

FORUM
ductivity.lfwe succeed in improving software developer produc
tivity without improving the quality of software, the result may
well be lower cost, poor quality software. Unless the productivity
improvement incorporates the concept of quality (present defini
tions and measures certainly do not), the result could well be a
sacrifice in quality in exchange for the gain in productivity. Per
haps it is time to reassess the state of software development and
rearrange our priorities, making the improvement and measure
ment of the quality of software the primary focus.

Of course, increased productivity is mandatory if we ex
pect to implement software systems of the size, complexity and
reliability that are being predicted for the future. However, we
must not attain improvement in one-quality or productivity
at the sacrifice of the other, although we may initially experience
a decline in productivity to gain significant improvements in
quality.

Software quality significantly differs from the traditional
concept of physical objects. For one thing, tolerances are almost
totally foreign to software. Given the same initial conditions and
input data, a program must produce exactly the same result
every time. If it doesn't, we assume the hardware is malfunction
ing or out of tolerance. Being intangible, software doesn't break
or fail in the traditional sense. We know little of its failure modes
and their underlying causes except that flaws or errors causing
the failure don't occur spontaneously, but are embedded from
the beginning.

What then do we mean by software quality? Software
quality is a multidimensional concept. It is . considerably more
than the number of errors or flaws or bugs per thousand lines of
code. Most of the present quality control efforts appear to be

. concerned with this one dimension, and a considerable amount
of theoretical work has gone into models for predicting the
number of errors remaining in a program after a given amount of
testing. Theorizing that a delivered software system contains 0.5
errors of an unknown nature per thousand lines of code with a
probability of 0.95 is not helpful to its users. What is needed is
the ability to assure users that no action on their part can create
an undesirable result.

It is commendable to want to deliver a software system
containing no errors in the code, but it would be much more
commendable to deliver a software system containing no defects.
Software quality is not -solely defined by lack of logical, syntac
tic, and coding errors; software that is error free is not necessari
ly without defects. A defect is anything that prevents the user
from doing what he is permitted to do; or that allows him to do
things he isn't permitted to do; or that produces erroneous, mis
leading or unpredictable results, or otherwise limits the user's
understanding and use of the software.

There is no, single point at which the final quality of a
software development effort is determined. Decisions and
choices made throughout the development process, beginning
with the preliminary design (where it would appear most quality
considerations· are determined), and ending with integration
testing, influence the final quality of the system. Yet we rarely
evaluate software quality against the decisions, tradeoffs, and
compromises made during the process; we frequently fail to re
cord these factors, and many such decisions are made subcon
sciously.

ALL SOFTWARE
STANDARDS. ARE
RELATIVE

There is no absolute standard for software
quality. Quality must be judged relative to
the conditions under which the software
was developed. A one-shot program should

not be judged against the same criteria that would be used to
judge the quality of a large application system expected to be
used for ten years. Nor should the criteria for a program to run in
batch mode that is unlikely to be enchanced be the same as the
criteria for an interactive system serving hundreds of users
whose needs are expected to change with experience and time
a perception we often fail to consider in defining requirements.

228 DATAMATION

We must determine at the outset the characteristics and
properties the software is expected to embody and judge the
quality of the end result against them. It is unreasonable to
penalize the software developers for poor computational effi
ciency if the development decisions didn't take computational
efficiency into consideration. It is equally unrealistic to blame
the software and its developers for sins of the operating system or
hardware.

On the other hand, the developers must understand the
limitations the hardware and operating systems place on the
software. We must also be able to detect those defects, limita
tions, and failures that are the result of poor understanding or
knowledge on the part of the developers.

Determining the quality of software is a complex process;
it requires considerably more knowledge about the software de
velopment process than we have today. For example, though we
understand that it becomes significantly more difficult and cost
ly to remove errors the further along we are in the development
process, we don't know how to prevent or detect those errors at
the very beginning. And though we can prove some specifica
tions correct, we can't prove the code that implements the proven
specification is itself correct. We know that coding tricks can be
disastrous, but we don't know how to preclude their use. We
appreciate the concept that programs should be understandable,
but we don't know exactly what that means.

Achieving higher quality software will thus require con
siderably more knowledge of and discipline in the development
process than is applied in most organizations today. We must
develop a much larger theoretical understanding than is current
ly available. For instance, we are all aware of the space/time
tradeoff for computational processes and data organization that
can be made in most software implementation efforts, but we
have no rational basis for determining how close we have come to
some theoretical level of efficiency. Each case is taken on its own
merits and determined ad hoc, with the final decision usually left
to the coder. We must develop a much firmer foundation for
determining the properties and characteristics embodied by soft
ware if we are to begin to improve its quality.

Among the factors related to software quality are system
organization, data organization, processing methodology and al
gorithms, space/time tradeoffs, hardware and operating system'
support and constraints, existing software such as utilities and
libraries, constraints imposed by interfaces to other systems such
as data base management systems and existing applications,
workmanship standards, and documentation. These are related
in various ways to the larger issues of performance (how effi
ciently the software functions and how helpful is it to the users),
costs (of use, failures, corrections, enhancement, migration,
etc.), and the less tangible concepts of reliability, availability,
usability and a host of other -ilities.

QUALITATIVE
MEASUREMENT
IS NECESSARY

I t is unlikely tha t all of the characteristics and
properties of software that constitute its qual
ity will yield to quantitative measurement. It
is also unlikely that we will ever be able to

discover all the necessary theoretical underpinnings. That does
not mean that we should ignore these aspects. At a minimum, we
should construct models of the aspects of quality against which
to evaluate a given software product. Even for the software char
acteristics that can be measured quantitatively, the best we can
do at present is evaluate them qualitatively. For instance, we can
easily count the number of bytes of storage a program requires
on a given computer. If minimum storage is a desirable charac
teristic, a storage use goal can be set for the implementors, but
we have no way to rigorously determine the theoretical mini
mum they should be able to attain. The established goal is some
one's best estimate of what is attainable. Thus, the space effi
ciency of the program can only be evaluated qualitatively in the
sense that the implementors did as expected, or better or worse
than expected. The numeric percentage is not very meaningful

as a measure and may be misleading without all of the relevant
facts.

, The lack of theoretical foundations coupled with the vast
difference between software and physical objects does mean we
cannot directly use the traditional methods of industrial quality
assurance and control. Traditional methods can serve as models
for what we need to do, but we will need to make significant
modifications to apply them to the software development envi
ronment.

A proper software quality assurance methodology will
supply insight into the source of errors and provide feedback to
the developers to facilitate the elimination of errors and defects
at the source. Software development is a craft and, as such,
depends on highly skilled, creative, innovative craftsmen. Suc
cess in raising the quality of software is not likely to diminish the
need for such craftsmen; rather, the need is more likely to in
crease.

If our emphasis on solving the software problem has been
off target, it is understandable given the extreme pressure pro
duced by the industry's explosive growth. But now is the time to
reexamine our priorities and reassess our goals. Productivity of
software developers may not need to be as deep a concern as we
have made it, whereas quality, which has been ignored for the
most part, is central to providing the results the industry needs
and users demand, as well providing the only rational basis for
understa~ding and improving productivity.

-M. I. Bernstein

PROGRAMMERS:
OUR CLOSET
COMEDIANS
The world is full of comedians. A few become great humorists,
such as Mark Twain, among whose famous lines we find,
"Training is everything. The peach was onc;e a bitter almond;
cauliflower is nothing but cabbage with a college education."
Other comedians become adequate, if not superior, entertainers.
Arid some become computer programmers. '

The suspicion that dp shops harbor many a closet comedi
an is aroused by the proliferation of computer-related humor,
from fanciful portrayals of machines-with-their-own-ideas to
bits of doggerel in appropriate jargon bewailing the lot of the
programmer. The image of computer types as eccentric individ
uals with untamed hair, bizarre costumes: psychedelic imagina
tions, and weird senses of humor reinforces the suspicion.

This notion may not be too far-fetched. It has been noted
that computer programmers, having a logical, mathematical'
bent, often enjoy applying these same talents to music. Similar
ly, some characteristics of humor may spring from the art of the
programmer.

Anyone who has spent time trying to make a computer
dance to a certain tune has had to draw upon his sense of humor
just to withstand the ordeal. Programming is a. notch below
weather forecasting when it comes to trial and error, and error,
and error, and error, in humiliating quantity. We've all lived
through that best-forgotten scene when the boss came in to show
off his pride and joy to an important customer and, precisely at
that moment, the machine stopped purring, hiccupped, and
spewed paper all over the room. There are also all the times you
loaded your carefully constructed program and the computer,
damned literal-minded beast that it is, smugly ignored what you
meant and had the audacity to do exactly what you told it,
mqcking you at I, I 00 lines a minute. After you have pounded

your head on the disk drive and kicked the cpu panel, what else
can you do bu't laugh at the, perverse relentlessness of its logic?

And there is, after all, a certain humor to be found
maybe not by the harried inventory clerk, but by you (privately, ,
after hours, when everyone else has gone home and left the prob
lem to you)-in the fact that the machine suddenly decided to
post each sale not to the proper item but to the next item in
sequence, erasing the previous one as it went. Dropping a lighted
cigarette into the card reader when you opened it to see what
happened to the other half of the card is not nearly as funny as
having to hand the boss a 400-page report (only two days late)
because when you added in that last percentage calculation you
also told the system to skip to a new page for every line of print,
and when you came in this morning just before the meeting,
there it was in all its massive glory. Yes, it helps to have a sense of
humor, even if it is not always appreciated by the spoilsports in
the user departments.

But being able to laugh when the only alternative is
throwing a tantrum or defenestrating the computer is not all
there is to it. There is a certain logic to humor, and that logic may
have a parallel in finding solutions to problems that occur in
everyday programming.

Dictionaries are not very helpful in trying to isolate the
elusive' essence of humor. In fact, writers and critics since Aris
totle have wrestled with attempts to define what triggers the
response of laughter. Thomas Hobbes described it as self-delight
or "sudden glory," and Friedrich von Schlegel got carried away
in talking about Socratic irony which "arises from the union of
the art of life with the spirit of knowledge, from the encounter of
a perfected philosophy of nature with a perfected philosophy of
art." That probably doesn't sound like anything that goes on in
your shop. But what about this: incongruity.

It's incongruity that makes a line like this work: HA man
cannot be too careful in the choice of his enemies.," Oscar Wilde
said that, and he was the champion of one-liners before he made
a mistake in the choice of his enemies.

INCONGRUITY
AS THE SOURCE
OF HUMOR

Important thinkers like Kant and
Schopenhauer accepted the theory of incon
gruity as the source of humor: the notion
that sudden reversal of expectations is the

thing that brings a laugh. We all know about reversal 'of expecta
tions when we initiate the execute command, right? But maybe
the connection goes deeper than that.

The American Heritage Dictionary defines incongruity
as: (1) Not corresponding; inharmonious; disagreeing; incom
patible. (2) Made up of disparate, inconsistent, or discordant

APRIL 1979229

FORUM
parts or qualities. (3) Not consistent with what is correct, proper,
or logical; unsuitable; inappropriate.

It's easy to see that incongruity is the source of humor in
all kinds of comedy, from pie-in-the-face slapstick to the intel
lectual wit of Oscar Wilde. "The only way to get rid of a tempta
tion," said he, "is to yield to it." On the same subject, Mark
Twain wrote, "There are several good protections against temp
tations, but the surest is cowardice."

Programmers know a lot about temptation. WhiCh of us
hasn't thought of introducing impolite words into a printout, or
fantasized about the looks on their faces when they discover
we've erased all the files and gone home?

Temptation by definition means something we really
shouldn't do (however much fun it might be). So we anticipate
some sort of moral advice. Instead, Wilde reverses our expecta
tions by inviting us to plunge right in-what else, after all, are
temptations for? And Twain offers us cowardice-the opposite
of virtue-as a better remedy than moral fortitude, while telling
us at the same time that he wouldn't hesitate to sample forbidden
joys himself if only he had the nerve. Both of these writers are
able to surprise and amuse us by perceiving an incongruity and
producing a result contrary to our expectations.

Perception of congruity must necessarily be the logical
counterpart of perception of incon:gruity. Such awareness is ba
sic to sound programming. To find one's way through the com
plexities of mUltiple simultaneous processes and to arrive at the
logical solution, managing all the variables along the way, fur
nishing each bit of data at the proper time, and resolving the end
products into usable, retainable form requires a mastery of con
gruities. To identify the irrelevant and unnecessary, and to avoid
placing any function in an improper relation to the others, are
tasks of shearing away incongruities.

Besides reversing our expectations and causing us to
laugh in surprise and pleasure, incongruity in humor has a deep-

er effect. In a line like Mark Twain's "Nothing so needs re
forming as other people's habits," another incongruity is re
vealed, and that is the incongruity of our pretenses. Humor
penetrates those pretenses and unmasks our humanity.

LAUGH OR The human element, too, is the other chief
GO MAD ingredient in the dp person's special capacity for

humor. What is more human than Charlie Chap
lin boldly taking on impossible tasks, or W.C.

Fields in a battle of wits with an infant? And what is more
dehumanizing, after all, than the sterile and humorless machina
tions of a batch of wires and electronic circuitry? The individual
who must perforce devote a significant portion of his mind and
his attention to the manipulation of logical sequences and rigid
relationships must, no matter how great his aptitUde and taste
for such diversions, find relief somewhere. Perhaps the image of
"computer types" and the nature of computer-style buffoonery
are such for good reason: sanity requires it.

Satirist Samuel Butler anticipated by a century some of
our contemporary concerns: "It is for neglecting them (ma
chines) that he (man) incurs their wrath, or for using inferior
machines, or for not making sufficient exertions to invent new
ones, or for destroying them without replacing them The
machines, being of themselves unable to struggle, have got man
to do their struggling for them: as long as he fulfills this fllnction
duly, all goes well with him-at least he thinks so; but the mo
ment he fails to do his best for the advancement of machinery by
encouraging the good and destroying the bad, he is left behind in
the race of competition; and this means that he will be made
uncomfortable in a variety of ways and perhaps die."

The care and feeding of computers is a serious business;
and it is perhaps a credit to our senses of humor not only that we
do it well, but that we do it at all. .

-Meredy Amyx

Local Area Communications
Network Symposium

May 7-9
The Copley Plaza Hotel

808ton-

Two-and-a-half days of sessions and work
shop·s will bring together users and developers
from industry, government and academia to ex
plore networks for .computer and
general data communi<;ations.

The focus will be on present and
future needs for high-capacity, multi
media information interchange in .the
local environment. Existing and po
tential applications will be examined.

Among the subjects covered will be
standards for local area networks and
R&D efforts at both the system and
component levels.

A final session will explore the

environment that future local area networks
will have to operate in -the role they will play
in automated offices and in electronic mail

applications. And how they will inter
face with global communications systems.

The fee for the symposium is $175
which covers registration, host dinner,
daily luncheons, coffee break refreshments
and a copy of the proceedings.

For further information and regis
tration forms call Claire Crook at (617)

·271-4425. Or, write to her at The
MITRE Corporation, Mail Stop E148,
Bedford, MA 01730.

The LACN Symposium is cosponsored by The MITRE Corporation and the National Bureau of Standards.

230 DATAMATION
CIRCLE 206 ON READER CARD

---------------------,--

@mi!J"fif~) fil'3'f~Yt f1:@l~'ffI ~i!1t~~'f:lt~ (!IDiffimtU:n~ f:jlrm~

lliffill!, I dlEl,~,.ll, ~I '~, .t 'ffmfffil!,: ,!r!t~,~,'~ ,~,' ,t,,' ~,}, 'ij,~,',~,':,",:' @mfiZ!111;v "~I r~mmlli~fim:r~l,~IW~~(!htrt!t.:$:~ fnm fhm amm ffi!.Wi" ' " ' ,

~~R~'lf'
(~lur:~~~!IIJ~{t!1<mTt1~1:}llt.,
(tt!fJhdl! \l'K!1l!Jt!)'i'r!l,
@to

,,', mUl!!1.!!tl.;:

"
.~ ~:,,,,,: ;.'..~"'~,,iii;id''''~' .. "

,,:,~'
," ,.:--

(c!!m1Fm~1,~rm:\@f~U~J 6:m!1 dt.mll(~'f @l!ml @}~it\'l it"
g!fm::.\vlilil" II " ~if~ld f:Hir~:~n!IffimHm€C~
fi'imfi:.1~ ttt@., '

1~\~y@(!fi~\)l!l!f,(~U£f:tl(ID!ttnlOOIiF~llnmOOL~~
G\~.{!!'l11lttIIlt~illln:~; (~J \'f~~!! Ut,(~ I~ mra fmmt,~ tm
W';ll!U'ilt, (;l!l'lntC~J(!ffit~t1~) (~fil ,. 0 r «t~~

CIRCLE 2 ON READER CARD

I'--''-------'I-.-.JI.........IL

d~,-~. ~g,~:CI y
l - -::.~---~_- J

~ ,,' !
I

I
!
I

=.JC:]~
:':Pl~.,i:;;,~=;;~=:'::;;:;;;;d-:~~.C:-;:\~. ~:::.;;;:;.' '.:3... '. \;'

'Ir'" l"iOfjd.¢ '3 f

~ ~~q;&i\ ~:g'~~3~~~;~,"",~c t ... "",.::::, •• \,~ .~.~ \ I
i~:=:2~§§~C::~~,,:~~) I

n - -~~ I
~~r;'rffi\C_~~I~~~~W~ I

I \\ ~!?E1l3ElEl'§.'§.~~ -" i

\ "'!,,.,,,,,,,,,d,, C .. \-l~~~. V V y v' ',"Y V V ~:,' ,;;::." -' ';:'

L __ t~:);'~.?~;t_,.~_,. __ ~.:"'~-::{~~ ~ .. , 0, "::".;~,,,,::,.;'~,,':;~~~;;:~:.~

r(1~'IJ:F'l~; i~'\l'; '~I~1 ':I·~~,\.I~:; \!l£~;~!!

____ ~__.._L~ ______-..i...tl_._'_.. - ______ ,

