

Abstract

Interpretation and Code Generation
Based on Intermediate Languages*

Peter Kornerup **,
Bent Bruun Kristensen,
Ole Lehrmann Madsen,

Computer Science Department
Aarhus University

Denmark

The possibility of supporting . high level languages through intermediate
languages to be used for direct interpretation and as intermediate forms in
compilers is investigated. An accomplished project in the construction of an
interpreter and a code generator using one common intermediate form is
evaluated. The subject is analyzed in general, and a proposal for an improved
design scheme is given.

* This work has been supported by the Danish Natural Science Research
Council, Grants No. 511-1546 and No. 511-5524.
** Part of this work was performed while this author was on leave at the
University of Southwestern Louisiana, Lafayette, USA.

1. Introduction

The purpose of this paper is to investigate the possibility of designing suitable
languages to be used for interpretation and as intermediate forms in compilers,
partly by informing about the experiences from a project involving the design of
a stack machine, the construction of an emulator on a microprogrammable
minicomputer system, and the construction of a codegenerator for a traditional
minicomputer, partly by analyzing the subject in general.

Intermediate languages have mostly been defined in connection with
selfcompiling compilers as a means of aid in bootstrapping such compilers onto
other host machines (e.g. with BCPL [16] and PASCAL [22]1. Such
intermediate languages are then primarily designed for a straightforward
interpretation. By writing an interpreter in some language already available on
the new host system (usually a high level language), an interpretive (and slow)
language processor can be available while rewriting the code generation parts in
the compiler. Usually the code generation does not take the same intermediate
language as its input, but uses other intermediate forms, often because a one
pass scheme is wanted where the code generation is integrated in the analytic
part. However, for the implementation of such language processors on
minicomputer systems of a traditional architecture, some advantages may be
gained by using multipass schemes to reduce storage requirements.

Hence it would be advantageous to be able to use such intermediate languages
directly to give efficient code generation on minicomputers. This requires that
the intermediate language (the hypothetical machine) is being designed not only
for interpretation, but also such that sufficient information for code generation
is available.

For microprogrammable processors an intermediate language may be used in a
production language processor system by more or less direct interpretation of
the language. By a suitable assembly process a compiled program in the
intermediate (symbolic) form may be brought into a compact internal
representation to be efficiently executed by a microprogrammed interpreter.
The construction of such an assembler and interpreter will most often turn out
to be much easier than that of a code generator for a conventional computer.

It is worth noticing, that the process of constructing that part of a compiler
which can produce such an intermediate language, also is the part which can
be constructed by an automated process based on a formal description of the
source language, given a suitable translator writing system. Hence it is most
likely, not only that a high degree of portability is achieved, but also that more

2

correct language processors can be constructed, because the source language
as well as the intermediate language can be precisely defined.

The question of concern is not the old UNCOl problem, but to define a suitable
level for such intermediate· languages such that various implementation
strategies can use the same interface to the particular source language
processor.

The question will be analyzed on the background of some practical projects,
described below:

During the last few years some microprogrammable processors, named RIKKE
[18] and MATHilDA [4]. have been designed and built at the Computer
Science Department, Aarhus University, and it was decided to implement
PASCAL [22] on a configuration of these.

The first step was to design a pseudo-machine (P-code [11]1 to support
PASCAL. The main goal of the design was that it should be possible to
implement a microprogrammed interpreter for P-code on the
RIKKE/MATHllDA system. Furthermore it should be easy to implement a
compiler from PASCAL to P-code. A final requirement was that it should be
possible to use P-code as an intermediate form in the process of implementing
PASCAL on traditional computers.

All three steps were realized, and this paper will try to draw some conclusions
on the experience gained, before analyzing the subject in general.

Finally some criteria for the design of such intermediate languages are being
extracted, and their application to PASCAL is exemplified in an improved
intermediate form given in an appendix.

2. The P-code design and the compiler

The P-code machine is oganized with three stacks, a runtime stack for the
allocation of data segments of procedures (activation records), an address stack
for the evaluation of addresses and integer arithmetic, and an evaluation stack
for expressions in rea Is and sets, and the manipulation of packed records.
Variables in the data segments are addressed by a block level number and an
ordinal number. Furthermore, there is an area for the code of the procedures,
organized in segments, one for each procedure.

3

Straightforward stack code consists of instructions loading operands on the
stack, and operators working on the stack, i.e. a postfix Polish form. To avoid
some explicit loads of operands on the stacks some of the operators in P-code
also exist in a version with one of the operands being an argument of the
instruction. This is the case for all arithmetic and relational operators which may
have an integer constant as an argument. Store operations have the address to
be stored into as an argument of the instruction, avoiding an explicit load of the
address. Also the jump instructions have the jump address as an argument.

P-code also contains operators for maintaining the runtime stack, i.e. mark,
enter and exit instructions. But it does not contain special instructions reflecting
control structures like repetition or conditionals, nor does it have instructions
for accessing components of structured data, except for· instructions to pack
and unpack fields of a word and bit testing and insertion (for packed records
and powersets).

A compiler from PASCAL to P-code has been implemented by means of an
LALR(1) parser generator [12]. Basically a simple translation scheme is used,
however for several reasons the compiler became more complicated than
anticipated. To optimize in space and time, a quite complicated
pseudo-evaluation is performed, which includes handling of the variants of the
instructions, subexpressions in literals, and certain optimizations of boolean
expressions. During the design of P-code, and the construction of the
compiler, an interpreter of P-code written in PASCAL was used for testing
purposes.

Except for files other than input and output, the compiler and P-code supports
what may be known as PASCAL 1 [22].

3. The interpreter and the code generator

The next step in implementing PASCAL on the RIKKE/MATHILDA system was
to design and implement a microcoded interpreter for the P-code machine [4].
RIKKE and MATHILDA are two independent processors, with 16 bit
respectively 64 bit word sizes, coupled together both directly and by means of
an additional 64 bit wide shared memory called WIDE STORE. Furthermore
RIKKE has its own 16 bit wide memory. The whole system constitutes the
RIKKE/MATHILDA system. The P-code machine is realized on this system in
the following way: The evaluation stack is kept in MATHILDA, the address
stack in RIKKE, the runtime stack in WIDE STORE, and the code segments in

4

the memory of RIKKE. Decoding of instructions and operations on the address.
stack are performed by RIKKE, which also controls MATHILDA and WIDE
STORE. MATHILDA is a slave unit which performs complicated operations on
the evaluation stack, directed by RIKKE. It was the idea to experiment with
non-standard arithmetic in MATHILDA, by substituting the arithmetic code
modules in MATHILDA with more experimental ones (e.g. [10]).

Finally a code generator was constructed to evaluate P-code as an intermediate
form in compilation for a standard architecture [13]. As host, a Data General
NOVA was chosen which is a 16 bit mini. This is a fairly typical minicomputer
with a small instruction set, restricted memory size (up to 32 KI, four registers,
two of which may be used as index registers. Load, store and jump instructions
have an insufficient addressing scheme, which complicates storage allocation
and code generation.

A pseudo-evaluation of the P-code program is performed in order to generate
efficient code. This makes it possible to postpone some address calculation and
loading of operands to some later stage at runtime, and thereby to avoid some
unnecessary loads and stores. No registers are allocated permanently for special
purposes, all are allocated dynamically for varying purposes. To support .
extensive reuse of existing contents of registers, these are carefully described
and checked during allocation.

It has been the idea to generate an inline code sequence from the P-code
instruction stream, and to abstain from any sort of interpretive scheme.
However as certain P-code instructions turned out to result in fairly long code
sequences, some of these were translated into runtime system calls (i.e. enter,
exit, vector operations etc.), whereas other still are translated into inline code,
although similarly they could be transformed into system calls (e.g. powerset
testing, masking of record fields etc.). The code generator was written in
PASCAL and the translation process is carried out as a cross compilation (using
a CDC 6400). Except for unimportant parts with respect to the evaluation of
P-code (e.g. reals, procedures/functions as parameters), the code generator
supports the P-code machine.

5

4. Evaluation of P-code for interpretation

The main goal of the project was to implement PASCAL on RIKKE/MATHILDA
and for that purpose P-code seems to be a reasonable success. It turned out to
be an easy job to write the interpreter for P-code. For the programmers the
hardest problem was to become familiar with RIKKE but after that it was a
straightforward process to write the interpreter (less than 500 microinstructions
without any attempts to optimize), using available assembler/simulator tools.

By studying the P-code generated by the compiler, several ways of
compressing the code by expanding the instruction set are apparent. We shall
not discuss these in detail, just mention a few cases. In general one finds that
some instructions always appear in connection with special sequences of other
instructions and such sequences may be replaced by single instructions. As
mentioned, variables are addressed by a block number and an ordinal number.
In practice most variables referenced are either global or local (due to Wirth),
and it may be worthwhile to have special load/store operations for such
variables saving the space for an explicit block number. If one of the operands
of an arithmetic or relational operation is a constant then this operand has been
included as an argument of the instruction. It seems natural to extend this, and
also have instructions which take operands from memory, e.g. to use an
"accumulator-stack" architecture.

When designing the stack machine it may be difficult to see which complicated
instructions are worthwhile including. Some statistics are needed in order to
decide this, and such information can be obtained from our test interpreter
(written in PASCAL). It might then be possible to change and experiment with
the instruction set.

A practical problem may arise when implementing a complicated instruction.
I/O interrupts have to be programmed at the lowest level, i.e. the micro code
must at certain intervals test whether an interrupt at the P-code level has to
occur. It seems most natural to do so between the individual P-code
instruction fetches. However, the execution time of some of the P-code
instructions may then be too long to satisfy a reasonable fast service of some
devices. It may therefore be necessary to organize the realization of such
instructions with suitable break points where to test for interrupts.

6

5. Evaluation of P-code as an intermediate form for code generation

As an intermediate form in a compiler for PASCAL in general, P-code is less
usable. First of all P-code has some deficiencies which means that the coding
of some instructions become absurdly complicated. In fact some information is
lost and has to be reestablished by a prescan of the P-code program. These
drawbacks may however easily be changed in the design, in the compiler and in
the interpreter without major troubles. The reason for this is that the primary
purpose of the P-code was to interpret it on RIKKE, and the code generation
phase was realized after the design was frozen.

A more serious problem arises if really efficient code is wanted. It is very
important that the original constructions from the source language can be
recognized. For instance, to make efficient use of registers, one must know
whether a label in the intermediate form is a part of an if-statement or can be
branched to by a goto-statement, etc. (e.g. see [5) sec. 17.4). Although it is
possible to recognize most of the PASCAL operations, the control structures
cannot be recognized, 'because such constructs have been compiled into
sequences of primitive instructions.

Another serious problem with P-code is that storage allocation has been made
by the compiler. It clearly depends on the target machine how variables are to
be allocated in core. Suppose that a variable in the object code is addressed by
an index register (pointing to the start of the data segment (activation record))
and a constant offset (inside the data segment). In the NOVA however only a
small constant offset can be used as an instruction argument. If the offset is too
large, indirect addressing has to be used. It may then be desirable to use one
word per variable in the low end of the data segment, and if the variable is of a
structured type then use the word as a pointer (dope vector) to the actual
storage area of the variable. In a computer like the CDC 6400, it is possible
directly to address all locations, i.e. a consecutive allocation without the use of
dope vectors may do.

We conclude that storage allocation should not have been performed. The
intermediate form should contain all the declarative information of the source
program.

7

6. Evaluation of the compile phase

We evaluate P-code to support PASCAL as well as a-code supports BCPL
[161, as a-code has the same deficiencies with respect to storage allocation,
declarative information and recognition of constructs in the source language.

One of the purposes by choosing a stack design was that the compiler should
be easy to implement. The compressed stack code turned out to be a
disadvantage, as the compiler has become rather complicated in order to utilize
the P-code machine efficiently. The compiler is only simple if the stack code is
basically a postfix Polish form. The compressed stack code is not advantageous
when using P-code as an intermediate form, since the code generator will have
to cope with more versions of the same operation. Hence the process of
compressing the code for interpretation should be moved to a later (assembly)
phase, thus keeping a more clean P-code as the interface between the
compiler and interpreter.

Similar attempts on compressing the object code for a stack machine have been
made when implementing BCPL on RIKKE by interpretation of a-code [191.
But here the compression took place in the assembly phase, taking the
symbolic a-code from the BCPL compiler into the load modules.

7. Compromizing on the intermediate form

As discussed above the attempt to design one intermediate form suitable for
both direct interpretation and for code generation seems very attractive, but
fails because of several conflicting requirements.

However if we relax on the requirement that the intermediate form has to be
immediately interpretable, a solution is possible. Relaxing on this requirement
does not seem unreasonable, since some processing before execution of such a
form will always be necessary (e.g. assembly, linking and possibly loading).
Hence postponing some more binding to this phase will only add some pure
processing to an already existing overhead of scanning the code.

Relaxing on the requirement of direct· interpretation implies that the
intermediate form in all cases has to be transformed by some sort of code
generation before execution. The intermediate form then has to satisfy the
following major criteria:

8

No binding must take place which will discard information useful in
generating efficient code for classical machine architecture of a wide
variety.
With a minimum of additional binding and transformation of
representation, the code should be executable with a "reasonable" space
and run time efficiency on an interpretive host.
The intermediate form should contain as little explicit structure as
possible to allow an external representation suitable to transmission
between machines.

8. A compiler model

Before discussing the design criteria in more detail, let us specify the tasks of
the phases, respectively leading to the intermediate form, and from this form
into executable forms.

The first phase, responsible for bringing the source language into the
intermediate form, consists of lexical, context-free and context-sensitive
analysis and flattening (linearisation of the syntax tree):

Phase 1:

Source language
SL

ANALYSIS
MODULE

(lexical, context-free
and context-sensitive

analysis

optimization
and flattening)

IF
Intermediate form

Source listing

Error messages
(syntax errors)

9

Depending on the application, the intermediate form may then be transformed
in a second phase into various executable forms. This involves storage
allocation and synthesis of executable code, which however in its simplest form
may reduce to an assembler task.

Phase 2a:
(Bootstrap-code for interpretation.)

IF

STORAGE
ALLOCATION

+
ASSEMBLY

Bootstrap code

Error messages
(violation of
size limitations)

10

For. a more efficient, interpretive language processor system however, a more
compressed and complex code may be produced. The synthesis of executable
code may then involve some sort of pseudo-evaluation and other local
optimizations to reduce the space and time requirements of the produced code,
when executed on a suitably defined interpreter.

Phase 2b:
(Efficient code for interpretation.)

IF

1
STORAGE

ALLOCATION
+

,SYNTHESIS
+

COMPRESSION

J
Interpretive code

Error messages

11

Finally, and probably the most complicated situation, the second phase may
have to produce executable code for some "real-life" standard computer, in the
form of load modules for the particular system in question. This version of
phase 2 may have to cope with par~icular idiosyncrasies of the addressing
scheme, utilization of special purpose registers in limited amounts, and
interfacing to operating system utilities and limitations.

Phase 2c:
(Code generation for standard host.)

IF

I
STORAGE

ALLOCATION
+

SYNTHESIS
+

CODE
GENERATION

~
Load-modules

Error messages

12

9. Design considerations

The major criteria stated· in Section 7 imply that the intermediate form resulting
from the first phase has to be a truly language dependent, but completely
machine independent, representation of the program. With respect to storage
economy and data referencing on a wide variety of hosts it is essential that
storage allocation is left to the machine dependent part. Also it is necessary
that data structures and control structures are identifiable such that the best
host facilities may be utilized in code generation. Hence in the intermediate
form all declarative information on data has to be accessible to allow storage
allocation to take place later, and all referencing of data must have the form of
a reference to the appropriate declarative information.

The necessary binding to permit an interpretation (a phase 2a or 2b) will then
consist of a data storage allocation, and the substitution of final addresses into·
the code wherever data or the code itself is being referenced. Possibly also
some transformations on the code itself have to take place, deleting some
information, and expanding some constructs into several more primitive ones.
Howeller it should be possible to realize a spectrum of such codes for
interpretation, depending on the time and effort spent on the storage allocation
and transformation· of the cqde. Transformations in phase 2 (b or c) may
include pseudo-evaluation, or in general tree transformations, to achieve the
optimal boundary between code and interpretive machine, for the given
language and the host machine.

The intermediate form has to represent the syntactic tree of the program, or
rather the directed graph, taking the context dependent aspects into
consideration. However, the requirement that the representation of the program
can be easily transmitted, implies that it must contain as little explicit structure
as possible because such structure is representation dependent. A tree
structure can however easily be represented in linear form, such that only
additional cross-node links have to be made explicit. Such links are necessary
to associate declaration and usage of symbols, and these can be established in
the linearized representation of the structure by using explicit pointers into other
linear structures (e.g., symbol tables) which can be more homogeneous. A
more detailed discussion of these issues is postponed until the next section.

The intermediate form may consist of a Polish (parenthesis free: prefix, infix, or
postfix), a parenthesized representation, or possibly a mixture of these. Also
triples [5] or other tuples representing nodes might be used although these use
explicit references to another, enforcing restrictions upon the format of the
tuples, since the links have to use enumeration of the tuples for referencing.

13

Another problem with tuples is that it is necessary to store them in a random
access store (i.e., they cannot be processed in sequence) to emit reverse Polish
(for a stack machine), unless the tuples themselves appear in the linear stream
in an order corresponding to say a preorder scan of the tree (in which case a
preorder Polish does the same job, but without links!. Quadruples [5] are to be
"executed" in the order in which they appear, i.e., they are bound to a particular
architecture, implying that we will rule these out as a possible representation of
a general purpose intermediate form.

For expressions a postfix Polish representation is very suitable, allowing a very
simple code generation for ordinary stack machines (e.g., for a simple
interpreter), and very easy to generate from the source by means of a simple
translation scheme. Also it is quite straightforward to generate code for an
accumulator machine (single or multiple accumulator, or "push-down
accumulator"), using a pseudo-evaluation. However a pseudo-evaluation
cannot generate the most optimal code for a machine with a limited set of
fast-access registers (accumulators), since it is not possible to take full
advantage of algebraic rules to minimize the number of intermediate results
which has to be saved temporarily. Such optimizations, and also the elimination
of common subexpressions, require an analysis of, and transformations on,
more global information of the program (i.e., a partial or complete program
tree).

Before looking into the possibilities of optimizations, let us briefly discuss the
representation of control structures in the intermediate form [20]. Although a
postfix Polish representation could be used, it is however very inconvenient.
Some prefix and infix information is needed, i.e., a parenthesized notation is
preferable. To obtain such a translation by a postfix simple syntax directed
translation scheme, additional transformations to the input grammar are
required (e.g., quite trivial but ugly productions have to be included: e.g.
<while> :: = while, <while clause> :: = <while> <expression> do).

As to the external representation of the intermediate form, it might be
convenient with two such representations, one highly encoded form for
communication between machines, and one symbolic representation on the
level of an assembly language, for human interpretation. However, the encoded
form should preferably still be in some standard character code (and even a
printable subset) because such codes are more easily portable.

Let us return to the possibilities of performing machine independent
optimizations, and optimizations which might be advantageous to a varying
degree on various hosts. In the first class one might include elimination of

14

redundant computations (common subexpressions) and loop optimizations, in
the second one might think of reducing the number of temporaries needed
during expression evaluation to reduce storage referencing. Obviously this last
optimization is not needed on a machine with an abundance of fast registers,
but may be very advantageous on a one-accumulator architecture.

Such optimizations should not utilize machine dependent features, e.g., say
associativity in floating point operations, but might use commutativity of certain
boolean and integer operations. Including these optimizations in the phase 1
translation to the intermediate form has the advantage that these might be
performed in the same way on a range of implementations, reducing the risk of
violating the language definition in particular implementations. Also it is
possible to perform these optimizations in a separate module (which might
optionally be called between phase 1 and a phase 2) which takes the
intermediate form as input and delivers a modified but equivalent form as its
output.

Some of the modifications may actually change the intermediate form, e.g.,
perform some reordering, whereas others may only add further tokens to the
representation of the program, e.g., add redundant information which is the
result of a detailed flow analysis of the program, and include information on
common subexpressions, identification of basic blocks etc.

To summarize, we may think of distributing the optimization work in the
compiler scheme as follows:

Optimization Analysis:
(in phase 1, or separate optimization module).
Adding redundant information to the intermediate form as the result of
an analysis (e.g. data flow analysis) of the source, e.g. adding
information identifying common subexpressions and constant
expressions in loops, or how a variable is referenced before it is assigned
a new value.

Machine independent transformations:
(in separate optimization module).
Reordering and transformations on the intermediate form utilizing the
information from the optimization analysis.

Machine dependent transformations: (in phase 2c).
Utilization of the analysis information for efficient code generation (e.g.
register allocation and utilization).

15

10. Handling of declarative information

As stated earlier there is no problem in linearizing the purely context-free
syntax of the program, where however for later convenience a combination of
say postorder and infix representation might be advantageous. Since we want
all context-dependent syntax to be checked and resolved during the first
phase, the intermediate form even in a linear representation has to include
references from any application of a symbol to its declaration (which in turn
again may reference other declarations). Furthermore redundant references
may be included, e.g. reference!! to type definitions may be added in various
places to indicate say the type of the arguments or the result of an operation.

Considering the intermediate form as a linear stream of pseudo-instructions,
there is hence a need for a labeling of some of these, in such a way that
particular instructions may be referenced from other instructions. Each
pseudo-instruction in the intermediate form corresponds to a node in the graph
representing the source program. However, since the graph is basically a tree,
with some additional cross-node links, only such links have to be made explicit,
using a simple labeling of particular nodes.

For some languages the symbol table is so simple that pseudo-instructions
describing it may be emitted from phase 1 when parsing declarative statements,
at the same time as the phase 1 symbol table is being built. Other languages
permit more complex, possibly circular (recursive) declarations, in which case
the complete symbol table may have to be built before it can be emitted
(flattened), i.e., phase 1 may involve a multi-pass scheme. Although PASCAL
allows some simple circularities, it is however possible to emit the symbol table
in intermediate form during parsing of the declarations.

Since storage allocation is to take place during phase 2, the symbol table
(-structure) will have to be at least partially reconstructed. Some information
from phase 1 may not be needed (e.g. external representation of identifiers, in
the case where the implementor does not want to give the user extensive
run-time diagnostics) whereas new information will be added as the result of
the storage allocation.

The flattening and linearization of the symbol table, and its subsequent
reconstruction will add some overhead to the translation, being the price of this
scheme. However, if production efficiency of the compiler becomes crucial, a
merging of phases 1 and 2, employing a sharing of the symbol table structure,
can easily be realized. The cost will be less modularity in the compiler, and
hence decreased maintainability.

16

1.1. Portability

If a phase 1 and a phase 2a are implemented in the language they are supposed
to compile, such a system will allow the compiler to be bootstrapped onto new
hosts at a reasonable cost. Phase 1 will be completely machine independent,
and a phase 2a bootstrap version would only have to be modified for a new
host in its storage allocation part, which may even be parameterizable. A simple
interpreter for the phase 2a output code is then the only part which has to be
handcoded on the new host if a donor machine is accessible for translating the
phase 1 and 2a into the bootstrap code.

If a donor system is not accessible, phase 2a and the bootstrap interpreter have
to be hand-translated into some language(s) on the new host.

Major parts of any phase 2c type system may be used when constructing a
phase 2c for a new host. The code for scanning the intermediate form, the
reconstruction of the symbol table, and major parts of pseudo-evaluation may

. not only serve as a model for the new implementation, but may be directly
used.

Compared to standard one-pass compilers, this system has the advantage that
syntax analysis and code generation are implemented completely
independently, with a well-defined interface in between. Since the syntax of
the intermediate form is much simpler than that of the source language, the
task of modifying a phase 2 is much simpler than that of making the
modifications in a one-pass compiler.

12. Historical remarks and conclusions

The original efforts of implementing PASCAL via the P-code machine [4] grew
out of a project of implementing the BOBS parser generator system [12] during
the period 1971-1973. The implementation of the PASCAL P-code compiler,
the P-code interpreter realization and the P-code to the NOVA compiler
project were realized during 1974-75. A draft manuscript [8] on the experience
with the P-code was written in the fall of 1975, but was never completed.
Sections 1-6 of this report are however a revised version of part of that
manuscript. The basic ideas and design criteria of the remaining part of this
paper were also present in [8], and have been used in the work on an
intermediate form for Platon [14] and in the Beta implementation work [6].

17

The design criteria discussed in this report materialized during 1976 in a
preliminary design of an intermediate form for PASCAL, described in the
appendix, together with a brief discussion of the principles applied. A phase 1
translator [2] from a slightly enhanced PASCAL into such an intermediate form
was implemented during 1977 together with a phase 2a bootstrap system [7].
At present phase 2c type compilers for the RC4000/8000 [3] and DEC10
systems are being implemented, and work on some interpretive systems is
being initiated.

The goals of the proposed design scheme seem so far to have been achieved. A
phase 1-type translation of PASCAL into such an intermediate form serving
multiple purposes was quite easily defined and implemented. Work on several
versions of phase 2 type translations has indicated that major parts of the code
may be identical in these versions, i.e. there is a skeleton of a phase 2 translator
which may be used as a basis for a variety of implementations.

18

References

[1] Aho, A.V. and J.D. Ullman: The Theory of Parsing, Translation and
Compiling. Volume 1: Parsing (1972). Volume 2: Compiling
(1973). Prentice-Hall, Englewood Cliffs, N.J.

[2] Bardino, J., O. Jacobsen and E. Knudsen: Pascal Compiler Project.
DAIMI (internal report), 1977.

[3] Bardino, J. and E. Knudsen: A Pascal Code Generator for the
RC4000/8000 Computers. DAIMI (internal report), 1978.

[4] Eriksen, S.H., B.B. Kristensen, O.L. Madsen and B.B. Jensen:
An Implementation of P-code on RIKKE/MATHILDA. Daimi,
January 1975.

[5] Gries, D.: Compiler Construction for Digital Computers. John Wiley &
Sons, Inc., 1971.

[6] Hammerskov, J., B.B. Kristensen and O.L. Madsen: A Compiler Model
and its Application to Beta. Presented at Workshop on Simula
and Compiler Writing, Oslo 1977.

[7] Jacobsen, H.J. and P.C. N(IIrgard: Notes on the Pascal Bootstrap
Interpreter. Daimi (internal report), 1978.

[8] Kornerup, P., B.B. Kristensen and O.L. Madsen: Interpretation and
Code Generation based on Hypothetical Machines. DAIMI
(internal report), 1975.

[9] Kornerup, P. and B.D. Shriver: An Overview of the MATHILDA
System. Sigmicro Newsletter, January 1975.

[10] Kornerup, P. and B.D. Shriver: A Unified Numeric Representation
Arithmetic Unit and its Language Support. IEEE Transactions on
Computers, Vol. C-26, No.7, July 1977.

[11] Kristensen, B.B., O.L. Madsen and B.B. Jensen: A Pascal Environment
Machine (P-code). DAIMI PB-28, 1974.

19

[12] Kristensen B.B., O.L. Madsen, B.B. Jensen and S.H. ~riksen: A Short
Description of a Translator Writing System (BOBS-System).
DAIMI PB-41, 1974.

[13] Kristensen, B.B.: Code Generation from P-code to NOVA Machine
Code. DAIMI (internal report), 1975.

[14] Madsen, O.L., B.B. Kristensen, J. Staunstrup: Use of Design Criteria
for Intermediate Languages. DAIMI PB-59, 1976.

[15] Miller, P.L.: Automatic Creation of a Code Generator from a Machine
Description. MAC-TR-85, May 1969, Project MAC, M.I.T.
Cambridge, Ma.

[16] Richards, M.: The Portability of the BCPL Compiler.
SOFTWARE-PRACTICE and EXPERIENCE, Vol. 1, 1971.

[17] Shriver, B.D.: A Small Group of Research Projects in Machine Design
for Scientific Computation. DAIMI PB-14, June 1973.

[18] Staunstrup, J. and E. Kressel: RIKKE-1 Reference Manual. DAIMI
MD-7, April 1974.

[19] S0rensen,0.: The Emulated Ocode Machine for the Support of BCPL.
DAIMI PB-45, April 1975.

[20] Wilcox, T.R.: Generating Machine Code for High-Level Programming
Languages. Ph.D. Thesis, Cornell University, 1971.

[21] Wilner, W.T.: B1700 Memory Utilization. Fall Joint Computer
Conference, AFIPS 1972, pp. 579-586.

[22] Wirth, N.: The Programing Language Pascal. Acta Informatica 1, 35-63
(1973).

[23] Wirth, N.: The Design of a Pascal Compiler. SOFTWARE-PRACTICE
and EXPERIENCE, Vol. 1, 1971.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix A.

In this- appendix we will illustrate the design criteria from the previous sections
by applying them to Pascal. First we will describe a general intermediate form

. designed this way, then we scetch a simple stack machine for bootstrapping
and finally an efficient stack machine for use in ·practice.

A1. The Pascal Intermediate Form.

In the following PIF means Pascal Intermediate Form.

The analysis part of the compiler is assumed to include:

- lexical analysis,

- context free syntax analysis,

- context sensitive syntax analysis, and

- generation of a PlF version of the input program.

Each Pascal construct (language element) is. translated uniquely into an
equivalent PIF instruction. This is done in such. a way that the original source
program can almost uniquely be recognised. However some reorganisation has
taken place and some explicit information has been added in order to ease the
succeeding phases:·

assignments, . expressions, and variable denotations are converted
into postfix polish,

control structures are in a parenthesised form, marking the
beginning, breakpoints between clauses and the end. All these
markings has as a parameter the level of nesting inside the current
procedure,

declarative PIF instructions may be explictly referenced from other
places in the PIF. This is done by giving these instructions a unique
identifying number (label). In this way the PIF instructions for the

A2

declaration parts correspond to a linearisation of the symbol table as
discussed in the previous sections.

all applications of a name are explicitly referencing the PIF
instruction declaring that name,

all operators (including selectors in structured variables) have been
added type information of the operands and the result where this is
not obvious. This type information is in form of an explicit reference
to the PIF instruction declaring the type, and

some of the information connected with a PIF instruction may be a
reference to a list of names and their denotations. For instance a PIF
instruction for declaring a record type has associated such a list of
names, corresponding to the fields of the record. Similarily a
procedure has a parameter list and a list of locally declared names.
Such lists are represented by having a PIF instruction indicating the
start of a new list, by PIF instructions for declaring the names of the
current list (the list specified by order of occurence) and a PIF
instruction for ending the current list.

Comments on the PIF:

The PIF still contains nested structures in the declarations and the
statements, but the nesting depth is explicit,

if a type is declared with a name, all references to the type is to the
PIF instruction declaring the type and not the one declaring the
name. This is done in order to treat types without names and types
with names in the same way. This is an arbitrary choice and could be
made different. Constants given a name in a CONST part are
treated in the same way,

some information from the lexical level has been discarded. In
practice PIF instructions indicating line numbers should be included,
such that it is possible to generate useful runtime diagnostics.

In the following the PIF is described by means of a modified BNF:

- { } is used to group clauses on the right side of a production,

A3

* means that the preeceding clause should be repeated zero or more
times,

name denotes a Pascal identifier,

string denotes a Pascal string,

empty denotes the empty string.

Context sensitive parts of the PIF are described by the following kind of pseudo
syntax:

- Jsbel denotes a unique integer label identifying the particular
(immediately preceeding) instruction when referenced from other
places in the PIF. No two Isbels are identical.

tN, where N is a nonterminal or a terminal, is an integer field which
is a reference (/sben to a PIF instruction which can be generated
from N,

nd is a number being the current level of nesting. If more than one
nd appears on a right side they are identical.

A1.1. Syntax of Pascal Intermediate Form IPIFI.

The following is a grammar for a Pascal intermediate form. However the
grammar will allow sequences of instructions which will never be generated by
a compiler. E.g. the grammar allows arbitrary declarations to appear within a
scalar list.

<PIF-program> ::=
PIFPROGRAM Isbel name tPARAMLIST tNAMELIST

<standard-environment>
<PIF-block>*

ENDPIF
{ The program is treated as a procedure with a parameter list and a list of all
local declarations; name is the name of the program}

A4

<standard-environment> :: =
{ The PIF for all predefined labels, constants, types, variables
,procedures and functions}

<PIF-block> :: = <declaration-block> I <statement-block>

<declaration-block> :: =
NAMELIST label

. <PIF-block>*
ENDNAMELIST tNAMEDEF

{ encloses the PIF for all labels, constants, types, variables, procedures,
and functions declared local to a procedure/function (not including the
parameter list) }

PARAMLIST label
<declaration-PI F>*

ENDPARAMUST tNAMEDEF
{ encloses all declarations in a parameterlist of a procedure/function}

SCALARLIST label
<declaration-PIF>*

ENDSCALARLISTtSCALAR
{ encloses all declarations of a scalarlist }

<field list>

{ all of the above lists ends with a reference to the instruction, to which the list
is associated }

<declaration-PIF> :: =
NAMEDEF label name <kind>

{ declares a name of a certain kind}
LITERAL label string t<type>

{ declares a literal constant. The external representation of the constant
is kept in string. t<type> refers to the type of the constant}
LABEL label string {declares a label}
<type>
<declaration-block>

<fieldlist> :: =
FIELDLIST label

<declaration-PIF>*

A5

<taglist>
ENDFIELDLIST t<record or tag>

<taglist> :: = empty
I TAGFIELD tNAMEDEF Ktype>

{ <taglabel> <taglabel>* <field list> }*
{ tNAMEDEF refers to the field being the tagfield variable (if it exists).
Ktype> is the type of the tag selector}

<taglabel> :: = TAGLABEL label tLiTERAL tFIELDLIST
{ a taglabel refers to a literal defining the label and to the field list of that
variant}

<record or tag> :: = RECORD I TAGLABEL
{ a field list can be referenced from either a RECORD or a TAGLABEL }

<kind> ::=
CaNST tLiTERAL
TYPE t<type>
VAR Ktype>
FIELD t<type>
VARPARAM t<type>
VALUEPARAM Ktype>
PROC tPARAMLIST tNAMELIST
FORMALPROC
FUNCTION tPARAMLIST tNAMELIST t<type> .
FORMALFUNC Ktype>

<type> ::=
SUBRANGE label t<type> <min> <maX>
SCALAR label tSCALARLIST
POINTER label Ktype>
FILE label t<type>
SET label t<type>
RECORD label tFIELDLIST
ARRAY label <index-type> <element-type>

<min> :: = tLiTERAL
<maX> :: = tLiTERAL

<index-type> :: = t<type>
<element-type> :: = t<type>

<statement-block> ::=
BEGIN tNAMEDEF

<statement-PI F>*
END tNAMEDEF

A6

{ delimits the PIF for' the statement part of a procedure/function,
tNAMEDEF refers in both cases to the NAMEDEF instruction which
declares the procedure/function}

<statement-PI F> :: =
LABELDEF tLABEL
GOTO tLABEL
<variable-denotation> <expression>
STORE t<var-type> t<exp-type>
<function-name> <expression>
FUNCRESUL T tNAMEDEF t<exp-type>
PROCCALL nd tNAMEDEF

<actual-parameter>*
ENDCALL nd tNAMEDEF
IF nd

<expression>
THEN nd

<statement-PI F>*
ELSE nd

<statement-PI F>*
ENDIF nd
IF nd

<expression>
THEN nd

<statement~PI F>*
ENDIF nd
WHILE nd

<expression>
DOnd

<statement-pif>*
ENDWHILE nd
REPEAT nd

<statement-PIF>*
UNTILnd

<expression>
ENDREPEAT nd

FOR nd tNAMEDEF
<expression>

FORINIT nd
<expression>

FORTODO nd
<statement-PI F>*

FORTOEND nd
FOR nd tNAMEDEF

<expression>
FORINIT nd

<expression>
FORDOWNTO nd

, <statement-PIF>*
FORDOWNEND nd
WITH nd

<variable-denotation>
WITH DO nd

<statement-PI F>*
ENDWITH nd
CASE nd

<expression>
OF nd

A7

{CASELABEL tLiTERAl {CASELABEL tLiTERAL}*
<statement-PIF>* ENDOFCASE nd}*

ENDCASE nd

<actual-parameter> :: =
<expression> PARAMETER tNAMEDEF t<expression-type>

<variable-denotation> :: =
NAME tNAMEDEF
<variable-denotation> <expression> INDEX tARRAY
<variable-denotation> REFERENCE tPOINTER
<variable-denotation> FIELD tNAMEDEF tRECORD
WITH FIELD tNAMEDEF tRECORD withnd

{ WITHFIELD is a field of a record specified in an enclosing WITH
statement. withnd is the nesting depth of that WITH statement. WITH
statements referring to more than one record variable is assumed to be
unfolded into nested WITH statements referring to only one record
variable}

AS

<expression> :: =
<expression> <monadic-operator>
<expression> <expression> <dyadic-operator>
CONSTANT string t<type>
<variable-denotation> LOAD t<type>
CALLFUNC nd tNAMEDEF

<actual-parameter>*
ENDCALL nd tNAMEDEF
SETCONSTRUCTORtSET

{<expression> SETELEMENT tSET
,<expression> <expression> SETRANGE tSET}*

ENDSET tSET

<monadic-operator> :: = NOT, MONADICMINUS , FLOAT

<dyadic-operator> :: = INTDIV , MOD' AND' OR
,<typed-operator> t<operand-type>

<typed-operator> ::= EQ, NE' LT, GE' GT
, IN , SETINTERSECTION , SETUNION , SETDIFFERENCE
, PLUS' MINUS' MUL T , REALDIV

A9

A 1.2. Example .

An example of a Pascal program and its associated PIF:

PROGRAM pifex;
LABEL 10;
CONST soilmax=3;
TYPE sex = (male,female)

tree == tnode;
node = record

info: integer;
son: ARRAY[1 .. sonmax] OF tree;
CASE, s: sex OF

male: (youngest: integer);
female: ()

END;
VAR t: tree; s: sex;
PROCEDURE q(a: integer; VAR sx: sex);

END; (*q*)
BEGIN (* pifex *)

10:

END.

WHILE t <> NIL DO
WITH tt DO
BEGIN q(info,s);

CASE s OF
male: t: = son[youngest];
female: GOTO 10;
END

END;

A10

In order to ease reading, all labels are placed in front of their respective
instruction as a label, allthough it is actually a parameter of the instruction.

PIFPROGRAM "pifex" 0 101

tint the type integer

t1 the literal constant 1

tnil the type specification for NIL

101 NAMELIST
102 LABEL "10"
103 LITERAL "3" tint
104 NAMEDEF "sonmax" CONST 103
105 SCALAR 106
106 SCALAR LIST
107 LITERAL "male" 105
108 NAMEDEF "male" CONST 107
109 LITERAL "female" 105
110 NAMEDEF "female" CONST 109

ENDSCALARLIST 105
111 NAMEDEF "sex" TYPE 105
113 NAMEDEF "tree" TYPE 112
114 FIELDLIST
115 NAMEDEF "info" FIELD tint
116 SUBRANGE tintt1 103
117 ARRAY 116 112
118 NAMEDEF "son" FIELD 117
119 NAMEDEF "s" FIELD 105

TAGFIELD 119 105
120 TAGLABEL 107 121
121 FIELDLIST
122 NAMEDEF "youngest" FIELD tint

ENDFIELDLIST
123 TAGLABEL 109 124
124 FIELD LIST

ENDFIELDLIST 123
ENDFIELDLIST 125

A11

125 RECORD 114
126 NAMEDEF "node" TYPE 125
112 POINTER 125
127 NAMEDEF "t" VAR 112
128 NAMEDEF "s" VAR 105
129 NAMEDEF "q" PROC 130 131
130 PARAMLIST
132 NAMEDEF "a" VALUEPARAM tint

ENDPARAMLIST 129
131 NAMELIST

ENDNAMELIST 129
BEGIN 129

END 129

ENDNAMELIST 1
BEGIN 1

WHILE 1
NAME 127 (t)
LOAD 112
CONSTANT "nil" tnil
NE 112
WHILEDO 1
WITH 2
NAME 127 (t)
WITH DO 2
PROCCALL 3 129 (q)

WITH FIELD 115 125 (info)
LOAD tint
PARAM 132 (a)

NAME 128 (s)

PARAM 133 (sx)

A12

ENDCALL 3 129
CASE 3
NAME 128
LOAD 105
OF 3
CASELABEL 107
NAME 127
WITH FIELD 118
WITHFIELD 122
LOAD tint
INDEX 117
LOAD 112
STORE 112
ENDOFCASE 3
CASELABEL 109
GOTO 102
ENDOFCASE 3
ENDCASE
ENDWITH
ENDWHILE
LABELDEF

END
ENDPIF

3
2
1
109

125 2
125 2

112

(q)

(s)

(male)
(t)
(son)
(youngest)

(female)
(10)

(10:)

A13

A2. A Simple Stack Machine.

To illustrate how close the PIF is to an executable code we wil describe a
simple stack machine based on the PIF and intended for bootstrapping. The
major changes that have to take place when translating into this code are the
following: .

declarative instructions and type information have been removed,

variables have been assigned addresses consisting of a block number
and an ordinal number inside that block,

instructions for the control structures are converted into explicit
jumps.

We do not describe the complete arcl:1itecture of the stack machine as the
example should be self explanatory. It should be obvious that a translation
from the PIF to the simple stack code is simple and almost one to one.

The variables have been assigned the following addresses:
t: 1,1; s: 1,2; Relative in a node, info: 0; son: 1; s: 4; youngest: 5;
q: 0,1 (level 0 is assumed to contain descriptors for all procedures and

functions).

Storage locations being referenced by jump instructions are labelled with their
respective absolute locations.

A14

Simple stack code for the example:

111 loadadr (t)
load
literal 0
ne
jumpfalse 149 (WHILEDO)
loadadr 1 1 (t)
load
store 3 (temporary location)
mark
loadadr (t)
load
literal 0
plus
load
loadadr 1 2 (s)
call o 1 (q)

loadadr 1 2 (s)
load
case 146

130 loadadr 1 (t)
loadadr 3 (temporary)
load
literal (son)
plus
loadadr 3
load
literal 5 (youngest)
plus
load
index 1 1 (lower bound, element size)
load
store
jump 148 (ENDCASE)

144 jump 149 (GOTO 10)
jump 148 (ENDCASE)

146 130 (jumptable for
144 (case statement)

148 jump 111 (ENDWHILE)
149 (10:)

A15

A3. An Efficient Stack Machine.

The architecture of the efficient stack. machine differs in the following ways:

the instruction set has been extended in order to reduce the size of
the code and to increase execution speed. E.g. all stack top
operations can now have a constant or an address as an argument,

the representation of the instructions in memory should be
considered carefully. An analysis of generated code may allow
significant compression of the code [21], by using "short" opcodes
Hew bits) for frequently occurring instructions, and similarly
arguments in many instructions may be represented in shorter fields
by extending the opcodes with bits specifying the format of the
arguments.

Furthermore the translation from the PIF is no longer one to one but several
optimisations are performed in order to use the extended instruction set. Load
of operands on the stack are postponed until they are used in an operation. In
fact this translation is close to codegeneration for an ordinary register machine,
except for efficient register allocation.

The proposed" efficient stack machine" is just a sketch of how such a machine
might look like. If one really wants to build a Pascal m-achine a much more
careful study must be undertaken.

As before we let the example "define". the machine. We will just explain the
format of an address. An address consists of a block number (BN) and an
ordinal number (ON) and then optionally an indirect marking (@) followed by a
post ordinal displacement (PO). The effective address is:

A: = display[BN] + ON; IF @mark THEN A: = memory[A] + PO;

Some instructions use the address (e.g. loadadr) other use the contents (value)
of the memory cell addressed by A (e.g. loadvalue). PO displacement is useful
in connection with pointer variables for records.

A16

The code is

111 loadvalue 1 1 (t)
jumpeq 0 to 129 (WHILEDO)
mark
loadvalue 1 1 @O (tt.info)
loadadr 1 2 (5)

call o 1 (q)
loadvalue 1 2 (5)

case 126
119 loadadr 1 1 @1 (tt.son) .

loadvalue 1 @5 (tt.youngest)
index 1
load
store 1 (t)
jump to 128 (GOTO 10)

125 jump to 129
126 119
127 125
128 jump to 111 (ENDWHILE)
129 (10:)

Micro
Archives
5-7

Kornerup, Peter, 1939-
Interpretation and doJ~generation based

on intermediate languages I Peter Kornerup
Bent Bruun Kristensen, and Ole Lehrmann
Madsen.-- Aarhus, Denmark: Department of
Computer Science~ Institute of Mathematics,
University of Aa~us, 1978.

(DAIMI; PB-88)

I.-II. Joint authors. III. Title.

