

#### THE QUARTERLY JOURNAL FOR XILINX PROGRAMMABLE LOGIC USERS



#### Inside This Issue:

#### **GENERAL**

| Fawcett: The New Reality2       |
|---------------------------------|
| Guest Editorial: Curt Wozniak   |
| Financial Results4              |
| Customer Success Story5         |
| New Product Literature6         |
| Upcoming Events6                |
| Development Systems Chart7      |
| Alliance Program Chart8         |
| Alliance Contact Chart9         |
| Component Availability Chart 10 |
| Programming Support Charts:     |
| XC7200, XC7300, XC1700 11-13    |

#### PRODUCTS

| New XC4000 Speed Grade           | 14 |
|----------------------------------|----|
| Military Compliant Serial PROMs  | 14 |
| XC5000 Family Grows              | 15 |
| New, Low-Power Version of XC7336 | 16 |

#### **DEVELOPMENT SYSTEMS**

| XACT step, version 6 Preview    | 17-18  |
|---------------------------------|--------|
| Floorplanner Overview           | 19-20  |
| Cadence Interface Announced     | 20     |
| Upgrading to NeoCAD FPGA Found  | ry. 21 |
| Solaris Support Status          | 21     |
| HW-130 Universal Programmer     | 22     |
| XC7000 EPLD Support from ISDATA | 22     |

#### HINTS & ISSUES

| Designing with HDLs and Synthesis | 23-25   |
|-----------------------------------|---------|
| Measuring Speed and Temperature   | 25      |
| Board-Level Simulation            | 26-27   |
| Configuration Checklist           | 27      |
| Questions & Answers               | 28-29   |
| Technical Support Facilities      | 29      |
| Manchester Decoder in 3 CLBs      | 30      |
| 3.3V Programmable Logic Market    |         |
| Fax Back Survey                   | . 30-31 |
| 2Q95 Fax Response Form            | 32      |
|                                   |         |

### GENERALFEATURES



## Xilinx, NeoCAD Merge

Xilinx President and Chief Operating Officer Curt Wozniak discusses Xilinx's founding vision and the importance of the Xilinx-NeoCAD merger ...

See Page 2

### PRODUCTINFORMATION

### New XC5000 Family Members Introduced

The new 2,500-gate XC5202 and 4,000gate XC5204 provide lower-density, feature-rich FPGA solutions...

See Page 15



## $\mathbf{X}_{S} \mathbf{A}_{T} \mathbf{C}_{E} \mathbf{T}_{P}$ is Coming!

Powerful new features such as the Floorplanner make the latest release of the XACT Development System a revolutionary combination of power and ease-of-use...

See Page 17

### **DISIGNALIS**



## **Manchester Decoder**

A high-speed, efficient serial decoder using Xilinx FPGAs uses eight-times oversampling to ensure fast and accurate interpretation of Manchester-encoded data...

See page 30

#### FROMTHEFAWCETT

# Total Cost and Time-to-Volume: **The New Reality**

By BRADLY FAWCETT 

Editor

While designers value the flexibility and convenience of a user-programmable device, the programmable elements and their associated control logic do exact a



•

•

price in terms of silicon area. Thus, programmable devices generally cost more, on a perpiece basis, than equivalent-density custom and semi-custom ICs, such as masked gate arrays (although this gap is closing).

The choice between a high-density programmable device (an

EPLD or FPGA) and a gate array often comes down to simple economics designers want to use whichever one is most cost-effective for the application. However, determining the true "total cost"

of a given technology in a given application is not at all a simple matter. If such an analysis includes only a comparison of unit prices at a given volume, the "break-even" point between FPGAs and gate arrays typically will be only a few hundred to a few

thousand pieces — even if the extra NRE (non-recurring charges) associated with semicustom devices are amortized into the gate array price. But such an analysis falls far short of revealing the true cost of the respective technologies.

Many other factors affect technology costs. These include development tool

costs, inventory costs, quality, vendor service, future component price reductions, design/market risks (i.e., will the design need to be modified after production shipments begin), and the potential for extra engineering and NRE costs due to design re-spins. Many of these costs can go unrecognized in a traditional cost analysis because they occur after the design cycle, or cut across many functional groups.

However, out of all the factors involved (including component costs), the two factors that tend to most heavily weight the programmable device vs. gate array cost analysis are engineering costs and time-to-market. In a typical scenario, studies suggest that these factors can move the "break-even point" between FPGAs and gate arrays to tens or even hundreds of thousands of units.

**Generation Constraints Co** 

These factors are directly related. Engineering costs are higher and design cycles longer due to the extra steps required in semicustom IC development, especially exhaustive simulation and test vector generation. This, combined with

the significantly longer lead times required to produce prototypes and production quantities of gate arrays, can significantly increase the time-to-market for that product, as compared to a programmable solution. As many studies have shown, in today's environment, even a small delay in time-to-market can have a significant

### XCELL

Please direct all inquiries, comments and submissions to:

Editor: Bradly Fawcett

#### Xilinx, Inc.

2100 Logic Drive San Jose, CA 95124 **Phone:** 408-879-5097 **FAX:** 408-879-4676 **E-Mail:** brad.fawcett@xilinx.com

©1995 Xilinx Inc. All rights reserved.

XCELL is published quarterly for customers of Xilinx, Inc. Xilinx, the Xilinx logo and XACT are registered trademarks; all XC-designated products, UIM, HardWire and XACT-Performance are trademarks; and "The Programmable Logic Company" is a service mark of Xilinx, Inc. All other trademarks are the property of their respective owners.



#### **GUEST EDITORIAL**

# The Xilinx-Neocad Merger

**by CURT WOZNIAK**  $\blacklozenge$  President and Chief Operating Officer

The continued growth of the high-density, high-performance programmable logic market is increasingly dependent upon the capabilities of the development software. While continuing our efforts to make programmable logic devices faster, denser and less expensive, we also realize that the design software needs to be easier to use, must provide more powerful design and debug capabilities, and should be supplied to users in advance of device availability.

To help in the continuing efforts to achieve these goals, Xilinx recently announced the acquisition of NeoCAD, Inc., a developer of high-performance design software for FPGAs. Combining our strength in FPGA and EPLD programmable logic devices and process technologies with NeoCAD's advanced FPGA software technology, this merger will provide Xilinx users with access to even more powerful FPGA software design solutions. It is clear that NeoCAD can provide innovative technology that will accelerate software and hardware development efforts in order to keep pace with user demands. This increased capability will allow us to significantly enhance our industry-leading FPGA and EPLD solutions and bring new solutions to market more quickly.

We now face the challenge of combining the best of both the Xilinx and NeoCAD development system technologies. The next development system release from Xilinx and NeoCAD, XACT*step*, version 6, and NeoCAD Foundry V7.0, respectively, will ship as planned. We will continue to support all Xilinx and NeoCAD users with active software maintenance agreements. Migration paths to allow current NeoCAD users access to the XACT solution and XACT users access to the NeoCAD software will soon be established. *(See related article, page 21.)* 

NeoCAD software will continue to be supported out of Boulder, Colorado. The former NeoCAD research and development team will remain in Boulder and comprise the nucleus of the Xilinx Boulder research and development site.

NeoCAD's software technology will be merged into future XACT releases to provide a flexible, technology-independent methodology that enables us to quickly support current and emerging architectures. Equally important, the NeoCAD FPGA technology evaluation capability, whereby users can perform "what if" scenarios and select the optimum device based on their cost, speed and density requirements, will also be incorporated within the XACT*step* software system. The development team in Boulder will develop software jointly with other Xilinx development teams worldwide; we will leverage this team's expertise and experience, and anticipate that they will take a leadership role in driving our overall software direction.

Programmable logic users demand a wide range of architectures and programming technologies to satisfy their product needs, and software is a key enabler in this regard. This merger underscores our continued commitment to provide a diverse suite of programmable logic solutions. Our vision of the Xilinx-NeoCAD merger is that we can combine the best aspects of our technologies and the talents of our employees to achieve a design system for our users that is the absolute best in the industry. **This is the vision on which Xilinx was founded.** 



•

•



•

•

•••••



#### **THEFAWCETT** Continued from page 2

impact on the overall profitability of a product. A late project's "total cost" will often be substantially higher than that of a project completed quickly.

Yet, it may be more accurate to think in terms of time-to-volume, rather than just timeto-market. Time-to-volume is a new term that reflects a product's total life cycle needs. The key is not only to get the product to market, but to quickly and seamlessly achieve required volume production price points. This is one of the key philosophies behind the Xilinx HardWire product line. FPGA devices can be used for development, debugging, prototyping, and initial production, thus

### Xilinx ASIC Estimator Available for PC

Calculate the total cost of your project using Xilinx FPGAs, FPGAs and Xilinx HardWire gate arrays, or traditional mask-programmed ASICs. The Xilinx ASIC Estimator operates on IBM-compatible computers and allows you to enter your own specific costs. Download it via the Internet at ftp://www.xilinx.com/pub/ utilities. The directory contains a readme.est file and the executable estimate.exe. You may also contact your local Xilinx sales representative for a floppy disk copy. speeding time-to-market. In higher volume, they can be directly replaced by less-expensive, mask-programmed HardWire devices, with no redesign effort or risk; engineering resources are free to move on to the development of the next product.

Improving time-to-volume is the major thrust of the upcoming XACTstep, version 6 development system release. The focus is on accelerating all phases of the product development flow: design entry, design implementation (for the programmable logic), printed circuit board design, design debug, and product production. (See related article on pages 17-18.) Special attention has been paid to the often-overlooked design debug stage; surveys indicate that more than 50 percent of a designer's time is spent in design debug and change. So look for improved floorplanning tools and re-entrant "guide" options in PPR to help ease the absorption of design changes late in the development cycle — and improved timing analysis and hardware debugging tools. Our goal is to provide the tools and technologies that will boost your productivity, reduce your total cost and shorten your time-to-volume.  $\blacklozenge$ 

#### **FINANCIAL REPORT**

### **Record Revenue in Fiscal Year 1995**

Xilinx again achieved record revenues in fiscal year 1995 (April 1994-March 1995), reflecting the strength of our product line and the continued expansion of the programmable logic market. Fiscal 1995 revenues totaled \$355.1 million, an increase of 38 percent over fiscal 1994.

For the fourth quarter (ending March 31, 1995), revenues reached a record \$109.2 million, an increase of 45 percent from the same quarter one year earlier and up 20 percent from the immediately preceding quarter. This revenue growth was driven by continued demand for the high-speed XC3100, XC3100A and richly-featured XC4000 FPGA families, along with record revenues for custom HardWire devices. International revenues increased 49 percent from the preceding quarter, contributing more than 30 percent of total revenues.

"Xilinx is well-positioned as we enter fiscal 1996. We intend to double our number of architecture offerings and, with the NeoCAD union, we will be able to provide more powerful software solutions," noted Bernie Vonderschmitt, Xilinx CEO. "Looking forward, we remain optimistic about the overall growth of the high-density programmable logic market and our position within this market."

Xilinx stock is traded on the NASDAQ exchange under stock symbol XLNX. ◆

# 155 Mbit/s Codec Uses Xilinx FPGAs

The Satellite Communications Research Centre (SCRC) of the University of South Australia in Adelaide is a space industry development center sponsored by the Australian Space Office.

In May of 1992, the SCRC secured a contract from Intelsat to build a 155 Mbit/s codec in a worldwide competitive bid. Intelsat is the world's largest commercial satellite communications service provider, owned by 120 member nations. The 155 Mbit/s codec was the first major high technology research and development contract awarded to an Australian institution.

The task was to develop and prototype a forward error correcting codec that would allow transmission of the standard 155.52 Mbit/s broadband ISDN data rate over a 72 MHz satellite transponder. The use of Xilinx FPGA technology was key to successfully implementing the codec.

After getting the contract, a group of six engineers, nicknamed Team 155 and led by Dr. Steven S. Pietrobon, spent the next 18 months simulating, designing, building, and testing the codec. The key to the codec was the efficient implementation of a multi-dimensional trellis code. The encoder that added the information required to implement the code was incorporated in an XC4002A. The decoder that removes errors induced by noise in the channel is much more complicated and required two XC4010s. However, this is still much less complex than other coding schemes that require up to nine ASICs or ECL gate arrays and provide inferior performance.

SCRC's previous experience with XC3000 technology and the new features provided by the XC4000 architecture (especially the fast carry logic and on-chip RAM features) allowed Team 155 to put the decoder on two XC4010s in the time available. A standard Reed Solomon code also was used. An XC4003 and XC4005 were used to interface to available Reed Solomon codec chips and provide the interleaving, de-interleaving, and synchronization functions of the codec.

Viewlogic's WorkView and PowerView systems were both used for schematic capture and functional simulation of the FPGA designs; simulation was used extensively to test and debug the design before implementation. The use of X-BLOX<sup>TM</sup> and the reprogrammability of the Xilinx chips allowed design changes and improvements to be easily made and tested. Xilinx extended support to Team 155 by providing XC4010-5 devices (the fastest at the time) and the latest software upgrades as they became available. This was especially important during the acceptance tests when the codec was being tested with the modem for the first time. The codec was initially not quite fast enough, resulting in marginal performance. Using recently-arrived software, another route was performed. and a few hours later Team 155 had a faster and accepted codec.

The resulting high-speed codec is capable of transmitting 155.520 Megabits per second over international communication satellites. Previously, undersea fiber-optic cables were the only means for transmitting information internationally at this high data rate.

The codec is currently being licensed to EF Data in Tempe, Arizona, where it is being incorporated into their modems. After delivery of the modems later this year, Intelsat will test this modem/codec with the satellites. The prototype modem/codec has already been successfully tested using a ground-based version of their satellites. UNIVERSITY OF SOUTHAUSTRALIA

Trellis decoder card uses 2 XC4010FPGAs

### **New Product Literature**

Learn about the newest Xilinx products and services through our extensive library of product literature. The most recent pieces are listed below. To order or to obtain a complete list of all available literature, please contact your local Xilinx sales representative.

| TITLE                                  | DESCRIPTION                    | PARTNUMBER  |
|----------------------------------------|--------------------------------|-------------|
| CORPORATE                              |                                |             |
| High-Performance Computing Packet      | Application notes & brochure   | none        |
| FPGAs                                  |                                |             |
| Hi-Rel XC3000 Family Data Sheet        | Technical Data Sheet           | #0010244-01 |
| XC1765D Data Sheet                     | Technical Data Sheet           | #0010212-02 |
| EPLDs                                  |                                |             |
| EPLD Application Guide                 | Application note & data sheets | #0010237-01 |
| HW-130 Overview                        | Features & benefits            | #0010245-01 |
| DEVELOPMENTSYSTEMS                     |                                |             |
| XACT step, version 6 Overview          | Features & benefits            | #0010101-04 |
| Floorplanner Overview                  | Features & benefits            | #0010246-01 |
| Synopsys Interface Overview            | Features & benefits            | #0010154-05 |
| Viewlogic ProSeries Interface Overview | Features & benefits            | #0010166-03 |
| Mentor Graphics Interface Overview     | Features & benefits            | #0010067-05 |
| Cadence Interface Overview             | Features & benefits            | #0010247-01 |

### New Edition of Xilinx Data Book

**B** y the time you receive this issue of *XCELL*, a new revision of the *Xilinx Programmable Logic Data Book* will be available. Labeled the third edition, this new version has been updated to include new products, such as the XC3100A-1 FPGAs and the latest package options for the XC4000 family devices.

New, more complete information that helps users to manage heat dissipation more effectively was also added. *(See related article on page 25).* 

#### **UPCOMING EVENTS**

Look for Xilinx technical papers and/ or product exhibits at these upcoming industry forums. For further information about any of these conferences, please contact Kathleen Pizzo (Tel: 408-879-5377 FAX: 408-879-4676). ◆

**3rd Canadian Workshop on Field-Programmable Devices (FPD '95)** May 29 - June 1 Montreal, Quebec, Canada

**Designing Personal Communications Products** June 8-9: Seoul, Korea June 12-13: Taipei, Taiwan June 15-16: Beijing, China **32nd Design Automation Conference (DAC)** June 12-16 San Francisco, California

**2nd GI/ITG Workshop on Field Programmable Devices** June 22 - 23 Karlsruhe, Germany

**PLD Conference, Japan** July 19-21 Tokyo, Japan

**IC Card Expo** July 24-26 Santa Clara, CA Electronic Design Automation & Test Conference (EDA & T Asia) Aug. 21-22: Beijing, China Aug. 24-25: Seoul, Korea Aug. 28-29: Hsinshu, Taiwan

**5th International Workshop on Field Programmable Logic (FPL '95)** Aug. 29 - Sept. 1 Oxford, United Kingdom

**8th Annual IEEE ASIC Conference (ASIC '95)** Sept. 18 - 22 Austin, Texas

**European Design Automation Conference (EURO-DAC '95)** Sept. 18 - 22 Brighton, United Kingdom

|                        | XILINX                | <b>RELEASED</b> S              | OFTWARE                  | STATU    | JS-M  | AY 19     | 995               |        |            |
|------------------------|-----------------------|--------------------------------|--------------------------|----------|-------|-----------|-------------------|--------|------------|
|                        |                       |                                |                          | PREVIOUS | CURRE | ENT VERSI | ON BY PL          | ATFORM |            |
| PRODUCT                | PRODUCT               | PRODUCT                        | XILINX PART              | VER.     | PC1   | SN2       | AP1               | HP7    | LAST       |
| CATEGORY               | DESCRIPTION           | FUNCTION                       | NUMBER                   | Rel.     | 6.2   | 4.1.x     | 10.4              | 9.01   | UPDATE     |
|                        |                       |                                |                          |          |       |           |                   |        |            |
|                        | VC2.2 4K SUPPOPT      |                                | DS 502 WW                | 5.02     | 5 10  | 5 10      | 5 10              | 5 10   | 01/05      |
|                        | XCZ, 3,4K SUPPORT     |                                | DS-502-XXX<br>DS-550-XXX | 5.02     | 5.10  | 5.10      | 5.10              | 5.10   | 01/95      |
|                        | HI-DENSITY DES KIT    |                                | ES-HD4K-SN2              | N/A      | 0.10  | 5 10      |                   | 5.10   | N/A        |
| MENTOR <sup>2</sup>    | A 1-F                 | I/F AND LIBRARIES              | DS-344-xxx               | 5.02     |       | 5 11      | 1 10              | 5 11   | 05/95      |
|                        | 7                     | I/F AND LIBRARIES              | DS-35-xxx                | 5.00     | 5 10  | 0.11      | 1.10              | 0.11   | 01/95      |
| SYNOPSYS <sup>2</sup>  |                       | I/F AND LIBRARIES              | DS-401-xxx               | 3.01B    | 0110  | 3.20      | 3.01 <sub>B</sub> | 3.20   | 01/95      |
| VIEWLOGIC <sup>2</sup> | ProCapture            | I/F AND LIBRARIES              | DS-390-xxx               | 5.02     | 5.11  | 0.20      | 0.015             | 0.20   | 05/95      |
| VIEWLOGIC <sup>2</sup> | ProSim                | I/F AND LIBRARIES              | DS-290-xxx               | 5.02     | 5.11  |           |                   |        | 05/95      |
| VIEWLOGIC <sup>2</sup> |                       | I/F AND LIBRARIES              | DS-391-xxx               | 5.10     | 5.11  | 5.11      |                   | 5.11   | 01/95      |
| XABEL <sup>2</sup>     |                       | ENTRY, SIM, LIB, OPT.          | DS-371-xxx               | 5.00     | 5.10  | 5.10      |                   |        | 01/95      |
| X-BLOX <sup>1</sup>    |                       | MODULE GENERATION & OPT.       | DS-380-xxx               | 5.00     | 5.10  | 5.10      |                   | 5.10   | 01/95      |
| VERILOG <sup>4</sup>   | 2К, 3К, 4К, 7К Lів.   | MODELS & XNF TRANS.            | ES-VERILOG-xxx           |          |       | 1.00      |                   | 1.00   | N/A        |
|                        | =9                    |                                |                          |          |       |           |                   |        |            |
| MENTOR 8               |                       |                                | DS-MN8-STD-xxx           | 5.02     |       | 5 10      | 1 10              | 5 10   | 01/95      |
|                        | BASE                  |                                | DS-OR-BAS-XXX            | 5.02     | 5 10  | 0.10      | 1.10              | 0.10   | 01/95      |
| ORCAD                  |                       |                                | DS-OR-STD-XXX            | 5.02     | 5.10  |           |                   |        | 01/95      |
| SYNOPSYS               | STANDARD              |                                | DS-SY-STD-xxx            | 2.00     | 01.0  | 5.10      | 2.00              | 5.10   | 01/95      |
| VIEWLOGIC              | BASE                  |                                | DS-VL-BAS-xxx            | 5.02     | 5.11  |           |                   | 0      | 05/95      |
| VIEWLOGIC              | STANDARD              |                                | DS-VL-STD-xxx            | 5.02     | 5.11  | 5.10      |                   | 5.10   | 05/95      |
| VIEWLOGIC/S            | BASE                  |                                | DS-VLS-BAS-xxx           | 5.02     | 5.11  |           |                   |        | 05/95      |
| VIEWLOGIC/S            | STANDARD              |                                | DS-VLS-STD-xxx           | 5.02     | 5.11  |           |                   |        | 05/95      |
| VIEWLOGIC/S            | EXTENDED <sup>3</sup> |                                | DS-VLS-EXT-xxx           | 5.02     | 5.11  |           |                   |        | 05/95      |
| XC5000 PRE-RLS.4       | STANDARD              | CORE + VL LIBRARIES            | PR-VL-STD-xxx-5K         | N/A      | 1.00  | 1.00      |                   |        | N/A        |
| 3rd Party              | STANDARD              | FPGA/EPLD CORE                 | DS-3PA-STD-xxx           | N/A      | 5.10  | 5.10      |                   | 5.10   | N/A        |
|                        |                       |                                |                          |          |       |           |                   |        |            |
| AILINA HANDW           | PROM/EPLD/            |                                |                          |          |       |           |                   |        |            |
| Device Pgmr.           | XC8100 PGMR           |                                | HW-130                   | New      | 1.0   | 3Q95      | -                 | 3Q95   | New        |
|                        |                       |                                |                          |          |       |           |                   |        |            |
| THIRD PARTY P          | RODUCTION SOFTW/      | ARE VERSIONS                   | 1                        | 4.0      |       | 4.0.0     |                   | 100    | 1          |
|                        |                       | SCHEMATIC ENTRY                | N/A                      | 4.3      |       | 4.3.3     |                   | 4.3.3  | N/A        |
|                        | VERILOG               |                                | N/A                      | 2.1      |       | 2.1.2     |                   | 2.1.2  | N/A        |
|                        | CONCEPT               | SCHEMATIC ENTRY                | N/A                      | 1./      |       | 1.7-P4    |                   | 1.7-P4 | N/A        |
| CADENCE (VALID)        |                       | SIMULATION<br>SOUTINATIO ENTRY | N/A                      | 4.10     |       | 4.2       |                   | 4.Z    | N/A        |
|                        |                       |                                | N/A                      | 0.2_0    |       | A.I-F     | A.I-F             | A.I-F  | N/A        |
|                        |                       | SIMULATION<br>SOLIEMATIC ENTRY | N/A                      | 0.2_0    | 1.20  | A. I-F    | A. I-F            | А. І-Г | N/A        |
|                        | VST 386±              |                                |                          | 1.10     | 1.20  |           |                   |        | N/A<br>N/A |
| SVILOPSVS              |                       | SVAITHERIS                     | N/A                      | 3.22     | 1.20  | 3.2h      | 3.2h              | 3.2h   | N/A        |
|                        |                       | SCHEMATIC ENTRY                |                          | J.20     | 5.0   | 53        | 0.20              | 53     | N/A        |
|                        |                       |                                | N/A                      |          | 5.0   | 5.3       |                   | 5.3    | N/A        |
| DATA I/O               |                       | ENTRY AND SIMULATION           | N/A                      |          | 6.0   | 6.0       |                   | 0.0    | N/A        |
| Data I/O               | SYNARIO               | ENTRY AND SIMULATION           | N/A                      |          | 2.0   | 0.0       |                   |        | N/A        |
|                        |                       |                                |                          |          |       |           |                   |        |            |

**NOTE:** <sup>1</sup>FPGA Only <sup>2</sup>FPGA and EPLD <sup>3</sup>Includes ViewSynthesis v2.3.1 <sup>4</sup>Engineering software by request only

| ALLIA                                 | NCE PROGRA                                                                                   | AM - CO                                              | MPANIES & PR                                                                                                   | ODUCTS-MA                                                                                                                                            | Y 19                 | 95                         |                      |
|---------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------------|
| Company                               | PRODUCT NAME                                                                                 | VERSION                                              | FUNCTION                                                                                                       | Design Kit                                                                                                                                           | FPGA<br>SUPPORT      | EPLD<br>SUPPORT            | X-BLOX<br>SUPPORT    |
| Acugen                                | Sharpen<br>Sharpeye                                                                          | 2.55<br>2.55                                         | Automatic Test Generation<br>Testability Analysis                                                              | AALCA interface<br>AALCA interface                                                                                                                   | ✓<br>✓               |                            |                      |
| ALDEC/Susie-CAD                       | Susie-Xilinx<br>Active-Xilinx                                                                | 2.0                                                  | Schematic Entry/Simulation<br>Schematic Entry/Simulation                                                       | Xilinx Design Kit<br>Xilinx Design Kit                                                                                                               | ✓<br>✓               | <i>\</i><br><i>\</i>       | ✓<br>✓               |
| Aptix                                 | System Explorer<br>ASIC Explorer                                                             | 2.0                                                  | System Emulation<br>ASIC Emulation                                                                             | Axess 2.0<br>Axess 2.0                                                                                                                               |                      |                            |                      |
| Cadence (Valid)                       | Concept<br>Rapidsim<br>Composer<br>Verilog<br>FPGA Designer                                  | 1.7-P4<br>4.2<br>4.3.3<br>2.1.2<br>3.3               | Schematic Entry<br>Simulation<br>Schematic Entry<br>Simulation<br>Synthesis                                    | Xilinx Front End<br>Xilinx Front End<br>Xilinx Front End<br>Xilinx Front End<br>FPGA Synthesis                                                       |                      | <b>&gt; &gt; &gt; &gt;</b> | ✓                    |
| Capilano                              | DesignWorks                                                                                  | 3.1                                                  | Schematic Entry/Simulation                                                                                     | XD-1                                                                                                                                                 | 1                    |                            |                      |
| Compass                               | Asic Navigator<br>QSim<br>X-Syn                                                              |                                                      | Schematic Entry<br>Simulation<br>Synthesis                                                                     | Xilinx Design Kit                                                                                                                                    |                      |                            | 1                    |
| CV (Prime)                            | Design Entry                                                                                 | 2.0                                                  | Schematic Entry                                                                                                | Xilinx Kit                                                                                                                                           | 1                    |                            |                      |
| Data I/O                              | ABEL<br>Synario                                                                              | 6.0<br>2.0                                           | Synthesis<br>Schematic Entry, Synthe-<br>sis and Simulation                                                    | Xilinx Fitter<br>Xilinx Fitter                                                                                                                       | 1                    | <i>\</i><br><i>\</i>       | 1                    |
| ₽S                                    | SIMETRI                                                                                      | 2.0                                                  | Simulation                                                                                                     | XNF2SIM                                                                                                                                              | 1                    |                            |                      |
| Escalade                              | Design Book                                                                                  |                                                      | Design Entry                                                                                                   |                                                                                                                                                      | 1                    |                            |                      |
| Exemplar Logic                        | CORE<br>CORE/V-system                                                                        | 2.2<br>2.2                                           | Synthesis<br>Simulation                                                                                        | CORE<br>CORE/V-system                                                                                                                                | <i>\</i><br><i>\</i> | <i>\</i><br><i>\</i>       | 1                    |
| Flynn Systems                         | FS-ATG                                                                                       | 2.6                                                  | Automatic Test Generation                                                                                      | FS-High Density                                                                                                                                      | 1                    |                            |                      |
| IBM-EDA                               | Boole-Dozer                                                                                  |                                                      | Synthesis                                                                                                      |                                                                                                                                                      | 1                    |                            |                      |
| IK Technology                         | G-DRAW<br>G-LOG                                                                              | 5.0<br>4.03                                          | Schematic Entry<br>Simulation                                                                                  | GDL2XNF<br>XNF2GDL                                                                                                                                   | 1                    |                            |                      |
| lkos                                  | 2800/2900<br>Voyager                                                                         | 5.16<br>1.41                                         | Simulation<br>Simulation                                                                                       | Xilinx Tool Kit<br>Xilinx Tool Kit                                                                                                                   | 1                    |                            |                      |
| Intergraph                            | ACE Plus<br>AdvanSIM-1076<br>VeriBest Sim<br>EDM/DMM<br>VeriBest Syn<br>Synovation<br>PLDSyn | 12.2<br>12.0<br>12.2<br>12.3<br>12.2<br>12.1<br>12.0 | Schematic Entry<br>Simulation<br>Design Flow Manager<br>Synthesis<br>Synthesis<br>Design entry, synthesis sim. | Xilinx FPGA Design Kit<br>Xilinx FPGA Design Kit<br>Xilinx FPGA Design Kit<br>Xilinx FPGA Design Kit<br>Xilinx FPGA Design Kit<br>SynLib<br>included |                      | ~                          |                      |
| ISDATA                                | LOG/iC2<br>LOG/iC Classic                                                                    | 4.1<br>4.1                                           | Entry<br>Synthesis, simulation                                                                                 | Xilinx Fitter<br>ODC                                                                                                                                 | 1                    | <i>\</i><br><i>\</i>       | 1                    |
| IST (Alpine Design)                   | ASYL+                                                                                        | 3.0                                                  | Synthesis                                                                                                      | XNFinterface                                                                                                                                         | 1                    | 1                          |                      |
| ITS                                   | XNF2LAS                                                                                      | 1a                                                   | Lasar model gen.                                                                                               | XNF2LAS                                                                                                                                              | 1                    |                            |                      |
| Logic Modeling<br>(Synopsys Division) | Smart Model<br>LM1200                                                                        |                                                      | Simulation Models<br>Hardware Modeler                                                                          | In Smart Model Library<br>Xilinx Logic Module                                                                                                        | <i>\</i>             | ~ ~                        |                      |
| Logical Devices                       | CUPL                                                                                         | 4.5                                                  | Synthesis                                                                                                      | Xilinx Fitter                                                                                                                                        | 1                    | 1                          |                      |
| Mentor Graphics                       | QuickSim II<br>Design Architect<br>Autologic                                                 | 8.4 (A.x_F)<br>8.4 (A.x_F)<br>8.4 (A.x_F)            | Simulation<br>Schematic Entry<br>Synthesis                                                                     | Call Xilinx<br>Call Xilinx<br>Xilinx Synthesis Library                                                                                               |                      | \<br>\<br>\                |                      |
| MINC                                  | PLDesigner-XL                                                                                | 3.3                                                  | Synthesis                                                                                                      | Xilinx Design Module                                                                                                                                 | 1                    |                            |                      |
| Minelec                               | Ulticap                                                                                      | 1.32                                                 | Schematic Entry                                                                                                | Xilinx Interface                                                                                                                                     | 2K.3K                |                            |                      |
| OrCAD                                 | SDT386+<br>VST386+<br>PLD 386+                                                               | 1.2<br>1.2<br>2.0                                    | Schematic Entry<br>Simulation<br>Synthesis                                                                     | Call Xilinx<br>Call Xilinx<br>Call OrCAD                                                                                                             |                      | <i>\</i><br><i>\</i>       | <i>J</i><br><i>J</i> |
| Protel                                | Advanced Schematic                                                                           | 2.2                                                  | Schematic Entry                                                                                                | Xilinx interface                                                                                                                                     | 1                    | 1                          |                      |
| Quad Design                           | Motive                                                                                       | 4.0                                                  | Timing Analysis                                                                                                | XNF2MTV                                                                                                                                              | 1                    |                            |                      |
| Simucad                               | Silos III                                                                                    | 92.115                                               | Simulation                                                                                                     | Included                                                                                                                                             | 1                    |                            |                      |
| Sophia Systems                        | Vanguard                                                                                     | 5.31                                                 | Schematic Entrv                                                                                                | Xilinx I/F Kit                                                                                                                                       | 1                    | 1                          | 1                    |
| Synopsvs                              | FPGA Compiler                                                                                | 3.2                                                  | Synthesis                                                                                                      | Call Xilinx                                                                                                                                          | 3K.4K                | 1                          | 1                    |
|                                       | Design Compiler<br>VSS                                                                       | 3.2<br>3.2                                           | Synthesis<br>Simulation                                                                                        | Call Xilinx<br>Call Xilinx                                                                                                                           |                      | 1                          | 1                    |

### ALLIANCE PROGRAM - COMPANIES & PRODUCTS - MAY 1995 (con't)

| Company                   | PRODUCT NAME                         | VERSION           | FUNCTION                                   | DESIGN KIT                                | FPGA<br>SUPPORT      | EPLD<br>Support | X-BLOX<br>Support |
|---------------------------|--------------------------------------|-------------------|--------------------------------------------|-------------------------------------------|----------------------|-----------------|-------------------|
| Synplicity                | Synplify                             | 2.5               | Synthesis                                  | Synplify                                  | 1                    |                 | 1                 |
| Teradyne                  | Lasar                                | 6                 | Simulation                                 | Xilinx I/F Kit                            | 1                    |                 |                   |
| Tokyo Electron            | ViewCAD                              | 5.0502a           | FLDL to XNF                                | XNFGEN                                    | 1                    |                 |                   |
| Topdown Design            | V-BAK                                | 1.1               | XNF to VHDL translator                     | XNF interface                             | 1                    |                 |                   |
| transEDA                  | TransPRO                             | 1.2               | Synthesis                                  | Xilinx Llbrary                            | 1                    |                 |                   |
| VEDA                      | Vulcan                               | 4.5               | Simulation                                 | Xilinx Tool Kit                           | 1                    |                 |                   |
| Viewlogic                 | ProCapture<br>ProSim<br>ProSynthesis | 5.0<br>5.0<br>5.0 | Schematic Entry<br>Simulation<br>Synthesis | Call Xilinx<br>Call Xilinx<br>Call Xilinx | √<br>√<br>√          | \<br>\<br>\     | J<br>J            |
| Viewpoint                 | VitalBridge<br>VeriLink              | 1.0<br>1.0        | Vital VHDL<br>Verilog lib. back-annotation | VHDL I/F kit<br>Verilog I/F kit           | \<br>\               |                 |                   |
| Visual Software Solutions | StateCAD                             | 2.4               | State diagram                              | Xilinx fitter                             | 1                    |                 |                   |
| Zycad                     | Paradigm XP<br>Paradigm RP           |                   | Gate-level simulation<br>Rapid prototyping |                                           | <i>\</i><br><i>\</i> |                 |                   |

| ALL                     | IANCE PROGRAM       | - PLA | TFO                   | RMS&(     | CONTA | CTS             |
|-------------------------|---------------------|-------|-----------------------|-----------|-------|-----------------|
|                         |                     |       | PL                    | ATFORM    |       |                 |
| COMPANY                 | CONTACT NAME        | PC    | SUN                   | RS6000    | HP7   | PHONE NUMBER    |
| Acugen                  | Peter de Bruyn Kops | 1     | 1                     |           | 1     | 603-881-8821    |
| Aldec/Susie-CAD         | David Rinehart      | 1     |                       |           |       | 702-293-2271    |
| Aptix Corporation       | Wolfgang Hoeflich   |       | ✓                     |           | 1     | 408-428-6200    |
| Cadence                 | Itzhak Shapira Jr.  |       | 1                     | 1         | 1     | 408-428-5739    |
| Capilano Computing      | Chris Dewhurst      | 1     |                       | Macintosh |       | 604-522-6200    |
| Compass Design          | Mahendra Jain       |       |                       |           | 1     | 408-434-7950    |
| CV (Prime)              | Kevin O'Leary       |       |                       |           | 1     | 617-275-1800    |
| Data I/O                | Dave Kohlmeier      | 1     | 1                     |           |       | 206-881-6444    |
| EPS .                   | Michael Massa       |       | ✓                     |           | 1     | 617-487-9959    |
| Escalade                | JerryRau            | 1     |                       |           |       | 408-481-1308    |
| Exemplar Logic          | Stan Ng             | 1     | 1                     |           | 1     | 510-337-3700    |
| Flynn Systems           | Mike Jingozian      | 1     |                       |           |       | 603-891-1111    |
| IBM-EDA                 | John Orfitelli      |       |                       | 1         |       | 914-433-9073    |
| IKTechnology            | Hiroyuki Kataoka    |       |                       |           | 1     | +81-3-3464-5551 |
| Ikos                    | Brad Roberts        |       | 1                     |           | 1     | 408-255-4567    |
| Intergraph Electronics  | Greg Akimoff        | 1     | 1                     |           | 1     | 415-691-6541    |
| ISDATA                  | Ralph Remme         | 1     | 1                     |           | 1     | +49-721-751087  |
| IST                     | Gabriele Saucier    | 1     | <ul> <li>✓</li> </ul> |           | ✓     | +33-76-70-51-00 |
| ITS                     | Frank Meunier       |       | 1                     |           | 1     | 508-897-0028    |
| Logic Modeling          | Laura Horsey        |       | <ul> <li>✓</li> </ul> |           | ✓     | 503-531-2271    |
| Logical Devices         | David Mot           | 1     |                       |           |       | 303-279-6868    |
| Mentor Graphics         | SamPicken           |       | 1                     | 1         | 1     | 503-685-1298    |
| MINC                    | Lynne Dolan         | 1     | 1                     |           | 1     | 719-590-1155    |
| Minelec                 |                     | 1     |                       |           |       | +32-02-4603175  |
| OrCAD                   | Trov Scott          | 1     |                       |           |       | 503-671-9500    |
| Protel Technology       | Matthew Schwaiger   | 1     |                       |           |       | 408-243-8143    |
| Quad Design Tech.       | Vern Potter         |       | 1                     |           | 1     | 805-988-8250    |
| Simucad                 | Richard Jones       | 1     |                       |           |       | 510-487-9700    |
| Sophia Systems          | Terry Wilfley       | 1     | 1                     |           | 1     | 408-943-9300    |
| Svnopsvs                | Lvnn Fiance         |       | 1                     | 1         | 1     | 415-694-4102    |
| Synplicity              | Alisa Yaffa         | 1     | 1                     |           | 1     | 415-961-4962    |
| Teradyne                | Mike Jew            |       | 1                     |           | 1     | 617-422-3753    |
| Tokyo Electron          | Shige Ohtani        |       |                       |           |       | +81-3-5561-7212 |
| TopDown                 | ArtPisani           | 1     | 1                     | 1         |       | 603-888-8811    |
| transEDA                | James Douglas       | -     |                       |           | 1     | +44-1703-255118 |
| VEDA                    | George Sher         |       |                       |           | /     | 408-496-4516    |
| ViewLogic               | PreetVirk           | 1     |                       | 1         | /     | 508-480-0881    |
| Viewpoint International | RameshBhimarao      | 1     | 1                     |           | 1     | 408-954-7370    |
| Visual Software         | RickyEscoto         |       | •                     |           | •     | 305-346-8890    |
| Zycad                   | David Allenbaugh    |       | 1                     |           | 1     | 510-623-4451    |

#### **COMPONENT AVAILABILITY CHART - MAY 1995**

| PINS | TYPE          | CODE  | XCas | X72064 | <u>vocu18</u> | <u>722064</u> | <u>7020181</u> | <u>1020</u> | <u>AC3030</u> | <u>4C3042</u> | <u>vc3064</u> | <u>v03090</u> | AC3020A | XC3020A | XC3064A | XC30904 | AC30201 | Tornaol X | XC20421 | XC2064L | XC31090L | XC3120A | XC3130A | XC3192A | XC31024 | XCATORIA | XCANDOA | XCADOF | XC4000 | XCADO | XCADA | / Jintox | XCAD10D | XC4013 | XCADE | XC4003 | XC4003A | AC40044 | AC4005A | AL4003H          | AC40051 | AC5206 | 4C5210 | 4C7236A | AUZ2754 | ACZ318       | AC7336 | XC73260 | XCZARA       | XC735        | XCTAL        | XC75140 | 1 Hin |
|------|---------------|-------|------|--------|---------------|---------------|----------------|-------------|---------------|---------------|---------------|---------------|---------|---------|---------|---------|---------|-----------|---------|---------|----------|---------|---------|---------|---------|----------|---------|--------|--------|-------|-------|----------|---------|--------|-------|--------|---------|---------|---------|------------------|---------|--------|--------|---------|---------|--------------|--------|---------|--------------|--------------|--------------|---------|-------|
|      | PLASTIC LCC   | PC44  | ♦    |        | ŀ             |               |                |             | •             | ĺ             | ſ             | ſ             | •       |         |         |         |         |           |         |         | Ħ        | ♦       |         |         |         | 1        | 1       | 1      | 1      | 1     | 1     |          |         |        | 1     |        |         | ĺ       |         | ĺ                | ſ       |        | 4      | ,       | 4       |              | ۱)     | 1       | ♦            | 1            | Ť            | 1       |       |
| 44   | PLASTIC QFP   | PQ44  |      |        |               | T             |                | t           | t             |               | t             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     | 1     |          | 1       |        |       | T      |         |         |         |                  | T       |        | T      |         | 4       | ┢┥           |        | 1       | +            | -            | +            | 1       |       |
|      | CERAMIC LCC   | WC44  |      |        |               |               |                |             |               |               | t             | T             |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     | 1     |          |         |        |       |        |         |         |         | 1                | T       |        | 4      | •       | T       | •            |        | 1       | ♦            |              | +            | 1       |       |
| 48   | PLASTIC DIP   | PD48  | ♦    |        |               | T             |                | T           |               |               | t             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     | 1     |          |         | 1      |       | 1      |         |         |         |                  | T       |        |        |         | T       | t            |        |         | +            |              | +            | 1       |       |
| 64   | PLASTIC VQFP  | VQ64  |      |        | ♦             | •             | •              | t           | T             |               | T             |               |         |         |         |         | •       |           |         |         |          | ♦       |         |         |         |          | 1       | 1      |        | 1     | 1     |          |         |        |       |        |         |         |         |                  |         |        |        |         |         | t            |        | T       | 1            | -            | 1            |         |       |
|      | PLASTIC LCC   | PC68  |      | •      |               | •             |                |             |               |               |               |               | •       |         |         |         |         |           |         |         | ♦        | ♦       |         |         |         |          | 1       |        |        | 1     |       |          |         |        |       |        |         |         |         |                  |         |        |        | •       | ,       | T            |        |         | ••           | ♦            | 1            |         |       |
| 68   | CERAMIC LCC   | WC68  |      |        |               |               |                | T           | T             |               | T             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | T       | T      |        | 1     | 1     |          |         |        |       |        |         |         |         |                  |         |        |        | •       | ,       | T            |        |         | •            | ♦            | T            |         |       |
|      | CERAMIC PGA   | PG68  | ♦    |        |               |               |                | t           | T             |               | T             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     | 1     |          |         |        |       |        |         |         |         |                  |         |        |        |         |         | t            |        | T       | 1            | -            | 1            |         |       |
|      | PLASTIC LCC   | PC84  |      |        |               | •             |                |             |               |               |               |               | •       | ♦       | •       |         | •       | ♦         | ♦       | ♦       | ♦        | ♦       | ٠       |         | •       | •        | •       | •      | •      | •     | ۰     | ♦        |         |        |       | •      |         |         |         |                  |         |        | •      | •       | ,       | t            |        |         | -            | ••           | ♦            | 1       |       |
| 84   | CERAMIC LCC   | WC84  |      |        |               |               |                | T           |               |               | t             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     | 1     |          |         | 1      |       | 1      |         |         |         |                  | T       |        | +      | •       | ,       | t            |        |         | -            | ••           | ♦            | 1       |       |
|      | CERAMIC PGA   | PG84  |      |        |               |               |                |             |               |               | t             |               | •       | ♦       |         |         | 1       |           |         |         | ♦        | ♦       | ٠       |         |         |          | 1       | 1      |        | 1     | 1     |          |         |        |       | 1      |         |         |         |                  | T       |        |        | •       | ,       | t            |        |         | T            | -            | +            |         |       |
|      | CERAMIC QFP   | CQ100 |      |        |               |               |                | •           |               |               | T             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     |       |          |         |        |       |        |         |         |         |                  |         |        |        |         | T       | t            |        |         | +            | -            | +            |         |       |
|      | PLASTIC PQFP  | PQ100 |      |        |               | t             | •              |             |               |               | t             |               | •       | ♦       |         |         |         |           |         |         | ♦        | ♦       | ٠       |         | 1       |          | •       | ♦      |        | +     | +     |          | 1       | 1      |       | •      |         |         |         | $\left  \right $ | N       |        | +      |         | t       | t            |        |         | +            | ••           | ♦            | -       |       |
| 100  | PLASTIC TQFP  | TQ100 |      |        |               | t             |                |             |               |               | t             |               |         |         |         |         |         |           |         |         |          | ♦       | •       |         | 1       |          |         | ·      |        | +     | +     |          | 1       | 1      |       | -      |         |         |         |                  |         |        | +      |         | t       | t            |        |         | +            | -            | +            | -       |       |
|      | PLASTIC VQFP  | VQ100 |      |        |               | •             | •              |             |               |               | t             |               | ♦       |         |         |         | ♦       | ♦         |         |         |          | ♦       | ٠       |         |         |          | 1       | 1      |        | 1     |       |          |         |        |       | •      |         |         |         |                  |         |        | +      |         | T       | t            |        |         | +            |              | +            | 1       |       |
|      | TOP BRZ. CQFP | CB100 |      |        |               |               |                | •           |               |               | t             |               | •       | ♦       |         |         |         |           |         |         | ♦        |         | ٠       |         |         |          | 1       | 1      |        | 1     | 1     |          |         |        |       |        |         |         |         |                  | T       |        |        |         | t       | t            |        | 1       | +            | -            | +            | 1       |       |
| 120  | CERAMIC PGA   | PG120 |      |        |               | t             |                | t           |               |               | t             |               |         |         |         |         |         |           |         |         |          |         |         |         | 1       |          | ♦       | +      |        | +     | +     |          | 1       | 1      |       | •      |         |         |         |                  | t       |        | +      |         | t       | t            |        |         | +            |              | +            | -       |       |
|      | PLASTIC PGA   | PP132 |      |        |               |               |                |             |               |               |               |               |         | ♦       | ٠       |         |         |           |         |         |          |         |         | ♦       |         |          |         | 1      |        | 1     |       |          |         |        |       |        |         |         |         |                  |         |        | +      |         | T       | t            |        |         | +            |              | +            |         |       |
| 132  | CERAMIC PGA   | PG132 |      |        |               | t             |                | t           |               |               |               | T             |         | ♦       | •       |         |         |           |         |         |          |         | •       | ♦       | 1       |          | +       | +      |        | +     | +     |          | 1       | 1      |       | +      | 1       |         |         | $\left  \right $ | t       |        | +      |         | t       | t            |        |         | +            |              | +            | -       |       |
|      | PLASTIC TQFP  | TQ144 |      |        |               | t             |                | t           |               |               | t             | T             |         | ♦       | •       |         |         | ♦         | ♦       |         |          |         | •       | ♦       | 1       |          | +       | +      |        | +     | +     |          | 1       | 1      |       | +      |         |         |         |                  | N       | IN     | ī      |         | t       | t            |        |         | +            |              | +            | -       |       |
| 144  | CERAMIC PGA   | PG144 |      |        |               |               |                | T           | t             |               | t             | T             |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | 1      |        | 1     | 1     |          | 1       | 1      |       | T      |         |         |         |                  |         |        | T      |         | T       | t            |        |         | Ť            | •            | ♦            | 1       |       |
| 156  | CERAMIC PGA   | PG156 |      |        |               |               |                |             | t             |               | t             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         | •      | •      | 1     | 1     |          |         | 1      |       | 1      |         | •       |         |                  |         |        |        |         | T       | t            |        | T       | +            | -            | +            | 1       |       |
| 160  | PLASTIC PQFP  | PQ160 |      |        |               | T             |                | t           | t             | •             |               |               |         |         | •       |         |         |           |         |         |          |         |         |         | •       | ٠        |         | •      | •      | •     | ۰     | ♦        |         | ♦      |       | T      |         |         |         |                  | ٠       |        | ,      |         | T       | t            |        |         | +            | •            | ••           | ▶       |       |
|      | CERAMIC QFP   | CQ164 |      |        |               |               |                | T           |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       |        |        | 1     | 1     |          |         |        |       | 1      |         |         |         |                  |         |        |        |         | T       | t            |        |         | Ť            |              | +            | 1       |       |
| 164  | TOP BRZ. CQFP | CB164 |      |        |               |               |                | T           | T             |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         | •       | ٠        |         | ♦      |        | 1     |       |          |         |        |       |        |         |         |         |                  |         |        |        |         |         | T            |        |         | T            | -            | T            |         |       |
|      | PLASTIC PGA   | PP175 |      |        |               |               |                | t           | T             |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         | •       | ٠        | 1       | 1      |        | 1     | 1     |          |         |        |       |        |         |         |         |                  |         |        |        |         |         | t            |        | T       | 1            | -            | 1            |         |       |
| 1/5  | CERAMIC PGA   | PG175 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         | •       | ٠        | 1       |        |        | 1     |       |          |         |        |       |        |         |         |         |                  |         |        |        |         |         | T            |        |         | 1            |              | T            | 1       |       |
| 176  | PLASTIC TQFP  | TQ176 |      |        |               |               |                |             |               |               | T             |               |         |         |         |         | 1       |           |         | ♦       |          |         |         |         | ♦       |          | 1       |        |        | 1     |       |          |         |        |       |        |         |         |         |                  |         |        |        |         | Γ       | T            |        |         | T            |              | T            |         |       |
| 184  | CERAMIC PGA   | PG184 |      |        |               |               |                | T           |               |               | T             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | 1       | T      |        | 1     |       |          |         |        |       | T      |         |         |         |                  |         |        |        |         | Γ       | T            |        |         | T            | -            | T            | 1       |       |
| 191  | CERAMIC PGA   | PG191 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        | •     | ♦     |          |         |        |       |        |         |         | ٠       |                  |         |        |        |         |         | T            |        |         |              |              | T            |         |       |
| 196  | TOP BRZ. CQFP | CB196 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        | •     | ♦     |          |         |        |       |        |         |         |         |                  |         |        |        |         |         |              |        |         |              |              |              |         |       |
| 000  | PLASTIC PQFP  | PQ208 |      |        |               |               |                |             |               |               | 4             |               |         |         |         |         |         |           |         |         |          |         |         |         | •       | ٠        | •       | •      | •      | •     | ۰     | ♦        |         | ♦      |       |        |         | •       |         | •                |         | •      | •      |         |         | T            |        |         |              | _            | T            |         |       |
| 208  | METAL MQFP    | MQ208 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        | •      | •     |       |          |         |        |       |        |         |         |         |                  |         |        |        |         |         | T            |        |         |              |              | T            |         |       |
| 223  | CERAMIC PGA   | PG223 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         | •       | ٠        |         |        |        |       |       |          |         | •      | ٠     |        |         |         |         |                  | •       | •      | •      |         |         | T            |        |         |              |              | T            |         |       |
| 205  | PLASTIC BGA   | BG225 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        | •     | ۰     | ♦        |         | ♦      |       |        |         |         |         |                  |         |        |        |         |         | T            |        |         |              | •            | •            |         |       |
| 225  | WINDOWED BGA  | WB225 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        |       |       |          |         |        |       |        |         |         |         |                  |         |        |        |         |         |              |        |         |              |              | 1            |         |       |
| 228  | TOP BRZ. CQFP | CB228 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        |       |       |          |         |        |       |        |         |         |         |                  |         |        |        |         |         |              |        |         |              |              |              |         |       |
| 240  | PLASTIC PQFP  | PQ240 |      |        |               |               |                |             |               |               |               |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        |       |       |          |         | •      |       |        |         |         |         |                  | •       | •      | •      |         | L       | $\downarrow$ |        |         | $\downarrow$ |              | $\downarrow$ |         |       |
| 240  | METALMQFP     | MQ240 |      |        |               |               |                |             |               |               | -             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          | -       | -      |        | -     | _     |          | ٠       | •      | •     |        |         |         |         | ٠                | •       |        |        |         | L       | $\downarrow$ | +      |         | $\downarrow$ | $\downarrow$ | $\downarrow$ | 4       |       |
| 299  | CERAMIC PGA   | PG299 |      |        | $\mid$        | -             |                | -           | -             |               | +             |               |         |         |         |         |         |           |         |         |          |         |         |         | -       |          | +       | -      |        | +     | _     |          |         | •      | •     | +      | +       |         |         |                  | -       | +      |        | 4       | +       | +            | +      | +       | $\downarrow$ | +            | +            | -       |       |
| 304  | HI-PERF. QFP  | HQ304 |      |        | 1             |               |                |             | T             |               | T             |               |         |         |         |         |         |           |         |         |          |         |         |         |         |          |         |        |        |       |       |          |         |        | Ν     |        |         |         |         |                  |         |        |        |         |         |              |        |         |              |              |              |         |       |

Product currently shipping or planned N = New since last XCELL

| PROGR                               | RAMMER SUP                                                                                                                      | POR                                                                           | TFO                                                                                            | R XILI                                                                                | NX X                                                                         | C1700                                                                                          | ) SERI/                                                                                        | ALPRO                                                                                | MS-MA                                                                                                 | 1995                                                                              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                     | NODEL                                                                                                                           | 1736A/                                                                        | 47400                                                                                          | 1736d/                                                                                | 1716L/                                                                       | 474000                                                                                         | 470500                                                                                         | סוס                                                                                  | D000                                                                                                  | 000                                                                               |
| ADVANTECH                           | PC-UPROG                                                                                                                        | 1/65                                                                          | 1/128<br>V2.1                                                                                  | 1765D<br>V2.0                                                                         | 1765L<br>V2.0                                                                | 1/128D<br>V2.1                                                                                 | V2.1                                                                                           | X                                                                                    | PG20                                                                                                  | 508                                                                               |
| ADVIN                               | LABTOOL-48<br>PILOT-U24<br>PILOT-U28<br>PILOT-U32<br>PILOT-U40<br>PILOT-144<br>PILOT-143<br>PILOT-144<br>PILOT-144<br>PILOT-144 | 10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.73<br>10.73<br>10.73<br>10.73 | V1.0<br>10.76C<br>10.76C<br>10.76C<br>10.76C<br>10.76C<br>10.76C<br>10.76C<br>10.76C<br>10.76C | V1.0<br>10.71<br>10.71<br>10.71<br>10.71<br>10.71<br>10.73<br>10.73<br>10.73<br>10.73 | V1.0<br>10.77<br>10.77<br>10.77<br>10.77<br>10.77<br>10.77<br>10.77<br>10.77 | V1.0<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B | V1.0<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B<br>10.78B | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>AM-1736<br>AM-1736<br>AM-1736 | PLCC2020-01<br>PX-20<br>PX-20<br>PX-20<br>PX-20<br>PX-20<br>PX-20<br>PX-20<br>PX-20<br>PX-20<br>PX-20 | SO-8<br>SO-8<br>SO-8<br>SO-8<br>SO-8<br>SO-8<br>SO-8<br>SO-8                      |
| AVAL                                | PILOT-145<br>PECKER-50<br>DK/W5100                                                                                              | 10.73                                                                         | C                                                                                              | C                                                                                     | 10.77                                                                        | 10.700                                                                                         | 10.760                                                                                         | X X                                                                                  | PX-20                                                                                                 | 50-8                                                                              |
| B&CMICROSYSTEMSINC.                 | Proteus-UP40                                                                                                                    | V3.4e                                                                         | V3.4e                                                                                          | V3.5f                                                                                 | V3.7f                                                                        | V3.7I                                                                                          | V3.7I                                                                                          | X                                                                                    | AMUPLC84                                                                                              |                                                                                   |
| BPMICROSYSTEMS                      | CP-1128<br>EP-1140<br>BP-1200                                                                                                   | C<br>C<br>C                                                                   | V2.17*<br>V2.17<br>V2.17                                                                       | V2.21c*<br>V2.21c<br>V2.21c                                                           | V2.34*<br>V2.34<br>V2.34                                                     | V3.06<br>V3.06<br>V3.06                                                                        | V3.06<br>V3.06<br>V3.06                                                                        | FH28A<br>FH40A<br>SM48D                                                              | FH28A + 3rd Party<br>FH40A + 3rd Party<br>SM20P or SM84UP                                             | FH28A + 3rd Party<br>FH40A + 3rd Party<br>3rdParty                                |
| ВУТЕК                               | 135H-FT/U<br>MTK-1000<br>MTK-2000<br>MTK-4000                                                                                   | V42<br>V42<br>V42<br>V42<br>V42                                               | V51<br>V51<br>V51<br>V51                                                                       | V51<br>V51<br>V51<br>V51                                                              | V51<br>V51<br>V51<br>V51<br>V51                                              |                                                                                                |                                                                                                | TC-824D<br>TC-824D<br>TC-824D<br>TC-824D<br>TC-824D                                  |                                                                                                       |                                                                                   |
| data i/o                            | UniSite/Site 40/48<br>UniSite/ChipSite<br>2900<br>3900<br>AutoSite<br>UniPak 2B<br>ChipLab                                      | V4.0<br>V4.0<br>V2.1<br>V1.5<br>V1.5<br>V24<br>V1.1                           | V4.1<br>V4.1<br>V2.2<br>V1.6<br>V1.6<br>V1.0                                                   | V4.1<br>V4.1<br>V2.2<br>V1.6<br>V1.6<br>V1.0                                          | V4.6<br>V4.6<br>V3.4<br>V2.4<br>V2.4<br>V2.4<br>V1.1                         | V4.8<br>V4.8<br>V4.8<br>V3.6<br>V2.6<br>V2.6<br>V2.0                                           | V4.8<br>V4.8<br>V3.6<br>V2.6<br>V2.6<br>V2.0                                                   | X<br>X<br>X<br>0101<br>DIP-300-1<br>351B120<br>X                                     | USBASE-PLCC<br>USBASE-PLCC<br>2900-PLCC<br>3900-PLCC<br>PLCC-20-2                                     | USBASE-SOIC<br>USBASE-SOIC<br>USBASE-SOIC<br>2900-SOIC<br>3900-SOIC<br>080801S300 |
| DEUS EX MACHINA                     | XPGM                                                                                                                            | V1.00                                                                         | V1.00                                                                                          | V1.00                                                                                 | V1.10                                                                        | V1.10                                                                                          | 0                                                                                              | 3rd Party                                                                            | 3rd Party                                                                                             |                                                                                   |
| ELECTRONICENGIN-<br>EERINGTOOLS     | PROMAX                                                                                                                          | V1.3<br>V2.34                                                                 | V1.5<br>V2.34                                                                                  | V1.5<br>V2.34                                                                         | V1.5<br>V2.34                                                                | V2.34                                                                                          | V2.34                                                                                          | X                                                                                    | Module #4                                                                                             |                                                                                   |
| ELAN DIGITAL SYSTEMS                | 3000-145<br>5000-145<br>6000 APS                                                                                                | C<br>C<br>K2.01                                                               | C<br>C<br>K2.02                                                                                | K2.01                                                                                 | K2.10                                                                        | K2.14                                                                                          | K2.14                                                                                          | A116<br>A116<br>X                                                                    | PDi84UPLC                                                                                             | PDi16USOI                                                                         |
| HI-LO SYSTEMS<br>RESEARCH           | All-03A<br>All-07                                                                                                               | V3.30<br>V3.30                                                                | V3.30<br>V3.30                                                                                 | V3.30<br>V3.30                                                                        | V3.30<br>V3.30                                                               | V3.50<br>V3.47                                                                                 | V3.50<br>V3.47                                                                                 | X<br>PAC-DIP40                                                                       | CNV-PLCC-XC1736<br>PAC-PLCC44                                                                         | CVN-SOP-NDIP16                                                                    |
| ICETECHNOLOGYLTD                    | Micromaster 1000/1000E<br>Speedmaster 1000/1000E<br>Micromaster LV<br>LV40 Portable<br>Speedmaster LV                           | V1.1<br>V1.1<br>V1.1                                                          | V3.00<br>V3.00<br>V3.00<br>P 2Q95<br>V3.00                                                     | V3.00<br>V3.00<br>V3.00<br>P 2Q95<br>V3.00                                            | V3.00<br>P 2Q95<br>V3.00                                                     | V3.00<br>V3.00<br>V3.00<br>P 2Q95<br>V3.00                                                     | V3.00<br>V3.00<br>V3.00<br>P 2Q95<br>V3.00                                                     | X<br>X<br>X<br>X<br>X<br>X<br>X                                                      | AD-1736/65-PLCC<br>AD-1736/65-PLCC                                                                    |                                                                                   |
| LINK COMPUTER GPHX                  | CLK-3100                                                                                                                        | V5.08                                                                         | V5.08                                                                                          | V5.08                                                                                 |                                                                              |                                                                                                |                                                                                                | X17XXB                                                                               | PLCC-17XX                                                                                             | SOIC-16                                                                           |
| LUGICAL DEVICES                     | ALLPRO-88<br>ALLPRO-88XR<br>CHIPMASTER 3000<br>CHIPMASTER 5000<br>XPRO-1                                                        | V2.2<br>V2.2<br>V1.1<br>V2.0<br>V1.15<br>V1.01                                | V2.3<br>V2.3<br>V2.1<br>V1.01                                                                  | V2.3<br>V1.3<br>V2.0<br>V1.01                                                         | V2.3<br>V1.01                                                                | V2.5<br>V2.3                                                                                   | V2.5<br>V2.3                                                                                   | X<br>X<br>X<br>X<br>MODXLN-173                                                       | OPTPLC-208<br>OPTPLC-208<br>OPTPLC-208<br>MODXLN-173                                                  | OPTSOI-080<br>OPTSOI-080<br>OPTSOI-080<br>OPTSOI-080<br>OPTSOI-080<br>MODXLN-173  |
| MQPELECTRONICS                      | MODEL 200<br>SYSTEM2600<br>PINMASTER 48                                                                                         | С                                                                             | 6.45<br>P 2Q95<br>P 2Q95                                                                       | 6.45<br>P 2Q95<br>P 2Q95                                                              | 6.45<br>P 2Q95<br>P 2Q95                                                     | 6.46<br>P 2Q95<br>P 2Q95                                                                       | 6.46<br>P 2Q95<br>P 2Q95                                                                       | AD13A-16<br>MP6<br>X                                                                 |                                                                                                       |                                                                                   |
| MICROPROSS                          | ROM 5000 B<br>ROM 3000 U                                                                                                        | C<br>C                                                                        | V1.70<br>V3.60                                                                                 | V1.70<br>V3.60                                                                        |                                                                              |                                                                                                |                                                                                                | Mu 40                                                                                |                                                                                                       |                                                                                   |
| NEEDHAM'S ELECTRONICS<br>RED SQUARE | EMP20<br>IQ-180<br>IQ-280<br>Uniwriter 40<br>Chipmaster 5000                                                                    | V1.5<br>C<br>C<br>C<br>C                                                      | V1.5                                                                                           | V2.37<br>V8.2<br>V8.2<br>V8.2<br>V8.2<br>V8.2                                         | V2.37                                                                        | V2.37                                                                                          | V2.37                                                                                          | 04B                                                                                  |                                                                                                       |                                                                                   |
| RETNELSYSTEMS<br>SMS                | ZAP-A-PAL<br>Expert                                                                                                             | C<br>B/93                                                                     | A/94                                                                                           | V3.8J<br>A/94                                                                         | A1/94                                                                        | Cx/94                                                                                          | Cx/94                                                                                          | Module #36<br>TOP40DIP                                                               | TOP1PLC or                                                                                            |                                                                                   |
|                                     | Optima<br>Multisyte<br>Plus48<br>Sprint Plus                                                                                    | B/93<br>B/93<br>B/93                                                          | A/94<br>A/94<br>A/94                                                                           | A/94<br>A/94<br>A/94                                                                  | A1/94<br>A1/94                                                               | Cx/94<br>Cx/94                                                                                 | Cx/94<br>Cx/94                                                                                 | u                                                                                    | TOP3PLC/TOP3PLC                                                                                       |                                                                                   |
| STAG                                | Eclipse<br>Quasar                                                                                                               | 10.76C                                                                        | 4.4<br>10.76C                                                                                  | V2.2<br>V10.76C                                                                       | V4.3<br>V10.76C                                                              | V4.10.31<br>V10.78B                                                                            | V4.10.31<br>V10.78B                                                                            | EPU48D<br>X                                                                          | EPU84P<br>AMPLCC20                                                                                    |                                                                                   |
| SUNRISE                             | T-10 UDP<br>T-10 ULC                                                                                                            | V3.31<br>V3.31                                                                | V3.31<br>V3.31                                                                                 | V3.31<br>V3.31                                                                        | V3.31<br>V3.31                                                               | V3.31<br>V3.31                                                                                 | V3.31<br>V3.31                                                                                 | X<br>X                                                                               | X<br>X                                                                                                | X<br>X                                                                            |
| SUNSHINE                            | POWER-100<br>EXPRO-60/80                                                                                                        | V8.18<br>V8.18                                                                | V8.18<br>V8.18                                                                                 | V8.18<br>V8.18                                                                        | V8.18<br>V8.18                                                               | V8.18<br>V8.18                                                                                 | V8.18<br>V8.18                                                                                 | X<br>X                                                                               |                                                                                                       |                                                                                   |
| SYSTEMGENERAL                       | TURPRO-1<br>Turpro-1 F\X<br>APRO                                                                                                | V2.21F<br>V2.21F<br>C                                                         | V2.21F<br>V2.21F<br>V2.14                                                                      | V2.21F<br>V2.21F<br>V2.01                                                             | V2.21F<br>V2.21F<br>V2.12                                                    | V2.21F<br>V2.21F<br>S 2Q95                                                                     | V2.21F<br>V2.21F<br>S 2Q95                                                                     | DIP-Adapter<br>DIP-Adapter<br>X                                                      | P20-Adapter<br>P20-Adapter<br>X                                                                       |                                                                                   |
| TRIBALMICROSYSTEMS                  | TUP-300<br>TUP-400<br>FLEX-700                                                                                                  | C<br>C<br>C                                                                   | V3.31<br>V3.31<br>V3.31                                                                        | V3.31<br>V3.31<br>V3.31                                                               | V3.37C<br>V3.37C<br>V3.37C                                                   | V3.47<br>V3.50<br>V3.47                                                                        | V3.47<br>V3.50<br>V3.47                                                                        | X<br>X<br>X                                                                          | CNV-PLCC-XC1736<br>"                                                                                  |                                                                                   |
| XELTEK                              | SuperPRO<br>SuperPRO II                                                                                                         | 1.5B<br>1.5B                                                                  | 1.7C<br>1.7C                                                                                   | 1.7D<br>1.7D                                                                          | 1.8<br>1.8                                                                   | 2.2A<br>2.2A                                                                                   | 2.2A<br>2.2A                                                                                   | X*<br>X*                                                                             | 20-PL/8-D-ZL-XC1736<br>20-PL/8-D-ZL-XC1736                                                            | 16SO15/D6-ZL<br>16SO15/D6-ZL                                                      |
| XILINX                              | HW-112<br>HW-120<br>HW-130                                                                                                      | C<br>V5.00                                                                    | V3.11<br>V5.00<br>V1.00                                                                        | V3.31<br>V5.00<br>V1.00                                                               | V3.31<br>V5.00<br>V1.00                                                      | V5.0.0<br>P 6/95<br>V1.00                                                                      | V5.0.0<br>P 6/95<br>V1.00                                                                      | X<br>HW-120-PRM<br>HW-137-DIP8                                                       | HW-112-PC20<br>HW-120-PRM<br>S 5/95                                                                   | HW-112-SO8<br>HW-120-PRM<br>S 5/95                                                |

11

C = Currently Supported, P = Planned, S = Scheduled Release Date, X=Package Supported

|                                 |                                                        | ROGRA                      | MMER                       | Suppd                      | RTFO                       | XILINX XC72                                                 | 00 EPLDs-                                                   | — MAY 1995                                                  |             |                                                                       |
|---------------------------------|--------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------|-----------------------------------------------------------------------|
| VENDOR                          | MODEL                                                  | 7236                       | 7236A                      | 7272                       | 7272A                      | PC44                                                        | PC68                                                        | PC84                                                        | PG84        | Comments                                                              |
| Advantech                       | PC-UPROG<br>LabTool-48                                 | V2.4<br>V1.0               | V2.4<br>V1.0               | V2.4<br>V1.0               | V2.4<br>V1.0               | X<br>SDP-UNIV-44                                            | SDP-7272-68<br>SDP-7272-68                                  | SDP-7272-84<br>SDP-7272-84                                  |             |                                                                       |
| Advin Systems                   | Pilot-U40<br>Pilot-U84                                 | 10.77E<br>10.77E           | 10.77E<br>10.77E           | 10.77E<br>10.77E           | 10.77E<br>10.77E           | USA-84<br>USA-84                                            | USA-84<br>USA-84                                            | USA-84<br>USA-84                                            | AM-XC84G    |                                                                       |
| B&C Microsystems, Inc.          | Proteus                                                | V3.6j                      | V3.6j                      | V3.7h                      | V3.7h                      | AMUPLC84                                                    | AMUPLC84                                                    | AMUPLC84                                                    |             |                                                                       |
| <b>BPMicrosystems</b>           | BP-1200                                                | v2.32                      | v2.32                      | v2.34                      | v2.34                      | SM44P                                                       | SM68P or SM84UP                                             | SM84P or SM84UP                                             | SM84UGA     |                                                                       |
| DATA I/O                        | UniSite<br>2900                                        | v4.3<br>V3.4*              | v4.6*<br>V3.4*             | v4.5                       | v4.5**<br>                 | USBASE-PLCC<br>PPI-0243                                     | USBASE-PLCC<br>PPI-0246                                     | USBASE-PLCC<br>PPI-0208                                     |             | *7236A=PPI-0243<br>**7272A=PPI-0246 (PC68)<br>**7272A_PPI-0246 (PC68) |
|                                 | 3900<br>AutoSite                                       | V2.1<br>V2.4*              | V2.4*<br>V2.4*             | vz.3<br>v2.3               | v2.3**<br>v2.3**           | 3900-PLCC<br>PLCC-44-1                                      | PLCC-68-1                                                   | 3900-PLCC<br>PLCC-84-1                                      |             | "-1212A=PPI-0241 (PC84)                                               |
| Deus Ex Machina                 | XPGM                                                   | V1.00                      | V1.00                      | V1.00                      | V1.00                      | -                                                           | 2                                                           | 3                                                           |             |                                                                       |
| Elan Digital Systems            | 6000APS                                                | K2.04                      | K2.04                      | K2.06                      | K2.06                      | PDi84UPLC                                                   | PDi84UPLC                                                   | PDi84UPLC                                                   | PDi84PGx    |                                                                       |
| Electronic Engineering<br>Tools | ALLMAX/ALLMAX+<br>PROMAX                               | V2.1<br>V2.34              | V2.1<br>V2.34              | V2.1<br>P 6/95             | V2.1<br>P 6/95             | Module 05+PA44-84U<br>Module 19 + H44                       | PA68-48A                                                    | PA84-48A                                                    |             |                                                                       |
| Hi-Lo Systems Research          | All-03A<br>All-07                                      | V3.01<br>V3.01             | V3.01<br>V3.01             | V3.00<br>V3.00             | V3.00<br>V3.00             | ADP-XC7236-PL44<br>PAC-PLCC44                               | ADP-XC7272-PL68<br>PAC-PLCC68                               | ADP-XC7272QPI-84                                            |             |                                                                       |
| ICE Technology Ltd.             | Micromaster 1000/E                                     | VX1.00                     | VX1.00                     | VX1.00                     | VX1.00                     | AD-XC7236-PLCC-44                                           | AD-XC7272-PLCC-68                                           | AD-XC7272-PLCC-84                                           |             |                                                                       |
|                                 | Speedmaster 1000/E<br>Micromaster LV<br>Speedmaster LV | VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00 | AD-XC/236-PLCC-44<br>AD-XC7236-PLCC-44<br>AD-XC7236-PLCC-44 | AD-XC/2/2-PLCC-68<br>AD-XC7272-PLCC-68<br>AD-XC7272-PLCC-68 | AD-XC/2/2-PLCC-84<br>AD-XC7272-PLCC-84<br>AD-XC7272-PLCC-84 |             |                                                                       |
| Logical Devices                 | ALLPRO-88<br>ALLPRO-88XR<br>XPRO-1                     | 2.2<br>1.35<br>1.01        | V2.4<br>V2.4<br>1.01       | 2.2<br>1.35<br>1.01        | V2.4<br>V2.4<br>1.01       | C<br>C<br>MODXP1-44L                                        | C<br>C<br>MODXP1-68L                                        | C<br>C<br>MODXP1-84L                                        | MODXP1-84G  |                                                                       |
| MQP Electronics                 | SYSTEM 2000<br>PINIMASTER 48                           | P 2Q95<br>P 2Q95           | P 2095<br>P 2095           | P 2Q95<br>P 2Q95           | P 2Q95<br>P 2Q95           | MP1                                                         | MP1                                                         | MP1                                                         |             | Universal Programmer                                                  |
| Needham's Electronics           | EMP20                                                  | V2.37                      | V2.37                      | V2.37                      | V2.37                      | 19A+H44                                                     | 20A+U68CB                                                   | 20A+U84CB                                                   |             |                                                                       |
| Stag                            | Eclipse                                                | P 2Q95                     | P 2Q95                     | P 2Q95                     | P 2Q95                     | EPU84P+                                                     | EPU84P+                                                     | EPU84P+                                                     |             |                                                                       |
| SMS                             | Expert<br>Optima<br>Multisyte                          | A1/94<br>A1/94<br>A1/94    | A1/94<br>A1/94<br>A1/94    | A1/94<br>A1/94<br>A1/94    | A1/94<br>A1/94<br>A1/94    | T0P1<br>T0P1<br>T0P1                                        | TOP1<br>TOP1<br>TOP1                                        | 1001<br>1001<br>1001                                        |             |                                                                       |
| Sunrise Electronics             | T-10 UDP<br>T-10 ULC                                   | V3.31<br>V3.31             | V3.31<br>V3.31             | V3.31<br>V3.31             | V3.31<br>V3.31             | X<br>X                                                      | X<br>X                                                      | X<br>X                                                      | ××          | All adapters are custom<br>All adapters are custom                    |
| Sunshine Electronics            | POWER-100<br>EXPRO-60/80                               | V8.16<br>V8.16             | V8.16<br>V8.16             |                            |                            | CNV-UNIVERSAL-PLCC44<br>CNV-UNIVERSAL-PLCC44                |                                                             |                                                             |             |                                                                       |
| System General                  | TURPRO-1<br>TURPRO-1 F/X                               | v2.12<br>v2.12             | v2.12<br>v2.12             | v2.12<br>v2.12             | v2.12<br>v2.12             | P44<br>P44                                                  | P68<br>P68                                                  | P84<br>P84                                                  |             |                                                                       |
| Tribal Microsystems             | TUP-300<br>TUP-400<br>FLEX-700                         | v3.0<br>v3.0<br>v3.0       | v3.0<br>v3.0<br>v3.0       | v3.0<br>v3.0<br>v3.0       | v3.0<br>v3.0<br>v3.0       | TUP-7236<br>TUP-7236<br>TUP-7236                            | TUP-7272<br>TUP-7272<br>PAC-PLCC68                          |                                                             |             | PAC-PLCC44                                                            |
| Xeltek                          | SUPERPRO<br>SUPERPROII                                 | 1.7C<br>1.7C               | 2.2<br>2.2                 | 2.1                        | 2.1                        | XXC7236-44PL/40D<br>XXC7236-44PL/40D                        | XXC7272-68PL/68D<br>XXC7272-68PL/68D                        | XXC7272-84PL/84D<br>XXC7272-84PL/84D                        |             |                                                                       |
| Xilinx                          | HW-120<br>HW-130                                       | V3.14<br>V1.00             | V3.14<br>V1.00             | V3.14<br>S 5/95            | V3.14<br>S 6/95            | HW-120-PC44<br>HW-132-PC44*                                 | HW-120-PC68<br>S 5/95*                                      | HW-120-PC84<br>S 5/95*                                      | HW-120-PG84 | *HW-12x EPLD adapters<br>can be used on HW-130                        |

12

C = Currently Supported (no version number) P = Planned Release S = Shipping Date

|                                   |                                                                              | Pro                                            | GRAM                                           | MER                                            |                                                |                                                | OK AI                                |                                                                          |                                                                                                                                                     | LU%                                                                      | VIAY                 | 230                    |                        |                        |              |                      |
|-----------------------------------|------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|------------------------|------------------------|------------------------|--------------|----------------------|
| VENDOR                            | MODEL                                                                        | 7318                                           | 7336                                           | 7354                                           | 7372                                           | 73108                                          | 73144                                | PC44                                                                     | PC68                                                                                                                                                | PC84                                                                     | PQ44                 | PQ100                  | PG144                  | PQ160                  | PG184        | BG225                |
| ADVANTECH                         | PC-UPROG<br>LabTool-48                                                       | V2.4<br>V1.0                                   | V2.4<br>V1.0                                   | V2.4<br>V1.0                                   |                                                | P 6/95                                         |                                      | X<br>SDP-UNIV-44                                                         | SDP-7354-68<br>SDP-7354-68                                                                                                                          | Х                                                                        |                      |                        |                        |                        |              |                      |
| ADVIN SYSTEMS                     | PILOT-U40<br>PILOT-U84                                                       | 10.78N<br>10.78B                               | 10.78N<br>10.78B                               | 10.78N<br>10.78B                               | 10.78N<br>10.78B                               | 10.79<br>10.79                                 | P 3Q95<br>P 3Q95                     | USA-84<br>USA-84                                                         | USA-84<br>USA-84                                                                                                                                    | USA-84<br>USA-84                                                         |                      | AM-XC100Q<br>AM-XC100Q | AM-XC144G<br>AM-XC144G | AM-XC1600<br>AM-XC1600 |              |                      |
| B&CMICROSYSTEMS                   | Proteus                                                                      | 3.7k                                           | 3.7k                                           | 3.7k                                           | P 3Q95                                         | 3.7k                                           | P 3Q95                               | U                                                                        | U                                                                                                                                                   | U                                                                        |                      |                        |                        |                        |              |                      |
| BPMICROSYSTEMS                    | BP-1200                                                                      | V3.01                                          | V3.01                                          | V3.01                                          | V3.07                                          | V3.06A                                         |                                      | SM44P                                                                    |                                                                                                                                                     | FHSM84PX                                                                 |                      |                        |                        |                        |              |                      |
| DATA I/O                          | 2900<br>3900<br>UniSite                                                      | V3.5<br>V2.5<br>V4.7                           | V3.5<br>V2.5<br>V4.7                           | V3.5<br>V2.5<br>V4.7                           | V2.6<br>V4.8                                   | V2.6<br>V4.8                                   | P 3Q95<br>P 3Q95                     | 2900-PLCC<br>3900-PLCC<br>USBASE-PLCC                                    | 3900-PLCC<br>USBASE-PLCC                                                                                                                            | 3900-PLCC<br>USBASE-PLCC                                                 | 0529<br>0529<br>0529 | 0557<br>0557           |                        | 0558<br>0558           |              | PPI-1101<br>PPI-1101 |
| DEUSEXMACHINA                     | AutoSite<br>XPGM                                                             | V2.5<br>V1.00                                  | V2.5<br>V1.00                                  | V2.5<br>V1.00                                  | V2.6<br>V1.10                                  | V2.6<br>V1.10                                  | P 3095<br>P 3095                     | PLCC-44-1<br>5                                                           | PLCC-68-1<br>6 (13 for 7372)                                                                                                                        | PLCC-84-1<br>7                                                           | 0529                 |                        |                        | σ                      |              | PPI-1101             |
| ELECTRONIC ENGIN-<br>EERING TOOLS | ALLMAX/ALLMAX+<br>PROMAX                                                     | V2.1<br>V2.34                                  | V2.1<br>V2.34                                  | V2.1<br>V2.34                                  | V2.1<br>P 6/95                                 |                                                |                                      | Module 04+PA44-48U<br>Module #19 + H44                                   | PA68-48B (7354)<br>PA68-48C (7372)                                                                                                                  | PA84-48B                                                                 |                      |                        |                        |                        |              |                      |
| ELAN                              | 6000 APS                                                                     | k2.13                                          | k2.13                                          | k2.13                                          | k2.13                                          | k2.13                                          | P 3Q95                               | PDi84UPLC                                                                | PDi84UPLC                                                                                                                                           | PDi84UPLC                                                                | PDi044QFx            | PDi100QFx              | PDi160QFx              |                        | PDi225BGx    |                      |
| HI-LO SY STEMS<br>RESEARCH        | AII-03A<br>AII-07                                                            | V3.04<br>V3.02                                 | V3.04<br>V3.02                                 | V3.04<br>V3.02                                 | V3.05<br>V3.01                                 | V3.01<br>V3.00                                 | P 3Q95<br>P 3Q95                     | ADP-XC7336-PL44<br>PAC-PLCC44                                            | ADP-XC7372-PL68<br>PAC-PLCC68                                                                                                                       | ADP-XC73108-PL84                                                         |                      |                        |                        |                        |              |                      |
| ICE TECHNOLOGY LTD                | Micromaster 1000/E<br>Speedmaster 1000/E<br>Micromaster LV<br>Speedmaster LV | VX1.00<br>VX1.00<br>VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00<br>VX1.00<br>VX1.00 | VX1.00<br>VX1.00<br>VX1.00<br>VX1.00<br>VX1.00 | P 3095<br>P 3095<br>P 3095<br>P 3095 | AD-73XX-PLCC-44<br>AD-73XX-PLCC-44<br>AD-73XX-PLCC-44<br>AD-73XX-PLCC-44 | 40-732-PLCC-88<br>AD-7372-PLCC-88<br>AD-7372-PLCC-88<br>AD-7372-PLCC-88<br>AD-7324-PLCC-88<br>AD-7324-PLCC-88<br>AD-7324-PLCC-88<br>AD-7372-PLCC-88 | AD-73XX-PLCC-44<br>AD-73XX-PLCC-44<br>AD-73XX-PLCC-44<br>AD-73XX-PLCC-44 |                      |                        |                        |                        |              |                      |
| LOGICAL DEVICES                   | ALLPRO-88<br>ALLPRO-88XR<br>XPRO-1                                           | V2.5<br>V2.5<br>1.01                           | V2.5<br>V2.5<br>1.01                           | V2.5<br>V2.5<br>1.01                           | V2.5<br>V2.5<br>1.01                           | V2.5<br>V2.5<br>1.01                           | P 3095<br>P 3095<br>P 3095           | C<br>C<br>MODXP1-5444L                                                   | C<br>C<br>MODXP1-5468L                                                                                                                              | C<br>C<br>MODXP1-108L                                                    |                      |                        |                        | MODXP1-160Q            | MODXP1-184G  | MOD XP1-108B         |
| MQPELECTRONICS                    | SYSTEM 2000                                                                  | P 2Q95                                         | P 3Q95                               | MP1                                                                      | MP1                                                                                                                                                 | MP1                                                                      |                      |                        |                        |                        |              |                      |
| PINMASTER 48                      | P 2Q95                                                                       | P 2Q95                                         | P 2Q95                                         | P 2Q95                                         | P 2Q95                                         | P 3Q95                                         |                                      |                                                                          |                                                                                                                                                     |                                                                          |                      |                        |                        |                        |              |                      |
| NEEDHAM'SELECTRONICS              | EMP20                                                                        | V2.37                                          | V2.37                                          | V2.37                                          | V2.37                                          | V2.37                                          | P 3Q95                               | 19B + H44                                                                | 20A + U68CA                                                                                                                                         | 20A + U84CA                                                              |                      |                        |                        |                        |              |                      |
| SNS                               | EXPERT<br>OPTIMA                                                             | C/94<br>C/94                                   | C/94<br>C/94                                   | C/94<br>C/94                                   | P 2Q95<br>P 2Q95                               | P 2Q95<br>P 2Q95                               | P 3Q95<br>P 3Q95                     | тор <del>1</del><br>тор1                                                 | TOP1<br>TOP1                                                                                                                                        | TOP1<br>TOP1                                                             |                      |                        |                        |                        |              |                      |
| STAG                              | ECLIPSE                                                                      | V4.10.31                                       | V4.10.31                                       | V4.10.31                                       | V4.10.31                                       | V4.10.31                                       | P 3Q95                               |                                                                          |                                                                                                                                                     |                                                                          |                      |                        |                        |                        |              |                      |
| SUNRISE                           | T-10 UDP<br>T-10 ULC                                                         | V3.31<br>V3.31                                 | V3.31<br>V3.31                                 | V3.31<br>V3.31                                 | V3.31<br>V3.31                                 | V3.31<br>V3.31                                 |                                      | ××                                                                       | ××                                                                                                                                                  | ××                                                                       |                      |                        |                        |                        |              |                      |
| SUNSHINE                          | POWER-100<br>EXPRO-60/80                                                     | P 5/95<br>P 5/95                               | P 5/95<br>P 5/95                               |                                                | P 5/95<br>P 5/95                               | P 5/95<br>P 5/95                               |                                      | CNV-UNIVERSAL-PLCC44<br>CNV-UNIVERSAL-PLCC44                             |                                                                                                                                                     |                                                                          |                      |                        |                        |                        |              |                      |
| <b>SYSTEM GENERAL</b>             | TURPRO-1                                                                     | V2.2                                           | V2.2                                           | V2.2                                           | V2.2                                           | V2.2                                           | P 3Q95                               | C                                                                        |                                                                                                                                                     |                                                                          |                      |                        |                        |                        |              |                      |
| TRIBAL MICROSYSTEMS               | ALL-07                                                                       | V3.02                                          | V3.02                                          | V3.02                                          | V3.01                                          | V3.00                                          | P 3Q95                               | PAC-PLCC44                                                               | PAC-PLCC68                                                                                                                                          |                                                                          |                      |                        |                        |                        |              |                      |
| XELTEK                            | SUPERPRO<br>SUPERPROII                                                       | 2.1<br>2.1                                     | 2.1<br>2.1                                     | 2:1<br>2:1                                     | P 2Q95<br>P 2Q95                               | P 2Q95<br>P 2Q95                               | P 3Q95<br>P 3Q95                     | XXC7354-44PL/40D<br>XXC7354-44PL/40D                                     | XXC7354-68PL/40D<br>XXC7354-68PL/40D                                                                                                                |                                                                          |                      |                        |                        |                        |              |                      |
| XILINX                            | HW-120<br>HW-130                                                             | V5.00<br>V1.00                                 | V5.00<br>V1.00                                 | V5.00<br>V1.00                                 | V5.00<br>S 5/95                                | V5.00<br>S5/95                                 | P 6/95<br>S 5/95                     | HW-126-PC44<br>HW-133-PC44                                               | HW-126-PC68                                                                                                                                         | HW-126-PC84                                                              | HW-126-PQ44          | HW-126-PQ100           | HW-126-PG144           | HW-126-PQ160           | HW-126-PG184 | HW-126-BG225         |

# New XC4000 Family Speed Grade Offers Higher Performance

he XC4000 FPGA family will reach new performance levels with the introduction of the -3 speed grade this July. This speed improvement, along with upcoming architectural improvements, will expand the range of applications that can be addressed by this high-performance, full-featured FPGA family. The improved performance of the -3 devices also allows the XC4000 family to be fully PCI compliant. In the typical application, the new -3 speed grade offers a 25 percent perfor-

mance improvement over the previous XC4000 device speed record. System clock speeds of 70

•

•

•

•

•

•

•

•

•

•

•

•

•

•

MHz and higher will be achievable. Digital signal processing is among the many high-performance applications that can be addressed by this high-speed FPGA technology. Video processors that previously required multiple DSP processors or large ASICs can be implemented in a single FPGA device. (An application note about FIR filter implementations in XC4000 FPGAs was recently released, and more DSP design support material is being prepared.). For more information, send E-mail inquiries to dsp@Xilinx.com

# MIL-STD-883BCompliantSerialPROMs

he XC1765D and XC17256D Serial Configuration PROMs are now available in full MIL-STD-883B compliant versions. These devices typically are used to store configuration data for Xilinx SRAM-based FPGAs, and are optimized for easy use with the FPGAs. As part of our commitment to the Hi-Rel (military, defense, and aerospace) market, Xilinx has long offered military temperature range versions, but in addition now provides fully compliant devices.

The XC1765D device holds 65,536 bits of data and can completely config-

ure Xilinx FPGAs up to the density of the XC3090, while the XC17256D holds 262,144 bits of data and can completely configure any Xilinx FPGA up to the density of the XC4013. Multiple devices can be easily cascaded to support multiple FPGAs and/or multiple configurations.

Both devices are available in the 8-pin DIP package, and DESC SMDs (Standard Military Drawings) have been released. These devices are supported by a wide range of programmers available from Xilinx and leading third-party vendors. ◆



# **XC5200 FPGA Family Grows**

The XC5200 FPGA family has been expanded to include the 2,500-gate XC5202 and the 4,000-gate XC5204. The XC5200 family now includes flexible, high-density FPGA devices ranging from 2,500 to 18,000 gates.

For lower-density designs that do not



require the use of on-chip user RAM, the new XC5202 and XC5204 FPGAs provide a feature-rich solution. Like all members of the XC5200 FPGA family, these new devices include JTAG boundary-scan logic for enhanced testability, carry logic supporting fast arithmetic operations, and internal 3-state buffers for efficient onchip busing capability.

All XC5200 devices offered in a common package *(see table)* are completely footprint compatible, allowing the easy migration to smaller or larger devices without changes to the PCB layout. The flexible VersaRing<sup>™</sup>I/O interface delivers the industry's best pin locking capability for a high-density FPGA.

Please contact your local Xilinx sales representative for further information regarding software and component availability.

| Device                                     | NEW<br>XC5202                            | NEW<br>XC5204                                     | XC5206                                            | XC5210                                            | XC5215                           |
|--------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------|
| Usable gates                               | 2,200-<br>2,700                          | 3,900-<br>4,800                                   | 6,000-<br>7,500                                   | 10,000-<br>12,000                                 | 14,000-<br>18,000                |
| VersaBlock matrix                          | 8 x 8                                    | 10 x 12                                           | 14 x 14                                           | 18 x 18                                           | 22 x 22                          |
| Total CLBs                                 | 64                                       | 120                                               | 196                                               | 324                                               | 484                              |
| Total Flip-Flops                           | 256                                      | 480                                               | 784                                               | 1,296                                             | 1,936                            |
| Total IOBs                                 | 84                                       | 124                                               | 148                                               | 196                                               | 244                              |
| 10K Unit Pricing<br>(-6 speed grade, PC84) | \$9                                      | \$15                                              | \$25                                              | \$38                                              | \$68<br>(PQ208)                  |
| Availability                               | 3Q95                                     | 3Q95                                              | NOW                                               | NOW                                               | 3Q95                             |
| Packages                                   | PC84<br>PQ100<br>VQ100<br>TQ144<br>PG156 | PC84<br>PQ100<br>VQ100<br>TQ144<br>PQ160<br>PG156 | PC84<br>PQ100<br>TQ144<br>PQ160<br>PQ208<br>PG191 | PC84<br>TQ144<br>PQ160<br>PQ208<br>PQ240<br>PG223 | PQ208<br>PQ240<br>HQ304<br>PG299 |
|                                            | 1 0100                                   | 10100                                             | 10191                                             | 1 0220                                            | 1 0233                           |

# Introducing The New, Low-PowerXC7336QEPLD

The latest addition to the fast-growing XC7300 EPLD family is a low-power version of the XC7336 called the XC7336Q.

those devices.

The XC7336Q EPLD is ideal for spaceconstrained electronic systems, including

The XC7336Q offers all of the benefits of the advanced XC7300 architecture, including 100 percent routing with 100 percent utilization, SMARTswitch, 24mA output drive and

| DEVICE                   | SPEED    | LOWEST<br>COST | LOWEST<br>POWER | PACKAGES                  |
|--------------------------|----------|----------------|-----------------|---------------------------|
| XC7336<br>- 5,7,10,12,15 | <b>V</b> | <b>V</b>       |                 | PC44. WC44.<br>PQ44       |
| XC7336Q<br>- 10,12,15    |          |                | <b>v</b>        | PC44, WC44,<br>PQ44, VQ44 |

3.3V/5V level translation. Furthermore, like the other XC7300 family members, the XC7336Q-10 is 100 percent PCI compliant.

The XC7336Q differs from the standard XC7336 in terms of power consumption the Q version consumes **60 percent less power**. Also, the XC7336Q is available only in -10, -12 and -15 speed grades. PAL and GAL users are already familiar

with the Q nomenclature — in the PAL/GAL world, a Q (for

> Quarter power) CMOSPAL typically functions at one-fourth the I<sub>cc</sub> of the equivalent PAL. Power-conscious PAL users will find the XC7336Q to be extremely appealing, as the XC7336Q will integrate three 22V10s while consuming only **one sixth** the power of

computing, peripherals and consumer applications. Board space and airflow limitations tend to make such applications highly sensitive to power consumption and system noise. Low  $I_{cc}$  specifications combined with low-profile packaging options make the XC7336Q a high integration PALlike solution that fits small form factor and power constraints and enhances a design's overall reliability and noise immunity.

Above is a selection guide to help choose the best XC7336 product for your needs. Note that there are instances where the standard XC7336 is a better choice than the XC7336Q.

The XC7336Q will be fully supported (explicitly) in DS-550 Rev. 6.0. However, users can begin designs immediately with DS-550 v5.1 by using the standard XC7336 as the target device. Programming support on the HW-130 programmer will be available by the end of May, and all major third party programmers will be on-line in July.

Engineering samples of the XC7336Q will be available by the end of May, with volume shipments by the end of June.

#### PRODUCT INFORMATION — DEVELOPMENT SYSTEMS

# $\frac{\mathbf{X}_{S} \mathbf{A}_{T} \mathbf{C}_{E} \mathbf{T}_{P}}{\mathbf{V}_{E} \mathbf{R} \mathbf{S} \mathbf{I} \mathbf{O} \mathbf{N} \mathbf{6}}$

I he newest version of the Xilinx development system—named XACT*step*, version 6—combines power and ease-ofuse to provide the highest-productivity tool set in the programmable logic industry. Targeted for shipment in August, 1995, XACT*step* runs under Microsoft Windows 3.1 on the PC and Motif on workstations.

XACT*step*, version 6 features six powerful, easy-to-use tools intended for a wide range of programmable logic designs. On one end of the spectrum, simple PAL replacements can be implemented in EPLDs using fully automatic techniques. At the other end of the spectrum, large, complex FPGA designs can be fine-tuned using a configurable flow engine and the programmable logic industry's first graphically-based, hierarchical floorplanner.

The new graphical user interface (GUI) in XACT*step* includes many features that shorten the learning curve and simplify design implementation and debug. With this GUI, programs are executed and options are set using tool bars and icons. Tool tips give instant descriptions of commands and on-line help provides more indepth information. New report browsers display message files with "plain English" titles and allow the simultaneous viewing of multiple documents.

The results are faster implementation and debug cycles, a shorter learning curve and a dramatic boost in engineering productivity.

#### Six Powerful New Tools

XACT*step* contains six powerful new tools that accelerate design implementation, verification and debug cycles.

 The new Design Manager provides a complete project management environment for the XC2000, XC3000, XC3100,

# A Revolutionary Combination of Power and Ease-of-Use

XC4000, XC5000 and XC7000 families. It supports unlimited version control and manages all the underlying files for each design revision.

 The configurable *Flow Engine* lets users choose the desired amount of control over the implementation process. Users can choose a fully automatic flow or set break points that allow the analysis and optimization of results before proceeding to the next step.

For each step in the implementation process, the automatic tools can be easily



directed to achieve the desired result. For example, the automatic placement and routing tools can be set to optimize the design or minimize run time; the selection is made using a slide bar that appears in a pop-up menu.

The entire collection of settings can be stored in a template for later use. New users can choose from standard templates provided with the system. Experienced users can create an unlimited number of custom templates and distribute these to other members of their group.

For users who don't want to take advantage of the new, easy-to-use interface, *Continued on next page* 





all program options from XACT 5.0 can be entered using the old command line syntax.

 XACTstep contains a new graphicsbased, hierarchical floorplanner. With XACT-Floorplanner<sup>™</sup>, users can easily achieve "hand-crafted" levels of performance and density in FPGA designs. (See related article on page 19).

Floorplanning is valuable for any design that has a high degree of structure or a large number of gates. With just a few minutes of basic floorplanning, designers can quickly place

| Contraction of the later | CALC: DESIGN MAY                                                                                                                                                                                                                                                                                                                                                                                                                          | WIGEN                                                                             |                     | 1                    | -                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------|
| interisticity pital Pit  | WZ                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |                     |                      |                                |
| Transf View              | Still         Still ADIA Design           Cashal False         Hone           Cashal False         Hone           Cashal False         Hone           Cashal False         Hone           Dastandt False         Hone           Cashal False         Hone           Cashal False         Hone           Cashal False         Hone           Cashal Cashal         Default           Cashal         Default           Datand         Taset | linglementation Dialog<br>a<br>a<br><u>2 de Tompiete</u><br>a <u>réé Tompiete</u> | Em.<br>Veret<br>Het |                      | Contrast interests in Contrast |
|                          | Produce Timing Report                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.40                                                                             | 100 implementatio   | an Template: Default | Colorester State               |
|                          | T Produce Taxing Sandalam Data                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                 | Categoria           | Cash Resource        | 08                             |
|                          | Produce Configuration Data                                                                                                                                                                                                                                                                                                                                                                                                                | Hennerer Available                                                                | he Routing          | -                    | Land                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           | GLES C Nove C 1                                                                   | Particip Uncel 🕤    | Ang                  | Intel                          |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           | (* Unsend Global Ha                                                               | Airs                |                      | Halp                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasto Placanet                                                                    | Dody Minska That H  | are Roated Signals   |                                |
| CALL ADDAPCHAR (VID-     | Hav                                                                                                                                                                                                                                                                                                                                                                                                                                       | Last Realing C &                                                                  | ne 🕫 While Sig      | Note C. All          |                                |

critically-timed logic and graphically plan the data flow. Placement is performed at a high level using the designs' hierarchy and a floorplan of the target device. Floorplanning also allows optimal use of specialized FPGA architectural structures like high-speed distributed RAM and internal three-state buffers. Users needing to maximize performance can easily implement a detailed floorplan employing proven optimization techniques like bus interleaving, register grouping and I/O pin alignment.

• The interactive *Timing Analyzer* makes it easy to analyze the designs' performance with custom timing reports. Using pop-up menus, the tool can generate reports that show the delay along any specific path or group of paths, such as all the paths of a certain type or those associated with specific clock signals. In addition, the *Timing Analyzer* can automatically compare the implemented design's actual performance to the goals entered using XACT-Performance<sup>TM</sup>, and show the estimated maximum frequency for each clock in the design.

• The new *Hardware Debugger* provides for the verification of configuration data and the viewing of internal signal activity during system debug and test. It takes advantage of the re-programmable, SRAM-based devices by configuring the FPGA in-circuit using a cable connected to a host PC or workstation. After configuring the device, bitstream data is read back through the cable for automatic verification.

While the device is running, an unlimited number of internal nodes can be viewed, with the results displayed in a wave-form window. By giving the hardware debugger control of the system clock, designers can easily step through state machines and other synchronous circuits to verify functionality.

• The new graphics-based *PROM Formatter* in XACT*step* creates PROM programming files. It chooses the best PROM size for the design, and automatically splits the data into multiple files if smaller PROMS are being used. Serial and byte-wide PROMS in four different formats are supported. If the target system includes a daisy chain of FPGAs, the PROM formatter graphically creates the load order and verifies the load sequence.

#### Free To Users On Maintenance

Registered Xilinx development system owners with an active software maintenance agreement will receive the XACT*step*, version 6 update automatically. *To check on the status of your maintenance agreement, call Xilinx customer service at* 408-559-7778, or contact your local *Xilinx sales office.* 

# Full-Featured Floorplanner Boosts FPGA Performance

The new XACT*step*, version 6 release contains the industry's first graphics-based hierarchical floorplanner. Use of XACT-Floorplanner can result in dramatic improvement to FPGA performance, allowing designs to run at higher speed, or providing cost-savings by allowing the use of a slower speed grade device.

Floorplanning is particularly effective for designs that have a high degree of structure or a large gate density. Floorplanning can help optimize the use of special FPGA features such as the highspeed distributed RAM capability of the XC4000 FPGA family.

The Floorplanner features a "drag-anddrop" methodology that makes it easy to learn and use. A basic floorplan is created by dragging logic elements from the design and dropping them into locations on a picture of the die. Critically-timed logic can be pre-placed, and overall data flow can be planned. More-detailed floorplans allow the use of proven optimization techniques such as bus interleaving, register grouping and I/O pin alignment.

Many powerful features aid the designer. Users start with a **graphical view** of the designs' hierarchy. Each level of hierarchy is labeled with the original symbol from the schematic or hardware description language description, and is marked with the exact number of required FPGA resources. This view of the hierarchy can be enlarged or reduced to view any level of the design. A search and find utility makes it easy to locate specific logic elements.

When a logic element is "dropped" onto the die, the Floorplanner creates a "**ratsnest**" **view** of all its interconnections to previously-placed elements. Logic elements can be assigned to an area of the device so that the automatic "place and route" tools can then find an optimal placement of that logic within that area. For elements encompassing multiple FPGA resources, the Floorplanner can be directed easily to distribute the elements horizontally or vertically. Thus, logic structures can be aligned to use long line routing and internal three-state buffers efficiently.

For more-detailed floorplans, powerful commands make it easy to align or inter-





leave busses or structured logic elements. Users re-order bits by simply changing the sort order. Complex alignments can be carried out by placing each bit separately.

Once the floorplanner finds the optimal placement for a given logic structure, it can be captured to a **Placement Map** and imposed on similar structures in the design — making it easy to "tile" repeated logic, or re-use portions of a design in future projects.

After completing the floorplan, commands are available to help analyze its efficiency. These commands also can be used to analyze a layout created by the automatic tools.

# Cadence Interface NowAvailable from Xilinx

**Generation** reflects our continuing commitment to make top-down design methodologies more accessible to Xilinx users." The interface software for linking the Cadence design tools to the Xilinx XACT-Development<sup>™</sup> system, including Verilog libraries, can now be purchased directly from Xilinx. Support contracts also are available. This reflects our continuing commitment to make top-down design methodologies more accessible to Xilinx users. These interfaces and libraries are developed by Cadence and require Cadence licenses (except for ES-Verilog). There are several product configurations, as described below:

#### ES-Verilog (No Charge)

This package includes the Verilog simulation models and XNF2Verilog translator. Interested users who have an in-warranty DS-502 or any "standard package" on workstations can request ES-Verilog directly through Xilinx customer service.

#### DS-381-SN2 (or HP7)-C

This product includes:

- Concept and Composer schematic symbols
- Verilog-XL and RapidSIM simulation models
- Netlist translators for these Cadence schematic editors and simulators The software and documentation for the DS-381 package is already included on the Cadence compact disk that holds the other Cadence products (CD "9404" or

later). Therefore, immediate access to DS-381 is available upon purchasing the license to enable it — nothing is shipped to the purchaser. *Please contact your local Xilinx sales representative for more information on how to order this license.* 

#### **DS-CDN-STD-SN2 (or HP7)-C** This product includes:

- DS-381 package (as described above)
- Xilinx 3PA package (the core implementation tools for Xilinx FPGAs and EPLDs, including X-BLOX)

Because users already have the DS-381 software and on-line documentation on their Cadence CD, only the 3PA package will be shipped after purchase. *Please contact your local Xilinx representative for information on how to order this package.* 

#### **DS-381 Product Evaluation**

Any Cadence user with a "9404" or later CD can evaluate Xilinx software for 90 days by requesting a 90 day temporary license from your local Xilinx sales office.

#### **Maintenance Contracts**

Cadence customers can now move their support contract for the Cadence interface software to Xilinx by purchasing the SC-381 or SC-CDN-STD support packages. However, no updates are planned until the next release of the XACT<sup>®</sup> tools (XACT*step*, version 6); it is recommended that users maintain their Cadence maintenance contract until then. ◆

### Floorplanner

Continued from previous page

The **Check Floorplan** command verifies resource allocation, threestate buffer alignment and CLB packing. If errors or warnings are found, a dialog box is used to navigate to the problem spot with a single click of the mouse. For more-detailed analysis, ratsnest views can be generated for any resource, along with routing congestion maps for any CLB(s).

Whether the design requires a few minutes of basic floorplanning or a detailed analysis and optimization, the Floorplanner can provide a tremendous boost in designer productivity and significant improvements in FPGA performance and density.

The Floorplanner can be used for XC3000A, XC3100A, XC4000, and XC5000 FPGA designs. Registered XACT development system owners with active software maintenance agreements will receive the Floorplanner in the XACT*step*, version 6 update targeted for August shipment.

# Upgrading to NeoCAD FPGA Foundry

Both the XACT Development<sup>™</sup> System and NeoCAD's FPGA Foundry<sup>™</sup> are available for implementing designs in the XC3000 and XC4000 FPGA families. Each has its respective strengths; for some high-density designs, the XACT system produces a better implementation; for others, the NeoCAD system generates a better solution.

It will take some time for the combined companies to integrate these products into a single development system. In the meantime, some current XACT users may be interested in adding the FPGA Foundry to their tool suite — particularly those users implementing very high-density FPGA designs.

For users with in-warranty XACT systems, special upgrade pricing has been established in order to allow add-on purchases of the FPGA Foundry software. Upgrade prices range from \$2,700 to \$3,000 (U.S.), dependent on the platform (PC or workstation). For users purchasing new systems, an "Advanced" system that contains both the XACT and FPGA Foundry software is available. *Please contact your local Xilinx sales representative for ordering codes and pricing for both new packages and upgrades.* 

Designers purchasing such an upgrade should be aware that these are two different development system suites, with their own licenses, user interfaces, documentation, and packaging. Both support X-BLOX<sup>™</sup>, the Unified Libraries, and XNF file formats, but FPGA Foundry does not support XACT-Performance or the upcoming XACT-Floorplanner<sup>™</sup>. The FPGA Foundry system supports only the XC3000 (and its deriviatives — XC3000A, XC3100, XC3100A) and XC4000 FPGA families. It is available for the Windows, HP, SunOS and Solaris operating systems.

Users should review their needs with their local Xilinx Field Application Engineer before purchasing the upgrade to FPGA Foundry or the Advanced packages.



# **Solaris Support Status**

According to Sun, all programs compiled for SunOS 4.1x should work under Solaris 2.3 (and higher) in emulation mode. XACT software, for the most part, fits this category. Even though Xilinx has performed no formal testing with the Solaris operating system, some users are designing successfully with XACT-SN2 products under Solaris.

However, there are a few known problems when running under Solaris 2.3:

- FLEXLM License Manager: Running XACT under Solaris, requires a special version of the Highland License Manager program, flexlm, compiled for Solaris. This software can be requested from the Xilinx Hotline and e-mailed directly to the user.
- Mentor Interface: The gen\_sch8 and xblxgs programs do not work under Solaris.
- XChecker: XChecker bitstream
   download and debugging are not

expected to work with Solaris. Therefore, this program must be used on a SunOS machine or on a different platform (e.g., a PC).

FPGA Foundry from NeoCAD supports Solaris and is available now as an option for Xilinx users that require immediate Solaris support.

With the recent merger of Xilinx and NeoCAD, plans are being developed to support Solaris with a future combined product. ◆

# HW-130 Xilinx Universal Programmer Now Available

The new HW-130 universal Xilinx device programmer is now available for Xilinx EPLD and serial PROM users. The HW-130 supports the programming of all Xilinx EPLD and serial PROM products, and will support the XC8100 FPGA family when it becomes available. This new product replaces the HW-112 serial PROM programmer and HW-120 EPLD programmer. The HW-130 is less expensive, smaller and faster than either the HW-120 or HW-112. The HW-130 programmer comes with

an "international" power supply, allowing it to be used anywhere in the world. Four versions are available *(see chart)*; varying only in the power cord supplied. The programmer comes complete with the cable that connects the HW-130 to its host PC. A full range of package adaptors is available, although the HW-130 can use most of the existing HW-120 adaptors.

| ORDERING<br>PARTNUMBER | PRODUCT<br>FAMILY | SUPPORTED<br>PACKAGE |
|------------------------|-------------------|----------------------|
| HW-130-PC1-01          | U.S., Asia        |                      |
| HW-130-PC1-02          | Europe            |                      |
| HW-130-PC1-03          | U.K.              |                      |
| HW-130-PC1-04          | Japan             |                      |
| HW-130-CAL             | Calibration       |                      |
| HW-132-PC44            | XC7200            | PC44                 |
| HW-133-PC44            | XC7300            | PC44                 |
| HW-133-PQ44            | XC7300            | PQ44                 |
| HW-132-PC68            | XC7200            | PC68                 |
| HW-133-PC68            | XC7300            | PC68                 |
| HW-132-PC84            | XC7200            | PC84                 |
| HW-133-PC84            | XC7300            | PC84                 |
| HW-133-PQ100           | XC7300            | PQ100                |
| HW-133-PQ160           | XC7300            | PQ160                |
| HW-137-DIP8            | XC1700            | DD8/PD8              |
| HW-137-PC20/SO8        | XC1700            | PC20/SO8             |

# Full XC7000 EPLD Support Available from ISDATA

The leading European PLD compiler, ISDATA, has completely integrated an XC7000 fitter into its latest software, LOG/iC2. This design path provides designers with a seamless, easy-to-use, efficient and cost effective design environment for XC7000 EPLDs.

tung

The LOG/iC2 development tool offers design entry, logic synthesis and simulation using the LOG/iC-HDL, schematic capture and/or VHDL in a hierarchical, graphical environment. The design can be macro generator LOG/iC2 Base PLD-Kernel LOG/iC ODC Xilinx Fitter VG7310 VHDL unit delay simulator VG7310 VG7320 VG7270

Figure: Xilinx XC7000 Design with LOG/iC2

#### **Ordering Information**

The XC7000 fitter is included in the ISDATA Open Design Converter (ODC) package, and can be used with both the LOG/iC Classic and LOG/iC2 development systems. The required software for LOG/iC2 users is shown in Table 1 and can be ordered by calling ISDATA GmbH in Germany (49-721-751088) or ISDATA Inc. in the U.S. (510-531-8553). Existing LOG/iC Classic owners can upgrade their software and obtain the XC7000 fitter by ordering the

targeted to any XC7000 device using the Xilinx-developed fitter. This flow is illustrated in the figure above.

#### Industry's Best "Pin Fixing" EPLDs

The XC7000 family of EPLDs offer the industry's fastest speeds ( $t_{PD}$  = 5ns) with the architectural benefit of 100 percent routability with 100 percent utilization. With this new fitter now embedded within the ISDATA tool, designers can quickly and easily implement designs with these high performance devices.

upgrades shown in Table 2.  $\blacklozenge$ 

#### Table 1. LOG/iC2 Software for XC7000 Support

| _OG/iC2 Base:                  | Part # 70100 |
|--------------------------------|--------------|
| _OG/iC2 PLD Kernal:            | Part # 72000 |
| _OG/iC2 Open Design Converter: | Part # 72100 |

#### Table 2. Software Upgrades for LOG/iC Classic

| LOG/iC Plus                  | Part # | 10200 |
|------------------------------|--------|-------|
| LOG/iC Perfect               | Part # | 12200 |
| LOG/iC Open Design Converter | Part # | 12500 |

# Designing FPGAs with HDLs and Synthesis Tools

As the size and complexity of FPGAbased designs continue to grow, some users are turning to hardware design languages (HDLs) and logic synthesis tools to enter their designs.

To effectively use an HDL, users must understand the language syntax as well as the potential and limitations of this design entry method, especially when creating generic code intended for different devices.

To aid in this process, Xilinx is preparing a comprehensive *HDL Synthesis Design Guide for FPGAs* which will be available to users around mid-year. It will describe design methodologies and illustrate them with design examples. The guide is intended to help HDL users produce successful FPGA designs.

This article gives a brief description of some of the advantages of HDL-based design, and then briefly reviews some of the material included in the forthcoming design guide.

#### **HDLAdvantages**

HDLs and synthesis tools allow the logic designer to enter designs at a higher level of abstraction, much like the software engineer who programs in 'C' instead of assembly language. The designer specifies the needed system-level functions, whereupon error-free gate level implementations are generated by the synthesis tool, freeing the designer for more creative tasks.

Users look to high-level languages and logic synthesis to provide an efficient means of migrating designs between technologies — the design's high-level description is not necessarily bound to a given device architecture or process technology. Like schematics, HDL-based designs also are self-documenting since the HDL file is the functional description of the design.

Logic synthesis tools and FPGAs complement each other in providing a flexible design environment. With HDLs, decisions can be tested early in the design cycle through functional simulation of the HDL description. Design changes are made easily, allowing experimentation and the exploration of architectural tradeoffs. Synthesis tools then convert the HDL description to a gate-level implementation for the target FPGA architecture.

FPGAs further enhance this design flexibility by allowing the user to implement and test the design at the workbench. Typically, the synthesis compilation time is short enough to allow for exploration of design trade-offs at their gate-level implementation. SRAM-based FPGAs can be reprogrammed an unlimited

number of times, so multiple iterations of the design can be implemented with no additional hardware cost.

#### FPGA-Optimized Synthesis Tools

For a top-down, HDLbased design methodology to be useful, the synthesis tools must be effective in producing a gate-level design for the target technology. Synthesis algorithms for FPGAs can be dramatically different from

those used for gate arrays. Fortunately, many synthesis tools have special optimi-

••HDLs and

synthesis tools allow the logic designer to enter designs at a higher level of abstraction, much like the software engineer who programs in 'C' instead of assembly language."

Continued on next page



23

#### HDLs and **Synthesis Tools** Continued from previous page

••Device performance

and area utilization can be

optimized by creating HDL

code that takes advantage

of special FPGA

architectural features."

zation algorithms for Xilinx FPGAs. For example, in the Synopsys FPGA Compiler, logic is synthesized into the building blocks of the FPGA: function generators (look-up tables) and registers. The FPGA Compiler reports the area utilization and critical path delays in terms of CLBs, not gates. This guarantees a high level of correlation between the reported area/speed numbers and the actual results after implementation by the place and route tools.

To address the demand for effective synthesis tools, Xilinx initiated its Synthesis Syndicate Program about two years ago, a program to assist and encourage third-party EDA vendors in developing synthesis tools for Xilinx components.

#### **ASIC vs. FPGA Design**

The methods and techniques used in ASIC design are not always best for FPGAs. ASICs typically have more gates and routing resources than FPGAs. Since ASICs have a large number of available logic resources, inefficient code that results in a larger-than-necessary number of gates often can be tolerated. When de-

> signing FPGAs, the results of inefficient coding will be magnified.

#### Language Issues

Not all the constructs available in an HDL may be applicable to FPGA design. For example, VHDL, which was originally developed as a simulation language and later adopted for IC design, includes a "wait" statement instructing a

VHDL simulator to wait for a specified time before a condition is executed. This statement does not synthesize to any components. In a design that includes this statement, the functionality of the simulated design may not match the functionality of the synthesized design.

Various synthesis tools may also use different subsets of the VHDL language. Furthermore, constraints and compiling options can perform differently, depending on the target device.

#### **Using FPGA System Features**

Device performance and area utilization can be optimized by creating HDL code that takes advantage of special FPGA architectural features such as global resets, wide decoders, on-chip memory and carry logic — common knowledge for experienced FPGA users. However, users must learn how to access these features in an HDL-based design. Some must be "instantiated" into the code (that is, the user must explicitly specify that these resources are to be used by embedding directives within the HDL code). The user must therefore be familiar with the target FPGA architecture. The code is architecture-specific and not easily transferred to other devices.

#### **Hierarchical Design**

Hierarchical design is important in the implementation of an FPGA, particularly during floorplanning and debugging, or when using incremental design techniques. Large designs (greater than 5,000 gates) should be partitioned into smaller modules. The size and the contents of the modules can affect synthesis and implementation results.

#### **HDL Design Flow**

The design flow for FPGAs when using HDLs is very similar to that of ASICs. The basic steps are listed below:

- 1. Entry of the HDL code; the design should be evaluated for inefficient coding styles and for possible usage of FPGA system features.
- 2. Functional simulation with a VHDL or Verilog simulator. Xilinx provides VITAL compliant simulation modules that can be used with the Synopsys VSS simulator.

- 3. Synthesis of the design's modules into XNF or EDIF netlists. The area and speed requirements should be specified before the design is synthesized.
- 4. Translation of the XNF file or EDIF file into a Xilinx Unified Library XNF file.
- 5. Functional simulation with a gate-level simulator (optional).
- 6. Floorplanning of structured design elements such as RPMs and on-chip memory blocks to improve routability and performance (optional).

- 7. Implementation of the design with the automated "place & route" tools.
- 8. Timing simulation with a gate-level simulator.

In summary, an increasing number of FPGA users are adopting top-down design methodologies using HDLs and logic synthesis. While still not a panacea, synthesis technology is starting to live up to its promise of enabling efficient, high-level FPGA design.

# **Measuring Speed and Temperature**

All CMOS circuits experience increased signal delay with increasing chip temperature, typically about a one percent speed degradation for every three degrees centigrade temperature increase. This is a basic phenomenon, and cannot be changed by any manufacturer.

A chip's temperature is affected by ambient temperature and device power dissipation. More specifically:

#### $T_{i} = T_{A} + P_{D} * \theta_{JA}$

That is, the silicon junction temperature exceeds the ambient temperature by the product of the dissipated power multiplied by the thermal resistance of the package. This thermal resistance is primarily a function of package size, package material, internal package structure and air velocity.

SRAM-based FPGAs have no significant static power consumption. Practically all internal power dissipation is due to the dynamic charging and discharging of capacitive nodes. This makes it impossible to generalize the device power consumption of Xilinx FPGAs; it can vary by orders of magnitude, depending on the application. Years ago, the power consumption was always relatively low because FPGAs were limited to less than 5,000 gate density, were often not used fully and employed clocks of 20 to 30 MHz. Today, capacity has increased beyond 20,000 gates, better software allows utilization of up to 100 percent, and clock rates can go well beyond 50 MHz. As a result, power dissipation can be several watts for the largest FPGA devices running at full speed.

This has rendered the traditional 70°C specification unsatisfactory for most demanding applications.

Xilinx has responded to this problem. We are now testing commercial devices at 85°C and industrial devices at 100°C. The new edition of the *1994 Data Book* (3rd edition) provides derating factors for higher junction temperatures (0.35 percent per °C for XC4000 devices, 0.30 percent per °C for XC3000 and XC2000 devices). The thermal resistance for the various device/package combinations, with derating values for airflow, are listed in this new edition as well.

The change to the higher test temperatures was implemented in April. All devices with date codes 9512 or later are tested in this new manner.

SRAM-based or antifuse-based FPGA performance parameters cannot be guaranteed at a specified ambient temperature, independent of power consumption and package type. Depending on the design, the clock rate and the package, the device junction temperature might vary by more than 50°C.

It is our goal to provide clearly-defined device parameters that are meaninful for the user.  $\blacklozenge$ 

# **Board Level Simulation with**

 ${f B}_{
m oard}$ -level simulation capability has been added to the OrCAD VST simulator in the latest release, OrCAD VST 386+ v1.20. Users can now simulate a board-level design containing multiple Xilinx FPGAs and EPLDs.

For board-level simulation, create each Xilinx design in its own directory. Within each directory, route, back-annotate and simulate the design at the chip level. After each design has been verified, create a separate board-level directory and enter the board-level design. Copy the simulation files (.VST, .DBA) for the individual devices into the board-level directory. A boardlevel simulation can then be performed in the board directory. The procedures are as follows:

#### Create the Simulation Model Library

In order to simulate designs in VST v1.20, each device source file (.DSF) must be compiled in the VST v1.20 format. If you plan to simulate designs from different Xilinx families together or include components from other vendors on a single board design, add those DSFs to the simulation model library using OrCAD VST's Add

> Device Model command for each file. The DSFs for Xilinx are available on the Xilinx BBS as ORCSRC.ZIP. The source files are also available on the XACT 5.1 CD under XBBS\SWHELP\ORCSRC.ZIP.

#### **Prepare Individual Chip Designs**

Each FPGA/EPLD design should be captured in OrCAD SDT 386+ using normal procedures. When labeling the signals connected to the I/O pads, use easy-to-identify, intuitive names to facilitate the process of creating a chip symbol to represent the FPGA/EPLD. For board-level simulation, these signal names provide the points of connectivity to the board-level

wires. Create names of 14 characters or

fewer to prevent the software from creating shorter, random aliases.

After a design has been completed, use the following commands to generate the simulation files:

- 1: xmake < design > (for EPLD designs, replace xmake with xemake)
- 2: xsimmake -f oft <design> (for EPLD designs, replace OFT with OET)

Once the simulation files are created and the design verified, copy the simulation files (<design>.VST, <design>.DBA) to the board directory.

#### **Create a Library of Chip Symbols**

Before preparing the board level schematic, create a library of symbols to represent each device on the board (the procedure is described on pages 3-8 through 3-10 of the XACT OrCAD Interface User Guide, April 1994). Make certain that the symbol's pin names match the underlying I/O signal names. In addition to the user I/O signals, pins for the global signals must be added. The names of the global signals are:

- For the XC2000 and XC3000 FPGA devices, the global reset signal is GR.
- For the XC4000 FPGA devices, global set/ reset is GSR, and global tristate is GTS (if STARTUP is used, GSR and/or GTS are replaced with user signals).
- For the XC7000 EPLD devices, global set/ reset is PRLD.

#### **Prepare the Board Level Design**

Once the custom symbol library is in place, the board level schematic can be created using the normal OrCAD SDT procedures. In addition to the user-created library, the board design may also use libraries from other vendors if their DSF files have been included. Once the board design has been captured, run AN-NOTATE on the schematic to update the reference designators for the symbols in the schematic. Then, from within SDT, edit the

 $\mathbf{26}$ 

# •Once the

custom symbol library is in place, the board level schematic can be created using the normal OrCAD SDT procedures."

# OrCADVST

SHEETPART NAME for each Xilinx device symbol to add the following:

EXTERNALVIEW=<design>.SCH

where <design> is the root schematic worksheet for that particular chip. After adding the 'externalview' to all Xilinx devices, save the schematic, and then run INET on the board schematic to create the board-level INF simulation netlist.

#### Simulate the Board Level Design

Prior to simulating the board-level design, set the SIMULATE local configura-

tion to Use all delay annotation files (include separate dba files). Verify that the library prefix for the digital simulation tools points to the simulation model library created in the *Create the Simulation Model Library* section above. Simulate the board-level design using <board>.INF as the connectivity database.

A detailed application note with sample design files is available on the Xilinx BBS (Bulletin Board System) under the filename: VSTBSIM.ZIP. The application note is also available via the Xilinx XDOCS system (email xdocs@xilinx.com, document key 23012).

# **Configuration Checklist Available**

A new, preliminary application note discussing FPGA configuration issues is now available on both the XFACTS and XDOCS technical support systems. The application note is intended to help determine if you have a configuration problem and, if so, suggest likely solutions. (It complements the already-exisiting application note, "FPGA Configuration Guidelines," document #0010229-01).

To get the current revision of this new document via Fax from XFACTS, please call 408-879-4400 from a touch-tone telephone and press "1" to get more information; this document is number 23021. If you are using the XDOCS E-mail system, this document can be ordered by sending the command "SEND 23021" as the subject line or in the body of a message addressed to xdocs@xilinx.com. (To learn the basics of XDOCS, please mail xdocs@xilinx.com with the word help in the subject line.)

This application note navigates you through a number of questions. Initially, you must determine if the problem is related to the configuration process or the functionality of the configured FPGA (Is there a problem with the functionality of a correctly-configured device, or has the configuration actually failed?)

There are several clues as to whether or not the FPGA has been successfully configured:

- 1. **INIT** If configuring from power-up, does INIT go through a single positive transition from Low to High? If the FPGA is not working after it is reprogrammed, is there a single negative transition (High to Low) on INIT, followed by a single positive-going transition?
- 2. DONE Does DONE go High?.
- 3. I/Os —Are your I/Os at their active post-configuration levels? HDC is High during configuration, and LDC should be Low during configuration. Most other pins have weak pullups during configuration. If you configure the device to pass a clock signal in through an input and out through an output pad, does the output pin toggle at the end of configuration? If you configure one user I/O to drive Low at the end of configuration, and another to drive High, are both I/Os driving the proper logic levels at the end of configuration?
- 4. Flip-Flops Are your flip-flops toggling?

If you can answer YES to these questions, you can be fairly certain that your FPGA has been configured properly, and that the problem involves the functionality of your design, not the configuration method.

Please note that this document is preliminary and feedback is very much appreciated; feedback can be sent by E-mail to hotline@xilinx.com or by FAX to 408-879-4442.

#### General

- Q: The Technical Support Hotline hours are Monday through Friday, 8:00AM - 5:00PM Pacific time. Is there any way to get technical help outside of these hours?
- A: Xilinx has implemented a fax-back system and an automated email server, both of which operate 24 hours a day. These systems will give you access to the same database used by the Technical Support Engineers.

The XFACTS automated fax-back system can send solution records and application notes directly to your fax machine. Using a touch-tone phone, call 1-408-879-4400 and press "1" to get more information.

The XDOCS email server can send the same information via the internet. For more information on this system, send an email to xdocs@xilinx.com, with the word help in the subject line.

- Q: When I try to install the software on my PC, I get the message "Corrupted file on your media. DSxxx cannot be completely installed." What should I do?
- A: The Install program will give this error message if it cannot write a file or if it cannot verify a file that it has just tried to write. There are three possible causes of this message:

1) You don't have write privileges to the target directory.

Not having write privileges prevents the program from being able to open a new directory or overwrite existing DOS files, so check to make sure none of the file attributes have been set to read-only. If you are installing on a network drive, make sure you are logged in as someone who can write to the destination area.

2) The PC has run out of memory below 640KB.

In addition to being able to start the Install program itself, PCs must have enough memory to decompress the data files stored on the CD or disks. Remove some drivers from the CONFIG.SYS and AUTOEXEC.BAT files, reboot the PC, and try the installation again. If the Install program gets further but still fails, remove more drivers and try again.

3) Problems exist with the setup of the CD-ROM drive.

We have seen multiple cases, especially with the MSCDEX drivers, where the CD-ROM drive software has not been installed correctly. Check to be sure that the proper parameters are set for the driver. If all else fails, call the Technical Support Hotline at 1-800-255-7778 for more assistance.

### XABEL

Q: While running AHDL2X v5.0 on a Pentium 90 MHz PC, I receive a message indicating that my key is not authorized to run XABEL. What could be the cause of this problem?

(Note: This question appeared in XCELL #16 with an incorrect description of the solution.)

A: The XABEL 5.0 package includes executables supplied to Xilinx by Data I/O. Unfortunately, these programs were compiled with an older version of the Rainbow key software and will not run on some faster machines, like the Pentium-90MHz and IBM PS/2 platforms. These programs have been re-compiled and updated in the XACT 5.1 release. They also are available on the Xilinx BBS as XABEL.ZIP.

### **Synopsys**

Q: I am just starting my first Xilinx design with the Synopsys FPGA Compiler. How should I set up my .synopsys\_dc.setup file?

A: Below is a sample .synopsys\_dc.setup file for doing an XC4000 family design. Be sure to edit the search path so that it points to the correct location of the libraries.

```
/* EXAMPLE FPGA COMPILER STARTUP FILE - .synopsys_dc.setup */
/* FOR XC4000/A/H/D PARTYPES
                                */
search_path = { .
                        <DS401-XACT-Directory>/synopsys/libraries/syn \
        <SYNOPSYS_Directory>/libraries/syn}
link_library = {xprim_4005-5.db xprim_4000-5.db xgen_4000.db \
        xio_4000-5.db xfpga_4000-5.db}
target_library = {xprim_4005-5.db xprim_4000-5.db xgen_4000.db \
        xio_4000-5.db xfpga_4000-5.db}
symbol_library = xc4000.sdb
define_design_lib WORK -path ./WORK
define_design_lib xblox_4000 -path \
        <DS401-XACT-Directory>/synopsys/libraries/dw/lib/fpga
synthetic_library = {xblox_4000.sldb standard.sldb}
compile_fix_multiple_port_nets = true
xlnx_hier_blknm = 1
xnfout_library_version = "2.0.0"
bus_naming_style = " percents< percentd>"
bus_dimension_separator_style = "><"</pre>
bus_inference_style = " percents< percentd>"
```

#### **OVERVIEW OF TECHNICAL SUPPORT FACILITIES**

#### **Automated Support Systems**

To provide timely support for new, high-growth markets, Xilinx Applications has established a series of E-mail addresses to direct technical inquiries or to request information packets.

#### Currently, these E-mail addresses include:

| Digital Signal Processing applications      | dsp@xilinx.com       |
|---------------------------------------------|----------------------|
| PCI-bus applications                        | pci@xilinx.com       |
| Plug and Play ISA applications              | pnp@xilinx.com       |
| Asynchronous Transfer Mode applications     | atm@xilinx.com       |
| General questions should still be routed to | hotline@xilinx.com   |
| PCMCIA card applications                    | pcmcia@xilinx.com    |
| Reconfigurable logic/computing applications | .reconfig@xilinx.com |

Other Xilinx interactive services include the XDOCS automated document server, the XFACTS fax server, and the Xilinx World Wide Web home page.

To access the XDOCS E-mail document server, send an E-mail to xdocs@xilinx.com with "help" as the only item in the subject header. You will automatically receive full instructions via E-mail. The Xilinx home page is available at http://www.xilinx.com. The XFACTS fax server is available by calling 1-408-879-4400.

#### **Hotline Support, United States**

#### Hotline Support, Europe

#### **UK**, LONDON OFFICE

telephone: (44) 1932 349402 fax: (44) 1932 333530 Bulletin Board Service: (44) 1932 333540 e-mail: ukhelp@xilinx.com

#### FRANCE, PARISOFFICE

telephone: (33) 1 3463 0100 fax: (33) 1 3463 0109 e-mail: frhelp@xilinx.com

#### GERMANY, MUNICH OFFICE

telephone: (49) 89 991 5490 fax: (49) 89 904 4748 e-mail: dlhelp@xilinx.com

## 3.3 Volt Programmable Logic Market Survey

We are investigating the low voltage (3.3 V) market. If you are using or anticipate using 3.3 V programmable logic devices in the future, please take a couple of minutes to fill out this short survey and send it back to us. Return your survey via FAX at 408-879-4676, or mail to:

Daniel Chan Product Marketing Xilinx Inc. 2100 Logic Drive San Jose, CA 95124

We sincerely appreciate your time and effort.

# Manchester Decoder in 3 CLBs

Xilinx FPGA architectures are ideal for implementing high-speed, efficient serial decoders. For example, the circuit illustrated below uses an eight-times oversampling clock to decode Manchester-encoded data. The circuit requires only three CLBs in any XC3000, XC3100 or XC4000-type device, and only two CLBs in an XC5200 device.

Manchester code is a self-clocking code with a minimum of one and a maximum of two level transitions per bit. A Zero is encoded as a Low-to-High transition, a One is encoded as a High-to-Low transition. Between two identical bits of data there is an extra level transition which must be ignored by the decoder. The decoder, therefore, needs some information about the bit timing. Typically, the decoder has a clock with timing that is a known multiple of the encoding clock.

This design assumes a decode clock at nominally eight times the incoming data rate. After detecting a valid transition, the circuit ignores further transitions for six clock periods. Thus, the circuit tolerates substantial frequency errors between encoder and decoder.

Q0 and Q1 are XORed to detect any incoming level change. Q2/Q3/Q4 form a divide-by-six Johnson counter that locks up in the 000 state. (The illegal 010

state is also detected and changed to 000 on the next clock edge.) When the Johnson counter has timed out and is in the 000 state, any incoming level transition generates a pipelined STROBE signal which qualifies Q1 as DATA. On the next clock edge, the Johnson counter changes to 100, which terminates the strobe. For the following five clock periods, any incoming level changes are detected, but the XOR output is ignored. When the Johnson counter again reaches 000, it locks up and enables the XOR signal. Any simultaneously or subsequently detected level change starts a new operation as described above.

The decoder clock can be asynchronous to the incoming data, but must be faster than five times the incoming bit rate (in order to detect the next bit transition), and slower than 12 times the incoming bit rate (in order to suppress the between-bit transition). The nominal decode clock frequency should, therefore, be eight times the incoming data rate.

The circuit has been simulated for worst-case performance in excess of 200 MHz clock rate (25 MHz incoming data rate) in an XC3120-2 device. The circuit uses only three CLBs — less than 5 percent of the logic available in an XC3120 FPGA, and less than 1 percent of an XC3190 device. ◆



# 3.3 V Fax Back Survey

Company \_\_\_\_

#### To: Daniel Chan, Product Marketing Manager, Xilinx Inc.

Please FAX your completed survey to (408) 879-4676 or mail to the address below by July 28 to be automatically eligible to <u>win a Sony Watchman!</u>

Personal (optional): Name \_\_\_\_

 1. In which market(s) do you participate?

 PCMCIA
 Computer Systems

 PCI
 Memory Systems

 ATM
 Computer Peripherals

 Hand-held instruments
 Other

- 2. Your company size (annual sales)?
  □ < \$10 million</li>
  □ \$10 million \$100 million
  □ > \$100 million
- 3. Which type of 3.3V IC products do you think you need or will need for your designs?
  □ 3.0V to 3.6V (regulated power supply)
  □ 2.7V to 3.6V (unregulated power supply)
- 4. In terms of the 3-V Programmable Logic Device market, please rank the following features in order of importance (1 - highest importance, 9 - lowest importance):
  - \_\_\_ speed of device/system clock rate
  - \_\_ quiescent current
  - \_-power consumption/dissipation
  - \_\_\_ supply voltage 3.0V 3.6V Vcc only
  - \_\_ 5V tolerance (3V Vcc with 5V or 3V I/O)
  - \_\_\_ package style (PLCC, TQFP...)
  - \_-operating temperature (Commercial, Industrial, Military)
  - \_\_ price
  - \_\_ gate density
- 5. What is the predominant package style desired for a 3-V PLD device?

| □PLCC  | □ VQFP | 🗆 PQFP |
|--------|--------|--------|
| □ TQFP | •      |        |

6. What is your typical I/O requirement for a 3-V programmable logic device (check one of the following for a and b)?

| a) 🗆 < 86 I/ | /0          | 🖵 87 - 100 I/O |
|--------------|-------------|----------------|
| 🖵 100 - 1    | 150 I/O     | □ > 150 I/O    |
| b) 🗖 GTL     | <b>T</b> TL |                |

For questions 7 - 11, please indicate the attributes that you estimate will be needed in 3.3V programmable logic devices to meet your requirements.

Phone: (

- 7. Ambient operating temperature?
  □ Commercial: 0°C to 70°C
  □ Industrial: -40°C to 85°C
  □ Military: -55°C to 125°C
- 8. Estimated gate density per device?

(Select one column for each row.)

| Gates | < 3K | 3K - 6K | 6K - 10K | > 10K |  |
|-------|------|---------|----------|-------|--|
| Today |      |         |          |       |  |
| 1997  |      |         |          |       |  |
| 2000  |      |         |          |       |  |

#### 9. Maximum quiescent current? (Select one column per row).

|       | < 1µA | 1µA-1mA | 1mA-10mA | > 10mA |
|-------|-------|---------|----------|--------|
| Today |       |         |          |        |
| 1997  |       |         |          |        |
| 2000  |       |         |          |        |

10. System clock speed? (Select one column for each row.)

| System Clock | < 33<br>MHz | 34-50<br>MHz | 51-66<br>MHz | 67-100<br>MHz | > 100<br>MHz |
|--------------|-------------|--------------|--------------|---------------|--------------|
| Today        |             |              |              |               |              |
| 1997         |             |              |              |               |              |
| 2000         |             |              |              |               |              |

#### 11. Supply voltage-I/O option? (Select one row for each column.)

|                                                                                                    | Today | 1996 | 1997 |
|----------------------------------------------------------------------------------------------------|-------|------|------|
| IC with single operating voltage<br>anywhere from 3V to 5V (speed<br>degradation at lower voltage) |       |      |      |
| Dual supply - 5V core and 3V or 5V I/O                                                             |       |      |      |
| Single 3V supply with 5V tolerant I/O                                                              |       |      |      |
| Single 3V supply only with 3V I/O                                                                  |       |      |      |
| Other core and I/O combination:                                                                    |       |      |      |

If you choose not to fax this survey, mail it to: Daniel Chan, Product Marketing Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124

#### FAX RESPONSE FORM—XCELL 17 2Q95

#### Corporate

Headquarters Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Tel: 408-559-7778 Fax: 408-559-7114

#### Europe

Xilinx, Ltd. Suite 1B, Cobb House Oyster Lane Byfleet Surrey KT147DU United Kingdom Tel: 44-1-932-349401 Fax: 44-1-932-349499

#### Japan

Xilinx, KK Daini-Nagaoka Bldg. 2F 2-8-5, Hatchobori, Chuo-ku, Tokyo 104 Japan Tel: 81-3-3297-9191 Fax: 81-3-3297-9189

#### **Asia Pacific**

Xilinx Asia Pacific Unit 2308-2319 Tower 1 Metroplaza Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852-2410-2739 Fax: 852-2494-7159

### FAX in Your Comments and Suggestions

To: Brad Fawcett, XCELLEditor

Xilinx Inc. FAX: 408-879-4676

From: \_\_\_\_\_

Date:

#### □ Please add my name to the XCELL mailing list.

| NAME |  |
|------|--|
|      |  |

COMPANY ADDRESS

CITY/STATE/ZIP

PHONE

**I**'m interested in having my company's design featured in a future edition of **XCELL as a Customer Feature.** 

Comments and Suggestions: \_\_\_

Please use this form to FAX in your comments and suggestions, or to request an addition to the XCELL mailing list. Please feel free to make copies of this form for your colleagues.



U.S. Postage PAID **First Class** Permit No. 2196 San Jose, CA

