
INTCODE

d a cum e n tat fa n :

henrik andersen

kurt jensen

b 0 r q p s. !,< irk

CONTENTS ----------------

1.1
1.1
1.2
1.3
1.5

2.1
2.1
2.3
2.5
2.9
2.12
2.13
2.16
2.17

3.1
3.1
3.1
3.2
3.3
3.4

4.1
4.1
4.2
4.4
4.5
4.5

INTCODE
store and: registers
instruction formats
instructioncodes
executeoperations

ASSEMBLER
syntax - informal description
syntax - formal description
structure of assembler
output from assembler
workingtables
labeldeclarations and labe1references
switch- instruction
errormessages from assembler

LOADER
input
structure of the loader
the use of globals G.504-5ll
system
errormessages from loader

EMULATOR
ordre'cycl us
initialization of WA and WE
mainstore
read and 'tV'ri te
finish (X22)

0.1

INTCODE

STORE AND HEGISTETIS --------------------------------------

The intcode-machine is designed as a tool to help implementing
BCPL on a new machine.

The intcode-rnachine has a store consisting of equal sized
locations addressed by consecutive integers.
When emulated at a 16 bit machine as RIKKE it is natural to

-use two differentinstructionformats. Long format uses two
consecutive words, while short format only uses one.
The choice between these format_s is automatically made by
the assembler.

The intcode-machine has 6 different 16 bit registers:

A accumulator

B. auxiliary
accumulator-

C program
counter

D address

P run-time
stack

G global

This register can be loaded from store.

When A is loaded the old content of A is
moved to B.

All operations involving_ two operands are
performed with these taken from B: and A
(res ul t in A).

Points to next instruction to be executed.

Keeps the effective (resulting) address.

Points to the -bottom element of run-time
stack. Is used to reference elements on
this stack (local variables).

Points to first element in global vector.
Is used to reference elements in global
vector.

Each instruction consits of six fields as follows:

instruction code: J bits giving 8 possibilities

address field: 9 or 16 bit (depending of long or short
format). In both cases the field is
interpreted as a nonnegative integer.

P-bit

G-bit

I-bit

L-bit

iff set P-register is added to the address.

iff set G-register is added to the address.

iff set the address, D, should be replaced
by loc(D) (indirect addressing).
This is done after possible adding of P
and G.

iff set long instructionformat is used.

The effective address is calculated in 4 steps:

1. D:= addressfield (depending on L-bit)

2. possible adding of P-register

3. possible adding of G-register

4. possible indirectness

IS III /3 IZ (I 10 '1 a' 0

SHORT: 1 cOdel pi G\ I \¢\ address I
LONG: I cOdejPIGjIlll garbage

address

10 0

INSTRUCTJONCODES
================

code mnell10nic ----------------

000 hoad B:=A; A:=D

001 Store loc(D):= A

010 Add A . - A + D

all Jump C . - D

100 jump if if A=O then
True

101 jump if if A:f O then
False

110 K lOC~P+D):= P
loc P+D+l): ==
P---- P+D
C--. - A

III e2fecute

C:=D

C:=D

C

comments ----------------

This is not a "normal"
load-instruction.
It loads the effective ad
dress and not the content
of this address.

Unconditional jump to
absolute address D.

Conditional jump to ab
solute address D.

Recursive function call.
The current stack frame is
specified by D and the
entry point; is given in A.
The first two cells of the
ne1i stack frame are set to'
hold return link information.

Allo1is auxiliary operations to
be executed. The operation
is specified by D modulu 32'
(last five bits).

Figure showing the effect of a K-instruction

:BEFORE:

RFTER :

dcz,t~~ n+3

R

n
r- p

~~ J?-I-,:t,

I

~
'l<e:t.un1 Rdclte~

-

da-i~a- n+i

-1<.eiCl.H1 Rct~S5~ ...
r-

~~CV f1

EXECUTEOPEHATIONS
=================

gg;; g~~g~~g~~gg

Xl Ao -0- loc(A)

X2_ Ao-o- -A

X] Ao -
° - not A

x4 c o- lOC?+l) 0-

po_ loco p) 0-

X5 Ao -0- B ~ A

x6 Ao-o- B / A

X? Ao-° - B rem A

X8 Ao -0- B + A.

X9 Ao-° - B - A

XlO Ao-0- B = A

XII Ao-0- B f A

X12 Ao-0- B < A

Xl] Ao-0- B ~ A

x14 Ao-· - B) A

Xl5 Ao -0- B ~ A

x16 Ao-· - B lshift

Xl? Ao-· - B rshift

X18 Ao-· - B 1\ A

X19 Ao-· - B V A

X20 Ao-
° - B ¥ A

X21 Ao-· - B - A

X22 finish

A

A

Return from current routine or function.
Result of function is left in A.

Integer division

Rest after integer division.

These operations yields a boolean
result (true or false)

B~ is shifted A times logical left

B is shifted A times logical right

nB lshift An is equivalent to liB rshift _An

X2J switch

X24 selectinput

X25 input

x26 selectoutput

X27 output

This operation switches between a set of
labels "\vhile it tests A against a set
of conditions.

The data following X23 is used in the follo
wing way.

X23
n
label.default
condition.l
label.l.
condition.2
label.2

• •
•
•

condition.n
label.n

n is a nonnegative integer.
Label.default, label.l •••• label.n are
labelvalues.
Condition.l •••••• condition.n are integers.

The above peace of code is equivalent to:

i:f A
if A

=
=
• · •

condition.l goto label.l
condition.n goto label.n

i:f A = condition.n goto label.n
goto. label.def'aul t

selects. inputdevice according to A

input data to A from selected inputdevice

selects outputdevice according to A

output data from A to selected outputdevice

i. • _

ASSEMBLER
SYNTAX INFORMAL DESCRIPTION
===============================

Input to the assembler is a program written in intcode (symbolic
intcode using mnemonics)o

A program is a sequence of one ore more segments each consisting
of a sequence of intcode-instructions terminated by a special
Z-instruction.

Instructions can be of 6 different kinds:

normal-instruc.
D-instruction:
C-instruction;

G-instruction

L-instruction:
Z-ins truc tion;

A normal-instruction

executable instructions such as load, store etc.
pseudoinstruction places data in dataarea
pseudoinstruction placeschar~cter values in
dataarea (packed two and two)
pseudoinstruction initializes the globalvec-
tor (only with labelvalues) .
pseudoinstruction - list. and nolist
pseudoinstruction terminates a segment

consits of

label
instructioncode
IPG-bits
address

where IPG-bits are mnemonics for

I - indirect addressing
P add P-register to address
G - add G-register to address

Address can be either an absolut address (integer) or a label.

b) and d) are always present ,-{hile a) and c) can be omi ted.

D-instruction: places datavalue in memorycell in dataarea.

When an integer is prefixed by D this integer is
placed in the next cell in dataarea.

1'lhen a lab,elnumber is prefixed by DL the val ue
of this labelnumber is placed in the next cell
in dataarea.

C-instructio.n:

G-instruction:

L-instruction:

Z-instruction:

is used to pack charactervalues in dataarea.
Each character value is prefixed by a Q.

The charactervalues are packed left to right,
two in each cell.

If the left half of a cell has been filled and
the next instruction is not a C-instruction
without a labeldeclaratien the right half will
be padded with zeres.

is used to initialize element. of globalvector
with the value of a labelnumber.

The format is : G <gloablnumber) L (labelnumber>

is either an r er a lie

Y (yes) starts listing of cedetext en eutputfile
N (no.) steps listing ef cedetext en eutputfile

terminates a segment and cannet be used anYl1here
else.

SYNTAX FOIDIAL DESCHlPTlON
=============================

The syntax is now described in urIF.

Underlined symbols are terminals.
{n,mS menas an integer in the closed interval [n,mJ

Everywhere in the sourcetext L can be inserted - then this charac
ter and the following until the next lineshift are skipped.
This can be used as comment- or continuation facility.

Each label can only be declared once.
Each referenced label must be declared.

<program)

<segment)

<instruction)

<normal-ins truc>

<D-instruction>

<C-instruction)

<G-instruction>

<L-instruction)

<Z-instruction>

<labelpart>

<skip>

<delim)

<label)

<lPG-hit>

<address)

<instruccode>

.. -.. - +
<segment>

<instruction)(Z-instruc>

::= (norrnal-instruc>!
<D-instruction) I
< C-ins truction./ I
<: G-instruction) I
<L-instruction)

· .-· .-

· .-· .-
· . -· . -
· .-· .-

· .-
· .-· .-
· .-
· .-· .-

· .-
· .-

· .-· . -

<labelpart><instruccode> (IPG-bi t> <address>

. <labelpart'> D <data>

<labelpart> £ <charvalue>

(skip> G<£lobaJi .1.<labeli

<skip) (X I ~~J
<skip> ~ <skip>

*"
<skip> «label; -«del in}>)

C~l~.lm I !)~
C~I1!£ I jJ+
{1,500}

Cf I!: IQJ
~

{O, 64K-l} .1. .<label>

(.1.121~J~/!/EIKI~)

l..~

<data> · .- {-32K 32K~11 L <label> · .- ,
- <charvalue> · .- {O,255} · .-

<global) · .. - 10 ,5ll} · .-

STHUCTURE OF ASSEi'lDLER ======================

The program is devided into J parts

asshead keeps all global and manifest declarations

assproc keeps all procedures

assmain keeps the main program

assproc and assmain uses asshead by a get-directive

For information about the procedures in assproc please see
the comments in the BCPL-listing.

assmain has this structure:

declarations and initializations

read ()

newsegment: more initialization - presentation

----~$(mainloop

sw'itchon ch into

case L:

gato instruction

case X:

case $, ~n, ;It-S:

case D:
goto endcase

case c:
:t: G:

~ v 'case
~ 0
~ G case Y: "-l V)

case N:

case Z: goto newsegment

defaul t: goto endcase

instruction:

endcase:

$)mainloop repeat

If an L,S, •••• , X is recognizod it is a normal-instruction.
After thlS letter has been reco;?;nized these instructions are
handled together in Itinstruction u •

tlinstruction" has this structure:

instruction:
instrucl:

±
~
~
IJ)

listing on output
read ()

switchon ch into

$(switch2

case I:

case P:

case G:

endcase2:

default: test ch
then

=

addres

goto endcase2

goto instrucl

L·

specified as
labelvalue

.2£

$(address specified·as
absolute address

check if address is

a

an

a X23
instruction (see page 2~16)

$)
$) s1-li tch2

case S,*,n,*s! handles insignificant characters. These are
skipped.

case D: handles D-instructions. The structure is:

case D: read ()

S ,-[i t c ho n c h in to

~(switchl

case L: data is specified as a labelvalue

gato endcase (see bottom page 2.5)

default: data specified as an
integer value
goto endcase

$)switchl

case C: handles C-instructions. The structure is:

case C: read ()

collect first charvalue

collect second charvalue (if any)

pack these together and put them. in
dataarea

goto endcase (see bottom of page 2.5)

case Y: and case N: handles L-instructions and is very simple.

case G: handles G-instructions. The structure is:

case G: read()

collect globalnumber

check if "L" is present.

collect labelnumber

call insertref to update pointerchain

goto endcase (see bottom of page 2.5)

2.7

case Z: handles Z-instructions" This signals the end of a segment.
The structure is:

case Z: check if any referenced label still is' undeclared

unless error do dump segmentblock (see page 2.9)

test, "more segments"

then goto newsegment

or' $(mark 1-0
mark 1-0
closeall()
finish

$)

default: handles labeldeclarations (or illegal sourcetext
characters). The structure is:

default: 1Vhile ch = tal
$(

collect labelnwnber (declaration)
update dectabarea (see page 2.13)

$)
s\vi tchon ch into

$(SW

case D:
case C:

case L:

case X:

} declaration-address in dataarea

} declaration-address in codearea

the chained cells in dectabarea are all set to
point to' the declaration addres~ (see page 2.13)

gato endcase (see bottom of page 2.5)

case G, Z, Y, N: illegal labeldeclaration
goto endcase

default:

$) S1v

illegal sourcetext character
goto endcase

The assembler translates each segment as a unit. Listing of ,
sourcetext and errormessages will be on file output (according
to the pseudoinstructions Y and N)~

If one or more segments is correct the assembler will ,deliver a
file which will be accepted as input to the intcode-loader.

This file will have the following format.'

segmentblock for first correct segment

.
•

segment block for last correct segment

mark 1-0
mark 1-0

where segmentblock is

mark 1-0 is
mark 0-1 is

mark 1-0
mark 0-1
size of codearea
size of dataarea
number of globals to initialize
number of referenced'labels
sumcheck

picture of codearea

picture of dataarea

globaltabe1

label tabe1

1111111111111100
0000000000000011

Instructions are separated in two areas:

codearea keeps °all normal instructions

dataarea keeps D-instr~ctions and C-instructions

all other instructions are pseudoinstructions which
odo not need any space in mainstore.

Sumcheck is the sum of all words in the following four tabels
(codearea,dataarea,globaltabel and labeltabel).

Codearea and dataarea is simply a picture of these two areas.
For problems about labelreferences and labeldeclarations
please see page 2.1).

Globaltabel keeps information about which elements of the global
vector should be initialized.

The format of globaltabel is:

1. globalno
1. value
2. globalno
2. value

n. globalno
n. value

"'iihere n = unumber of globals to initialize".

For each i between 1 and n i. globalno keeps the number of
the global which should be intialized; and i. value gives
a value which is put into the globalvector. This value is
part of a pointerchain between labelreferences which l~ter on
by the loader "'iiill be al tered to· an absolut mainstore address.

Labeltabel keeps information about labeldeclarations and
label-references.

The format is:

1. labe1dec
1. labelref
2. labeldec
2. labelref

n. labe1dec
n. labelref

n = unumber of referenced labels".

For each referenced label there are two corresponding words
in the tabel (i. labeldec and i. labelref) from which all
nescessary information about use of this label can be extracted.

i o 1abe1dec gives the place (in dataarea or codearea) where this
label is declared.

i.labelref is head of a one-way list which gives the places
(in dataarea, codearea or globa1vector) where this label is
referenced. The list is terminated by a special mark
(1111111111111101).

The number of the label is insignificant: and is not given in
the output of the assembler.

The assembler has 7 tables to keep information about a segment .•

Codearea keeps all ,. normal-instructions. Cpointer points to the
first empty word.

Dataarea k~eps all D-instructions and C-instructions. Cpointer
points to the first empty word.

Globarea keeps informatioh about all initialized globals.
The index corresponds to th~ globalnumber.
The value is part of a list connecting all places (in codearea,
dataarea and globarea) where this particular label is roferen
cede

Dectabarea and Reftabarea keeps information about declaration
and referencing of labels. The index corresponds to the label
number. For detailed information see page •

Decarea and Refarea do exactly the same as Dectabarea and Ref tab
area, but the former (dectabarea and reftabarea) is handling
userdefined labels, while decarea and refarea handles assemble~
generated labels '(see p 281~.Lpointer points to the first free
labelname in decarea and refarea.

When acorr~ct segment is fineshed the following is dumped:

codearea
dataarea
cpointer
dpointer

as
as
as
as

"picture of codearea"
"picture of dataarea tt

usize of codearea ll

IIsize of dataarean

Globare~ is scanned and for each initialized global its number
and its value is dumped as·part of Itglobaltabel".

The number of such globals is dumped as
initialize u •

unumber of globals to

Dectabarea and reftabarea is scanned and for each referenced
label, i , dectabarea.i and reftabarea.i is dumped as part of
labeltabel.

The used part of decarea and refarea are dumped as part of
labeltabel in tho same manner as for dectabarea and reftabarea.

The number of referenced labels in reftabarea and refarea is
dumped as "number of referenced labels".

LABELDECLAHATIONS Al\D LABELHj~li'i._RNECES
==============================~======

1vhen a labeldeclaration is met it is nescessary to know ",hether
it is preceding an instruction placed in codearea or an instruc
tion placed in dataarea. Since multiple labels (many labels prece
ding the same'instruction can occour) it is nescessary to chain
these declarat~ons together until the instruction is reached.

When a label is met it is placed in a chain starting at the simple
variable labelstart (the chain is kept in dectabarea)G

When the type of the instruction (c·odearea or dataarea) is known
the as sembI er Harks its ,,,ay t:hrough thi s chain and put s a po in t er
to the declarationplace into each element of this chain.

Labelreferences can be met in codearea, dataarea or globarea.
Insertref ·inserts the address,where the labeled 'vas referenced,
in a one-way-chain starting at reftabarea~labelnurnber and chaining
all references to this labelnumber,

The first 2 bi t in the words in this pointerchain indica tes in
which area the address is:

bit 15

1 codearea (bit 14-0 determines address)

o iff bit 14 = 1
o

dataarea (bit 13-0 determines
globarea address)

The pointerchain linking the labelreferences is kept in the cells
in codearea, dataarea and globalarea where the intcode-loader
shall.put the final address (main store address).

As an endmark of such a chain is used mark (1111111111111101).
Before start of a segment all cells in dectabarea and reftabarea

are initialized to this mark.

See figures at page 2.14 and 2.15

LR-6EL5TRRT
'HI+Rl{

CPOIIJTER. ~I--_______ I

(a..,)

L R8EI.--STF/ RT

TJECTRBFl-REF}

--.!

t.;. HFfRL<

C60EFlRER

CPO/~"'r--__ ' __ ' ___ 1

(b)

LFJBEZSTRRi

I

:;P EC rf1.13 f1 f(Ef:}

~

r-

C () D E;;Fl- R. £71

--.4 XLI

(c)

This page and the next shows how labels are handled.
The corresponding instructions could be:

G206L312 G312L78 DL78 JL78 78 312 x4 TL78 JL78 ••••••

a) just before the declaration of label 78

b) both labeldeclaration has been read and chained

c) the instruction type is knovn and pointers from dectabarea
to the address of declaration is made.

f4-

d) the final picture handed to the loader (including reftabar~a)

CPO/AlTEr...

J)}:CT

500

olZ 1------1

78~ ____ --r

Ot..-____ ~

3/z. 1--------,

7SL-____ ~

OL-____ ---,

(d)

co £RREF/
o

L--_____ em I}./J~

GLDBFlR£

MRRK

fJFlRK

.- OL 78

~ G 81Z L 78

~ GzoG L o/:b

Instruction X23 is a switch instruction. According to the intcode
discription it should be used as follows:

X23
Dn
DL label.default
D cond:.l
DL label .• l
D cond.2
DL label.2

. .
D cond.n
DL label.n

For the semantic explanation of this please see at page 1.6.

It is important to know that X23 is a normal-i1:"lstruction and
therefore kept in codearea. Its data (Dn .•••••••• DL label.n)
is D-instructions and hence kept in dataarea. It. is nescessary
to tell the X23-instruction ~here its data is.

Hence the above peace of code by the assembler is altered to:

kept in
codearea

kept in
dataarea

{ X23
DL nn "~I--------__

nn:Dn
D label '.defaul t
D cond.l
D label.l

D cond.n
D label.n

please notice:
this DL-instruction
is created by the
assembler and kept
in codearea

where nn is a new label generated by the assembler.

By this reason no segment can have more than 100 X23-instructions.

ADDRESS }IISSING

ADDRESS NEG OR TOO BIG

BAD LADELDECLARATION

BAD LADELREl1'ERENCE

C - BAD NUHBER

C - MISSING NUMBER

CODEAREA TOO BIG

DATAAREA TOO BIG

DL- BAD LABELNO

DL- MISSING LABEL~O

DOUBLEDECLARATION

D - MISSING NUMBER

D - NUMBER TOO BIG

ENDOFSTHEA1v1 REACHED

G - BAD GLOBALNO

G - BAD LABELNO

G - L HISSING

G - MISSING GLOBALNO

G - IvIISSING LABELNO

normal-instruction has no address
field

normal instruction with address out
s ide 10 , 64K-lJ

labeldeclaration with labelnumber
outside {I, 5001

labelreference with labelnurnber
outside {1,500}

C-ins truc tion 1vi th charval ue
outside {O,2.55j

C-instruction has no charvalue

the segment needs too much codearea

the segment needs too much dataarea

DL-instruction with labelnumber
outside {1,500}

DL-instruction with "Ltr but no
specified labelnumbcr

labelnumber has been declared twice

D-instruction with no data

D-instruction with specified data
outsid~ {-32K, 32K-ll

the end of source-text is reached
at illegal point

G-instruction with globalnumber
outside {O, 51ll

G-instruction with labelnumber
outside {l,SOO]

G-instruction with ilL" missing

G-instruction with no specified
globalnumber

G-instruction with no specified
labelnumber

2.11

ILLEGAL CHARACTER

LABEL PSEUDO INSTRUCTION

LABELNUNBER HISSING

LABEL UNDECLARED: nnn

TOO NANY SWITCHES

illegal character used in sourcetext

label is prefixing instruction which
is neither a normal-instruction,
D-instruction or C-instruction

address field of normal-instruction
has an "L" but no specified label
~1.umber

labelnumber nnn has been referenced
but not declared (this errormessage
is at the very last of the source
text-listing)

the segment has more than 100 switch
instructions (X23 -instructions)

LOADEH

INPUT ----------

The loader takes ~nput from the assembler.

The syntax ~s descr~bed on pages 2.9 through 2,.11 and page 2.13.

STRUCTUH..8 OF THE LOADER
=======================

The loader has th~s structure:

declarat~ons and in~t~a1~zations

presentat~on

in~t~al~zation of cbase and dbase

newtape:

read unt~l mark 1-0

while nextoninput = mark 0-1 do

§ (while
read header

read code into mainstore

read data ~nto mainstore

read globa1table and do the
specified initializations

read labeltable to initialize
the unsolved references

read mark 1-0

sumcheck

§)1vh~l e

if more tapes do gato newtape

go ()

(header = codesize, datasize, glabalsize, tablesize and checksum)

To understand "go()" and "initialization of cbase and dbase"
you must know that the system uses the globals 504 through 511
for comrnunika tion of the follo1vinginforma tion:

G.5ll
G.510
G.509
G.508
G.507
G.506
G.505
G.504

1Vlimi t}
PeO -variable (program's limits and

entrypoint)
"tvlimi t}
pO -constant (system's limits and
e. entrypoint)
e -loader's entrypoint
C -assembler's entrypoint

INITIALIZATION Oli' CBASE M\fD DBASE takes G.508 as cbase(base of
codearea) and G.507 as dbase (base of ctataarea).

QQil initializes G.5ll, G.5l0 and G.509 "tvith the loaded program's
wlimit (cbase-l), pO (dtop) and C (entrypoint).

Having done this it calles finish (see page 4.5).

SYSTEM ------------

Tho system includes the assembler, the loader, the error
routine and a routine "systemU to switch between loader and
assembler.

ERROR (uritten in intcode - entrypoint=limit) is called from
lI e r ror 1-5 u in the emulator (see the last page in the emula
torlisting) to dump mainstore.O to mainstore.15.
This pictures the registers (wa: 0-15) at the moment the error
arose (except wa.3=errorno).

"SYSTEM" is 1-1ritten in intcode according to this algoritme:

select(consoletable)

again:

1 rites(It*N assembler:a or loader:l 1")

help.: = input

test help='A' then goto G.504

.test help='L' then goto G.505

~ goto again

(systems entrypoint is placed in G.506)

ERRORNESSAGES FHON LOADEH ------------------------_. -------------------------

01iERFL01>1

HISSING ENDMARK

BAD CHECKSUM

code- and dataarea too big·

the mark 1-0 expected· after
the segment is missing

the checksum just calculated
differs from the checksum given
in the header

EMULATOR

Emulating one intcode-instruction the emulator goes round once
in the below mentioned cy~le:

1. Ask whether the surrounding system wants control
(has issued an interrupt).

2. Read next instruction from mainstore to DS "(doubleshifter).

3. Read address to AS (acumulatorshifter) and D.
Iff L-bit it set the address is found in the next
word in mainstore; else it is found in the last 9 bits
of the present word.

4. Iff P-bit is set add P to D and keep the result in AS
and D.

5. Iff G-bit is set add G to D and keep the result in AS
and D.'

6. Iff I-bit is set read the mainstore address D and put
the content of this in AS and D.

7. Increment C (programcounter)

8. Decode instructioncode

9. According to this decoding jump to one of 8 possible
labels in the emulator~

10. Perform the desired operation

11. goto 1.

There is one exception from this scheme. The X23 (switch-instruc
tion) is so long that it must be partioned into smaller sections.
Between each section the surrounding system h~s the possibility
to interrupt.

"Flag tt is used to indicate whether a s\vitch-instruction is
interrupted. Iff flag is set control is passed from 1. directly
back to the part in the emulator handling X23-instructions.

INITIALIZATION OF WA AND WB
===========================

The first 1vB-group is initialized to:

0, 1, 2, 3, 4,5, 6, 7, 8,- 9, 10, 11, 12, 13, 14, -1

The second HB-group is initialized to,keep.a table used by
the emulator l,fhen s1fi tching bet1feen the 32 possible X-instruc
tions.

0:

1 :

2:

13:

14:

15:

ERROR

address

address

address

EH.ROR

ERROR

address Xl

X2 address X3

x4 address X5

x26 address X27

ERROR

ERROR

The addresses (controlstoreaddresses) are packed two and two.

4.).

The first W'A-group keeps the itltcode-machines six registers
and other vital information such as flags, limits etc.

0: BASE
1 : 1>J"L II-I IT
2: PO
3: ERROR
4: FLAG
5: B
6: A
7 : C
8: D
9: P

10: G
11:
12: INPUT
13: OUTPUT
14: CS
l"S : LIMIT

BASE is the basisaddress in mains tore. All other addresses
is relative to BASE.

WLIMIT is the last word in mainstore where writting is permitted.

PO is the first word in the runtimestack (local variables).

FLA~ indicates whether a X23-instruction was interrupted
(see page 4.1).

A, B, C, Dr P and G are the intcode-machines six registers.

INPUT and OUTPUT keeps the selected input- and outputdevice.

CS is baseaddress in controlstore for the emulatorcode.

LIMIT is the last 1vord in mainstorewhere'access (reading) is
permitted.

ERROR is a mailbox indicating where the errorroutine was called

BASE, PO, WLIMIT, LIMIT and C are initialized by the intcode
loader.

INPUT and OUTPUT has standard initializations (see microcode
lis ting) •

CS is initialiZGd by the system (at present it's a11"rays 0).

Any things else is initialized to O.

4.~

When n segments are loaded the picture is:

BASE

codearea
segment 1

codearea
segment 2

codearea
segment n

LIMIT

1~~~~~~~--lvLIMIT

runtime
stack

dataarea
segment n

dataarea
segment 2

dataarea
segment 1

global
vector

dump
areal

PO

G

0

4. "" ..

READ AND \\TRITE ----------------------------

The emulator uses two subroutines: read and write.

These routines simply initialize the reading (wr~ting).
Then it returns control to the calling address without
waiting for the read (write) to finish.

Read tests:, base '!f:: read-address ~ limit

11 r i t e t est s : base ~ write-address ~ wlimit

If these conditions are not met theerrorroutine is called.

X22 looks at G.511 to see if a program has been loaded
(see page 3.2).

If so then it in~tializes wlimit,pO and C from G,5ll, G.510
and G.509 and starts programexecution.

Else it initializes wlimit, pO and C from G.508, G.507 and
G.506 and so leaves control to "system".

4.5

