PROCEEDINGS

of the First Annual

SYMPOSIUM ON
COMPUTER
ARCHITECTURE

Edited by:

G. J. LIPOVSKI
S. A. SZYGENDA

@ COMPUTER ARCHITECTURE NEWS, DECEMBER 1973, VOL. 2, NO. 4
IEEE CATALOG NO. 73CH0824-3C
CENTER FOR INFORMATICS RESEARCH TR-73-107
UNIVERSITY OF FLORIDA
DECEMBER 9-11, 1973

GENERAL CHAIRMAN
G. JACK LIPOVSKI

PROGRAM CHAIRMAN
STEVE A. SZYGENDA

PROGRAM COMMITTEE

Al Avizienis Don Gibson
Gordon Bell Al Hoagland
Harvey Cragon Dave Rouse
Jack Dennis Harold Stone
Mike Flynn Bruce Wald

Oscar Garcia

SyMPOSIUM COMMITTEE

Wayne Chen Bill Kaiser
Oscar Garcia Stanley Su
Gil Hansen Julius Tou
George Haynam Ken Watson

Co-Sponsors:

ACM SIGARCH
Center for Informatics Research, University of Florida
Computer Society of the IEEE

PROCEEDINGS OF THE FIRST ANNUAL
SYMPOSIUM ON COMPUTER ARCHITECTURE

Edited by:

G. J. LIPOVSKI
S. A. SZYGENDA

Copyright © 1973 by:
The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th St., New York, N. Y. 10017

Association for Computing Machinery, Inc.
1133 Avenue of the Americas, New York, N. Y. 10036

University of Florida
Gainesville

PREFACE

This symposium may well be, in the hind-sight of
ten years from now, a marked turning point in Computer
Architecture. With the dissolution of the Spring and
Fall Joint Computer Conferences, one of the major forums
for Computer Architecture has been lost. So we have
begun an annual symposium on Computer Architecture, to
be rotated from year to year throughout the world. The
atmosphere of such a symposium should be more suitable
for the professional interchange of ideas than is
possible at a large conference. Indeed, from the
quality of papers that have been submitted to this
symposium, it is clear that the time is here for a top
quality symposium. We are pleased to say that the
papers in this symposium are those that at least two
reviewers rated in the top category. We are sorry that,
because of this, a large number of very good papers
were rejected. However, we have passed these papers,
together with their reviews, on to editors of journals
that cover Computer Architecture, for their consider-
ation. We feel that, to encourage the submission of
good papers to a symposium, it is desirable for us to
send those papers that don't happen to fit into a
session, but are very good papers, to journals for
further reviewing.

The papers in the symposium indicate the growth of
Computer Architecture as a science. Although it is
difficult to explain the reasoning behind the decisions
made in an architecture, in particular, the architecture
of a practical machine, this reasoning is the basis of
a science. It is too easy to simply show the final
master-piece, as an artist would do. This is the "Moses
Complex", as we call it, where the architecture of a
practical machine is presented as if it is burned into
stone, and need not be questioned. Several papers in
this conference are directed at the reasoning process
itself. We intend to encourage other authors to focus
on reasons for the architecture by having an open panel
discussion at the end of each section. We hope that the
attendees will emphasize questions on the reasoning
behind the architecture, and the authors will prepare
for such questions. If this becomes a tradition in
this annual symposium, it should orient authors toward
the scientific explanation of their architectures for
later symposia.

Parallel to this emphasis on explaining the
reasoning, a number of papers in the symposium are on
description languages. We believe that a widely used
description language will permit the compression of
detail so that all of the essential information is all
there, but does not fill up a large part of the paper.
We believe that the development of a good description
language is another cornerstone to the growth of
Computer Architecture as a science.

There is a wide interest, as exemplified in several
papers, in the pedagogy of Computer Architecture. These
papers show the need for courses which abstract the
principles of Computer Architecture. There is also a
trend to introduce more laboratory experience into
Computer Architecture, to balance the thrust towards
principles with a tie to the reality of hardware.

A survey of the session titles shows some of the
other exciting areas of current research. Some of the

traditional areas, such as the design of fast arithmetic

units, have been rather thoroughly researched, although
some questions are yet unresolved. The current areas
that are receiving particular attention are the con-
nection of modular systems and fault tolerant or

ii

fail-soft processing systems. As a special case of
modular systems, pipeline and cellular systems are
receiving continued attention. The growth of LSI,

and the advent of microcomputers in particular, is
evoking. considerable.excitement in modular systems of
all kinds. There are indications that modularity of
various kinds will provide some useful tools in making
computers fault tolerant or fail-soft. A while back,
someone wrote that in the next couple of decades,
Computer Architecture will not change the computers
that will be built, that they will differ from present
computers in that they are faster or have more primary
memory, and so on. I cannot agree! Driven by the
user's demands for fault tolerant computing and the
change in technology towards the use of microcomputers,
Computer Architecture will have considerable impact on

the machines that are going to be built over the next
decade.

This® sympesium owes a great deal to a number of
people, whom I wish to recognize. Mike Flynn deserves
our gratitude as the chairman of TCCA and SIGARCH who
initiated this symposium. We are no less appreciative
of the help of the current chairman of TCCA, Harold
Stone, and the current chairman of SIGARCH, Chuck Casale.
Steve Szygenda has done an excellent job, together with
his Program Committee, of attracting and reviewing papers
for the symposium. The Program Committee deserves our
deepest gratitude. They are:

Al Avizienis
Gordon Bell
Harvey Cragon
Jack Dennis
Mike Flynn
Oscar Garcia

Don Gibson
Al Hoagland
Dave Rouse
Harold Stone
Bruce Wald

I also wish to thank the members of the Symposium

Committee, who have helped me set up the symposium.
They are:

Wayne Chen Bill Kaiser
Oscar Garcia Stanley Su
Gil Hansen Julius Tou

George Haynam Ken Watson

We wish to thank the Department of Electrical
Engineering, and its acting chairman, Gene Chenette, for
the extensive use of its facilities, and the Center for
Informatics Research, directed by Julius Tou, for his
guidance and assistance. We are grateful for the help
of the Engineering Publications office, under Dick Dale,
for their assistance in preparing the call for papers
and advance program, and for Storter Printing for
printing these fliers and the proceedings. Finally,
every conference is made to work by the unselfish as-
sistance of the secretaries. I particularly want to
thank Beth Beville for her conscientious and competent
assistance. We owe all of these people a great deal
because, without their help, the symposium would not
have been possible.

Chairman of the Symposium
G. Jack Lipovski

Center for Informatics Research

CONTENTS PAGE

"Markov Chain Models for Analyzing Memory Interference in Multiprocessor Computer Systems",
Dileep P. Bhandarkar and Samuel H. Fuller, Cargegie-Mellon University « « « ¢ ¢« ¢« &« &« o o & 1

"Interconnecting A Distributed Processor System for Avionics",
George A. Anderson, Honeywell, Minneapolis . . . « v v & ¢ ¢ ¢ v &+ o 4 o o o o o o o o o o o o o o o 11

"Banyan Networks for Partitioning Multiprocessor Systems",
Rodney Goke, G. J. Lipovski, University of Florida . . + « « o « ¢ ¢ o o o 0 v 0 v o v v v o o o & 21

"Structure of Digital System Description Languages',
Harry F. Jordan and Burton J. Smith, University of Colorado . . « « « « & v & o o o « o o o o o o o & 31

"VDL - A Definitional System for All Levels",
John A. N. Lee, University of Massachusetts . . . « ¢ &+ ¢« ¢ ¢ & & ¢ o o o o o o o o s o o s o o o o 41

"A Methodology for Parallel Processing Design Tradeoffs',
Charles H. Radoy, George P. Copeland, Jr., and G. J. Lipovski, University of Florida 51

"DAP - A Distributed Array Processor',
S.F. Reddaway, International Computers Limited . . . « & « & ¢ ¢ ¢« v ¢ 4 ¢ 4 o o o o o o o o o o o« o 61

""Maximal Rate Pipelined Solutions to Recurrence Problems",
Peter M. Kogge, IBM, OWEEO « « « « + o o ¢ o« o o o s 71

"Comments on Capabilities, Limitations and 'Correctness' of Petri Nets",
Tilak Agerwala and Mike Flynn, John Hopkins University . . . « « ¢ ¢ v ¢ & ¢ ¢ &+ ¢ o o o o o o o o & 81

"Flowware —- A Flow Charting Procedure to Describe Digital Networks',
Wayne E. Omohundro, BTL and James H. Tracey, University of Missouri + + ¢« ¢« ¢ ¢ o o & 91

"Automated Exploration of the Design Space for Register Transfer (RT) Systems",
M. R. Barbacci and D. P. Siewiorek, Carnegie-Mellon University « « ¢« ¢ ¢ v ¢ ¢ v ¢ ¢ o o o o & 101

"Implementation Aspects of the Symbol Hardware Compiler",
T. A. Laliotis, Fairchild Systems, Palo ALEO . . & & & ¢ ¢ o o ¢ o o o« o o o o o o o o s o o o o o o = 111

"The Architecture of CASSM: A Cellular System for Non-numeric Prncessing",
George P. Copeland, Jr., G. J. Lipovski and Stanley Y. W. Su, University of Florida 121

"Deriving Design Guidelines for Diagnosable Computer Systems',
John M Hemphill, USAF and S. A. Szygenda, University of Texas, Austin « « ¢ ¢« ¢ ¢« . . 131

"Design of Fault-Tolerant Associative Processors',
Behrooz Parhami and Algirdas Avizienis, UCLA . . . « & & ¢ ¢ ¢ ¢ ¢ o v o o o o o o o o o o o o o o o 141

"A Fault Tolerant Multiprocessor Architecture for Real Time Control Applicatioms",
M. A. Fischler and O. Firschein, Lockheed, Palo ALtO . + « ¢ & o o o « o o o o s o o o o o o o o s o o 151

"A Varistructured Fail-soft Cellular Computer",
G. J. Lipovski, University of Florida . « « « ¢ & ¢ ¢ ¢ o o ¢ ¢ ¢ o o o o o o o o o o o o o o o o o o 161

"A Hardware Laboratory for Computer Architecture Research",
Jean Vaucher, Christian Rey, Universite de Montreal . . + « ¢ o ¢ ¢ o o o o o o o o s o o o o o o o o 171

"Simulation Exercises for Computer Architecture Education",
P. J. Knoke, Radiation, Inc., F10T4da . . . & & v v 4 v v 4 4 v v b e e e e e e e e e e e e e e e e, 181

"Computer Architecture Courses in Electrical Engineering Departments',
M. E. Sloan, Michigan Technological University ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o ¢ o o o o o o o o 191

"Increasing Hardware Complexity — A Challenge to Computer Architeecture Education",
R. Hartenstein, Karlsruhe University . . . ¢« « ¢ ¢ o o ¢ o ¢ ¢ ¢ o o ot o s o o o o o o o o s s o o o 201

"Review of the Workshop on Computer Architecture Education",
George Rossmann, Palyn, INCey o « « o ¢ o o o o o o o o o o o o o o o o o s o o o o o o o o o o o o o s 211

"Micromodules: Microprogrammable Building Blocks for Hardware Development",
Richard G. Cooper, National Security AGENCY « « « « o« o o ¢ ¢ o o o o s o o o o o o o o s o o o o o o o 221

"Computer Modules: An Architecture for Large Digital Modules",
S. H, Fuller, D.. P. Siewiorek and R. J. Swan, Carnegie-Mellon University« « ¢ ¢ ¢ « o o« ¢« o o o o 231

iii

PAGE
"A Microprogrammed Architecture for Front End Processing',
Rodnay Zaks, Universite de Technologie de Compiegne, France . « « « « « o o « o o ¢ o o o o o« o o o & 241

"Design of a Fully Variable - Length Structured Minicomputer",
Z. G. Vranesic, V. C, Hamacher, and Y. Y., Leung, University of Toronto . . « « « « ¢ ¢« ¢ ¢ « o o« & & & 251

""HAPPE Honeywell Associative Parallel Processing Ensemble",
Orin E. Marvel, 13964 Wildwood Drive, LaTg0 « « « « o o « o o o o o o o o o o o o o o o o o o 2 o o s 261

"A Computer Architecture and its Programming Language",
Mario R. Schaffner, MIT . + & « & « o o o o o s o o o o s s o o s o o o o o o o s o s o o s o o o o s 271

The page numbers in this Proceedings will use the following format. Page 253, will be page 3 of
Paper 25. This will leave gaps in the sequence of pages, but enables us to coalate and prepare the
Proceedings more quickly.

iv

MARKOV CHAIN MODELS FOR
ANALYZING MEMORY INTERFERENCE IN
MULTIPROCESSOR COMPUTER SYSTEMS'®

Dileep P. Bhandarkar?
Samuel H. Fuller
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

This paper discusses various analytical techniques
for studying the extent of memory interference in a
multiprocessor system with a crosspoint switch for pro-
cessor-memory communication, Processor behavior is
simplified to an ordered sequence of a memory request
followed by an interval of processing time, The system
is assumed to be bus bound; in other words, by the time
the processor-memory bus completes servicing a proces-
sor's request the processor is ready to initiate another
request and the memory module is ready to accept another
request. The techniques discussed include discrete and
continuous time Markov chain models as well as several
approximate analytic methods.

1. INTRODUCTION

Carnegie-Mellon University is currently in the pro-
cess of constructing a multiprocessor computer system
(C.mmp) that will have up to 16 central processors
(Pc's)3 sharing the same physical address space (4) and
concern has been expressed about the performance of
such a system with thesemany active processors., In ad-
dition to the processors, there is a set of memory mod-
ules that are able to operate independently; little
would be gained if all the processors had to wait for
service from a single memory module, Between the pro-
cessors and the memory modules (Mp's) is a n by m
switch, There are a number of ways of implementing the
switch, but C.mmp employs a full n by m crosspoint
switch as shown in Figure 1.1, Other multiprocessors,
although limited to a smaller number of Pc's, also ba-
sically use a crosspoint switch, e.g. the Burroughs
D825 and the Univac 1110. For further discussion of
crosspoint switches, and a variety of other switching
structures, see Bell and Newell (3).

Mathematical models of computer systems can be
developed at various levels of abstraction, A large
number of models for time-sharing systems consider a
job as a basic unit (cf. 10), and in many models of
multiprogrammed computer systems the block of instruc-
tions between I/O operations is taken as a basic unit
(cf. 5). However, in this study a much more detailed

1This work was supported by the Advanced Research Pro-
jects Agency of the Office of the Secretary of Defense
(F44620-73-C~0074) and is monitored by the Air Force
Office of Scientific Research.

2D. P. Bhandarker is now with Texas Instruments Inc.,

Dallas, Texas,

3We use the PMS notation of Bell and Newell (3) in this
report to describe hardware organization,

FIGURE 1.1

m¥Xn Crossbar Switch

MP|—- L

Mp,— L

Nvm— L

L . . .
| l |
Pey Pc, Pe,

model is used to analyze interference as processors
access individual words from the memory modules. Each
processor's performance is measured by the number of
wemwory accesses per unit time. The major contribution
of this paper is a systematic method for a discrete
Markov chain model. Other techniques described include
Strecker's approximation (13), systems with exponenti-
ally distributed memory service time, and a diffusion
approximation.

2, GENERAL MODELING ASSUMPTIONS

Due to the complexity of the problem, the exact
detailed behavior of memory interference in a multipro-
cessor system is difficult to model. We make the fol-
lowing assumptions with respect to the parameters that
characterize the behavior of a Pc.

Instruction mix: In general, processor behavior
varies for different instructions. However, in this
paper differences in instructions are ignored. Proces-
sor behavior is modeled as an ordered sequence of a
memroy request followed by an interval of execution
time. At this level of abstraction no distinction is
made between the processing needed to decode an imnstruc-
tion and the processing corresponding to its execution.
Thus, the processing time characterizing a Pc depicts
only the aggregate behavior of the real Pc. Figure 2.1
depicts the actual and abstracted behaviors.

Processing time of Pc: The models discussed here
assume that the multiprocessor systems are bus bound,
i,e. the Pc is ready to initiate the next request and
the Mp module is ready to accept the next request at
the time the Pc-Mp bus recovers from the current ac-
cess, The analysis is also applicable to multiproces-
sor systems in which the effective processing time, tp,
is equal to the memory rewrite time, tw.

Access pattern of a Pc: This is the sequence of

memory locations accessed by the Pc. 1In this study
serial correlation between successive memory accesses

r FIGURE 2,1

a, An Example of the Timing of a Typical Instruction

ta tw ta tw ta
Mp[3T; ' i : {** i
; ‘e : : . .
. 1] '
o {td . . tel H '
Pc[:.]l' — : P .
] : H ' H H .
M—] —h) = e— 3 o 4 5 >
ti
ta tw me ta
i —‘———
MP[J]' ' :-——-m—‘.
, H ta tw ! :
Mp[k], H i ! . H
: 3 ' H H !
. 1 H
Pc[ids :-—[:—-——_—.—f !
) .
1l 2 e 3 s 4 o5 —n

Legend:

1 instruction fetch ta memory access time
instruction decoding tw memory restore time
operand fetch td instruction decode time

instruction execution tei processor execution time

w s wN

next instruction fetch

b. Simplified Processor Behavior. Two such
cycles model the instruction shown in
Figure 2.1a,

e————— ta t tw i

M
o)

data Mp ready to
available service next
to Pc request

Mp access Pc ready

begins to make

new request

will be ignored., Demand patterns will be modeled as
sequences of Bernoulli trials, Memory accesses will be
characterized by the memory units to which they are ad-
dressed.

Primary memory behavior: Memory performance is a
function of the fabrication technology, i.e. core or
semiconductor. It can be characterized by the access
time (ta), rewrite time (tw), and cycle time (tc).
Nominally, the cycle time is the sum of the other two.
In this study, no distinction is made between read and
write operations,

3. CONTINUOUS TIME MARKOV CHAIN MODEL

Consider a multiprocessor system which consists of
n Pc's and m Mp's connected by a single crosspoint
switch, Let P,, denote the probability that the i-th
processor requésts service from the j-th memory unit.
A processor is queued if it is waiting for or in the
process of receiving memory service and it is active if
it is currently being serviced by a memory. Likewise,
a memory is said to be occupied or busy if there is at
least one processor queued for that memory unit.

In this first model, we apply the classic simplify-
ing assumption in queueing theory: we model the service
time, or cycle time, of the memory modules as exponen-
tially distributed random variables. Clearly most
memory systems do not have an exponentially distributed
cycle time, However, techniques such as interleaving,
cache memories, and the type of memory access (read,
write, read-modify-write) suggest that this exponential

assumption may be as good an approximation as the
assumption that the memory cycle time is constant,
Without further assumptions or approximations, we can
use the results of Jackson (7), and Gordon and Newell
(6), to find the performance of the multiprocessor
system, This technique is also used by McCredie (9)
for multiprocessors with tp > tw,

Let the number of service centers be m. The
states of the system are m-dimensional vectors with
non-negative integer components, the j-th component
representing the queue length at center j. _If

K=(k1,k2,...,km) is a state vector, then S(K)=ig]ki.

Transition from one center to another is characterized
by a routing probability R,:, i.e. the probability of
going to center j on compleétion of service at center
i, Jackson (7) has obtained the equilibrium joint
probability distribution of queue lengths for a broad
class of queueing-theoretical models representing a
network of service centers. Customer arrivals are
modeled as a generalized Poisson process whose mean
arrival rate varies almost arbitrarily with the total
number of customers already in the system, Service
completions at each center are also modeled as general-
ized Poisson processes, the mean service rate, p, at
each center varying arbitrarily with the queue length
there.

For closed queueing systems, Jackson's formulae
reduces to

PE) = w ® /1 (s®))
where k
L om]
w@® =1 p§ &L
j=1 i=1 W

m
Te(i)R
i=1

where e(j) = . je[1,m]

i,]

' -p _ ' o 4 -p .
T'(K) = 2w'(K) summed over all K with
S(K) = n,

But, with Pc requests distributed uniformly and with
the bus-bound situation, or tp=tw, Jackson's model
simplifies to m servers with customers circulating with
uniform routing probabilities, i.e., R, .=P, =l/m.
Using the above formulae we get, 1,5 71,3

vi@ = HT
W
1@ (TN

-1
o = ((250)]

i.e. all the states of the system are equally likely.
Physically, this indicates that states with greater
congestion in the queues are as likely as evenly dis-
tributed queues, The probability that a particular Mp
module is idle, Pr{Mp[i] is idle}, is the fraction of
the total number of states that has k,=0, In other
words, i

m
for all i such that Zki=n,
i=1

Prob{Mp[i] is idle} =

number of ways of assigning n Pc's to m-1 Mp's
number of ways of assigning n Pc's to m Mp's

+m-2)
m- n

=] - ——
¢ o]

m
T Pr{Mp[i] is busy}
i=1

E{number of busy Mp's}

w¥*n/ (m+n-1)

The above expression has a number of interesting
properties: the expression is symmetric in m and nj it
has a basic hyperbolic form, asymptotic to n as m gets
large; and, if we let m=n the above expression becomes
n/(2-1/n) and

lim E{number of busy Mp's} = n/2,
n—®

The final observation has important implications.
It states that as multiprocessor systems grow to include
more and more Pc's, we are not faced with a law of di-
minishing returns: no matter how many Pc's are used,
if we have the same number of memory modules we can
expect half the processors to be active,

4, A SIMPLE DISCRETE MARKOV CHAIN MODEL

For this analysis let us assume that all the Pc's
are characterized by a single constant processing time
tp. Also, all the memory units are assumed to have the
same cycle time tc and access time ta, Thus, the mem-
ory rewrite time is given by tw=tc-ta. If tp=tw then
all memory units can be considered to be operating
synchronously., Thus, during any memory cycle the num-
ber of active Pc's is equal to the number of busy Mp's.

In this section a simple Markov Chain analysis is
presented for the case in which the processors request
every memory with equal likelihood. The state of the
multiprocessor system is defined by a m-tuple where

T k. —n and OSk <n for all i, The number of distinct
i=1
states of the system is given by the combination,
tm-1

m-1
be assigned to m bins (4). However, since all the pro-
cessors behave identically, a number of the distinct
states are equivalent, i.e. they have the same occu-
pancy and have the same components, e.g. states (2,1,1),
(1,2,1), (1,1,2) are equally likely. Thus, the re-
duced states are given by the different ways in which
the number n can be partitioned into m parts, The
number of such partitions (for n=m) is asymptotic to

o T

i,e., the number of ways in which n balls can

(cf. 2)

Let the representative state S, denote the set of
compositions of the number n that yield the same par-
tition, e.g. the compositions (2,1,1), (1,2,1) and
(1,1,2) correspond to the partition of the number 4
which has two 1's and one 2, Further, let S; . be the
individual compositions of the partition typified by
representative state S, and S be that composition
which has its componen%s arranged in monotonic non-de-
creasing order, i.e. (2,1,1) for the above example.

Let X,, denote the probability of a transition
from S, to Si' Then, due to the symmetry of the
problem,

X 5= YP{Transition from Sj] to Si,k}

3
5:,k8:

modules, At the end of the current memory cycle the
queue is characterized by the m-tuple (3],32,...,3),
where

k. -1 if k, >0
i i

0 ifk, =0

i

A new state (4,4, ""’%n) is reachable from
(k1,k2,...,km) if and Only if £.2j. for 1<i<m., If the

above condition is satisfied the probability of the

state transition is given by
J

where d = -
XI
i.e. *(—)
d].dz.... e
m m m
Note that since Tk, = T4 =n, 3d, =
i=1 i=1* i=1"

Thus, we now have a formula for generating the
transition probabilities. Due to the symmetry of the
problem it suffices to generate only the transition
probabilities for the representative class of states.
All the different ways of obtaining the same partition
are lumped together to form a reduced state.

To illustrate a computational method1 for generat-
ing the transition probabilities consider an example
of a 4 by 4 system. The number 4 can be partitioned in
five different ways: {(4,0,0,0); (3,1,0,0); (2,2,0,0);
(2,1,1,0); (1,1,1,0)}.

These partitions represent five equivalence clas-
ses that characterize the state of the Markov Chain.
Let us consider the state (2,2,0,0)., At the end of a
memory cycle, the resultant partial state is (1,1,0,0)
with two free processors to be reassigned. Figure 4,1
shows the different ways in which these two Pc's can
be assigned, one at a time, to reach a new partial
representative state, After both Pc's are assigned a
terminal state is reached. The number on the arrow
indicates the number of ways of reaching the partial
or terminal state that the arrow points to., Now the
number of ways in which a final state can be reached
from the initial state can be computed by traversing
the tree, e.g. there are 2x1 ways of reaching (1,1,1,1)
and (2x2 + 2x3) ways of reaching (2,1,1 ,0) from
(2,2,0,0).

FIGURE 4.1

Next States Accessible from Initial State (2,2,0,0)

Initial State

Final Terminal States
3100
1

2100——>2200
2

11 00 2110

Initial 2

Partial

State 3/12 110
111 0\\;

1111

Add 1 Pc Add 1 more Pc

Let the m-tuple (k k2"”’km) denote the state
of the Markov chain, If X is the number of non-zero

elements in this vector then at the end of the memory
cycle, x new processors have to be reassigned to memory

3

1

The use of a tree to generate the transition probabili-
ties was suggested by F. Baskett and D. Chewning of
Stanford University.

It is possible to construct a single tree with
different pointers for different initial states. Fig-
ure 4.2 shows a complete tree for a 4x4 system. Init-
ial states are circled. The entire transition matrix
can be generated by traversing this tree. A conveni-
ent way of traversing this tree is by using a stack
which has depth equal to one more than the number of
Pc's., At each level the stack contains a partial
state and has a pointer to the initial representative
state (if any) from which it is derived. The stack is
initialized to contain the path that leads to the top-
most final state. For this example the transition
matrix is shown in Figure 4,3,

FIGURE 4.2

Enumeration Tree for a 4 by 4 Multiprocessor System

/4000
S~ 3100

2000

AN

0000~———1000

3000

3100

2100——2200

1100 2110

| Level O Level 1 Level 2

FIGURE 4.3

Steps in the Generation of the Transition Matrix

4000 |31200¢ 2200|2110 212111
4000 1 1 0 1 4
3100 3 3+3 2 3+346 | 12412424
2200 0 3 2 346 12 +24
2110 0 6 446 6+12418 | 24+48+72
1111 o] 0 2 6 24

~
STEP 1 : Xij is the number of ways of reaching i from J.

STEP 2 3+ Xij=_X1j (Note that §x13 m , where x of the o
o components of j are non-zero)
ZiXij

Final equations to be solved simultaneously

Tevel 3 Level 4

The following theorems can be used to increase
the efficiency of the program that generates the trans-
ition probabilities.

Theorem 1. There is a one-to-one correspondence be-
tween a representative state and a partial state that
the representative state reduces to at the end of a
cycle.

Proof. Let (k],...,k be a representative state.
The p: partial state at Phe end of the cycle is given by
<Jl’j2”"’jm) where

k. -1 if k, >0
i i

i
0 if k; 0

Since no two representative states are alike and

m
Y k.=n, it follows that the partial states are dis-
i=1

tinct, @B

Theorem 2, A partial state.at level L in the enumera-
tive tree of Figure 4.3 can correspond to a terminal
state with exactly n-L occupied Mp's,

1
For an alternative method for traversing the tree see

®4000 0.25 0.0625 0.000 0.015625 0.015265 | | 4000

P

3100 0.75 0.3750 0,125 0.187500 0.187500 | | *3100

P -

2200 |=] 0.00 0.1875 0.125 0.140625 0.140625 | | E2200

P

2110 0,00 0.3750 0.625 0.562500 0.562500 | | T21lo

P

111 | 0.00 0.0000 0,125 0.095750 0.093750 | | F1i111
—

SUBJECT TO

®4000" P3100* P2200 * P2100* P11115 1
Proof., Let J= (j sJaseeesj) be a partial state in

the tree depicted 1n %1gure 2.2, Furthermore, let the
number of non-zero elements in the partial state by y

and let 21J .=n-x, Since one Pc is always removed from

a non-empty queue at the end of a cycle, ki is a partial
state that can be reduced from a valid representative

state K = (k 3K seeesk), if and only if the number of
non-zero elemen%s in K'is x, and x2y, Note that x and

y are both less than or equal to min(m,n) and k.=n.
»i=1 1

If x<y then there is no representative state K that
corresponds to the partial state J., If x2y, then the
representative state is obtained by adding y 1's tg the
non-zero elements of J and replacing x-y zeros of J by
1. At level L, 213 =L, Therefore, x, the number of

occupied Mp's in K, is equal to n-L. MW

Figure 4.4 shows the average number of busy Mp's
when n=m, The curve has an almost constant slope of
.586 for m>4., Figures 4.5 and 4.6 show the effect of
adding a Pc and an Mp respectively on the average num-
ber of busy Mp's.

Average nuzber of busy Mp's

FIGURE 4.4

Multiprocessor Systems with n=m

2 3 3 s 6 7 8 9 10 n

Nunber of Pe'o @ Mmber of Mp's

12

13

1%

“w o ~

>

Average number of busy Mp's

FIGURE 4.5

The Effect of Adding a Pc

a=15

2 3 3 5 6 7 8 2 19 n

Mezhor of Pe's o~

12

13

1%

s

15

& “ @ ~

Average nusber of busy Mp's

w

FIGURE 4.6

The Effect of Adding an Mp

23 4 5 6 7 8 9 10n

Number of Ho's m

a=16

5. APPROXIMATIONS

Strecker's Approximation. Strecker (13) has an approx-
imate closed form solution to the discrete Markov Chain
model presented here., His approach is equivalent to
removing the queued processors from all the memory mod-
ules at the end of a memory cycle and reassigning them.
Thus the state of the system is considered independent
of the state during the last cycle. If we use this
assumption the distribution of Pc's queued for an Mp
follows the binomial distribution:

pever) = (D) (D)

where Y is a random variable equal to the number of
Pc's queued for Mp[j] and Pyj~x for all i and j. Thus,

Pr{Mp[j] is busy} = 1-Pr{Mp[j] is idle}

1-(1-[‘;)“

In other words, the occupancy of Mp[j] is 1-(1-&)n, and

n
E{no. of occupied Mp's} % Pr{Mp[j] is busy}

j=1

w[1-(1-0)"]

Strecker's approximation overestimates the unit execu-
tion rate, but it is encouraging to note that such a
simple expression is within 6 to 8% of the exact solu-
tion of the Markov Chain mode} gor m/n > 0,75. More-
over, the expression m*[l-(l-;)] can be written in an
exponential form as

- 1. .
m* {1-exp|n* &n(l -;) 1}

and the relaxation time, [zn(Iii)]-], approaches m as
m gets large.

Diffusion Approximations. An approximation method
that has been proposed for the solution of general

queueing networks is the diffusion approximation (cf,
8,11), A discrete-state process is approximated by a
diffusion process with a continuous path, The key
assumption in such an analysis is that incremental
changes in the queue lengths are normally distributed.
This leads to a characterization of the queueing net-
work by a set of diffusion equations. The accuracy of
the approximation depends on three factors: (i) ap-
proximation of a discrete-state process by a time-con-
tinous Markov process, (ii) choice of proper reflect-
ing barriers, and (iii) discretization of the contin-
uous density function for queue lengths, Surprisingly,
for the simple discrete Markov Chain model of Section
4, the diffusion approximation yields a result identi-
cal to that with exponential servers derived from
Jackson's formulae, However, the main utility of the
diffusion approximation in this context is that it can
be used to analyze the effect of different coeffici-
ents of variation (ratio of standard deviation to the
mean) for the service time distribution.

6, CONCLUDING REMARKS

Table 1 summarizes the characteristics of various
models that have been discussed in this paper. With-
out a doubt the simplest model to use is the continu-
ous time Markov chain model: the average number of
busy Mp's, or the average number of busy Pc's, is
simply n*m/(mtm-1), where n is the number of Pc's and
m is the number of Mp's. In many cases, however, it
may be more realistic to model the memory cycle time
as constant, rather than exponentially distributed,

and hence we developed the discrete Markov chain model
in Section 4., Table 2 compares the continuous time and
discrete time Markov chain models. In practice, it has
proven useful to view these two models as bounds on the
performance that will be achieved by the actual system;
the continuous time Markov chain model is probably an
overestimate of the variance of memory cycle time while
the discrete Markov chain model is certainly an under-
estimate of the variance of the memory cycle time.

TABLE 1
Processing Hemory Cycle Analysis Computational
Time Time Ease
Discrete c i i
Harkov Chain T P ettt
Unkieldy for
large n.
Strecker’s Constant Constant Rpproximate Closed form
Rpproximation sotution,
Simple formula.
ﬁ:::;co;:a:’;me Exponential Exponential Exact :;ﬁ:?o:orm
Simple formula.
Diffusion Constant Constant Rpproximate Closed form
Rpproximation solution.
Simple formula.
z;:::ation Approximate Unwleldy due to
slow stochastic
B convergence.
TABLE 2
Expected number of busy memories in one cycle
Number of Pc's = 1,2,...,8 (rous)
Number of Mp's = 1,2,...,8 (columns)
Discretes Markov Chain Model
1.00060 1.0080 1.0000 1.8080 1.0806 1.0088 1.0000 1.8888
l.0888 1.5888 1.6667 1.7588 1.8083 1.8333 1.8571 1.8758
1.86868 1.6667 2.8476 2.2692 2.4895 2.5854 2.5748 2.8272
1 1.8660 1.7588 2.2761 2.6218 2.8638 3.8355 3.1657 3.2652
1.0888 1.8680 2.4182 2.8633 3.1996 3.4538 3.8482 3.8013
1.8688 1.8333 2.5853 3.8378 3.4533 3.7883 4.8415 4.2518
1.6800 1.8571 2.5751 3.1663 3.6485 4.B418 4.3636 4.6292
1.0088 1.8750 2.6274 3.2657 3.8824 4.2521 4.6294 4.9471
Continuous Time Markov Chain Model
1.0088 1.0008 1.0000 1.8608 1.0080 1.8088 1.0808 1.0088
1.8688 1.3333 1.5008 1.6808 1.6667 1.7143 1.7588 1.7778
1.0608 1.5808 1.8880 2.8888 2.1423 2.2588 2.3333 2.4808
1.8860 1.6088 2.8088 2.2857 2.5808 2.6667 2.8888 2.9831
1.8808 1.6667 2.1423 2.5888 2.7778 3.0288 3.1818 3.3333
1.6888 1.7143 2,258 2.6667 3.8088 3.2727 3.5808 3.6923
1.0868 1.7588 2.3333 2.888@ 3.1818 3.58(8 3.7692 4.B808
1.8808 1.7778 2.4000 2.9831 3.3333 3.6923 4.0088 4.2667
Percentage Difference
0.0000 ©.008C ©0.0008 0.0008 0.8808 0.8003 8.8008 B.08808
0.8880 11.1133 18.0818 8.5714 7.4856 6.4918 5.7671 5.1848
8.0008 18.8018 12.8322 11.8632 11.0645 18.1948 9.379% 8.6488

8.8008
8.8008
B.80088
8.08208
8.00888

8.5714 11.8982 12.7928 12.6798 12.1785 11.5519 18.9859
7.4856 11.0904 12,6882 13.1829 13.1198 12.7844 12.3254
6.4310 18.2119 12,1938 13.1266 13.4412 13.3985 13.15391
5.7671 9.3899 11.5687 12.7933 13.4849 13.6218 13.5928

5.1848 8.6549 18.9196 12,3363 13.1653 13.5357 13,7535

There are a couple of important considerations in
the analysis of memory interference in multiprocessors
that have not been touched on in this paper. The first
is that many multiprocessors may not be bus bound, or
tp % tw. For discussion of situations where tp is
greater or less than tc see [1,13]. Another aspect in
these models that needs to be examined more closely is
the assumption that each processor accesses each memory
module with equal probability., Program behavior, as
well as the memory management policies of the operating
system, may have a dramatic impact on these accessing
probabilities. Measurement experiments are currently
being designed for C.mmp to collect these processor to
memory accessing frequencies.

REFERENCES

1. Bhandarkar, D, P, Analytic Models for Memory Inter-
ference in Multiprocessor Computer Systems, Ph.D.
Thesis, Department of Electrical Engineering, Carnegie-
Mellon University, Pittsburgh, Pa. (Sept. 1973).

2. Beckenbach, E, (editor), Applied Combinatorial
Mathematics, Wiley, New York, 1964,

3. Bell, C. G. and A, Newell, Computer Structures:
Readings and Examples, McGraw-Hill, New York, 1971,

4, Feller, W., An Introduction to Probability Theory
and its Applications, Vol., 2, Wiley, New York, 1966.

5. Gaver, D. P.,"Probability Models for Multiprogram-
ming Computer Systems,'" JACM, Vol. 14, No. 3, July,
1967, pp. 623-638.

6. Gordon, W, J. and G. F. Newell, "Closed Queueing
Systems with Exponential Servers," Oper. Res., 15
(1967), pp. 254-265.

7. Jackson, J. R., "Jobshop-like Queueing Systems,"
Management Sci., 10, 1 (Oct. 1963), pp. 131-142,

8. Kobayashi, H., "Application of the Diffusion Ap-
proximation to Queueing Networks: Part I - Equilibrium
Queue Distributions," 1st Annual SIGME Conference on
Measurement and Evaluation, March, 1973, pp. 54-60.

9. McCredie, J. W., "Analytic Models as Aids for
Multiprocessor Design,"Proc., of the 7th Annual Princeton
Conference on Information Science and Systems, March,
1973,

10. McKinney, J. M., "A Survey of Analytic Time Shar-
ing Models," Computing Surveys, Vol. 1, No. 2, pp. 105~
116, 1969.

11. Newell, G. F., Applications of Queueing Theory,
London, Chapman and Hall, 1971,

12, Skinner, C. and J. Asher, "Effect of Storage Con-
tention on System Performance," IBM Sys. J., Vol. 8,
No. &, 1969, pp. 319-333,

13, Strecker, W, D., Analysis of the Instruction Exe-
cution Rate in Certain Computer Structures, Ph,D,
Thesis, Carnegie-Mellon University, Pittsburgh, Pa.,
1970,

14, Wulf, W, A, and C. G. Bell, "C.mmp - A Multi-Mini-
processor,'" AFIPS FJCC Proc., 1972, Vol, 41, Part II,
pp. 765-777.

INTERCONNECTING A DISTRIBUTED
PROCESSOR SYSTEM FOR AVIONICS

George A. Anderson
Senior Research Engineer
Systems and Research Center
Honeywell Inc.
Minneapolis, Minnesota

ABSTRACT

This paper describes the interconnection scheme
devised for an advanced Air Force system concept
called Distribution Processor/Memory (DP/M) in
which topologically irregular networks of small com-
puters are used to perform avionics processing. The
interconnection scheme involves the use of a combi-
nation of global and point-to-point busses to handle
message traffic in predominantly homogeneous sys-
tems of from 5 to 20 computers. The major features
of the scheme are the use of biphase bit-serial trans-
mission, associatively addressed messages, and a
method for reconfiguration of the point-to-point com-
munications paths under program control. It is ex-
pected that the scheme may have general applicability
to other distributed processing systems, particularly
other real-time systems employing limited-capability
processors.

INTRODUCTION

The problems involved in interconnecting a multi-
computer system, particularly when '"'multi" means
three or more, are well known. Tradeoffs in the
design involve factors such as the cost of busses
versus their speed, their complexity versus their load
on the computational resources of the system, their
reliability and its effect on system reliability, ad infi-
nitum, This paper presents a particular interconnec-
tion scheme* developed to fit a specialized environ-
ment, but one which may have more general applica-
bility in computer networks. This scheme involves
the interconnection of processors by a single global
bus together with a nonregular network of processor-
to-processor links. These links are switchable to
allow configuration of a variety of data paths during
operation. The resulting paths are used both as a
primary communications medium and as a backup for
the global bus. An associatively addressed message
transmission scheme for transfers on both the busses
provides for intercommunications with little degrada-
tion of computational capability, even for large (over
20 processor) systems.

PROBLEM BACKGROUND

The DP/M concept is essentially the use of a varying
number of simple and identical processor /memory
elements (PEs) to handle a wide range of avionics
system-processing requirements, System sizes are
expected to range from five to seven PEs on unde-
manding missions to over 20 PEs in complex environ-
ments., Each PE represents memory of 4K words
and computation rate of about 250 thousand instruc-
tions per second (KIPS) on avionics problems, so this
means system capacities will range from 1000 to 5000
KIPS. It is the job of the interconnection scheme to
allow this level of modularity and the variability in
system size by providing efficient communications
between the components of the system without itself

becoming an undue consumer of processing resources,
a reliability handicap, or a costly resource in itself.

The DP/M avionics processing load is partitioned into
a number of relatively autonomous functions which
communicate primarily via an "aircraft state vector"
of a few hundred bits. These functions are further
broken down into subfunctions with well-defined
boundaries and low intercommunications require-
ments. An example of a major function is flight con-
trol, which may be separated by axis and by axis sub-
functions into at least six units, called processes. As
a test case during DP/M concept development, a very
demanding environment was hypothesized and broken
down into approximately 50 individual processes.
Each process in the decomposition is of low com-
plexity, with typical requirements of under 150 KIPS
and 2K memory words.

In such a decomposition, communication within the
system is of two distinct types--interfunctional and
intrafunctional. Including Exec overhead, the former
is estimated at under 200 thousand bits per second,
while the latter may be up to 300 Kbits per second.
The interfunctional transfers are typically short mes-
sages such as Exec commands and state vector infor-
mation, while the intrafunctional transfers tend to be
longer, consisting of data block moves, Interfunc-
tional transfers involve all processors at one time or
another, while intrafunctional transfers are localized
to the few processors in which the function is per-
formed.

Physical constraints on the interconnection scheme
were quite limiting., From the beginning, it was
determined that the system would be physically dis-
tributable around the aircraft and that the intercon-
nection scheme should thus allow this distribution with
low cost. Also, the software goal was to have maxi-
mum commonality between systems of different sizes,
so the interconnection could not change character as
system size varied, Finally, since the interconnection
is the major "central" system resource, it had to be
amenable to fault tolerance techniques and provide a
low-cost redundancy option. A simplifying assumption
was that the system I/O to sensors, actuators, etec.,
would be handled directly by the processors and not
through the inter PE connections.

DESIGN APPROACH

The design of the interconnection scheme proceeded
simultaneously with the definition of the processing
elements, the software and the requirements analysis.
As such, it had ample time for iteration and consider-
ation. Integrated bussing/processing approaches like
the Holland machine (2) and the distributed processor
of Burnett and Kozcela (3,4) were rejected early in
the work because of software problems, leaving the
bussing work to proceed almost independently of the
PE definition. The approaches used by a number of

*The scheme is a result of work done by the Honeywell Systems and Research Division for Wright-Patterson
Air Force Base in the development of a Distributed Processor /[Memory (DP/M) system to serve general
avionics processing needs in the late 1970s and early 1980s (1),

11

advanced architectures like the Navy AADC (5) and
the Burroughs D-machine (6) were considered. These
were uniformly rejected, however, when the system
bandwidth requirements became known. It was found
that, up until the present, design approaches had
largely been devoted to high-rate intercommunication
between computers via memory modules, either by
multiprocessing like the D-machine, or by partial
sharing of memory like the CDC 6500 and others.

[An exception to this is IBM's ASP configuration for
two computers (7).] The unique characteristics

of the avionics environment, however, obviated the
need for massive amounts of shared data and, indeed,
argued against shared memory approaches for fault
tolerance reasons (protection of data).

Another characteristic of the more general-purpose
approaches was their regularity. In order to handle a
variety of processing loads, these machines had pro-
vided very regular interconnection schemes in which
the access rights of a processor to other processors
or to memory were largely independent of its location
in the system. The Solomon (8) architecture is a
good example of this. In contrast, the DP/M environ-
ment involved a known and nonregular pattern of inter-
communications between processes and a general
level of global (interfunctional) communications.
Furthermore, except under unusual conditions such as
reconfiguration to mask failures, the association of
processes to processors was static, so interprocessor
communications could be considered irregular and
quasistatic. These differences, combined with the
low data rates, the requirement for physical distribu-
tion, and the requirement for fault tolerance, indicated
that a new approach to computer interconnection might
best solve the specific problem to which DP/M was
addressed.

The bussing scheme chosen, shown in Illustration 1,
is a hybrid, combining a global bus visiting each PE
with a number of point-to-point busses between PEs
in an irregular pattern. Both busses are bit-serial,
biphase coded, with data transfer rates of 1 Mbit.
The global bus is provided for the interfunctional data
transfers and the local busses for the intrafunctional
transfers and as a backup to the global bus, A dis-
tinctive feature of the scheme is that the local busses
are switchable; each PE includes hardware by which,
under program control, the busses attached to it may
be connected to each other, to the PE itself, or may
be idle. Illustration 2 shows examples of the use of
this capability. A possible physical interconnection
is shown in 2a. Here, the maximum number of busses
to any PE (exclusive of the global connection) is three.
A combination of switch settings which configure a
quasiglobal bus is shown in Illustration 2b. This is
an example of what might occur during recovery from
a failed global bus. In Illustration 2c, a combination
of switch settings is shown which configures two so-

ILLUSTRATION 1
DP/M Hybrid Bussing

L.H L]/’ E_TI/

F\

Bus

Interface r/
Point-to-Point
i|——~ (Switched)
Busses
Processor l J l

1 2 3

12

ILLUSTRATION 2
Switchable Bussing Alternatives

Physical Wiring

(a)

""Global'" Option

(b)

"Affinity" Groups

called "affinity groups'' of PEs which may communi-
cate independently of the global bus for intrafunctional
transfers.

(c)

The hybrid approach provides a distinct advantage
over a single, possibly faster, global bus. First, as
system requirements grow and change, the option of
nonregular point-to-point interconnection is expected
to allow more cost-effective expansion by requiring
only useful interconnections. Secondly, the extra
bandwidth can be concentrated in physically localized
areas of the system instead of requiring overall high
bandwidth and, in fact, may result in a very high total
data transfer rate achieved by simultaneous use of
many slow paths. Finally, the two-type approach can
be used to provide redundancy for fault tolerance as,
and when, needed rather than on an all-or-nothing
basis.

Provision of switchability in the local busses is pri-
marily for fault recovery and flexibility reasons. In
case of a processor or local bus failure, relocation of
processes may be required, negating the effectiveness
of a dedicated approach to interconnection. Using the
switchability, however, an alternative switch pattern
can be used to provide the same intercommunication
paths to the now relocated processes. Also, in case
of a global failure, a quasiglobal bus can be configured
to handle some or all of the previous global bus traffic.
In this case, too, the system designer can choose to
spare the global bus with a complete set of switchable
busses or he can use some or all of the connections
primarily intended for intrafunction traffic, As will
be shown below, the bus hardware supports such
reconfiguration to the extent that the reconfigured
interconnection may be totally invisible to the soft-
ware,

DETAILED DESIGN
ADDRESSING MECHANISM

In order to minimize the overhead involved in process
relocation within the DP/M system, as well as to
make the geometry of the system and of the intercon-
nection scheme invisible to the software, it was
determined early in the design that physical addressing

of messages on the communications system was un-
desirable. Software that was transferred between
systems of various sizes as well as software operating
before and after process relocation could not be easily
provided with enough information to physically address
its messages. In a system like DP/M, tables for such
addressing would have been difficult, if not impossible,
to maintain during mission phase changes and recon-
figuration after failure. As an alternative to physical
addressing, it was decided to place in each PE's bus
interface enough hardware to support associative
addressing of messages and to require each transmis-
sion on a bus to be preceded by a destination "name. "
Each process in a PE is required to place in the
appropriate interface registers a '"name'' by which it
was known in the system, The bus interface then,

has the responsibility of handling a list of these names
in associative memory fashion, matching message
traffic on the bus against names and accepting mes-
sages destined for processes within the PE.

It was determined further that the names of processes
tended to be hierarchial in nature; that is, a process
might be identified as: "Flight Control, Y Axis,
Stability Augmentation Loop, " and that it was desirable
to allow messages to be directed either to a particular
component process by using its full identification or to
other levels of the naming "tree.' To accomplish this
without requiring each process to specify multiple
names, destination names transmitted by processes
were made of variable length and the associative
matching performed by the interface is on a bit-by-bit
basis. Thus, the name specified by the process wish-
ing to receive messages is its full identification, but
it is given all messages whose specified destination
matches the name in all transmitted bits. Note that
this type of scheme allows both one-to-one and one-to-
many type transmissions.

TRANSMISSION SCHEME

Although electrical design of the bus has not begun,
preliminary work and the results of other work (9, 10)
indicate that a biphase coding scheme is optimal for the
low data rates and physical environment foreseen for
DP/M. The message format on the busses, using a
biphase coding, is shown in Illustration 3. The first
bits of the message contain the destination name
interspersed between 1s at even bit times. Following
the first zero at an even bit time, the remainder of the
transmission is message content, with no further '"tag"
bits. In this way, the variable-length name is uniquely

ILLUSTRATION 3
Example Message Format

i BIPHASE
Illllllllllll |III‘CODEINPUT
DERIVED
INFORMATION

IDENT TAG
BITS

INFORMATION
{ BITS

BEGINNING
OF MESSAGE

13

delimited with minimum wasted bandwidth, To sim-
plify the hardware, names are restricted to be less
than or equal to the PE's word size, currently either
16 or 24 bits, Following the name, the data trans-
mission is to be an integral number of words. To be
compatible with a proposed Air Force multiplexing
standard (10), the bus clock rate will be 2 MHz,
yielding a 1M bit raw transfer rate.

Busses are allocated on a round robin basis, with
each PE on a bus being provided with opportunity to
transmit or "pass' in turn. Control passes from one
PE to another when a PE in control transmits a bi-
phase synch pulse (a pulse more than one bit-time in
duration). Each PE has two registers in its bus inter-
face, a Bus Length register and a Position register
indicating its position on the bus. Whenever a synch
pulse is transmitted on the bus, every PE increments
a Current Control counter containing the bus position
number of the PE which currently has control of the
bus. In one PE, this number matches the Position
register. This PE is in control of the bus, and has
the option of transmitting a message or passing con-
trol. To transmit a message, the PE simply begins
emitting the biphase code as shown in Illustration 3,
terminating’ the transmission (and its control of the
bus) with a synch pulse, If it has no transmission
ready, it simply emits a synch pulse, causing control
to pass on, Thus the minimum time between trans-
missions from a PE is the time it takes for control to
cycle around when every other PE on the bus emits
only a synch pulse, This latency time is expected to
be under 5 microseconds per PE, but is highly depen-
dent on final electrical design, physical separation of
PEs, etc, After overhead for allocation and destina-
tion header transmission, the busses are expected to
provide information transfer rates in excess of 500
Kbits, a safety factor of more than 2:1 over anticipated
requirements.

BUS SWITCH DESIGN

As part of the study work, a preliminary design for
the bus switch and interfaces was performed. A block
diagram of the switch is shown in Illustration 4. The
PE interfaces to the global bus and to a number of
local busses via receiver/drivers which resistively
couple to a balanced pair. The tee in the global bus

is presumed to be external to the PE, while local
busses are expected to connect to only two PEs. In-
side the switch, the busses are separated into receive,
transmit, and transmit key signals, which then fan to
a number of crosspoint switches, shown in the detail.
The contents of switch control registers control the
crosspoints to effect the switching as shown in Tables
1, 2 and 3.

The PE is provided with two blocks of essentially
identical interface hardware, one for the global bus
and one which may be switched onto any of the local
busses. In normal operation, the crosspoint shared
by the global bus and the global bus interface is closed,
while other crosspoints are closed as required.
Alternative crosspoints are provided, however, to
allow reconfiguration such as in Illustration 2a. Note
that by reconfiguring in this way, the software con-
tinues to use the global communications facility in
exactly the same way, with only the bits in the switch
control registers and possibly the bus control regis-
ters (in the bus interface) being altered.

As can be seen from the tables, all combinations of

two and three local busses can be interconnected via
the crosspoints and buffers, As an example, to con-
nect local bus A to local bus B, crosspoints one and

two are closed, connecting A and B via a buffer. If,
in addition, the PE itself is to be attached to the bus
thus configured, crosspoint 3 is also closed.

ILLUSTRATION 4

Bus Switch
TX TX RX
Key
7
//
//’
///
---~" Control
| o
N v RX
| = =
[l C /! \
L
| N (- / \
/ \
/ \
, 1y L/ | AN
IL \ / | TX Key / 144214414 \
i \ / —l // (DISCRETE \\
‘ \\ // Y CIRCUITRY) \
\ N~ ; 7 N\
\\ / ARG PR, (USSR O, 3
\ ! 1 -
P - / / -
\ / / s
\ ! Switched Busses To /| TX TX RX "~
\\ ; '"Nearest' Neighbors / Key "
\ Global ’ - -
\ Bus A B C D -

/
/
7 -
/
/
;4G
/
/
/
/
/ I

/ 7
/ -
ﬁ Global Bus
)::(— Interface §
N——— ————I-L__ .____.J_} E-—_+
I W ! [swi g
= == (25'_2_ Itertace |5
OSSR o —
) 2 l:_ 1B
- Switch g
L,): Control | &
Logic
TABLE 3
Switched Bus Buffer Connection Codes
TABLE 1
Global Bus Interface Connection Codes
Buffer 1 Buffer 2
Octal -
S1 S2 | S1 S2
Octal Connection = ﬁ
0 Global Bus 00 A - B D
1 Switched Bus A 10 A B B D
2 Switched Bus B 20 A C B D
3 Switched Bus C 30 A DI B D
01 A - B C
11 A B B C
TABLE 2 21 A C B C
Switched Bus Interface Connection Codes 31 A D B c
02 B C C D
12 A B C D
Octal | Connection 22 A C C D
0 Switched Bus A 32 A bjcC D
1 Switched Bus B 03 A - C D
2 Switched Bus C ég ﬁ 2 - N
3 Switched Bus D 33 A b -

14

It is obvious that the existence of a bidirectional buf-
fer circuit is essential to the success of the scheme.
Several TTL designs of such a circuit have been per-
formed and a small breadboard has been constructed.
As design of the system progresses and more infor-
mation on clocking techniques, etc., is available, a
full-scale breadboard consisting of several switches
and interconnecting busses is planned.

PE INTERFACE HARDWARE

Block diagrams of the interfaces between the proces-
sor portion of the PE and the busses are shown in
Illustrations 5 and 6, Both are provided with identical
encoding/decoding hardware and name recognition cir-
cuitry. It should be noted that the provision of four
name registers and four local bus connection points
was somewhat arbitrary. The requirements for both
are expected to be determined more definitively for
DP/M in later work.

On the output side, both interfaces provide channel-
type hardware which allows the software to simply
specify the memory location of the message to be
transmitted, the length of the transmission, and the
number of bits in the destination name. The channel
then gains control of the bus, transmits the requisite
header using bits from the first memory word, then
transmits the remaining memory words as data.

On the input side, the global interface is provided with
queueing storage to allow incoming messages to be
accepted by the processor in FIFO order, Interrupts
are provided to indicate receipt of a complete message
and impending queue overflow. In order for the soft-
ware to determine the destination of the message, the
destination address as received on the bus is included
at the beginning of the queued information,

For the local bus interface, where longer transmis-
sions are expected, an input channel is provided to
place the arriving information in a software-specified
main memory buffer area., The input channel supports
automatic double buffering of arriving information,
allowing the processor a great deal of time before data
is overwritten. Here, as well as in the other inter-
face blocks, various status flags and interrupts have
been provided to the processor.

Fault detection in this preliminary design is performed
in two ways. First, a PE which misses its control
slot on the bus may effectively block all further use of
the bus by not propagating its synch signal. This is
detected by a timer in each PE's allocation logic
which interrupts the processor, indicating ''bus assign
failure" if an excessively long period of silence is
observed on the bus. Secondly, missed bits during
data transfers on the bus are detected on the incoming
side by maintaining a modulo word-length count of the
arriving data. If, at the end of the transmission, this
count is nonzero, the processor is interrupted. This
detects any missing bits in the data portion of a trans-
mission only. Errors in the destination header por-
tion of the transmission are expected to require soft-
ware detection, since it is likely that errors will
cause the message to be either missed by all PEs or
to be accepted by the wrong one or ones.

CONCLUSIONS

Although the result of preliminary work, this inter-
connection scheme offers several unique features
which may be of general interest. Among them are:

1) Use of variable-length, associative ad-
dressing of inter-PE messages. As
systems grow in complexity by distributing

15

the computing function, this may become

a cost-effective way of relieving the
software of the addressing burden. It

is quite analogous to the use of symbolic
rather than absolute addresses in assem-
bler and HOL programming with the
extension to dynamic mapping of addresses
onto hardware.

2) Provision of flexibility and fault-tolerance
through the use of switchable intercon-
nections between processors. This tech-
nique provides a decentralized switching
system which can be dynamically adapted
to the needs of a particular problem phase.

3) The use of relatively complex hardware to
reduce significantly the communications
and control overhead conventionally found
in multiprocessor and multicomputer sys-
tems.

Much validation work remains to be done on this
preliminary design, but much of interest has already
been accomplished. Work of an architectural nature
remains to be done to assess the general applicability
of this type of computer system, particularly for more
demanding problems. In situations where functions

do not easily decompose with low intercommunications,
extensions of the concept to higher bandwidth busses
may be considered. Theoretical investigation into

the physical and virtual interconnection networks
possible from switchable busses may be of great value.
It already appears that heuristic approaches to deter-
mining interconnection patterns and switch settings
may be difficult to develop. Certainly, the concept of
an adaptive system with some intelligence, rather than
just a system which chooses from interconnection
templates, is worth investigating. As low-cost mini-
and micro-computers become available, the potential
for cost-effective distributed systems appears to be
increasing, and with it the interconnection problems
of such systems. ’

REFERENCES

1. Johnson, M.D., et al. All Semiconductor Dis-
tributed Aerospace Processor/Memory Study. Final
Report, Volume 2, Air Force Avionics Laboratory,
Wright-Patterson AFB, Ohio. AFAL TR-73-226

2. Holland, John.'"A Universal Computer Capable of
Executing an Arbitrary Number of Subprograms
Simultaneously." Proc. EJCC, pp. 108-113, 1959,

3. Koczela, L.J. Study of Spaceborne Multiproces-
sing, Final Report- Phase 1, Volume 2, 15 April
1967, National Aeronautics and Space Administration
Electronics Research Center, No, C6-1476.10/33.

4., Burnett, G.J., et al.""A Distributed Processing
System for General-Purpose Computing." Proc, FJCC,
pp. 757-1768, 1967. .
5. Thruber, K.J., et al. Master Executive Control
for the Advanced Avionic Digital Computer. Interim
Report Volume 1: Summary, Honeywell No, Z9506-

3018, June 1972,

6. Davis, R.L., et al. "A Building Block Approach to
Multiprocessing,' Proc. SJCC, pp. 343-349, 1970,

7. Lorin, H., Parallelism in Hardware and Software:
Real and Apparent Concurrency. Prentice-Hall,

pp. 166-176, 1972,

8. Slotnik, D., et al. ""The Solomon Computer,' Proc.
FJCC, pp. 97-107, 1962,

9. Barnes, B.P., et al. Application of Information
Transfer Techniques for Solving the Internal Communi-
cation Requirements of an Advanced Manned Bomber.
AFAL TR-72-209,

10, Proposed Standard for Aircraft Multiplex Data
Bus, Air Force Avionics Laboratory, Wright-Patterson
AFB, Ohio, 2 March 1973,

ILLUSTRATION 5
Bus Interface (Switched Bus)

RX % X KEY
Y
B _] N LENGTH |e
1
BUS
s MANCHESTER DATA
ALLOCATION | «
MANCHESTER Locic POSITION ENCODE CLOCK
DECODE]
SYNCH I "T T TRANSFER l
DATA ENABLE END
-
S CLocK READY —L | |LoATA AssEMBLY_]
o
3 ooe] cHANNEL oATA |
=| InpuT CONTROL
S| controL LoGIC
<| LoGIC TRANSFER M LENGTH
2 J DATA ASSEMBLY
o =
g coupLeTion | ¢ DATA weworr]
H DATA BUFFER 171y
3 BASE 1| CHANNEL FEER) ALLOGATION cranneL -1 =ACCEsY =] {3
TIMIT 1] CONTROL 4= CoNTROL CONTROLY ~
srse—] Locic
NAME BUFFER]#] = LIMIT 2 le— e
> 3 >
o« o
& - o =} J MEMORY = NAME -
& i g LENGTH T
RECOGNITION | | _[E| & CONTR g _[paccess e N
covtRoL JZ|TIE(5 ONTROL 1 +-1 2 z LOAD
=1 -3 a = a g
w w . w < 5
wl 12| 2] T S =
|-g 2 & s S =y
E{ I S ol = 3 5 5l
wiel = =1 1 o I ol o 2y
2l @ Si<|ol@]| = [PP z|a w - H w» wl g
2| g|2|s w = o =z wnln <y < o ol v a2
Z|9olx pau < |w | = x|S 0l w wi
Hluldl &= > wiy = & <| .|F AR wl g
wi W 2 w wilZ | = 2|« 2 I hy 2 N 2 =2
Z|121E8] 3 22121512 b 1+ S 1 alg w <|afs of @l al< HER]
HEEIH RS of dla g | 35 <jxi<|a @|o = olx|n <| g <|a 2|3
Y A
wi3{1{1 11 DL Th haw 215 1 152 1w Loc
'y 1315 ¢y v ¥ v 2
ILLUSTRATION 6
Bus Interface (Global Bus)
RX - TX KEY
1] N LENGTH |«
[1
BB ocarion | MdchEsTER DATA
ENCODE
MANCHESTER LOGIC POSITION CLOCK
DECODE SYNCH K T T |_TRANSFER
| END
DATA ENABLE DATA ASSEMBLY
1 CLOCK READY
(%]
I} DATA l
CHANNEL ;
S DATA ASSEMBLY. BASE I CoNTROL 3
F] [| Locic
z| EBEC™ | transrer M LENGTH |
2 DATA BUFFER
w
g COMPLETION — MEMORY L. o ==
g LOCATION CHANNEL L= T <, ACCES 9~ 1.1
4 AL CONTROLY = 1~ 1
© =T conTROL
READ
@: oL N-WORD _
NAME BUFFER #) - @&—:‘ cons RAM £
S \ & NAME {.-]
i ‘,*_' Lsxcmh--
w
RECOGNITION | _|_I=| & 2 =z LOAD
CoNTROL JZIT 2 =& 3 w o =
o= HE - m g o
wl W x| & 3] z
] B | & i a] | @
g |zl = | s N il
e El2 S < 1] o ol w
HINE S £l12 Pl S g olw
21518 2 =14 (14 w p = wr <
2I8w| = 29 Z|e I} ala oo 4l 2
z|3lgle| w ol 2|2 3|4 3 <|“I2 AEE P gle
S5lEl & X by Oz 73 ol x o= Z|o
Wl =z o < wul< w < |w|~ 1%} olg z|a
Z|gIZE| 3 < wlg a9 = o= = alela < <|a
EIF E FEE 9 o I @1°] 52t‘ 1 aldw Lo
w h 111 h 2 k 1 111 215 I 1 i 2
vy Vv

16

BANYAN NETWORKS FOR PARTITIONING
MULTIPROCESSOR SYSTEMS

L. Rodney Goke
Texas Instruments
Austin, Texas

and

G. J. Lipovski
University of Florida
Gainesville, Florida

1. INTRODUCTION

Restructurable computing systems using multiple
miniprocessors are currently of interest and promise
advantages over large single processor time-shared
systems for some applications (1-3). The modular
nature of such systems can offer graceful degradation,
improved availability, and expandability. Such sys-
tems to date have generally contained a small number
of processors and have used one or more switching
structures based on a crossbar.

It is now reasonable to expect that the low cost and
high cost/performance of mass produced LSI micro-
processors will make systems with much larger num-
bers of processors practical (4). Modules of other
resources, such as memory and I/O, might also be
more numerous in such systems.

The number of contacts, or switching devices, for
a crossbar, however, increases with the square of the
number of connections to it, making it prohibitively
expensive for very large systems. Since the fanout of
switching devices in a crossbar increases linearly
with the connections to the structure, this too can be a
problem in large systems, especially when expanda-
bility is not to be limited. It is thus increasingly de-
sirable to find structures better suited than the cross-
bar to partitioning large systems.

This paper describes a class of partitioning net-
works, called banyans, whose cost function grows
more slowly than that of the crossbar and whose fan-
out requirements are independent of network size.
Such networks can economically partition the re-
sources of large modular systems into a wide variety
of subsystems. Any possible partition can be realized
by paralleling several networks or by multiplexing a
single network in a manner to be described later. Re-
sults will be given indicating that a cost/performance
advantage over the crossbar can be obtained for large
systems and that the crossbar can, in fact, be con-
sidered a non-optimal special case of a banyan net-
work. Inherent fail-soft capability and the existence
of rapid control algorithms which can be largely per-
formed by distributed logic within the network are also
important attributes of banyans.

This paper presents fundamental properties and
preliminary simulation results of banyan partitioning
networks. A more detailed treatment, including
proofs of theoretical properties, is reserved for ref-
erence (5).

2. PARTITIONING

The purpose of a partitioning network, as consid-
ered here, is to partition the resource modules of a
system into disjoint subsystems by effectively provid-
ing a separate bidirectional data path connecting the
resources in each subsystem. Once connected, the
resources of a subsystem could communicate by time
sharing this data path in a manner similar to that used
in such systems as the PDP-11 (6) and the HP 3000
(7).

2.1 CROSSBAR NETWORKS

The crossbar network shown in figure la is per-
haps the most straightforward partitioning structure.
For N resource modules, it contains [N/2] data busses
the maximum number of nontrivial subsystems possi-
ble at one time. A subsystem with only one resource
is trivial because it does not need the structure to
communicate with itself. This network requires
N[N/2] bidirectional SPST switching devices, ! each
of which is connected to N-1 identical devices by a
data bus.

Figure lb is a graph representing the same struc-
ture. This representation is similar to that used by
Benes (9) and uses vertices to represent data busses
or links, and edges to represent the switches con-

Figure 1. Crossbar Partitioning Network

SWITCHING DEVICES
3 3)

&

DATA BUSES

DATA BUSES

"b >

0

RESOURCE MODULES

RESOURCE MODULES

A) BLOCK DIAGRAM B):GRAPH REPRESENTATION

lBidirectional electronic switchin, devices suitable
for all networks in this paper are discussed in refer-
ence (8).

necting them. Note that the crossbar is represented
by a biparte graph with an edge connecting each bus
with every resource module. Graph representations
will be used with other structures later.

More specialized crossbar structures have been
used in a variety of multiprocessor systems (3,10-12).

2.2 PERMUTATION NETWORKS

It is possible to build a partitioning network from a
permutation network by supplying the external links
shown in figure 2. A permutation network can con-
nect, in pairs, a set
of input terminals to
a set of output ter-
minals of equal size
so that any desired
permutation of inputs
onto outputs can be
realized. These con-
nections allow trans-
mission in either di-
rection when bidi-
rectional switches
are used in the net-
work. In the config-
uration of figure 2,
the network per-
mutes the set of re-
source modules onto
itself, allowing con-
nected subsystems to
correspond to the
cycles of the permu-
tation. By choosing
a permuatation with
the appropriate
cycles, any desired
partition can be con-
nected.

Figure 2. Permutation Net-
work used as a Partition-
ing Network

eoe l—_

PERMUTATION
NETWORK

O O Oeeed
—_—

RESOURCE MODULES

This result is theoretically significant because it
implies that an N-terminal partitioning network does
not need to contain any more contacts than an N-input,
N-output permutation network. It has been shown that
when N is a power of 2, such a permutation network
can be built with as few as 4(Nlog, N - N + 1) con-
tacts (13-15).

The partitioning structure of figure 2 is of limited
practical value, however, because of excessive prop-
agation delay in large subsystems. A signal in the
data path connecting a subsystem with i resource mod-
ules may have to propagate through the permutation
network as many as [i/2] times to reach its destina-
tion. Each time through, it must propagate through
as many as (log, N-1) contacts. Control of this struc-
ture would also be relatively complex and could limit
restructuring speed.

3. .BANYANS

A banyan network, named for the East Indian fig
tree of somewhat similar structure, is defined in
terms of its graph representation. The graph of a
banyan is a Hasse diagram of a partial ordering (16)
in which there is one and only one path from any base
to any apex. A base is defined as any vertex having
no arcs incident into it, an apex is any vertex with no
arcs incident out from it, and all other vertices are
called intermediates. When used as a partitioning

22

network, the bases are connected to resource mod-
ules, while the apexes and intermediates are within
the network. Some examples of banyans are shown in
figure 3. We use a directed graph representation be-
cause it is useful for specifying the structure and its
control algorithms, but the switches represented by
the edges are still bidirectional.

Figure 3. Examples of Banyans

A) IRREGULAR BANYAN B) L—LEVEL BANYAN

3.1 TREE-SHAPED CONNECTIONS IN A BANYAN

In a banyan the data path established to connect the
resource modules of any subsystem always forms a
tree rooted at some apex. By definition there is a
unique path from each base to each apex. A subsys-
tem is connected by selecting an apex and then closing
all switches along the path from each desired base to
the selected apex. Since each path is unique, the re-
sulting data path forms a tree rooted at the apex. Al-
gorithms for locating eligible apexes and establishing
the connections will be presented in section 3. 3.

Tree-shaped data paths are significant because
they can afford low propagation delay with limited fan-
out and because they lend themselves well to the in-
clusion of priority hardware (17). Propagation delay
and fanout will be discussed later. Priority hardware
is desirable in any data path used as a time-shared
bus in order to resolve conflicts when two or more re-
sources request bus control simultaneously. Details
of how priority hardware can be built into a banyan
network can be found in reference (5).

3.2 SYNTHESIZING LARGE BANYANS FROM SMALL
ONES

Large banyan networks can be synthesized recur-
sively from smaller ones. Suppose that one has avail-
able a number of small banyan networks, perhaps
supplied by a manufacturer as a basic module, and one
wishes to synthesize a larger network. This can be
done as illustrated in figure 4a by connecting the
apexes of some banyans to the bases of others.

The interconnections of these banyans can be repre-
sented by a graph, as illustrated infigure 4b. In this
graph, each vertex represents a banyan network. An
arc from any vertex V1 to another vertex V2 means
that one apex of banyan V1 is directly connected to one
base of banyan V2. We assume that if there are any
arcs incident into a vertex, then the corresponding
banyan has exactly one base for each incident arc.

Similarly, the number of apexes equals the number of
arcs incident out from the corresponding vertex unless
there are none. When there are no arcs incident into
a vertex, the bases of the corresponding banyan be-
come the bases of the synthesized network. Similarly,
the apexes of the synthesized network are those of the
component banyans with no arcs incident out.

Figure 4. Banyan Synthesis

A) SYNTHESIZED NETWORK B) INTERCONNECTION GRAPH

Theorem l: When banyan networks are interconnected
as described above, the resulting network will be a
banyan iff the graph of the interconnections is a banyan
graph.

Proof Sketch: There are three ways that a directed
graph can not be a banyan; one, if it contains a circuit,
two, if there is more than one path from some base to
some apex, or three, if there is no path from some
base to some apex. Since the component networks are
banyans, any of these conditions in the interconnection
graph would cause the same condition to exist in the
graph of the synthesized network, and vice versa.

This theorem is important because once one or
more banyan structures are known, these structures
can be recursively expanded to arbitrarily large sizes.
The SW structure, discussed later, is based on re-
cursive expansion of the crossbar, one of the simplest
banyan structures.

3.3 CONTROL OF CONNECTIONS

Figure 5 illustrates how — we————
a data path connecting an Figure 5. Set-up
arbitrarily selected apex Algorithm

with any desired subset of
bases can be established in
two steps. Set-up is facil-
itated by a single control
line provided in each link
of the network. First, a
"one'' signal is broadcast
baseward from the selected
apex over the control line,
as illustrated in figure 5a.
The signal fans baseward
at each vertex so that the
"one'' propagates to all
bases. This signal sets a
flip-flop in each intermedi-
ate and apex through which

SELECTED APEX

A) STEP 1

it passes.

In the second step,
'"ones' are broadcast apex-
ward from each base in the
desired subsystem, as il-
lustrated in figure 5b. In
this step, the signal is
OR'ed apexward at each
vertex. As illustrated in
figure 5c, the desired con-
nection is made by closing
every switch that receives
this signal from below and
has a set flip-flop in the
adjacent vertex above.
These are the links through
which control signals pro-
pagated in steps one and
two.

(Cont.)

Figure 5.

SELECTED BASES

B) STEP 2

As described, this set-
up algorithm would require
two steps but only one con-
trol line in each link., Un-
like the data lines, this
control line is always con-
nected between vertices
and does not require a bi-
directional switch for each
edge of the graph. Switch-
ing for the control line oc-
curs at the vertices where
the signal is either OR‘ed
up or OR'ed down.

C) FINAL CONNECTION

Any apex may be used in connecting the first sub-
system, but subsequent apexes must be selected so
that the new connection does not overlap with any ver-
tex already in use. A two-step search algorithm for
identifying the eligible apexes is illustrated in figure
6. In this example, the circled vertices represent
those already in use, and bases 3 and 6 are to be con-
nected as a new subsystem. As shown in figure 6a,
control signals are first broadcast apexward simul-
taneously from all bases in the desired subsystem and
are then OR'ed upward using the same control line
used in set-up. During this step, a flip-flop is set in
every intermediate and apex which receives this con-
trol signal and is already in use.

In the second step, illustrated in figure 6b, the con-
trol signals from the bases are turned off, and each

Figure 6. Search Algorithm

ELIGIBLE APEXES

B) STEP 2

A)STEP 1

vertex with a set flip-flop broadcasts a '"one', which
is OR'ed apexward on the same line used in step one.
All apexes not receiving a "one'' during this step are
eligible. Final selection could then be performed by a
priority circuit attached to the apexes.

Steps one and two of this algorithm, like those of
the set-up algorithm, could be combined using a sec-
ond control line, With four control lines, search and
set-up could all be combined in one step.

In the event of a hardware failure, any vertex
could be effectively removed from the network by dis-
connecting all data lines to it and by treating it as if it
were always in use. New connections would then be
routed around the faulty cell 2,

3.4 PARALLEL AND MULTIPLEXED NETWORKS

In partitioning a system, the search and set-up al-
gorithms are repeated until all subsystems have been
connected or until no eligible apex can be found. Al-
though most subsystems might be connected this way in
practice, a banyan may not always be able to connect
all subsystems of a partition simultaneously. When
subsystems are associated with independent jobs, this
would imply only that the partitioning network be a
limited resource for which jobs must compete much as
they do for other system resources. When a subsys-
tem cannot be connected under existing conditions, the
associated job could be held in a queue until enough
other subsystems were dissolved to permit the connec-
tion.

If, however, one wishes to simultaneously connect
more subsystems than can be accommodated with a
single banyan, there are two solutions. 3 First, sever-
al banyans can be connected in parallel. The parallel
networks would function independently but their bases
would be connected to the same set of resource mod-
ules. As many subsystems as possible would be con-
nected in the first network. Those left over would be
connected in as many additional networks as required.

The other solution is to multiplex a single network
so that it periodically rearranges itself to connect first
one set of subsystems, then another, and so on, so that
each subsystem has some time slot during which it can
communicate. A partitioning network, as considered
here, acts as a rearrangeable set of time-shared
buses. A resource module attached to the network
must request and receive control of its bus before
transmitting data, and must be prepared to wait when-
ever the bus is not immediately available. Normally
the bus would be unavailable only when used by other
resources in the same subsystem; but should it ever
become temporarily unavailable for other reasons, the
only effect would be to delay data transmission within
the subsystem. This situation makes multiplexing pos-

2This would still require a portion of the control cir-
cuitry in a faulty cell to function. A slower search
algorithm that avoids this problem has been described
by Lipovski (17). Alternatively, a software search
algorithm could replace the faster hardware algorithm
in the event of hardware failure.

3In some cases it may also be possible to connect ad-
ditional subsystems in a single banyon by rearranging
the connections of existing subsystems, but this is
only a partial solution and will not be considered fur-
ther here.

24

sible with little or no modification of the resource
modules. The system need only be designed so that any
resource not currently connected by the network would
"'see'' it as a busy bus. .

Multiplexing requires that a small amount of mem-
ory be associated with each switch in the network to
store the state of the switch during each time slot.
With LSI this could be done at reasonable cost by asso-
ciating a small register with each switch and synchro-
nizing all state changes from a central clock.

The techniques of parallel networks and multiplexing
may be mixed to balance cost and performance.
Whether a network structure is space shared with par-
allel hardware or time shared with multiplexing, the
parallel networks and/or time slots share many prop-
erties and are called layers. The number of layers
required depends on a number of factors and will be
discussed later.

L-LEVEL BANYANS

Next we consider a class of banyans with more reg-
ular structure and additional useful properties, but
which is still general enough to include most practical
designs.

An L-level banyan is simply a banyan whose ver-
tices are arranged in levels so that switches, or arcs
of the graph, can only exist between vertices in adja-
cent levels. For example, the graphs in Figures 3b,
5, and 7 are L-level banyans, but 3a is not. There are
actually L+1 levels of vertices in an Li-level banyan.
They are numbered apexward from 0 to L. so that all
bases are in level 0 and all apexes are in level L.

4.

Any path from a base to an apex in an L-level ban-
yan has exactly L arcs; thus the propagation time
through the network during search and set-up is con-
stant. Moreover, the propagation delay of data
through the network cannot exceed that of 2L switches,
since in the worst case, data must travel from base to
apex to base.

4.1 BASE AND APEX DISTANCE

A base distance function, Bl A B2, can be defined
on the bases of any L-level banyan specifying the mini-
mum number of levels up into the banyan a connection
must extend to connect two bases, Bl and B2. Simi-
larly, an apex distance function can be defined on the
apexes specifying the minimum number of levels down
from the top of the structure a connection must extend
to connect any pair of apexes. Figure 7 illustrates the
concepts of base and apex distance. The darkened
paths represent minimal connections. The connection
of apexes is presented only as a conceptual aid in ex-

Figure 7. Base and Apex Distance in an L-Level
Banyan
= At A2
/"/A//’// AN /‘/‘ T
A4 /])d
///// P // L 1=a1vaA2
AANAN //’_J_
T ANNNANANNN
B1OB2 = 2 /////// // 994
| TAIKIIHE
V A%
B1 B2

plaining apex distance and would not actually occur in a
partitioning network.

The definitions of base and apex distance can be ex-
tended to sets of bases and apexes respectively in the
same way that point distances are often extended to
sets of points. That is, the base distance between any
two sets of bases Bl and B2 is defined to be the mini-
mum of all distances bj A by such that by € Bl and
by € B2. The analogous extention applies to apex dis-
tance.

Theorem 2: In an L-level banyan, let Al and A2 be
apexes and let Bl and B2 be sets of bases. If

L < (Bl A B2) + (A1 Vv A2), then subsystems Bl and B2
can be connected without conflict in the same layer
with connections rooted at Al and A2 respectively.
Proof Sketch: In order for the tree-shaped connection
connecting subsystem Bl with apex Al to conflict with
that connecting B2 with A2, the two connections must
have in common some vertex, V. But V must lie in
some level I such that Bl A B2 < I=< L - (Al V A2).
No such I can exist if L < (A1 V A2) + (B1 A B2).

Theorem 2 not only characterizes a way to avoid
conflicts, but also suggests ways to enhance network
performance. There are two potentially useful inter-
pretations. First, subsystems close to each other
place more stringent requirements on the separation
of apexes used than do widely separated subsystems,
suggesting that closely spaced subsystems are less
likely to be connected in the same layer. Thus, if it is
known at design time which resources of a system are
most likely to be connected, one might improve per-
formance by gerrymandering the assignment of re-
sources to bases so that bases most likely to be con-
nected tend to be closest. An operating system could
also take advantage of this result by allocating closely
spaced resource modules to a subsystem whenever
possible. The amount of improvement thus obtainable
is not estimated here since this would be highly prob-
lem dependent, but one can easily contrive extreme
examples in which more than one layer would seldom
or never be needed.

The second interpretation concerns the selection of
apexes. The search procedure described earlier lo-
cates all apexes eligible for connecting a new subsys-
tem in a partially occupied layer, but does not deter-
mine which of the eligible apexes is the best choice.
Theorem 2 now suggests a plausible selection crite-
rion. According to the theorem, any new subsystem
can be connected if we can find some apex sufficiently
distant from those already in use. Thus apexes most
distant from those in use are the most valuable in the
sense that they are likely to be eligible for connecting
the greatest variety of subsystems. More subsystems
might then be connected in a layer by selecting each
new eligible apex so as to leave as many ''valuable'
apexes as possible for subsequent connections. This
criterion is ambiguous in some cases, but neverthe-
less is the conceptual basis for a priority rule found to
improve performance in simulated networks. (5)

4.2 FANOUT AND SPREAD
Parameters specifying the number of arcs incident
into and out from the vertices of an L-level banyan not
only determine the fanout and fanin requirements of
circuits used but can also specify its size and shape.
We define a regular banyan to be an L-level banyan
in which the number of arcs incident into each vertex

25

is a constant F called the fanout and the number inci-
dent out from each vertex is a constant S called the
spread. We except, of course, the fact that bases
have no arcs incident into them and apexes have non
incident out.

Regular banyans would likely be the most econom-
ical to fabricate, because they can be built from a
number of identical cells, each containing the cir-
cuitry associated with a vertex and the arcs incident
into it. The fanout and fanin requirements of these
cells are determined by F and S. The next theorem
shows how the number of vertices, and hence cells, in
each level of a regular banyan is determined by F, S,
and L, regardless of how the levels are interconnected.
Theorem 3: In a regular banyan with L levels, fanout
F, and spread S, the number of vertices in any level i
is given by Nj = s1 pL-i,

Proof Sketch: For any given apex, there are FL pos-
sible paths from various bases. Since there must be
exactly one path from each base, Ng = FL., Also, for
eachl <is L, N; =Ny 3 (S/F). Therefore,

N; = FL (s/F) = sirpL-i,

When the fanout of a regular banyan equals its
spread, the number of vertices becomes the same in
each level. In this case we call it rectangular.

5. SPECIFIC BANYAN STRUCTURES

There are two knwon types of regular banyans of
particular interest, SW and CC banyans.4 Special
cases of these structures have been considered pre-

viously for a variety of applications.

A structure graphically equivalent tc a CC ban-
van with L= 3 and F = S = 4 has been used in the
""Barrel Switch' of the ILLIAC IV Processing Ele-
ment (19) to shift 64 bits an arbitrary number of
places to the left or right.

SW structures were first proposed for partition-
ing applications by Lipovski (18). Structures graph-
ically equivalent to rectangular banyans with F = 2
had been proposed earlier by Batcher for use as
"bitonic sorters'. (20) A variety of permutation
structures have also been proposed which contain
special cases of SW banyans as subgraphs
(13-15,21). Even such common structures as
crossbars and homogeneous trees are special cases
of SW banyans in which L = 1 and S = 1 respectively.

We are presently concerned with SW and CC ban-
yans as partitioning networks, but this diversity of
applications suggest that banyan theory may be use-
ful in other areas as well.

5.1 SW STRUCTURES

The SW structure is a kind of regular banyan
produced by recursively expanding a crossbar
structure in the manner of Theorem 1 as illustrated
in Figure 8. Examples of SW banyans appear in
Figures 4, 5, and 6. The rules for this recursion
are as follows:

1) A one-level SW structure with fanout F and
spread S is simply a crossbar with F bases and S
apexes.

4The term SW has been used in earlier work by
Lipovski (18). CC is an acronym for Cylindrical
Crosshatch since a CC network can be neatly laid out
as a crosshatch pattern on the surface of a cylinder.

2) An L-level SW structure with fanout F and
spread S can be synthesized by interconnecting sL-1
crossbars and F identical (L-1)-level SW struc-
tures, all with fanout F and spread S. The apexes
of the SW structures are connected to the bases of
the crossbars such that the interconnection graph is
a crossbar. Also we stipulate that each crossbar
must be connected to every component SW structure
in the same way; i.e., if it is connected to the ith
apex of one SW, it must be connected to the it apex
of each of the others. The reason for this stipula-
tion will be explained shortly.

Figure 8. Synthesis of an SW Banyan
|] |1] L1 !
CROSSBAR 1 CROSSBAR 2 |e ¢ o] CROSSBAR sL—1
L] o o L] LN} L e o
e o o e o o ® o o
SW 1 SW 2 tee SW F

The base and apex distance functions of an SW
banyan tend to group the bases and apexes respec-
tively into nested subsets. It is apparent in Figure
8 that the bases of a synthesized SW banyan may be
grouped according to the component SW's above
them, forming a partition with F subsets. It is also
apparent that any connection between bases in dif-
ferent subsets must be made through one of the
crossbars and hence must extend exactly L levels
into the network. The distance between two such
bases is thus L.

Bases within a subset can always be connected
in the component SW above; so when two bases are
in the same subset, the distance between them can-
not exceed the levels of that component banyan, L-1.
To determine whether this distance is equal to L-1
or less than L-1, one can similarly decompose the
component SW's and partition each subset into F
smaller subsets. Continuing this decomposition,
one can obtain L-1 levels of nested subsets such
that the distance between any two bases is given by
the level of the smallest subset containing both
bases.

Similarly, it can be shown that the apex distance
function groups apexes into L-1 levels of nested
subsets such that each subset is divided into S
smaller ones.

As was stated in section 4.1, the base and apex
distance functions specify the minimum number of
levels into the structure that a connection must ex-
tend to connect two bases or apexes respectively.
In an SW banyan, these functions also specify the
maximum number of levels into the structure that
branching may exist in any such tree-shaped con-
nection. The stipulation "each crossbar must be
connected to every component SW structure in the
same way'' is included to insure this property for
apex distance.

26

A consequence of this property is that the con-
verse of Theorem 2 also becomes true making it an
if and only if test for conflicts. Thus for the SW
structure, the criterion of Theorem 2 not only gives
us a way to avoid conflicts but also a characteriza-
tion of which apexes and bases can and cannot be
connected without conflict in a single layer.

5.2 CC STRUCTURES
The CC structure is rectangular by definition
and thus must have SL vertices in each level. Let
0 1 N-1

V., V., ..., V,
i i i

be the vertices in each level

of an L-level CC structure, where N = sL. In the
graph of this structure, there is an arc from a ver-

tex V;{ to a vertex Vf;+1 in the level above whenever

j=1i + mSk (mod N) for some m=0,1, ...,S-1. An
example of a CC structure is shown in Figure 7.

To show that this structure is indeed a banyan,
we note first that the L-level property insures that
the graph contains no loops and hence is that of a
partial ordering. To show that there is exactly one
path from each base to each apex, consider any
such path from an arbitrary base. In propagating
from each level k to level k+1, a signal may be
shifted 0, Sk,ZSk, veey OT (s-1)sk places to the right
in circular fashion. In propagating through the en-
tire network a signal may then be circularly shifted
from O to SL-1 places to the right so that there is a
possible path to each of the S apexes. Further,
since there is an S-way branch at each level, there
are exactly SL such paths from each base, and
hence one to each apex.

The CC structure demonstrates that multi-level
regular banyans can be built without using the re-
cursive technique of Theorem 1. Also it can be
shown that the base and apex distance functions of a
CC banyan differ from those of the recursively de-
fined SW banyans in that bases or apexes appear to
be arranged in a circle rather than in nexted sub-
sets. The distance between two bases or apexes is
then determined by their separation on the circle(5).

6. SIMULATION RESULTS

The number of layers typically required for a
given banyan to fully partition its bases has not been
obtained analytically. To obtain an indication of the
layers required, several rectangular banyan net-
works were simulated.

The simulations tested the ability of networks to
connect randomly selected partitions. First, the
number of subsystems in a partition was selected
as a pseudo-random number from 1 to the number
of bases in the network. Then each resource mod-
ule was assigned to one of these subsystems selec-
ted at random. The number of modules in any sub-
system could thus vary and could even be zero in
some cases. Subsystems were then connected one
at a time, placing each in the first available layer

until the entire partition was realized.
were then dissolved and the procedure was repeated
for a total of 100 partitions. Details of the simula-
tions can be found elsewhere (5).

The average number of layers required to fully con-
nect these partitions was computed for several sizes of
rectangular SW banyans, as graphed in Figure 9. With

All subsystems

a fanout of 2 or 4, the average layers required appears
to grow logarithmically with the number of resource
modules. With a fanout of 3, this function appears to
grow more slowly than the logarithm; however, one
must be cautious about concluding this with only 3 data
points. Larger networks were not simulated because
of computer time limitations, but additional simula-
tions of CC networks and of rectangular SW networks
with modified setup rules have generally supported the
observation that the average number of layers re-
quired grows no more rapidly than a logarithmic func-
tion of the number of resource modules.

Figure 9. Simulation Results

3.0
o
& 2.5 L
=)
<}
ul
o
0
& 2.0 F
>
<
..I
ul
] []
g 1.5
ul +
z

r
1.0 1 1 1 1 I !
4 8 16 32 64 128 256

NUMBER OF RESOURCE MODULFES

It is also apparent that with other factors equal,
networks with larger fanouts tend to require fewer
layers. For example, with 64 bases, the networks
in Figure 9 required an average of 2.35 layers with
F=2 and 1.91 with F=4. A similar network with F=8
required only 1.8 layers.

In several respects the results in Figure 9 repre-
sent worst case conditions more severe than those
likely to be found in actual systems. First, it was
assumed that in each partition, every resource
module was assigned to some subsystem; i.e., no
idle resources. Furthermore, trivial subsystems
containing only one module were connected with apexes
in the usual fashion even though this would likely be
unnecessary in practical systems. These simulations
assumed also that knowledge of the base distance
function could not be used to enhance performance as
suggested in section 4. 1.

The priority rule used for selecting apexes in the
simulations of Figure 10 is equivalent to selecting the
leftmost eligible apex when the network is drawn like
that in Figure 6. Additional simulations have shown
that some improvement is possible using the criterion
suggested in section 4. 1.

The average layers required for fully connecting
all partitions is a useful performance measure be-
cause it indicates how much the maximum allowable
data transfer rate available to each subsystem must
be degraded when all subsystems use a single multi-
plexed network. In practical systems, however, it
may not be necessary to connect all desired subsys-
tems at once, so that the maximum number of layers
used could be limited to a small number. For ex-

27

ample, in the largest network simulated, an SW with
256 bases and fanout 4, over 87% of the subsystems
were connected in the first layer and over 99% in the
first two, even though an average of 2.39 and a maxi-
mum of 4 layers were required to connect all subsys-
tems. It was similarly found that the other simulated
networks could connect most subsystems in a single
layer and all or nearly all with two.

7. OPTIMUM FANOUT IN RECTANGULAR BANYANS

In this section we will consider two cost/perfor-
mance functions for rectangular banyans, and will
show that for each, there is an optimum fanout which
is independent of network size.

It follows from Theorem 3 that there are logpN
levels in a rectangular banyan with N bases. The
total number of apex and intermediate vertices is then
N log N. Each of these vertices has F contacts im-
mediately below, so the cost of the network in contacts
is given by

C; (F,N) = F Nlogyg N.

Since the worst case propagation delay through the
network is proportional to the number of levels, the
cost delay product is given by:

Cy (F,N)=F N 1og§, N,

This cost/performance measure is especially relevant
when resources communicate synchronously, allowing
always for worst case delay.

Both functions are of the form
Cp (F,N) = F N logg, N.
To minimize this with respect to F, we set the partial
with respect to F equal to zero and solve for F.

9C (F,N)
0= —5+—
= Nlogl N+ NF 2 10gP N
_N1nPN NPInPN
1P 1P
1 __ P
1nPF 10PtlE
InF = P
F = ep

Thus the optimum fanouts are e for function C;, and
e? for Cz. Optimum integer values are found to be 3
for Cj) and 7 or 8 for C3. Note that when F = N the
network becomes a crossbar structure, implying that
for large N, a rectangular crossbar can be considered
a nonoptimal special case. 5

The average layers required for fully connecting
random partitions was not considered in this optimiza-
tion because its dependency on fanout is not precisely
known. The simulation results indicate that somewhat
fewer layers are required when F is large, suggesting
that optimum fanouts would be somewhat larger if the
number of required layers were considered.

5The crossbar of Figure 1 is not rectangular since
S=I—;I- and F=N, but its cost function still grows as N2

and exceeds both C; and Cp of optimal banyans for
large N.

One's choice of fanout could also be influenced by
such factors as packaging constraints and the fanout
capability of devices used. Further, in a regular
banyan, F must be a root of N.

8. CONCLUSIONS

Regular banyan partitioning networks have been
described, whose fanout requirements are constant
with respect to system size, and whose cost function
grows as N log N rather than N2 of the crossbar.
Worst case propagation delay grows as log N. Dis-
regarding fanout problems, the propagation delay of
data paths in a crossbar is constant; however, that of
priority hardware used to resolve simultaneous re-
quests within subsystems would still grow as log N,
assuming methods similar to (17).

Simulation of such networks with up to 256 re-
source modules has indicated that most subsystems
of randomly selected partitions can be connected with
only one or two layers, which might prove adequate
in many applications.

In applications where the network cannot be thus
limited, any partition could be fully connected by a
multiplexed network. In the simulated networks, the
average layers required to fully connect random
partitions appears to grow no more rapidly than log
N, which still allows a cost/performance advantage
over the crossbar for large N.

The simulation results presented here indicate
that the number of layers required can be small
enough not to offset the cost advantages of banyans in
large systems. The networks were simulated under
artificial conditions that were worst case in several
respects. Many variations of banyan networks are
possible, only some of which have been presented
here. It would indeed be interesting to apply a banyan
network to a specific system where it could be tai-
lored to requirements.

This paper has concerned itself with the use of
banyan networks for partitioning applications. Con-
sequently, we have not attempted to compare cost
performance with networks designed for different
functions, such as permuting or store-and-forward
message switching. It is felt, however, that the
adaptation of banyan structures for such applications
warrants further study.

Theoretical results concerning the behavior and
structure of banyans can provide insight and suggest
ways to enhance performance. With increased
notational complexity, most of the theoretical results
discussed here for regular banyans, including SW and
CC structures, can be extended to L-level banyans in
which fanout and spread may be different for each
level (5). Since a number of structures proposed
previously for other applications are special cases of
banyans or contain them as subgraphs, it is expected
that banyan theory could also be useful in other areas,
especially that of permutation networks.

28

REFERENCES

1. H.B. Baskin, E.B. Horowitz, R.D. Tennison and
L. E. Rittenhouse, "A Modular Computer Sharing Sys-
tem,'"" Communications of the ACM, Vol. 12, No. 10,
pp. 551-559, Oct., 1969.

2. H.B. Baskin, B.R. Borgerson, and R. Roberts,
"Prime - A Modular Architecture for Terminal-
Oriented Systems, " AFIPS Proc. SJCC, Vol. 40, pp.
431-437, 1972,

3. W.A. Wulf, and C.G. Bell, "C.mmp - A Multi-
mini-processor, ' AFIPS Proc. FJCC, Vol. 41, pp.
765-777, 1972,

4. G.W. Schultz, R.M. Holt, and H. L. McFarland,
"A Guide to Using LSI Microprocessors, " Computer,
pp. 13-19, June, 1973.

5. L.R. Goke, Connecting Networks for Partitioning
Polymorphic Systems, Doctoral Dissertation,
University of Florida, under preparation.

6. PDP-11 Handbook, Digital Equipment Corporation,
Maynard, Mass., 1969.

7. J. Basiji and A.B. Bergh, '"Central Bus Links
Modular HP 3000 Hardware, ' Hewlett-Packard
Journal, pp. 9-14, Jan., 1973.)

8. W.E. Vice, A.J. Brodersen, G.J. Lipovski, '""On
Integrated Circuit Bidirectional Amplifiers,'" accepted
for publication in Journal of Solid State Circuits,

Oct., 1973,

9. V.E. Benes, '""Algebraic and Topological Proper-
ties of Connecting Networks,' Bell System Technical
Journal, pp. 1249-1273, July, 1962,

10. J.T. Quatse, P. Gaulene and D. Dodge, '"The
External Access Network of a Modular Computer Sys-
tem, " AFIPS Proc. SJCC, Vol. 40, pp. 783-790, 1972,
11. J.P. Anderson, Samuel A. Hoffman, J. Shifman,
and R.J. Williams, ""D825 - A Multiple-Computer Sys-
tem for Command and Control,'" AFIPS Proc. FJCC,
Vol. 22, pp. 86, 96, 1962,

12. R.E. Porter, ""The RW 400 - A New Polymorphic
Data System, "' Datamation, Vol. 6, No. 1, pp. 8-14,
Jan., /Feb., 1960.

13. L.J. Goldstein and S. W. Leibholz, '"On the
Synthesis of Signal Switching Networks with Transient
Blocking,'" IEEE Transactions on Electronic
Computers, Vol. EC-16, No. 5, pp. 637-641,0ct., 1967.

14. A. Waksman, "A Permutation Network, ' Journal
of the ACM, Vol. 15, No. 1, pp. 159-163, Jan., 1968.
15, A.E., Joel, Jr., '""On Permutation Switching Net-
works, ' Bell System Technical Journal, pp. 813,
May/June, 1968.

16. Claude Berge, The Theory of Graphs, p. 12,
John Wiley and Sons, Inc. New York, 1962.

17. C.C. Foster, "Determination of Priority in As-
sociative Memories, ' IEEE Transactions on Com-
puters, Vol. C-17, No. 8, pp. 788-789, Aug., 1968.
18. G.J. Lipovski, '""The Architecture of a Large
Associative Processor, ' AFIPS Proc. SJCC, Vol. 36,
pp. 385-396, 1970.

19. R.L. Davis, ""The ILLIAC IV Processing Ele-
ment, ' IEEE Transactions on Computers, Vol. C-18,
No. 9, pp. 800-816, Sept., 1969.

20. K.E. Batcher, "Sorting Networks and their Ap-
plications, ' AFIPS Proc. SJCC, Vol. 32, pp. 307-314,
1968.

21. V.E. Benes, '""Optimal Rearrangeable Multistage
Connecting Networks, " Bell System Technical Journal,
pp. 1641-1656, July, 1964.

STRUCTURE OF DIGITAL SYSTEM
DESCRIPTION LANGUAGES

Harry F. Jordan
Burton J. Smith
Electrical Engineering Department
University of Colorado

Abstract

Several languages have been developed for or ap-
plied to the problem of describing digital hardware
systems. This paper points out some of the problems
encountered in hardware descriptions, particularly
where they are distinct from concepts appearing in
programming languages.

Introduction

There are three major goals of a hardware descrip-
tion language: human comprehension, simulation and
construction. The requirements imposed by these goals
are most easily specified in reverse order. The goal
of system construction requires that the language spe-
cifically describe the actual hardware needed to build
the machine. The language need not, however, describe
the structure of any sub-unit which is available as
one piece, such as an MS| or LS| integrated circuit.

A description of the terminal behavior of such sub-
units may be necessary but their actual construction
is not of interest to the designer. |t must be clear
from the description where hardware is implicitly
specified in a description, as in the case of multi-
plexers on register inputs when the register may re-
ceive information from several sources.

The goal of simulation requires an accurate be-
havioral input-output description of each sub-unit in
the machine. The behavioral description of sub-units
need not be in any correspondence with the structure
of the sub-units, but it must be in a form which is
executable by the simulator. A simulation may be re-
quired to produce more or less detailed results and
therefore the structural description of the circuit
might be carried out to different depths before the
behavioral type of description is employed. In all
cases, however, one must be able to reduce every ele-
ment of the description of a system to a behavioral
description in terms of the language of the simulator.

The goal of human comprehension is somewhat more
difficult to define. This goal is first in order of
importance because the utility of any language depends
on how easily human designers comprehend and write
descriptions in the language. As lverson has pointed
out in describing APL [1], effective suppression of
inessential detail is important to human comprehension
and ease of use. However, the design environment in
which hardware descriptions are done is quite variable.
For example, detail which is nonessential to system
structure if a large scale integration arithmetic and
logical unit is to be employed becomes essential if

31

the unit is to be constructed out of smaller sub-units.
In such variable environments, the effective suppres-
sion of detail seems to depend upon flexible mechanisms
for implicit substructuring such as are afforded by
extensible languages. In such an extensible language,
concise syntactical and semantic constructs can be de-
fined and later used in a simple form in the descrip-
tion of the system or a set of systems based on the
same hardware primitives.

The authors feel that the syntactic structure of
a language is important to human comprehension in so
far as it reflects the logical structure of the thing
described. The sequencing of statements, block struc-
turing, if-then-else clauses, and iteration clauses
are syntactic features of programming languages which
directly reflect execution time features of the compu-
tation described by a program written in the language.
One of the important problems in designing high level
languages for describing digital systems is that of
isolating significant logical structure features of
systems and providing syntactic constructs in the de-
scription language which accurately reflect these fea-
tures.

Parallelism

Several semantic problems arise in describing the
structure and operation of a digital computer or other
digital system. The primary problem is that of: des-
cribing parallelism in the operation. Digital systems
consist of a large number of components connected in
a complex way and operating sequentially in time. In
order to successfully describe such a system one must
be able to group elements that are logically connected
to one another in the electronic circuitry and to de-
scribe the operation of this sub-unit consisting of a
set of connected circuits. One must also be able to
associate groups of steps which take place sequentially
in time to describe a time-sequence or sub-sequence of
operations within the computer. The necessity for
grouping elements both in space and in time gives rise
to the primary linquistic problems of describing a
digital computer. We thus wish to consider what prop-
erties a descriptive mechanism or language must have
in order to successfully describe digital computers.

Iverson, Falkoff and Sussenguth have used the APL
language to describe the hardware of the IBM 360
series of computers. [2] The primary advantage of APL
in describing a digital computer stems from the fact
that it has a large number of primitives which specify

in-
The

inherently parallel operations. The primitives
volved are primarily operations on bit vectors.
APL primitives have the ability to transfer the values
of bit vectors from one variable or register to an-
other, obtain values from subfields of large bit vec-
tors, and apply certain transformations to the bit vec-
tors either one bit at a time or over all bits of the
vector. These concepts are quite natural to a parallel
computer. They are somewhat less applicable to serial
computers. The structure of the APL primitives is
parallel in nature, but the overall structure of the
language is sequential. Programs in APL consist of a
sequence of consecutively numbered and executed steps
as in most other programming languages. It is to be
expected then that the points at which APL becomes
strained in describing computer hardware are just

those points at which large scale parallelism becomes a
factor in the design. Sub-units which have internal
sequential structure yet operate in parallel in a ma-
chine are not handled smoothly by APL.

A higher degree of flexibility in describing par-
allel and sequential operations is afforded by the ISP
language developed by Bell and Newell.[3] By using
the semi-colon and the semi-colon followed by ''next'
properly in an ISP description and by including paren-
theses in appropriate places a complex structure built
of sequential and parallel sub-units can be constructed.
The technique is quite similar to describing a series-
parallel electrical network. The types of structures
which cannot be described with the ISP type mechanism
of a parallel separator and a sequential separator are
in fact just those cross-linked type structures which
correspond to bridge-type connections in an electrical
circuit. The most general case of course is a group
of nodes representing elementary actions with a partial
ordering imposed on the nodes. It seems that none of
the familiar syntactic mechanisms form structures simi-
lar to general partial orders. (On the other hand much
execution sequence information is clearly mirrored in
programming language syntax.) The cross-linked struc-
tures do not often appear in computer design, and a
language which offers only the series-parallel mechan-
ism of description will be quite adequate for a large
number of applications.

The syntactic structure of this mechanism can be
summarized in BNF as follows:

<system description> :: = <step>|

<system description><sequential separator><step>

<step> :: <action>[

<step><parallel separator><action>

<action> :: = <elementary action>|(<system description>)

An example using : as the parallel separator, > as the
sequential separator and EAi as a name for the ith
elementary action is:

EA1 -+ EA2 -~ EA3: EA4: EA5 -~ EA6: (EA7 - EA8) - EA9
The partial ordering imposed by the above description
can be represented by the covering relation diagram in
figure 1.

Eﬁ]
EA2

e e

Vi

A6 \ EA7
EA

v
‘/§A8
Figure 1

E
E

9

32

The situation shown in the partial order diagrammed

in figure 2 where EA2 and EA3 must be complete before
EAL starts whereas starting EA5 requires only the com-
pletion of EA2 cannot be represented by the above
linquistic mechanism.

E
EA2 EA3
/NS
EAS5 EAL
o
EA6
Figure 2

The closest approximation imposes the restriction that
EA3 precede EA5 which is not required by the original
structure.

Notice that there is no timing information present
in the above descriptions. Only sequence information is
given as a set of requirements on which actions preceed
others. Timing is more explicit in a language such as
Schorr's Register Transfer Language.[4] Using the
conditional execution feature of Schorr's language the
sequence information inherent in EAl - ((EA2 > EAL):
EA3) > EA5 might be expressed by:

Itll EAL 51> t, 5 12ty
|t2| D EA2 5 1>ty
|t3f EA3 5 1 > tgy
[ty : EAL 5 1 > tep
|t5A A tSB] EA5

The timing is more explicit in the RTL but extra detail
(the arbitrary ordering of the lines and names for the
times) tends to obscure the sequence information. It
seems that the specification of sequence of actions in
a digital system may be a higher level concept than the
specification of timing. Note that when a high level
system description specifies only a partial order on
actions the tasks of simulation and construction are
complicated by the need for implicit rules for resolv-
ing ambiguities in timing.

Function Types

Another type of descriptive dichotomy which exists
in computer hardware description is the need to describe
sub-units in several different ways. Linguistically,

a sub-unit may be described in a single statement or by
a procedure definition, and consists of a set of input
variables and a set of output variables together with
some well-defined set of rules for computing the

values of the output variables from the values of the
input variables. Two distinct types of functions arise
in the description of hardware: combinational functions
and sequential functions. The combinational functions
may be thought of as statically defined structures in
the sense that as long as the inputs are constant the
output is constant (except for propagation delay
effects), and inputs and outputs are quite distinct.
The sequential function, on the other hand, has a set
of parameters associated with it which can be thought
of as registers. The sequential function is invoked

at a particular point in time; it uses the values in
the input registers to perform some computation in

some finite number of steps and produces results in the

output registers, some of which may be the same as the
input registers.

There are also two distinct types of function us-
age. One sort of use involves assembling a separate
set of hardware according to the specifications set
forth in the function definition. |In this case, the
definition may be thought of as generic in nature, de-
scribing many devices of the same structure. The
second function usage involves using a single hardware
unit at several places within a system description with
the separate uses of the unit occurring at different
times and perhaps involving multiplexed inputs and/or
outputs. An example of a generic use of a function
definition would be to describe the structure of sever-
al similar 16 bit counters in terms of their components.
Multiple usage of a specific function definition would
occur if the same adder were used for arithmetic and
effective address computation.

One possible way to dissolve this descriptive di-
chotomy is to relegate generic function descriptions to
a strictly linguistic mechanism such as text substitu-
tion macros. |If this is done then the appearance of a
function name with appropriate parameters for input and
output can be thought of as simply a name for the com-
putation which takes place within the function defini-
tion. Specific functions, on the other hand, can be
represented as procedures or closed subroutines which
are invoked during the running of the system. Each
computation begins at the point in time at which the
procedure is invoked, and results are available after
the characteristic delay time associated with the se-
quential device or the system of combinational logic
and multiplexers.

It is convenient to allow a sequential function to
have multiple entry points to clarify the correspondence
between structural and sequential type descriptions.
This facility permits the description of sub-units
which perform several functions. An example of such a
sub-unit is a shift register which may be shifted left
by clocking one input, shifted right by clocking an-
other input, or loaded in parallel by clocking a third
input. Each of these three clock inputs can be repre-
sented by a distinct entry point.

Control

Yet another dichotomy exists in hardware descrip-
tion, namely the dichotomy between data and control.
It is important for the suppression of detail in a high-
level description to let the control signals be implic-
itly described by the order in which statements are to
be executed, but there must be mechanisms for inter-
action between control and data. After an instruction
has been decoded, for example, the signals which repre-
sent the instruction must cause a transfer of control
to the portion of the description which executes that
instruction. This is conventionally handled by condi-
tional statements of one kind or another. It is also
useful to allow control signals to be treated as data;
this can be done by introducing the object 0 which
is logical 1 when the statement containing the '™ is
being executed and logical O otherwise. This concept
is similar to that of a program counter in a program-
ming language, but due to parallelism there may be more
than one of them active at a given time. This facility
can be used within a language to deal with the problem
of implicit multiplexing, as .follows. The language
associates with each register R in the description two
expressions: INPUT (R) and CLOCK (R). These expres-
sions are obtained by initially setting each of them
to 0 and then examining every statement in the descrip-
tion; whenever a register transfer

R<+«S
is encountered, INPUT (R) is replaced by
INPUT (R) + S *

33

and CLOCK (R) is replaced by
CLOCK (R) + =

Here + is an operation equal to avb if aab=0 and is
undefined otherwise. A simple example of this mechan-
ism is shown in figure 3.

Translation of Register Transfer Statements to Networks

Translation of R « S
INPUT(R)='-'tSA*+~--
CLOCK(R)=+ i+,
where atb = avb if aab = 0 and is undefined if aAb = |

TIME __ ACTION
Ti R<S Ti 1
.) Tj 445::::::>__ ck
. . R
Tj R<Q . o
S IN
p—
INPUT (R) = TIiASVTIAQ
CLOCK(R) = TivTj

Validity Condition TiATj=0
Figure 3

Levels of Description

A hardware description language should be appli-
cable to various levels of description. In particular,
it is extremely useful at any level to have the
ability to describe the input/output behavior of some
"black box'" circuit without describing its internal
construction. In this way, portions of the circuit
may have their descriptions put off until a lower level
of description is reached. Such a description of the
input-output behavior of a '"black box' should be put
in the clearest and most convenient form possible. In
some cases, this may mean that the input-output de-
scription is a sequential description when in fact the
unit is a combinational unit, or it may mean that the
description may be combinational while the unit actu-
ally operatés sequentially. In general, then, it is
not desirable to require that the structure of the box
match that of the description, since this internal
structure is precisely what we are trying to suppress.
There is probably no need for a separate language for
the description of the terminal behavior of sub-units.
The hardware description language itself should be
flexible enough to provide a clear and concise decrip-
tion of any possible unit. There should, however, be
some distinction made between the two kinds of appli-
cation of the language to clarify whether it is being
used to describe the actual structure of a sub-unit of
a machine or merely to specify the input-output be-
havior of the sub-unit for the purpose of describing
the activity of the rest of the machine.

There must also be provided methods for describing
timing and sequence of sub-unit interfaces when this
information is not reflected by the behavioral descrip-
tion.

Use of Names

We also wish to consider the role of names in a
hardware description language. There are three
classes of objects which may be named in the descrip-
tion of a machine. These three classes have somewhat
different properties. One use of names is in the de-
scription of values stored in registers of the machine.
These names play roles quite similar to the roles
played by variable names in programming languages.
values associated with the names can be non-destruc-
tively read and used, and are changed only as a result
of an action which stores a new value into the register.
Another possible use of names in describing computer
hardware is to identify Boolean signals or vectors of
Boolean signals which appear within the machine. For
example, consider a bus within a machine which is used
to transfer values among the registers of the machine.
The value on the bus may change either because of a
change in the contents of the register that is current-
ly multiplexed onto the bus or because of a change in
the contents of one or more of the flipflops that de-
termine which register is multiplexed onto the bus.

The value of the bus is therefore a combinational func-
tion of the values of several registers. It is useful
to name the bus in order to specify transfers of

values between the bus and registers; such a usage of a
name illustrates the second role for names. Finally,
names may be used to designate system modules (either
generic or specific) the behavior of which involves a
mixture of both registers and signals.

The usages for names discussed above can be dis-
tinguished by declaration. |[f all registers in the
machine must be declared and all combinational func-
tions are declared then the digital system is well de-
fined for the purposes, say, of simulation. The simu-
lator can maintain internal variables which keep track
of the current values of each register, and whenever
the simulator encounters the use of a combinational
function output as a value it can examine the necessary
combinational function definitions to determine this
output as a function of the values of the internal vari-
ables. Of course it may be necessary for the simulator
to trace back through several levels of combinational
function definitions in order to find registers whose
values completely determine the final output. A
summary of three possible variants of the assignment
statement in a programming language based on the dif-
ferent declarations and use of names mentioned above
is given in figure 4.

The

BIBLIOGRAPHY

1. lverson, K.E., "A Programming Language,'" John Wiley
and Sons, N.Y., 1962.

2. Falkoff, A.D. and Iverson, K.E., ""A Formal Descrip-
tion of System/360,'" 1BM Systems Journal, Vol. 3,

No. 3, 1964.
3. Bell, C.G. and Newell, A., '"Computer Structures:
Readings and Examples,'" McGraw-Hill, N.Y., 1971.

L, Schorr, H., '"Computer Aided Digital System Design
Using a Register Transfer Language,'' |EEE Trans. on
Elzztronic Computers, Vol. EC-13, pp. 730-737, Dec.,
1964,

2.

34

DECLARATION AND USE OF NAMES

Signal X
X @ FCN(Y,Z2)

Signal X
X:=FCN(Y,Z2)

Register X

X<FCN (Y, Z)

X is wired to output of FCN

The value of X if made to match
the output of FCN for the dura-
tion of this step.

The value of FCN is strobed
into register X in this step.

Implied Circuitry

X FCN

Y

oLD X

input

clock

*

— Y
FCN
| |y
FCN [z
old X input
old X clock

—-@ *
x

" is a Boolean which is true only
for the duration of the step
which describes the associated

hardware.

Figure 4

VDL—A DEFINITION SYSTEM FOR ALL LEVELS

John A. N. Lee
Professor of Computer Science
University of Massachusetts at Amherst

ABSTRACT

The VDL system for the description of programming
languages which was originally used for the definition
of PL/I is extended to the description of processors.
This paper shows the relationship between the language
of definition and the abstract machine over which the
semantics of the language are specified. It is demon-
strated that the level of description can be chosen to
suit the various needs of the computing community, each
level being well nested within its outer level, whilst
using only one language of definition.

From the point of view of processor design, indications
are given of the means by which a description can be
transformed into an implementable system of data paths,
registers and drivers.

INTRODUCTION

The techniques of formal definition as applied to the
description of the PL/I programming language by Lucas
and Walk (Lul), has since been applied to other systems
by the author (Lel,Le2). On the basis that the
definition of a programming language consists of a
system of definitions of algorithms, the method of
definition is applicable to not only languages, but
also the description and definition of algorithms, in
particular, to processors.

The formal definitional system described by Lucas and
Walk consists of a synthetic language defined to
operate over a set of data objects which can be
described in terms of non-cyclic trees. In the
definition of a programming language such as PL/I, it
is necessary to consider not only the definition of
the syntax of the source language and a description of
the technique for converting that language (or an
analyzed version of it) into a form suitable for use
in the description of its semantics.

In the case of describing a processor, we shall pay
little attention to the syntactic form of the
associated machine language and no attention at all to
the external form of that language. In fact, we shall
assume taht any program to be executed exists only
within the object which represents, in the abstract
machine which models the prototype, the storage part
of the prototype.

The VDL definitional schema is so organized, as will be
described later, that the techniques of top-down
programming naturally evolve and thus the level of
description can be matched with the needs for under-
standing of the intended recipient of the description.
Further, by a judicious choice of identifiers in the
description, the understanding of the recipients can
be enhanced to the point where the description is
highly readable. Using the macro-expansion techniques
of description which are analogous with the commonly
used techniques of describing machine instructions in
terms of lower level actions associated with event
times, a single description can contain a continuum of
definition levels. At the outer level, the description
can correspond very closely to the style of description
which is associated with a machine reference manual.

At succeeding levels of definition, more detailed
descriptions can be offered which reveal further
details of implementation. For example, the outer
level of definition may reveal that (say) an ADD
instruction is executed by adding the contents of the

accumulator and contents of the referenced cell, and
then leaving the result in the accumulator. For most
purposes of programming this definition will be
sufficient; however, the further description of these
components can show the utilization of the individual
registers and the data paths between the registers.
This level may not necessarily reveal the actions of
the drivers for the registers, this being left to the
next level, until eventually the logic level of the
gates is reached. This ability of a single description
language to provide these many levels of definition
makes it a prime candidate for the general usage as
processor descriptor. That is, rather than having
several languages for the description of each level of
a processor action, the Vienna Definition Language, by
its design, provides for all the definitional needs of
the computer architect.

The major emphasis of the usage of VDL has been on the
linguistic aspects of the definitional schema, little
attention having been drawn to the abstract machine,
the actions of which the language describes. The
properties of this abstract machine are only now being
investigated more thoroughly and it can be expected
that these investigations will provide a firm basis
for the development of the properties of the machine
described.

Within the definitional scheme itself there exists two
levels of abstraction: the level of description used
previously in the semantics of programming languages,
and an inner machine, being a finite state machine
over which the "outer level" descriptors are defined.

THE INNER MACHINE

A Definition Machine is a 5-tuple {Z,0,P,u,t}
where £ = S u {I}

S 1is a finite non-empty set of closed one-to-one
mapping functions (called selectors or selector
functions) over @,
is the identity selector or function,
is a finite non-empty set of objects,
where § = CO u EO, and
CO0 1is a finite non-empty set of compositg

objects,
E0 is a finite non-empty set of elementary
objects;
P is a finite (possibly empty) set of predicates,
u is the mutation operator, and
T 1is the search function.

=S H

Objects in @ are defined formally to be a finite non-
empty set of unique pairs (<s:A>) which specify the
range (A € §) of each selector function (s) in the
set S over the domain of the object (B).
Notationally, an object identified as B is represented
as

B = {<slel>,<s2:A2>,...,<sn:An>}

where {sl,s
For simplicity, all pairs whose second component is

the null object are normally omitted from this set.

The set of unique pairs which specify the range of

each selector in S over the object is called the
characteristic set of the object. The application of a
selector function to an object is symbolized by s(B).
If B ={...,<s,:A.,>,...}, then by definition above,

i
si(B) yields Ai'

2,...,sn} = § and (Vi) (Ai € @) and B ¢ 0.

For the purposes of description, these characteristic
sets of objects have been likened to non-cyclic trees,
and thus the common representation of an object is as a
tree shown in Figure 1.

FIGURE 1
A TYPICAL COMPOSITE OBJECT

B

Since the objects selected by the selector functions
‘from an object are themselves (by definition) objects,
then the repeated application of selector functions is
equivalent to a walk through the tree representation
from the root to the root of some subtree. This
repeated application of selectors leads to the usage
of composite selectors.

A composite selector K is the representation of the
successive application of selector functions to an
object.

If K= s1

sl-sz-...'sn(X) ;;81(82('°'(sn(x))°"))

then

Teeets s

where (Vi) (sieS) and K € S+

As a matter of nomenclature, the selector function sy
(e 8) is known as a simple selector.

The object selected from a composite object by the
composite selector K is known as the K-~component.

An elementary object within the machine (eo € EO) is
characterized by a set in which the range of every
selector is the null object (R). Elementary objects
may be regarded as "atomic" or "indivisable" objects.
The prgcise set of elementary objects associated with
a definition must be defined in advance and may be
dependent on the level of definition. For example, in
the case of a user level of definition it may be
sufficient to consider the set of elementary object to
be words, whereas for the gate level of definition the
set of objects may simply be the binary digits. This
definition of an elementary object then provides a
simple definition of a composite object:

A composite object is an object in which the range of
at least one selector function s € S is not the null
object.

(Is)(s(B) #9), se€S, BeCOc@

The primary function which operates over objects is the
mutation function u which is a closed function over the
set of objects . Notationally, the function and its
arguments are represented by

u(A;<s:B>)
The range of the function is

(A - {<s:s(A)>}) v {<s:B>}

That is, the mutation function creates a copy of
object A (the subject argument) in which the s~
component is replaced by the object B. This elemental
function has the property that three basic operations
can be simulated by its usage: replacement, deletion
and construction. As described above, the basic
operation of replacement is obvious; object B replaces
the previous s-component in the copy of the object A.
By specifying that the replacement object is the null
object (f), then the process of deletion of simulated.
Similarly, if the original subject argument (A) had
been the null object, then any mutation of that object
with non-null objects constructs a new object.

The set of predicates in the inner machine provides a
basis for the discriminating properties of the
definitional schema, In the definition of programming
languages, predicates are used to define the valid
objects which can compose the abstract text (c.f.,
abstract syntax (Mcl)) over which the semantics of the
language are to be defined. In a processor, these
predicates describe the internal structure of the
machine being modeled and certain properties which it
is necessary to have the capability of recognizing,
such as that the contents of the accumulator are zero.
Combined with expressions, predicates form conditional
expressions of the form

Pp 7P 78
which can be defined by the logical expression

py & (Vi< 1) (ap) > e
These expressions, in the general case, result in an
undefined value if none of the predicates are true.
Whereas this is advantageous when the subject of the
description is a programming language and there can
exist some "undefined" situations, but in the case of

a processor, these conditions should be closed properly.
Considering the levels of definition discussed before,
conditional expressions correspond closely to the gate
level of description. The search function (t) did not
originally exist in the Lucas and Walk (LUl) descrip-
tions and definitions, but has been added by the

author (LEl) to provide more generality. The Lucas and
Walk unique selector function (1) is simply a special
case of the search function. Further, the search
function closely resembles the associative memory
polling operation and provides a sound basis for the
simulation of set operations in language descriptions.

The search function T selects from @, a set of objects,

each member of which conforms to the specified
predicate is-pred.

(tx) (is-pred(x)) = {x|x € @ & is—pred(x) = T}T
The expression (tx)(is-pred(x)) is read as "the set
of those objects (x) chosen from @ such that the

predicate is-pred is satisfied.'

THE OUTER MACHINE

Using the properties defined in the preceding section,
we may now devise a definitional model, which will be
the basis for describing processors. This finite state
machine contains a set of states which contain infor-
mation on the data being manipulated and the instruc-
tions (or programs) which define the transformations

to be executed over the data, and a function (the
State Transition Function) will interpret and execute
the instructions in the current state of the machine.

+Using a standard set notation.

In attempting to define the properties of a processor,
the state of the machine is defined to contain, as one
of its components the complete set of registers and
storage devices of the processor being modeled. Since
the definition is itself a program, then the instruc—
tions which reside in the storage part of the processor
being modeled act as data elements. In the succeeding
description here, we shall reserve the term instruc~
tions to refer to the instructions contained in the
definition machine.

Within the state of the definition machine there exists
a special component which contains the set of instruc-
tions which are awaiting execution, and which by their
execution will represent the execution of the commands
in the processor being modeled. This component is
known as the control stack and can easily be repre-
sented by a regular VDL object. However, for the
purposes of description we can regard the control stack
to be a tree in which the definitional instructions are
contained as the nodes of the tree (c.f., the VDL
object represented as a tree, in which objects exist
only as the leaves of the branches).

By Lucas and Walk (LUl) the order of execution of the
definitional instructions is defined to be restricted
to any one of the instructions which exists at a leaf
of the control stack. Since the execution of instruc-
tions (see later) includes their removal from the
control stack, this provides a multi-stacking facility
whereby instructions can be inhibited from execution
until all other instructions on their branch (in their
stack) have been executed. Whilst Lucas and Walk
insisted that any one of the candidate instructions can
be executed during a state transition cycle, this
concept is extended here so as to provide for the
asynchronous execution of all instructions which are
existing at the leaves of the control tree. This
process adequately simulates the asynchronous opera-
tions within a processor, but solves none of the
problems of race conditions which are thereby possible.
However, since the definition of instructions requires
explicit reference to any data assignments and there
exist no side effects within VDL, there exists a clear
potentiality for proving that race conditions either
exist or are non-existent.

The initial state of the definition machine is one of
the elements of the definition of each processor. This
may correspond directly to the conditions which are
existing at the time that the manual actions of
depositing an address into the program counter and
depressing the RUN key are performed. A final state (a
halting state) of the definition machine is the state
in which the contents of the control stack is null;
that is, there are no further definitional instructions
to be executed. Other final states may include cases
where some error condition has arisen and the execution
of the instructions existing in the stack is undefined.

Definitional instructions can be executed (depending on
conditions existing within the state of the machine)
either as macro-expansion instructions or as state-
modifying instructions. In the former case, the
execution of the instruction has the effect of
replacing itself by a new instruction subtree thereby
simulating either the passage from one level of
definition to the next or the sequencing of operationms.
In the case of state-modifying execution, the effect is
to mutate the state of the machine (other than the
control stack) thereby simulating operations over the
registers in the prototype, and then to remove that
instruction from the control stack.

Whilst there is only one style of execution that an
instruction be subject to at the time of its execution,

43

the definition of instructions can specify varying
styles depending on the conditions existing at the
instant of execution of the instruction. Thus a
definitional instruction may have several definitions
itself, only one being applicable at any time. These
individual definitions are termed "groups."

The means by which definition groups are chosen from
within the general instruction definition set is a
conditional expression, the right hand sides of which
are the definition groups. That is, the general form
of an instruction definition is

inst(ql,...,qn) =
P, > group;

see

Py > group

where q.,...q are parameters which are replaced by the
values = of the arguments specified in the instruc-
tion at the time that the instruction is placed into
the control stack, p,,...,p_ are predicate expressions
which are functions of the set of parameters q,
system defined predicates and the state of the machine.
It will be shown later that in the case of describing
processors at the register level, the set of parameters
(and consequently the corresponding set of arguments)
is unnecessary, the need for a parameter showing the
need for a register in the prototype.

Where the group is to be a macro-expansion definition,
the notation is to show not only the set of instruc-
tions which are to replace the instruction being
executed in the control stack, but also the structural
relations between those instructions. The notation
contains two basic rules for demonstrating the nodal
position of instructions within the tree:

i) indentation indicates a lower level of tree
placement (lower in the sense of movement
between the root at the top and leaves at the
bottom) than instructions not as deeply indented.
punctuation indicates either a continuation of a
level by the use of a comma (,) or completion of
a level by the use of a semicolon (;) except
where the instruction is the last in the group
when no punctuation is needed.

It is important to note that since the order of exe-
cution of instructions is from the leaves of the tree
toward the root, then the instruction(s) at the bottom
of a group representation are the earlier candidates
for execution. Normal sequential execution of a group
of instructions is represented by a diagonal sequence
of instructions separated by semicolons:

ii)

inst-1;
inst-2;
inst-3;
inst-4

This set of instructions would be executed in the order

inst-4 inst-3 inst=2 inst-1

A single instruction cannot be replaced by a set of
asynchronous instructions since such a set does not
form a proper tree structure. Instead a simple one
level tree with one root must be formed. In essence
this corresponds to the case where a number of instruc-
tions can be executed simultaneously and the execution
of a succeeding instruction must await their completion.
The root instruction in this group then acts as a
semaphore since it prevents the execution of

instructions higher on the same branch until it is
cleared. Such a group of instructions is represented
in the form

inst-1;
inst-2,
inst-3,
inst-4

In this group, the instructions inst-2, inst-3 and
inst-4 can be executed asynchronously (for our purposes
here) but inst-1 cannot be executed until all of those
instructions have run to completion.

State-modifying definition groups specify the changes
to be made to the state of the machine (with the
exception of the control stack). Each group
corresponds closely to a mutation operation, the
subject argument of the mutation being the state of the
machine. Thus the definition group is a listing of the
selector:value pairs, the selectors being applicable to
the state of the machine and the values being functions
over the parameters (replaced by the argument values)
of the instruction (if any) and components of the state
of the machine. The general form of a state-modifying
group is

s-sc, texp;

oee
S-SC_:iexp
—m m

where the s-sc, are selector functions and exp, are
evaluated to the values which are to be placed in
the state. By the judicious choice of selector names,
the data paths in the processor can easily be simulated
For example, let us assume that the memory address
register is represented as the s-mar component of the
state (&) and that the program counter is represented
as the s-pc component. Then the operation of transfer-
ring the contents of the program counter to the memory
address register can be represented by the definitional

instruction pc-to-mar and be defined simply by
pc-to-mar =

s-mar:s-pc (&)

which states:
"Replace the contents of the s-mar component of the
state by the contents of the s-pc component of the
state."

Since we are dealing with a finite state abstract
machine, the question of timing between the acquisition
of the data elements of an operation and the placement
of the result in the state is overcome by the simple
ruse that the new state is a copy of the old state.
Thus the execution of an elementary shift command (over
a three bit register) is well defined:

shift =
bit-0O+*s-acc:bit-1+s-acc(&)
bit-les-acc:bit-2+s-acc(&)
bit-2+s-acc:bit-0+*s-acc(§)

In this definition, the selector functions are
composite, the accumulator being represented by the
s-acc component of the state and the individual bits
within the accumulator being selected by the functions
of the form bit-i. That is, the functional composition
operator (*) can be read as "of". Since it will be
necessary to reference elements of state components in
a generalized form, we shall permit the extension of
the explicit naming of selector functions to include a

functional notation in which the index of selection is
included as an argument. For example, if the memory
component of the prototype is represented as the s—mem
component of the state of the abstract machine, and
the memory is divided into pages, each page containing
a number (presumably fixed) of words, then a reference
to a single word will require three functional appli-
cations to select the word from the state. To ac-
complish this will require the provision of two
arguments; the word address (or index) and the page
address. Thus it would be possible to develop a word
reference mechanism in the form of a composite
selector function

s-word (word-address) *s-page(page-address) *s-men
Thus the definition of the store operation might be
store =

s-word (s-wa*s-mar(£)) *s-page(s—pa*s-mar (£)) *s-mem:
s-mbr(€)

where s-wa selects the word address from the memory
address register, and correspondingly the s-pa function
selects the page address, and s-mbr(f) represents the
memory buffer register into which (by some previous
step) the value which is to be stored has been placed.

This complexity of structure is defined in terms of
predicates which describe the abstract syntax (i.e.,
structure) of the state of the machine. In part, for
this mythical machine which we have been considering,
the state can be defined by the predicates:

is-&= (<s-mem:is-memory>,
<s-mbr:is-word>,
<g-acc:(<s-link:is-bit>,
<s~-body:is-word>)>,
<g-mar: (<s-ma:is-word-address>,
<s-pa:is-page~address>)>,

eee)

where each of the pairs in the structured predicate
specify the name of the branch on which the component
is located (in the tree descriptive sense) and the
structure of the component. Each of these descriptions
must eventually be defined in terms of the elementary
objects in the system, so that, for example, the s-
link*s—-acc component of the state is defined to be in
conformance with the predicate is-bit, which defines a
set of elementary objects. On the other hand, the
memory buffer register (s-mbr component) is defined to
be of the form is-word which we will define by the
structure
is-word = ({<bit(i):is-bit>|0<i<11})
That is, the structure is composed of a set of pairs,
the object of each of which is a bit (defined by is-
bit) and the selector of which is of the form bit(i)
where the value of the index i is in the range {0,11}.
Effectively this defines a 12 bit word.

THE BLUE MACHINE

For the purposes of discussion here, let us examine
the structure and description of a simple processor.
The machine chosen is that described by Foster (Fol)
since his description (from a pedagogical point of
view) fits our purposes well.

BLUE is a binary, two's complement, stored program,
fixed word length, parallel, digital computer with
4096 words of 1 pusec co-ordinate addressed core

storage of 16 bits per word. Each word may contain

either a 15 bit integer numeric representation plus
sign, or a 16 bit instruction composed of a 4 bit
operation code and a 12 bit address. No index
registers, no indirect addressing and no interrupt
facilities are included, though as may be seen from
the descriptions, it would not be conceptually
difficult to add these features. The general picture
of BLUE is shown in Figure 2 and the corresponding
representation of the components in the state of the
abstract defining machine is shown in Figure 3. For
the purposes of our discussion here we shall assume
that the external operations of loading the program
counter and starting the operation of BLUE by the
pressing of the appropriate buttons result in the
deposition of the low order contents of the switch
register into the program counter and the setting of
the run flip-flop to RUN (represented by 1) respec-
tively. No specific descriptions of these actions will
be included since these are manual rather than
automatic operations. Foster describes the basic
cycles of the BLUE machine as being composed of two
parts; the FETCH and the EXECUTE cycles. It is assumed
that the STATE flip-flop which defines which cycle is
to be entered next, will be set to F initially, there-
by assuring the correct sequence of operations. The
actions of the FETCH cycle are described in Table 1
(from Fol).

TABLE 1
The Fetch Cycle Elements

Clock
Pulse Action

initiate read-restore 3

+1 + PC Read time
clear MBR j

clear IR .

(MBR) - IR Begin decode
e Restore time

co~NOUL LN

e May change contents
of MAR

The last three pulse times in this sequence are
available for the execution of the various non-memory
referencing instructions such as HLT (halt), JMP (jump)
or CSA (console switches to accumulator), or for the
set up operations necessary for the execution of two
cycle instructions.

Close examination of the description of the first part
of the FETCH cycle (which is common to all BLUE in-
structions) shows that there are at least two opera-
tions occurring simultaneously during pulse times 2
through 4; that is, the action of fetching the instruc-
tion from memory (at a location determined by the
contents of program counter) initiated at pulse time 1
is operational through pulse time 4, at which time the
contents of the memory location are available in the
memory buffer register. Whilst this action is
continuing the other actions of incrementing the-
program counter (time 2), and clearing the MBR and IR
are executed in parallel. During times 5 through 8,
the memory is being restored and thus additional
parallel operations are proceeding during these pulse
times. This verbal and tabular description can be
converted into a VDL instructional system which is
equally expressive:

fetch =
part-2;
register-set,

initiate-read

where

register-set =

clear-ir;
clear-mbr;
inc-pc;
no-op

and
initiate-read =

mem-to-mbr;
no-op;
no-op;
no-op

FIGURE 2

THE BLUE MACHINE

memory address

run
flip-flop instruction

fetch

Jump

register
| core memory

operand
fetch

- state
flip-flop

program
counter

[

switch register

1 \

instruction _ memory buffer
register register

subroutine

load
Jjump

store

COpY accumulator

* execute

Z register
return
results

execute

| arithmetic unit
Y input

45

FIGURE 3

THE VDL OBJECT REPRESENTING THE BLUE MACHINE

£
@ -
s—run
s—-state
s=pc
. o7
: S—SW
©. O

where the instructions no-op are used to show the
relative timing of the two set of instructioms.

In this case it is not clear from the description
of the fetch cycle what actually occurs in the
initiate read operation in BLUE during pulse times
1 through 3, though it is clear that in pulse time
4 the contents of the selected location are placed
in the MBR. This operation can be defined by the
instruction

mem-to-mbr =
s-mbr :word (s-mar(£)) *s-mem(&)

Similarly, the instruction to increment the
program counter may be defined by the group

inc-pc =
s-pcis-pc(g) + 1

Immediately we must question whether this defini-
tion is sufficient. From the point of view of the
programmer, this definition clearly states the
action which BLUE is to take; however, from the
point of view of the designer (or someone else
interested in more details) this definition might
better be expressed in the form

inc-pc =
s-pc:add(s-pc(E),1)

where the function add is to be defined further.
For a programmer this depth of definition may well
be sufficient, but by considering a function to be
equivalent to a logical circuit which could be

s-z-reg

46

S—mem

s-mbr

defined by a logical expression. In any case this
definition can be translated as being represen-
tative of the circuit shown in Figure 4.

FIGURE 4

THE PC INCREMENT SYSTEM

program counterJ

¥

add 1

Once the two instructions which preceed part-2 in
the definition of fetch have been cleared off the
control stack, then the second portion of the
fetch cycle can be initiated. As in the first
cycle this contains two parallel actions; the
decoding of the instruction and the restoration of
the memory. Thus part-2 can be described by the

group
part-2 =
next-state;
decode,
restore

where the decode instruction is expanded into the
sequence

sieve;
mbr-to-ir

and where sieve is the instruction which replaces
itself by the sequence of operations which result
in the execution of the BLUE instruction. This
instruction can be defined by the conditional
expression

sieve =
oct(s-op*s-ir(g))
oct(s-op*s-ir(§))

0 > execute~hlt
1 » execute-add

oct(s-op*s-ir(g))

17 -+ execute-nop

where the selector function (defined in the
abstract syntax of BLUE) s-op selects the
operation code portion of the instruction from
the instruction register (the s-ir component of
the state &). This portion of the instruction is
represented by a tree and therefore true equality
can only be attained if the comperand is also a
tree. However, we have chosen to overcome this,
at this level of definition by the use of the
function oct which we define to develop the octal
equivalent of the tree representation. This
object can then be compared with the octal
operation codes. To be more precise at a lower
level of definition it would be necessary to
describe this sieving operation by logical
expressions of the form

bit(15)ss-ir(g) = 0 &
bit(l4)es-ir(g) = 1
bit(13)+s-ir(g) =
bit(12) +s-ir(E)

&
1 » execute-jmp

oo

which more precisely mirrors the structure of the
binary decoding tree for BLUE.

At the end of the fetch cycle the STATE flip-flop
is set to indicate which of the possible two
states is to be entered next; E indicates the
execute cycle, F indicates the fetch cycle. Thus
the instruction next-state which is the final
instruction in part-2 is the switch which deter-
mines where the processing should continue. An
alternative means of specifying the sequence of
steps in the fetch cycle which are directly
related to the pulse times would be to define the
fetch instruction as a sequence of instructions
each of which is related to the pulse time and
which then leaves the next pulse time operation as
the next instruction to be executed. That is,

1. fetch =

pulse-time-1
pulse-time-1 =
pulse-time-2;
initiate-read
pulse-time-2 =
pulse-time-3;
inc-pc
pulse-time-3 =
pulse-time-4;
clear-mbr
pulse-time-4 =
pulse-time-5;
clear-ir,
mem-mbxr

2.

3.

4,

5.

and so on.

47

This scheme would have the advantage (from the
point of view of the reader) that the actions are
directly related to the pulse times and the dummy
no-op instructions are obviated.

SUMMARY

The description and design of BLUE was sufficient
to indicate the ability of the VDL techniques for
describing the operations of a processor. However
this was an exercise in the description of an
already existing machine and thus no untoward
problems came to light. If VDL were to be used as
a design tool then some directions are necessary
to derive an implementation from a description.
Obviously some simple comparisons can be drawn
between instructions and the structure of the
machine; that is, for example, state-modifying
instructions represent data paths between elements
of the machine. Macro-expansion definitions can
be interpreted in one of two manners; either an
expansion is the passage from one level of
description to another, as in the description of
the inc-pc instruction, or it represents the
sequencing of operations which current state of
the machine, as in the case of the instruction
decode. The precise manner of discriminating
between these two uses is not entirely clear at
this time and requires further investigation.

In the version of VDL which is most general, and
which has been used for the description of
programming languages, the instructions are
accompanied by a set of arguments which are passed
through the control stack. Such arguments, in a
processor, require some medium of transmission and
can be construed to be indicative of the need for
a register within the prototype. That is, if a
definitional instruction cannot be expressed with-
out the use of additional data which is passed
through the argument list, then an additional
register is required in the prototype together
with the appropriate data paths.

This presentation has shown the many levels of
description which can be served by a single
unified definitional schema and has emphasized
earlier that the schema is a continuum from the
instruction level of definition to the abstract
machine which underlies the system. Work is
already in progress to develop the properties of
the definitional system (see Lel, ch.2) and to
develop means for the validation of definitioms.

Finally, it must be recognized that not only has
VDL the power to be a definitional system for the
description of processors, but also is capable of
providing a common base for the definition of
other descriptive techniques. This capability may
well provide the means by which the equiwalence of
descriptive elements of other languages can be
proved, and further will not require the abandon-
ment of other descriptive techniques merely to
satisfy the ambition of a unified approach to
processor description.

REFERENCES

Fol Foster, C.C., Computer Architecture, Van
Nostrand Reinhold Pub. Co.,
New York, NY, 1970, Chapter 5.

Lel Lee, J.A.N., The Formal Definition of the
BASIC Language, The Computer
Journal, Vol. 15, No. 1,
pp 37-41.

Lul Lucas, P. & Walk, K., On the Formal
Description of PL/I,
Ann. Rev. in Automatic
Prog., Vol. 6., Pt.3,
1969, Pergammon Press.

Mcl McCarthy, J., Towards a Mathematical Theory
of Computation, Poc. IFIP
Congress 1962, North Holland
Publ. Co., Amsterdam, 1962.

48

A METHODOLOGY FOR PARALLEL
PROCESSING DESIGN TRADEOFFS

Charles H. Radoy
George P. Copeland, Jr.
G. J. Lipovski
University of Florida

Abstract

A methodology is developed for determining how
much parallelism is optimal if a given job stream is to
be executed without multiprogramming. Qualitative de-
sign tradeoffs are inferred from the cost-performance
effect of parallelism on different hardware subsystems.
Measures of software parallelism are analytically re-
lated to measures of hardware performance. It is shown
that an increase in hardware parallelism may be desir-
able even though it causes an increase in job process-
ing cost and/or a decrease in hardware efficiency.

INTRODUCTION

There have been numerous papers written about the
impact of LSI on computer architecture. Many authors
have pointed out that the technology of the inexpensive
computer-on-a—chip will make systems with a high degree
of parallel processing and multiprocessing economically
feasible (5,6,7,12). Kuck has proposed that, by decom-
posing a program into its concurrently executable parts,
these highly parallel systems will be economically
viable even when used to execute one program at a time
(monoprogramming) (7). On the other hand, Chen has
demonstrated that highly parallel systems are doomed to
be very inefficient, and he has suggested that multi-
programming is mandatory if such systems are to be prac-
tical (3). This apparent disagreement stimulated the
analysis made in this paper. We do not claim to have
resolved this conflict in favor of one or the other of
these authors. In fact, our inquiry is limited to an
analysis of monoprogramming applications. However, we
do feel that we have developed a methodology for deter-
mining how much parallelism (if any) is optimal if a
given job stream is to be executed without use of
multiprogramming.

In this methodology we will emphasize the consid-
eration of what the user is willing to pay for a parti-
cular computational service. In Section I, we explain
how we think this consideration can be applied in the
design process. In Section II, we derive certain
qualitative design guidelines that can be inferred from
this consideration. These guidelines may be obvious to
the experienced designer, but we feel that it is signi-
ficant that they can all be inferred from this one
consideration.

The performance of a parallel hardware system will
be considerably influenced by the parallelism inherent
in the software. In Section III, we present some
possible measures of software parallelism and derive
expressions relating these measures to measures of
hardware performance. In Section IV, we show how one

51

of these expressions can be used in determining the
optimal degree of hardware parallelism.

Section T

Many different measures of computer performance
have been suggested and used. The most common measures
used for general purpose computer applications are
throughput rate, response time and equipment utiliza-
tion. Systems designed for less than general purpose
use may be evaluated against other measures such as the
mean time for high priority jobs to get processed or
the mean job starting delay (9). In comparing dif-
ferent hardware equipment, the price of the unit can be
included in defining the performance measure, resulting
in measures such as price per instruction ratio and
price per register ratio (12). Other authors have
suggested that the performance measure should not only
include cost, but must also include a measure of the
effectiveness with which the system provides service to
the user (10). We feel that, for the general user, a
good measure of the quality of service provided is the
time required to process his job. Thus, a computer
performance measure should include the cost of process-
ing the job and the time required to do that processing.
This is not a new idea. Lehman used these two factors
when he suggested that the performance of multiprocess-—
ing systems be compared by computing the product of the
cost of processing and the job throughput time (8).
(Using this measure, the best system would of course
have the least product.)

One can, however, argue that Lehman's choice of
the product of these two factors is arbitrary; there is
no a priori reason for selecting the product over any
other functional relation between these two quantities.
In fact, we claim that a system designer should not
work with a simple functional relationship of this sort.
The following discussion explains why this is so.

Consider a user who has a particular computational
job that he wants done. Assuming that he has some
experience in running his job on various systems, he
will have a pretty good idea of what he is willing to
pay to get the job done. Also, what he is willing to
pay will depend somewhat on how long he must wait for
his results. From time to time, the job turnaround
time that he requires may vary, and as it varies, what
he is willing to pay may also vary. Figure 1 illus-
trates the general way in which the user will relate
these two factors. This figure is not meant to be
drawn against any scale; it is just meant to illus-
trate that this curve will have three distinct regions.
In Region I, the user is telling us that a further de-
crease in his job's processing time is of no value to

him, and he will not pay more for this better service.
In Region II, he is willing to trade cost for "service"
in some manner. In Region III, the processing time is
so long that the service is of no practical value to
this user.

In Figure 2, points A, B, C, D, E and F represent
hypothetical hardware executions of our user's job.
They each represent a different system because the
same system would always run the job for the same cost
with the same processing time. (For simplicity we are
not considering systems where interactions with other
jobs may influence our job's processing time.) Points
A and F represent hardware solutions which are unac-
ceptable to our user. Points B and E are acceptable
points, and it is important to note that they are
equally acceptable to the user; he does not prefer one
of these over the other even though their respective
costs and processing times may be markedly different.
Points C and D are both preferable to points B and E.
(e.g. Since the user is willing to pay "B's" price, he
finds "C's" lower price for the same service time pre-
ferable.)

FIGURE 1
' |
I I
1 | II | 111
JOB |
COST I |
I I
! |
| |
JOB PROCESSING TIME
FIGURE 2
A
B
C
JOB
COST
D
F

JOB PROCESSING TIME

Having determined this cost-service tradeoff
curve for our particular user, we are unable to say
whether or not he would prefer system C to system D.
One might suggest that we interrogate our user further
concerning his preferences in the region of the graph

52

below the tradeoff curve. Since we intend that our
hypothetical user be representative of a potential mar-
ket of users, this interrogation would really amount to
an extensive market survey. Furthermore, points C and
D cannot represent existing systems. Our knowledgeable
user would naturally have drawn the curve of what he
was willing to pay, in such a way that all existing
gstems would lie either on or above it. Points C and

D can, however, represent designed systems which have
not yet been marketed. But, the question of produc-
ing system C or D is basically a marketing decision.

The job of the system designer is to produce a de-
sign such as system C or D, either of which is clearly
better than all existing systems. Thus, the designer
needs this curve and a methodology for producing de-
signs which will have "operating points" below it. A
valid performance measure could provide this tradeoff
curve, but clearly such a measure would not be a sim-
ple functional relationship that one could postulate

a priori.

So far, we have limited our discussion to the case
of one hypothetical user with one job. If we were de-
signing a system for only one user, a design with a
projected operating characteristic such as C or D would
clearly be a viable project. But a truly viable pro-
duct would have to provide satisfactory service to many
users, and for each user (indeed, for each different
job!) there will be a different tradeoff curve.

In order to limit this multiplicity of tradeoff
curves, we propose that both the quantities cost-per-
job and processing-time-per-job be normalized by di-
viding them by a measure of the total "work" required
by the job. (The quantification of "work" which we
propose is discussed in Section III). For instance, if
a user has a job that basically consists of two identi-
cal subjobs, he will expect the job to cost twice as
much and require twice as much time to execute as would
one of the subjobs. Since the job contains twice as
much work as the subjob, the normalized curves for the
job and the subjob will coincide. Furthermore, since
the curve is essentially determined by the prevailing
market of available computational service, this nor-
malized curve, for a particular type of computation,
should not vary appreciably from user to user. Thus,
some type of normalization of these curves is required,
and we think that this normalization factor is a
reasonable one.

Consequently, a curve of this nature can be ob-
tained and it can be of great aid to the designer.
For instance, if an existing system has an operating
point such as point B in Figure 2 (i.e., it is in Re-
gion I of Figure I), the design of that system can be
improved.only by a change that will reduce the job
processing cost. On the other hand, if one is trying
to improve system "E", reducing job processing time is
as important as reducing job cost. In the next section
we will show hoew this curve can be used in determining
the relative merit of different hardware changes that
might be made to an existing design.

Section II

We will now briefly develop some qualitative hard-
ware design guidelines that can be inferred from the
general shape of the user's tradeoff curve discussed
in Section I. In this development we will employ the
terminology and notation suggested by Bell in cate-
gorizing hardware functional modules as data operators
(D), controllers (K), etc. (2). We will consider three
types of changes that could be made in a design: (1)
change of technology used, (2) change of amount of

parallelism in K and (3) change of parallelism in D.

The shape of the curve in Figures 1 and 2 tells
us that any design change that both reduces the cost
and reduces the processing time will be a good one.
(0f course, intuition or common sense could have told
us that!) However, if we are not able to reduce both
these factors simultaneously, we may still be able to
improve the design. If we know the present design re-
sults in an operating point in Region I of Figure 1, a
design change which reduces the cost of processing will
be good even if it increases the processing time. In
Region II, a change which reduces processing time while
increasing the cost may be desirable.

The use of faster more expensive technology will
reduce processing time and may or may not reduce pro-
cessing cost. Thus, it will in general be a valid
design change in Region II, but not in Region I. (In
fact, in Region I, the use of slower, less expensive
technology will be desirable if it will reduce the
cost of processing.)

The use of parallel K (e.g. multiprocessing) will
reduce the processing time but will usually not reduce
the cost of processing. Thus, increasing the paral-
lelism of K may be a good design change in Region II,
while decreasing it may be called for in Region I.

Increasing the parallelism of D while keeping K
non-parallel will, up to a point, decrease the cost of
processing. The simple example of a parallel adder
explains why this is so. As long as the width of the
adder can be effectively utilized, doubling the width
will halve the add time. But, doubling the width will
not double the hardware cost since the cost of the con-
troller will not change. Thus, the processing cost
will decrease. At some point, however, due to ineffec-—
tive use of the increased width, the cost increase will
not be offset by the decrease in average add time, and
the processing cost will increase. Consequently, with
respect to processing cost, there is some optimal de-
gree of parallelism in D. This will also be the opti-
mal degree of D parallelism for a design in Region I
of Figure 1. However, in Region II, more parallelism
than this "optimal" amount may be desirable.

We note that Bell's entire approach of dividing a
system into components M, L, K, D, and so on should be
useful in analyzing costs. Just as we have evaluated
the cost of serial/parallel adders ome could evaluate
larger systems by the effect of parallelism on each
division of the system. The analysis in this section
has been qualitative. In the remainder of this paper,
we will develop some quantitative relationships which,
when used with the user tradeoff curve, can be helpful
in determining the optimal degree of hardware paral-
lelism.

Section III

The optimal degree of hardware parallelism will,
of course, be dependent on the parallelism of the job
for which it is designed. In discussing job parallel-
ism, we will employ the job "Space-time" diagram sug-
gested by Chen (3). Figure 3 illustrates the space-
time diagram of a hypothetical job. The "widths" W,
represent the relative parallelism of the job during
the time interval ti. A machine with no parallelism

i time units to process a given

Thus we define the total work associated with

would require E:Wit
i

job.

53

job to be Zwiti. This is the factor which we will
i

use to normalize our job-cost versus job-processing-

time graph. (Thus, the normalized cost of a job will

be cost/ E:Witi.)

1
FIGURE 3
W
JOB 2
"wIDm'l
W Y3
I t, loey |
TIME

An intuitively appealing way to quantify job
parallelism would be: parallelism = time-average job
"width" or

oy = W, (r/) = Xwie, [Dty
i J i i

Using this measure, the minimum possible parallelism
is one, and there is no maximum. This definition of
parallelism can be modified so that it takes on values
between zero and one by defining

Py = LWty /max (W) Dty
i i i
In a machine having parallelism equal to max (Wi), this
definition would correspond to i
Py = Space-time used / Space-time available

Chen has suggested that job parallelism be defined as,

_ Amount of space-time showing parallelism
total space-time of job

P3

Letting tg be the total time that the job has no paral-

lelism, we have
Py = Z LD DL AN
i#s i

Chen has also defined machine efficiency (n) to be

total space-time of job
total space-time swept by hardware

n =
As we increase the parallelism "width" (N) of a
machine, the normalized processing time for a job, T,
will decrease until N = max (Wi). For N 2 max (wi),
i i
T will have a minimum value.

Tmin = Z:ti / 2.:W.t.
1 1 11

Thus, we see,

T

min 1/ pl

For T = Tmin’ the maximum efficiency occurs when

N = max (Wi). If we call this maximum efficiency ngs
i

we have
n, = Xi:Witi / m«:x W) ?ti

°or Mg = Py
Thus if T =T
nfpz

Consequently, for highly parallel hardware systems
(i.e. where N > max (Wi))’ the software measures y

and P, can yield quantitative information about the
performance of the system.

The following analysis shows that, if
N < < max (Wi), other quantitative relationships can

If a machine has a parallelism "width" of
W.-1
N, it will require the interger part of (—%—— + 1)

be derived.

"passes" to process the ith parallel section of the
job. If we approximate this number of passes to be
equal to Wi/N’ our normalized total processing time is,

_ 1
T=(t +3 > LA ZWiti
i#s i
We note that,
1 t:s
T == P + ———
N "3 Zwiti
i
Also,
(1-py) =1 - Z Wi,/ Zwiti
i#s i
(1-py) = (Z.witi - 'Z wie) / Zwiti
i i#s i
Gopp) = &, | Dyt
Thus,

=1 -
T =5 Pyt (1-py)
We also note that

n=2We /N (g +§ 2 We)
i i#s

Thus,

n = 1/NT = 1/[93 + N (1-py)]

Consequently, using Chen's parallelism measure,
we may easily approximate the normalized job process-
ing time required by a machine having N levels of
parallelism. We now have an analytical means of map-
ping a job stream containing a range of parallelism
into a distribution of normalized processing times.
In the next section we will discuss how this will help
us determine the optimal degree of hardware parallelism.

54

Section IV_

In this section we will illustrate how the user
cost-processing time tradeoff curve can be used to de-
termine the optimal degree of hardware parallelism. We
will keep design factors such as the technology used
fixed and observe the effect on job cost and job pro-
cessing time caused by varying the degree of hardware
parallelism. We will then be able to select the "best"
degree of parallelism for a particular job by observing
where these points lie with respect to the user's trade-
off curve.

The normalized cost of processing a job is,
Cost = HT

where H is the cost of the system per unit time (rental
cost), and T is the normalized processing time. In
parallel hardware systems, H is of course a function of
the amount of parallelism in the system (N). If a
system is "totally" parallel in the sense that it has N
of all its functional modules (and if the cost of sys-
tem software is negligible), we might expect the rent
associated with this hardware to increase linearly
with N, In that case,

Cost = RNT

where R is the cost per unit time of the basic, non-
parallel module.

Many parallel systems are, however, not totally
parallel. Parallel processing systems such as the
ILLIAC IV and STARAN consist of parallel execution
elements under the control of a single instruction de-
coder (1,11). Doubling the degree of parallelism in
such a system does not double its total cost. Also,
we can expect that system software costs will not in-
crease in proportion to the degree of hardware paral-
lelism. Consequently, a cost which increases linearly
with N is probably a "worst case" assumption. Perhaps
a more realistic assumption would be to use Grosch's
Law which states that the system cost will increase in
proportion to the square root of the power of the pro-
cessor. Since the amount of parallelism is a measure
of the power of the processor, we have,

Cost = RN%T

We do not claim that either of these simple for-
mulas is valid for all cases. We will use them merely
to demonstrate the methodology which we are developing
in this section. Presumably, the designer will be able
to fairly accurately estimate the way in which system
cost will vary with N for the particular type of
parallelism he is considering. In employing this de-
sign methodology, he should of course use his estimate
rather than one of these simple formulas.

Figure 4 pertains to the formula

Cost = RN%T
while Figure 5 illustrates the situation

Cost RNT
In each of these figures, the degree of hardware paral-
lelism is varied from one to eight, and the degree of
job parallelism (as measured by Chen's parallelism de-
finition) is varied from 0.5 to 0.95.

Once a designer has obtained a graph of this sort

based on his estimates of system cost and job stream
parallelism, he can superimpose his user's cost versus

Figure 4

3R [
2R |
R"‘
Cost
! 1) 1] 1 |] |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Processing Time (T)
Figure 5
X : Py = .50
8R N=8
®: Py = .80
O: Py = .85
A p, = .90
R |3°3=95
Py .
4R | =4
Possible Tradeoff Curve
2R N=2
=1

0.1 0.2 0.3 0.4

0.5

0.6

0.7

Normalized Processing Time (T)

processing time tradeoff curve. Having done this, he
can immediately identify which hardware-software
parallelism combinations will correspond to viable pro-
ducts. The selection of the "best'" of these viable
combinations may or may not be trivial.

If we visualize cost-time tradeoff curves of the
type illustrated in Figure 1 superimposed on Figures 4
and 5, we can make the following conclusions.

(1) If the non-parallel hardware design produces
an "operating point" in Region I of Figure 1., hardware
parallelism will be justified only if the software is
highly parallel and if cost of the system does not in-
crease linearly with the degree of parallelism.

(2) 1If the non-parallel hardware design produces
an operating point in Region II of Figure 1, some de-
gree of parallelism may be justified even if the soft-
ware is not highly parallel or even if the system cost
increases linearly with the degree of hardware paral-
lelism. (e.g. for the tradeoff curve in Figure 5,

N = 2 or 4 would be a good design if Py > .80).

55

(3) If the non-parallel hardware design produces
an operating point in Region III, some degree of hard-
ware parallelism is mandatory.

(4) As the degree of hardware parallelism is in-
creased, the "spread" of the operating points for a
job stream of differing parallelism also increased.
Thus, if one has a job stream encompassing a substan-
tial spread of software parallelism, it might be de-
sirable to divide it into subsets having small paral-
lelism variation and then determine the best degree of
hardware parallelism for each subset.

As a final point, we wish to make some observations
relative to the issue of hardware efficiency. 1In Sec-
tion III, we derived the relationship

n = 1/IN (1-p4) + p,]

As Chen points out, this efficiency measure drops
rapidly with increasing N, even if Py is high. For
instance, if N = 8 and p, = .8, n = J42. One would
think that a system that“was only 42% efficient would

be a poor design and that this combination of N = 8
and p, = .8 could be rejected on that basis. However,
Figuré 4 illustrates that, using the design methodol-
ogy outlined in this paper, this inefficient design
might be the best system from the user's point of view.
Thus, we feel that even though Chen's definition of
efficiency is reasonable, one should not use it as a
performance measure in determining if a design is via-
ble. (Of course, we have restricted our investigation
to monoprogramming systems. Therefore we do not claim
that this comment is necessarily applicable to multi-
programming systems for which high efficiency is a
dominant design goal.)

SUMMARY

The consideration of the user’'s cost-performance
tradeoff curve has enabled us to present a unified
approach to the derivation of important architectural
design guidelines. We have derived relationships be-
tween "'software parallelism'" and the performance of
systems with different degrees of hardware parallelism.
Using these relationships, we have shown that situa-
tions may arise where an increase in hardware paral-
lelism is desirable even though it causes an increase
in the job processing cost. Also, we have shown that,
for a non-multiprogrammed system, the optimal system
may exhibit a rather low hardware efficiency.

REFERENCES
1. Barnes, G., et.al., "The ILLIAC IV Computer,"

IEEE Trans. Comput., Vol. C-17, pp. 746-757, Aug.
68.

2. Bell, G., Newell, A., Computer Structures: Readings

and Examples, McGraw-Hill, 1971.

3. Chen, T., "Parallelism, Pipelining and Computer
Efficiency," Computer Design, pp. 69-74, Jan. 1971.

4. Chen, T., "Unconventional Superspeed Computer Sys-—
tems," Proc. SJCC 72, Vol. 38, pp. 365-371.

5. Chen, T., "Distributed Intelligence for User-ori-
: ented Computing," Proc. FJCC 72, Vol. 41, pp. 1049-
1056.

6. Foster, C., "A View of Computer Architecture,"
Com. ACM, Vol. 15, pp. 557-565, July 1972.

7. Kuck, D., "Supercomputers for Ordinary Users,"
Proc. FJCC 72, Vol. 41, Part I, pp. 213-220.

8. Lehman, M., "A Survey of Problems and Preliminary
Results Concerning Parallel Processing and Parallel
Processors," Proc. IEEE, Vol. 54, pp. 1889-1901,
Dec. 66.

9. Mallach, E., "Job-Mix Modeling and System Analysis
of an Aerospace Multiprocessor," IEEE Trans. Com—
put., Vol. C-21, pp. 446-454, May 72.

10. Rothenberg, D., "An Efficiency Model and A Per-
formance Function for an Information Retrieval
System," Information Storage Retrieval, Vol. 5,
pp. 109-122, Oct. 69.

11. Rudolph, J., "A Production Implementation of an
Associative Array Processor - STARAN," Proc. FJCC
72, Vol. 41, Part I, pp. 229-241.

12. Schultz, G., Holt, R., McFarland, H., "A Guide to
Using LSI Microprocessors," Computer, June 73,
pp. 13-19.

56

DAP—A DISTRIBUTED ARRAY PROCESSOR

Dr. S. F. Reddaway
Language and Processor Department
Research and Advanced Development Centre
International Computers Limited

ABSTRACT

An array of very simple processing elements is des-
cribed each with a local semiconductor store. The
array may also be used as main storage.

Bit-organisation gives great flexibility, including the
minimisation of word length. Use of MSI and LSI is
helped by the simplicity of the serial design. Using
15-bit fixed point, the theoretical performance of a
72 x 128 array is about 108 multiplications or 109
additions per second. Comparisons are made with other
architectures.

Meteorology is considered as an application. It is
attractive to have the whole problem in the array

storage.

1. INTRODUCTION

This paper describes a design study of an array of
elements that can be used either as a "Single-
Tnstruction, Multiple-Data stream" (SIMD) processor or
as a store. Architectural features of interest are:
(a) the use of serial arithmetic to simplify processor
logic and optimise store utilisation; (b) an attempt
to avoid I/O bottlenecks by mapping complete problems
into the array, without relying on overlay techniques;
(c) provision for using all or part of the array as a
store when not performing its specialised processing
functions; (d) the close integration of storage and
logic.

The main attractions of array-type SIMD structures are:
(a) high absolute performance on certain problems of
importance; (b) high performance/cost, partly result-
ing from using common control logic.

Several examples of this type of architecture have been
proposed (1-8) and applications have been suggested in,
for example, meteorology, plasma physics and linear
programming. Most structures have a single control
unit that broadcasts instructions to a regular array of
processing elements (PEs) each with individual storage
and an arithmetic unit (AU).

Flymn (2) points out four factors that degrade the
performance from the theoretical figure given by
"Number of PEs times PE performance": (a) Each PE
has direct access only to a limited region of store,
and excess time may be taken accessing other regions;
(b) Mapping the problem onto the array may leave some
PBEs unused; (c) Owing to overheads in preparing in-
structions for the array, there may be times when the
whole array is idle; (ds While dealing with singular-
ities or boundary conditions the majority of PEs are
idle.

These factors are acknowledged to reduce the applica-
bility of such an array. In the present design att~
empts have been made to mitigate their effect, but the
over-riding consideration has been to simplify the PE
design; this has been done to the extent that the

theoretical performance is very high, in spite of the
AU cost being small compared with that of the storage.
In effect, therefore, the store is being adapted to an
array processing function. This may be contrasted
with attempts to adapt the processor to array operations
(e.g. CDC STAR).

A dispersed system, i.e. one with many PEs each with
local memory, has potential cost and speed advantages
deriving from: (a) reduced "cable" delays; (b) re-
duced address transforming and checking; (c) faster
actual access; (d) simplified data routing and priority
logic.

A number of potential PE designs of varying parallelism
have been considered for building arrays of the same
theoretical performance, with the following general
results.

The gate count varies with the degree of internal PE
parallelism. A purely serial PE has considerable
advantages particularly for low precision work.

Serial PEs have fewer comnections at all packaging
levels.

The extreme simplicity of serial PEs permits the very
effective use of batch fabrication and testing techniques
and keeps hardware development rapid and cheap. The
small number of circuit and board types helps develop-
ment, production, spares holding and maintenance.

Serial designs have exceptional functional flexibility;
very few decisions are built into the hardware. However,
fully indexed addressing is expensive.

The design is somewhat similar to SOLOMON 1 (8); the
main differences stem from the exploitation of modern
technology.

2. THE ARRAY
2.1 CONFIGURATION
FIGURE 1. M.C.U. DIAGRAM

ROW DATA LINES

WIDTH
e
I N
COLUMN | AR STORE HIGHWAY
SELECT (PARENT MACHINE)

MCU INDEX
REGISTERS INSTRUCTION
BUFFER
TCN L],T
— — -
COLUMN
ADDRESS

61

Figure 1 is an overall configuration diagram. The
rectangular array has an essentially two dimensional
nearest neighbour connectivity, and has one dimension
matched to the store highway of a conventional computer
(the "parent" machine). This connection provides the
route for loading both data and array instructions into
the array storage for array processing; it also permits
the parent machine to use the array storage as its own
main storage. Input/output is done by the parent
machine.

The Main Control Unit (MCU) has: (a) a conventional
ingtruction fetching arrangement; (b) an instruction
buffer whose purpose will be described later; and (c)
a set of registers, many of which can be matched to the
array by row or column for a variety of purposes, one
of which is indexing. For sizable arrays the MCU is
a very small fraction of the total hardware.

After loading, the bits of a word are spread along a
column of PEs, and this method of holding data is termed
Main Store mode. Another method, termed Array mode,
stores all the bits of a word in a single PE. This is

more attractive for processing large arrays, but requires

initial and final transformation of the data from and
to Main Store mode; this is done inside the array.

2.2 THE PE

FIGURE 2. PROCESSING ELEMENT

}rm NEIGHBOURS (5)

ROUTING
MULTIPLEXOR

ROW INVERSION->—,] [~ ——=—-==---=
COLUMN INVERSION 1

13-15 >
1080 b»
CLOCK — [:d
13
LY o d
s> o I
£ R B |0 | ke
3P
2f> 7 Q
981 >
o>
3210
ofp SELECT {;‘ 1 1
CARRY SELECT 1
0fP ENABLE 3
NAN|
13108 2

2 ADDRESS
BITS

INDEX/NOT INDEX' MX I AND

EN OUTPUT MX

WE D1y
COLUMN SELECT> — —|— — —f — — — — ——en

xx

4096x 1
(4 owics)

ROW &
COLUMN p—
ADDRESS BITS | ——]

ROW /COI.UMN SELECT

OTHER
ADDRESS
BITS —

L 4

A
COLUMN RESPONSE <— N
"_{ZE} OPHER L—» 1o NEIGHBOURS

—_——

AND

ROW RESPONSE

Figure 2 is a PE diagram. The registers are all one-
bit; P and Q are for operands, C is the carry register,
A1 and A2 are activity bits that can prevent writing to

62

store, and B1 and B2 can supply 2 address bits. The
routing multiplexor can select a bit from the PE's own
store, or from a neighbour's store, for writing to a
register; selecting zero and controlling its inversion
permits data input from outside the array (for example,
an MCU register). The sum, carry, data input or con-
tents of Q can be output from the logic, usually to the
store. The store contents can be output externally
(to, for example, an MCU register) via the gates at the
bottom of Figure 2; +the bits output can be either from
a selected column of PEs, or the logical AND of rows
(or colums) of PEs. One use for the latter is for a
test over all PEs.

The fifth "neighbour" connection is to the PE half a
row away in the same row; this permits both faster
mass movement of data around the array, and a "Z%D"

PE geometry. Bit patterns in one or two MCU registers
can be applied to the "inversion" inputs to produce a
veto selective by rows a.nd/or columns on writing to PE
stores. Figure 2 shows 4 address bits capable of
being selected by row or column; what indexing
facilities should be provided is still an area of
debate.

Some differences from the PE in (7) ares ga.) more
row/column symmetry; (b) a latch feature (shown on
the P register) for associative comparisons; (c) data
can be shifted directly between PEs without using the
store; Edg input data can be loaded directly into
store; e) there is a ripple carry path between

PEs for Main Store mode arithmetic; (f) the bipolar
store is now 4K instead of 2K.

It is intended to package 2 PEs minus their stores and
routing multiplexors in one 24 pin integrated circuit.

2.3 EDGE CONNECTIONS

For instructions that involve neighbours, it is the
array geometry that determines what happens at the
array edges. Rows or columns may be: (a) cyclic,
with their ends connected together; (b) linear, with
a continuation onto a neighbouring line; (c) as (b)
but with the extreme ends comnected; or (d) plane,
with external data applied at the relevant edge. In
addition, a row may be considered in two halves (23D
geometry). There are thus 32 geometries, and they are
set by program.

2.4 CONSTRUCTION

A board would contain a 6 x 4 PE section with 4K bits/
PE; there would be 137 external connections and 173
ICs, 96 of them for storage. The array can be viewed
as doing processing in the store, and costs only about
25% more than ordinary storage made out of the same
technology. A platter would contain a 36 x 16 PE
section; the number 36, and multiples of it, match
standard store highways. "Folding" of the array
makes connections between the extreme edges short.

The economy obtained by the dense packing of the
integrated circuits is the result of the favourable
marriage of space-limited (or power-dissipation
limited) storage and pin-limited logic.

2.5 TIMING

Because most micro~instructions do not involve a
response from the array, the equalisation, rather than
minimisation, of delays is important. Even with a

comparatively slow logic technolo the micro-
instruction rate should be about ?Xé MHz; the storage

element delays are the biggest factor, and this illus-
trates how the array can exploit bipolar store speeds,
unlike a large conventional machine.

2.6 FUNCTIONS

In (7) the basis of the micro-programming notation is
given and it is shown how Array mode fixed and floating
point instructions are built-up. Bit organisation
means that only necessary work need be done; for
example, multiplication only needs to calculate a
single length result.

Code for execution must be compiled down to the one-bit
micro-instructions, except that for working regularly
along the bits of words a short loop can be comstructed.
This loop is held in the instruction buffer, so that no
further ingtruction fetching from the array storage is
needed during execution of the loop. This feature
reduces the instruction fetching overhead from 100% to
about 20%. Subroutine construction will be possible.

2.7 PERFORMANCE
For array mode, fractional fixed point multiplication
takes about
n (%n + 1
2

micro-instructions where n is the word length;
point addition takes little more than 3n micro-
instructions. Floating point takes a little longer
for multiplication, and considerably longer for
addition (see (7)). 20-bit multiplication takes
about 730 micro-instructions plus about 160 cycles for
micro-instruction fetching, and at 5% MHz would take
about 160 psec; 20-bit addition takes about 12 psec.
Multiplication of an array by a common number can be
about four times faster.

fixed

Main store mode arithmetic is faster than Array mode
for smaller arrays. In terms of absolute speed,
addition is about 11 times faster and multiplication,
using a carry save technique ending with a ripple carry,
is about six times faster for 20 bit precision (the
latter factor increases with the precision).

FIGURE 3. D.A.P. PERFORMANCE

1000

MiPS MULTIPLICATION (72 x 128
BIASED PE ARRAY
(20-81T WORDS) ARRAY MODE

0% 10

104
PARALLEL DATA STREAMS

1000

The user has three modes of working at his disposal:
the parent machine for scalar working, Main Store mode
for small arrays and Array mode for large arrays.
Figure 3 shows roughly what is possible in the three
modes; the useful processing rate in Million Instruc-
tions (or, more accurately, results) Per Second (MIPS)

63

is plotted against the number of parallel data streams
for the type of computing indicated and a 9200 PE array.
Only the top ends of the sloping lines depend on array
size. The dashed line shows the similar graph for a
powerful vector machine (there are many other differ—
ences between the two types of machine).

The overall performance depends on the application and
programmer skill.

2.8 A COMPARISON

ILLIAC IV is a well known machine, so a brief com-
parison is attempted with Array mode, assuming the
problem parallelism is sufficient to occupy either
machine. Many differences are not easily quantifiable,
but as a starting point the main assumptions for a
numerical comparison are given in Figure 4. The

first four lines give the instruction mix; B is the
number of bits precision for the serial design, which
has no separate store acesses because all functions are
store-to-store. P is the clock period (180 nsec).

20% is subtracted from the ILLIAC IV totals to allow
for instruction overlap.

FIGURE 4. DESIGN COMPARTISON

ILLIAC IV ASSUMPTIONS

INSTRUCTION MIX AND TIMINGS:

ItLac v
4 A Y
SERIAL SINGLE DOUBLE TRIPLE
DESIGN PRECISION | PRECISION | PRECISION
i ADD [SUBTRACT {2+38) P o-128 o-25 057 prec
| MULTIPLY (48+1-582)P | oO-25 [} 2-07 psec
2 STORE ACCESSESS o 0-325 065 1-0? Hsec
| MODE SETTING (Etc) 4P 0-05 0-05 0-05 psec
TOTAL (6+78 +1-583)p| 075 1.45 3.557 | wsec
TotAL -20% 0-6 1416 2-87 psec
MANTISSA 25 49 73 BITS
EXPONENT 7 15 (23) BITS
"USEFUL" EXPONENT 4 6 8 BITS

LOGIC [PE.
ILLIAC IV ~12000 FAST ECL GATES
SERIAL DESIGN ~60 TTL GATES
I FAST ECL = 2TTL GATES
RATIO = 200 x 2 =400

Figure 5 compares the hardware required to build an
array of given performance for words of a particular
precision. Logic and storage have equal weight;
Figure 4 gives the gates/PE ratio and the storage
comparison involves an estimate of the unnecessary
bits in the ILLIAC IV word. The graph would favour
ILLIAC IV only for working exclusively with 46-49 pit
precision. At low precisions serial PEs have a very
big advantage.

Such numerical comparisons are of only limited value.
For example, the vertical scale of Figure 5 would be
multiplied by about 4 if integrated circuit count were
used as a hardware measure. Other factors such as
hardware simplicity and repetition, pin counts and
functional flexibility are equally important.

2.9 EXAMPLE OF STORAGE ECONOMY

For problems with large amounts of data, storage
economy is important, particularly if it permits
storing the complete problem in the array. The user
can apply various tricks. As an example, consider
three dimensional field problems. In order to prevent
physical "truncation" errors, programs are designed so

FIGURE 5. COMPARTSON WITH ILLIAC IV
40
ILLIAC I¥ VS. SERIAL DESIGN
s (FOR SAME PERFORMANCE)
3.0
2.5
20
LoGic
+ |
STORAGE
15 0N
N
\\
| S
1o -l
|
|
O-5 T T T T
) 30 40 s0 60
PRECISION (8ITS)

that differences between neighbouring variables require
fewer significant bits than the variables themselves.
~If variables have to be held simultaneously for two
time steps, then, for example, they can be grouped into
sets of 16 nearest neighbours in space and time (2 x 2
x 2 x 2), and held as follows: (a) a short floating
point number close to the maximum of the group (maybe
a 4-bit mantissa and 3-bit exponent); and (b) 16
differences in block floating point (maybe 12-bit
mantissas and a common 2-bit block exponent). This
results in 12.6 bits/variable and is roughly equivalent
to floating point with a 15-bit mantissa and 3-bit
exponent, i.e. a gain of nearly 50%; other machines
require floating point variables to occupy up to 64
bits, i.e. up to 5 times more.

3. METEOROLOGY AS AN APPLICATION

This is considered more fully in (7). Meteorology
includes both simulation experiments and forecasting,
and as simulation programs are central to both, atten~
tion will be confined to them. (Forecasting also
uses analysis and initialisation programs to assimilate
the "real" data). For simulation programs, the fre-
quency of add/ subtract and multiply instructions is
roughly equal, and divide is much less frequent. For
DAP, multiplication takes much longer than addition,
so the number of multiplications and their timing give
a first approximation to the speed of a program.

The table gives a rough guide to parameters in use today
and those that should be aimed at.

Using the 18 bit (fixed point) precision suggested in
Section 3.3, each PE can perform a multiplication in
about 140 psec. Section 3.2 discusses the efficiency
of PE usage; 50% might be a reasonable figure. Thus
about 8000 PEs are adequate to perform the 2.5 x 107
multiplications per second indicated above.

TABLE
Present
Forecast |Global Next stage
Programs |Research
Programs

Number of
Vertical
Columns of
Grid Points 3000 10 000 x 4
Number of 10 5 x 2
-vertical
levels
Total number 2 x10° |2.1 x 107 |x8 (1.6 x 10°)
of variables
Time step 2 min. 5 min. + 2
Number of 1000 10 000 x 3
time steps
Multiplications 1000 500 x 2.5
per column per
time step

iolioati 6 6 7
Multiplications/ | 1.2 x 10°]|1.2 x 10° |x20 (2.5 x 10")
sec.
Speed-up over 50-100 50-100 50-100
real time

3.1 STORAGE

It may be tempting to use a backing store for big
problems; however, the smaller the array storage the
larger is the channel capacity required. In (7) an
example was studied of a problgm using explicit
integration which had 1.5 x 10° variables of average
length 20 bits, and was processed on an 8200 PE array
with an I/0 chammel of 107 bits/sec. Three formula-
tions of the problem had the following trade-offs:
(a) 1850 bits/PE and speed degraded by a factor of
2.5, (b) 2800 bits/PE and speed degraded by 1.3, and
(¢) 4600 bits/PE, the complete problem in the array
and no degradation. A similar problem using implicit
methods would have its speed degraded by an order of
magnitude if a backing store was used.

This sort of problem needs about 5-10 x 107 bits of
storage. The falling cost of semi-conductor storage
makes this amount of array storage feasible, and the
simplicity and reliability of a unified semi-conductor
system makes it attractive. Partly for these reasons,
the array has more resources devoted to storage than
to logic.

3.2 PARALLELISM

Efficiency, defined as the fraction of time a PE is

~active, depends on programmer skill as well as the

problem. Numerical procedures used at present have
usually been devised with serial machines in mind,
and sometimes a slightly different procedure may be
much more efficient.

Explicit methods for the "basic" meteorological
equations are efficient. Boundaries do not have much
effect because it is usually a case of omitting things.
"Secondary" effects may cause efficiency to drop. The
computation is different if the air is saturated.

Convection may require the checking of neighbouring
vertical layers for stability, followed by a relaxation
process. Study indicates that these effects need not
have a major effect on the overall efficiency.

Once various conditions have been established "branch-
ing" by means of activity bits is very rapid, and can

be done frequently in order to improve parallelism.

(A conditional branch in a conventional program loop,

or selection in a vector machine, are slow by comparison).

Implicit methods involve either ADI (alternating direc-
tion implicit) or relaxation methods; the former are
not particularly efficient but the latter are.

There seem to be 4 types of grid in use: (a) rect-
angular for fairly local forecasts; (b) octagonal in
overall shape (rectangular neighbour connection) for
the northern hemisphere; (c) cylindrical on a global
latitude-longitude basis; (d) as (c) except that the
number of points on a line of latitude is reduced as
the poles are approached. a) and (¢) can fit a rect-
angular PE array. (b) and (d) would waste some of the
PEs. ¢) has reduced efficiency because a smoothing
process is applied more times near the poles; this can
be viewed as a trade-off for the wasted PEs of (d).

3.3 PRECISION AND NUMBER REPRESENTATION

Precision costs time and storage space, so that big
problems should use only the minimum consistent with
accumulated round-off error being small compared with
other errors. Different variables can use different
number representations and precisions. Knowledge of
requirements is only patchy, but should improve; the
pay-off, compared with fairly cautious starting schemes,
might be a factor of about 1.5 in storage and 2 in
speed.

Meteorology is largely concerned with absolute rather
than relative accuracy, and the maximum possible values
of variables are well understood; this points to either
fractional fixed point or a simple floating point.
Block-floating of arrays (9) can also be implemented
efficiently.

An example of possible economy in space and speed
occurs in explicit integration schemes; the increments
to variables require considerably less precision than
the full variables.

Careful choice of rounding method in order to avoid bias
can also lead to economy (7).

A reasonable estimate of the average precision required
for fractional fixed point variables might be 18 bits
and rather less for the mantissa of floating point
variables.

4. OTHER APPLICATIONS

An algorithm to solve the two dimensional Poisson's
equation was studied. It used a Fast Fourier Trans-
form technique, but the extensive data shuffling that
this involved occupied only 20-25% of the time. There
was also reduced parallelism in places, and a typical
PE was idle about 50% of the time. ..On a 72 x 64 PE
array, a 256 x 256 mesh was estimated to take 50 msec
for 20-bit numbers; this compares very favourably with
conventional machines. An interesting aspect is that
the main array is held in Array mode and certain row and
column features are dealt with in Main Store mode; Main
Store mode vectors-are combined with the array elements
in single arithmetic operations.

65

For the array to be useful, problems must fulfil
three conditions: (a) Processing, as opposed to I/O,
must be important; (b) Much of the problem must be
programmed with parallel and identical operations
(these may, however, be selective); (c) Excessive
time should not be spent shuffling data round the
array. (In some cases this means the data should
be fairly regular).

These requirements are not very severe, and the biggest
barrier to widespread use is likely to be in devising
an acceptable programming language. (In spite of
many problems being naturally parallel, many users

are indoctrinated by sequential thinking).

Some applications for array processors are discussed
in (5). Further applications are suggested by the
fact that the array can be used as an "associative
processor"; examples might be air traffic control,
graphics processing and symbol processing. Associative
information retrieval can look attractive over quite a
wide range of parameters; with the associative latch,
each PE can scan 1 bit everg micro-instruction, and so
10 000 PEs can scan 5 x 1010 bits/second.

The user has the freedom to optimise and experiment
from the bit level upwards; this may help him under-
stand his real computing requirements. The array is
not arithmetic biased, and the functional flexibility
permits functions to be tailored for all sorts of
purposes. The hardware simplicity permits parameters
such as the number of bits/PE and the type of storage
to be varied easily; for example, a slower, cheaper
MOS version would extend the range of applications
considerably. The array modularity (almost like
storage modularity) means that sizes from 500 to

30 000 PEs are reasonable.

ACKNOWLEDGEMENTS

The author would like to thank the Directors of ICL
for permission to publish and J.K. Iliffe for his
support and for originating many of the ideas.
contribution of A.W. Walton is also gratefully
acknowledged.

The

REFERENCES

1. Barmes, G.H., Brown, R.M., Kato, M., Kuck, D.J.,
Slotnick, D.L., and Stokes, R.A. "The TILLIAC IV
Computer", IEEE Transaction on Computers, C-17,

D. 746 (1968).

2. Flynn, M.J., "Some Computer Organisations and
their Effectiveness", IEEE Transactions on Computers,
C-21, p. 948 (1972).

3. Goodyear Aerospace "STARAN - A New Way of Think-

%E".) A Goodyear Aerospace brochure, Akron, Ohio
1971).

4. Huttenhoff, J.H., and Shively, R.R. "Arithmetic
Unit of a Computing FElement in a Global, Highly

Parallel Computer'", IEEE Transactions on Computers,
C-18, p. 695 (1969).

5. Kuck, D.J. "ILLIAC IV Software and Application

Programming", IEEE Transactions on Computers, C-17,
D. 158 (19%8).
6. Murtha, J.C., "Highly Parallel Information

Processing Systems" in "Advances in Computers". Vol.7,
(1966).

7. Reddaway, S.F., "An Elementary Array with Process—
ing and Storage Capabilities'", International Workshop
on Computer Architecture, Grenoble, June 1973.

8. Slotnick, D.L., Borck, W.C., and McReynolds, R.C.,
"The Solomon Computer", Fall Joint Computer Conference

1962, p. 97.

9. Wilkinson, J.H., "Rounding Errors in Algebraic
Processes", H.M.S.0. London (1963).

MAXIMAL RATE PIPELINED SOLUTIONS
TO RECURRENCE PROBLEMS

Peter M. Kogge
IBM Corporation
Owego, N. Y.

ABSTRACT

An mth order recurrence problem is defined as the
computation of X1, . . . XN, where X; =f@j, Xj-1, . « «
Xj-m) and a; is a set of parameters. On a pipelined com-
puter, where the total stage delay in computing f is df time
units, the solution output rate is one new X; each dy time
unit. This paper describes a method for increasing this
rate to 1 per time unit when the function f has certain simple
functional properties. The total stage delay and complexity
of the resulting pipelines are also described.

I, INTRODUCTION

An mth order recurrence problem is defined as the
computation of the sequence X1, . . . Xy given only

1. Initial conditions Xg, X-1, « . «, Xi_m

2. 'parameter vectors' aj, . . ., ay, Where each
aj is a collection of solution-independent param-
eters

3. a '"recurrence function ' f.
such that for eachi, 1< i <N,

X =@, X, X,) @

S R

An example is the mth order linear recurrence

m

r§1 2,(MX, +a, (m+l) @)

X =
i

A pipelined computing device is one that accepts inputs
at a rate of one every r units of time and produces corres-
ponding outputs p time units later, p 2r. Up to[p/r|* sep-
arate computations can be active within the pipeline at one
time. For this paper, r = 1, and thus a pipeline may be con-
sidered a series of p independent ''stages, ' each capable of
holding a partial computation on a distinct set of inputs.

Assuming that the function f is computable by a pipe-
lined device with dg stages, a direct solution of a recurrence
problem is pictured in Illustration 1, Assuming that Xj_1
is output at time j, X;, which depends on Xj_j, cannot be
output until X;_j1 has cycled through the entire d¢ stages of
the pipeline; i, e., until time j + df, Illustration 2 diagrams
the timing of the pipeline. Thus the output rate is at most
one element of the sequence per df time units,

The purpose of this paper is to investigate the condi-
tions under which pipelined networks can be configured to
have data rates higher than 1/d¢, up to 1 sequence ele-
ment per time unit. Section II describes a simple
example of this procedure. Section III details some

*[x] is the smallest integer not smaller than X,

71

conditions under which the performance of pipelined solu-
tions to first-order recurrence problems can be increased.
Section IV generalizes this to mth-order recurrences. In
all sections, both total pipeline stage length and pipeline
complexity are discussed.

The basic background for this paper originates in a
series of earlier papers on the solution of recurrence prob-
lems on parallel computers(1,2,3),

ILLUSTRATION 1

Direct Implementation of Recurrence

Parameter
Vectors Buffers
B
))) ‘_‘_B
Xi.2 Xi-q
\ 4
f
v Xi-1
ILLUSTRATION 2
Timin
Output [x] [x1
Input Lk [A1
B2 X2 X1
BM Xim Xi.m+1
1 =1 [Xa]
Stages ¢ . ¢
in . ' .
f . l———xi
' |
d

II. AN EXAMPLE

One of the simplest nontrivial recurrence problems in-
volves a recurrence equation of the form X; = a;Xj_j, where
a;j is a real number expressed in floating point notation. The

function f in this case is multiplication, a typical implemen-
tation of which might involve a two-stage pipe, one stage for
exponent addition and one stage for mantissa multiplication,
With such an implementation, a direct solution like Illus-
tration 1 would have an output rate of 1/2 -- 1 new X; every
other time unit. The pipelined nature of the multiplier is
not exploited.

However, the basic recurrence can be rewritten as

.. a, X, 3)

for any value of q. Each Xj in this case requires q +1 num-
bers to be multiplied, Using the well known 'log reduction"
technique(4), however, multiple multipliers can be arranged
in a tree-like arrangement that computes equation 3, and
requires at most d(q) = [logs g+17] multiplier delays (com-
pare Illustrations 3 and 4), If Xi-q» for example, is avail-
able from such a network at time j, then X; can be computed
by time j + d(q). This places an upper bound on the output of
q different X's (Xj-q+1, » - - Xj) in time d(q) as an output
rate-of q/d(q). This rate is maximized to 1 -- a distinet X;
in each time unit -- if g > d(q). For our example, this
relation is

q > 2[log, q+1] @

which occurs for q 2 6, Illustration 3 diagrams a log-
product pipeline solution of equation 2 for q = 3; the output
rate is 3/4, a factor of 1.5 better than the direct implemen-
tation but still not maximal, Illustration 4 diagrams a max-
imal flow pipeline for q = 6.

ILLUSTRATION 3

Log Product Pipeline for q = 3

Buffers (Single Unit Delays)

X3
Total Stage Delay = 4
Output Rate = 3/4
Speed Up = 3/2
Complexity = 3 Multipliers

Several comments should be made in respect to the
maximal rate pipeline of Illustration 4:

1, Buffering is used to equalize the delays in all sec-
tions of the pipeline to 6 time units,

2, At each time unit, all buffers and all stages of all
multipliers are computing products that will lead to
some element of the solution sequence; i.e., the
pipeline is fully loaded.

3. The multipliers labeled M1,2 and M1, 3 are redun-
dant in that any calculations they perform were per-
formed earlier by M1, 1.

The redundant M1,2 and M1, 3 can be removed by moving
the buffers B2 - B5 from the inputs to M1,2 and M1, 3, and
placing them on the output of M1,1, as shown in Illustration
5. This pipeline still exhibits maximal flow, but involves no
redundant computations.

ILLUSTRATION 4

Maximal Rate Log Product Pipeline

Total Stage Delay =6

Output Rate =1 xi-G
Speed Up =2 T
Complexity = 6 Multipliers Output

ILLUSTRATION 5

Maximal Rate Log Product Pipeline Without Redundancy

Total Stage Delay =6

Output Rate =1
Speed Up =2 1
Corplexity = 4 Multipliers Xi.6

72

III. FIRST-ORDER RECURRENCE

The key behind the applicability of the log-reduction
techniques on the example of the last section was the asso-
ciativity of the recurrence function multiplication, Although
many recurrence functions are associative, and are solvable
in a manner identical to that used above, most of the more
common recurrences are not, As detailed in earlier papers,
however, a large class of problems, particularly first-order
problems, have a property similar to associativity that is as
useful in configuring maximal rate pipelines(l? 2,3), This
property is termed '"semi-associativity, ' and is defined as
follows:

DEFINITION 1

A recurrence function, f, is said to be semi-associative
with respect to a companion function, g, if there exists a
function g such that for all parameter vectors a and b and all
X's:

f@, £(b,x)) = f(g(2, b), %) (5)

An easily provided corollary to this definition is that
with respect to its effects on f, the companion function, g,
is associative.

Corollary 1
For all parameter vectors a, b, and ¢, and all x:

g, g, 0),x) = {g(E@, b),c),x) (6)
Examples of recurrences that have a companion function
are:
X =2,0x ,+3,0)

Y

2 2) xi_lé‘_i @

®)
ﬂi (1) x,i_ 1 + _gi(2) o

In the following descriptions, it is assumed that pipelined
computing modules can be built for both f and g, and the
number of inherent stage delays is dg and dg, respectively,

The existence of a companion function allows a first-
order recurrence

x = fep %) (10)
to be placed in the following form for any q
Xi =f (g(LI g(ai? ai—].) 9 o -ai_q+1)’ xi-q) (11)

The associativity of g with respect to f allows a log-
reduction network to compute the g composition portion of
equation 11 in | loga q] g computation delays.

The output of the final g module drives the module that
computes f, as pictured in Illustration 6, Again buffers are
used to synchronize the arrival of data at each module, The

73

total delay through this pipeline is thus

d(q) = df + dg [log2 q] (12)
Again a maximum rate pipeline requires that
d=dg+d [log, q]<q (13)

ILLUSTRATION 6

Pipelined Computation of X; = f(a;, Xj_1)

dg
dg .
.
dg .
Each Buffer I
has a Delay of 1
9
G

Xi-d(q)

As with Illustration 4, many of the g modules in Illustra-
tion 6 are redundant in that the computations they perform
are identical to computations performed several time units
earlier by some other module. Consequently, they can be
replaced by buffers that simply delay the output from the
other module by the appropriate amount, If q is chosen to be
the minimum integer power of two that satisfies equation 13,
then this technique of substituting buffers for g modules re-
duces a network like Illustration 6, containing q-1g modules,
into one like Illustration 7, which uses only [logs q] mod-
ules.

Table 1 summarizes, as a function of dg and dg, the
minimum q (qmin) that satisfies equation 13, the correspond-
ing d(q), the minimum q that is a power of two (2{1°82 9min]),
and the number of g modules ([logy q7).

1v. M".ORDER RECURRENCES
An mth-order recurrence, m > 1, has the form
X =f@, X_;» .. Xi—m) (14)

To speed up a pipeline computing this type of recurrence, we
want to express Xi as

= *
X =f@* X e X) (15)

i-qg-m+1

where the time to compute a_* from the original a.'s grows
ILLUSTRATION 7 less rapidly than, and eventlially is smaller than (i In the
mth-order case, no simple associative or semi-associative
companion function is possible; the number of arguments
(=2) is too large. However, as was shown in earlier re-
E ports, many common recurrence functions have a related

Minimal Complexity Pipeline for Xj = f(aj, Xj-1)

pair of functions that do allow the construction of networks
with the desired characteristics(1,2), These are defined as

dg : follows:
DEFINITION 2
Ey—_-‘ A recurrence function, f, is said to have a companion
P set (g, h) if there exists functions g and h such that for all
9 : parameter vectors a,, . . ., 2, and all X's, X7 ... Xy

f@o, f@, Xpb + « WX) Xy 00X)

j |i:| =f(g@, 2, Xy« . . X) (16)
l

‘:_J fa, f@, Xpo oo o X)oe o L@, Xy o X))

=th@,a;, . . .2), X

a, . T (17)

1

As an example, the mth-order linear recurrence (equation 2)

has the following companion set (where g(a, b) (j) stands for

TABLE 1

Complexity of Pipelines for First-Order Recurrences

3 11 4 15 4 | 23 5 28 5 39 6 | 45 6 51 6 57 6 63 6
16 11 16 15 32 23 32 28 64 39 64 45 64 51 64 57 64 63

4 12 4 16 4| 24 5 29 5 40 6 46 6 52 6 58 6 64 6
16 12 16 16 32 24 32 29 64 40 64 46 64 52 64 58 64 64

5 13 4 20 5 25 5 30 5 41 6 | 47 6 53 6 59 6 75 7
16 13 32 20 32 25 32 30 64 41 64 47 64 53 64 59 128 75

6 14 4 21 5 26 5 31 5 42 6 | 48 6 54 6 60 6 76 7
16 14 32 21 32 26 32 31 64 42 64 48 64 54 64 60 128 76

7 15 4 22 5 27 5 32 5 43 6 | 49 [§ 55 6 61 6 77 7
16 15 32 22 32 27 32 32 64 43 64 49 64 55 64 61 128 77

8 16 4 23 5 28 5 38 6 44 6 50 6 56 6 62 6 78 7
16 16 32 23 32 28 64 38 64 44 64 50 64 56 64 62 128 78

9 19 5 24 5 29 5 39 6 45 6 51 6 57 6 63 6 79 7
32 19 32 24 32 29 64 39 64 45 64 51 64 57 64 63 128 79

10 | 20 5 25 5 30 5 40 6 46 6 52 6 58 6 64 6 80 7
32 20 32 25 32 30 64 40 64 46 64 52 64 58 64 64 128 80

Each Entry: g Irlogzq‘l

[2 l°g2Q] d(q)

74

jth component of the parameter vector g(a, b)):

a(L)b() + a(+1) 1<j<m-1

g(@,b) () =< a(l)b(m) j=m 18)
a(m+l) + a(hb(m+1) j=m+1
m
Z 2,092,0) 1<i<m
h@, ...a)0) = - 19)
r§1 a () Er(m""l) +2 (m+l) j=ml

The utility of companion functions comes from the fol-
lowing theorem (proved in reference 1):

THEOREM 2

For any K 20, Xi can be expressed in terms of Xi—q(k)
as follows

- f(a.®
Xi= 1@ X 090+ 0 Figgg - me1) (20)
where
a(k) = m2k+1—m 1)
and ai(k) is computed from the following recurrence:
0y _
=i -5 (22)
3 -n@®, Ad-a, mon, AG-a-1, mo2), .
A(i-q(k) - m+1, 0)) (23)
AGD =gl . 5@ e e
’ i 0 —i-q(k) ’ _i—q(k)—]. ’ 9 ’
(24)

2i-q(k)-j+1)

Illustration 8 diagrams a typical network for computing
aj (1) from al(). Since the function g is not usually asso-
matwe, or even semi-associative, no rearrangement or re-
duction in the number of g modules is generally possible.

The total delay in Illustration 8 is thus:

(M-1) dg + dh time units (25)

To build a pipeline that computes gi(k) directly from the
a;'s, the network of Illustration 8 must be cascaded into K
levels. As with the earlier pipelines, however, only one
copy of Illustration 8 is needed at each level, Additional
buffers are used to save redundant computations and syn-
chronize the arrival of the proper inputs. Illustration 9 dia-
grams such a pipeline.

For a K-level pipeline, like Illustration 9, the total delay
through the pipeline is simply K times the delay of a single
network (equation 5) plus the delay to compute f:

(26)

d(9) = K((m-1) d +dp) + dp

Again, for a maximal rate pipeline, this delay must be less
than q(k), equation 21; i.e., a K must be found such that

K((m-1) dg + dy) + df < m2¥ —me1 @n
ILLUSTRATION 8
One Level in the Computation of a;(k)
| t K
8T fq(K) afqior alglome2 -q(K)

é

*Each Buffer Delays d Time Units ai('“”

ILLUSTRATION 9

Pipelined Computation of mth-Order Recurrence

(K)
3.2q(K) %-q(K) K)
> ai(K)"' 3.q(K)-m+2
l l Delay
lllustration 8 Illustration 8] (M1)d
+d
Ul h
3.2q(K) a.(K“H)
- i
2a)) -+t n F2a
Illustration 8

-

2(q(K-1)-
pIbeis

75

Once this minimal value of K has been determined, the
complexity of the required pipeline can be computed directly
from Illustrations 8 and 9, as shown in Table 2.

TABLE 2

Complexity of Pipelines for mth-Order Recurrences

Type of Module Number Required*

f 1

h K

g K m(@m-1)
2

*K is smallest positive integer that satisfies
equation 27,

V. CONCLUSIONS

This paper has discussed methods of speeding up pipe-
lined computation of recurrence problems where feedback is
present; that is, where the computation of one element of the
desired sequence cannot be started before some earlier ele-
ment has been fully computed. The methods discussed basi-
cally involve rewriting the recurrence so that X; depends on

Xi—q(k)’ e Xi-q(k) - m+1 (28)
and some computable parameter vector a. (K, For many

. =i
recurrence problems, the time to compute gi(k) grows much
less rapidly with k than does q(k). In such circumstances,
for large enough k, the total time to compute X; from
Xj-q(k)» « + - is less than q(k), allowing the output of the
resulting pipeline to be fed directly back into the input and
yet still maintain a fully utilized pipeline that outputs a new
X during each time unit. This pipeline is then running at
the maximum possible rate.

One question that has not been discussed in detail in this
paper is the problem of initializing the pipeline. The most
direct techniques would be simply to precompute enough
Xi's and g(j)'s to fully initialize all stages in the pipeline
(perhaps using parts of the same pipeline at less than maxi-

76

mal rate). Once this is done, the pipeline can be allowed to
run normally, This is a time-consuming process which, if
the pipeline is long enough, may negate many of the benefits
of the maximal rate pipeline once it is started. For some
specific problems, however, this process may be avoidable
by introducing special values for aj's and X;'s. For example,
in Illustration 5, if the input to B6 is held to 1 for the first

6 time units, and B1 initially loaded with 1, the pipeline will
output X, at time 6, and run normally after that.

The applicability of these speedup techniques depends in
large measure on the particular problem being solved, the
length of the desired solution sequence, and the stage delays
in the basic f, g, and h computing modules. For problems
where the modules have large stage delays, for example, the
potential maximum speedup is significant, but the value of k
required to attain that speedup may result in a very long and
complex pipeline, where the time to initialize the pipeline
becomes a significant fraction of the total computation time.
In such cases, some kind of iterative tradeoff between chang-
ing module stage delays, accepting less than maximal output
rates, and initializing the pipeline may be necessary.

REFERENCES

Kogge, P.M. "The Parallel Solution of Recurrence
Problems, " PhD Thesis. Stanford University,
December 1972, (To be published in IBM Journal of
Research and Development, March 1974.)

Kogge, P.M. ""The Parallel Solution of Recurrence
Problems, ' 7th Annual Princeton Conference on Infor-
mation and System Sciences. Princeton University,
March 1973. (This is a partial summary of Reference
1.)

Kogge, P.M. and Stone, H.S. "A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations," IEEE Transactions on Computers, August
1973.

Kuck, D. "ILLIAC IV Software and Applications Pro-
gramming, " IEEE Transactions on Computers, Vol.
C-17, No. 8, August 1968, pp. 758-770.

COMMENTS ON

CAPABILITIES,

LIMITATIONS AND “CORRECTNESS”

OF PETRI NET

s
”v

Tilak Agerwala
Mike Fiynn
Electrical Engineering Department
The Johns Hopkins University
Baltimore, Maryland

ABSTRACT

In this paper we examine the capabilities and limita-
tions of Petri nets and investigate techniques for prov-
ing their correctness. We define different classes of
nets where each is basically a Petri net with slight
modifications and study the relationship between the
various classes. One particular class appears to be
quite powerful, with respect to its capability for
representing coordinations. In the second part of the
paper we establish the feasibility of using the methods
of computational induction and inductive assertions to
prove restricted statements about Petri nets.

I. INTRODUCTION

Petri nets are being widely used in the design, speci-
fication and evaluation of computer systems [1,7], and
in the modeling of production [3] and legal [6] systems.
They also appear to be a neat, clear and convenient way
to express process coordination. Naturally, the ques-
tion about capabilities and limitations of these nets
arises. It has been shown [4] that there are problems
where the desired coordination cannot be expressed
using Petri nets. In the first part of this report we
introduce different classes of nets. Each class is
basically a Petri net with slight modifications. We
then examine the relationship between the various class-
es in the hope that this will give us some insight into
the capabilities and limitations of Petri nets.

In the second part we are concerned with proving asser-
tions about Petri nets. Given a coordination problem
and a Petri net it should be possible to convince one-
self that the Petri net does in fact represent the de-
sired coordination correctly. Techniques for proving
any given Petri net correct, will help in proving the
correctness of general parallel systems since it may
be possible translate the system mechanically into a
Petri net where it is easier to see what is going on.

II. CAPABILITIES AND LIMITATIONS

We assume that the reader is familiar with Petri nets
and concepts such as liveness, safety, etc. However,
for the sake of avoiding ambiguity we will define a
Petri net and give the simulation rules explicitly.

A Petri net N is a directed graph defined as a quad-
ruplet (T,P,A,M°) where,

T =
P =

{tl, ey tn} is a finite set of transitions
{pl, ey pm} is

(T, P form the nodes

a finite set of places
of the graph)

A= {al, vees ak} is a finite set of directed arcs

81

of the form (x,y) which either connect a transition to

a place or a place to a transition. Each place may have
one or more markers in it or it may be empty. A place
is full if it has at least one marker.

M° = {(p,n) | peP and n e {0,1,2, ...}}

(a function from P to {0,1,2, ...}) is the initial mark-
ing.

Simulation Rules

Given a certain marking M of a net, if all the input
places to a transition are full the transition is said
to be enabled in M. An enabled transition may at some
stage decide to fire. At this stage it reserves a mark-
er in each input place and starts firing. At the com-
pletion of firing it removes the reserved markers and
places a marker in each output place, giving a new mark-

ing M'. We say that the firing of t, in M results in
M'. As soon as a marker is reserved it becomes invis-
ible to all other transitions.
T =t ,t, 5 eesp t. ETH
bl b2 bn

is said to be a simulation sequence of a net N = (T,P,
A,M°) if there exists a sequence of markings M°,
M2 such that tb

Mi-l results iniMi, for all 1 € {1,2, ..., n}. The i
set of all simulaticn sequences of N is called the simu

yeres
is enabled in M*™* and firing of t, in

lation set of N or SIMSET_. Let T'< T. Then for each
simulation sequence t = tbl, vees tb of N we define a
_ n
reduced simulation sequence t' =t , t , ... t with
c1 co c

respect to T', where T' is the sequence that resugts
when all t, € T - T' are excluded from T, SIMSET |T'
is the set f all reduced simulation sequences of N
with respect to T'. Two Petri nets N; = (T1, Py, A1,
M;°) and Np = (T2, P2, Ay, M2°) are said to be strongly
equivalent with respect to T if TC Ty, T & Ty and
SIMSETN1[T=SIMSETN2|T. In this case we write Ny = Nj.

So far, we assumed that the transitions of Petri nets
had distinct labels. We now define an interpretation
I [T',E] of a Petri net N = (T,P,A,M°) as follows:

T' {ta s oeees by } C T is a set of transitioms,

1
{El,

m
E cees Ek} » k< m

is a set of event or process names and I: T' +E, i.e.

I is a function from T' onto E. Thus, the same event

or process name may be attached to different transitiomns
and the same net may represent different coordinations
depending on the interpretation given to it. Given a
net N = (T,P,A,M°) and an interpretation I [T', E], for

each reduced simulation sequence tb s eeey tb with re-
1 m

spect to T' we get an interpreted simulation sequerce

Ecl’ Ecz’ ooy ECm with respect to I where I (tbi) =

E,, for 1 < i <m. The set of all interpreted sequenc-—
eslof N with respect to I is called I [SIMSET_]. A net
N, with an interpretation I; [T', E] is weakly
equivalent to a net N, with interpretation I, [T'',E]
if Ip [SIMSETNl] = I2 [SIMSETNZ] and in this case we

1,,I
N, L2

1 N

2

In what follows we will define different classes of
nets where each kind is basically a Petri net with
slight modifications. SIMSET, SIMSET I T and I [SIMSET]
can be appropriately defined for each class. If TN and
TNy refer to two different classes of nets, then PN and
PNy refer to all the coordinations representable by TN
and TN_ respectively. We say that PN C PNy if for
every f € TN and interpretation I [T',E] there exists

an Ny € TNy and interpretation Iy [T'',E] such that

I,Ix
N = N;
Thus PN C PN if PN © PN, and there exists a net
Nx € TNy and"an interpreta%ion Ix [T',E] such that
there is no net N € IN and interpretation I [T'',E]
with

I,Ix

N = x°

Classes of Nets

1. Let the class of ordinary Petri nets be TN.

2, The transitions in ordinary Petri nets are enabled

only when all the input places are full and we can con-
sider these transitions to have an AND-input logic. If
in addition, we allow transitions with OR input logic,

we call the class of nets TN
log

? ?I + + ¢
(letting P; denote the number of markers in pj) t1 is
enabled if and only if [(P1> 0) A (Py> 0)1A [(P3> 0)
V (P4 >0)]. Thus t; is enabled even if all the input
places do not have markers and when it starts firing
it reserves a marker in each input place that has at
least one.

3. In addition to the ordinary transitions in the nets
belonging to TN we allow a transition to have input

places and arcs of a special kind. The transitions
allowed are of the form:

1

bl... bm Pp+<P

82

t] is enabled if and only if (B = 0) A (B2 = 0OA ...
@B, =0) AL >0 A (By > 0) Avee A (BPp > 0).

When tj starts firing a marker is reserved in each of
P1s P2s P35 «-+s Pn- Let the class of nets be called

com’
4. 1In addition to the ordinary places in the_ nets be-
longing to TN we introduce a special place /(")\ ,

(say py). A transition will place a stone in\ﬁl if and
only if Py = 0. Let the class of nets be TN .
out

Results

1. Since in each case we provided the nets with addi-
tional capabilities over the nets belonging to TN,
obviously:

PN
PN
PN

PNy,
PNout

PN
com

In 1NN

2. PN C BN

Proof

Kosaraju [4] describes a coordination problem and
proves that it falls outside PN. The problem is as
follows: There are four cyclic processes, Py, P3,Cy
and Cy and two buffers B; and By. Pj and P) are pro-
ducers which place one item each on top of Bj and Bp
respectively in every cycle. C; and C, consume one
item each from the bottom of Bj and By respectively.
However, C] has higher priority than C2 so that C2 can
consume only if By is empty. To prove that PN c:PNcom
we will give an interpreted net belonging to TNigop
which represents the desired coordination. The net is:

3a. PN C PN
log —

For every net N = (T,P,A,M°) there exists a net

log
= 1 1 1] o v
net Ncom (T', P', A', ¥1°) € TNcom such that T C T

and N E . The result 3a follows from this.
We wiligndi gocggto the details of a proof but will
illustrate the idea by means of an example. Let the
net N below be part of a larger net Nlog = (T,P,A,M°)

belonging to TNlog.

=]

Let the resulting net be N'. Then obviously N'

N .
log
By applying a similar procedure to each transition with

OR input logic we end up with a net Ncom which is

strongly equivalent to N with respect to T.

log

3b. Kosaraju's problem 1 and proof [4] can be used to
prove that PNlog c PNcom'

4a, PN;;E = PN

For every met N—— = (Ty, Py, 4, M1°) € NG and

interpretation f% [T,E], there exists a net N= (Tp, Pj,
Ay, M3°) € TN and interpretation I»[T",E], such that
I;,I2

out = :
Again, we will not go into details of a proof but will
illustrate with an example. Let the net N below be

part of a larger net Nggt-

Here we have introduced a

resulting in the net N'.
place 7 which is a complement of p in the sense that 7

has a marker if and only if p does not. The reader can
convince himself that under the interpretation I'
[T U {t;'}, E], where I'(t) = I;(t) for t € T and

83

I,I'

I (ti) = I;(t), Nome N'. Continuing this pro-
cess until all places of the form ,/) are eliminated,

we end up with a net N € TN and an ihferpretation I,

e
[T'', E] such that 11312

NouE

This shows that PNggr < PN and from result 1 we con-
clude that PNggy = PN. Since PN C PNyop we also con-

clude that PN [t PNcom'

Comments: We feel that PN C PN7,,. We are also
examining other classes of nets. For example, in
addition to the ordinary arcs between transitions and
places we allow the following:

£

Py

ty will place a marker in Py if and only if Py > O.
Another class of nets is those where we allow a trans-
ition to nondeterministically place a marker in one or
more of its output places. The results obtained so
far indicate that TN o, is a very powerful class of
nets.

Safe nets

If one considers only safe nets (where each place can
contain at most one marker at any stage), then it can
be shown that for every Noop= (T,P,A,M°) € TN, that
is safe, there exists a safe net N € TN such that

Neom g N. Again, we will only demonstrate the tech-
ngque of obtaining N with the help of an example. Let
the net N; below be part of a safe member Ncom of TNco

m
£y t,
—I— P4
P
tg 1 2 3
ey
t3 t

Ps

Replace N; by the net below to get a net N*'
T B

t3

The fact that N, is safe permits us to introduce
places P ,'ﬁz,'ﬁq' which are complements of the places
P1,> Py and p, respectively. I.e. Pp has a marker if
and only if p; does not. Every tramsition that causes
a marker to be put in p; should cause a marker to be
removed from p;. Every transition that causes a mark-
er to be ;gpoved from p; should cause a marker to be
placed in py. We now have T

NI = Ncom .

By continuing the process of replacement we end up with
a net Ny € TN such that Ny § Neome If PNx]safe denotes
the set of coordinations representable by safe members

of TNy, then PN'sa e = PNeom|safe. From results 3 and 4
PN I safe = PNj,g f safe = PNggp , safe = PN | safe.

Thus, even though TN.,, is a powerful class of nets,
in practice one would probably be more concerned with
safe nets and here the modifications made to ordinary
Petri nets do not increase the overall power.

III. CORRECINESS

When we say that a "Petri net N is torrect", intuitive-
ly what is meant is that the Petri net does what the
designer intended it to do. Given a particular problem,
a Petri net is constructed which represents the de-
sired coordination. First and foremost we are not at
all concerned with whether the Petri net is the best
one for the given problem. In fact, we will not even
try to prove that the Petri net effectively represents
the desired coordination. We shall, however, try to
prove very restricted statements about a net which are
provided by the designer. The kinds of statements we
will attempt to prove are:

1. At any given time only one of the transitions from
the set {tj, ..., tk} may be firing.

2. Two given transitions will never conflict.

3. A given place is safe with respect to a particular
marking or a given marking is safe.

4. A givenplace can contain at most N markers

5. A given transition is live.

6. A given marking is reachable from another.

7. A given transition has fired at most x times.

8. 1In general it may be very difficult to show that

a "net is deadlock free". Again, the designer will
have to provide statements, for example, "Every trans-
ition in cycle C is live at every stage", from which
he can reasonably conclude that the net will not hang

up.

In the following we present two methods to prove the
correctness of Petri nets: Computational induction
and inductive assertioms.

Computational Induction

Here we develop certain relations that remain invar-
iant during the simulation of a net. By using these
relations suitably we will be able to prove certain
properties about the net. According to our simula-
tion rules, when a transition starts firing it re-
serves a marker in each input place. Reserved markers
are invisible to all other transitions. However, in
the invariant relations, all reserved markers are also
counted and assumed to be intheir current places. The
relations follow trivially from the simulation rules.
Let,

Mi: Number of stores in pj initially
Pi: Number of stores in pj at any instant
Ti: Number of times tj has fired till any instant.

Relation 1: Let Ij = {set of transitions with p; as
output placel}, 0 = {set of transitions with pj as in-
put place}, then

Pi =ZTk - ZTj +M; >0
tk €I tjeoi

Relation 2: Let t

pbI taz, ey pbk—lstak be a
path in the net such that tai’ Phy 1 <i <k are dis-

tinct. If in addition Ip, = {tai}, 1 <i < k-1 then

84

we have a simple path and Tak S-Tal > M.
i

Relation 3: If S1 is a simple path from t; to t; and
Sp is a simple path from ty to t; then S; Sy forms a
simple cycle. If in addition every place on a simple
cycle has only one input and one output arc then we
have a pure cycle. Let S be a pure cycle then:

> B o=

p; In S

Mg = N

p; in S

(say).

We have used these relations to prove simple assertions
about nets, and will illustrate the method by means of
an example. Consider the producer consumer problem
with bounded buffer. The producer places items in a
buffer. (length N) and the consumer consumes them.

The problem is to coordinate these two essentially in-
dependent processes so that the consumer does not try
to take an item from the buffer when it is empty and
the producer does not place an item where the buffer is
full. The Petri net that represents the described co-
ordination is given below: (the numbers in the places
denote the initial number of markers)

consume

We are interested in proving the following properties
for this net:

l. t4 and ty cannot be firing at the same time, i.e.
the producer and consumer do not try to access the
buffer at the same time.

2., O X Tp-Tg < N. TI.e. there is no buffer overflow
or underflow.

3. the net is deadlock free.

Proof 1:

Tg + T3 < 1 + T10 + T5 (1) By R1

Py = T3-Ty (2) By Ry

T5 §.T4 (3) By Ry

Py X T3-Ty (4) from (2) + (3)

Similarly, Pjp < T8 - T1g (5)

Therefore, Py + P15 <1 (6) from (4), (5), (1)
From 6 and the simulation rules we conclude directly
that T4 amd Tg cannot be firing at the same time.

Proof 2.

T, < Tg + N 1) By Ry
Therefore, T, - Tg < N
i.e., the number of deposits - the number of removals
< N. Therefore, three can be no buffer overflow.

Tg < Ty (2) By Ry
Therefore, T4 - Tg > 0
i.e., number of deposits - number of removals _ 0.
Therefore there can be no buffer underflow.

Proof 3.

For this particular problem it is easy to see that dead-
lock can occur only if Py = Pg = 0 and there is no way
to change this situation. (pure cycles can be repre-
sented by the subscripts of the places only since there
is no ambiguity)

8y = 1,2,3,4,5,6,7,1 is a pure cycle

S = 10, 11, 12, 13, 14, 15, 10 is a pure cycle

s3 =3, 4, 5, 6, 9, 11, 12, 13, 14, 7, 3 is a pure cycle
Nsl =1 (1)

Ns2 =1 (2)
a=P3+P4+P5+Pg<1 (4) from (1)

b = Pll + P12 + P13 + Pl4 <1 {5 from (2)

Therefore, a + b < 2
But if N>2 and Py =

a+b=N>2

from (4), (5)
Pg = 0 then

from (3)

Therefore, we get a contradiction. Thus, for N > 2, at
no stage can both Py and Pg be zero. Therefore, there

can be no deadlock for N>2, For N =1 and N = 2 separ-
ate arguments can be given to prove that the net is

deadlock free.

Inductive Assertions

This method was introduced by Floyd [2] to prove the
correctness of sequential programs and the same tech-
nique was used by Lauer [5] for proving parallel pro-
grams correct. We have taken the basic ideas from [5]
and modified them to be applicable in the framework of
Petri nets. Here again, our aim is to prove that a
Petri net is correct with respect to a particular given
assertion A. The procedure is as follows: with each
transition in the net we associate an assertion. Our
aim is to prove that every time a transition is enabled,
the corresponding assertion is true irrespective of the
particular simulation which caused this tramsition to
be enabled and irrespective of the state of the rest of
the net. Once this has been established, the truth of
A has to be deduced from the assertions at the transi-
tions.

Let N = (T,P,A,M°) be a Petri net. An assertion aj
asserted with a transition ty € T is a predicate on the
values of Py and Ty where py € P and ty € T. The Petri
net is correct with respect to the assertion ay if and
only if for each simulation of the net that enables ty,
aj is true when t; is enabled. The net N is correct
with respect to a set of assertions if and only if it is
correct with respect to each assertion in the set. Let
& = set of input places of tj and 0; = the set of out-

85

put places. Then we have the following:

Induction Theorem

To prove that a Petri net N = (T,P,A,M°) is correct
with respect to a set of assertions {ailti e T} it is
sufficient to prove the following:

(1) a; is true for all t; that are enabled in M°.

(2) For each t; € T, let P; = {p|p € I; A (,0) € M°}
i.e., the set of all initially unmarked input places of
t;. Let Py = {qq, 4, ..., q). Let T; = {tx]as € 0},
1<j<n, i.e., the set of all transitions of which q
an output place. Let By = {(bl, bos «ees bn)ltb. € Ty
Each n-tuple in B;j gives the set of transitions which
when firedcause markers to be placed in the initially
unmarked input places of tj. Let Fire (by, ..., bp)
denote the fact that the transitions tpy, ..., thy fire.
Then for each ty € T,

apy A ap, ANooo A ap, A Fire (bl, bn) = ay

coey

for all (by, by, ..., by) € By veee (1)

Proof: Obvious

Each equation of the form (1) is called a verification
condition. It should be clear to the reader that the

verification conditions are really very strong. Thus

the conditions are not necessary but only sufficient.

To prove a net correct, one may often have to construct
an augmented net. Let Nj = (Tl,Pl, A1, M1°) be a Petri
Net. Then Ng = (T, Pj, Ay, Mp°) is an augmentation of
N, if and only if T1 < Tp, PC P, Ay C A, M° = Mp®
and Ty
Nl = Nz.
One can show that, if N, is an augmentation of Nj then
Ny is correct with respect to aj where ti € Tp if and
only if N7 is correct with respect to a; Here a,' is
the same as a; with all references to t'e T2-T1 an&
p € Py -P1 deleted.

Thus, to prove that a Petri net N = (T,P,A,M°) is cor-
rect with respect to an assertion A one goes through
the following steps:

1. Formulate the assertion aj for each tranmsition tj.
2. Prove that all assertions associated with transi-
tions that are initially enabled are true.

3. Prove that all the pertinent verification conditions
hold and conclude that N is correct with respect to
{ai|ti € T}, (Instead of (2) and (3) one may construct
an augmented net N' of N, associate appropriate asser-
tions with the transitions of N', carry out (2) and (3)
for N' and conclude that N is correct with respect to
{ailti € T})

4, Deduce that the net operates correctly with respect
to the main overall assertiomn, A.

We have used this method to prove the correctness of a
Petri net representation of the producer - consumer
problem with respect to an overall assertion. Since the
assertions and proof are essentially similar to those of
Lauer [5] we will not present the example here. In a
subsequent report we will present weaker verification
conditions, examine whether it is necessary to associate
assertions with each and every transition and develop
"local" conditions under which places, arcs and tran-
sitions can be added to a net N resulting in an augu-
mented net N'.

IV. CONCLUSIONS

We hope that the discussion in Part II sheds some
light on the capabilities and limitations of Petri nets.
TN.om Seems to be a powerful class of nets. It is pos-
sible that these nets do provide a correct, formal
counterpart to the vague notion of a 'coordination
problem'". We will examine this aspect in another re-
port. Also, Petri nets seem to be sufficiently power-
ful if one is concerned only with safe nets. This may
very well be the case in practice.

In part III we have established the feasibility of us-
ing the methods of computational induction and induc-
tive assertions to prove restricted kinds of statements
about Petri nets. Ultimately, work in this direction
will facilitate the process of convincing oneself

that a general concurrent system is correctly coordin-
ated.

V. REFERENCES

1. Dennis, Jack, B. "Modular, Asynchronous Control

Structures for a High Performance Processor', Record
of the Project MAC Conference on Concurrent Systems

and Parallel Computation, ACM, New York, 1970, pp.

55-80.

2. Floyd, R. W. ''Assigning Meanings to Programs",Pro-
ceedings of a Symposium in Applied Mathematics, Vol.l1l9,
Mathematical Aspects of Computer Science, American
Mathematical Society, 1967, pp. 19-32.

3. Hack, Michel "Analysis of Production Schemata by
Petri nets'", M.S. Th., Dept. of Electrical Engineering,
MIT, Cambridge, Mass., February 1972.

4, Kosaraju, S. Rao '"Limitations of Dijkstra's

Semaphore Primitives and Petri Nets", Hopkins Computer
Rpt. #25, Research Program in Computer Systems
Architecture, J.H.U., Balto., Md., May 1973.

5. Lauer, Hugh Conrad '"Correctness in Operating
Systems'", Ph.D. Thesis, Carnegie-Mellon University,
September 1972, AFOSR -TR- 72 - 2361, Contract F
44620 - 70 - C - 0107.

6. Meldman, Jeffery and Holt, Anatol 'Petri Nets and
Legal Systems", Jurimetrics Journal 12, December 1971,
pp. 65-75

7. Noe, Jerre D., "A Petri Net Model of the CDC 6400"
Proceedings of the ACM/SIGOPS Workshop on Systems
Performance Evaluation, April 1971, pp. 362-378.

ACKNOWLEDGEMENT

I am grateful to my advisor, Professor Michael J. Flynn,
for his continued help, guidance, encouragement and
support. I would also like to thank my colleague, Joe
Davison,for his helpful comments.

‘86

FLOWWARE—A FLOW CHARTING
PROCEDURE TO DESCRIBE
DIGITAL NETWORKS

Dr. Wayne E. Omohundro
MTS, Bell Labs
and
Dr. James H. Tracey
University of Missouri

ABSTRACT

FLOWWARE is an interactive, graphical language to aid
in the understanding and design of digital networks.

The language is based upon the concept of flow charting.
The user specifies the register layout of the network
and the sequential operation in the form of a flow

chart on a graphics terminal. The flow chart allows a
user who is unfamiliar with the network to easily under-
stand the function and operation of the network.

I. TINTRODUCTION

Many languages [1-21] exist which aid the user in the
specification and design of digital networks but they
do not aid the user who is unfamiliar with the network
in his attempt to understand the function and operation
of the network. Flow charting of a program has been
recognized as an easy method to help in the understand-
ing as well as the debugging of a program. Therefore,
since digital networks in many ways resemble a program
(especially on the register transfer level), flow
charting should aid the user in the understanding of
digital networks.

Graphical languages using a flow charting concept have
been proposed by Rouse [17] and Bell, et al. [18] but,
to this date, they have not been implemented on a com-
puter. Also Digital Equipment Corporation has a modu-
lar computer, the PDP-16, whose functions can be speci-
fied by the purchaser through a special purpose lan-
guage called CHARTWARE [20].

FLOWWARE [22-24] is an interactive, graphics language
which allows the user to define a digital network in a
manner similar to flow charting. The user can specify
both the register layout as well as the sequential be-
havior of the network by using a flow chart and "draw-
ing" the network on a graphics terminal. Consider a
simple problem of specifying on a functional level a
counter to count up from zero to six and then back down
to zero. Figure 1 is an example of the flow chart
necessary to describe this system. The elements are a
three bit register COUNTER and a control signal UP.

The blocks START and TERMINATE specify, respectively,
the beginning and end points of the description. The
reader should recognize that figure 1 represents exactly
the information that the user would specify on the
graphics terminal. Each rectangle, arrow, and diamond
represents an element of the language FLOWWARE.

Figure 1 also shows some of the characteristics of the
language. It is a graphical language and hence, gives
the user a pictorial view of the network. The user
specifies the register layout and can show the paths
available for data transfer, the control signals regu-
lating these transfers, and the functions which modify
the data. Also, the sequential operation of the network

91

is shown in a graphical manner by a flow chart. The
language is a means of specifying the functional be-
havior of a system without regard for the technology
used for hardware implementation. FLOWWARE has been
developed with the understanding that such problems as
races, hazards, interconnection layouts, and fault
analysis are not to be solved with this system. Its
main purpose is to aid understanding but it can also be
used in the initial phases of design when ideas are at
the block diagram and functional level.

FIGURE 1

An Up/Down Counter (a) Control Flow Phase
(b) Register Layout Phase

:UP=1
:COUNTER=0

N

UpP

|COUNTER(3) I LJHL_J

(b))

YES

l:CQQNEER:COUQTER .ADD. ll l:COUNTER:COUNTER .SUB. ll

< (~UP* (COUNTER=0))

ERMINATE

(a)

To assist the user, FLOWWARE is interactive and allows
simulation of a design. The interactive nature permits
the user to obtain his results immediately from a
simulation run. Simulation helps a user understand a

network. He can change inputs and control signals to TABLE 1
see what effect they have on the network, if he so de-
sires, and resimulate it. In other words, the user

interacts with a network to understand it or to verify

Elements and Commands (a) Phase One

its operational correctness. Meaning Computer Response
FLOWWARE makes use of the IDDAP (Interactive Digital Define Register [::::::::::::]
Design Assistance Package) system as written by Crall
[15]. 1IDDAP is an interactive language which is a sub- .

Define M —_—V
set of Chu's CDL [10]. As such, it is oriented to text etine Zemory Input

input rather than graphical input. Essentially, a pre-
processor to handle the graphics information was added Address
to IDDAP. There were several reasons for using IDDAP, Register
one of which was that IDDAP is already an interactive

system. Also IDDAP has a simulator to allow the de-

scription to be simulated. This was considered impor-

tant because it makes it easier to verify that the ___________J}
system is working correctly, and also, as already men- Output

tioned, a simulator is useful in understanding the

operation of a network. Finally, IDDAP handles trans- Define Information flow —_—
lation of text input. 1In spite of the graphics nature o
of FLOWWARE, it is necessary to describe some operations
by register transfer statements. Hence in order to
concentrate on the graphics portion, rather than a
simulator and text translator, a preprocessor was added
to IDDAP. The major purpose of the preprocessor is the
interconnect the graphical elements in the correct man-
ner as specified by the user.

connector

Define Function

Define Control signal E

Define control flow Line

Often, when a person is describing a digital network
informally, he draws a register layout to give an over-
all view of the system. Then he inserts the control
signals and explains the sequential operation of the
network. FLOWWARE formalizes this process. FLOWWARE

relieves the user from drawing the elements. It forces Define dEcodEr <:::::::::>
the user to specify the register layout. It allows the - =

user to use a graphical input in the form of a flow

chart to specify sequential operations. The exact pro-
cedure and elements to perform these functions will now Define Unary operand Input NOT coM
be explained. function element LS RS
LC RC
CU CD
II. FLOWWARE ELEMENTS AND COMMANDS Outout
utpu
This chapter presents the elements and commands of ﬁ\\:::;\J
FLOWWARE. FLOWWARE has two description phases. Phase Input/ ADD SUB
one is the register layout or information flow phase Define Binary operand YOI, DIV
which serves to define the various components and show function element REM T OR
how they are interconnected. This phase is similar to AND OR
the variable declaration statements of most languages

system. Phase two is the control flow phase. This

phase makes use of the definitions in phase one to de-

scribe the data and control flow of the system by

specifying a flow chart. The flow chart gives the se- Define clocK
quence in which functions and decisions are activated -
along with the control signals regulating the events.

but has the advantage of giving a pictorial view of the output\\\\\\\\\d

Table 1 presents the elements and commands as well as

a brief description of their purpose. Each element is Define terminal
drawn by the computer on a graphics terminal at a posi-

tion specified by the hand movement of a cursor using a

joystick or mouse. Elements are defined by positioning
the graphics cursor at the major defining point and

typing the appropriate command. The major defining
point is that graphics point which denotes the position
at which the element is to be drawn by the computer.
Some elements have a minor defining point because two

Define Subregister

points are necessary to define that element; for exam-
ple, a line. Most of the elements have some text asso-
ciated with them. The text defines the additional
information needed for the element. In many cases this
is the name by which the element is to be referenced,
or some function to be performed. Editing features are
also provided to allow the user to add, change, or
delete elements or text.

92

TABLE 1

Elements and Command (b) Phase Two

Define Function block

Define Go to line 5
Define Control signal [:j
Define control flow Line = = —77 7777 >

Define Decision block

Define dEcodE block <:::::::::>
START

TERMINATE

_

Define start block

Define end block

Define terminate block

A. PHASE 1 OR INFORMATION FLOW PHASE ELEMENTS

Phase 1 or information flow phase is used to define the
components of the digital system to be simulated, to
describe the register layout of the system, and to show
the functions to be performed on the data. The basic
elements of this phase are given in the following
sections.

1. Register and Memory

The register and memory are common elements of a com-—
puter. As such the user can define a register and its
length as well as a memory with its word length and the
number of words. Table 1 shows the memory element.

The input and output points specify those points by
which the memory is accessed for writing and reading
respectively. The memory address register, defined as
a portion of the memory element, specifies the word of
memory to be accessed.

2. Information Flow Connector

The information flow connector is used to connect two
other elements. It shows the direction that informa-
tion flows between these elements. Figure 2 is an
example of the use of an information flow line. Two
bit registers A and B are defined by the appearance of
the register symbol, and the information is assumed to
flow from A to B. The equivalent IDDAP [15] statement
would be ": B = A."

FIGURE 2

Example of Information Flow Connector

A(2)

B(2)

The function element allows the user to define a par-
ticular set of operations which can be referenced in a
subroutine-like manner. The operations are defined by
IDDAP statements. The function is activated, in phase
2, by the statement : DO name where name is the name of
the function block.

4. Control Signal and Control Flow Line

93

The control signal and control flow line are used to
control a data transfer between two elements. The con-
trol signal defines the name by which the transfer is
referenced and the control flow line points to the
transfer to be controlled. Figure 3 shows an example
of control signal C controlling the transfer A to B.
The statement : DO C, in phase 2, will cause the trans-
fer to take place.

FIGURE 3
Example of Use cof Control
| A(2) I
|
|
W e S >)

3. Decoder

The decoder decodes an n bit register into one of 2"
control signals. Figure 4 shows a decoder DEC which
decodes the register REGA into control signals. Only
the decode of zero and one in REGA are shown in the
figure. These control signals can be used to control
other transfers. The control signal CON controls the
decode. When the statement : DO CON is specified, REGA
is decoded and the appropriate action takes place based
upon the current value of REGA and where the control
flow lines point.

FIGURE 4

Decoder with Control Flow Lines

REGA(3)

6. Unary and Binary Operand Function Elements

The unary and binary operand function elements allow
the user to perform standard functions on the input
operands. These operands can be registers or memory.
The unary operand function element requires one input
operand and the binary operand function element requires
two. The result is placed in the register or memory
location specified as the output operand. The exact
function to be performed is specified by pointing a
control flow line at the function name. Tables 2 and 3
specify the functions available with these elements.
The use of this feature is best explained by an example.
Referring to Figure 5, register A is both the input and
output operand. The control signal is INC, and through
the control flow lines, it points to the CU portion of
the unary operand function. The mnemonic CU means
Count Up. When INC is referenced, the result is to add
one to the input operand, A, and transfer the result to
the output operand, A. In effect, register A is incre-
mented by one. To reference this function, the state-
ment : DO INC causes the A register to be incremented.

TABLE 2

Functions of Unary Operand Function Element

Mnemonic Meaning
NOT Logical Not
coM Two's Complement
LS Left Shift one position
RS Right Shift one position
LC Left Circulate one position
RC Right Circulate one position
CcU Count Up one
CD Count Down one

TABLE 3

Functions of Binary Operand Function Element

Mnemonic Meaning
ADD Add operand 1 to operand 2
SUB Subtract operand 2 from operand 1
MUL Multiply operand 1 by operand 2
DIV Divide operand 1 by operand 2
REM Remainder, operand 1 modulo operand 2
OR Logical inclusive OR of operand 1 and
operand 2
AND Logical AND of operand 1 and operand 2
XOR Logical exclusive OR of operand 1 and

operand 2

94

FIGURE 5

Example of a Unary Operand Function

[A |

INC

|)

: NOT |COM

I LS RS

I LC__|RC
et s > CU___|CD

7. Clock

Simulation has two modes: clock and no clock. In clock
mode, update of registers under clock control does not
occur until there is a clock pulse, i.e., when the

clock variable changes state. In no clock mode, reg-
ister update takes place immediately [15]. The clock
element is used to define the register to be used for a
clock.

8. Terminal and Subregister

The terminal and subregister allow the user to define
terminals and subregisters. Terminals allow the user
to refer to a boolean expression by a single name,
Similarly subregisters allow the user to refer to a
part of a register by a single name. Therefore the
text associated with these elements are assignment type
statements.

B. PHASE 2 OR CONTROL FLOW PHASE ELEMENTS

Phase 2 or the control flow phase describes the se-
quential nature of a digital system in terms of a flow
chart. There are only nine basic elements needed in
this phase. Three of these tell the simulator where ta
start and end, and the other six describe functionally
the operation of the system.

1. Function Block

The function block is used to describe a particular
function which may be one or more IDDAP statements.
is the basic element of FLOWWARE phase 2. The dis-
tinction between this function block and the one in
phase 1 is the method of activation. The phase 1 func-
tion requires a subroutine-like call whereas the phase
2 function block is activated when it is encountered
during the normal sequence of events as specified by
the flow chart. In fact, a statement within the phase
2 function block is necessary to call the phase 1
function.

It

2. Go-To Line

The go-to line defines the direction of control flow or
the sequence in which operations are to be executed.
The order in which elements are executed is determined
by the direction of the arrow. Also the user can spec-
ify parallel paths with this element as shown in Figure
6. Functions B and C are executed in parallel, after
function A has completed execution.

FIGURE 6

Parallel Execution of Function B and Function C
(Dollar signs $ denote comments within element)

[sFuncTioN A$ |

|$FUNCTION BS J [$FUNCTION c$]

_3. Control Signal and Control Flow Line

The use of control signals and control flow lines in
phase 2 are different from phase 1. It is best ex-
plained by the example shown in Figure 7. Function A
and Function B are two user defined functions and BACT
is a control signal on Function B. Function B is exe-
cuted only after Function A completes execution and if
BACT is true or a logic 1. If BACT is false, the sys-
tem "waits'" until BACT becomes true. If this is the
only path in the system and BACT is false, then the
simulation will be halted without executing Function B.
If there are parallel paths, Function B is executed
when BACT is set to logic 1 by one of the other paths.

FIGURE 7

Example of the Use of a Control Signal
(Dollar signs $ denote comments within element)

$FUNCTION A$

$FTUNCTION B$

4. Decision Block

The decision block is used to decide between two alter-
nate paths. The decision block tests either a boolean
expression or a relationship expression, such as A > B,
associated with the element or a control signal point-
ing to the element. When the expression or control
signal evaluates to a logical one, then the exit point
is either the top or bottom point of the diamond. If
it evaluates to a logical zero, then the exit point is

95

the right or left point. The exit point is the path to
be taken when the decision is made.

5. Decode Block

The decode block decodes the register defined within
the block into one of 20 signals where n is the length
in bits of the register. The go-to lines leaving this
element point to the next path to be taken based upon
the value decoded. The go-to lines have associated
with them a number which represents the decode of the
block. A go-to line without a number, only one is al-
lowed, means that for any decoded values not specifi-
cally mentioned on other lines, '"take this path."

Figure 8 shows an example of the use of the decode
block. When Function A completes execution, the re-
gister INST is decoded. If INST = O then Function B is
executed. If INST = 1 then Function C is executed. If
anything else, Function D is executed.

FIGURE 8

Example of the Use of the Decode Block
(Dollar signs $ denote comments)

$FUNCTION A$

o1

$FUNCTION D$ $FUNCTION B$ $FUNCTION C$

6. Start, End, and Terminate Blocks

These three elements control the simulation. The simu-
lation starts at the start block and ends at the termi-
nate block. The end block is used to specify the end
of a path. When it is encountered, the simulation is
not halted but any other parallel paths are executed.
The terminate block halts the simulation when it is
executed even if there are unexecuted parallel paths.

III. USE OF FLOWWARE

This section will present some simple examples using
FLOWWARE. The major emphasis will be on the input
language rather then the output of the simulator.
already mentioned, Figure 1 is an example of an up/
down counter.

As

Consider the digital network shown in Figure 9. The
problem is to add register A to B or to subtract B from
A. 1In both cases the result is to be transferred to
register A. The control signal C is to be used to
determine whether addition or subtraction is to be per-
formed. 1If C is true, perform the addition. Figure
9(a) shows the register layout with signals AD and SB
controlling the addition and subtraction respectively.
Figure 9(b) shows the control flow where the signal C
is tested.

FIGURE 9
Addition/Subtraction Network

|

[aD_ | u [sB_|
- o[ADD | SUB J¢=————= v
MUL | DIV
REM | OR
AND | XOR

(a) Register Layout Phase

START

9

:DO AD :DO SB

\:\r .

TERMINATE

(b) Control Flow Phase

In Figure 10, the fetch and execution of a LOAD ACCU-
MULATOR (register A) instruction for a small computer
is shown. It is assumed that direct addressing is used
and that the six bit computer word is divided in half
with three bits for the operation code and three bits
for the address. Register P is the program counter, R
is the instruction decode register, RI is the operation
code subregister, T is the decode of the clock counter
K, and Q is the decode of a control register RQ. When
RQ = 1, the computer is in the instruction fetch cycle.
When RQ = 2, it is in the instruction execution cycle.
The operation code for the LOAD ACCUMULATOR is zero.
The register layout is shown in Figure 10(a) and the
control flow is shown in Figure 10(b). Notice the use
of the decode block in both phases as well as the use
of the control signals.

96

FIGURE 10

Fetch and Execution of an Instruction

o D

M(6,8)
MAR(4)

‘ RI=R(1-3)
[s | [re> |
(a) Phase 1 or Information Flow Phase
I START |
lll,l
I3701 :MAR=P :K=K.COUNT.1
| :P=P.COUNT.1
|
e) |
R=M(MAR)
:RQ=1
G
|
(U P, ¥
1RQ=2 7%
| marsRcu-s)
——Y |
€= e -
:A=M(MAR)
(b) Phase 2 or Control
Flow Phase

IV. CONCLUSION
FLOWWARE has been implemented on the computer system at
the University of Missouri-Rolla. This computer system
consists of the IBM System/360 Model 50 Computer and
several Data General Corporation NOVA-800 Minicomputers.
The graphics terminal used as the main input/output de-
vice is the T4002 Tektronix Graphic Computer Terminal.
FLOWWARE essentially consists of two programs: one
written in PL/1 for the System/360 computer and one
written in assembler for the NOVA computer. The mini-
computer is responsible for drawing the elements and
local editing functions, and the main computer is re-
sponsible for translation and simulation of the descrip-
tion.

FLOWWARE has been designed for user convenience. The
user is relieved of the burdens of drawing the elements
and typing long command lines when single letters will
suffice. The interactive nature of FLOWWARE permits
the user to obtain his results immediately. All ele-
ments and all interconnections between elements are
clearly visible. Simulation allows the user to see the
network "work" under a variety of input conditions.
Text and element editing permits modifications to the
description. The information flow phase description
allows the user to specify graphically a network of
registers, etc., which resemble a subroutine and is
executed like a subroutine in the control flow phase.

By means of its implementation on
system, FLOWWARE has shown itself

the UMR computer
to be a useful tool

in the process of digital design. FLOWWARE has the
flexibility needed to meet a diversity of user demands
while still retaining the structural ordering necessary
to insure logical consistency within any one descrip-
tion. Its similarity to flow charting, its pictorial
nature, its ease of use, and its interactive qualities
combine to produce a language which solves the problems
present in most text oriented languages, the problems
of comprehension and readibility.

This project is supported, in part, by NSF Grant
GK34076. At present, work is being done on FLOWWARE
to improve and expand its capabilities.

BIBLIOGRAPHY

1. M. A. Breuer, "Recent Developments in the Auto-
mated Design and Analysis of Digital Systems,"
Proceedings of the IEEE, Vol. 60, No. 1,
pp. 12-27, January 1972,

2. C. G. Bell and A. Newell, Computer Structures:
Readings and Examples, New York: McGraw-Hill Book
Company, 1971.

3. C. G. Bell and A. Newell, "The PMS and ISP
Descriptive Systems for Computer Structures,"
Proceedings of the 1970 Spring Joint Computer
Conference, pp. 351-374, 1970.

4. K. E. Iverson, A Programming Language, New York:
John Wiley and Sons, 1962.

5. K. E. Iverson, "A Programming Language,"
Proceedings of the 1962 Spring Joint Computer Con-
ference, pp. 345-351, 1962.

6. K. E. Iverson, "A Common Language for Hardware,
Software, and Applications," Proceedings of the
1962 Fall Joint Computer Conference, pp. 121-129,
1962.

7. H. Schorr, "Computer-Aided Digital System Design
and Analysis Using a Register Transfer Language,"
IEEE Transactions on Electronic Computers, Vol.
EC-13, pp. 730-737, December 1964.

8. J. R. Duley and D. L. Dietmeyer, "A Digital System
Design Language (DDL)," IEEE Transactions on Elec—
tronic Computers, Vol. C-17, pp. 850-861,
September 1968.

9. J. R. Duley and D. L. Dietmeyer, "Translation of
a DDL Digital System Specification to Boolean
Equations," IEEE Transactions on Electronic Com-—
puters, Vol. C-18, pp. 305-313, April 1969.

10. Y. Chu, "An ALGOL-Like Computer Design Language,"
Communications of the ACM, Vol. 8, pp. 607-615,

October 1965.

11. T. C. Bartee, I. L. Lebow and I. S. Reed, Theory
and Design of Digital Machines, New York: McGraw-

Hill Book Company, 1962.

12. D. L. Parnas, "A Language for Describing the
Functions of Synchronous Systems," Communications
of the ACM, Vol. 9, No. 2, February 1966.

13. D. L. Parnas, "More on Simulation Language and
Design Methodology for Computer Systems," Pro-
ceedings of the 1969 Spring Joint Computer Con-—

ference, pp. 739-743, 1969.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

97

J. A. Darringer, "The Description, Simulation, and
Automatic Implementation of Digital Computer Pro-
cessors," Ph.D. Dissertation, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, May 1969.

R. F. Crall, "IDDAP--Interactive Computer
Assistance for Creative Digital Design,' Ph.D.
Dissertation, University of Missouri-Rolla,
Rolla, Missouri, 1970.

K. E. Iverson, A. D. Folkoff and E. H. Sussenguth,
"A Formal Description of System/360," IBM Systems
Journal, Vol. 3, No. 3, pp. 198-262, 1964,

D. M. Rouse, "A Design Oriented Digital Design
Language," M. S. Thesis, University of Missouri-
Rolla, Rolla, Missouri, 1969.

C. G. Bell, J. L. Eggert, J. Grason and

P. Williams, "The Description and Use of Register-
Transfer Modules (RTM's)," IEEE Transactions on
Computers, Vol. C-21, No. 5, May 1972.

C. G. Bell and J. Grason, "The Register Transfer
Module Design Concept," Computer Design, May 1971.

Advertisement from Digital Equipment Corporation,
Maynard, Massachusetts, 1972.

J. L. Brame and C. U. Ramamoorthy, "An Interactive
Simulator Generating System for Small Computers,"
Proceedings of the 1971 Spring Joint Computer
Conference, pp. 425-449, 1971.

W. E. Omohundro, '"FLOWWARE--A Flow Charting Method
to Describe Digital Systems," Ph.D. Dissertation,
University of Missouri-Rolla, Rolla, Missouri,
1973.

W. E. Omohundro, "FLOWWARE Users Manual,"
Technical Report, University of Missouri-Rolla,
Rolla, Missouri, 1973.

W. E. Omohundro, "FLOWWARE Implementation Package,"
Technical Report, University of Missouri-Rolla,
Rolla, Missouri, 1973.

AUTOMATED EXPLORATION OF THE
DESIGN SPACE FOR REGISTER
TRANSFER (RT) SYSTEMS

Mario R. Barbacci
Daniel P. Siewiorek
Departments of Computer Science and Electrical Engineering
Carnegie-Mellon University

KEYWORDS AND PHRASES: Design Automation, Register Transfer
Level, Design Space, Cost/Speed Trade —offs, Register Transfer
Modules.

ABSTRACT.~ A Design Automation System for the RT level of
design is described. The System explores the design space by
finding alternative implementations for a user given behavioral
specification. The alternative solutions are obtained by
transformations on a graph model. These transformations effect
trade —offs between the cost of the hardware and the speed of
the algorithm. Heuristic routines are used to reduce the design
space by exploring only those alternatives whose characteristics
approach a user given set of goals.

1. INTRODUCTION

A computer system is composed of thousands of
interconnected components, The basic components of computer
systems have gone through an evolution from relays, to vacuum
tubes, to transistors, to logic gates (small scale integration), to
registers (medium scale integration), and to memories and
processors (large scale integration). As the basic components
increased in logical power more complex computer systems
became feasible.

The construction of these computer systems has been
simplified by computer aided design. Early attempts at design
automation were directed towards a reduction in cost and time of
the design process itself [1]. These objectives were
accomplished by relieving engineers of repetitive time consuming
tasks. This approach to design automation limits itself to filling
the gap between the low level design specifications and the
manufacturing data. The inputs to the systems are, generally, in
terms of Boolean equations which the system then translates into
an equivalent gate level specification. The Boolean equations
specify the desired behavior of the finished object. Most of the
synthesis algorithms at this level deal with the problem of
reduction or simplification of the Boolean equations.

Recent efforts at design automation have been directed
towards a system capable of accepting a high level description
and translating it into an equivalent gate level structure.
APDL[2] and ALERT[3] are two such systems.

The essential feature lacking in these existing systems is the
exploitation of alternative implementations derived from the initial
behavioral specifications. This paper deals with the description
of an automatic design system that explores the design space for
the register transfer level. The Register Transfer (RT) level [4]
is characterized by the following basic components: Registers,
register transfers, and transformations on the contents of
registers. When completed, the system will take as inputs the
specification of the desired behavior in some high level RT
language and the specifications of the hardware RT level

- components. The output is the specification of the hardware
which attempts to optimize the system along some specified
dimensions of the design space. We will restrict ourselves to the
The research in this paper was supported by National Science
Foundation Grant GJ 32758X.

RT level description
of algorithm (ISP)

M
Graph mocElJ(—-ITransform%
Final graph

Figure 1. An RT level design automation system

. Design
constraints

Description
of RT modules
PMS type
cost

speed

cost and time dimensions. Thus a designher specifies design
constrains to the system, such as whether the solution should be
the cheapest, the fastest, or some trade ~off between cost and
speed.

The automatic design system is depicted schematically in Fig.
1. The description of the algorithm is given in the RT language
ISP [4] and translated into a graph representation. The user
can, however, bypass this step and provide its input = the graph
— directly to the System in an assembly —like notation. This can
be used to desigh systems not describable in ISP. Subsequently,
various transforms on the graph are attempted to establish a new
solution to the problem. A set of heuristics guide this exploration
of the design space by using the given desigh constraints to
decide which solutions should be kept to generate other solutions
by yet another application of the graph transformations.

Which set of transforms to apply is determined by the PMS
(Processor Memory, Switch) type [4] of the modules. The set
of transforms are general and can be used with any set of
modules which conform to a particular PMS type. Transforms
{module dependent) which depend on the details of a certain
module set, such as the cost/performance ratio betwen two
modules of the same type, are not included in the general
(module independent) set of transformations although it is a
simple task for a designer to add extra transforms to the set.

The following sections describe different portions of the
system. Sections 2 and 3 describe the system inputs, the module
set and the initial description of the algorithm to be implemented.
Section 4 delineates the PMS types which are used to select the
set of transforms discussed in section 5. The cost or gain
achieved by applying a transform is treated in section 6, while
the heuristics which drive the design process are presented in
section ‘7. Finally, an example problem is given in section 8.
The various sections will be treated by way of examples. The
complete details can be found in [5].

2. A MODULE SET

To lend credibility to the discussion of the system, a
commercially available [6] set of RT level modules, called Register
Transfer Modules (RTMs), will be used as the module set.

The following paragraphs briefly introduces the modules and
discusses the design process using them. A more detailed
description is given in [7]. The flowchart format of the RTM
notation is so transparent, however, that the detailed reference
probably need not be read to understand this one.

101

Control part Data part
entry RTM bus
] Kev(C «8) ! s Mc
ALY . 8 —
Ksm l DMgpa
Ce |
' _(-C-I-WC<15:O>
| Kbr (P<0> | —C ¢«
0 1}
+ Kev (P « —L_DMgpa
‘Kev (P «{|(P+MPD) /2 P<CO> |b
P/2) Pe—x
P +MPD# —
/2 ——{P<15:0>
P e —aMPD<15:0>
“P—
Kev(C«C~1 2 —
Kbus |
BSR=0 |b B
Figure 2. An RTM multiplier
entry
Kev(C €8) M (8) =—=
Kbr(P<0>) DMgpa(C)=——=]
0 1
Kev(P€P/2) Kev (P& (P+MPD)/2)
Kev(CeC-1) DMgpa(P,MPD)
Kbr(C=0) Kbus ===t
Lo b

Figure 3. Short hand notation of the RTM multiplier

The RTM set consists of about 35 module types falling into
four classes. Each RTM system is built around a common bus for
facilitating data transfers among the registers of the modules
connected to it. The three types of modules that connect to the
bus are: M's = Memories for holding single bits (Boolean), or 8
-, 12—, or 16=bit integers, and arrays for holding vectors of
integerss T's = transducers for interfacing with the environment
external to RTM (e.g. lights and switches, analog—~digital
converters, serial interfaces for teletypes); and DM's =
Data—Memory components to hold data and carry out logical and
arithmetic operations on this data. A fourth type of module, the
K—type, controls the operations in the other three. A network
of K modules is isomorphic to the flowchart of the computational
algorithm that is . to be performed, and each individual K module
evokes some operation(s) in the data part of the system
(centered around the bus). The bus has timing interlock signals
to interlock data transfer operations evoked by the K modules.
Multiple buses can be used to increase the performance of a
system,

Figure 2 depicts the RTM implementation of an 8-bit shift
and add multiplier and Fig. 3 the short hand notation for the

Multiplier := (C «8;next

Loop:=((P<O> =P« (P+MPD)/2);
(~P<O> =P «P/2) snext
C&«C—1snext
(C#0=>Loop))

)s

Figure 4, The ISP description of the RTM multiplier

g entry

Ce8

Loop:=
P<O>="?
PeP/2

P« (P+MPD)/2

CeC-1

Figure 5. The graph model of the multiplier

system. The multiplier is in the P register and the muitiplicand is
in the MDP register and is assumed to occupy the leftmost 8 bits
of the register. The product will be in the P register. The
partial products are formed in the left hand side of the P register
and shifted to their appropriate position in the final product after
eight transverses of the loop. The multiplier will be used as an
example for the following discussion.
3. THE GRAPH MODEL

There are five basic types of operations in the graph model
the design automation system uses:
= branch (Kb), activates one of the output paths depending on
Boolean conditions
- serial merge (Ksm), activates its output path when any of the
input signals arrive
- diverge (Kdiv), activates concurrently all paths attached to it
=~ parallel merge (Kpm), activates its output path when all its
input signals have arrived
— data operations (other)

The translation process from the input RT language
description (ISP) to the graph model is straightforward and has
been programmed. The ISP for the multiplier is shown in Fig. 4
and the corresponding graph model is depicted in Fig. 5.

The system as implemented treats each node in the graph as
composed of a non~empty sequence of the five operation types.
The only restriction is that nodes must have a unique entry
operation (Ksm, Kpm, or data operation) and a unique exit
operation (Kb, Kdiv, or data operation). In the examples that
follow, we will explicitly show the control operations by drawing
them outside their nodes.

102

(a) Model A

Pcl Mpl
Mp—-—S/

\PCZ Mp?2

(b) Model B

Pcl
Mp-—————S<

Pc2——Mp2
(c) Model C

Figure 6. PMS types

4, PMS MODULE TYPES
The decision as to which set of transformations should be
used is determined by which PMS types the module set can
emulate.

In model A (Fig. 6.a), each process communicates directly
with a single large main memory. The important feature is that
each process can modify information which is to be used by the
others.

In model B (Fig. 6.b), slave memories (buffers) have been
added to the system. A process can fetch information from main
memory, but any information to be stored is put in its buffer.
The buffer acts as intermediate storage between the process and
the main memory. When a process needs some information it
looks first in the associated buffer to see if the information has
been stored there as a result of a previous computation. If not,
the data is obtained directly from main memory. When both
processes have completed their tasks, the information in the slave

memories is transfered to the appropriate locations in main
memory.
Model C (Fig. 6.c) differs from model B in that only one

slave memory is used. One of the processes (Pcl) can fetch and
modify data directly in the main memory. The other process
(Pc2) can only fetch data from main memory and uses Mp2 as a
buffer for partial computations.

From these models the various conditions on the variables
for parallel processing can be developed [8,5]. RTM's
correspond to either model B or C since a process occupies a bus
and two busses cannot share data without co—operation between
processes.

5. THE TRANSFORMS

The set of transforms for RTM's will be demonstrated by
example. The full set of transforms is described elsewhere [5].
In general, speed is achieved (at some extra cost) by increasing
parallelism. Cost is decreased by reducing parallelism. For
purposes of example, suppose that we want to increase speed.

103

Figure 8. The parallel computation of nodes D,E and B,C1,C2

Consider the multiplier in Fig. 5. The graph model is first
cleanned up by removing no—operation control nodes (Kpm with
a single input for example) which were introduced by the ISP to
graph model translation.

Associated with each node is a, possibly empty, set of
variables which indicates which variables are used andfor
modified by the operation(s). Node D (C«C=1) depends on
variable C alone while nodes B, Cl, and C2 depend on P and
MPD. Hence node D can be computed in parallel with nodes B,
Cl, and C2 since they depend on different sets of variables,
This is depicted by the transformed graph in Fig. 7. Note
further that node E also depends only on variable C. Hence E
could be performed in parallel with Bl, Cl, and C2, but it must
follow the computation of D, as shown in Fig. 8.

Sometimes one node may use a variable while another uses
and modifies the same variable. The first node can be computed
in parallel with the second if the first node receives its own copy
of the variable before the parallel computations starts. Copying
the variable takes time and requires extra hardware. By defining
the various ways variables are used it is possible to determine if
a transformation can be applied and how much will be saved or
lost in terms of time and cost as shown in the next section.

The transforms are of a general nature in that they apply not
only to individual nodes but to subgraphs of arbitrary complexity.
Each subgraph is also characterized by the variables used and/or
modified by its computations. Methods for forming these
subgraphs and their associated variable sets have been automated
[5] but will not be described here.

6. DESIGN SPACE TRADE~-OFFS
Two parameters will be used to describe the design space:
The cost of the hardware involved and the operational time. The
former is obtained by adding the costs of the components used in
both the data and control structures. The latter is obtained from
the average speed of the operations involved.

For a straight sequence of operations the time required is
the sum of the individual times, Fig. 9.a. In the presence of
concurrent activities, the operation time is that of the longest
(timewise) sequence, Fig. 9.b. When alternative sequences are
initiated as a result of a data dependent decision, the time
required for the execution is not known a priori. In this instance
a worst case situation will be assumed, namely, that the longest
path is the one selected, Fig. 9.c.

T(A)+T(B)
(a) Sequence

Max (T(A),T(B))
(b) Concurrent

sequences
G Kbl’ O
J-Ksm 0
Max (T(A),T(B)) NxT(A)
(c) Alternative (d) Cycles
sequences

Figure 9. Time estimation

The presence of cycles (loops) adds some complexity to the
estimation of the operation time. In this case the level of nesting
is assumed to be proportional to the frequency of execution of
the operations. Conceptually this is equivalent to replacing the
cycle by a sequence of multiple copies of the individual
operations. Since the number of times a loop is executed (i.e.
the number of copies) is usually unknown, a default (2) is
assumed. This default may be overruled by the designer by
specifying an estimate loop count, Fig. 9.d.

Having defined the parameters of the design space we can
now describe the trade —offs involved in the transformation rules.
Connectivity and data dependency are used in the system to
indicate the feasibility of a transformation. Feasible
transformations, however, do not imply necessarily any
advantage in their application, and the desirability of such a
transformation is indicated by a different set of conditions.

Fig. 10 shows the effect of one of the transformations, rule
SP. Node X1 is required to copy to local memory those variables
used by node (subgraph) B in its computation according to PMS
types B and C. Likewise the two X2 nodes are required so that
all the variables transformed by nodes A and B are available to

Figure 10. Rule Serial to Parallel (SP)

any of the n paths originally following node B. The trade —offs

are:
TIME: Original T(A)+T(B)

new T(X1)+T(X2) +MAX(T(A),T(B))

gain T(AY+T(B)=T(X1)=T(X2)-Max(T(A),T(B))
COST: Original C(A)+C(B)

new C(X1)+n.C(X2) +C(A) +C(B) +«.C(Bus)
extra C(X1)+n.C(X2) +e.C(Bus)
Where o« =0 or 1, depending on the availability (e.g. idle) in the
current version of the system of a bus that could be used by B.

In the case of rule SP the concurrent computation of A and B
may not bring about a reduction in time: The transfer operations
X1 and X2, used to load and unload variables to and from the
different busses, take a non=zero amount of time. If the number
of variables transfered is large, this overhead may cancel any
gains obtained from the concurrent computation of A and B. The
bus required to execute B may or may not be already present in
the system. If it is available (e¢=0) then it can be shared at no
extra cost.

Desirability conditions for other transformations are
described in [5]. They can be used to eliminate those (feasible)
transformations where they do not produce the desired savings
(in cost or time) or where the gain is below a designer specified
threshold.

7. HEURISTICS

Due to the interaction between transformations it is a difficult
task to formalize the optimization (improvement of alternative
structures) as a mathematical optimization problem. The main
difficulty is the fact that transformations apply to subgraphs of
arbitrary size, and as a consequence transformations in a given
alternative structure may or may not be feasible or desirable in
structures derived from it. It is also the case that new cases of
transformations become feasible or desirable only after a specific
sequence of transformations has been applied.

The design space is represented by a time/cost diagram.
Alternative structures are represented by points in the diagram.
Except for the original solution, all points are derived, by
transformations, from other points in the space. These
relationships will be made explicit by drawing vectors from the
parent nodes to their immediate (i.e. one transform removed)
descendents.

104

The exploration of the design space in our system is
performed by a group of heuristic routines that produce
alternative designs in a goal oriented fashion, the goal being
specified by the designer. Ideally, the goal is to find an
alternative structure whose position in the design space is as
close as possible to the origin (O cost and 0 time). This ideal
case is, however, not easily found in real solutions. The usual
case is that the least expensive solution is not the fastest and
vice versa. This characteristic provides a rough classification of

the design objectives into two classes: minimal cost and minimal

time.

Although a desigher's aim can be classified according to
these objective functions it may be the case that the real
objective is more complicated in nature, namely, some
combination of time and cost. For instance, the objective could
be something like: “"the fastest alternative structure not costing
more than x dollars".

For simplicity, the subspace of acceptable solutions will be
defined by a set of straight line segments whose slopes reflect
the objective functions. In the example above a single straight
line, parallel to the cost axis would be used to divide the space in
two halves. Only those solutions that lie in the semispace
containing the origin are considered acceptable. These solutions

J|

$2l ...
3

Figure 11. Design space reduction
represent improvements along the design goal.

More complex constraints can be described by using lines of
the form $=-m.T+b, where m is a parameter indicating how
many dollars the designer is willing to pay for each time unit
saved (if time is the primary goal) or how many time units the
designer is willing to sacrifice for each dollar saved (is cost is the
objective). An example, Fig. 11, will clarify this description.

Assume that the primary objective is a reduction in time, and
that the designer wants a time/cost trade=—off of at most m
dollars for each time unit improvement. Furthermore, assume
that the original design is characterized by §1 and Tl. The
"acceptable trade —off" subspace would thus be delineated by
two line segments: one parallel to the cost axis starting from
(T1,81) to (T1,0), and the other through (T1,81) with slope —m.
By studying the control flow and data dependencies in this
original structure, four transformations are available which yield
four alternative solutions derived from the original one: A,B,C,D.

By dividing the space according to the trade—off lines,
alternatives B, C, and D can be rejected because their
characteristics are not within the acceptable subspace (i.e. they
take more time or the decrease in time costs too much)., The
alternative left, A, represents improvement in time while the cost
to achieve the improvement is under the designer's threshold.

Advance?

M[64] «M[64] —1 ;next
M[64] = 64 ?

M[64] <127
T «M[64]next

M[T] «ltem.number snext
el

Bin «isnext
Bin = M[T] ?

M) =02

Full.bin €« 1 snext
M[0] «M[0] +1 snext
M[0] =30 ?

M[I]eM[I]-1

Eject.flag 1 Over.30«1

TeT+1;next
T=1287

T«65

|« +1;next
| =647

Figure 12. Controller for a conveyor —bin system

The process can now be applied to A in an identical manner.
Design A is taken as the new initial solution and a new
"acceptable trade—off" subspace is defined by a line segment
(T2,82) to (T2,0) and a line with slope =m through (T72,82).
Since in some cases more than one alternative can be left for
further exploration, this process takes the form of a tree walk
where the nodes represent alternative solutions and the edges
are the transformations applied. In some instances, identical
structures can be obtained by different sequences of
transformations and the exploration of the design space is a
graph walking process. In any event, a path ends when no
alternative solutions worth exploring can be reached from a given
point. When all possible paths have been explored the end nodes
are measured against the primary objective and the best one
chosen.

8. A CONTROLLER FOR A CONVEYOR=-BIN SYSTEM

The following example is taken from [7]. Briefly, the
algorithm performs the controlling function for a conveyor
carrying items to be sorted into bins,

The algorithm is described in ISP and its graph model is
shown in Fig. 12, Notice that in this example the nodes
correspond to sequences of one or more operations.

105

$(x1000)
3
25 2 J
2.0
L 5
15
0
1.0
3.0 35 T(ms) 4.0

Figure 13. Design space exploration

Several alternative implementations can be derived from this
example, They are rather simplistic due to the compactness of
the algorithm, but they are nevertheless appropriate to show the
design space and its exploration, Fig. 13. First, assume that the
fastest solution is sought. All the applicabie transformations deal
with the increment and testing of variables T and | (nodes 11,12,
and 13 of the flowchart), and their concurrent execution with the
main computation (nodes 5,6,7,8,9, and 10).

The best solution (timewise) is given by point 4 in the
design space. In this solution, the main body of the algorithm
(5,6,7,8,9,10) is computed in parallel with the increment and
testing subprocess (11,12,13) as a whole. Other alternative
points are also shown in the diagram (points 1,2,3,5,6). Several
things can be noticed in the design space diagram; for instance,
point 2, the parallel computation of (5,6,7,8,9,10), (11,12), and
(13) is reached in two ways: First, (5,6,7,8,9,10,11,12) is
performed in parallel with (13), point 1, and then the larger
computation is performed as (5,6,7,8,9,10) in parallel with
(11,12). The other way of reaching point 2 is by computing
(5,6,7,8,9,10) in parallel with (11,12,13), point 4, and then
transforming the smaller subgraph into (11,12) in parallel with
(13). Notice furthermore, that points 2 and 4 present the same
time value. The system uses the distance to the origin as a tie
breaker parameter.

The 'same example was also processed with the constrains
that 1) No more than 3 cost units (dollars) were to be added for
each time unit (1 microsecond) of speed~up, and 2) The time
should be no greater than the initial solution. With these
constrains, the system rejected point 5 for not having the proper
trade —off with respect to its predecessor. It is interesting to
see that point 3, which could be reached from 1 and 5 under the
unlimited cost constraint, can only be reached from 1 (since 5
was rejected, it successors were not obtained). A similar

situation is present at point 2, with respect to points 1 and 4.
The interesting detail is that, 2, when reached from 1 is accepted
since the trade —off involved is below the threshold. When 2 is
reached from 4, it is rejected since the trade—off involved is
bevond the threshold.

106

9. CONCLUSIONS

The purpose of this paper is to describe the development of
an automated method for designing digital systems at the RT level.
The desighed system is optimized along a set of designer
constraints. The primary result is a system that translates an
initial behavioral description of a digital system into alternative
structural specifications from which it can be built. For
simplicity, the structural specifications are given in terms of a
specific set of building blocks, the RTM set.

Due to space limitations, it is impossible to provide in a
paper of this nature any detailed description of the system as
implemented, and therefore we have tried to point out in general
terms what its capabilities are.

The system is a research tool and its implementation allows it
to be used either as a closed system, in which the user only
specifies an initial description and a set of constraints and goals,
upon which the system performs an automatic design space
exploration; or, as an interactive facility, driven by a command
language that allows the user to exercise any function of the
system from a time —sharing terminal,

A system of this nature presents limitations as to the degree
of "optimization" it can perform. It is not expected to obtain
solutions that are radically different from the one specified by the
user. Hence, its use is more likely to be as part of a design
cycle, in which the user presents an initial description which is
processed by the system; the result of this is an exploration of
the design space around such initial solution; this exploration can
suggest to the user modifications to his behavioral specifications;
this modified specifications are then fed back into the system and
the process starts again.

REFERENCES

[1] Breuer, M.A.:" Recent developments in the Automated Design
and Analysis of Digital Systems". IEEE Proceedings, Vol.
60, No. 1, January 1972, pp. 12:27.

[2] Darringer, J.A.: "The Description, Simulation, and Automatic
Implementation of Digital Computer Processors”. PhD
thesis, EE Department, Carnegie =Mellon University, May
1969,

[3] Friedman, T.D. and Yang, S.:
Automatic Logic Design Generator (ALERT)".
Vol. C-18, No. 7, July 1969, pp. 593:614.

[4] Bell, C.G. and Newell, A.: "Computer Structures: Readings
and Examples”. McGraw Hill Book Company, New York,

"Methods used in the
IEEE-TC,

1971,
[5] Barbacci, M.R.: "A Register Transfer Automatic Design
System". PhD thesis, CS Department, Carnegie —Mellon

University, December 1973.
Digital Equipment Corporation:
Handbook". 1971.

[7] Bell, C.G., Grason, J., and Newell, A.: "Designing Computers
and Digital Systems". Digital Press, Digital Equipment
Corporation, 1972.

Bernstein, A.J.: "Analysis
Processing"”. IEEE-TEC, Vol.
1966, pp. 757:763.

(6} "PDP16 Computer Design

for Parallel
5, October

of

(8]

Programs
EC~-15, No.

IMPLEMENTATION ASPECTS OF THE
SYMBOL HARDWARE COMPILER

T. A

Laliotis

Fairchild Systems
Palo Alto, California

ABSTRACT

One of the most outstanding features of the SYMBOL com—
puter is its high level hardware compiler. This paper
presents some aspects of the hardware implementation
including the network characteristics of the communi-
cation scheme between compiler, system supervisor, and
Memory Controller, the functional breakdown into
distinct sections for implementation, the support hard-
ware (registers, tables, etc.,), the Name Table
structure, and some of the linking techniques for the
structured output of the compiler.

I. INTRODUCTION

The main objectives and goals of the SYMBOL research
project [1,2,4] were to demonstrate the reduction of
the total costs of data processing by revising the
designer's approach on the following key items:

a. Hardware/Software boundaries
b. System Architecture
c. System Packaging

The hardware compiler is one of the best examples for
demonstrating items (a) and (b) above because, first,

it was implemented totally in hardware thus representing
a 100% departure from the classical approach of totally
software compilers and second, the language used (the
'"SYMBOL" language) [3] broke all barriers of traditional
restrictions for compatibility with existing languages.
The SYMBOL SYSTEM consists of the following eight
specialized processors which operate automously but are
linked together via the main data and communication bus:
the System Supervisor (SS), the Memory Controller (MC),
the Compiler (Translator) (TR), the Central Processor
(CP), the Channel Controller (CC), the Input Processor
(IP), the Disc Channel Controller (DC), and the Memory
Reclaimer (MR).

The Compiler takes as its input a program written in
the high level procedural "SYMBOL" language. The
program has been deposited in the Memory by the IP.

The Compiler then generates a reverse polish object
string and a multi-level block structured name table
suitable for execution by the Central Processor. In
the process of doing this, the Compiler uses a small
table of Reserved Words (about 100) which are kept in
the non-pageable portion of main memory and a library
of call-by-name system procedures stored in the pageable
portion of main or bulk memory. The compiler manages
its own communications with the Memory Controller and
the System Supervisor. All of the above objectives are
accomplished totally in hardware.

II. COMPILER OVERVIEW

Basically, the Compiler can be thought of as a network
in conjunction with the System Supervisor (SS) and the
Memory Controller (MC). See Figure 1. For reasons of
compatibility with previous SYMBOL references, the
compiler will hereafter be referred to as the

Translator (TR). Each mode of communication will be
discussed in detail later.

OTHER
PROCESSORS

Figure 1.

SS, TR, and MC Communication

The overall block diagram of the Translator and its
parts of communication with the SS and MC are shown on
Figure 2. As indicated there, the TR picks up its in-
put (source program) from some location in storage
called TWA (Transient Working Area) and deposits its
two structured outputs. (Object Code and Program Name
Table) in other locations of storage. It also com-
municates with the SS which maintains the Terminal
Control Headers, the Task Assignment Queues, the Page
Out Queues, and handles the Error and Interrupt
analysis.

From the standpoint of hardware implementation, the TR
is divided into three major sections as shown in
Figure 2: the Object Code section, the Name Table
section, and the Support Hardware section. Only the
Name Table and Support Hardware sections will be dealt
with in this paper. From the functional standpoint,
only one of the three sections can be active at a time.
Either one of the two logic sections (Object or Name
Table) can request action by the Support Hardware but
once the Support section has been activated, the logic
section that requested the action freezes until the end
of the Support activity at which time it continues on.
During compilation, the operation of the two logic
sections is a Ping-Pong-like action. The Object
section processes all non-literal single characters
(delimiters) and structured alphanumeric data until it
comes to a blank space followed by a letter; this could
be either a Reserved Word or an identifier. At that
point it turns control over to the Name Table section.
The Name Table section resolves the name and gives
control back to the Object section for processing.
Thus, the control bounces back and forth between the
two sections until the end of the source program. At
that time the Name Table section takes over and per-
forms the resolution and linking of all identifiers
(Global Linking). ’

III. SUPPORT HARDWARE

A. TR-SS COMMUNICATION

TR-SS Communication takes place during Control Exchange
Cycles (CEC). During a CEC, a certain allocation of
bus lines is used for communicating information between
the eight processors in the system.

The process of compiling a job begins at the end of the
Load Mode administered by the IP. At that time the
Input Processor (IP) notifies the System Supervisor (SS)
during a CEC, that it has finished inputing a program,
the SS then puts that program (job) at the bottom of
the Translator queue and also initializes the Terminal
Header Control Words [5] with the appropriate pointers
to the beginning address of the source code and to the
beginning address of the object code which is to be

111

TRANSLATOR

I O0BJECT CODE SUPPORI HARDWARE SECTION NAME TABLE
SYSTEM ¢ SUPERVISOR SECTION SECTION
Maintains task' queues §§§§ S . §§§§§
Maintains paging queues R Communication ERa 43
Services completion codes +aogN Interface S5
Issues interrupts [\ T3RSa
Maintains terminal headers 293« gr3on
= y 30T I
o483 I€338
g§73e < 288
catuw MC S=g2
2338 Communication ay3sg
2°3 Interface TR N H Z .
o . oo g o
Registers 3383
? M
w
y \
m MEMORY CONTROLLER]
Paging Queue TR Task Queue ———— o R Output IR Input
r Object Code Name Table THA
| [Block® A®SS 25 SE < 3 [c2 00 00 00 00 00 XX XX - Bsc | | [A<125]; l
I B@SSZ4SE+' 41 00 00 00 00 00 00 00 - A | B«|24];
' @——@ é——L 80 00 XX XX 00 00 00 00 - ICW I C<A+B; ’
1 Header C COA@B@+ <« 3 42 00 00 00 00 00 00 00 - B Output C;
[erninal Header Control Words I lovtow c®; 80 00 XX XX 00 00 00 00 - ICK End |
Outpug €@ 5 43 00 00 00 00 00 00 00 - C |
| End A0 00 XX XX 00 00 00 0O - BECW | | |
Part of Non-pageable Memory PAGEABLE MAIN MEMORY

Figure 2. Overall

generated by the TR.

When the job percolates up to the top of the TR queue,
the SS initiates a Control Exchange Cycle and sends a
start command to the Translator over the control bus
along with the Terminal (user) number of the Terminal
that inputed the job.

At this point, the Translator becomes activated, looks
at the terminal number, and begins work on the job by
first fetching the Terminal Header Control Words to
find its pointers. The Translator is now on its own
and, from this point on, it can be stopped only by the
occurrence of one of the following conditions: SS
Interrupt, Program Trap, Page Out, Program Error, and
Completion of Task.

In each one of these cases, the TR saves its status in
the appropriate terminal header control words,
initiates a CEC, and transmits a completion code to
the SS during the CEC. The SS analyzes the code and
takes the appropriate action. Specifically, in the
case of Program Error, the TR saves enough information
so that the SS under system control will print out at
the user's terminal the type and location of the
syntax error. In the .case of a Page Out, both SS and
TR sense the Page Out from the Memory Controller (MC).
The TR starts its shutdown procedure, the SS performs
some housekeeping for the TR Page Out but does not
wait for the TR completion code. It goes on with
whatever other tasks it may have in its queue until a
Page Out completion is received from the TR. The page
is then put on the paging queue, the Terminal Header
Control Work (THCW) of the task is marked to indicate
waiting for a page and the job is put on the bottom of
the TR queue. Another task is now assigned to the TR.
When the page has been brought in by the MC, the THCW
is marked to indicate that the page is now in. The
next time the task percolates up to the top of the TR
queue again, the SS restarts the TR on that job. The
TR, during its shutdown process, saves the following
information: Name Register, Stack Register, Object
Register, All Address Registers, Phase Counter Status,
all pertinent flags, and source character pointer.

Block Diagram of Translator

B. TR-MC COMMUNICATION

The SYMBOL system features a Dynamic Memory Management
capability via the Memory Controller which allocates
memory space on demand, performs address arithmetic,
and manages the associative memory needed for paging in
its virtual memory environment.

The Translator is one of the heaviest users of Memory.
Besides its input-output interaction with memory (fetch
source program, store object string, and name table),
it performs many searching operations. For every
English word that appears in the source program, the
Reserved Word Table (RWT) has to be searched. If it is
not found in the RWT, the current block of the Name
Table has to be searched. At the end of the program
the entire Name Table has to be searched again for
Global Name resolution and linking, procedure call
handling, and system name resolution. Thus, to avoid
situations where the TR would tie up the memory during
long searches, the TR was given a relatively low memory
access priority (fourth priority out of five; after SS,
IP, CP, but before MR).

Figure 3 shows the TR~-MC communication in a block
diagram form. Typically, a phase of a particular Task
Phase Counter requests a memory cycle by raising the
MOP (0-3) lines and holds at that phase. The Memory
Communication Interface Section takes over. It puts
out TR's Memory request line (MP4). When the Memory is
free and there is no higher priority request, it puts
the command on the bus and unloads the registers. A
few clocks later, the MC returns a completion code
during a CEC. If the Memory operation was successful,
the TR loads its Registers from the main bus during the
clock time following the CEC and the advance signal
(MDONE) is issued to allow the logic phase counter to
move on to the next phase.

If a page out completion was returned, the MDONE signal
is not issued. Thus, the logic phase counter freezes
and the shutdown routine takes over and saves the TR
status, including the state of the phase counter.

112

During the period between cycle granting and
completion code return, from the MC, the main bus can
be used by the CP on a cycle-stealing basis for intra-
CP data communication between the various sub-units of
the CP (Instruction Sequencer, Arithmetic Processor,
Reference Processor, and Format Processor).

TR LOCAL BUS

| | ?
T | o | MOP(0-3) A
Mop(0-3) | Lo | VOE
| uLo 00
MOONE 000 | l o1 —
L4001
o11 | ' PRIO. 11 ;
o0 | | 10 —
: I |
. DATA AND
. | ADDRESSES |
ouren | [wmcl-3) MPa
I I
| []
MAIN BUS
Figure 3. MC Communication Interface

C. TR REGISTERS

The TR utilizes four Data Registers and eight Address
Registers. See Figure 4. One of the basic functions
of the TR is character processing (full word = 64 bits,
one character = 8 bits). For this reason, the four Dat
Data Registers (Source, Name, Object, and Stack) have
very flexible single character control as well as full
word capability. Each Register has different capabil-
ities depending upon the function it performs. The
Source Register is used to fetch and hold the current
word of the source program under compilation. It gets
loaded in the full word parallel mode from the Main
Data Bus, but it only outputs a single 8-bit character
at a time for decoding and interpretation. The Name
Register is a working register used for building and
holding identifiers currently under consideration for
or from the Name Table. It is the most versatile
Register because it has both single character and full
word capability in both its input and output. The
Object Register is used to hold the Object code
generated by the TR and store it in Memory. It needs
only single character input capability but full word
output capability. The Stack Register, used for main-
taining and manipulating the stack, also has both
character and word capability for input and output.

Typically, each Data Register is associated with a

three-bit counter and a three-bit register to achieve
character control. The three-bit register is referred
to as the pointer. It gets loaded in parallel and it

j->~ AREG 8 l@-{ SOURCE | REG j@——— 9
- 7 ‘

W 6
[5 j@-»{ OBJECT | REG ja—b

] - 1-»{]n-—

2 STACK [REG
- 3 o3+
- 2
je-»{ AREG 1
CHARACTER PROCESSING
AND
CONTROL
MAIN BUS %;l—

Figure 4. TR Registers

points to one of the eight characters in the Data
Register for reference reasons. The three-bit counter
is an up-down counter with parallel loading capability.
It usually gets loaded in parallel from the pointer
register. Thereafter, it responds to count-up or
count-down (forward/backward) commands. The eight
decoded states of the counter combined with the Read/
Write command provide the selection signals for
character selection in the Data Registers.

The eight Address Registers are named Address Register
1 through Address Register 8 (AREG1-AREG8). Each AREG
consists of 24 bits. All eight registers communicate
with the Memory. However, AREG1-AREG4 also communicate
with the left half of the Data Registers (characters 2,
3, 4) and AREG5-AREG8 also communicate with the right
half of the Data Register.

Iv. NAME TABLE SECTION

Most compiler systems do not use a separate name table.
Address references to data space are contained in the
program string.

One of the most distinguishing features of the SYMBOL
compiler is the use of a separate Name Table during
execution. In this way, the program string contains
only references to the Name Table entry which, in turn,
contains all the pertinent information and pointers,
for the NAME. Any future change in the parameters will
affect only the Name Table entry.

A. NAME TABLE CONSTRUCTION

Control is given to the Name Table logic by the Object
logic section with the source register pointer pointing
to the first character of the potential identifier.

The Name Table logic starts searching the Reserved Word
Table (RWT). If a match occurs, it puts the code on
the bus and turns control back to the Object Section
for processing the Code. If there is no match in the
RWT, it determines the boundaries of the current word
by searching and locating the next delimiter in the
source string. Now, having the exact size of the
identifier, it starts searching the current Name Table
block. If a match occurs there, it puts the address of
its Control Word on the appropriate Address Register
and gives Control to the Object Section for processing.
If no match occurs in the current block, the identifier
is considered as local (by default) and it gets
inserted at the bottom of the Name Table. Its Control
Word is created in the next assigned memory location,
and the address of the Control Word is placed in the
appropriate Address Register. Control is now given
back to the Object Section.

o]
Open new block

Search RWT

Find delimiter

Go to
Object section

Search for name Y o Goto
in current block Object section
'L
Enter name in Go to
e ———— s :
current block Object section

Figure 5. Name Table Construction Flow Diagram

113

Figure 5 shows the overall flow diagram of Name Table
construction. The Name Table consists of one or more
blocks that can be nested as shown in Figure 6. There
is no hardware limit to the degree of nesting even
though Global declarations carry identifiers up only
one block level.

Figure 6. Block Structure of Name Table

B. BLOCK ORGANIZATION

The basic
Figure 7.

scheme of block organization is shown in
There is a Block Start Control Word at the
beginning of each block that contains linking and
status information concerning the whole block. The
body of the Block consists of VFL identifiers followed
by their Control Words. The Control Word of the last
identifier is properly marked to signify the end of
the block. Figure 8 shows the block linking

for the block structure of Figure 6. Thus, the
Forward Link threads all blocks in the program,
starting with the outermost block. This link is fol-
lowed during the Global Linking phase in order to go
through every block in the program and make sure that
all identifiers are resolved as either being local to
the block or global to the enclosing block or to the
system (as in procedure calls, etc.). The Back Link
is followed again during Global Linking to search
enclosing blocks. From the outermost block there is
an automatic exit to the System Name Table if there
is a possibility for the identifier to be System
procedure.

The basic search mechanism, from the hardware stand-
point, uses two data registers and two address reg-
isters. One data register holds the name under con-
sideration and the other holds the current name of
the block being searched. A character-by-character
comparison is administered until either a mismatch

o] 78 31 32 39 40 64
Back Forward Block Start
Flags Link Flags Link Control Word
S S VFL Identifier
. : Identifier
Flags Link* Flags| Link* Control Word

Identifiers followed by control words

S : Block End
Flags Link Flags| Link* Control Word

* Link varies with the type of identifier

Figure 7. Name Table Block Organization

occurs or the Control Word of one identifier is
reached. This means that the comparison has failed.
If the Control Words of both identifiers are found
simultaneously, then the comparison is successful and
the appropriate linking occurs. The Address Registers
are used in conjunction with a memory command (fetch
and follow, follow and fetch, Store and Assign, etc.)
when crossing a word boundary to fetch the next word
or to store the Control Word back in memory after
linking.

| | 1

(Before Block D has occurred)

l il |

Tt
©

Figure 8. Block Linking Method for the Block Structure of Figure 6.

V. RESERVED WORD TABLE

The Reserved Word Table is a list of the words used in
the internal character set as part of the SYMBOL lan-
guage syntax. The table is stored in an area of the
memory which is non-pageable but enjoys the automatic
incrementing and link following capabilities of the

MC in order to facilitate searching. The list is
arranged alphabetically. Each Reserved Word occupies
as many Memory words as needed.

The code for each RW is stored in the last character
of the last memory word occupied by the RW. Thus, in
the case of ABSOLUTE, as shown in Figure 9, the code
99 had to go in the next Memory Word. The address of
the first word in the list of the RWT for each letter
of the alphabet is kept in a link table that occupies
the first four words of the first group of the page
that holds the RWT. The table, as shown in Figure 9,
is arranged so that the address of the link for each
letter is directly related to the code for that letter.
Thus, a portion of the code of the word's initial
letter is used directly as the address to fetch the
link of the first word in the RWT.

AlB|SIO|JL|JU]|TI]E
AlF|T]|E]|R
AlN|D
B|le|{F|o|rR]|E
BlL|ofc|k ©)
B|vY

Word 0 alB|c|p|E|F]l6 L~ —

Word 1IHIT|ulk{LImMINIONL pore of Group 0

Word 2|P|QIR|S|TIU|V|W

Word 3|X|Y|2Z

Character + 0 1 2 3 4 5 6 7
Figure 9. Reserved Word Table Organization and Linking

114

The code for letter A, for example, is /41 = 01000001.
Thus, by using the last three bits (001) we can
address directly the link for letter A which is stored
at character 1 of word 0. This link will now point us
to the address of the first word of the RWT that
begins with A. Now we begin comparing the source pro-
gram word with the RWT. If a mismatch occurs or if we
reach the RW code before the end of the source word,
we move on to the next RW. If the first character in
the next word fails to match, then we have exceeded
the list for the particular letter. Therefore, the
source word under consideration is not a Reserved
Word.

VI. SYSTEM LIBRARY

The system library consists of two parts: the System
Name Table, which serves as an index to the system
programs, and the system programs themselves.

A system name (System Procedure) is the name of a pro-
gram stored in memory as part of the system library
that contains frequently used programs and service

programs. There are two types of system library
programs:
A. Restricted System Programs (RSP)

A restricted system program can only be called
(used) by privileged users. A privileged user is
either a privileged terminal or a privileged
system program.

Nonrestricted System Programs (NSP)

Non restricted system programs consist cf twe
types: Privileged System Programs (PSP) and
Common System Programs (CSP).

The System Name Table consists of program names
(identifiers) in the VFL form followed by one control
word. The control word holds the address that points
to the system program somewhere in core and also dis-
plays information about the type of system program
(RSP, PSP, CSP) and the status of the Name Table at
that point (Table Start, Table End).

There are two different Name Tables, one for the RSP
and one for the NSP. The two main reasons for the two
different tables are: flexibility of l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>