

Disassembly

Disassembly is achieved by searching a table to find a
match for each instruction operation code, in sequence,
skipping over the operands. A match directs display of
a character string corresponding to the instruction mne-
monic. Both the instruction operation code and the
character string mnemonic are supplied by a single
table. Each entry consists of a hexadecimal operation
code and its associated ASCII mnemonic.

Microprocessor instruction mnemonics may vary in
length. Mnemonics for the 8035 range in fact from two
to nine characters (Fig 7) ; therefore, a control word in
each table entry supplies the length of each mnemonic.
Fig 8 shows the table structure, beginning with the con-
trol word that addresses the operation code. Since this
requires no more than four bits for mnemonics up to
16 characters long, the unused high order bits afford
additional table control. Bit 7 is set to signal a decrease
in operation code length, relative to the previous entry,
while bit 6 is set to indicate an increase in mnemonic
length. Organizing table entries in decreasing order by
operation code length and in increasing order by mne-
monic length permits the search routine to keep track
of these parameters with very little overhead.

Many character strings are used in more than one
mnemonic, such as Mov, which avpears in 17 different
8035 instructions.? A multicharacter table entry is ad-
dressed by a special character, with bit 7 set, and the
remaining bits supplying an offset to the address of the
character string. Use of a multicharacter table conserves
memory by handling frequently needed strings as an
extension of the single character processing.

This disassembly table structure appears efficient but
overlooks an important characteristic of all micropro-
cessor instruction sets—the property of operation code
regularity. The table structure treats every operation code
as an isolated entity when, in reality, instruction sets
tend to use a sequence of consecutive operation codes
to perform a sequence of related operations. For ex-
ample, the 8035 uses F8 through FF, A8 through AF,
28 through 2F, and nine similar operation code se-
quences for related operations that manipulate registers
RO through R7, with the low order three bits of the
operation code designating the particular register.’® To
save memory, operation codes for this class of instruc-
tions, branch instructions, and 1/0 instructions are pre-
sorted by an 8035-specific routine before a general
table search is attempted. While the operation code
presort requires more than 20% of the microprocessor
specific programming, the resulting economies are worth
the investment.

Summary

Built-in flexibility makes the universal interface a valuable
engineering tool at every stage of product development.
Typically, the design of a microprocessor based product
begins with a problem description. This should lead to
a list of microprocessor requirements such as word
length, controller or data manipulator orientation, single
chip or bus orientation, and so on. These requirements,

7|6|5|4|3|2|1|0

FIRST
KEY
FIELD

S L
SPARE CONTROL
FLAGS

DESTINATION
PAGE FLAG

SPECIAL CONTROL
FLAG

] FINAL _IDENTIFICATION
KEY
1 =FINAL KEY

CONTROL WORD
ANALYSIS

(b)

f‘———J

Fig 6 Breakpoint status change table
entry format. General purpose routine
driven by this table parses operator input
to identify both microprocessor register
and new data to be placed in register.
Entry triplet (a) consists of ASCIl char-
acter and pointer to either next key sub-
field or register destination. Final key
triplet (b) terminates entry and supplies
destination page address

in turn, form the basis for a list of potential micro-
processors. At this point, the interface can be used with
the desired satellites, which are inexpensive because they
are small printed circuits containing the central proces-
sor and data memory, to benchmark the microprocessor
in operations characteristic of the application.

i

OLO00mOom
r

CZNCCZCCLT
DANRT DI

N OGNS DN W
m AT 07 W
« A AGAT- O

TLDIND
5

&
=
i3
=3
=3
Q
£
e
¥
E
=
i
1
7
=
D
F:"

IXDAX~LDAZOOIZIOIIZNV

g
=
E
=]
=
2
E
-
i
(=g
B
3
(=3
Z
m]
=

0RO O-30roLmo
CronI~Ton
D020

**D D M

A ~
NIRRT

Fig 7 Program disassembly display segment. General pur-
pose routine generates two-to-nine character mnemonic
plus operands from machine instructions in program mem-
ory. Typical 8035 instructions are shown, but virtually any
microprocessor instruction set is handled. Disassembly is a
powerful aid to locating both software errors and program
entry errors

125

