

W90220F PA-RISC Embedded Controller

Version 0.84

March 1999

Table of Contents

TABLE OF CONTENTS

1. OVERVIEW

2. FEATURES

3. PIN CONFIGURATION

- 3.1 Pin Diagram
- 3.2 Detailed Pin Descriptions

4. CPU CORE

- 4.1 Overview
- 4.2 Block diagram
- 4.3 Features
- 4.4 PA-RISC Architecture
 - 4.4.1 CPU Resources
 - 4.4.2 Addressing Mode & Memory Map
 - 4.4.3 Branch Control
 - 4.4.4 Interrupt Control
- 4.5 Pipeline Operation
- 4.6 Implementation Dependent features
 - 4.6.1 MultiMedia Extension Instruction Set
 - 4.6.2 MAC unit and Releated Instruction Set
 - 4.6.3 Diagnostic Instruction Set
 - 4.6.4 Flush Instruction/Data Cache & Branch-Target-Buffer (BTB)
 - 4.6.5 Level-0 Debug SFU
- 4.7 Power Management Unit
- 4.8 Serial ICE interface

5. MEGACELLS

- 5.1 Functional Descriptions
 - 5.1.1 Memory Controller
 - 5.1.2 DMA Controller
 - 5.1.3 PCI Bridge
 - 5.1.4 Parallel Port Interface (PPI)
 - 5.1.5 UART

2

Version 0.84

W90220F

Version 0.84

- 5.1.6 Synchronous Serial Port Interface (SSI)
- 5.1.7 Timer Channels
- 5.2 Register Definitions
 - 5.2.1 Memory Controller
 - 5.2.2 DMA Controller
 - 5.2.3 PCI Bridge
 - 5.2.4 Parallel Port Interface (PPI)
 - 5.2.5 UART
 - 5.2.6 Synchronous Serial Port Interface (SSI)
 - 5.2.7 Timer Channels

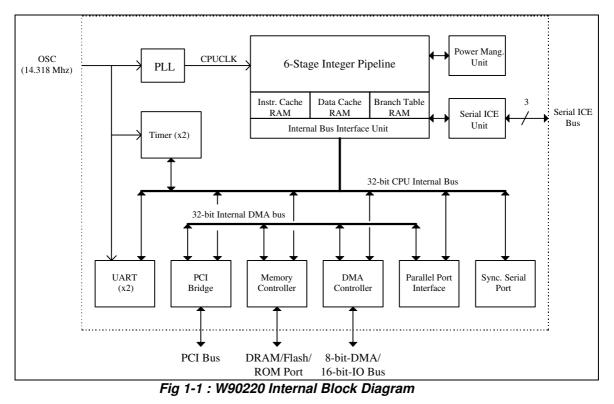
6. ELECTRICAL SPECIFICATIONS

- 6.1 Absolute Maximum Ratings
- 6.2 DC Specifications
- 6.3 AC Specifications
 - 6.3.1 Memory Controller
 - 6.3.2 DMA Controller
 - 6.3.3 PCI Bridge
 - 6.3.4 Parallel Port Interface (PPI)
 - 6.3.5 UART
 - 6.3.6 Synchronous Serial Port Interface (SSI)
 - 6.3.7 Timer Channels

7. PACKAGE DIMENSIONS

3

4


1. OVERVIEW

The W90220 is a high performance, highly integrated 32-bit processor intended for a wide range of embedded applications, such as videophone, internet devices, internetworking platform. Fig 1-1 shows a block diagram of the overall system. The W90220 consists of a 32-bit PA-RISC core, memory controller and integrated logics for I/O modules

The PA-RISC core is equipped with 4 KBytes of instruction cache memory and 4 KBytes of data cache memory augmented with a dual-cycle multiply/accumulate module running up to 150 MHz. It allows to implement integrated DSP functions like software modem for high-performance standard data and fax protocols. A flexible power management scheme (under software control) and lots of low power circuits have been used to eliminate the chip's power consumption. The W90220 consume only 375 mA at its maximum speed (150 MHz) on a full-load system.

The chip provides two 8-bit DMA channels, four 16-bit IDE I/O channels, a PCI bridge supporting up to four external PCI masters, a IEEE-1284 compliant parallel port interface (PPI), two RS232 type universal asynchronous serial port (UART), two timer channels, a flexible synchronous interface (SSI) connecting to an external audio or telephony codec devices, a proprietary serial ICE interface (SP-ICE) for software development and debugging.

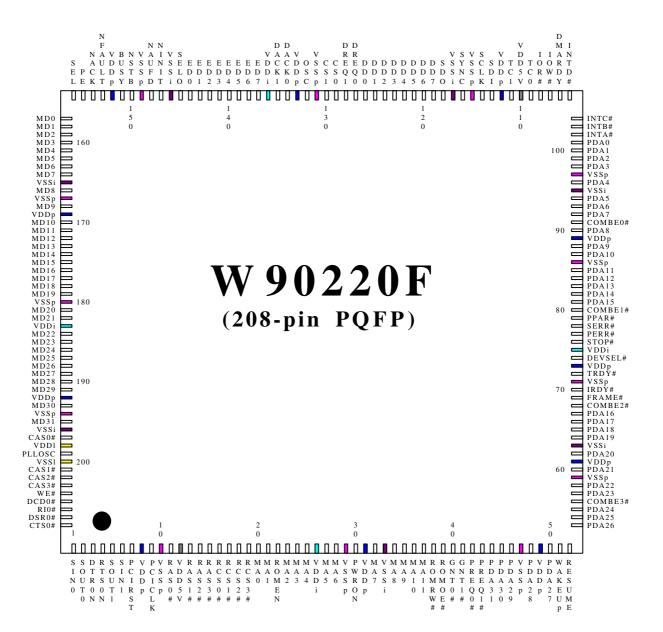
The chip has a high performance memory controller. The types of external memory devices supported include dynamic random access memory (DRAM), Extended data out dynamic random access memory (EDO-DRAM), static random access memory (SRAM), Flash memory as well as read-only memory (ROM).

Version 0.84

Version 0.84

2. FEATURES

5


- PQFP 208-pin package
- High level of integration
 - minimal number of inter-chip connections
 - 32-bit PA-RISC core with cache memory, multiply-accumulate module and flexible power management unit
 - DMA controller provides two external 8-bit DMA slots and four 16-bit IDE-IO slots
 - memory controller supports four banks of EDO- or fast-page-mode DRAM, Flash, ROM and SRAM
 - an PCI bridge supports four PCI master devices
 - an IEEE-1284 compliant parallel port connecting an external printer
 - two RS-232 compliant serial port connecting external MODEM controller or other serial devices
 - a synchronous serial port connecting external audio or telephony codec devices
 - two timer channels for general purpose usage
- High performance and low power consumption
 - 0.35-micron single-poly-triple-metal CMOS process
 - split rail design (3.3V/5V IO and 3.3V core)
 - maximal operation frequency : 150 Mhz
 - typical active current : 2.5mA/Mhz
 - typical suspend current (PLL turn off) : -
 - fully static design, afford dynamic turn on/off cpu clock or PLL module+
 - programable standby clock to reduce standby current
 - real time clock and UART baud rate base on 14.318 Mhz
- A flexible hardware serial ICE port for monitor/update cpu status at any time

3. PIN CONFIGURATION

The W90220 family of embedded controllers is available in a 208-pin quad flat pack (PQFP) device configuration, shown below.

3.1. PIN DIAGRAM

3.2 DETAILED PIN DESCRIPTIONS

The following abbreviations are used for pin types in the following sections : (I) indicates inputs; (O) indicates outputs; (I/O) indicates a bidirectional signal; (TS) indicates three-state; (OC) indicates open collector.

DIR	PIN #	DESCRIPTION
1	30	CPU Power-On reset input, high active
1	199	14.318Mhz Oscillator input for internal PLL
1	132	14.318Mhz Oscillator input for Timer, UART
		for more detail description of the PCI signals please refer to the PCI LOCAL
		BUS SPECIFICATION
1	102	PCI Interrupt input, level senstive, low active signal. Once
	103	the INTx# signal is asserted, it remains asserted until the
	104	device driver clear the pending request. When the request is
	105	cleared, the device deasserts its INTx# signal.
1	42	PCI Request input, indicates to the PCI arbiter that this agent
	43	desires use of the bus.
0	40	PCI Grant output, indicates to the agent that access to the
	41	bus has been granted.
0	7	PCI Reset output, is used to bring PCI-specific registers,
		sequencers, and signals to a consistent state. Low active.
0	9	PCI Clock output, provides timing for all transactions on PCI
		and is an input to every PCI device.
1	78	PCI System Error is for reporting address parity errors, data
		parity errors on the Special Cycle command, or any other
		system error where the result will be catastrophic. The
		assertion of SERR# is synchronous to the clock and meets
		the setup and hold times of all bused signals.
I/O	77	PCI Parity Error is only for the reporting of data parity errors
		during all PCI transactions except a Special Cycle. The
		PERR# pin is sustained tri-state and must be driven active
		by the agent receiving data two clocks following the data
		when a data parity error is detected. The minimum duration
		of PERR# is one clock for each data phase that a data parity
		error is detected. An agent cannot report a PERR# until it
		has claimed the access by asserting DEVSEL# (for a target)
		and completed a data phase or is the master of the current
		transaction.
	 	I 30 I 199 I 132 I 102 103 104 105 1 42 43 O 40 41 0 O 9 I 78

PDA[31:0]	I/O	44-46, 48, 50, 53-55, 57, 58, 60, 62, 64-67, 81-85, 87, 88, 90, 92-94, 96, 98-101,	PCI tri-state Address/Data bus, Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. PCI supports both read and write bursts. The address phase is the clock cycle in which FRAME# is asserted. During the address phase PDA[31:0] contain a physical address. During data phases PDA[7:0] contain the least significant byte (Isb) and PDA[31:24] contain the most significant byte (msb). Write data is stable and valid when IRDY# is asserted and read data is stable and valid when TRDY# is asserted. Data is transferred during those clocks where both IRDY# and TRDY# are asserted.
STOP#	I/O	76	PCI Stop indicates the current target is requesting the master to stop the current transaction.
TRDY#	I/O	72	PCI Target Ready indicates the selected device ability to complete the current data phase of the transaction. A data phase is completed on any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on PDA[31:0]. During a write, it indicates the target is prepared to accept data. Wait cycles are inserted until both IRDY# and TRDY# are asserted together.
DEVSEL#	I/O	74	PCI Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has been selected.
C/BE[3:0]#	I/O	56,68,80,91	PCI Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, C/BE[3:0]# define the bus command. During the data phase C/BE[3:0]# are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data. C/BE[0]# applies to byte 0 (lsb) and C/BE[3]# applies to byte 3 (msb).
FRAME#	I/O	69	PCI Cycle Frame is driven by the current master to indicate the beginning and duration of an access. FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAM# is deasserted, the transaction is in the final data phase or has completed.
IRDY#	I/O	70	PCI Initiator Ready indicates the bus master ability to complete the current data phase of the transaction. A data phase is completed on any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on PDA[31:0]. During a read, it indicates the master is prepared to accept data. Wait cycles are inserted until both IRDY# and TRDY# are asserted together.

PPAR	I/O	79	PCI Parity is even parity across PDA[31:0] and C/BE[3:0]#.
FFAN	1/0	79	PPAR is stable and valid one clock after the address phase. For data phases, PPAR is stable and valid one clock after
			either IRDY# is asserted on a write transaction or TRDY# is
			asserted on a read transaction. (PPAR has the same timing
			as PDA[31:0], but it is delayed by one clock.) The mater
			drives PPAR for address and write data phases; the target
			drives PPAR for read data phase.
DMA Interface			
DREQ0	1	127	DMA Request signals request an external transfer on DMA
DREQ1		128	channel 0 (DREQ0) or DMA channel 1 (DREQ1).
DACK0	0	134	DMA Acknowledge signals acknowledge an external transfer
DACK1		135	on DMA channel 0 (DREQ0) or DMA channel 1 (DREQ1).
DMARDY	1	106	DMA Device Ready signal is used to extend the length of
			DMA bus cycles. If a device wants to extend the DMA bus
			cycles, it will force the DMARDY signal low when it decodes
000		100	its address and receives a IOR or IOW command.
CS0	0	129	DMA Chip Select signals select the corresponding I/O
CS1		130	devices for programming or DMA transfers.
IOR	0	108	DMA I/O read signal is used to indicate to the I/O device that
		107	the present bus cycle is an I/O read cycle.
IOW	0	107	DMA I/O write signal is used to indicate to the I/O device that
TC0	0	109	the present bus cycle is an I/O write cycle. Terminal count for DMA channels, the pin is driven active for
TC1	0	111	one clock when byte count reaches zero and after the last
101			transfer for a DAM has completed.
DD[0:7]	I/O	126-119	8-bit DMA I/O Data bus, bit 0 is the most significant bit.
ECP Interface	1/0	120 110	For more detail description of the ECP interface signals,
			please refer to the IEEE P1284 Standard
Busy		151	ECP busy input signal
nFault	1	153	ECP fault input
nAck	1	154	ECP acknowledge input
PError	1	155	ECP parity error
Select	1	156	ECP Select
nSelectIn	0	145	ECP select output
nInit	0	147	ECP initialization
nAutoFd	0	148	ECP Autofeed
nStrobe	0	150	ECP Strobe
ED[0:7]	I/O	144-137	Bi-directional ECP Data bus, ED[0] is the most significant bit
			(msb).
Memory Contr			
RAS#[0:1]	0	11, 13	DRAM Row Address Strobe, Banks 0-1. These signals are
			used to select the DRAM row address. A High-to-Low
			transition on one of these signals causes a DRAM in the
			corresponding bank to latch the row address and begin an
			access.

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

Version 0.84

RAS#[2:3]/	I/O	14, 15	If MD[20] is pull down, these pins serve RAS signals for
PREQ#[2:3]			external DRAM's bank 2 and 3.
			If MD[20] is pull high, these pins serve as "PCI Request 2
			and 3" indicate to the PCI arbiter that the masters desires
CAS#[0:3]	0	197, 201-203	use of the bus
CA3#[0.3]	0	197, 201-203	DRAM Column Address Strobes, Byte 0-3. These signals are used to select the DRAM column address. A High-to-Low
			transition on these signals causes the DRAM selected by
			RAS#[0:3] to latch the column address and complete the
			access.
WE#	0	204	DRAM Write Enable signal is used to write the selected
			DRAM bank.
RCS#[0:1]	0	16, 17	ROM Chip Selects, Banks 0-1. A low level on one of these
			signals selects the memory devices in the corresponding
			ROM bank.
RCS#[2:3]/	0	18, 19	If MD[20] is pull down, these pins serve ROM "Chip select"
GNT#[2:3]			for
			bank 2 and 3. If MD[20] is pull high, these pins serve as "PCI Grant 2 and
			3" indicate to the PCI masters that access to the PCI bus has
			been granted.
ROMEN	0	22	ROM Address Latch, ROM address are divided into two
			portions, higher address bits and lower address bits, the
			address will be put out on the MA bus in two consecutive
			cycles. The ROMEN signal is used to latch the higher
			address bits in the first ROM address cycle.
ROMRW#	0	38	FLASH ROM write enable. This signal is used to write data
D01405#			into the mrmory in a ROM bank (such as Flash ROM).
ROMOE#	0	39	ROM output enable. This signal enables the selected ROM Bank to drive the MD bus.
MA[0:11]/	0	20-21, 23-25,	Memory controller Memory Address bus. For DRAM access,
DA[0:11]		27-28, 32, 34-	MA[0:11] is the DRAM row address and the DRAM column
		37	address. For ROM/FLASH ROM access, MA[0:11] is the
			higher portion ROM space address bits in the first ROM
			address cycle, and the lower portion ROM space address bits
			after the first ROM address cycle. During DMA I/O cycles,
			these pins also serve as DMA address bus. MA[0] is the
MD[0:7]	I/O	157-164	most significant bit (msb). Memory controller Data bus bit 0-7 for both DRAM data and
	"0		ROM space data. Bit 0 is the most significant bit (msb).
MD[8:15]/	I/O	166, 168,	Memory controller Data bus bit 8-15for both DRAM data and
DD[8:15]		170-175	ROM space data. During DMA cycles, these pins also serve
			as DMA data bus bit 8-15 for 16-bit DMA transfering. Bit 8 is
			the most significant bit (msb).
MD[16:31]	I/O	176-179,	Memory controller Data bus bit 16-31 for both DRAM data
		181,182,184-	and ROM space data. Bit 16 is the most significant bit (msb).
COM1 Carial D	out Ciana-	191,193,195	
COM1 Serial P SIN1	Urt Signal		COM1 corial data input from the communication link (modern
SINT		1	COM1 serial data input from the communication link (modem or peripheral device).

10

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

Version 0.84

SOUT1	0	2	COM1 serial data output to the communication link (modem	
00011	Ũ	-	or peripheral device).	
CTS1n	1	208	COM1 clear to send signal	
DSR1n	1	207	COM1 data set ready	
DTR1n	0	3	COM1 data terminal ready	
RTS1n	0	4	COM1 request to send	
DCD1n	1	205	COM1 data carrier detect	
RIN1n	1	206	COM1 ring indicator	
COM2 Serial	Port Signal			
SIN2	1	6	COM2 serial data input from the communication link (modem or peripheral device).	
SOUT2	0	5	COM2 serial data output to the communication link (modem or peripheral device).	
Synchronous	Serial Por	t Signal		
SDI	1	113	Serial data-in from a external codec device	
SDO	0	118	Serial data-out to a exteral codec device	
SYNC	1/0	116	Frame sync of SDI/SDO. This signal is an input signal during	
		-	"slave mode" or output signal during "master mode"	
SCLK	I/O	114	Serial Clock for SDI/SDO transfering. This signal is an input	
			signal during "slave mode" or output signal during "master	
			mode"	
Miscellaneou	s			
WAKEUP	1	51	If MD[24] is pull down, this pin serves as an external interrupt	
/INTR0			request. A active high-state in this pin will make EIER[12] be	
			set. In this mode, this pin can also serve as an interrupt	
			request pin for an IDE slot.	
			If MD[24] is pull high, this pin serves a "resume" request to	
			wake up the chip from "DOZE" mode.	
RESUME		52	If MD[24] is pull down, this pin serves as an external interrupt	
/INTR1			request. A active high-state in this pin will make EIER[13] be	
			set. In this mode, this pin can also serve as an interrupt	
			request pin for an IDE slot.	
			If MD[24] is pull high, this pin serves a "resume" request to	
Power/Groun	d nin		wake up the chip from "SLEEP" mode.	
		12 110	5.0 // //dd (for a mixed 5.0 //2.2)/ any interment)	
VDD5V		12,110	5.0V Vdd (for a mixed 5.0V/3.3V enviornment)	
VDDp		8,31,49,61,73	Global 3.3V Vdd	
		,89,112,133,		
VDDi		152,169,192 26,75,136,18	3.3V Vdd (for internal logic only)	
		26,75,136,18		
VDDI		198	3.3V Vdd (for internal PLL logic)	
VSSI		200	VSS (for internal PLL logic)	
VSSi		33,63,95,117,	VSS (for internal logic)	
		146,165,196,		
VSSp	1	10,29,47,59,	Global VSS	
voop		71,86,97,115,		
		131,149,167,		
		180,194		
		100,194		

11

W90220F

4 CPU CORE

4.1 OVERVIEW

(Left for Blank)

4.2 BLOCK DIAGRAM

(Left for Blank)

4.3 FEATURES

- Base on PA-RISC 1.1 level-0 architecture
- 32-bit integer instruction set and register files
- Maximum 150Mhz operation frequency
- 3.3V and 0.01W/Mhz at full speed operation
- On-chip power management
 - Build-in software-independent `dynamic power-down mode`
 - Programable `stand-by ` and `sleep ` mode
 - Specific instruction to assist power-down control and ICE function
- High-speed 32-bit integer pipeline design
 - 6 stages for Load/Store instructions
 - 5 stages for other instructions
- On-chip cache memory
 - 4KB, direct-map instruction cache and 4KB, 4-way set-associative data cache
 - Write-through and write-back support for data cache
 - 1 level read buffer and wrap-arround support in each cache
 - I level write buffer and hit-under-miss support in data cache
 - Cache-locking support in instruction cache
- Dynamic branch prediction

12

Version 0.84

Version 0.84

- Build-in 1-level 256 entry, 4-way set-associative (LRU) Branch-Target-Buffer to improve branch prediction rate and accelerate pipeline throughput
- Two high speed (12ns) 16-bit MACs (or one 32-bit MAC) and multimedia extended instructions have been built-in for DSP releated calculation
- Specific serial-ICE-interface to facilitate chip debuging and software development

4.4 PA-RISC ARCHITECTURE

4.4.1 CPU RESOURCES

(Left for Blank)

4.4.2 ADDRESSING MODES & MEMORY MAP

(Left for Blank)

4.4.3 BRANCH CONTROL

(Left for Blank)

4.4.4 INTERRUPT CONTROL

(Left for Blank)

4.5 **PIPELINE OPERATION**

(Left for Blank)

4.6 IMPLEMENTATION DEPENDENT FEATURES

4.6.1 MULTIMEDIA ENTENSION INSTRUCTION SET

(Left for Blank)

4.6.2 MAC UNIT AND RELEATED INSTRUCTION SET

(Left for Blank)

13

4.6.3 DIAGNOSTIC INSTRUCTION SET

(Left for Blank)

4.6.4 FLUSH INSTRUCTION/DATA CACHE & BTB

(Left for Blank)

4.6.5 LEVEL-0 DEBUG SFU

(Left for Blank)

4.7 POWER MANAGEMENT UNIT

(Left for Blank)

4.8 SP-ICE INTERFACE

(Left for Blank)

W90220F

Version 0.84

5 MEGACELLS

5.1 FUNCTIONAL DESCRIPTIONS

5.1.1 MEMORY CONTROLLER

Overview :

(Left for Blank)

Block Diagram :

(Left for Blank)

Features :

- supports up to 4 banks of FPM- (fast page mode) or EDO-DRAM (SIMM)
- supports up to 4 banks of ROM or Flash memory
- optional parity bits for each data bytes
- CAS#-befor-RAS# refresh cycles for DRAM module
- programmable RAS#/CAS# timing for DRAM access
- programmable wait states for ROM and Flash memory access

Related Pins :

(Left for Blank)

Operation Modes :

(Left for Blank)

5.1.2 DMA CONTROLLER

Overview :

(Left for Blank)

Block Diagram :

(Left for Blank)

Features :

- provides two channels for external devices to do 8-bit dma io-to-memory transfer
- flexible block-transfer mode and demand mode are supported
- provides two 16-bit IDE IO-channels connecting IDE devices
- provides 8-bit io-to-memory or memory-to-io transfer mode
- provides 8-, 16- and 32-bit memory-to-memory transfer modes

15

- dma transfer between pci memory to/from system memory are also support
- 4 words (16 bytes) memory burst-access; linear burst order
- build-in 4-words data FIFO to accelerate memory access
- the starting address of source and target shall be halfword boundary for 16-bit memory transfer and word boundary for 32-bit memory transfer

Related Pins :

There are 19 pins allocated for two external dma slots to do 8-bit io-to-memory dma transfer. These pins include 8-bit bi-directional data bus as well as 11control/status pins.

- DREQ0, DREQ1 (input) :

Set high by external dma devices of slot 0 and slot 1 respectively to request dma 8-bit io-to-memory transfer. The DREQ(s) shall keep asserted (logic 1) during "demand mode" transfering, while during "block mode" transfering the DREQ(s) shall be deasserted (logic 0) after their corresponding DACK(s) is granted and before the end of dma block transfering.

- DACK0, DACK1 (output) :

Set high by the dma controller to acknowledge the dma DREQ(s) from dma slot 0 and slot1 respectively. Whenever DACK(s) is set high, the dma transfer is on-going.

- TC0, TC1 (output) :

At the end of the last byte of dma transfer, the TC(s) will be pulse high for 1 system clock immediately indicating that dma transfer is finished.

- DMARDY (input) :

This signal is used by external dma devices to insert wait states when the devices being programming by cpu. DMARDY is an open collector signal which shall be pull-up externally (default "don't insert any wait states"). If any devices need to lengthen the IOR or IOW cycle, it must drive DMARDY to logic high within one system clock after IOR or IOW signal being set high.

- IOR (output) :

This signal is pulsed high indicating an IO read command cycle is on-going whether in cpu mode (DACK(s) = 0s) or in dma mode (DACK(s) = 1).

- IOW (output) :

This signal is pulsed high indicating an IO write command cycle is on-going whether in cpu mode (DACK(s) = 0s) or in dma mode (DACK(s) = 1).

- CS0, CS1 (output) :

These two signals are Chip Selects of dma slot 0 and slot 1. As dma controller wants to programming dma devices, it must drive the corresponding CS(s) to logic high.

- DD[0:7] (in/out) :

Birdirectional 8-bit data bus with bit 0 is the most significant bit.

Operation Modes :

(Left for Blank)

16

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be disclosed or distributed or reproduced without permission from Winbond.

5.1.3 PCI BRIDGE

Overview :

(Left for Blank)

Block Diagram :

(Left for Blank)

Features :

- supports "long framing" and "short framing" (synchronous, frame-based protocol)
- provides "master mode" and "slave mode"
- build-in two 48x16 (or 24x32) data fifo to accelerate transmit/receive operation
- programable data bits per one frame (sampling rate) : 1 ~ 256 bits/frame
- programable data bits per word (resolution of each sampling) : 1 ~ 32 bits/word
- programable multi-word (per frame) transfer : 1 ~ 16 words/frame

Related Pins :

(Left for Blank)

Operation Modes :

(Left for Blank)

5.1.4 PARALLEL PORT INTERFACE

Overview :

(Left for Blank)

Block Diagram :

(Left for Blank)

Features :

- supports all IEEE P1284 transfer modes including :
- Compatible (centronic) mode (forward channel)
- Nibble mode (reverse channel, compatible with all existing PC hosts relies on software control)
- Byte mode (reverse channel, compatible with IBM PS/2 host)
- EPP mode (bi-directional half-duplex channel relies on software control)
- ECP mode (fast bi-directional half-duplex channel)
- Host-side design
- Provide a special operation mode to emulate peripheral-side centronic device
- Build-in one 16bytes FIFO to accelerate ECP mode and centronic forward transfer
- Provide DMA capability to accelerate moving data from parallel port interface to system memory
- ECP mode is also including :
- High performance half-duplex forward and reverse channel

17

Version 0.84

- Interlocked handshake, for fast reliable transfer
- Forward "channel-addressing/command transfer" for low-cost peripherals
- Support reverse RLE decompression
- Peer-to-peer capability

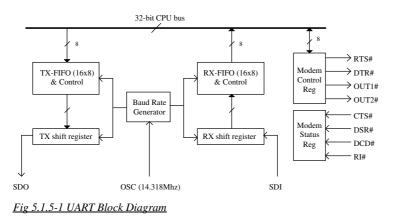
Related Pins :

17 pins are allocated for Parallel-Port-Interface including 8-bit data bus, 5 status input signals and 4 control output signals.

- <u>nStrobe</u> (output) : Compatible Mode ECP Mode	 Set active low to transfer data into peripheral device's input latch Used in a closed-loop handshake with "Busy" to transfer data or address information from host to peripheral device.
- <u>nAutoFd</u> (output) Compatible Mode ECP Mode	 : Set low by host to put some printers into auto-line feed mode. May also be used as a ninth data, parity, or command/data control bit. : The host drives this signal for flow control in the reverse direction. It is used in an interlocked handshake with "nAck". "nAutoFd" also provides a ninth data bit used to determine whether command or data information is present on the data signals in the forward transfering.
- <u>nInit</u> (output) : Compatible Mode ECP Mode	 Pulsed low in conjunction with "nSelectIn" active low to reset the interface and force a return to compatible mode idle state. This signal is driven low to place the channel in the reverse direction. While in this mode, the peripheral is only allowed to drive the bi-directional data signals when "nInit" is low and "nSelectIn" is high.
- <u>nSelectIn</u> (output) Compatible Mode ECP Mode	 : Set low by host to select peripheral device. : Driven high by host while in ECP mode. Set low by host to terminate ECP mode and return the link to the compatible mode.
- <u>nAck</u> (input) : Compatible Mode ECP Mode transfering.	: Pulse low by the peripheral device to acknowledge transfer of a data byte from the host. : Used in a close-loop handshake with "nAufoFd" to transfer data during reverse
- Busy (input) : Compatible Mode ECP Mode	 Driven high to indicate that the peripheral device is not ready to receive data. The peripheral device uses this signal for flow control in the forward transfering. "Busy" also provides a ninth data bit used to determine whether command or data information is present on the data signals in the reverse direction.
- <u>PError</u> (input) : Compatible Mode path ECP Mode	 : Driven high to indicate that the peripheral device has encountered an error in its paper (ex. paper empty). Peripherals shall set "nFault" low whenever they set "PError" high. : Peripherals drive this signal low to acknowledge "nInit". The host relies upon "PError" to deterine when it is permitted to drive the data signals.

Version 0.84

- <u>Select</u> (input) : Compatible Mode ECP Mode	Set high to indicate that the peripheral device is on-line.Used by peripheral to reply to the requested extensibility byte sent by the host during the negotiation phase.
- <u>nFault</u> (input) : Compatible Mode ECP Mode	 Set low by peripheral device to indicate that an error has occured. Set high to acknowledge 1284 compatibility during negotiation phase. During ECP mode the peripheral may drive this pin low to request communications with the host. This signal would be typically used to generate an interrupt to the host. This signal is valid in both forward and reverse trnasfers.
- <u>ED[0:7]</u> (in/out)	: 8-bit bus used to hold data, address or command information in all modes. The bit 0 is the most significant bit.
Operation Modes :	


(Left for Blank)

5.1.5 UART

Overview :

The W90220 contains two Universal Asynchronous Receiver/Transmitter (UART) ports, one of them provides complete MODEM-control and serial transfermation capabilities, whereas the other one provides only serial transfermation capability. The UART performs serial-to-parallel conversion on data characters received from a peripheral device such as MODEM, and parallel-to-serial conversion on data characters received from the CPU. One 16 bytes transmitter FIFO (TX-FIFO) and one 16 bytes (plus 3 bits of error data per byte) receiver FIFO (RX-FIFO) have been built in to reduce the number of interrupts presented to the CPU. The CPU can read the complete status of the UART at any time during the functional operation. Status reported includes error conditions (parity, overrun, framing, or break interrupt) and states of TX-FIFO and RX-FIFO.

Block Diagram :

Features :

- transmitter and receiver are each buffered with 16 bytes FIFO's to reduce the number of interrupts presented to the CPU
- MODEM control functions (CTS, RTS, DSR, DTR, RI and DCD)
- Fully programmable serial-interface characteristics :
 - -- 5-, 6-, 7-, or 8-bit characters
 - -- even, odd, or no-parity bit generation and detection
 - -- 1-, 1&1/2, or 2-stop bit generation
 - -- baud rate generation
- line break generation and detection
- false start bit detection
- full prioritize interrupt system controls
- loop back mode for internal diagnostic testing

Related Pins :

(COM1)

- SIN1 (input) : Serial data input from peripheral device or MODEM
- SOUT1 (output) : Serial data output to peripheral device or MODEM
- CTS1# (input) : Clear to send signal
- DSR1# (output) : Data set ready
- DTR1# (input) : Data terminal ready
- RTS1# (output) : Request to send
- DCD1# (input) : Data carrier detect
- RI1# (output) : Ring indciator

(COM2)

- SIN2 (input) : Serial data input from peripheral device or MODEM
- SOUT2 (output) : Serial data output to peripheral device or MODEM

Operation Modes :

- Interrupt Mode operation :
 - A. Receiver control :
 - Set FCR[0:1] to select a proper receiver threshold level and then turn on "receiver data available

interrupt"

- (Irpt_RDA) by set IER[7] to logic 1.
- The Irpt_RDA will be triggered when the receiver FIFO (RX-FIFO) has reached its programmed trigger level, and it will be cleared as the available data in RX-FIFO drops below the trigger level.
- As Irpt_RDA occured, the corresponding IIR bits will be set to inform the software application that data in RX-FIFO has reached programmed threshold level.
- If the received data has any errors, the "line status interrupt" (Irpt_RLS) will occur and has higher priority than Irpt_RDA.
- If "time out interrupt" (Irpt_TOR) is enable by set IER[7] and TOR[0] to logic 1s. The Irpt_TOR will occur, if the following conditions exist :
 - at least one character is in RX-FIFO.
 - RX-FIFO is not received any data or accessed by CPU from the most recent serial character received, and the time period, counting by baud rate bit clock, has exceeded the value being programmed in TOR[1:7].
 - The Irpt_TOR and the time-out counter will be cleared as the CPU reads one character from RX-FIFO.
 - The time-out counter is reset after a new character is received or after the CPU reads the RX-FIFO.

Version 0.84

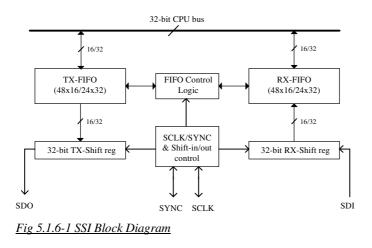
- B. Transmitter control :
 - Set IER[6] to logic 1 to enable "transmitter empty interrupt" (Irpt_THRE) before transmitter operation.
 - Once the transmitter FIFO (TX-FIFO) is empty, the Irpt_THRE is triggered and the corresponding IIR
- bits
- are set to inform the CPU to fill the TX-FIFO (maximum 16 bytes of characters).
- The Irpt_THRE is reset after the CPU reads the IIR (IIR[4:7] must be 4'b0010 at that time) or writes a character into TX-FIFO.
- Irpt_RDA and Irpt_TOUT has the same interrupt priority (2nd priority) while Irpt_THRE has a lower priority (3rd priority).

- Polled Mode operation : (refer to "LSR" register discriptions located on Section 5.2.5)

- No interrupts need be enabled at this mode, the CPU always polls the LSR to check COM port status before taking any actions.

- LSR[7] will be set as long as there is at least one byte in the RX-FIFO, and it is cleared if the RX-FIFO is empty.

- LSR[3:6] will specify error(s) status which is handled the same way as in the interrupt mode operation, the IIR[4:7] is not affected since no interrupt is enabled.


- LSR[2] will indicate when the TX-FIFO is empty.
- LSR[1] will indicate that both TX-FIFO and shift register are empty.
- LSR[0] will indicate whether there are any errors in the RX-FIFO.

5.1.6 SYNCHRONOUS SERIAL INTERFACE (SSI)

Overview :


The SSI module within W90220 contains holding registers, shift registers, and other logic to support a variety of serial data communications protocols and provide a direct connection to external audio/telephony codec devices. Two 48 halfwords fifos, the transmitter fifo and receiver fifo, have been implented to accelerate both transmittion and receiving operations. These two fifos can be configured as 48 halfwords or 24 words depth depending on the data word length.

Block Diagram :

21

Version 0.84

Features :

- supports "long framing" and "short framing" (synchronous, frame-based protocol)
- provides "master mode" and "slave mode"
- build-in two 48x16 (or 24x32) data fifo to accelerate transmit/receive operation
- programable data bits per one frame (sampling rate) : 1 ~ 256 bits/frame
- programable data bits per word (resolution of each sampling) : 1 ~ 32 bits/word
- programable multi-word (per frame) transfer : 1 ~ 16 words/frame

Related Pins :

- SDI (input) : This pin contains the input data shifted from external audio/telephony codec devices
- SDO (output) : This pin contains the output data shifted to external audio/telephony codec devices
- SYNC (in/out) : This pin is the frame synchronization signal between SSI and codec devices. The SYNC may be input or output depending on SSI operated in slave- or master-mode respectively.
- SCLK (in/out) : This pin is the serial bit clock between SSI and codec devices. Likewise, The SCLK may be input or output depending on SSI operated in slave- or master-mode respectively.

Operation Modes :

- Master Mode : Once CFGH[2] is set to logic 1 and MD[25] is pull high, SSI is operated in master mode, and the SYNC (determines the sampling rate) and SCLK is drived by SSI module to external codec devices.

SCLK frequence	e = EXTCLK/[2*(CFGL[8:15] + 1)]	(5.1.6a)
SYNC period	= SCLK * (CFGL[0:7] + 1)	(5.1.6b)

- Slave Mode : Once CFGH[2] is set to logic 0 and MD[25] is pull down, SSI is operated in slave mode, the SCLK and SYNC are drived externally (may be from codec devices). So the sampling rate and SCLK frequence are determined by external devices, however software driver still need to properly set "serial data bit length" (CFGH[8:10]) as well as "data words per frame" (CFGH[12:15]) to make SSI module working correctly.
- Loop mode : This mode (CFGH[1] =1) aims at selftesting. When this bit is set, serial data-out "SDO" is connected to serial data-in "SDI" internally and SDO pin fixed at logic 0 state. Besides, if Loop and Master mode are chose concurrently, SSI module will not issue SYNC until TX-FIFO contains at least one data word.

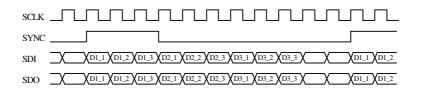
included in long framing mode :

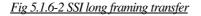
consists of the following features.

- The SSI module always samples receive date (SDI) on the falling edge of SCLK, whereas always pushes transmit data (SDO) on the rising edge of SCLK.
- The frame sync (SYNC) is asserted immediately as the first bit of transmit and receive data.
- The frame sync (SYNC) is asserted for one "serial word length" which determined by
- CFGH[8:11].

22

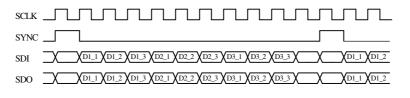
Serial word length = CFGH[8:11] + 1 (5.1.6c)

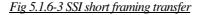

- The frame sync rate (sampling rate) and SCLK frequence follow eq (5.1.6b) and (5.1.6a) respectively on master mode and determined by external devices on slave mode.
- The transmit FIFO and receive FIFO is configued as 48x16 if "serial word length" <= 16, and will be configured as 24x32 if "serial word length" > 16.


Version 0.84

⁻ Long Framing : When CFGH[3] is set to logic 1, SSI is operated in long framing mode. The following features are

- The shifting data bits on SDI and SDO are always MSB first.
- If serial word length is not 16 or 32, it is software responsibility to left(MSB) justify the transmit data words before writing it to transmit FIFO, the received data before being written into receive FIFO is righ(LSB) justified automatically by SSI module where the unfilled MSBs are catneted with logic 0s.
- SSI module always shifts out logic 0s on each frame sync if transmit FIFO is empty at that time.
- A receiver FIFO interrupt will be asserted (when RX-FIFO interrupt is enable) if the received data words exceeds the receive FIFO's threshold level. Likewise, a transmitter FIFO interrupt will be asserted (when TX-FIFO interrupt is enable) if the available data words in transmit FIFO is lower than its threshold level.
- Fig 6.1.5-2 shows a standard long framing transfer where serial word length is 3 (CFGH[8:11] = 2), words per frame is 3 (CFGH[12:15]=2) and bits per frame is 9 (CFGL[0:7] = 10).





- Short Framing : When CFGH[3] is set to logic 0, SSI is operated in long framing mode. The following features are included in short framing mode

consists of the following features.

- The frame sync (SYNC) is asserted for one SCLK immediately before the first bit of transmit and receive data.
- The frame sync (SYNC) is asserted for one SCLK period.
- All other features are the same as long framing mode.
- Fig 6.1.5-3 shows a standard short framing transfer where serial word length is 3 (CFGH[8:11] =
- 2), words per frame is 3 (CFGH[12:15]=2) and bits per frame is 9 (CFGL[0:7] = 10).

5.1.7 TIMER CHANNELS

Overview :

(Left for Blank)

23

Version 0.84

W90220F

Block Diagram :

(Left for Blank)

Features :

- Two 24-bit decremental timer channels with individual interrupt requests
- Programmable timer clocks for each channels, the clock range is OSC ~ OSC/8'hFF
- maximum uninterrupted time or timeout = 5 minutes (if OSC = 14.318Mhz)
- Typical OSC frequence is 14.318Mhz.

Related Pins : (None)

Operation Modes : (Left for Blank)

5.2 REGISTER DEFINITIONS

5.2.1 MEMORY CONTROLLER REGISTERS

There are 24 8-bit registers included in the memory (ROM/DRAM) controller. Access to these registers are through a 8-bit "index" port and a 8-bit data port. The index port address is 0xf0000022 and the data port address is 0xf0000023. The memory controller supports **ROM**, **Flash**, **EDO**- and **Fast-page-mode** DRAM.

Table 5.2.1-1 :	MEMC Register	Мар	(IO base (BA) : 0xf000000
Index	Symbol	Access	Description
0x00		R/W	ROM bank 0 base register [0:7]
0x01		R/W	ROM bank 0 base register [8:15]
0x02		R/W	ROM bank 1 base register [0:7]
0x03		R/W	ROM bank 1 base register [8:15]
0x04		R/W	ROM bank 2 base register [0:7]
0x05		R/W	ROM bank 2 base register [8:15]
0x06		R/W	ROM bank 3 base register [0:7]
0x07		R/W	ROM bank 3 base register [8:15]
0x08	ROMconf0	R/W	ROM Configuration register 0 [0:7]
0x09	ROMconf1	R/W	ROM Configuration register 1 [0:7]
0x0a	ROMconf2	R/W	ROM Configuration register 2 [0:7]
0x0b	ROMconf3	R/W	ROM Configuration register 3 [0:7]
0x20		R/W	RAM bank 0 base register [0:7]
0x21		R/W	RAM bank 0 base register [8:15]
0x22		R/W	RAM bank 1 base register [0:7]
0x23		R/W	RAM bank 1 base register [8:15]
0x24		R/W	RAM bank 2 base register [0:7]
0x25		R/W	RAM bank 2 base register [8:15]
0x26		R/W	RAM bank 3 base register [0:7]
0x27		R/W	RAM bank 3 base register [8:15]
0x28	RAMconf0	R/W	RAM Configuration register 0 [0:7]
0x29	RAMconf1	R/W	RAM Configuration register 1 [0:7]
0x2a	RAMconf2	R/W	RAM Configuration register 2 [0:7]
0x2b	RAMconf3	R/W	RAM Configuration register 3 [0:7]

25

Version 0.84

ROM Base Address Register ()							
Index : 0x00,0x02,0x04, 0x06 Read/Write Power-on Default :						Default :	
0	1	2	2 3 4 5 6 7				7
ROM base address bit 0-7 (most significant bits)							
Index : 0x01,0x03,0x05,0x07 Read/Write Power-on Default :					Default :		
0	1	2	3	4	5	6	7
ROM base address bit 8-15							

These eight 8-bit registers (boundle to four 16-bit registers) defines the **most significant 16 bits** of each ROM banks' base (bottom) address. The "ROM base address" togather with the "ROM size" (defined in ROMconf0) construct the whole address range of each ROM banks.

These ROM base registers do not contain any initial value after system power-on. All ROM access will be directed to **bank 0** right after system power-on (for ROMconf3[3]=1 at that time). System programmer shall not set **ROMconf3[3]** to logic 0 before all ROM base and configuration registers have been filled with valid data.

ROM Configuration_0 Register (ROMconf0)

Index : 0x08

Read/Write

Power-on Default: 0x0

0	1	2	3	4	5	6	7
ROMen0	ROM bank_0 size			ROMen1	RC	M bank_1 s	size

Bit 0 Enable ROM bank 0

0 = Disable

1 = Enable

Bits 1-3 Size of ROM bank 0

Version 0.84

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

26

ROMconf0[1:3]	ROM size (*Basic unit)
0 0 0	64K
0 0 1	128K
0 1 0	256K
0 1 1	512K
1 0 0	1 M
1 0 1	2M
1 1 0	4M
1 1 1	16M

("*Basic unit" may be "byte", "halfword" or "word" which is defined in ROMconf2[0:7])

Bit 4 Enable ROM bank 1

0 = Disable

1 = Enable

Bits 5-7 Size of ROM bank 1

(The definition is the same as ROMconf0[1:3])

ROM Configuration_1 Register (ROMconf1)

Index	:	0x09

Read/Write

Power-on Default: 0x0

0	1	2	3	4	5	6	7
ROMen2	RC	ROM bank_2 size			RC	M bank_3 s	size

Bit 0 Enable ROM bank 2

0 = Disable

1 = Enable

Bits 1-3 Size of ROM bank 2

(The definition is the same as ROMconf0[1:3])

Bit 4 Enable ROM bank 3

- 0 = Disable
- 1 = Enable

27

Bits 5-7 Size of ROM bank 3

(The definition is the same as ROMconf0[1:3])

ROM Configuration_2 Register (ROMconf2)

Index : 0x0a

Read/write

Power-on Default : *note

0	1	2	3	4	5	6	7
ROM	I3DW	ROM	ROM2DW		1DW	ROM0DW	

Bits 0-1 Data Width of ROM bank 3

ROMconf2[0:1]	Data width
0 0	Byte
0 1	Halfword
1 0	Word
1 1	(reserved)

Bits 2-3 Data Width of ROM bank 2

(The definition is the same as ROMconf2[0:1])

Bits 4-5 Data Width of ROM bank 1

(The definition is the same as ROMconf2[0:1])

Bits 6-7 Data Width of ROM bank 0

(The definition is the same as ROMconf2[0:1])

***note** : The default value of this register is determined by **MD[30:31]**. The states of MD[30:31] will be copied into ROMconf2[0:1]/[2:3]/4:5]/[6:7] during system power-on (cold) reset.

ROM Configuration_3 Register (ROMconf3)

Index	:	0x0b

Read/write

Power-on Default: 0b'11011xx

0	1	2	3	4	5	6	7
ROM Read Wait state		BK0only	LA	Reserved			

Version 0.84

Bits 0-2 Wait states of ROM Read cycle

ROMconf2[0:2]	Wait States
0 0 0	2
0 0 1	3
0 1 0	4
0 1 1	5
1 0 0	6
1 0 1	7
1 1 0	8
1 1 1	9

Only ROM read cycles have a programmable wait states, while Flash ROM write cycles are always 9-wait states.

The AC timing of the ROM read/write cycles with different wait states are shown in AC timing specification.

Bits 3 ROM Bank 0 Only

When this bit is set, all ROM cycles will be directed to bank 0 despite of the programming value of Base, ROMconf0 and ROMconf1 registers.

Bits 4 Logic Analyzer Mode Enable

This mode is used for chip's testing and debugging. When this bit is set, some of the DMA pins are used to echo internal 486 bus' control/status signals.

DACK	echos	ADS#;	IOR	echos	BLAST#;
DACK	l echos	MIO#	IOW	echos	BRDY#
CS0	echos	DC#;	TC0	echos	RDY#;
CS1	echos	WR#;	TC1	echos	HLDA

RAM Base Address Register ()

Index : 0x20,0x22,0x24, 0x26

Read/Write

Power-on Default : --

0	1	2	3	4	5	6	7
RAM base address bit 0-7 (most significant bits)							

Index : 0x21,0x23,0x25,0x27

Read/Write

Power-on Default : --

Version 0.84

29

0	1	2	3	4	5	6	7
RAM base address bit 8-15							

These eight 8-bit registers (boundle to four 16-bit registers) defines the **most significant 16 bits** of each RAM banks' base (bottom) address. The "RAM base address" togather with the "RAM size" (defined in ROMconf0) construct the whole address range of each RAM banks.

The base address of all four DRAM banks have no default value after power-on reset. It is software's responsibility to well program these registers before access system DRAM.

RAM Configuration_0 Register (RAMconf0)

Index : 0x28		Read/Write		Power-on Default : 0x0				
	0	1	2	3	4	5	6	7
RAMTP3		RAMTP2		RAN	ITP1	RAMTP0		

Bits 0-1 DRAM Bank 3's RAM type & Bank-size

RAMconf0[0:1]	RAM type & Bank size (x32)
0 0	256K
0 1	1 M
1 0	4M
1 1	16M

The following table defines how CPU address bus map to DRAM address :

	25	6K	11	1M		4M		Μ
	ROW	COL	ROW	COL	ROW	COL	ROW	COL
MA11	*(A6)	*(A18)	*(A6)	*(A18)	*(A6)	*(A18)	A6	A18
MA10	*(A8)	*(A19)	*(A8)	*(A19)	A8	A19	A8	A19
MA9	*(A10)	*(A20)	A10	A20	A10	A20	A10	A20
MA8	A20	A29	A11	A29	A11	A29	A11	A29
MA7	A19	A28	A19	A28	A9	A28	A9	A28
MA6	A18	A27	A18	A27	A18	A27	A7	A27

Version 0.84

4 Banks	A10,		A8, A9		A6, A7		A4, A5	
2 Banks	A	11	A9		Α7		A5	
	Bank S	elector	Bank S	elector	Bank Selector		Bank Selector	
MA0	A12	A21	A12	A21	A12	A21	A12	A21
MA1	A13	A22	A13	A22	A13	A22	A13	A22
MA2	A14	A23	A14	A23	A14	A23	A14	A23
MA3	A15	A24	A15	A24	A15	A24	A15	A24
MA4	A16	A25	A16	A25	A16	A25	A16	A25
MA5	A17	A26	A17	A26	A17	A26	A17	A26

Note * : Don't care pins (only for testing issue).

** : A0 is MSB and A31is LSB.

- Bits 2-3 DRAM Bank 2's RAM type & Bank-size (The definition is the same as RAMconf0[0:1])
- Bits 4-5 DRAM Bank 1's RAM type & Bank-size (The definition is the same as RAMconf0[0:1])
- Bits 6-7 DRAM Bank 0's RAM type & Bank-size (The definition is the same as RAMconf0[0:1])

RAM Configuration_1 Register (RAMconf1)

Index : 0x29

Read/Write

Power-on Default: 0x0

0	1	2	3	4	5	6	7
PAREN	RAMen3	RAMen2	RAMen1	RAMen0	DIS384K	FW	FR

Bit 0 Enable parity-check of memory data bus

- 0 = Disable parity check
- 1 = Enable parity check
- Bit 1 DRAM bank_3 enable
 - 0 = Disable
 - 1 = Enable

Bit 2 DRAM bank_2 enable

31

Version 0.84

W90220F

- 0 = Disable
- 1 = Enable

Bit 3 DRAM bank_1 enable

0 = Disable

1 = Enable

Bit 4 DRAM bank_0 enable

0 = Disable

1 = Enable

- Bit 5 Swap out 0xA0000 ~ 0xFFFFF When this bit is set to a logic 1, address space 0xA0000 ~ 0xFFFFF will not be recognized as "system" DRAM space.
- Bit 6 Fast Write Enable (FW)

"FW" together with RAMconf2[2:3] ("CASPC, CASWR") determine CAS# precharge- and active-time during "DRAM write" cycles.

FW, CASPC	CAS# precharge-time (SYSCLK)
1 0	0.5
1 1	0.5
0 0	1
0 1	2

(Table 5.2.1-2 CAS# precharge-time during "write cycle")

(Table 5.2.1-3. CAS# active-time during "write cycle")

FW, CASWR	CAS# active-time (SYSCLK)
1 0	0.5
1 1	1.5
0 0	1
0 1	2

Bit 7 Fast Read Enable (FR)

> "FR" together with RAMconf2[2] ("CASPC") and RAMconf3[6:7] ("CASRD[0:1]") determine CAS# precharge- and active-time during "DRAM read" cycles.

(Table 5.2.1-4. CAS# precharge-time during "read cycle")

FR, CASPC	CAS# precharge-time (SYSCLK)
1 0	0.5
1 1	0.5
0 0	1
0 1	2

(Table 5.2.1-5. CAS# active-time during "read cycle")

FW, CASRD[0:1]	CAS# active-time (SYSCLK)
1 0 0	0.5
1 0 1	1.5
1 1 0	2.5
1 1 1	3.5
0 0 0	1
0 0 1	2
0 1 0	3
0 1 1	4

RAM Configuration_2 Register (RAMconf2)

Index : 0x2a

Read/Write

Power-on Default : 0x15

0	1	2	3	4	5	6	7
RASP	RASPC[0:1]		CASWR	R2CR	D[0:1]	R2CW	/R[0:1]

Bits 0-1 RAS# precharge time (RASPC[0:1])

"RASPC[0:1]" determine RAS# precharge-time during every "DRAM " cycles.

(Table 5.2.1-6. RAS# precharge-time during "DRAM cycle")

RASPC[0:1]	RAS# precharge-time (SYSCLK)
0 0	2
0 1	3
1 0	4
1 1	5

33

Version 0.84

Version 0.84

- Bits 2 CAS# precharge time (CASPC)
 This bit together with RAMconf1[6:7] ("FW, FR") determine CAS# precharge-time during
 "DRAM write or read" cycles respectively. Please refer Table 5.2.1-2 and Table 5.2.1-4 to get detail information.
- Bits 3 CAS# active time during DRAM-write (CASWR) This bit together with RAMconf1[6] ("FW ") determine CAS# active-time during "DRAM write" cycles. Please refer Table 5.2.1-3 to get detail information.
- Bits 4-5 RAS# to CAS# delay time during DRAM-read cycles (R2CRD[0:1]) "R2CRD[0:1]" determine RAS# to CAS# delay during "DRAM-read" cycles if bank or page is changing at that time.

(Table 5.2.1-7 RAS# to CAS# delay during "read cycle")

R2CRD[0:1]	RAS# to CAS# delay (SYSCLK)
0 0	1
0 1	2
1 0	3
1 1	4

Bits 6-7 RAS# to CAS# delay time during DRAM-write cycles (R2CWR[0:1])

"R2CWR[0:1]" determine RAS# to CAS# delay during "DRAM-write" cycles if bank or page is changing at that time.

R2CWR[0:1]	RAS# to CAS# delay (SYSCLK)
0 0	1
0 1	2
1 0	3
1 1	4

(Table 5.2.1-8. RAS# to CAS# delay during "write cycle")

RAM Configuration_3 Register (RAMconf3)

Index : 0x2b

Read/Write

Power-on Default: 0x09

34

Version 0.84

0	1	2	3	4	5	6	7
REFRA	AT[0:1]	CD2RD	RA2C	D[0:1]	CA2RA	CASR	D[0:1]

Bits 0-1 Refresh Rate (REFRAT[0:1])

REFRAT[0:1] determine the frequence of DRAM refresh cycles.

(Table 5.2.1-9 The frequence of DRAM refresh cycles)

REFRAT[0:1]	Frequence of refresh cycle (us)
0 0	15
0 1	60
1 0	240
1 1	960

- Bit 2 CAS# deassertion to RAS# deassertion (CD2RD)
 - 0 = The delay time for CAS# deassertion to RAS# deassertion is **1** SYSCLK for CAS-before-RAS refresh cycle.
 - 1 = The delay time for CAS# deassertion to RAS# deassertion is 2 SYSCLK for CAS-before-RAS refresh cycle.

Bits 3-4 RAS# assertion to CAS# deassertion (RA2CD[0:1])

These two bits determine the duration between RAS# assertion to CAS# deassertion for CASbefore-RAS refresh cycle.

RA2CD[0:1]	Delay (SYSCLK)
0 0	1
0 1	2
1 0	3
1 1	4

(Table 5.2.1-10 Delay time from RAS# assertion to CAS# deassertion)

Bit 5 CAS# assertion to RAS# assertion (CA2RA)

- 0 = The delay time for CAS# assertion to RAS# assertion is 1 SYSCLK for CAS-before-RAS refresh cycle.
- 1 = The delay time for CAS# assertion to RAS# assertion is 2 SYSCLK for CAS-before-RAS refresh cycle.

Bits 6-7 CAS# active time during DRAM-read (CASRD[0:1])

35

These two bits together with RAMconf1[7] ("FR ") determine CAS# active-time during "DRAM read" cycles. Please refer Table 5.2.1-5 to get detail information.

5.2.2 DMA REGISTERS

There are twelve registers included in two channels Direct Memory Access (DMA) controller. The IO address map is allocated from 0xf0000200 to 0xf000022c.

Table 5.2.2-1 : DMA Register Map

Table 5.2.2-1 : DMA Register Map			(IO base (BA) : 0xf000000)
Port Addr.	Symbol	Access	Description
BA + 0x200	SAR0	R/W	Channel 0 Source Address Register
BA + 0x204	TAR0	R/W	Channel 0 Target Address Register
BA + 0x208	LETH0	R/W	Channel 0 Length Register
BA + 0x20c	MOD0	R/W	Channel 0 Mode Control Register
BA + 0x210	SAR1	R/W	Channel 1 Source Address Register
BA + 0x214	TAR1	R/W	Channel 1 Target Address Register
BA + 0x218	LETH1	R/W	Channel 1 Length Register
BA+ 0x21c	MOD1	R/W	Channel 1 Mode Control Register
BA + 0x220	DBA0	R/W	DMA IO Device 0 Bass Address
BA + 0x224	DBA1	R/W	DMA IO Device 1 Base Address
BA + 0x228	LCAR0	R	Channel 0 Length Counter
BA + 0x22c	LCAR1	R	Channel 1 Length Counter

Source Addrsee Register (SAR0 and SAR1)

Port address : 0xf0000200 Port address : 0xf0000210 Read/Write Read/Write Power-on Default: 0x0000000 Power-on Default: 0x0000000

36

Version 0.84 The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from

Winbond.

W90220F

Version 0.84

0	1	2	3	4	5	6	7
	Source Address Register byte 0						
8	9	10	11	12	13	14	15
	Source Address Register byte 1						
16	17	18	19	20	21	22	23
Source Address Register byte 2							
24	24	26	27	28	29	30	31

Source Address Register byte 3

Bit 0-31 Source address register(SAR)

Define DMA transfer source address. In memory to memory mode, the source address should be set in word boundary.

Target Address Register (TAR0 and TAR1)

Port address : 0xf0000204 Port address : 0xf0000214				-on Default : 0x00000000 -on Default : 0x00000000			
0	1	2	2 3		5	6	7
		Tar	get Address	Register by	te 0		
8	9	10	11	12	13	14	15
		Tar	get Address	Register by	te 1		
16	17	18	19	20	21	22	23
		Tar	get Address	Register by	te 2		
24	24	26	27	28	29	30	31
	Target Address Register byte 3						

Bit 0-31 DMA target address register(TAR)

Define target address. In memory to memory mode, the target address should be set in word

boundary.

Port address : 0xf0000208		Read/write	Powe	r-on Defaul	t: 0x00000	000		
Port addres	s : 0xf00002	218	Read/write	ead/write Power-on Default : 0x00		t : 0x00000	000	
0	1	2	3	4	5	6	7	
			Rese	rved				
	1	1			1	1	1	
8	9	10	11	12	12	14	15	
			Reserved				LEN0	
16	17	18	19	20	21	22	23	
			LEN	11-8				
24	24	26	27	28	29	30	31	
LEN9-16								

Bit 0-14 Reserved

Bit 15-31 Transfer Length (LEN)

> LEN 0-16 indicate DMA transfer length with max 128k-byte transferring. In memory to memory tranfser mode, the length must in word boundary, because of vounting by word in length counter.

Mode Control Register (MOD0 and MOD1)

Port address : 0xf000020c	Read/Write	Power-on Default: 0x0000000f
Port address : 0xf000020c	Read/Write	Power-on Default : 0x00000000

0	1	2	3	4	5	6	7
DMAen	Reserved	TCIen	ECPen	TC	M2M	DEM	IOtype0

8	9	10	11	11 12 13 14 15					
IOtype1	TRt	ype			IOrec				
16	17	18	19	20	21	22	23		
		Wstate			FIX	Reserved	Tout0	(MOD0)	
		Wsate			DACK0L	DACK1L	CS0L	(MOD1)	
24	25	26	27	28	29	30	31		
Tout1-8								(MOD0)	
CS1L	DACK1A	TO0	TO1		Rese	erved		(MOD1)	

Bit 0 DMA enable(DMAen)

1 = DMA transfer enable.0 = DMA transfer disable

Bit 1 Reserved

Set to 0

- Bit 2 Terninal count interrupt enable(TCIen) 1 = enable terminal count interrupt Once this bit is set, and TC is asserted, the DMAC will generate external interrupt to host.
- Bit 3 Enable ECP as DMA device(ECPen)

1 = ECP is set as DMA device

Bit 4 Terminal count flag(TC)

1 = indicate the length counter reaches 0, and theTC asserted

- Bit 5 Memory to memory transfer(M2M)
 - 1 = DMA is set to memory to memory transfer
 - 0 = DMA memory to memory transfer is disable
- Bit 6 Demand mode or block mode select(DEM)
 - 1 = DMA transfer between memory and IO is demand mode
 - 0 = DMA transfer between memory and IO is block mode

39

Version 0.84

This bit is valid only in the transfer between memory and IO.

Bit 7-8 DMA IO device type(IOtype)

- 00 = 8-bit type, length counter(LENC) counts by byte
- 01 = 16-bit type, length counter counts by half word
- 10 = 32-bit type, length counter countes by word
- 11 = undefined

Only 8-bit external IO device is supported.

Bit 9-10 DMA transfer type(TRtype)

- 00 = memory to memory transfer
- 01 = memory to IO transfer
- 1x = IO to memory transfer
- Bit 11-15 DMA IO read/write command recovery time(IOrec)

This field define the recovery cycle between two read/write command.

Bit 16-20 DMA IO read/write command wait state(Wstate) This field define the IO read/write command wait state.

In MOD0:

- Bit21 DMA transfer fix mode(FIX)
 - 1 = Set DMA transfer as rotate mode. In rotate mode, the DMA controller acknowledge channel 1 request right after channel 0 being served. The channel 1 and channel 0 are served by turns.
 - 0 = DMA is set in fix mode. Channel 0 is the most privilege. The channel 1 will not get the service token, unless channel 0 release the request.

Bit22 Reserved

This bit should be set to 0.

Bit23-31 Ready timeout counter(Tout)

Set IO device assert NOT ready timeout cycle count. When IO read/write command is issued, and if the IO device inserts wait state by asserting IORDY, the ready timeout counter starts to count. If the counter reach the Tout before read/write command is completed, the timeout flag TO0 or TO1 is to be set.

W90220F

Version 0.84

In MOD1:

- Bit 21 Set DACK0 low active(DACK0L)
 - 1 = set DMA acknowledge signal DACK0 to low active
 - 0 = set DMA acknowledge signal DACK0 to high active
- Bit 22 Set DACK1 low active(DACK1L)
 - 1 = set DMA acknowledge signal DACK1 to low active
 - 0 = set DMA acknowledge signal DACK1 to high active
- Bit 23 Set CS0 low active(CS0L)
 - 1 =Set IO device chip select CS0 to low active
 - 0 = Set IO device chip select CS0 to high active

Bit 24 Set CS1 low active(CS1L)

1 =Set IO device chip select CS1 to low active

- 0 =Set IO device chip select CS1 to high active
- Bit 25 DACK1 active
 - 1 = indicate DMA channel 1 acknoewledge DACK1 is active

Bit 26 Channel 0 time out(TO0)

1 = indicate channel 0 IORDY signal timeout This bit is read ONLY.

- Bit 27 Channel 0 time out(TO1)
 - 1 = indicate channel 1 IORDY signal timeout This bit is read ONLY.
- Bit28-31 Reserved

DMA IO Device Bass Address (DBA0 and DBA1)

Port address : 0xf0000220	Read/write	Power-on Default : 0xfffff000
Port address : 0xf0000224	Read/write	Power-on Default : 0xfffff000

41

0	1	2	3	4	5	6	7
			DBA	40-7			
8	9	10	11	12	12	14	15
	DBA8-15						
16	17	18	19	20	21	22	23
	DBA	16-19		Reserved			
24	24	26	27	28	29	30	31
			Rese	erved			

Bit0-19 DMA IO device base address(DBA)

Define DMA device IO base. The base address should not conflict to internal mega cell base, and the bit0-3 should be always set to 0.

Bit 20-31 Reserved

Length Counter Register (LCAR0 and LCAR1)

Port address : 0xf0000228	Read only	Power-on Default :
Port address : 0xf000022c	Read only	Power-on Default :

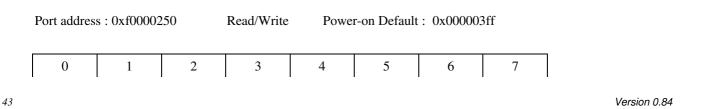
0	1	2	3	4	5	6	7
	Reserved						
							•
8	9	10	11	12	12	14	15
			Reserved				LENC0
16	17	18	19	20	21	22	23
LENC1-8							

42

24	24	26	27	28	29	30	31
			LENG	C9-16			

Bit 0-14 Reserved

Bit 15-31 Length counter indicates the remainder to be transfer. DMA transfered number = Length Register -LENC. TC is asserted by Length counter reaching 0. Reading Length Counter may not get the valid value if the channel is active, for the length may be in transition.


5.2.3 PCI BRIDGE INTERFACE REGISTERS

There are four 32 bits registers included in the PCI Bridge Interface controller. The IO address map is allocated from 0xf0000250 to 0xf000025c.

Table 5.2.3-1 : P	Cl Bridge Reo	gister Map	(IO base (BA) : 0xf000000)
Port Addr.	Symbol	Access	Description
BA + 0x250	REG0	R/W	Master 0 Latency Register
BA + 0x254	REG1	R/W	Master 1 Latency Register
BA + 0x258	REG2	R/W	Master 2 Latency Register
BA + 0x25c	REG3	R/W	Master 3 Latency Register

Table 5.2.3-1 : PCI Bridge Register Map

Master 0 Latency Register (REG0)

W90220F

Reserved

8	9	10	11	12	13	14	15
			Rese	erved			

16	17	18	19	20	21	22	23
PERRen	SERRen		Reserved		R	EQ0_reg[0:	2]

24	25	26	27	28	29	30	31
			REQ0_r	eg[3:10]			

Bits 0-15 Reserved

- Bit 16 Parity Error Enable 0 = disable 1 = enable
- Bit 17 System Error Enable 0 = disable 1 = enable

Bits 18-20 Reserved

Bits 21-31 Number of PCICLK count for Master Latency Adjustment Latency Time = REQ0_reg[0:11] / PCICLK

Master 1 Latency Register (REG1)

Port address : 0xf0000254

Read/Write

Power-on Default : 0x000003ff

0	1	2	3	4	5	6	7
			Rese	erved			

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

44

8	9	10	11	12	13	14	15
			Rese	erved			

16	17	18	19	20	21	22	23
	Reserved		CPURST	FIX	R	EQ1_reg[0:	2]

24	25	26	27	28	29	30	31
			REQ1_r	eg[3:10]			

Bits 0-18 Reserved

- Bit 19 CPU Reset Signal 0 = disable 1 = generate CPU Reset Signal
- Bit 20 Request Priority Select 0 = Rotate Priority 1 = Fix priority
- Bits 21-31 Number of PCICLK count for Master Latency Adjustment Latency Time = REQ1_reg[0:11] / PCICLK

Master 2 Latency Register (REG2)

Port address	s : 0xf00002	258	Read/Write	Power	Power-on Default : 0x000003ff			
0	1	2	3	4	5	6	7	
			Rese	erved				

Version 0.84

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

45

8	9	10	11	12	13	14	15
			Rese	erved			

16	17	18	19	20	21	22	23
		Reserved			R	EQ2_reg[0:	2]

24	25	26	27	28	29	30	31
			REQ2_r	eg[3:10]			

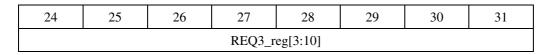
Bits 0-20 Reserved

Bits 21-31 Number of PCICLK count for Master Latency Adjustment Latency Time = REQ2_reg[0:11] / PCICLK

Master 3 Latency Register (REG3)

Port address : 0xf000025c

Read/Write


Power-on Default : 0x000003ff

0	1	2	3	4	5	6	7
			Rese	erved			

8	9	10	11	12	13	14	15	
Reserved								

Γ	16	17	18	19	20	21	22	23
	Reserved						EQ3_reg[0:	2]

Bits 0-20 Reserved

Bits 21-31 Number of PCICLK count for Master Latency Adjustment Latency Time = REQ3_reg[0:11] / PCICLK

PARALLEL PORT INTERFACE REGISTERS 5.2.4

There are eleven registers included in the Parallel Port Interface (PPI) controller. The IO address map is allocated from 0xf0000370 to 0xf000037f.

Table 5.2.4-1 : P	PI Register M	ар	(IO base (BA) : 0xf000000
Port Addr.	Symbol	Access	Description
BA + 0x378	DL	R/W	Data Line Register
BA + 0x379	DSR	R	Device Status Register
BA + 0x37a	DCR	R/W	Device Control Register
BA + 0x37b	FSR	R	FIFO Status Register
BA + 0x37c	FCR	R/W	FIFO Control Register
BA + 0x37d	IER	R/W	Interrupt Enable Register
BA + 0x37e	IIR	R	Interrupt Identification Register
BA+ 0x37f	DR	R	Data Register
BA + 0x370	Dfifo	R/W	Data FIFO
BA + 0x374	CMD	R/W	Command Register
BA + 0x375	TOR	R/W	Time Out Register
BA + 0x376 ~	-	-	Reserve for PPI future extension
BA + 0x377			

Table 5.2.4-1 · PPI Register Map

(IO base (BA) : 0xf000000)

Data Line Register (DL)

Port addres	s : 0xf00003	578	Read/Write	Powe	r-on Default	:	
0	1	2	3	4	5	6	7
			8-bit Data l	Lines status			

Bits 0-7 Data Lines status

This is the standard parallel port data register. Writing to this register will drive data to the parallel port data lines. Reads to this register return the value on the data lines.

Device Status Register (DSR)

Port address : 0xf0000379

Read only

Power-on Default : ---

0	1	2	3	4	5	6	7
BUSY#	nACK	PE	SEL	nFAULT	EMPTY	FULL	CMDtrue

Bits 0 Inverted version of Parallel Port Interface "BUSY" signal

- Bit 1 Version of Parallel Port Interface "nACK" signal
- Bit 2 Version of Parallel Port Interface "PError" signal
- Bit 3 Version of Parallel Port Interface "Select" signal
- Bit 4 Version of Parallel Port Interface "nFault" signal
- Bit 5 Echo device data FIFO "empty" status
 - 0 = device data FIFO is not empty
 - 1 =device data FIFO is empty
- Bit 6 Echo device data FIFO "full" status
 - 0 = device data FIFO is not full
 - 1 = device data FIFO is full

48

Version 0.84

Bit 7 "Command" pended

- 0 = Command Register (CMD) contains no command code
- 1 = A command code is in CMD not been transfered yet

This read-only register reflects the inputs on the Parallel Port Interface and some of device data FIFO and Command Register status.

Device Control Register (DCR)

Port address : 0xf000037a

a Read/write

Power-on Default : 0x0

0	1	2	3	4	5	6	7
Rese	Reserved		nAck_Ien	nSELIN#	nINIT	nAUFD#	nSTB#

Bit 2 Data bus output enable

0 = Data bus is drived by PPI for forward transfering

1 = Data bus is drived by peripheral device for reverse transfering

This bit has no effects during "peripheral emulation mode", "standard mode", "fast standard mode" and "PS2 mode".

Bit 3 nACK interrupt enable

0 = Data bus is drived by PPI for forward transfering

1 = Data bus is drived by peripheral device for reverse transfering

When this bit is set. A low-to-high transition will generate a interrupt request to CPU core.

- Bit 4 Complement version of Parallel Port Interface "nSelectIn" signal
- Bit 5 Version of Parallel Port Interface "nInit" signal
- Bit 6 Complement version of Parallel Port Interface "nAutoFd" signal
- Bit 7 Complement version of Parallel Port Interface "nStrobe" signal

This register directly controls several output signals as well as enabling some functions. The poweron default "0x0" makes {nSelectIn, nInit, nAutoFd, nStrobe} in {high, low, high, high} state, and

49

8-bit data bus in output enable mode which are suit for "standard mode" transfering.

FIFO Statu	us Register	(FSR)					
Port addres	s : 0xf00003	57b	Read only	Powe	r-on Default	:	
0	1	2	3	4	5	6	7
	Dt	fifo valid by		DA	SA	OV	

Bits 0-4 Valid bytes in device data FIFO (Dfifo)

During forward transfering, these bits indicate that how many bytes in 16-byte Dfifo still not be transfered yet. While during reverse transfering, these bits shows the number of data bytes which received from parallel port interface and not be read by CPU core.

Bit 5 Dfifo data available

0 = Dfifo contains data bytes less than one "PWord"

1 = Dfifo contains at least one "PWord" of valid data.

Bit 6 Dfifo space available

0 = Dfifo contains empty locations less than one "PWord"

1 = Dfifo contains at least one "PWord" of empty locations.

Bit 7 Dfifo over/under run

0 = Dfifo is not yet over- or under-run

1 = Dfifo is already over- or under-run

Once this bit is set, it will keep on set state until Dfifo or the PPI is reset.

FIFO Control Register (FCR)

Port address : 0xf000037c

Read/Write

Power-on Default : 0x0

0	1	2	3	4	5	6	7
DMAen	FRST	DRST	PWord	MOD		RD	TH

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

50

Bits 0 DMA mode enable

A low-to-high transition of this bit will make PPI issue a DREQ to DMA controller. On receiving the corresponding DACK, PPI deasserts the DREQ.

This bit will be cleared by DMA terminal-count (TC) asserting or by a CPU write cycle with data-in[0] = 0.

Bit 1 Reset Dfifo

Writing a logical one to this bit will assert "Dfifo Reset" for one EXTCLK cycle. This bit will return to deasserted state automatically after "Dfifo Reset" is issued.

Bit 2 Reset Device

Writing a logical one to this bit will assert "Device Reset" for one EXTCLK cycle. This bit will return to deasserted state automatically after "Device Reset" is issued.

Bit 3 PWord size

0 = PWord is 8 bits (1 byte)

1 = PWord is 32 bits (4 bytes)

"PWord" defines the basic unit of Dfifo access during CPU cycle.

Bit 4-5 Device mode select

IER[1] and FCR[4:5] are used to choose device operation mode.

{IER[1], FCR[4:5]}	Device Operation Mode
1 x 0	Test Mode
1 x 1	Peripheral Emulation Mode
0 0 0	Standard Mode
001	PS2 Mode
010	Fast Standard Mode
011	ECP Mode

Bit 6-7 Dfifo Read Threshold

51

These two bits define the threshold level for triggering data-available interrupt (Irpt_RDA) of Dfifo during reverse transfering.

	Read Thre	shold level
FCR[6:7]	PWord = 1 byte	PWord = 4 bytes
0 0	16 bytes	16 bytes
0 1	12 bytes	12 bytes
10	8 bytes	8 bytes
11	1 byte	4 bytes

Interrupt Enable Register (IER)

Port address : 0xf000037d

Read/Write

Power-on Default : 0x0

0	1	2	3	4	5	6	7
Reserved	PEMU	Tout_Ien	TC_Ien	Temp_Ien	Rda_Ien	nFault_Ien	LOOP

Bits 1 Peripheral Emulation Mode enable

0 = Device is not operating in "Peripheral Emulation Mode" or "Test Mode"

1 = Set device to "Peripheral Emulation Mode" or "Test Mode"

This bit along with FCR[4:5] are used to choose device operation mode.

- Bit 2 Time-Out Interrupt (Irpt_TOUT) enable
 - 0 = Mask Irpt_TOUT 1 = Enable Irpt_TOUT
- Bit 3 DMA Terminal-Count Interrupt (Irpt_TC) enable 0 = Mask Irpt_TC
 - 1 = Enable Irpt_TC
- Bit 4 Dfifo Empty Interrupt (Irpt_TEMP) enable 0 = Mask Irpt_TEMP 1 = Enable Irpt_TEMP
- Bit 5 Dfifo Read Threshold Interrupt (Irpt_RDA) enable
 - 0 = Mask Irpt_RDA
 - 1 = Enable Irpt_RDA

52

Version 0.84

Bit 6 "nFault" Interrupt (Irpt_nFault) enable

- 0 = Mask Irpt_nFault
- 1 = Enable Irpt_nFault
- Bit 7 Loop back enable
 - 0 = Loop-back disable
 - 1 = Loop-back enable

During Loop-Back mode, {nStrobe, nAutoFd, nInit, nSelectIn} will be fed to {nAck, Busy, PError, nFault} internally. This mode is used only for test issue.

Interrupt Identification Register (IIR)

Port address : 0xf000037e

Read only

Power-on Default : ---

0	1	2	3	4	5	6	7
Reserved		Irpt_Tout	Irpt_TC	Irpt_Temp	Irpt_RDA	Irpt_nFaul	Irpt_nAck
						t	

Bits 2 Time-Out Interrupt flag

"Set" situation : If IER[2] is set, and "Time out" is occured during parallel port transfering.

"Reset" situation : Reset device, or CPU reads Time-Out Register (TOR) or Dfifo being accessed either by CPU or parallel port interface transfering.

Bits 3 DMA Terminal Count Interrupt flag

"Set" situation : If IER[3] is set, and TC is asserted by DMA controller once DMA transfer is done.

"Reset" situation : TC is deasserted by DMA controller.

Bits 4 Dfifo Empty Interrupt flag

"Set" situation : If IER[4] is set, and Dfifo is empty during "**forward transfering**". "Reset" situation : CPU write new data into Dfifo.

Bits 5 Dfifo Read Threshold Interrupt flag

"Set" situation : If IER[5] is set, and data bytes received by Dfifo are exceeded the

threshold level (defined in FCR[4:5]) during "reverse transfering".

53

"Reset" situation : CPU read Dfifo such that data bytes in Dfifo are below the threshhold level.

Bits 6 "nFault" Interrupt flag

"Set" situation : If IER[6] is set, and a high-to-low transition is on "nFault" pin. "Reset" situation : CPU read Device Status Register (DSR).

Bits 7 "nAck" Interrupt flag

"Set" situation : If DCR[3] is set, and a low-to-high transition is on "nAck" pin. "Reset" situation : CPU read Device Status Register (DSR).

Data Register (DR)

Port address : 0xf000037f

37f Read only

Power-on Default : ---

0	1	2	3	4	5	6	7	
8-bit Data of latched Lines status								

Bits 0-7 Latched Line status

The status of data lines of PPI will be latched into this register if a high-to-low transition is happened on "nAck" pin.

This register is added to support "Peripheral Emulation Mode" operation.

Device Data FIFO (Dfifo)

Port address : 0xf0000370			Read/write Power-on Default :						
0	1	2	3	4	5	6	7		
Dfifo MSB byte									
8	9	10	11	12	13	14	15		

Version 0.84

16	17	18	19	20	21	22	23	
							<u> </u>	
24	25	26	27	28	29	30	31	
Dfifo LSB byte								

The device build-in a 16-byte data fifo to accelerate the transfer rate when using "Fast Standard Mode" or "ECP mode".

The Dfifo may be 1-byte or 4-byte accessed by CPU using "PWord" basis.

Command Register (CMD)

Port addres	s : 0xf00003	574	Read/write	Powe	r-on Default	:					
0	1	2	3	4	5	6	7				
	Pended Command Code										

Bits 0-7 Pended Command Code

Whenever a command code is written by CPU, a "command trasfer" will be induced immediately during "**ECP forward transfering**".

If CMD contains a command code not been transfered yet, a "command pended" status (CMDtrue) is echoed in DSR[7]. "Reset device" or "CPU read CMD" or the pended command code is finished transfering, the CMDtrue will also be cleared.

Time Out Register (TOR)

Port address : 0xf0000375

Read/write

Power-on Default : ---

0	1	2	3	4	5	6	7	
TOUTen		TOUTcmp						

Bits 0 Time Out Counter enable

Version 0.84

- 0 = Disable Time Out counter
- 1 = Enable Time Out counter

Bits 1-7 Time Out counter (TOUTcnt[0:6]) comparsion value

If "TOUTen" is set, the "TOUTcnt[0:6] will be reset first and then start counting whenever a new PPI transfer cycle is initiated. On detecting TOUTcnt[0:6] is equal to TOUTcmp[1:7], a "Time Out" flag will be set which in turn trigger a interrupt request (Irpt_TOUT) if IER[2] (ToutIen) is also set at that time.

The tick of Time-Out Counter is about 9.175ms (OSC/(2**21) where OSC = 14.318Mhz). The maximum duration that Time-Out Counter can cover is about 1.17 sec (2**7 ticks).

COM PORT INTERFACE REGISTERS 5.2.5

W90220 Provides 2 COM ports to interface external RS232 devices. COM1 allocates 0xf00003f8 ~ oxf00003ff as its IO-space, while COM2 allocates 0xf00002f8 ~ 0xf00002ff as its IO-space.

Table 5.2.5-1 : C	OM1 Register	⁻ Мар	(IO base (BA) : 0xf0000000)
Port Addr.	Symbol	Access	Description
BA + 0x3f8,	RBR[0:7]	R	Receiver Buffer Register
DLAB = 0			
BA + 0x3f8,	THR[0:7]	W	Transmitter Holding Register
DLAB = 0			
BA + 0x3f9,	IER[3:7]	R/W	Interrupt Enable Register
DLAB = 1			
BA + 0x3f8,	DLL[0:7]	R/W	Divisor Latch Register (LS)
DLAB = 1			
BA + 0x3f9,	DLM[0:7]	R/W	Divisor Latch Register (MS)
DLAB = 1			
BA + 0x3fa	IIR[0:7]	R	Interrupt Identification Register

Version 0.84

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

56

BA + 0x3fa	FCR[0:7]	W	FIFO Control Register
BA+ 0x3fb	LCR[0:7]	R/W	Line Control Register
BA + 0x3fc	MCR[0:7]	R/W	Modem Control Register
BA + 0x3fd	LSR[0:7]	R	Line Status Register
BA + 0x3fe	MSR[0:7]	R	MODEM Status Register
BA + 0x3ff	TOR[0:7]	R/W	Time Out Register

Table 5.2.5-2 : COM2 Register Map

(IO base (BA) : 0xf000000)

Port Addr.	Symbol	Access	Description
BA + 0x2f8,	RBR[0:7]	R	Receiver Buffer Register
DLAB = 0			
BA + 0x2f8,	THR[0:7]	W	Transmitter Holding Register
DLAB = 0			
BA + 0x2f9,	IER[3:7]	R/W	Interrupt Enable Register
DLAB = 1			
BA + 0x2f8,	DLL[0:7]	R/W	Divisor Latch Register (LS)
DLAB = 1			
BA + 0x2f9,	DLM[0:7]	R/W	Divisor Latch Register (MS)
DLAB = 1			
BA + 0x2fa	IIR[0:7]	R	Interrupt Identification Register
BA + 0x2fa	FCR[0:7]	W	FIFO Control Register
BA+ 0x2fb	LCR[0:7]	R/W	Line Control Register
BA + 0x2fc	MCR[0:7]	R/W	Modem Control Register
BA + 0x2fd	LSR[0:7]	R	Line Status Register
BA + 0x2fe	MSR[0:7]	R	MODEM Status Register
BA + 0x2ff	TOR[0:7]	R/W	Time Out Register

Receiver Buffer Register (RBR)

Port address : 0xf00003f8, DLAB=0 (COM1) 0xf00002f8, DLAB=0 (COM2) Read only

Power-on Default : --

W90220F

0	1	2	3	4	5	6	7	
8-bit Receiver Data								

Bits 0-7 Receiver Data

Reading this register, COM port returns 8-bit data receiving from SDI pin.

Transmitter Holding Register (THR)

Port address : 0xf00002f8, DLAB=0 (COM1) Write only 0xf00002f8, DLAB=0 (COM2)

Power-on Default : --

0	1	2	3	4	5	6	7		
	8-bit Transmit Data								

Bits 0-7 Transmit Data

Writing to this register, COM port will sent out the data through SDO pin (THR[7] first).

Interrupt Enable Register (IER)

Port address : 0xf00003f9, DLAB=0 (COM1) Read/Write 0xf00002f9, DLAB=0 (COM2)

Power-on Default: 0x0

0	1	2	3	4	5	6	7
				MOS_Ien	RLS_Ien	THRE_Ien	RDA_Ien

Bit 4 MODEM Status Interrupt (Irpt_MOS) Enable

0 = Mask Irpt_MOS

1 = Enable Irpt_MOS

Bit 5 Receiver Line Status Interrupt (Irpt_RLS) Enable

0 = Mask Irpt_RLS

1 = Enable Irpt_RLS

Bits 6 Transmitter Holding Register Empty Interrupt (Irpt_THRE) Enable

58

Version 0.84

0 = Mask Irpt_THRE

1 = Enable Irpt_THRE

Bits 7 Receiver Data Available Interrupt (Irpt_RDA) and Time-Out Interrupt (Irpt_TOUT) Enable

0 = Mask Irpt_RDA and Irpt_TOUT

1 = Enable Irpt_RDA and Irpt_TOUT

Divisor Latch (low byte) Register (DLL)

Port address : 0xf00003f8, DLAB=1 (COM1) 0xf00002f8, DLAB=1 (COM2) Read/write Power-on Default : 0x0

0	1	2	3	4	5	6	7		
	Baud Rate Divisor (Low Byte)								

Bit 0-7 Low byte of baud rate dvisor

Divisor Latch (high byte) Register (DLM)

Port address : 0xf00003f9, DLAB=1 (COM1) Read/write Power-on Default : 0x0 0xf00002f9, DLAB=1 (COM2)

0	1	2	3	4	5	6	7
		Baı	ıd Rate Divi	sor (High B	yte)		

Bit 0-7 High byte of baud rate dvisor

The 16-bit Divisor ({DLM, DLL}) is used to determine the COM port's baud rate. The equation is

Baud Rate = Frequency input / {16 * [Divisor +2]}

Interrupt Identification Register (IIR)

Port address : 0xf00003fa (COM1)

Read only Power-on Default : ---

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

59

0xf00002fa (COM2)

0	1	2	3	4	5	6	7
FMENo	RTH	o[0:1]	DMOD	MOD III			NOI

Bits 0 Status of "FIFO Mode Enable" This bit echos if "FIFO mode" is enable or not. Since "FIFO mode" is always enable, this bit always shows logical 1 when CPU reading this register.

- Bit 1-2 Status of RX FIFO threshold level These bits show current setting of receiver FIFO threshold level (RTH). The meaning of RTH is defined in the following FCR description.
- Bit 3 DMA mode select The DMA function is **not implemented** in this version. Reading IIR, the bit-3 is always 0.
- Bit 4-6 Interrupt Identification bits The IID[0:2] along with NOI indicate current interrupt request from COM port
- Bit 7 No Interrupt (NOI) pended

IIR[4:7]	Priority	Interrupt Type	Interrupt Source	Interrupt Reset control
1		None	None	
0110	Highest	Receiver Line Status (Irpt_RLS)	Overrun Error or Parity Error or Framing Error or Break Interrupt	Reading the LSR
0100	Second	Received Data Available (Irpt_RDA)	Receiver FIFO thres- hold level is reached	Receiver FIFO drops below the threshold level
1100	Second	Receiver FIFO Time-out (Irpt_TOUT)	Receiver FIFO is non- empty and no activities are occured in receiver FIFO during the TOR defined time duration	Reading the RBR
0010	Third	Transmitter Hoding Register Empty (Irpt_THRE)	Transmitter Holding Register Empty	Reading the IIR (if source of interrupt is Irpt_THRE) or writing into the THR

Table 5.2.5-3 : Interrupt Control Functions

60

Version 0.84

0000 Fourth	MODEM Status (Irpt_MOS)	CTS, DSR, DCD bits chang state or RI bit changes from high to low	Reading the MSR
-------------	----------------------------	--	-----------------

FIFO Control Register (FCR)

Port address : 0xf00003fa (COM1) Write only Power-on Default : 0x1 0xf00002fa (COM2)

0	1	2	3	4	5	6	7
RTH	[0:1]	Rese	erved	DMOD	TXRST	RXRST	FMEN

Bits 0-1 RX FIFO interrupt (Irpt_RDA) trigger level

FCR[0:1]	Irpt_RDA trigger level (bytes)
0 0	01
0 1	04
1 0	08
1 1	14

Bit 4 DMA mode select

The DMA function is **not implemented** in this version.

Bit 5 Reset TX FIFO

Seting this bit will generate 1 OSC cycle reset pulse to reset TX FIFO. The TX FIFO becomes empty (TX-pointer is cleared to 0) after such reset. This bit is returned to 0 automatically after the reset pulse is generated.

Bit 6 Reset RX FIFO

Seting this bit will generate 1 OSC cycle reset pulse to reset RX FIFO. The RX FIFO becomes empty (RX-pointer is cleared to 0) after such reset. This bit is returned to 0 automatically after the reset pulse is generated.

Bit 7 FIFO mode enable

The UART0 and UART1 are always operated on FIFO mode. Writing this bit has no effect while reading this bit always get logical one.

Line Control Register (LCR)

Port address : 0xf00003fb (COM1) 0xf00002fb (COM2)

Read/Write

Power-on Default: 0x0

0	1	2	3	4	5	6	7
DLAB	BREAK	SPAR	EPAR	PAR	STOP	WI	EN

Bits 0 Divisor Latch Access Bit

0 = "2F8/3F8" and "2F9/3F9" are used to access RBR, THR or IER.

1 = "2F8/3F8" and "2F9/3F9" are used to access Divisor Latch Registers (DLL, DLM).

Bit 1 Break Control Bit

When this bit is set to a logic 1, the serial data output (SOUT) is forced to the **Spacing State** (logic 0). This bit affects SOUT only and has no effect on the transmitter logic.

Bit 2 Stick Parity Enable

0 = Disable Stick Parity

1 = The parity bit is transmitted and checked as a logic 1 if bit-3=0 (odd parity), or

as a logic 0 if bit-3=1 (even parity).

This bit has effects only when bit-4 (Parity Bit Enable) is set.

Bit 3 Even Parity Enable

0 = Odd number of logic 1s is transmitted or checked in the data word bits and parity bit.

1 = Even number of logic 1s is transmitted or checked in the data word bits and parity bit. This bit has effects only when bit-4 (Parity Bit Enable) is set.

Bit 4 Parity Bit Enable

- 0 = Praity bit is not generated (transmit data) or checked (receive data) during transfer.
- 1 = Parity bit is generated of checked between the "last data word bit" and "stop bit" of the serial data.

Bit 5 Number of "Stop bit"

0 =One "stop bit" is generated in the transmitted data.

1 = **One and a half** "stop bit" is generated in the transmitted data when **5-bit** word length is selected.

Two "stop bit" is generated when 6-, 7- and 8-bit word length is selected.

62

Bits 6-7 Word Length Select

LCR[6:7]	Character length
0 0	5 bits
0 1	6 bits
1 0	7 bits
1 1	8 bits

Modem Control Register (MCR)

Port address : 0xf00003fc (COM1) 0xf00002fc (COM2)

Read/Write

Power-on Default: 0x0

0	1	2	3	4	5	6	7
	Reserved		LOOP	OUT2#	OUT1#	RTS#	DTR#

Enable Loop-Back mode Bits 3

0 = Disable

1 = When loop-back is enable, the following signals is connected internally.

SOUT connects to **SIN** internally and SOUT pin is fixed logic 1.

DTR# connects to **DSR#** internally and DTR# pin is fixed logic 1.

RTS# connects to **CTS#** internally and RTS# pin is fixed logic 1.

OUT1# connects to **RI#** internally and OUT1# pin is fixed logic 1.

OUT2# connects to DCD# internally and OUT2# pin is fixed logic 1.

- Bit 4 Complement version of OUT2# (user-designated output) signal
- Bit 5 Complement version of OUT1# (user-designated output) signal
- Bit 6 Complement version of RTS# (Request-To-Send) signal
- Bit 7 Complement version of DTR# (Data-Terminal-Ready) signal

Writing 0x00 to MCR set DTR#, RTS#, OUT1# and OUT2# to logic 1s, while writing 0x0f to MCR reset DTR#, RTS#, OUT1# and OUT2# to logic 0s.

Line Status Register (LSR)

Port address : 0xf00003fd (COM1) 0xf00002fd (COM2)

Read only

Power-on Default : ---

0	1	2	3	4	5	6	7
Err_RCVR	TEMT	THRE	BI	FE	PE	OE	DR

Bits 0 RX FIFO Error

- 0 = RX FIFO works normally
- 1 = There is at least one parity error (PE), framing error (FE) or break indication (BI) in the FIFO. LSR[0] is cleared when CPU reads the LSR and if there are no subsequent errors in the RX FIFO.

Bit 1 Transmitter Empty

0 = Either Transmitter Holding Register (**THR** - TX FIFO) or Transmitter Shift Register (**TSR**) are not empty.

- 1 = Both THR and TSR are empty.
- Bit 2 Transmitter Holding Register Empty

0 = THR is not empty.

1 = THR is empty.

The THRE bit is set when the last data word of TX FIFO is transferred to TSR. This bit is reset concurrently with the loading of the THR (or TX FIFO) by the CPU. This bit also causes the UART to issue an interrupt (Irpt_THRE) to the CPU when IER[6]=1.

Bit 3 Break Interrupt indicator

This bit is set to a logic 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits).

Bit 4 Framing Error indicator

This bit is set to a logic 1 whenever the received character did not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic 0).

Bit 5 Parity Error indicator

64

This bit is set to a logic 1 whenever the received character did not have a valid "parity bit".

Bit 6 Overrun Error indicator

An overrun error will occur only after the RX FIFO is full and the next character has been completely received in the shift register. The ccharacter in the shift register is overwritten, but it is not transferred to the RX FIFO. OE is indicated to the CPU as soon as it happens and is reset whenever the CPU reads the contents of the LSR.

- Bit 7 RX FIFO Data Ready
 - 0 = RX FIFO is empty
 - 1 = RX FIFO contains at least 1 received data word.

LSR[3:5] (BI, FE, PE) is revealed to the CPU when its associated character is at the top of the RX FIFO. These three error indicators are reset whenever the CPU reads the contents of the LSR.

LSR[3:6] (BI, FE, PE, OE) are the error conditions that produce a "receiver line status interrupt" (Irpt_RLS) when IER[5]=1. Read LSR clear Irpt_RLS.

Writing LSR is a null operation (not suggested).

Modem Status Register (MSR)

Port address : 0xf00003fe (COM1) 0xf00002fe (COM2)

(1) Read only

Power-on Default : ---

0	1	2	3	4	5	6	7
DCD#	RI#	DSR#	CTS#	DDCD	TERI	DDSR	DCTS

Bits 0 Complement version of **Data Carrier Detect** (DCD#) input

Bits 1 Complement version of Ring Indicator (RI#) input

- Bits 2 Complement version of Data Set Ready (DSR#) input
- Bits 3 Complement version of Clear to Send (CTS#) input
- Bits 4 DCD# state change

65

This bit is set whenever DCD# input has changed state, and it will be reset if the CPU reads the MSR.

Bits 5 Tailing edge of RI

This bit is set whenever TI# input has changed from high to low, and it will be reset if the CPU reads the MSR.

Bits 6 DSR# state change

This bit is set whenever DSR# input has changed state, and it will be reset if the CPU reads the MSR.

Bits 7 CTS# state change

This bit is set whenever CTS# input has changed state, and it will be reset if the CPU reads the MSR.

Whenever either of MSR[4:7] is set to logic 1, a Modem Status Interrupt is generated if IER[4]=1. Writing LSR is a null operation (not suggested).

Time Out Register (TOR)

Port address : 0xf00003ff (COM1) 0xf00002ff (COM2) Read/Write

Power-on Default : 0x0

0	1	2	3	4	5	6	7
TOUT_en				TOUT_cmp)		

Bits 0 Time-Out (interrupt) enable

The feature of Receiver Time-Out (interrupt) is enable only when TOR[0] = IER[7] = 1.

Bits 1-7 Time-Out (interrupt) comparator

The Time-Out counter is reset and start counting (the counting clock = baud rate) whenever the RX FIFO receives a new data word. Once the content of Time-Out counter (TOUT_cnt) is equal to that of Time-Out comparator (TOUT_cmp), a Receiver Time-Out interrupt Irpt_ TOUT) is generated if TOR[0] = IER[7] = 1.

A new incoming data word or RX FIFO empty clears Irpt_TOUT.

5.2.6 SYNCHRONOUS SERIAL INTERFACE REGISTERS

There are five registers included in the Synchronous Serial Interface (SSI) controller. The IO address map is allocated from 0xf0000380 to 0xf000038a.

Table 5.2.6-1 : SSI Register Map

(IO base (BA) : 0xf000000)

Port Addr.	Symbol	Access	Description
BA + 0x380	Dfifo	R/W	Data FIFO
BA + 0x384	CFGH	R/W	High Configuration Register
BA + 0x386	CFGL	R/W	Low Configuration Register
BA + 0x388	CTRL	R/W	Control Register
BA + 0x38a	STUS	R/W	Status Register

Data FIFO Register (Dfifo)

67

Port address : 0xf0000380 Read/Write Power-on Default : --0 1 4 5 7 2 3 6 Dfifo MSB Byte 9 12 13 14 15 8 10 11

16	17	18	19	20	21	22	23

24	25	26	27	28	29	30	31
			Dfifo L	SB byte			

The device build-in a 48x16 or 24x32 data fifo to accelerate the transfer rate.

The Dfifo may be 16-bit or 32-bit accessed by CPU, the type of reading, 16-bit or 32-bit depends on RX_FIFO type, and the type of writing, 16-bit or 32-bit depends on TX_FIFO type.

Bits 0-31

PCM data in/out, Whether the MSB bits are sign- or zero-extension depends on MEXT (CFGH[6]).

High Configuration Register (CFGH)

Port address : 0xf0000384

Read/Write

Power-on Default: 0x0000

0	1	2	3	4	5	6	7
SSIEN	LOOP	MASTER	LFMOD	Reserved	FACT	MEXT	SLEN[0]

8	9	10	11	12	13	14	15
	SLEN	J[1:4]			WPF		

Bits 0 SSI Enable

0 = SSI disable

1 = SSI enable

Bit 1 Loop back enable

0 = disable

1 = enable

68

Version 0.84

- Bit 2 Master mode enable
 - 0 = Slave mode enable. SYNC, SCLK are inputs.
 - 1 = Master mode enable. SYNC, SCLK are outputs.
- Bit 3 Long Framing Mode
 - 0 =Short framing
 - The first data will be available on the next SCLK cycle as SYNC is active. In this mode, SYNC width is 1 SCLK.
 - 1 = Long framing

The first data will be available on the same SCLK cycle as SYNC is active. In this mode, SYNC width is 1 SLEN.

- Bit 4 Reserved
- Bit 5 Frame active level 0 = active high
 - 1 = active low
- Bit 6 RX-FIFO MSB extension 0 = fill 0 in redundant MSBs of RX-FIFO 1 = non-implement
- Bit 7-11 Serial word length
 - Word length = SLEN[0:4] + 1. The word length supported by SSI is from 1 to 32 bits. SLEN[0:4] configure TX/RX also. if SLEN[0:4] <= 15, FIFO will be configured as 48x16. if 15 < SLEN[0:4] <= 31, FIFO will be configured as 24x32.
- Bit 12-15 Words per Frame

Words per frame = WPF[0:3] + 1. (max. 16 words/frame)

Low Configuration Register (CFGL)

Port address : 0xf0000386

Read/write

Power-on Default : 0x0000

0	1	2	3	4	5	6	7
BPF[0:7]							

69

Version 0.84

8	9	10	11	12	13	14	15		
	SCLKDIV[0:7]								

- Bit 0-7 Number of bits per frame Bits per frame = BPF[0:7] + 1. (max. 256 bits/frame)
- Bit 8-15 Serial clock divider On master mode,the SCLK is an output and its frequency is SCLK frequency = EXTCLK / (2*(SCLKDIV+1))

Control Register (CTRL)

Port address : 0xf0000388

Read/Write

Power-on Default: 0x0000

0	1	2	3	4	5	6	7
DVRST	TXRST	RXRST	RXTI	H[0:1]	TXTI	H[0:1]	IntRxen

8	9	10	11	12	13	14	15
IntTXen	IntERRen			Rese	erved		

Bits 0 Device reset

This is a self-clear bit, ie. set this bit to 1, it will be clear to 0 automatically after 1 EXTCLK. When this bit is set, all registers will be set to its default value and the controller will be also set to its initial states.

Bit 1 Reset TX-FIFO

This is a self-clear bit, ie. set this bit to 1, it will be clear to 0 automatically after 1 EXTCLK. When this bit is set, The TX-FIFO pointer will be cleared to 0, the TX-FIFO is empty immediately.

Bit 2 Reset RX-FIFO

This is a self-clear bit, ie. set this bit to 1, it will be clear to 0 automatically after 1 EXTCLK. When this bit is set, The RX-FIFO pointer will be cleared to 0, the RX-FIFO is empty immediately.

70

W90220F

- Bit 3-4 RX-FIFO threshold level 00 = RX-FIFO full 01 = 3/4 RX-FIFO
 - 10 = 1/2 RX-FIFO
 - 11 = RX-FIFO non-empty
- Bit 5-6 TX-FIFO threshold level
 - 00 = TX-FIFO empty
 - 01 = 1/4 TX-FIFO
 - 10 = 1/2 TX-FIFO
 - 11 = TX-FIFO non-full
- Bit 7 RX-FIFO interrupt enable 0 = disable 1 = enable
- Bit 8 TX-FIFO interrupt enable 0 = disable 1 = enable
- Bit 9 RX-FIFO overrun interrupt enable
 - 0 = disable
 - 1 = enable

Bit 10-15 Reserved

Status Register (STUS)

0	1	2	3	4	5	6	7
RXDA	TXSA	RXERR		Rese	erved		IntRX

8	9	10	11	12	13	14	15
IntTX	INTRERR			Rese	erved		

Bits 0 RX-FIFO data available

71

Version 0.84

W90220F

- 0 = There is no valid data word in RX-FIFO.
- 1 = There is at least one valid data word in RX-FIFO.
- Bit 1 TX-FIFO space available
 - 0 = There is no space available in TX-FIFO.
 - 1 = The TX-FIFO can still accept at least one data word.

Bit 2 RX-FIFO overrun

- 0 = The RX-FIFO works well.
- 1 = The RX-FIFO is already overrun.

Once the RX-FIFO is overrun, this bit will keep active until RX-FIFO is reset.

- Bit 3-6 Reserved
- Bit 7 RX-FIFO interrupt request
 - 0 = No RX-FIFO interrupt request
 - 1 = A RX-FIFO interrupt request is pending
 - Set = Valid data words in RX-FIFO exceeds the threshold level.
 - Reset = Valid data words in RX-FIFO drops below the threshold level.

Bit 8 TX-FIFO interrupt request

- 0 = No TX-FIFO interrupt request
- 1 = A TX-FIFO interrupt request is pending
 - Set = Valid data words in TX-FIFO drops below the threshold level. Reset = Valid data words in TX-FIFO exceeds the threshold level
- Bit 9 RX-FIFO overrun interrupt request
 - 0 = No RX-FIFO overrun interrupt request
 - 1 = A RX-FIFO overrun interrupt request is pending
 - Set = When RX-FIFO is overrun.
 - Reset = Reset RX-FIFO or reset device.

Bit 10-15 Reserved

72

5.2.7 TIMER REGISTERS

There are four registers included in the Timer. The IO address map is allocated from 0xf0000040 to 0xf0000043.

Table 5.2.7-1 Timer Register Map			(IO base (BA) : 0xf000000
Port Addr.	Port Addr. Symbol Access Description		Description
BA + 0x40	TCR1	R/W	Timer Control Register 1
BA + 0x41	TICR1	R/W	Timer Initial Control Register 1
BA + 0x42	TCR2	R/W	Timer Control Register 2
BA + 0x43	TICR2	R/W	Timer Initial Control Register 2

Timer Control Register1 (TCR1)

Port address : 0x00000040	Read/Write	Power-on Default :

0	1	2	3 23	24 31
TI	CE	IE	Reserved	Pre-scale

Bit 0 Timer interrupt bit : The timer sets this bit to one to indicate that it has decremented to zero. this bit remain one until software sets it to zero.

- Bit1 Counter Enable bit : Setting the CE bit to one causes the timer to begin decrementing Setting the CE bit to zero stops the timer.
- Bit2 Interrupt Enable bit : When IE is set to one and the counter decrements to zero, the timer asserts its interrupt signal to interrupt CPU.

Bit24_31 Pre-Scalar : A pre-scalar value can be used to divide the input clock.

Timer Initial Control Register1 (TICR1)

Port address : 0xf0000041	Read/Write	Power-on Default :

0	8
7	31
reserved	Timer Initial Count

Bit8_31 : A 24-bit register for the initial counter value.

Timer Control Register2 (TCR2)

Port address : 0xf0000042

Read/Write

Power-on Default : --

0	1	2	3 23	24	31
TI	CE	IE	Reserved	Pre-scale	

- Bit 0 Timer interrupt bit : The timer sets this bit to one to indicate that it has decremented to zero. this bit remain one until software sets it to zero.
- Bit1 Counter Enable bit : Setting the CE bit to one causes the timer to begin decrementing Setting the CE bit to zero stops the timer.
- Bit2 Interrupt Enable bit : When IE is set to one and the counter decrements to zero, the timer asserts its interrupt signal to interrupt CPU.
- Bit24_31 Pre-Scalar : A pre-scalar value can be used to divide the input clock.

Timer Initial Control Register1 (TICR2)

Port address : 0xf0000043 Read/Write

Power-on Default : --

0	8
7	31
reserved	Timer Initial Count

Bit8_31 : A 24-bit register for the initial counter value.

Two 24-bit decrementing timers will be implemented, corresponding to the TCR1, TICR1 and TCR2, TICR2 independently. When the timers interrupt enable bit is set to one and the counter decrements to zero, the timer will assert the associated interrupt signal. The interrupt signal will assert one of the 32 external interrupts defined by the EI bits in the control register. When a timer reaches zero, the timer hardware reloads the counter with the value from the timer initial count register and continues decrementing.

6 ELECTRICAL SPECIFICATIONS

6.1 Absolute Maximum Ratings

Ambient temperature	0 °C ~ 70 °C
Storage temperature	40 °C ~ 125°C
Voltage on any pin	
Power supply voltage	
Injection current (latch-up testing)	
Operating power dissipation	

6.2 DC Specifications

(Normal test conditions : VDD5V = 5.0V+/- 5%, VDDi/VDDp/VDDl = 3.3V+/- 5%, TA = 0 °C ~ 70 °C unless otherwise specified)

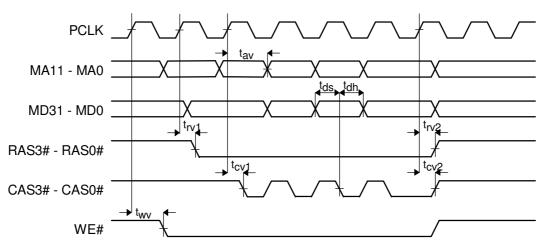
SYMBOL	PARAMETER	CONDITION	MIN	МАХ	UNIT
VDD5V	Power Supply		4.75	5.25	V
VDDi/VDDp	Power Supply		3.14	3.46	V
VIL	Input Low Voltage			0.8	V
VIH	Input High Voltage		2.0		V
V _{OL}	Output Low Voltage	I _{OUT} = 2,4,8 mA (*2)		V _{SS} + 0.4	V
VOH	Output High Voltage	I _{OUT} = -1,2,4 mA (*2)	2.4		V
ICC	Supply Current	F _{cpu = 100Mhz}		300	mA
ІН	Input High Current	$V_{IN} = 2.4 V (*1)$		10	μA
١	Input Low Current	V _{IN} = 0.4 V (*1)	-10	10	μA
IIHP	Input High Current (pull-up)	V _{IN} = 2.4 V (*3)	-45	-15	μA
I _{ILP}	Input Low Current (pull-up)	V _{IN} = 0.4 V (*3)	-10		μA

Note *1: Inpt leakage current (I_{IL} , I_{IH}) include those bi-directional pins which are in "input" mode (output disable).

*2 : Pins of **4mA** sink capability include :

76

ROMMEN#, DACK[0:1], CS[0:1], TC[0:1], DTR1#, RTS1#,


SOUT1, SOUT2.

RAS#[0:3], RCS#[0:3], ROM_OE#, ROM_RW#, IOR, IOW,
utoFd, nStrob, SelectIn, nInit, SDO, MD[0:31], DD[0:7],
CLK, SCLK, SYNC.
CAS#[0:3], MA[0:11], WE#, PCIRST, GNT#[0:1], ED[0:7],
/BE[0:3], PDA[0:31], STOP#, PERR#, TRDY#, DEVSEL#,
RAME#, IRDY#, PPAR.
de : PREQ#[0:1], SERR#, INTA#, INTB#, INTC#, INTD#,
CTS1#, DSR1#, RI1#, DCD1#.

6.3 AC Specifications

6.3.1 Memory controller

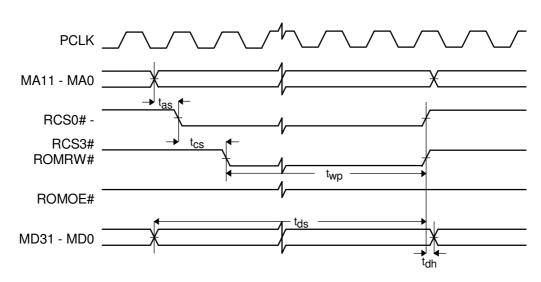
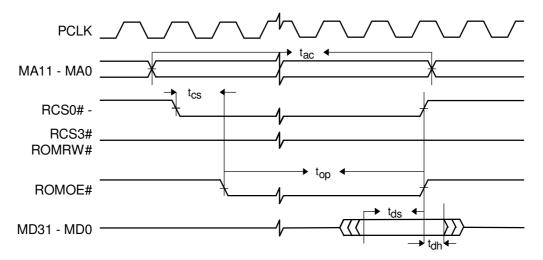

Symbol	Parameter	Min	Max	Unit
t _{rv1}	RAS# valid delay ref. to PCLK rising			ns
t _{rv2}	RAS# valid delay ref. to PCLK rising			ns
t _{cv1}	CAS# valid delay ref. to PCLK rising			ns
t _{cv2}	RAS# valid delay ref. to PCLK rising			ns
t _{wv}	WE# valid delay ref. to PCLK rising			ns
t _{ds}	Memory data setup time			ns
t _{dh}	Memory data hold time			ns
t _{av}	Memory address valid delay			ns

Fig 6..3.1-2 Flash ROM Write Timing

The above information is the exclusive intellectual property of Winbond Electroncs Corp. and shall not be dsiclosed or distributed or reproduced without permission from Winbond.

77



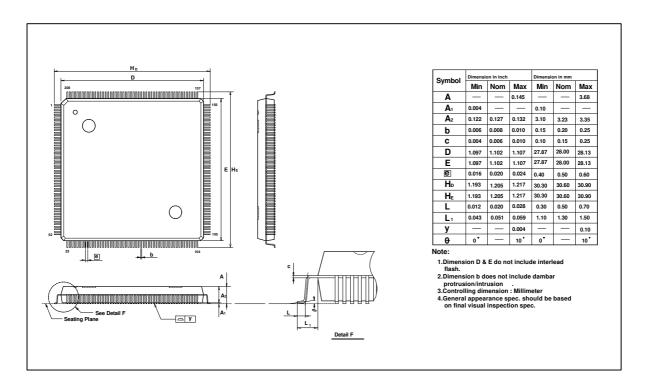
Symbol	Parameter	Min	Max	Unit
tas	Address setup time			ns
t _{CS}	Chip select setup time			ns
t _{ds}	Data setup time			ns
t _{dh}	Data hold time			ns
t _{wp}	Flash ROM write pulse width		7	PCLK

Fig 6.3.1-3 ROM Read Timimg

78

Symbol	Parameter	Min	Max	Unit
t _{ac}	Access time	3		PCLK
t _{CS}	Chip select setup tome			ns

Version 0.84



79

t _{op}	Output enable pulse		ns
t _{ds}	Data setup tome		ns
t _{dh}	Data hold time		ns

7 PACKAGE DIMENSIONS

The W90220 is packaged in a 208-pin PQFP package. The following figure shows its mechanical dimension

