 1 low	62		50		40		ns	
9	PHI 1 low to CLKOUT low		20		16		13	ns	
10	PHI 1 high to CLKOUT high		20		16		13	ns	

MK68HC200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (UPC, GP, AND PRIVATE BUSES)

NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
11	PHI 1 low to $\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{HB}}, \overline{\mathrm{LB}}, \mathrm{FC}$, FC2, EXPMC, DMODE Valid		58		46		37	ns	2
12	PHI 1 high to $\overline{\text { AS }}$ low		58		46		37	ns	2
13	PHI 1 low to address valid		60		50		40	ns	2
14	$\overline{\text { AS }}$ low to address invalid	35		30		24		ns	2
15	PHI 1 low to tri-state address		45		36		29	ns	2
16	Tri-state address to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or UDS starting low (fast cycle)	10		10		10		ns	2
17	PHI 1 low to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ low (fast cycle)		83		66		53	ns	2
18	PHI 1 low to data out valid during write		60		50		40	ns	2
19	PHI 1 low to $R / \bar{W}, \overline{H B}, \overline{L B}, F C 1$, FC2, EXPMC, DMODE invalid	0		0		0		ns	2
20	PHI 1 low to address/data bus driven	0		0		0		ns	2
21	$\overline{\mathrm{AS}}$ low to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\text { UDS }}$ starting low (fast cycle)	50	113	42	90	33	72	ns	2
85	$\overline{\text { AS }}$ high to FPRIV invalid	0		0		$?$		ns	
86	Address valid to FPRIV valid (fast cycle)		121		94		75	ns	
87	Valid data setup to $\overline{\mathrm{DS}}, \overline{\mathrm{UDS}}$ or $\overline{\mathrm{LDS}}$ high during write (fast cycle)	65		50		40		ns	2

MK68HC200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (UPC AND GP BUSES)

NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
22	Tri-state address to $\overline{\mathrm{SS}}, \overline{\mathrm{LDS}}$, or UDS starting low (standard cycle)	67		54		43		ns	
23	PHI 1 high to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ low (standard cycle)		83		66		53	ns	2
24	Valid Data Setup to PHI 1 low	5		5		5		ns	2
25	$\overline{\mathrm{AS}}$ low to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ starting low (standard cycle)	112	175	90	138	72	111	ns	2
26	$\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{HB}}$, or $\overline{\mathrm{LB}}$ valid to $\overline{\mathrm{AS}}$ starting low	45		36		29		ns	
27	Address valid to $\overline{\text { AS }}$ starting low	45		36		29		ns	
28	Input data hold time from PHI 1 low	22		18		14		ns	
29	Input data hold time from $\overline{\mathrm{DS}}$, LDS, or UDS high	0		0		0		ns	
30	PHI 1 low to $\overline{\overline{D S}}$, $\overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ high		90		72		58	ns	
31	$\overline{\text { DTACK }}$ low or FPRIV valid setup to PHI 1 high	7		6		5		ns	
32	$\overline{\mathrm{LDS}}, \overline{\mathrm{U} D S}$, or $\overline{\mathrm{DS}}$ high to DTACK high (hold time)	0		0		0		ns	
33	$\overline{\text { LDS, }} \overline{\text { UDS, }}$, or $\overline{\mathrm{DS}}$ pulse width	120		90		72		ns	
34	PHI 1 high to $\overline{\mathrm{AS}}$ high		45		36		29	ns	
35	PHI 1 low to data out invalid	0		0		0		ns	
36	$\overline{\mathrm{AS}}$ inactive	117		90		72		ns	
37	$\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ high to data out invalid	90		66		53		ns	
38	$\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ high to $\overline{\mathrm{AS}}$ high	5		5		5		ns	
88	Address valid to FPRIV valid (standard cycle)		246		194		155	ns	
89	Valid data setup to $\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$, or $\overline{\mathrm{UDS}}$ during write (standard cycle)	190		150		120		ns	2
90	$\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$ or $\overline{\mathrm{UDS}}$ low to data in valid (fast cycle)		37		29		22	ns	2
91	$\overline{\mathrm{DS}}, \overline{\mathrm{LDS}}$ or $\overline{\mathrm{UDS}}$ low to data in valid (standard cycle)		100		79		62	ns	2
92	Address valid to data in valid (fast cycle)		185		145		115	ns	
93	Address valid to data in valid (standard cycle)		310		245		195	ns	
MK68HC200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (UPC BUS)									
NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz			
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
39	$\overline{\text { BGACK }}$ low to $\overline{\mathrm{BR}}$ high	100	225	75	180	60	144	ns	
40	$\overline{\text { BG }}$ low to $\overline{\text { BGACK }}$ low	50	300	50	240	40	192	ns	
41	$\overline{\mathrm{BGACK}}, \overline{\mathrm{AS}}, \overline{\mathrm{DTACK}}$, inactive to $\overline{B G A C K}$ low; $\overline{B G}$ already low	0	300	0	240	0	192	ns	
42	$\overline{\text { BGACK }}$ low to $\overline{A S}, \overline{U D S}, \overline{L D S}, ~ R / \bar{W}$ or address/data bus driven	40	68	30	54	$:=$	43	ns	
43	$\overline{\mathrm{AS}}, \overline{\mathrm{LDS}}, \overline{\mathrm{UDS}}, \mathrm{R} \overline{\mathrm{W}}$ or address/data bus tri-state to BGACK high	0	90	0	72	0	58	ns	

MK68HC200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (GP BUS)

NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
45	BUSIN low to BUSOUT low (bus grantor, fast cycle, no wait states)		950		720		576	ns	
46	$\overline{\text { BUSOUT }}$ high to $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} \overline{\mathrm{W}}, \overline{\mathrm{LB}}$, $\overline{\mathrm{HB}}$ or address/data bus driven (bus grantor)	15		15		15		ns	
47	$\overline{\text { BUSIN }}$ high to $\overline{\text { BUSOUT }}$ high (bus grantor)	260	450	180	360	144	288	ns	
48	Tri-state $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{LB}}, \overline{\mathrm{HB}}$ or address /data bus to BUSOUT low (bus grantor)	50		42		33		ns	
50	$\overline{\text { BUSOUT }}$ low to $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}$, $\overline{\mathrm{LB}}, \overline{\mathrm{HB}}$ or address/data bus driven (bus requestor, BUSIN low)	120		90		72		ns	
51	$\overline{\text { BUSIN }}$ low to $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} \overline{\mathrm{W}}, \overline{\mathrm{LB}}$, $\overline{\mathrm{HB}}$ or address/data bus driven (bus requestor, BUSOUT low)	135	325	108	300	86	240	ns	
53	$\overline{\text { BUSOUT high to BUSIN high }}$ (bus requestor)		275		240		192	ns	
55	Tri-state $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{HB}}, \overline{\mathrm{LB}}$ or address/data bus to BUSOUT high (bus requestor)	50		39		31		ns	

MK68HC200 BUS AC ELECTRICAL SPECIFICATIONS (PRIVATE BUS)

NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
56	Valid Data Setup to PHI 1 low	15		12		10		ns	
57	PBR/ \bar{W} valid to $\overline{\text { PBAS }}$ starting low	30		24		19		ns	
58	Address valid to $\overline{\text { PBAS }}$ starting low	27		21		17		ns	
59	Input data hold time from PHI 1 low	0		0		0		ns	
60	Input data hold time from $\overline{\text { PBDS }}$ high	0		0		0		ns	

MK68HC200 EXPANDED BUS AC ELECTRICAL SPECIFICATIONS (PRIVATE BUS) (Cont.)

NO.	DESCRIPTION	8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
61	PHI 1 low to PBDS high		80		63		50	ns	
62	$\overline{\text { PBDTACK }}$ low setup to PHI 1 high	10		9		7		ns	
63	$\overline{\text { PBDS }}$ high to $\overline{\text { PBDTACK }}$ high (hold time)	-15		-15		-15		ns	
64	$\overline{\text { PBDS }}$ pulse width	95		75		60		ns	
65	PHI 1 high to $\overline{\text { PBAS }}$ high		58		45		36	ns	
66	PHI 1 low to data out invalid	10		10		10		ns	
67	$\overline{\text { PBAS }}$ inactive	100		81		65		ns	
68	$\overline{\text { PBDS }}$ high to data out invalid	100		81		65		ns	
69	$\overline{\text { PBDS }}$ high to $\overline{\text { PBAS }}$ high	15		15		15		ns	
94	PBDS low to data in valid		27		27		37	ns	
95	Address valid to data in valid		159		159		238	ns	

MK68HC20C INPUT/OUTPUT AC ELECTRICAL CHARACTERISTICS

MK68HC200 INPUT/OUTPUT AC ELECTRICAL SPECIFICATIONS

NO.	DESCRIPTION		8 MHz		10 MHz		12.5 MHz		UNITS	NOTES
			MIN	MAX	MIN	MAX	MIN	MAX		
82	TCLK low to SO delay (sync mode)	TCLK as input	165		132		106		ns	
		TCLK as output	37		30		24			
83	SI to RCLK high setup time (sync mode)	RCLK as input	15		12		10		ns	
		RCLK as output	90		72		58			
84	SI hold time from RCLK high (sync mode)	RCLK as input	22		18		14		ns	
		RCLK as output	0		0		0			

NOTES

1 One state time is equal to one half of the instruction clock (PHI 1 , perice
2 For the private bus case the signals referenced apply to the sCu ralsn: private bus signals

LOAD 2

LOAD 3

TEST LOAD 3 IS APPLICABLE TO CLKOUT.

Figure 17 . Output Test Load

CLK 1

(EXTERNAL CLOCK SIGNAL)

$\mathrm{XI2}, \mathrm{X} 11, \mathrm{X} 10$,
TAI, TBI, NMI, STRL, STRH

Figure 18. MK68HC200 AC Timing

Figure 19. MK68HC201 UPC Bus Timing (Fast Cycle)

Figure 20. MK68HC201 UPC Bus Timing (Standard Cycie)

Figure 21. MK68HC201 UPC Bus Arbitration Timing

Figure 22. MK68HC211 GP Bus Timing (Fast Cycle)

Figure 23. MK68HC211 GP Bus Timing (Standard Cycle)

Figure 24. MK68HC211 GP Bus Timing (Interrupt Acknowledge Timing)
clkout

$\overline{\text { PBDS }}$

Figure 25. MK68HC211 GP Bus Arbitration Timing (Bus Grantor)

Figure 26. MK68HC211 GP Bus Arbitration Timing (Bus Requestor)

Figure 27. MK68HC221 Private Bus Timing (Fast Cycle)

Figure 28. Input/Output AC Timing (Data Input)

Figure 29. Input/Output AC Timing (Data Output)

Figure 30 . Input/Output AC Timing (Bidirectional I/O)

Figure 31. Input/Output AC Timing (Serial I/O)

PHYSICAL DIMENSIONS

MK68HC200 52-Pin
Ceramic Leadless Chip Carrier (E)

TOP VIEW

BOTtOM VIEW

NOTES:

1. Body material shall be ceramic.
2. Plating shall be gold over nicikel as specified in the detall specification

DIM.	INCHES		NOTES
	MIN.	MAX.	
A	. 070	. 095	
A_{1}	. 080	. 110	
B_{1}	. 022	. 028	
D	. 739	. 761	
D_{2}	. 590	. 610	
E	. 739	. 761	
E_{2}	. 590	. 610	
e	. 048	. 052	
h	. 035	. 045	
i	. 035	. 045	
1	. 045	. 055	
L,	. 075	. 095	
1 IN	2.54	Entime	

MK68HC200 52-Pin
Plastic Leaded Chip Carrier (Q)

DIM.	INCHES		NOTES
	MIN.	MAX.	
A	.165	.185	2
A_{1}	.090	.120	2
B	.026	.032	2
B_{1}	.013	.021	2
D_{1}	.785	.795	
D_{1}	.750	.756	
D_{2}	.690	.730	
E_{1}	.785	.795	
E_{1}	.750	.756	
E_{2}	.690	.730	
h	.042	.060	
j	.042	.060	
k	.042	.056	

1 INCH $=2.54$ CENTIMETERS

NOTES:

1. LEAD FINISH TO BE

SPECIFIED PER CUSTOMER AGREEMENT.
2. WHEN SOLDER DIP LEAD

FINISH IS SPECIFIED, THE
MAXIMUM LIMIT SHALL BE INCREASED BY . 003.

MK68HC221 84-Pin

Ceramic Leadless Chip Carrier (E)

DIM.	INCHES	
	1.138	1.167
B	1.138	1.167
C	0.070	0.090
D	0.080	0.110
E	0.044	0.056
F	0.044	0.056
G	0.075	0.095
H	0.048	0.052
J	0.033	0.039
K	0.010	0.018
L	0.495	0.505
M	0.495	0.505

1 INCH $=2.54$ CENTIMETERS

MK68HC221 84-Pin
 Plastic Leaded Chip Carrier (Q)

DIM.	INCHES		NOTES
	MIN.	MAX.	
A	.165	.200	2
A_{1}	.090	.130	2
B	.026	.032	2
B_{1}	.013	.021	2
D	1.185	1.195	
D_{1}	1.150	1.158	
D_{2}	1.090	1.130	
E_{1}	1.185	1.1 .95	
E_{1}	1.150	1.158	
E_{2}	1.090	1.130	
h	.042	.060	
j	.042	.060	
k	.042	.056	

NOTES:

1. LEAD FINISH TO BE SPECIFIED PER CUSTOMER AGREEMENT.
2. WHEN SOLDER DIP LEAD

FINISH IS SPECIFIED, THE MAXIMUM LIMIT SHALL BE INCREASED BY . 003.

ORDERING INFORMATION

There are two types of part numbers for the MK68HC200 family of devices. The generic part number describes the basic device type, the amount of ROM and RAM, the desired package type, temperature range, power
supply tolerance, and expandable bus interface type. The device order number indicates the specific mask set Mostek will use to manufacture the device, along with package type, speed grade and temperature range.

Generic Part Number

An example of the generic part number is shown below:

[^28]
Device Order Number

An example of the device order number is shown below:

Denotes maximum instruction clock frequency.
$8=8 \mathrm{MHz}$
$10=10 \mathrm{MHz}$
$12=12.5 \mathrm{MHz}$
Denotes operating temperature range.
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package Type. $E=$ Ceramic Leadless Chip Carrier
$Q=$ Plastic Leaded Chip Carrier

Version/Code Specific Number.
For MK68HC201, MK68HC211:
002 = No ROM version (standard catalog item)
$0 x x=$ Reserved for catalog codes
100-999 = Customer Code (Mostek Assigned)
For MK68HC221:
030 = GP/UPC, 512 bytes RAM, no ROM

Basic Device Type.
40 = Emulator Version
$43=$ UPC, 0 or 4 K bytes ROM. 256 bytes RAM
$44=$ GP, 0 or 4 K bytes ROM,
256 bytes RAM

PART NUMBER EXAMPLES (A noninclusive list)	
MK68HC201/44Q-C10	```Device Order Number = MK43XXXQ-C10 Speed = 10MHz Temperature = 0 ' to 70 % Package = 52 pin plastic LCC RAM = 256 bytes ROM = 4096 bytes Bus = UPC```
MK68HC211/04Q-C8	```Device Order Number = MK44002Q-C8 Speed = 8MHz Temperature = 0 to 70 % Package = 52 pin plastic LCC RAM = 256 bytes ROM = None Bus = GP```
MK68HC221/08E-M12	$\begin{aligned} & \text { Device Order Number }=\text { MK40030E-M12 } \\ & \text { Speed }=12.5 \mathrm{MHz} \\ & \text { Temperature }=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { Package }=84 \text { pin ceramic LCC } \\ & \text { RAM }=512 \text { bytes } \\ & \text { ROM }=\text { None } \\ & \text { Bus }=\text { GP/UPC } \end{aligned}$
MK68HC201/44Q-V8	```Device Order Number = MK43XXXQ-V8 Speed = 8MHz Temperature = -40 to +85 C Package = 52 pin plastic LCC RAM = 256 bytes ROM = 4096 bytes Bus = UPC```

Surface Mounted Devices

4-BIT MCUs		$\begin{aligned} & \text { PLCC } 28 \\ & \text { CB-520 } \\ & \text { Culen will } \end{aligned}$	Page
ET9320		-	$1-45$
ET9321	-	\bullet	$1-45$
ET9322	\bullet	-	1-45
ET9420		-	1-45
ET9421	\bullet	-	1.45
ET9422	-	-	1-45
ETC9310	-	-	1-5
ETC9320		\bullet	1-5
ETC9321	\bullet	-	1-5
ETC9322	\bullet	\bullet	1-5
ETC9344		\bullet	1-69
ETC9345	-	-	1-69
ETC9410	\bullet	-	1-5
ETC9420		\bullet	1-5
ETC9421	-	-	1-5
ETC9422	-	\bullet	1-5
ETC9444		-	1-69
ETC9445	\bullet	-	1-69
ETL9310	-	-	1-21
ETL.9311	-	-	1-21
ETL9320		\bullet	1-21
ETL9321	-	\bullet	1-21
ETL9322	-	-	1-21
ETL9344		\bullet	1-115
ETL9345	-	\bullet	1-115
ETL9410	-	-	1-21
ETL9411	-		1-21
ETL9420		-	1-21
ETL9421	-	-	1-21
ETL9422	-	-	1-21
ETL9444		\bullet	1-115
ETL9445	-	-	1-115

8-BIT MCUs	$\begin{gathered} \text { PLCC } 28 \\ \text { CB-520 } \end{gathered}$	PLCC 44 $\begin{aligned} & \text { CB-521 } \end{aligned}$	PLCC 52	PLCC 84 LCCC 84	Page
EF6801 EF6801U4 EF6804J2 EF6804P2 EF6805P2 EF6805P6 EF6805R2 EF6805R3 EF6805U2 Ef6805U3 EF68HC04P3					$\begin{gathered} 2-7 \\ 2-47 \\ 2-91 \\ 2-135 \\ 2-225 \\ 2-249 \\ 2-273 \\ 2-301 \\ 2-329 \\ 2-355 \\ 2-181 \end{gathered}$

16-BIT MCUs

MK68211			\bullet		$3-5$
MK68E201			\bullet	$3-5$	
MK68E211			\bullet	$3-5$	
MK68E221				$3-5$	
MK68HC201				$3-77$	
MK68HC211					$3-77$
MK68HC221				$3-77$	

SURFACE MOUNTED DEVICES: today's solution for state-of-the-art system designs.

Today's trend toward light weight system designs with high component density allows Surface Mounting Technology to revolutionize manufacturing in the Electronics industry.

Reduction in board assembly cost by as much as 40% and in board size by as much as 50% is a goal that can be reached throught the utilization of Surface Mounted Devices:
Active Semiconductors (SO IC's) - SO Discretes and Chip carriers as well as passive resistors and capacitor chips.

Today system designers can select package outlines that meet state-of-the-art weight/space ratio requirements while enhancing electrical performance.

By 1990, through widely accepted data, one can foresee above 50% of the world wide demand to be Surface Mounted Devices.

Included in the THOMSON SEMICONDUCTEURS family of Surface Mounted Devices are integrated circuits (SO8-SO28), Plastic Leaded Chip Carriers (PLCC) from 18 to 84 pins, Leadien Ceramic Chip Carrier's (LCCC) from 20 to 68 pads, as well as discrete diodes and transistors in SOT 23 (TO-236).

Capacitor chips are also available in THOMSON LCC. Compared to conventional types THOMSON SC's SMD have the following features:

- Compact design enabling high packing density and significant reduction in board size and weight, for instance in consumer electronics, telecommunications and automotives.
- Easy and low cost handling through automated high speed pick and place machinery.
- Mounting capability on both sides of all types of substrates (Ceramic or PC boards) using all current methods, such as wave soldering reflow and vapor phase technics.
- Same electrical characteristics (same dice) as conventional packages, with improved high frequency, high speed switching performances due to lower lead inductance and capacitance.
- Optimized way to package VLSI circuits by utilizing plastic chip carrier along with SO packages, leading to a major advantage over chip and wire assembly processes.

MOUNTING METHODS

PLCC and LCCC may be mounted on either PC boards or substrates, employing different soldering methods.

Reflow process

- This method permits the soldering of all components in a single operation. In this case, solder cream is used either by screen printing or employing a pneumatic gun. After the application of solder cream the components are mounted and the circuit is guided through an infrared or convection oven which allows the solder to melt.
In order to avoid solder spreading risks and to position the components, the board should be pre-screen printed with an insulating material.

- An other way to solder coat the board is to dip it into a soldering bath or through wave soldering. Then, flux is applied by a brush or immersion and the components are placed.

The soldering is done by reflow through an oven as above.
The result obtained by both methods is identical. However, in this case, a complete tinning of the circuit is necessary.

Wave soldering process

The components are glued to substrate by means of an insulated glue. The board is dipped in flux and then goes through the wave soldering process.

Hot air soldering

In this system, the soldering iron must be replaced by a hot air nozzle. Employing this method, an improvement in solder temperature control is achieved.
It is also easy to correct some soldering failures with this method.

Heated collet

This method is used for rework and soldering PCC on the versus side of the board after wave solder.

Vapor phase soldering (VPS)

This method uses the heat of the vapor of a boiling inert fluorinated fluid. Soldering is accomplished by either screening tin layers or by electroplating solder paste.
Components are then mounted in appropriate locations and soldered to the circuit by dipping it into the vapor of boiling inert fluorinated fluid.
The main advantages of this method are:

- Uniform workpiece temperature whatever the difference in size of the components involved
- Accurate temperature without any elaborate control (temperature of boiling inert fluid)
- Dipping time may be very short and as a consequence better soldering results are obtained
- Soldering takes place in an oxygen-free atmosphere which permits:
- to use less active soldering flux, and
- to avoid soldering flux oxidation (easy cleaning
of remaining flux).

Remarks

Various types of high speed automatic mounting equipments for passive and active devices are available contributing to considerable reduction in production costs.

THERMAL CHARACTERISTICS

Thermal performances of SMD are dependent upon substrate material, size, mounting process, chip area, die attach and lead frame material characteristics.

Junction-ambient air thermal resistance, components reported on classical PC board (FR 4, 1.3 mm thickness, $50 \times 50 \mathrm{~mm}$ size).
Allowable power dissipation can reach 350 mW
according to device type, refer to data sheet.
For PLCC, copper is selected in order to improve the thermal characteristics. Therefore thermal resistance approaching that of a conventional Fe Ni 42 DIL can be obtained.

Development and emulation tool

INICE4-8 is a support for:

- EF6800 and EF6809 MPU Families
- EF6805, EF6804 and TS68HC04 MCU Families
- ETC 9400 and ETL 9400 MCU Families
- TS94000 MCU Family.

SOFTWARE DEVELOPMENT ON IBM-PC

DEVELOPMENT WITH INICE 4-8

INICE 4-8 is a powerful, lowcost and user friendly stand alone development tool, fully dedicated to support the complete range of 4 and 8 bit MCU's manufactured by THOMSON-SC.

INICE 4-8 offers 2 RS 232 C Serial communication lines:

- one to interface to a host computer IBM-PC (1) which provides functions of human interface and software development.
- the other is used for auxiliary systems such as a line printer. Eprom programmer or centralized mainframe.

The whole development station comprises the host computer IBM-PC, INICE 4-8 and a probe dedicated for each MPU and MCU family.

SOFTWARE DEVELOPMENT ON IBM-PC

The choice of a standard personnal computer for Software purposes (MS DOS operating system) and for hardware (IBM-PC bus) is an important key to obtaining a full evolutive and open system.
It offers access to a very large Software library.
Full screen editor: word, wordstar... (2)
Full range of development software

- MPU and MCU cross assembler
- linking editor.
(1) Adaptation for Vax computer will be available in 1987.
(2) Software available in library for IBM-PC.

INICE 4-8 INTERACTIVE SOFTWARE
Software supplied to control INICE 4-8 offers the ability to use the advantages of the powerful architecture hardware.

- Meaningful mnemonics
- Wide choice for characterising values (Decimal, Hexa, ASCII)
- Aids to the operator when in difficulty
- Full range of debugging aides
- On line assembler/disassembler
- 8 hardware breakpoints
- 8 software breakpoints
- Logic analyser triggered breakpoints
- Execution program step by step in RAM and ROM area
- Echo on line printer
- Load and save program through RS 232 C connection
- Memory check
- Operator keyboard entry request can be chained in a command file
- Self test of the entire system INICE 4-8 + emulator probe at power up
- Possibility to temporarily leave control of emulation session to access DOS routines, through the emulation session keeps acting.

IBM-PC: is a registered trade mark of International Business MachineCorp.

TSTMU 94

EMULATION WITH INICE 4-8 (*)

An advanced architecture for total transparency and dynamic emulation.
Thanks to the dual processor architecture (System bus and emulation bus), the emulated MPU or MCU operates independently of the other system processors.

Therefore, it is possible during execution, to list or modify emulator probe control parameters.

REALTIME EMULATION

With the transparency feature, the emulated processor operates at 100% of the maximum speed specified by the manufacturer.
(*) Each emulator probe is delivered with an interactive software specific to each MPU or MCU family.

OPEN ENDED

- Switching from one MPU or MCU to another by changing only the emulator probe
- Program execution without existing final application
- Shared overlay memory (16 Kbytes) in blocks of 256 bytes
- Write protect facility for individual blocks
-. 8 hardware and 8 software breakpoints over entire emulation space.

LOGIC ANALYSER

The logic analyser operates with 1024 words of 32 bits (16 address, 8 data bits, 8 available to user).
With sampling and trigger or recognition of maskable words. Five operating modes are available.

USER'S SELECTION GUIDE

Family	MPU or MCU	Development System	Emulator Chip	Emulator Board	INICE Interactive software*	Emulator Probe
EF6800	EF6800	TST/N48			TSR 6800	EFT EMUO
	EF6802	-			-	-
EF6809	EF6809	-			TSR 6809	EFT EMU9
	EF6809E	-			-	-
EF6805	EF6805P2	-	MC68705P3		TSR 6805	EFT MPU5
		-	MC68705P3		-	-
	EF6805U2	-	MC68705U3		-	-
	EF6805R2	-	MC6805R2		-	-
	EF6805U3	-	MC68705U3		-	-
	EF6805R3	-	MC68705R3		-	-
EF6804	EF6804P2	-	MC68704P3		TSR 6804	EFT MUP4
	EF68HCO4P3	-		TSEMU04	-	-
ET9400	ETC9410/11	-			TSR 6804	TSTMU94
	ETC9420/21	-			-	-
	ETC9444/45	-			-	-
	ETL9410/11/13	-			-	-
	ET(L) 9420/21/22	-			-	-
	ETL9444/45	-			-	-
TS94000	TS94110	-			TSR 94000	TST MU94
	TS94120	-			-	-

[^29]The EMU-04 is a printed board module, build around EF68HC04P3, and a standard EPROM.
It fully emulates de EF68HC04P3 in the final applications, with the customer program stored in the board EPROM

The EMU-04 includes MICRO, RAM, STACK, I/O parts EPROM Data and Program Space.
The following block diagram discribes it.

EMU-04

DIAGRAM

SOFTWARE

Instructions STOP \& WAIT correctly work on piggy-back. Due to PAL \& LS components of P.C. board, supply current does not meet Micro's spec. It stands around 800 mA as it does in RUN mode.
2732 EPROM have been chosen (acces time $<\times 300 \mathrm{nS}$) but 2764 or 27128 ones may be used, taking account than:

- upper address bit must be correctly setted
- program codes must stand in the lower 4 Kbytes space
- one have to wire a socket adaptor between EPROM \& piggy-back EPROM socket.

DESCRIPTION

All EF68HC04P3 fonctions are restored. Thus application is emulated in real time and user program may be modified.

The DATA space and PROGRAM space are in EPROM space. ADDRESS $\mid \$ 00$ to $\$ 17$ and $\$ 60$ to $\$ 95 \mathrm{~F}$ are unknown.

CLOCK

Instead of using EF68HC04P3 one can plug the piggy-back and use application clock, either quartz (pin EXTAL-XTAL) or CMOS levels (pin XTAL).

SELECTABLE OPTIONS

As EF68HC04P3 device you can choose maskable option on piggy-back board:

- CLOCK: division by $1,2,4$
- IRQ: level or negative going edge.

Two ways are available to supply the piggy-back:

- Application supply (pin 3 of EF68CHO2P3 socket)
- External power supply through DC supply plugs on piggy-back board.

Due to bipolar components V supply must be 5 volts. $(0,8 \mathrm{~A})$.
The following diagram shows where jumpers are located.

SELF-CHECK

A self-check program is available in EPROM to verify piggy-back. To use it you must connect pins according to the following diagram. (Piggy-back self-check program is different than monochip one).

INTERNATIONAL SALES NETWORK SUBSIDIARIES (March 1987)

AUSTRALIA

THOMSON COMPONENTS (AUSTRALASIA) PTY Ltd
Suite 211 - Edgecliff centre
203-233 New South Head Road
SYDNEY NSW 2027
Tel. (61 2) 327.13.18 Telex : AA 126911 TCAUS
Telefax. (61 2) 327.61 .76

AUSTRIA

THOMSON-CSF Elektronische Anlagen GmbH
Lützowgasse 12-14
1140 WIEN
Tel. (43 222); 94.62.82 Telex : 135572 TCSF WA

BELGIUM and The NETHERLANDS

THOMSON-CSF S.A.-N.V.
363 Avenue Louise B.P. 10
B-1050 BRUSSELS
Tel. (32 2) 648.64.85 Telex : 24005 THBXLB
Telefax. (32 2) 648.19.13

BRAZIL

THOMSON COMPONENTES DO BRASIL
Avenida Roque Petroni JR
BROOKLIN - CEP 04707
SAO PAULO
Tel. (55 11) 542.47.22 Telex : 1124226 TCSF BR Telefax. (55 11) 61.50.18

FAR EAST ASIA

THOMSON-CSF FAR EAST Ltd
92, Granville Road
Energy Plaza Building
Units 1.2.3 A, 6th Floor
Tsimshatsui East
KOWLOON - HONG KONG
Tel. (852 3) 721.96.82 Telex : 40766 HX TCFE
Telefax. (852 3) 722.00.44

FRANCE

THOMSON SEMICONDUCTEURS
43, Avenue de l'Europe
78140 VELIZY-VILLACOUBLAY
Tel. (33 1) 39.46.97.19 Telex : TCSF 204780 F
Telefax. (33 1) 39.46.52.64

GERMANY (WEST)

THOMSON BAUELEMENTE GmbH
Perchtinger Str 3
Postfach 70.19.09
8000 MUNCHEN 70
Tel. (49 89) 78.79.0 Telex : 522916 CSFD
Telefax. (49 89) 787.91.45

ITALY

THOMSON COMPONENTI
Via M. Gioia 72
20125 MILANO
Tel. (39 2) 699.41 Telex : 330.301 TOMCO-I
Telefax. (39 2) 607.05.27

THOMSON COMPONENTI

Via Sergio I, 32
00165 ROMA
Tel. (39 6) 63.90.248 Telex : 620683
Telefax. (39 6) 63.90.207

JAPAN

THOMSON JAPAN

Semiconductor division
TBR Bldg 715 Kojimachi 5-7
CHIYODA-KU, TOKYO 102
Tel. (81 3) 264.6348 Telex : 2324241 THCSF. J.
Telefax. (81 3) 234.7539

SOUTH EAST ASIA

THOMSON-CSF S.E. ASIA PTE. LTD.
996 Bendermeer Road \# 05-05
Kallang Basin Industrial Estate
SINGAPORE 1233
Tel. (65) 295.31.24 Telex : RS 36124 TC SEA
Telefax. (65) 296.87.15
SPAIN
THOMSON COMPONENTES Y TUBOS
Calle Albacete, 5
MADRID 28027
Tel. (34 1) 405.16.15 Telex : 46033
Telefax. (34 1) 404.60.02
THOMSON COMPONENTES Y TUBOS
Poligono Industrial Fontsanta Montilla, 5
San Juan Despi
BARCELONA
Tel. (34 3) 373.30.11 Telex : 53077
Telefax. (34 3) 373.38.50

SWEDEN

THOMSON KOMPONENTER SKANDINAVIAN AB
Sandhamnsgatan 65 Box 27257
S-10253 STOCKHOLM
Tel. (46 8) 63.50.60 Telex : 12078 THCSF S
Telefax. (46 8) 63.28.28

UNITED KINGDOM and IRELAND

THOMSON COMPONENTS Ltd
Ringway House Bell Road
DANNESHILL
BASINGSTOKE - HANTS RG 24-0QG
Tel. (44 256) 29.155 Telex : 858865
Telefax. (44 256) 23.172
U.S.A. (see complete network in the following pages)

THOMSON COMPONENTS N.JSTEK CORPORATION
1310 Electronics Drive
CARROLLTON, Texas 75006
Tel. (1) 214/466-6000 Telex : 730643
Telefax. (1) 214/466-7602

INTERNATIONAL SALES NETWORK DISTRIBUTORS (March 1987)

AUSTRALIA

CONSULAUST INTERNATIONAL PTY LTD
P.O. Box 357

734 Riversdale Road
CAMBERWELL, VIC 3124
Tel. (61 3) 836.25.66 Telex : 37455 CONAUS AA
Telefax. (61 3) 836.17.64
3, Rd Floor
10, Bridge Street
GRANVILLE NSN 2142 / SYDNEY
Tel. (61 2) 637.25.58 Telex : 23861
PROMARK ELECTRONICS PTY LTD
Suite 208, 6-8 Clarke Street
CROWS NEST, NSW 2065
Tel. (61 2) 439.64.77 Telex: AA 20474 PROMAR
Telefax. (61 2) 436.08.63
Suite 3, 366 Whitehorse road
NUNAWADING, VIC 3131
Tel. (61 3) 8/8.12.55 Telex : AA 35045 PROMEL
Telefax. (61 3) 842.64.60

BELGIUM AND THE NETHERLANDS

INELCO
94, avenue des Croix de guerre
B-1120 BRUSSELS
Tel. (32 2) 216.01.60 Telex : 64475
Telefax. (32 2) 216.61.50

ITT MULTICOMPONENTS
15, rue Antoine-Court
B-1080 BRUSSELS
Tel. (32 2) 424.28.00 Telex : 22901
ALCOM ELECTRONICS
Esse Baan 1
2908 LJ CAPELLE ADD IJSSEL
Tel. (31 10) 51.95.33 Telex : 26160
Telefax. (31 10) 45.86.48

ITT MULTICOMPONENTS
PB 345
2700 AH ZOETERMEER
Tel. (31 1794) 10141 Telex : 32360
Telefax. (31 1794) 16544

DENMARK

SCAN SUPPLY A/S

Nannasgade 18
DK 2200 - COPENHAGEN
Tel. 45 t $) 83.50 .90$ Telex : SCALPY DK
Telefax. (45 1) 83.25.40

FINLAND

A LÄIKKÓ OY
Kolmas Linja 16B22
SF - 00530 HELSINKI
Tel. (358 0) 75.04.14 Telex : 125200 TOPCO SF
Telefax. (358 0) 70.17.396

INSELE OY

Kumpulantie
SF-00520 HELSINKI
Tel. (358 0) 75.06.00 Telex : 122217
Telefax. (358 0) 73.57.74

FRANCE

Région parisienne

ALMEX

48, rue de l'Aubépine
B.P. 102
Z.I. 92160 ANTONY

Tel. (1) 46.66.21.12 Telex : 250067
Telefax. (1) 46.66.60.28
C.G.E. COMPOSANTS / GECODIS

32, rue Grange -Dame-Rose
Z.I. de Vélizy

92360 MEUDON LA FORÊT
Tel. (1) 46.30.24.34
Telefax. (1) 46.30.00.81

MECODIS

31, rue de Metz
94700 MAISONS ALFORT
Tel. (1) 43.78.18.18 Telex : 262061
Telefax. (1) 48.93.13.13

PEP

6/8, rue Ambroise Croizat
Z.I. des Glaises

91120 PALAISEAU
Tel. (1) 64.47.00.31 Telex : 603341
Telefax. (1) 64.47.00.84

RTF DIFFUSION

$59-63$, rue Desnouettes
75015 PARIS
Tel. (1) 45.31.16.50 Telex : 260832

SILEC/CODICOM

52 , rue des Carrières
B.P. 43

94222 CHARENTON LE PONT
Tel. (1) 43.75.95.92 Telex : 680363

TCC-DIS

30, avenue de l'Épi d'Or
94800 VILLEJUIF
Tel. (1) 46.87.22.24 Telex : 261049

TEKELEC/AIRTRONIC

2-6, avenue Salvador-Allende - Bât. C
93804 EPINAY CEDEX
Tel. (1) 48.21.60.44 Telex : 630260
Centre de l'agora
523, place des Terrasses
91034 EVRY CEDEX
Tel. (1) 60.77.82.66 Telex : 691158
Bureau des Arcades
424 La Closerie - Bât. A
Clos Mont d'Est
93160 NOISY-LE-GRAND
Tel. (1) 43.04.62.00 Telex : 220368
1, rue Carle Vernet
B.P. 2

92310 SEVRES
Tel. (1) 45.34.75.35 Telex : 2045 ?
Telefax. (1) 45.07.21.91
5, allée du Bourbonnais
78310 MAUREPAS
Tel. (1) 30.62.00.58 Telex : 698121

Nord

C.G.E. COMPOSANTS

Parc des Moulins
2, rue de la Créativité
59650 VILLENEUVE D'ASCQ
Tel. 20.67.04.04

HEXA COMPOSANTS / DIRECT
Immeuble Le Tertial
1, rue des Promenades
B.P. 11

59110 LA MADELEINE
Tel. 20.55.58.03 Telex : 120934

SILECISIDE

Avenue Robert-Schuman C2 Résidence de l'Europe 59370 MONS-EN-BAROEUL Tel. 20.04.75.08 Telex : 172017

TEKELECIAIRTRONIC

Immeuble Moulin 2
5, rue du Colibri
59650 VILLENEUVE-D'ASCQ
Tel. 20.05.17.00 Telex : 160011

Est

C.G.E. COMPOSANTS

27, avenue Kléber
68000 COLMAR
Tel. 89.41.15.43 Telex : 880951

HEXA COMPOSANTS / SELFCO
31, rue du Fossé-des-Treize
67000 STRASBOURG
Tel. 88.22.08.88 Telex : 890706

SILEC/DEL
Rue de l'Escault
Z.I. St-Apollinaire

21000 DIJON
Tel. 80.71.57.45 Telex : 350833
SILECISLRD
36, rue des Jardins
B.P. 1

57023 METZ CEDEX 2
Tel. 87.32.53.12 Telex : 660177
SILEC/CODICOM
24, rue des Prés l'Évêque
10000 TROYES
Tel. 25.82.17.32 / 27.82.17.43
TEKELECIAIRTRONIC
8, rue Gustave-Adolphe-Hirn
67000 STRASBOURG
Tel. 88.22.31.51 Telex : 880765

Rhöne-Alpes

ALMEX

Norly 2
Route des Peupliers
69750 DARDILLY
Tel. 78.66.00.66 Telex : 375187
C.G.E. COMPOSANTS

101, rue de Dieu
69100 VILLEURBANNE
Tel. 78.68.32.29

PEP
191 C, avenue Saint-Exupéry 69500 BRON
Tel. 78.00.70.02 Telex : 340855

RTF DIFFUSION
Le Chatelet
5, place Carnot
42000 SAINT-ETIENNE
Tel. 77.74.61.49 Telex : 300921

SILEC

8, rue des Frères L.et-E. Bertrand 69632 VENISSIEUX CEDEX
Tel. 78.00.86.97 Telex : 340189

SILEC/DEL
Immeuble Le Zodiac
40, avenue de la Maveria
74000 ANNECY-LE-VIEUX
Tel. 50.23.17.29 Telex: 309261
Z.A.C. du Rondeau

Impasse du Docteur-Pascal
38431 ECHIROLLES CEDEX
Tel. 76.22.05.09 Telex : 960938
TCC-DIS
12 A, rue de Rupetit
69740 GENAS
Tel. 78.90.30.79

TEKELECIAIRTRONIC
22, rue de la Baïsse
69100 VILLEURBANNE
Tel. 78.84.06.08 Telex : 370481
Zirst 4
Chemin des Prés
38240 MEYLAN CEDEX
Tel. 76.41.11.36 Telex : 980207

Ouest

ALMEX
Immeuble Armorique
171, rue de Vern
35022 RENNES
Tel. 99.51.66.16 Telex : 741034
Telefax. 99.51.79.91
C.G.E. COMPOSANTS

9, rue du Général-Nicolet
B.P. 1466

35015 RENNES CEDEX
Tel. 99.50.40.40 Telex : 740311
HEXA COMPOSANTS
7, rue Mogador
76000 ROUEN
Tel. 35.89.57.11
HEXA COMPOSANTS / DIRECT
B.P. 4012

76021 ROUEN CEDEX
Tel. 35.98.17.98 Telex : 770842
Telefax. 35.88.50.81
RTF DIFFUSION
Rue des Landelles
Z.I. Sud-Est

35510 CESSON SEVIGNE
Tel. 99.41.81.21 Telex : 741239

SILECISIDE
Résidence Front-de-Seine
41, quai du Havre
76000 ROUEN
Tel. 35.98.22.99 Telex : 172017
SILEC/RIME
Rue de la Dutée
B.P. 38

44800 SAINT-HERBLAIN
Tel. 40.46.12.00 Telex : 710084
TEKELEC/AIRTRONIC
20, avenue de Crimée
B.P. 2246

35022 RENNES CEDEX
Tel. 99.50.62.35 Telex : 740414

Centre et Centre-Ouest

C.G.E. COMPOSANTS
Z.I. Allée de la Détente 86361 CHASSENEUIL-DU-POITOU
Tel. 49.52.88.88 Telex : 791525
SILEC/AUVERLEC
Z.I. 2, rue de l'Industrie
B.P. 2

63800 COURNON-D'AUVERGNE
Tel. 73.84.76.62 Telex : 390926
Telefax. 73.84.95.26

Aquitaine-Midi-Pyrénées

ALMEX
Immeuble "Centreda"
Avenue Didier-Daurat
31700 BLAGNAC
Tel. 61.71.11.22 Telex : 521370
C.G.E. COMPOSANTS
B.P. 81

33605 PESSAC CEDEX
Tel. 56.36.40.40 Telex : 550696
Telefax. 56.07.64.41
55, avenue Louis-Bréguet
31400 TOULOUSE
Tel. 61.20.82.38 Telex : 530957
HEXA COMPOSANTS / SODIMEP
Z.I. du Palays
B.P. 4345

31038 TOULOUSE CEDEX
Tel. 61.54.34.54 Telex : 530737
Telefax. 61.34.95.33
Cedex 52
Rue Edouard Faure
33083 BORDEAUX CEDEX
Tel. 56.39.93.42
SILECISPELEC
55, boulevard de Thibaud
31084 TOULOUSE CEDEX
Tel. 61.41.05.00 Telex : 530777

TEKELECIAIRTRONIC

Immeuble "Le Montesquieun
Avenue Président-Kennedy
33700 MERIGNAC
Tel. 56.34.84.11 Telex : 550589

22/24, boulevard Thibaud
31084 TOULOUSE CEDEX
Tel. 61.40.83.94 Telex : 520374

Provence-Cóte d'Azur

C.G.E. COMPOSANTS

Bureau 3000
Avenue Eugène-Donadei
Bât. B
06700 ST-LAURENT-DU-VAR
Tel. 93.07.77.67 Telex : 461481

HEXA COMPOSANTS / DIMEL

B.P. 1153

83058 TOULON CEDEX
Tel. 94.41.49.63 Telex : 430093
Telefax. 94.46.54.66

TCC-DIS/SRD

Z.A. l'agavon

Avenue Lamartine
13170 LES PENNES-MIRABEAU
Tel. 42.02.91.08 Telex : 440076
TEKELECIAIRTRONIC
Tertia 2
B.P. 77

13762 LES MILLES CEDEX
Tel. 42.24.40.45 Telex : 440928

GERMANY AND AUSTRIA

ELECDIS RUGGABER GMBH
Hertichstr. 41
7250 LEONBERG / STUTTGART
Tel. (49 7152) 602.0 Telex : 724192

ECS FREHSDORF GMBH

Carl-Zeiss-Str. 3
2085 QUICKBORN
Tel. (49 4106) 700.50 Telex : 213693

JERMYN GMBH

Schulstr. 84
6277 BAD CAMBERG
Tel. (49 6434) 230 Telex : 415257
Telefax. (49 6434) 23-289

METRONIK GMBH

Leonhardsweg 2
8025 UNTERHACHING
Tel. (49 89) 61108-0 Telex : 17/897434
Telefax. (49 89) 6116468
RSC-HALBLEITER UND
Elektronische Bauelemente GMBH
Industriestr. 2
7536 ISPRINGEN / PFORZHEIM
Tel. (49 7231) 801-0 Telex : 783650
Telefax. (49 7231) 82282
SETRON SCHIFFER ELECTRONIC GMBH
Theodor-Heuss-Str. 4b
3300 BRAUNSCHWEIG
Tel. (49 531) 80011 Telex : 952812
Telefax. (49 531) 85910

SPOERLE ELEKTRONIK KG

Max-Plank-Str. 1-3
6072 DREIEICH
Tel. (49 6103) 304-0 Telex : 417983
Telefax. (49 6103) 304201

ELBATEX GES.M.B.H.
Eitnergasse 6
A-1232 WIEN
Tel. (43 222) 86.32.11-0 Telex : 133128
Telefax. (43 222) 86.32.11-200

GREECE

MAKONIK A. LUCINI AND CO.OE
90 Archilleus Street
KALLITHEA - ATHENS
Tel. (30) 941.93 .29 Telex : 219150 MAKO GR

HONG KONG

JARDINE INDUSTRIAL SUPPLIES
20 th Floor, Sing Pao Building
101, King's Road, North Point, HONG KONG
Tel. (852 5) 716213 Telex : 60004 JISHK HX
Telefax. (852 5) 807.29.30

INDONESIA

PT GENERAL EKA ENGINEER'S CORP LTD
JLN Tanah Abang IV NO 15
JAKARTA
Tel. (6221) 361608 Telex : 46761 TTGE IA

ITALY

ADVECO

Via-Lattuada, 20
20135 MILANO
Tel. (39 2) 545.64 .65 Telex : 340116
CAMEL
Via Tiziano 18
20145 - MILANO
Tel, (39 2) 498.14.81 Telex : 325237
Telefax. (39 2) 481.86.37
COMPREL S.P.A.
Viale F. Testi 115
20092 CINISELLO BALSAMO (MI)
Tel. (39 2) 612.06.41/5 Telex : 332484
Telefax. (39 2) 612.81 .58

ELEDRA

Via Giacomo Watt, 27
20143 MILANO
Tel. (39 2) 81.82.1 Telex : 332332
Telefax. (39 2) 81.82.211
LASI
Viale F. Testi 126
20092 - CINISELLO BALSAMO (MI)
Tel. (39 2) 244.00.12-212 Telex : 352040
Telefax. (39 2) 248.77.17

MECOM

Via Ognissanti, 83
35129 PADOVA
Tel. (39 2) 807.03.22 Telex : 430602
Telefax. (39 049) 807.02.78

RECOM

Via E. Collamarini, 22
40138 BOLOGNA
Tel. (39 051) 53.48.83 Telex : 511818
Telefax. (39 051) 53.12.17

JAPAN

AMSC CO, LTD
Asahiseimei 6-7, Nakamachi 1-chome,
Musashino-Sh 1 ,
TOKYO 180
Tel. (81 422) 54.6800
Telefax. (81 422) 54.6179
Toabo 2nd Bldg 23, Awajimachi 3-chome,
Higashiku
OSAKA 541
Tel. (81 06) 222.1031

INTERNIX INC.

Shinjuku Hamada Bldg
7-4-7, Nishi Shinjuku
SHINJUKU-KU, TOKYO 160
Tel. (81 3) 369-1101 Telex : J26733
Telefax. (81 3) 366-8566

MCM JAPAN LTD

Maison L-203
1-1-6, Sakurashinmachi-Setagaya-ku
TOKYO 154
Tel. (81 3) 705.5611 Telex : 02466416MCM JPNJ
Telefax. (81 3) 705.5617

MICRO SUMMIT K.K.

NO. 5 MORI BIdg
1-17-1 Toranomon
MINATO-KU, TOKYO 105
Tel. (81 3) 593-2210
Telefax. (81 3) 593-2206
TOMEN ELECTRONICS CORP.
1-1 Uchisaiwai-cho 2 chome
CHIYODA-KU, TOKYO 100
Tel. (81 3) 506-3671
Telefax. (81 3) 506-3497

MALAYSIA

COSMOS COMPANY

79 B Jalan Jejaka 9
Taman Maluri, cheras
55100 KUA LA LUMPUR
Tel. (60 03) 985.1812 Telex : MA 21527 COSMOS

NEW ZEALAND

HENLYNN DISTRIBUTORS LTD

Po. Box 12550
PENROSE AUCKLAND
Tel. (64 9) 592453 Telex : NZ 63677
Telefax : (64 9) 592561

NORWAY

SATT ELECTRONICS A/S
P.O Box 70
$\mathrm{N}-1322$ HOVIK
Tel. (47 2) 12.36 .00 Telex : 72558
Telefax. (47 2) 12.32.10

PHILIPPINES

EDGE-HORTH MARKETING CORPORATION

5TH FLR, Pacific Bank Bldg,
O, Paredes Street, C.P.O. Box 2 '29
BINONDO, MANILA
Tel. (63) 471541/8 Telex : RCA 27993 EDAMC PH

RG2
Via Rosa Luxemburg $12 / 14$
10093 COLLEGNO, TORINO
Tel. (39 011) 71.22.89 Telex : 224335

PORTUGAL

ELECTROQUIPO
15, rua S. José
1100 LISBOA
Tel. (351) 37.03.17
Telex: 18123 Electroquipo

SINGAPORE

CONY ELECTRONICS (S) PRIVATE LTD
10 Jalan Besar \# 03-25
Sim Lim Tower
SINGAPORE 0820
Tel. (65) 296.21.11 Telex : RS 34804 CONY
Telefax. (65) 296.03.39

SOUTH KOREA

BUK SUNG TRADING COMPANY LTD
\# 502 Samyung Building
159-22 Docksan-4 Dong
KURO-KU, SEOUL
Tel. (82 2) 854.1362/3/4 Telex : BUSUCO K 26925
Telefax. (82 2) 862.1273

SPAIN

SAGITRON, S.A.
Castelló, 25
28001 MADRID
Tel. (34 1) 402.60.85 Telex : 43819
Telefax. (34 1) 275.40.23
Ronda General Mitre, 200
08006 BARCELONA
Tel. (34 3) 212.65.83 Telex : 97317

VECTOR ESPANA, S.A.
Torre de Madrid
Plaza de Espana, 18
28008 MADRID
Tel. (34 1) 247.72.96' Telex : 49331
Muntaner, 281
08021 BARCELONA
Tel. (34 3) 200.37.44 Telex : 98343

SWEDEN

FERTRONIC AB
Box 3035/Dalvagen 12
S-17103 SOLNA
Tel. (46 8) 83.00.60 Telex : 11181 FERTRON S
Telefax. (46 8) 83.28.20

TH'S ELEKTRONIK AB

Box 3027
Arrendevagen 36
S-16303 - SPANGA
Tel. (46 8) 36.29.70 Telex : 11145
Telefax. (46 8) 761.30.65

SWITZERLAND

MODULATOR S.A.
Konizstrasse 194
CH-3097 BERN-LIEBEFELD
Tel. (41 31) 59.22.22 Telex : 911859
Telefax.(41 31) 21.02.85

TAIWAN

HUGE CO LTD
10F, $n^{\circ} 95$, SEC 4
Nanking E Road
TAIPEI/TAIWAN
Tel. (886 2) 771.5373-5 Telex : 25619 Huge Co
Telefax. (886 2) 717.4114

THAILAND

CHOAKCHAÏ ELECTRONIC SUPPLIES LTD.PART.
128/21-23 THANON ATSADANG
BANGKOK 10200
Tel. (66 2) 222.3921/221.9075 Telex : 84809 CESLP TH
Telefax. (66 2) 224.7639

UNITED KINGDOM AND IRELAND

ABACUS ELECTRONICS LTD
Abacus House - Bone Lane
Newbury
BERKSHIRE RG14 5SF
Tel. (44 635) 33311/5 Telex : 847589

ADDON DEVICES

11 Shield Road
Ashford Industrial Estate
ASHFORD MIDDLESEX TW 15 1AU
Tel. (44 7842) 47141/2/3 Telex : 923802

ANZAC COMPONENTS LTD

822 Yeovill Road
Slough Trading Estate
SLOUGH SL1 4JA
Tel. (44 6286) 4701 Telex : 847949
BLOOMER ELECTRONIC COMPONENTS
9-10 Carn industrial Estate
Portadown Co. Armagh
NORTHERN IRELAND BT 63 5RH
Tel. (353 762) 339818 Telex : 748054
HAWKE ELECTRONICS
Amotex House
45 Hanworth Road
Sunbury on Thames
MIDDLESEX TW 16 5DA
Tel. (44 1) 979.7799 Telex : 723592

HITEK
Ditton Walk
Beadle Estate
CAMBRIDGE CB 5 8QD
Tel. (44 223) 214722 Telex : 817347
Telefax. (44 223) 214365

HYCOMP
11 Shield Road
Ashford Industrial Estate
ASHFORD MIDDLESEX TW 15 1AU
Tel. (44 7842) 46273 Telex : 923802
POLAR ELECTRONICS LTD
Europa House/West Street
Leighton Buzzard
BEDFORSHIRE
Tel. (353 525) 377093 Telex : 825238
PRONTO ELECTRONICS
399-425 Eastern Avenue
GANTS HILL - ILFORD
ESSEX
Tel. (44 1) 554622 Telex : 8954213

SEMICONDUCTOR SPECIALISTS

Carroll House
159, High Street
West Drayton / MIDDLESEX
Tel. (44 8954) 46415 Telex : 21958
TRANSWORLD SCIENTIFIC
Richardson Street
HIGH WYCOMBE
BUCKINGHAMSHIRE HP11 2QH
Tel. (353 494) 36381 Telex : 837236

U.S. AND CANADIAN SALES NETWORK

SALES OFFICES (march 1987)

TECHNICAL SUPPORT:
Thomson Components - Mostek Corporation 16 Commerce Drive
16 Commerce Drive
Montgomeryville, PA 18936-1002
Montgomeryv
215/362-8500
FAX 215/362-1293

WESTERN AREA:

Thomson Components - Mostek Corporation 2540 Mission College Blvd.
Suite 104
Santa Clara, CA 95054
408/970-8585
FAX 408-970-8737
Thomson Components - Mostek Corporation
18004 Skypark Circle
Suite 140
Irvine, CA 92714
714/250-0455
FAX 714/261-1505
Thomson Components - Mostek Corporation
6203 Variel Ave.
Unit A, P.O. Box 4051
Woodland Hills, CA 91367
818/887-1010
FAX 818/702-0725
Thomson Components - Mostek Corporation
1107 North East 45th St.
Suite 411
Seattle, WA 98105
206/632-0245
FAX 206/633-5413
Thomson Components - Mostek Corporation
601 South Bowen St.
Longmont, CO 80501
303/449-9000
FAX 303/651-7676
Thomson Components - Mostek Corporation
7950 East Redfield Rd.
Suite 160
Scottsdale, AZ 85260
602/998-1580
FAX 602/483-2303
Thomson Components - Mostak Corporation
7155 SW Varns St.
Tigard, OR 97223-8057
503/620-5517
FAX 503/639-3591

CORPORATE HEADQUARTERS
Thomson Components - Mostek Corporation
1310 Electronics - MS1137
Carrollton, TX 75006
214/466-6000

CENTRAL AREA:
Thomson Components - Mostek Corporation 1310 Electronics
MS1137
Carroliton, TX 75006
214/466-8844
TWX 910-860-5437
Thomson Components - Mostek Corporation
6100 Green Valley Drive
Suite 130
Bloomington, MN 55438
612/831-2322
FAX 612/831-8195
Thomson Components - Mostek Corporation 1827 Walden Office Square
\#430
Schaumburg, IL 60173
312/397-6550
FAX 312/397-4066
Thomson Components - Mostek Gorporation
3215 Steck Ave.
Suite 202
Austin, TX 78758
Austin, 1×787
$512 / 451-4061$
TWX 910-874-2007
Thomson Components - Mostek Corporation 26677 W. 12 Mile Rd.
Suite \#141
Southfield, M1 48034
313/354-5840
FAX 313/354-3370

CANADA

Thomson CSF Canada
Semiconductor Division
Semiconductor Divisio
1000 Sherbrooke West
1000 Sherbrooke West
Suite 2340
Suite 2340
Montreal, Quebec H3A 3G4
514/288-4148
FAX 514/288-8987
Thomson Components - Mostek Corporation
44 Rosebud Ave.
Brampton, Ontario L6X 2W5
416/454-5252
FAX 416/454-4328

FOR ALL OTHER COUNTRIES
Thomson Semiconducteurs
43, Avenue de L'Europe
78140 Vélizy-Villacoublay/France
Tél: (1) 394697 19/Télex: 204780 F
or contact Corporate Headquarters

EASTERN AREA:

Thomson Components - Mostek Corporation 83 Cambridge Street
Suite 2A
Burlington, MA 01803
617/273-3310
FAX 617/272-2467
Thomson Components - Mostek Corporation The Pavilions at Greentree
Route \#73, Suite 101
Mariton, NJ 08053
609/596-9200
FAX 609/424-7437
Thomson Components - Mostek Corporation 4414 Evangel Cr. \#C
Huntsville, AL 35816
205/830-9036
FAX 205/830-9038
Thomson Components - Mostek Corporation 4651 Crossroads Park
Liverpool, NY 13088
315/457-2160
FAX 315/457-2164
Thomson Components - Mostek Corporation
387 Hooker Avenue
Office No. 2
Poughkeepsie, NY 12603
914/454-8813
FAX 914/454-1320
Thomson Components - Mostek Corporation
5890 Sawmill Rd.
Suite 204
Dublin, Ohio 43017
614/761-0676
FAX 614/761-2305
Thomson Components - Mostek Corporation
3200 Northline Avenue
Forum VI, Sulte 501
Greensboro, NC 27408
919/282-4307
Thomson Components - Mostek Corporation
1014 Park Forest Court
Lilburn, GA 30247
404/925-2324

U.S. AND CANADIAN SALES NETWORK

REPRESENTATIVES (March 1987)

CONNECTICUT
Scientific Components*
1185 S. Main St.
Cheshire, CT 06410
(203) 272-2963

FAX (203) 271-3048

FLORIDA

Sales Engineering Concepts, Inc.
926 Great Pond Dr
Suite 2002
Altamonte Springs, FL 32714
(305) 682-4800

FAX (305) 682-6491
Sales Engineering Concepts, Inc.* 1000 S. Federal Hwy.
Suite 204
Deerfield Beach, FL 33441
(305) 426-4601

TWX 510-600-7740

ILLINOIS

John G. Twist Co.*
1301 Higgins Zoad
Elk Grove Village, IL 60007
(312) 593-0200

TWX 510-601-0552

INDIANA

M/S Sales Associates, Inc.*
7319 W. Jefferson Blvd.
Ft. Wayne, IN 46804
(219) 436-3023

FAX (219) 436-3026

M/S Sales Associates, Inc. 1425 E. 86th St. Indianapolis, $\mathbb{N} 46240$
(317) 257-8916

KANSAS

Rush \& West Associates
107 N. Chester Street
Olathe, KS 66061
(913) 764-2700

TWX 910-380-8110

MARYLAND

Tri-Mark Inc.*
1410 Crain Hwy. NW Glen Burnie, MD 21061
(301) 761-6000

FAX (301) 761-6006

MASSACHUSETTS

AD Nova Sales, Inc.*
2 Milita Drive
Lexington, MA 02173
(617) 861-1820

MICHIGAN

Electronic Sources, Inc.*
8014 W. Grand River
Suite 6
Brighton, MI 48116
(313) 227-3598

FAX (313) 227-5655
minnesota
Horizon
8053 East Bloomington Freeway
Bloomington, MN 55420
(612) 884-6515

FAX (612) 888-3073

MISSOURI

Rush \& West Associates
2170 Mason Rd.
St. Louis, MO 63131
(314) 965-3322

TWX 910-752-653
TELEX 752653
NEW JERSEY
Tritek Sales, Inc.*
21 E. Euclid Ave
Haddonfield, NJ 08033
(609) 429-1551

TWX 215-627-0149 (Philadelphia Line) TWX 710-896-0881

NE Components*
189-191 Godwin Ave.
Wyckoff, NJ 07481
(201) 848-1100

NEW YORK
Empire Technical Assoc.* 33 West State St.
Suite 211B
Binghamton, NY 13901
(607) 772-0651

GT Sales*
34 Grand Blvd.
Brentwood, NY 11717
(516) 231-0270

OHIO

Five Star Electronics* 6200 S.O.M. Center Road
Suite B 21
Solon, OH 44139
(216) 349-1611

WISCONSIN

Heartland Technical Marketing
3846 Wisconsin Ave.
Milwaukee, WI 53208
(414) 931-0606

CANADA

Solution Electronic Sales* 100A 3380 Maquinna Dr. Vancouver, B.C. V5S 4C9 (604) 438-0679

U.S. AND CANADIAN SALES NETWORK
 DISTRIBUTORS (March 1987)

ALABAMA

Marshall Industries
3313 S. Memorial Pkwy.
Huntsville, AL 35801
(205) 881-9235

Quality Components, S.E.
4900 University Square \#207
Huntsville, AL 35817
(205) 830-1881

Pioneer Technologies Group 4825 University Square
Huntsville, AL 35805
(205) 837-9300

Schweber Electronics
4930-A Corporate Drive
Huntsville, AL 35805
(205) 895-0480

ARIZONA

Kierulff Electronics
4134 E. Wood Street
Phoenix, AZ 35040
(602) 437-0750

Marshall Industries
835 West 22nd St.
Tempe, AZ 85282
(602) 968-6181

Schweber Electronics
11049 North 23rd Drive
Suite 100
Phoenix, AZ 85029
(602) 997-4874

ARKANSAS

See Oklahoma

CALIFORNIA

Integrated Electronics Corp.
7000 Franklin Blvd., Suite 625
Sacramento, CA 95823
(916) 424-5297

Integrated Electronics Corp.
2170 Paragon Drive
San Jose, CA 95131
(408) 435-1000

ITAL Sales
15405 Proctor Avenue
City of Industry, CA 91745
(818) 968-8515

Kierulff Electronics
9800 Variel Avenue
Chatsworth, CA 9131
(818) 407-2500

Kierulff Electronics
5650 Jillison St.
Los Angeles, CA 90040
(213) 725-0325

Kierulff Electronics
8797 Balboa Avenue
San Diego, CA 92123
(619) 278-2112

Kierulf Electronics
1180 Murphy Avenue
San Jose, CA 95131
(408) 971-2600

Kierulff Electronics
14101 Franklin Avenue
Tustin, CA 92680
(714) 731-5711

Marshall Industries
One Morgan
Irvine, CA 92715
(714) 458-5395

Marshall Industries
9710 DeSoto Avenue
Chatsworth, CA 91311
(818) 407-0101

Marshall Industries
3039 Kilgore Ave., \#140
Rancho Cordova, CA 95670
(916) 635-9700

Marshall Industries
10105 Carroll Canyon Rd.
San Diego, CA 92131
(619) 578-9600

Marshall Industries
336 Los Coches St.
Milpitas, CA 95035
(408) 943-4600

Schweber Electronics
21139 Victory Blvd
Conoga Park, CA 91303
(818) 999-4702

Schweber Electronics
1225 West 190th Street
Suite 360
Gardena, CA 90248
(213) 327-8409

Schweber Electronics
17822 Gillette Avenue
Irvine, CA 92714
(714) 863-0264

FAX (714) 863-0200 (X500)
Schweber Electronics
1771 Tribute Rd. Suite B
Sacramento, CA 95815
(916) 929-9732

FAX (916) 929-5608
Schweber Electronics
6750 Nancy Ridge Drive
San Diego, CA 92121
(619) 450-0454

TWX 910-335-1155
Schweber Electronics
90 E. Tasman Drive
San Jose, CA 95131
(408) 946-7171

Zeus Components
1130 Hawk Circle
Anaheim, CA 92807
(714) 632-6880

TWX 910-591-1696
FAX (714) 630-8770
Zeus Components
1580 Old Oakland Road
Suite C205/C206
San Jose, CA 95131
(408) 998-5121

TWX 408-628-96083
FAX (408) 998-0285

COLORADO
Integrated Electronics Corp.
5750 N. Logan Street
Denver, CO 80216
(303) 292-6121

Kierulff Electronics
7060 South Tuscon Way
Englewood, CO 80112
(303) 790-4444

Marshall Industries
7000 North Broadway
Denver, CO 80221
(303) 427-1818

Schweber Electronics
8955 E. Nicholas, Bldg. 2
Englewood, CO 80221
(303) 799-0258

CONNECTICUT

Greene-Shaw
1475 Whalley Avenue
New Haven, CT 06525
(203) 397-0710

TWX 92-2498
Marshall Industries
20 Sterling Drive
Barnes Industrial Park, N.
P.O. Box 200

Wallingford, CT 06492-0200
(203) 265-3822

Pioneer-Standard
112 Main Street
Norwalk, CT 06851
(203) 853-1515

TWX 710-468-3373
FAX (203) 838-9901
Schweber Electronics
Commercial Industrial Park
Finance Drive
Danbury, CT 06810
(203) 748-7080

TWX 710-456-9405

DELAWARE

See New Jersey
Pennsylvania

florida

All American Semiconductor
16251 N.W. 54th Avenue
Miami, FL 33014
(305) 621-8282

800-327-6237
Marshall Industries
4205 34th St., S.W.
Orlando, FL 32811
(305) 841-1878
(305) 841-1878

Pioneer Technologies Group
337 S. North Lake, \#1000
Altamonte Springs, FL 32701
(305) 834-9090

TWX 810-853-0284
Pioneer Technologies Group
674 S. Military Trail
Deerfield Beach, FL 33441
(305) 428-8877

TWX 510-955-9653

Schweber Electronics
215 North Lake Blvd
Altamonte Springs, FL 32701
(305) 331-7555

TWX 510-954-0304
Schweber Electronics
3665 Park Central Blvd. N.
Pompano Beach, FL 33064
(305) 977-7511

TWX 510-954-0304
Zeus Components
1750 West Broadway
Suite 114
Oviedo, FL 32765
(305) 365-3000

TWX 910-380-7430
FAX (305) 365-2356

GEORGIA

Dixie Electronics
1234 Gordon Park Road
Augusta, GA 30901
(404) 722-2055

Pioneer Technologies Group
3100 F. Northwoods Place
Norcross, GA 30071
(404) 448-1711

TWX 810-766-4515
Quality Components
6145 N. Belt Parkway \#B
Norcross, GA 30071
(404) 449-9508

TWX 510-601-5297
629-32421
Schweber Electronics
303 Research Drive
Suite 210
Norcross, GA 30092
(404) 449-9170

TWX 810-766-1592

ILLINOIS

Advent Electronics
7110-16 N. Lyndon St.
Rosemont, IL 60018
(312) 297-6200

Kierulff Electronics
1140 W. Thorndale Ave.
Itasca, IL 60143
(312) 250-0500

Marshall Industries
1261 Wiley Road
\#F
Schaumburg, IL 60195
(312) 490-0155

Pioneer-Standard
1551 Carmen Drive
Elk Grove Village, IL 60007
(312) 437-9680

Schweber Electronics
904 Cambridge Drive
Elk Grove Village, IL. 60007
(312) $364-3750$

TWX 910-222-3453

U.S. AND CANADIAN SALES NETWORK

DISTRIBUTORS (March 1987)

INDIANA
 Advent Electronics

8446 Moller Road
Indianapolis, IN 46268
(317) 872-4910

TWX 810-341-3228
Marshall Industries 6990 Corporate Dr. Indianapolis, IN 46278 (317) 297-0483

Pioneer-Standard
6408 Castleplace Drive
Indianapolis, IN 46250
(317) 849-7300

TWX 810-260-1794

IOWA

Advent Electronics
682 58th Avenue, Ct. SW
Cedar Rapids, IA 52404
(319) 363-0221

TWX 910-525-1337
Schweber Electronics
5270 North Park Place, NE
Cedar Rapids, IA 52402
(319) 373-1417

KANSAS

Marshall Industries
8321 Melrose Dr.
Lenexa, KS 66214
(913) 492-3121

Schweber Electronics 10300 West 103rd Street Suite 200
Overland Park, KS 66214
(913) 492-2922

KENTUCKY

See Indiana
LOUISIANA
See Texas

MAINE

See Massachusetts

MARYLAND

Marshall Industries
8445 Helgerman Court
Gaithersburg, MD 20877
(301) 840-9450

Pioneer Technologies Group
9100 Gaither Road
Gaithersburg, MD 20877
(301) 921-0660

TWX 710-828-0545
Schweber Electronics
9330 Gaither Road
Gaithersburg, MD 20877
(301) 840-5900

TWX 710-828-9749
Zeus Components
8930-A Route 108
Columbia, MD 21045
(301) 997-1118

TWX 910-380-3554
FAX (301) 964-9784

MASSACHUSETTS

Greene-Shaw 70 Bridge Street Newton, MA 02195
(617) 969-8900

TWX 92'2498

Kierulff Electronics
13 Fortune Drive
Billerica, MA 01821
(617) 667-8331

Lionex Corporation
36 Jonspin Road
Wilmington, MA 01887
(617) 657-5170

FAX (617) 657-6008
Marshall Industries
One Wilshire Road
Burlington, MA 01803
(617) 272-8200

Schweber Electronics
25 Wiggins Avenue
Bedford, MA 01730
(617) 275-5100

TWX 710-326-0268
Zeus Components
429 Marrett Road
Lexington, MA 02173
(617) 863-8800

TWX 710-326-7604
FAX (617) 863-8807

MICHIGAN

Advent Electronics
24713 Crestview Ct.
Farmington Hills, MI 48018
(313) 477-1650

Pioneer-Standard
4505 Broadmoor Avenue SE
Grand Rapids, MI 49508
(616) 698-1800

TWX 510-600-8456
Pioneer-Standard
13485 Stamford
Livonia, MI 48150
(313) 525-1800

TWX 810-242-3271
Schweber Electronics
12060 Hubbard Ave. CN3306
Livonia, MI 48150
(313) 525-8100

TWX 810-242-2983

MINNESOTA

Kierulff Electronics
7667 Cahill Road
Edina, MN 55435
(612) 941-7500

Marshall Industries
3800 Annapolis Lane
Plymouth, MN 55441
(612) 559-2211

Pioneer Standard
10203 Bren Road East
Minnetonka, MN 55343
(612) 935-5444

TWX 910-576-2738
Schweber Electronics
7424 W. 78th Street
Edina, MN 55435
(612) 941-5280

TWX 910-576-3167
MISSISSIPPI
See Texas

MISSOURI
Kierulff Electronics
11804 Borman Drive
St. Louis, MO 63146
(314) 997-4956

TWX 910-762-0721
Schweber Electronics
502 Earth City Expressway
Suite 203
Earth City, MO 63045
(314) 739-0526

TWX 43-4065
MONTANA
See California
NEBRASKA
See lowa
NEW HAMPSHIRE
Schweber Electronics
Bedford Farms Bldg. \#2
Manchester, NH 03102
(603) 625-2250

TWX 710-220-7572
FAX (603) 625-5710
NEW JERSEY
Kierulff Electronics
37 Kulick Road
Fairfield, NJ 07006
(201) 575-6750

Marshall Industries
101 Fairfield Rd.
Fairfield, NJ 07006
(201) 882-0320

Pioneer-Standard
45 Route 46
Pine Brook, NJ 07058
(201) 575-3510

TWX 710-734-4382
Schweber Electronics
18 Madison Road
Fairfield, NJ 07006
(201) 227-7880

TWX 710-734-4305
Solid State
46 Farrand Street
Bloomfield, NJ 07003
(201) 429-8700

TWX 710-994-4780
FAX (201) 429-8683
NEW YORK
Add Electronics
7 Adler Drive
E. Syracuse, NY 13057
(315) 437-0300

Nu-Horizons Electronics 6000 New Horizons Blvd. N. Amityville, NY 11701
(516) 226-6000

Pioneer-Standard
840 Fairport Park
Fairport, NY 14450
(716) 381-7070

TWX 510-253-7001
FAX (716) 381-5955
Pioneer-Standard
1806 Vestal Pkwy. East
Vestal, NY 13850
(607) 748-8211

TWX 510-252-0893

Pioneer-Standard
Crossways Park West
Woodbury, NY 11797
(516) 921-8700

TWX 510-221-2184
FAX (516) 921-2143
Schweber Electronics
3 Townline Circle
Rochester, NY 14623
(716) 424-2222

TWX 710-541-0601
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590
(516) 334-7474

TWX 510-220-1365
Zeus Components 100 Midland Avenue Port Chester, NY 10573
(914) 937-7400

TWX 710-567-1248
FAX (914) 937-2553
NORTH CAROLINA
Dixie Electronics
2220 S. Tryon Street
Charlotte, NC 28234
(704) 377-4348

Dixie Electronics
1021 R. Burke St.
Winston-Salem, NC 27102
(919) $724-5961$

Hammond Electronics
2923 Pacific Avenue
Greensboro, NC 27406
(919) 275-6391

TWX 628-94645
Pioneer Technologies Group
9801 A Southern Pine Blvd.
Charlotte, NC 28210
(704) 527-8188

TWX 810-621-0366
Quality Components, S.E.
2940-15 Trawick Road
Raleigh, NC 27604
(919) 876-7767

Schweber Electronics
5285 North Blvd.
Raleigh, NC 27604
(919) 876-0000

TWX 510-928-0531
NORTH DAKOTA
See Minnesota

OHIO

Kierulff Electronics
476 Windsor Park Drive
Dayton, OH 45459
(513) 439-0045

Marshall Industries
6212 Executive Blvd.
Dayton, OH 45424
(513) 236-8088

Marshall Industries
59058 Harper Road
Solon, OH 44139
(216) 248-1788

U.S. AND CANADIAN SALES NETWORK

DISTRIBUTORS (March 1987)

OHIO (cont.)	Schweber Electronics	Pioneer-Standard	Almac Electronics Corp.
Pioneer-Standard	900 Business Center Dr.	5853 Point West Drive	East 10905 Montgomery
4800 East 131st Street	Horsham, PA 19044	Houston, TX 77036	Spokane, WA 99206
Cleveland, OH 44105	(215) 441-0600	(713) 988-5555	(509) 924-9500
(216) 587-3600	TWX 510-665-6540	TWX 910-881-1606	TWX 510-773-1855
TWX 810-421-0011			FAX (509) 928-6096
	Schweber Electronics	Quality Components	
Pioneer-Standard	1000 R.I. D.C. Plaza	4257 Kellway Circle	Kierulff Electronics
4433 Interpoint Blvd.	Suite 203	Addison, TX 75001	19450 68th Ave.
Dayton, OH 45424	Pittsburgh, PA 15238	(214) 733-4300	South Kent, WA 98032
(513) 236-9900	(412) 782-1600	TWX 910-860-5459	(206) 575-4420
TWX 810-459-1622	TWX 810-427-9441		
		Quality Components	Marshall Industries
Schweber Electronics	RHODE ISLAND	1005 Industrial Bivd.	14102 N.E. 21st St.
23880 Commerce Park Rd.	See Massachusetts	Sugarland, TX 77478	Bellevue, WA 98007
Beachwood, OH 44122	New York	(713) 240-2255	(206) 747-9100
(216) 464-2970		TWX 62927026	
TWX 810-427-9441	SOUTH CAROLINA		WASHINGTON D.C.
	Dixie Electronics	Quality Components	See Maryland
Schweber Electronics	1900 Barnwell Street	2120 M. Braker Lane	
7865 Paragon Road	Columbia, SC 29202	Austin, TX 78758	WEST VIRGINIA
Suite 210	(803) 779-5332	(512) 835-0220	See Ohio
Dayton, OH 45459	TLX 810-666-2620	TWX 324930	Pennsylvania
(513) 439-1800	FAX (803) 765-9276		Maryland
		Schweber Electronics	
Zeus (Televox)	Dixie Electronics	4202 Beltway Drive	WISCONSIN
2593 Lance Drive	531 E. Palmetto Street	Dallas, TX 75234	Kierulff Electronics
Dayton, OH 45409	Florence, SC 29503	(214) 661-5010	2238-E West Bluemound Road
(513) 294-4499	(803) 669-8201	TWX 910-860-5493	Waukesha, WI 53186
TWX 75-9251			(414) 784-8160
FAX (513) 294-6620	Dixie Electronics	Schweber Electronics	
	4909 Pelham Rd.	6300 La Calma Drive	Marshall Industries
OKLAHOMA	Greenville, SC 29606	Suite 240	235 North Executive Dr.
Quality Components	(803) 297-1435	Austin, TX 78752	\#305
9934 East 21st South		(512) 458-8253	Brookfield, WI 53005
Tulsa, OK 74129	Dixie Electronics	TWX 910-874-2045	(414) 797-8400
(918) 664-8812	\#6 Pepperhill Square		
TWX 910-860-5459	7525 Brandywine Road	Schweber Electronics	Schweber Electronics
629-28599	N. Charleston, SC 29410 (803) 552-2671	10625 Richmond, Suite 100 Houston, TX 77042	3050 South Calhoun Rd. New Berlin, WI 53151
Schweber Electronics		(713) 784-3600	(414) 784-9020
4815 South Sheridan	SOUTH DAKOTA	TWX 910-881-4836	
Fountain Plaza, Suite 109	See Minnesota		WYOMING
Tulsa, OK 74145		Zeus Components	See Oregon
(918) 622-8000	TENNESSEE	1800 North Glenville	Washington
	Dixie Electronics	Suite 120	
OREGON	Box 8215 Suncrest Drive	Richardson, TX 75081	CANADA
Almac Electronics Corp.	Gray, TN 37615	(214) $783-7010$	R.A.E. Industrial
1885 N.W. 169th Place	(615) 477-3838	TWX 910-867-9422	3455 Gardner Court
Beaverton, OR 98006		FAX (214) 234-4385	Burnaby, B.C.
(503) 629-8090	Dixie Electronics		(604) 291-8866
FAX (503) 645-0611	6408 Clinton Highway	UTAH	TWX 610-929-3065
TWX 910-467-8743	Knoxville, TN 27912	Integrated Electronics Corp.	
	(615) 938-4131	101 N. 700 West	R.A.E. Industrial
Kierulff Electronics		N. Salt Lake City, UT 84054	11680 170th Street
14273 N.W. Science Park Drive	TEXAS	(801) 298-1869	Edmonton, Alberta
Portland, OR 97229	Kierulff Electronics		T5S 1.17
(503) 641-9150	9610 Skillman Ave.	Kierulff Electronics	(403) 451-4001
	Dallas, TX 75243	1846 Parkway Blvd.	TWX 037-2653
Marshall Industries	(214) 343-2400	Salt Lake City, UT 84119	
8333 S.W. Cirrus Dr.		(801) 973-6913	Zentronics
Beaverton, OR 97005	Marshall Industries		8 Tilbury Court
(503) 644-5050	2045 Chenault St.	Marshall Industries	Brampton, Ontario
PENNSYLVANIA		3501 South Main St.	
	(214) 233-5200	Salt Lake City, UT 84115	(416) 451-9600
Almo Electronics. Inc. 9815 Roosevelt Blvd.	FAX (214) 770-0675	(801) 261-0901	TWX 06-97678
Philadelphia, PA 19114	Pioneer-Standard	VERMONT	FAX (416) 451-8320
(215) 698-4063	13710 Omega Road	See New York	Zentronics
TLX 476-1218	Dallas, TX 75234		3300-14 Ave., NE Bay \#1
FAX (215) 969-6768	(214) 386-7300	VIRGINIA	Caigary, Alberta
	TWX 910-860-5563	See Maryland	T2A 6 J4 (403) 272-1021
259 Kappa Drive			(403) 272-1021
Pittsburgh, PA 15238 (412) 782-2300	9901 Burnet Road	Almac Electronics Corp.	Zentronics
TWX 710-795-3122	Austin, TX 78758	14360 S.E. Eastgate Way	155 Colonnade, S. \#17/18
	(512) 835-4000	Bellevue, WA 98007	Nepean, Ontario
Pioneer Technologies Group	TWX 910-874-1323	(206) 643-9992	K2E 7K1
261 Gibraltar Road		TWX 910-444-2067	(613) 226-8840
Horsham, PA 19044		FAX (206) 746-7425	TWX 06-97698
(215) 674-4000TWX 510-665-6778			

U.S. AND CANADIAN SALES NETWORK
 DISTRIBUTORS (March 1987)

CANADA (cont.)	Zentronics	Future Electronics	Future Electronics
Zentronics	590 Berry Street	5312 Calgary Trail South	1695 Boundary Road
11400 Bridgeport Rd. \#108	Winnipeg, Manitoba	Edmonton, Alberta	Vancouver, B.C.
Richmond, B.C.	R3H OS1	T6H 4 J8	B5K 4X7
V6X 1 T2	(204) 775-8661	(403) 438-2858	(604) 294-1166
(604) 273-5575	TWX 06-97678		TLX 04354744
TWX 04-355844		Future Electronics	FAX (604) 294-1206
	Future Electronics	Hymus Blvd.	
Zentronics	3220 5th Avenue, N.E.	Pointe Claire	Future Electronics
817 McCaffrey Street	Calgary, Alberta	Montreal, Quebec	444 Sharon Bay
St. Laurent, Quebec	T2A 5N1	H9R 5C7	Winnipeg, Manitoba
H4T 1N3	(403) 235-5325	(514) 694-7710	R2G 0 H 7
(514) 737-9700		TWX 610-421-3251 or	(604) 294-1166 (Vancouver)
TWX 05-824826	Future Electronics	610-421-3500	
	82 St. Regis Crescent N.	FAX (514) 695-3707 or	
Zentronics	Downsview, Ontario	(514) 694-0062	
564 Weber Street, N. \#10	M3J 123		
Waterloo, Ontario	(416) 638-4771	Future Electronics	
N21 5C6	TWX 610-491-1470	Baxter Center	
(519) 884-5700	FAX (416) 638-2936	1050 Baxter Road	
TWX 06-97678		Ottawa, Ontario	
		K2C 3P2	
		(613) 820-8313	
		TWX 610-563-1697	
		FAX (613) 820-3271	

SALES NETWORK

REPRESENTATIVES (March 1987)

ARGENTINE

STE CORTE \& CIA, S.R.L.
Santiago del Estero
6434° Piso
1075 BUENOS AIRES
Tel. (54 1) $38.00 .107 / 8 / 9$ Telex : 21992 CORTE

URUGUAY

MURACCIOLE LTDA
Colonia 844 Piso 3
Casilla 430
MONTEVIDEO
Tel. (59 8) 90.08.32 - (59 8) 90.21.37 Telex : 23079 UY TENIP

INDE

MICRONIC DEVICES
"Arun Complex"
$N^{\circ} 65$, DVG road Basavanagudi
BANGALORE 560004
Tel. (91 812) 600.631 Telex : 8458332

PERMEDIA ASSOCIATES

14 Dream Land House 1st Floor
1/18-B, Asaf Ali Road
NEW DELHI 110002
Tel. (91 11) 73.23.47-(91 11) 73.38.39
Telex: 03162136 PAAS IN

MEXIQUE

CYDESA

Prol de Jade 2 Col. Estrella
C.P. 07810

MEXICO D.F.
Tel. (52 5) 537.38.32 - (52 5) 577.18.83 Telex : 1773944

INTERTRON

Cerrada de Palomas $\mathrm{N}^{\circ} 7$
Col Reforma Social
11650 MEXICO D.F.
Tel. (52 5) 540.07.15-(52 5) 540.29.69 Telex : 1763254

PEROU

INTERSA

Raimundo Carcano 995
Urb. Santa Catalina
LIMA 13
Tel. (51 14) 724.921 Telex : 25257 PE PB SIS

R.S.A.

PACE ELECTRONICS
Components PTY
P.O. Box 701

ISANDO 1600 TRANSVAAL R.S.A
Tel. (27) 11.974.1211 (6) Telex : 429023

TURQUIE

BARKEY SANAYI MALZEMELERI

Temsilcilik Itd STI
P.K. 667 SISLI ISTAMBUL

Tel. $(90$ 11) 47.97.40-(90 11) 48.91.47-(90 11) 40.14.83
Telex : 26900 NED TR

SALES NETWORK

DISTRIBUTORS (March 1987)

ARGENTINE

ELECTRONICA ELEMON S.A.

Monroe 4566
1431 BUENOS AIRES
Tel. (54 1) 51.42.06-(54 1) 52.73.35 Telex : 22204
ELKO S.R.L.
Belgrano 1661
1093 BUENOS AIRES
Tel. (54 1) 45.35.59-(54 1) 45.11.01 Telex : 17561 ELKO

CHILI

VICTRONICS

Casilla 283 V Correo 21
SANTIAGO 01
Tel. (56 2) 392.787 - (56 2) 330.232 Telex : 340168 VICTORCK

CASA ROYAL

Libertador B. O'Higgins 845
SANTIAGO
Tel. (56 2) 39.15.24 - (56 2) 38.10.37 Telex : 340517 ROYAL CK

INDE

THOMSON CSF/COMPOSANTS EXPORT
(délégation)
C578 Defence Colony
NEW DELHI 110024
Tel. (91 11) 62.55.98-(91 11) 61.15.98
Telex : 3166642 TCSF IN

MEXIQUE

PROVEEDORA ELECTRONICA

Prol Moctezuma Ote 24
Col. Romero de Terreros
P.O. Box 21139

04310 MEXICO D.F.
Tel. (52 5) 554.83.00 Telex : 01772402 PROVME
DICOPEL S.A.
Tochtli 368 Fracc
Ind San Antonio
Azcapotzalco
02760 MEXICO DF
Tel. (52 5) 561.32.11 - Telex : 1773790 DICOMF
ELECTRONICA STEREN S.A.
Rep. de El Salvador $\mathrm{N}^{\circ} 28 \mathrm{~A}$ y B
06000 MEXICO D.F.
Tel. (52 5) 5120699 - (52 5) 5120320
Telex : 01771977 STERNE
SEMICONDUCTORES PROFESIONALES
Insurgentes sur 1748403
01030 MEXICO D.F.
Tel. (52 5) 534.17.42 - (52 5) 534.79.80
Telex : 1771700 BRASME

URUGUAY

ENEKA

Avenida Gral Rondeau 1534
P.O. Box 695

MONTEVIDEO
Tel. (59 8) 90.79.44-(59 8) 90.79.96 Telex : 22270

VENEZUELA

BENAVIDES
Avilanes A Rio
Residencias Kamarata
Local 4 al 7
Apartado postal 20249
La Gandelaria
CARACAS 1020 A
Tel. (56 2) 571.03.96-56 2) 571.27.10 Telex : 28450 PBVENVC

LOGIBYtE

Av. Civdad Universitaria
Edif. Los Moriches
Apartado Los Chaguaranos 47776
CARACAS 1041 A
Tel. (56 2) 662.19.80-(56 2) 662.38.41 Telex : 24581 LOGIB VC

© THOMSON SEMICONDUCTEURS

These specifications or references are only given for information, without any guarantee as regards either mistakes or omissions. Their publication does not suggest that the matter is free of any right of industrial property and does not grant any license of these rights to anyone. THOMSON SEMICONDUCTEURS refuses all responsability concerning their use whatever the purpose or appliance. Any copy, reprinting or translation of these specifications, entirely or partially, without the consent and the written agreement of THOMSON SEMICONDUCTEURS, is forbidden, according to the law of March 11, 1957, relating to the copyright.

CREDITS

Typesetting
Technical artwork and lay-out Technical support and supervision

BEDOC

PRINTED IN FRANCE BY

[^0]: Note 1: Supply current is measured after running for 2000 cycle times with a square-ware clock on CKI, CKO open, and all other pins pulled up to V_{CC} with 20 k resistors.
 Note 2 : The HALT mode will stop CKI from oscillating in the RC and crystal configurations.
 Note 3 : When forcing HALT, current is only needed for a short time (approximately 200 ns) to flip the HALT flip-flop.
 Note 4 : This parameter is only sampled and not 100% tested.
 Note 5 : Voltage change must be less than 0.5 volt in a 1 ms period.
 Note $\mathbf{6}$: SO output sink current must be limited to keep V_{OL} below $0.2 \mathrm{~V}_{\mathrm{CC}}$ when port is running in order to prevent entering test mode.

[^1]: Note 1: V_{cc} voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.

[^2]: Note $1: V_{C C}$ voltage change must be less than 0.5 V in a 1 ms period to maintain proper operation.

[^3]: NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted.

[^4]: *The EF6803 operates only in Modes 2 and 3

[^5]: ${ }^{*}$ For $T_{A}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{MPL}}=1.7 \mathrm{~V}$.

[^6]: *Using maximum clock rate

[^7]: *TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus= \$FFFF.

[^8]: 1. Addressing Modes INHER \equiv Inherent \quad INDXD \equiv Indexed $\quad I M M E D \equiv$ Immediate

 2. Unassigned opcodes are indicated by " 0 " and should not be executed.
 3. Codes marked by " T " force the PC to function as a 16 -bit counter.
[^9]: The condition code register notes are listed after Table 12.

[^10]: * TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus= \$FFFF.

[^11]: * TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus=\$FFFF.

[^12]: * Requires prior factory approval

[^13]: * Requires prior factory approval

[^14]: Flag Symbols: $Z=$ Zero, $C=$ Carry/Borrow, $\Lambda=$ Test and Set if True, Cleared Otherwise $\bullet=$ Vot Affected

[^15]: EXORciser is a registered trademark of MOTOROLA Inc.

[^16]: * This connection depends on clock oscillator user selectable mask option. Use jumper if the RC mask option is selected.

[^17]: NOTES:

 1. Prescaler and 8 -bit counter are clocked on the failing edge of the internal clock (AS) or external input
 2. Counter is written to during data strobe (DS) and counts down continuously
[^18]: H Half Carry (From Bit 3)
 $\begin{array}{ll}\mathrm{I} & \text { Interrupt Mask } \\ \mathrm{N} & \text { Negative (Sign Bit) }\end{array}$
 Z Zero

[^19]: *Due to internal biasing this input (when unused) floats to approximately 2.2 V .

[^20]: * This connection depends on clock oscillator user selectable mask option. Use jumper if the RC mask option is selected

[^21]: H Half Carry (From Bit 3)
 C Carry/Borrow
 I Interrupt Mask
 \wedge Test and Set if True, Cleared Otherwise
 N Negative (Sign Bit)

 - Not Affected

 Z Zero

[^22]: *See Table in Figure 13.

[^23]: 1. $\overline{\text { RESET }}$ and EXT INT have internal Schmit triggers giving minimum 2 V hysteresis.

 TIMER AC CHARACTERISTICS
[^24]: 1. $\overline{\text { RESET }}$ and ET INT have internal Schmit triggers giving minimum 2 V hysteresis.
 2. $\overline{\text { RESET }}$ and EXT INT prgrammed with standard pull-up
 . RESET or EXT INT programmed without standard pull-up
 3. Power dissipation for $1 / O$ pins is calculated by $\Sigma\left(V_{C C}-V_{I L}\right)\left(\|_{I L} I\right) \cdot \Sigma\left(V_{C C} \cdot V_{O H}\right)\left(\left\|_{O H}\right\|\right) \cdot \Sigma\left(V_{O L}\right)\left(I_{O L}\right)$
 4. ICC exclusive of $I_{\text {charge }}$
 5. P_{D} exclusive of battery charging power. Battery charging power dissipated inside the MK3875 ($\left.V_{C C}-V_{S B}\right)\left(I_{\text {charge }}\right)$.
[^25]: Table 4. Instruction Set Summary

[^26]: + AVAILABLE ON MK68E221 (1K RAM VERSION)

[^27]: The following symbols are used to describe the state of the Status Register flags:
 Set according to result of operation.
 $\begin{array}{ll}0 & \text { Cleared. } \\ 1 & \text { Set. }\end{array}$
 1 Set.
 u Undefined

[^28]: NOTES
 1 Must be " 4 " when specifying the ROM version
 2. Must be " 8 " when specifying the emulator version
 3. Must be " 0 " when specifying the emulator version

[^29]: * Cross assembler included

