ElectronicDesig
 VOL. 14, NO
 THE MAGAZINE OF ESSENTIAL NEWS, PRODUCTS AND TECHNOLOGY

STIMILGEENERTOORS -oscillators, squarewave, pulse, sweep and noise generatorsover 1500 are on the market.

Next time you need one, check this special reference issue first. Comprehensive specs, prices and technical articles will make you a more informed buyer and user.

If you simply need something that will put out a signal at some frequency with reasonable accuracy, buy one of our many oscillators. But if you want superior performance in a truly versatile laboratory signal source that can tackle practically any job, you want one of our synthesizers - the $70-\mathrm{MHz}$ Type $1164-\mathrm{A}$, or one our other models that cover ranges up to $100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 12 MHz .

These synthesizers give you quartz-crystal stability, a frequency settable from 3 to 9 figures or more, manual or electrical sweeping, flat output, and programmability (if you need it). In short, these signal sources will do the job for you with a minimum of complications and without need for time-consuming corrections to improve accuracy of results - yet the price is within reach.

Here are features of our $70-\mathrm{MHz}$ synthesizer, the latest in our series:

- Frequencies Up To 70 MHz

$10-\mathrm{kHz}$ to $70-\mathrm{MHz}$ output with resolution as fine as 0.1 Hz . Internal crystal-controlled oscillator may be phase-locked to external standard frequency.

- Electrical Sweeping and Manual-Search Capabilities

Continuously Adjustable Decade (CAD) allows a portion of the frequency range to be swept manually or electrically. The CAD will functionally replace any digit up to 1 MHz for sweep widths from a megahertz to a fraction of a hertz. This module also adds at least 2 places of resolution beyond the last decade.

- Leveled, Monitored Output That Can Be Remotely Or Manually Controlled

Output is adjustable from 0.2 to 2 V behind 50Ω and is monitored by a panel meter. Level is held constant within $\pm 0.3 \mathrm{~dB}$ for all load and frequency variations and can be adjusted manually from the front panel or remotely by a potentiometer or a dc control voltage.

- Modular Construction

Buy only the resolution you require; add modules as your requirements expand. Modules may be easily removed or interchanged for servicing or calibration to cut down time to practically zero.

- Other Features

Remotely programmable (optional) . . Can operate from ac line or battery for field use . . . In-line, easy-to-read numerals . . . GR-quality construction... All in $5 \frac{1}{4}$ inches of rack space.

- Now Look At The Price

Prices start at $\$ 4745$ for the simplest 3-decade, 70 MHz model; the most complete model costs $\$ 7515$.

Other GR synthesizers in the series:

Type 1161 - dc to $100-\mathrm{kHz}$ Synthesizer Type 1162 - dc to $1-\mathrm{MHz}$ Synthesizer Type $1163-30-\mathrm{Hz}$ to $12-\mathrm{MHz}$ Synthesizer
\$3640 to \$6590 \$3775 to \$6725 $\$ 3895$ to $\$ 6755$

BOSTON . NEW YORK - CHICAGO - PHILADELPHIA • WASHINGTON, D.C. SYRACUSE - DALLAS - SAN FRANCISCO - LOS ANGELES - ORLANDO CLEVELAND - TORONTO • MONTREAL

WEST CONCORD, MASSACHUSETTS ON READER-SERVICE CARD CIRCLE 161

Signal Generator Reterence issue

David H. Surgan New Products Editor

This directory is valuable. Use it properly, and you can make an intelligent, comparative instrument selection from the 1500 signal sources currently available.
Tables of specifications, including prices, have been supplied by the Technical Information Corp., P. O. Box 514, Smithtown, N. Y. They are up-to-date, complete and specific. Check them before you buy.
In addition, there are four technical articles, written by engineers at Tektronix, General Radio, Polarad and Marconi. They will help you "read between the lines" and develop an applications-oriented point of view.
To make the best use of the directory, follow this easy procedure:

- Compare the specs and get a feeling for performance/cost ratios.
- Bring your literature file up-to-date by using the Master Cross Index on page 4
- Follow the selection-application guidelines offered in the articles.

How to use the Tables ... 2
Master Cross Index .. 4
Technical Articles
Make your pulse-generator selection a precise one ... 12
Consider secondary parameters when specifying signal generators 20
Twenty-two criteria for choosing a microwave signal generator 22
Sweep away drift problems in narrow-band receiver tests 34
Tables of Specifications
Pulse generators .. 16
Signal generators ... 26
Sweep generators ... 38
Oscillators... 52
Impulse and random noise generators ... 62
Squarewave and function generators ... 66
Advertiser's Index .. 70

How to Use the Tables

The tables in this directory have been arranged for simple and rapid reference. Each table covers a particular type of signal generator, and lists pertinent technical specifications for instruments of that type. Unless otherwise specified in the tables, the following condition applies to all the instruments listed:

- Input voltage: 105-125 Vac, $60 \mathrm{~Hz}, 1$ phase

Prices indicated in the tables are subject to change by the manufacturer.
An index of manufacturers and models is included at the end of each table. These indexes are alphabetical, by manufacturer, and list the various instruments of each manufacturer. A location key is included after each model in the index. This permits easy spotting in the table of the specifications for that instrument, by means of the location-key column (first column) in the table.

How the tables are arranged

Within the tables, instrument specifications are given in separate, appropriately headed columns. The complete specifications for any one instrument can thus be read across the page.
For each table the instruments are listed in ascending order of upper frequency limit. To facilitate table use, the columns containing this parameter are tinted. In cases where the upper frequency limit of several units is the same, the instruments are listed in increasing order of frequency swing.
Manufacturers are identified in the Mfr. column by an abbreviation. The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master index, which starts on page 4.
All notes and symbols used in a table are defined at the end of that table.
At the top of each page of a table the frequency range covered by the instruments listed on that page is specified. This is to expedite the location of a unit having a particular frequency output.

To use the tables effectively

1. Note how the instruments are listed.

They are in ascending order of upper frequency limit. Where this is the same, they are in order of increasing frequency swing.
2. Select the most likely candidates.
3. Obtain supplementary data from the manufacturer.

Manufacturers' addresses, together with Reader-Service numbers for specific types of signal generators, are given in the master cross index.

[^0]

FACTS MAKE FEATURES:

Popular streamlined tester with long meter scales arranged for easy reading. Fuse protected.
Single control knob selects any of 32 ranges-less chance of incorrect settings and burnouts.
Four resistance ranges-from .1 ohm reads direct; $41 / 2$ ohm center scale; high 100 megohms.

Attention to detail makes the Triplett Model $630 \mathrm{~V}-\mathrm{O}-\mathrm{M}$ a lifetime investment. It has an outstanding ohm scale; four ranges-low readings .1 ohm, high 100 megs. Fuse affords extra protection to the resistors in the ohmmeter circuit, especially the XI setting, should too high a voltage be applied. Accuracy 2% DC to 1200 V . Heavy molded case.
${ }^{\dagger} 630 \mathrm{~A}$ same as 630 plus $11 / 2 \%$ accuracy and mirror scale only $\$ 6500$ TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

RANGES

DC VOLTS	$0-3-12-60-300-1,200-6,000$ at 20,000 ohms per volt.
AC VOLTS	$0-3-12-60-300-1,200-6000$ at 5,000 ohms per volt.
OHMS	$0-1,000-10,000$.
MEGOHMS	$0-1-100$.
DC MICRO- AMPERES	$0-60$ at 250 millivolts.
DC MILLI- AMPERES	$0-1.2-12-120$ at 250 millivolts.
DC AMPERES	$0-12$.

DB: -20 to +77 (600 ohm line at 1 MW).
OUTPUT VOLTS: 0-3-12-60-300-1,200; jack with condenser in series with $A C$ ranges.

630

630.A

630-PI

630-APL

630-1

630-m

THE WORLD'S MOST COMPLETE LINE OF V-O-M'S. AVAILABLE FRON YOUR TRIPLETT DISTRIBUTOR'S STOCK.

Master Cross Index

Manufacturers of the product types listed in this issue are indicated either by stars or by Reader Service numbers (if supplementary literature is available). Bring your literature file up to date by circling the appropriate numbers on the Reader Service card at the back of the issue.

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Adar Associates 73 Union Square Somerville, Mass	Adar				\star			
Advanced Measurement Instruments Inc 109 Dover St Somerville, Mass	AMI		1			2		
Aerospace Research, Inc 130 Lincoln St Boston, Mass	ARI			3				
Airborne Instrument Laboratory Comac Rd Deer Park, LI, NY	Airborne	4		5				
Aircraft Radio Corp Rockaway Valley Rd Boonton, NJ	Aircraft Radio		*	,				
Alfred Electronics 3176 Porter Drive Palo Alto, Calif	Alfred				6	7	8	
Allison Laboratories, Inc 11301 Ocean Ave La Hambra, Calif	Allison			9				
American Electronic Labs, Inc P.O. Box 552 Lansdale, Pa	AEL				\star			
Anadex Instruments, Inc 7833 Haskell Ave Van Nuys, Calif	Anadex						10	
Antlab, Inc 6330 Proprietors Rd Worthington, Ohio	Antlab						\star	
Applied Microwave Laboratory 106 Albion St Wakefield, Mass	App Microwave	11						
Arenburg Ultrasonic Lab, Inc 94 Green St Jamaica Plain, Mass	Arenburg	12						
Argonaut Associates, Inc P.O. Box 273 Beaverton, Ore	Argonaut							13
B \& K Instruments, Inc 5111 W. 164th St Cleveland, Ohio	$B \& K$	*		\star				
Babcock Electronics Corp 3501 Harbor Blvd Costa Mesa, Calif	Babcock		14					
Barker \& Williamson, Inc Canal St \& Beaver Dam Rd Bristol, Pa	B \& W	15						

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Beckman Instruments, Inc Computer Operations 2200 Wright Ave Richmond, Calif	Beckman			\star				
Berkeley Nucleonics Beckman Instruments, Inc 1429 Oregon Street Berkeley, Calif	Berkeley				\star			
Blonder-Tongue Labs, Inc 9 Alling St Newark, NJ	Blonder Tongue					ไ		
Canoga Electronic Products 1805 Colorado Ave Santa Monica, Calif	Canoga							\star
Century Electronics \& Instruments 6540 E. Apache Tulsa, Okla	Century	16					17	
Chesapeake Instrument Corp Shadyside, Md	Chesapeake				18			
Clough-Brengle Co 6014 Broadway Chicago, III	Clough- Brengle	19	20			21		
Datapulse, Inc 509 Hindry Ave Inglewood, Calif	Datapulse				22			
De Mornay-Bonardi Corp 1313 N. Lincoln Ave Pasadena, Calif	D-B			23				
Digital Electronics Ames Court, Engineers Hill Plainview, NY	Digital Elect				24			
Dymec Division Hewlett-Packard Co 395 Page Mill Rd Palo Alto, Calif	Dymec		25					
Dynatronics P.O. Box 2566 Orlando, Fla	Dynatronics		26					
E-H Research Laboratories, Inc 163 Adeline St Oakland, Calif	E-H				27	28		
ENSCO, Inc 3100 Eldridge St Salt Lake City, Utah	ENSCO				33		34	
EPSCO, Inc 411 Providence Highway Westwood, Mass	EPSCO		\star			\star		
Electro Design, Inc 8141 Engineer Rd San Diego, Calif	Electro Design				\star			
Electronic Instrument Co, Inc 131-01 39th Ave Flushing, NY	EICO	29	30			31	32	
Electronic Measurements Corp 625 Broadway New York, NY	EMC		\star					

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Elgenco, Inc 1550 Euclid St Santa Monica, Calif	Elgenco			35				
Empire Products Singer Metrics Division 915 Pembroke St Bridgeport, Conn	Empire			36				
Exact Electronics, Inc 455 S.E. Second Ave Hillsboro, Ore	Exact							37
Fairchild Instrumentation 750 Bloomfield Ave Clifton, NJ	Fairchild				38		39	
Frequency Engineering Lab P.O. Box 527 Farmingdale, NJ	FEL	40						
General Applied Science Labs Merrick \& Stewart Aves Westbury, NY	GASL				\star			
General Electric Co 40 Federal St West Lynn, Mass	GE					\star		
General Microwave Corp 155 Marine St Farmingdale, NY	Gen Micro			41				
General Radio Co 22 Baker St Concord, Mass	Gen Radio	42	43	44°	45	46	47	
Gertsch Products Singer-Metrics Div 3211 La Cienega Blvd Los Angeles, Calif	Gertsch		48					
Grundig 150 Nassau St New York, NY	Grundig	\star	\star			\star		
Hallicrafters Co 4401 W. 5th Ave Chicago, III	Hallicrafters	*						
Hathaway Instruments, Inc 5250 E. Evans Ave Denver, Colo	Hathaway	158						
Heath Co Hilltop Rd Benton Harbor, Mich	Heath	49	50			51	52	
Hewlett-Packard Co 1501 Page Mill Rd Palo Alto, Calif	H-P	53	54	55	56	57	58	59
Hickok Electrical Instrument Co 10514 Dupont Ave Cleveland, Ohio	Hickok		60			61	62	
Holt Instrument Labs P.O. Box 230 Oconto, Wis	Holt	63						

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Houston Omnigraphic Corp 4950 Terminal Ave Bellaire, Texas	Houston							64.
Huggins Laboratories, Inc 999 E. Argues Ave Sunnyvale, Calif	Huggins				65			
ITT Industrial Products Division 15151 Bledsoe St San Fernando, Calif	ITT	\star		*		\star		
Industrial Components, Inc 1675 S.E. Allen Ave Beaverton, Ore	Ind Comp						66	
Industrial Test Equipment Co 20 Beechwood Ave Port Washington, NY	Ind Test Equip	67						
Intercontinental Instruments, Inc 500 Nuber Ave Mount Vernon, NY	Intercontinental				68			
International Electronic Research Corp 135 Magnolia Blvd Burbank, Calif	IERC	\star						
Jerrold Electronics Corp 15th \& Lehigh Philadelphia, Pa	Jerrold	\star				*		
Kay Electric Co Maple Ave Pine Brook, NJ	Kay	69	70	71	72	73		
Krohn-Hite Corp 580 Massachusetts Ave Cambridge, Mass	Krohn-Hite	74					75	76
Kruse-Storke Electronics 790 Hemmeter Lane Mountain View, Calif	KruseStorke	155				156		
LTV Ling Electronics Div Ling-Temco-Vought 1515 S. Manchester Ave Anaheim, Calif	LTV Ling					77		
Laboratory For Electronics, Inc 1075 Commonwealth Ave Boston, Mass	LFE	78				79		
MSI Electronics, Inc 116-06 Myrtle Ave Richmond Hill, NY	MSI					7		
Marconi Instruments 111 Cedar Lane Englewood, NJ	Marconi	80	81	82		83	84	
Measurements P.O. Box 180 Boonton, NJ	Measurements	85	86		88			
Microdot, Inc 220 Pasadena Ave S. Pasadena, Calif	Microdot	89	90					
Micro-Power, Inc 25-14 Broadway Long Island City, NY	Micro-Power					91		

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Monsanto Electronics Department 800 N. Lindbergh Blvd St. Louis, Missouri	Monsanto				92			
Motorola Comm \& Elect, Inc 4501 W. Augusta Rd Chicago, III	Motorola		93					
Muirhead Instruments, Inc 111 Bristol Rd Mountainside, NJ	Muirhead	94						
Narda Microwave Corp Commercial St Plainview, NY	Narda	95				96		
Navigation Computer Corp Valley Forge Indl Park Norristown, Pa	Nav Comp	97						
Northeast Electronics Corp Airport Rd Concord, NH	Northeast			\star				
Optimation, Inc 7243 Atoll Ave N. Hollywood, Calif	Optimation	98						
PRD Electronics, Inc 1200 Prospect Ave Westbury, NY	PRD	99		100				
Piezo Technology 2400 Diversified Way Orlando, Fla	Piezo		\star			\%		
Polarad Electronic Instruments 34-02 Queens Blyd Long Island City, NY	Polarad	101	102	103	104	105		
Precise Electronics \& Development Corp 76 E. 2nd St Mineola, NY	Precise		106				107	
Precision Apparatus Co, Inc 80-00 Cooper Ave Glendale, NY	Prec Apparatus	108				109	110	
Probescope Co 211 Robbins Lane Syosset, NY	Probescope	\star				*		
RCA, Electronic Components \& Devices 415 S. 5th St Harrison, NJ	RCA	112	113			114	115	
RFD, Inc 1501 W. Cass St Tampa, Fla	RFD	\star						
RS Electronics Corp 795 Kifer Rd Sunnyvale, Calif	RS		\star					
Radar Engineers 4719 Brooklyn Ave N.E. Seattle, Wash	Radar Engr				116			
Radiometer Electronics The London Co 811 Sharon Drive Westlake, Ohio	Radiometer	117	118					

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Rohde \& Schwarz Sales Co, Inc 111 Lexington Ave Passaic, NJ	R \& S	119	120	121		122		
Rutherford Electronics Co 8944 Lindblade St Culver City, Calif	Rutherford				\star			
Schlumberger c/o E.F. Associates 100 Quimby St Westfield, NJ	Schlumberger	\star						
Scientific-Atlanta, Inc P.O. Box 13654 Atlanta, Ga	S-A	123					124	
H. H. Scott 121 Powdermill Rd Maynard, Mass	HH Scott			157				
Servo Corp of America 111 New South Rd Hicksville, NY	Servo				\star	\star		\star
Siemens America, Inc 350 Fifth Ave New York, NY	Siemens	125						
Sierra Electronic Div Philco Corp 3885 Bohannon Dr Menlo Park, Calif	Sierra	126	127					
Signalite, Inc 1933 Heck Ave Neptune, NJ	Signalite			128				
Smyth Research Assoc 3555 Aero Court San Diego, Calif	Smyth		129					
Spectral Dynamics Corp 8159 Engineers Rd San Diego, Calif	Spectral Dynamics					130		
Spencer-Kennedy Labs, Inc 1360 Soldiers Field Rd Boston 35, Mass	S-K				\star			
Stewart Bros Division Instrument Laboratories Corp 315 W. Walton Place Chicago, III	Stewart	131						
Stoddart Electro Systems Div Tamar Electronics 2045 W. Rosecrans Ave Gardena, Calif	Stoddard			132				
Strand Laboratories, Inc 143 Main St Cambridge, Mass	Strand	133						
Technical Materiel Corp 700 Fenimore Rd Mamaroneck, NY	Tech Materiel	153						
Tektronix, Inc P.O. Box 500 Beaverton, Ore	Tektronix	134			135		136	
Tel-Instrument Electronics Corp 728 Garden St Carlstadt, NJ	Tel-Inst		137			138		

Manufacturer		Oscillator	Signal	Noise	Pulse	Sweep	Squarewave	Function
Address	Abbreviation							
Telonic Industries, Inc 60 N. First Ave Beech Grove, Ind	Telonic					139		
Texas Instruments, Inc 3609 Buffalo Speedway Houston, Texas	Texas Inst				140			
Texscan Corp 51 S. Koweba Lane Indianapolis, Ind	Texscan					141		
Triplett Electrical Instruments 286 Harmon Rd Bluffton, Ohio	Triplett		142					
Velonex Instrument Div Pulse Engineering, Inc 560 Robert Ave Santa Clara, Calif	Velonex				111			
Walkirt 10321 S. La Cienega Blvd Los Angeles, Calif	Walkirt				4			
Wang Laboratories, Inc 836 North St Tewksbury, Mass	Wang				143			
Waveforms, Inc 333 6th Ave New York, NY	Waveforms	144				145		
Waveline, Inc P.O. Box 718 W. Caldwell, NJ	Waveline			146				
Wavetek, Inc 8133 Engineer Rd San Diego, Calif	Wavetek							154
Wayne-Kerr Corp 18-22 Frink St Montclair, NJ	Wayne-Kerr	\star						
Weinschel Engineering Co, Inc P.O. Box 577 Gaithersburg, Md	Weinschel	147			148	149	150	
Weston, Boonshaft \& Fuchs Hatboro Industrial Park Hatboro, Pa	Weston	151						
Wiltron Co 930 Meadow Drive Palo Alto, Calif	Wiltron					152		

What's the charge?

CHFTN1 ALKYD
the better molding compound for electricalelectronic products

Here's why GLASKYD glass-reinforced alkyd compounds in continuous rope and cut slug form gain wider acceptance every day: - excellent dielectric strength dimensional stability ${ }^{\text {• resistance to }}$ heat, flame and moisture - wide choice of colors.
GLASKYD offers economy through new, automated cold plunger molding - with fast cure, short cycles, high production rates. This alkyd also can be molded by compression or transfer techniques.
Widely used in such applications as electrical housings, connectors, coil bobbins and strips, switches and collector rings, GLASKYD also is ideal for arc-less switches, phase barriers, brush holders and tuner strips.
Rope in new markets, new product quality - with GLASKYD.
For details, write:

Buying a pulse generator? These systematic guidelines will take the guesswork out of selecting.

As a prospective buyer of a pulse generator, you are confronted by more than 100 different models, some of which emphasize some features at the expense of others. If you want the best pulse generator and the best set of trade-offs for your dollar, use a systematic approach to selection. Three basic elements are involved:

- Specifying the characteristics the job calls for.
- Selecting a generator with these characteristics.
- Worst-case testing of a loan instrument.

But before you can begin specifying the pulse generator, you must know your applications.

Performance, cost and function must be balanced

At times all that is required is a repetitive trigger with a few adjustable characteristics. A low-cost pulser may fill the bill here. When the pulse generator is needed as a general signal source for circuit development, cleanliness of waveshape may be the most important attribute. However, features such as variable dc baseline offset, variable rise and fall times, and pretrigger output might all be considered. For use in triggering multivibrators, pulse shape is not important within wide limits, but period may well be. In the calibration of other instruments, accuracy and cleanliness may both be important. For repetitive testing requiring more than one type of pulse, one might consider a pulse generator with programing. Programing can eliminate the need for two or more pulse generators, by permitting quick selection of various types of preadjusted pulses. In general, variable rise and fall times make it possible to test circuits more nearly under actual operating conditions, or to check response to trigger variations. This feature is becoming more generally available.

Other features that are useful in some applications include trigger input, delayed pulse, double

[^1]pulse, pulse bursts, simultaneous positive and negative polarity pulses and calibrated controls. Some generators have a control calibrated for period, which may be a more convenient reading than repetition rate. Period is easily related to pulse width and may be determined directly from an oscilloscope. Repetition rate is more conveniently related to a frequency counter.

When buying one particular feature, be aware of the other specs that may suffer. For example, before specifying more amplitude than required, consider which trade-offs accompany high voltage and fast rise time in the same instrument. These generators are usually high-power units meant for driving $50-\Omega$ loads. An instrument with a clean $50-\mathrm{V}$ output will often produce a very degraded pulse at lower amplitude. It may be impossible to get a clean low-voltage pulse even with an attenuator. Clean, high-frequency, $50-\Omega$ attenuators are simply not available at power ratings of greater than 2 to 5 W . This means that even moderate duty cycles from a $50-\mathrm{V}$ generator cannot be attenuated cleanly for lower voltage applications. However, you can easily attenuate a $10-\mathrm{V}$ pulse at high duty cycles with the low-power attenuators.

A look beyond the spec sheet is necessary

Some specifications of pulse-generator characteristics are straightforward and easy to understand. Other specifications are often incomplete or misleading, and, in some instances, some characteristics are not even mentioned. Two categories cover most of the parameters that define the pulse output: (1) The range of adjustment, and (2) How the pulse deviates from ideal.

Adjustment ranges: This category may include maximum and minimum limits in adjusting pulse amplitude, pulse width, pulse period (or repetition rate) and rise time, fall time, or delay time. Expect a specification in this category to be straightforward, but not always-for example, maximum pulse amplitude. A spec that states $10-\mathrm{V}$ peak from a $50-\Omega$ source might imply a $5-\mathrm{V}$ pulse when the

1. Waveform distortions do exist, no matter how ideally the pulse is specified.
output is terminated in 50Ω. Specifying the amplitude into a $50-\Omega$ load, and also specifying the opencircuit amplitude, is clearer. At times the spec sheet may be clear enough, but the buyer may not stop to relate one spec to another. For example, if a certain period (or repetition rate) is required, it is important to check whether a maximum duty cycle limitation of the pulse generator will limit operation to too short a pulse width.

Waveform: No matter how ideally the pulse output is specified, distortions do exist (Fig. 1). They include:

- Preshoot-the initial excursion of the waveform which precedes the leading or trailing edge. It may be of the same or opposite polarity.
- Rise time-the interval between the instances at which the instantaneous pulse amplitude first reaches specified lower and upper limit. Unless otherwise stated, these limits are 10% and 90% of the pulse's amplitude. Fall time is analogously defined (Fig. 2). Although not distortions, rise and fall times are limitations to be considered in specifying.
- Overshoot-the initial excursion beyond the limiting final value. It occurs simultaneously with the leading or trailing edge.
- Rounding-the lack of a sharp corner of a waveform, or a smooth transition from leading or trailing edge to the limiting final value.
- Ringing-periodic bumps in the waveform that occur after the overshoot. When specified, it may be peak-to-peak, flat top-to-peak or rms. The latter two produce smaller numbers but not less ringing.
- Tilt-an up or down slope to the otherwise flat top, also called top slope or, more commonly, droop. Other flat-top aberrations do exist, but usually they are not specified or even mentioned individually. They are sometimes called "other aberrations" and ideally should be expressed as a percentage of flat-top amplitude. Sometimes they are collected into a single aberrations spec and included with overshoot, ringing and tilt. One such "other aberration" could be called "dribble

2. Rise and fall times are measured at 90% and 10% points.
up." This is a gradual creep up to the flat-top amplitude, too slow to be considered rounding. On shorter pulse widths it will look like tilt or up slope, while on very long widths it will look like a rounded corner.

- Dc baseline shift-the change in the dc level of the baseline.
- Baseline aberrations-almost never mentioned. They are spurious signals or noise on the baseline and, if large enough, may cause false triggering or other complications.
- Jitter in pulse period, in pulse width and between a trigger and a pulse output-the time uncertainty of these quantities, usually expressed as a percentage of the time interval.

These waveform anomalies are often unclearly specified or not mentioned. When something is not specified, it may have been overlooked or been deemed not important enough to clutter up the spec sheet. On the other hand, it may be too costly to spec, or even too embarrassing to mention.

Sometimes a waveform photograph will be displayed in place of, or in addition to, some of the specifications. However, you can be fairly certain that a worst-case setup was not made for the photograph. When something is specified as "negligible" or even given as a vague percentage, it may just as well have been omitted.

The only sure way to determine the cleanliness of waveform is to test the pulse generator. In deciding what generators to evaluate, consider future needs and the possibility of including some additional flexibility. Considerations other than cost should be kept in mind.

Put the pulser through its paces

Testing a pulse generator in your own laboratory is the surest way to determine whether it meets your needs. Examine the construction techniques and estimate maintainability. Look for components that seem to be running excessively hot, as they may signal possible early failure or a reliability problem. The controls of the instrument should

Hundreds of pulsers do hundreds of jobs. Balance performance, cost and function with your application.
be easily interpreted and easy to adjust to the desired waveform. An overlap of ranges is helpful, as is a reasonably linear continuous control. If the control is too nonlinear, there may be too much change in adjustment in some very small knob rotation.

When obtaining an evaluation instrument, check whether there are ways in which it may be unintentionally damaged. For example, the output transistor can often be destroyed by an inductive load, and unless there is built-in protection, a generator may be damaged by shorting the output. A front panel adjustment can wreck some generators by allowing for too high a duty factor at high amplitude. Study the instruction manual, and list those precautions that must be observed for each of the generators being tested.

The most difficult parameters to verify will be the ones involving waveform aberrations. Difficulties arise because of a lack of industry standards in nomeclature, and, in the case of some very clean pulse generators, aberrations in the measuring oscilloscope itself. Know the type and magnitude of aberrations in the scope, so that meaningful results can be obtained.

Zero in on choice with worst-case tests

Quick verification of the manufacturer's specifications with the use of a scope, clean $50-\Omega$ cables, terminating resistors and attenuators pads should be followed by setting up worst-case conditions for a more critical look. Here, additional care must be taken in choosing the hardware for testing. Mismatched load, cables and connectors can destroy a clean pulse. The following procedure will turn up waveform aberrations under worstcase conditions:

1. Look at the longest-duration (maximumwidth) pulse at maximum amplitude and low-duty cycle. Check for tilt, usually caused by poor design of ac-coupled circuits, and for dribble-up, often caused by thermal time constants. Note any low-

Worst-case testing will turn up waveform aberrations and provide a critical look at the manufacturer's specs.
frequency ($1-$ to $10-\mu \mathrm{s}$ period) ringing, usually caused by poor decoupling of the power supply feeding high-current switches.
2. Increase the repetition rate to give a 90% duty cycle (or the generator's specified duty cycle limit). Under some conditions, this limit may be exceeded, but be sure the specifications clearly state that no damage will occur. Check for a baseline shift from the low-duty-cycle dc level. Thermal dribble-up may decrease, since the junction temperature is more constant (constantly higher) at high-duty cycles. Over-all behavior can become erratic due to increased power supply loading for marginally designed power supplies. Finally, watch carefully for any pulse amplitude reduction. Specification of this condition is often circumvented by specification of a maximum-duty-cycle limitation on the instrument. Some generators have no duty cycle limitation, and when pulse width exceeds the selected period, the pulse generator usually counts down (period doubles). The transition interval from normal operation to countdown may be a clean change in mode, or the waveform may become unstable at this point. (Be careful with higher power generators at high duty cycle into low-power terminating resistors or attenuators. Unfortunately most clean attenuators are low-power ($1 / 2$ to 2 watts). Clean, high-power attenuators are as rare as ideal pulses).
3. At maximum-duty cyle, check and record the faster aberrations and characteristics at appropriately higher sweep speeds. Record such things as rise time, overshoot and ringing at both leading and trailing edges.
4. Reduce the amplitude. Most generators are far cleaner at maximum amplitude. Thus, at a lower amplitude, check carefully for aberrations of the pulse when it is reduced by the variable amplitude controls or by the internal passive attenuators, which are usually switched controls. Also note any baseline shift due to amplitude variation.

Rutherford

RUTHERFORD HIGH VOLTAGE PULSE GENERATORS ARE THE STANDARD OF THE INDUSTRY

The B-7 series of vacuum tube pulse generators have earned a reputation for high performance precision and reliability. They have the accuracy and versatility to meet today's rigid standards of testing, research and development. They have testing, research and development. They have
proven their capabilities as systems components proven their capabilities as
as well as in field operation.

Model B-7B features rep rates to 2 MHz and out puts of 50 volts into 50 ohms. Printed circuit boards. Variable rise time control. Trouble-free single unit construction. Overload protection. Sta bilized noise-free repetition rate schedule. Rack mountable.

Model B-7D incorporates all of the time-proven spe cifications of the popular Model B.7B with several extra features. Simultaneous positive and negative output pulses are available at front panel connectors. The rise and fall time of each pulse is sepators. The rise and fall time of each pulse is sepa-
rate and independent, and may be degraded withrate and independent, and may be degraded withmay be set to zero by front panel control, or may be offset.

Model B-7F adds the following features to the basic specs of Model B.7B: (1) repetition rate is continuously variable from 2 Hz to 2 MHz ; (2) output pulse rise or fall time may be independently degraded to approx. $1 \mu \mathrm{sec}$; (3) either single or double pulse output available by front panel control.

NEW-REMOTELY PROGRAMMABLE PULSE GENERATOR

Model PPG3 is the only solid-state, digitally con trolled programmable pulse generator of its type. No other automatic pulse generator offers the degree of accuracy, stability, reliability, or range of easy operation. It exceeds requirements of today's most sophisticated automatic checkout systems. All major parameters may be programmed, sequentially or in parallel, with digital information from tape or card readers. Remotely programs to control six to eight information bits. Internal rep rate is $2 \mu \mathrm{sec}-999 \mathrm{sec}$ in 8 ranges. Pulse delay of 0 to 999 sec . Pulse width at 50% amplitude points is $0.1 \mu \mathrm{sec}-999 \mathrm{sec}$. Pulse amplitude is 0.25 volt Rise and fall time $\leq 20 \mathrm{nsec}$.

SOLID-STATE PULSE GENERATORS

Model B-14 is a low cost, highly versatile, compact and portable general purpose pulse generator. It features repetition rate of 20 Hz to 2 MHz . Delay is 0 to $10,000 \mu \mathrm{sec}$. Amplitude is 15 v into 1,000 ohms, 8 v into 50 ohms. Pulse width of .06 to $10,000 \mu \mathrm{sec}$. Rise and fall time is less than 10 nanosec, fixed. Rechargeable battery pack available for completely portable operation

Model B-15 has the same fast rise and fall time, delay and pulse width as Model B-14. In addition, B-15 offers a repetition rate of 5 Hz to 5 MHz . Also, its amplitude is 10 v into 50 ohms. Both units are only $12^{\prime \prime}$ wide $\times 5^{\prime \prime}$ high $\times 11^{1 / 2^{\prime \prime}}$ deep. Recharge able battery pack available

Model B-16 all transistorized pulse generator offers a rep rate of $20 \mathrm{~Hz} \cdot 20 \mathrm{MHz}$. Variable rise and fall times of less than 5 nsec to greater than 200 nsec . Pulse width is $0.015 \cdot 10,000 \mu \mathrm{sec}$. Amplitude is 0 to 10 volts, peak. Single or pulse pair operation. Rack mount available.

SOLID STATE DIGITAL TIME DELAY GENERATORS

These three time delay generators are designed with solid-state circuitry for reliability and main tenance free performance. Their high accuracy with very low delay jitter lets you calibrate synchroscope sweeps, produce accurately spaced pulses for bio logical investigations, measure waveform timing measure pulse width, use with pulse generator for more accurate delay, etc
All three models below have these specifications: Delay range of 0.0 to $999,999.9 \mu \mathrm{sec}$ in increments of 100 nsec. Delay accuracy of $\pm(0.001 \%$ of set delay +2 nsec.) Delay jitter less than 1 nsec.

Model A10 provides 3 delayed pulses. Also offers amplitude of 10 volts, peak, min., into >50 ohms Approx. 15 nanosec rise time. Approx. 50 nsec width. Instrument is $8^{3 / 4} 4^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep.

Model A11
offers single delayed pulse with same basic delayed pulse specs as A10 except amplitude is 6 volts, peak, min., into >50 ohms. And rise time is approx 10 nsec . Unit is half-rack size ($5^{1 / 4^{\prime \prime}}$ high $\times 9^{1 / 22^{\prime \prime}}$ wide $\times 14^{1 / 2^{\prime \prime}}$ deep). Rack mounting unit is available.

Model A12 produces three delayed pulses, and has same basic delayed pulse specs as A10 except amplitude is 70 volts, peak, min., into >50 ohms Width is $3 \mu \mathrm{sec} \mathrm{min}$. Rise time is approx. $0.1 \mu \mathrm{sec}$ Repetitive and manual reset operation. Manual offers fail-safe triggering to protect against loss of information.

FREE

Mail this coupon for complete technical information, and earn your free Crusading Engineers Medal with Rutherford service bar Mail to CMC/Rutherford, 12973 Bradley Avenue, San Fernando California, U.S.A.

Send data on models
\square Send Crusading Engineers medal.
Name
Address

WRITE CMC / RUTHERFORD - SAN FERNANDO, CALIFORNIA • PHONE (213) 367-2161 • TWX $213 \cdot 764-5993$ • OR SEE LOCAL REPRESENTATIVE FOR MORE INFORMATION

Pulse generators $60 \mathrm{~Hz}-5 \mathrm{MHz}$

For information on how to use these tables, turn to page 2

			FREQ	UENCY		MAIN	PULSE			OUTPU				
	Manufacturer	Model	Min. Hz	Max. MHz	Width Min. $\mu \mathrm{S}$	Width Max. ms	Rise ns	Fall ns	Min. Volts	Max. -Volts	Imp. ohms	Type	Price \$	Notes
$\begin{gathered} \text { PG- } \\ 1 \end{gathered}$	Huggins S-K GASL Tektronix Weinschel	961D 503A $2303-C$ 109 PG-1A	50 50 10 275 20	60 Hz 120 Hz 260 Hz 700 Hz .002	.002 .0006 ina .0005 1	20 ns 100 ns ina 300 ns .005	0.5 0.5 0.3 0.25 ina	0.5 ina ina 0.3 ina	0 ina 0 0 0	2000 ina ± 100 50 -1000	51 50 5 50 50	C C C C R	$\begin{array}{r} 900 \\ 495 \\ 485 \\ 360 \\ 1250 \end{array}$	c d c,d d
	Ka	5070-B	50	. 005	0.1	0.1	10	10	0.5	0.5	50	R	875	e
	$\mathrm{H}-\mathrm{P}$	212A	50	. 005	. 07	. 01	20	20	0	± 50	50	C, R	600	
	Servo	9350	0.2	. 005	100	1000	5	5	± 7	± 10	93	C, R	660	a, b, e
	Digital Elect	1554	. 05	. 005	80	13 sec	1000	$1-15 \mu \mathrm{~s}$	5	15	150	C	130	
	Chesapeake	U-100	50	. 007	1	. 006	500	ina	ina	ina	100	C	795	
$\begin{gathered} \text { PG- } \\ 2 \end{gathered}$	Polarad	MP-1A	10	$.01{ }^{6}$	0.2	. 002	10	ina	15	15	100	C	2575	c
	Ensco	PG214	10	. 01	1	1	100	200	0	50	200	C	1075	b
	Ensco	PG114	10	. 01	1	1	100	200	0	50	200	C	375	
	Alfred	5-6826P	10	. 01	1	. 012	500	500	300	450	ina	R	490	
	Tektronix	160A/162	0	. 01	100	10 sec	1000	ina	50	50	1000	R	320	
	H-P	218AR/219A	0	. 01	ina	ina		ina	50	50	50	R	2125	b
	AEL	155	0.1	. 01	10	1000	3000	3	. 01	250	ina	C	675	
	H-P	218AR/219B	0	. 01	0.2	. 005	60	ina	0	50	50	R	2490	b
		218AR/219C	0	. 01	1	10	30	30	0	$\pm 15, \pm 90$	90,500	R	2375	a
	Berkeley	RP-2	60	. 05	ina	ina	note 10		ina	ina	ina	C	890	
$\begin{gathered} \text { PG- } \\ 3 \end{gathered}$	Berkeley	RP-1	1	. 05	ina	ina	50-500	2-100 $\mu \mathrm{s}$	0.1	2.2	100	C	960	
	Tektronix	160A/161	0	. 05	10	100	500	ina	0	± 5	1800	R	320	
	Measurements	179	60	0.1	0.5	. 06	100	150	-150	± 200	250,1000	C	365	d
	Texas Inst	6710	30	0.1	0.1	. 001	0.35	30	± 8	± 12	50	C	1500	a,e
	Tektronix	R293	10,000	0.1	. 002	$0.25 \mu \mathrm{~s}$	1	1	6	12	ina	R	1000	d
	E-H	131	10	0.1	0.1	0.5	10	10	50	50	50	R	575	c
	GASL	2305-C	10	0.1	. 002	$0.2 \mu \mathrm{~s}$	1	1	0	± 20	50	C	595	
	Servo	2140A	10	0.1	0.1	1	20	40	0	± 80	93	C	1195	b, d, f, h
	Servo	2120A	10	0.1	0.1	1	20	40	0	± 80	93	C	895	d,f,h
	Velonex	570	3	0.1	0.3	0.2	50	70	0	-2000	200	C	5390	
$\begin{gathered} \text { PG- } \\ 4 \end{gathered}$	Velonex	350	3	0.1	0.1	0.2	50	70	0	-2000	200	C.	3990	
	Tektronix	111	0	0.1	. 002	. 0015	500	1	5	5	50	C	365	d
	H-P	1105A/1106A	0	0.1	3	ina	. 02	ina	0.2	ina	50	C	750	
	H-P	213B	0	0.1	2	. 002	0.1	ina	0.35	0.35	50	C	215	
	Fairchild	404-B	10	0.25	. 05	0.105	15	15	-60	$+60$	50	C, R	760	d
	Datapulse	100	5	0.5	0.1	100	30	40	1	150	50	C,R	345	
	Digital Elect	521	5	0.5	0.8	120	50-100	100	0	15	150	C	95	c,d,e
	Wang	5SP	0.5	0.5	0.5	500	ina	ina	0	-12	ina	C	150	
	Tektronix	160A/163	0	0.5	1	10	200	200-500	0	25	500	R	320	
	Digital Elect	522	0	0.5	0.5	1 sec	200	200	0	15	100	C	98	c,d,e
$\begin{gathered} \text { PG- } \\ 5 \end{gathered}$	Texas Inst	6701	100	1	. 005	$0.1 \mu \mathrm{~s}$	1	1	± 2	± 50	50			d,e
	H-P	215A	100	1	0	$0.1 \mu \mathrm{~s}$	1	1	-10	+10	50	C, R	1875	
	H-P	214A	10	1	. 05	10	13	13	0.2	100	50	C,R	875	
	E-H	125	10	1	. 001	0.1	0.2	0.5	-10	-10	50	C, R	2275	c
	Berkeley	PB-2	1	1	0.3	0.1	. $05-2 \mu \mathrm{~s}$.06-32 $\mu \mathrm{s}$. 001	10.1	100	C	790	
	GASL	PSG-1	1	1	0.1	$0.3 \mu \mathrm{~s}$	100	100	0.2	50	50	C	745	
	Datapulse	103M/P906	0	1	. 002	$0.2 \mu \mathrm{~s}$	1	1	± 3	± 3	50	C,R	1860	
	Gen Radio	1395A	2.5	1.2	0.1	1 sec	note 1	note 1	0	± 20	1000	C,R	1992	
	Gen Radio	1398A	2.5	1.2	0.1	1.1 sec	5	5	-60	+60	1000	C,R	535	
	Servo	9450	100	2	100	1	5	5	± 7	± 10	93	C, R	835	a, b, e
PG-6	Rutherford	B-7B	20	2	. 05	10	15	15	0	± 50	50	C,R	720	d
	Rutherford	B-7D	20	2	. 05	10	15	15	0	± 50	50	C,R	1200	a
	Rutherford	B-14	20	2	. 06	10	10	10	0	15	10-1000	C,R	385	d,e,g
	Rutherford	B-7F	2	2	. 05	10	15	15	0	50	50	C, R	920	
	Tektronix	114	0	2	0.1	1	10	10	-1	+10	50	C	350	d
	Gen Radio	1217C/1201B	0	2.4	0.1	1 sec	15	15	-40	+40	1000	C	370	
	Datapulse	102	2	3	. 05	. $01 \mu \mathrm{~s}$.10-500	10	0	± 50	50	C, R	720	c,d
	E-H	132A	5	3.5	0.1	. $01 \mu \mathrm{~s}$	12-100	ina	-50	+50	50	R	715	
	E-H	130	10	4	0.1	. $05 \mu \mathrm{~s}$	10	ina	0	± 50	50-200	R	1175	d
	E-H	133A	1	5	0.5	0.3	. $01-10 \mu \mathrm{~s}$. $02-10 \mu \mathrm{~s}$	± 0.2	± 50	50	C, R	2275	c

Notes, abbreviations and manufacturers' index at end of this section.

Pulse generators $5 \mathrm{MHz}-200 \mathrm{MHz}$

	Manufacturer	Model	FREQUENCY		MAIN PULSE				OUTPUT			Type	Price \$	Notes
			Min. Hz .	Max. MHz	Width Min. $\mu \mathrm{s}$	Width Max. ms	Rise ns	$\begin{aligned} & \text { Fall } \\ & \mathrm{ns} \end{aligned}$	Min. Volts	Max. Volts	Imp. ohms			
$\begin{gathered} \text { PG- } \\ 7 \end{gathered}$	Datapulse Rutherford Datapulse Datapulse Datapulse Radar Engr Walkirt E-H E-H Servo	$\begin{aligned} & 103 \mathrm{M} / \mathrm{P905} \\ & \mathrm{~B}-15 \\ & 103 \mathrm{M} / \mathrm{P901} \\ & 103 \mathrm{M} / \mathrm{P902} \\ & 103 \mathrm{M} / \mathrm{P} 903 \\ & 760 \\ & \text { SWG-101 } \\ & 138 \\ & 120 \mathrm{D} \\ & 9455 \end{aligned}$	5 5 5 5 5 $\begin{aligned} & 5 \mathrm{MHz} \\ & 3000 \\ & 300 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & \\ & 6 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$.05 .06 .05 2 .05 20 ms ina . 05 . 01 .025	0.5 10 2 50 2 20 ina 1 $0.1 \mu \mathrm{~s}$.001	$\begin{aligned} & 20 \\ & 10 \\ & 20-300 \\ & 100 \\ & 5 \\ & 8 \\ & 8 \\ & 20-200 \\ & 10 \\ & 0.85 \\ & 5 \end{aligned}$	$\begin{aligned} & 1000 \\ & 10 \\ & 20-200 \\ & 100 \\ & 5 \\ & 8 \\ & 8 \\ & 20-200 \\ & 10 \\ & 1 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ -15 \\ \pm 1 \\ 2.5 \\ 0 \\ 0.5 \\ 7.5 \\ -2 \\ \pm 7 \end{array}$	$\begin{aligned} & 30 \\ & 10 \\ & +13 \\ & \pm 15 \\ & 5 \\ & 2 \\ & 12 \\ & 12 \\ & 15 \\ & -20 \\ & \pm 10 \end{aligned}$	50 50 50 600 50 5 note 7 50 50 93	C,R C,R C,R C,R C,R C C C,R C,R C,R	$\begin{array}{r} 1490 \\ 525 \\ 1450 \\ 1350 \\ 1150 \\ \\ 88 \\ 345 \\ 990 \\ 1375 \\ 975 \end{array}$	d,e b,d,e,g d,e d,e d,e g a, b, e
$\begin{gathered} \text { PG- } \\ 8 \end{gathered}$	E-H Fairchild Digital Elect E-H Datapulse Datapulse Datapulse $\mathrm{H}-\mathrm{P}$ Monsanto Intercontinental	$\begin{aligned} & 120 \mathrm{E} \\ & 792 \mathrm{~A} \\ & 721 \\ & 121 \\ & 108 \\ & \\ & 101 \\ & 108 \mathrm{~L} \\ & 222 \mathrm{~A} \\ & 3000 \\ & \text { PG-1 } \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 50 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$.01 50 .04 .01 . 02 .03 .03 .03 1 .03	$\begin{aligned} & 0.1 \mu \mathrm{~s} \\ & 500 \\ & 50 \\ & 0.25 \\ & 5 \\ & 10 \\ & .005 \mu \mathrm{~s} \\ & 5 \\ & 100 \\ & 200 \end{aligned}$	0.85 8 20 10 7 5 12 4 note 8 10	$\begin{aligned} & 1 \\ & 8 \\ & 8 \\ & 20 \\ & 10 \\ & 7 \\ & 7 \\ & 7 \\ & 12.5 \mu \mathrm{~s} \\ & 4 \\ & \text { note } 8 \\ & 10 \end{aligned}$	$\begin{aligned} & -.07 \\ & 0 \\ & 0 \\ & 10 \\ & 0.2 \\ & \\ & 0.5 \\ & 0.2 \\ & .05 \\ & 0.5 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & -20 \\ & 10 \\ & 10 \\ & 74 \\ & 50 \\ & \\ & 10 \\ & 50 \\ & 10 \\ & 10 \\ & \pm 15 \end{aligned}$	50 50 150 50	$\begin{aligned} & C, R \\ & C, R \\ & C \\ & R \\ & C, R \end{aligned}$	$\begin{array}{r} 1675 \\ 520 \\ 220 \\ 1675 \\ 1480 \\ \\ 345 \\ 1980 \\ 690 \\ \text { request } \\ 585 \end{array}$	d,e c,d,e d d,e a, b, c, e, f b, c, d, e d,e
$\begin{gathered} \text { PG- } \\ 9 \end{gathered}$	Intercontinental Tektronix Datapulse Texas Inst Intercontinental GASL E-H Rutherford Electro Design Intercontinental	$\begin{aligned} & \text { PU-2 } \\ & \text { R116 } \\ & 106 A \\ & 6613 \\ & \text { PG-2 } \\ & \\ & \text { PG-10 } \\ & 123-A \\ & \text { B-16 } \\ & \text { PG-20 } \\ & \text { PG-32 } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 10 \\ & 15 \\ & 1 \\ & 1 \mathrm{MHz} \\ & 1000 \\ & 20 \\ & 10 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 12 \\ & 15 \\ & 16 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & .03 \\ & .05 \\ & .025 \\ & .03 \\ & .03 \\ & \\ & .02 \\ & .02 \\ & 0.15 \\ & .03 \\ & .03 \end{aligned}$	$\begin{aligned} & 200 \\ & 0.55 \\ & 5 \\ & .03 \mu \mathrm{~s} \\ & 200 \\ & \\ & 0.3 \mathrm{~ns} \\ & 10 \\ & 10 \\ & 10 \\ & 1000 \end{aligned}$	10 note 5 $10 \mathrm{~ns}-1 \mathrm{~ms}$ note 2 note 11 5 5 7 $5-200$ 5 $10 \mathrm{~ns}-1 \mathrm{~s}$	10 note 5 $10 \mathrm{~ns}-1 \mathrm{~ms}$ note 2 note 11 $\left\|\begin{array}{l} 5 \\ 7 \\ 5-200 \\ 5 \\ 10 n s-1 s \end{array}\right\|$	± 15 0.4 .01 0 0 note 9 0 0 0 $\pm .01$	± 15 10 ± 12 10 ± 20 note 9 50 10 20 ± 20	50 50 50 50 50 ina 50 50 50 50,500	C, R R C,R C C, R C C C, R C C,R	$\begin{array}{r} 425 \\ 1550 \\ 950 \\ 950 \\ 925 \\ 960 \\ 1775 \\ 875 \\ 775 \\ 1385 \end{array}$	d,e d a, b, c, e a, c, e d d d a, b, c, d, e
$\begin{aligned} & \text { PG- } \\ & 10 \end{aligned}$	Intercontinental Intercontinental Texas Inst Texas Inst Texas Inst Servo Datapulse Datapulse Datapulse Texas Inst	$\begin{aligned} & \text { PG-31 } \\ & \text { PG-33 } \\ & 6601 \\ & 6605 \\ & 6303 \\ & \\ & 9550 \\ & 110 A \\ & 109 \\ & 111 \\ & 6650 \end{aligned}$	0.1 0.1 60 60 60 $\begin{aligned} & 2 \mathrm{MHz} \\ & 4 \\ & 4 \\ & 4 \\ & 10 \end{aligned}$	20 20 25 25 25 40 40 40 40 50	$\begin{aligned} & .03 \\ & .03 \\ & .02 \\ & .03 \\ & .02 \\ & \\ & .025 \\ & .01 \\ & .01 \\ & .005 \\ & .01 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & .001 \\ & 10 \\ & .001 \\ & \\ & .001 \\ & 5 \\ & 50 \\ & 500 \\ & 10 \end{aligned}$	10 $5 \mathrm{~ns}-1$ sec 6 note 3 6 5 4.5 5 2 note 4	10 $5 \mathrm{~ns}-1 \mathrm{sec}$ 6 note 3 6 5 6 5 2 note 4	$\begin{array}{\|l} \hline \pm .01 \\ \pm .01 \\ 0 \\ 0 \\ 0 \\ \pm 7 \\ .01 \\ 1 \\ 0.15 \\ .01 \end{array}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & 5 \\ & 10 \\ & 5 \\ & \pm 10 \\ & 10 \\ & 10 \\ & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 50,500 \\ & 50,500 \\ & 93 \\ & 50 \\ & 93 \\ & 93 \\ & 93 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & C, R \\ & C, R \\ & C \\ & C \\ & C \\ & C, R \\ & C, R \\ & C, R \\ & C, R \\ & R \end{aligned}$	$\begin{array}{r} 1225 \\ 1350 \\ 1300 \\ 1450 \\ 2280 \\ \\ 1390 \\ 1250 \\ 690 \\ 1480 \\ 1000 \end{array}$	a, b, c, d, e a, b, c, d, e b,e a,c,e a, c, e a, b, e a, b, d, e a, b, d, e a, b, c, e d,e
$\begin{gathered} \text { PG- } \\ 11 \end{gathered}$	E-H Gen Radio Texas Inst H-P E-H	$\begin{aligned} & 139 \mathrm{~B} \\ & 1394 \mathrm{~A} \\ & 6901 \\ & 216 \mathrm{~A} \\ & 122 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \mathrm{MHz} \\ & 1000 \\ & 0 \\ & 1000 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 100 \\ & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & .01 \\ & .004 \\ & .002 \\ & .005 \\ & .002 \end{aligned}$	10 99 ns 2 25 ns 0.1	$\begin{aligned} & 6 \mathrm{~ns}-3 \mathrm{~ms} \\ & 2 \\ & 1 \\ & 2.5 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~ns}-3 \mathrm{~ms} \\ & 2 \\ & 1 \\ & 2.5 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm .03 \\ & 0 \\ & .005 \\ & 0.4 \\ & \pm 0.15 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 4 \\ & 5 \\ & 10 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & C, R \\ & C, R \\ & R \\ & C, R \\ & C, R \end{aligned}$	$\begin{array}{r} 1275 \\ 995 \\ 1800 \\ 1775 \\ 2875 \end{array}$	

Pulse generators Late arrivals

PG- 12	Adar	SQ-260	1000	10	.05	.01	ina	ina	0	± 7	51	C, R	5600	

Notes, abbreviations and manufacturers' index at end of this section.

Compare this new Model SQ-260 Multiple Pulse Generator with any other and you'll see that it provides the most for the least cost! Featuring all solid-state integrated logic, the Model SQ-260 also offers: 10 megacycle stepping rate, 12 output channels, 16 time steps, convenient plugboard programming, program repeat capability, step-andrepeat capability, 51 ohm output impedance (change resistor to alter impedance), 12 variable output pulse durations, and 12 variable pulse start delays! All this and more for $\$ 5600$. Call or write for descriptive literature today!

ADAR associates, inc.
Post Office Box 27, Lincoln, Mass. 01773/Telephone: (617) 623-3131 ON READER-SERVICE CARD CIRCLE 165

for circuits which require a switch that steps positively, in either direction, around a bank of 25 contacts. FEATURING:

- self-cycle or remote control operation
- 65 steps per second on self-interruption
- bridging or non-bridging wipers
-20 steps per second from external impulses Over $10,000,000$ steps in each direction without replacement.
for complete data on this and other unique GENALEX switches, write:

11 UNIVERSITY ROAD, CAMBRIDGE 38, MASS.
J. S. AGENTS FOR THE GENERAL ELECTRIC COMPANY, LTD. OF ENGLAND

PULSE GENERATORS

NOTES:
a. Both polarities available simultaneously from separate connectors.
b. This unit is a double-pulse generator. These pulses have the same over-all specifications.
c. Rise and Fall time taken between 10% and 90% points.
d. Either polarity available by means of a switch.
e. Solid state.
f. One or more extra sync pulses are available which occur after the first sync pulse in time.
. Battery operated.
h. Has extra sync pulse available coincident with leading edge of main pulse.

1. Rise and Fall time variable $100 \mathrm{~ns}-10 \mathrm{~ms}$
2. Rise and Fall time variable $10 \mathrm{~ns}-10 \mathrm{~ms}$
. Rise and Fall time variable $10 \mathrm{~ns}-3 \mu \mathrm{~s}$.
3. Rise and Fall time variable $5 \mathrm{~ns}-5 \mathrm{~ms}$.
4. Rise and Fall time variable $10 \mathrm{~ns}-110 \mu$ s.
5. Five independent pulse channels.
6. The output may be terminated in 43,50 or 600 ohms.
7. Rise and Fall time variable $100 \mathrm{~ns}-10 \mathrm{~ms}$.
8. +20 V or -36 V at low duty cycle; +15 V or -24 V at high duty cycle.
9. Rise time variable $.05-5 \mu$; Fall time variable $2-100 \mu \mathrm{~s}$.
10. Rise and Fall time variable $.01-200 \mu$.

ABBREVIATIONS

Cabinet.
R Rackmount.
ina Information not available.

Index of Manufacturers and Model Numbers

(keyed to table locator symbols)

Adar Associates	RP-2	(PG-2)
SQ-260 (PG-12)	Chesapeake Instrument Corp.	
Alfred Electronics	U-100	(PG-1)
5-6826P (PG-2)	Datapulse, Inc	
American Electronic Laboratories, Inc (AEL)	100	(PG-4)
	101	(PG-8)
	102	(PG-6)
155 (PG-2)	103M/P901	(PG-7)
	103M/P902	(PG-7)
Berkeley Nucleonics	103M/P903	(PG-7)
	103M/P905	(PG-7)
PB-2 (PG-5)	103M/P906	(PG-5)
RP-1 (PG-3)	106A	(PG-9)

108	$(P G-8)$
108 L	$(P G-8)$
109	$(P G-10)$
110 A	$(P G-10)$
111	$(P G-10)$

Digital Electronics (Digital Elect)

521	$(P G-4)$
522	$(P G-4)$
721	$(P G-8)$
1554	$(P G-1)$

E-H Research Laboratories, Inc

120 D	(PG-7)
120 E	(PG-8)
121	(PG-8)
122	(PG-11)
$123-\mathrm{A}$	(PG-9)
125	(PG-5)
130	(PG-6)
131	(PG-3)
132 A	(PG-6)
133 A	(PG-6)
138	$(\mathrm{PG}-7$
1398	$(\mathrm{PG}-11)$

Electro Design, Inc

PG-20	(PG-9)
ENSCO, Inc	
PG114	(PG-2)
PG214	(PG-2)
Fairchild Instrumentation	
404-B	(PG-4)
792A	(PG-8)

General Applied Science Laboratories (GASL)

$2303-C$	$(P G-1)$
$2305-C$	$(P G-3)$
PG-10	(PG-9)
PSG-1	(PG-5)

General Radio Co (Gen Radio)

$1217 \mathrm{C} / 1201 \mathrm{~B}$	$($ PG-6)
1394 A	$($ PG-11)
1395 A	$($ PG-5
1398 A	(PG-5)

Hewlett-Packard Co (H-P)

Manufacturers' addresses and literature offerings in master cross index at front of issue.

Kay Electric Co
5070-B (PG-1)
Measurements
179 (PG-3)

Monsanto
3000 (PG-8)
Polarad Electronic Instruments

MP-1A (PG-2)
Radar Engineers (Radar Engr)
760
(PG-7)
Rutherford Electronics Co

B-7B	(PG-6)
B-7D	(PG-6)
B-7F	(PG-6)
B-14	(PG-6)
B-15	(PG-7)
B-16	(PG-9)

Servo Corp of America

2120A	(PG-3)
$2140 A$	(PG-3)
9350	(PG-1)
9450	(PG-5)
9455	(PG-7)
9550	(PG-10)

Spencer-Kennedy Labs, Inc (S-K)
503A (PG-1)
Tektronix, Inc

109	$(P G-1)$
111	$(P G-4)$
114	$(P G-6)$
$160 A / 161$	$(P G-3)$
$160 A / 162$	$(P G-2)$
$160 A / 163$	$(P G-4)$
R116	$(P G-9)$
R293	$(P G-3)$

Texas Instruments, Inc (Texas Inst)

Crydom's SCR FIRING CIRCUIT

 MODULE is technically superior
to all others?

You say, "show me." That's exactly what we want to do! The completely new CRYDOM SCR FIRING CIRCUIT MOD. ULE features hard gate firing, 50 microwatt control sensitivity, high linearity, 100 nanosecond rise time and negative gate bias. In addition, fast response is combined with the ability to detect polarity, making an ideal component for closed loop applications. All of these features are now available at unprecedented low prices. Write for CRYDOM TECHNICAL BULLETIN 1.6 for a complete description of a truly superior SCR firing circuit module.

CRYDOM laboratories, inc.
3115 West Warner Ave., Santa Ana, California Area Code 714 - 540-1390

What's missing in generator specs?
 Here are seven secondary parameters to consider and some pitfalls to avoid when buying.

Until the day when all manufacturers agree on one method of specifying signal generators, the prospective buyer will find it difficult to compare competitive models on a point-by-point basis. He will find it especially frustrating when he looks for complete specifications on secondary parameters, such as harmonic content and stability, which are often either hedged or omitted entirely. Here are some of the more important of these secondary parameters that he should bear in mind.

- Output level—an apparently straightforward parameter-must be interpreted carefully. Is the specified level into an open circuit or a load? The user must know this or he cannot be sure of output level. Some signal generators are calibrated in microvolts across a standard termination, some in open-circuit microvolts. Mistaking one for the other can easily lead to a 2 -to-1 error in interpreting the output level indication. It should be obvious that a properly matched load cannot be provided unless the value to match it to is known.
- Harmonics in the output of the signal generator can be especially troublesome when the signal generator is being used to measure a receiver's ability to reject signals outside its pass band. If the rejection ratio to be measured is on the order of 60 to 100 dB and harmonics are lurking only 30 or 40 dB down in the pass band, the measurement will yield inaccurate results.
- Stability statements are often missing and, when they are given, often misleading. Optimum conditions (a constant level, constant frequency, constant load, etc.) may be assumed without a statement to that effect. Also, the phrase "after warm-up" (as in "drift after warm-up") in a stability or drift specification is useless, unless it is accompanied by the warm-up period. Similarly, the terms "short-term stability" and "long-term stability" are meaningless without further qualification; there are no standard definitions of "short term" and "long term."
- Retuning drift-a rarely stated specification

[^2]-is the generator's stability when the bandswitch is rotated to another range and returned. The chief problem here is that, when a tank coil is switched into a circuit and starts passing current, it warms up. Switch it out of the circuit and it cools off. Thus, although the instrument might have completed its specified warm-up period, bandswitching initiates a new coil thermal cycle.

- Load changes on frequency and on waveform, which are often characterized by pulling and distortion, respectively, are among the most neglected specifications. Distortion, which can be produced by a number of causes, is especially critical when tests are being conducted on highfidelity audio equipment.
- RF shielding effectiveness is important. The signal generator should deliver its output through the output connector only. RF escaping through other routes can lead to considerable error in sensitivity measurements, and the leakage specification should therefore be noted carefully.
- Meter indications are often assumed to offer the accuracy that the specification states. But there is usually more to be said, including, for example, the frequency characteristic. Also, the percent-modulation meter may be specified as accurate to " $\pm 10 \%$ ", but, unless it is known whether this is 10% of full scale or of indicated value, meter accuracy still cannot be assessed.

Incidental FM or AM, modulation envelope symmetry, modulation distortion at various modu-

Comparing competitive units point-by-point is difficult. Considering secondary parameters removes the blindfold.
lation levels, intermodulation in the output meter rectifier, the frequency characteristic of modula-tion-these specifications and many others must be given if the capability of a signal generator is to be known completely. But the coin has another side-one that explains why the completely specified generator will never be made.

Full specification too costly

Specifications cost money. Checking each instrument for the effects of line voltage, temperature, retuning, waveform, etc. could easily add several hundred dollars to the price. No one could afford a completely specified instrument. The manufacturer has to decide how much specification his customers are willing to pay for and proceed accordingly. Thus, from a particular customer's point of view, an instrument may be overspecified or underspecified.

Overspecification is also the fault of the customer who buys more performance than he needs. Many signal generator buyers are probably guilty of overspecification, particularly of output level. A single instrument that tries to be all things to all men is rarely the most economical approach to signal generators, largely because certain features can be bought only at the expense of others. A high power level, for example, works against a generator's stability and leakage characteristics.

Specifying a signal generator may someday be simple and straightforward. The IEEE's Instrumentation and Measurement Group's Technical Committee on High-Frequency Instrumentation and Measurements has a subcommittee working on the problem, and some standards on specifications are sure to result. Meanwhile, as with any product, the best way to ensure that a signal generator is honestly specified is to deal with a reputable manufacturer. You may then be confident that the specifications that are given are accurate. If you need specifications that are not given, a letter to the manufacturer should ordinarily bring information on typical performance to be expected.

Spec sheets are often incomplete. A letter to the manufacturer should turn up the missing specifications.

Send for your copy of this NEW catalog on...

 BUCKEYEmatching
Instrument
Knobs
Greatly expanded line of three standard series plus wide range of modifications - Molded of tough Implex or Cycolac in four standard colors - Concentrics, bar knobs and spinners - Standard with metal bushing and set screws

You're sure of quality ... certain of economy when you SPECIFY deca- -dry. TRANSFER LETTERING

Only DECA-DRY Transfer Lettering offers you all these advantages: More characters per sheet, so you pay less per character/ Complete selection of styles in a greater range of point sizes/ Perforated sheet for buying and working convenience/ Leaves no wax residue/ Erases cleanly/ Letters stay down, won't crack, bubble or peel/ Razor-sharp copies in reproduction. Why settle for less than the best . . . always specify DECA. DRY Transfer lettering and be sure.
SEND FOR FREE SAMPLE \& NEW ENLARGED CATALOG

Chart-Pak, Inc. 635D River Road, Leeds, Massachusetts 01053
Send a DECA-DRY sample and catalog.
Name
Title
Company
Address
City
zip
look in the Yellow Pages under Art Supplies Drafting Supplies for dealer's name

Look beyond the listed specs of microwave signal generators to find out about their modulation performance, compatibility and versatility.

A number of factors other than the specifications should be borne in mind whenever you are selecting a microwave signal instrument. The listed specifications are easy-to-measure, welldefined parameters that may tell precious little about the instrument. Often more important than these are two groups of characteristics that are difficult, even impossible, to measure precisely:

- Signal impurities.
- Unmeasurable characteristics.

Signal impurities. Their measurement is possible, but they are so interrelated with other parameters, so hedged about with qualifications, or so dependent on the mode or range of operation, that no simple numerical statement can be made about them. Hence they are seldom published, though the manufacturer is usually able (or should be able) to produce useful data about them.

Unmeasurable characteristics. They are either qualitive considerations like convenience or flexibility, or properties that cannot be measured because no yardstick exists, such as durability.

Certain parameters are usually specified

Altogether there are about 22 criteria that must or should be taken into account when selecting microwave signal instruments. We shall divide them into three groups: usually published parameters, frequently unspecified parameters, and unmeasurable parameters. First, a list of the parameters that are handed to the engineer:

Frequency range-It is the basic specification, arbitrarily determined by the manufacturer. Even though the instrument may perform well beyond the limits of this range, the manufacturer is prepared to guarantee his other specifications only within these specified limits.
Frequency accuracy-It includes all the factors that contribute to the maximum observable difference between any dial setting within the specified frequency range and the actual, absolute value of the output frequency (referred to NBS

[^3]standards) after stabilization and under standard conditions of ambient temperature, line-voltage level modulation setting. Frequently used standard conditions are 115 volts, 60 Hz unmodulated (cw) line voltage, and 0.0 dBm output.

Frequency stability vs time-When measured after 30 minutes warm-up under standard conditions, a typical figure for a quality instrument is 0.005% per hour, with a maximum drift that keeps the unit within the frequency-accuracy specification.

Frequency stability vs temperature-It is usually specified as a per-cent frequency change per ${ }^{\circ} \mathrm{C}$ over a specified temperature range. Typical values for a commercial instrument are $0.0005 \% /{ }^{\circ} \mathrm{C}$ from 0° to $50^{\circ} \mathrm{C}$.

Frequency stability vs line voltage-It is usually specified as a per-cent frequency change per one-volt change. A typical microwave signal generator is rated at 0.0003% per one-volt change over a range of $\pm 10 \%$ of nominal line voltage.

Accuracy of power-level setting (full scale)—It must include only the energy at the fundamental frequency and exclude harmonics or spurious energy. The result is comparable to absolute NBS standards. The measurement must be performed on an unmodulated signal. The operating conditions should include the lowest-rated line voltage and the highest-rated ambient temperature.

Accuracy of power attenuation-It describes the linearity of the attenuator, i.e., its maximum contribution to the error under the worst combination of setting, frequency and ambient temperature, and with the operating conditions described.

How to check impurities of the output

The next group of parameters, those frequently unspecified, includes a variety of signal impurities and their effects on the modulation envelope. The cw output of a practical, commercial signal instrument is not ideal; it does not have the singlefrequency (coherent) waveform that is desirable. However, the degree of deviation from ideal purity in a particular design is rarely stated, except in some general form like "minimum inci-
dental AM and FM." The impurities can be measured, but their complex relationships and the fact that they are not uniformly present over the entire rated frequency range make statements of their measurement complex and difficult.

To cope with these difficulties, a conscientious manufacturer, though he may not publish ratings, maintains "design limits," which should be available to assist the engineer in evaluating the instrument. Here is a list of causes of signal impurities and suggested tolerances:

Hum modulation, AM and FM-Inadequate filtering of the power supplies feeding the oscillator is the prime cause, although magnetic pickup and even electrostatic ac coupling can be significant. In a typical X-band design, the internal design limit might read: "Maximum incidental FM shall not exceed 20 kHz p-p due to power supply ripple and coupling. Maximum AM shall not exceed 0.01% measured under cw conditions."

Noise modulation, AM and FM-This is due primarily to noise generated in the microwave oscillator tube or transistor; more specifically, beam noise in klystron or other velocity-type tube is the culprit. A typical design-limit statement might read: "Maximum integrated noise sideband power shall not exceed -60 dB referred to the unmodulated carrier."

Harmonic Content-Invariably generated by the oscillator, this is never completely attenuated by the Q of the cavity, high though that may be. A typical design limit may be stated as: "Total harmonic content shall not exceed -40 dBm ."

Flicker-Several sources contribute to this: line transients and spikes, imperfect joints (e.g., sliding contacts) in RF plumbing, and erratic "pulling" (or intermittent "moding") in a marginal oscillator circuit. In a well-designed signal instrument, this should not be a measurable parameter. Typically, flicker modulation should not exceed -60 dB over more than 1% of operating time, or -50 dB over 0.01% of the time.

Modulation characteristics and anomalies are often as hard to determine from a written specification as are cw characteristics and behavior. The following points should not be overlooked:

Splatter-It results from an inadequate dynamic modulation range and should never be present when a device is operated under a specified range of modulation conditions. Attempts to operate an instrument at a higher than the specified modulation percentage may result in serious splatter.

Anomalous sidebands-Distortion in the modulation process can generate dozens of large, confusing, and sometimes intolerable spurious sidebands. In a good general-purpose design, the total energy of all such sidebands should not exceed 1% of the total sideband energy.
Spectral assymetry-This is usually due to
some combination of factors, including limited modulation range, high and nonlinear power supply impedance, marginal fidelity in the modulation circuit, and non-ideal modulating signals.

Any one of the above departures from absolute signal purity can cause expensive, time-wasting, and perhaps even destructive malfunctioning in a system. For example, large signal impurity can throw off level reading by several decibels, produce strange "detuning" effects and generate unrecognizable modulation envelopes. Only by assuring himself that the instrument designer has anticipated and minimized signal anomalies can the engineer avoid such problems.

Imperfections in the modulating signal are difficult to define with precision. However, it is necessary to check that each of the following has been standardized to acceptable limits:

Pulse-modulation fidelity of envelope-Typical design-limit specifications are: Rise and decay time shall not exceed $0.15 \mu \mathrm{~s}$. Neither overshoot nor undershoot should be more than 5%. Flatness of pulse top should be 1% on narrow pulses, 5% on wide pulses.

Sawtooth modulation fidelity of envelope-Typical design-limit specifications are: RF output should track modulating waveform within 3% for all modulation levels between 10 and 90%.

Sine-wave modulation fidelity of envelopeTypical design-limit specifications are: Modulation envelope distortion should not exceed 5\% total over a range of 0 to 50%.

Indefinable qualities can be quite definitive

Even though the instrument passes all the previous tests with flying colors, there are still some hurdles left. The last group of criteria are those unmeasurable qualities that make or break a line. These usually fall into two main categories: One we may call "functional reliability" or "design longevity," and the other, simply, "convenience and flexibility."

Functional reliability is a measure of the probability that an instrument, purchased today, will function in accordance with its specifications at a given time in the future. Failure to do so need not be catastrophic or even apparent. A manufacturer should be able to assure you, by showing life-test or field-experience data, that his instrument will,

Estimate design longevity of the instrument. The manufacturer should provide life-test or field experience data.

HOURS OF SERVICE (LOG. SCALE)

1. Typical cost factors associated with the operation of a signal generator are shown in terms of initial cost and routine maintenance expenses through the life of the instrument.

2. In a sound instrument, true functional failure, F_{2}, must occur later than the end of useful life. The functional failure analysis has been prepared for power output in this graph. F_{1} represents a renewable point in the life of the instrument.

Pick your purchase from a modular family. Future compatibility and functional modularity are important.
in all probability, provide full, functional reliability for a period of years.

Note that "functional failure" exists whenever the instrument is capable of operating outside the specified limits, even if the user never actually happens to apply a combination of stresses that would force it beyond them.

Anomalous behavior is a kind of functional failure, even if it is within the specified limits. For instance, an instrument's level calibration error may manifest itself as a drift upward and then suddenly change to a downward drift. This uncharacteristic behavior may paralyze an experiment, or at least delay it while the reason for it is hunted down, even though the drift remains within the permitted range.

Renewability-A common shortcoming of inferior instruments is that they are based on marginal designs that have very narrow tolerances. When a component fails, the unit cannot always be repaired such that it will again perform according to all of its original specifications, even when factory-supplied standard parts are used. To guard against this type of design, the engineer should make sure that the manufacturer has observed adequate margins to guarantee renewability. A typical set of curves used by Polarad to establish design margins is shown in Fig. 1. The cost of maintaining an instrument is compared with the cost of replacement in Fig. 2.
Versatility-In how many different ways can it be used in addition to that for which it is originally purchased? How much of the time will it be in use? Will it be compatible with most associated equipment, and in how many combinations? These and similar questions become important when selecting an instrument for laboratory use on a specific project with the expectation that it will later be available for other work. The manufacturer should be able to show features that demonstrate the wide applicability of his instrument.

Functional modularity-Look beyond the specific instrument to the other members of its family. When a line of instruments is considered as an integrated set (of measuring facilities, for example), each unit by itself should be suited to a sizeable range of applications without wasteful duplication, overlap or compromise in performance. You have a right to ask: "Can the same doubler be driven by each of a family of generators? Will the modulator module drive every one of the sources and generators in the line?"

Future compatibility-When purchasing one or more designs in a line of instrument modules, engineers should ask: "Can we be sure that our future needs for this kind of instrumentation can be met by adding one or more compatible existing modules from the same family?" Once again, it is necessary to look beyond the specifications. - -

another series of

618C Signal Generator

620B Signal Generator

Improved

3.8-7.6 GHz

$\mathbf{7 - 1 1 ~ G H z}$

Generators

Very low residual FM; cleaner signals mean more accurate measurement results
High level auxiliary rf output; can phase-lock or count frequency
New power monitor without "zero set"; simplified operation
High performance, lighter weight power supplies
These improved signal generators from HewlettPackard offer new standards of highly accurate and stable test signals. The new power supplies result in the lower residual FM ($10 \mathrm{kHz} \mathrm{p}-\mathrm{p}$ max.) and decrease the weight of the instruments. The auxiliary rf output allows you to phase-lock the signal generators with the Dymec 2650A Oscillator Synchronizer to provide crystal oscillator stability at microwave frequencies. It also can be used with an electronic counter for utmost precision in monitoring frequency.

Ultra-fine tuning capability is assured with the addition of a $\Delta \mathrm{F}$ frequency vernier control. A new crystal detector type power monitor eliminates zero setting; operation is simplified with less chance for operator error.

Brief specs are listed here. Call your HewlettPackard field engineer for complete information or write Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

SPECIFICATIONS hp 618C, 620B Signal Generators

Frequency range: $\mathrm{hp} 618 \mathrm{C}, 3.8$ to $7.6 \mathrm{GHz} ; \mathrm{hp} 620 \mathrm{~B}, 7$ to 11 GHz
Frequency calibration: Direct reading, accuracy better than $\pm 1 \%$ Calibrated RF into 50Ω
Output accuracy: Within $\pm 2 \mathrm{db}$ from -7 dbm to -127 dbm
Aux. RF output: Fixed level of at least 0.3 mw

Weight: Net $63 \mathrm{lbs}(29 \mathrm{~kg})$

Prices f.o.b. factory.

HEWLETT

Frequency stability: $<0.006 \% /{ }^{\circ} \mathrm{C}$ change in ambient temp.; $<0.02 \%$ change for $\pm 10 \%$ line voltage variation
Residual FM: $\mathrm{hp} 618 \mathrm{C}, \leq 8 \mathrm{kHz} \mathrm{p}$-p; hp $620 \mathrm{~B}, \leq 10 \mathrm{kHz} \mathrm{p}$-p output range: 1 mw or 0.224 v to $0.1 \mu \mathrm{v}(0 \mathrm{dbm}$ to $-127 \mathrm{dbm})$

Modulation: Pulse, square wave, $F M$; internal or external

Price: hp 618C, hp 620B, $\$ 2250$; rack mount add $\$ 20$.
Data subject to change without notice.

Signal generators $\quad 1.62-420 \mathrm{MHz}$

For information on how to use these tables, turn to page 2

	Manufacturer	Model	FREQUENCY				\# of ranges	OUTPUT		Modulation	Type	Price \$	Notes
			Min. MHz	Max. MHz	Acc. \%	Stab. ppm		Min. $\mu \mathrm{V}$	Max. V				
$\begin{gathered} \text { SG- } \\ 1 \end{gathered}$	Sierra	350A	. 005	1.62	$\pm 2 \mathrm{kHz}$	ina	2	-90 dBm	$+10 \mathrm{dBm}$	ina	C	895	
	Tel-Inst	1902A	4.5	4.5	ina	xtal	1	ina	0.75	AM,FM	C	480	
	H-P	618C	3.8	7.6	1	60	1	0.1	0.224	AM,FM, Pulse	C,R	2250	
	H-P	620B	7	11	1	60	1	0.1	0.224	AM,FM, Pulse	C, R	2250	
	Grundig	AS2	0.1	11.2	ina	ina	12	$-130 \mathrm{~dB}$	0.5	AM	C	275	
	Sierra	351A	. 01	15	$\pm 10 \mathrm{ppm}$	ina	1	-90 dBm	0 dBm	ina	C,R	2950	
	R \& S	SMLR	0.1	30	± 1	50	5	1	10	AM,FM	C	1490	
	Measurements	65B	. 075	30	0.5	ina	6	0.1	2.2	AM	C	875	
	Heath	IG-42	0.1	31	± 3	ina	5	ina	0.1	AM	C	56 kit	
	R \& S	SMAR	29 Hz	31	± 0.5	30	6	. 01	10	AM,FM	C	5995	
$\begin{gathered} \text { SG- } \\ 2 \end{gathered}$	Clough-Brengle	299A		32	0.5	ina	5	0.5	0.1				
	RCA	WR-50B	$.085$	40	± 2	ina	6	50 mV	ina	AM	C	65	
	Measurements	82	. 08	50	1	ina	7	0.1	1	AM	C	660	
	Gen Radio	1001A	. 005	50	± 1	2500	8	0.1	0.282	AM	C	1195	
	R \& S	SMDH	0	50	. 002 ppm	. 001 ppm	2	0.1	2.5	FM	C, R	11,600	
	Measurements	210 S	24	52	0.5	ina	1	0.1	0.1	FM	C	475	
	H-P	606B	. 05	65	1	50	6	0.1	3	AM,FM	C, R	1550	
	Gertsch	SG-8	. 05	65	± 1	. 005%	6	0.1	3	AM	R	1345	b
	H-P	606A	. 05	65	1	50	6	0.1	3	AM,FM	C,R	1350	b
	Marconi	2002	. 01	72	± 1	10	8	0.1	. 08	AM	C, R		
$\begin{gathered} \text { SG- } \\ 3 \end{gathered}$	Measurements	210 R		80	0.5	ina		0.1		FM			
	AMI	304	5	100	± 0.5	$\pm .005 \%$	1	0.1	0.1	FM	C, R	1785	b
	Piezo	SG-12A/U	1.4	102	0.5	ina	14	. 05	1	FM	C	2500	
	EICO	320	0.15	102	ina	ina	7	ina	. 07	AM	C	30	
	Measurements	88	86	108	0.5	ina	1	0.1	0.1	FM	C	585	
	Measurements	210A	86	108	0.5	ina	1	0.1	0.1	FM	C	450	
	Heath	IG-102	100	110	2	ina	6	ina	0.1	AM	C	30 kit	
	EMC	502	0.115	110	± 1.5	ina	6	ina	0.1	AM	C	27	
	Radiometer	MS111	. 01	110	1.5	0.2\%	12	0.2	0.2	AM,FM	${ }_{C}$	1008	
	Kay	5070	10	120	± 1	ina	5	107 dB	3	Pulse	C, R		
$\begin{gathered} \text { SG- } \\ 4 \end{gathered}$	Aircraft Radio	H-14-A	108	132	. 005	ina	2	1	100		C		
	H-P	211 A	88	140	0.1	50	1	0.1	0.2	AM,FM	R	2190	
	EICO	315	75	150	1	ina	7	ina	0.1	AM	C	60	
	Microdot	440/167RF	1	150	. 0008	.0005\%	1	0.1	1	AM, FM, Pulse	R	request	
	Measurements	210B	148	174	0.5	ina	1	0.1	0.1	FM	C	450	
	Motorola	T-1036-A	25	175	0.5	ina	6	0.1	0.1	FM	C	793	
	Hickok	295X	0.125	175	1	ina	8	0.1	0.1	AM	C,R	655	
	AMI	302	20	200	± 0.5	$\pm .005 \%$	1	0.1	0.1	FM	C,R	1950	
		202H		216	± 0.5	100	2	0.1	0.2	AM,FM,Pulse	C,R	1475	
	Radiometer	MS26		216	0.5	ina	2	. 05	0.2	AM,FM	C		
$\begin{gathered} \text { SG- } \\ 5 \end{gathered}$	Marconi	995A/2	1.5	220	1	25	5	1	0.1	AM,FM	C	1145	
	Triplett	3432A	0.16	220	2	ina	8	ina	ina	AM	C	130	
	Precise	612	0.1	220	1	ina	6	20	0.1	AM,FM	C	80	
	Radiometer	MS27	0.3	240	0.5	ina	5	0.2	0.2	AM,FM	C	1270	
	Gen Radio	1021-AV	40	250	1	ina	2	0.5	1	AM	C	895	
	RS	1021 VHF		260	ina	$\pm .01 \%$	1	0.1	. 07		C		a
	RS	5036-3	2161	260	ina	. 015%	1	0.1	0.1	FM	C,R	request	
	RS	1003	216	260	± 0.5	. 015%	1	0.1	0.1	FM	C,R	2925	
	H-P	202J	195	270	± 0.5	200	1	0.1	0.2	AM,FM,Pulse	C, R	1595	
	Microdot	440/140-4RF	200	275	. 0008	.0006\%	1	0.1				request	
$\begin{gathered} \text { SG- } \\ 6 \end{gathered}$	R \& S	ASV	30	300	± 2	ina	1	30 mV	3	AM,FM	C	850	
	R \& S	SMLM	30	300	± 1	30	6	3 mV	3	AM,FM	C	1395	
	$R \& S$	SMAF	4	300	± 1	50	8	. 05	50	AM,FM	C	2995	
	H-P	232A	329.3	335	. 0065	ina	2	1	0.2	AM	C	1920	
	Measurements	95	50	400	0.5	ina	3	0.1	0.1	FM	C	1800	
	EPSCO	SG-132A	15	400	0.5	50	6	0.1	0.15	AM,FM	C,R	2400	
	Measurements	80	2	400	0.5	ina	6	0.1	0.1	AM,Pulse	C	590	
	AMI	303A	215	420	± 0.5	$\pm .005 \%$	1	0.1	0.1	FM	C,R	1900	
	H-P	608D	10	420	0.5	10	5	0.1	0.5	AM,FM,Pulse	C,R	1300	b
	Gertsch	SG-9	10	420	± 0.5	.005\%	5	0.1	0.5	AM	R	1295	b

Notes, abbreviations and manufacturers' index at end of this section.

Signal generators $435-7600 \mathrm{MHz}$

				FREQ	ENCY			OUT					
	Manufacturer	Model	Min. MHz	Max. MHz	Acc. \%	Stab. ppm	\# of ranges	Min. $\mu \mathrm{V}$	Max. V	Modulation	Type	Price \$	Notes
$\begin{gathered} \text { SG- } \\ 7 \end{gathered}$	EICO	324	0.15	435	1.5	ina	7	ina	0.1	AM	C	40	
	H-P	608F	10	455	1	50	5	0.1	0.5	AM,FM,Pulse	C, R	1600	
	Marconi	1064B/2	30	470	0.5	25	3	0.25	. 01	FM	C	795	
	Motorola	T1035-A	25	470	0.5	ina	6	0.1	0.1	FM	C	793	
	Measurements	M-673	25	470	0.5	ina	6	0.1	0.1	FM	C	698	
	Marconi	1066B/6	10	470	± 1	0.15\%	5	0.1	0.1	AM,FM	C,R	1895	
	Marconi	1066B/1	10	470	1	25	5	0.2	0.1	AM,FM	C,R	1650	
	Marconi	$801 \mathrm{D} / 1$	10	470	0.2	50	5	0.1	0.5	AM,FM,Pulse	C	1615	
	Measurements	80R	5	475	0.5	ina	6	0.1	0.1	AM,Pulse	C	625	
	R \& S	SLSV	25	480	± 1	50	7	ina	3.5	AM	C	1695	
$\begin{gathered} \text { SG- } \\ 8 \end{gathered}$	H-P	608E	10	480	0.5	100	5	0.1	1	AM, FM, Pulse	C, R	1450	
	H-P	608C	10	480	1	50	5	0.1	1	AM,FM, Pulse	C,R	1200	b
	Gertsch	FM-9	150	486	$\pm .0002$	ina	2	0.5	. 05	FM	C	1495	
	Clough-Brengle	555	10	490	0.5	250	8	0.2	0.2	AM	C	485	
	H-P	3200B	10	500	± 2	20	6	1	3.1	AM	C, R	475	
	Gertsch	SSG-1	5 Hz	500	$\pm .00001$.00001\%	12	-130 dBm	0 dBm	AM	C	12,500	
	R \& S	SMFA	1.39	510	± 0.5	ina	12	. 03		AM,FM	C	7920	
	AMI	303H	380	520	± 0.5	$\pm .005 \%$	1	0.1	0.3	FM	C, R	2800	
		1021UHF	406	549		$\pm .005 \%$	1	0.1	. 07	FM	C	2950	a
	Babcock	BSG-17D					1			FM		5600	
$\begin{gathered} \text { SG- } \\ 9 \end{gathered}$	AMI	303B	400	550	± 0.5	.0025\%	1	0.1	0.1	FM	C,R	1950	
	RS	1001	400	550	± 0.5	. 015%	1	0.1	0.1	FM	C, R	2925	
	Microdot	440/143-4RF	400	550	. 0003	.0006\%	1	0.1	1	FM	R	request	
	RS	5036-1	$400{ }^{1}$	550	ina	. 015%	1	0.1	0.1	FM	C,R	request	
	Microdot	412A	400	550	. 0003	.0005\%	1	0.1	1	FM	C	9950	
	Smyth	606	38	600	$\pm .005$	$\pm .002 \%$	1	-30 dBm	-160 dBm	AM,FM	R	1295	
	AMI	303	225	800	± 0.5	$\pm .05 \%$	1	0.1	0.1	FM	C, R	3600	b
	Gen Radio	1021-AU	250	940	1	ina	1	0.5	1	AM	C	895	
	R \& S	SDAF	170	940	± 1	50	9	0.5		AM,FM, Pulse		4090	
	Marconi	1060/3	470	960	± 1	50	1		0.223	AM,FM	C, R	1895	
$\begin{aligned} & \text { SG- } \\ & 10 \end{aligned}$	Motorola	T1034-C	25	960	0.5	ina		0.1	0.1	FM	C	728	
	Measurements	560FM	25	960	0.5	ina	6	0.1	0.1	FM	C	648	
	Measurements	84TVR	400	1000	0.5	ina	1	0.1	0.3	AM,FM	C	785	
	R \& S	SDR	300	1000	± 1	50	8	1	3.5	AM, Pulse	C	2520	
	Gertsch	FM-7	20	1000	$\pm .0002$	± 1	1	note 6	note 6	AM,FM	C, R	1625	
	Gertsch	SG-10	400	1200	± 1	ina	1	0.1	0.5	AM	R	1395	b
	H-P	8925A	962	1213	note 5	ina	1	-100 dBm	-10 dBm	Pulse	C	12,090	
	$\mathrm{H}-\mathrm{P}$	612A	450	1230	1	ina	1	0.1	0.5	AM,FM, Pulse	C, R	1400	b
	RS	$1041 \mathrm{~L}$	1435	1535	ina	$.0005 \%$	1	$-20 \mathrm{dBm}$	$-120 \mathrm{dBm}$	FM	C, R	2950	
	Microdot	440/145-4RF	1435	1555		.0006\%	1			FM	R	request	
SG-11	R \& S	SCR	1000		± 1	50	4	1	2.7	AM	C	2190	
	EPSCO	SG-161	900	2100	± 1	. 005%	1	0.2	0.223	Pulse	C,R	1700	
	H-P	614 A	800	2100	1	50	1	0.1	0.224	FM, Pulse	C,R	1950	b
	Gertsch	SG-11	900	2200	± 0.5	ina	1	0.1	0.223	FM, Pulse	C^{\prime}	request	
	RS	1041S	2200	2300	ina	.0005\%	1	$-20 \mathrm{dBm}$	-120 dBm	FM	C, R	2950	
	H-P	8614A	800	2400	± 0.5		1	-127 dBm	$+10 \mathrm{dBm}$		C,R	2100	
	H-P	8614 B	800	2400	± 0.5	50	1	note 2	15 mW	AM,FM,Pulse	C, R	1450	b
	R \& S	SBR	1700	2700	± 1	50	1		2	AM	C	2320	
	R \& S	SLRD	275	2750	2	50	2	$-80 \mathrm{~dB}$	ina	AM	C	3995	
	Polarad	$\begin{gathered} \text { MSG-IR/2R- } \\ \text { G24P } \end{gathered}$	2400	4000	1	50	1	$-127 \mathrm{dBm}$	$+10 \mathrm{dBm}$	AM,FM,Pulse	C, R	2250	b, c
$\begin{gathered} \text { SG- } \\ 12 \end{gathered}$	R \& S	SAR	2700	4200	± 1	20	1	5	3.4	AM	C	2930	
	H-P	616B	1800	4200	1	50	1	0.1	0.223	AM,FM,Pulse	C,R	1950	b
	EPSCO	SG-153A	1800	4200	± 1	.005\%	1	0.1	0.233	FM,Pulse	C,R	1750	
	Gertsch	SG-12	1800	4400	± 0.5		1	0.1	0.223	FM,Pulse	C^{\prime}	request	
	H-P	8616A	1800	4500	$\pm 10 \mathrm{MHz}$	50	1	-127 dBm	$\pm 10 \mathrm{dBm}$	AM,FM,Pulse	C,R	2100	b
	H-P	8616B	1800	4500	$\pm 10 \mathrm{MHz}$	50	1	note 2	15 mW	AM,FM,Pulse	C,R	1450	b
	Polarad	$\begin{aligned} & \text { MSG-IR/2R- } \\ & \text { G24 } \end{aligned}$	2000	4600		50	1	-127 dBm	0 dBm	AM, FM, Pulse	C,R	1950	b, c
	R \& S	SLRC	2300	7000	± 1.5	50	1	100 mW	3 W	FM, Pulse	C	6600	
	Gertsch	SG-13	3800	7600	± 0.5	ina	1	0.1	0.223	FM, Pulse	C	request	
	EPSCO	SG-152	3800	7600	1	.006\%	1	0.1	0.223	AM,FM, Pulse	C,R	2025	

Notes, abbreviations and manufacturers' index at end of this section.

Signal generators $7780-39,700 \mathrm{MHz}$

	Manufacturer	Model	FREQUENCY				$\begin{aligned} & \text { \# of } \\ & \text { ranges } \end{aligned}$	OUTPUT		Modulation	Type	Price \$	Notes
			Min. MHz	Max. MHz	Acc. \%	Stab. ppm		Min. μV	Max. V				
$\begin{gathered} \text { SG- } \\ 13 \end{gathered}$	Dymec	623B	5820	7780	. 03	ina	1	70	0.223	AM,FM	C	2250	
	Polarad	1107	3800	8200	± 0.5	50	1	$-127 \mathrm{dBm}$	$+3 \mathrm{dBm}$	AM,FM	R	1900	b
	Polarad	1207	3800	8200	± 0.5	ina	1	50 mW	ina	AM,FM	R	1425	b
	Dymec	DY-5636	7100	8500	$\pm .03$	ina	1	$+15 \mathrm{dBm}$	-85 dBm	AM,FM, Pulse	C	3800	
	Dymec	624C	8500	10,000	. 03	ina	1	2.23	0.223	AM,FM, Pulse	C, R	2265	
	Smyth	608	600	10,000	$\pm .005$	$\pm .002 \%$	1	-30 dBm	$-160 \mathrm{dBm}$	AM,FM	R	2-3000 ${ }^{(3)}$	
	Gertsch	SG-14	7000	11,000	± 0.5	ina	1	0.1	0.223	FM, Pulse	C	request	
	EPSCO	SG-184	7000	11,000	1	.006\%	1	0.1	0.223	AM,FM, Pulse	C, R	2050	
	Polarad	1108	6950	11,000	± 0.5	ina	1	$-127 \mathrm{dBm}$	$+3 \mathrm{dBm}$	AM, FM, Pulse	R	1900	b
	Polarad	1208	6950	11,000	± 0.5	50	1	25 mW	ina	AM,FM, Pulse	R	1425	b
$\begin{gathered} \text { SG- } \\ 14 \end{gathered}$	Polarad	MSG-34	4200	11,000	1	100	1	0.1	0.223	AM, FM, Pulse	C	3680	
	R \& S	SMCK	1700	11,400	± 1	10	note 5	3 mW	120 mW	AM,FM	C	note 5	
	H-P	626A	10,000	15,500	1	ina	1	$-90 \mathrm{dBm}$	$+10 \mathrm{dBm}$	AM,FM,Pulse	C,R	3400	b
	H-P	628A	15,000	21,000	1	ina	1	-90 dBm	$+10 \mathrm{dBm}$	AM,FM, Pulse	C, R	3400	b
	Polarad	EHF-G1822	18,000	22,000	0.1	ina	1	-90 dBm	$-10 \mathrm{dBm}$	AM,FM,Pulse	C	3315	c
	Polarad	EHF-G2225	22,000	25,000	0.1	ina	1	-90 dBm	$-10 \mathrm{dBm}$	AM,FM,Pulse	C	3315	c
	Polarad	EHF-G2427	24,700	27,500	0.1	ina	1	-90 dBm	$-10 \mathrm{dBm}$	AM, FM, Pulse	C	3315	c
	Polarad	EHF-G2730	27,270	30,000	0.1	ina	1	-90 dBm	$-10 \mathrm{dBm}$	AM,FM, Pulse	C	3340	c
	Polarad	EHF-G3033	29,700	33,520	0.1	ina	1	$-90 \mathrm{dBm}$	$-10 \mathrm{dBm}$	AM, FM, Pulse	C	3340	c
	Polarad	EHF-G3336	33,530	36,250	0.1	ina	1	-90 dBm	$-10 \mathrm{dBm}$	AM,FM, Pulse	C	3340	c
	Polarad	EHF-G3540	35,100	39,700	0.1	ina	1	-90 dBm	$-10 \mathrm{dBm}$	AM,FM,Pulse	C	3340	c

Signal generators Late arrivals

Notes, abbreviations and manufacturers' index at end of this section.

NOTES

a. Battery operated.
b. Input voltage, 115 or $230 \mathrm{~V}, \pm 10 \%, 50-60 \mathrm{~Hz}, 1$ phase.
c. Prices shown are for tuning unit and basic power supply. The basic power supply can be used with any of this series of tuning heads.

1. Monitored by built-in frequency counter.
2. Attenuator range 130 dB .
3. Depending on RF unit desired.
4. Three separate oscillator units available, $1.7-5 \mathrm{GHz}$, $\$ 4110 ; 4.4-8.3 \mathrm{GHz}, \$ 4150$; $8-11.4 \mathrm{GHz}, \$ 4400$.
5. Determined by frequency counter setting.
6. Fundamental range $20-40 \mathrm{MHz}$, output 0.4 V across 50 ohms; harmonics, $40-100 \mathrm{MHz}$, output .002 V minimum across 50 ohms.

ABBREVIATIONS

C Cabinet.
R Rack mount.
ina Information not available.
xtal Crystal.

Tektronix oscilloscope displays both time-bases separately or alternately

TYPE 547 and 1A1 UNIT

DUAL TRACE DC-to- 50 MHz $50 \mathrm{MV} / \mathrm{CM}$ DC.TO-28 MHz, $5 \mathrm{MV} / \mathrm{CM}$

SINGLE TRACE

2 Hz -to- 15 MHz $500 \mu \mathrm{~V} / \mathrm{CM}$ (Channels I AND 2 Cascaded)

With automatic display switching, the

 Type 547 provides two independent oscilloscope systems in one cabinet, time-sharing a single-beam crt.
Type 547 also uses

Some Type 547/1A1 Unit Features

CRT (with internal graticule and controllable illumination) provides bright "no-parallax" displays of small spot size and uniform focus over the full $6 . \mathrm{cm}$ by $10 . \mathrm{cm}$ viewing area.

Calibrated Sweep Delay extends continuously from 0.1 microsecond to 50 seconds.
2 Independent Sweep Systems provide 24 calibrated time-base rates from $5 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. Three magnified positions of $2 \mathrm{X}, 5 \mathrm{X}$, and 10 X , are common to both sweeps-with the 10 X magnifier increasing the maximum calibrated sweep rates to $10 \mathrm{nsec} / \mathrm{cm}$.

Single Sweep Operation enables oneshot displays for photography of either normal or delayed sweeps, including alternate presentations.

2 Independent Triggering Systems simplify set-up procedures, provide stable displays over the full passband and to beyond 50 MHz , and include brightline automatic modes for convenience.

Type 547 Oscilloscope (without plug-in unit)
Type 1A1 Dual-Trace Unit \$600
Rack-Mount Model Type RM547 . . . $\$ 1975$
U.S. Sales Prices f.o.b. Beaverton, Oregon
$\$ 1875$

Tektronix, Inc.

For complete information, contact your
nearby Tektronix field engineer or write:
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97005

2 signals - portions of each magnified

Trace 1 is Channel 2/B sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$.
Trace 2 (brightened portion of Trace 1) is Channel 2/A sweep, $0.5 \mu \mathrm{sec} / \mathrm{cm}$.
Trace 3 is Channel $1 / B$ sweep, $10 \mu \mathrm{sec} / \mathrm{cm}$.
Trace 4 (brightened portion of Trace 3) is
Channel 1/A sweep, $0.5 \mu \mathrm{sec} / \mathrm{cm}$.
Using sweep delay technique-plus automatic alternate switching of the time bases-permits displaying both signals with a selected brightened portion and the brightened portions expanded to a full 10 centimeters.
B sweep triggering internally from Channel 1 (plugin) assures a stable time-related display without using external trigger probe.

same signal - different sweeps

Upper trace is Channel 1/A sweep, $0.1 \mu \mathrm{sec} / \mathrm{cm}$.
Lower trace is Channel $1 / B$ sweep, $1 \mu \mathrm{sec} / \mathrm{cm}$.
Using different sweep rates to alternately display the same signal permits close analysis of waveform aberrations in different time domains.

(keyed to table locator symbols)
Advanced Measurement
Instruments, Inc (AMI)

302	$(S G-4)$
303	$(S G-9)$
$303 A$	$(S G-6)$
$303 B$	$(S G-9)$
$303 H$	$(S G-8)$
304	$(S G-3)$

Aircraft Radio Corp
H-14A (SG-4)

Babcock Electronics Corp
BSG-17D (SG-8)

Clough-Brengle Co

$299 A$ $(S G-2)$ 555 $(S G-8)$	
Dymec	
DY-5636	(SG-13)
623B	(SG-13)
$624 C$	$(S G-13)$

Dynatronics

DFS-23	$(S G-15)$
DFS-23A	$(\mathrm{SG}-15)$
DFS-22	$(\mathrm{SG}-15)$
DFS-22A	$(\mathrm{SG}-15)$
DFS-21A	$(\mathrm{SG}-15)$

Electronic Instrument Co, Inc (EICO)

315	(SG-4)
320	(SG-3)
324	(SG-7)

Electronic Measurements
Corp (EMC)
502 (SG-3)

- Conservatively rated for dependability.
- Simple to operate.
- Reasonably priced.

Other MEASUREMENTS products include: Frequency Meters, Deviation Meters, Megacycle (grid-dip) Meters, Pulse and Square Wave Generators, Crystal Calibrators, Vacuum Tube Voltmeters and Intermodulation Meters, made with the same painstaking care. For more information, drop us a line.

EPSCO, Inc

SG-132A	(SG-6)
SG-152	(SG-12)
SG-153A	(SG-12)
SG-161	(SG-11)
SG-184	(SG-13)

General Radio Co
(Gen Radio)

1001A	$(\mathrm{SG}-2)$
$1021-\mathrm{AU}$	$(\mathrm{SG}-9)$
$1021-\mathrm{AV}$	$(\mathrm{SG}-5)$
Grundig	
AS2	$(\mathrm{SG}-1)$
Heath Co	
IG-42 IG-102	(SG-1)
	(SG-3)
Hewlett-Packard Co	(H-P)
202H	(SG-4)
202J	(SG-5)

The Standard Reference For Electronic Test Instruments
 DIRECTORY OF TECHNICAL SPECIFICATIONS

5

FREQUENCY METERS
upper frequency limit 1.15 Mc

CONVENIENT TABULAR FORMAT PROVIDES QUICK AND EASY MODEL-TO-MODEL COMPARISONS

One look at the specimen pages will show you-better than words-the extent of the information furnished by the DIRECTORY OF TECHNICAL SPECIFICATIONS and the comparative arrangement of the data. These convenient tables are designed for rapid and accurate point-by-point comparison of instruments having similar functional capabilities. By providing a thorough across-the-market analysis, all alternatives can be considered in selecting the right instrument for any application.

SAVE HOURS OF ENGINEERING TIME

The Directory eliminates once and for all the necessity of searching catalogs, sales literature and periodicals to find suppliers, specifications, performance characteristics and prices. It provides in one comprehensive source, arranged and indexed for convenient use, all the information you need to keep completely up-to-date on available instruments, to evaluate competitive products and to select the best instrument at the best price.

NO NEED FOR CATALOG FILES

Keeping and maintaining your own files of manufacturers catalogues, brochures and loose data sheets is completely unnecessary. The DIRECTORY OF TECHNICAL SPECIFICA-

TIONS gives you all the required data to select and specify electronic test instruments-all in one compact and easy to use reference. No other reference source is as complete or efficiently organized. The six-volume Directory lists approximately 14,000 instruments of more than 500 manufacturers and comprises 46 sections, each covering a different type of instrument.

ALWAYS COMPLETE AND UP-TO-DATE

The constant changes in specifications and performance of electronic test instruments is making it increasingly difficult to keep abreast of the latest developments. The Directory is kept continuously up-to-date by the mailing of section revisions to subscribers at the rate of approximately one each week. The information in the entire Directory is completely revised in less than a year.

AVAILABLE ON FREE 30-DAY TRIAL

The DIRECTORY OF TECHNICAL SPECIFICATIONS may be obtained on a FREE 30-DAY TRIAL BASIS for your examination and use. A one-year subscription includes the six-volume set of 46 sections plus the up-dating service to keep all information complete and current.

PRICE ... $\$ 300$. per year
For further information write or telephone...
P. O. Box 514, Smithtown, N. Y. (516 $234-0100$

Designed for
 Adaptation

\$255.

Here is the practical oscilloscope for special applications-Data Instruments S51. This scope is designed for modification both physically and electrically and has a history of success in large volume OEM equipments as well as single installations. Versions of the S51 are currently performing with unusual success in medical applications for which new sensitivities were installed and controls were tailored to the habits of the personnel using them. The S51 is also used as original equipment in consoles of standard data handling and process control systems and has gained wide acceptance for use on assembly line testing and for educational purposes. The features that make the S51 particularly suitable for adaptation are: (a) The low initial cost of the instru-ment-\$255. (b) The large sophisticated CRT, which is capable of handling a broad range of requirements without additional circuitry. (c) The open construction which simplifies the physical problems of modification. (d) Its extremely light weight (16 lbs). And (e) the high quality and performance of the basic instrument. Its specifications are:

VERTICAL AMPLIFIER								
BANDWIDTH	SENSITIVITY/CM	ATTENUATOR	IMPEDANCE	ACCURACY				
DC- 3 MHz	100 mv to 50 v	9 position					$1 \mathrm{M} \Omega+30 \mathrm{pf}$	$\pm 5 \%$
TIME BASE		CRT						
SPEED/CM	 HOR. AMP.	DIA.	PHOSPHOR	VOLTS	DIM. \& WT.			
$1 \mu \mathrm{~s}-0.1 \mathrm{sec}$. $(6$ ranges)	Exp. $\times 2$ $5 \mathrm{~Hz}-200 \mathrm{KHz}$	$5^{\prime \prime}$ PDA	P1, P7	3.5 kv	$151 / 2^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime}$ 16 lbs			

Data Instruments maintains a staff of engineers experienced in special installations. If you have an unusual requirement for an oscilloscope, the chances are the S 51 can be modified to do the job.
Data Instruments Division - 7300 Crescent Blvd. - Pennsauken, N.J. 08110

This year, you'll buy more than 2000 POLARAD modular microwave signal instruments ... 40\% more than last year.

Why? Turn the page...

If card has been
used, please circle
reader inquiry card.

POLARAD ELECTRONIC INSTRUMENTS
A Division of Polarad Electronics Corp.
34-02 Queens Blvd.
Long Island City, N.Y. 11101
Tel. No. (212) EX 2-4500

First Class

Permit No. 18
Long Island City, N.Y.

BUSINESS REPLY MAIL
 Postage Will Be Paid by Addressee
 No Postage Stamp Necessary If Mailed In The United States

POLARAD ELECTRONIC INSTRUMENTS

A Division of Polarad Electronics Corporation 34-02 Queens Blvd.
Long Island City, N.Y. 11101

Here are 10 of the reasons!

1. Lowest Cost-yet highest quality, widest range, greatest flexibility. Always your best buy-and we can prove it!
2. True Modular Compatibility-buy only what you need, and add new capabilities as required-without wasteful overlap or performance compromise!
3. Highest Inherent Reliability-due to exclusive rock-solid ceramic klystron, ultrarigid castings, advanced thermal design, and the most generous operating margins ever provided in this class of instruments. 4. Full Mechanical Flexibility-rack or stack these modern, attractive packages, in
any combination-easiest instruments to use, to convert, to "build-in"!
4. Over 100 Useful Combinations-
from only 11 basic modules; and that means capital-budget economy for the small laboratory or production-test facility!
5. Most Compact in their Class-more range, more function per cubic inch, per panel inch, per lb , per dollar-than is offered by any other precise microwave signal instrumentation.
6. $\pm \mathbf{0 . 5} \%$ Accurate Digital Frequency Readout-programmable by rear tuning shaft extension, too.
7. Ultra-Stable, Ultra-Pure-extremely-well-regulated power supplies, low thermal
gradients, bimetallic cavity stabilization, and advanced shielding/filtering/isolating design ensure lowest drift, lowest incidental $A M$ and $F M$, greatest freedom from spurious signals.

9. Full Phase-Lock Compatibility-all

 models designed to accept phase-lock frequency stabilization from the Polarad Model 3815-the highest-performance master-crystal stabilizer you can buy.10. In-Stock Availability-in small quantities, we ship from continually-replenished stock; larger quantities are scheduled on a 15-45 day cycle, currently. (Demos? Overnight by air!)

Yes,

 IT'S TRUE-more engineers standardize on POLARAD Modular Microwave Signal Instrumentation every year ... won't use any other kind, in fact. The card below will bring you all the reasons for PEl's popularity-by return mail!
Gentlemen:

I want to see and try a Polarad Signal Generator. Have my local Polarad Field Engineer call me at once to arrange for a demonstration.

I may have a requirement soon. Send me Bulletin EIS-663 by return mail, and have my local Polarad Field Engineer get in touch with me shortly thereafter, to discuss my requirements.

I have no immediate requirement, but I want the complete new Polarad Signal Generator Catalog for my files.

My application is
The frequency range of interest to me is \qquad
\qquad
\qquad
Company \qquad
Address
City
\qquad
State
ip
Use this card for Fast, Direct Action.
(If card is missing, see back of this stub.)

MSG－34	$($ SG－14）
1107	$(S G-13)$
1108	$(S G-13)$
1207	$(S G-13)$
1208	$(S G-13)$

$\left.\begin{array}{ll}\begin{array}{l}\text { Precise Electronics \＆} \\ \text { Development }\end{array} \\ \text { Corp }\end{array}\right)$（SG－5）

RCA，Electronic Components \＆Devices
WR－50B（SG－2）
Radiometer Electronics

MS26	（SG－4）
MS27	（SG－5）
MS111	（SG－3）

Rohde \＆Schwarz Sales Co，Inc （ $\mathrm{R} \& \mathrm{~S}$ ）

ASV	（SG－6）
SAR	（SG－12）
SBR	（SG－11）
SCR	（SG－11）
SDAF	（SG－9）
SDR	（SG－10）
SLRC	（SG－12）
SLRD	（SG－11）
SLSV	（SG－7）
SMAF	（SG－6）
SMAR	（SG－1）
SMCK	（SG－14）
SMDH	（SG－2）
SMFA	（SG－8）
SMLM	（SG－6）
SMLR	（SG－1）

Sierra Electronic Div

350A	（SG－1）
35IA	（SG－1）
Gertsch Products	
Singer－Merrics Div	
FM－7	（SG－10）
FM－9	（SG－8）
SG－8	（SG－2）
SG－9	（SG－6）
SG－10	（SG－10）
SG－11	（SG－11）
SG－12	（SG－12）
SG－13	（SG－12）
SG－14	（SG－13）
SSG－1	（SG－8）

Smyth Research Associates

606	$(S G-9)$
608	$(S G-13)$

Tel－Instrument Electronics Corp（Tel－Inst）
1902A
（SG－1）
Triplett Electrical Instrument Co
3432A
（SG－5）
Manufacturers＇addresses and literature offerings in master cross index at front of issue．

NEW OPERATIONAL AMPLIFIER COMPACT ELECTROMETER，TOO！

Keithley Model 300

This economical little package is a true electrometer operational amplifier．It combines more than 10^{14} ohms input resistance， less than 5×10^{-14} ampere offset curreht and ultra－low current drift of 10^{-15} ampere per day into a precise single－ended output design that meets demands in conditioning signals as low as 10^{-14} ampere． \mathbb{E} Completely shielded，the 300 is a simple－to－use，easy mounting plug－in module．An output voltage of 11 volts at 11 ma is provided．Works to specs on unregulated supplies from ± 16 to ± 25 volts，at +25 ma or -8 ma ． ．For experiments or systems requiring extraordinary conditioning of small current signals，the Model 300 is the finest operational amplifier on the commercial market． Particularly for researchers in automated R \＆D，designers and producers of process or production control equipment．Ask your Keithley engineer for a demonstration．But read our technical engineering note first．It＇s yours by dropping us a line．

CHARACTERISTICS

Voltage Gain dc open loop：	$>20,000$	Voltage Offset	adjustable to zero
Input		Voltage Drift	$<500 \mathrm{uv} / \mathrm{hr}$.
Resistance：	$>10^{14}$ ohms	Overload Limit	$\pm 400 \mathrm{~V}$
Capacitance：	$<10 \mathrm{pf}$	Output	
Current Offset：	$<5 \times 10^{-14} \mathrm{amp}$	Voltage：	$\pm 11 \mathrm{~V}$
Current Drift：	$<10^{-15} \mathrm{amp} /$ day	Current：	$\pm 11 \mathrm{ma}$

SINGLE UNIT \＄200．．．LESS IN QUANTITIES

K曰エTエエIEエ INSTRUMENTS

12415 Euclid Ave．．Cleveland，Ohio 44106
EUROPE： 14 Ave．Villardin， 1009 Pully，Suisse

Sweep away drift problems in narrow-band receiver tests. Use a sweep generator and scope for sensitivity and signal-to-noise measurement.

Drift problems in a narrow-band communications receiver are relatively easy to overcomejust use a crystal oscillator rather than LC circuits. But what's the answer to drift in the signal generator testing the receiver? Variable tuning for a generator is a necessity to accomplish such basic tasks as out-of-band rejection tests. Frequency synthesizers can be used as a master oscillator, but, this is an expensive solution.
A more economical solution is found simply by varying the measuring technique. Use a frequen-cy-swept signal with the receiver's output displayed on a scope. Benefits are threefold:

- The test set-up is basically the same for all receivers. (Fig. 1).
- The test sequence is simple, quick and without calculation.
- Generator frequency drift is no longer a consideration.

In addition to the often-used bandwidth and selectivity measurements, sweep frequency techniques may be applied to determine sensitivity and signal-to-noise ratio for single sideband (SSB) and telegraphy receivers-both AM and FM.

SSB and telegraphy receivers are simplest

Despite often exacting specs, SSB and telegraphy receivers are, in one respect, the easiest to test. Their general performance can be measured by using an unmodulated cw signal to simulate the wanted sideband. Since the test signal does not have to be modulated, noise-limited sensitivity can be read from a single display.

Receiver sensitivity is usually stated in terms of that input level necessary to obtain a specified signal-to-noise ratio (noise-limited sensitivity). In the case of an SSB receiver, it is simply given as an input voltage without specifying the amount of modulation. Using a signal generator, signal-tonoise ratio is determined by measuring the receiver's output power level with and without an input signal. Output power with zero input is, of course,

[^4]noise alone. Output power with a finite input signal is equal to the sum of the noise and the signal. Signal-to-noise ratio is then given by:
\[

$$
\begin{equation*}
\mathrm{S} / \mathrm{N}=\left[10 \log \left(P_{s} / P_{n}\right)-1\right] \mathrm{dB} \tag{1}
\end{equation*}
$$

\]

Where: P_{s} is the output power with signal applied and P_{n} is the output power with zero input.
For sensitivity measurements, noise is measured first, the required output signal level P_{s} is calculated, and the generator is adjusted to produce this output power. Sensitivity voltage is then read directly from the attenuator setting.

Using sweep frequency, noise level and signal plus noise are displayed simultaneously since the baseline of the response display corresponds not to zero output but to the noise level. At the comparatively high input voltages used for bandwidth measurement, the difference is negligible. However, if the input voltage is reduced to the specified sensitivity level, it is necessary to turn up the effective gain of the scope's vertical amplifier to obtain a display. At this gain setting, the height of the displayed baseline is easily measured.
It is necessary to first establish the position of zero vertical input deflection on the baseline of the scope's graticule. This is done by disconnecting the vertical input and bringing the trace to the graticule baseline with the position control. Noise level, when the scope is reconnected, is simply the distance between the graticule and display baselines. The distance between the graticule baseline and the peak of the displayed response is proportional to signal-plus-noise voltage.

One minor point-signal-to-noise is essentially a power ratio, while scope deflection is proportional to peak voltage. This is true with the high levels used for frequency response measurement, but not necessarily true at the lower noise measurement signal levels. The answer lies in the detector used. Most diodes have transfer characteristics which are linear above 500 mV and approximate squarelaw responses below. Realizing this, it is easy to construct a detector with a voltage output nearly proportional to the mean power in its input circuit (See Fig. 2). The complete test set up for sensitivity measurement is shown in Fig. 3.

1. The generator is tuned and the sweep width adjusted to obtain a suitable display. The switch is

2. Conventional sweep generator-scope setup for dynamic display of receiver frequency response.
set to position 1 so that the scope has no vertical input and the trace then brought to the baseline.
3. The switch is then reset to position 2 and the AF gain of the receiver adjusted to bring the display baseline to the line on the dB scale corresponding to the specified signal-to-noise ratio.
4. The peak of the curve is brought to the $0-\mathrm{dB}$ line with the generator's attenuator controls, which then indicate sensitivity.

This sequence is simpler and the possibility of the generator drifting out of tune is negligible.

Same set-up for AM receivers

If the generator has provisions for applying AM and frequency sweep simultaneously, the test setup to Fig. 3 is equally suitable for a conventional double sideband AM receiver. The usual method of displaying the response characteristic using a sweep generator is by connecting the scope's vertical input directly to the receiver's detector. However, for audio bandwidths, the application of a frequency-swept amplitude-modulated test signal gives accurate results. The AM frequency must be low (about 10%) compared to the bandwidth, and the modulation depth should be restricted to about 20%. Then the displayed response using the basic swept set-up is the same as that obtained by dc coupling the scope to the receiver's detector.

Maximum sensitivity is the term usually applied to what is virtually a receiver gain measurement expressed in terms of RF input voltage for a given AF output power. The bandwidth of receivers normally measured is seldom a small enough fraction of the tuning frequency to warrant any precaution against generator frequency drift. Here, the case for sweep frequency rests upon the ability to conduct a number of tests with the same basic set-up. In order to give an absolute measure of output power, the detector must be calibrated with a monitored AF signal. Having established the scope deflection for the required AF power, the measurement is a simple matter of adjusting the input signal level to produce this deflection at the center frequency of the display. Maximum sensitivity measurements are normally made with 30% modulation at 400 Hz . Application

2. Full-wave detector gives voltage output proportional to mean power applied to its input. With switch in position 1 , the unit is a peak voltage detector; a flip of the switch converts it to a square-law device. The $15-\Omega$ resistor is used only when necessary to terminate the receiver's AF output circuit.

3. Sensitivity measurement setup parallels basic frequency response setup with detector acting as a squarelaw device.
of this modulation may cause slight deformation of the skirts of display, but there is negligible amplitude error in the region of the peak.

Aside from the fact that the noise-limited sensitivity of an AM receiver is usually measured with 30% modulation applied to the carrier, the method of measurement is very similar to that used for SSB and telegraphy receivers. There is one important difference.

The noise level of a SSB receiver remains constant with or without the input signal. If an AM receiver is tuned to an unmodulated RF signal which is below the age threshold, the noise level rises noticeably as compared with the noise for zero input. Without an input signal, internally generated noise is not sufficient to drive the receiver's detector to the linear part of its characteristic. But, when an external carrier is applied, the noise voltages add to it and effectively produce random modulation which is linearly detected.

Signal-to-noise ratio is therefore always measured with the carrier applied throughout the test, at a level close to the specified sensitivity. Noise output power is first measured with the carrier unmodulated. Modulation is then applied and a second measurement made, giving the signal plus noise sum. The ratio is then calculated by the formula given for SSB receivers (Eq. 1).

Using sweep irequency, the sensitivity measure-
ment can again be made in three simple steps, without calculation and with complete independence from frequency drift. The set-up is again that of Fig. 3.

1. Vertical deflection with zero input is first set to the graticule baseline as before.
2. The switch is then set to position 2 and a response curve displayed by sweeping the unmodulated RF signal through the receiver's IF passband. This curve is due to the noise output of the receiver; therefore the receiver's AF gain is set to bring its peak to the line on the dB graticule corresponding to the required signal-to-noise.
3.30% AM is applied to the carrier at the specified AF and the generator's attenuator is adjusted to bring the peak of the displayed curve to the $0-\mathrm{dB}$ line on the graticule. The attenuator reading is then the noise-limited sensitivity.

Narrow-band FM receivers tax generator stability

Vhf or uhf narrow-band FM receivers probably tax the frequency stability of the generator more than any other type. In fixed and mobile point-topoint systems, channel spacings of 25 kHz are quite common, maximum rated deviation being 15 kHz . Noise-limited sensitivity measurements are usually made at peak deviation of 30% of maximum (5 kHz) so that the signal generator needs to drift only about 6 kHz from center frequency before the outer significant sidebands fall outside the receiver's passband. At a tuning frequency of the order of 470 MHz this calls for a stability of about 0.00125% over the time necessary to make the measurement.

Because of the ready adaptability of many FM generators to sweep frequency methods, their use for the dynamic display of FM receiver characteristics is quite common. Display of the IF amplifier response requires a separate detector fed directly from the last IF stage, but otherwise, the method is similar to that used for any other type of receiver. The main application of the sweep generator to FM receivers, however, is for examination of demodulator characteristics. The dynamic display of demodulator response can be produced on a scope using any FM generator suitable for general receiver tests. However, maximum frequency deviation of the generator must be large enough to accommodate the entire demodulator response. Of receivers in common use, broadcast receivers, designed for $75-\mathrm{kHz}$ maximum deviation, require the widest sweep (about $\pm 100 \mathrm{kHz}$). To check the demodulator realistically, the test signal should be applied at full limiter voltage and it should also be derived from the correct source impedance. To obtain these conditions, use the IF amplifier of the receiver as the connecting network between the generator and the demodulator.

Then, the generator output is fed into the receiver's IF amplifier input or, into the antenna socket if this is more convenient. Care should be taken that the displayed demodulator characteristic is not modified by the frequency response characteristic of the receiver's tuned amplifiers. To do so, modulating frequency should be kept as low as conveniently possible (50 Hz under normal circumstances). The bandwidth of the receiver normally accommodates the multiple FM sidebands at much higher modulation frequencies, so all significant sidebands at $50-\mathrm{Hz}$ spacing are easily handled.

This usually necessitates modulating the generator from an external source, and, in this case, a sinewave is more convenient than a sawtooth. With sinewave modulation, the generator's modulation meter indicates the frequency deviation, which is half the sweep width. The horizontal deflection on the scope is obtained by also feeding the output of the modulating oscillator to the external time base terminal of the scope, and the total length of the trace then corresponds to twice the FM deviation as indicated on the modulation meter. Horizontal amplifier gain can then be adjusted so that the horizontal calibration of the scope's graticule becomes a frequency scale. The scope's vertical input is connected directly to the audio output terminal of the receiver's demodulator. The high input impedance of the scope is unlikely to affect demodulator operation. With the signal generator tuned to the IF (or RF) center frequency, sufficient output is applied to operate the limiter of the receiver. The familiar " S " shaped demodulator response will be displayed.

If the FM generator is suitable, a much more useful display can be produced using two superimposed modulating frequencies. When the object of the display is measurement of true demodulator linearity over the nominally linear part of its characteristic, more information can be gained from a display of the derivative of the demodulation curve. This is a display in which the instantaneous vertical position of the spot is proportional to the instantaneous slope of the demodulation curve. Such a display gives far better discrimination than the direct response curve (see Fig. 4).

The test set-up is shown in Fig. 5. A slow sawtooth voltage or low-frequency sinewave (about $60-\mathrm{Hz}$) is simultaneously applied to the generator's external modulation terminals and the horizontal deflection system of the scope. The amplitude of this sweep voltage should be such as to give a frequency sweep which completely accommodates the demodulator characteristic. Its frequency should be below the low-frequency response of the receiver's audio amplifier. Superimposed upon this voltage, by means of the transformer, is an AF voltage (say 1 kHz) of sufficient

4. Derivative of FM demodulator response (bottom curve) shows changes in slope much more markedly than direct response (upper curve).
amplitude to give about 1% of maximum rated deviation. The vertical input terminal of the scope is connected via a detector to the AF output of the receiver. Thus, both the gain and the low-frequency output of the audio amplifier are utilized. The instantaneous $1-\mathrm{kHz}$ receiver output is then directly proportional to the slope of the demodulation curve at the instantaneous input carrier frequency , so that the spot traces out the derivative curve. Any nonlinearity is easily detected by aligning the curve with one of the horizontal graticule lines on the scope. Also, the relative magnitude of the nonlinearity can be measured by comparing the amplitude of the departure from this line with the mean height of the display from the zero points.

The procedure for making signal-to-noise measurements using sweep frequency parallels the static method. With true zero established at the graticule baseline, a modulated signal is applied to the receiver (the low-voltage AF modulating voltage is superimposed on the sweep voltage). Most specs quote noise-limited sensitivity with FM applied at 30% of the maximum rated deviation. This FM level naturally distorts the edges of the derivative curve, but this is unimportant because the height of the displayed curve at the center frequency remains proportional to the intune output of the receiver. Then, with the modulated RF input level approximately at the specified sensitivity level, the AF gain of the receiver is adjusted to bring the peak of the "modulation on" curve to the $0-\mathrm{dB}$ line on the graticule. The modulation voltage is then switched off so that the scope displays a curve representing noise level as a function of RF input frequency. Because the application of an RF input reduces the receiver noise output, this second curve is inverted as shown in Fig. 6 with the trough indicating the in-tune noise level. The RF output of the generator is adjusted to bring the lowest point on the displayed curve into coincidence with the $d B$ graticule line corre-

5. Test setup for demodulator derivative curve. For sensitivity measurement, the generator's RF output is applied to the receiver's antenna input.

AM RECEIVER DISPLAY
FM RECEIVER DISPLAY
6. Modulation on/modulation off displays for AM (left) and FM (right) receiver noise-limited sensitivity. Trough in FM display indicates in-tune noise level.
sponding to the specified signal-to-noise ratio. Noise-limited sensitivity is then read from the generator's attenuator dials.

Accurate tuning is essential for signal-to-noise measurement on an FM receiver because part of the AM rejection takes place in the demodulator itself. When the measurement is made with sweep frequency, this aspect is dealt with automatically.

Consider the effect of sweep speed

For all of the tests, the most important general rule to be remembered is the relation between sweep speed and bandwidth. For measurements which are not concerned with the true shape of the frequency response characteristic, it is tempting to increase sweep speed and ignore the effects of ringing in the receiver's amplifier. This can lead to amplitude error and should be avoided. As a rule of thumb to establish maximum permissible sweep speed, there is no significant deformation if the highest frequency component of the displayed response is less than 1% of the receiver's $3-\mathrm{dB}$ bandwidth. - -

For information on how to use these tables, turn to page 2

	Manufacturer	Model	FREQUENCY		SWEEP WIDTH			OUTPUT		Type	$\begin{gathered} \text { Price } \\ \$ \end{gathered}$	Notes
			$\underset{\mathrm{kHz}}{\mathrm{Min} .}$	Max. MHz	Min. kHz	Max. MHz	$\begin{aligned} & \text { Rate } \\ & \mathrm{Hz} \end{aligned}$	Volts	Imp. Ohms			
SW- 1	ITT AMI LTV Ling Probescope Spectral Dynamics LTV Ling Spectral Dynamics Clough-Brengle Waveforms Telonic	$\begin{aligned} & \hline 74217-A \\ & 321 \\ & \text { CO-10-A } \\ & 5 \\ & \text { SD-104-5 } \\ & \text { CO-10-B } \\ & \text { SD-104-1 } \\ & 182-A \\ & 610 B \\ & \text { LA-1M/SM-2000 } \end{aligned}$	$\begin{array}{\|l} \hline .03 \\ 1 \\ .005 \\ 0 \\ .005 \mathrm{~Hz} \\ .01 \\ .01 \mathrm{~Hz} \\ .025 \\ .02 \\ .02 \end{array}$.004 .005 .005 .005 .05 .01 .01 .015 .02 .02	ina . 05 note 8 . 02 .005 Hz note 8 . 01 Hz 0 ina .05	ina 0.2 kHz note 8 0.6 .05 note 8 .01 full rng ina .02	$\begin{aligned} & \text { ina } \\ & .03-1 \text { sec } \\ & \text { note } 9 \\ & 1-30 \text { sec } \\ & 0-1000 \\ & \\ & \text { note } 9 \\ & 0-200 \\ & 5 \\ & 6-60 \mathrm{sec} \\ & .01-100 \end{aligned}$	$\begin{aligned} & -20 \mathrm{dBm} \\ & 1 \\ & 0.1-1 \\ & 1 \\ & 1 \\ & 0.1-1 \\ & 1 \\ & 0.1 \mathrm{~W} \\ & 2.5 \\ & 17 \end{aligned}$	600 600 ina ina 600 ina 600 600,20k 600 600	$\begin{aligned} & C \\ & C \\ & R \\ & C, R \\ & C, R \\ & C, R \end{aligned}$	$\begin{array}{r} 2550 \\ 2975 \\ 1360 \\ 475 \\ 1965 \\ \\ 1360 \\ 1975 \\ 185 \\ 1000 \\ 1770 \end{array}$	$\begin{aligned} & a \\ & a, f \end{aligned}$
SW- 2	H-P Spectral Dynamics Clough-Brengle Clough-Brengle Probescope Kay Kay Probescope Kay Telonic	207A SD-104-2 282-A 610-A 100 141 P141A 500 P142 L-1/SM-2000	$\begin{aligned} & .02 \\ & .02 \mathrm{~Hz} \\ & .025 \\ & .025 \\ & 0 \\ & .02 \\ & .02 \\ & 0 \\ & .035 \\ & 400 \end{aligned}$	$\begin{aligned} & .02 \\ & .02 \\ & .032 \\ & .046 \\ & 0.1 \\ & 0.2 \\ & 0.2 \\ & 0.5 \\ & 0.5 \\ & 1.8 \end{aligned}$	note 18 .02 Hz 0.5 . 0 0.2 0 2 0 0.1%	note 18 .02 .01 . 02 . 02 full rng .02 0.2 .04 40\%	$\begin{aligned} & \text { note } 18 \\ & 0-1000 \\ & 2-10 \\ & 2-10 \mathrm{sec} \\ & 1 \mathrm{sec} \\ & 0.2-30 \\ & 0.3-30 \\ & 0.33 \mathrm{sec} \\ & 0.2-30 \\ & .01-100 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \\ & 0.1 \mathrm{w} \\ & 0.1 \mathrm{w} \\ & 10 \\ & \\ & 5 \\ & 1 \\ & 10 \\ & 1 \\ & 1 \end{aligned}$	600 600 $600,4 \mathrm{k}$ 4000 ina 600 50 ina 50 50	$\begin{aligned} & C, R \\ & R \\ & C, R \\ & C, R \\ & C, R \\ & R \\ & C, R \\ & C, R \\ & R \\ & C, R \\ & C, R \\ & C, R \end{aligned}$	$\begin{array}{r} 425 \\ 1965 \\ 485 \\ 485 \\ 425 \\ 1295 \\ 475(12) \\ 450 \\ 475(12) \\ 1075 \end{array}$	$\begin{aligned} & a, e \\ & a, e \\ & a, e \\ & a, f \end{aligned}$
SW- 3	Kay Telonic Tel-Inst Tel-Inst Telonic Telonic R \& S Telonic Jerrold Telonic	$\begin{aligned} & \text { P130 } \\ & \text { L-2/SM-2000 } \\ & 1902 \mathrm{~A} \\ & 1105 \\ & \text { HD-4 } \\ & \text { SV-14 } \\ & \text { SWH } \\ & \text { VR-2M/SM-2000 } \\ & 1015 \\ & \text { L-3/SM-2000 } \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1000 \\ & 4500 \\ & 50 \\ & 10 \\ & 10,200 \\ & 100 \\ & 50 \\ & 0.2 \\ & 1 \\ & 4000 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 4 \\ 4.5 \\ 10 \\ 10 \\ \\ 11.2 \\ 12 \\ 12 \\ 15 \\ 16 \end{array}$	$\begin{aligned} & 0 \\ & 0.1 \% \\ & \text { note } 7 \\ & 0 \\ & 25 \\ & 150 \\ & 150 \\ & .05 \% \\ & 0.1 \\ & 0 \\ & 0.1 \% \end{aligned}$	full rng full rng note 7 full rng 10 full rng 5\% 10 full rng 75\%	$0.2-30$ $.01-100$ 2000 60 $50 / 60$ $50 / 60$ 20 $.01-100$ $.007-60$ $.01-100$	$\begin{aligned} & 1 \\ & 1 \\ & 0.75 \\ & 2 \\ & 1 \\ & 3.5 \mu \mathrm{~V}-1 \\ & 50 \mu \mathrm{~V}-2 \\ & 1 \\ & 2.236 \\ & 1 \end{aligned}$	50 50 75 75 50,75 75 60 50 50,75 50	$\begin{aligned} & C, R \\ & C, R \\ & C \\ & C, R \\ & C, R \\ & C, R \\ & C \\ & C \\ & C, R \\ & C, R \\ & C, R \end{aligned}$	$\begin{gathered} 375(12) \\ 1075 \\ 480 \\ 880 \\ 745 \\ 850 \\ 1440 \\ 1725 \\ 2540 \\ 1075 \end{gathered}$	a, e a, f b a, d a, f a, f
SW-	Telonic Marconi Kay R \& S Kay Texscan Kay Telonic Kay Jerrold	1001 TF-1099 150B SWOF P152 VS-20 P855 L-4/SM-2000 370A H-73/707C	$\begin{aligned} & 100 \\ & 100 \\ & 50 \\ & 20 \\ & 10 \\ & 0 \\ & 0.2 \\ & 2000 \\ & 10,000 \\ & 20,000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 50 \end{aligned}$	10 0 0 1000 0.5 0 0 0.1% ina $\pm 0.5 \%$	20 full rng full rng 16 20 full rng 2\% 80\% note 13 $\pm 60 \%$	$\begin{aligned} & .01-60 \\ & 50-60 \\ & 60 \\ & 0.2-20 \\ & 0.2-30 \\ & 5-60 \\ & 0.2-30 \\ & .01-100 \\ & 60 \\ & .007-60 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.3-3 \\ & 0.2 \\ & .001-1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.25 \\ & 20 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \\ & 70 \\ & 75 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 70 \\ & 50 \end{aligned}$	C, R C	$\begin{array}{r} \text { request } \\ 1265 \\ 595 \\ 5600 \\ 375(12) \\ 850 \\ 850 \\ 1075 \\ 595(12) \\ 495 \\ 840 \end{array}$	$\begin{aligned} & e \\ & a, e \\ & a, e \\ & c \\ & a, e \\ & a, f \\ & a, e \\ & e, f \end{aligned}$
$\begin{gathered} 5 W- \\ 5 \end{gathered}$	RCA Kay Clough-Brengle Tel-Inst Telonic Telonic Telonic Telonic Kay Texscan	$\begin{aligned} & \text { WR-69A } \\ & 380 A \\ & 603 \\ & 1500 B \\ & \text { L-5/SM-2000 } \\ & \\ & \text { LD-5 } \\ & \text { SSX-2 } \\ & \text { HD-7 } \\ & 386 A R \\ & \text { HS-70 } \end{aligned}$	$\begin{aligned} & 50 \\ & 20,000 \\ & 20,000 \\ & 400 \\ & 20,000 \\ & 20,000 \\ & 20,000 \\ & 100 \\ & 455 \\ & 20,000 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 60 \\ & 60 \\ & 70 \\ & 75 \\ & 75 \\ & 75 \\ & 75 \\ & 98 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 3000 \\ & 0 \\ & 0 \\ & 0.1 \% \\ & .05 \% \\ & 0.1 \% \\ & 100 \\ & 60 \\ & 0.1 \% \end{aligned}$	20 20 12 full rng 40\% 40\% 40\% 50 24 15\%	60 60 60 ina $.01-100$ $50 / 60$ 60 $50 / 60$ ina $50 / 60$	0.1 0.25 0.1 1 1 $1 \mu \mathrm{~V}-1$ 1 0.2 4 W	$\begin{aligned} & 100 \\ & 70 \\ & 75 \\ & 75 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 50,75 \\ & 50 \\ & \text { ina } \end{aligned}$	C C, R C C C C, R C, R C, R C, R C, R C, R	$\begin{array}{r} 295 \\ 450 \\ 250 \\ 595 \\ 1075 \\ \hline 695 \\ 1695 \\ 695 \\ 1250 \\ 2500 \end{array}$	a,e a, b a,f a d c
$\begin{gathered} \text { SW- } \\ 6 \end{gathered}$	Telonic Jerrold Texscan Wiltron Kay Heath Telonic Telonic H-P Jerrold	$\begin{aligned} & \text { PD-2 } \\ & \text { H-71/707C } \\ & \text { VS-30 } \\ & \text { 610 } \\ & \text { 154A } \\ & \text { FMO-1 } \\ & \text { SV-14 } \\ & \text { LH-2/SM-2000 } \\ & 3211 \mathrm{~A} \\ & 602-5 B \end{aligned}$	$\begin{aligned} & 20,000 \\ & 10,000 \\ & 100 \\ & 100 \\ & 50 \\ & 90,000 \\ & 84,000 \\ & 400 \\ & 100 \\ & 4000 \end{aligned}$	100 100 100 100 100 107 110 110 110 112	$\begin{aligned} & 0.2 \% \\ & \pm 0.5 \% \\ & 0 \\ & 0 \\ & 0 \\ & 200 \\ & 4000 \\ & 40 \\ & 0 \\ & \pm 1 \% \end{aligned}$	10\% $\pm 60 \%$ full rng full rng full rng 1 full rng 40 full rng $\pm 60 \%$	$\begin{aligned} & 50 / 60 \\ & .007-60 \\ & 5-60 \\ & .01-10 \mathrm{sec} \\ & 5-60 \\ & 60 \\ & 50 / 60 \\ & .01-100 \\ & 10-100 \\ & 50-60 \end{aligned}$	$\begin{aligned} & 14 \\ & 20 \mathrm{dBm} \\ & 1 \\ & 1 \\ & 1 \\ & 0.5 \\ & 0.5 \mathrm{~V}-1 \\ & 3.5 \mathrm{~V}-1 \\ & 0.25 \\ & 0.7 \\ & 2.5 \end{aligned}$	50 50 50 50 50 50 75 50 50 50,75	C, R C, R C, R C, R C, R C C C C, R C, R C, R	$\begin{array}{r} 2500 \\ 840 \\ 850 \\ 1975 \\ 895 \\ \\ 35 \mathrm{kit} \\ 850 \\ 1275 \\ 1000 \\ 475 \end{array}$	

Notes, abbreviations and manufacturers' index at end of this section.

Sweep generators $115-950 \mathrm{MHz}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[b]{2}{*}{Manufacturer} \& \multirow[b]{2}{*}{Model} \& \multicolumn{2}{|l|}{FREQUENCY} \& \multicolumn{3}{|c|}{SWEEP WIDTH} \& \multicolumn{2}{|c|}{OUTPUT} \& \multirow[b]{2}{*}{Type} \& \multirow[b]{2}{*}{Price \$} \& \multirow[b]{2}{*}{Notes} \\
\hline \& \& \& Min. kHz \& \begin{tabular}{l}
Max. \\
MHz
\end{tabular} \& Min. kHz \& Max. MHz \& \[
\begin{aligned}
\& \text { Rate } \\
\& \mathrm{Hz}
\end{aligned}
\] \& Volts \& Imp. Ohms \& \& \& \\
\hline \[
\begin{gathered}
S W- \\
7
\end{gathered}
\] \& \begin{tabular}{l}
Kay \\
Kay \\
AMI \\
Telonic \\
Kay \\
Kay \\
Hickok \\
Jerrold \\
Telonic \\
Telonic
\end{tabular} \& \begin{tabular}{l}
P154 \\
866A \\
301 \\
L-6/SM-2000 \\
865A \\
932B \\
288AX \\
H-72/707C \\
HD-3 \\
L-7/SM-2000
\end{tabular} \& \[
\begin{aligned}
\& .05 \\
\& 4 \\
\& .01 \\
\& 50 \\
\& 10 \\
\& 0.1 \\
\& .035 \\
\& 20 \\
\& 1 \\
\& 100
\end{aligned}
\] \& \[
\begin{aligned}
\& 115 \\
\& 120 \\
\& 120 \\
\& 125 \\
\& 135 \\
\& 150 \\
\& 160 \\
\& 200 \\
\& 200 \\
\& 210
\end{aligned}
\] \& 0 ina 0 0.1\% ina note 14 0 \(\pm 0.5 \%\) 200 0.1\% \& \[
\begin{array}{|l|}
\hline 100 \\
30 \\
3 \\
30 \% \\
30 \\
\\
\text { note } 14 \\
0.45 \\
\pm 60 \% \\
\text { full rng } \\
25 \%
\end{array}
\] \& \begin{tabular}{l}
0-30 \\
60 \\
ina .01-100 \\
60 \\
60 \\
60 \\
.007-60 \\
50/60 \\
.01-100
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 \\
1 \\
\text { ina } \\
1 \\
1 \\
\\
0.25,1 \\
\text { ina } \\
13 \mathrm{dBm} \\
0.25 \\
0.75
\end{array}
\] \& \[
\begin{aligned}
\& 50 \\
\& 70 \\
\& \text { ina } \\
\& 50 \\
\& 70 \\
\& \\
\& 70 \\
\& 100 \\
\& 50 \\
\& 50,75 \\
\& 50
\end{aligned}
\] \& \begin{tabular}{l}
C,R C,R C,R C,R C,R \\
C, R C C,R C,R C,R
\end{tabular} \& \[
\begin{gathered}
\hline 495(12) \\
950 \\
3000 \\
1075 \\
950 \\
825 \\
315 \\
840 \\
835 \\
1075
\end{gathered}
\] \& \(a, e\) \(a, d, e\) \(a, f\) \(a, d, e\) \(a, d, e\) e,f \(a, f\) \\
\hline SW- \& \begin{tabular}{l}
Prec Apparatus \\
Kay \\
Tel-Inst \\
Kay \\
EICO \\
Jerrold \\
AMI \\
Heath \\
EICO \\
Kay
\end{tabular} \& \begin{tabular}{l}
E410C \\
932A \\
1212 \\
361C \\
368 \\
H-75/707C \\
320 \\
IG-52 \\
369 \\
P860
\end{tabular} \& \[
\begin{aligned}
\& 3 \\
\& 0.1 \\
\& 54 \\
\& 43.5 \\
\& 3 \\
\& \\
\& 45 \\
\& 4 \\
\& 3.6 \\
\& 3 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& 213 \\
\& 215 \\
\& 216 \\
\& 216 \\
\& 216 \\
\& 220 \\
\& 220 \\
\& 220 \\
\& 220 \\
\& 220
\end{aligned}
\] \& 0
note 15
10,000
15,000
0
\(\pm 0.5 \%\)
0
0
0
10 \& \[
\begin{aligned}
\& 30 \\
\& \text { note } 15 \\
\& 15 \\
\& \text { ina } \\
\& 30 \\
\& \\
\& 460 \% \\
\& 3 \\
\& 42 \\
\& 20 \\
\& 30
\end{aligned}
\] \& \begin{tabular}{l}
60 \\
60 \\
ina \\
60 \\
60
\[
\begin{aligned}
\& .007-60 \\
\& \text { ina } \\
\& 60 \\
\& 60 \\
\& 0.2-30
\end{aligned}
\]
\end{tabular} \& \[
\begin{aligned}
\& 0.1 \\
\& 0.25,1 \\
\& 0.5 \\
\& 1 \\
\& 0.1 \\
\& 13 \mathrm{dBm} \\
\& 1 \mu V-0.1 \\
\& .08-0.23 \\
\& 0.1 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& 50 \\
\& 70 \\
\& 75,300 \\
\& 70 \\
\& 50 \\
\& 50 \\
\& 50 \\
\& 50 \\
\& 50 \\
\& 50 \\
\& 50
\end{aligned}
\] \& \[
\begin{aligned}
\& R \\
\& C, R \\
\& C \\
\& C, R \\
\& C, R \\
\& C, R \\
\& C, R \\
\& C \\
\& C \\
\& C, R
\end{aligned}
\] \& \[
\begin{gathered}
160 \\
825 \\
950 \\
845 \\
120 \\
890 \\
485 \\
68 \\
150 \\
445(12)
\end{gathered}
\] \& \[
\begin{aligned}
\& a, e \\
\& a, \\
\& a, e \\
\& a, b \\
\& e, f \\
\& a, b \\
\& a, b \\
\& a, b \\
\& a, b
\end{aligned}
\] \\
\hline SW- \& \begin{tabular}{l}
GE \\
Kay \\
Telonic \\
Jerrold \\
R\& S \\
Hickok \\
EICO \\
Telonic \\
Texscan \\
Gen Radio
\end{tabular} \& \[
\begin{aligned}
\& \text { ST-4A } \\
\& 935 B \\
\& \text { SV-13 } \\
\& 601-5 B \\
\& \text { SWF } \\
\& \\
\& 615 \\
\& 360 \\
\& 3001 / \text { SM }-2000 \\
\& \text { TH-200 } \\
\& 1025-A
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.1 \\
\& 50 \mathrm{~Hz} \\
\& 20 \\
\& 12 \\
\& 5 \\
\& \\
\& 0 \\
\& 0.5 \\
\& 50 \\
\& 1 \\
\& 0.7
\end{aligned}
\] \& 220
220
225
225
225
225
228
230
230
230 \& 500
20
note 3
\(\pm 1 \%\)
.05
0
0
2000
100
0 \& \begin{tabular}{l}
15 60\% \\
note 3 \(\pm 60 \%\) \\
15 \\
15 \\
30 \\
180 \\
230 \\
full rng
\end{tabular} \& \begin{tabular}{l}
ina \\
0.2-30 \\
50/60 \\
50-60 \\
60 \\
60 \\
60 \\
.01-100 \\
50/60 \\
20
\end{tabular} \& \[
\begin{aligned}
\& 0.5 \\
\& 1 \\
\& 1 \\
\& 0.5 \\
\& 0.1 \mathrm{~m} V-0.1 \\
\& \text { ina } \\
\& \text { ina } \\
\& 1 \\
\& 0.25 \\
\& 0.3 \mu \mathrm{~V}-1
\end{aligned}
\] \& \[
\begin{aligned}
\& 20-70 \\
\& 70 \\
\& 50,60,75 \\
\& 50,75 \\
\& 60 \\
\& 90 \\
\& \text { ina } \\
\& 50 \\
\& 50 \\
\& 50
\end{aligned}
\] \& \[
\begin{aligned}
\& C, R \\
\& C, R \\
\& C \\
\& C, R \\
\& C R \\
\& C \\
\& C \\
\& C \\
\& C, R \\
\& C \\
\& C, R
\end{aligned}
\] \& request
1295
833
450
1400
360
50
570
1570
525
3450 \& \[
\begin{aligned}
\& a \\
\& e \\
\& a \\
\& a \\
\& \\
\& b \\
\& b \\
\& f \\
\& c
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\text { SW- } \\
10
\end{gathered}
\] \& \begin{tabular}{l}
Texscan \\
Telonic \\
Kay \\
Kay \\
Jerrold \\
Texscan \\
Kay \\
Kay \\
Telonic \\
Micro-Power
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{HS}-75 \\
\& \mathrm{PD}-3 \\
\& 385 \mathrm{~A} \\
\& 159 \mathrm{~B} \\
\& \mathrm{SS}-300
\end{aligned}
\] \\
VS-40 \\
386AN \\
386 \\
PD-7 \\
H24MD/220
\end{tabular} \& \[
\begin{aligned}
\& 100 \\
\& 100 \\
\& 1 \\
\& 1 \\
\& 0.5 \\
\& 0.5 \\
\& 0.5 \\
\& 6.975 \\
\& 1 \\
\& 200 \\
\& 200
\end{aligned}
\] \& \[
\begin{aligned}
\& 250 \\
\& 250 \\
\& 260 \\
\& 300 \\
\& 300 \\
\& \\
\& 300 \\
\& 332.15 \\
\& 350 \\
\& 375 \\
\& 400
\end{aligned}
\] \& 0.1\%
\(0.2 \%\)
70
50
200

200
note 16
60%
0.2%

0 \& $$
\begin{array}{|l|}
15 \% \\
15 \% \\
70 \\
\text { full rng } \\
300 \\
300 \\
\text { note } 16 \\
70 \% \\
10 \% \\
\text { full rng }
\end{array}
$$ \& \[

$$
\begin{aligned}
& 50 / 60 \\
& 50 / 60 \\
& 60 \\
& 5-60 \\
& .003-60 \\
& 5-60 \\
& \text { ina } \\
& 60 \\
& 50 / 60 \\
& .01-100 \mathrm{sec}
\end{aligned}
$$

\] \& | 14 |
| :--- |
| 0.5 |
| 0.5 |
| 0.6 |
| 0.5 |
| 0.5 |
| 0.5 |
| 14 |
| . 02 W | \& \[

$$
\begin{aligned}
& \text { ina } \\
& 50 \\
& 70 \\
& 50 \\
& 50 \\
& 50 \\
& 50 \\
& 70 \\
& 50,70 \\
& 50 \\
& \text { ina }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& C, R \\
& C
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
2500 \\
2500 \\
725 \\
895 \\
1095 \\
850 \\
1220 \\
925 \\
2500 \\
3650
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& c \\
& a \\
& a, e \\
& e \\
& e \\
& a, c, e \\
& c \\
& a, d, e \\
& a, e \\
& a, e \\
& a, c \\
& f
\end{aligned}
$$
\]

\hline \[
$$
\begin{gathered}
\text { SW- } \\
11
\end{gathered}
$$

\] \& | EPSCO |
| :--- |
| R \& S |
| Texscan |
| Telonic |
| Kay |
| Kruse-Storke |
| Servo |
| Micro-Power |
| Telonic |
| Micro-Power | \& | SG-132-A |
| :--- |
| SWOB I |
| HS-80 |
| SH-1/SM-2000 |
| P867 |
| 5009/5000 |
| Q880 |
| H25MD/220 |
| S-4/SM-2000 |
| H37MD/220 | \& \[

$$
\begin{aligned}
& 15 \\
& 0.5 \\
& 200 \\
& 0.5 \\
& 220 \\
& 250 \\
& 250 \\
& 250 \\
& 250 \\
& 150 \\
& 350
\end{aligned}
$$
\] \& 400

400
425
460
470
500
500
500
500
700 \& 0.1%
200
0.1%
200
20
0
0
0
$.02 \%$

0 \& \begin{tabular}{l}
$\pm 20 \%$

50

15\%

200

30

full rng

full rng

full rng 10\%

full rng

 \&

25

60

50/60

50/60

0.2-30

$.01-100 \mathrm{sec}$

.01-100

.01-100 sec

50/60

$.01-100 \mathrm{sec}$

\end{tabular} \& \[

$$
\begin{aligned}
& 0.15 \\
& 0.4 \\
& 4 \mathrm{~W} \\
& 0.35 \\
& 0.5 \\
& .02 \mathrm{~W} \\
& \\
& 0.4 \mathrm{~W} \\
& .05 \mathrm{~W} \\
& 1 \\
& 0.1 \mathrm{~W}
\end{aligned}
$$

\] \& | 50 |
| :--- |
| 50,75 |
| ina |
| 50 |
| 50 |
| ina |
| ina |
| ina |
| 50 |
| ina | \& C

C
C
C, R

C \& | 2440 |
| :--- |
| 3100 |
| 2500 |
| 1175 |
| 200(12) |
| 2740 |
| 3400 |
| 3550 |
| 1125 |
| 3650 | \& \[

\left\{$$
\begin{array}{l}
c \\
a, f \\
a, e \\
a, b, c, f \\
a \\
f \\
f, f \\
f
\end{array}
$$\right.
\]

\hline \[
$$
\begin{aligned}
& \text { SW- } \\
& 12
\end{aligned}
$$

\] \& | Grundig |
| :--- |
| Blonder-Tongue |
| Blonder-Tongue |
| Tel-Inst |
| Telonic |
| Telonic |
| Texscan |
| Texscan |
| Telonic |
| Kay | \& | WS-3 |
| :--- |
| 4122 |
| 4114 |
| 1211 |
| HD-IA $\begin{aligned} & \text { S-5/SM-2000 } \\ & \text { CS-77 } \\ & \text { CS-76A } \\ & \text { SD-3 } \\ & 111 \end{aligned}$ | \& 4

10
5
550
45
1
460
460
460
440

10 \& $$
\begin{aligned}
& 800 \\
& 890 \\
& 890 \\
& 900 \\
& 900 \\
& 920 \\
& 920 \\
& 920 \\
& 920 \\
& 950
\end{aligned}
$$ \& 0

0000
5000
50,000
200

$.02 \%$
460 MHz
100
$.02 \%$

50 \& $$
\begin{array}{|l}
\hline 30 \\
420 \\
420 \\
50 \\
200 \\
10 \% \\
460 \\
45 \\
10 \% \\
40
\end{array}
$$ \& \[

$$
\begin{aligned}
& 50 \\
& 60 \\
& 60 \\
& \text { ina } \\
& 60 \\
& 50 / 60 \\
& 50 / 60 \\
& 50 / 60 \\
& 60 \\
& 60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.1 \\
& 1 \\
& 0.75 \\
& 1 \\
& 0.5 \\
& 0.5 \\
& 0.75 \\
& 0.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 60 \\
& 75 \\
& 75 \\
& 75 \\
& 50 \\
& \\
& 50 \\
& 50 \\
& 50 \\
& 50 \\
& 70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& C \\
& c \\
& c \\
& c \\
& C, R \\
& C, R \\
& C, R \\
& C \\
& C \\
& C, R \\
& C, R
\end{aligned}
$$
\] \& 595

request
request
1100
995
1125
440
525
745

625 \& $$
\begin{aligned}
& a \\
& a, f \\
& c \\
& c \\
& c \\
& a \\
& a, e
\end{aligned}
$$

\hline
\end{tabular}

Notes, abbreviations and manufacturers' index at end of this section.

Sweep generators $950-4000 \mathrm{MHz}$

	Manufacturer	Model	FREQUENCY		SWEEP WIDTH			OUTPUT		Type	Price \$	Notes
			Min. MHz	Max. MHz	Min. kHz	Max. MHz	Rate Sec	Watts	Imp. Ohms			
$\begin{gathered} \text { SW- } \\ 13 \end{gathered}$	Kay	110	. 05	950		40	60 Hz	0.5V	50	C,R	625	
	Telonic	3005/SM-2000	460	960	5000	500	. $01-100 \mathrm{~Hz}$	0.3V	50	C,R	1525	
	Kay	1483A	440	960	5000	520	$10-30 \mathrm{~Hz}$	0.5 V	50	C,R	495	
	Kruse-Storke	5010/5000	500	1000	0	full rng	.01-100	. 02	ina	C,R	2740	a, b, c, f
	Servo	P880	500	1000		full rng	. $01-100 \mathrm{~Hz}$	0.4	ina	C,R	3400	a
	Micro-Power	H51MD/220	500	1000	0	full rng	. $01-100$	0.1	ina	C	3550	,
	Telonic	VR-50M/SM-2000	500	1000	5000	500	. $01-100 \mathrm{~Hz}$	0.3 V	50	C,R	1725	f
	Texscan	HS-85	400	1000	0.1\%	15\%	$50 / 60 \mathrm{~Hz}$	4	ina	C,R	2500	c
	Telonic	PD-8	375	1000	0.2\%	15\%	$50 / 60 \mathrm{~Hz}$	14 V	50	C,R	2500	
	Texscan	VS-70	275	1000	50	40\%	$5-60 \mathrm{~Hz}$	0.5 V	50	C, R		
SW-14	Kay	P123	100	1000	0.2\%	full ring	ina	0.5 V	50	C,R		
	Kay	100	. 05	1000	50	40	60 Hz	0.5 V	50	C,R	575	a,e
	Kay	P121/121	0.5	1050	50	350	$10-60 \mathrm{~Hz}$	0.5V	50	C,R	1390	f
	Jerrold	890	0.5	1100	100	200	60 Hz	0.25 V	$50,75$	C,R	845	a, b
	Telonic	S-6/SM-2000	600	1200	.02\%	8\%	$50 / 60 \mathrm{~Hz}$	0.75 V	50	C,R	1125	a, f
	R \& S	SWLU	400	1200	0	170	60 Hz	3 V	50,60	C	1690	
	Micro-Power	H41MD/220	400	1200	0	full rng	. $01-100$. 02	ina	C	4050	f
	Jerrold	$900-\mathrm{C}$	0.5	1200	10		60 Hz	0.25 V	50	C,R	2180	a, b
	Jerrold	$900-\mathrm{A}$	0.5	1200	500	400	$60 \mathrm{~Hz}$	$0.25 \mathrm{~V}$	50	C,R		a, b
	Texscan					300	$5-60 \mathrm{~Hz}$	0.5 V		C, R		
SW-15	R \& S	SWOB II	0.5	1200	200	50	60 Hz	0.4 V	50,75	C	4200	
	Kay	P122/121	900	1300	200	full rng	$10-60 \mathrm{~Hz}$	0.5 V	50	C,R	1270	e,f
	Kay	P124/121	1300	1700	500	full rng	$10-60 \mathrm{~Hz}$	0.5 V	50	C,R	1290	a,e
	Kay	121	0.5	1700	50	500	$10-60 \mathrm{~Hz}$	$0.5 \mathrm{~V}$	50	C,R	895	a,e
	Telonic	E-1/SM-2000	460	1840	.02\%	10\%	$50 / 60 \mathrm{~Hz}$	0.25-1V	50	C, R	1575	a,f
	Alfred		1000	2000	0	full rng	.01-100	. $08{ }^{(6)}$		C,R	3350	
	Alfred	$651 \mathrm{~K} / 650$	1000	2000	0	full rng	. $01-100$. 07 (6)	50	C, R	3600	c, f
	Alfred	651 AK/650	1000	2000	0	full rng	. $01-100$.06(5)	50	C,R	3850	c, f
	Alfred Alfred	$631 \mathrm{~A}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	0	full rng	. $01-100$	$.05$	ina	C, R	3490	c
						full rng	. $01-100$			C,R		
SW-16	Alfred	641 $641 \mathrm{~K}$							50 50		3050	
	Alfred	641K 6021	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	0	full rng	. $01-100$.07(4)	50	C,R	3325	c
	Alfred	6021	1000	2000	0	full rng	.01-100		50	C	6350	a
	E-H H-P	$\begin{aligned} & 571 \\ & 8691 \mathrm{~A} / 8690 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	2000	0	full rng	note 1	0.12	50	R	3660	
	H-P	8691A/8690A	1000	2000	0	full rng	.01-100	0.1	50	C, R	3450	f
	H-P	8691B/8690A	1000	2000	0	full rng	.01-100		50			
	Kruse-Storke	$5011 / 5000$	1000	2000	0	full rng	. $01-100$. 01	ina	C, R	3080	a, b, c, f
	LFE	832-L-1	1000	2000	1000	full rng	.01-100	.08-0.15	50	C, R	request	
	Micro-Power	H102L/220		2000		full rng	. $01-100$		ina	C		f
	MSI	N900L				full rng	ina	0.1	50	R		
SW-17						full rng	10 Hz	$25-30 \mathrm{dBm}$	50		9600	
	Servo	L880	1000	2000	0	full rng	. $01-100 \mathrm{~Hz}$	0.1	ina	C, R	3190	a
	Texscan	VS-120	1000	2300	50	25%	$5-60 \mathrm{~Hz}$	$0.5 \mathrm{~V}$	50	C, R	1695	c
	Kruse-Storke	$5012 / 5000$	1400	2400	0	full rng	$.01-100$	$.005$	ina	C, R	3080	a, b, c, f
	Telonic	E-2/SM-2000	600	2400	.02\%	10\%	$50 / 60 \mathrm{~Hz}$	0.25-1V	50.	C, R	1770	a, f
	Alfred	631A-51	1400	2500	0	full rng	. $01-100$. 05	50	C,R	3790	a, c
	Alfred	$631 \mathrm{D}-\mathrm{S1}$	1400	2500	0	full rng	. $01-100$	$.07$	50	C,R	3990	a, c
	Alfred	$641 \mathrm{~K}-\mathrm{Sl}$	1400	2500	0	full rng	$.01-100$	$.07(4)$	50	C,R	3600	
	Alfred	$641-S 1$ $651 A-S 1 / 650$	1400	2500	0	full rng	$.01-100$	$.08^{(2)}$	50	C, R	3300	c
	Alfred	651A-S1/650				full rng	.01-100	. 06 (5)	50	C,R		
$\begin{gathered} \text { SW- } \\ 18 \end{gathered}$	Alfred				0				50		4175	
	Alfred	$651 \mathrm{~K}-\mathrm{S} 1 / 650$	1400	2500	0	full rng	$.01-100$	$.07(6)$	50	C, R	3900	c, f
	Alfred	651-S1/650	1400	2500	0	full rng	. $01-100$	$.08(6)$	50	C, R	3600	c, f
	Micro-Power	H142L/220	1400	2500	0	full rng	.01-100	0.1	ina	C	4050	f
	Telonic	E-3/SM-2000	550	3000	.02\%		$50 / 60 \mathrm{~Hz}$	$0.2-0.75 \mathrm{~V}$	50	C, R	1770	a, f
	R \& S	SMC	1600	3200	0	full rng	10 Hz	$22-30 \mathrm{dBm}$	50		9000	
	Alfred	632 D	2000	4000	0	full rng	. $01-100$	$.02$	50	C,R	3490	a, c
	Alfred	632A	2000	4000	0	full rng	. $01-100$	$.04$	ina	C, R	3290	a
	Alfred	652AK/650	2000	4000	0	full rng	. $01-100$	$.04(5)$	50	C, R	3680	c, f
	Alfred	$652 \mathrm{~A} / 650$	2000	4000	0	full rng	. $01-100$.04(5)	50	C, R	3400	c, f

Notes, abbreviations and manufacturers' index at end of this section.

Sweep generators $4000-8300 \mathrm{MHz}$

	Manufacturer	Model	FREQUENCY		SWEEP WIDTH			OUTPUT		Type	Price \$	Notes
			Min. MHz	Max. MHz	Min. kHz	Max. MHz	Rate Sec	Watts	Imp. Ohms			
$\begin{gathered} \text { SW- } \\ 19 \end{gathered}$	Alfred	$652 \mathrm{~K} / 650$	2000	4000	0	full rng	. $01-100$. $05{ }^{(6)}$	50	C,R	3425	
	Alfred	642 K	2000	4000	0	full rng	. $01-100$. $05{ }^{(4)}$	50	C,R	3140	c
	Alfred	642	2000	4000	0	full rng	. $01-100$. 06 (2)	50	C,R	2850	c
	Alfred	652/650	2000	4000	0	full ring	. $01-100$. 06 (6)	50	C,R	3150	c, f
	Alfred	6022	2000	4000	0	full rng	. $01-100$	I	50	C	6890	a
	E-H	572	2000	4000	0	full ring			50	R		
	H-P	8692B/8690A	2000	4000	0	full rng	. $01-100$. 04	50	C,R	3550	f
	H-P	8692A/8690A	2000	4000	0	full rng	.01-100	. 07	50	C, R	3250	f
	LFE	832-S-1	2000	4000	1 MHz	full rng	.01-100	.04-0.15	50	C,R	request	
		N900S				full rng					1995	
$\begin{gathered} \text { SW- } \\ 20 \end{gathered}$	Micro-Power	H204L/220	2000	4000	0	full rng	.01-100	. 08	ina	C	3550	f
	Narda	64 S 2	2000	4000	0	full rng	. $01-100$. 048	ina	C,R	3250	
	Narda	6451	2000	4000	0	full rng	.01-100	. 05	ina	C,R	2750	
	Servo	5880	2000	4000	0	full rng	. $01-100 \mathrm{~Hz}$. 07	ina	C,R	2990	a
	Weinschel	S775A	2000	4000	0.2 MHz	full rng	note 19	. 07	50	C, R	2750	
	Alfred	652K-S5/650	1700	4200	0	full rng	. $01-100$. 03 (5)	ina	C,R	3825	c,f
	Alfred	$642 \mathrm{~K}-\mathrm{Sl}$	1700	4200	0	full rng	. $01-100$. 03	ina	C,R	3150	a,c
	Alfred	652-S5/650	1700	4200	0	full rng	.01-100	. 035 (6)	ina	C,R	3475	c,f
	Alfred	$642-51$	1700	4200	0	full rng	.01-100	$.035$	ina	C,R	3300	a,c
	Alfred	652A-S5/650			0	full rng	.01-100	. 015 (6)		C,R		c,f
$\begin{gathered} \text { SW- } \\ 21 \end{gathered}$	Alfred H-P	652AK-S5/650 H01-8692B/8690A	1700	4200	0	full rng	. $01-100$. 015 (5)	ina	C, R	4075	c,f
	H-P Micro-	H01-8692B/8690A H204LA/220	1700 1700	4200	0	full rng	. $01-100$. 015	50	C,R	3850	
	Servo	R880	1700	4200	0	full rng	. $01-100 \mathrm{~Hz}$. 02	ina	C.R	38290	
	R \& S	SMC	2400	4700	0	full mg	10 Hz	20-30 dBm	50	$\mathrm{C}^{\text {, }}$	9000	
	Servo	T880	2400	5300	0	full rng	. $01-100 \mathrm{~Hz}$. 05	ina	C,R	3250	a
	Polarad	1307	5500	6600	0	40	$50-60 \mathrm{~Hz}$	note 10	50	C,R	2650	c
	Polarad	1307-P	5500 (11)	6600	0	40	$50-60 \mathrm{~Hz}$	note 10	50	C, R	2800	c
	Alfred Alfred	$633 A-S 1$ $653 A-S 1 / 650$	3500 3500	6750 6750	0	full rng	. $01-100$	ו0.	50	C,R	3850	a, c
	Alfred	653A-S1/650		6750	0	full rng	. $01-100$. 02 (5)		C, R		c, f
$\begin{gathered} \text { SW- } \\ 22 \end{gathered}$	Alfred	$653 \mathrm{AK}-\mathrm{S} 1 / 650$				full rng						
	Alfred	$643 \mathrm{~K}-\mathrm{S1}$	3500	6750	0	full rng	.01-100	$.03(4)$ $.03(6)$	50	C,R	3800	
	Alfred	653K-S1/650	3500	6750	0	full rng	.01-100	.03(6)	50	C,R	4050	c, f
	Alfred	$653-$ S1/650 $643-\mathrm{S} 1$	3500	6750	0	full rng	. $01-100$. 04 (6)	50	C,R	3540	c, f
	Alfred	$643-\mathrm{Sl}$	3500	6750	0	full rng	.01-100	.04(2)	50	C, R	3290	c
	Alfred	633D-S1	3500	6750	0	full rng	. $01-100$	$.008$	50	C,R	4100	a, c
	Micro-Power	H356L/220	3500	6750	0	full rng	. $101-100$	$.04$	ina	C	4000	f
	R \& S	SMC	3600	7100	0	full rng	10 Hz	$15-25 \mathrm{dBm}$	50	C	9000	
	Polarad	$1307-1$	5200	7200	0		$50-60 \mathrm{~Hz}$	note 10	50	C,R	2300	c
	Polarad	1307-1P	$5200{ }^{(11)}$	7200	0		$50-60 \mathrm{~Hz}$	note 10	50	C, R	2450	c
$\begin{gathered} \text { SW- } \\ 23 \end{gathered}$											2650	c
	Polarad	1308-P	$7100(11)$	7800	0	40	$50-60 \mathrm{~Hz}$	note 10	50	C,R	2800	
	Alfred	633A	4000	8000	0	full rng	. $01-100$. 02	ina	C,R	3390	a
	Alfred	653A/650	4000	8000	0	full rng	. $01-100$.02(5)	50	C,R	3350	c, f
	Alfred	653AK/650	4000	8000	0	full rng	.01-100	.02(5)	50	C, R	3700	c, f
	Alfred	643K	4000	8000	0	full rng	.01-100	. $025{ }^{(4)}$	50	C,R	3230	c
	Alfred	653K/650	4000	8000	0	full rng	. $01-100$. 025 (6)	50	C,R	3450	c, f
	Alfred	643	4000	8000	0	full rng	. $01-100$.03(4)	50	C,R	2850	c
	Alfred	$653 / 650$	4000	8000	0	full rng	.01-100	$.03(6)$	50	C, R	3100	c, f
	Alfred			8000	0	full rng	. $01-100$	0.5	50	C		
$\begin{gathered} \text { SW- } \\ 24 \end{gathered}$	Alfred	633D	4000	8000	0	full rng		. 008	50	C,R	3650	c
	E-H	573	4000	8000	0	full rng	note 1	. 035	50	R	3460	
	H-P	8693A/8690A	4000	8000	0	full rng	. $01-100$. 03	50	C,R	3125	f
	H-P	8693B/8690A	4000	8000	0	full rng	. $01-100$	$.015$	50	C,R	3450	f
	LFE	832-C-1	4000	8000	1 MHz	full rng	.01-100	.02-0.15	50	C,R	request	
	MSI	N900C	4000	8000	0	full rng	ina	. 025	50	R	1995	
	Micro-Power	H408L/220	4000	8000	0	full rng	.01-100	. 03	ina	C, R	3550	f
	Servo	C880	4000	8000	0	full rng	. $01-100 \mathrm{~Hz}$	$.02$	ina	C,R	2975	a
	Weinschel	C775A	4000	8000	0.2 MHz	full rng	note 20	. 02	50	C,R	2800	
	Alfred	653A-S2/650	3700	8300		full rng	. $01-100$. $005{ }^{(6)}$	ina	C, R	3650	c, f

Notes, abbreviations and manufacturers' index at end of this section.

Sweep generators $8300-18,000 \mathrm{MHz}$

	Manufacturer	Model	FREQU	UENCY		SWEEP W	DTH	OUT				
			Min. MHz	Max. MHz	Min. kHz	Max. MHz	Rate Sec	Watts	Imp. Ohms	Type	Price \$	Notes
$\begin{gathered} \text { SW- } \\ 25 \end{gathered}$	Alfred	653AK-S2/650	3700	8300	0	full rng	. $01-100$.005(5)	ina	C, R	4000	c, f
	Alfred	643-S2	3700	8300	0	full rng	. $01-100$. $01{ }^{(2)}$	ina	C,R	3150	a,c
	Alfred	643K-S2	3700	8300	0	full ring	. $01-100$. $01{ }^{(4)}$	ina	C,R	3530	a,c
	Alfred	653-S2/650	3700	8300	0	full rng	. $01-100$. $011^{(6)}$	ina	C, R	3400	c,f
	Alfred	$653 \mathrm{~K}-\mathrm{S} 2 / 650$	3700	8300	0	full ring	. $01-100$. $01{ }^{(5)}$	ina	C, R	3775	c,f
	H-P	H01-8693B/8690A	3700	8300	0	full rng	. $01-100$. 005	50	C, R	3750	f
	Micro-Power	H408LA/220	3700	8300	0	full rng	. $01-100$. 015	ina	C	3900	f
	Servo	W880	3700	8300	0	full rng	. $01-100 \mathrm{~Hz}$. 005	ina	C, R	3275	a
	Polarad	1308-1	7100	8500	0	40	$50-60 \mathrm{~Hz}$	note 10	50	C,R	2450	c
	Polarad	1308-1P	7100 (11)	8500	0	40	$50-60 \mathrm{~Hz}$	note 10	50	C, R	2600	c
$\begin{gathered} \text { SW- } \\ 26 \end{gathered}$	R \& S	SMC	4800	9600	0	full rng	10	$15-25 \mathrm{dBm}$	50	C	9000	
	Servo	J880	5300	10,000	0	full rng	. $01-100 \mathrm{~Hz}$. 01	ina	C, R	3450	a
	Alfred	634A	7000	11,000	0	full ring	. $01-100$. 006	ina	C,R	3650	c
	Alfred	654A/650	7000	11,000	0	full rng	. $01-100$. $011^{(6)}$	50	C,R	3450	c, f
	Alfred	654AK/650	7000	11,000	0	full ring	. $01-100$. $01{ }^{(5)}$	50	C, R	3850	c, f
	Alfred	644K	7000	11,000	0	full rng	. $01-100$. $015{ }^{(4)}$	50	C,R	3300	c
	Alfred	654K/650	7000	11,000	0	full ring	. $01-100$. 015 (6)	50	C, R	3425	c, f
	Alfred	644	7000	11,000	0	full rng	. $01-100$. $02{ }^{(2)}$	50	C,R	2900	c
	Alfred	654/650	7000	$11,000$	0	full rng	. $01-100$	$.02{ }^{\text {(6) }}$	50	C,R	3150	c, f
	Alfred				0	full rng	. $01-100$					
SW-27	H-P	H02-8694A/8690A	7000	11,000	0	full rng	. $01-100$. 025	50	C,R	request	f
	$\mathrm{H}-\mathrm{P}$	H02-8694B/8690A	7000	11,000	0	full rng	. $01-100$. 015	50	C, R	3500	f
	MSI	N 900 H	7000	11,000	0	full ring	ina	. 025	50	R	1995	
	Micro-Power	H711L/220	7000	11,000	0	full rng	. $01-100$. 025	ina	C	3750	f
	Alfred	6025	8000	12,000	0	full rng	. $01-100$	1	50	C	8190	
	E-H	574-1	7000	12,000	0	full rng	note 1	. 03	50	R	3760	
	Weincshel	X775A	8200	12,400	0	full rng	note 21	. 02	50	C, R	2900	
	E-H	574-2	8200	12,400	0	full ring	note 1	. 024	50	R	3580	
	MSI	N900X	8200	12,400	0	full rng	ina	$.025$	50		1995	
	Alfred	635A		12,400	0	full rng	.01-100			C, R		a
$\begin{aligned} & \text { SW- } \\ & 28 \end{aligned}$	Alfred	655A/650	8000	12,400	0	full rng	. $01-100$. 02 (5)	50	C,R	3375	c, f
	Alfred	655AK/650	8000	12,400	0	full rng	. $01-100$. $02{ }^{(4)}$	50	C,R	3750	c, f
	Alfred	645 K	8000	12,400	0	full rng	. $01-100$.05(4)	50	C,R	3300	
	Alfred	$655 \mathrm{~K} / 650$	8000	12,400	0	full rng	. $01-100$.05(6)	50	C,R	3500	c, f
	Alfred	645	8000	12,400	0	full rng	. $01-100$. $06{ }^{(2)}$	50	C, R	2900	c
	Alfred	655/650	8000	12,400	0	full rng	. $01-100$. $06{ }^{(6)}$	50	C,R	3100	c,f
	H-P	8694A/8690 A	8000	12,400	0	full rng	. $01-100$. 05	50	C,R	3125	f
	H-P	8694B/8690A	8000	12,400	0	full rng	. $01-100$	$.03$	50	C,R	3475	f
	LFE	$832-X-1$ H812L/220	8000 8000	12,400 12,400	$1 \mathrm{MHz}$	full rng full rng	$.01-100$ $.01-100$	$\begin{aligned} & .05-0.15 \\ & .05 \end{aligned}$	ina ina	C, R C	$\begin{aligned} & \text { request } \\ & 3600 \end{aligned}$	
	Micro-Power	H812L/220	8000	12,400		full rng	.01-100					f
$\begin{gathered} \text { SW- } \\ 29 \end{gathered}$	Servo	X880 $654 \mathrm{~A}-51 / 650$. $01-100 \mathrm{~Hz}$		ina	C,R	3050	
	Alfred	654A-SI/650	7000	12,400	0	full rng	. $01-100$	$.01(5)$ $.01(5)$	50 50	C,R	3600	c, f
	Alfred	$654 \mathrm{AK}-\mathrm{SI} / 650$ $644 \mathrm{~K}-\mathrm{SI}$	7000	12,400 12,400	0	full rng	. $101-100$	$\begin{aligned} & .01(5) \\ & .015(4) \end{aligned}$	ina	C,R C, R	4000 3500	c,f a,c
	Alfred	$654 \mathrm{~K}-\mathrm{SI} / 650$	7000	12,400	0	full rng	. $01-100$. $015{ }^{(6)}$	50	C,R	3700	c, f
	Alfred	644-S1	7000	12,400	0	full rng	. $01-100$. $02(2)$	ina	C,R	3100	a, c
	Alfred	654-S1/650	7000	12,400	0	full rng	.01-100	. 02 (6)	50	C,R	3300	c, f
	H-P	H01-8694A/8690A	7000	12,400	0	full rng	. $01-100$	$.025$	50	C,R	request	f
	H-P	$\mathrm{H} 01-8694 \mathrm{~B} / 8690 \mathrm{~A}$ N 900 HX	7000	$\begin{aligned} & 12,400 \\ & 12400 \end{aligned}$	0	full rng	.01-100	$\begin{aligned} & .015 \\ & .015 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & C, R \\ & R \end{aligned}$	$\begin{aligned} & 3750 \\ & 1995 \end{aligned}$	f
	MSI	N900HX	7000	12,400	0	full rng	ina	. 015	50	R	1995	
$\begin{gathered} 5 W- \\ 30 \end{gathered}$	Micro-Power	H712L/220	7000	12,400	0	full ring	$.01-100$	$.025$	ina	C		
	Servo	H880	7000	12,400	0	full rng	. $01-100 \mathrm{~Hz}$. 01 (6)	ina	C, R	3375	a
	Alfred	646	10,000	15,500	0	full ring	$.01-100$. 035 (6)	50	C,R	3450	c
	Alfred	656/650	10,000	15,500	0	full ring	. $01-100$. $035{ }^{(6)}$	50	C, R	3450	c, f
	Alfred	637 A	12,400	18,000	0	full rng	. $01-100$. 01	ina	C,R	3790	a
	Alfred	647K	12,400	18,000	0	full rng	. $01-100$		ina	C, R	3500	a, c
	Alfred	657K/650	12,400	18,000	0	full rng	. $01-100$. 025 (5)	ina	C, R	3725	c,f
	Alfred	647	12,400	18,000	0	full rng	. $01-100$. $04{ }^{(6)}$	50	C, R	3000	c
	Alfred	657/650	12,400	18,000	0	full rng	. $01-100$. $04{ }^{(6)}$	50	C, R	3200	c, f
	E-H	575	12,400	18,000	0	full ring	note 1	. 048	50	R	3730	

Notes, abbreviations and manufacturers' index at end of this section.

The benefits of swept frequency measurement in terms of quicker testing and more precise answers easily justifies the employment of a Sweep Generator in both lab and production applications. Now, Telonic's SM-2000

Sweep Generator (left) offers these benefits in a configuration that gives the instrument maximum versatility at a low equipment investment. The SM-2000 accepts
the 19 different oscillators, shown above, ranging from the

LA-1M that covers 20 Hz to 20 KHz to the E-3 that goes to 3120 MHz . The entire spectrum from DC to 3 Gc can be viewed with as much detail as needed. In some cases a whole octave may be displayed on the scope at one time.
The SM-2000 Sweep Generator provides the method, the machinery, and the flexibility for a myriad of frequency measurement applications. Your local Telonic representative would be glad to
 show you how.

Does your work involve application or manufacture of Power Supplies, Oscillators, RF Circuits, Audio Amplifiers, UHF Tuners, Communication Networks, Crystal Devices, R.F. Filters or the like? Then find out how you can apply swept frequency methods to make your work easier, and more reliable. Telonic Application Techniques cover all these and more. Yours on request

Sweep generators $18,000-40,000 \mathrm{MHz}$

	Manufacturer	Model	FREQUENCY		SWEEP WIDTH			OUTPUT		Type	Price \$	Notes
			Min. MHz	Max. MHz	Min. kHz	Max. MHz	Rate Sec	Watts	Imp. Ohms			
$\begin{gathered} \text { SW- } \\ 31 \end{gathered}$	H-P	8695A	12,400	18,000	0	full rng	.01-100	. 04	50	C, R	3250	
	LFE	832-KU-1	12,400	18,000	1 Mhz	full rng	. $01-100$.04-0.2	ina	C, R	request	
	Micro-Power	H1218/220	12,400	18,000	0	full rng	.01-100	. 04	ina	C	3650	f
	Servo	U880	12,400	18,000	0	full rng	. $01-100 \mathrm{~Hz}$. 003	ina	C, R	4100	a
	Weinschel	Y775A	12,400	18,000	0.2 MHz	full rng	note 22	. 01	50	C, R	3300	
	Servo	Y880	10,000	20,000	0	full rng	. $01-100 \mathrm{~Hz}$. 003	ina	C, R	4100	a
	H-P	8696A	18,000	26,000	0	full ring	. $01-100$. 01	50	C, R	4050	
	Alfred	658/650	18,000	26,500	0	full rng	. $01-100$. 01 (6)	50	C,R	3950	c, f
	Alfred	648	18,000	26,500	0	full rng	. $01-100$. 02 (6)	50	C, R	3650	,
	E-H	576	18,000	26,500	0	full rng	note 1	. 012	WG	R	4570	
$\begin{gathered} \text { SW- } \\ 32 \end{gathered}$	Micro-Power	H1826/220	18,000	26,500	0	full rng	. $01-100$. 02			4500	f
	Servo	K880	18,000	26,500	0	full rng	. $01-100 \mathrm{~Hz}$. 005	ina	C, R	4500	a
	Weinschel	U775A	27,000	40,000	0.2 MHz	full rng	note 23	. 0035	ina	C,R	4300	
	Alfred	659/650	26,500	40,000	0	full rng	. $01-100$. $005{ }^{(6)}$	50	C,R	5650	c, f
	Alfred	649	26,500	40,000	0	full rng	. $01-100$.005(6)	50	C, R	5300	c
	E-H	577	26,500	40,000	0	full rng	note 1	. 006	WG	R	6870	
	Servo	V880	26,500	40,000	0	full rng	. $01-100 \mathrm{~Hz}$. 005	ina	C, R	6350	a
	Micro-Power	H2640/220	26,500	40,000	0	full rng	. $01-100$. 005	ina	C	6400	f
	H-P	8697A	26,000	40,000	0	full rng	. $01-100$. 005	50	C, R	5850	

Notes, abbreviations and manufacturers' index at end of this section.

NOTES

Sweep Generators

a. Zero or blanking output available for scope return trace.
b. Has phasing control of scope output.
c. Input: $115 / 230 \mathrm{~V}, 50-400 \mathrm{~Hz}$.
d. Has switched fixed markers
e. Locks to line frequency but may be adjusted to detect hum.
f. Prices shown are for tuning unit and basic oscillator. The basic oscillator can be used with any of this series of tuning heads.

1. Sweep rate $.001-1000$ seconds.
2. Output unleveled.
3. RF channels adjustable from $5-20 \mathrm{MHz}$, IF channels adjustable from $10-40 \%$ of center frequency.
4. Output leveled or unleveled.
5. Pin diode leveled.
6. Grid leveled.
7. Fixed, $1.67,5$ and 10 kHz .
8. Adjustable 7° to 320°.
9. Adjustable 2.3° to 600° per minute.
10. +3 to -127 dBm .
11. Can measure microwave power from an external source. The rear tuning shaft extension provides programable motor drive.
12. Prices shown are for tuning unit. This tuning unit can be used with model 1500 at $\$ 650$ extra or the model 860 at $\$ 495$ extra.
13. 500 kHz for sound $\mathrm{IF}, 13 \mathrm{MHz}$ for picture.
14. Center frequencies and sweep widths covered by each band;
Band A - $100 \mathrm{kHz}-12 \mathrm{MHz}$, width 100 kHz 12 MHz .

Band B - 12-20 MHz, width 60% of center frequency.
Band C - $20-32 \mathrm{MHz}$, width 60% of center frequency.
Band D - 32-52 MHz, width 15 MHz .
Band E $-52-90 \mathrm{MHz}$, width 20 MHz .
Band F $-90-150 \mathrm{MHz}$, width 20 MHz .
15. Center frequencies and sweep widths covered by each band;
Band A - $100 \mathrm{kHz}-12 \mathrm{MHz}$, width 100 kHz 12 MHz .
Band $B-20-30 \mathrm{MHz}$, width 60% of center frequency.
Band C - 35-55 MHz, width 60% of center frequency.
Band D - 55-215 MHz, width $20-50 \mathrm{MHz}$ at high end of band.
16. Wide band 6 times marker spread, narrow band 3 times marker spread.
17. Prices shown are for tuning unit. This tuning unit can be used with model 1500 at $\$ 525$ extra or model 121 at $\$ 895$ extra.
18. Model H07-207A sweep motor drive provides full band sweep speeds of $430(\pm 10 \%)$ or $43(\pm 10 \%)$ seconds.
19. Sweep rate $0.1-100 \mathrm{GHz}$.
20. Sweep rate $0.2-200 \mathrm{GHz}$.
21. Sweep rate $300 \mathrm{MHz}-300 \mathrm{GHz}$.
22. Sweep rate $0.4-400 \mathrm{GHz}$.
23. Sweep rate $0.1-1000 \mathrm{GHz}$.

ABBREVIATIONS

C - Cabinet
R - Rack mount
ina - information not available
rng - range

New Continuously Tunable 1 to 40 GHz Synchronizer-Model 136A

FEL's new 136A Synchronizer converts any voltage tunable signal source from 1 to 40 GHz to an ultra stable signal source with stability of 1 part in 10^{7} per day and 1 part in 10^{8} per second. It extends the capability of your existing signal generator!

Simplified tuning makes the all solid state Model 136A easy to operate. It's continuously tunable over entire range with crystal controlled stability . . . controls any voltage tunable tube or solid state oscillator . . . and has a lock-on indicator lamp. Balance meter and signal level meter are included. New proportional controlled oven provides exceptional short and long term stability.

Typical spectrum generated by an rf source with and without stabilization, using the FEL-136A. Note simultaneous frequency stabilization and incidental fm reduction in right hand photograph.

Expansion has created opportunities for qualified Microwave, Circuit Design and Instrumentation Engineers in Key Positions on our Technical Staff. Send complete resume in confidence to: Supervisor, Professional Employment.

OTHER FEL SERIES 130 SYNCHRONIZERS:

Model	Frequency Range (GHz)	Price
133A.	1.0-12.4	\$2250
134A	.. 12.4-18.0	\$2350
135A	18.0-40.0	\$3450
137A	1.0-18.0	\$2750

Data subject to change without notice; Prices f.o.b. factory.

For complete information on the new 136A or any 130 Series Synchronizer, write or call your local FEL field engineering office today or: FREQUENCY ENGINEERING LABORATORIES, P. 0. Box 527, Farmingdale, New Jersey 07727, (201) 938-9221. TWX: 201-9382456.

FREQUENCY ENGINEERING
LABORATORIES

Fast Recovery!

New, LEL IF Amplifiers, ITA-34, have $0.2 \mu \mathrm{sec}$. recovery time and excellent pulse response. Ideal for a wide variety of microwave receiving system applications, they also feature high dynamic range and furnish both IF and detected outputs.

SPECIFICATIONS

C.F.	30 or 60 MHz
BW	3 or 8 MHz
Recovery Time	$0.2 \mu \mathrm{sec}$. (typ.)
IF Gain	
(into 50Ω)	75 dB (min.)
Video Gain	
(into 1000)	80 dB (min.)
Input	50 ohms
Input (lin operation)	
(lin. operation)	-15 dBM (max.)
Output	
(lin. operation)	+10 dBM (max.)
External AGC range	50 dB (min.)
N.F.	7 dB (max.)
Weight	20 oz.
Dimensions	$67 / 8^{\prime \prime} \times 11 / 8^{\prime \prime} \times 3^{\prime \prime}$
Connectors	
(IF and Video)	BNC
(Power)	DA 15
Power required	-20 VDC @ 70 mA
Temperature	-55° to $+70^{\circ} \mathrm{C}$
Price	\$325

(ONE WEEK)
More than 100 other standard IF Amplifiers are available many with such special characteristics as broad bandwidth, gain-and-phase-match, low noise, extremely low power drain.

Send now for complete data book including full specifications and performance curves.

VARIAN associato:

Index of Manufacturers and Model Numbers
(keyed to table locator symbols)

INDEX		654A/650	(SW-26)	
		654A-S1/650	(SW-29)	
Advanced Measurement		654AK/650	(SW-26)	
Instruments, Inc (AMI)		654AK-S1/650	(SW-29)	
301	(SW-7)	$654 \mathrm{~K} / 650$	(SW-26)	
320	($5 W-8$)	$654 \mathrm{~K}-51 / 650$	(SW-29)	
321	(SW-1)	654-S1/650	(SW-29)	
321	(SW-1)	655/650	(SW-28)	
Alfred Electronics		655A/650	(SW-28)	
		655AK/650	(SW-28)	
631 A	(SW-15)	655K/650	(SW-28)	
$631 \mathrm{~A}-51$	(SW-17)	656/650	(SW-30)	
631 D	(SW-15)	657/650	(SW-30)	
$631 \mathrm{D}-51$	(SW-17)	$657 \mathrm{~K} / 650$	(SW-30)	
632A	(SW-18)	658/650	(SW-31)	
632D	(SW-18)	659/650	(SW-32)	
633A	(SW-23)	6021	(SW-16)	
633A-S1	(SW-21)	6022	(SW-19)	
633D	(SW-24)	6023	(SW-23)	
633D-S1	(SW-22)	6024	(SW-26)	
634A	(SW-26)	6025	(SW-27)	
635A	(SW-27)	Blonder-Tongue		
637A	(SW-30)		Labs, Inc	
641	(SW-16)	4114	(SW-12)	
641 K	(SW-16)	4122	(SW-12)	
$641 \mathrm{~K}-\mathrm{Sl}$	(SW-17)			
641-S1	(SW-17)	Clough-Brengle Co		
642	($5 W-19)$			
642K	($5 W-19)$	182-A	(SW-1)	
$642 \mathrm{~K}-\mathrm{Sl}$	(SW-20)	$282-A$	(SW-2)	
642-S1	(SW-20)	603	(SW-5)	
643	(SW-23)	610-A	(SW-2)	
643K	(SW-23)			
643K-S1	(SW-22)	E-H Research Laboratories,		
643K-S2	(SW-25)	Inc		
643-51	(SW-22)	571	(SW-16)	
643-52	(SW-25)	572	(SW-19)	
644	(SW-26)	573	(SW-24)	
644K	(SW-26)	574-1	(SW-27)	
644K-S1	(SW-29)	574-2	(SW-27)	
644-S1	(SW-29)	575	(SW-30)	
645	(SW-28)	576	(SW-31)	
645K	(SW-28)	577	(SW-32)	
646	(SW-30)			
647	(SW-30)	Electronic Instrument Co_{O} Inc (EICO)		
647K	(SW-30)			
648	(SW-31)			
649	(SW-32)	360		
651/650	(SW-15)	368 369	(SW-8) $(5 W-8)$	
651AK/650	(SW-15)	369	(SW-8)	
$651 \mathrm{~K} / 650$	(SW-15)	EPSCO, Inc		
651-S1/650	(SW-18)			
651A-S1/650	(SW-17)	SG-132-A	(SW-11)	
651AK-S1/650	(SW-18)			
$651 \mathrm{~K}-\mathrm{Sl} / 650$	(SW-18)	General Electric Co (GE)		
652/650	(SW-19)			
652-55/650	(SW-20)	ST-4A	(SW-9)	
652A/650	(SW-18)			
652A-S5/650	(SW-20)	General Radio Co (Gen Radio)		
$652 \mathrm{AK} / 650$	(SW-18)			
652AK-S5/650	(SW-21)			
$652 \mathrm{~K} / 650$	(SW-19)	1025-A	(SW-9)	
652K-S5/650	(SW-20)			
653/650	(SW-23)	Grundig		
653-51/650	(SW-22)			
653-S2/650	(SW-25)	WS3	(SW-12)	
653A/650	(SW-23)			
653A-S1/650	(SW-21)	Heath Co		
653A-S2/650	(SW-24)			
653AK/650	(SW-23)	$\begin{aligned} & \text { FMO-1 } \\ & \text { IG-52 } \end{aligned}$	(SW-6)	
653AK-S1/650	(SW-22)		(SW-8)	
653AK-S2/650	(SW-25)			
$653 \mathrm{~K} / 650$	(SW-23)	Hewlett-Packard Co (H-P)		
$653 \mathrm{~K}-\mathrm{Sl} / 650$	(SW-22)			
653K-S2/650	(SW-25)	207A	(SW-2)	
654/650	(SW-26)	3211A	(SW-6)	

No, it's not a microwave sweep oscillator. It's the only microwave sweep signal generator!

Here, in one compact package, is the microwave industry's only electronic Sweep Signal Generator. Alfred's new 630D Series now provides precise frequency tuning plus known absolute power output over a 60 db range, calibrated in dbm, all during swept or CW operation. Note these special features:
Flat Output-Feedback leveler holds power variation to less than $\pm 0.5 \mathrm{db}$ at rated output over each range. Variation in any 100 Mc range is less than $\pm 0.1 \mathrm{db}$. Absolute accuracy $\pm 3 / 4 \mathrm{db}$ at rated power output.
Multiple Frequency Markers allow frequency calibration with 3 markers during broadband sweep and 2 during symmetrical sweep.
Complete Sweep Flexibility $-F_{1} \rightarrow F_{2}$ sweep for broadband evaluation. $F_{0} \pm \Delta \mathrm{F}$ symmetrical sweep for expanded display.
Separate F_{0} Control independent of $F_{1} \rightarrow F_{2}$ allows switching from broadband sweep to symmetrical sweep without "disadjusting controls."
Transistorized-10 $1 / 2^{\prime \prime}$ panel height-lightweight-low power consumption-only five vacuum tubes used.
Stabilized Power Output-Dual bolometers assure con-
"Project responsibility opportunities exist for qualified engineers on our technical staff. An equal opportunity employer."
stant power output over wide temperature range.
Available in Five Bands-1 to 2, 1.4 to 2.5, 2 to $4,3.5$ to 6.75 and 4 to 8 Gc . Frequency is continuously adjustable over entire range with direct calibrated dial (1\% accuracy).
Coverage to $\mathbf{1 8} \mathbf{G c}$-Series 630A provide calibrated level output without the attenuator through 18 Gc in 9 bands.

KEY SPECIFICATIONS

Frequency Range: Model 631D, 1 to 2 Gc; Model 631D-S1, 1.4 to 2.5 Gc ; Model 632D, 2 to 4 Gc ; Model 633D-S1, 3.5 to 6.75 Gc ; Model 633D, 4 to 8 Gc . RF Power: +10 to $-50 \mathrm{dbm}(+8$ to -45 dbm for 633D-S1 and 633D). Continuously variable over full range. Greater power output available unleveled. Residual FM: 50 kc peak (80 kc peak for 633D-S1 and 633D). Drift: $\pm 0.01 \%$. Sweep Width: Continuously adjustable from 2% to 100% of the frequency range. Symmetrical Sweep: 0 to $\pm 5 \%$ of range about any frequency. Sweep Time: 100 to 0.01 seconds. Amplitude Modulation: CW, square wave or external.

For complete information, write us at 3176 Porter Drive, Palo Alto, California. Phone: (415) 326-6496.

NEW sweeper from WILTRON-50 kHz-100 MHz

An engineer's answer for:
Broadband system checking 50 kHz to 100 MHz in one sweep. All spurious and harmonics 30 db down.
Automatic test system with programming of center frequency, $\Delta \mathrm{f}$ and amplitude. Filter testing with 5 kHz stability.
Receiver testing with AM or FM modulation and with internal leveling.
Response curve plotting with 0.2 flat signal output.
Lossy device check with 1 volt rms output.
Price of Model 610B Main Frame, \$1,190;
Model 611B Plug-in shown above, 50 kHz to $100 \mathrm{MHz}, \$ 795$.

PRECISION POWER INVERTER 60 to 400 CPS, 115 VAC- 10 to 200 watts, accuracy to $.001 \%$. Power inverter employs precision Oscillator as a time base. Can be used to drive motors for clocks, tape decks, facsimile machines, etc.

ECONOMY

 OSCILLATORModel T - gives long-term stability 800 to 7000 CPS. Priced singly from $\$ 29.00$ each. Measures $1^{\prime \prime} \times 1^{\prime \prime}$ $\times 21 / 4^{\prime \prime}$.

OA	(SW-16)
8691B/8690A	(SW-16)
8692A/8690A	(SW-19)
8692B/8690A	(SW-19)
H01-8692B/8690A	(SW-21)
8693A/8690A	(SW-24)
8693B/8690A	(SW-24)
1-8693B/8690	(SW-25)
8694A/8690A	(SW-28)
H01-8694A/8690A	(SW-29)
H02-8694A/8690A	(SW-27)
8694B/8690A	(SW-28)
H01-8694B/8690A	(SW-29)
H02-8694B/8690A	(SW-27)
8695A	(SW-31)
8696A	(SW-31)
8697A	(SW-32)

Hickok Electrical Instrument Co

288 AX	$(\mathrm{SW}-7)$
615	$(\mathrm{SW}-9)$

ITT Industrial Products Div
74217-A (SW-1)

Jerrold Electronics Corp	
601-5B	(SW-9)
602-5B	(SW-6)
890	(SW-14)
900-A	(SW-14)
900-C	(SW-14)
1015	($5 W-3$)
H-71/707C	(SW-6)
H-72/707C	(SW-7)
H-73/707C	(SW-4)
H-75/707C	(SW-8)
SS-300	(SW-10)

Kay Electric Co

100	(SW-14)
110	(SW-13)
111	(SW-12)
121	(SW-15)
141	(SW-2)
150B	(SW-4)
154A	(SW-6)
159B	(SW-10)
361 C	(SW-8)
370A	(5W-4)
380A	(SW-5)
385A	(SW-10)
386	($5 W-10$)
386AN	(SW-10)
386AR	(SW-5)
865A	($5 W-7$)
866A	(SW-7)
932A	(SW-8)
932B	(SW-7)
935B	(SW-9)
1483A	(SW-13)
P121/121	(SW-14)
P122/121	(SW-15)
P123	(SW-14)
P124/121	(SW-15)
P130	(SW-3)
P141A	(SW-2)
P142	(SW-2)
P152	(SW-4)
P154	(SW-7)
P855	($5 W-4$)
P860	(SW-8)
P867	(SW-11)

Kruse-Storke Electronics

$5009 / 5000$	$(5 W-11)$
$5010 / 5000$	$(\mathrm{SW}-13)$
$5011 / 5000$	$(\mathrm{SW}-16)$
$5012 / 5000$	$(\mathrm{SW}-17)$

LTV Ling Electronics

$C O-10-A$	$(S W-1)$
$C O-10-B$	$(S W-1)$

Laboratory For Electronics, Inc
(LFE)

$832-\mathrm{C}-1$	$(\mathrm{SW}-24)$
$832-\mathrm{KU}-1$	$(\mathrm{SW}-31)$
$832-\mathrm{L}-1$	$(\mathrm{SW}-16)$
$832-\mathrm{S}-1$	$(\mathrm{SW}-19)$
$832-\mathrm{X}-1$	$(\mathrm{SW}-28)$

Marconi Instruments
TF-1099 (SW-4)
Micro-Power, Inc
H24MD/220 (SW-10)
H25MD/220 (SW-11)
H37MD/220 (SW-11)
H41MD/220 (SW-14)
H51MD/220 (SW-13)
H102L/220 (SW-16)
H142L/220 (SW-18)
H204L/220 (SW-20)
$\begin{array}{ll}\text { H204LA/220 } & \text { (SW-21) } \\ \text { H356L/220 } & \text { (SW-22) }\end{array}$
$\begin{array}{ll}\text { H356L/220 } & \text { (SW-22) } \\ \text { H408L/220 } & \text { (SW-24) }\end{array}$
H408LA/220 (SW-25)
$\begin{array}{ll}\text { H71 1L/220 } & \text { (SW-27) } \\ \text { H712L/220 } & \text { (SW-30) }\end{array}$
H812L/220 (SW-28)
H1218/220 (SW-31)
H1826/220 (SW-32)
H2640/220 (SW-32)
MSI Electronics, Inc

N900C	$($ SW-24 $)$
N900H	$(\mathrm{SW}-27)$
N900HX	$(\mathrm{SW}-29)$
N900L	$(\mathrm{SW}-16)$
N900S	$(\mathrm{SW}-19)$
N900X	$($ SW-27 $)$
Narda Microwave Corp	
64S1	
(SW-20)	
64S2	(SW-20)

Polarad Electronic Instruments

1307	(SW-21)
1307-1	(SW-22)
1307-1P	(SW-22)
1307-P	(SW-21)
1308	(SW-23)
1308-1	(SW-25)
1308-1P	(SW-25)
1308-P	(SW-23)
Precision Apparatus Co, (Prec Apparatus)	
E410C	(SW-8)
Probescope Co	
5	(SW-1)
100	(SW-2)
500	(SW-2)

RCA, Electronic Components \& Devices
WR-69A (SW-5)
Rohde \& Schwarz Sales Co, Inc ($\mathrm{R} \& \mathrm{~S}$)

SMC	$($ SW-17 $)$
SMC	$($ SW-18 $)$
SMC	$($ SW-21)
SMC	$(S W-22)$
SMC	$(S W-26)$
SWF	$(S W-9)$
SWH	$(S W-3)$
SWLU	$(S W-14)$
SWOB I	$($ SW-11)
SWOB II	$($ SW-15 $)$
SWOF	$(S W-4)$

Servo Corp of America

C880	$(S W-24)$
H880	$(S W-30)$
J880	$(S W-26)$
K880	$(S W-32)$
L880	$(S W-17)$
P880	$(S W-13)$

Conceited

There's a simple explanation. The New Jerrold 900-C Sweep Signal Generator combines so many superb features in a single slim-line unit that it has literally become "King of The Hill".

Just look at some of the things you don't need with the 900-C.
. . . a high gain oscilloscope
... a variable attenuator
. . . a marker generator
... an external detector
All of these functions are built right into the new 900-C-the moneysaving, time-saving, space-saving champion. And it sports outstanding features like four mode operation and continuously variable sweep widths from 10 kHz to 400 MHz .
Whatever the unit under test - whatever the application - you're sure to find the Jerrold 900-C the most versatile, stable, easy-to-use sweep signal generator you have ever worked with.
No wonder it's conceited! Send for specs and we'll prove it.

You'll find the complete text applications information - theory technical data - specifying information for standard and custom delay lines for your application - in these authoritative LFE Catalog-Handbooks. Get them, now!

ELECTRONICS DIVISION

Laboratory For Electronics, Inc. WALTHAM, MASSACHUSETTS 02154 Tel: 617-894-6600 - TWX: 710-324-0681

Meet the DC voltage standard with:

STABILITY WITHIN 15 PPM

... for 7 days, 25 ppm for 6 months.
Recorded stability history available.

0.003% ACEURAGY

...ensured by temperature-controlled precision Zener reference.

IUMEDIATE DELIVERY

. . .t the COHU Model 326 is off-the-shelf. . . like the entire family of COHU DC voltage standards.
... and voltages from 0 to 1222.2221 in 3 ranges; steps as small as 1 Nv .

Price: $\$ 2490.00$ F.0.B. San Diego, additional export charge.

Box 623
San Diego, Calif. 92112
Phone 714-277-6700

Oscillators $\quad .016-100 \mathrm{kHz}$

For information on how to use these tables, turn to page 2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[b]{2}{*}{Oscillators Manufacturer} \& \multirow[b]{2}{*}{Model} \& \multicolumn{4}{|c|}{FREQUENCY} \& \multirow[b]{2}{*}{Output Volts} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { \# of } \\
\& \text { ranges }
\end{aligned}
\]} \& \multirow[b]{2}{*}{Type} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Price } \\
\& \$
\end{aligned}
\]} \& \multirow[b]{2}{*}{Notes} \\
\hline \& \& \& \[
\begin{aligned}
\& \mathrm{Min} \\
\& \mathrm{kHz}
\end{aligned}
\] \& Max kHz \& Acc \% \& Stability \% \& \& \& \& \& \\
\hline OS-1 \& \begin{tabular}{l}
Nav Comp Ind Test Equip Ind Test Equip Ind Test Equip Ind Test Equip \\
ITT \\
Weston ITT Gen Radio Ind Test Equip
\end{tabular} \& \[
\begin{array}{|l}
1350 B \\
600 \\
\text { OPS-100 } \\
\text { JF-400 } \\
1400 \\
74191-A \\
711 \text { A-1 } \\
74191-B \\
1214-A \\
1040
\end{array}
\] \& \[
\begin{aligned}
\& .001 \\
\& .06 \\
\& 0.4 \\
\& 0.4 \\
\& 0.4 \\
\& 0.8 \\
\& .80001 \\
\& 1 \\
\& 0.4 \\
\& 0.4
\end{aligned}
\] \& \[
\begin{aligned}
\& .016 \\
\& .06 \\
\& 0.4 \\
\& 0.4 \\
\& 0.4 \\
\& 0.8 \\
\& .999 \\
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.2 \\
\& \pm .005 \\
\& \pm 0.1 \\
\& \pm 0.1 \\
\& \pm .005 \\
\& \pm 3 \\
\& 1 \\
\& \pm 3 \\
\& 2 \\
\& 0.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.1 \\
\& 1 \\
\& \pm 0.1 \\
\& 1 \\
\& 1 \\
\& \text { ina } \\
\& 0.2
\end{aligned}
\] \& \[
\begin{array}{|l}
4-12 \\
0-10 \\
115 \\
\text { ina } \\
0-10 \\
1 \mathrm{~mW} \\
1-50 \\
1 \mathrm{~mW} \\
200 \mathrm{~mW} \\
120(22)
\end{array}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 5 \\
\& 1 \\
\& 2 \\
\& 2
\end{aligned}
\] \& \(C, R\)
\(C\)
\(R\)
\(C\)
\(C\)
\(C\)
\(C\)
\(R\)
\(C\)
\(C\)
\(C\) \& \[
\begin{gathered}
2195 \\
459 \\
895 \\
140 \\
290 \\
110 \\
\text { request } \\
110 \\
95 \\
145
\end{gathered}
\] \& a \\
\hline OS-2 \& \begin{tabular}{l}
Gen Radio Ind Test Equip Krohn-Hite Gen Radio Krohn-Hite \\
R \& S \\
H-P \\
B \& K \\
S-A \\
Tech Materiel
\end{tabular} \& \[
\begin{aligned}
\& 1307-A \\
\& 1040-A \\
\& 440-\mathrm{B} \\
\& 1305-\mathrm{A} \\
\& 400-\mathrm{C} \\
\& \text { SRT } \\
\& 202-\mathrm{A} \\
\& 1017-\mathrm{A} \\
\& 2140 \\
\& \text { TTG-2 }
\end{aligned}
\] \& \begin{tabular}{l}
0.4 \\
0.4 \\
.001 \\
.00001 \\
.009 Hz \\
.00001 \\
. 008 Hz \\
. 002 \\
0.4 \\
0.935
\end{tabular} \& \[
\begin{array}{|l}
\hline 1 \\
1 \\
1 \\
1 \\
1.1 \\
1.11 \\
1.2 \\
2 \\
2.5 \\
2.805
\end{array}
\] \& \[
\begin{aligned}
\& 3 \\
\& 0.2 \\
\& \pm .05 \\
\& \pm 2 \\
\& \pm 2 \\
\& \pm 1 \\
\& \pm 1 \\
\& 2 \\
\& 1 \\
\& 3 \\
\& \text { ina }
\end{aligned}
\] \& \begin{tabular}{l}
ina \\
0.2 \\
. 005 \\
0.2 \\
1 \\
\(\pm 0.3\) \\
1 \\
0.8 Hz \\
\(\pm .05\) \\
ina
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 120(23) \\
\& 10 \\
\& 10 \\
\& 10 \\
\& 0.1-1 \\
\& 30 \\
\& 12.5 \\
\& 20 \\
\& 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 2 \\
\& 6 \\
\& 5 \\
\& 3 \\
\& 3 \\
\& 5 \\
\& 2 \\
\& 1 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& C \\
\& C \\
\& C, R \\
\& R \\
\& R \\
\& C \\
\& C, R \\
\& C, R \\
\& R, R \\
\& R
\end{aligned}
\] \& \[
\begin{array}{r}
130 \\
220 \\
1150 \\
995 \\
465 \\
1640 \\
550 \\
1390 \\
350 \\
478
\end{array}
\] \& \\
\hline OS-3 \& \begin{tabular}{l}
Waveforms \\
ITT \\
H-P \\
H-P \\
Gen Radio \\
Muirhead \\
Clough-Brengle \\
ITT \\
H-P \\
B \& K
\end{tabular} \& \begin{tabular}{l}
472C \\
74191-C \\
H48-241A \\
H30-241A \\
1311-A
\[
\begin{aligned}
\& \text { D-880-A/1 } \\
\& 179-A \\
\& 74186-C \\
\& 205 A G \\
\& 1024 A
\end{aligned}
\]
\end{tabular} \& 0.3
5
0.1
0.1
.05
.00001
.025
.03
.02
.02 \& \[
\begin{aligned}
\& 3 \\
\& 5 \\
\& 10(17) \\
\& 10(18) \\
\& 10 \\
\& 11.2 \\
\& 15 \\
\& 16 \\
\& 20 \\
\& 20
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.5 \\
\& \pm 3 \\
\& \pm 0.2 \\
\& \pm 0.2 \\
\& 1 \\
\& \pm 0.2 \\
\& 2 \\
\& \pm 1 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& .005 \\
\& \text { ina } \\
\& .04 \\
\& .04 \\
\& 0.1 \\
\& \\
\& .05 \\
\& \text { ina } \\
\& \text { ina } \\
\& 2 \\
\& 7 \mathrm{~Hz}
\end{aligned}
\] \& \[
\begin{array}{|l}
8 \\
1 \mathrm{~mW} \\
\text { note } 16 \\
\text { note } 16 \\
0-100 \\
10 \\
100 \mathrm{~mW} \\
-80 \mathrm{dBm} \\
5 \mathrm{~W} \\
12.5
\end{array}
\] \& \& C
\(C\)
\(C\)
\(C\)
\(C\)
\(C, R\)
\(C\)
\(C\)
\(C\)
\(C, R\)
\(C, R\) \& \[
\begin{array}{r}
225 \\
110 \\
650 \\
675 \\
225 \\
\\
1450 \\
105 \\
1385 \\
600 \\
1720
\end{array}
\] \& a

a
e

\hline OS-4 \& | H-P |
| :--- |
| B \& K |
| H-P |
| ITT |
| ITT |
| Gen Radio |
| Grundig |
| Marconi |
| Marconi |
| R\&S | \& \[

$$
\begin{aligned}
& 201 \mathrm{C} \\
& 1022 \\
& 206 \text { A } \\
& 74213-A \\
& 74233-B \\
& 1308-A \\
& 295 \\
& \text { TF2100 } \\
& \text { TF2000 } \\
& \text { SIT }
\end{aligned}
$$
\] \& .02

.02
.02
.02
.02
.02
.02
.02
.02

.02 \& $$
\begin{aligned}
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& \pm 2 \\
& \pm 1 \\
& \pm 3 \\
& 2 \\
& 2 \\
& \pm 1 \\
& \pm 1 \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \\
& 8 \mathrm{~Hz} \\
& 2 \\
& \text { ina } \\
& \text { ina } \\
& \\
& .03 \\
& 0.5 \mathrm{~Hz} \\
& .003 \\
& .003 \\
& 4 \mathrm{~Hz}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 42.5 \\
& 12.5 \\
& 10 \\
& -50 \mathrm{dBm} \\
& -40 \mathrm{dBm} \\
& 0-400 \\
& 8 \mathrm{~W} \\
& 8.5(8) \\
& 8.5 \\
& 1 \mathrm{~W}
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 1 \\
& 1 \\
& 7 \\
& 7
\end{aligned}
$$\right.
\] \& C, R

C, R
C, R
C
C
C
C, R
C
C, R
C, R

C \& $$
\begin{array}{r}
250 \\
1150 \\
900 \\
690 \\
400 \\
1250 \\
260 \\
515 \\
925 \\
1400
\end{array}
$$ \&

\hline OS-5 \& | Marconi |
| :--- |
| Probescope |
| R\&S |
| Krohn-Hite |
| Krohn-Hite |
| Radiometer |
| Siemens |
| H-P |
| Gen Radio |
| Radiometer | \& \[

$$
\begin{aligned}
& \text { TF2005 } \\
& \text { SG-376/U } \\
& \text { SRN } \\
& 452 \\
& 450 \\
& \text { H032 } \\
& \text { W36 } \\
& \text { 200AB } \\
& \text { 1304-B } \\
& \text { H012 }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l}
\hline .02(7) \\
.01 \\
.002 \mathrm{~Hz} \\
.001 \\
.0001 \\
0 \\
.03 \\
.03 \\
.03 \\
0
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 21 \\
& 30 \\
& 40 \\
& 40 \\
& 40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 1 \\
& \text { ina } \\
& 2 \\
& \pm .05 \\
& \pm .05 \\
& 2 \\
& \text { ina } \\
& 2 \\
& 1 \\
& 0.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& .003 \\
& \text { ina } \\
& \pm .01 \\
& .005 \\
& .005 \\
& \\
& 15 \mathrm{~Hz} \\
& 0.5 \\
& 2 \\
& \text { ina } \\
& 3 \mathrm{~Hz}
\end{aligned}
$$
\] \& 8.5

$2(7)$
$10 \mu \mathrm{~V}-30$
10
10
$300 \mu \mathrm{~V}-100$
$1 \mathrm{mV}-30$
24.5
$5 \mathrm{mV}-50$

$10 \mu \mathrm{~V}-50$ \& \[
$$
\begin{aligned}
& 7 \\
& 1 \\
& 4 \\
& 2 \\
& 2 \\
& 2 \\
& 1 \\
& 4 \\
& 4 \\
& 4 \\
& 2 \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& C, R \\
& C \\
& C \\
& C, R \\
& C, R \\
& C \\
& C \\
& C, R \\
& R \\
& C
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1415 \\
& \text { ina } \\
& 855 \\
& 1975 \\
& 1485 \\
& 449 \\
& 499 \\
& \text { ina } \\
& 170 \\
& 925 \\
& 1205
\end{aligned}
$$
\] \&

\hline OS-6 \& | Clough-Brengle |
| :--- |
| Clough-Brengle |
| Krohn-Hite |
| H-P |
| Krohn-Hite |
| Optimation |
| Optimation |
| Optimation |
| Optimation |
| B \& W | \& | 405 |
| :--- |
| 402 |
| 420-C |
| 203A |
| 4030 |
| RCD-1 |
| RCD-4 |
| ACl5 |
| RCD-2R |
| 210 | \& \[

$$
\begin{array}{|l}
.02 \\
.02 \\
.00035 \\
.005 \mathrm{~Hz} \\
.0001 \\
.0001 \\
.0001 \\
.0001 \\
.0001 \\
.01
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 50 \\
& 50 \\
& 52 \\
& 52 \\
& 60 \\
& 99.9 \\
& 99.9 \\
& 99.9 \\
& 99.9 \\
& 99.99 \\
& 100
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 1.5 \\
& \pm 1.5 \\
& \pm 2 \\
& \pm 1 \\
& 1 \\
& \pm 1 \\
& \pm 1 \\
& \pm 1 \\
& 1 \\
& \pm 0.1 \\
& \pm 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { ina } \\
& \text { ina } \\
& 1 \\
& 1 \\
& \pm .02 \\
& .01 \\
& .01 \\
& .01 \\
& .01 \\
& \text { ina }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
100 \mathrm{~mW}(21) \\
100 \mathrm{~mW}(8) \\
10 \\
30 \\
10 \\
0-5(8) \\
0-5(11) \\
0-15 \\
0-5 \\
10
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2 \\
& 2 \\
& 5 \\
& 7 \\
& 4 \\
& 4 \\
& 4 \\
& 4 \\
& 4 \\
& 4
\end{aligned}
$$
\] \& C

C
C, R
C
C
R
C, R
C, R
R
R

C \& \[
$$
\begin{array}{r}
340 \\
340 \\
410 \\
1200 \\
\text { note } 6 \\
\\
625 \\
880 \\
1090 \\
795 \\
187
\end{array}
$$

\] \& | b,c b,e c,f, i |
| :--- |
| b |
| b |
| b |
| b |

\hline
\end{tabular}

Notes, abbreviations and manufacturers' index at end of this section.

Oscillators $\quad 100-1000 \mathrm{kHz}$

	Oscillators . Manufacturer		FREQUENCY				Output Volts	\# of ranges	Type	Price \$	Notes
		Model	Min kHz	Max kHz	Acc \%	Stability \%					
OS-7	Waveforms Gen Radio Heath Waveforms Waveforms	$\begin{aligned} & 401 \mathrm{C} \\ & 1309-A \\ & 1 G-72 \\ & 452 \\ & 471 B \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 2 \\ & \pm 5 \\ & 1 \\ & 1 \end{aligned}$.005 ina ina . 005 . 005	$\begin{array}{\|l\|} \hline 20 \\ 5 \\ .003-10 \\ 8 \\ 10 \end{array}$	$\begin{array}{\|l} \hline 4 \\ 4 \\ 8 \\ 4 \\ 4 \end{array}$	$\begin{aligned} & C \\ & C \\ & C \\ & R \\ & C \end{aligned}$	$\begin{aligned} & 200 \\ & 325 \\ & 42 \mathrm{kit}(2) \\ & 1000 \\ & 250 \end{aligned}$	b
	Waveforms IERC H-P Holt Waveforms	$\begin{aligned} & 401 B \\ & \text { ADO-102 } \\ & 202 C \\ & 448 \\ & 473 B \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & .001 \\ & .001 \\ & .001 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 1.5 \\ & 2 \\ & \pm 1 \\ & 1 \end{aligned}$	$\begin{aligned} & .005 \\ & \pm 1 \\ & 2 \\ & \pm 0.2 \\ & .005 \end{aligned}$	$\begin{aligned} & 10 \\ & 0-50 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	C C,R C, R R C, R	$\begin{array}{r} 180 \\ 575 \\ 330 \\ 1540 \\ 410 \end{array}$	c e c
OS-8	Waveforms Krohn-Hite H-P Krohn-Hite Krohn-Hite	$\begin{aligned} & 403 \mathrm{~B} \\ & 4000 \\ & 3300 \mathrm{~A} / 3301 \mathrm{~A} \\ & 440-\mathrm{A} \\ & 4010 \end{aligned}$	$\begin{aligned} & .001 \\ & .0001 \\ & .00001 \\ & .001 \mathrm{~Hz} \\ & .001 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & \pm 1 \\ & \pm 1 \\ & 1 \end{aligned}$	$\begin{aligned} & .005 \\ & \pm .02 \\ & \pm 0.25 \\ & .05 \\ & \pm .02 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 35 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 7 \\ & 5 \\ & 5(5) \end{aligned}$	$\begin{aligned} & C, R \\ & C, R \\ & C \\ & C, R \\ & C, R \end{aligned}$	$\begin{aligned} & 350 \\ & 850 \\ & 570 \\ & 625 \\ & 925 \end{aligned}$	$\begin{aligned} & c \\ & f \\ & b, c \\ & c \end{aligned}$
	Krohn-Hite Muirhead Wayne Kerr Probescope B \& K	$\begin{aligned} & 4020 \\ & D-890-A / 1 \\ & S-121 \\ & R C-120 \\ & 1013 \end{aligned}$	$\begin{aligned} & .001 \mathrm{~Hz} \\ & .001 \\ & .01 \\ & .009 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 100 \\ & 111.1 \\ & 120 \\ & 120 \\ & 200 \end{aligned}$	$\begin{aligned} & 1 \\ & \pm 0.2 \\ & 1 \\ & \text { ina } \\ & 1 \end{aligned}$	$\begin{aligned} & \pm .02 \\ & \pm .02 \\ & 100 \mathrm{ppm} \\ & \text { ina } \\ & 80 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \mathrm{~W} \\ & 0-30 \\ & 0-17(7) \\ & 12.5 \end{aligned}$	$\begin{array}{\|l} 5(4) \\ 2 \\ 37 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & C, R \\ & C \\ & C \\ & C \\ & C, R \end{aligned}$	$\begin{array}{r} 1025 \\ 1450 \\ 470 \\ \text { ina } \\ 1390 \end{array}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}$
OS-9	EICO RCA Hathaway Muirhead ITT	$\begin{aligned} & 377 \\ & \text { WA-44C } \\ & N-1 \\ & K-126-A \\ & 74254-A \end{aligned}$	$\begin{aligned} & .02 \\ & .02 \\ & .002 \\ & .001 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 222.2 \\ & 300 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \\ & 2 \\ & \pm 0.4 \\ & \pm 1 \end{aligned}$	ina ± 2 ina $\pm .02$ ina	$\begin{aligned} & 10 \\ & 8 \\ & 1.5 \\ & 3 \\ & -49 \mathrm{dBim} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	C C C C C	$\begin{array}{r} 55 \\ 98 \\ 340 \\ 1055 \\ 700 \end{array}$	$\begin{array}{\|l} \text { b } \\ \text { b } \\ \text { c } \\ \text { a } \end{array}$
	R \& S Radiometer Gen Radio Waveforms Krohn-Hite	SRM RC03 1210C 512F $430-A B$	$\begin{aligned} & .03 \\ & .03 \\ & .02 \\ & .0005 \\ & .0046 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 500 \\ & 500 \\ & 520 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.5 \\ & 3 \\ & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & .01 \\ & \pm 0.5 \mathrm{~dB} \\ & 1 \\ & .01 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 0-150 \\ & 7 \\ & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \\ & C, R \end{aligned}$	$\begin{aligned} & 572 \\ & 591 \\ & 280 \\ & 475 \\ & 245 \end{aligned}$	
OS-10	Marconi H-P Marconi H-P H-P	$\begin{aligned} & \text { TF2001 } \\ & \text { 236A } \\ & \text { TF2101 } \\ & \text { 204B } \\ & \text { 208A } \end{aligned}$	$\begin{aligned} & .03 \\ & .05 \\ & .03 \\ & .005 \\ & .005 \end{aligned}$	$\begin{aligned} & 560 \\ & 560 \\ & 560 \\ & 560 \\ & 560 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & \pm 3 \\ & \pm 3 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & .02 \\ & 0.1 \\ & .02 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{array}{\|l} \hline 1.1(9) \\ +10 \mathrm{dBm} \\ 1.1(10) \\ 2.5 \\ 2.5 \end{array}$	$\begin{aligned} & 6 \\ & 4 \\ & 6 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & C, R \\ & C \\ & C, R \\ & C \\ & C(19) \end{aligned}$	$\begin{aligned} & 700 \\ & 525 \\ & 385 \\ & 315 \\ & 525 \end{aligned}$	a ${ }^{\text {a,e }}$
	Stewart H-P H-P Waveforms Prec Apparatus	$\begin{aligned} & \text { TO } \\ & 200 \mathrm{CD} \\ & 200 \mathrm{~S} \\ & 401 \mathrm{H} \\ & \mathrm{E}-310 \end{aligned}$	$\begin{aligned} & .0055 \\ & .005 \\ & .005 \\ & .005 \\ & .005 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & \pm 2 \\ & \pm 2 \\ & \pm 1 \end{aligned}$	2 2 ina 0.1 ina	$\begin{aligned} & 5,10 \\ & 10 \\ & 3 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 11 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & C \\ & C, R \\ & C, R \\ & C \\ & C \end{aligned}$	$\begin{aligned} & 270 \\ & 200 \\ & 230 \\ & 220 \\ & 200 \end{aligned}$	a e e
OS-11	ITT ITT ITT Prec Apparatus Gen Radio Hallicrafters Hallicrafters H-P Century Heath	$\begin{aligned} & 74188-D \\ & 74188-E \\ & 74188-F \\ & \text { E-330 } \\ & 1214-M \\ & \\ & \text { CFS-180A } \\ & \text { CFS-250A } \\ & 101 A \\ & 820 B \\ & \text { IG-82 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & .007 \\ & 1000 \\ & \\ & 100 \\ & 100 \\ & 100 \\ & 0.1 \\ & .02 \end{aligned}$	$\begin{aligned} & 610 \\ & 610 \\ & 610(3) \\ & 750 \\ & 1000 \\ & \\ & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 5 \\ & 1 \\ & 2 / 10^{10} \\ & 5 / 10^{11} \\ & .05 \mathrm{ppm} \\ & .001 \\ & \pm 5 \end{aligned}$	ina ina ina ina ina 2/1010 5/1011 .05 ppm 1 ppm ina	$\begin{aligned} & -80 \mathrm{dBm} \\ & -80 \mathrm{dBm} \\ & -80 \mathrm{dBm} \\ & 10 \\ & 300 \mathrm{~mW} \\ & \\ & 0.75 \\ & 1 \\ & 1 \\ & 0-1 \\ & .01-10 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 6 \\ & 1 \\ & 2(12) \\ & 2(12) \\ & 2(12) \\ & 2(12) \\ & 5 \\ & 5 \end{aligned}$	C C C C C C, R C, R C, R R C	1235 1235 1235 130 95 request request 600 3400 52 kit	a a b, c b
OS-12	Heath Waveforms Waveforms Clough-Brengle Clough-Brengle	$\begin{aligned} & \text { EUW-27 } \\ & 510 B \\ & 510 \mathrm{C} \\ & 411 \\ & 420 \end{aligned}$	$\begin{aligned} & .02 \\ & .02 \\ & .02 \\ & .02 \\ & .02 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 3 \\ & \pm 3 \\ & 2 \\ & 2 \end{aligned}$	ina 0.5 0.5 ina ina	$\begin{aligned} & .01-10 \\ & 10 \\ & 3 \\ & 10 \\ & 100 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C \\ & C \\ & C \end{aligned}$	$\begin{aligned} & 94 \text { wired } \\ & 180 \\ & 200 \\ & 120 \\ & 200 \end{aligned}$	b
	$R \& S$ H-P H-P Century Siemens	$\begin{aligned} & \text { SRB } \\ & 241 \mathrm{~A} \\ & 100 \mathrm{E} \\ & 821 \mathrm{~B} \\ & \mathrm{~W} 38 \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & .05 \mathrm{ppm} \\ & .001 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & \pm .03 \\ & .04 \\ & .05 \mathrm{ppm} \\ & 1 \mathrm{ppm} \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1 \mathrm{mV}-30 \\ & 2.5 \\ & 5 \\ & 0-1 \\ & 20 \mu \mathrm{~V}-20 \end{aligned}$	$\begin{aligned} & 5 \\ & \text { note } c \\ & 6(12) \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C, R \\ & R \\ & C \end{aligned}$	$\begin{array}{r} 980 \\ 490 \\ 1000 \\ 3550 \\ 1950 \end{array}$	$\begin{aligned} & e \\ & \text { h } \\ & \text { b,c } \end{aligned}$

Notes, abbreviations and manufacturers' index at end of this section.

Oscillators $1-920 \mathrm{MHz}$

	Oscillators Manufacturer	Model	FREQUENCY				Output Volts	\# of ranges	Type	$\underset{\$}{\text { Price }}$	Notes
			$\begin{aligned} & \mathrm{Min} \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \mathrm{MHz} \end{aligned}$	Acc \%	Stability \%					
OS-13	Waveforms Hathaway Waveforms Muirhead Century Century Century H-P Century Schlumberger	$401 F$ $\mathrm{N}-2 \mathrm{~A}$ 471 F K-205-A 822B 823B 824B 5102A 825B FS-1	. 001 .001 . 001 . 001 . 001 .0001 .00001 .00001 . 001 Hz 0	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1.2 \end{array}$	± 3 2 1 ± 1 .001 .001 .01 $3 / 10^{9}$.001 $1 / 10^{7}$	0.1 ina 0.1 $\pm .01$ 1 ppm 1 ppm 1 ppm $3 / 10^{9}$ 1 ppm $3 / 10^{9}$	$\begin{aligned} & 10 \\ & 0-10 \\ & 10 \\ & 3 \\ & 0-1 \\ & 0-1 \\ & 0-1 \\ & 1 \\ & 0-1 \\ & .05 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 2 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & C \\ & R \\ & R \\ & R \\ & R, R \\ & R \\ & R \\ & C \end{aligned}$	$\begin{array}{r} 325 \\ 350 \\ 385 \\ 670 \\ 3700 \\ 3850 \\ 4000 \\ 6500 \\ 4150 \\ 4250 \end{array}$	$\begin{aligned} & b, c \\ & b, c \\ & b, c \\ & k \\ & b, c \end{aligned}$
OS-14	ITT Waveforms ITT Gen Radio Schlumberger Tech Materiel Tech Materiel H-P H-P H-P	$\begin{aligned} & 74222-A \\ & 402 \mathrm{~A} \\ & 74308-\mathrm{A} \\ & 1310-\mathrm{A} \\ & \text { FS2 } \\ & \text { TTG-2 } \\ & \text { CPS-1 } \\ & 106 A \\ & 106 B \\ & 107 \mathrm{AR} \end{aligned}$	10 .01 0.3 . 002 0 1999 2000 100 100 100	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.62 \\ & 2 \\ & 2 \\ & 2.001 \\ & 2.001 \\ & 4 \\ & 5(13) \\ & 5(14) \\ & 5(13) \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 2 \\ & .01 \\ & \pm 2 \\ & 1 / 10^{7} \\ & \text { ina } \\ & 1 / 10^{8} \\ & 5 / 10^{11} \\ & 5 / 1011 \\ & 5 / 1010 \end{aligned}$	$\begin{aligned} & \pm 50 \mathrm{~Hz} \\ & 0.1 \\ & \pm 1.5 \mathrm{~Hz} \\ & 0.1 \\ & 3 / 10^{9} \\ & \text { ina } \\ & 1 / 108 \\ & 5 / 10^{11} \\ & 5 / 10^{11} \\ & 5 / 10^{10} \end{aligned}$	-80 dBm 8 -70 dBm 20 .05 1 1 W 1 1 1	$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \\ & 2 \\ & 2 \\ & 1 \\ & 3(12) \\ & 3(12) \\ & 3(12) \end{aligned}$	C C C C C C R C C, R C, R C, R	1715 450 2400 295 4400 478 request 3450 3900 2400	
OS-15	H-P Tech Materiel Wayne Kerr H-P H-P Marconi R\&S H-P Waveforms Measurements	107BR PMO-4 O-22D 651B 652A TF1370A SBF 5103A 511A 139	100 2000 10 . 01 . 01 .01 .01 .0001 10 3000	$5(14)$ 8 10 10 10 10 10 10 12 20	$\begin{aligned} & 5 / 1010 \\ & 30 \mathrm{ppm} \\ & 1 \\ & \pm 2 \\ & \pm 2 \\ & \\ & \pm 2 \\ & \pm 2 \\ & 3 / 10^{9} \\ & 3 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 5 / 10^{10} \\ & 20 \mathrm{ppm} \\ & \text { ina } \\ & .02 \\ & .02 \\ & \pm 0.1 \\ & \pm .01 \\ & \pm 10^{9} \\ & 3.005 \\ & \text { ina } \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \mathrm{~W} \\ \text { note } 1 \\ 3.16 \\ 3.16 \\ \\ 1 \mathrm{mV}-3 \\ 1 \mu \mathrm{~V}-10 \\ 1 \\ 3 \\ 0.5 \end{array}$	$\begin{aligned} & \hline 3^{(12)} \\ & 1 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 8 \\ & 2 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & C, R \\ & C \\ & C, R \\ & C \\ & C(20) \\ & C, R \\ & C, R \\ & C, R \\ & C, R \\ & C \end{aligned}$	2750 request 780 590 725 995 1960 7100 700 165	
OS-16	ITT ITT Tech Materiel Schlumberger Tech Materiel Hallicrafters PRD Microdot Gen Radio Schlumberger	$\begin{aligned} & \text { 74195-B } \\ & \text { 74306-A } \\ & \text { TRX-1 } \\ & \text { FS30 } \\ & \text { CPO-1A } \\ & \text { MHS-400 } \\ & \text { VHF9922 } \\ & \text { 404A } \\ & \text { 1211-C } \\ & \text { DO1001 } \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \\ & 540 \\ & 10 \\ & 1750 \\ & 2000 \\ & 30 \\ & 10,000 \\ & 500 \\ & 50 \end{aligned}$	$\begin{array}{\|l} 20 \\ 20 \\ 32 \\ 32 \\ 33.75 \\ 34 \\ 40 \\ 50 \\ 50 \\ 50 \end{array}$	$\begin{array}{\|l} \hline \pm 400 \mathrm{~Hz} \\ \pm 1 \\ \text { ina } \\ 1 / 10^{7} \\ \text { ina } \\ \\ \text { ina } \\ \text { ina } \\ \pm 1 \\ \pm 2 \\ 2 / 10^{8} \end{array}$	± 5 ina 1 ppm $3 / 10^{9}$ 1 ppm $1 / 10^{8}$ ina $\pm .002$ 0.4 $1 / 10^{9}$	$\begin{aligned} & -80 \mathrm{dBm} \\ & -50 \mathrm{dBm} \\ & 1 \\ & 1.3 \\ & 1 \mathrm{~W} \\ & \\ & 0.1-2.5 \\ & 10 \\ & 50 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 8 \\ 10 \\ 6 \\ \text { ina } \\ 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	5225 1095 560 4650 request request request 2975 415 5750	k
OS-17	Gen Radio H-P Tech Materiel Jerrold Tektronix Microdot Arenburg Kay Gen Radio Weinschel	$\begin{aligned} & \text { 1330-A } \\ & 5100 \mathrm{~A} / 5110 \mathrm{~A} \\ & \text { VOX-5 } \\ & \text { CM-11 } \\ & 191 \\ & \text { 406A } \\ & \text { PG-650C } \\ & 990 \\ & 1215-C \\ & \text { MS-1 } \end{aligned}$	5 .00001 2000 10,000 50 50,000 12 4500 50,000 50,000	$\begin{array}{\|l\|} \hline 50 \\ 50 \\ 64 \\ 100 \\ 100 \\ 200 \\ 210 \\ 220 \\ 250 \\ 250 \end{array}$	$\begin{aligned} & \pm 5 \\ & 3 / 10^{9} \\ & \text { ina } \\ & .003 \\ & 2 \\ & \pm 1 \\ & 2 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	ina $3 / 10^{9}$ $1 / 10^{5}$ ina . 01 $\pm .002$ 2 ina 0.2 2 Hz	$\begin{aligned} & 12 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 5 \mathrm{mV}-5 \\ & 50 \mathrm{~W} \\ & 00-600 \\ & 1 \\ & 120 \mathrm{~mW} \\ & 40 \mathrm{~mW} \end{aligned}$	$\begin{array}{\|ll} \hline 8 \\ \text { note } & 15 \\ 5 \\ 3 \\ 7 \\ 1 \\ 1 & \\ 21 & \\ 6 \\ 1 \\ 1 & \end{array}$	$\begin{aligned} & C \\ & C, R \\ & R \\ & R, R \\ & C \\ & C \\ & C \\ & R \\ & C \\ & C \\ & R \end{aligned}$	825 12,500 request request 400 2975 1750 375 275 1950	h h b
OS-18	Weinschel PRD Prec Apparatus Schlumberger Microdot Sierra Gen Radio H-P Gen Radio Weinschel	MS-12A/MO-3 UHF9922 E-200C FS500 408B 470A-500 1208-C 3200B 1209-CL MS-2	50,000 20,000 88 27,000 200 MHz 200 MHz 65,000 10,000 180 MHz 250 MHz	$\begin{aligned} & 250 \\ & 400 \\ & 440 \\ & 470 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 600 \\ & 920 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \\ & \pm 1 \\ & \text { ina } \\ & \pm 2 \\ & \pm 2 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	± 0.1 ina ina 5/108 $\pm .002$ ± 0.2 0.5 $\pm .002$ 0,2 2 Hz	$\begin{array}{\|l\|} \hline 80 \mathrm{~mW} \\ 2 \\ 80 \\ 1 \\ 50 \mathrm{~W} \\ 50 \mathrm{~W} \\ 240 \mathrm{~mW} \\ 25-200 \mathrm{~mW} \\ 320 \mathrm{~mW} \\ 100 \mathrm{~mW} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \text { ina } \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 6 \\ & 1 \end{aligned}$	R R C C C C C C C C R	2275 request 120 4925 2850 2650 325 475 360 2200	b,d h

Notes, abbreviations and manufacturers' index at end of this section.

Oscillators $920-6100 \mathrm{MHz}$

	Oscillators Manufacturer	Model	FREQUENCY				Output mW	\# of ranges	Type	Price \$	Notes
			$\begin{aligned} & \mathrm{Min} \\ & \mathrm{MHz} \end{aligned}$	Max MHz	$\begin{aligned} & \text { Acc } \\ & \% \end{aligned}$	Stability \%					
OS-19	Weinschel App Microwave Gen Radio Microdot Sierra Gen Radio Sierra Microdot LFE S-A	$\begin{aligned} & \text { MS-13/MO-3 } \\ & \text { C202 } \\ & 1209-\mathrm{C} \\ & 410 \mathrm{~B} \\ & 470 \mathrm{~A}-1000 \\ & 1361-\mathrm{A} \\ & 470 \mathrm{~A}-1800 \\ & 411 \mathrm{~A} \\ & 831-\mathrm{L}-1 \\ & 2120 / 28-1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 250 \\ & 150 \\ & 250 \\ & 500 \\ & 470 \\ & 450 \\ & 1000 \\ & 900 \\ & 1000 \\ & 1000 \end{aligned}$	920 950 960 1000 1000 1050 1800 1800 2000 2000	$\begin{aligned} & \pm 1 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \text { ina } \\ & \\ & \pm 1 \\ & \text { ina } \\ & \pm 1 \\ & 0.1 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm .002 \\ & 0.2 \\ & \pm .002 \\ & \pm 0.2 \\ & 0.2 \\ & .0 \\ & .01 \\ & \pm .002 \\ & 2 / 106 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 150 \\ & .05 \\ & .05 \\ & \\ & 150 \\ & .04 \\ & .025 \\ & 80 \\ & 100 \end{aligned}$	$\begin{array}{\|l} \hline 1 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & \hline R \\ & \mathrm{R}, \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C} \end{aligned}$	2400 request 360 2850 2650 365 request 2975 5550 5450	b,d d h h d
OS-20	PRD Weinschel S-A PRD Weinschel Gen Radio S-A Weinschel Polarad LFE	L712 L772A 2162 19922 MS-3 1218-B 2130 MS-8/MO-3 1205 814A-L-9	950 950 950 900 900 900 50 900 950 2000	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2200 \\ & 2400 \\ & 2500 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \text { ina } \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 2 \\ & \pm 1 \\ & \pm 0.5 \\ & 0.1 \end{aligned}$	ina ina 25 ppm ina 2 Hz 0.1 ± 0.5 $\pm .01$.0008	$\begin{aligned} & 10 \\ & 100 \\ & .001 \\ & 0 \mathrm{dBm} \\ & 50 \\ & \\ & 200 \\ & 150 \\ & 20 \\ & 50 \\ & 100 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 1 \end{array}$		1195 1150 2500 request 2750 595 3850 3200 1425 4250	b,h b b,d i
OS-21	FEL Sierra Gen Radio Microdot Narda Airborne LFE FEL Gen Radio LFE	$\begin{aligned} & \text { CG121L-10C } \\ & 470 A-2500 \\ & 1220-A 1 \\ & 413 A \\ & 451 A \\ & 125 \\ & 814 A-S-1 \\ & \text { CG121S-20C } \\ & 1220-A 2 \\ & 814 A-S-2 \end{aligned}$	$\begin{array}{\|l\|} \hline 2000 \\ 1800 \\ 2700 \\ 1800 \\ 750 \\ \\ 0.2 \\ 2500 \\ 2500 \\ 2950 \\ 2950 \end{array}$	$\begin{array}{\|l\|} \hline 2500 \\ 2500 \\ 2960 \\ 3000 \\ 3000 \\ \\ \hline 000 \\ 3050 \\ 3200 \\ 3275 \\ 3600 \end{array}$	$\begin{aligned} & \pm .01 \\ & \text { ina } \\ & \text { ina } \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & 0.1 \\ & \pm .01 \\ & \text { ina } \\ & 0.1 \end{aligned}$	1 ppm .01 ina $\pm .002$ ina . 004 $5 / 10^{8}$ 1 ppm ina $5 / 10^{8}$	$\begin{aligned} & 100 \\ & .025 \\ & 1.0 \\ & .005 \\ & 300 \\ & .05 \\ & 75 \\ & 100 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline C \\ C \\ C \\ C \\ C \\ C, R \\ C \\ C \\ C \\ C, R \end{array}$	4675 request 385 3500 1325 3450 3950 4237 408 3950	
OS-22	FEL Gen Radio FEL S-A S-A LFE Weinschel PRD S-A Gen Radio	$\begin{aligned} & \text { CG121S-21C } \\ & 1220-A 3 \\ & \text { CG121S-22C } \\ & 2120 / 28-2 \\ & 2163 \\ & 831-S-1 \\ & \text { S772A } \\ & \text { S712 } \\ & 2150 \\ & 1360-B \end{aligned}$	$\begin{aligned} & 2900 \\ & 3400 \\ & 3300 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 1900 \\ & 1900 \\ & 2000 \\ & 1700 \end{aligned}$	3600 3960 4000 4000 4000 4000 4000 4000 4100 4100	$\begin{aligned} & \pm .01 \\ & \text { ina } \\ & \pm .01 \\ & \pm 5 \\ & \pm 1 \\ & 0.1 \\ & \pm 1 \\ & \pm 1 \\ & 1 \\ & \pm 1 \end{aligned}$	1 ppm ina 1 ppm ± 0.1 25 ppm $2 / 10^{6}$ ina ina 25 ppm 5 ppm	$\begin{aligned} & 100 \\ & 90 \\ & 100 \\ & 70 \\ & .001 \\ & 40 \\ & 100 \\ & 10 \\ & 500 \\ & 50 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline C \\ & C \\ & C \\ & C \\ & C, R \\ & C, R \\ & C, R \\ & C \\ & C \\ & C, R \end{aligned}$	$\begin{array}{r} 4237 \\ 415 \\ 5350 \\ 4975 \\ 2500 \\ 4950 \\ 1150 \\ 1010 \\ 2200 \\ 1350 \end{array}$	d c d d b,h b g
OS-23	Weinschel Strand Polarad RFD LFE FEL Gen Radio FEL Gen Radio FEL	MS-9/MO-3 800 1206 712 814A-S-31 CG121C-30C 1220-A4 G100C-IR 1220-A5 CG121C-31C	$\begin{aligned} & 2100 \\ & 2100 \\ & 1950 \\ & 1700 \\ & 3700 \\ & 3900 \\ & 3840 \\ & 4625 \\ & 4240 \\ & 4400 \end{aligned}$	4200 4200 4200 4200 4300 4400 4460 4860 4910 5000	± 1 0.1 ± 0.5 ± 0.25 0.1 $\pm .01$ ina .0005 ina $\pm .01$	$\pm .01$.001 . 0008 ina $5 / 10^{8}$ 1 ppm ina $\pm .0001$ ina 1 ppm	$\begin{aligned} & 50 \\ & 10 \\ & 50 \\ & \text { ina } \\ & .001 \\ & 100 \\ & 75 \\ & 10 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{C}, \mathrm{R} \\ & \mathrm{C} \\ & \mathrm{R} \\ & \mathrm{C} \end{aligned}$	3150 5950 1425 ina request 5475 422 ina 415 5375	b,d d c c
OS-24	LFE Strand FEL Gen Radio LFE FEL App Microwave App Microwave App Microwave App Microwave	$\begin{aligned} & \text { 814A-C-10 } \\ & \text { 700-1 } \\ & \text { CG121C-32C } \\ & 1220-A 6 \\ & 814 A-C-1 \\ & \text { G110C-1C } \\ & \text { PG1K } \\ & \text { PH5K } \\ & \text { PH20K } \\ & \text { C201 } \end{aligned}$	$\begin{aligned} & 5400 \\ & 5300 \\ & 5100 \\ & 5100 \\ & 5100 \\ & 5000 \\ & 100 \\ & 100 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 5900 \\ & 5900 \\ & 5900 \\ & 5900 \\ & 5900 \\ & 6000 \\ & 6000 \\ & 6000 \\ & 6000 \\ & 6100 \end{aligned}$	0.1 0.1 $\pm .01$ ina ina $\pm .0001$ 0.2 0.2 0.2 0.5	5/108 .001 1 ppm ina 5/108 ina .001 . 001 .001 . 002	$\begin{aligned} & \hline 200 \\ & 50 \\ & 75 \\ & 80 \\ & 60 \\ & 1 \\ & 2 \mathrm{~kW} \\ & 2 \mathrm{~kW} \\ & 20 \mathrm{~kW} \\ & 1-60 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline C, R \\ & C, R \\ & C \\ & C \\ & C, R \\ & C \\ & C, R \\ & C, R \\ & C, R \\ & C, R \end{aligned}$	3950 3600 4050 412 3750 14,000 request request request request	

Notes, abbreviations and manufacturers' index at end of this section.

Oscillators $6.1-33.52 \mathrm{GHz}$

	Oscillators Manufacturer		FREQUENCY				Output mW	\# of ranges	Type	Price \$	Notes
		Model	$\begin{gathered} \mathrm{Min} \\ \mathrm{GHz} \end{gathered}$	Max GHz	$\begin{aligned} & \text { Acc } \\ & \% \end{aligned}$	Stability \%					
OS-25	App Microwave Strand FEL Gen Radio Strand LFE LFE Strand Weinschel Gen Radio	PG5K 700 $\begin{aligned} & \text { CG121C-33C } \\ & 1220-A 7 \\ & 700-2 \end{aligned}$ 814A-C-31 814A-C-12 700-3 MS-10/MO-3 1220-A8	$\begin{aligned} & 0.15 \\ & 5.9 \\ & 5.925 \\ & 5.925 \\ & 6 \\ & 5.9 \\ & 5.4 \\ & 6.5 \\ & 4 \\ & 6.2 \end{aligned}$	6.1 6.3 6.425 6.45 6.5 6.5 6.5 7.3 7. 7.425	ina 0.1 $\pm .01$ ina 0.1 0.1 0.1 0.1 ± 1 ina	ina .001 1 ppm ina .001 $5 / 10^{8}$ 5/108 . 001 $\pm .01$ ina	5 kW .001 100 100 .001 .001 200 .001 50 90	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & C, R \\ & C, R \\ & C \\ & C \\ & C, R \\ & R \\ & C \end{aligned}$	reques 4500 5290 388 4500 request 4650 4500 3450 388	d b,d c
OS-26	S-A LFE S-A S-A Polarad Weinschel Polarad Strand LFE FEL	$\begin{aligned} & 2120 / 28-4 \\ & 831-\mathrm{C}-1 \\ & 2164-2-8 \\ & 2164-1-8 \\ & 1207-\mathrm{M1} \end{aligned}$ C772A 1207 750 814A-X-5 CG121X-40C	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 0.95 \\ & 3.8 \\ & 3.95 \\ & 3.8 \\ & 7.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	8 8 8 8 8.1 8.1 8.2 8.2 8.5 8.5 8.5	± 5 0.1 ± 1 ± 1 ± 0.5 ± 1 ± 0.5 0.1 0.1 $\pm .01$	± 0.1 5/10 20 ppm 20 ppm ina ina ina . 001 $5 / 10^{8}$ 1 ppm	$\begin{aligned} & 20 \\ & 20 \\ & .001 \\ & .001 \\ & 80 \\ & 100 \\ & 25 \\ & .001 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	C C, R C C C C C, R C C, R C, R C	5375 4950 11,700 15,900 1950 1295 1450 4500 4250 5425	d d
OS-27	Strand LFE FEL Strand Weinschel LFE LFE FEL Weinschel Strand	300-A 814A-X-21 CG121X-41C 500 MS-30/MO-4 814A-X-12 814A-X-2 CG121X-42C MS-11/MO-3 230	$\begin{aligned} & 8.5 \\ & 8.5 \\ & 8.5 \\ & 8.5 \\ & 7.5 \\ & 9.8 \\ & 9 \\ & 9 \\ & 7.2 \\ & 9.6 \end{aligned}$	9.6 10 10 10 10 10.3 10.5 10.5 10.5 10.6	$\begin{aligned} & 5 / 104 \\ & 0.1 \\ & \pm .01 \\ & 0.1 \\ & \pm 0.1 \\ & \\ & 0.1 \\ & 0.1 \\ & \pm .01 \\ & \pm .01 \\ & 0.1 \end{aligned}$.001 5/108 1 ppm .0001 ina 5/108 5/108 1 ppm ina . 001	$\begin{aligned} & 20 \\ & 500 \\ & 100 \\ & 500 \\ & 50 \\ & \\ & 200 \\ & 55 \\ & 75 \\ & 50 \\ & 50 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	C C, R C C C, R R C, R C, R C R R C, R	2000 3750 3760 3600 4320 4300 3750 3730 3475 request	
OS-28	Weinschel Polarad LFE PRD FEL Weinschel Strand LFE S-A S-A	X772A 1208 814A-X-3 X712 CG121X-43C MS-31/MO-4 400 831-X-1 2120/28-8 2164-2-12	$\begin{aligned} & 7 \\ & 7.95 \\ & 9.8 \\ & 8.2 \\ & 10.6 \\ & 8.2 \\ & 8.2 \\ & 8.2 \\ & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 11.2 \\ & 12 \\ & 12.4 \\ & 12.4 \\ & 12.4 \\ & 12.4 \\ & 12.4 \\ & 12.4 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 0.5 \\ & 0.1 \\ & \pm 1 \\ & \pm .01 \\ & \pm 0.1 \\ & 0.1 \\ & .05 \\ & \pm 5 \\ & \pm 1 \end{aligned}$	ina ina $5 / 10^{8}$ ina 1 ppm ina . 001 1/106 ± 0.1 20 ppm	$\begin{array}{\|l} \hline 100 \\ 25 \\ 500 \\ 10 \\ 75 \\ 50 \\ 60 \\ 50 \\ 20 \\ .001 \end{array}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \end{array}$	$\begin{aligned} & C, R \\ & C \\ & C, R \\ & C \\ & C \\ & R \\ & C, R \\ & C, R \\ & C \\ & C \end{aligned}$	1295 1425 4650 1300 5250 3790 4500 4950 5450 16,200	b,h d b,d d
OS-29	S-A FEL LFE Strand FEL FEL Strand Strand LFE Weinschel	2164-1-12 CG121K-50C 814A-K-21 210 CG121K-51C CG121K-52C 200 201 814A-K-22 MS32/MO-4	0.95 12.8 12.4 12.5 14.2 15.8 15.5 15.5 15 12.4	$\begin{aligned} & 12.4 \\ & 14.2 \\ & 14.5 \\ & 15 \\ & 15.8 \\ & 17.5 \\ & 17.5 \\ & 17.5 \\ & 17.5 \\ & 18 \end{aligned}$	± 1 $\pm .02$ 0.1 0.1 $\pm .02$ $\pm .02$ 0.1 0.1 0.1 ± 0.1	20 ppm 1 ppm 5/108 . 001 1 ppm 1 ppm . 001 . 001 $5 / 10^{8}$ ina	.001 100 100 125 75 100 15 50 200 25	$\begin{aligned} & 4 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & C \\ & C \\ & C, R \\ & C, R \\ & C \\ & C \\ & C, R \\ & C, R \\ & C, R \\ & R \end{aligned}$	20,400 request 3950 4000 request request 3600 3600 4950 4350	d d b,d
OS-30	LFE S-A Polarad LFE Strand Polarad S-A Polarad Polarad Polarad	831-K-1 2120/28-12.4 EHF-S1821-5 817-K-24 150 EHF-S2225-1 2120/28-18 EHF-S2427-1 EHF-S2730-1 EHF-S2933-1	12.4 12.4 18 23 23 22 18 24.7 27.27 29.7	18 18 22 25 25 25 26.5 27.5 30 33.52	$\begin{aligned} & 0.1 \\ & \pm 5 \\ & \pm 0.1 \\ & 0.1 \\ & 0.1 \\ & \pm 0.1 \\ & \pm 5 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 2 / 10^{6} \\ & \pm 0.1 \\ & \text { ina } \\ & 1 / 107 \\ & .001 \\ & \\ & \text { ina } \\ & \pm 0.1 \\ & \text { ina } \\ & \text { ina } \\ & \text { ina } \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 10 \\ & 100 \\ & 40 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & C, R \\ & C \\ & C \\ & C, R \\ & C, R \\ & C \end{aligned}$	$\begin{aligned} & 5550 \\ & 5395 \\ & 3545 \\ & 6500 \\ & 4500 \\ & 3545 \\ & 6880 \\ & 3545 \\ & 3575 \\ & 3575 \end{aligned}$	d d, i d, i d d,i d,i d,i

Notes, abbreviations and manufacturers' index at end of this section.

Oscillators $36-75 \mathrm{GHz}$

	Oscillators Manufacturer		FREQUENCY				Output mW	\# of ranges	Type	Price \$	Notes
		Model	$\begin{aligned} & \mathrm{Min} \\ & \mathrm{GHz} \end{aligned}$	Max GHz	Acc \%	Stability \%					
OS-31	LFE	817-K-35	34	36	0.1	5/108	100	1	C,R	7500	
	Polarad	EHF-S3336-1	33.52	36.25	± 0.1	ina	10	1	C	3575	d, i
	Strand	100	32	37	0.1	. 001	16	1	C,R	5300	
	Polarad	EHF-S3540-1	35.1	39.7	± 0.1	ina	5	1	C	3575	d,i
	S-A	2120/28-27	26.5	40	± 5	± 0.1	5	1	C	7150	d
	FEL	PLG122	2	40	ina	ina	50	1	C	request	d
	Polarad	EHF-S4046-1	39.6	46	± 0.1	ina	3	1	C	3575	d,i
	Polarad	EHF-S4640-1	45.9	50	± 0.1		3	1	C	3575	d,i
	Strand	50	50	75	0.1	. 001	300	1	C, R	request	

Oscillators Late arrivals

	Kruse-Storke	6000-1	0.3	0.5	$\pm .05$	1/108	. 0015	1	C,R	3400	
	Kruse-Storke	6000-2	0.3	0.5	$\pm .05$	1/108	. 003	1	C,R	3600	
	Kruse-Storke	6000-3	0.5	0.7	$\pm .05$	1/108	. 001	1	C,R	3400	
	Kruse-Storke	6000-4	0.5	0.7	$\pm .05$	$1 / 10^{8}$. 002	1	C,R	3600	
OS-32	Kruse-Storke	6000-5	0.7	1.4	$\pm .05$	$1 / 10^{8}$. 0005	1	C, R	3800	
	Kruse-Storke	6000-6	0.7	1.4	$\pm .05$	1/108	. 001	1	C,R		
	Kruse-Storke	6000-7	1.4	2.1	$\pm .05$	1/108	. 0005	1	C,R	4000	
	Kruse-Storke	6000-8	2.1	3.8	$\pm .05$	$1 / 10^{8}$. 0002	1	C,R	4000	
	Kruse-Storke	6000-9	2.1	3.8	$\pm .05$	$1 / 10^{8}$. 001	1	C, R	request	

Notes, abbreviations and manufacturers' index at end of this section.

NOTES (Oscillators)

a. Battery operated
b. Also squarewave generator
c. Frequency set by pushbutton or rotary switch
d. Includes basic power supply with interchangeable tuning units
e. Input: $115 / 230 \mathrm{~V}, \pm 10 \%, 60-60 \mathrm{~Hz}$
f. Also squarewave and function generator
g. Also squarewave and pulse generator
h. Also pulse generator
i. Also squarewave and sawtooth generator
i. Programable
k. Frequency synthesizer

1. $+10 d B$ to $-50 d B$
2. $\$ 65$ wired
3. 140Ω or 600Ω balanced or unbalanced
4. $0-10 \mathrm{~V}$ in 1 mV steps
5. $0-9 \mathrm{~V}$ in 1 V steps
6. \$1335-2185 depending on options desired
7. Two independent oscillator sections
8. Output impedance -600Ω
9. Attenuator $111 \mathrm{~dB}, 3$ decade
10. Uncalibrated potentiometer
11. Output impedance $-600-1250 \Omega$
12. Crystal controlled
13. Requires $22-30 \mathrm{~V}$ dc
14. Contains standby power supply
15. Selectable in steps of .01 Hz , also variable through 1 MHz
16. -30 to +10 dBm
17. Input: 48 V dc, $\pm 4 \mathrm{~V}$ positive ground
18. Input: $30 \mathrm{~V} \mathrm{dc}, \pm 3 \mathrm{~V}$ positive ground
19. Includes meter calibrated in volts or dBm
20. Includes X20 meter expand
21. Output impedance -4000Ω
22. Also 12 V and 60 V
23. Also 15 V and 30 V

ABBREVIATIONS

C - Cabinet
R - Rack mount
ina - Information not available R-C OSCILLATORS YOU GET MORE THAN ADJUSTABLE FREGUENCY!

MODEL 4004, one of the new K-H all-silicon Variable R-C Oscillators, provides continuously adjustable frequency over the range of 0.001 Hz to 100 kHz . Programmed units also available.

A stable low-distortion signal source is essential for today's complex electronic measurements. You get unsurpassed signal stability and purity in K-H's new line of all-silicon broad band variable R-C Oscillators. Amplitude stability is described, below. Distortion is plotted.

TYPICAL HARMONIC DISTORTION PLOT of K-H Series 4000 R-C Variable Frequency Oscillators.

Stability and signal purity are only two examples of the extra value you get from these modern Krohn-Hite electronic instruments. Other values increase user confidence further by providing simpler, faster and lowercost operation.

Excellent Amplitude Stability: 0.01\%, cycle-to-cycle; 0.01\% per hour.

Sine- and Square-Wave Outputs: Pure sine-wave output - no diode-shaped approximations to produce stepfunction or waveform discontinuities. Square-wave rise and fall times less than 20 nanoseconds.

Quadrature Outputs: Sine and cosine outputs remain within $\pm 1^{\circ}$ of quadrature. Ideal as driver for polyphase variable power sources or simulators for rotary or linear encoders.

There's more in K-H Data Sheet 4000.

Write for a copy.

Nㅡ옵N-HITE
580 Massachusetts Avenue, Cambridge, Mass. 02139 Telephone: 617/491-3211

Index of Manufacturers and Model Numbers
(keyed to table locator symbols)

Airborne Instrument Laboratory	1211-C	(OS-16)
	1214-A	(OS-1)
125 (OS-21)	1214-M	(OS-11)
	1215-C	(OS-17)
Applied Microwave Laboratory	1218-B	(OS-20)
(App Microwave)	1220-Al	(OS-21)
	1220-A2	(OS-21)
C201 (OS-24)	1220-A3	(OS-22)
C202 (OS-19)	1220-A4	(OS-23)
PGIK (OS-24)	1220-A5	(OS-23)
PG5K (OS-25)	1220-A6	(OS-24)
PH5K (OS-24)	1220-A7	(OS-25)
PH2OK (OS-24)	1220-A8	(OS-25)
	1304-B	(OS-5)
Arenburg Ultrasonic Laboratory, Inc (Arenburg)	1305-A	(OS-2)
	1307-A	(OS-2)
	1308-A	(OS-4)
PG-650C (OS-17)	1309-A	(OS-7)
PG-650C (OS-17)	1310-A	(OS-14)
B \& K Instruments, Inc	1311-A	(OS-3)
	1330-A	(OS-17)
1013 (OS-8)	1360-B	(OS-22)
1017-A (OS-2)	1361-A	(OS-19)
1022 (OS-4)		
1024A (OS-3)	Grundig	

Barker \& Williamson, Inc (B \& W)
210 (OS-6)
Century Electronics \& Instruments

$820 B$	$(O S-11)$
$821 B$	$(O S-12)$
$822 B$	$(O S-13)$
$823 B$	$(O S-13)$
$824 B$	$(O S-13)$
$825 B$	$(O S-13)$

Clough-Brengle Co

$179-A$	$(O S-3)$
402	$(O S-6)$
405	$(O S-6)$
411	$(O S-12)$
420	$(O S-12)$

Electronic Instrument Co, Inc (EICO)
377 (OS-9)

Frequency Engineering Laboratory (FEL)

CG121C-30C	$($ OS-23)
CG121C-31C	$(O S-23)$
CG12IC-32C	$(O S-24)$
CG121C-33C	$(O S-25)$
CG121K-50C	$(O S-29)$
CG121K-51C	$(O S-29)$
CG121K-52C	$(O S-29)$
CG121L-10C	$(O S-21)$
CG121S-20C	$(O S-21)$
CG121S-21C	$(O S-22)$
CG121S-22C	$(O S-22)$
CG121X-40C	$(O S-26)$
CG121X-41C	$(O S-27)$
CG121X-42C	(OS-27)
CG121X-43C	$(O S-28)$
G100C-1R	$(O S-23)$
G110C-1C	$(O S-24)$
PLG122	$(O S-31)$
General Radio Co (Gen Rad	
1208-C	$(O S-18)$
$1209-C$	$(O S-19)$
$1209-C L$	$(O S-18)$
$1210 C$	$(O S-9)$

295	$(\mathrm{OS}-4)$
Hallicrafters Co	
CFS-180A	$(\mathrm{OS}-11)$
CFS-250A	$(\mathrm{OS}-11)$
MHS-400	$(\mathrm{OS}-16)$
Hathaway	
$\mathrm{N}-1$	$(\mathrm{OS}$ nstruments, Inc
$\mathrm{N}-2 \mathrm{~A}$	(OS-13)
Heath Co	
EUW-27	(OS-12)
IG-72	(OS-7)
IG-82	
Hewlett-Packard	Co (H-P)

100E	(OS-12)
101A	(OS-11)
106A	(OS-14)
106B	(OS-14)
107AR	(OS-14)
107BR	(OS-15)
200AB	(OS-5)
200CD	(OS-10)
2005	(OS-10)
201 C	(OS-4)
202-A	(OS-2)
202C	(OS-7)
203A	(OS-6)
204B	(OS-10)
205AG	(OS-3)
206A	(OS-4)
208A	(OS-10)
236A	(OS-10)
241A	(OS-12)
651B	(OS-15)
652A	(OS-15)
3200B	(OS-18)
3300A/3301A	(OS-8)
5100A/5110A	(OS-17)
5102A	(OS-13)
5103A	(OS-15)
H30-241A	(OS-3)
H48-241A	(OS-3)
Holt Instrument Co	
448	(OS-7)

Industrial Test Equipment Co (Ind Test Equip)

600	$(O S-1)$
1040	$(O S-1)$
$1040-A$	$(O S-2)$
1400	$(O S-1)$
JF-400	$(O S-1)$
OPS-100	$(O S-1)$

International Electronic Research Corp (IERC)

ADO-102
(OS-7)
ITT - Industrial Products Division

$74186-C$	$(O S-3)$
$74188-D$	$(O S-11)$
$74188-E$	$(O S-11)$
$74188-F$	$(O S-11)$
$74191-A$	$(O S-1)$
$74191-B$	$(O S-1)$
$74191-C$	$(O S-3)$
$74195-B$	$(O S-16)$
$74213-A$	$(O S-4)$
$74222-A$	$(O S-14)$
$74233-B$	$(O S-4)$
$74254-A$	$(O S-9)$
$74306-A$	$(O S-16)$
$74308-A$	$(O S-14)$
Jerrold Electronics Corp	

CM-11
(OS-17)
Kay Electric Co
$990 \quad$ (OS-17)
Krohn-Hite Corp

$400-C$	$(O S-2)$
$420-C$	$(O S-6)$
$430-A B$	$(O S-9)$
$440-A$	$(O S-8)$
$440-B$	$(O S-2)$
450	$(O S-5)$
452	$(O S-5)$
4000	$(O S-8)$
4010	$(O S-8)$
4020	$(O S-8)$
4030	$(O S-6)$

Kruse-Storke Electronics

$6000-1$	$(O S-32)$
$6000-2$	$(O S-32)$
$6000-3$	$(O S-32)$
$6000-4$	$(O S-32$
$6000-5$	$(O S-32)$
$6000-6$	$(O S-32)$
$6000-7$	$(O S-32)$
$6000-8$	$(O S-32)$
$6000-9$	$(O S-32)$

Laboratory For Electronics, Inc (LFE) Electronics Division

$814 \mathrm{~A}-\mathrm{C}-1$	$(O S-24)$
$814 \mathrm{~A}-\mathrm{C}-10$	$(O S-24)$
$814 \mathrm{~A}-\mathrm{C}-12$	$(O S-25)$
$814 \mathrm{~A}-\mathrm{C}-31$	$(O S-25)$
$814 \mathrm{~A}-\mathrm{K}-21$	$(O S-29)$
$814 \mathrm{~A}-\mathrm{K}-22$	$(O S-29)$
$814 \mathrm{~A}-\mathrm{L}-9$	$(O S-20)$
$814 \mathrm{~A}-\mathrm{S}-1$	$(O S-21)$
$814 \mathrm{~A}-\mathrm{S}-2$	$(O S-21)$
$814 A-S-31$	$(O S-23)$
$814 A-X-2$	$(O S-27)$
$814 A-X-3$	$(O S-28)$
$814 A-X-5$	$(O S-26)$
$814 A-X-12$	$(O S-27)$
$814 A-X-21$	$(O S-27)$
$817-K-24$	$(O S-30)$
$817-\mathrm{K}-35$	$(O S-31)$

(A) SERIES S1077 OSCILLATORS -100 KHz to 10 MHz

- $1 \times 10^{-10} / \mathrm{C}^{\circ}$ from -20° to $+55^{\circ} \mathrm{C}$
- $1 \times 10^{-10} \mathrm{RMS}$ Short Term Stability
- Less Than $1 \times 10^{-9} /$ Day Aging
- Voltage Adjust

Coarse and Fine-Internal
Voltage Variable and
Mechanical Fine-External

- Flexible Power Input System
(A) All silicon solid state design using proportional ovens with glass-enclosed crystals assures unexcelled performance -with guaranteed specifications-in frequency and time applications. Ideal for use in digital frequency counters, phase-locked receivers, synthesizers, SSB systems, missile guidance and satellite tracking systems, navigation, computer and communications equipment.
(B) SERIES SLN6039 OSCILLATORS-60 KHz to 10 MHz
- Industry's Fastest Warm-Up-within 5×10^{-9} in 10 minutes
- 5×10^{-10} or $1 \times 10^{-9} /$ Day Aging
- High MTBF
(B) This oscillator with its wide dynamic range proportional oven and glass-enclosed precision crystal meets many MIL specifications for both airborne and ground equipment.

For full specifications call or write: Motorola Communications \& Electronics, Inc., 4501 Augusta Blvd., Chicago, Illinois 60651. (312) 772-6500. A Subsidiary of Motorola Inc.

Exclusive!

Single Dial Source and Detector

Simultaneous Tuning of Source and Detector with New Wayne Kerr SR268 (100kHz-100MHz)

With other systems, it is necessary to tune the source to a specific frequency and then the detector must be tuned to the exact same frequency.
The new Wayne Kerr SR268 Source \& Detector performs both functions simultaneously in a single operation over the range $100 \mathrm{kHz}-100 \mathrm{MHz}$ at a short-term frequency stability of 0.01%. Frequency accuracy over this range is $\pm 2 \%$.

The simplicity of operation provided by ganged tuning is furthered by the incorporation of common-mode rejection transformers in the input and output networks, reducing any interference or cross-talk from unwanted signals.

Operable simultaneously from an external nine-volt battery and a six-volt battery for pilot light indications, SR268 is ideal for field work, too. SR268 is an ideal companion instrument to Wayne Kerr R. F. Bridge B601, VHF Bridge B801B and precision R. F. Bridge B201.

SPECIFICATIONS	
Frequency	100 kHz to 100 MHz
Range:	in 9 bands:
BAND 1	$100 \mathrm{kHz} \cdot 216 \mathrm{kHz}$
BAND 2	$216 \mathrm{kHz} \cdot 465 \mathrm{kHz}$
BAND 3	$465 \mathrm{kHz} \cdot 1000 \mathrm{kHz}$
BAND 4	$1.00 \mathrm{MHz} \cdot 2.16 \mathrm{MHz}$
BAND 5	$2.16 \mathrm{MHz} \cdot 4.65 \mathrm{MHz}$
BAND 6	$4.65 \mathrm{MHz} \cdot 10.0 \mathrm{MHz}$
BAND 7	$10.0 \mathrm{MHz} \cdot 21.6 \mathrm{MHz}$
BAND 8	$21.6 \mathrm{MHz} \cdot 46.5 \mathrm{MHz}$
BAND 9	$46.5 \mathrm{MHz} \cdot 100 \mathrm{MHz}$

Oscillator Output Level:

Maximum output into 75?: BANDS $1-7,2 \mathrm{rms} ;$ BAND 8, IV rms; BAND 9, 0.5 V rms

Output Level Control: 39 dB in 3dB Steps (75?)

Detector Sensitivity:

Maximum Input Required for 10\% Meter Reflection: BANDS $1-6,1 \mu \mathrm{~V}$ x $(\mathrm{fMHz})^{1 / 2}$; BANDS $7-8,10 \mu \mathrm{~V}$; BAND $9,30 \mu \mathrm{~V} 46.5 \mathrm{MHz} \cdot 70 \mathrm{MHz}, 20 \mu \mathrm{~V} 70$ $\mathrm{MHz} \cdot 90 \mathrm{MHz}, 10 \mu \mathrm{~V} 90 \mathrm{MHz} \cdot 100 \mathrm{MHz}$ Input Level Control: 4 Steps of 20 dB (nominal)

Weston-Boonschaft \& Fuchs
711A-1
(OS-1)
Manufacturers' addresses and literature offerings in master cross index at front of issue.

Strand Laboratories, Inc	
50	$(O S-31)$
100	$(O S-31)$
150	$(O S-30)$
200	$(O S-29)$
201	$(O S-29)$
210	$(O S-29)$
230	$(O S-27)$
$300-A$	$(O S-27)$
400	$(O S-28)$
500	$(O S-27)$
700	$(O S-25)$
$700-1$	$(O S-24)$
$700-2$	$(O S-25)$
$700-3$	$(O S-25)$
750	$(O S-26)$
800	$(O S-23)$

CPO-1A	$(O S-16)$
CPS-1	$(O S-14)$
PMO-4	$(O S-15)$
TRX-1	$(O S-16)$
TTG-2	$(O S-2)$
TTG-2	$(O S-14)$
VOX-5	$(O S-17)$

Tektronix, Inc
191 (OS-17)
Waveforms, Inc

401B	$(O S-7)$
401 C	$(O S-7)$
401 F	$(O S-13)$
401 H	$(O S-10)$
402 A	$(O S-14)$
$403 B$	$(O S-8)$
452	$(O S-7)$
471 B	$(O S-7)$
471 F	$(O S-13)$
472 C	$(O S-3)$
$473 B$	$(O S-7)$
510B	$(O S-12)$
510C	$(O S-12)$
511A	$(O S-15)$
512F	$(O S-9)$

Wayne-Kerr Corp

O-22D	(OS-15)
S-121	(OS-8)

Weinschel Engineering Co, Inc

C772A	$(O S-26)$
L772A	$(O S-20)$
$M S-1$	$(O S-17)$
$M S-2$	$(O S-18)$
$M S-3$	$(O S-20)$
$M S-8 / M O-3$	$(O S-20)$
$M S-9 / M O-3$	$(O S-23)$
$M S-10 / M O-3$	$(O S-25)$
$M S-11 / M O-3$	$(O S-27)$
$M S-12 A / M O-3$	$(O S-18)$
$M S-13 / M O-3$	$(O S-19)$
$M S-30 / M O-4$	$(O S-27)$
$M S-31 / M O-4$	$(O S-28)$
$M S-32 / M O-4$	$(O S-29)$
S772A	$(O S-22)$
X772A	$(O S-28)$

Random noise generators $35 \mathrm{~Hz}-5400 \mathrm{MHz}$
For information on how to use these tables, turn to page 2

			FRE	ENCY		UT				
	Manufacturer	Model	Min. MHz	Max. MHz	dB	Meter	Noise Source	Type	$\begin{gathered} \text { Price } \\ \$ \end{gathered}$	Notes
$\begin{gathered} \text { NG- } \\ 1 \end{gathered}$	Elgenco Elgenco Beckman Belkman Elgenco	301A 311A 1179 R 1179 A 321A	0 0 0 0 0	35 Hz $35 \mathrm{~Hz} \mathbf{z}^{(6)}$ $35 \mathrm{~Hz}(17)$ 35 Hz 105 Hz	12 V 12 V 12 V 12 V 12 V	yes yes yes yes yes	note 1 note 1 note 1 note 1 note 1	$\begin{aligned} & R \\ & R \\ & R \\ & R \\ & R \end{aligned}$	$\begin{array}{r} 1995 \\ 2895 \\ \text { request } \\ \text { request } \\ 2095 \end{array}$	
	Elgenco	632A	0	350 Hz (10)	1 V	none	note 8	C,R	2475	
	Marconi	7816	300 Hz	. 0034	1 mW	yes	note 8	C, R	1395	
	ITT	74216-A	20 Hz	. 004	20 dBm	yes	note 2	C	890	
	Allison	349A	37 Hz	. 0192	2 V	none	note-2	R	2050	
	Northeast	TTS-56	20 Hz	. 02	$\pm 10 \mathrm{dBm}$	yes	note 3	C	370	
$\begin{gathered} \text { NG- } \\ 2 \end{gathered}$	B \& K	1402	20 Hz	. 02	40 V			C,R	975	
	Elgenco	331A	10 Hz	. 02	5 V	yes	note 5	R	1295	
	Beckman	1179R	10 Hz	. $022^{(18)}$	15 V	yes	note 1	R	request	
	Elgenco	311A		. 02 (7)	12 V	yes	note 1	R	2395	
	Allison	650	5 Hz	. 03	1.5 V	yes	note 3	C,R	310	c
	Elgenco	632A	10 Hz	.035(11)	1 V	none	note 8	C,R	2475	
	Allison	348A	22 Hz	. 045	2 V	none	note 2	R	1825	
	H H Scott	$811-B C$	2 Hz	1.5	2.5 V	yes	note 1	C,R	275	
	Gen Radio	1390-B 602 A	5 Hz 5 5 Hz	5 5	3 V 3 V	yes yes	note 1 note 8	C,R C, R	335 290	
$\begin{gathered} \text { NG- } \\ 3 \end{gathered}$	Elgenco	603A	5 Hz	5	3 V	yes	note 8	C,R	495	
	Elgenco	624A Series	5 Hz (9)	5(9)	3 V	yes	note 8	C,R	245-525	
	Elgenco	610A	5 Hz	5	1 V	yes	note 8	C,R	1175	
	R \& S	SUF	30 Hz	6	$1{ }_{\mu} \mathrm{V}-1 \mathrm{~V}$	yes	note 5	C	1590	
	Marconi	TF2091	. 012	12.388	100 mW	yes	note 4	C,R	1495	
	Kay	770	. 001	20	0-10	none	note 19	C	250	
	H-P	345B	30	30		yes	note 3	C,R		a, b
	Kay	240	5	220	0-23.8	yes	note 3	C	375	
	Airborne Kay	$\begin{aligned} & 07006 \\ & 600 \end{aligned}$	10 5		$\begin{aligned} & 0-16 \\ & 0-23.8 \end{aligned}$	none yes	note 5 note 3	C	$\begin{aligned} & 125 \\ & 1595 \end{aligned}$	
$\begin{gathered} \text { NG- } \\ 4 \end{gathered}$		403	3	500	0-19	yes	note 3	C	375	
	ARI	NS-C	1	500	0-16	yes	note 3	C	450	
	Gen Micro	504	1	500	15.2	yes	note 3	C	225 (16)	a, b
	Gen Micro	503	1	500	0-19	yes	note 3	C	350	
	ARI	NS-LB	100 Hz	500	0-16	yes	note 3	C	850	c
	H-P	343A	10	600	5.2	yos	note 3	C,R	100 (23)	a, b
	PRD	904-A	30	1000	0-10,20	yes	note 5	C	490	
	Kay	771	10	1000	0-10	none	note 19	C	250	
	R \& S	SKTU	3	1000		yes	note 3	C	632	
	Kay	310A	1200	1400	$15.8{ }^{(20)}$	yes	note 1	C		a, b
$\begin{gathered} \text { NG- } \\ 5 \end{gathered}$	Kay	311A	1200	1400	15.8(21)	yes	note 1	C	395 (22)	a, b
	Kay	312A	1120	1700	15.8	yes	note 1	C	$595(22)$	a, b
	Airborne	07002	${ }^{0}$	2000	5.83	none	note 14	C	${ }_{495}^{1100}$	
	Kay	8704	1700	2600	15.8	yes	note 1	C	495 (22)	a, b
	Airborne	07010	200	2600	15.6	yes	note 1	C	$330{ }^{(12)}$	a, b
	Gen Micro	N501C	200	2600	15.6	yes	note 1	C	265 (16)	a, b
	Signalite	TN-3	2700	2900	18.5	none	note 1	C	$225{ }^{(25)}$	a, b
	Kay	780		3000	20	yes	note 3	C		
	Kay	880 A	2200	3300	15.8	yes	note 1	C	$\begin{aligned} & 495(22) \\ & 175(22) \end{aligned}$	a, b
	Kay	261A	2600	3900	15.8(21)	yes	note 1	C		a, b
$\begin{gathered} \text { NG- } \\ 6 \end{gathered}$		260A	2600	3900	15.8(20)	yes	note 1	C		
	Airborne	07048	2600	3950	15.3	yes	note 1	C	250 (12)	a, b
	D-B	DBL-140-T	2600	3950	16	yes	note 1	C	318 (15)	a, b
	Gen Micro	S501C	2600	3950	15.2	yes	note 1	${ }_{c}$	300 (16)	a, b
	H-P	S347A	2600	3950	15.1	yes	note 1	C,R		a, b
	Signalite	XN-727	2600	3950	14.5	none	note 1	C	request	a, b
	Waveline	2200-2	2600	3950	ina	yes	note 1	C	$175(24)$	a, b
	H-P	349A	400	4000	15.6	yes	note 1	C,R	325 (23)	a, b
	Airborne	07012	2000	5000	15.65	yes	note 1	C	395 (12)	a, b
	Signalite	TN-17	4600	5400	18.5	none	note 1	C	request	a, b

Notes, abbreviations and manufacturers' index at end of this section.

Random noise generators $5800-120,000 \mathrm{MHz}$

Notes, abbreviations and manufacturers' index at end of this section.

Impulse noise generators $35-21,000 \mathrm{MHz}$

NOTES	other at $373.1^{\circ} \mathrm{K}$, coaxial switch permits selection.
a. Meter mounted on power supply.	15. Model DB-2140 power supply add \$200.
b. Power supply separate from noise source. c. Battery operated.	16. Model 551 A automatic noise figure meter add $\$ 1,095$; Model 301 A , add $\$ 125$.
	17. Dual output, $10 \mathrm{~Hz}-20 \mathrm{kHz}$.
1. Gas tube.	18. Dual output, $0-35 \mathrm{~Hz}$.
2. Zener diode.	19. Heated resistive element.
3. Noise diode.	20. Flourescent source.
4. Silicon diode.	21. Argon source.
5. Noise pentode.	22. Model 323-C power supply, add \$125.
6. Dual output, also $0-20 \mathrm{kHz}$.	23. Model 340B and 342A noise figure meters
7. Dual output, also $0-35 \mathrm{~Hz}$.	at \$715 and \$815 respectively.
8. Solid state.	24. Model 2200 M or 2200 power supply at
9. Fixed frequencies available, $5,10,20$, 50 and $200 \mathrm{~Hz} ; 20,50,100,200,500 \mathrm{kHz}$	$\$ 125$ and $\$ 300$, respectively. 25. Type TA-3 power supply, add $\$ 125$.
50 and 200 Hz ; 20, 50, 100, 200, 500 kHz and 5 MHz .	25. Type TA-3 power supply, add $\$ 125$.
10. Dual output, also $10 \mathrm{~Hz}-35 \mathrm{kHz}$.	
11. Dual output, also $0-350 \mathrm{~Hz}$.	
12. Type 71 power supply add \$165; type 74A	ABBREVIATIONS:
noise figure indicator add \$765.	
13. Type 07112 power supply add $\$ 150$ or type	C - Cabinet
74 A noise figure indicator, add \$765.	R - Rack mount
14. Two resistive elements one at $77.3^{\circ} \mathrm{K}$, the	ina - information not available

Index of Manufacturers and Model Numbers

(keyed to table locator symbols)

INDEX		B \& K Instruments, Inc		331A	(NG-2)	$\times 501 \mathrm{C}$	(NG-10)		
		1402	(NG-2)	602A	(NG-2)	503	(NG-4)		
Aerospace Research, Inc (ARI)				603A	(NG-3)	504	(NG-4)		
		610A		(NG-3)					
NS-C	(NG-4)		Beckman Instruments, Inc		624 A Series	(NG-3)	General	Co (Gen Radio)	
NS-LB (NG-4)		$\begin{aligned} & \text { 1179A } \\ & 1179 \mathrm{R} \end{aligned}$	(NG-1)	632 A	(NG-1)	1390-B	(NG-2)		
		(NG-1)							
Airborne Instrument Laboratory			Empire Products Singer-Metrics Div		Hewlett-Packard Co (H-P)				
07002	(NG-5)								
07004	(NG-8)	De Mornay-Bonardi Corp (D-B)		IG-102			(NG-13)	G347A	(NG-7)
07006	(NG-3)			IG-115	(NG-13)	H347A	(NG-9)		
07010	(NG-5)	DBD-140-T	(NG-12)	118A	(NG-13)	J347A	(NG-8)		
07012	(NG-6)	DBE-140-T	(NG-11)	118B	(NG-13)	P347A	(NG-11)		
07048	(NG-6)	DBF-140-T	(NG-10)	General Microwave Corp (Gen Micro)		S347A	(NG-6)		
07049	(NG-7)	DBG-140-T	(NG-10)			X347A	(NG-10)		
07050	(NG-8)	DBH-140-T	(NG-9)	A501C	(NG-12)	343 A	(NG-4)		
07051	(NG-9)	DBJ-140-T	(NG-8)	C501C	(NG-8)	345 B	(NG-3)		
07052	(NG-10)	DBK-140-T	(NG-7)	E501C	(NG-12)	349A	(NG-6)		
07053	(NG-11)	DBL-140-T	(NG-6)	F501C	(NG-12)				
07091	(NG-11)			G501C	(NG-7)	ITT Indu	oducts Div		
07096	(NG-12)	Elgenco, Inc		J501C	(NG-9)				
				K501C	(NG-11)	74216-A	(NG-1)		
Allison Laboratories, Inc		301A	(NG-1)	M501C	(NG-12)				
348A	(NG-2)	311 A	(NG-1)	N501C	(NG-5)	Kay Elec	ompany		
349A	(NG-1)		(NG-2)	S501C	(NG-6)	240	(NG-3)		
650	(NG-2)	321 A	(NG-1)	U501C	(NG-11)	260A	(NG-6)		

261A	(NG-5)
270A	(NG-7)
271A	(NG-7)
280A	(NG-8)
281A	(NG-8)
290A	(NG-9)
291A	(NG-9)
300A	(NG-10)
301A	(NG-10)
310A	(NG-4)
311A	(NG-5)
312A	(NG-5)
403	(NG-4)
521A	(NG-10)
531A	(NG-11)
600	(NG-3)
770	(NG-3)
771	(NG-4)
780	(NG-5)
870A	(NG-5)
880A	(NG-5)

Marconi Instruments

TF2091	(NG-3)
7816	(NG-1)
Northeast Electronics Corp	
TTS-56	(NG-1)

PRD Electronics,Inc
904-A (NG-4)
Polarad Electronic Instruments

IC-120A	(NG-13)
IC-120B	(NG-13)
IC-121B	(NG-13)
IC-122B	(NG-13)

Rohde \& Schwarz Sales Co, Inc (R\&S)

SKTU	(NG-4)
SUF	(NG-3)

H H Scott, Inc
811-BC (NG-2
Signalite, Inc

TN-1	(NG-9)
TN-2	(NG-8)
TN-3	(NG-5)
TN-6	(NG-10)
TN-7	(NG-11)
TN-8	(NG-12)
TN-10	(NG-7)
TN-13	(NG-9)
TN-17	(NG-6)
XN-725	(NG-7)
XN-726	(NG-8)
XN-727	(NG-6)
XN-867	(NG-9)
XN-895	(NG-7)

Stoddart Electro Systems

91263-1	(NG-13)
$93453-1$	(NG-13)

Waveline, Inc

$2200-2$	(NG-6)
$2200-3$	(NG-7)
$2200-4$	(NG-8)
$2200-5$	(NG-9)
$2200-6$	(NG-10)
$2200-7$	(NG-11)
$2200-8$	(NG-11)
$2200-10$	(NG-12)

Manufacturers' addresses and literature offerings in master cross index at front of issue.

Why pay for Oscilloscope capabilities you don't really need?

There are many situations-production line work, product quality checks, basic laboratory measurements-that require a large number of scopes or employ standard measurements... and where simplicity of operation is essential.
That's where you need the RCA W0-91B!
Of course the so-called "industrial/laboratory" type scopes will make certain measurements that ours won't. They may feature triggered sweep, horizontal deflection in microseconds, and other costly refinements. Whenever you need these extras... capability for those extremely precise measurements... spend the money and buy an expensive scope.
Actually, for many very precise research, experimental and lab measurements, we don't even recommend ours (we use theirs).
But if your requirements call for scopes with characteristics such as the following, the RCA WO-91B is probably your best buy:

- Built-in voltage calibration-large 5 -inch screen with VTVM-type voltage scales for fast, simultaneous peak-to-peak measurements and waveshape display - Flat response ($\pm 1 \mathrm{~dB}$) from 10 cps to $4.5 \mathrm{Mc} \bullet 0.018 \mathrm{rms}$ volt per inch maximum sensitivity for use at low signal levels •Continuously adjustable (to 100 kc) sweep oscillator with excellent linearity $\bullet Z$-axis input for direct modulation of CRT permitting use of timing and calibration markers on trace - Provision for connecting signals directly to the vertical deflection plates of the CRT.
The Optional User Price of the RCA W0-91B is $\$ 249.50$. It is available locally from your Authorized RCA Test Equipment Distributor. Ask to see it or write for complete specifications to RCA Commercial Engineering, Section KI8W-5, Harrison, N.J.

Squarewave generators $100 \mathrm{~Hz}-10,000 \mathrm{kHz}$

For information on how to use these tables, turn to page 2

				FREQU	ENCY				PUT				
	Manufacturer	Model	Min Hz	Max kHz	Rise $\mu \mathrm{s}$	Fall μ_{s}	Min Volts	Max Volts	Imp. ohms	Atten dB	Type	Price \$	Notes
$\begin{gathered} S Q- \\ 1 \end{gathered}$	ENSCO	FG-113	0.1	100 Hz	10	10	20	20	600	note 1	C	295	a
	Weinschel	MO-1C	1 kHz		5	5	0	150	100 k	note 2	R	750	
	Krohn-Hite	400-C	. 009	1.1	2	2	0	10	10 k	note 2	C,R	465	a
	Alfred	305A	850	1.15	0.2	2	0	60	2.5 k	note 2	C	120	
	EICO	377	60	50	ina	ina	10	10	1 k	cal pot	C	50	a
	Krohn-Hite	420-C	0.35	52	2	2	0	20	10 k	none	C, R	410	a
	Ind Comp		100 kHz	100	1	1	20	2 k		none	R	2250	-
	Gen Radio	1309-A	10	100	0.1	ina	5	5	600	20	C	325	a
	Marconi	TF 1370A	10	100	0.4	ina	. 003	3	note 4	note 5	C, R	995	a
	Measurements	71	6	100	0.1	ina	0	75	20/V	note 1	C	195	
SQ-2	Krohn-Hite	440-A	. 001	100	0.5	0.5	0	5	1.5 k	none	C, R	625	a
	Krohn-Hite	442-R	. 001	100	0.5	0.5	0	5	1.5 k	note 2	R	2375	a
	RCA	WA-44C	20	200	0.15	0.15	10	ina	100 k	ina	C	99	a
	Precise	636	20	200	0.15	ina	0	10	5 k	note 2	C	73	a
	Gen Radio	1210-C	20	500	0.33	ina	0	30	2.5 k	0-50	C	215	a
	Prec.Apparatus	E-310							600	note 1	C	200	a
	Prec.Apparatus	G-34	7	750	0.15	ina	0	20	0-3 k		C	100	a
	Tektronix	107	400 kHz	1000	. 003	ina	0.1	0.5	52	note 2	C	190	
	Century Tektronix	$\begin{aligned} & 8207 \\ & 106 \end{aligned}$	$\begin{aligned} & 100 \\ & 10 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 0.1 \\ & .001, .012 \end{aligned}$	ina .001	$\begin{aligned} & 0 \\ & .05(3) \end{aligned}$	$\begin{aligned} & 10 \\ & 12(3) \end{aligned}$	$\begin{aligned} & 100 \\ & 50,600 \end{aligned}$	ina note 2	R C	$\begin{array}{r} 3400 \\ 590 \end{array}$	a
	Tektronix				.001,.012	. 001			50,600		C		
SQ-3	Heath	IG-82	20	1000			0			note 1			
	Century	821A	10	1000	0.1	ina	0	10	100	ina	R	3400	a
	Hickok	1715A	1	1000	. 02	ina	7	55	75,600	60	C	340	
	Century	822A	1	1000	0.1	ina	0	10	100	ina	R	3400	a
	H-P	211A	1	1000	.02,0.1	ina	3.5	27	75,600	60	C, R	350	
	Century	823A	0.1	1000	0.1	ina	0	10	100	ina	R	3400	a
	Century	824A	. 01	1000	0.1	ina	0	10	100	ina	R	3400	a
	Century	825A	. 001	1000	0.1	ina	0	10	100	ina	R	3400	a
	Measurements	72	5	5000	. 05	ina	0	2,12	75,500	ina	C	248	
	Fairchild	791A	25	10,000	. 006	. 003	4	40	50,600	note 2	C, R	420	

Notes, abbreviations and manufacturers' index at end of this section.

NOTES

Squarewave Generators
a. Also oscillator.

1. Calibrated potentiometer.
2. Uncalibrated potentiometer.
3. In two steps, $.05-0.5 \mathrm{~V}$ and $0.5-12 \mathrm{~V}$.
4. Four switched settings, $75,100,130$ and 600 ohms.
5. Six 10 dB steps between -50 dB and +10 dB .

NOTES

Function Generators
a. Output - sine, squarewave and triangle.
b. Output - squarewave, pulse and ramp.
c. Output - sine, squarewave and phase.
d. Output - sine, squarewave, triangle, peak and phase.
e. Output - sine, squarewave, triangle and ramp.
f. Output - sine, squarewave, triangle, ramp and slope.
g. Output - sine, squarewave, pulse and cosine.
h. Battery operated or $110-220 \mathrm{~V}, 50-400 \mathrm{~Hz}$.

1. Varies, $300-0.3 \mathrm{~ms}$.
2. Includes independent timing, triggering and gating which allows cross programing of function.
3. This unit is part of modular system 1000 and can be combined with any number of modules to produce a variety of outputs.
4. Includes variable attenuator and 10 X multiplier.
5. Does not include dc offset and internal modulation.
6. Includes de offset and internal modulation.
7. Direct reading decade attenuator.
8. Uncalibrated potentiometer.
9. Voltage controlled generator, seven simultaneous outputs.
10. Voltage controlled generator, nine outputs, differential output. Starting phase and trigger levels adjustable.
11. Sweep, trigger, voltage controlled generator, nine outputs.
12. Trigger, phase lock, voltage controlled generator, nine outputs.
13. Trigger, phase lock, tone burst, voltage controlled generator, nine outputs.

ABBREVIATIONS

C - Cabinet
R - Rack mount
ina - information not available.

Function generators $50 \mathrm{~Hz}-1000 \mathrm{kHz}$

For information on how to use these tables, turn to page 2

				FREQU	NCY				TPUT				
	Manufacturer	Model	Min Hz	Max kHz	Rise $\mu \mathrm{s}$	Fall μ_{s}	Min Volts	Max Volts	Imp. ohms	Atten dB	Type	Price \$	Notes
$\begin{gathered} \text { FG- } \\ 1 \end{gathered}$	Houston	SG88	. 005	50 Hz	note 1	ina	0.2 mV	22	300-3k	ina	C	2300	a
	Servo	1995	. 005	$1^{(6)}$	ina	ina	0	40	600	note 7	C,R	3275	a
	Servo	1990	. 005	$1(5)$	ina	ina	0	40	600	note 4	C,R	2850	a
	Servo	1980	. 005	$1^{(5)}$	ina	ina	0	40	600	note 7	C,R	2355	a
	Exact	331	. 001	1	0.5	0.5	0	25	500	0-100	C, R	1195	a
	Exact	330	. 001	1	0.5	0.5	0	25	500	0-100	C,R	1500	f
	Canoga	903A	. 001	1	200	200	0	30	ina	ina	R	3500	a
	H-P	202A	. 008	1.2	ina	ina	0	30		0-100	C,R	550	a
	Antlab	7207	500	2.5	10	10	0	150	100 k	note 1	C	372	b
	Antlab	7227	500	2.5	10	10	0	150	100 k	note 1	R	475	b
$\begin{gathered} \text { FG- } \\ 2 \end{gathered}$	S-A												
		2140	400			ina	0	100	ina	0-20-40	R	350	b
	Exact	255	. 001	$10^{(2)}$	5	5	0	30	400	0-100	C, R	785	e
	Exact	251	. 001	10	5	5	0.1	30	400	50	C,R	685	f
	Exact	240	. 001	10	5	5	0.1	30	200	50	C,R	475	a
	Exact	250	. 001		5	5	0.1	30	400	50	C, R	595	e
	H-P	203A	. 005	60	0.2	0.2	0	30	600		C,R		
	Canoga	910A	. 01	99	10	10	0	10	1	cal pot	C,R	4285	d
	Krohn-Hite	4030	0.1	99.9	. 02	. 02	0	5	ina	note 8	R	request	g
	Krohn-Hite $\mathrm{H}-\mathrm{P}$	$\begin{aligned} & 4004 \\ & 3300 \mathrm{~A} \end{aligned}$	0.1	100	. 02	. 02	0	5	50	note 1	C, R	1025	b
		3301A	. 01	100	0.25	0.25	0	35	600	yes	C,R	590	a
$\begin{gathered} \text { FG- } \\ 3 \end{gathered}$	Exact	G1103	. 01	100	note 3	note 3	10	10	50	none	note 3	165 (3)	
	Argonaut	LRG051	$\text { . } 01$	100	2	2	0	100	1 k	yes	C	225	b
	Krohn-Hite	4024	. 001	100	$.02$. 02	0	5	50	note 1	C, R	1100	b
	Exact	G1102	. 0005	100	note 3	note 3	10	10	50	none	note 3	190(3)	
	Anadex	CU-2	0.5	600	. 09	ina	0	20	1 k	note 2	C	650	
	Exact	G1101				note 3		10	50	note 3	note 3	$165(3)$	
	Wavetek	155	. 01	1000	. 005	. 005	$\text { ו } 0 .$	10	50	note 7	R	1195	
	Wavetek	110	. 005	1000	. 005	. 005	. 015	32.5	50	note 8	C, R	445	a, h
	Exact	301	$.001$	1000	$\text { . } 01$	$\text { . } 01$	0	10	52	ina	C, R	550	a
	Wavetek		. 0015				. 015		50	note 8	C, R	795	e,h
FG-	Wavetek	112	. 0015	$1000{ }^{(10)}$. 005	. 005	. 015	32.5	50	note 8	C,R	695	e,h
	Wavetek	111	. 0015	$1000{ }^{(9)}$. 005	. 005	. 015	32.5	50	note 8	C,R	545	e,h
	Wavetek	116	. 0015	$1000{ }^{(13)}$. 005	. 005	. 015	32.5	50	note 8	C,R	845	e,h
	Wavetek	115	. 0015	1000(12)	. 005	. 005	. 015	32.5	50	note 8	C, R	745	e,h

Notes, abbreviations and manufacturers' index at end of this section.

Index of Manufacturers and Model Numbers

(keyed to table locator symbols)

Canoga Electronic Products		Alfred Electronics	
903A	(FG-1)	305A	(SQ-1)
910A	(FG-2)		
		Anadex	ents, Inc
Century Electronics \& Instruments			
		$\mathrm{CU}-2$	(FG-3)
820A	(SQ-2)		
821A	(SQ-3)	Antlab,	
822A	(SQ-3)	Antlab,	
823A	(SQ-3)		
824A	(SQ-3)	$\begin{aligned} & 7207 \\ & 7027 \end{aligned}$	(FG-1)
825A	(SQ-3)	7227	(FG-1)
Electronic Instrument Co, Inc (EICO)		Argonaut Associates, Inc	
377	(SQ-1)	LRG 05	(FG-3)

NEW RASTER GENERATOR

DUAL SWEEPS

- Wide Range of Raster Frequencies
- Sweeps from $20 \mu \mathrm{sec}$ to 100 msec
- 10\% to 90\% Duty Cycle
- Linearity Better than 0.5\%
- External Trigger or Sync
- Compatible with CELCO Drivers

Model 2SG-2BR
Two CELCO Ramp Generators have been mounted together to produce a wide selection of ramp combinations, bias voltages, and triggers.
Clearly your best choice for lab, test, displays. Available from stock. Write or call:

Constantine Cngineering $^{\text {Laboratories }}$ Company

Little things do come in big packages.

The circuits may be microscopic, but there's nothing undersized about this comprehensive and convenient reference book. Its 320 big pages offer you almost 90 outstanding articles on all aspects of microelectronic design, compiled from the pages of Electronic Design magazine.

MICROELECTRONIC DESIGN gives a-thorough overview of the field in six sections: Theory and Basic Concepts; Fabrication and Interconnection; Circuit Conversion; Prototype Planning and Fabrication; Testing Techniques; Bibliography and Data Charts (covering over 500 devices). \#5762, clothbound, $\$ 11.50$.

HAYDEN BOOK COMPANY, INC., NEW YORK

also selected from electronic design 400 IDEAS FOR DESIGN All tested and proved award-winners, written by and for electronic design engineers, \#5537, clothbound, \$8.50

Please send the book(s) checked below and bill me. At the end of 30 days, I will remit payment plus a few cents postage, or return the book(s).
$\square 5762$5537Free 1966 Catalog
Name
Company
Address
City

You pay the postage. I enclose \$ Same return privilege.

ELCENCO Noise Generators

Model 610A

SOLID STATE NOISE GENERATORS

Model 602A 5 cps to $5 \mathrm{mc}, 3$ Ranges \$ 290 Model 603A 5cps to 5 mc , 3 Ranges \$ 495 Model 610A 5 cps to $5 \mathrm{mc}, 8$ Ranges $\mathbf{\$ 1 , 1 7 5}$ Series 624 (Fixed frequency) 5 cps to 500 kc $\$ 245$ to $\$ 490$. Write for details on frequency ranges and spectral flatness.

VACUUM TUBE NOISE GENERATORS
Model 301A DC to 40 cps
\$1,995
Model 311A Two outputs DC to 40 cps and 10 cps to 20 kc .
Model 312A Two outputs DC to 120 cps and 10 cps to 20 kc
Model 321A DC to 120 cps
\$2,495
\$2,095
Model 331A 10 cps to 20 kc \$1,275

NOISE GENERATOR CARDS

Series 3602, 3603, and 3606 \$144 to \$389 Various frequency ranges and output flatness available. Size: $41 / 2^{\prime \prime} \times 6{ }^{1 / 22^{\prime \prime}} \times 1^{\prime \prime}$. Write for details.

ENCAPSULATED NOISE SOURCE MODULES
Series 1602, 1603, and 1606 . . \$95 to \$340 Various frequency ranges and output flatness available. Size: $13 / 4^{\prime \prime} \times 1^{1} / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$. Write for details.

ELGENCO INCORPORATED

1550 Euclid Street Santa Monica, California Phone: (213) 451-1635 TWX: (213) 879-0091

Advertisers' Index

Advertiser
Page
Adar Associates, Inc 18
47
Alfred Electronics 47
American Cyanamid Company
Plastics \& Resins Division 11
Buckeye Stamping Co., The 21

CMC/Rutherford
ine Engineering
Laboratories Company
Chart Pak, Inc
Cohu Electronics, Inc.
Crydom Laboratories, Inc
NEW VALUE
Added to
-TR-5578 Universal
Counters by Combining Human and Electronic Engineering... Low Cost, Easy to Operate, Complete Plug-in Units
Electronic Design
Electronic Development Corporation
Elgenco Incorporated
Fork Standards, Inc.
Frequency Engineering Laboratories

Hayden Book Company, Inc.
Hewlett-Packard
Imtra Corporation
............ 18
Jerrold Electronics Corporation
Keithley Instruments
Krohn-Hite Corporation
LEL Division, Varian Associates
Laboratory for Electronics, Inc.
Marconi Instruments,
Division of English Electric Corporation
...Cover III
Measurements
A McGraw-Edison Division
Meguro Electronic Instrument Co., Litd.
Motorola Communications
\& Electronics, Inc.
Polarad Electronic Instruments
A Division of Polarad Electronics
Corporation
RCA Electronic Components \& Devices .. 65
Takeda Riken Industry Co., Ltd.
Technical Information Corp.
Tektronix, Inc.
Telonic Instruments
Division of Telonic Industries, Inc.
Tripplett Electrical Instrument Company
Wayne Kerr Corporation
Wiltron Company
Wiltron Company 48

Subscription Policy

Electronic Design is circulated free of charge to qualified design engineers in the U.S., Western European Continent and Britain. To establish your qualifications, send Electronic Design the following information on your company's letterhead: Your name, engineering title, description of your design duties and a list of your company's major products. The letter must be signed by you personally.

Subscription rates for nonqualified subscribers-\$25 a year in the U.S., \$35 in all other countries. Single copy, $\$ 1.50$.

Change of Address

A subscriber's change of address requires a restatement of his qualifications. To expedite the change, and to avoid missing any issues, send along a label from a back copy.

Microfilm Copies

Microfilm copies of all 1961, 1962 , 1963, 1964 and 1965 issues of Electronic Design are available through University Microfilms, Inc., 313 N. First Street, Ann Arbor, Mich.

70
FEATURES
Direct Counting Speed: 62 MHz

- Measures Frequency 10 Hz to

1020 MHz (wider range available in near future) High Quality and Reliability by adopting Modular System Measures Frequency, Period, Frequency Ratio, Time Interval, Voltage (DC), and performs High Speed Totalizing SPECIFICATIONS
Frequency Measurements \square Range: 10 Hz to 62 MHz (without plug-ins), 61 to 520 MHz (with -TR-3012M), 201 to 1020 MHz (with -TR-3014M), 101 MHz to 15 GHz (with -TR-3012 M and -TR3101) \square Accuracy: ± 1 count \pm time base accuracy Period Measurements \square Range: $10^{-5} \mathrm{~Hz}$ to $1 \mathrm{MHz} \square$ Gate Time: 1,10 , 100, 1000, 10000 period of unknown Frequency Ratio Measurements \square Range: $A / B=$ $\left(1 / 1\right.$ to $\left.10^{8} / 1\right) \times 1,10,100$, 1000, 10000 Time Interval Measurements \square Range: $1.0 \mu \mathrm{~s}$ to $10^{5} \mathrm{~S}$ (with -TR-4011) DC Voltage Measurements \square Range: $\pm 0.1,1,10,100,1000 \mathrm{~V}$ DC f. s. (with -TR-6025M)

General \square Stability: (-TR-5578) $1 \times 10^{-7} /$ day, (-TR-5578B) $6 \times$ $10^{-9} /$ day, (-TR-5578C) 3×10^{-9} day after initial stabilization Power: $100 / 115 / 200 / 230 \pm 10$ $\%, 50 / 60 \mathrm{~Hz}$, approx. 100VA \square Dimension: $16^{1} 1 / 2^{\prime \prime}(\mathrm{w}) \times 5^{7} / 8^{\prime \prime}(\mathrm{h})$ $\times 171 / 4^{\prime \prime}$ (d) \square Weight: Net 39 lbs (without plug-ins)
For further defails, wrife to:
Takeda Riken
Industry Co., Ltd. 285, Asahi-cho, Nerima:ku, Tokyo, Japan Cables: TRITRONICS TOKYO Phones: $930 \cdot 4111$ BY ENGINEERS INTERESTED IN RELAYS

PUBLICATION	Rank		\% Read	
	${ }_{\substack{\text { Alwass } \\ \text { Reas }}}$	$\begin{aligned} & \text { Amyys } 8 \\ & \text { Seneses } \\ & \text { Rean } \\ & \text { Combineose } \end{aligned}$	Alwas	
ELECTRONIC DESIGN	1		44.9	87.8
ELECTRONIC INDUSTRIES	3	4	31.3	65.3
ELECTRONICS	8	5	23.8	64.6
ELECTRICAL DESIGN NEWS	7	3	27.2	68.7
IEEE SPECTRUM	$\underset{\text { (tie) }}{4}$	8	29.9	53.1
ELECTRONIC EOUIPMENT ENGINEERING	$\stackrel{4}{(\text { tie })}$	6	29.9	57.1
ELECTROTECHNOLOGY	6	7	29.3	55.8
ELECTRO. MECHANICAL DESIGN	10	10	14.3	36.1
ELECTRONIC PRODUCTS	2	2	32.0	81.4
ELECTRONIC NEWS	9	9	19.7	49.6

once again, Electronic Design ranks FIRST IN READERSHIP!

Here is the case of another electronic manufacturer who wanted to find out which publications are really read by his own customers and prospects. Kilovac (High Vacuum Electronics, Inc.) mailed a readership questionnaire to every fifth name on its customer list. The results are shown aboveElectronic Design ranks first in "Always Read!"

Again, and again, and again, when manufacturers survey their own customers, Electronic Design turns up on top of the readership list. What better way to take the guesswork out of media selection? In study after study, one publication stands out clearly above the others. When you buy Electronic Design, you buy Readership!

READERSHIP STUDY BOX SCORE

NUMBER OF STUDIES	
TO DATE	NUMBER WON BY ELECTRONIC DESIGN
53	49

$1\left|\mid l V V_{\text {ascuurine }}\right.$

STANDARD

EDC's dc Millivolt Standard - with 1 microvolt resolution - is an all-solid-state 5-decade precision source with . . .

COMPARE performance price

Extra copies for sale;
 Use Reader Service card

This Signal Generator Reference Issue is the fifth such direcence Issue is the fifth such direc-
tory offered to the readers of Electronic Design. Earlier issues have dealt with relay applications, test equipment, pow-
er supplies and semiconductors. plications, test equipment, pow-
er supplies and semiconductors.
A limited supply of copies of the Test Equipment Reference Issue, as well as extra copies of this issue are available at $\$ 1.00$ each. To obtain one, simply send check or money order to Hayden Publishing Co., 850 Third Ave., New York, N. Y. 10022. Please specify which of the two issues is wanted.

Incidentally, you can use the Reader Service card for a full year to obtain supplementary literature from manufacturers listed in this issue.

As always, Electronic Design welcomes suggestions from its readers. Has this issue helped you? Have you any suggestions on how to make issues such as this more useful to design engineers? Drop us a line and let us know.

423 WEST BROADWAY - BOSTON, MASS. 02127 Tel: 617 268-9696

Model MV-100-N a direct reading standard has: automatic recovery . . . short circuit and overload proof . . . warm-up time of 30 sec . Designed as a portable standard for production and laboratory applications, it may be used in: thermocouple simulation; simulation of thermal emf; and in calibration of strip chart recorders, oven controllers, furnace controllers, millivolt meters, strain gauge indicators . . . Weighs only 8 pounds. Traceable certification supplied.
*Other models to $\mathbf{1 0 0 0} \mathbf{~ v d c}$.
Literature available on request.

ON READER-SERVICE CARD CIRCLE 194

FIRST

solid state

SIGNAL

 generator
2002
 SOLID STATE SIGNAL GENERATOR

Marconi Instruments Signal Generator Model 2002 covers 10kc to 72 mc and is fully transistorized. AM: 20cps to $20 \mathrm{kc}, 0-100 \%$. May be used for manual or-automatic frequency control, FM, phase modulation or sweeping
above 100 kc . Crystal calibrated: $1 \mathrm{mc}, 100 \mathrm{kc}, 10 \mathrm{kc}, 1 \mathrm{kc}$. manual or-automatic frequency control, FM, phase modulation or sweeping
above 100 kc . Crystal calibrated: $1 \mathrm{mc}, 100 \mathrm{kc}, 10 \mathrm{kc}, 1 \mathrm{kc}$.

READER SERVICE CARD NO. 208

Product Highights

FROM MARCONI INSTRUMENTS FAMILY OF TELECOMMUNICATIONS MEASUREMENT EQUIPMENT

Model no.	description	RANGE	READER SERVICE CARD NO.
791 D	FM Deviation Meter	4 mc to 1024 mc	201
$1245-6-7$	Q-Meter and Oscillators	1 kc to 300 mc	202
$995 \mathrm{~A} / 2 \mathrm{M}$	FM/AM Signal Generator	1.5 mc to 220 mc	203
2090	Noise Loading Test Set (Transistorized)	Up to 2700 Channels	204
7816	Twelve Channel Noise Generator	300 cps to 3400 cps for mux/demux	205
1313	$1 / 4 \%$ Universal Bridge Autospec	7 Delegraph Error Correcting Equipment	Up to 75 Bauds

A Good Name for Good Measure

MARCONI
 INSTRUMENTS

Available Upon Request . . . Marconi Instrumentation. A technical Information Bulletin Issued Quarterly.

READER SERVICE CARD NO. 209

MICROWAVE SWEEP OSCILLATORS

UNPRECEDENTED VALUE IN:

VERSATILTTY!

- Interchangeable RF units (1 to 40 GHz) for broadband economy
- Sweep modes for all measurement needs
- Variety of leveling modes
- Fast, positive change of frequency bands with "snap-in" dial

Hewlett-Packard 8690A Sweep Oscillator contains power supplies, control and modulation circuitry, function selectors and operating controls. Accepts 8691A through 8697A RF Units. Price, $\$ 1550$.

Sweep Oscillator/ RF Unit	Frequency Range	Max. Leveled Power Output	Frequency Accuracy	Price
8691A	$1-2 \mathrm{GHz}$	$\geq 100 \mathrm{mw}$	$\pm 1 \%$	\$1,875.00
8691B	$1-2 \mathrm{GHz}$	$\geq 70 \mathrm{mw}$	$\pm 10 \mathrm{MHz}$	2,175.00
8692A	2-4 GHz	$\geq 70 \mathrm{mw}$	$\pm 1 \%$	1,675.00
8692B	2-4 GHz	$\geq 40 \mathrm{mw}$	$\pm 10 \mathrm{MHz}$	1,975.00
H01-8692B	$1.7-4.2 \mathrm{GHz}$	$\geq 15 \mathrm{mw}$	$\pm 13 \mathrm{MHz}$	2,275.00
8693A	$4-8 \mathrm{GHz}$	$\geq 30 \mathrm{mw}$	$\pm 1 \%$	1,575.00
8693B	$4-8 \mathrm{GHz}$	$\geq 15 \mathrm{mw}$	$\pm 20 \mathrm{MHz}$	1,900.00
H01-8693B	$3.7-8.3 \mathrm{GHz}$	$\geq 5 \mathrm{mw}$	$\pm 25 \mathrm{MHz}$	2,200.00
8694A	$8-12.4 \mathrm{GHz}$	$\geq 50 \mathrm{mw}$	$\pm 1 \%$	1,575.00
H01-8694A	7-12.4 GHz	$\geq 25 \mathrm{mw}$	$\pm 1 \%$	1,850.00
H02-8694A	7-11 GHz	$\geq 25 \mathrm{mw}$	$\pm 1 \%$	1,600.00
8694B	$8-12.4 \mathrm{GHz}$	$\geq 30 \mathrm{mw}$	$\pm 30 \mathrm{MHz}$	1,925.00
H01-8694B	7-12.4 GHz	$\geq 15 \mathrm{mw}$	$\pm 40 \mathrm{MHz}$	2,200.00
H02-8694B	7-11 GHz	$\geq 15 \mathrm{mw}$	$\pm 30 \mathrm{MHz}$	1,950.00
8695A	$12.4-18 \mathrm{GHz}$	$\geq 40 \mathrm{mw}$	$\pm 1 \%$	1,700.00
8696A	$18-26.5 \mathrm{GHz}$	$\geq 10 \mathrm{mw}$	$\pm 1 \%$	2,500.00
8697A	26.5-40 GHz	$\geq 5 \mathrm{mw}$	$\pm 1 \%$	4,300.00

For more information see your Hewlett-Packard field engineer for complete data. Or write Hewlett-Packard, Palo Alto, California 94304, Telephone (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

[^0]: ELECTRONIC DESIGN is published biweekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York, N. Y. 10022. James S. Mulholland, Jr., President. Printed at Poole Bros., Inc., Chicago, III. Controlled-circulation postage paid at Chicago, III., New York, N. Y., and Cleveland, Ohio. Application to mail at controlled postage rates is pending at St. Louis, Mo. Copyright (C) 1966 , Hayden Publishing Com pany, Inc. 60,412 copies this issue. Special reference issue $\$ 5$ a copy.

[^1]: Jerrold Rogers \& William Stevens, Instrument Engi-
 neers, Tektronix, Inc., Beaverton, Ore.

[^2]: Frederick Van Veen, Technical Editor, General Radio Co., West Concord, Mass.

[^3]: Nathaniel L. Cohen, Vice President, Marketing, Polarad Electronic Instruments, Long Island City, N. Y.

[^4]: J. F. Golding, Group Leader, Marconi Instruments Ltd., St. Albans, Hertfordshire, England

