

and indicates whether the source is the host computer
zero page or the handshake memory. The following entry
is the low byte address.

The display routine fetches the data, converts to ASCII

format, and displays the required digits. Because the
number of digits is specified, the same routine can handle
16-bit addresses, 8-bit data, and 1-bit flags. The multiple
space character, followed by the number of spaces re­
quired, saves table space when long, empty fields are
required in the display. Use of the end of transmission
(EOT) character makes table driven software independent
of table entry length.

An addressing limitation of the host 6502 computer
is most noticeable in this situation because the remap­
pable interface must be addressed indirectly. The 6502
offers two forms of indirect addressing: indexed indirect
with the X register as a pre-index, and indirect indexed
with the Y register as a post-index.8 The post-indexed
form addresses breakpoint information in handshake
memory, and should also be used to show status in­
formation if a full screen is to be displayed.

Competition between these applications for the Y reg­
ister would create substantial problems, but this was
avoided by displaying only eight video lines comprising
256 entries in the video memory. This allows use of an
absolute address indexed by X for the video, reserving
indirect addressing indexed by Y for exclusive use in
handshake memory access. Eight lines suffice to display
the internal state of any general purpose microprocessor.
While the 8035 status display uses a full screen, most of
this information is an orderly internal RAM array loaded
into video memory by a relatively simple program loop.

Command Parsing

The next table handling example demonstrates the use of
table lookup to generalize a sequential keystroke parsing
routine employed by the breakpoint processor change
status utility. With this debugging tool the operator can
change any object microprocessor internal status informa­
tion before resuming program execution. The procedure
is to examine each keyboard entry until a specified
register or other microprocessor resource has been
entered correctly and identified, then to use subsequent
keys as new data to be stored in the register. The pro­
gram will actually modify a table in handshake memory.
Host computer page zero may also change, in which
case another routine uses the page zero information to
modify a table in handshake memory because the object
microprocessor cannot access host computer page zero.
Then, as previously described, the restore status and
continue routine sets up the object microprocessor to
retrieve table data for restoring status before continuing
program execution.

The unique microprocessor architecture and nomen­
clature rule out keyboard parsing with prior knowledge
of the actual keys to be entered or the number of entries
required to identify a resource, particularly when ab­
breviations are permitted to reduce operator effort and
program length. Handshake memory or page zero table
destination corresponding to the resource is also un­
known. All of this information must be stored in a
microprocessor specific table.

124

ENTRY

HEX MEANING

!! DASCll

SOURCE PAGE ADDRESS
0 =ZERO PAGE: I= HANDSHAKE RAM

NUMBER OF DISPLAY DIGITS MINUS ONE
xxx

Fl CONTROL- I I I I , 0 0 0 I BINARY OFF! (HEX)

SOURCE ABSOLUTE ADDRESS

88

05 MULTIPLE SPACE FLAG
08 NUMBER OF SPACES

04 ENO OF TABLE

Fig 5 Breakpoint display tab!e entry format.
General pu rpose routine driven by table en­
tries displays status of virtually any micro­
processor. ASCII " = " preceeds reference to
data outside table. Subsequent entries serve
to locate, adjust, and format data

For program efficiency, keyboard parsing is synchro­
nous with operator input so that data need not be stored
and then deciphered. Fig 6(a) shows the table divided
into numbered key fields for the first key entered, the
second key, and so on. These fields are further divided ·
into subfields, each of which contains all possible char­
acters that might follow a particular character in a valid
input string.

Each table entry comprises three bytes. First is an
ASCII character to be compared with the input keystroke.
This is followed by two control bytes. Generally, the first
control byte directs the parsing routine to the starting
address of the next sequential key subfield, linking the
entries for all keys that could follow to produce valid
input. The second control byte supplies the subfield length
used to terminate searching for a key match. If no match
is found, the parsing routine waits for another key entry
and searches the subfield again with the new character.
This structure allows each table entry matching the char­
acter entered by the operator to direct the parsing routine
to the next set of table entries, so that much of the
parsing operation is controlled by the table rather than
the parsing routine.

Because the routine cannot know the required number
of entries in advance, the table must also terminate pars­
ing. The second control byte, which is the third byte of
each complete table entry, normally supplies the number
of entries in the following subfield. Only a few bits of
this word are needed as there are never many characters
that could follow a particular character in a valid input
string. By convention, bit 7 of the second control byte
is set to indicate the final entry in a valid input string
[Fig 6(b)l. In the same way, bit 6 is used as a special
control flag, and bit 0 distinguishes between host page
zero locations and handshake memory locations.

COMPUTER DESIGN I APRIL 1980

Disassembly

Disassembly is achieved by searching a table to find a
match for each instruction operation code, in sequence,
skipping over the operands. A match directs display of
a character string corresponding to the instruction mne­
monic. Both the instruction operation code and the
character string mnemonic are supplied by a single
table. Each entry consists of a hexadecimal operation
code and its associated ASCII mnemonic.

Microprocessor instruction mnemonics may vary in
length. Mnemonics for the 8035 range in fact from two
to nine characters (Fig 7) ; therefore, a control word in
each table entry supplies the length of each mnemonic.
Fig 8 shows the table structure, beginning with the con­
trol word that addresses the operation code. Since this
requires no more than four hits for mnemonics up to
16 characters long, the unused high order hits afford
additional table control. Bit 7 is set to signal a decrease
in operation code length, relative to the previous entry,
while bit 6 is set to indicate an increase in mnemonic
length. Organizing table entries in decreasing order by
operation code length and in increasing order by mne­
monic length permits the search routine to keep track
of these parameters with very little overhead.

Many character strings are used in more than one
mnemonic, such as MOY, which aopears in 17 different
8035 instructions.9 A multicharacter table entry is ad­
dressed by a special character, with hit 7 set, and the
remaining bits supplying an offset to the address of the
character string. Use of a multicharacter table conserves
memory by handling frequently needed strings as an
extension of the single character processing.

This disassembly table structure appears efficient but
overlooks an important characteristic of all micropro­
cessor instruction sets-the property of operation code
regularity. The table structure treats every operation code
as an isolated entity when, in reality, instruction sets
tend to use a sequence of consecutive operation codes
to perform a sequence of related operations. For ex­
ample, the 8035 uses F8 through FF, A8 through AF,
28 through 2F, and nine similar operation code se­
quences for .related operations that manipulate registers
RO through R7, with the low order three hits of the
operation · code designating the particular register.10 To
save memory, operation codes for this class of instruc­
tions, branch instructions, and 1/ 0 instructions are pre­
sorted by an 8035-specific routine before a general
table search is attempted. While the operation code
presort requires more than 20% of the microprocessor
specific programming, the resulting economies are worth
the investment.

Summary

Built-in flexibility makes the universal interface a valuable
engineering tool at every stage of product development.
Typically, the design of a microprocessor based product
begins with a problem description. This should lead to
a list of microprocessor requirements such as word
length, controller or data manipulator orientation, single
chip or bus orientation, and so on. These requirements,

I
FIRST

KEY
FIELD

I
2NO 1A
KEY

FIELD

i
l

ASCII CHAR
ADDR

#ENTRIES

ASCII CHAR
ADOR

#ENTRIES

• • •
ASCII CHAR

ADDA
#ENTRIES

ASCII CHAR
ADOR

#ENTRIES

ASCII CHAR
OEST ADDR
CONTROl

• . .
ASCII CHAR

ADOR
#ENTRIES

•
•
•

!---------
I-------

,.......+--

>c--
+.--FINAL

KEY

-

ASCII CHARACTER
OEST LOW ADDRESS

7l 6l5 l4 J3 I 211JO

~ • SPARE CONTR1L
FLAGS

DESTINATION
PAGE FLAG

~ECIAL CONTROL
FLAG

1.,IDENTIFICATION
1 =FINAL KEY ..________,
CONTROL WORD

ANALYSIS

(b)

Fig 6 Breakpoint status change table
entry format. General purpose routine
driven by this table parses operator input
to identify both microprocessor register
and new data to be placed in register.
Entry triplet (a) consists of ASCII char­
acter and pointer to either next key sub­
field or register destination. Final key
triplet (b) terminates entry and supplies
destination page address

in turn, form the basis for a list of potential micro­
processors. At this point, the interface can he used with
the desired satellites, which are inexpensive because they
are small printed circuits containing the central proces­
sor and data memory, to benchmark the microprocessor
in operations characteristic of the application.

Fig 7 Program disassembly display segment. General pur­
pose routine generates two-to-nine character mnemonic
plus operands from machine instructions in program mem­
ory. Typical 8035 instructions are shown, but virtually any
microprocessor instruction set is handled. Disassembly is a
powerful aid to locating both software errors and program
entry errors

125

