
PROCEEDINGS
of the First Annual

SYMPOSIUM ON
COMPUTER

ARCHITECTURE

Edited by:

G. J. LlPOVSKI
S. A. SZYGENDA

COMPUTER ARCHITECTURE NEWS, DECEMBER 1973, VOL. 2, NO.4

IEEE CATALOG NO. 73CH0824-3C

CENTER FOR INFORMATICS RESEARCH TR-73-107

UNIVERSITY OF FLORIDA
DECEMBER 9-11, 1973

GENERAL CHAIRMAN

G. JACK LlPOVSKI

PROGRAM CHAIRMAN

STEVE A. SZYGENDA

PROGRAM COMMITTEE

AI Avizienis
Gordon Bell
Harvey Cragon
Jack Dennis
Mike Flynn
Oscar Garcia

Don Gibson
AI Hoagland
Dave Rouse
Harold Stone
Bruce Wald

SYMPOSIUM COMMITTEE

Wayne Chen
Oscar Garcia
Gil Hansen
George Haynam

Bill Kaiser
Stanley Su
Julius Tou
Ken Watson

Co-Sponsors:

ACM SIGARCH

Center for Informatics Research , University of Florida

Computer Society of the IEEE

PROCEEDINGS OF THE FIRST ANNUAL
SYMPOSIUM ON COMPUTER ARCHITECTURE

Edited by:

G. J. LlPOVSKI
S. A. SZYGENDA

Copyright © 1973 by:
The Institute of Electrical and Electronics Engineers, Inc.

345 East 47th SI., New York, N. Y. 10017

Association for Computing Machinery, Inc.
1133 Avenue of the Americas, New York, N. Y. 10036

University of Florida
Gainesville

PREFACE

This symposium may well be, in the hind-sight of
ten years from now, a marked turning pOint in Computer
Architecture. With the dissolution of the Spring and
Fall Joint Computer Conferences, one of the major forums
for Computer Architecture has been lost. So we have
begun an annual symposium on Computer Architecture, to
be rotated from year to year throughout the world. The
atmosphere of such a symposium should be more suitable
for the professional interchange of ideas than is
possible at a large conference. Indeed, from the
quality of papers that have been submitted to this
symposium, it is clear that the time is here for a top
quality symposium. We are pleased to say that the
papers in this symposium are those that at least two
reviewers rated in the top category. We are sorry that,
because of this, a large number of very good papers
were rejected. However, we have passed these papers,
together with their reviews, on to editors of journals
that cover Computer Architecture, for their consider
ation. We feel that, to encourage the submission of
good papers to a symposium, it is desirable for us to
send those papers that don't happen to fit into a
session, but are very good papers, to journals for
further reviewing.

The papers in the symposium indicate the growth of
Computer Architecture as a science. Although it is
difficult to explain the reasoning behind the decisions
made in an architecture, in particular, the architecture
of a practical machine, this reasoning is the basis of
a science. It is too easy to simply show the final
master-piece, as an artist would do. This is the "Moses
Complex", as we call it, where the architecture of a
practical machine is presented as if it is burned into
stone, and need not be questioned. Several papers in
this conference are directed at the reasoning process
itself. We intend to encourage other authors to focus
on reasons for the architecture by having an open panel
discussion at the end of each section. We hope that the
attendees will emphasize questions on the reasoning
behind the architecture, and the authors will prepare
for such questions. If this becomes a tradition in
this annual symposium, it should orient authors toward
the scientific explanation of their architectures for
later symposia.

Parallel to this emphasis on explaining the
reasoning, a number of _papers in the symposium are on
description languages. We believe that a widely used
description language will permit the compression of
detail so that all of the essential information is all
there, but does not fill up a large part of the paper.
We believe that the development of a good description
language is another cornerstone to the growth of
Computer Architecture as a science.

There is a wide interest, as exemplified in several
papers, in the pedagogy of Computer Architecture. These
papers show the need for courses which abstract the
principles of Computer Architecture. There is also a
trend to introduce more laboratory experience into
Computer Architecture, to balance the thrust towards
principles with a tie to the reality of hardware.

A survey of the session titles shows some of the
other exciting areas of current research. Some of the
traditional areas, such as the design of fast arithmetic
units, have been rather thoroughly researched, although
some questions are yet unresolved. The current areas
that are receiving particular attention are the con~
nection of modular systems and fault tolerant or

ii

fail-soft processing systems. As a special case of
modular systems, pipeline and cellular systems are
receiving continued attention. The growth of LSI,
and the advent of microcomputers ,in particular, is
evoking cQ1lSidar.able, excite1!lent in l!\Odular systems of
all kinds. There are indications that modularity of
various kinds will provide some useful tools in making
computers fault tolerant or fail-soft. A while back,
someone wrote that in the next couple of decades,
Computer Architecture will not change the computers
that will be built, that they will differ from present
computers in that they are faster or have more primary
memory, and so on. I cannot agree! Driven by the
user's demands for fault tolerant computing and the
change in technology towards the use of microcomputers,
Computer Architecture will have considerable impact on
the machines that are going to be built over the next
decade.

This' symposium owes a great deal te a number of
people, whom I wish to recognize. Mike Flynn deserves
our gratitude as the chairman of TCCA and SIGARCH who
initiated this symposium. We are no less appreciative
of the help of the current chairman of TCCA, Harold
Stone, and the current chairman of SIGARCH, Chuck Casale.
Steve Szygenda has done an excellent job, together with
his Program Committee, of attracting and reviewing papers
for the symposium. The Program Committee deserves our
deepest gratitude. They are:

Al Avizienis
Gordon Bell
Harvey Cragon
Jack Dennis
Mike Flynn
Oscar Garcia

Don Gibson
Al Hoagland
Dave Rouse
Harold Stone
Bruce Wald

I also wish to thank the members of the Symposium
Committee, who have helped me set up the symposium.
They are:

Wayne Chen
Oscar Garcia
Gil Hansen
George Haynam

Bill Kaiser
Stanley Su
Julius Tou
Ken Watson

We wish to thank the Department of Electrical
Engineering, and its acting chairman, Gene Chenette, for
the extensive use of its £acilities, and the Center for
Informatics Research, directed by Julius Tou, for his
guidance and assistance. We are grateful for the help
of the Engineering Publications office. under Dick Dale,
for their assistance in preparing the call for Papers
and advance program, and for Storter Printing for
printing these fliers and the proceedings. Finally,
every conference is ~e to work by the unselfish as
sistance of the secretaries. I particularly want to
thank Beth Beville for her conscientious and competent
assistance. We owe all of these people a great deal
because, without their help, the symposium would not
have been possible.

Chairman of the Symposium

~~
G. Jack Lipovski

Center for Informatics Research

CONTENTS

"Markov Chain Models for Analyzing Memory Interference in Multiprocessor Computer Systems",
Dileep P. Bhandarkar and Samuel H. Fuller, Cargegie-Mellon University .••••..•••

"Interconnecting A Distributed Processor System for Avionics",
George A. Anderson, Honeywell, Minneapolis . .

"Banyan Networks for Partitioning Multiprocessor Systems",
Rodney Goke, G. J. Lipovski, University of Florida.

"Structure of Digital System Description Languages",
Harry F. Jordan and Burton J. Smith, University of Colorado

"VDL - A Definitional System for All Levels",
John A. N. Lee, University of Massachusetts.

"A Methodology for Parallel Processing Design Tradeoffs",

PAGE

1

11

21

31

41

Charles H. Radoy, George P. Copeland, Jr., and G. J. Lipovski, University of Florida. . • • . • • • 51

"DAP - A Distributed Array Processor",
S.F. Reddaway, International Computers Limited

"Maximal. Rate Pipelined Solutions to Recurrence Problems",
Peter M. Kogge, IBM, OWego . • • • • . • • • • • • • • . •

"Connnents on Capabilities, Limitations and 'Correctness' of Petri Nets",
Tilak Agerwala and Mike Flynn, John Hopkins University ••

"Flowware -- A Flow Charting Procedure to Describe Digital Networks",
Wayne E. Omohundro, BTL and James H. Tracey, University of Missouri .

"Automated Exploration of the Design Space for Register Transfer (RT) Systems",
M. R. Barbacci and D. P. Siewiorek, Carnegie-Mellon University ••.••

"Implementation Aspects of the Symbol Hardware Compiler",
T. A. Laliotis, Fairchild Systems, Palo Alto

"The Architecture of CASSM: A Cellular System for Non-numeric p,.t')cessing".
George P. Copeland, Jr., G. J. Lipovski and Stanley Y. W. Su, University of Florida.

"Deriving Design Guidelines for Diagnosable Computer Systems",

61

71

81

91

101

111

121

John M Hemphill, USAF and S. A. Szygenda, University of Texas, Austin • • • • • • • • • • • • • • •• 131

"Design of Fault-Tolerant Associative Processors",
Behrooz Parhami and Algirdas Avizienis, UCLA

"A Fault Tolerant Multiprocessor Architecture for Real Time Control Applications",
M. A. Fischler and O. Firschein, Lockheed, Palo Alto . . • • • • • •

"A Varistructured Fail-soft Cellular Computer",
G. J. Lipovski, University of Florida •••••

"A Hardware Laboratory for Computer Architecture Research",
Jean Vaucher, Christian Rey, Universite de Montreal ••.•

"Simulation Exercises for Computer Architecture Education",
P. J. Knoke, Radiation, Inc., Florida .•.•.••••

"Computer Architecture Courses in Electrical Engineering Departments",

141

151

161

171

181

M. E. Sloan, Michigan Technological University . •• 191

"Increasing Hardware Complexity - A Challenge to Comp.uter Architecture Edllcati.on",
R. Hartenstein, Karlsruhe University •• 201

"Review of the Workshop on Computer Architecture Education",
George Rossmann, Palyn, Inc., • . • • • • • •• 211

"Micromodules: Microprogrannnable Building Blocks fo·r Hardware Development",
Richard G. Cooper, National Security Agency • • • • • • • • . • • • • • • • • • . • • • • • •• 221

"Computer Modules: An Architecture for Large Digital Modules",
S. H. Fuller, D •. P. Siewiorek and R. J. Swan, Carnegie-Mellon University • • • • • • • • • • • • • • •• 231

iii

"A Microprogrannned Architecture for Front End Processing",
Rodnay Zaks, Universite de Techno1ogie de Compiegne, France

"Design of a Fully Variable - Length Structured Minicomputer" ,

PAGE

241

Z. G. Vranesic, V, C. Hamacher, and Y. Y. Leung, University of Toronto. • • • • • • • • • . • • • •• 251

"lIAPPE Honeywell Associative Parallel Processing Ensemble",
Orin E. Marvel, 13964 Wildwood Drive, Largo

"A Computer Architecture and its Programming Language",
Mario R.Schaffner, MIT ••••••••••••

The page numbers in this Proceedings will use the following format. Page 253, will be page 3 of
Paper 25. This will leave gaps in the sequence of pages, but enables us to coa1ate and prepare the
Proceedings more quickly.

iv

261

271

MARKOV CHAIN MODELS FOR
ANALYZING MEMORY INTERFERENCE IN

MULTIPROCESSOR COMPUTER SYSTEMS1
Dileep P. Bhandarkar2

Samuel H. Fuller
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

This paper discusses various analytical techniques
for studying the extent of memory interference in a
multiprocessor system with a crosspoint switch for pro
cessor-memory communication. Processor behavior is
simplified to an ordered sequence of a memory request
followed by an interval of processing time. The system
is assumed to be bus bound; in other words, by the time
the processor-memory bus completes servicing a proces
sor's request the processor is ready to initiate another
request and the memory module is ready to accept another
request. The techniques discussed include discrete and
continuous time Markov chain models as well as several
approximate analytic methods.

1 • INTRODUCTION

Carnegie-Mellon University is currently in the pro
cess of constructing a multiprocessor computer system
(C.mmp) that will have up to 16 central processors
(Pc's)3 sharing the same physical address space (4) and
concern has been expressed about the performance of
such a system with these many active processors. In ad
dition to the processors, there is a set of memory mod
ules that are able to operate independently; little
would be gained if all the processors had to wait for
service from a single memory module. Between the pro
cessors and the memory modules (Mp's) is a n by m
switch. There are a number of ways of implementing the
switch, but C.mmp employs a full n by m crosspoint
switch as shown in Figure 1.1. Other multiprocessors,
although limited to a smaller number of Pc's, also ba
sically use a crosspoint switch, e.g. the Burroughs
D825 and the Univac 1110. For further discussion of
crosspoint switches, and a variety of other switching
structures, see Bell and Newell (3).

Mathematical models of computer systems can be
developed at various levels of abstraction. A large
number of models for time-sharing systems consider a
job as a basic unit (cf. 10), and in many models of
multi programmed computer systems the block of instruc
tions between I/O operations is taken as a basic unit
(cf. 5). However, in this study a much more detailed

1This work was supported by the Advanced Research Pro
jects Agency of the Office of the Secretary of Defense
(F44620-73-C-0074) and is monitored by the Air Force
Office of Scientific Research.

2D• P. Bhandarker is now with Texas Instruments Inc.,
Dallas, Texas.

3We use the PMS notation of Bell and Newell (3) in this
report to describe hardware organization.

1

FIGURE 1.1

mXn Crossbar Switch

"
, ,

" \ ",

", ,

" L L

I I
P'2 po.

model is used to analyze interference as processors
access individual words from the memory modules. Each
processor's performance is measured by the number of
memory accesses per unit time. The major contribution
of this paper is a systematic method for a discrete
Markov chain model. Other techniques described include
Strecker's approximation (13), systems with exponenti
ally distributed memory service time, and a diffusion
approximation.

2. GENERAL MODELING ASSUMPTIONS

Due to the complexity of the problem, the exact
detailed behavior of memory interference in a multipro
cessor system is difficult to model. We make the fol
lowing assumptions with respect to the parameters that
characterize the behavior of a Pc.

Instruction mix: In general, processor behavior
varies for different instructions. However, in this
paper differences in instructions are ignored. Proces
sor behavior is modeled as an ordered sequence of a
memroy request followed by an interval of execution
time. At this level of abstraction no distinction is
made between the processing needed to decode an instruc
tion and the processing corresponding to its execution.
Thus, the processing time characterizing a Pc depicts
only the aggregate behavior of the real Pc. Figure 2.1
depicts the actual and abstracted behaviors.

Processing time of Pc: The models discussed here
assume that the multiprocessor systems are bus bound,
i.e. the Pc is ready to initiate the next request an~
the Mp module is ready to accept the next request at'
the time the Pc-Mp bus recovers from the current ~c':
cess. The analysis is also applicable to multiproces
sor systems in which the effective processing time, tp,
is equal to the memory rewrite time, two

Access pattern of a Pc: This is the sequence of
memory locatio,ns accessed by the Pc. In this study
serial correlation between successive memory accesses

a.

FIGURE 2.1

An Example of the Timing of a Typical Instruction

ta
MP[j); , ..

: td

tw
, , ,
: , ,

ta tw ta

tei
Perl]: ;--: : ' ,

:":-1 ~ 2 r.- :...- 3 - .. ,'-- 4 ,', 5--":

ta tw
Mp[j]t-! ---"'!'"'---

, ta
Mp[k], . , , ,

time

tw

ta

-: · • , , , , , • Pc[i], H , , .
:'--1~ 2 :-e- 3 _'!<-:'-- 4--... r!~.-

•
~

Legend:

1 ins true tion fe tch

2 instruction decoding

3 operand fe tch

4 instruction execution

5 next instruction fetch

ta memory access time

tw memory res tore time

td iPstruction decode time

tel processor execution time

b. Simplified Processor Behavior. Two such
cycles model the instruction shown in
Figure 2.1a.
~I~~----ta---~~~I~.-----tw---~~~i

Mp access
begins

I--- tp-..;
I I

I
data
available
to Pc

Mp ready to
service next
request

Pc ready
to make
new request

will be ignored. Demand patterns will be modeled as
sequences of Bernoulli trials. Memory accesses will be
characterized by the memory units to which they are ad
dressed.

Primary memory behavior: Memory performance is a
function of the fabrication technology, i.e. core or
semiconductor. It can be characterized by the access
time (ta), rewrite time (tw), and cycle time (tc).
Nominally, the cycle time is the sum of the other two.
In this study, no distinction is made between read and
write operations.

3. CONTINUOUS TIME MARKOV CHAIN MODEL

Consider ~ multiprocessor system which consists of
n Pc's and m Mp's connected by a single crosspoint
switch. Let .Pi ; denote the probability that the i-th
processor reque.lit.S ... service from the j-th memory unit.
A processor is gueued if it is waiting for or . .in .. the
process of receiving memory service aod it is ~ if
it is currently being serviced by a memory. Likewise,
a memory is said to be occupied or busy if there is at
least one processor queued for that memory unit.

In this first model, we apply the classic simplify
ing assumption in queueing theory: we model the service
time, or cycle time, of the memory modules as exponen
tially distributed random variables. Clearly most
memory systems do not have an exponentially distributed
cycle time. However, techniques such as interleaving,
cache memories, and the type of memory access (read.
write, read-modify-write) suggest that this exponential

2

assumption may be as good an approximation as the
assumption that the memory cycle time is constant.
Without further assumptions or approximations. we can
use the results of Jackson (7). and Gordon and Newell
(6), to find the performance of the multiprocessor
system. This technique is also used by McCredie (9)
for multiprocessors with tp > two

Let the number of service centers be m. The
states of the system are m-dimensional vectors with
non-negative integer components, the j-th component
~epresenting the queue length at center j. ~If
K=(k1 ,k2 , •••• k) is a state vector, then S(K)= ~ ki •

m ~1

Transition from one center to another is characterized
by a routing probability Rii , i.e. the probability of
going to center j on completion of service at center
i. Jackson (7) has obtained the equilibrium joint
probability distribution of queue lengths for a broad
class of queueing-theoretical models representing a
network of service centers. Customer arrivals are
modeled as a generalized Poisson process whose mean
arrival rate varies almost arbitrarily with the total
number of customers already in the system. Service
completions at each center are also modeled as general
ized Poisson processes. the mean service rate, ~, at
each center varying arbitrarily with the queue length
there.

For closed queueing systems, Jackson's formulae
reduces to

where
P(K) .. w' (K)/T' (S(K»

k
... mn nj e'" w'(K) = ~

j=l i=l ~

m

where e(j) .. De(i)R. j jE[l,m]
i=l 1.

IW'(K) s~ed over all K with
S(K) .. n.

But, with Pc requests distributed uniformly and with
the bus-bound situation, or tp=tw, Jackson's model
simplifies to m servers with customers circulating with
uniform routing probabilities. i.e. Ri j=Pi j=l/m.
Using the above formulae we get, , ,

~ 1 n w(K) .. (-)
1.10

T(K) = (Irim-1\1) n
\m-1) 1.10

P(K) = [(~;~J-1 m
for all K such that Ilti=n.

i=l

i.e. all the states of the system. are equally likely.
Physically, this indicates that states with greater
congestion in the queues are as likely as evenly dis
tributed queues. The probability that a particular Mp
module is idle, Pr£Mp[iJ is idle). is the fraction of
the total number of states that has ki=O. In other
words,

Prob£Mp(iJ is idle} =

number of ways of assigning n Pc's to m-1 Mp's
number of ways of assigning n Pc's to m Mp's

= 1 _ n
Irim-1

Etnumber of busy Mp's}
m

z:: PrtMp[iJ is busy}
i=l

m*n/ (m+n-1)

The above expression has a number of interesting
properties: the expression is symmetric in m and n; it
has a basic hyperbolic form, asymptotic to n as m gets
large; and, if we let m=n the above expression becomes
n/ (2 -1/ n) and

lim Etnumber of busy Mp's} ~ n/2.
n~co

The final observation has important implications.
It states that as multiprocessor systems grow to include
more and more Pc's, we are not faced with a law of di
minishing returns: no matter how many Pc's are used,
if we have the same number of memory modules we can
expect half the processors to be active.

4. A SIMPLE DISCRETE MARKOV CHAIN MODEL

For this analysis let us asSUme that all the Pc's
are characterized by a single constant processing time
tp. Also, all the memory units are assumed to have the
same cycle time tc and access time tao Thus, the mem
ory rewrite time is given by tw=tc-ta. If tp=tw then
all memory units can be considered to be operating
synchronously. Thus, during any memory cycle the num
ber of active Pc's is equal to the number of busy Mp's.

In this section a simple Markov Chain analysis is
presented for the case in which the processors request
every memory with equal likelihood. The state of the
mMltiprocessor system is defined by a m-tuple where

z:: k.=n and O~.~n for all i. The number of distinct
i=l 1 1

states of the system is given by the combination,

(::;1) i.e. the number of ways in which n balls can

be assigned to m bins (4). However, since all the pro
cessors behave identically, a number of the distinct
states are equivalent, i.e. they have the same occu
pancy and have the same components, e.g. states (2,1,1),
(1,2,1), (1,1,2) are equally likely. Thus, the re
duced states are given by the different ways in which
the number n can be partitioned into m parts. The
number of such partitions (for n~) is asymptotic to

4TT$ en./2n/3 (cf. 2)

Let the representative state S. denote the set of
compositions of the number n that yIeld the same par
tition, e.g. the compositions (2,1,1), (1,2,1) and
(',1,2) correspond to the partition of the number 4
which has two l's and one 2. Further, let Si j be the
individual compositions of the partition typil1ed by
representative state S. and S. , be that composition
which has its componenEs arraffged in monotonic non-de
creasing order, i.e. (2,1,1) for the above example.

Let X .. denote the probability of a transition
from S. t01J Si' Then, due to the symmetry of the
proble~,

L:PtTransition from S. , to S. k}
S J, 1,

Si,kE i

Let the m-tuple (k"k2 , ••• ,km) denote the state
of the Markov chain. Ifx is the number of non-zero
elements in this vector then at the end of the memory
cycle, x new processors have to be r~assigned to memory

3

modules. At the end of the current memory cycle the
queue is characterized by the m-tuple (j1,j2, ••• ,jm)'
where

{
.-1

. 1
J.

1 °
if k. > ° 1

°
A new state (~1'~2""'~) is reachable from

(k1 ,k2 , ••• ,k) if and only ifm~.~j. for l~i~. If the
m 1 1

above condition is satisfied the probability of the
state transition is given by

where di = ~i-ji

i.e. x! "'(.!.) x
d,!d2! ••• dm! m

m
Note that since Ik.

i=1 1

m

E~.
i=,1

m

n, L:d.
i=11

x.

Thus, we now have a formula for generating the
transition probabilities. Due to the symmetry of the
problem it suffices to generate only the transition
probabilities for the representative class of states.
All the different ways of obtaining the same partition
are lumped together to form a reduced state.

To illustrate a computational method 1 for generat
ing the transition probabilities consider an example
of a 4 by 4 system. The number 4 can be partitioned in
five different ways: t(4,0,0,0); (3,1,0,0); (2,2,0,0);
(2,1,1,0); (l,l,l,i)}.

These partitions represent five equivalence clas
ses that characterize the state of the Markov Chain.
Let us consider the state (2,2,0,0). At the end of a
memory cycle, the resultant partial state is (1,1,0,0)
with two free processors to be reassigned. Figure 4.1
shows the different ways in which these two Pc's can
be assigned, one at a time, to reach a new partial
representative state. After both Pc's are assigned a
terminal state is reached. The number on the arrow
indicates the number of ways of reaching the partial
or terminal state that the arrow points to. Now the
number of ways in which a final state can be reached
from the initial state can be computed by traversing
the tree, e.g. there are 2X1 ways of reaching (1,1,1,1)
and (2X2 + 2X3) ways of reaching (2,1,1,0) from
(2,2,0,0).

FIGURE 4.1

Next States Accessible from Initial State (2,2,0,0)
Initial State Final Terminal States

1 0 0 G
~~\"/"" 2 0 0

1 1 0

Initial~
Partial
State

111
y2

O"-!
1 1

Add 1 Pc Add 1 more Pc

1The use of a tree to
ties was suggested by
Stanford University.

generate the transition probabili
F. Baskett and _D. Chewning of

It is possible to construct a single tree with
different pointers for different initial states. Fig
ure 4.2 shows a complete tree for a 4x4 system. Init
ial states are circled. The entire transition matrix
can be generated by traversing this tree. A conveni
ent way of traversing this tree is by using a stack
which has depth equal to one more than the number of
Pc's. At each level the stack contains a partial
state and has a pointer to the initial representative
state (if any) from which it is derived. The stack is
initialized to contain the path that leads to the top
most final state. For this example the transition
matrix is shown in Figure 4.3.

FIGURE 4.2

Enumeration Tree for a 4 by 4 Multiprocessor System

? ~ ,000~400
~ / --'100

~110/2000~ /'100

2 1 0 0-. - 2 2 0 0

""21]) 0
0000---1000

\

/'100

/2 1 0 0-- 2 2 0 0

1100 ~2 11 0

G~ ~2110
1110 __

---1111

Level 0 Levell Level 2];evel , Level 4:

The following theorems can be used to increase
the efficiency of the program that generates the trans
ition probabilities.

Theorem 1. There is a one-to-one correspondence be
tween a representative state and a partial state that
the representative state reduces to at the end of a
cycle.

Proof. Let (k1, ••• ,k) be a
The partial state at ~e end
(jl,j2, ••• ,jm) where

representative state.
of the cycle is given by

if k. > 0
~

if k. = 0
~

Since no two representative states are alike and
m
~ ki=n, it follows that the partial states are dis

i=l
tinct. •

Theorem 2. A partial state.at level L in the enumera
tive tree of Figure 4.3 can correspond to a terminal
state with exactly n-L occupied Mp's.

1
For an alternative method for traversing the tree see
{l].

4

FIGURE 4.3

Steps in the Generation of the Transition Matrix

4 o 00 , 1 0 (1 2 2 0 0 :2 1 1 0 111 1

4 0 0 0 1 1 0 1 4

'10 0 , ,.., 2 ''l-3T6 12'1-12+24

-
2 2 0 0 0 , 2 , '1-6 12 +24

.-
2 1 1 0 0 6 4 +6 6+12+18 24'1-48'1-72

1 111 0 0 2 6 24

~, Xij is the number of ways of reaching i from j.

Xij=~
..

STEP 2 : (Note that ~ Xij = mX. where x of the

~Xij
oomponents of j are non-zero)

1

Final equations to be solved simultaneously :

P4000 0.25 0.0625 0.000 0.015625 0.015265 P4000

P'100 0.75 0.'750 0.125 0.187500 0.187500 P'100
P2200 = 0.00 0.1875 0.125 0.140625 0.140625 P2200
P2110 0.00 0.'750 0.625 0.562500 0.562500 P21lb
PUU 0.00 0.0000 0.125 0.093750 0.03'750 PUU

...: -
SUIDECTTO

P4000+ P3100"'P2200+P2100+ PUU= 1..

Proof. Let J = (j .j , ••• ,j) be a partial state in
the tree depicted 1n Pigure ~.2. Furthermore, let the
number of non-zero elements in the partial state by y
and let ~ Ji=n-x. Since one Pc is always removed from

i=l ~
a non-empty queue at the end of a cycle, J is a partial
state~hat can be reduced from a valid representative
state K - (kl.k2 •••• '~), if and only if the number of
non-zero elements in K is x, and x~. Note that x and
yare both less than or equal to min(m,n) and .~ k en.

~~=1 i
If x<y then there is no represent~tive state K that
corresponds to the partial state J. If x~, then the
representative state 1s obtained by adding y l's t~ the
non-zero elementsmof J and replacing x-y zeros of J by
1. At level L, ~ j.=L. Therefore, x, the number of

i:;l ~
occupied Mp's in K, is equal to n-L ••

Figure 4.4. shows the average number of busy Mp's
when n=m. The curve has an almost constant slope of
.586 for n>4. Figures 4.5 and 4.6 show the effect of
adding a Pc and an Mp respectively on the average num
ber of busy Mp's.

"

"

FIGURE 4.4

Multiprocessor Systems with n=m

, 10 11 12 13 1~ IS 16

Nlanbol' o! PC'III .. "",~J".1r or Mp'"

FIGURE 4.5

The Effect of Adding a Pc

, 10 11 U 13 ~ IS IS
~n~J'c·. ::a-

FIGURE 4.6

The Effect of Adding an Mp

A·1/j

.-,

a·16

, 10 11, II 13 K »11 5
trlII'IhC'l' or H '

5. APPROXIMATIONS

Strecker's Approximation. Strecker (13) has an approx
imate closed form solution to the discrete Markov Chain
model presented here. His approach is equivalent to
removing the queued processors from all the memory mod
ules at the end of a memory cycle and reassigning them.
Thus the state of the system is considered independent
of the state during the last cycle. If we use this
assumption the distribution of Pc's queued for an Mp
follows the binomial distribution:

1 r (. 1 n-r
Pr(Y=r} = (~)(iU) 1-;;

where Y is a random variable e1ual to the number of
Pc's queued for Mp[j] and Pij=m for all i and j. Thus,

Pr(Mp[j] is busy} 1-Pr(Mp[j] is idle}

1-(1 ~)n
m

In other words, the occupancy of Mp[j]

E(no. of occupied Mp's}
m
~ PrtMp[j] is busy}

j=l

1 n
m*[l-(1-iU)]

Strecker's approximation overestimates the unit execu
tion rate, but it is encouraging to note that such a
simple expression is within 6 to 8% of the exact solu
tion of the Markov Chain mode~ Kor m/n > 0.75. More
over, the expression m*[l-(l-iU)] can be written in an
exponential form as

m*[l-exp[n*.fin(l_l) n
m

d h 1 [n_(l_ml)]-l, an t e re axation time, ~,

m gets large.
approaches m as

Diffusion Approximations. An approximation method
that has been proposed for the solution of general
queueing networks is the diffusion approximation (cf.
8,11). A discrete-state process is approximated by a
diffusion process with a continuous path. The key
assumption in such an analysis is that incremental
changes in the queue lengths are normally distributed.
This leads to a characterization of the queueing net
work by a set of diffusion equations. The accuracy of
the approximation depends on three factors: (i) ap
proximation of a discrete-sta·te process by a time-con
Unous Markov process, (ii) choice of proper reflect
ing barriers, and (iii) ·discretb;atlon of the contin
uous density function for queue lengths. Surprisingly,
for the simple discrete M&~kov Chain model of Section
4, the diffusion approximation yields a result identi
cal to that with exponential servers derived from
Jackson's formulae. However, the main utility of the
diffusion approximation in this context is that it can
be used to analyze the effect of different coeffici
ents of variation (ratio of standard deviation to the
mean) for the service time dis~ibution.

6. CONCLUDING RFMARKS

Table 1 summarizes the characteristics of various
models that have been discussed in this paper. With
out a doubt the stmplest model to use is the continu
ous time Markov chain model: the average number of
busy Mp's, or the average number of busy Pc's, is
simply n*m/(n+m-1), where n is the number of Pc's and
m is the number of Mp's. In many cases, however, it
may be more realistic to model the memory cycle time
as constant, rather than exponentially distributed,

and hence we developed the discrete Markov chain model
in Section 4. Table 2 compares the continuous time and
discrete time Markov chain models. In practice, it has
proven useful to view these two models as bounds on the
performance that will be achieved by the actual system;
the continuous time Markov chain model is probably an
overestimate of the variance of memory cycle time while
the discrete Markov chain model is certainly an under
estimate of the variance of the memory cycle time.

Process ing
Time

Discrete Constant
Marlcov Chain tp=tw

Sf/'eclcer's Constant
P.pprox i rna t ion

ContinoU5 Time Exponential
Markov Cha i n

Diffusion Constant
Rpprox ima t ion

Simulation
Modo I

TABLE

Memory Cycle
Timo

Anillysls Computat lonal
Ease

Constant Exact Solution is
algorithMic.
Unwie Idy for
largo n.

Constant Approximate Closed forlll

solut ion.
Simple formula.

Exponent ial Exact Closed forln

!iolul ion.
Simple formula.

ConsUnt Approximate Closed form

lolul ion.
Simple formula.

TABLE 2

Approximate Unlo.lleldy due to
siow stochast Ie
convergence.

EMpected number of busy memories in one cycle
Number of Pc's. 1,2, ... ,8 (rows)

Number of Mp's - 1,2, ... ,8 (columns)

o i scre L ,1Qrkov Cha i n Mode I

1.000a 1.0000 1.0000 1. 0000 1.000B 1.0000 1.0000 1.0000
1.0003 1.5000 1.5GG7 1.7500 1.8033 1.8333 1. 8571 1. 8750
1.08-00 1.5557 2.0475 2.21392 2.4085 2.5054 2.5748 2.5272

. 1. 0000 1.7500 2.2701 2.5210 2.8530 3.0355 3.1557 3.21352
1.0000 1.8000 2.4102 2.8533 3.1996 3.4530 3.5482 3.8019
1.0000 1.8333 2.5059 3.0370 3.4533 3.7809 4.0415 4.2518
1.0000 1. 8571 2.5751 3.1553 3.5485 4.0418 4.35313 4.5292
1.0000 1.8750 2.5214 3.2557 3.8024 4.2521 4.5294 4.9471

Continuous Time Markov Chain Model

1.0000 1.0000 1.0000 1. 0000 1. 0000 1.0000 1. 0000 1.0000
1.0000 1.3333 1.5000 1.5000 1.5567 1. 7143 1. 7500 1.7778
1.0000 1.5000 1.8000 2.0000 2.1429 2.2500 2.3333 2.4000
1.008(J 1.5000 2.0000 2.2857 2.5000 2.5557 2.8000 2.9091
1.0000 1.51367 2.1429 2.5000 2.7778 3.0000 3.1818 3.3333
1.0000 1.7143 2.2500 2.6557 3.0000 3.2727 3.5000 3.6923
1.0000 1.7500 2.3333 2.8000 3.1818 3.5000 3.7592 4.OI:mO
1.0000 1.7778 2.4080 2.9891 3.3333 3.5923 4.0000 4.2587

Percentage Difference

0.8000 0.0000 0.0000 0.0000 8.0000 8.0000 0.0000 0.0000
0.0000 11.1133 18.0818 8.5714 7.40513 13.4910 5.7571 5.1840
0.8030 10.0018 12.8922 11.8632 11.0545 10.1940 9.3794 8.5480
0.0003 8.5714 11.8982 12.7928 12.6790 12.1785 11.5519 10.9059
0.0008 7.4056 11.0904 12.6882 13.1829 13.1190 12.7844 12.3254
0.0000 8.4910 10.2119 12.1933 13.1256 13.4412 13.3985 13.1591
0.0000 5.7571 9.389911.568712.793913.404913.5218 13.5920
0.0000 5.1840 8.6549 10.9185 12.3359 13.1553 13.5957 13.7535

6

There are a couple of important considerations in
the analysis of memory interference in multiprocessors
that have not been touched on in this paper. The first
is that many multiprocessors may not be bus bound, or
tp I two For discussion of situations where tp is
greater or less than tc see [1,13]. Another aspect in
these models that needs to be examined more closely is
the assumption that each processor accesses each memory
module with equal probability. Program behavior, as
well as the memory management policies of the operating
system, may have a dramatic impact on these accessing
probabilities. Measurement experiments are currently
being designed for C.mmp to collect these processor to
memory accessing frequencies.

REFERENCES

1. Bhandarkar, D. P. Analytic Models for Memory Inter
ference in Multiprocessor Computer Systems, Ph.D.
Thesis, Department of Electrical Engineering, Carnegie
Mellon University, Pittsburgh, Pa. (Sept. 1973).

2. Beckenbach, E. (editor), Applied Combinatorial
Mathematics, Wiley, New York, 1964.

3. Bell., C. G. and A. Newell, Computer Structures:
Readings and Examples, McGraw-Hill, New York, 1971.

4. Feller, W., An Introduction to Probability Theory
and its Applications, Vol. 2, Wiley, New York, 1966.

5. Gaver, D. P. ,"Probability Models for Multiprogram
ming Computer Systems," JACM, Vol. 14, No.3, July,
1967, pp. 623-638. --

6. Gordon, W. J. and G. F. Newell, "Closed Queueing
Systems with Exponential Servers," Oper. Res., 15
(1967), pp. 254-265.

7. Jackson, J. R., "Jobshop-like Queueing Systems,"
Management Sci., 10, 1 (Oct. 1963), pp. 131-142.

8. Kobayashi, H., "Application of the Diffusion Ap
proximation to Queueing Networks: Part I - Equilibrium
Queue Distributions," 1 st Annual SIGME Conference on
Measurement and Evaluation, March, 1973, pp. 54-60.

9. McCredie, J. W., "Analytic Models as Aids for
Multiprocessor Design,"Proc. of the 7th Annual Princeton
Conference on Information Science and Systems, March,
1973.

10. McKinney, J. M., "A Survey of Analytic Time Shar
ing Models," Computing Surveys, Vol. 1, No.2, pp. 105-
116, 1969.

11. Newell, G. F., Applications of Queueing Theory,
London, Chapman and Hall, 1971.

12. Skinner, C. and J. Asher, "Effect of Storage Con
tention on System Performance," IBM Sys. J., Vol. 8,
No.4, 1969, pp. 319-333.

13. Strecker, W. D., Analysis of the Instruction Exe
cution Rate in Certain Computer Structures, Ph.D.
Thesis, Carnegie-Mellon University, Pittsburgh, Pa.,
1970.

14. Wulf, W. A. and C. G. Bell, "C.mmp - A Multi-Mini
processor," AFIPS FJCC Proc., 1972, Vol. 41, Part II,
pp. 765-777.

INTERCONNECTING A DISTRIBUTED
PROCESSOR SYSTEM FOR AVIONICS

George A. Anderson
Senior Research Engineer

Systems and Research Center
Honeywell Inc.

Minneapolis, Minnesota

ABSTRACT

This paper describes the interconnection scheme
devised for an advanced Air Force system concept
called Distribution Processor/Memory (DP/M) in
which topologically irregular networks of small com
puters are used to perform avionics processing. The
interconnection scheme involves the use of a combi
nation of global and point-to-point busses to handle
message traffic in predominantly homogeneous sys
tems of from 5 to 20 computers. The major features
of the scheme are the use of biphase bit-serial trans
mission, associatively addressed messages, and a
method for reconfiguration of the point-to-point com
munications paths under program control. It is ex
pected that the scheme may have general applicability
to other distributed processing systems, particularly
other real-time systems employing limited-capability
processors.

INTRODUCTION

The problems involved in interconnecting a multi
computer system, particularly when "multi" means
three or more, are well known. Tradeoffs in the
design involv,e factors such as the cost of busses
versus their speed, their complexity versus their load
on the computational resources of the system, their
reliability and its effect on system reliability, ad infi
nitum. This paper presents a particular interconnec
tion scheme* developed to fit a specialized environ
ment, but one which may have more general applica
bility in computer networks. This scheme involves
the interconnection of processors by a single global
bus together with a nonregular network of processor
to-processor links. These links are switchable to
allow configuration of a variety of data paths during
operation. The resulting paths are used both as a
primary communications medium and as a backup for
the global bus. An associatively addressed message
transmission scheme for transfers on both the busses
provides for intercommunications with little degrada
tion of computational capability, even for large (over
20 processor) systems.

PROBLEM BACKGROUND

The DP/M concept is essentially the use of a varying
number of simple and identical processor/memory
elements (PEs) to handle a wide range of avionics
system-processing requirements. System sizes are
expected to range from five to seven PEs on unde
manding missions to over 20 PEs in complex environ
ments. Each PE represents memory of 4K words
and computation rate of about 250 thousand instruc
tions per second (KIPS) on avionics problems, so this
means system capacities will range from 1000 to 5000
KIPS. It is the job of the interconnection scheme to
allow this level of modularity and the variability in
system size by providing efficient communications
between the components of the system without itself

becoming an undue consumer of processing resources,
a reliability handicap, or a costly resource in itself.

The DP /M avionics processing load is partitioned into
a number of relatively autonomous functions which
communicate primarily via an "aircraft state vector"
of a few hundred bits. These functions are further
broken down into subfunctions with well- defined
boundaries and low intercommunications require
ments. An example of a major function is flight con
trol, which may be separated by axis and by axis sub
functions into at least six units, called processes. As
a test case during DP/M concept development, a very
demanding environment was hypothesized and broken
down into approximately 50 individual processes.
Each process in the decomposition is of low com
plexity, with typical requirements of under 150 KIPS
and 2K memory words.

In such a decomposition, communication within the
system is of two distinct types--interfunctional and
intrafunctional. Including Exec overhead, the former
is estimated at under 200 thousand bits per second,
while the latter may be up to 300 Kbits per second.
The inter functional transfers are typically short mes
sages such as Exec commands and state vector infor
mation, while the intrafunctional transfers tend to be
longer, consisting of data block moves. Interfunc
tional transfers involve all processors at one time or
another, while intrafunctional transfers are localized
to the few processors in which the function is per
formed.

Physical constraints on the interconnection scheme
were quite limiting. From the beginning, it was
determined that the system would be physically dis
tributable around the aircraft and that the intercon
nection scheme should thus allow this distribution with
low cost. Also, the software goal was to have maxi
mum commonality between systems of different sizes,
so the interconnection could not change character as
system size varied. Finally, since the interconnection
is the major "central" system resource, it had to be
amenable to fault tolerance techniques and provide a
low-cost redundancy option. A simplifying assumption
was that the system I/O to sensors, actuators, etc.,
would be handled directly by the processors and not
through the interPE connections.

DESIGN APPROACH

The design of the interconnection scheme proceeded
simultaneously with the definition of the processing
elements, the software and the requirements analysis.
As such, it had ample time for iteration and consider
ation. Integrated bussing /processing approaches like
the Holland machine (2) and the distributed processor
of Burnett and Kozcela (3,4) were rejected early in
the work because of software problems, leaving the
bussing work to proceed almost independently of the
PE definition. The approaches used by a number of

*The scheme is a result of work done by the Honeywell Systems and Research Division for Wright-Patterson
Air "Force Base in the development of a Distributed Processor/Memory (DP/M) system to serve general
avionics proceSSing needs in the late 1970s and early 1980s (1).

11

advanced architectures like the Navy AADC (5) and
the Burroughs D-machine (6) were considered. These
were uniformly rejected, however, when the system
bandwidth requirements became known. It was found
that, up until the present, design approaches had
largely been devoted to high-rate intercommunication
between computers via memory modules, either by
multiprocessing like the D-machine, or by partial
sharing of memory like the CDC 6500 and others.
[An exception to this is IBM's ASP configuration for
two computers (7).] The unique characteristics
of the avionics environment, however, obviated the
need for massive amounts of shared data and, indeed,
argued against shared memory approaches for fault
tolerance reasons (protection of data).

Another characteristic of the more general-purpose
approaches was their regularity. In order to handle a
variety of processing loads, these machines had pro
vided very regular interconnection schemes in which
the access rights of a processor to other processors
or to memory were largely independent of its location
in the system. The Solomon (8) architecture is a
good example of this. In contrast, the DP/M environ
ment involved a known and nonregular pattern of inter
communications between processes and a general
level of global (interfunctional) communications.
Furthermore, except under unusual conditions such as
reconfiguration to mask failures, the association of
processes to processors was static, so interprocessor
communications could be considered irregular and
quasistatic. These differences, combined with the
low data rates, the requirement for physical distribu
tion, and the requirement for fault tolerance, indicated
that a new approach to computer interconnection might
best solve the specific problem to which DP/M was
addressed.

The bussing scheme chosen, shown in Illustration 1,
is a hybrid, combining a global bus visiting each PE
with a number of point-to-point busses between PEs
in an irregular pattern. Both busses are bit-serial,
biphase coded, with data transfer rates of 1 Mbit.·
The global bus is provided for the interfunctional data
transfers and the local busses for the intrafunctional
transfers and as a backup to the global bus. A dis
tinctive feature of the scheme is that the local busses
are switchable; each PE includes hardware by which,
under program conti'ol, the busses attached to it may
be connected to each other, to the PE itself, or may
be idle. Illustration 2 shows examples of the use of
this capability. A possible physical interconnection
is shown in 2a. Here, the maximum number of busses
to any PE (exclusive of the global connection) is three.
A combination of switch settings which configure a
quasiglobal bus is shown in Illustration 2b. This is
an example of what might occur during recovery from
a failed global bus. In Illustration 2c, a combination
of switch settings is shown which configures two so-

ILLUSTRATION 1
DP/M Hybrid Bussing

12

ILLUSTRATION 2
Switchable Bussing Alternatives

Physical Wiring

(a)

"Global'! Option

(b)

"Affinity II Groups

(c)

called "affinity groups" of PEs which may communi
cate independently of the global bus for intrafunctional
transfers.

The hybrid approach provides a distinct advantage
over a single, possibly faster, global bus. First, as
system requirements grow and change, the option of
nonregular point-to-point interconnection is expected
to allow more cost-effective expansion by requiring
only useful interconnections. Secondly, the extra
bandwidth can be concentrated in phySically localized
areas of the system instead of requiring overall high
bandwidth and, in fact, may result in a very high total
data transfer rate achieved by simultaneous use of
many slow paths. Finally, the two-type approach can
be used to provide redundancy for fault tolerance as,
and when, needed rather than on an all-or-nothing
basis.

Provision of switchability in the local busses is pri
marily for fault recovery and flexibility reasons. In
case of a processor or local bus failure, relocation of
processes may be required, negating the effectiveness
of a dedicated approach to interconnection. Using the
switchability, however, an alternative switch pattern
can be used to provide the same intercommunication
paths to the now relocated processes. Also, in case
of a global failure, a quasiglobal bus can be configured
to handle some or all of the previous global bus traffic.
In this case, too, the system designer can choose to
spare the global bus with a complete set of switchable
busses or he can use some or all of the connections
primarily intended for intrafunction traffic. As will
be shown below, the bus hardware supports such
reconfiguration to the extent that the reconfigured
interconnection may be totally invisible to the soft
ware.

DET AILED DESIGN

ADDRESSING MECHANISM

In order to minimize the overhead involved in process
relocation within the DP/M system, as well as to
make the geometry of the system and of the intercon
nection scheme invisible to the software, it was
determined early in the design that physical addressing

of messages on the communications system was un
desirable. Software that was transferred between
systems of various sizes as well as software operating
before and after process relocation could not be easily
provided with enough information to physically address
its messages. In a system like DP/M, tables for such
addressing would have been difficult, if not impossible,
to maintain during mission phase changes and recon
figuration after failure. As an alternative to physical
addressing, it was decided to place in each PE's bus
interface enough hardware to support associative
addressing of messages and to require each transmis
sion on a bus to be preceded by a destination "name. "
Each process in a PE is required to place in the
appropriate interface registers a "name" by which it
was known in the system. The bus interface then,
has the responsibility of handling a list of these names
in associative memory fashion, matching message
traffic on the bus against names and accepting mes
sages destined for processes within the PE.

It was determined further that the names of processes
tended to be hierarchial in nature; that is, a process
might be identified as: "Flight Control, Y Axis,
Stability Augmentation Loop, " and that it was desirable
to allow messages to be directed either to a particular
component process by using its full identification or to
other levels of the naming "tree." To accomplish this
without requiring each process to specify multiple
names, destination names transmitted by processes
were made of variable length and the associative
matching performed by the interface is on a bit-by-bit
basis. Thus, the name specified by the process wish
ing to receive messages is its full identification, but
it is given all messages whose specified destination
matches the name in all transmitted bits. Note that
this type of scheme allows both one-to-one and one-to
many type transmissions.

TRANSMISSION SCHEME

Although electrical design of the bus has not begun,
preliminary work and the results of other work (9,10)
indicate that a biphase coding scheme is optimal for the
low data rates and physical environment foreseen for
DP/M. The message format on the busses, using a
biphase coding, is shown in Illustration 3. The first
bits of the message contain the destination name
interspersed between Is at even bit times. Following
the first zero at an even bit time, the remainder of the
transmission is message content, with no further "tag"
bits. In this way, the variable-length name is uniquely

I I

I I
I I

I
I I tl I I
I

t: I I I I I
I

I
I 1 2 I 3

I I I

ILLUSTRATION 3
Example Message Format

{
I I I I I

, I I
I I ~ I

I I ~{ I I I I I I

tl
I I t: I t: I ti ti { I I I

ti I I t: I
t: I I : { I I I I

I I I I I I I I
I 4 I 5 I 6 I 7 I 8 I 9 I 10 I
I I I I I I I I

BIPHASE
CODE1NPUT

DERIVED
INFORMATION

INFORMATION
BITS

IDENT TAG
BITS

I NAME + DATA ~---

BEGINNING
OF MESSAGE

13

delimited with minimum wasted bandwidth. To sim
plify the hardware, names are restricted to be less
than or equal to the PEls word size, currently either
16 or 24 bits. Following the name, the data trans
mission is to be an integral number of words. To be
compatible with a proposed Air Force multiplexing
standard (10), the bus clock rate will be 2 MHz,
yielding a 1M bit raw transfer rate.

Busses are allocated on a round robin basis, with
each PE on a bus being provided with opportunity to
transmit or "pass" in turn. Control passes from one
PE to another when a PE in control transmits a bi
phase synch pulse (a pulse more than one bit-time in
duration). Each PE has two registers in its bus inter
face, a Bus Length register and a Position register
indicating its position on the bus. Whenever a synch
pulse is transmitted on the bus, every PE increments
a Current Control counter containing the bus position
number of the PE which currently has control of the
bus. In one PE, this number matches the Position
register. This PE is in control of the bus, and has
the option of transmitting a message or passing con
trol. To transmit a message, the PE simply begins
emitting the biphase code as shown in Illustration 3,
terminating'the transmission (and its control of the
bus) with a synch pulse. If it has no transmission
ready, it simply emits a synch pulse, causing control
to pass on. Thus the minimum time between trans
missions from a PE is the time it takes for control to
cycle around when every other PE on the bus emits
only a synch pulse. This latency time is expected to
be under 5 microseconds per PE, but is highly depen
dent on final electrical deSign, physical separation of
PEs, etc. After overhead for allocation and destina
tion header transmission, the busses are expected to
provide information transfer rates in excess of 500
Kbits, a safety factor of more than 2: 1 over anticipated
requirements.

BUS SWITCH DESIGN

As part of the study work, a preliminary design for
the bus switch and interfaces was performed. A block
diagram of the switch is shown in Illustration 4. The
PE interfaces to the global bus and to a number of
local busses via receiver / drivers which resistively
couple to a balanced pair. The tee in the global bus
is presumed to be external to the PE, while local
busses are expected to connect to only two PEs. In
side the switch, the busses are separated into receive,
transmit, and transmit key signals, which then fan to
a number of crosspoint switches, shown in the detail.
The contents of switch control registers control the
crosspoints to effect the switching as shown in Tables
1, 2 and 3.

The PE is provided with two blocks of essentially
identical interface hardware, one for the global bus
and one which may be switched onto any of the local
busses. In normal operation, the crosspoint shared
by the global bus and the global bus interface is closed,
while other crosspoints are closed as required.
Alternative crosspoints are provided, however, to
allow reconfiguration such as in Illustration 2a. Note
that by reconfiguring in this way, the software con-
tinues to use the global communications facility in
exactly the same way, with only the bits in the switch
control registers and possibly the bus control regis-
ters (in the bus interface) being altered.

As can be seen from the tables, all combinations of
two and three local busses can be interconnected via
the crosspoints and buffers. As an example, to con-
nect local bus A to local bus B, crosspoints one and
two are closed,connecting A and B via a buffer. If,
in addition, the PE itself is to be attached to the bus
thus configured, crosspoint 3 is also closed.

TX TX RX
Key

\
\

\
\

\
\
\

TABLE 1

\
\ Global

\ Bus
\
\
\
\
\

\
\
\
\
\
\

Global Bus Interface Connection Codes

Octal Connection

0 Global Bus
1 Switched Bus A
2 Switched Bus B
3 Switched Bus C

TABLE 2

ILLUSTRATION 4
Bus Switch

I

, ,
/ Switched Busses To

"Nearest" Neighbors
I ,
I'~--------------~\
,A BCD

TX
Key

" " L-....---~tl--+--
r-----~~

""'" , II I ..
o

L--r--:'~-_~_-_---i~ i f--+_--
Switch e

~~3nE=*===*==i1l Control p..
1.0 ic

TABLE 3
Switched Bus Buffer Connection Codes

Buffer 1 Buffer 2
Octal S1 S2 S1 S2

00 A - B D
10 A B B D
20 A C B D
30 A D B D
01 A - B C
11 A B B C
21 A C B C

Switched Bus Interface Connection Codes 31 A D B C
02 B C C D
12 A B C D

Octal Connection 22 A C C D
32 A D C D
03 A - C D
13 A B - -
23 A C - -
33 A D - -

0 Switched Bus A
1 Switched Bus B
2 Switched Bus C
3 Switched Bus D

14

It is obvious that the existence of a bidirectional buf
fer circuit is essential to the success of the scheme.
Several TTL designs of such a circuit have been per
formed and a small breadboard has been constructed.
As design of the system progresses and more infor
mation on clocking techniques, etc., is available, a
full-scale breadboard consisting of several switches
and interconnecting busses is planned.

PE INTERFACE HARDWARE

Block diagrams of the interfaces between the proces
sor portion of the PE and the busses are shown in
Illustrations 5 and 6. Both are provided with identical
encoding/decoding hardware and name recognition cir
cuitry. It should be noted that the provision of four
!fame registers and four local bus connection points
was somewhat arbitrary. The requirements for both
are expected to be determined more definitively for
DP /M in later work.

On the output side, both interfaces provide channel
type hardware which allows the software to simply
specify the memory location of the message to be
transmitted, the length of the transmission, and the
number of bits in the destination name. The channel
then gains control of the bus, transmits the requisite
header using bits from the first memory word, then
transmits the remaining memory words as data.

On the input side, the global interface is provided with
queueing storage to allow incoming messages to be
accepted by the processor in FIFO order. Interrupts
are provided to indicate receipt of a complete message
and impending queue overflow. In order for the soft
ware to determine the destination of the message, the
destination address as received on the bus is included
at the beginning of the queued information.

For the local bus interface, where longer transmis
sions are expected, an input channel is provided to
place the arriving information in a software-specified
main memory buffer area. The input channel supports
automatic double buffering of arriving information,
allowing the processor a great deal of time before data
is overwritten. Here, as well as in the other inter
face blocks, various status flags and interrupts have
been provided to the processor.

Fault detection in this preliminary design is performed
in two ways. First, a PE which misses its control
slot on the bus may effectively block all further use of
the bus by not propagating its synch signal. This is
detected by a timer in each PE's allocation logic
which interrupts the processor, indicating "bus assign
failure" if an excessively long period of silence is
observed on the bus. Secondly, missed bits during
data transfers on the bus are detected on the incoming
side by maintaining a modulo word-length count of the
arriving data. If, at the end of the transmission, this
count is nonzero, the processor is interrupted. This
detects any missing bits in the data portion of a trans
mission only. Errors in the destination header por
tion of the transmission are expected to require soft
ware detection, since it is likely that errors will
cause the message to be either missed by all PEs or
to be accepted by the wrong one or ones.

CONCLUSIONS

Although the result of preliminary work, this inter
connection scheme offers several unique features
which may be of general interest. Among them are:

1) Use of variable-length, associative ad
dressing of inter-PE messages. As
systems grow in complexity by distributing

15

the computing function, this may become
a cost-effective way of relieving the
software of the addressing burden. It
is quite analogous to the use of symbolic
rather than absolute addresses in assem
bler and HOL programming with the
extension to dynamic mapping of addresses
onto hardware.

2) Provision of flexibility and fault-tolerance
through the use of switchable intercon
nections between processors. This tech
nique provides a decentralized switching
system which can be dynamically adapted
to the needs of a particular problem phase.

3) The use of relatively complex hardware to
reduce significantly the communications
and control overhead conventionally found
in multiprocessor and multicomputer sys
tems.

Much validation work remains to be done on this
preliminary design, but much of interest has already
been accomplished. Work of an architectural nature
remains to be done to assess the general applicability
of this type of computer system, particularly for more
demanding problems. In situations where functions
do not easily decompose with low intercommunications,
extensions of the concept to higher bandwidth busses
may be considered. Theoretical investigation into
the physical and virtual interconnection networks
possible from switchable busses may be of great value.
It already appears that heuristic approaches to deter
mining interconnection patterns and switch settings
may be difficult to develop. Certainly, the concept of
an adaptive system with some intelligence, rather than
just a system which chooses from interconnection
templates, is worth investigating. As low-cost mini
and micro-computers become available, the potential
for cost-effective distributed systems appears to be
increasing, and with it the interconnection problems
of such systems.

REFERENCES

1. Johnson, M. D., et al. All Semiconductor Dis
tributed Aeros ace Processor/Memory Study. Fillal
Reeort, Volume 2, Air Force AVlOmcs a oratory,
Wnght-Patterson AFB, Ohio. AFAL TR-73-226
2. Holland, John." A Universal Computer Capable of
Executing an Arbitrary Number of Subprograms
Simultaneously." Proc. EJCC, pp. 108-113, 1959.
3. Koczela, L. J. Study of Spaceborne Multiproces
sin~. Final Re*ort - Phase 1, Volume 2, 15 Aprll
196, Natlonal eronautlcs and Space Administration
Electronics Research Center, No. C6-1476.10/33.
4. Burnett, G. J., et al. "A Distributed Processing
System for General-Purpose Computing." Proc. FJCC,
pp. 757-768, 1967.
5. Thruber, K. J., et al. Master Executive Control
for the Advanced Avionic Digital Computer. Interim
RetOrt Volume 1: Summary, Honeywell No. Z9506-
30 8, June 1972.
6. Davis, R. L., et al. "A Building Block Approach to
MultiproceSSing," Proc. SJCC, pp. 343-349, 1970.
7. Lorin, H. Parallelism in Hardware and Software:
Real and Apparent Concurrency. Prentice-Hall,
pp. 166-176, 1972.
8. Slotnik, D., et al. "The Solomon Computer ," Proc.
FJCC, pp. 97-107, 1962.
9. Barnes, B. P., et al. Application of Information
Transfer Techniques for Solvmg the Internal Communi
cation Requirements of an Advanced Manned Bomber.
AFAL TR-72-209.
10. Proposed Standard for Aircraft Multiplex Data
Bus, Air Force Avionics Laboratory, Wright-Patterson
AFB, Ohio, 2 March 1973.

MANCHESTER
DECODE

RX

RX

SVNCH
DATA

CLOCK

TRANSFER

1 COMPLETION

•
II illl~.PTER QUEUE

ILLUSTRATION 5
Bus Interface (Switched Bus)

ALLOCATION
CONTROL

ILLUSTRA TION 6
Bus Interface (Global Bus)

~
IDATA ASSEMBLVI

~
DATA BUFFER

~l

TX KEV

4 ~
I~'------, I ~

BUS LENGTH ---...., I MANCHESTER L DATA
ALLOCATION ENCODE I _-;::::.::~_----...,

LOGICly--!...,!;lEN!!P:~:"'~:!i.IO_N __ "'_I--,iJ i ":::Ns~~OCK I
READV ~ATAASSEMBLV

..rBAsE1 CHANNEL DATA
~CONTROL
~LOGIC

aM'ORV -~.
g~m~~ _ _~ACCESs_ ALLOCATION

- CONTROL

N-WORD CONTROL RAM
11~~\JTh LOGIC Q.

~ NAME ... LENGTH\;
~ LOAD
... c
~ ~
Q. ;5 i= " c <.> " <.> ...

~l i
z '" ...

'" "'''' '"
~ "''' ...

"' :! "' ... " ~:! co-... ... c'" ::!
" c "'''' ... c

V- I 2~ I~~ W LOG2

0- ~ c

i ~t: ... c

~~
....

~ '-- ;------ ..;
~ t=~ L-~ :;):!

~ g ~i§
ffi

~ i
......

0-

~ ~ ~
"'''' z ... <'>z

" 0- "' .. C ~ "'" <.> ~ ·ID <.>

1 2 1 1 1 iV 2 5

16

- P

'"
'" Z
~
c

" 3
1

BANYAN NETWORKS FOR PARTITIONING
MULTIPROCESSOR SYSTEMS

L. Rodney Goke
Texas Instruments

Austin, Texas
and

G. J. Lipovski
University of Florida
Gainesville, Florida

1. INTRODUCTION
Restructurable computing systems using multiple

miniprocessors are currently of interest and promise
advantages over large single processor time-shared
systems for some applications (1-3). The modular
nature of such systems can offer graceful degradation,
improved availability, and expandability. Such sys
tems to date have generally contained a small number
of processors and have used one or more switching
structures based on a crossbar.

It is now reasonable to expect that the low cost and
high cost/performance of mass produced LSI micro
processors will make systems with much larger num
bers of processors practical (4). Modules of other
resources, such as memory and I/O, might also be
more numerous in such systems.

The number of contacts, or switching devices, for
a crossbar, however, increases with the square of the
number of connections to it, making it prohibitively
expensive for very large systems. Since the fanout of
switching devices in a crossbar increases linearly
with the connections to the structure, this too can be a
problem in large systems, especially when expanda
bility is not to be limited. It is thus increasingly de
sirable to find structures better suited than the cross
bar to partitioning large systems.

This paper describes a class of partitioning net
works, called banyans, whose cost function grows
more slowly than that of the crossbar and whose fan
out requirements are independent of network size.
Such networks can economically partition the re
sources of large modular systems into a wide variety
of subsystems. .Any possible partition can be realized
by paralleling several networks or by multiplexing a
single network in a manner to be described later. Re
sults will be given indicating that a cost/performance
advantage over the crossbar can be obtained for large
systems and that the crossbar can, in fact, be con
sidered a non-optimal special case of a banyan net
work. Inherent fail-soft capability and the existence
of rapid control algorithms which can be largely per
formed by distributed logic within the network are also
important attributes of banyans.

This paper presents fundamental properties and
preliminary simulation results of banyan partitioning
networks. A more detailed treatment, including
proofs of theoretical properties, is reserved for ref
erence (5).

21

2 • PAR TITIONING
The purpose of a partitioning network, as consid

ered here, is to partition the resource modules of a
system into disjoint subsystems by effectively provid
ing a separate bidirectional data path connecting the
resources in each subsystem. Once connected, the
resources of a subsystem could communicate by time
sharing this data path in a manner similar to that used
in such systems as the PDP-ll (6) and the HP 3000
(7).

2.1 CROSSBAR NETWORKS
The crossbar network shown in figure 1a is per

haps the most straightforward partitioning structure.
For N resource modules, it contains [N/2] data busses
the maximum number of nontrivial subsystems possi
ble at one time. A subsystem with only one resource
is trivial because it does not need the structure to
communicate with itself. This network requires
N[N/2] bidirectional SPST switching devices, 1 each
of which is connected to N-1 identical devices by a
data bus.

Figure 1 b is a graph representing the same struc
ture. This representation is similar to that used by
Benes (9) and uses vertices to represent data busses
or links, and edges to represent the switches con-

Figure 1. Crossbar Partitioning Network

DATA BUSES

,~ ______ ~A,------~,

'-------~v~------~' '-____ ~,,~------J
RESOURCE MODULES RESOURCE MODULES

A) BLOCK DIAGRAM B) GRAPH REPRESENTATfON

1Bidirectional electronic switchir.o devices suitable
for all networks in this paper are discussed in refer
ence (8).

necting them. Note that the crossbar is represented
by a biparte graph with an edge connecting each bus
with every resource module. Graph representations
will be used with other structures later.

More specialized cros sbar structures have been
used in a variety of multiprocessor systems (3, 10-IZ).

Z. Z PERMUTATION NETWORKS
It is possible to build a partitioning network from a

permutation network by supplying the external links
shown in figure Z. A permutation network can con
nect, in pairs" a set
of input terminals to
a set of output ter
minals of equal size
so that any desired
permutation of inputs
onto outputs can be
realized. These con
ne cti ons allow tr ans -
mission in either di
rection when bidi
rectional switches
are used in the net
work. In the config
uration of figure Z,
the network per
mutes the set of re
source r.nodules onto
itself, allowing con
nected subsystems to
correspond to the
cycles of the perr.nu
tation. By choosing
a perr.nuatation with
the appropriate
cycles, any desired
partition can be con
nected.

Figure Z. Perr.nutation Net
work used as a Partition
ing Network

···1

PERMUTATION
NETWORK

~

(. (.) (:> ••• (~

RESOURCE MODUL.E:~

This result is theoretically significant because it
ir.nplies that an N-terminal partitioning network does
not need to contain any more contacts than an N-input,
N-output permutation network. It has been shown that
when N is a power of Z, such a permutation network
can be built with as few as 4(N logz N - N + 1) con
tacts (13-15).

The partitioning structure of figure Z is of lir.nited
practical value, however, because of excessive prop
agation delay in large subsystems. A signal in the
data path connecting a subsystem with i resource mod
ules r.nay have to propagate through the permutation
network as many as [i/Z] times to reach its destina
tion. Each time through, it must propagate through
as many as (logZ N-l) contacts. Control of this struc
ture would also be relatively complex and could lir.nit
restructuring speed.

3 •. BANYANS
A banyan network, named for the East Indian fig

tree of sor.newhat similar structure, is defined in
terr.ns of its graph representation. The graph of a
banyan is a Hasse diagram of a partial ordering (16)

in which there is one and only one path from any base
to any apex. A base is defined as any vertex having
no arcs incident into it, an apex is any vertex with no
arcs incident out from it, and all other vertices are
called interr.nediates. When used as a partitioning

22

network, the bases are connected to resource mod
ules, while the apexes and interr.nediates are within
the network. Some examples of banyans are shown in
figure 3. We use a directed graph representation be
cause it is useful for specifying the structure and its
control algorithr.ns, but the switches represented by
the edges are still bidirectional.

Figure 3. Exar.nples of Banyans

A) IRREGULAR BANYAN B) L-LEVEL BANYAN

3.1 TREE-SHAPED CONNECTIONS IN A BANYAN
In a banyan the data path established to connect the

resource modules of any subsystem always forms a
tree rooted at some apex. By definition there is a
unique path from each base to each apex. A subsys
tem is connected by selecting an apex and then closing
all switches along the path fror.n each desired base to
the selected apex. Since each path is unique, the re
sulting data path forms a tree rooted at the apex. Al
gorithr.ns for locating eligible apexes and establishing
the connections will be presented in section 3. 3.

Tree-shaped data paths are significant because
they can afford low propagation delay with limited fan
out and because they lend ther.nselves well to the in
clusion of priority hardware (17). Propagation delay
and fanout will be discussed later. Priority hardware
is desirable in any data path used as a time-shared
bus in order to resolve conflicts when two or more re
sources request bus control sir.nultaneously. Details
of how priority hardware can be built into a banyan
network can be found in reference (5).

3. Z SYNTHESIZING LARGE BANYANS FROM SMALL
ONES

Large banyan networks can be synthesized recur
sively from smaller ones. Suppose that one has avail
able a nur.nber of small banyan networks, perhaps
supplied by a manufacturer as a basic module, and one
wishes to synthesize a larger network. This can be
done as illustrated in figure 4a by connecting the
apexes of some banyans to the bases of others.

The interconnections of these banyans can be repre
sented by a graph, as illustrated in figure 4b. In this
graph, each vertex represents a banyan network. An
arc from any vertex VI to another vertex VZ r.neans
that one apex of banyan VI is directly connected to one
base of banyan VZ. We assur.ne that if there are any
arcs incident into a vertex, then the corresponding
banyan has exactly one base for each incident arc.

Similarly, the number of apexes equals the number of
arcs incident out from the corresponding vertex unless
there are none. When there are no arcs incident into
a vertex, the bases of the corresponding banyan be
come the bases of the synthesized network. Similarly,
the apexes of the synthesized network are those of the
component banyans with no arcs incident out.

Figure 4. Banyan Synthesis

A) SYNTHESIZED NETWORK B) INTERCONNECTION GRAPH

Theorem 1: When banyan networks are interconnected
as described above, the resulting network will be a
banyan iff the graph of the interconnections is a banyan
graph.
Proof Sketch: There are three way s that a directed
graph can not be a banyan; one, if it contains a circuit,
two, if there is more than one path from some base to
some apex, or three, if there is no path from some
base to some apex. Since the component networks are
banyans, any of these conditions in the interconnection
graph would cause the same condition to exist in the
graph of the synthesized network, and vice versa.

This theorem is important because once one or
more banyan structures are known, these structures
can be recursively expanded to arbitrarily large sizes.
The SW structure, discussed later, is based on re
cursive expansion of the crossbar, one of the simplest
banyan structures.

3.3 CONTROL OF CONNECTIONS

Figure 5 illustrates how
a data path connecting an
arbitrarily selected apex
with any desired subset of
bases can be established in
two steps. Set-up is facil
itated by a single control
line provided in each link
of the network. First, a
"one" signal is broadcast
baseward from the selected
apex over the control line,
as illustrated in figure 5a.
The signal fans baseward
at each vertex so that the
"one" propagates to all
bases. This signal sets a
flip-flop in each intermedi
ate and apex through which

Figure 5. Set-up

Algorithm

SELECTED APEX

t

A) STEP 1

23

it passes.
In the second step,

"ones" are broadcast apex
ward from each base in the
desired subsystem, as il
lustrated in figure 5b. In
this step, the signal is
OR 'ed apexward at each
vertex. As illustrated in
figure 5c, the desired con
nection is made by closing
every switch that receives
this signal from below and
has a set flip-flop in the
adjacent vertex above.
These are the links through
which control signals pro
pagated in steps one and
two.

As described, this set
up algorithm would require
two steps but only one con
trol line in each link. Un
like the data lines, this
control line is always con
nected between vertices
and does not require a bi
directional switch for each
edge of the graph. Switch
ing for the control line oc
curs at the vertices where
the signal is either OR 'ed
up or OR'ed down.

Figure 5. (Cont.)

t t t
SELECTED BASES

B) STEP 2

C) FINAL CONNECTION

Any apex may be used in connecting the first sub
system, but subsequent apexes must be selected so
that the new connection does not overlap with any ver
tex already in use. A two-step search algorithm for
identifying the eligible apexes is illustrated in figure
6. In this example, the circled vertices represent
those already in use, and bases 3 and 6 are to be con
nected as a new subsystem. As shown in figure 6a,
control signals are first broadcast apexward simul
taneously from all bases in the desired subsystem and
are then OR'ed upward using the same control line
used in set-up. During this step, a flip-flop is set in
every intermediate and apex which receives this con
trol signal and is already in use.

In the second step, illustrated in figure 6b, the con
trol signals from the bases are turned off, and each

Figure 6. Search Algorithm
ELIGIBLE APEXES

o 2 3 4 5 6 7 o 234567

A) "STEP 1 B) STEP 2

vertex with a set flip-flop broadcasts a "one", which
is ORled apexward on the same line used in step one.
All apexes not receiving a "one" during this step are
eligible. Final selection could then be performed by a
priority circuit attached to the apexes.

Steps one and two of this algorithm, like those of
the set-up algorithm, could be combined using a sec
ond control line. With four control lines, search and
set-up could all be combined in one step.

In the event of a hardware failure, any vertex
could be effectively removed from the network by dis
connecting all data lines to it and by treating it as if it
were always in use. New connections would then be
routed around the faulty cell 2.
3.4 PARALLEL AND MULTIPLEXED NETWORKS

In partitioning a system, the search and set-up al
gorithms are repeated until all subsystems have been
connected or until no eligible apex can be found. Al
though most subsystems might be connected this way in
practice, a banyan may not always be able to connect
all subsystems of a partition simultaneously. When
subsystems are associated with independent jobs, this
would imply only that the partitioning network be a
limited resource for which jobs must compete much as
they do for other system resources. When a subsys
tern cannot be connected under existing conditions, the
associated job could be held in a queue until enough
other subsystems were dissoolved to permit the connec
tion.

If, however, one wishes to simultaneously connect
more subsystems than can be accommodated with a
single banyan, there are two solutions. 3 First, sever
al banyans can be connected in parallel. The parallel
networks would function independently but their bases
would be connected to the same set of resource mod
ules. As many subsystems as possible would be con
nected in the first network. Those left over would be
connected in as many additional networks as required.

The other solution is to multiplex a single network
so that it periodically rearranges itself to connect first
one set of subsystems, then another, and so on, so that
each subsystem has some time slot during which it can
communicate. A partitioning network, as considered
here, acts as a rearrangeable set of time-shared
buses. A resource module attached to the network
must request and receive control of its bus before
transmitting data, and must be prepared to wait when
ever the bus is not immediately available. Normally
the bus would be unavailable only when used by other
resources in the same subsystem; but should it ever
become temporarily unavailable for other reasons, the
only effect would be to delay data transmission within
the subsystem. This situation makes multiplexing pos-

2This would still require a portion of the control cir
cuitry in a faulty cell to function. A slower search
algorithm that avoids this problem has been described
by Lipovski (17). Alternatively, a software search
algorithm could replace the faster hardware algorithm
in the event of hardware failure.

3In some cases it may also be possible to connect ad
ditional SUbsystems in a single banyon by rearranging
the connections of existing subsystems, but this is
only a partial solution and will not be considered fur
ther here.

24

sible with little or no modification of the resource
modules. The system need only be designed so that any
resource not currently connected by the network would
"see" it as a busy bus.

Multiplexing requires that a small amount of mem
ory be associated with each switch in the network to
store the state of the switch during each time slot.
With LSI this could be done at reasonable cost by asso
ciating a small register with each switch and synchro
nizing all state changes from a central clock.

The techniques of parallel networks and multiplexing
may be mixed to balance cost and performance.
Whether a network structure is space shared with par
allel hardware or time shared with multiplexing, the
parallel networks and/or time slots share many prop
erties and are called layers. The number of layers
required depends on a number of factors and will be
discussed later.

4. L-LEVEL BANYANS
Next we consider a class of banyans with more reg

ular structure and additional useful properties, but
which is still general enough to include most practical
designs.

An L-Ievel banyan is simply a banyan whose ver
tices are arranged in levels so that switches, or arcs
of the graph, can only exist between vertices in adja
cent levels. For example, the graphs in Figures 3b,
5, and 7 are L-level banyans, but 3a is not. There are
actually L+l levels of vertices in an L-Ievel banyan.
They are numbered apexward from 0 to L so that all
bases are in level 0 and all apexes are in level L.

Any path from a base to an apex in an L-level ban
yan has exactly L arcs; thus the propagation time
through the network during search and set-up is con
stant. Moreover, the propagation delay of data
through the network cannot exceed that of 2L switches,
since in the worst case, data must travel from base to
apex to bas e .

4. I BASE AND APEX DISTANCE
A base distance function, BI LI. B2, can be defined

on the bases of any L-Ievel banyan specifying the mini
mum number of levels up into the banyan a connection
must extend to connect two bases, BI and B2. Simi
larly, an apex distance function can be defined on the
apexes specifying the minimum number of levels down
from the top of the structure a connection must extend
to conne ct any pair of apexes. Figure 7 illustrates the
concepts of base and apex distance. The darkened
paths represent minimal connections. The connection
of apexes is presented only as a conceptual aid in ex-

Figure 7. Base and Apex Distance in an L-Level
Banyan

AI A2

T
I =AIVA2

T
BI OS2 = 2

BI B2

plaining apex distance and would not actually occur in a
partitioning network.

The definitions of base and apex distance can be ex
tended to sets of bases and apexes respectively in the
saIne way that point distances are often extended to
sets of points. That is, the base distance between any
two sets of bases B1 and B2 is defined to be the Inini
InUIn of all distances b1 L:l. b2 such that b1 £ B1 and
b2 £ B2. The analogous extention applies to apex dis
tance.
TheoreIn 2: In an L-level banyan, let Al and A2 be
apexes and let BI and B2 be sets of bases. If
L < (BI L:l. B2) + (AI '\7 A2), then subsysteIns Bl and B2
can be connected without conflict in the saIne layer
with connections rooted at Al and A2 respectively.
Proof Sketch: In order for the tree-shaped connection
connecting subsysteIn B 1 with apex Al to conflict with
that connecting B2 with A2, the two connections Inust
have in COInInon SOIne vertex, V. But V Inust lie in
SOIne level I such that BI L:l. B2 sIs L - (AI '\7 A2).
No such I can exist if L < (AI '\7 A2) + (Bl L:l. B2).

TheoreIn 2 not only characterizes a way to avoid
conflicts, but also suggests ways to enhance network
perforInance. There are two potentially useful inter
pretations. First, subsysteIns close to each other
place Inore stringent requireInents on the separation
of apexes used than do widely separated subsysteIns,
suggesting that closely spaced subsysteIns are less
likely to be connected in the saIne layer. Thus, if it is
known at design tiIne which resources of a systeIn are
Inost likely to be connected, one Inight iInprove per
formance by gp.rryrnandering the assignInent of re
sources to bases so that bases Inost likely to be con
nected tend to be closest. An operating systeIn could
also take advantage of this result by allocating closely
spaced resource Inodules to a subsysteIn whenever
possible. The aInount of iInproveInent thus obtainable
is not estiInated here since this would be highly prob
leIn dependent, but one can easily contrive extreIne
exaInples in which Inore than one layer would seldoIn
or never be needed.

The second interpretation concerns the selection of
apexes. The search procedure des cribed earlier lo
cates all apexes eligible for connecting a new subsys
teIn in a partially occupied layer, but does not deter
mine which of the eligible apexes is the best choice.
TheoreIn 2 now suggests a plausible selection crite
rion. According to the theoreIn, any new subsystem
can be connected if we can find SOIne apex sufficiently
distant £rOIn those already in use. Thus apexes Inost
distant froIn those in use are the Inost valuable in the
sense that they are likely to be eligible for connecting
the greatest variety of subsysteIns. More subsysteIns
Inight then be connected in a layer by selecting each
new eligible apex so as to leave as many "valuable"
apexes as possible for subsequent connections. This
criterion is aInbiguous in SOIne cases, but neverthe
less is the conceptual basis for a priority rule found to
improve perforInance in siInulated networks. (5)

4. 2 FANOUT AND SPREAD
ParaIneters specifying the nUInber of arcs incident

into and out froIn the vertices of an L-level banyan not
only determine the fanout and fanin requirements of
circuits used but can also specify its size and shape.

We define a regular banyan to be an L-level banyan
in which the nUInber of arcs incident into each vertex

25

is a constant F called the fanout and the number inci
dent out froIn each vertex is a constant S called the
spread. We except, of course, the fact that bases
have no arcs incident into them and apexes have non
incident out.

Regular banyans would likely be the Inost econOIn
ical to fabricate, because they can be built from a
nUInber of identical cells, each containing the cir
cuitry associated with a vertex and the arcs incident
into it. The fanout and fanin requirements of these
cells are deterInined by F and S. The next theoreIn
shows how the number of vertices, and hence cells, in
each level of a regular banyan is deterInined by F, S,
and L, regardleEis of how the levels are interconnected.
TheoreIn 3: In a regular banyan with L levels, fanout
F, and spread S, the number of vertices in any level i
is given by Ni '" Si FL-i.
Proof Sketch: For any given apex, there are FL pos
sible paths from various bases. Since there m.ust be
exactly one path from. each base, No'" FL. Also, for
each 1 sis L, Ni ", Ni _1 (S/F). Therefore,
Ni '" FL (S/F)i '" SiFL-i.

When the fanout of a regular banyan equals its
spread, the num.ber of vertices becom.es the sam.e in
each level. In this case we call it rectangular.

5. SPECIFIC BANYAN STRUCTURES
There are two knwon types of regular banyans of

particular interest, SW and CC banyans. 4 Special
cases of these structures have been considered pre
viously for a variety of applications.

A structure graphically equivalent to a CC ban
yan with L", 3 and F '" S '" 4 has been used in the
"Barrel Switch" of the ILLIAC IV Processing Ele
m.ent (19) to shift 64 bits an arbitrary num.ber of
places to the left or right.

SW structures were first proposed for partition
ing applications by Lipovski (18). Structures graph
ically equivalent to rectangular banyans with F '" 2
had been proposed earlier by Batcher for use as
''bitonic sorters ". (20) A variety of permutation
structures have also been proposed which contain
special cases of SW banyans as subgraphs
(13-15,21). Even such com.m.on structures as
crossbars and hom.ogeneous trees are special cases
of SW banyans in which L '" 1 and S '" 1 respectively.

We are presently concerned with SW and CC ban
yans as partitioning networks, but this diversity of
applications suggest that banyan theory may be use
ful in other areas as well.

5.1 SW STRUCTURES
The SW structure is a kind of regular banyan

produced by recursively expanding a crossbar
structure in the m.anner of Theorem. 1 as illustrated
in Figure 8. Exam.ples of SW banyans appear in
Figures 4, 5, and 6. The rules for this recursion
are as follows:

1) A one-level SW structure with fanout F and
spread S is sim.ply a crossbar with F bases and S
apexes.

4The term SW has been used in earlier work by
Lipovski (18). CC is an acronym. for Cylindrical
Crosshatch since a CC network can be neatly laid out
as a crosshatch pattern on the surface of a cylinder.

2) An L-Ievel SW structure with fanout F and
spread S can be synthesized by interconnecting SL-l
crossbars and F identical (L-l)-level SW struc
tures, all with fanout F and spread S. The apexes
of the SW structures are connected to the bases of
the crossbars such that the interconnection graph is
a crossbar. Also we stipulate that each crossbar
must be connected to every component SW structure
in the same way; Le., if it is connected to the ith
apex of one SW, it must be connected to the ~ apex
of each of the others. The reason for this stipula
tion will be explained shortly.

Figure 8. Synthesis of an SW Banyan

The base and apex distance functions of an SW
banyan tend to group the bases and apexes respec
tively into nested subsets. It is apparent in Figure
8 that the bases of a synthesized SW banyan may be
grouped according to the component SW's above
them, forming a partition with F subsets. It is also
apparent that any connection between bases in dif
ferent subsets must be made through one of the
crossbars and hence must extend exactly L levels
into the network. The distance between two such
bases is thus L.

Bases within a subset can always be connected
in the component SW above; so when two bases are
in the same subset, the distance between them can
not exceed the levels of that component banyan, L-l.
To determine whether this distance is equal to L-l
or less than L-l, one can similarly decompose the
component SW's and partition each subset into F
smaller subsets. Continuing this decomposition,
one can obtain L-I levels of nested subsets such
that the distance between any two bases is given by
the level of the smallest subset containing both
bases.

Similarly, it can be shown that the apex distance
function groups apexes into L-l levels of nested
subsets such that each subset is divided into S
smaller ones.

As was stated in section 4.1, the base and apex
distance functions specify the minimum number of
levels into the structure that a connection must ex
tend to connect two bases or apexes respectively.
lh an SW banyan, these functions also specify the
maximum number of levels into the structure that
branching may exist in any such tree-shaped con
nection. The stipulation "each crossbar must be
connected to every component SW structure in the
same way" is included to insure this property for
apex distance.

26

A consequence of this property is that the con
verse of Theorem 2 also becomes true making it an
if and only if test ·for conflicts. Thus for the SW
structure, the criterion of Theorem 2 not only gives
us a way to avoid conflicts but also a·characteriza
tion of which apexes and bases can and cannot be
connected without conflict in a single layer.

5.2 CC STRUCTURES
The CC structure is rectangular by definition

and thus must have SL vertices in each level. Let

V~ , V~ , ••.. , V~-l be the vertices in each level
111

of an L-level CC structure, where N = SL. In the
graph. of this structu.re, there is an arc from a ver
tex Vl to a vertex VJ in the level above whenever

k k+l
j = i + mSk (mod N) for some m = 0, I, ••• , S-1. An
example of a CC structure is shown in Figure 7.

To show that this structure is indeed a banyan,
we note first that the L-level property insures that
the graph contains no loops and hence is that of a
partial ordering. To show that there is exactly one
path from each base to each apex, consider any
such path from an arbitrary base. In propagating
from each level k to level k+l, a signal may be
shifted 0, Sk,2Sk , •. " or (S-l)Sk places to the right
in circular fashion. In propagating through the en
tire network a signal may then be circularly shifted
from 0 to SL_l places to the right so that there is a
possible path to each of the SL apexes. Further,
since there is an S-way branch at each level, there
are exactly SL such paths from each base, and
hence one to each apex.

The CC structure demonstrates that multi-level
regular banyans can be built without using the re
cursive technique of Theorem 1. Also it can be
shown that the base ·and apex distance functions of a
CC banyan differ from those of the recursively de
fined SW banyans in that bases or apexes appear to
be arranged in a circle rather than in nexted sub
sets. The distance· between two bases or apexes is
then determined by their separation on the circle(5).

6. SIMULATION RESULTS
The number of layers typically required for a

given banyan to fully partition its bases has not been
obtained analytically. To obtain an indication of the
layers required, several rectangular banyan net
works were simulated.

The simulations tested the ability of networks to
connect randomly selected partitions. First, the
number of subsystems in a partition was selected
as a pseudo-r·andom number from 1 to the number
of bases in the network. Then each resource mod-
ule was assigned to one of these subsystems selec-
ted at random. The number of modules in any sub
system could thus vary and could even be zero in
some cases. Subsystems were then connected one
at a time, placing each in the first available layer
until the entire partition was realized. All subsystems
were then dissolved and the procedure was repeated
for a total of 100 partitions. Details of the simula
tions can be found elsewhere (5).

The average number of layers required to fully con
nect these partitions was computed for several sizes of
rectangular SW banyans, as graphed in Figure 9. With

a fanout of 2 or 4, the average layers required appears
to grow logarithmically with the number of res ource
modules. With a fanout of 3, this function appears to
grow more slowly than the logarithm; however, one
must be cautious about concluding this with only 3 data
points. Larger networks were not simulated because
of computer time limitations, but additional simula
tions of CC networks and of rectangular SW networks
with modified setup rules have generally supported the
observation that the average number of layers re
quired grows no more rapidly than a logarithmic func
tion of the number of resource modules.

Figure 9. Simulation Results

3.0

0
IU 2.5 !:
::>
0
IU
Ir

Ul
Ir 2.0
IU
>-«
.J
IU
l!l « 1.5
Ir
IU
> «

1.0

4 8 16 32 64 128 256

NUMBER OF RESOURCE MODUll'"'3

It is also apparent that with other factors equal,
networks with larger fanouts tend to require fewer
layers. For example, with 64 bases, the networks
in Figure 9 required an average of 2. 35 layers with
F=2 and 1. 91 with F=4. A similar network with F=8
required only 1. 8 layers.

In several respects the results in Figure 9 repre
sent worst case conditions more severe than those
likely to be found in actual systems. First, it was
assumed that in each partition, every resource
module was assigned to some subsystem; i. e., no
idle resources. Furthermore, trivial subsystems
containing only one module were connected with apexes
in the usual fashion even though this would likely be
unnecessary in practical systems. These simulations
assumed also that knowledge of the base distance
function could not be used to enhance performance as
suggested in section 4. 1.

The priority rule used for selecting apexes in the
simulations of Figure 10 is equivalent to selecting the
leftmost eligible apex when the network is drawn like
that in Figure 6. Additional simulations have shown
that some improvement is possible using the criterion
suggested in section 4. 1.

The average layers required for fully connecting
all partitions is a useful performance measure be
cause it indicates how much the maximum allowable
data transfer rate available to each subsystem must
be degraded when all subsystems use a single multi
plexed network. In practical systems, however, it
may not be necessary to connect all desired subsys
tems at once, so that the maximum number of layers
used could be limited to a small number. For ex-

27

ample, in the largest network simulated, an SW with
256 bases and fanout 4, over 87% of the subsystems
were connected in the first layer and over 99% in the
first two, even though an average of 2. 39 and a maxi
mum of 4 layers were required to connect all subsys
tems. It was similarly found that the other simulated
networks could connect most SUbsystems in a single
layer and all or nearly all with two.

7. OPTIMUM FANOUT IN RECTANGULAR BANYANS
In this section we will consider two cost/perfor

mance functions for rectangular banyans, and will
show that for each, there is an optimum fanout which
is independent of network size.

It follows from Theorem 3 that there are 10gFN
levels in a rectangular banyan with N bases. The
total number of apex and intermediate vertices is then
N 10gF N. Each of these vertices has F contacts im
mediately below, so the cost of the network in contacts
is given by

Cl (F,N) = F N 10gF N.
Since the worst case propagation delay through the

network is proportional to the number of levels, the
cost delay product is given by:

2
C2 (F, N) = F N 10gF N,

This cost/performance measure is especially relevant
when resources communicate synchronously, allowing
always for worst case delay.

Both functions are of the form

Cp (F,N) = F N log~ N.

To minimize this with respect to F, we set the partial
with respect to F equal to zero and solve for F.

a C (F,N)
o = _--"P'--__

of
pap

N 10gF N + NF aF 10gF N

N InP N N P InP N

InP F
1 P

InPF Inp+I F
InF = P

F = e P

Thus the optimum fanouts are e for function Cl' and
e 2 for C2' Optimum integer values are found to be 3
for Cl and 7 or 8 for C2. Note that when F = N the
network becomes a crossbar structure, implying that
for large N, a rectangular crossba.r can be considered
a nonoptima.l special case. 5

The average layers required for fully connecting
random partitions was not considered in this optimiza
tion because its dependency on fanout is not precisely
known. The simulation results indicate that somewhat
fewer layers are required when F is large, suggesting
that optimum fanouts would be somewhat larger if the
number of required layers were considered.

5The crossbar of Figure 1 is not rectangular since

S=~ and F=N, but its cost function still grows as N2

and exceeds both C l and C2 of optimal banyans for
large N.

One's choice of fanout could also be influenced by
such factors as packaging constraints and the fanout
capability of devices used. Further, in a regular
banyan, F must be a root of N.

8. CONCLUSIONS
Regular banyan partitioning networks have been

described, whose fanout requirements are constant
with respect to system size, and whose cost function
grows as N log N rather than N2 of the crossbar.
Worst case propagation delay grows as log N. Dis
regarding fanout problems, the propagation delay of
data paths in a crossbar is constant; however, that of
priority hardware used to resolve simultaneous re
quests within SUbsystems would still grow as log N,
assuming methods similar to (17).

Simulation of such networks with up to 256 re
source modules has indicated that most subsystems
of randomly selected partitions can be connected with
only one or two layers, which might prove adequate
in many applications.

In applications where the network cannot be thus
limited, any partition could be fully connected by a
multiplexed network. In the simulated networks, the
average layers required to fully connect random
partitions appears to grow no more rapidly than log
N, which still allows a cost/ performance advantage
over the crossbar for large N.

The simulation results presented here indicate
that the number of layers required can be small
enough not to offset the cost advantages of banyans in
large systems. The networks were simulated under
artificial conditions that were worst case in several
respects. Many variations of banyan networks are
possible, only some of which have been presented
here. It would indeed be interesting to apply a banyan
network to a specific system where it could be tai
lored to requirements.

This paper has concerned itself with the use of
banyan networks for partitioning applications. Con
sequently, we have not attempted to compare cost
performance with networks designed for different
functions, such as permuting or store-and-forward
message switching. It is felt, however, that the
adaptation of banyan structures for such applications
warrants further study.

Theoretical results concerning the behavior and
structure of banyans can provide insight and suggest
ways to enhance performance. With increased
notational complexity, most of the theoretical results
discussed here for regular banyans, including SW and
CC structures, can be extended to L-level banyans in
which fanout and spread may be different for each
level (5). Since a number of structures proposed
previously for other applications are special cases of
banyans or contain them as subgraphs, it is expected
that banyan theory could also be useful in other areas,
especially that of permutation networks.

28

REFERENCES

I. H.B. Baskin, E.B. Horowitz, R.D. Tennisonand
L. E. Rittenhouse, "A Modular Cmnputer Sharing Sys
tem," Communications of the ACM, Vol. 12, No. 10,
pp. 551-559, Oct., 1969.
2. H. B. Baskin, B. R. Borgerson, and R. Roberts,
"Prime - A Modular Architecture for Terminal
Oriented Systems, II AFIPS Proc. SJCC, Vol. 40, pp.
431-437, 1972.
3. W. A. Wulf, and C. G. Bell, "C. mmp - A Multi
mini-processor," AFIPS Proc. FJCC, Vol. 41, pp.
765-777, 1972.
4. G. W. Schultz, R. M. Holt, and H. L. McFarland,
"A Guide to Using LSI Microprocessors," Computer,
pp. 13-19, June, 1973.
5. L. R. Goke, Connecting Networks for Partitioning
Polymorphic Systems, Doctoral Dis sertation,
University of Florida, under preparation.
6. PDP-II Handbook, Digital Equipment Corporation,
Maynard, Mass., 1969.
7. J. Basiji and A. B. Bergh, "Central Bus Links
Modular HP 3000 Hardware, " Hewlett-Packard
Journal, pp. 9-14, Jan., 1973.
8. W. E. Vice, A. J. Brodersen, G. J. Lipovski, "On
Integrated Circuit Bidirectional Amplifiers, II accepted
for publication in Journal of Solid State Circuits,
Oct., 1973.
9. V. E. Benes, "Algebraic and Topological Proper
ties of Connecting Networks," Bell System Technical
Journal, pp. 1249-1273, July, 1962.
10. J. T. Quatse, P. Gaulene and D. Dodge, "The
External Access Network of a Modular Computer Sys
tem," AFIPS Proc. SJCC, Vol. 40, pp. 783-790, 1972.
11. J. P. Anderson, Samuel A. Hoffman, J. Shifman,
and R. J. Williams, "D825 - A Multiple-Computer Sys
tem for Cornrn.a.nd and Control, " AFIPS Proc. F JCC,
Vol. 22, pp. 86, 96, 1962.
12. R. E. Porter, "The RW 400 - A New PolyrrlOrphic
Data System, II Datamation, Vol. 6, No. I, pp. 8-14,
Jan. /Feb., 1960.
13. L. J. Goldstein and S. W. Leibholz, "On the
Synthesis of Signal Switching Networks with Transient
Blocking, " IEEE Transactions on Electronic
Computers, Vol. EC-16, No.5, pp. 637-641,Oct., 1967.

14. A. Waksman, "A Permutation Network, " Journal
of the ACM, Vol. IS, No. I, pp. 159-163, Jan., 1968.
15. A. E. Joel, Jr., "On Permutation Switching Net
works," Bell System Technical Journal, pp. 813,
May / June, 1968.
16. Claude Berge, The Theory of Graphs, p. 12,
John Wiley and Sons, Inc. New York, 1962.
17. C. C. Foster, "Determination of Priority in As
sociative Memories, " IEEE Transactions on Com
puters, Vol. C-17, No.8, pp. 788-789, Aug., 1968.
18. G. J. Lipovski, liThe Architecture of a Large
Associative Processor, " AFIPS Proc. SJCC, Vol. 36,
pp. 385-396, 1970.
19. R. L. Davis, liThe ILLIAC IV Processing Ele
ment," IEEE Transactions on Computers, Vol. C-18,
No.9, pp. 800-816, Sept., 1969.
20. K. E. Batcher, "Sorting Networks and their Ap
plications, " AFIPS Proc. SJCC, Vol. 32, pp. 307-314,
1968.
21. V. E. Benes, "Optimal Rearrangeable Multistage
Connecting Networks, " Bell System Technical Journal,
pp. 1641-1656, July, 1964.

STRUCTURE OF DIGITAL SYSTEM
DESCRIPTION LANGUAGES

Harry F. Jordan
Burton J. Smith

Electrical Engineering Department
University of Colorado

Abstract

Several languages have been developed for or ap
pI ied to the problem of describing digital hardware
systems. This paper points out some of the problems
encountered in hardware descriptions, particularly
where they are distinct from concepts appearing in
programming languages.

Introduction

There are three major goals of a hardware descrip
tion language: human comprehension, simulation and
construction. The requirements imposed by these goals
are most easily specified in reverse order. The goal
of system construction requires that the language spe
cifically describe the actual hardware needed to build
the machine. The language need not, however, describe
the structure of any sub-unit which is available as
one piece, such as an MSI or LSI integrated circuit.
A description of the terminal behavior of such sub
units may be necessary but their actual construction
is not of interest to the designer. It must be clear
from the description where hardware is implicitly
specified in a description, as in the case of multi
plexers on register inputs when the register may re
ceive information from several sources.

The goal of simulation requires an accurate be
havioral input-output description of each sub-unit in
the machine. The behavioral description of sub-units
need not be in any correspondence with the structure
of the sub-units, but it must be in a form which is
executable by the simulator. A simulation may be re
quired to produce more or less detailed results and
therefore the structural description of the circuit
might be carried out to different depths before the
behavioral type of description is employed. In all
cases, however, one must be able to reduce every ele
ment of the description of a system to a behavioral
description in terms of the language of the simulator.

The goal of human comprehension is somewhat more
difficult to define. This goal is first in order of
importance because the util ity of any language depends
on how easily human designers comprehend and write
descriptions in the language. As Iverson has pointed
out in describing APL [1], effective suppression of
inessential detail is important to human comprehension
and ease of use. However, the design environment in
which hardware descriptions are done is quite variable.
For example, detail which is nonessential to system
structure if a large scale integration arithmetic and
logical unit is to be employed becomes essential if

31

the unit is to be constructed out of smaller sub-units.
In such variable environments, the effective suppres
sion of detail seems to depend upon flexible mechanisms
for impl icit substructuring such as are afforded by
extensible languages. In such an extensible language,
concise syntactical and semantic constructs can be de
fined and later used in a simple form in the descrip
tion of the system or a set of systems based on the
same hardware primitives.

The authors feel that the syntactic structure of
a language is important to human comprehension in so
far as it reflects the logical structure of the thing
described. The sequencing of statements, block struc
turing, if-then-else clauses, and iteration clauses
are syntactic features of programming languages which
directly reflect execution time features of the compu
tation described by a program written in the language.
One of the important problems in designing high level
languages for describing digital systems is that of
isolating significant logical structure features of
systems and providing syntactic constructs in the de
scription language which accurately reflect these fea
tures.

Parallel ism

Several semantic problems arise in describing the
structure and operation of a digital computer or other
digital system. The primary problem is that of'des
cribing parallel ism in the operation. Digital systems
consist of a large number of components connected in
a complex way and operating sequentially in time. In
order to successfully describe such a system one must
be able to group elements that are logically connected
to one another in the electronic circuitry and to de
scribe the operation of this sub-unit consisting of a
set of connected circuits. One must also be able to
associate groups of steps which take place sequentially
in time to describe a time-sequence or sub-sequence of
operations within the computer. The necessity for
grouping elements both in space and in time gives rise
to the primary linquistic problems of describing a
digital computer. We thus wish to consider what prop
erties a descriptive mechanism or language must have
in order to successfully describe digital computers.

Iverson, Falkoff and Sussenguth have used the APL
language to describe the hardware of the IBM 360
series of computers. [2] The primary advantage of APL
in describing a digi,tal computer stems from the fact
that it has a large number of primitives which specify

inherently parallel operations. Th. primitives in
volved are primarily operations on bit vectors. The
APL primitives have the ability to transfer the values
of bit vectors from one variable or register to an
other, obtain values from subfields of large bit vec
tors, and apply certain transformations to the bit vec
tors either one bit at a time or over all bits of the
vector. These concepts are quite natural to a parallel
computer. They are somewhat less applicable to serial
computers. The structure of the APL primitives is
parallel in nature, but the overall structure of the
language is sequential. Programs in APL consist of a
sequence of consecutively numbered and executed steps
as in most other programming la"guages. It is to be
expected then that the points at which APL becomes
strained in describing computer hardware are just
those points at which large scale parallel ism becomes a
factor in the design. Sub-units which have internal
sequent ial structure yet operate in parallel in a ma
chine are not handled smoothly by APL.

A higher degree of flexibil ity in describing par
allel and sequential operations is afforded by the ISP
language developed by Bell and Newell. [3] By using
the semi-colon and the semi-colon followed by "next"
properly in an ISP description and by including paren
theses in appropriate places a complex structure built
of sequential and parallel sub-units can be constructed.
The technique is quite similar to describing a series
paral leI electrical network. The types of structures
which cannot be described with the ISP type mechanism
of a parallel separator and a sequential separator are
in fact just those cross-l inked type structures which
correspond to bridge-type connections in an electrical
circuit. The most general case of course is a group
of nodes representing elementary actions with a partial
ordering imposed on the nodes. It seems that none of
the famil iar syntactic mechanisms form structures simi
lar to general partial orders. (On the other hand much
execution sequence information is clearly mirrored in
programming language syntax.) The cross-l inked struc
tures do not often appear in computer design, and a
language which offers only the series-paral leI mechan
ism of description will be quite adequate for a large
number of applications.

The syntactic structure of this mechanism can be
summarized in BNF as follows:

<system description> :: = <step>1

<system description><sequential separator><step>

<step> :: = <action>1

<step><parallel separator><action>

<action> :: = <elementary action>1 «system description»

An example using: as the parallel separator, ->- as the
sequential separator and EAi as a name for the ith
elementary action is:

EAl ->- EA2 ->- EA3: EA4: EAS ->- EA6: (EA7 ->- EA8) ->- EA9

The partial ordering imposed by the above description
can be represented by the covering relation diagram in
figure 1.

Figure

32

The situation shown in the partial order diagrammed
in figure 2 where EA2 and EA3 must be complete before
EA4 starts whereas starting EAS requires only the com
pletion of EA2 cannot be represented by the above
1 inquistic mechanism.

l~
EA2 EA3

/~/
\/EM

EA6

Figure 2

The closest approximation imposes the restriction that
EA3 precede EAS which is not required by the original
structure.

Notice that there is no timing information present
in the above descriptions. Only sequence information is
given as a set of requirements on which actions preceed
others. Timing is more explicit in a language such as
Schorr's Register Transfer Language. [4] Using the
conditional execution feature of Schorr's language the
sequence information inherent in EAl ->- ((EA2 ->- EA4):
EA3) ->- EAS might be expressed by:

It 11 EA 1 ->- t2 ; 1 ->- t3

It21 EA2 ->- t4

It31 EA3 ->- tSB

It41 EA4 ->- tSA

I tSA A tSBI EAS

The timing is more explicit in the RTL but extra detail
(the arbitrary ordering of the lines and names for the
times) tends to obscure the sequence information. It
seems that the specification of sequence of actions in
a digital system may be a higher level concept than the
specification of timing. Note that when a high level
system description specifies only a partial order on
actions the tasks of simulation and construction are
complicated by the need for impl icit rules for resolv
ing ambiguities in timing.

Function ~

Another type of descriptive dichotomy which exists
in computer hardware description is the need to describe
sub-units in several different ways. Linguistically,
a sub-unit may be described in a single statement or by
a procedure definition, and consists of a set of input
variables and a set of output variables together with
some well-defined set of rules for computing the
values of the output variables from the values of the
input variables. Two distinct types of functions arise
in the description of hardware: combinational functions
and sequential functions. The combinational functions
may be thought of as statically defined structures in
the sense that as long as the inputs are constant the
output is constant (except for propagation delay
effects), and inputs and outputs are quite distinct.
The sequential function, on the other hand, has a set
of parameters associated with it which can be thought
of as registers. The sequential function is invoked
at a particular point in time;-- it uses the values in
the input registers to perform some computation in
some finite number of steps and produces results in the

output registers, some of which may be the same as the
input registers.

There are also two distinct types of function us
age. One sort of use involves assembl ing a separate
set of hardware according to the specifications set
forth in the function definition. In this case, the
definition may be thought of as generic in nature, de
scribing many devices of the same structure. The
second function usage involves using a single hardware
unit at several places within a system description with
the separate uses of the unit occurring at different
times and perhaps involving multiplexed inputs and/or
outputs. An example of a generic use of a function
definition would be to describe the structure of sever
al similar 16 bit counters in terms of their components.
Multiple usage of a specific function definition would
occur if the same adder were used for arithmetic and
effective address computation.

One possible way to dissolve this descriptive di
chotomy is to relegate generic function descriptions to
a strictly I inguistic mechanism such as text substitu
tion macros. If this is done then the appearance of a
function name with appropriate parameters for input and
output can be thought of as simply a name for the com
putation which takes place within the function defini
tion. Specific functions, on the other hand, can be
represented as procedures or closed subroutines which
are invoked during the running of the system. Each
computation begins at the point in time at which the
procedure is invoked, and results are available after
the characteristic delay time associated with the se
quential device or the system of combinational logic
and multiplexers.

It is convenient to allow a sequential function to
have multiple entry points to clarify the correspondence
between structural and sequential type descriptions.
This facility permits the description of sub-units
which perform several functions. An example of such a
sub-unit is a shift register which may be shifted left
by clocking one input, shifted right by clocking an
other input, or loaded in parallel by clocking a third
input. Each of these three clock inputs can be repre
sented by a distinct entry point.

Control

Yet another dichotomy exists in hardware descrip
tion, namely the dichotomy between data and control.
It is important for the suppression of detail in a high
level description to let the control signals be implic
itly described by the order in which statements are to
be executed, but there must be mechanisms for inter
action between control and data. After an instruction
has been decoded, for example, the signals which repre
sent the instruction must cause a transfer of control
to the portion of the description which executes that
instruction. This is conventionally handled by condi
tional statements of one kind or another. It is also
useful to allow control signals to be treated as data;
this can be done by introducing the object "*,, which
is logical I when the statement containing the "*,, is
being executed and logical 0 otherwise. This concept
is similar to that of a program counter in a program
ming language, but due to parallelism there may be more
than one of them active at a given time. This facility
can be used within a language to deal with the problem
of Impl ic it mul tip I exi ng, as .fo I lows • The language
associates with each register R in the description two
expressions: INPUT (R) and CLOCK (R). These expres
sions are obtained by initially setting each of them
to 0 and then examining every statement in the descrip
tion; whenever a register transfer

R + S

is encountered, INPUT (R) is replaced by

INPUT (R) :!: S *
33

and CLOCK (R) is replaced by

CLOCK (R) ! *

Here t is an operation equal to aVb if aAb=O and is
undefined otherwise. A simple example of this mechan
ism is shown in figure 3.

Translation of Register Transfer Statements to Networks

--t]
--bj

Translation of R + S

INPUT (R)=· • ·!SA*+· .•

CLOCK{R)=' • ~:!:*:!: .•.

where a+b = aVb if aAb o and is undefined if aAb

TIME ACTION

Ti

Tj

R + S

R + Q

INPUT{R)

CLOCK{R)

Ti_ ___ --\

T j _>+-----{

S

Q

TiASVTjAQ
TivTj

Val idity Condition TiATj=O

Figure 3

Levels of Description

Ck

R

IN o

A hardware description language should be appli
cable to various levels of description. In particular,
it Is extremely useful at any level to have the
ability to describe the Input/output behavior of some
"black box" circuit without describing its internal
construction. In this way, portions of the circuit
may have their descriptions put off until a lower level
of description is reached. Such a description of the
input-output behavior of a "black box" should be put
in the clearest and most convenient form possible. In
some cases, this may mean that the input-output de
scription Is a sequential description when in fact the
unit is a combinational unit, or It may mean that the
description may be combinational while the unit actu
ally operates sequentially. In general, then, it is
not'deslrable to require that the structure of the box
match that of the description, since this Internal
structure Is precisely what we are trying to suppress.
There is probably no need for a separate language for
the description of the terminal behavior of sub-units.
The hardware description language itself should be
flexible enough to provide a clear and concise deerip
tion of any possible unit. There should, however, be
some distinction made between the two kinds of appli
cation of the language to clarify whether It is being
used to describe the actual structure of a sub-unit of
a machine or merely to specify the Input-output be
havior of the sub-unit for the purpose of describing
the activity of the rest of the machine.

There must also be provided methods for describing
timing and sequence of sub-unit Interfaces when this
information is not reflected by the behavioral descrip-
tion. .

Use of Names

We also wish to consider the role of names in a
hardware description language. There are three
classes of objects which may be named in the descrip
tion of a machine. These three classes have somewhat
different properties. One use of names is in the de
scription of values stored in registers of the machine.
These names play roles quite similar to the roles
played by variable names in programming languages. The
values associated with the names can be non-destruc
tively read and used, and are changed only as a result
of an action which stores a new value into the register.
Another possible use of names in describing computer
hardware is to identify Boolean signals or vectors of
Boolean signals which appear within the machine. For
example, consider a bus within a machine which is used
to transfer values among the registers of the machine.
The value on the bus may change either because of a
change in the contents of the register that is current
ly multiplexed onto the bus or because of a change in
the contents of one or more of the fl ipflops that de
termine which register is mUltiplexed onto the bus.
The value of the bus is therefore a combinational func
tion of the values of several registers. It is useful
to name the bus in order to specify transfers of
values between the bus and registers; such a usage of a
name illustrates the second role for names. Finally,
names may be used to designate system modules (either
generic or specific) the behavior of which involves a
mixture of both registers and signals.

The usages for names discussed above can be dis
tinguished by declaration. If all registers in the
machine must be declared and all combinational func
tions are declared then the digital system is well de
fined for the purposes, say, of simulation. The simu
lator can maintain internal variables which keep track
of the current values of each register, and whenever
the simulator encounters the use of a combinational
function output as a value it can examine the necessary
combinational function definitions to determine this
output as a function of the values of the internal vari
ables. Of course it may be necessary for the simulator
to trace back through several levels of combinational
function definitions in order to find registers whose
values completely determine the final output. A
summary of three possible variants of the assignment
statement in a programming language based on the dif
ferent declarations and use of names mentioned above
is given in figure 4.

B I BL/ OGRAPHY

I. Iverson, K.E., "A Programming Language," John Wi ley
and Sons, N.Y., 1962.
2. Falkoff, A.D. and Iverson, K.E., "A Formal Descrip
tion of System/360," I BM Systems Journal, Vol. 3,
No.3, 1964.
3. Bell, C.G. and Newell, A., "Computer Structures:
Readings and Examples," McGraw-HilI, N.Y., 1971.
4. Schorr, H., "Computer Aided Digital System Design
Using a Register Transfer Language," IEEE Trans. on
Electronic Computers, Vol. EC-13, pp. 730-737, Dec.,
1964.

1.

2.

3.

I.

2.

3.

34

DECLARATION AND USE OF NAMES

Signal X

X @ FCN(Y,r) X is wired to output of FCN

Signa I X

X :=FCN (Y ,r) The value of X if made to match
the output of FCN for the dura
tion of this step.

Register X
X+FCN (Y ,r) The value of FCN is strobed

into register X in this step.

*

Impl ied Circuitry

X~:

input

X

clock

old X clock

is a Boolean which is true only
for the duration of the step
which describes the associated
hardware.

Figure 4

Y

r

Y

r

VDL-A DEFINITION SYSTEM FOR ALL LEVELS
John A. N. Lee

Professor of Computer Science
University of Massachusetts at Amherst

ABSTRACT

The VDL system for the description of programming
languages which was originally used for the definition
of PL/I is extended to the description of processors.
This paper shows the relationship between the language
of definition and the abstract machine over which the
semantics of the language are specified. It is demon
strated that the level of description can be chosen to
suit the various needs of the computing community, each
level being well nested within its outer level, whilst
using only one language of definition.

From the point of view of processor design, indications
are given of the means by which a description can be
transformed into an implementable system of data paths,
registers and drivers.

INTRODUCTION

The techniques of formal definition as applied to the
description of the PL/I programming language by Lucas
and Walk (LuI), has since been applied to other systems
by the author (Lel,Le2). On the basis that the
definition of a programming language consists of a
system of definitions of algorithms, the method of
definition is applicable to not only languages, but
also the description and definition of algorithms, in
particular, to processors.

The formal definitional system described by Lucas and
Walk consists of a synthetic language defined to
operate over a set of data objects which can be
described in terms of non-cyclic trees. In the
definition of a programming language such as PL/I, it
is necessary to consider not only the definition of
the syntax of the source language and a description of
the technique for converting that language (or an
analyzed version of it) into a form suitable for use
in the description of its semantics.

In the case of describing a processor, we shall pay
little attention to the syntactic form of the
associated machine language and no attention at all to
the external form of that language. In fact, we shall
assume taht any program to be executed exists only
within the object which represents, in the abstract
machine which models the prototype, the storage part
of the prototype.

The VDL definitional schema is so organized, as will be
described later, that the techniques of top-down
programming naturally evolve and thus the level of
description can be matched with the needs for under
standing of the intended recipient of the description.
Further, by a judicious choice of identifiers in the
description, the understanding of the recipients can
be enhanced to the point where the description is
highly readable. Using the macro-expansion techniques
of description which are analogous with the commonly
used techniques of descrihing machine instructions in
terms of lower level actions associated with event
times, a single description can contain a continuum of
definition levels. At the outer level, the description
can correspond very closely to the style of description
which is associated with a machine reference manual.
At succeeding levels of definition, more detailed
descriptions can be offered which reveal further
details of implementation. For example, the outer
level of definition may reveal that (say) an ADD
instruction is executed by adding the contents of the

41

accumulator and contents of the referenced cell, and
then leaving the result in the accumulator. For most
purposes of programming this definition will be
sufficient; however, the further description of these
components can show the utilization of the individual
registers and the data paths between the registers.
This level may not necessarily reveal the actions of
the drivers for the registers, this being left to the
next level, until eventually the logic level of the
gates is reached. This ability of a single description
language to provide these many levels of definition
makes it a prime candidate for the general usage as
processor descriptor. That is, rather than having
several languages for the description of each level of
a processor action, the Vienna Definition Language, by
its design, provides for all the definitional needs of
the computer architect.

The major emphasis of the usage of VDL has been on the
linguistic aspects of the definitional schema, littl.e
attention having been drawn to the abstract machine,
the actions of which the language describes. The
properties of this abstract machine are only now being
investigated more thoroughly and it can be expected
that these investigations will provide a firm basis
for the development of the properties of the machine
described.

Within the definitional scheme itself there exists two
levels of abstraction: the level of description used
previously in the semantics of programming languages,
and an inner machine, being a finite state machine
over which the "outer level" descriptors are defined.

THE INNER MACHINE

A Definition Machine is a 5-tuple {L,0,P,~,T}
where L = S u {I}

S is a finite non-empty set of closed one-to~one
mapping functions (called selectors or selector
functions) over 0,

I is the identity selector or function,
o is a finite non-empty set of objects,

where 0 = co u EO, and
CO is a finite non-empty set of composit~

objects,
EO is a finite non-empty set of elementary

objects;
P is a finite (possibly empty) set of predicates,
~ is the mutation operator, and
T is the search function.

Objects in 0 are defined formally to be a finite non
empty set of unique pairs «s:A» which specify the
range (A £ 0) of each selector function (s) in the
set S over the domain of the object (B).
Notationally, an object identified as B is represented
as

B = {<sl:Al>,<s2:A2>, ••• ,<sn:An>}

where {sl,s2, ••• ,sn} = S and (Vi) (Ai £ 0) and B £ 0.

For simplicity, all pairs whose second component is
the null object are normally omitted from this set.
The set of unique pairs which specify the range of
each selector in S over the object is called the
characteristic set of the object. The application of a
selector function to an object is symbolized by s(B).
If B = { ••• ,<si:Ai>""}' then by definition above,
si(B) yields Ai'

For the purposes of description, these characteristic
sets of objects have been likened to non-cyclic trees,
and thus the common representation of an object is as a
tree shown in Figure 1.

FIGURE 1
A TYPICAL COMPOSITE OBJECT

B

A
n

Since the objects selected by the selector functions
from an object are themselves (by definition) objects,
then the repeated application of selector functions is
equivalent to a walk through the tree representation
from the root to the root of some subtree. This
repeated application of selectors leads to the usage
of composite selectors.

A composite selector K is the representation of the
successive application of selector functions to an
object.

If K = sl· ••• ·sn' then

sl's2'" "sn(X) n=f sl (s2(" .(sn(X»" .»

where (Vi) (S.ES) and K E S+
~

As a matter of nomenclature, the selector function si
(E S) is known as a simple selector.

The object selected from a composite object by the
composite selector K is known as the K-component.

An elementary object within the machine (eo E EO) is
characterized by a set in which the range of every
selector is the null object (Q). Elementary objects
may be regarded as "atomic" or "indivisable" objects.
The prtcise set of elementary objects associated with
a definition must be defined in advance and may be
dependent on the level of definition. For example, in
the case of a user level of definition it may be
sufficient to consider the set of elementary object to
be words, whereas for the gate level of definition the
set of objects may simply be the binary digits. This
definition of an elementary object then provides a
simple definition Qf a composite object:

A composite object is an object in which the range of
at least one selector function s E S is not the null
object.

G s) (g(B) 'f Q), s E S, B E CO C 0

The primary function which operates over objects is the
mutation function ~ which is a closed function over the
set of objects 0. Notationally, the function and its
arguments are represented by

]J(A;<s:B»

The range of the function is

(A - {<s:s(A»}) u {<s:B>}

That is, the mutation function creates a copy of
object A (the subject argument) in which the s
component is replaced by the object B. This elemental
function has the property that three basic operations
can be simulated by its usage: replacement, deletion
and construction. As described above, the basic
operation of replacement is obviOUS; object B replaces
the previous s-component in the copy of the object A.
By specifying that the replacement object is the null
object (Q), then the process of deletion of simulated.
Similarly, if the original subject argument (A) had
been the null object, then any mutation of that object
with non-null objects constructs a new object.

The set of predicates in the inner machine provides a
basis for the discriminating properties of the
definitional schema. In the definition of programming
languages, predicates are used to define the valid
objects which can compose the abstract text (c.f.,
abstract syntax (Mcl» over which the semantics of the
language are to be defined. In a processor, these
predicates describe the internal structure of the
machine being modeled and certain properties which it
is necessary to have the capability of recognizing,
such as that the contents of the accumulator are zero.
Combined with expressions, predicates form conditional
expressions of the form

PI + el ' P2 + e2

which can be defined by the logical expression

42

p. & (V j< i) (...., p,) => e i
~ J

These expressions, in the general case, result in an
undefined value if none of the predicates are true.
Whereas this is advantageous when the subj ect of the
description is a programming language and there can
exist some "undefined" situations, but in the case of
a processor, these conditions should be closed properl~
Considering the levels of definition discussed before,
conditional expressions correspond closely to the gate
level of description. The search function (T) did not
originally exist in the Lucas and Walk (LUI) descrip
tions and definitions, but has been added by the
author (LEI) to provide more generality. The Lucas and
Walk unique selector function (1) is simply a special
case of the search function. Further, the search
function closely resembles the associative memory
polling operation and provides a sound basis for the
simulation of set operations in language descriptions.

The search function T selects from 0, a set of objects,
each member of which conforms to the specified
predicate is-pred.

t
(TX) (is-pred(x» = {xix € 0 & is-pred(x) =T}

The expression (TX) (is-pred(x»
of those objects (x) chosen from
predicate is-pred is satisfied."

THE OUTER MACHINE

is read as "the set
o such that the

Using the properties defined in the preceding section,
we may now devise a definitional model, which will be
the basis for describing processors. This finite state
machine contains a set of states which contain infor
mation on the data being manipulated and the instruc
tions (or programs) which define the transformations
to be executed over the data, and a function (the
State Transition Function) will interpret and execute
the instructions in the current state of the machine.

t Using a standard set notation.

In attempting to define the properties of a processor.
the state of the machine is defined to contain. as one
of its components the complete set of registers and
storage devices of the processor being modeled. Since
the definition is itself a program. then the instruc
tions which reside in the storage part of the processor
being modeled act as data elements. In the succeeding
description here. we shall reserve the term instruc·
tions to refer to the instructions contained in the
definition machine.

Within the state of the definition machine there exists
a special component which contains the set of instruc
tions which are awaiting execution. and which by their
execution will represent the execution of the commands
in the processor being modeled. This component is
known as the control stack and can easily be repre
sented by a regular VOL object. However. for the
purposes of description we can regard the control stack
to be a tree in which the definitional instructions are
contained as the nodes of the tree (c.f •• the VOL
object represented as a tree. in which objects exist
only as the leaves of the branches).

By Lucas and Walk (LUI) the order of execution of the
definitional instructions is defined to be restricted
to anyone of the instructions which exists at a leaf
of the control stack. Since the execution of instruc
tions (see later) includes their removal from the
control stack. this provides a multi-stacking facility
whereby instructions can be inhibited from execution
until all other instructions on their branch (in their
stack) have been executed. Whilst Lucas and Walk
insisted that anyone of the candidate instructions can
be executed during a state. transition cycle. this
concept is extended here so as to provide for the
asynchronous execution of all instructions which are
existing at the leaves of the control tree. This
process adequately simulates the asynchronous opera
tionswithin a processor. but solves none of the
problems of race conditions which are thereby possible.
However. since the definition of instructions requires
explicit reference to any data assignments and there
exist no side effects within VOL. there exists a clear
potentiality for proving that race conditions either
exist or are non-existent.

The initial state of the definition machine is one of
the elements of the definition of each processor. This
may correspond directly to the conditions which are
existing at the time that the manual actions of
depositing an address into the program counter and
depressing the RUN key are performed. A final state (a
halting state) of the definition machine is the state
in which the contents of the control stack is null;
that is. there are no further definitional instructions
to be executed. Other final states may include cases
where some error condition has arisen and the execution
of the instructions existing in the stack is undefined.

Definitional instructions can be executed (depending on
conditions existing within the state of the machine)
either as macro-expansion instructions or as state
modifying instructions. In the former case. the
execution of the instruction has the effect of
replacing itself by a new instruction subtree thereby
simulating either the passage from one level of
definition to the next or the sequencing of operations.
In the case of state-modifying execution. the effect is
to mutate the state of the machine (other than the
control stack) thereby simulating operations over the
registers in the prototype. and then to remove that
instruction from the control stack.

Whilst there is only one style of execution that an
instruction be subject to at the time of its execution.

43

the definition of instructions can specify varying
styles depending on the conditions existing at the
instant of execution of the instruction. Thus a
definitional instruction may have several definitions
itself. only one being applicable at any time. These
individual definitions are termed "groups."

The means by which definition groups are chosen from
within the general instruction definition set is a
conditional expression. the right hand sides of which
are the definition groups. That is. the general form
of an instruction definition is

Pul ... grouPm

where ql •••• q are parameters which are replaced by the
values of n the arguments specified in the instruc
tion at the time that the instruction is placed into
the control stack. Pl ••••• P are predicate expressions
which are functions of m the set of parameters q,
system defined predicates and the state of the machine.
It will be shown later that in the case of describing
processors at the register level. the set of parameters
(and consequently the corresponding set of arguments)
is unnecessary. the need for a parameter showing the
need for a register in the prototype.

Where the group is to be a macro-expansion definition.
the notation is to show not only the set of instruc
tions which are to replace the instruction being
executed in the control stack, but also the structural
relations between those instructions. The notation
contains two basic rules for demonstrating the nodal
position of instructions within the tree:

i) indentation indicates a lower level of tree
placement (lower in the sense of movement
between the root at the top and leaves at the
bottom) than instructions not as deeply indente~

ii) punctuation indicates either a continuation of a
level by the use of a comma (.) or completion of
a level by the use of a semicolon (;) except
where the instruction is the last in the group
when no punctuation is needed.

It is important to note that since the order of exe
cution of instructions is from the leaves of the tree
toward the root, then the instruction(s) at the bottom
of a group representation are the earlier candidates
for execution. Normal sequential execution of a group
of instructions is represented by a diagonal sequence
of instructions separated by semicolons:

inst-l' ---' inst-2' ---' ill.!:::l;
inst-4

This set of instructions would be executed in the. order

A single instruction cannot be replaced by a set of
asynchronous instructions since such a set does not
form a proper tree structure. Instead a simple one
level tree with one root must be formed. In essence
this corresponds to the case where a number of instruc
tions can be executed simultaneously and the execution
of a succeeding instruction must await their completion
The root instruction in this group then acts as a
semaphore since it prevents the execution of

instructions higher on the same branch until it is
cleared. Such a group of instructions is represented
in the form

inst-l' ---' inst-2,
inst-3,
inst-4

In this group, the instructions inst-2, inst-3 and
inst-4 can be executed asynchronously (f~ purposes
here) but inst-l cannot be executed until all of those
instructio~e run to completion.

State-modifying definition groups specify the changes
to be made to the state of the machine (with the
exception of the control stack). Each group
corresponds closely to a mutation operation, the
subject argument of the mutation being the state of the
machine. Thus the definition group is a listing of the
selector:value pairs, the selectors being applicable to
the state of the machine and the values being functions
over the parameters (replaced by the argument values)
of the instruction (if any) and components of the state
of the machine. The general form of a state-modifying
group is

where the s-sc. are selector functions and expo are
evaluated to 1 the values which are to be pla~ed in
the state. By the judicious choice of selector names,
the data paths in the processor can easily be simulate~
For example, let us assume that the memory address
register is represented as the s-mar component of the
state (~) and that the program counter is represented
as the s-pc component. Then the operation of transfer
ring the contents of the program counter to the memory
address register can be represented by the definitional
instruction pc-to-mar and be defined simply by

pc-to-mar
~:s-pc(~)

which states:
"Replace the contents of the s-mar component of the
state by the contents of the s-pc component of the
state."

Since we are dealing with a finite state abstract
machine, the question of timing between the acquisition
of the data elements of an operation and the placement
of the result in the state is overcome by the simple
ruse that the new state is a copy of the old state.
Thus the execution of an elementary shift command (over
a three bit register) is well defined:

shift =
~-O's-acc:bit-l's-acc(~)

bit-l's-acc:bit-2's-acc(~)
bit-2's-acc:bit-O's-acc(~)

In this definition, the selector functions are
composite, the accumulator being represented by the
s-acc component of the state and the individual bits
within the accumulator being selected by the functions
of the form bit-i. That is, the functional composition
operator (.) can be reaq as "of". Since it will be
necessary to reference elements of state components in
a generalized form, we shall permit the extension of
the explicit naming of selector functions to include a

44

functional notation in which the index of selection is
included as an argument. For example, if the memory
component of the prototype is represented as the s-mem
component of the state of the abstract machine, and
the memory is divided into pages, each page containing
a number (presumably fixed) of words, then a reference
to a single word will require three functional appli
cations to select the word from the state. To ac
complish this will require the provision of two
arguments; the word address (or index) and the page
address. Thus it would be possible to develop a word
reference mechanism in the form of a composite
selector function

s-word(word-address)'s-page(page-address)'s-mem

Thus the definition of the store operation might be

~=

s-word(s-wa's-mar(~»'s-page(s-pa's-mar(~»'s-mem:
s-mbr(O

where s-wa selects the word address from the memory
address register, and correspondingly the s-pa function
selects the page address, and s-mbr(~) represents the
memory buffer register into which (by some previous
step) the value which is to be stored has been placed.

This complexity of structure is defined in terms of
predicates which describe the abstract syntax (i.e.,
structure) of the state of the machine. In part, for
this mythical machine which we have been considering,
the state can be defined by the predicates:

is-~= «s-mem:is-memory>,
<s-mbr: is-word> ,
<s-acc: «s-link:is-bit> ,

<s-body:is-word»>,
<s-mar:«s-ma:is-word-address>,

<s-pa: is-page-address»> , ...)
where each of the pairs in the structured predicate
specify the name of the branch on which the component
is located (in the tree descriptive sense) and the
structure of the component. Each of these descriptions
must eventually be defined in terms of the elementary
objects in the system, so that, for example, the s
link's-acc component of the state is defined to be in
conformance with the predicate is-bit, which defines a
set of elementary objects. On the other hand, the
memory buffer register (s-mbr component) is defined to
be of the form is-word which we will define by the
structure

is-word ({<bit(i):is-bit>lo~i~ll})

That is, the structure is composed of a set of pairs,
the object of each of which is a bit (defined by is
bit) and the selector of which is of the form bit (i)
where the value of the index i is in the range {O,ll}.
Effectively this defines a 12 bit word.

THE BLUE MACHINE

For the purposes of discussion here, let us examine
the structure and description of a simple processor.
The machine chosen is that described by Foster (Fol)
since his description (from a pedagogical point of
view) fits our purposes well.

BLUE is a binary, two's complement, stored program,
fixed word length, parallel, digital computer with
4096 words of I ~sec co-ordinate addressed core
storage of 16 bits per word. Each word may contain

either a 15·bit integer numeric representation plus
sign, or a 16 bit instruction composed of a 4 bit
operation code and.a 12 bit address. No index
registers, no indirect addressing and no interrupt
facilities are included, though as may be seen from
the descriptions, it would not be conceptually
difficult to add these features. The general picture
of BLUE is shown in Figure 2 and the corresponding
representation of the components in the state of the
abstract defining machine is shown in Figure 3. For
the purposes of our discussion here we shall assume
that the external operations of loading the program
counter and starting the operation of BLUE by the
pressing of the appropriate buttons result in the
deposition of the low order contents of the switch
register into the program counter and the setting of
the run flip-flop to RUN (represented by 1) respec
tively. No specific descriptions of these actions will
be included since these are manual rather than
automatic operations. Foster describes the basic
cycles of the BLUE machine as being composed of two
parts; the FETCH and the EXECUTE cycles. It is assumed
that the STATE flip-flop which defines which cycle is
to be entered next, will be set to F initially, there
by assuring the correct sequence of operations. The
actions of the FETCH cycle are described in Table 1
(from Fo1).

TABLE 1

The Fetch Cycle Elements

Clock
Pulse !£ll!m

1 initiate read-restore

} 2 +1 + PC Read time
3 clear MBR
4 clear IR
5 (MBR) + IR Begin decode
6 } Restore time
7
8 May change contents

of MAR

The last three pulse times in this sequence are
available for the execution of the various non-memory
referencing instructions such as HLT (halt), JMP (jump)
or CSA (console switches to accumulator), or for the
set up operations necessary for the execution of two
cycle instructions.

Close examination of the description of the first part
of the FETCH cycle (which is common to all BLUE in
structions) shows that there are at least two opera
tions occurring simultaneously during pulse times 2
through 4; that is, the action of fetching the instruc
tion from memory (at a location determined by the
contents of program counter) initiated at pulse time 1
is operational through pulse time 4, at which time the
contents of the memory location are available in the
memory buffer register. Whilst this action is
continuing the other actions of incrementing the'
program counter (time 2), and clearing the MBR and IR
are executed in parallel. During times 5 through 8,
the memory is being restored and thus additional
parallel operations are proceeding during these pulse
times. This verbal and tabular description can be
converted into a VDL instructional system which is
equally expressive:

where

and

fetch =
part-2;

register-set,
initiate-read

register-set

c1ear-ir;
c1ear-mbr;
inc-pc;
no-op

initiate-read -

mem-to-mbr;
no-op;
no-op;

no-op

FIGURE 2

o run
flip-flop

O,state
flip-flop

THE BLUE MACHINE

instruction
fetch

jump

return
results

1--......;...--1

45

core memory

load store

Z register

arithmetic unitl~~ __ e_x_e_c_u_t_e ____ ~
Y input

FIGURE 3

THE VOL OBJECT REPRESENTING THE BLUE MACHINE

where the instructions no-op are used to show the
relative timing of the two set of instructions.
In this case it is not clear from the description
of the fetch cycle what actually occurs in the
initiate read operation in BLUE during pulse times
I through 3, though it is clear that in pulse time
4 the contents of the selected location are placed
in the MBR. This operation can be defined by the
instruction

mem-to-mbr
s-mbr:word(s-mar(~))'s-mem(~)

Similarly, the instruction to increment the
program counter may be defined by the group

inc-pc -
s-pc:s-pc(~) + I

Immediately we must question whether this defini
tion is sufficient. From the point of view of the
programmer, this definition clearly states the
action which BLUE is to take; however, from the
point of view of the designer (or someone else
interested in more details) this definition might
better be expressed in the form

inc-pc =
s-pc:add(s-pc(~),l)

where the function add is to be defined further.
For a programmer this depth of definition may well
be sufficient, but by considering a function to be
equivalent to a logical circuit which could be

46

defined by a logical expression. In any case this
definition can be translated as being represen
tative of the circuit shown in Figure 4.

FIGURE 4

THE PC INCREMENT SYSTEM

Once the two instructions which preceed p'art-2 in
the definition of fetch have been cleared off the
control stack, then the second portion of the
fetch cycle can be initiated. As in the first
cycle this contains two parallel actions; the
decoding of the instruction and the restoration of
the memory. Thus part-2 can be described by the
group

part-2 =
next-state;

decode,
restore

where the ~ instruction is expanded into the
sequence

sieve;
~to-ir

and where sieve is the instruction which replaces
itself by the sequence of operations which result
in the execution of the BLUE instruction. This
instruction can be defined by the conditional
expression

sieve =
~(s-op·s-ir(~»

oct(s-op·s-ir(~»
o -+ execute-hIt
1 -+ execute-add

oct(s-op·s-ir(~» = 17 -+ execute-nop

where the selector function (defined in the
abstract syntax of BLUE) s-op selects the
operation code portion of the instruction from
the instruction register (the s-ir component of
the state ~). This portion of the instruction is
represented by a tree and therefore true equality
can only be attained if the comperand is also a
tree. However, we have chosen to overcome this,
at this level of definition by the use of the
function oct which we define to develop the octal
equivalent of the tree representation. This
object can then be compared with the octal
operation codes. To be more precise at a lower
level of definition it would be necessary to
describe this sieving operation by logical
expressions of the form

bit(15).s-ir(~) = 0 &
bit(14)·s-ir(~) = 1 &

bit(13)·s-ir(~) = 0 &
bit(12)·s-ir(~) = 1 -+ execute-jmp

which more precisely mirrors the structure of the
binary decoding tree for BLUE.

At the end of the fetch cycle the STATE flip-flop
is set to indicate which of the possible two
states is to be entered next; E indicates the
execute cycle, F indicates the fetch cycle. Thus
the instruction next-state which is the final
instruction in part-2 is the switch which deter
mines where the processing should continue. An
alternative means of specifying the sequence of
steps in the fetch cycle which are directly
related to the pulse times would be to define the
fetch instruction as a sequence of instructions
~of which is related to the pulse time and
which then leaves the next pulse time operation as
the next instruction to be executed. That is,
1. fetch =

pulse-time-l
2. pulse-time-l =

pulse-time-2;
initiate-read

3. pulse-time-2 =
pulse-time-3;

inc-pc
4. pulse-time-3 =

pulse-time-4;
clear-mbr

5. pulse-time-4 =
pulse-time-5;

clear-ir,
mem-mbr

and so on.

47

This scheme would have the advantage (from the
point of view of the reader) that the actions are
directly related to the pulse times and the dummy
no-op instructions are obviated.

SUMMARY

The description and design of BLUE was sufficient
to indicate the ability of the VOL techniques for
describing the operations of a processor. However
this was an exercise in the description of an
already existing machine and thus no untoward
problems came to light. If VOL were to be used as
a design tool then some directions are necessary
to derive an implementation from a description.
Obviously some simple comparisons can be drawn
between instructions and the structure of the
machine; that is, for example, state-modifying
instructions represent data paths between elements
of the machine. Macro-expansion definitions can
be interpreted in one of two manners; either an
expansion is the passage from one level of
description to another, as in the description of
the inc-pc instruction, or it represents the
sequencing of operations which current state of
the machine, as in the case of the instruction
decode. The precise manner of discriminating
~n these two uses is not entirely clear at
this time and requires further investigation.

In the version of VOL which is most general, and
which has been used for the description of
programming languages, the instructions are
accompanied by a set of arguments which are passed
through the control stack. Such arguments, in a
processor, require some medium of transmission and
can be construed to be indicative of the need for
a register within the prototype. That is, if a
definitional instruction cannot be expressed with
out the use of additional data which is passed
through the argument list, then an additional
register is required in the prototype together
with the appropriate data paths.

This presentation has shown the many levels of
description which can be served by a single
unified definitional schema and has emphasized
earlier that the schema is a continuum from the
instruction level of definition to the abstract
machine which underlies the system. Work is
already in progress to develop the properties of
the definitional system (see LeI, ch.2) and to
develop means for the validation of definitions.

Finally, it must be recognized that not only has
VOL the power to be a definitional system for the
description of processors, but also is capable of
providing a common base for the definition of
other descriptive techniques. This capability may
well provide the means by which the equivalence of
descriptive elements of other languages can be
proved, and further will not require the abandon
ment of other descriptive techniques merely to
satisfy the ambition of a unified approach to
processor description.

REFERENCES

Fol Foster, C.C., Computer Architecture, Van
Nostrand Reinhold Pub. Co.,
New York, NY, 1970, Chapter 5.

LeI Lee, J.A.N., The Formal Definition of the
BASIC Language, The Computer
Journal, Vol. 15, No.1,
pp 37-41.

LuI Lucas, P. & Walk, K., On the Formal
Description of PL/I,
Ann. Rev. in Automatic
Prog., Vol. 6., Pt.3,
1969, Pergammon Press.

Mel McCarthy, J., Towards a Mathematical Theory
of Computation, Poe. IFIP
Congress 1962, North Holland
Publ. Co., Amsterdam, 1962.

48

A METHODOLOGY FOR PARALLEL
PROCESSING DESIGN TRADEOFFS

Charles H. Radoy
George P. Copeland, Jr.

G. J. Lipovski
University of Florida

Abstract

A methodology is developed for determining how
much parallelism is optimal if a given job stream is to
be executed without multiprogramming. Qualitative de
sign tradeoffs are inferred from the cost-performance
effect of parallelism on different hardware subsystems.
Measures of software parallelism are analytically re
lated to measures of hardware performance. It is shown
that an increase in hardware parallelism may be desir
able even though it causes an increase in job process
ing cost and/or a decrease in hardware efficiency.

INTRODUCTION

There have been numerous papers written about the
impact of LSI on computer architecture. Many authors
have pointed out that the technology of the inexpensive
computer-on-a-chip will make systems with a high degree
of parallel processing and multiprocessing economically
feasible (5,6,7,12). Kuck has proposed that, by decom
posing a program into its concurrently executable parts,
these highly parallel systems will be economically
viable even when used to execute one program at a time
(monoprogramming) (7). On the other hand, Chen has
demonstrated that highly parallel systems are doomed to
be very inefficient, and he has suggested that multi
programming is mandatory if such systems are to be prac
tical (3). This apparent disagreement stimulated the
analysis made in this paper. We do not claim to have
resolved this conflict in favor of one or the other of
these authors. In fact, our inquiry is limited to an
analysis of monoprogramming applications. However, we
do feel that we have developed a methodology for deter
mining how much parallelism (if any) is optimal if a
given job stream is to be executed without use of
multiprogramming.

In this methodology we will emphasize the consid
eration of what the user is willing to pay for a parti
cular computational service. In Section I, we explain
how we think this consideration can be applied in the
design process. In Section II, we derive certain
qualitative design guidelines that can be inferred from
this consideration. These guidelines may be obvious to
the experienced designer, but we feel that it is signi
ficant that they can all be inferred from this one
consideration.

The performance of a parallel hardware system will
be considerably influenced by the parallelism inherent
in the software. In Section III, we present some
possible measures of software parallelism and derive
expressions relating these measures to measures of
hardware performance. In Section IV, we show how one

51

of these expressions can be used in determining the
optimal degree of hardware parallelism.

Section I

Many different measures of computer performance
have been suggested and used. The most common measures
used for general purpose computer applications are
throughput rate, response time and equipment utiliza
tion. Systems designed for less than general purpose
use may be evaluated against other measures such as the
mean time for high priority jobs to get processed or
the mean job starting delay (9). In comparing dif
ferent hardware equipment, the price of the unit can be
included in defining the performance measure, resulting
in measures such as price per instruction ratio and
price per register ratio (12). Other authors have
suggested that the performance measure should not only
include cost, but must also include a measure of the
effectiveness with which the system provides service to
the user (10). We feel that, for the general user, a
good measure of the quality of service provided is the
time required to process his job. Thus, a computer
performance measure should include the cost of process
ing the job and the time required to do that processing.
This is not a new idea. Lehman used these two factors
when he suggested that the performance of multiprocess
ing systems be compared by computing the product of the
cost of processing and the job throughput time (8).
(Using this measure, the best system would of course
have the least product.)

One can, however, argue that Lehman's choice of
the ~roduct of these two factors is arbitrary; there is
no a priori reason for selecting the product over any
other functional relation between these two quantities.
In fact, we claim that a system designer should not
work with a simple functional relationship of this sort.
The following discussion explains why this is so.

Consider a user who has a particular computational
job that he wants done. Assuming that he has some
experience in running his job on various systems, he
will have a pretty good idea of what he is willing to
pay to get the job done. Also, what he is willing to
pay will depend somewhat on how long he must wait for
his results. From time to time, the job turnaround
time that he requires may vary, and as it varies, what
he is willing to pay may also vary. Figure 1 illus
trates the general way in which the user will relate
these two factors. This figure is not meant to be
drawn against any scale; it is just meant to illus
trate that this curve will have three distinct regions.
In Region I, the user is telling us that a further de
crease in his job's processing time is of no value to

him, and he will
In Region II, he
in some manner.
so long that the
this user.

not pay more for this better service.
is willing to trade cost for "service"
In Region III, the processing time is
service is of no practical value to

In Figure 2, points A, B, C, D, E and F represent
hypothetical hardware executions of our user's job.
They each represent a different system because the
same system would always run the job for the same cost
with the same processing time. (For simplicity we are
not considering systems where interactions with other
jobs may influence our job's processing time.) Points
A and F represent hardware solutions which are unac
ceptable to our user. Points B and E are acceptable
points, and it is important to note that they are
equally acceptable to the user; he does not prefer one
of these over the other even though their respective
costs and processing times may be markedly different.
Points C and D are both preferable to points B and E.
(e.g. Since the user is willing to pay "B's" price, he
finds "C's" lower price for the same service time pre
ferable.)

JOB
COST

JOB
COST

FIGURE 1

I II

JOB PROCESSING TIME

FIGURE 2

A

C

JOB PROCESSING TIME

III

F

Having determined this cost-service tradeoff
curve for our particular user, we are unable to say
whether or not he would prefer system C to system D.
One might suggest that we interrogate our user further
concerning his preferences in the region of the graph

52

below the tradeoff curve. Since we intend that our
hypothetical user be representative of a potential mar
ket of users, this interrogation would really amount to
an extensive market survey. Furthermore, points C and
D cannot represent existing systems. Our knowledgeable
user would naturally have drawn the curve of what he
was willing to pay, in such a way that all existing
~stems would lie either on or above it. Points C and
D can, however, represent designed systems which have
not yet been marketed. But, the question of produc
ing system C or D is basically a marketing decision.

The job of the system designer is to produce a de
sign such as system C or D, either of which is clearly
better than all existing systems. Thus, the designer
needs this curve and a methodology for producing de
signs which will have "operating points" below it. A
valid performance measure could provide this tradeoff
curve, but clearly such a measure would not be a sim
ple functional relationship that one could postulate
a priori.

So far, we have limited our discussion to the case
of one hypothetical user with one job. If we were de
signing a system for only one user, a design with a
projected operating characteristic such as C or D would
clearly be a viable project. But a truly viable pro
duct would have to provide satisfactory service to many
users, and for each user (indeed, for each different
jobl) there will be a different tradeoff curve.

In order to limit this multiplicity of tradeoff
curves, we propose that both the quantities cost-per
job and processing-time-per-job be normalized by di
viding them by a measure of the total "work" required
by the job. (The quantification of "work" which we
propose is discussed in Section III). For instance, if
a user has a job that basically consists of two identi
cal subjobs, he will expect the job to cost twice as
much and require twice as much time to execute as would
one of the subjobs. Since the job contains twice as
much work as the subjob, the normalized curves for the
job and the subjob will coincide. Furthermore, since
the curve- is essentially determined by the prevailing
market of available computational service, this nor
malized curve, for a particular type of computation,
should not vary appreciably from user to user. Thus,
some type of normalization of these curves is required,
and we think that this normalization factor is a
reasonable one.

Consequently, a curve of this nature can be ob
tained and it can be of great aid to the designer.
For instance, if an existing system has an operating
point such as point B in Figure 2 (i.e., it is in Re
gion I of Figure I), the design of that system can be
improved only by a change that will reduce the job
processing cost. On the other hand, if one is trying
to improve system "E", reducing job processing time is
as important as reducing job cost. In the next section
we will show how this curve can be used in determining
the relative merit of different hardware changes that
might be made to an existing design.

Section II

We will now briefly develop some qualitative hard
ware design guidelines that can be inferred from the
general shape of the user's tradeoff curve discussed
in Section I. In this development we will employ the
terminology and notation suggested by Bell in cate
gorizing hardware functional modules as data operators
(D), controllers (K), etc. (2). We will consider three
types of changes that could be made in a design: (1)
change of technology used, (2) change of amount of

parallelism in K and (3) change of parallelism in D.

The shape of the curve in Figures 1 and 2 tells
us that any design change that both reduces the cost
and reduces the processing time will be a good one.
(Of course, intuition or common sense could have told
us that!) However, if we are not able to reduce both
these factors simultaneously, we may still be able to
improve the design. If we know the present design re
sults in an operating point in Region I of Figure 1, a
design change which reduces the cost of processing will
be good even if it increases the processing time. In
Region II, a change which reduces processing time while
increasing the cost may be desirable.

The use of faster more expensive technology will
reduce processing time and mayor may not reduce pro
cessing cost. Thus, it will in general be a valid
design change in Region II, but not in Region I. (In
fact, in Region I, the use of slower, less expensive
technology will be desirable if it will reduce the
cost of processing.)

The use of parallel K (e.g. multiprocessing) will
reduce the processing time but will usually not reduce
the cost of processing. Thus, increasing the paral
lelism of K may be a good design change in Region II,
while decreasing it may be called for in Region I.

Increasing the parallelism of D while keeping K
non-parallel will, up to a point, decrease the cost of
processing. The simple example of a parallel adder
explains why this is so. As long as the width of the
adder can be effectively utilized, doubling the width
will halve the add time. But, doubling the width will
not double the hardware cost since the cost of the con
troller will not change. Thus, the processing cost
will decrease. At some pOint, however, due to ineffec
tive use of the increased width, the cost increase will
not be offset by the decrease in average add time, and
the processing cost will increase. Consequently, with
respect to processing cost, there is some optimal de
gree of parallelism in D. This will also be the opti
mal degree of D parallelism for a design in Region I
of Figure 1. However, in Region II, more parallelism
than this "optimal" amount may be desirable.

We note that Bell's entire approach of dividing a
system into components M, L, K, D, and so on should be
useful in analyzing costs. Just as we have evaluated
the cost of serial/parallel adders one could evaluate
larger systems by the effect of parallelism on each
division of the system. The analysis in this section
has been qualitative. In the remainder of this paper,
we will develop some quantitative relationships which,
when used with the user tradeoff curve, can be helpful
in determining the optimal degree of hardware paral
lelism.

Section III

The optimal degree of hardware parallelism will,
of course, be dependent on the parallelism of the job
for which it is designed. In discussing job parallel
ism, we will employ the job "Space-time" diagram sug
gested by Chen (3). Figure 3 illustrates the space
time diagram of a hypothetical job. The "widths" Wi

represent the relative parallelism of the job during
the time interval t i • A machine with no parallelism

would require L:w.t. time units to process a given
i ~ ~

job. Thus we define the total work associated with

53

job to be L: W. t. . This is the factor which we will . ~ ~
~

use to normalize our job-cost versus job-processing
time graph. (Thus, the normalized cost of a job will

be cost/ L:W.t .•)
i ~ ~

JOB
"WIDTH"

I

FIGURE 3

W2

Wl W3

tl t2 t3

TIME

An intuitively appealing way to quantify job
parallelism would be: parallelism time-average job
"width" or

Pl = L:W. (t./ L:t.) = L:w.t. / L:t.
i ~ ~ j J i ~~ i ~

Using this measure, the minimum possible parallelism
is one, and there is no maximum. This definition of
parallelism can be modified so that it takes on values
between zero and one by defining

P2 = L:W.t. / max
i ~ ~ i

(W.) L: t.
~ i ~

In a machine having parallelism equal to max (W.), this
definition would correspond to i ~

P2 = Space-time used / Space-time available

Chen has suggested that job parallelism be defined as,

Amount of space-time showing parallelism
total space-time of job

Letting ts be the total time that the job has no paral

lelism, we have

Chen has also defined machine efficiency (n) to be

n = total space-time of job
total space-time swept by hardware

As we increase the parallelism "width" (N) of a
machine, the normalized processing time for a job, T,
will decrease until N max (W.). For N ~ max (Wi)'

i ~ i

T will have a minimum value.

T .
=n

Thus, we see,

For T = Tmin , the maximum efficiency occurs when

N = max (Wi). If we call this maximum efficiency no'
i

we have

LW.t. I max
i l. l. i

or

Thus if T

n :5 P2

Consequently, for highly parallel hardware systems
(i.e. where N ~ max (Wi))' the software measures PI

and P2 can yield quantitative information about the

performance of the system.

The following analysis shows that, if
N < < max (Wi)' other quantitative relationships can

be derived. If a machine has a parallelism "width" of
W -1

N, it will require the interger part of (~+ 1)

"passes" to process the ith parallel section of the
job. If we approximate this number of passes to be
equal to Wi/N, our normalized total processing time is,

T (t + -Nl L Wl..t i) I LW.t.
s i<#s i l. l.

We note that,

i

Also,

1 - L W.t. I LW.t.
i<#s l. l. i l. l.

t I LW.t.
s i l. l.

Thus,

We also note that

n = LWit. IN (t + -Nl L Wit.)
i l. s i<#s l.

Thus,

n = liNT = 1/[p3 + N (1-P3)]

Consequently, using Chen's parallelism measure,
we may easily approximate the normalized job process
ing time required by a machine having N levels of
parallelism. We now have an analytical means of map
ping a job stream containing a range of parallelism
into a distribution of normalized processing times.
In the next section we will discuss how this will help
us determine the optimal degree of hardware parallelism.

54

Section IV

In this section we will illustrate how the user
cost-processing time tradeoff curve can be used to de
termine the optimal degree of hardware parallelism. We
will keep design factors such as the technology used
fixed and observe the effect on job cost and job pro
cessing time caused by varying the degree of hardware
parallelism. We will then be able to select the "best"
degree of parallelism for a particular job by observing
where these points lie with respect to the user's trade
off curve.

The normalized cost of processing a job is,

Cost = HT

where H is the cost of the system per unit time (rental
cost), and T is the normalized processing time. In
parallel hardware systems, H is of course a function of
the amount of parallelism in the system (N). If a
system is "totally" parallel in the sense that it has N
of all its functional modules (and if the cost of sys
tem software is negligible), we might expect the rent
associated with this hardware to increase linearly
with N. In that case,

Cost = RNT

where R is the cost per unit time of the basic, non
parallel module.

Many parallel systems are, however, not totally
parallel. Parallel processing systems such as the
ILLIAC IV and STARAN consist of parallel execution
elements under the control of a single instruction de
coder (I,ll). Doubling the degree of parallelism in
such a system does not double its total cost. Also,
we can expect that system software costs will not in
crease in proportion to the degree of hardware paral
lelism. Consequently, a cost which increases linearly
with N is probably a "worst case" assumption. Perhaps
a more realistic assumption would be to use Grosch's
Law which states that the system cost will increase in
proportion to the square root of the power of the pro
cessor. Since the amount of parallelism is a measure
of the power of the processor, we have,

Cost = RN\

We do not claim that either of these simple for
mulas is valid for all cases. We will use them merely
to demonstrate the methodology which we are developing
in this section. Presumably, the designer will be able
to fairly accurately estimate the way in which system
cost will vary with N for the particular type of
parallelism he is considering. In employing this de
sign methodology, he should of course use his estimate
rather than one of these simple formulas.

Figure 4 pertains to the formula

Cost = RN\

while Figure 5 illustrates the situation

Cost RNT

In each of these figures, the degree of hardware paral
lelism is varied from one to eight, and the degree of
job parallelism (as measured by Chen's parallelism de
finition) is varied from 0.5 to 0.95.

Once a designer has obtained a graph of this sort
based on his estimates of system cost and job stream
parallelism, he can superimpose his user's cost versus

Figure 4

3R N=B
X P3 .50

• P3 .80

2R 0: P3 .B5
N=4

A P3 .90

!l P3 .95 N=2

R • N=l

Cost

0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B 0.9 1.0

Normalized Processing Time (T)

Figure 5
X: P3 .50

BR N=B .: P3 .BO
0: P3 .85

A : P3 .90
6R 0: P3 .95

4R N=4

Possible Tradeoff Curve

2R / N=2 - -- -
- - -. - - - • N=l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Processing Time (T)

processing time tradeoff curve. Having done this, he
can immediately identify which hardware-software
parallelism combinations will correspond to viable pro
ducts. The selection of the "best" of these viable
combinations may or may not be trivial.

If we visualize cost-time tradeoff curves of the
type illustrated in Figure 1 superimposed on Figures 4
and 5, we can make the following conclusions.

(1) If the non-parallel hardware design produces
an "operating point" in Region I of Figure 1" hardware
parallelism will be justified only if the software is
highly parallel and if cost of the system does not in
cr.ease linearly with the degree of parallelism.

(2) If the non-parallel hardware design produces
an operating point in Region II of Figure 1, some de
gree of parallelism may be justified even if the soft
ware is not highly parallel or even if the system cost
increases linearly with the degree of hardware paral
lelism. (e.g. for the tradeoff curve in Figure 5,
N = 2 or 4 would be a good design if P3 ~ .80).

55

(3) If the non-parallel hardware design produces
an operating point in Region III, some degree of hard
ware parallelism is mandatory.

(4) As the degree of hardware parallelism is in
creased, the "spread" of the operating points for a
job stream of differing parallelism also increased.
Thus, if one has a job stream encompassing a substan
tial spread of software parallelism, it might be de
sirable to divide it into subsets having small paral
lelism variation and then determine the best degree of
hardware parallelism for each subset.

As a final point, we wish to make some observations
relative to the issue of hardware efficiency. In Sec
tion III, we derived the relationship

As Chen points out, this efficiency measure drops
rapidly with increasing N, even if P3 is high. For
instance, if N = 8 and P3 - .B, n = .42. One wou1d
think that a system that was only 42% efficient would

be a poor design and that this combination of N = 8
and P3 = .8 could be rejected on that basis. However,
Figure 4 illustrates that, using the design methodol
ogy outlined in this paper, this inefficient design
might be the best system from the user's point of view.
Thus, we feel that even though Chen's definition of
efficiency is reasonable, one should not use it as a
performance measure in determining if a design is via
ble. (Of course, we have restricted our investigation
to monoprogramming systems. Therefore we do not claim
that this comment is necessarily applicable to multi
programming systems for which high efficiency is a
dominant design goal.)

SUMMARY

The consideration of the user's cost-performance
tradeoff curve has enabled us to present a unified
approach to the derivation of important architectural
design guidelines. We have derived relationships be
tween "software parallelism" and the performance of
systems with different degrees of hardware parallelism.
Using these relationships, we have shown that situa
tions may arise where an increase in hardware paral
lelism is desirable even though it causes an increase
in the job processing cost. Also, we have shown that,
for a non-multiprogrammed system, the optimal system
may exhibit a rather low hardware efficiency.

REFERENCES

1. Barnes, G., et. aI., "The ILLIAC IV Computer,"
IEEE Trans. Comput., Vol. C-17, pp. 746-757, Aug.
68.

2. Bell, G., Newell, A., Computer Structures: Readings
and Examples, McGraw-Hill, 1971.

3. Chen, T., "Parallelism, Pipelining and Computer
Efficiency," Computer Design, pp. 69-74, Jan. 1971.

4. Chen, T., "Unconventional Superspeed Computer Sys
tems," Proc. SJCC 72, Vol. 38, pp. 365-371.

5. Chen, T., "Distributed Intelligence for User-ori
ented Computing," Proc. FJCC 72, Vol. 41, pp. 1049-
1056.

6. Foster, C., "A View of Computer Architecture,"
Com. ACM, Vol. 15, pp. 557-565, July 1972.

7. Kuck, D., "Supercomputers for Ordinary Users,"
Proc. FJCC 72, Vol. 41, Part I, pp. 213-220.

8. Lehman, M., "A Survey of Problems and Preliminary
Results Concerning Parallel Processing and Parallel
Processors," Proc. IEEE, Vol. 54, pp. 1889-1901,
Dec. 66.

9. Mallach, E., "Job-Mix Modeling and System Analysis
of an Aerospace Multiprocessor," IEEE Trans. Com
~., Vol. C-2l, pp. 446-454, May 72.

10. Rothenberg, D., "An Efficiency Model and A Per
formance Function for an Information Retrieval
System," Information Storage Retrieval; Vol. 5,
pp. 109-122, Oct. 69.

11. Rudolph, J., "A Production Implementation of an
Associative Array Processor - STARAN," Proc. FJCC
72~ VDl. 4l~ Pgt I, pp. 229-241.

12. Schultz, G., Holt, R., McFarland, H., "A Guide to
Using LSI Microprocessors," Computer, June 73,
pp. 13-19.

56

DAP-A DISTRIBUTED ARRAY PROCESSOR
Dr. S. F. Reddaway

Language and Processor Department
Research and Advanced Development Centre

International Computers Limited

ABSTRACT

An array of very simple processing elements is des
cribed each with a local semiconductor store. The
array may also be used as main storage.

Bit-organisation gives great flexibility, including the
minimisation of word length. Use of MSI and LSI is
helped by the simplicity of the serial design. Using
15-bit fixed point, the theoretical performance of a
72 x 128 array is about 108 multiplications or 109
additions per second. Comparisons are made with other
architectures.

Meteorology is considered as an application. It is
attractive to have the whole problem in the array
storage.

1. INTRODUCTION

This paper describes a design study of an array of
elements that can be used either as a "Single
Instruction, Multiple-Data stream" (SIMI)) processor or
as a store. Architectural features of interest are:
(a) the use of serial arithmetic to simplifY processor
logic and optimise store utilisation; (b) an attempt
to avoid I/O bottlenecks by mapping complete problems
into the array, without relying on overlay techniques;
(c) provision for using all or part of the array as a
store when not performing its specialised processing
functions; (d) the close integration of storage and
logic.

The main attractions of array-type SIMI) structures are:
(a) high absolute performance on certain problems of
importance; (b) high performance/cost, partly result
ing from using common control logic.

Several examples of this type of architecture have been
proposed (1-8) and applications have been suggested in,
for example, meteorology, plasma physics and linear
programming. Most structures have a single control
unit that broadcasts instructions to a regular array of
processing elements (PEs) each with individual storage
and an arithmetic unit (AU).

Flynn (2) points out four factors that degrade the
performance from the theoretical figure given by
"Number of PEs times PE perfoI.'lIlance": (a) Each PE
has direct access only to a limited region of store,
and excess time may be taken accessing other regions;
(b) Mapping the problem onto the array may leave some
PEs unused; (c) Owing to overheads in preparing in
structions for the array, there may be times when the
whole array is idle; (d) While dealing with singular
i ties or boundary conditions the majority of PEs are
idle.

These factors are acknowledged to reduce the applica
bility of such an array. In the present design att
empts have been made to mitigate their effect, but the
oyer-riding consideration has been to simplifY the PE
design; this has been done to the extent that the

theoretical perfoI.'lIlance is very high, in spite of the
AU cost being small compared with that of the storage.
In effect, therefore, the store is being adapted to an
array processing function. This may be contrasted
with attempts to adapt the processor to array operations
(e.g. CDC STAR).

A dispersed system, i.e. one with many PEs each with
local memory, has potential cost and speed advantages
deriving from: (a) reduced "cable" delays; (b) re
duced address transforming and checking; (c) faster
actual access; (d) simplified data routing and priority
logic.

A number of potential PE designs of varying parallelism
have been considered for building arrays of the same
theoretical perfoI.'lIlance, with the following general
results.

The gate count varies with the degree of internal PE
parallelism. A purely serial PE has considerable
advantages particularly for low precision work.

Serial PEs have fewer connections at all packaging
levels.

The extreme simplicity of serial PEs permits the very
effective use of batch fabrication and testing techniques
and keeps hardware development rapid and cheap. The
small number of circuit and board types helps develop
ment, production, spares holding and maintenance.

Serial designs have exceptional functional flexibility;
very few decisions are built into the hardware. However,
fully indexed addressing is expensive.

The design is somewhat similar to SOLOMON 1 (8); the
main differences stem from the exploitation of modern
technology.

61

2. THE ARRAY

2.1 CONFIGURATION

FIGU1lE 1. M. C. U • DIAGRAM

I
..t. COLUMN
I SELECT

ROW DATA LINES

i MCU {INDEX{
I REGISTERS

I
I TCN ... ____________J

COUUMN
ADDRESS

STORE HIGHWAY
(PARENT MACHINE)

INSTRucnON
BUFFER

Figure 1 is an overall configuration diagram. The
rectangular arra;y has an essentially two dimensional
nearest neighbour connectivi~, and has one dimension
matched to the store high~ of a conventional computer
(the "parent" machine). This connection provides the
route for loading both data and a.rra:y instru.ctions into
the a~ storage for a.rra:y processing; it also permits
the parent ma:chine to use the array storage as its own
main storage. Input/output is done by the parent
machine.

The Main Control Unit (MCU) has: (a) a conventional
instru.ction fetching a.rra.ngem.ent; (b) an instru.ction
buffer whose purpose will be described later; and (c)
a set of registers, many of which can be matched to the
arra;y by row or column for a varie~ of purposes, one
of which is indexing. For sizable arra;ys the Mcu is
a very small fraction of the total hardware.

After loading, the bits of a word are spread along a
column of PEs, and this method of holding data is termed
Main Store mode. Another method, termed ~ mode,
stores all the bits of a word in a single PE. This is
more attractive for proce~sing large arra;ys, but requires
initial and final transformation of the data from and
to Main Store mode; this is done inside the a.rra:y.

2.2 THE PE

FIGURE 2.

CLOCK

COWMN SElECT'" - - - --

PROCESSING ELEMENT

40,,,,1

(4 DllIes)

ROW RUPONSE

TO NEIGH'OU"S

Figure 2 is a PE diagram. The registers are all one
bit; P and Q are for operands, C is the carry register,
A1 and A2 are activi~ bits that can prevent writing to

store, and B1 and B2 can supply 2 address bits. The
routing multiplexor can select a bit from the PE's own
store, or from a neighbour's store, for writing to a
register; selecting zero and controlling its inversion
permits data in~t from outside the arra;y (for example,
an MCU register). The sum, carry, data input or con
tents of Q can be output from the logic, usually to the
store. The store contents can be output externally
(to, for example, an MCU register) via the gates at the
bottom of Figure 2; the bits output can be either from
a selected column of PEs, or the logical AND of rows
(or columns) of PEs. One use for the latter is for a
test over all PEs.

The fifth "neighbour" connection is to the PE half a
row a~ in the same row; this permits both faster
mass movement of data around the a.rra:y, and a "~D"
PE geometry. Bit patterns in one or two MCU registers
can be applied to the "inversion" inputs to produce a
veto selective by rows and/or columns on writing to PE
stores. Figure 2 shows 4 address bits capable of
being selected by row or column; what indexing
facilities should be provided is still an area of
debate.

Some differences from the PE in (7) are: (a) more
roW/COlumn symmetry; (b) a latch feature (shown on
the P register) for associative comparisons; (c) data
can be shifted directly between PEs without using the
store; (d) input data can be loaded directly into
store; (e) there is a ripple carry path between
PEs for Main Store mode arithmetic; (f) the bipolar
store is now 4K instead of 2K.

It is intended to package 2 PEs minus their stores and
routing multiplexors in one 24 pin integrated circuit.

2.3 EDGE CONNECTIONS

For instru.ctions that involve neighbours, it is the
arra;y geometry that determines what happens at the
a~ edges. Rows or columns ~ be: (a) cyclic,
with their ends connected together; (b) linear, with
a continuation onto a neighbouring line; (c) as (b)
but with the extreme ends connected; or (d) plane,
with external data applied at the relevant edge. In
addi tion, a row ~ be considered in two halves (~D
geometry). There are thus 32 geometries, and they are
set by program.

2.4 CONSTRUCTION

A board would contain a 6 x 4 PE section with 4K bits/
PE; there would be 137 external connections and 173
ICs, 96 of them for storage. The array can be viewed
as doing processing in the store, and costs only about
2~ more than ordinary storage made out of the same
technology. A platter would contain a 36 x 16 PE
section; the number 36, and multiples of it, match
standard store highways. "Folding" of the array
makes connections between the extreme edges short.

The economy obtained by the dense packing of the
integrated circuits is the result of the favourable
marriage of space-limited (or power-dissipation
limited) storage and pin-limited logic.

2.5 TIMING

Because most micro-instru.ctions do not involve a
response from the a.rra:y, the equalisation, rather than
minimisation, of delB¥s is important. Even with a
comparatively slow logic technolo6Y~ the micro
instru.ction rate should be about !;l-b MHz; the storage

62

element delays are the biggest factor, and this illus
trates how the array can exploit bipolar store speeds,
unlike a large conventional machine.

2.6 FUNCTIONS

In (7) the basis of the micro-programming notation is
given and it is shown how Array mode fixed and floating
point instructions are built-up. Bit organisation
means that only necessary work need be done; for
example, multiplication only needs to calculate a
single length result.

Code for execution must be compiled down to the one-bit
micro-instructions, except that for working regularly
along the bits of words a short loop can be constructed.
This loop is held in the instruction buffer, so that no
further instruction fetching from the array storage is
needed during execution of the loop. This feature
reduces the instruction fetching overhead from 100'}6 to
about 20'}6. Subroutine construction will be possible.

2.7 PERFORMANCE

For array mode, fractional fixed point multiplication
takes about

n (3n + 13)
2

micro-instructions where n is the word length; fixed
point addition takes little more than 3n micro
instructions. Floating point takes a little longer
for multiplication, and considerably longer for
addition (see (7)). 20-bit multiplication takes
about 730 micro-instructions plus about 160 cycles for
micro-instruction fetching, and at ~ MHz would take
about 160 ~sec; 20-bit addition takes abOut 12 ~sec.
Multiplication of an array by a common number can be
about four times faster.

Main store mode arithmetic is faster than Array mode
for smaller arrays. In terms of absolute speed,
addi tion is about 11 times faster and mul tiplica tion,
using a carry save technique ending with a ripple carry,
is about six times faster for 20 bit precision (the
latter factor increases with the precision).

1000

MIPS

100

FIGURE 3.

MULTIPLICATION (n .128 \
BIASED \'E IMII.Yj

(20-IIT WORDS)

..

D.A.P. PERFORMANCE

//
..... MAIN STOM MOOEAA ... _--

V£CTOIt MACHINE ~,. '"

10 ,.

,. ,. ,.
,.

,. ,. ,.

PMeNT MACHINE

10 100 1000

PMALLEL DATA mEAMS

AilRAY MODE

The user has three modes of working at his disposal:
the parent machine for scalar working, Main Store mode
for small arrays and Array mode for large arrays.
Figure 3 shows roughly what is possible in the three
modes; the useful processing rate in Million Instruc
tions (or, more accurately, results) Per Second (MIPS)

63

is plotted against the number of parallel data streams
for the type of computing indicated and a 9200 PE array.
Only the top ends of the sloping lines depend on array
size. The dashed line shows the similar graph for a
powerful vector machine (there are many other differ
ences between the two types of maChine).

The overall performance depends on the application and
programmer skill.

2.8 A COMPARISON

ILLIAC IV is a well known machine, so a brief com
parison is attempted with Array mode, assuming the
problem parallelism is sufficient to occupy either
machine. Many differences are not easily quantifiable,
but as a starting point the main assumptions for a
numerical comparison are given in Figure 4. The
first four lines give the instruction mix; B is the
number of bits precision for the serial design, which
has no separate store acesses because all functions are
store-to-store. P is the clock period (180 nsec).
20'}6 is subtracted from the ILLIAC IV totals to allow
for instruction overlap.

FIGUlIE 4. DESIGN COMPARISON
ILLIAC IV ASSUMPTIONS

INSTRUCTION MIX AND TIMINGS:

ILLIAC Ii!
A

I ,
SERIAL SINGLE DOUBLE TRIPLE
DESIGN PRECISION PRECISION PRECISION

I ADD I SUBTRACT (2 +38) P 0·125 0·25 0·5 ? !'I.e
I MULTIPLY (41+1.5B2)p o·n 0·5 2·01 pI"
2 STORE ACCESSESS 0 0·325 0·65 '·°1 }I-

I MODE SETTING (a.:J 4P 0·05 0·05 0·05 }I'"
(6+7;:;:;-.5B1)p

-- -- --
TOTAL 0·75 1·45 J·551 }loec

TOTAL -20% 0·6 1·16 2·81 }I.K

MANTISSA 25 4q 7J BITS

EXPONENT 7 15 (2J) BITS
·USEFUL" EXPONENT 4 6 8 81TS

LOGIC I PE.

ILLIAC N "'12000 FAST ECL GATES

SERIAL DESIGN "'60 TTL OATES
I FAST ECL - Z TTL GATES
RATIO· 200 • 2 -400

Figure 5 compares the hardware required to build an
array of given performance for words of a particular
precision. Logic and storage have equal weight;
Figure 4 gives the gates/PE ratio and the storage
comparison involves an estimate of the unnecessary
bits in the ILLIAC IV word. The graph would favour
ILLIAC IV only for working exclusively with 46-49 bit
precision. At low precisions serial PEs have a very
big advantage.

Such numerical comparisons are of only limited value.
For example, the vertical scale of Figure 5 would be
multiplied by about 4 if integrated circuit count were
used as a hardware measure. Other factors such as
hardware simplicity and repetition, pin counts and
functional fiexibili ty are equally important.

2.9 EXAMPLE OF STORAGE ECONOMY

For problems with large amounts of data, storage
economy is important, particularly if it permits
storing the complete problem in the array. The user
can apply various tricks. As an example, consider
three dimensional field problems. In order to prevent
physical "truncation" errors, programs are designed so

4·0

J·5

J·O

2·5

2·0
LOGIC

+
STORAGE

1·5

FIGURE 5. COMPARISON WITH ILLIAC IV

nLlAC Ill: VS. SERIAL DESICN
(FOR SAME PERFORMANce)

P'-,
I '"lC,? ,
I 'x

1·01-------...l...-------==:s.....::-L----

0·5L----~----~--L-~----~----~----_r-
o 10 20 30 40 50 /'0

PRECISION (SITS)

that differences between neighbouring variables require
fewer significant bits than the variables themselves.
If variables have to be held simultaneously for two
time steps, then, for example, they can be grouped into
sets of 16 nearest neighbours in spaoe and time (2 x 2
x 2 x 2), and held as follows: (a) a short floating
point number close to the maximum of the group (mQ¥be
a 4-bit mantissa and 3-bit exponent); and (b) 16
differences in block floating point (mQ¥be 12-bit
mantissas and a common 2-bit block exponent). This
results in 12.6 bits/variable and is roughly equivalent
to floating point with a 15-bit mantissa and 3-bit
exponent, i.e. a gain of nearly 50%; other machines
require floating point variables to occupy up to 64
bits, i.e. up to 5 times more.

3. MmEOROLOGY AS AN APPLICATION

This is considered more fully in (7). Meteorology
includes both simulation experiments and forecasting,
and as simulation programs are central to both, atten
tion will be confined to them. (Forecasting also
uses analysis and initialisation programs to assimilate
the "real" data). For simulation programs, the fre
quency of add/SUbtract and multiply instructions is
roughly equal, and divide is much less frequent. For
DAP, multiplication takes much longer than addition,
so the number of multiplications and their timing give
a first approximation to the speed of a program.

The table gives a rough guide to parameters in use today
and those that should be aimed at.

Using the 18 bit (fixed point) precision suggested in
Section 3.3, each FE can perf ODD a multiplication in
about 140 peec. Section 3.2 discusses the efficiency
of FE usage; 50% might be a reasonable figure. Thus
about 8000 PEs are adequate to perform the 2.5 x 107
multiplications per second indicated above.

~

Present

Forecast Global Next stage
Programs Research

Programs

Number of
Vertical
Columns of
Grid Points 3000 10 000 x4

Number of 10 5 x 2
'-vertical
levels

Total number 2 x 105 2.1 x105 x8
6 (1.6 x 10)

of variables

Time step 2 min. 5 min. +2

Number of 1000 10 000 x 3
time steps

Multiplications 1000 500 x 2.5 per column per
time step

Multiplications/ 1.2 x 10 6 1.2 x 10 6 x20 (2.5 x 107) .
sec.

Speed-up over 50-100 50-100 50-100
real time

3.1 STORAGE

It mQ¥ be tempting to use a backing store for big
problems; however, the smaller the array storage the
larger is the channel capacity required. In (7) an
example was studied of a probl~m using explicit
integration whioh had 1.5 x 10 variables of average
length 20 bits, and was processed on an 8200 FE array
wi th an I/O channel of 107 bi ts/ sec. Three formula
tions of the problem had the following trade-offs:
(a) 1850 bits/PE and speed degraded by a factor of
2.5, (b) 2800 bits/PE and speed degraded by 1.3, and
(c) 4600 bits/PE. the complete problem in the array
and no degradation. A similar problem using implicit
methods would have its speed degraded by an order of
magni tude if a backing store was used.

This sort of problem needs about 5-10 x 107 bits of
storage. The falling cost of semi-conductor storage
makes this amount of array storage feasible, and the
simplicity and reliability of a unified semi-conductor
system makes it attractive. Partly for these reasons,
the array has more resources devoted to storage than
to logic.

3.2 PARATJ.ET.ISM

Efficiency, defined as the fraction of time a FE is
. active, depends on programmer skill as well as the
problem. Numerical procedures used at present have
usually been devised with serial machines in mind,
and sometimes a slightly different procedure mQ¥ be
much more efficient.

64

Explicit methods for the "basic" meteorological
equations are efficient. Boundaries do not have much
effect because it is usually a case of omitting things.
"Secondary" effects mQ¥ cause efficiency to drop. The
computation is different if the air is saturated.

Convection may require the checking of neighbouring
vertical layers for stability, followed by a relaxation
process. study indicates that these effects need not
have a major effect on the overall efficiency.

Once various conditions have been established "branch
ing" by means of acti vi ty bits is very rapid, and can
be done frequently in order to improve parallelism.
(A conditional branch in a conventional program loop,
or selection in a vector machine, are slow by compariso~.

Implicit methods involve either ADI (alternating direc
tion implicit) or relaxation methods; the former are
not particularly efficient but the latter are.

There seem to be 4 types of grid in use: (a) rect
angular for fairly local forecasts; (b) octagonal in
overall shape (rectangular neighbour connection) for
the northern hemisphere; (c) cylindrical on a global
latitude-longitude basis; (d) as (c) except that the
number of pOints on a line of latitude is reduced as
the poles are approached. (a) and (c) can fit a rect
angular PE array. (b) and (d) would waste some of the
PEs. (c) has reduced efficiency because a smoothing
process is applied more times near the poles; this can
be viewed as a trade-off for the wasted PEs of (d).

3.3 PRECISION AND NUMBER REPRESENTATION

Precision costs time and storage space, so that big
problems should use only the minimum consistent with
accumulated round-off error being small compared with
other errors. Different variables can use different
number representations and precisions. Knowledge of
requirements is only patchy, but should improve; the
pay-off. compared with fairly cautious starting schemes,
might be a factor of about 1.5 in storage and 2 in
speed.

Meteorology is largely concerned with absolute rather
than relative accuracy, and the maximum possible values
of variables are well understood; this points to either
fractional fixed point or a simple floating point.
Block-floating of arrays (9) can also be implemented
efficiently.

An example of possible economy in space and speed
occurs in explicit integration schemes; the increments
to variables require considerably less precision than
the full variables.

Careful choice of rounding method in order to avoid bias
can also lead to economy (7).

A reasonable estimate of the average preClSlon required
for fractional fixed point variables might be 18 bits
and rather less for the mantissa of floating point
variables.

4· OTHER APPLICATIONS

An algorithm to solve the two dimensional Poisson's
equation was studied. It used a Fast Fourier Trans
form technique, but the extensive data shuffling that
this involved occupied only 20-25% of the time. There
was also reduced parallelism in places, and a typical
PE was idle about 50% of the time. .. On a 72 x 64 FE
array, a 256 x 256 mesh was estimated to take 50 msec
for 20-bit numbers; this compares very favourably with
conventional machines. An interesting aspect is that
the main array is held in Array mode and certain row and
column features are dealt with in Main Store mode; Main
Btore mode veotor~ are combined with the array elements
in single arithmetic operations.

65

For the array to be useful, problems must fulfil
three conditions: (a) Processing, as opposed to I/O,
must be important; (b) Much of the problem must be
programmed with parallel and identical operations
(these may, however, be selective); (c) Excessive
time should not be spent shuffling data round the
array. (In some cases this means the data should
be fairly regular).

These requirements are not very severe, and the biggest
barrier to widespread use is likely to be in devising
an acceptable programming language. (In spite of
many problems being naturally parallel, many users
are indoctrinated by sequential thinking).

Some applications for array processors are discussed
in (5). Further applications are suggested by the
fact that the array can be used as an "associative
processor"; examples might be air traffic control,
graphics processing and symbol processing. Associative
information retrieval can look attractive over quite a
wide range of parameters; with the associative latch,
each PE can scan 1 bit every micro-instruction, and so
10 000 PEs can scan 5 x 1010 bits/second.

The user has the freedom to optimise and experiment
from the bit level upwards; this may help him under
stand his real computing requirements. The array is
B£i arithmetic biased, and the functional flexibility
permits functions to be tailored for all sorts of
purposes. The hardware simplicity permits parameters
such as the number of bits/PE and the type of storage
to be varied easily; for example, a slower, cheaper
MOS version would extend the range of applications
considerably. The array modularity (almost like
storage modularity) means that sizes from 500 to
30 000 PEs are reasonable.

ACKNOWLEDGEMENTS

The author would like to thank the Directors of ICL
for permission to publish and J.K. I1iffe for his
support and for originating many of the ideas. The
contribution of A.W. Walton is also gratefully
acknowledged.

REFERENCES

1. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J.,
Slotnick, D.L., and Stokes, R.A. "The ILLIAC IV
Computer", IEEE Transaction on Computers, C-17,
p. 746 (1968).
2. Flynn, M.J., "Some Computer Organisations and
their Effectiveness", IEEE Transactions on Computers,
C-21, p. 948 (1972).
3. Goodyear Aerospace "STARAN - A New Way of Think
~" • A Goodyear Aerospace brochure, Akron, Ohio
~ 1971).
4. Huttenhoff, J .H., and Shively, R.R. "Arithmetic
Unit of a Computing Element in a Global, Highly
Parallel Computer", IEEE Transactions on Computers,
C-18, p. 695 (1969).
5. Kuck, D.J. "ILLIAC IV Software and Application
programmi9f'" IEEE Transactions on Computers, C-17,
p. 758 (19 8).
6. Murtha, J .C., "Highly Parallel Information
Processing Systems" in "Advances in Computers". Vol. 7,
(1966).
7. Reddaway, S.F., "An Elementary Array with Process
ing and Storage Capabilities", International Workshop
on Computer Architecture, Grenoble, June 1973.

8. Slotnick, D.L., Borck, W.C., and McReynolds, R.C.,
"The Solomon Computer", Fall Joint Computer Conference
1962, p. 97.

9. Wi1kinson,J .H., "Rounding Errors in Algebraic
Processes", H.M.S.O. London (1963).

MAXIMAL RATE PIPELINED SOLUTIONS
TO RECURRENCE PROBLEMS

Peter M. Kogge
IBM Corporation

Owego, N. Y.
ABSTRACT

An mth order recurrence problem is defined as the
computation of Xl> ••• XN. where Xi" f~i. Xi-1 •••
Xi-m) and!!:i is a set of parameters. On a pipe lined com
puter. where the total stage delay in computing f is df time
units. the solution output rate is one new Xi each df time
unit. This paper describes a method for increasing this
rate to 1 per time unit when the function f has certain simple
functional properties. The total stage delay and complexity
of the resulting pipelines are also described.

I. INTRODUCTION

An mth order recurrence problem is defined as the
computation of the sequence Xl. • • • XN given only

1. Initial conditions XO. X-1 ••••• X1-m

2. "parameter vectors" !!:1 ••••• !!:N' where each
!!:i is a collection of solution-independent param
eters

3. a "recurrence function" f.

such that for each i. 1:S i :s N.

X. ,. f~ .• X. l' ... , X.)
1 1 1- I-m

An example is the mth order linear recurrence

m

Xi = r~ 1 !!:i (r) Xi_r + !!:i (m+1)

(1)

(2)

A pipelined computing device is one that accepts inputs
at a rate of one every r units of time and produces corres
ponding outputs p time units later. p 2: r. Up tor plr 1 * sep
arate computations can be active within the pipeline at one
time. For this paper. r'" 1, and thus a pipeline may be con
sidered a series of p independent "stages, " each capable of
holding a partial computation on a distinct set of, inputs.

Assuming that the function f is computable by a pipe
lined device with dr stages. a direct solution of a recurrence
problem is pictured in Illustration 1. Assuming that Xi-1
is output at time j. Xi' which depends on Xi-1. cannot be
output until Xi-1 has cycled through the entire df stages of
the pipeline; i. e •• until time j + df. Illustration 2 diagrams
the timing of the pipeline. Thus the output· rate is at most
one element of the sequence per df time units.

The purpose of this paper is to investigate the condi
tions under which pipe lined networks can be configured to
have data rates higher than 1ldf' up to 1 sequence ele
ment per time unit. Section II describes a simple
example of this procedure. Section III details some

* rxl is the smallest integer not smaller than X.

71

conditions under which the performance of pipelined solu
tions to first-order recurrence problems can be increased.
Section IV generalizes this to mth-order recurrences. In
all sections. both total pipeline stage length and pipeline
complexity are discussed.

The basic background for this paper originates in a
series of earlier papers on the solution of recurrence prob
lems on parallel computers (1. 2.3).

ILLUSTRA TION 1

Direct Implementation of Recurrence

Parameter
Vectors

Output I37l

Input
[AGJ

B2 I32l

BM
[X;J

Buffers

• • •

ILLUSTRATION 2

Timing

[Xi]

[Ai]

f7Ul

g

,.'-\
m

In

f [Xi]
dr l

df I

II. AN EXAMPLE

[§j]

One of the simplest nontrivial recurrence problems in
volves a recurrence equation of the form Xi = aiXt-1. where
ai is a real number expressed in floating point notati()n. The

function f in this case is multiplication, a typical implemen
tation of which might involve a two-stage pipe, one stage for
exponent addition and one stage for mantissa multiplication.
With such an implementation, a direct solution like illus
tration 1 would have an output rate of 1/2 -- 1 new Xi every
other time unit. The pipelined nature of the multiplier is
not exploited.

However, the basic recurrence can be rewritten as

Xl' = aI' al'_I' •. a, 1 X, l-q+ l-q
(3)

for any value of q. Each Xi inthis case requires q +1 num
bers to be multiplied. Using the well known "log reduction"
technique (4) , however, multiple multipliers can be arranged
in a tree-like arrangement that computes equation 3, and
requires at most d(q) = r log2 q+l1 multiplier delays (com
pare Illustrations 3 and 4). If Xi-q, for example, is avail
able from such a network at time j, then Xi can be computed
by time j + d(q). This places an upper bound on the output of
q different X's (Xi-q+l, ••• Xi) in time d(q) as an output
rate 'of q/d(q). This rate is maximized to 1 -- a distinct Xi
in each time unit -- if q 2: d(q). For our example, this
relation is

(4)

which occurs for q 2: 6. illustration 3 diagrams a log
product pipeline solution of equation 2 for q = 3; the output
rate is 3/4, a factor of 1. 5 better than the direct implemen
tation but still not maximal. Illustration 4 diagrams a max
imal flow pipeline for q = 6.

ILLUSTRATION 3

Log Product Pipeline for q = 3

Total Stage Delay
Output Rate
Speed Up
Complexity

Buffers (Single Unit Delays)

4
3/4
3/2
3 Multipliers

Several comments should be made in respect to the
maximal rate pipeline of Illustration 4:

1. Buffering is used to equalize the delays in all sec
tions of the pipeline to 6 time units.

2. At each time unit, all buffers and all stages of all
multipliers are computing products that will lead to
some element of the solution sequence; i. e., the
pipeline is fully loaded.

3. The multipliers labeled MI,2 and MI,3 are redun
dant in that any calculations they perform were per
formed earlier by Ml, 1.

The redundant Ml,2 and Ml,3 can be removed by moving
the buffers B2 - B5 from the inputs to MI, 2 and MI, 3, and
placing them on the output of MI, 1, as shown in Illustration
5. This pipeline still exhibits maximal flow, but involves no
redundant computations.

ILLUSTRATION 4

Maximal Rate Log Product Pipeline

Input

Total Stage Delay = 6
Output Rate = 1

=2 Speed Up

7

1f ai_j

j = 4

Complexity = 6 Multipliers Output

ILLUSTRATION 5

Maximal Rate Log Product Pipeline Without Redundancy

x 7
IT ai_j

j=4

Total Stage Delay = 6
Output Rate = 1
Speed Up = 2
Cortlplexity = 4 Multipliers

72

•

III. FIRST-ORDER RECURRENCE

The key be1!.ind the applicability of the log-reduction
techniques on the example of the last section was the asso
ciativity of the recurrence function multiplication. Although
many recurrence functions are associative, and are solvable
in a manner identical to that used above, most of the more
common recurrences are not. As detailed in earlier papers,
however, a large class of problems, particularly first-order
problems, have a property similar to associativity that is as
useful in configuring maximal rate pipelines (I, 2, 3). This
property is termed "semi-associativity, " and is defined as
follows:

DEFINITION 1

A recurrence function, f, is said to be semi-associative
with respect to a companion function, g, if there exists a
function g such that for all parameter vectors ~ and!! and all
x's:

f~, f(!!, x» =: f(g~, !!), x) (5)

An easily provided corollary to this definition is that
with respect to its effects on f, the companion function, g,
is associative.

Corollary 1

For all parameter vectors ~, !!, and.£, and all x:

f(g~, g~,.£»,x) = f(g(g~, !!),.£),x) (6)

Examples of recurrences that have a companion function
are:

(7)

(8)

(9)

In the following descriptions, it is assumed that pipelined
computing modules can be built for both f and g, and the
number of inherent stage delays is de and dg, respectively.

The existence of a companion function allows a first
order recurrence

to be piaced in the following form for any q

x. = f (g(••• g(a., a. 1) , ••• a i I)' x.) (11)
1 1" 1- -q+ 1-q

The associativity of g with respect to f allows a log
reduction network to compute the g composition portion of
equation 11 in flog2 q 1 g computation delays.

The output of the final g module drives the module that
computes f, as pictured In nlustrdion 6. Again buffers are
used to synchronize the arrival of data at each module. The

73

total delay through this pipeline is thus

Again a maximum rate pipeline requires that

ILLUSTRA TION 6

Pipelined Computation of Xi =: f~i. Xi-I)

Each Buffer
has a Delay of 1

d f .
91 :

I .,(:

I d,l :

(12)

(13)

As with Illustration 4, many of the g modules in Illustra
tion 6 are redundant in that the computations they perform
are identical to computations performed several time units
earlier by some other module. Consequently, they can be
replaced by buffers that simply delay the output from the
other module by the appropriate amount. If q is chosen to be
the minimum integer power of two that satisfies equation 13,
then this technique of substituting buffers for g modules re
duces a network like Illustration 6, containing q-lg modules,
into one like Illustration 7, which uses only r log2 q 1 mod
ules.

Table 1 summarizes, as a function of de and dg, the
minimum q (qrninl that satisfies equation 13, the correspond
ing d(q), the minimum q that is a power of two (2[log2 qmln 1),
and the number of g modules (rlog2 q 1).

IV. Mth ~ORDER RECURRENCES

th
An m -order recurrence, m> I, has the form

Xi = f(!i' X. I' • • ,X.) 1- 1-m
(14)

To speed up a pipeline computing this type of recurrence, we
want to express Xi as

(15)

ILLUSTRATION 7

Minimal Complexity Pipeline for Xi =' f@i, Xi-I)

where the time to compute a.* from the original a.'s grows
less rapidly than, and eventrlally is smaller than-d. In the
mth-order case, no simple associative or semi-associative
companion function is possible; the number of arguments
(?2) is too large. However, as was shown in earlier re
ports, many common recurrence functions have a related
pair of functions that do allow the construction of networks
with the desired characteristics (1,2). These are defined as
follows:

DEFINITION 2

A recurrence function, f, is said to have a companion
set (g, h) if there exists functions g and h such that for all
parameter vectors~, ••• , ~m and all XIS, Xl ••• Xm:

(16)

='f(h/a ,aI , ••• a), Xl'" • X)
'.::0 - -m m (17)

As an example, the mth-order linear recurrence (equation 2)
has the following companion set (where g@, ~) (j) stands for

TABLE 1

Complexity of Pipelines for First-Order Recurrences

dg
2 3 4 5 6 7 8 9 10 df

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 8 3 14 4 22 5 27 5 32 5 44 6 50 6 56 6 62 6
8 8 16 14 32 22 32 27 32 32 64 44 64 50 64 56 64 62

3 11 4 15 4 23 5 28 5 39 6 45 6 51 6 57 6 63 6
16 11 16 15 32 23 32 28 64 39 64 45 64 51 64 57 64 63

4 12 4 16 4 24 5 29 5 40 6 46 6 52 6 58 6 64 6
16 12 16 16 32 24 32 29 64 40 64 46 64 52 64 58 64 64

5 13 4 20 5 25 5 30 5 41 6 47 6 53 6 59 6 75 7
16 13 32 20 32 25 32 30 64 41 64 47 64 53 64 59 128 75

6 14 4 21 5 26 5 31 5 42 6 48 6 54 6 60 6 76 7
16 14 32 21 32 26 32 31 64 42 64 48 64 54 64 60 128 76

7 15 4 22 5 27 5 32 5 43 6 49 6 55 6 61 6 77 7
16 15 32 22 32 27 32 32 64 43 64 49 64 55 64 61 128 77

8 16 4 23 5 28 5 38 6 44 6 50 6 56 6 62 6 78 7
16 16 32 23 32 28 64 38 64 44 64 50 64 56 64 62 128 78

9 19 5 24 5 29 5 39 6 45 6 51 6 57 6 63 6 79 7
32 19 32 24 32 29 64 39 64 45 64 51 64 57 64 63 128 79

10 20 5 25 5 30 5 40 6 46 6 52 6 58 6 64 6 80 7
32 20 32 25 32 30 64 40 64 46 64 52 64 58 64 64 128 80

Each Entry: q

r 2 log2Q l
74

jth component of the parameter vector g~, !!»:

{

~(I)!!(j) + ~(j+l) 1:5 j :5 m-l

g~, b) (j) = a(l)b(m) j = m

~(m+l) + ~(I)!!(m+l) j = m+l

m

L ~o(r)~r(j)
r=1

m

(18)

(19)

L ~o(r)~r(m+l) + ~o(m+l) j = m+l
r=1

The utility of companion functions Gomes from the fol
lowing theorem (proved in reference 1):

THEOREM 2

For any K ~ 0, Xi can be expressed in terms of Xi-q(k)
as follows

where
k

q(k) '" m2 +1-m

and a i (k) is computed from the following recurrence:

a (0) '" a
-i -i

(k+l) (k). . a. '" h/a , A (l-q(k), m-l), A(I-n(k)-I, m-2),
-1 I:::i .".

(20)

(21)

(22)

.. ,
A(i-q(k) - m+l, 0» (23)

(k)
A(i,j) '" g(g(•• ·g~i '~i-q(k»' ~i-q(k)-I)' , •• ,

~i-q(k)-j+l) (24)

_ Illustration 8 diagrams a typical network for computing
~i(k:+l) from ~i(k). Since the function g is not usually asso
ciative, or even semi-associative, no rearrangement or re
duction in the number of g modules is generally possible.

The total delay in Illustration 8 is thus:

(M-l) dg + dh time units (25)

To build a pipeline that computes ,!!i(k) directly from the
~j'S, the network of Illustration 8 must be cascaded into K
levels. As with the earlier pipelines, however, only one
copy of Illustration 8 is needed at each level. Additional
buffers are used to save redundant computations and syn
chronize the arrival of the proper inputs. Illustration 9 dia
grams such a pipeline.

For a K-Ievel pipeline, like Illustration 9, the total delay
through the pipeline is simply K times the delay of a single
network (equation 5) plus the delay to compute f:

d(K) = K((m-l) dg + ~) + df (26)

75

Again, for a maximal rate pipeline, this delay must be less
than q(k) , equation 21; i. e., a K must be found such that

K
K((m-l) dg + dh) + df :5 m2 -m+l

ILLUSTRATION 8

(27)

One Level in the Computation of ai (k)

Input

"Each Buffer Delays dg Time Units

(K)
ai-q(K)-l

ILLUSTRATION 9

(K)
ai-q(K)-m+2

+
(K)

ai_q(K)
:m+l

~

Pipelined Computation of mth-Order Recurrence

}
Delay
= (M-l)dg L..-_......,.. __ + dh

Once this minimal value of K has been determined, the
complexity of the required pipeline can be computed directly
from Illustrations 8 and 9, as shown in Table 2.

TABLE 2

Complexity of Pipelines for mth-Order Recurrences

Type of Module

f
h
g

Number Required*

1
K
K m(m-1)

2

*K is smallest positive integer that satisfies
equation 27.

V. CONCLUSIONS

This paper has discussed methods of speeding up pipe
lined computation of recurrence problems where feedback is
present; that is, where the computation of one element of the
desired sequence cannot be started before some earlier ele
ment has been fully computed. The methods discussed basi
cally involve rewriting the recurrence so that Xi depends on

Xi_q(k), ••• , Xi_q(k) - m+1 (28)

and some computable parameter vector a. (k). For many
-1 k

recurrence problems, the time to compute .!!;i () grows much
less rapidly with k than does q(k). In such circumstances,
for large enough k, the total time to compute Xi from
Xi-q(k), ••• is less than q(k) , allowing the output of the
resulting pipeline to be fed directly back into the input and
yet still maintain a fully utilized pipeline that outputs a new
Xi during each time unit. This pipeline is then running at
the maximum possible rate.

One question that has not been discussed in detail in this
paper is the problem of initializing the pipeline. The most
direct techniques would be simply to precompute enough
Xi's and .!!;(j)'s to fully initialize all stages in the pipeline
(perhaps using parts of the same pipeline at less than maxi-

76

mal rate). Once this is done, the pipeline can be allowed to
run normally. This is a time-consuming process which, if
the pipeline is long enough, may negate many of the benefits
of the maximal rate pipeline once it is started. For some
specific problems, however, this process may be avoidable
by introducing special values for .!!;i's and Xi's. For example,
in Illustration 5, if the input to B6 is held to 1 for the first
6 time units, and B1 initially loaded with 1, the pipeline will
output Xl at time 6, and run normally after that.

The applicability of these speedup techniques depends in
large measure on the particular problem being solved, the
length of the desired solution sequence, and the stage delays
in the basic f, g, and h computing modules. For problems
where the modules have large stage delays, for example, the
potential maximum speedup is significant, but the value of k
required to attain that speedup may result in a very long and
complex pipeline, where the time to initialize the pipeline
becomes a significant fraction of the total computation time.
In such cases, some kind of iterative tradeoff between chang
ing module stage delays, accepting less than maximal output
rates, and initializing the pipeline may be necessary.

REFERENCES

1. Kogge, P. M. "The Parallel Solution of Recurrence
Problems, " PhD Thesis. Stanford University,
December 1972. (To be published in IBM Journal of
Research and Development, March 1974.)

2. Kogge, P. M. "The Parallel Solution of Recurrence
Problems, " 7th Annual Princeton Conference on Infor
mation and System Sciences. Princeton University,
March 1973. (This is a partial summary of Reference
1.)

3. Kogge, P. M. and Stone, H. S. "A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations." IEEE Transactions on Computers, August
1973.

4. Kuck, D. "ILLIAC IV Software and Applications Pro
gramming." IEEE Transactions on Computers, Vol.
C-17, No.8, August 1968, pp. 758-770.

COMMENTS ON CAPABILITIES,
LIMITATIONS AND "CORRECTNESS"

OF PETRI NETS*
Tilak Agerwala

Mike Flynn
Electrical Engineering Department

The Johns Hopkins University
Baltimore, Maryland

ABSTRACT

In this paper we examine the capabilities and limita
tions of Petri nets and investigate techniques for prov
ing their correctness. We define different classes of
nets where each is basically a Petri net with slight
modifications and study the relationship between the
various classes. One particular class appears to be
quite powerful. with respect to its capability for
representing coordinations. In the second part of the
paper we establish the feasibility of using the methods
of computational induction and inductive assertions to
prove restricted statements about Petri nets.

I. INTRODUCTION

Petri nets are being widely used in the design. speci
fication and evaluatfon of computer systems [1.7]. and
in the modeling of production [3] and legal [6] systems.
They also appear to be a neat. clear and convenient way
to express process coordination. Naturally. the ques
tion about capabilities and limitations of these nets
arises. It has been shown [4] that there are problems
where the desired coordination cannot be expressed
using Petri nets. In the first part of this report we
introduce different classes of nets. Each class is
basically a Petri net with slight modifications. We
then examine the relationship between the various class
es in the hope that this will give us some insight into
the capabilities and limitations of Petri nets.

In the second part we are concerned with proving asser
tions about Petri nets. Given a coordination problem
and a Petri net it should be possible to convince one
self that the Petri net does in fact represent the de
sired coordination correctly. Techniques for proving
any given Petri net correct. will help in proving the
correctness of general parallel systems since it may
be possible translate the system mechanically into a
Petri net where it is easier to see what is going on.

II. CAPABILITIES AND LIMITATIONS

We assume that the reader is familiar with Petri nets
and concepts such as liveness. safety. etc. However.
for the sake of avoiding ambiguity we will define a
Petri net and give the simulation rules explicitly.

A Petri net N is a directed graph defined as a quad
ruplet (T.P.A.MO) where.

T = {tl' ... , t n} is a finite set of transitions

P = {Pl' •••• Pm} is a finite set of places

(T, P form the nodes of the graph)

A .. {aI' 'it} is a finite set of directed arcs

81

of the form (x.y) which either connect a transition to
a place or a place to a transition. Each place may have
one or more markers in it or it may be empty. A place
is full if it has at least one marker.

MO = {(p.n) I pEP and n E {a.l,2 •••• }}

(a function from P to {a.l,2 •..• }) is the initial mark
ing.

Simulation Rules

Given a certain marking M of a net. if all the input
places to a transition are full the transition is said
to be enabled in M. An enabled transition may at some
stage dec.ide to fire. At this stage it reserves a mark
er in each input place and starts firing. At the com
pletion of firing it removes the reserved markers and
places a marker in each output place. giving a new mark
ing M'. We say that the firing of ti in M results in
M'. As soon as a marker is reserved it becomes invis
ible to all other transitions.

t = tb • tb ' •••• tb E T*
1 2 n

is said to be a simulation sequence of a net N = (T,P.
A.MO) if there exists a sequence of markings MO. ~, ••••
MD such that tb is enabled in Mi - l and firing of tb.in

Mi-l results iniMi. for all i E {1.2 ••••• n}. The ~
set of all simulation sequences of N is called the simu
lation set of N or S.!.MSETN• Let T' c:= T. Then fo: each
simulation sequence t = tb ••••• tb of N we def~ne a

1_ n
reduced simulation sequence t' = t • t •••• t with

cl c2 cp
respect to T'. where~' is the sequence that results
when all tb. E T - T' are excluded from t. SIMSET IT'
is the set of all reduced simulation sequences of N
with respect to T'. Two Petri nets Nl = (Tl. Pl' AI.
MlO) and N2 = (T2, P2, A2. M2°) are said to be strongly
equivalent with resret to TifT s: TIo T s: T2 ~d
SIMSETNIIT-SIMSETN2 T. In tlits case we write Nl.!:: N2•

So far. we assumed that the transitions of Petri nets
had distinct labels. We now define an interpretation

I [T'.E] of a Petri net N (T.P.A,MO) as follows:

T' = {t , •••• t } c: T is a set of transitions,
a1 am

E {El ••••• Ek} • k~ m

is a set of event or process names and I: T' +E, i.e.
I is a function from T' onto E. Thus, the same event
or process name may be attached to different transitions
and the same net may represent different coordinations
depending on the interpretation given.to it. Given a
net N = (T.P,A,MO) and an interpretation I [T', E], for

each reduced simulation sequence ~l' ••• , tbm with re

spect to T' we get an interpreted simulation sequence
E ,E ,"" E with respect to I where I (tb.) =
cl c2 cm l.

E for 1 < i < m. The set of all interpreted sequenc
e~iof N with respect to I is called I [SIMSETN]. A net
Nl with an interpretation II [T', E] is weakly
equivalent to a net N2 with interpretation I2 [T",E]
if II [SIMSETNl] = I2 [SIMSETN2] and in this case we

I l ,I2
Nl == N2

In what follows we will define different classes of
nets where each kind is basically a Petri net with
slight modifications. SIMSET, SIMSET I T and I [SIMSETj
can be appropriately defined for each class. If TN and
TNx refer to two different classes of nets, then PN and
PNx refer to all the coordinations representable by TN
and TN respectively. We say that PN £; PNx if for
every ~ E TN and interpretation I [T' ,E] there exists
an Nx £ TNx and interpretation Ix [T" ,E] such that

I,Ix
N

Thus PN C PN if PN C PN and there exists a net
Nx £ TNx andxan interpretafion Ix [T' ,E] such that
there is no net N £ TN and interpretation I [T",E]
with

N

Classes of Nets

1. Let the class of ordinary Petri nets be TN.
2. The transitions in ordinary Petri nets are enabled
only when all the input places are full and we can con
sider these transitions to have an AND-input logic. If
in addition, we allow transitions with OR input logic,
we call the class of nets TNl og

(letting Pi denote the number of markers in Pi) tl is
enabled if and only if [(PI> 0) A (P2> 0)]A [(P3> 0)
V (P4 > 0)]. Thus tl is enabled even if all the input
places do not have markers and when it starts firing
it reserves a marker in each input place that has at
least one.
3. In addition to the ordinary transitions in the nets
belonging to TN we allow a transition to have input
places and arcs of a special kind. The transitions
allowed are of the form:

82

tl is enabled if and only if (Bl = 0) A (B2 = O)A ••.
(B = 0) A (PI> 0) A (P2 > 0) A ••• A (Pn > 0).
Wh~n tl starts firing a marker is reserved in each of
P P2 P3 Pn Let the class of nets be called l' , , ... , .
TN • com
4. In addition to the ordinary places in th~.~ets be
longing to TN we introduce a special place :~: '

(say PI)' A transition will place a stone in-PI if and
only if PI = O. Let the class of nets be TN ___ •

out

Results

1. Since in each case we provided the nets with addi
tional capabilities over the nets belonging to TN,
obviously:

PN c PNlog

PN c PN-out
PN C PN com

2. PN C PN com

Proof

Kosaraju [4] describes a coordination problem and
proves that it falls outside PN. The problem is as
follows: There are four cyclic processes, PI' P2,Cl
and C2 and two buffers Bl and B2' PI and P2 are pro
ducers which place one item each on top of Bl and B2
respectively in every cycle. CI and C2 consume one
item each from the bottom of BI and B2 respectively.
However, Cl has higher priority than C2 so that C2 can
consume only if BI is empty. To prove that PN cPNcom
we will give an interpreted net belonging to TNcom
which represents the desired coordination. The net is:

3a. PNI og
C PN - com

For every net Nlog (T,P,A,M') there exists a net

net N =(T', P', A', MI') £ TN such that TeT'
com T com

and N = N • The result 3a follows from this.
We witignot goC~Wto the details of a proof but will
illustrate the idea by means of an example. Let the
net N below be part of a larger net Nlog = (T,P,A,M")
belonging to TNl og.

N can be

T
Let the resulting net be N'. Then obviously N' - Nlog•

By applying a similar procedure to each transition with
OR input logic we end up with a net Ncom which is

strongly equivalent to Nl with respect to T. og

3b. Kosaraju's problem 1 and proof [4] can be used to
prove that PNl C PN • og com

4a. PN-crut PN

For every net N--- = (Tl • Pl' AI. MlO) E TNout and
interpretation £~t[T.E]. there exists a net N= (T2. P2.
A2. M2°) E TN and interpretation IZ[T".E]. such that

Il.I2
Nout - N.

Again. we will not go into details of a proof but will
illustrate with an example. Let the net N below be
part of a larger net Nout •

Then N can be replaced by:

t ' 1

resulting in the net N'. Here we have introduced a
placepwhich is a complement of p in the sense that p
has a marker if and only if p does not. The reader can
convince himself that under the interpretation I'
[T U {tl'}. E]. where I' (t) .. Il(t) for t E T and

83

, Il.I'
12 (tl) = II (t). NouE' _ N'. Continuing this pro-
cess until all places of the form ':0) are eliminated.

we end up with a net N E TN and an interpretation 12
[T", E] such that I I

1, 2
N.

~his shows that PNornc S; PN and from result 1 we con
clude that PNout = PN. Since PN C PNcom we also con
clude that PN C PN

-~ com·

Comments: We feel that PN c PNlo • We are also
examining other classes of nets. gFor example, in
addition to the ordinary arcs between transitions and
places we allow the following:

-r tl o PI

tl will place a marker in PI if and only if PI > O.
Another class of nets is those where we allow a trans
ition to nondeterministically place a marker in one or
more of its output places. The results obtained so
far indicate that TNcom is a very powerful class of
nets.

Safe nets

If one considers only safe nets (where each place can
contain at most one marker at any stage), then it can
be shown that for every Ncom= (T,P,A,MO) E TNc9m that
is safe, there exists a safe net N E TN such that

N om J N. Again, we will only demonstrate the tech
nIque-of obtaining N with the help of an example. Let
the net Nl below be part of a safe member Ncom of TNcom•

Replace Nl by the net below to get a net N'

The fact that Hcom is safe permits us to introduce
places "1' P2' Pli which are complements of the places
Pl. P2 aOO P4 respectively. I.e."l has a marker if
and only if PI does not. Every transition that causes
a marker to be put in PI should cause a marker to be
re.moved fmm Pl. Every transition that causes a mark
er to be ~moved from PI should cause a marker to be
placed in iii·. We now have :x

N' = Ncom •

By continuing the process of replacement we end up with
a net Nk e TN such that Nk 1 Ncom• If PNxlsafe denotes
the set of coordinations representable by safe members
of TNx,then PNlsafe = PNcomlsafe. From results ~ and 4
PN I safe = PNlog safe = PNout I safe = PNcom I safe.

Thus, even though TNcom is a powerful class of nets,
in practice one would probably be more concerned with
safe nets and here the modifications made to ordinary
Petri nets do not increase the overall power.

III. CORRECTNESS

When we say that a "Petri net N is correct", intuitive
ly what is meant is that the Petri net does what the
designer intended it to do. Given a particular problem,
a Petri net is constructed which represents the de
sired coordination. First and foremost we are not at
all concerned with whether the Petri net is the best
one for the given problem. In fact, we will not even
try to prove that the Petri net effectively represents
the desired coordination. We shall, however, try to
prove very restricted statements about a net which are
provided by the designer. The kinds of statements we
will attempt to prove are:

1. At any given time only one of the transitions from
the set {tl' ••• , tk} may be firing.
2. Two given transitions will never conflict.
3. A given place is safe with respect to a particular
marking or a given marking is safe.
4. A given place can contain at most N markers
5. A given transition is live.
6. A given marking is reachable from another.
7. A given transition has fired at most x times.
S. In general it may be very difficult to show that
a "net is deadlock free". Again, the designer will
have to provide statements, for', example, "Every trans
ition in cycle C is live at every stage", from which
he can reasonably conclude that the net will not hang
up.

In the following we present two methods to prove the
correctness of Petri nets: Computational induction
and inductive assertions.

Computational Induction

Here we develop certain relations that remain invar
iant during the simulation of a net. By using these
relations suitably we will be able to prove certain
properties about the net. According to our simula
·tion. rules, when a transition starts firing it re
serves a marker in each input place. Reserved markers
are invisible to all other transitions. However, in
the invariant relations, all reserved markers are also
counted and assumed to be in their current places. The
relations follow trivially from the simulation rules.
Let,

Mi: Number of stores in Pi initially
Pi: Number of stores in PI at any instant
Ti: Number of times ti has fired till any instant.

Relation 1: Let Ii = {set of transitions with Pi as
output place}, 0i = {set of transitions with Pi as in
put place}, then

Relation 2: Let tBf Ph! t a2 , ••• , Pbk-l!ak be a

path in the net such that tai' Pbi 1 ~ i ~ k are dis

tinct. If in addition Ibi = {tail, 1 ~ i ~ k-l then

84

k-l
we have a simple path and Tak ~ Tal + L Mt,.,

i=l ~

Relation 3: If Sl is a simple path from ti to tj and
S2 is a simple path from tj to ti then Sl S2 forms a
simple cycle. If in additIon every place on a simple
cycle has only one input and one output arc then we
have a pure cycle. Let S be a pure cycle then:

(say) .'

We have used these relations to prove simple assertions
about nets, and will illustrate the method by means of
an example. Consider the producer consumer problem
with bounded buffer. The producer places items in a
buffer. (length N) and the consumer consumes them.
The problem is to coordinate these two essentially in
dependent processes so that the consumer does not try
to take an item from the buffer when it is empty and
the producer does not place an item where the buffer is
full. The Petri net that represents the described co
ordination is given below: (the numbers in the places
denote the initial number of markers)

PI

tl

P2

t2

P3

t3

P4

t9

Ps

ts

P6

t6

We are interested in proving the following properties
for this net:

1. 1:4 and l:9 cannot be firing at the same time, i.e.
the producer and consumer do not try to access the
buffer at the same time.
2. 0 ~ T4-T9 ~ N. I.e. there is no buffer overflow
or underflow.
3. the net is deadlock free.

Proof 1:

TS + T3 ~ 1 + TIO + Ts (1) By Rl

P4 = T3-T4 (2) By Rl

Ts ~ T4 (3) By R2

P4 ~ T3-Ts (4) from (2) + (3)

Similarly, PIZ ~ TS - TIO (5)
Therefore, P4 + PlZ ~ 1 (6) from (4), (5), (1)
From 6 and the simulation rules we conclude directly
that T4 amd T9 cannot be firing at the same time.

Proof Z.

(1) By RZ

Therefore, T4 - T9 ~ N
i.e., the number of deposits - the number of removals
~ N. Therefore, three can be no buffer overflow.

(Z) By RZ

Therefore, T4 - T9 ~ 0
i.e., number of deposits - number of removals O.
Therefore there can be no buffer underflow.

Proof 3.

put places. Then we have the following:

Induction Theorem

To prove that a Petri net N = (T,P,A,MO) is correct
with respect to a set of assertions {ailti e: T} it is
sufficient to prove the following:

(1) ai is true for all ti that are enabled in MO.

(2) For each ti e: T, let Pi = {pip e: Ii /I (p ,0) e: MO }

i.e., the set of all initially unmarked input places of
t i • Let Pi = {ql' qz, ••• , ~}. Let Tj = {tklqi e: Ok},
1 ~ j ~ n, i.e., the set of all transit~ons of wnich qi
an output place. Let Bi = {(bl' bZ' ••• , bn)ltb e: TjJ
Each n-tuple in Bi gives the set of transitions jhich
W1en fired cause markers to be placed in the initially
unmarked input places of ti. Let Fire (bl' ••• , bn)
denote the fact that the transitions tbl' ••• , tbn fire.
Then for each ti e: T,

For this particular problem it is easy to see that dead- abl II abZ /I ••• /I abn /I Fire (b l , ••• , bn) => ai
lock can occur only if P7 = P9 = 0 and there is no way
to change this situation. (pure cycles can be repre- f 11 (b b) or aI, Z, ••• , bn e: Bi (1)
sented by the subscripts of the places only since there
is no ambiguity) Proof: Obvious

Sl 1,Z,3,4,5,6,7,1 is a pure cycle
Sz 10, 11, lZ, 13, 14, 15, 10 is a pure cycle
S3 3, 4, 5, 6, 9, 11, lZ, 13, 14, 7, 3 is a pure cycle
NSI 1 (1)

NSZ 1 (Z)

NS3 N (3)

P3 + P4 + P5 + P6 ~ 1 (4) from a
b Pll + PlZ + P13 + P14 ~ 1 ' "' from \;))

Therefore, a + b < Z
But if N>2 and P7-= P9

a+b=N> Z

from (4), (5)
o then

from (3)

(1)
(2)

Therefore, we get a contradiction. Thus, for N > Z, at
no stage can both P7 and P9 be zero. Therefore, there
can be no deadlock for N>Z. For N = 1 and N = Z separ
ate arguments can be given to pro~e that the net is
deadlock free.

Inductive Assertions

This method was introduced by Floyd [Z] to prove the
correctness of sequential programs and the same tech
nique was used by Lauer [5] for proving parallel pro
grams correct. We have taken the basic ideas from [5]
and modified them to be applicable in the framework of
Petri nets. Here again, our aim is to prove that a
Petri net is correct with respect to a particular given
assertion A. The procedure is as follows: with each
transition in the net we associate an assertion. Our
aim is to prove that every time a transition is enabled,
the corresponding assertion is true irrespective of the
particular simulation which caused this transition to
be enabled and irrespective of the state of the rest of
the net. Once this has been established, the truth of
A has to be deduced from the assertions at the transi
tions.

Let N = (T,P,A,MO) be a Petri net. An assertion ai
asserted with a transition ti e: T is a predicate on the
values of Pk and Tk where Pk e: P and tk e: T. The Petri
net is correct with respect to the assertion ai if and
only if for each simulation of the net that enables ti'
ai is true when ti is enabled. The net N is correct
with respect to a set of assertions if and only if it is
correct with respect to each assertion in the set. Let
~ = set of input places of ti and 0i = the set of out-

85

Each equation of the form (1) is called a verification
condition. It should be clear to the reader that the
verification conditions are really very strong. Thus
the conditions are not necessary but only sufficient.

To prove a net correct, one may often have to construct
an augmented net. Let Nl = (Tl,Pl, AI' MlO) be a Petri
Net. Then NZ = (TZ, PZ, A2, M2°) is an augmentation of
Nl if and only if TI c::. T2, P So P2, Al So AZ, MIa ~ MZo
and Tl

One can show that, if NZ is an augmentation of Nl then
NZ is correct with respect to ai where ti e: TI if and
only if Nl is correct with respect to ai '. Here ai' is
the same as ai with all references to t e: TZ-Tl and
p e: Pz -PI deleted.

Thus, to prove that a Petri net N = (T,P,A,MO) is cor
rect with respect to an assertion A one goes through
the following steps:

1. Formulate the assertion ai for each transition ti.
Z. Prove that all assertions associated with transi~
tions that are initially enabled are true.
3. Prove that all the pertinent verification conditions
hold and conclude that N is correct with respect to
{ailti e: T}. (Instead of (Z) and (3) one may construct
an augmented net N' of N, associate appropriate asser
tions with the transitions of N', carry out (Z) and (3)
for N' and conclude that N is correct with respect to
{stlti e: T})
4. Deduce that the net operates correctly with respect
to the main overall assertion, A.

We have used this method to prove the correctness of a
Petri net representation of the producer - consumer
problem with respect to an overall assertion. Since the
assertions and proof are essentially similar to those of
sauer [5] we will not present the example here. In a
subsequent report we will present weaker verification
conditions, examine whether it is necessary to associate
assertions with each and every transition and develop
"local" conditions under which places, arcs and tran
sitions can be added to a net N resulting in an augu
mented net N'.

IV. CONCLUSIONS

We hope that the discussion in Part II sheds some
light on the capabilities and limitations of Petri nets.
TNcom seems to be a powerful class of nets. It is pos
sible that these nets do provide a correct, formal
counterpart to the vague notion of a "coordination
problem". We will examine this aspect in another re
port. Also, Petri nets seem to be sufficiently power
ful if one is concerned only with safe nets. This may
very well be the case in practice.

In part III we have established the feasibility of us
ing the methods of computational induction and induc
tive assertions to prove restricted kinds of statements
about Petri nets. Ultimately, work in this direction
will facilitate the process of convincing oneself
that a general concurrent system is correctly coordin
ated.

V. REFERENCES

1. Dennis, Jack, B. "Modular, Asynchronous Ccmtrol
Structures for a High Performance Processor", Record
of the Project MAC Conference on Concurrent Sy~
and Parallel Computation, ACM, New York, 1970, pp.
55-80.

2. Floyd, R. W. "Assigning Meanings to Programs" ,E.!:2.::.
ceedings of a Symposium in Applied Mathematics. Vo1.19,
Mathematical Aspects of Computer Science, American
Mathematical Society, 1967, pp. 19-32.

3. Hack, Michel "Analysis of Production Schemata by
Petri nets", M.S. Th., Dept. of Electrical Engineering,
MIT, Cambridge, Mass., February 1972.

4. Kosaraju, S. Rao "Limitations of Dijkstra's
Semaphore Primitives and Petri Nets", Hopkins Computer
Research Rpt. #25, Research Program in Computer Systems
Architecture.J.}j,.U., Ba1to.,Md., M;iy 1973.

5. Lauer, Hugh Conrad "Correctness in Operating
Systems", Ph.D. Thesis, Carnegie-Mellon University,
September 1972. AFOSR -TR- 72 - 2361, Contract F
44620 - 70 - C - 0107.

6. Me1dman, Jeffery and Holt, Anato1 "Petri Nets and
Legal Systems", .]urimetricsJourna112, December 1971,
pp. 65-75

7. Noe, Jerre D., "A Petri Net Model of the CDC 6400"
Proceedings of the ACM/SlGOPS Workshop on Systems
Performance Evaluation, April 1971, pp. 362-378.

ACKNOWLEDGEMENT

I am grateful to my advisor, Professor Michael J. Flynn,
for his continued help, guidance, encouragement and
support. I would also like to thank my colleague, Joe
Davison,for his helpful comments.

'86

FLOWWARE-A FLOW CHARTING
PROCEDURE TO DESCRIBE

DIGITAL NETWORKS
Dr. Wayne E. Omohundro

MTS, Bell Labs
and

Dr. James H. Tracey
University of Missouri

ABSTRACT

FLOWWARE is an interactive, graphical language to aid
in the understanding and design of digital networks.
The language is based upon the concept of flow charting.
The user specifies the register layout of the network
and the sequential operation in the form of a flow
chart on a graphics terminal. The flow chart allows a
user who is unfamiliar with the network to easily under
stand the function and operation of the network.

I. INTRODUCTION

Many languages [1-21] exist which aid the user in the
specification and design of digital networks but they
do not aid the user who is unfamiliar with the network
in his attempt to understand the function and operation
of the network. Flow charting of a program has been
recognized as an easy method to help in the understand
ing as well as the debugging of a program. Therefore,
since digital networks in many ways resemble a program
(especially on the register transfer level), flow
charting should aid the user in the understanding of
digital networks.

Graphical languages using a flow charting concept have
been proposed by Rouse [17] and Bell, et al. [18] but,
to this date, they have not been implemented on a com
puter. Also Digital Equipment Corporation has a modu
lar computer, the PDP-16, whose functions can be speci
fied by the purchaser through a special purpose lan
guage called CHARTWARE [20].

FLOWWARE [22-24] is an interactive, graphics language
which allows the user to define a digital network in a
manner similar to flow charting. The user can specify
both the register layout as well as the sequential be
havior of the network by using a flow chart and "draw
ing" the network on a graphics terminal. Consider a
simple problem of specifying on a functional level a
counter to count up from zero to six and then back down
to zero. Figure 1 is an example of the flow chart
necessary to describe this system. The elements are a
three bit register COUNTER and a control signal UP.
The blocks START and TERMINATE specify, respectively,
the beginning and end points of the description. The
reader should recognize that figure 1 represents exactly
the information that the user would specify on the
graphics terminal. Each rectangle, arrow, and diamond
represents an element of the language FLOWWARE.

Figure 1 also shows some of the characteristics of the
language. It is a graphical language and hence, gives
the user a pictorial view of the network. The user
specifies the register layout and can show the paths
available for data transfer, the control signals regu
lating these transfers, and the functions which modify
the data. Also, the sequential operation of the network

91

is shown in a graphical manner by a flow chart. The
language is a means of specifying the functional be
havior of a system without regard for the technology
used for hardware implementation. FLOWWARE has been
developed with the understanding that such problems as
races, hazards, interconnection layouts, and fault
analysis are not to be solved with this system. Its
main purpose is to aid understanding but it can also be
used in the initial phases of design when ideas are at
the block diagram and functional level.

FIGURE 1

An Up/Down Counter (a) Control Flow Phase
(b) Register Layout Phase

ICOUNTER(3)

COUNTER=6

(a)

To assist the user, FLOWWARE is interactive and allows
simulation of a design. The interactive nature permits
the user to obtain his results immediately from a
simulation run. Simulation helps a user understand a

network. He can change inputs and control signals to
see what effect they have on the network, if he so de
sires, and resimulate it. In other words, the user
interacts with a network to understand it or to verify
its operational correctness.

FLOWWARE makes use of the IDDAP (Interactive Digital
Design Assistance Package) system as written by Crall
[15]. IDDAP is an interactive language which is a sub
set of Chu's CDL [10]. As such, it is oriented to text
input rather than graphical input. Essentially, a pre
processor to handle the graphics information was added
to IDDAP. There were several reasons for using IDDAP,
one of which was that IDDAP is already an interactive
system. Also IDDAP has a simulator to allow the de
scription to be simulated. This was considered impor~
tant because it makes it easier to verify that the
system is working correctly, and also, as already men
tioned, a simulator is useful in uriderstanding the
operation of a network. Finally, IDDAP handles trans
lation of text input. In spite of the graphics nature
of FLOWWARE, it is necessary to describe some operations
by register transfer statements. Hence in order to
concentrate on the graphics portion, rather than a
simulator and text translator, a preprocessor was added
to IDDAP. The major purpose of the preprocessor is the
interconnect the graphical elements in the correct man
ner as specified by the user.

Often, when a person is describing a digital network
informally, he draws a register layout to give an over
all view of the system. Then he inserts the control
signals and explains the sequential operation of the
network. FLOWWARE formalizes this process. FLOWWARE
relieves the user from drawing the elements. It forces
the user to specify the register layout. It allows the
user to use a graphical input in the form of a flow
chart to specify sequential operations. The exact pro
cedure and elements to perform these functions will now
be explained.

II. FLOWWARE ELEMENTS AND COMMANDS

This chapter presents the elements and commands of
FLOWWARE. FLOWWARE has two description phases. Phase
one is the register layout or information flow phase
which serves to define the various components and show
how they are interconnected. This phase is similar to
the variable declaration statements of most languages
but has the advantage of giving a pictorial view of the
system. Phase two is the control flow phase. This
phase makes use of the definitions in phase one to de
scribe the data and control flow of the system by
specifying a flow chart. The flow chart gives the se
quence in which functions and decisions are activated
along with the control signals regulating the events.

Table 1 presents the elements and commands as well as
a brief description of their purpose. Each element is
drawn by the computer on a graphics terminal at a posi
tion specified by the hand movement of a cursor using a
joystick or mouse. Elements are defined by positioning
the graphics cursor at the major defining point and
typing the appropriate command. The major defining
point is that graphics point which denotes the position
at which the element is to be drawn by the computer.
Some elements have a minor defining point because two
points are necessary to define that element; for exam
ple, a line. Most of the elements have some text asso
ciated with them. The text defines the additional
information needed for the element. In many cases this
is the name by which the element is to be referenced,
or some function to be performed. Editing features are
also provided to allow the user to add, change, or
dele·te elements or text.

92

TABLE 1

Elements and Commands (a) Phase One

Meaning Computer Response

Define !,egister

Define ~emory

Define Information flow
connector

Define function

Define ~ontrol signal

Define control flow Line

Define d!cod!r

Define Unary operand
functio~ element

Define Binary operand
functio~ element

Define clocK

Define terminal

Define ~ubregister

Input- --1

Add res
Regist !~

Output -'

------~

Input NOT COM
L8 R8
LC RC

Input

o

TABLE 1

Elements and Command (b) Phase Two

Define Function block

Define Go to line)

Define Control signal

Define control flow Line ------>

Define Decision block o
Define dEcodE block < >
Define start block START

Define end block END

Define terminate block I TERMINATE

A. PHASE 1 OR INFORMATION FLOW PHASE ELEMENTS

Phase 1 or information flow phase is used to define the
components of the digital system to be simulated, to
describe the register layout of the system, and to show
the functions to be performed on the data. The basic
elements of this phase are given in the following
sections.

1. Register and Memory

The register and memory are common elements of a com
puter. As such the user can define a register and its
length as well as a memory with its word length and the
number of words. Table 1 shows the memory element.
The input and output points specify those points by
which the memory is accessed for writing and reading
respectively. The memory address register, defined as
a portion of the memory element, specifies the word of
memory to be accessed.

2. Information Flow Connector

The information flow connector is used to connect two
other elements. It shows the direction that informa
tion flows between these elements. Figure 2 is an
example of the use of an information flow line. Two
bit registers A and B are defined by the appearance of
the register symbol, and the information is assumed to
flow from A to B. The equivalent IDDAP [15] statement
would be ": B = A."

FIGURE 2

Example of Information Flow Connector

3. Function

The function element allows the user to define a par
ticular set of operations which can be referenced in a
subroutine-like manner. The operations are defined by
IDDAP statements. The function is activated, in phase
2, by the statement : DO name where name is the name of
the function block.

4. Control Signal and Control Flow Line

The control signal and control flow line are used to
control a data transfer between two elements. The con
trol signal defines the name by which the transfer is
referenced and the control flow line points to the
transfer to be controlled. Figure 3 shows an example
of control signal C controlling the transfer A to B.
The statement : DO C, in phase 2, will cause the trans
fer to take place.

FIGURE 3

Example of Use of Control

cp A(2)

i. Decoder

I
I
~---------------

B(2)

The decoder decodes an n bit register into one of 2n
control signals. Figure 4 shows a decoder DEC which
decodes the register REGA into control signals. Only
the decode of zero and one in REGA are shown in the
figure. These control signals can be used to control
other transfers. The control signal CON controls the
decode. When the statement : DO CON is specified, REGA
is decoded and the appropriate action takes place based
upon the current value of REGA and where the control
flow lines point.

93

FIGURE 4

Decoder with Control Flow Lines

CON
I
I

REGAC 3)

't. ________ _

6. Unary and Binary Operand Function Elements

The unary and binary operand function elements allow
the user to perform standard functions on the input
oper.ands. These operands can be registers or memory.
The unary operand function element requires one input
operand and the binary operand function element requires
two. The result is placed in the register or memory
location specified as the output operand. The exact
function to be performed is specified by pointing a
control flow line at the function name. Tables 2 and 3
specify the functions available with these elements.
The use of this feature is best explained by an example.
Referring to Figure 5, register A is both the input and
output operand. The control signal is INC, and through
the control flow lines, it points to the CU portion of
the unary operand function, The mnemonic CU means
fount Qp. When INC is referenced, the result is to add
one to the input operand, A, and transfer the result to
the output operand, A. In effect, register A is incre
mented by one. To reference this function, the state
ment : DO I~C causes the A register to be incremented.

TABLE 2

Functions of Unary Operand Function Element

Mnemonic Meaning

NOT Logical Not

COM

LS

RS

LC

RC

Two's Complement

Left Shift one position

Right Shift one position

Left Circulate one position

Right Circulate one position

CU Count Up one

CD Count Down one

TABLE 3

Functions of Binary Operand Function Element

Mnemonic Meaning

ADD Add operand 1 to operand 2

SUB Subtract operand 2 from operand 1

MUL

DIV

REM

OR

AND

XOR

Multiply operand 1 by operand 2

Divide operand 1 by operand 2

Remainder, operand 1 modulo operand 2

Logical inclusive OR of operand 1 and
operand 2

Logical AND of operand 1 and operand 2

Logical exclusive OR of operand 1 and
operand 2

94

FIGURE 5

Example of a Unary Operand Function

C¥J
I
I
I
I
I 'lL ___________ _

~

7. Clock

A(5)

NOT COM
L8 R8
LC RC
CU CD

""
/

Simulation has two modes: clock and no clock. In clock
mode, update of registers under clock control does not
occur until there is a clock pulse, i.e., when the
clock variable changes state. In no clock mode, reg
ister update takes place immediately [15]. The clock
element is used to define the register to be used for a
clock.

8. Terminal and Subregister

The terminal and subregister allow the user to define
terminals and subregisters. Terminals allow the user
to refer to a boolean expression by a single name.
Similarly subregisters allow the user to refer to a
part of a register by a single name. Therefore the
text associated with these elements are assignment type
statements.

B. PHASE 2 OR CONTROL FLOW PHASE ELEMENTS

Phase 2 or the control flow phase describes the se
quential nature of a digital system in terms of a flow
chart. There are only nine basic elements needed in
this phase. Three of these tell the simulator where to
start and end, and the other six describe functionally
the operation of the system.

1. Function Block

The function block is used to describe a particular
function which may be one or more IDDAP statements. It
is the basic element of FLOWWARE phase 2. The dis
tinction between this function block and the one in
phase 1 is the method of activation. The phase 1 func
tion requires a subroutine-like call whereas the phase
2 function block is activated when it is encountered
during the normal sequence of events as specified by
the flow chart. In fact, a statement within the phase
2 function block is necessary to call the phase 1
function.

2. Go-To Line

The go-to line defines the direction of control flow or
the sequence in which operations are to be executed.
The order in which elements are executed is determined
by the direction of the arrow. Also the user can spec
ify parallel paths with this element as shown in Figure
6. Functions Band C are executed in parallel, after
function A has completed execution.

FIGURE 6

Parallel Execution of Function B and Function C
(Dollar signs $ denote comments within element)

I $FUNCTION A$ I

!$FUNCTION B$! I$FUNCTION C$ I

_3. Control Signal and Control Flow Line

The use of control signals and control flow lines in
phase 2 are different from phase 1. It is best ex
plained by the example shown in Figure 7. Function A
and Functio.n B are two user defined functions and BACT
is a control signal on Function B. Function B is exe
cuted only after Function A completes execution and if
BACT is true or a logic 1. If BACT is false, the sys
tem "waits" until BACT becomes true. If this is the
only path in the system and BACT is false, then the
simulation will be halted without executing Function B.
If there are parallel paths, Function B is executed
when BACT is set to logic 1 by one of the other paths.

FIGURE 7

Example of the Use of a Control Signal
(Dollar signs $ denote comments within element)

BACT
i
I
I
I
I 't... ______ _

.4. Decision Block

$FUNCTION A$

-----)

It

$FUNCTION B$

The decision block is used to decide between two alter
nate paths. The decision block tests either a boolean
expression or a relationship expression, such as A > B,
associated with the element or a control signal point
ing to the element. When the expression or control
signal evaluates to a logical one, then the exit point
is either the top or bottom point of the diamond. If
it evaluates to a logical zero, then the exit point is

95

the right or left point. The exit point is the path to
be taken when the decision is made.

5. Decode Block

The decode block decodes the register defined within
the block into one of 2n signals where n is the length
in bits of the register. The go-to lines leaving this
element point to the next path to be taken based upon
the value decoded. The go-to lines have associated
with them a number which represents the decode of the
block. A go-to line without a number, only one is al
lowed, means that for any decoded values not specifi
cally mentioned on other lines, "take this path."

Figure 8 shows an example of the use of the decode
block. When Function A completes execution, the re
gister INST is decoded. If INST = 0 then Function B is
executed. If INST = 1 then Function C is executed. If
anything else, Function D is executed.

FIGURE 8

Example of the Use of the Decode Block
(Dollar signs $ denote comments)

$FUNCTION A$

$FUNCTION B$

6. Start, End, and Terminate Blocks

These three elements control the simulation. The simu
lation starts at the start block and ends at the termi
nate block. The end block is used to specify the end
of a path. When it is encountered, the simulation is
not halted but any other parallel paths are executed.
The terminate block halts the simulation when it is
executed even if there are unexecuted parallel paths.

III. USE OF FLOWWARE

This section will present some simple examples using
FLOWWARE. The major emphasis will be on the input
language rather then the output of the simulator. As
already mentioned, Figure I is an example of an up/
down counter.

Consider the digital network shown in Figure 9. The
problem is to add register A to B or to subtract B from
A. In both cases the result is to be transferred to
register A. The control signal C is to be used to
determine whether addition or subtraction is to be per
formed. If C is true, perform the addition. Figure
9{il) shows the register layout with signals AD and SB
controlling the addition and subt-raction respectively.
Figure 9(b) shows the control flow where the signal C
is tested.

FIGURE 9

Addition/Subtraction Network

(a) Register Layout Phase

(b) Control Flow Phase

~n Figure 10, the fetch and execution of a LOAD ACCU
MULATOR (register A) instruction for a small computer
is shown. It is assumed that direct addressing is used
and that the six bit computer word is divided in half
with three bits for the operation code and three bits
for the address. Register P is the program counter, R
is the instruction decode register, RI is the operation
code subregister, T is the decode of the clock counter
K, and Q is the decode of a control register RQ. When
RQ = 1, the computer is in the instruction fetch cycle.
When RQ = 2, it is in the instruction execution cycle.
The operation code for the LOAD ACCUMULATOR is zero.
The register layout is shown in Figure 10(a) and the
control flow is shown in Figure 10(b). Notice the use
of the decode block in both phases as well as the use
of the control signals.

96

FIGURE 10

Fetch and Execution of an Instruction

I P(6) J
RQ(3) (3)

1 M(6,B)
MAR(4)

Q T

I RI=R>(I-3) I II
.n JI.

A(6) I R(6) I
H

(a) Phase 1 or Information Flow Phase

ITO~Q21
I
I ___ lI'

(b) Phase 2 or Control
Flow Phase

IV. CONCLUSION

FLOWWARE has been implemented on the computer system at
the University of Missouri-Rolla. This computer system
consists of the IBM System/360 Model 50 Computer and
several Data General Corporation NOVA-BOO Minicomputers.
The graphics terminal used as the main input/output de
vice is the T4002 Tektronix Graphic Computer Terminal.
FLOWWARE essentially consists of two programs: one
written in PL/l for the System/360 computer and one
written in assembler for the NOVA computer. The mini
computer is responsible for drawing the elements and
local editing functions, and the main computer is re
sponsible for translation and simulation of the descrip~
tion.

FLOWWARE has been designed for user convenience. The
user is relieved of the burdens of drawing the elements
and typing long command lines when single letters will
suffice. The interactive nature of FLOWWARE permits
the user to obtain his results immediately. All ele
ments and all interconnections between elements are
clearly visible. Simulation allows the user to see the
network "work" under a variety of input conditions.
Text and element editing permits modifications to the
description. The information flow phase description
allows the user to specify graphically a network of
registers, etc., which resemble a subroutine and is
executed like a subroutine in the control flow phase.

By means of its implementation on the UMR computer
system, FLOWWARE has shown itself to be a useful tool

in the process of digital design. FLOWWARE has the
flexibility needed to meet a diversity of user demands
while still retaining the structural ordering necessary
to insure logical consistency within anyone descrip
tion. Its similarity to flow charting, its pictorial
nature, its ease of use, and its interactive qualities
combine to produce a language which solves the problems
present in most text oriented languages, the problems
of comprehension and readibility.

This project is supported, in part, by NSF Grant
GK34076. At present, work is being done on FLOWWARE
to improve and expand its capabilities.

BIBLIOGRAPHY

1. M. A. Breuer, "Recent Developments in the Auto
mated Design and Analysis of Digital Systems,"
Proceedings of the IEEE, Vol. 60, No.1,
pp. 12-27, January 1972.

2. C. G. Bell and A. Newell, Computer Structures:
Readings and Examples, New York: McGraw-Hill Book
Company, 1971.

3. C. G. Bell and A. Newell, "The PMS and ISP
Descriptive Systems for Computer Structures,"
Proceedings of the 1970 Spring Joint Computer
Conference, pp. 351-374, 1970.

4. K. E. Iverson, A Programming Language, New York:
John Wiley and Sons, 1962.

5. K. E. Iverson, "A Programming Language,"
Proceedings of the 1962 Spring Joint Computer Con
ference, pp. 345-351, 1962.

6. K. E. Iverson, "A Common Language for Hardware,
Software, and Applications," Proceedings of the
1962 Fall Joint Computer Conference, pp. 121-129,
1962.

7. H. Schorr, "Computer-Aided Digital System Design
and Analysis Using a Register Transfer Language,"
IEEE Transactions on Electronic Computers, Vol.
EC-13, pp. 730-737, December 1964.

8. J. R. Duley and D. 1. Dietmeyer, "A Digital System
Design Language (DDL)," IEEE Transactions on Elec
tronic Computers, Vol. C-17, pp. 850-861,
September 1968.

9. J. R. Duley and D. L. Dietmeyer, "Translation of
a DDL Digital System Specification to Boolean
Equations," IEEE Transactions on Electronic Com
puters, Vol. C-18, pp. 305-313, April 1969.

10. Y. Chu, "An ALGOL-Like Computer Design Language,"
Communications of the ACM, Vol. 8, pp. 607-615,
October 1965.

11. T. C. Bartee, I. L. Lebow and I. S. Reed, Theory
and Design of Digital Machines, New York: McGraw
Hill Book Company, 1962.

12. D. L. Parnas, "A Language for Describing the
Functions of Synchronous Systems," Communications
of the ACM, Vol. 9, No.2, February 1966.

13. D. L. Parnas, "More on Simulation Language and
Design Methodology for Computer Systems," Pro
ceedings of the 1969 Spring Joint Computer Con
ference, pp. 739-743, 1969.

14. J. A. Darringer, "The Description, Simulation, and
Automatic Implementation of Digital Computer Pro
cessors," Ph.D. Dissertation, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, May 1969.

15. R. F. Crall, "IDDAP--Interactive Computer
Assistance for Creative Digital Design," Ph.D.
Dissertation, University of Missouri-Rolla,
Rolla, Missouri, 1970.

16. K. E. Iverson, A. D. Folkoff and E. H. Sussenguth,
"A Formal Description of System/360," IBM Systems
Journal, Vol. 3, No.3, pp. 198-262, 1964.

17. D. M. Rouse, "A Design Oriented Digital Design
Language," M. S. Thesis, University of Missouri
Rolla, Rolla, Missouri, 1969.

18. C. G. Bell, J. L. Eggert, J. Grason and
P. Williams, "The Description and Use of Register
Transfer Modules (RTM's)," IEEE Transactions on
Computers, Vol. C-2l, No.5, May 1972.

19. C. G. Bell and J. Grason, "The Register Transfer
Module Design Concept," Computer Design, May 1971.

20. Advertisement from Digital Equipment Corporation,
Maynard, Massachusetts, 1972.

21. J. L. Brame and C. U. Ramamoorthy, "An Interactive
Simulator Generating System for Small Computers,"
Proceedings of the 1971 Spring Joint Computer
Conference, pp. 425-449, 1971.

22. W. E. Omohundro, "FLOWWARE--A Flow Charting Method
to Describe Digital Systems," Ph.D. Dissertation,
University of Missouri-Rolla, Rolla, Missouri,
1973.

23. W. E. Omohundro, "FLOWWARE Users Manual,"
Technical Report, University of Missouri-Rolla,
Rolla, Missouri, 1973.

24. W. E. Omohundro, "FLOWWARE Implementation Package,"
Technical Report, University of Missouri-Rolla,
Rolla, Missouri, 1973.

97

AUTOMATED EXPLORATION OF THE
DESIGN SPACE FOR REGISTER

TRANSFER (RT) SYSTEMS
Mario R. Barbacci

Daniel P. Siewiorek
Departments of Computer Science and Electrical Engineering

Carnegie-Mellon University

KEYWORDS AND PHRASES: Design Automation, Register Transfer
Level, Design Space, Cost/Speed Trade -offs, Register Transfer
Modules.

ABSTRACT.- A Design Automation System for the RT level of
design is described. The System explores the design space by
finding alternative implementations for a user given behavioral
specification. The alternative solutions are obtained by
transformations on a graph model. These transformations effect
trade -offs between the cost of the hardware and the speed of
the algorithm. Heuristic routines are used to reduce the design
space by exploring only those alternatives whose characteristics
approach a user given set of goals.

1. INTRODUCTION
A computer system is composed of thousands of

interconnected components. The basic components of computer
systems have gone through an evolution from relays, to vacuum
tubes, to transistors, to logic gates (small scale integration), to
registers (medium scale integration), and to memories and
processors (large scale integration). As the basic components
increased in logical power more complex computer systems
became feasible.

The construction of these computer systems has been
simplified by computer aided design. Early attempts at design
automation were directed towards a reduction in cost and time of
the design process itself [1]. These objectives were
accomplished by relieving engineers of repetitive time consuming
tasks. This approach to design automation limits itself to filling
the gap between the low level design specifications and the
manufacturing data. The inputs to the systems are, generally, in
terms of Boolean equations which the system then translates into
an equivalent gate level specification. The Boolean equations
specify the desired behavior of the finished object. Most of the
synthesis algorithms at this level deal with the problem of
reduction or simplification of the Boolean equations.

Recent efforts at design automation have been directed
towards a system capable of accepting a high level description
and translating it into an equivalent gate level structure.
APDL[2] and ALERT[3] are two such systems.

The essential feature lacking in these existing systems is the
exploitation of alternative implementations- derived from the initial
behavioral specifications. This paper deals with the description
of an automatic design system that explores the design space for
the register transfer level. The Register Transfer (RT) level [4]
is characterized by the following basic components: Registers,
register transfers, and transformations on the contents of
registers. When completed, the system will take as inputs the
specification of the desired behavior in some high level RT
language and the specifications of the hardware RT level
components. The output is the specification of the hardware
which attempts to optimize the system along some specified
dimensions of the design space. We will restrict ourselves to the

The research in this paper was supported by National Science
Foundation Grant GJ 32758X.

Figure 1. An RT level design automation system

cost and time dimensions. Thus a designer specifies design
constrains to the system, such as whether the solution should be
the cheapest, the fastest, or some trade -off between cost and
speed.

The automatic design system is depicted schematically in Fig.
1. The description of the algorithm is given in the RT language
ISP [4] and translated into a graph representation. The user
can, however, bypass this step and provide its input - the graph
- directly to the System in an assembly -like notation. This can
be used to design systems not describable in ISP. Subsequently,
various transforms on the graph are attempted to establish a new
solution to the problem. A set of heuristics guide this exploration
of the design space by using the given design constraints to
decide which solutions should be kept to generate other solutions
by yet another application of the graph transformations.

Which set of transforms to apply is determined by the PMS
(Processor Memory, Switch) type [4] of the modules. The set
of transforms are general and can be used with any set of
modules which conform to a particular PMS type. Transforms
(module dependent) which depend on the details of a certain
module set, such as the cost/performance ratio betwen two
modules of the same type, are not included in the general
(module independent) set of transformations although it is a
simple task for a designer to add extra transforms to the set.

The following sections describe different portions of the
system. Sections 2 and 3 describe the system inputs, the module
set and the initial description of the algorithm to be implemented.
Section 4 delineates the PMS types which are used to select the
set of transforms discussed in section 5. The cost or gain
achieved by applying a transform is treated in section 6, while
the heuristics which drive the design process are presented in
section 7. Finally, an example problem is given in section 8.
The various sections will be treated by way of examples. The
complete details can be found in [5].

2. A MODULE SET
To lend credibility to the discussion of the system, a

commercially available [6] set of RT level modules, called Register
Transfer Modules (RTMs), will be used as the module set.

The following paragraphs briefly introduces the modules and
discusses the design process using them. A more detailed
description is given in [7]. The flowchart format of the RTM
notation is so transparent, however, that the detailed reference
probably need not be read to understand this one.

101

Control part

entry

Figure 2. An RTM multiplier

erry

Kev(C+-8)

~
Kbr(P(O»

Data part

RTM bus

Mc(8) ===1

DMgpa(C) O! 1 1-' ---,~
Kev(P+-P/2) Kev(P+-(P+MPD)/2)

! ~ ,
Kev(C+-C-l)

!
Kbr(C=O)

n lY
Kbus =-===t

Figure 3. Short hand notation of the RTM multiplier

The RTM set consists of about 35 module types falling into
four classes. Each RTM system is built around a common bus for
facilitating data transfers among the registers of the modules
connected to it. The three types of modules that connect to the
bus are: M's - Memories for holding single bits (Boolean), or 8
-, 12-, or I6-bit integers, and arrays for holding vectors of
integers; T's - transducers for interfacing with the environment
external to RTM (e.g. lights and switches, analog -digital
converters, serial interfaces for teletypes); and DM's -
Data - Memory components to hold data and carry out logical and
arithmetic operations on this data. A fourth type of module, the
K -type, controls the operations in the other three. A network
of K modules is isomorphic to the flowchart of the computational
algorithm that is to be performed, and each individual K module
evokes some operation (s) in the data part of the system
(centered around the bus). The bus has timing interlock signals
to interlock data transfer operations evoked by the K modules.
Multiple buses can be used to increase the performance of a
system.

Figure 2 depicts the RTM implementation of an 8-bit shift
and add multiplier and Fig. 3 the short hand notation for the

Multiplier := (C +-8 ;next
Loop:= ((P(O) =>P +- (P +MPD)/2);

(.. P(O) =>P +-P/2) ;next

);

C +-C -1 ;next
(Cjl:O=>Loop))

Figure 4. The ISP description of the RTM multiplier

C+-8

Loop:=

P<O)=?

P+-(P+MPD)/2

C+-C-I

C=?

Figure 5. The graph model of the multiplier

system. The multiplier is in the P register and the multiplicand is
in the MOP register and is assumed to occupy the leftmost 8 bits
of the register. The product will be in the P register. The
partial products are formed in the left hand side of the P register
and shifted to their appropriate position in the final product after
eight transverses of the loop. The multiplier will be used as an
example for the following discussion.

3. THE GRAPH MODEL
There are five basic types of operations in the graph model

the design automation system uses:
- branch (Kb), activates one of the output paths depending on
Boolean conditions
- serial merge (Ksm), activates its output path when any of the
input signals arrive
- diverge (Kdiv), activates concurrently all paths attached to it
- parallel merge (Kpm.), activates its output path when all its
input signals have arrived
- data operations (other)

The translation process from the input RT language
description (ISP) to the graph model is straightforward and has
been programmed. The ISP for the multiplier is shown in Fig. 4
and the corresponding graph model is depicted in Fig. 5.

The system as implemented treats each node in the graph as
composed of a non -empty sequence of the five operation types.
The only restriction is that nodes must have a unique entry
operation (Ksm, Kpm, or data operation) and a unique exit
operation (Kb, Kdiv, or data operation). In the examples that
follow, we will explicitly show the control operations by drawing
them outside their nodes.

102

._____Pcl
Mp--S ______

Pc2

(a) Model A

_________ Pc1--Mp 1
Mp--S

------Pc2--Mp2

(b) Model B

< Pel
Mp--S

Pc2---Mp2

(c) Model C

Figure 6. PMS types

4. PMS MODULE TYPES
The decision as to whid-, set of transformations should be

used is determined by which PMS types the module set can
emulate.

In model A (Fig. 6.a), each process communicates directly
with a single large main memory. The important feature is that
each process can modify information which is to be used by the
others.

In model B (Fig. 6.b), slave memories (buffers) have been
added to the system. A process can fetch information from main
memory, but any information to be stored is put in its buffer.
The buffer acts as intermediate storage between the process and
the main memory. When a process needs some information it
looks first in the associated buffer to see if the information has
been stored there as a result of a previous computation. If not,
the data is obtained directly from main memory. When both
processes have completed their tasks, the information in the slave
memories is transfered to the appropriate locations in main
memory.

Model C (Fig. 6.c) differs from model B in that only one
slave memory is used. One of the processes (Pel) can fetch and
modify data directly in the main memory. The other process
(Pc2) can only fetch data from main memory and uses Mp2 as a
buffer for partial computations.

From these models the various conditions on the variables
for parallel processing can be developed [8,5]. RTM's
correspond to either model B or C since a process occupies a bus
and two busses cannot share data withoul co -operation between
processes.

5. THE TRANSFORMS
The set of transforms for RTM's will be demonstrated by

example. The full set of transforms is described elsewhere [5].
In general, speed is achieved (at some extra cosl) by increasing
parallelism. Cost is decreased by reducing parallelism. For
purposes of example, suppose that we wanl to increase speed.

103

Figure 7. The parallel computation of nodes D and B,Cl,C2

Figure 8. The parallel computalion of nodes D,E and B,Cl,C2

Consider the multiplier in Fig. 5. The graph model is first
cleanned up by removing no -operalion control nodes (Kpm with
a single inpul for example) which were introduced by the ISP 10
graph model translation.

Associated wilh each node is a, possibly empty, sel of
variables which indicates which variables are used and/or
modified by Ihe operation(s). Node D (C+-C-l) depends on
variable C alone while nodes B, Cl, and C2 depend on P and
MPD. Hence node D can be computed in parallel with nodes B,
Cl, and C2 since they depend on different sets of variables.
This is depicted by the transformed graph in Fig. 7. Note
further thai node E also depends only on variable C. Hence E
could be performed in parallel wilh Bl, Cl, and C2, but it must
follow the computation of D, as shown in Fig. 8.

Sometimes one node may use a variable while anolher uses
and modifies the same variable. The first node can be computed
in parallel with the second if the first node receives its own copy
of the variable before the parallel computalions starls. Copying
the variable takes time and requires exira hardware. By defining
the various ways variables are used it is possible to determine if
a transformation can be applied and how much will be saved or
lost in terms of time and cost as shown in Ihe nexl section.

The transforms are of a general nature in Ihat Ihey apply not
only to individual nodes but to subgraphs of arbitrary complexily.
Each subgraph is also characterized by the variables used and/or
modified by its computations. Methods for forming these
subgraphs and their associated variable sets have been automated
[5] but will not be described here.

6. DESIGN SPACE TRADE -OFFS
Two parameters will be used to describe the design space:

The cost of the hardware involved and the operational time. The
former is obtained by adding the costs of the components used in
both the data and control structures. The lalter is obtained from
the average speed of the operations involved.

For a straight sequence of operations the time required is
the sum of the individual times, Fig. 9.a. In the presence of
concurrent activities, the operation time is that of the longest
(timewise) sequence, Fig. 9.b. When alternative sequences are
initiated as a result of a data dependent decision, the time
required for the execution is not known a priori. In this instance
a worst case situation will be assumed, namely, that the longest
path is the one selected, Fig. 9.c.

T(A)+T(B)
(a) Sequence

Kbr

Ksm

Max(T(A),T(B»
(c) Alternative

sequences

Max(T(A),T(B»
(b) Concurrent

sequences

N*T(A)
(d) Cycles

Figure 9. Time estimation

The presence of cycles (loops) adds some complexity to the
estimation of the operation time. In this case the level of nesting
is assumed to be proportional to the frequency of execution of
the operations. Conceptually this is equivalent to replacing the
cycle by a sequence of mUltiple copies of the individual
operations. Since the number of times a loop is executed (i.e.
the number of copies) is usually unknown, a default (2) is
assumed. This default may be overruled by the designer by
specifying an estimate Ipop count. Fig. 9.d.

Having defined the parameters of the design space we can
now describe the trade -ofts involved in the transformation rules.
Connectivity and data dependency are used in the system to
indicate the feasibility of a transformation. Feasible
transformations, however, do not imply necessarily any
advantage in their application, and the desirability of such a
transformation is indicated by a different set of conditions.

Fig. 10 shows the effect of one of the transformations, rule
SP. Node Xl is required to copy to local memory those variables
used by node (subgraph) B in its computation according to PMS
types Band C. Likewise the two X2 nodes are required so that
all the variables transformed by nodes A and B are available to

Figure 10. Rule Serial to Parallel (SP)

any of the n paths originally following node B. The trade -offs
are:
TIME: Original T(A)+T(B)

new T(Xl) +T(X2) +MAX(T(A),T(B»
gain T(A) +T(B) -T(X1) -T(X2) -Max(T(A),T(B»

COST: Original C(A)+C(B)
new C(X1) +n.C(X2) +C(A) +C(B) +o<:.C(Bus)
extra C(X1) +n.C(X2) +o<:.C(Bus)

Where 0<: =0 or 1, depending on the availability (e.g. idle) in the
current version of the system of a bus that could be used by B.

In the case of rule SP the concurrent computation of A and B
may not bring about a reduction in time: The transfer operations
Xl and X2, used to load and unload variables to and from the
different busses, take a non -zero amount of time. If the number
of variables transfered is large, this overhead may cancel any
gains obtained from the concurrent computation of A and B. The
bus required to execute B mayor may not be already present in
the system. If it is available (0<: =0) then it can be shared at no
extra cost.

Desirability conditions for other transformations are
described in [5]. They can be used to eliminate those (feasible)
transformations where they do not produce the desired savings
(in cost or time) or where the gain is below a designer specified
threshold.

7. HEURISTICS
Due to the interaction between transformations it is a difficult

task to formalize the optimization (improvement of alternative
structures) as a mathematical optimization problem. The main
difficulty is the fact that transformations apply to subgraphs of
arbitrary size, and as a consequence transformations in a given
alternative structure mayor may not be feasible or desirable in
structures derived from it. It is also the case that new cases of
transformations become feasible or desirable only after a specific
sequence of transformations has been applied.

The design space is represented by a time/cost diagram.
Alternative structures are represented by points in the diagram.
Except for the original solution, all points are derived, by
transformations, from other points in the space. These
relationships will be made explicit by drawing vectors from the
parent nodes to their immediate (i.e. one transform removed)
descendents.

104

The exploration of the design space in our system is
performed by a group of heuristic routines that produce
alternative designs in a goal oriented fashion, the goal being
specified by the designer. Ideally, the goal is to find an
alternative structure whose position in the design space is as
close as possible to the origin (0 cost and 0 time). This ideal
case is, however, not easily found in real solutions. The usual
case is that the least expensive solution is not the fastest and
vice versa. This characteristic provides a rough classification of
the design objectives into two classes: minimal cost and minimal
time.

Although a designer's aim can be classified according to
these objective functions it may be the case that the real
objective is more complicated in nature, namely, some
combination of time and cost. For instance, the objective could
be something like: "the fastest alternative structure not costing
more than x dollars".

For simplicity, the subspace of acceptable solutions will be
defined by a set of straight line segments whose slopes reflect
the objective functions. In the example above a single straight
line, parallel to the cost axis would be used to divide the space in
two halves. Only those solutions that lie in the semispace
containing the origin are considered acceptable. These solutions

$ ~ C

~
~-
~-

.~ -------------
$1.

Tl

Figure 11. Design space reduction

D

represent improvements along the design goal.

B

T

More complex constraints can be described by using lines of
the form S = -m.T +b, where m is a parameter indicating how
many dollars the designer is willing to pay for each time unit
saved (if time is the primary goal) or how many time units the
designer is willing to sacrifice for each dollar saved (is cost is the
objective). An example, Fig. 11, will clarify this description.

Assume that the primary objective is a reduction in time, and
that the designer wants a time/cost trade -off of at most m
dollars for each time unit improvement. Furthermore, assume
that the original design is characterized by S1 and Tl. The
"acceptable trade -off" subspace would thus be delineated by
two line segments: one parallel to the 'Cost axis starting from
(T1,S!) to (Tl,O), and.the other through (Tl,U) with slope -m.
By studying the control flow and data dependencies in this
original structure, four transformations are available which yield
four alternative solutions derived from the original one: A,B,C,D.

By dividing the space according to the trade -off lines,
alternatives 8, C, and D can be rejected because their
characteristics are not within the acceptable subspace (i.e. they
take more time or the decrease in time oosts too much). The
alternative left, A, represents improvement in time while the cost
to achieve the improvement is under the designer's threshold.

Start

M[I] +-M[I]-1

Eject.flag +-1

Advance?

M[64] +-M[64] -1 ;next
M[64] = 64 ?

M[64] +-127

T +-M[64]next
M[T] +-Item.number ;next
1+-1

Bin +-i ;next
Bin = M[T] 'l

M[I] = 0 ?

Full.bin +-1 ;neict
M[O] +-M[O] + 1 ;next
M[0]=30?

Over.30 +-1

T +-T + 1 ;next
T = 128 ?

T+-65

I+-I + 1 ;next
I = 64 ?

Figure 12. Controller for a conveyor - bin system

The process can now be applied to A in an identical manner.
Design A is taken as the new initial solution and a new
"acceptable trade-off" subspace is defined by a line segment
(T2,S2) to (T2,O) and a line with slope -m through (T2,S2).
Since in some cases more than one alternative can be left for
further exploration, this process takes the form of a tree walk
where the nodes represent alternative solutions and the edges
are the transformations applied. In some instances, identical
structures can be obtained by different sequences 9f
transformations and the exploration of the design space is a
graph walking process. In any event, a path ends when no
alternative solutions worth exploring can be reached from a given
point. When all possible paths have been explored the end nodes
are measured Ilgainst the primary objective and the- best one
chosen.

8. A CONTROLLER FOR A CONVEYOR - BIN SYSTEM
The following example is taken from [7]. Briefly, the

algorithm performs the controlling function for a conveyor
carrying items to be sorted into bins.

The algorithm is described in ~SP and its graph m&deI~s
shown in Fig. 12. Notice that in this example the node9
corresponcl-te- sequences of one or more operations.

105

$(x 1000)

3
2.5

2.0

1.5

o

3.0 3.5 T(ms) 4.0

Figure 13. Design space exploration

Several alternative implementations can be derived from this
example. They are rather simplistic due to the compactness of
the algorithm, but they are nevertheless appropriate to show the
design space and its exploration, Fig. 13. First, assume that the
fastest solution is sought. All the applicabie transformations deal
with the increment and testing of variables T and I (nodes 11,12,
and 13 of the flowchart), and their concurrent execution with the
main computation (nodes 5,6,7,8,9, and 10).

The best solution (timewise) is given by point 4 in the
design space. In this solution, the main body of the algorithm
(5,6,7,8,9,10) is computed in parallel with the increment and
testing subprocess (11,12,13) as a whole. Other alternative
points are also shown in the diagram (points 1,2,3,5,6). Several
things can be noticed in the design space diagram; for instance,
point 2, the parallel computation of (5,6,7,8,9,10), (11,12), and
(13) is reached in two ways: First, (5,6,7,8,9,10,11,12) is
performed in parallel with P 3), point 1, and then the larger
computation is performed as (5,6,7,8,9,10) in parallel with
(11,12). The other way of reaching point 2 is by computing
(5,6,7,8,9,10) in parallel with (11,12,13), point 4, and then
transforming the smaller subgraph into (11,12) in parallel with
(13). Notice furthermore, that points 2 and 4 present the same
time value. The system uses the distance to the origin as a tie
breaker parameter.

The 'same example was also processed with the constrains
that 1) No more than 3 cost units (dollars) were to be added for
each time unit (1 microsecond) of speed - up, and 2) The time
should be no greater than the initial solution. With these
constrains, the system rejected point 5 for not having the proper
trade -off with respect to its predecessor. It is interesting to
see that point 3, which could be reached from 1 and 5 under the
unlimited cost constraint, can only be reached from 1 (since 5
was rejected, it successors were not obtained). A similar
situation is present at point 2, with respect to points 1 and 4.
The interesting detail is that, 2, when reached from 1 is accepted
since the trade -off involved is below the threshold. When 2 is
reached from 4, it is rejected since the trade -off involved is
beyond the threshold.

106

9. CONCLUSIONS
The purpose of this paper is to describe the development of

an automated method for designing digital systems at the RT level.
The designed system is optimized along a set of designer
constraints. The primary result is a system that translates an
initial behavioral description of a digital system into alternative
structural specifications from which it can be built. For
simplicity, the structural specifications are given in terms of a
specific set of building blocks, the RTM set.

Due to space limitations, it is impossible to provide in a
paper of this nature any detailed description of the system as
implemented, and therefore we have tried to point out in general
terms what its capabilities are.

The system is a research tool and its implementation allows it
to be used either as a closed system, in which the user only
specifies an initial description and a set of constraints and goals,
upon which the system performs an automatic design space
exploration; or, as an interactive facility, driven by a command
language that allows the user to exercise any function of the
system from a time -sharing terminal.

A system of this nature pl'esents limitations as to the degree
of "optimization" it can perform. It is not expected to obtain
solutions that are radically different from the one specified by the
user. Hence, its use is more likely to be as part of a design
cycle, in which the user presents an initial description which is
processed by the system; the result of this is an exploration of
the design space around such initial solution; this exploration can
suggest to the user modifications to his behavioral specifications;
this modified specifications are then fed back into the system and
the process starts again.

REFERENCES
[1] Breuer, M.A.:" Recent developments in the Automated Design

and Analysis of Digital Systems". IEEE Proceedings, Vol.
60, No.1, January 1972, pp. 12:27.

[2] Darringer, J.A.: "The Description, Simulation, and Automatic
Implementation of Digital Computer Processors". PhD
thesis, EE Department, Carnegie -Mellon University, May
1969.

[3] Friedman, T.D. and Yang, S.: "Methods used in the
Automatic Logic Design Generator (ALERT)". IEEE - TC,
Vol. C-18, No.7, July 1969, pp. 593:614.

[4] Bell, C.G. and Newell, A.: "Computer Structures: Readings
and Examples". McGraw Hill Book Company, New York,
1971.

[5] Barbacci, M.R.: "A Register Transfer Automatic Design
System". PhD thesis, CS Department, Carnegie -Mellon

University, December 1973.
[6) Digital Equipment Corporation: "PDPI6 Computer Design

Handbook". 1971.
[7] Bell, C.G., Grason, J., and Newell, A.: "Designing Computers

and Digital Systems". Digital Press, Digital Equipment
Corporation,1972.

[8] Bernstein, A.J.: "Analysis of Programs for Parallel
Processing". IEEE - TEC, Vol. EC -15, No.5, October
1966, pp. 757:763.

IMPLEMENTATION ASPECTS OF THE
SYMBOL HARDWARE COMPILER

T. A. Laliotis
Fairchild Systems

Palo Alto, California

ABSTRACT

One of the most outstanding features of the SYMBOL com
puter is its high level hardware compiler. This paper
presents some aspects of the hardware implementation
including the network characteristics of the communi
cation scheme between compiler, system supervisor, and
Memory Controller, the functional breakdown into
distinct sections for implementation, the support hard
ware (registers, tables, etc.,), the Name Table
structure, and some of the linking techniques for the
structured output of the compiler.

1. INTRODUCTION

The main objectives and goals of the SYMBOL research
project [1,2,4J were to demonstrate the reduction of
the total costs of data processing by revising the
designer's approach on the following key items:

a. Hardware/Software boundaries
b. System Architecture
c. System Packaging

The hardware compiler is one of the best examples for
demonstrating items (a) and (b) above because, first,
it was implemented totally in hardware thus representing
a 100% departure from the classical approach of totally
software compilers and second, the language used (the
"SYMBOL" language) [3J broke all barriers of traditional
restrictions for compatibility with existing languages.
The SYMBOL SYSTEM consists of the following eight
specialized processors which operate automously but are
linked together via the main data and communication bus:
the System Supervisor (8S), the Memory Controller (MC),
the Compiler (Translator) (TR) , the Central Processor
(CP), the Channel Controller (CC), the Input Processor
(IP) , the Disc Channel Controller (DC), and the Memory
Reclaimer (MR).

The Compiler takes as its input a program written in
the high level procedural "SYMBOL" language. The
program has been deposited in the Memory by the IP.
The Compiler then generates a reverse polish object
string and a multi-level block structured name table
suitable for execution by the Central Processor. In
the process of doing this, the Compiler uses a small
table of Reserved Words (about 100) which are kept in
the non-pageable portion of main memory and a library
of call-by-name system procedures stored in the pageable
portion of main or bulk memory. The compiler manages
its own communications with the Memory Controller and
the System Supervisor. All of the above objectives are
accomplished totally in hardware.

II. COMPILER OVERVIEW

Basically, the Compiler can be thought of as a network
in conjunction with the System Supervisor (SS) and the
Memory Controller (MC). See Figure 1. For reasons of
compatibility with previous SYMBOL references, the

compiler will hereafter be referred to as the
Translator (TR). Each mode of communication will be
discussed in detail later.

Figure l. 55, TR, and MC Corr'lIunication

OTHER
PROCESSORS

The overall block diagram of the Translator and its
parts of communication with the SS and MC are shown on
Figure 2. As indicated there, the TR picks up its in
put (source program) from some location in storage
called TWA (Transient Working Area) and deposits its
two structured outputs (Object Code and Program Name
Table) in other locations of storage. It also com
municates with the SS which maintains the Terminal
Control Headers, the Task Assignment Queues, the Page
Out Queues, and handles the Error and Interrupt
analysis.

From the standpoint of hardware implementation, the TR
is divided into three major sections as shown in
Figure 2: the Object Code section, the Name Table
section, and the Support Hardware section. Only the
Name Table and Support Hardware sections will be dealt
with in this paper. From the functional standpoint,
only one of the three sections can be active at a time.
Either one of the two logic sections (Object or Name
Table) can request action by the Support Hardware but
once the Support section has been activated, the logic
section that requested the action freezes until the end
of the Support activity at which time it continues on.
During compilation, the operation of the two logic
sections is a Ping-Pong-like action. The Object
section processes all non-literal single characters
(delimiters) and structured alphanumeric data until it
comes to a blank space followed by a letter; this could
be either a Reserved Word or an identifier. At that
point it turns control over to the Name Table section.
The Name Table section resolves the name and gives
control back to the Object section for processing.
Thus, the control bounces back and forth between the
two sections until the end of the source program. At
that time the Name Table section takes over and per
forms the resolution and linking of all identifiers
(Global Linking).

III. SUPPORT HARDWARE

A. TR-SS COMMUNICATION

TR-SS Communication takes place during Control Exchange
Cycles (CEe). During a CEC, a certain allocation of
bus lines is used for communicating information between
the eight processors in the system.

The process of compiling a job begins at the end of the
Load Mode administered by the IP. At that time the
Input Processor (IP) notifies the System Supervisor (SS)
during a CEC, that it has finished inputing a program,
the SS then puts that program (job) at the bottom of
the Translator queue and also initializes the Terminal
Header Control Words [5J with the appropriate pointers
to the beginning address of the source code and to the
beginning address of the object code which is to be

111

SYSTEM ~. SUPERVISOR

Maintains task' queues
Maintains paging queues
Services completion codes
Issues interrupts
Maintains tenninal headers

:

OBJECT COOE
SECTION

--

TRANSLATOR

SUPPORI HARDWARE SECTION NAME TABLE
SECTION

I SS I V>"' n_ _L '<-~oQ.
14-i----toll COJIIJIUni cati on"II4-----+.. CA 0 O":::::s I'D ",0-(11::::1

Interface ~ ~!! q ~
~ c-. 1 ,- "'0' n ... ·

"'.::1 I'D C'+I'D
C7'~-SUiUl ., ;
"'::::I O"t:"::;ICI ...-__JI'--.., ~ ~ E!1 a ~

HI L !II co I'D

.. cornnu~~cation~ hB
Interface TR r- '" M z 0.

Registers ~ ~ j ~ no. 0. ,.. '" , ill·

• MEMORY CONTROLLER I
. ;

TR Task Queue r---------~~WL-------r~U~L, Object Code Name Table TWA • I
I BlockJ/lt A(8)~25 ~~' C4 00 00 00 00 00 XX XX - BSCW I A+ 125 1; I
I ® 41 00 00 00 00 00 00 00 - A. I B+124;

B ~ 24 ~ ~ i 80 00 XX XX 00 00 00 00 - ICW C+A+B; I
I C ® A ® B ® + + ; 42 00 00 00 00 00 00 00 - B I Output e;
I Outn.,+ e ® ' 80 00 XX XX 00 00 00 00 - lew I End I

""-'""'IlL' 43 00 00 00 00 00 00 00 - e
I f!!.!! AD 00 XX XX 00 00 00 00 - BEeW I I

Part of Non-pageable Memory PAGEABlE MAIN MEMORY

Figure 2. Overall Block Dilgram of Translator

generated by the TR.

When the job percolates up to the top of the TR queue,
the SS initiates a Control Exchange Cycle and sends a
start command to the Translator over the control bus
along with the Terminal (user) number of the Terminal
that inputed the job.

At this point, the Translator becomes activated, looks
at the terminal number, and begins work on the job by
first fetching the Terminal Header Control Words to
find its pointers. The Translator is now on its own
and, from this point on, it can be stopped only by the
occurrence of one of the following conditions: SS
Interrupt, Program Trap, Page Out, Program Error, and
Completion of Task.

In each one of these cases, the TR saves its status in
the appropriate terminal header control words,
initiates a CEC, and transmits a completion code to
the SS during the CEC. The SS analyzes the code and
takes the appropriate action. Specifically, in the
case of Program Error, the TR saves enough information
so that the SS under system control will print out at
the user's terminal the type and location of the
syntax error. In the.case of a Page Out, both SS and
TR sense the Page Out from the Memory Controller (Me).
The TR starts its shutdown procedure, the SS performs
some housekeeping for the TR Page Out but does not
wait for the TR completion code. It goes on with
whatever other tasks it may have in its queue until a
Page Out completion is received from the TR. The page
is then put on the paging queue, the Terminal Header
Control Work (THCW) of the task is marked to indicate
waiting for a page and the job is put on the bottom of
the TR queue. Another task is now assigned to the TR.
When the page has been brought in by the MC, the THCW
is marked to indicate that the page is now in. The
next time the task percolates up to the top of the TR
queue again, the SS restarts the TR on that job. The
TR, during its shutdown process, saves the following
information: Name Register, Stack Register, Object
Register, All Address Registers, Phase Counter Status,
all pertinent flags, and source character pointer.

B. TR-MC COMMUNICATION

The SYMBOL system features a Dynamic Memory Management
capability via the Memory Controller which allocates
memory space on demand, performs address arithmetic,
and manages the associative memory needed for paging in
its virtual memory environment.

The Translator is one of the heaviest users of Memory.
Besides its input-output interaction with memory (fetch
source program, store object string, and name table),
it performs many searching operations. For every
English word that appears in the source program, the
Reserved Word Table (RWT) has to be searched. If it is
not found in the RWT, the current block of the Name
Table has to be searched. At the end of the program
the entire Name Table has to be searched again for
Global Name resolution and linking, procedure call
handling, and system name resolution. Thus, to avoid
situations where the TR would tie up the memory during
long searches, the TR was given a relatively low memory
access priority (fourth priority out of five; after SS,
IP, CP, but before MR).

112

Figure 3 shows the TR-MC communication in a block
diagram form. Typically, a phase of a particular Task
Phase Counter requests a memory cycle by raising the
MOP (0-3) lines and holds at that phase. The Memory
Communication Interface Section takes over. It puts
out TR's Memory request line (MP4). When the Memory is
free and there is no higher priority request, it puts
the command on the bus and unloads the registers. A
few clocks later, the MC returns a completion code
during a CEC. If the Memory operation was successful,
the TR loads its Registers from the main bus during the
clock time following the CEC and the advance signal
(MOONE) is issued to allow the logic phase counter to
move on to the next phase.

If a page out completion was returned, the MOONE signal
is not issued. Thus, the logic phase counter freezes
and the shutdown routine takes over and saves the TR
status, including the state of the phase counter.

During the period between cycle granting and
completion code return, from the MC, the main bus can
be used by the CP on a cycle-stealing basis for intra
CP data communication between the various sub-units of
the CP (Instruction Sequencer, Arithmetic Processor,
Reference Processor, and Format Processor).

Jp 0-3)

MOONE 000
~01

011

O!O

· · · y
TASK PHASE

COUNTER

MAIN BUS

DATA AND
ADDRESSES

MC(0-3)

~igure 3. MC Communication Interface

C. TR REGISTERS

MP4

The TR utilizes four Data Registers and eight Address
Registers. See Figure 4. One of the basic functions
of the TR is character processing (full word = 64 bits,
one character = 8 bits). For this reason, the four Dat
Data Registers (Source, Name, Object, and Stack) have
very flexible single character control as well as f~ll
word capability. Each Register has different capab11-
ities depending upon the function it performs. The
Source Register is used to fetch and hold the current
word of the source program under compilation. It gets
loaded in the full word parallel mode from the Main
Data Bus, but it only outputs a single 8-bit character
at a time for decoding and interpretation. The Name
Register is a working register used for building and
holding identifiers currently under consideration for
or from the Name Table. It is the most versatile
Register because it has both single character and full
word capability in both its input and output. The
Object Register is used to hold the Object code
generated by the TR and store it in Memory. It needs
only single character input capability but full wor~
output capability. The Stack Register, used for ma1n
taining and manipulating the stack, also has both
character and word capability for input and output.

Typically, each Data Register is associated with a
three-bit counter and a three-bit register to achieve
character control. The three-bit register is referred
to as the pointer. It gets loaded in parallel and it

MAIN BUS

FI gure 4. TR Regi sters

CHARACTER PROCESSING
AND

CONTROL

points to one of the eight characters in the Data
Register for reference reasons. The three-bit counter
is an up-down counter with parallel loading capability.
It usually gets loaded in parallel from the pointer
register. Thereafter, it responds to count-up or
count-down (forward/backward) commands. The eight
decoded states of the counter combined with the Read/
Write command provide the selection signals for
character selection in the Data Registers.

The eight Address Registers are named Address Register
I through Address Register 8 (AREGI-AREG8). Each AREG
consists of 24 bits. All eight registers communicate
with the Memory. However, AREGI-AREG4 also communicate
with the left half of the Data Registers (characters 2,
3, 4) and AREGS-AREG8 also communicate with the right
half of the Data Register.

IV. NAME TABLE SECTION

Most compiler systems do not use a separate name table.
Address references to data space are contained in the
program string.

One of the most distinguishing features of the SYMBOL
compiler is the use of a separate Name Table during
execution. In this way, the program string contains
only references to the Name Table entry which, in turn,
contains all the pertinent information and pointers,
for the NAME. Any future change in the parameters will
affect only the Name Table entry.

A. NAME TABLE CONSTRUCTION

Control is given to the Name Table logic by the Object
logic section with the source register pointer pointing
to the first character of the potential identifier.
The Name Table logic starts searching the Reserved Word
Table (RWT). If a match occurs, it puts the code on
the bus and turns control back to the Object Section
for processing the Code. If there is no match in the
RWT, it determines the boundaries of the current word
by searching and locating the next delimiter in the
source string. Now, having the exact size of the
identifier, it starts searching the current Name Table
block. If a match occurs there, it puts the address of
its Control Word on the appropriate Address Register
and gives Control to the Object Section for processing.
If no match occurs in the current block, the identifier
is co~sidered as local (by default) and it gets
inserted at the bottom of the Name Table. Its Control
Word is created in the next assigned memory location,
and the address of the Control Word is placed in the
appropriate Address Register. Control is now given
back to the Object Section.

Go to
Object section

Go to
Object section

Go to
Object secti on

Figure 5. Name Table Construction Flow Diagram

113

Figure 5 shows the overall flow diagram of Name Table
construction. The Name Table consists of one or more
blocks that can be nested as shown in Figure 6. There
is no hardware limit to the degree of~nesting even
though Global declarations carry identifiers up only
one block level.

...-----A

Figure 6. Block Structure of Name Table

B. BLOCK ORGANIZATION

The basic scheme of block organization is shown in
F,igure 7. There is a Block Start Control Word at the
beginning of each block that contains linking and
status information concerning the whole block. The
body of the Block consists of VFL identifiers followed
by their Control Words. The Control Word of the last
identifier is properly marked to signify the end of
the block. Figure 8 shows the block linking
for the block structure of Figure 6. Thus, the
Forward Link threads all blocks in the program,
starting with the outermost block. This link is fol
lowed during the Global Linking phase in order to go
through every block in the program and make sure that
all identifiers are resolved as either being local to
the block or global to the enclosing block or to the
system (as in procedure calls, etc.). The Back Link
is followed again during Global Linking to search
enclosing blocks. From the outermost block there is
an automatic exit to the System Name Table if there
is a possibility for the identifier to be System
procedure.

The basic search mechanism, from the hardware stand
point, uses two data registers and two address reg
isters. One data register holds the name under con
sideration and the other holds the current name of
the block being searched. A character-by-character
comparison is administered until either a mismatch

o
Flags

Flags

· · ·

Forward
Link

Link*

64

Identifi ers followed .by control words

* Link varies with the type of identifier

Block Start
Control Word

VFL Identifi er

Identif; er
Control Word

Block End
Contra 1 Word

Figure 7. Name Table Block Organization

occurs or the Control Word of one identifier is
reached. This means that the comparison has failed.
If the Control Words of both identifiers are found
simultaneously, then the comparison is successful and
the appropriate linking occurs. The Address Registers
are used in conjunction with a memory command (fetch
and follow, follow and fetch, Store and Assign, etc.)
when crossing a word boundary to fetch the next word
or to store the Control Word back in memory after
linking.

(Before Block D has occurred)

Figure B. Block Linking Method for the Block Structure of Figure 6.

V. RESERVED WORD TABLE

The Reserved Word Table is a list of the words used in
the internal character set as part of the SYMBOL lan
guage syntax. The table is stored in an area of the
memory which is non-pageable but enjoys the automatic
incrementing and link following capabilities of the
MC in order to facilitate searching. The list is
arranged alphabetically. Each Reserved Word occupies
as many Memory words as needed.

The code for each RW is stored in the last character
of the last memory word occupied by the RW. Thus, in
the case of ABSOLUTE, as shown in Figure 9, the code
99 had to go in the next Memory Word. The address of
the first word in the list of the RWT for each letter
of the alphabet is kept in a link table that occupies
the first four words of the first group of the page
that holds the RWT. The table, as shown in Figure 9,
is arranged so that the address of the link for each
letter is directly related to the code for that letter.
Thus, a portion of the code of the word's initial
letter is used directly as the address to fetch the
link of the first word in the RWT.

Word 0

Word 1

Word 2

Word 3

H
p

X

A B
I J

Q R

Y Z

C

K

5

0 E F G

L M N 0

T U V W

A B S 0 L U T E

@

A F T E R @
A N 0 @

B E F 0 R E @

B L 0 C K @

B Y @)

Part of Group 0

} -"V-,--~

Character.. 0 I 2 3 4 5 6 7

Figure 9. Reserved Word Table Organization and Linking

114

The code for letter A, for example, is /41 ~ 01000001.
Thus, by using the last three bits (001) we can
address directly the link for letter A which is stored
at character 1 of word O. This link will now point us
to the address of the first word of the RWT that
begins with A. Now we begin comparing the source pro
gram word with the RWT. If a mismatch occurs or if we
reach the RW code before the end of the source word,
we move on to the next RW. If the first character in
the next word fails to match, then we have exceeded
the list for the particular letter. Therefore, the
source word under consideration is not a Reserved
Word.

VI. SYSTEM LIBRARY

The system library consists of two parts: the System
Name Table, which serves as an index to the system
programs, and the system programs themselves.

A system name (System Procedure) is the name of a pro
gram stored in memory as part of the system library
that contains frequently used programs and service
programs. There are two types of system library
programs:

A. Restricted System Programs (RSP)

A restricted system program can only be called
(used) by privileged users. A privileged user is
either a privileged terminal or a privileged
system program.

B. Nonrestricted System Programs (NSP)

Non restricted system programs consist of two
types: Privileged System Programs (PSP) and
Common System Programs (CSP).

The System Name Table consists of program names
(identifiers) in the VFL form followed by one control
word. The control word holds the address that points
to the system program somewhere in core and also dis
plays information about the type of system program
(RSP, PSP, CSP) and the status of the Name Table at
that point (Table Start, Table End).

There are two different Name Tables, one for the RSP
and one for the NSP. The two main reasons for the two
different tables are: flexibility of library manipu
lation and speed-up of search.

The address of the beginning of these tables is held
in the Header area of the terminals (CH2). Thus, pos-

Restricted
System Programs

(RSP)

System library

Privileged
System Programs

(PSP)

Nonrestri cted
System Programs (Nt

Common
System Programs

(CSP)

Figure 10. System Library Organization

sibly, although not necessarily, each terminal could
have its own library or have no access to system
library at all or a group of terminals could have the
same library. This type of arrangement is primarily
aimed at keeping the system library, or parts of it,
out of the reach of unskilled users or users who have
no need for it. It is not intended that each terminal
have its own library because there will be a fair
number of system programs that will be needed by many
terminals. Repetition of these program names in every
terminal's library will use up too much space in memory.

Referring to Figure 10 which shows the system library
structure, the following observations can be made:

VII.

nonrestricted system programs (NSP) may be called
by any user (terminal or a program);

restricted system programs (RSP) may be called
only by privileged users;

privileged users are a privileged system terminal
or a privileged system program;

an RSP or a PSP can call any other RSP or NSP;

a CSP can only call a PSP or another CSP.

CONCLUSION

Even though a microprogram based hardware compiler
would have given the system greater flexibility, the
present compiler has proven that a hardware compiler
was not only possible but also reasonably successful
even with the technologies of the late 1960s. The
software empire which grew so big so quickly in the
last decade, was, for the first time, seriously
assaulted by the SYMBOL compiler.

SYMBOL was meant to be an experimental machine. There
are many approaches that a designer can take in
implementing a hardware compiler. The SYMBOL compiler
represents only one approach which in totality mayor
may not necessarily be the ultimate in efficiency.
However, some of the algorithms developed and proven
will continue to form the guidelines for some time to
come.

REFERENCES

1. SYMBOL: A Major Departure From Classic Software
Dominated von Neumann Computing Systems, R. Rice,
W. R. Smith, Proceedings SJCC 1971.
2. SYMBOL: A Large Experimental System Exploring
Major Hardware Replacement of Software, W. R. Smith,
R. Rice, G. D. Chesley, T. A. Laliotis,
S. F. Lundstrom, M. A. Calhoun, L. D. Gerould,
T. G. Cook, Proceedings SJCC 1971.
3. The Hardware-Implemented High-Level Machine
Language for SYMBOL, G. D. Chesley, W~ R. Smith,
Proceedings SJCC 1971.

115

4. The Physical Attributes and Testing Aspects of the
SYMBOL System, B. E. Cowart, R. Rice, S. F. Lundstrom,
Proceedings SJCC 1971.
5. System Supervision Algorithms for the SYMBOL
Computer, William R. Smith, Digest COMPCON 72.

THE ARCHITECTURE OF CASSM: A
CELLULAR SYSTEM FOR

NON-NUMERIC PROCESSING

George P. Copeland, Jr.
G. J. Lipovski

Stanley Y. W. Su
University of Florida

ABSTRACT

This paper presents the architecture of a context
addressed cellular system for non-numeric information
processing, using an inexpensive, large-capacity
circulating memory device. The system allows data to
be represented in a structure very close to the form as
the user perceives it (information structure) and allows
the search operations of high level queries to be
implemented directly. The information structures
currently used in existing information systems are
described. Then the architecture of the system as a
whole is presented, as well as the implementation of
these information structures as basic data types and
hardware management of storage allocation and garbage
collection.

The paper intends to demonstrate that distributing
intelligence throughout a rotating memory device can
decrease the time required for search operations in
large data bases. And that the search strategy and
storage management functions can be efficiently carried
out in hardware, greatly simplifying the software of
information systems. Thus, data not only becomes faster
but easier to access, verify, insert and delete.

1. INTRODUCTION

Most existing information systems are implemented
on general purpose von Neumann type computers. Von
Neumann processors have serious inherent limitations
when they are applied in non-numeric information pro
cessing. We shall discuss some of the limitations with
respect to both retrieval language and storage of data
in information systems.

Due to the serial nature of von Neumann processors,
the time required to access a data item if nothing is
known concerning its physical location varies linearly
with the size of the data base. In order to minimize
this access time, the information structure (structure
of data as the user perceives it) is transformed into
a data structure designed for efficient access on von
Neumann processors. The data structure is then mapped
into a machine dependent storage structure. These
three levels of data representation are found to be
essential in the design of a file system using von
Neumann processors (Wang and Lum 1971). The inter
mediate access path level introduces complexities in
both the storage of data and the retrieval language.
Since the information structure and data structures
a·re usually quite different, the storage structure
does not closely resemble the format of data as the
user perceives it. Also, complicated procedural steps
are introduced which are basic operations of von Neumann
processors rather than basic operations of the high

121

level language of the user. These additional structures
and procedural steps are both greatly complicated by
the need to schedule paging of large amounts of in
formation between discs (where the data base must be
stored) and the primary memory of the processor. It
is now widely accepted that provisions for isolating
the user from the data and storage structure levels is
one of the major objectives of a data base system
(CODASYL report 1971a-b, Engles 1970, and Guide/Share
report 1971). However, this has proven to be a very
difficult and expensive task in software. This paper
presents a hardware solution to these basic problems.
The following paragraphs indicate the approach we have
taken.

If all operations on the data base are done directly
in (fixed head) disc memory where the entire data base
1s stored, then the excessive paging is eliminated,
Also, parallelism is used to make the time to search
the data base independent of the data base size. This
eliminates the need for an intermediate access path
level, because the entire data base is searched by
hardware for each search instruction. Thus, the
parallelism inherent in high level retrieval languages
can be implemented without the need to translate the
specification of what is desired by the user into
complicated procedural steps. Data can be stored in a
format which is very close to the user's information
structure, removing the data representation at the
access path level from the task of data definition by
the user.

The idea of using distributed intelligence in
inexpensive, large capacity, circulating memory devices
has evolved slowly. Partially associative devices have
been suggested (Hollander 1956, Parker 1971, Minsky
1972). They allow name-value pairs as the basic data
type and allow only the name part to be searched.
Content associative devices (Fuller et.al. 1965,
Parhami 1972) allow the value part to be searched also.
String, substring and template searches have been
examined (Healy et.al. 1972) on a context addressed
disc. The context-addressed, segment-sequential memory
(CASSM) described here offers several advantages over
these devices. It allows widely used information
structures (such as trees, sets, graphs and relational
tables) to be implemented as basic data types of the
machine. Also, the task of storage allocation and
garbage collection is taken over by hardware. A more
detailed discussion of software advanta~es and con
siderations is given in Su et.al. (1973)

In section 2 we describe the various information
structures widely used in non-numeric processing. In
section 3, the hardware of the CASSM which implements
these high level data types and automatic storage
allocation and garbage collection is presented. A

summary and conclusions are given at the end.

2. INFORMATION STRUCTURES OF NON-NUMERIC PROCESSING

In non-numeric processing, several information
structures have become useful in representing in~
formation. They are the directed graph or network model
(CODASYL 1971a), the relational model (Codd 1970, 1971)
and the tree or hierarchical structure, which is
commonly used in data processing systems. Information
is represented in each of these structures in general
as a set (record) of attribute-value pairs in each node
or table entry. These are called information structures
because the user views his data as being displayed most
naturally in these structures, and because operations of
his data involve specifying parameters that are also
parameters of the structures.

In order to see more concretely which operations
are performed on these information structures, let us
examine an example inventory file taken from J.C. Date
(1972) in his tutorial description of Codd's work on
relational files. The logical relations among the
data fields in the file can be represented by a tree
structure as well as by a network structure. They can
also be represented by E.F. Codd's (1970) normalized
relational form involving three relational tables as
in Figure 1. The tables show a many-to-many mapping
of suppliers and parts (each supplier supplies many
parts and each part is supplied by many suppliers).
Each table defines a relation with the domains of the
relation shown as the headings of the columns. Each
row contains a set of attribute (name)-value pairs,
where the attributes are listed as domain headings. In
the example, Date shows four possible queries to be
satisfied:

(a) find part numbers for parts supplied by.supplier 2;
(b) find part names for parts supplied by supplier 2;
(c) find supplier numbers and status for suppliers in

London;
(d) for each part find part number and names of all

cities from which the part may be obtained.

In Figure 1, the supplier-part (Sp) table shows
how the many-to-many mapping is handled in the re
lational model using redundant data values to link
tables by contents rather than by addresses. If the
user is supplied with the skeletal description of the
table arrangement as in Figure 2, he may specify each
of the above queries in a non-procedural, calculus
type statement similar to that developed by Codd (1971)
and given in Date:

(a) SP.P# : SP.S# = 2
(b) P.PNAME : 3SP«P.P# = sp.plI) " (SP.sl}
(c) s.slI, S.STATUS : S.CITY = 'LONDON'
(d) P.U, S.CITY : 3SP«P.P/I = SP.pl}) "

(S.s/I = SP.sf}», ¥P.PII.

2»

The data items in the above statements are spe
cified by qualified names as those used in COBOL and
PL/l. The expression on the left of the colon specifies
what is to be retrieved and the expression on the right
is a qualification. For example, the first statement
is a query for retrieving all part numbers (P/I)
supplied by supplier number 2 (S/I=2).

This same inventory file can be put into a hier
archical form in which suppliers are superior to parts
as in Figure 3. If the user is given the skeletal
description of the file as in Figure 4, he may express
each of the queries in a non-procedural, calculus type
statement as follows:

(a) S.P.P# : S.S# = 2
(b) S.P.PNAME : s.sft = 2
(c) S.(S#, STATUS) S.CITY
(d) S.(P.P/I, CITY) V S.P.P/I

'LONDON'

The qualification on the right of the colon is
simplified by the fact that specific hierarchical
dependencies are given in the specification on the left
using qualified names and parentheses.

Statements like the queries above can be either
implemented as basic operations of CASSM or easily
broken down into basic operations. The details of
how this is done is included in section 3.2 and 3.3.

SUPPLIER (5) TABLE SUPPLIER-PART (SP) TABLE

ATTRIBUTE SET sll SNAME STATUS CITY ATTRIBUTE
SET Sil Pii QIY

SEQUENCE POSITON
SEQUENCE

i POSITION
SMITIf 20 LONDON
JONES 10 PARIS VALUE
BLAKE 30 PARIS

SETS

+
CLARK 20 LONnON
ADAMS 30 ATHENS

1 2 3

1 100 3
1 200 2
1 300 4
1 400 2
1 500 1
1 600 1

VALUE 2 100 3
PART (P) TABLE SETS 2 200 4

ATTRIBUTE SET pii PNANE COLOR WEIGHT

j SEQUENCE POSITION

t 100 ~UT RED 12
200 BOLT GREEN 17

3 300 4
3 500 2
4 200 2
4 400 3
4 500 4
5 500 5

VALUE 300 SCREW BLUE 17
SETS 400 SCREW RED 14

! 500 CAM BLUE 12
600 COG RED 19

FIGURE 1. INVENTORY FILE IN CODD'S NORMALIZED RELATIONAL FORM

INVENTORY FI LE

S(SIf,SNA.'1E,STATUS, CITY)

P (P#,PNANE, COLOR, WEIGHT)

SP(sll,P#,QTY)

FIGURE 2. SKELETAL DESCRIPTION OF FILE IN CODD'S NORMALIZED RELATIONAL FORM

ATTRIBUIE SET
FOR LEVEL 1 5(511 SNAME STATUS CITY)

SEQUENCE POSITION

ATTRIBUTE SET
FOR LEVEL 2

SEQUENCE POSITION

VALUE
SETS

SMITH 20 LONDON

JONES 10 PARIS

BLAKE 30 PARIS

CLARK 20 LONDON

ADAMS 30 ATHENS

P(pfl

100
200
300
400
500
600

100
200

300
500

200
400
500

500

PNAME COLOR

NUT RED
BOLT GREEN
SCREW BLUE
SCREW RED
CAM BLUE
COG RED

NUT RED
BOLT GREEN

SCREW BLUE
CAM BLUE

BOLT GREEN
SCREW RED
CAM BLUE

CAM BLUE

FIGURE 3. INVENTORY FILE IN A HIERARCHICAL FORM

INVENTORY FILE

S (S# SNAME STATUS ,CITY)

P(P# PNAME COLOR WEIGHT QTY)

WGT

12
17
17
14
12
19

12
17

17
12

17
14
12

12

FIGURE 4. SKELETAL DESCRIPTION OF FILE IN A HIERARCHICAL FORM

QTY)

122

3. GENERAL DESCRIPTION OF HARDWARE

In order to fully exploit LSI technology, CASSM
consists of a chain of identical cells. Each cell can
communicate directly with its two neighboring cells
and with an 10 bus common to all cells. Each cell
consists of two parts: a circular, sequential segment
of memory (such as, a disc track, a circular charge
coupled device, or a magnetic bubble device) and a
logic section. All segments of memory circulate con
currently and in syncronization, while each logic
section reads, searches, modifies and rewrites its
segment of memory from one end to the other. Thus,
all segments of memory are operated on in one cir
culation of memory. A read and a write head per track
(segment) is required for implementation on a set of
discs. The conceptual arrangement of the hardware in
each cell is illustrated in Figure 5. The remaining
sections of this paper describe the function and im
plementation of the submodules of this figure.

!

DISC
TRACK

TO CELL 1+1 ..

COMPARITORS

,---J'---,

~------~v-~----~
TO CELL i-I

FIGURE 5. CmCEPTUAL HAIm¥'ARE LAYOUT OF CELL i
(k's INDICATE CONTROL LINES WITHIN THE CELL)

The regularity involved in having identical cell
logic and all memory segments equal in length is
desirable for cost effective hardware implementation.
However, information structures used in non-numeric
processing are highly variable in length. To require
the user to partition his structures to fit into these
equal length memory segments would lead to. inefficient
utilization of memory and to greatly increased software
costs. In CASSM, variable length structures are divided
into equal length segments for high utilization of
memory as in Figure 6. Each segment may contain only a
part of a record, a whole record. or several records
of a file. Submodules within each cell of Figure 5
allow operations on variable length structures that
overlap any 'number of segments. The forward and back
ward marking facility provided by a one bit random
access memory (RAM) will be described in the following
section.

SOFl'WARE MAKEUP HARDWARE PLACEMENT

FIGURE 6. STORAGE OF RECORDS AS SEGMENTS

3.1 Forward and Backward Marking

In section 2, we pointed out that high level (non
procedural) statements have two distinct parts: a
specification (S) of what is to be marked and a
qualification (Q) that must be met for the marking to
take place. Each query involves searching and con
ditionally marking all occurrences of S-Q pairs through
out the data base. If the occurrences of the pairs
overlap one another. i.e., if any element of a pair
occurs in between the elements of another pair,
then the search would take more than one disc
revolution. If the data base is stored such that for
each query, each occurrence of an S-Q pair referred to
by the query does not overlap any other pair in the
sequence, then the pairs can be operated on one at a
time as memory sweeps by. We need only enough hardware
to operate on one pair at a time. Using two comparators
within each cell (one for S and one for Q, as in
Figure 5) allows Sand Q to be searched for during the
same sweep of memory. However, these two parts may be
separated by an arbitrarily long distance with much
data in between. If Q occurs before S in the sequence
(forward marking), this does not present any problem to
implement. The one information bit regarding the
success of the Q search can be saved until S is found
and conditionally marked later in the sequence. But
if S occurs first, then it cannot be marked until Q is
found and satisfied later in the sequence. We need
some way to access a mark bit of S after Q is searched
(backward marking).

This can be accomplished by having a set of mark
bits that can be accessed independently of the position
of the circular memory segment and with a simple. ~ard
ware method of mapping the mark bits to data items on
the segment. Figure 7 shows how a small one bit wide
RAM within each cell is used to do this. A counter
initially set to zero at the beginning of each segment
revolution is used as a hardware pointer to the one
bit RAM. The beginning of each data item indicates
that the counter is to be incremented (using a special
delimiter bit or symbol) so that the counter points to
a unique marker bit for each data item in a segment.
We have a I-I, onto mapping of marker bits to data
items. Although a RAM is being used, data items are
not tied dawn to a physical location and items may be
of variable length. Only their relative positions in
the sequence are important.

123

FIGURE 7. HARIMARE FOR MAPPING DATA ITEMS TO MARK BITS

3.2 Implementation of Information Structures

1 BIT - --

In this section we shall describe the implemen
tation of the various information structures widely
used. The organization of data and the search
operations in the disc system will be described.

3.2.1 Trees or Hierarchical Structures and Sets

Information is represented in a tree or hier
archical structure as a set, record or tuple of
attribute (name)-value pairs in each node of the tree.
A set is linearized by simply listing each set member
sequentially. A set member can then be accessed by its
attribute or position in the sequence and by its value.
To greatly improve storage efficiency, sets are of two
types attribute sets and value sets. An attribute set
can b~ placed in front of each value set or in front
of a large number of value sets which have the same
set of attributes. Thus storage efficiency is improved
by not repeating identical attribute sets. A sequence
position counter esp, incremented by data item de~
limiters as in Figure 7 but reset by beginning set de
limiters, indicates which set sequence position is
currently being examined. If set members are accessed
by their attribute, then two segment revolutions are
needed. During revolution 1, the specified attribute
is searched for in the attribute sets and marked when
ever found. During revolution 2, the sequence position
of the marked attribute (provided by CSP) is saved in
a register RSP and compared to esp during examination
of the subsequent value sets. Value sets need not be
stored in the same cell as their attribute set. Some
value sets may be separated by several cells from their
attributes. The following procedure allows hardware
communication of the sequence position number from one
cell to the following cells.

During revolution 1 above, whenever an attribute
is found to match, the sequence position in esp is
stored in RSP. Between revolutions, the contents of
RSP in a cell containing an attribute match is pro
pagated to the following cells. A one bit register
R1 is used to cut off the propagation of the sequence
position at the cell which contains the last item in
the subtree that is presently being searched. R1=1
indicates that the cell contains either a value set
which has a level number less than the level number
presently being searched or an attribute set which has
a level number equal to the one presently being
searched. Between revolutions, the contents of RSP
in each cell is sent to cell i+l and stored in the RSP
of cell i+l. If R1=0 in cell i+l, (indicating that
the cell is not at the end of the subtree) then the
contents of RSP of cell i+l is also sent to RSP of
cell i+2. The procedure is repeated until the sequence
position of the specified attribute reaches the end of

its range over segments. Thus the correct sequence
position number is prestored in the RSP of each cell
before revolution 2. Revolution 2 is then executed
exactly as described above. One bit of communication
between adjacent cells is required.

A tree can be linearized in several ways (Knuth
Vol. 1, 1969). If the tree is written in preorder with
level numbers included with each node, then. it is.
uniquely specified. The tree level number becomes part
of the addressing specification. Also, for a given
node at level t, its entire subtree is listed before
the next occurrence of another node at level t. Thus
a node at level k and any member of its subtree at
level t (k<t) form an S-Q pair that does not overlap
with any other pair at levels k and t. This provides
a convenient method for marking forward (down the tree)
or backward (up the tree). For example, all ancestor
nodes at level k can be marked if a search within one
of its successors at level t (k<t) is successful. This
can be done using the backward marking facility of the
one bit RAM in the following way. We consider first
the operation within one segment of memory.

The ancestor is encountered first because of the
preorder in which the tree is stored. The RAM address
of the ancestor mark bit is saved for reference until
the successor is searched later in the sequence. If
the search is successful, then the ancestor mark bit is
set using RAM address that was saved. With the tree
stored in preorder together with level numbers, the
above algorithm simply involves remembering the RAM
address of the last node at level k. Marking forward
(down the tree) is much simpler. If a descendant is
to be marked whenever an ancestor is successfully
searched, the only thing to be remembered is whether
or not the search was successful. The same hardware
communication can be used between set members within the
same tree node since any two members of the same set
from an S-Q pair which does not overlap any other such
pair in another set. Three one bit registers (RQ, R and
RS) and two 10 to 12 bit registers (RB and RF) compose
the basic hardware needed in the tree/set submodule of
Figure 5. The functions of these registers are des
cribed below.

For forward marking RQ is used to save the in
formation regarding the success of the Q search. For
backward marking, RB is used to save the RAM address of
the most recently encountered occurrence of an S. For
both forward and backward marking, logic is needed to
load either the counter of Figure 7 (forward) or RB
(backward) into the RAM address register, set the bit,
and initialize the registers for the next pair.

We now consider the operation on multiple segments.
Although the above har~ware is sufficient for processing
sequentially encountered S-Q pairs residing on the same
track, the elements of some pairs may be located on
different tracks. In order to process these pairs in
one revolution of memory, additional hardware is
necessary.

The following is needed for forward marking across
tracks. RS is used to indicate at the end of a cir
culation of memory whether a Q (first pair member) has
been satisfied on a segment without encountering an S
after it on the same track. Thus RS indicates that
the S occurs on one of the following tracks. RF is
used to save the RAM address of the S if found in a
following track for marking at the end of the circu~
lation of memory. This is necessary because we cannot
be sure that the Q on the previous segments has been
satisfied until all memory has been searched. R is used
to indicate whether at least one occurrence of S has been
found in a segment. Also, one bit of communication is

l24tequired between adjacent cells. The hardware procedure

is as follows. If RS=l in cell i at the end of a
circulation of memory, a pulse is sent to cell i+l. If
R=l in cell i+l, RF in that cell is used to set the mark
bit of S. If R=O, the pulse is sent on to cell i+2.
This is repeated until the cell is reached that has R=l.
The marking is then done using the RF of that cell.

Much of the same hardware may be used for backward
marking across tracks, since only one mode (forward or
backward) is involved in each instruction. RS is used
to indicate whether the elements of an S-Q pair reside
on different tracks. R is used to indicate whether at
least one occurrence of Q has been found in a segment.
RB will be used to save the RAM address of S. Since
this is the last S encountered, its address is always
present in RB at the end of a circulation of memory.
The same communication bit between cells is used except
the pulse is sent in the opposite direction. With the
exception of these changes, the hardware procedure is
the same for forward and backward marking.

Thus we have the capability of marking a node or
node member if another node or node member satisfies
a given condition. This can be done in one disc
revolution if the communicating elements are not in
different subtrees.

3.2.2 Tables, Graphs and the Relational Data Structure

The tree/set hardware can also be used to aid in
implementing tables like those of Figure 1 by providing
a means of communicating between elements within each
table. If a table is at tree level i, then each row
(set) in the table is at level i+l. All data items in
the same row are members of the same tree node set.
Also, several tables may be grouped hierarchically.

General graphs or networks cannot be linearized.
However, they can be implemented using tables in two
ways. One way is to set up a table for each node of
the graph (16). Each table would contain as rows the
node names of nodes pointed to by the table node along
with their corresponding relation or arc names. Al
ternatively, a table can be set up for each relation
or arc name. Here each table would contain as rows
the node name pairs that are connected by the tab'le
relation or arc. Relations of degree n can be stored
by allowing more than two columns, using the set hard
ware. Figure 1 is an example of a set of tables, based
on relations rather than node names, where each table
corresponds to a relation name and each row is a set
of nodes that are related by the table relation. In
this information structure, cross references between
tables are specified by content rather than by using
physical address pointers. Query (b) involves com
munication between tables. The execution steps are as
follows. First, the command SP.P# : SP.S# = 2 is
executed using the tree/set hardware. Secondly, the
marked SP.P#'s are used to mark rows in table P having
the same pH. This requires the communication between
tables implied by P.P# = SP.P#. Finally, the PNAME's
within these rows are marked. This is accomplished by
the tree/set command P.PNAME : P.P#. Two methods are
described below that accomplish the communication
between tables in the second step.

In both of the methods described below, there
exists the need to distinguish the marked source data
items from the newly marked destination data items.
Otherwise, the destination items may be used as source
items. This can be done by having two sets of mark
bi.ts, one for source items and the other for des
tination items. Only the set of mark bits for des
tination items need be independent of position of the
disc. The mark bits for source items can be stored

on the disc along with tle items. A method would be
needed in hardware to allow these two sets of mark bits
to conditionally set one another. Also, in both of the
schemes described below, a method is needed to indicate
when all data items have been traversed. This is done
by resetting the mark bit of each source item when it
is used, and employing an OR rail (12 and 16) between
cells to indicate whether any mark bits are still set.
The most obvious method for traversal between tables
is to pick up the marked node names to be traversed
from the source table and use these names to context
search the destination tables. This uses only the
tree/set hardware. However, if many items are to be
traversed, either many comparitors are needed or many
revolutions (searches) of memory are necessary. The
only additional hardware needed to implement this method
is in the form of additional comparitors to speed the
searching if desired.

The second method is to prestore in each potential
source table the RAM addresses of the mark bits of
node names in the destination table. In Figure 1,
columns with attribute S# in tables Sand SP are cross
references between tables. Using this method, the RAM
addresses of the SP.S#'s are stored next to the cor
responding S.S#'s. Similarly, pointers are stored in
tables P and SP to cross reference items under at
tribute pH. These pointers can be prestored by
picking up each node name in one table and using it to
context search the other table as in the first method.
Except here, each time the search. is completed, the
pointers stored. During the traversal in query (b),
the. marked pointers stored next to the SP.P#'s are
picked sequentially and used to mark the P.P#'s. The
additional hardware needed to implement this scheme is
described below.

No additional hardware would be needed if the
stored source pointers were within the same segment of
memory as the data items they referred to. As each
pointer is accessed sequentially, it would simply be
loaded into the RAM address register. However, this
is usually not the case since sizable structures will
be segmented over many cells. This scheme can be ex
tended to handle the general case, where the source
pointers lie in different segments, by viewing all data
items in the data base as a sequence of items. For
example, cell 1 might contain items with global sequence
addresses 0 to 811, items 812 to 1512 in cell 2, and
items 1513 to 2301 in cell 3, etc. This concept is
implemented in hardware by using a register RBSA in each
cell to store the beginning global sequence address of
the cell, a register RGSA to store the global sequence
address, and an adder to compute RGSA by adding RBSA
and the counter of Figure 7. The last sequence address
of a segment is provided at the end of each revolution
by RGSA and stored in register RLSA. As each pointer
is accessed, its value is compared to both RBSA and RLSA.
If the pointer is within these bounds, the RAM address
register is loaded with ·the pointer minus (using the
above adder) RBSA and the RAM mark bit is set. If the
pointer is greater than RLSA, it is sent ot the
following cell for comparison. If the pointer is less
than RBSA, it is sent to the previous cell for com
parison. This procedure is continued until the pointer
has migrated to its destiation cell. A register RP is
used to hold the pointer and a one-bit register
indicates whether RP is occupied. Two comparitors and
two additional bits of communication between adjacent
cells (one bit for ,each direction of pointer migration)
are needed. If the register holding the pointer is
occupied, a. newly encountered marked pointer on the
memory segment may have to be passed over until the
next revolution. Thus this scheme may take more than
one revolution to do all the marking required. However,
the number will be much smaller than that of the first

125

method if many items must be traversed between tables.

3.3 Execution of High Level Queries

This section provides a more detailed illustration
of the hardware steps required to execute high level
queries. The storage structure to be queried is pre
sented first.

The relational information structure of Figure 1
:;"s stored in a very stright"':forward way as shown in
Figure 8, where each row is a set. Sets may contain a
variable number of information items. The level numbers
show the hierarchical dependency of the rows to their
table name. The number in parentheses to the left of
each data item is not actually stored but is inserted
in the figure to indicate the global sequence address
of the item. The numbers in parentheses to the right of
each data item are a list of the global sequence
addresses (pointers) to which the item is linked.
Further details of the storage structure, such as
whether items should be stored as variable length
character strings or as fixed length code numbers, will
not be discussed in this paper.

SET LEVEL
TYPE NO.

A 1
A 2
V 2
V 2
V 2
V 2
V 2
A 1
A 2
V 2
V 2
V 2
v 2
V 2
V 2
V 2
V 2
V 2
V 2
V 2
v 2
V 2
V 2
A 1
A 2
V 2
V 2
V 2
V 2
V 2
V 2

INFORMATION FIELOS

(1)s
(2)S# (3)SNAME ~4jSTATUS (5)CITY
(6jl ~3O,33,36,39,42,45) (7)SMITH 8 20 (9)LONOON

(102 48,52) t)JONES (12l10 f13)PARIS
14 3 54,57) 15)BLAKE (16 30 17jPARIS

h8l4 f60,63,66) 19)CLARK ~20 20 21 LONDON
(22 5 69) (23)ADAMS 24) 30 (25)ATHENS
(26)SP
(27)S# (2B)P# (29)QTY
(30jl (6) (31)100(77j P2) 3
p31 (6l (34)200(81 35) 2
36)1 (6 (37j300(85 l (3B) 4

(39 l1 ~6l (40 400(89 (41) 2
(42 1 6 (43l500~93l (44) 1
(45P (6) (46 600 97 (47) 1
(48 2 (10) ~49)100(77) (50) 3
(51j2 (10) 52l200(81) (53) 4
(54 3 (14) ~55 300(85) (56l 4
(57l3 (14) 58j500(93) ~59 2
(60 4 (18) ~61 200(81) 62) 2
(63)4 (18) 64)400(89j ~65) 3
(66)4 (18j (67)500(93 68j 4
(69j5 (22 (70)500(93) (71 5
(72 P
(73)P# (74)PNAIE (75)COLOR (76)WEIGHT
(77)100(31,49) ~78jNUT (79 lRED ~8°l12 ~81)200(34,52,61) 82 BOLT ~83 GREEN 84 17
85)300(85,55) 186)SCREW 87jBLUE (88 17

(89j400(4O,64) 90jSCREW 191 RED (92j14
(93500(43;58,67,70) (94 CAlI 95jBLUE 196 12
(97)600(46 (98)COG (99 RED (00) 19

FIGURE 8. STORAGE STRUCTURE OF CODn's BELATIONAL TABLES

(EACH ROW IS A SET)

The comparitor submodules for S and Q in Figure 5
are identical. A simplified illustration of the hard
ware of one of these submodules is giv~n in Figure 9,
as an example of how the hardware might be arranged.
A more detailed discussion of the hardware arrangement
of the comparitor submodules will not be given in this
paper. The three comparitors are one-bit, serial
adders, capable of arithmetic inequalities as well as
exact matches. Each comparitor sets a flip flop when
the specified, comparison is successful. The FF's are
rese~ before each item is searched. A MATCH is the
logical AND of these three FF's. A one-bit register
ROR is used to allow an ordered search of items. ROR
is set when a marked item Is encountered and reset if a
tree level number is encountered which is both not marked
and less than the level number being searched. Thus,
ROR allows the ordered set search to remain with the
previously specified subtree. This ordered set search
is allowed to work over one or more segment boundaries
as described by Healey (9) except that one item is
searched per revolution instead of one character.

126

FIGURE 9. SIMPLIFIED HARDWARE ARRANGEMENT OF
THE S COMPARITOR SUBMODULE

A simplified microcode is given for Sand Q in
Figure 10 to execute query b. The contents of the
three comparand registers are given, as well as the
position of the two switches in Figure 9, for each
revolution of memory. Mark bits which were set during
previous revolutions are reset if their data items do
not satisfy the new marking conditions. Revolutions 1,
2 and 3 execute SP.pH : SP.sH = 2 (same as query a).
Revolution 4 transfers the ~rk bits of the RAM to the
storage dependent mark bits for Q. Revolution 5
executes the marking between tables indicated by
p.pH = SP.pH. Revolution 6 transfers the mark bits of
the RAM to the storage dependent mark bits for Q.
Revolutions 7 and 8 execute PNAME : pH.

Thus. CASSM executes a rather complex example query
in 8 segment revolutions, or approximately 80 ms for a
disc. Furthermore, this time is independent of the
data base size. Non-numeric information systems im
plemented on von Neumann computers must page bulk in
formation (much of which is not relevant to the query)
from discs to primary memory. requiring much time and
expensive channels.

I

~? I SET
IL\I:oV TYPE

A

A

LEVEL
NO. INFOR.

SP

PH

(DON'T
CARE)

SWMARK I SET
SWT/S TYPE

A

A

LEVEL
NO. INFOR.

SP

s#

(DON'r (DOO'T (DON'T
CABE) CABE) CABE)

SWMARK SWT/S

MARK RAM BITS FROM POINTERS OF ITEMS usmG TIlE RELATIONAL LINKAGE

A

V

PNAME

(DON'T
CABE)

(DOO'T (DOO'T (DON'T
CABE) CABE) CABE)

A pH

(DON'T
CABE)

FIGURE 10. SIMPLIFIED MICROCODE FOR QUERY b: P.PNliME : SP«P.P# - SP.PfI) It. (SP.Stl .. 2»)

3.4 Storage Allocation .& .. GIUrbagec€Qlle.c.tion. (SA&.. GC)

From the software point of view, we would like to
be able to initially load the data base and insert and
delete items without regard to physical location. We
would like to free the programmer from the burden of
accounting for what data is in which segment of memory
or its position within that segment. The only aspect
of SA and GC that the prograll!lDer need be aware of should
be a warning that the data base has exceeded the total
size of memory. Insertions and deletions should be no
more complicated than specifying where in the user's

information structure to insert or delete and the in
formation to be inserted. In CASSM, associative
instructions can be used to mark where to insert or
delete based on context within the information
structure rather than physical location. The task of
making room for new data and repacking memory when holes
are left by deletions can be done automatically in
hardware. The scheme to do this is described below.

Two registers RVL and RT are the basic hardware of
the SA and GC submodule in Figure 5. As the read head
picks up data, it is fed into one end of a shift
register RVL which shifts at the same bit rate as the
memory segment. A tap is provided for the output of
RVL at mUltiples of W from the input, where W is the
basic word size of the machine. When storage is not
being allocated or collected (Figure ll-b) , the write
head uses the center tap of RVL as its input. When
garbage is being collected (Figure ll-a) , the input of
the write head moves over one tap toward the input of
RVLeach time a word marked for GC is encountered on a
segment. This eliminates that word from the sequence
in memory. If RVL is not long enough to collect all
words marked for GC on that segment, they can be col
lected in subsequent revolutions. When storage is
being allocated (Figure ll-c), the input to the write
head moves away from the input of RVL, again one tap
for each word inserted. If RVL is not long enough to
allocate all words required by an insertion, then the
last word inserted can be marked so that the remaining
words can be inserted beginning at that point during
subsequent revolutions. The contents of the one bit
RAM can be shifted forward or backward from the point of
insertion once for each RAM delimiter within the
insertion or deletion. This scheme provides SA and GC
within each cell. However, the number of words used
within a cell may grow too large for a segment to
hold, or so small that much memory is wasted. A method
of managing data transfers between cells is described
below.

a) ~ .. §l
RVL

~ ?
RVL b)

~ rf ..
RVL 0)

FIGUBE 11. VARIABLE LENGTH SHIFT REGISTER FOR INSERTION AND DELETION

We choose to pack data toward one end of the chain,
leaving unused cells at the other end. In order to
reduce the time required for providing space for
insertions, some of the available memory is distributed
among the cells to act as a buffer. Within each cell,
data is packed toward the beginning of the track. A
special tag E is used to indicate the end of the used
portion of the segment. A register RT is used to act
as a buffer storage for transfers between cells. When
the number of words used in a cell is too large, RT is
filled with the last words before the tag E. These are
then stored at the beginning of the next revolution.
When the number of words used in a cell is too small,
RT is filled with the beginning words of the following
track. They are then stored directly in front of the
tag E. The register RVL is used in both cases to move
the bulk of the used data forward or backward within a

cell. Also, the contents of the one bit RAM can be
shifted with the data. The counter of Figure 7, which
counts the number of RAM delimiters in a cell, will
point to the last bit used in the RAM at the end of
each revolution. The number of delimiters being
transferred in RT indicates how many RAM bits to
transfer, starting where the counter points. RBSA is
updated by incrementing RBSA once for each delimiter
passed into a cell, to or from other cells. It is
possible for the size of RT to be too small to handle
the number of insertions required in one revolution. In
this case, the remaining insertions must be made during
subsequent revolutions as the SA and GC hardware allows.
Large insertions and deletions can be made in the middle
of the data base by writing entire tracks forward or
backward, one track per revolution.

If the data stored on the segments is free of
parameters regarding physical location, the above scheme
can be carried on during the same revolutions (in a
pipeline fashion) as instruction execution. Also, no
software intervention is needed for SA and GC. The
tree/set scheme presented in section 3.2.1 has this
property as well as the first method presented in
section 3.2.2 for implementing communication between
tables. The second method in section 3.2.2 requires
that pointers, which are dependent only on the global
sequence address of the data they point to, be stored
in the segment memory. They require maintenance after
insertions or deletions are made. However, movement of
data between cells can be carried on in a pipeline with
instruction execution since pointers are independent of
cell number.

If an insertion is made between items with global
sequence address a and a+l, then all pointers referring
to items above a-t-l must be changed. The pointers Pare
altered in parallel as indicated by the following
conditional ~ssignment:

P + P + Nn IF a < P, "if P,

where Nn is the number of delimiters or data items
within the insertion. For dele~ions: Nn is subtracted •
If insertions are made at two po~nts ~n memory, one
after address a and one after address b, the following
two operations are necessary:

P + P + Nna IF a < P, "if P;

P + P + Nnb IF b + NDa < P, 'V P ,

where Nna and NDb are the number of delimiters within

insertions a and b. For n points of insertion, n such
steps are necessary. Instructions implementing the
above algorithm can be provided to allow this updating
after insertions and deletions to be done in a simple
way, and to allow full parallelism to be exploited.

4. SUMMARY AND CONCLUSIONS

This paper presents the architecture of a context
addressed, segment-sequential memory designed for non
numeric information processing. Since it is unrealistic
to describe the design or evaluation of a hardware
system out of context of software and application, the
information structures and retrieval operations
currently used in the existing information systems are
first described. The architecture of the system is
then described to show how various information struc
tures can be represented and search operations can be
carried out directly on bulk memory with little inter
vention from tllecentraJ processor. Hardware storage
allocation and garbage collection techniques used in
the system are also detailed.

127

The CASSM processor provides data processing
capabilities useful for information retrieval in large
data bases. It offers a much more cost-effective non
numeric processing system than conventional information
systems which use von Neumann processors to perform
search, store, arrangement, allocation, garbage col
lection and other data processing functions. The
characteristics and advantages of CASSM can be sum
marized as follows:

(1) In non-numeric processing, it is extremely
time-consuming to page data in and out of the secondary
memory and to perform searches by the central processor,
especially when the data base is large. CASSM allows
data to be searched. in parallel on a set of circulating
devices, so that search time is independent of the size
of the data base. This operation can be carried out
independently of the central processing unit.

(2) In non-numeric processing, the user shall be
allowed to work with the data as he sees it (i.e., at
the information structure level) without having to con
cern himself with the internal representation of the
data. CASSM allows information structures to be stored
as they are without going through many levels of data
mapping which are found necessary in conventional
computers to achieve search efficiency. High level
search queries specified by the information user can be
performed by the memory device as basic operations, thus
simplifying the retrieval language design. This feature
of CASSM avoids many problems found in information
systems concerning data reliability, excessive storage
requirement and structure construction and maintenance.

(3) The data base of an information system is
generally dynamic in the sense that the contexts are
constantly changing. Considerable amount of insertions,
deletions and modifications need to be performed.
Memory management is a serious problem and is generally
handled by software using CPU time. In CASSM, manage
ment of memory is greatly simplified by having only one
level of memory hierarchy and by the SA and GC hardware.

(4) From the hardware point of view, CASSM offers
several advantages. The class of sequential memories
can be very inexpensive. Also as a data base grows,
more memory units can be added modularly. The logic
requires only one LSI chip type and interconnections
are very simple and regular because all the cells are
identical.

REFERENCES

1. CODASYL Systems Committee: 'Introduction to "Feature
Analysis of Generalized Data Base Management
Systems"', CACM 14,5 (May 1971b) , pp. 308-318.

2. CODD, E.F.,~Relational Model of Data for Large
Shared Data Banks," CACM 13,6 (June 1970),
pp. 377-387. --

3. CODD, E.F., "A Data Base Sublanguage Founded on the
Relational Calculus," Proceedings of ACM SIGFIDET
Workshop on Data Description, Access and Control,
(Nov. 1971), pp. 35-68.

4. Data Base Task Group of CODASYL Programming Lan
guages Committee: Report, April, 1971a.

5. DATE, C.J., "Relational Database Systems: a
Tutorial," paper presented at the Fourth Inter
national Symposium on Computer and Information
Sciences, December 1972.

6. ENGLES, R.W., "A Tutorial on Data Base Organization,"
IBM Technical Report TR 00.2004, IBM, Poughkeepsie,
New York, March, 1970.

7. FULLER, R.H., BIRD, R.M. and WORTHY, R.M., "Study
of Associative Processing Techniques," AD-621516,
August 1965.

8. Guide/Share Data Base Task Force, "Data Base
Management System Requirements," Share, Suite 750,
25 Broadway, N.Y., November 1971.

9. HEALY, L.n., DOTY, K.L., and LIPOVSKI, G.J., "The
Architecture of a Context Addressed Segment
Sequential Storage," Proceedings of FJCC, Vol. 41,
part 1,'1972, pp. 691-702.

10. HOLLANDER, G.L., "Quasi-Random Access Memory
Systems," Proceedings of EJCC, 1956, pp. 128-135.

11. KNUTH, D.E., Fundamental Algorithms, Vol. 1,
Addison-Wesley, 1969.

12. LEE, C.Y. and PAUL, M.C., "A Content Addressable
Distributed Logic Memory with Applications to
Information Retrieval," Proc. IEEE, Vol. 51, 1963,
pp. 924-932.

13. MINSKY, N., "Rotating Storage Devices as Partially
Associative Memories," Proceedings of FJCC, Vol. 41,
part I, 1972, pp. 587-596.

14. PARHAMI, B., "A Highly Parallel Computer System
for Information Retrieval," Proceedings of FJCC,
Vol. 41, part I, 1972, pp. 681-690.

15. PARKER, J.L., "A Logic per Track Retrieval System,"
IFIP Congress, 1971, pp. 146-150.

16. SAVITT, D.A., LOVE, H.H., TROOP, R.E., "ASP: A New
Concept in Language and Machine Organization,"
Hughes Aircraft Technical Report No. TR-66-l74
(AD-488538), June, 1966.

17. SU, S.Y.W., COPELAND, G.P., and LIPOVSKI, G.J.,
"Retrieval Operations and Data Representations in a
Context-addressed Disc System," Proceedings of ACM
Programming Languages and Information Retrieval
Interface Meeting, Nov. 1973.

18. WANG, C.P. and LUM, V.Y., "Quantitative Evaluation
of Design Tradeoffs in File Systems," Proceedings
of the Symposium on Information Storage and
Retrieval, April, 1971.

128

DERIVING DESIGN GUIDELINES FOR
DIAGNOSABLE COMPUTER SYSTEMS

John M. Hemphill, USAF
S.A.Szygenda

University of Texas

ABSTRACT

Diagnosable computer systems are designed to
detect and isolate the faults that occur during system
operation. A number of techniques are available to
the system designer of diagnosable systems. This
paper examines a number of these techniques and
derives a set of design guidelines incorporating them.

I. INTRODUCTION

There are many reasons for needing design guide
lines before one attempts to design a computer system.
Perhaps the most important reason is the nature of the
design process itself. Usually from a rough initial
specification the design proceeds through a series of
iterations between software and hardware designers.
Eventually a prototype machine is actually constructed.
Only then are many serious problems associated with
hardware and software discovered. Usually the bulk of
the effort directed toward developing diagnostic soft
ware and procedures does not occur until the machine
is physically realized. Once the machine exists, it
is difficult, if not impossible, to significantly
alter it from its original design. As a consequence
of the design process, the designer must include
diagnosability from the very inception of his work, if
diagnosability is a desired quality in the finished
system.

A diagnosable computer system is defined as one
designed to detect the occurrence of faults before
errorS are introduced into the system operation and to
aid in their isolation.

It is difficult to define what the scope of de
sign guidelines should encompass. If design guide
lines are too narroW and too specific, then they will
only be applicable to a narrow class of systems. On
the other hand, if the design guidelines are overly
general, chances are they will be of little value.
Perhaps the best goal is to attempt to develop design
guidelines which can be related to physically realiz
able computer systems. Design guidelines hopefully
should show where the system is sensitive to changes
in design in order to facilitate obtaining the desired
qualities in the completed system.

Supported in part by ONR-N00178-7l-C0148,
Naval Weapons Laboratory, Dahlgren, Virginia.

II. THE MSG/FTU MODEL

In this paper, several design guidelines will be
developed through the use of a computer system model.
The design guidelines will be derived through the
development of a number of conditions and relations
pertaining to the operation of the computer system
model. The model is general in nature and easily
relatable to physically realizable computer systems.
The operation of nearly any computer system can be
simulated by an appropriate version of the model. In
many cases, the structure of the model will be very
similar to the actual structure of the computer system
that it simulates. The model is developed from the
common computer system representation illustrated in
Figure 1.

FIGURE 1

A Computer System Model
CONTROL

UNIT -T--------r------------,
I I I

~=====-~IL-~ I I
FUNCTION

UNIT
MEMORY I/O

UNIT UNIT

The model is known as the macro state generator/
functional transform unit (MS&!FTU) model and is
illustrated in Figure-Z:- The macro state generator
(MSG) is somewhat analogous to the control unit for
the representation if Figure 1. The functional
transform unit (FTU) is analogous to all elements in
the computer system other than the control unit. Both
the MSG and FTU are finite devices. Before using the
MSG/FTU model as a vehicle for analysis, it is necess
ary to carefully define its mode of operation.

FI.GURE 2

MSG/FTU Computer System Model

MACRO C ~ FUNCTIONAL
STATE , TRANSFORM

GENERATOR
I 11 UNIT

131

The MSG is connected to the FTU by means of two
paths. The path labeled C in Figure 2 is known as the
control path and is used by the MSG for transmitting
data and command information to the FTU. The path
labeled R in the same figure is known as the response
path and is used by the MSG to obtain information
pertaining to the operation and status of the FTU. It
is important to remember that the action of a computer
system is to simulate the operation of some virtual
machine. Each virtual machine instruction is composed
of more than one microsequence. A microsequence is
the smallest basic operation that can be performed by
the FTU. The MSG controls the execution of micro
sequences. That is, it regulates order and timing of
the microsequences needed to compose the desired vir
tual machine instructions. The operation of the MSG
proceeds on a discrete time base. That is, MSG
operations can only be initiated at periodic points in
time. These points are determined by the quantum time
of the MSG. The quantum time or qtime is defined as
the length of the minimum interval that can occur be
tween the initiation of operations in the MSG at
different points in time. All operations in the MSG
occur at points in time which are multiples of the
qtime periods. The qtime can be thought of as the
basic clock cycle time in the MSG. The terminology
"macro state generator" is derived from the fact that
the MSG initiates operations in the FTU which can
cause the FTU to transition through several true se
quential machine states before the operation is com
pleted. Hence, the modifier "macro" is added to indi
cate the scope of the state transitions.

The _FTU contains the elements needed for the
operation of the virtual machine. That is, it contains
all functional units, memory elements, and data trans
fer paths used in the operation of the virtual machine.

Operations in the FTU are initiated by the control
path from the MSG. Information concerning an FTU
operation is transmitted to the MSG by the response
path. The sequences of control information and res
ponse informatio.n transmitted between the MSG and FTU
are known as the CR sequences. The complete set of CR
sequences that can be executed by the MSG is known as
tre repertoire of the MSG. The only way that the vir
tual machine can obtain information about the status of
the hardware is by the execution of CR sequences which
can manipulate the memory and state of the FTU. Hence,
the virtual machine program can then attempt to ascer
tain the state of ttehardware by inspecting the memory
and the state of virtual machine after execution of a
virtual machine instruction.

III. DEVELOPMENT OF THE MSG/FTU MODEL

The next step ~n the developing of design guide
lines is to examine a series of conditions and rela
tions pertaining to the MSG/FTU model. The first set
of conditions to be considered deal with the nature of
the information available about the operation of the
FTU.

_~ondition 1
The MSG can only observe the operation of

the FTU. ata ;finite number of points.

Condition 1 is derived from the design of the
MSG/FTU model. The MSG is finite. Additionally, the
FTU is finite and only presents a finite number of ob
servation points. Also, there are a number of unob
servable points in the FTU such as values internal to
switching elements.

Condition 2
The MSG can only observe the operation of

the FTU at discrete points in time.

Condition 2 is based upon the definition of the
operation of the MSG. Any operation in the MSG can
only occur at a point in time which is a multiple of
the qtime of the MSG.

Condition 3
The MSG is the only element in the model

that can observe the operation of the FTU directly.

Condition 3 is a result of the definition of how
the model operates.

Condition 4
The set of FTU observations made by the MSG

constitutes the only source of information concerning
FTU operation available to virtual machine level pro
grams.

The only manner in which a virtual machine level
program can obtain information is through the manipula
tion of virtual machine memory and status by the execu
tion of MSG microsequences.

By Condition 3, the MSG is the only element which
can observe the FTU operations. Hence, the observa
tions of the MSG are not only the sole source of FTU
information, but the MSG initiated microsequences are
the only means by which this information can be trans
mitted to the virtual machine level.

The key observation here is that information con
cerning the operation of the FTU is only available to
a vir~ual machine level program through '.the auspices
of the MSG. More over, the information available to a
virtual machine level program is usually only a part of
the information available to the MSG.

Much of the difficulty often encountered in at
tempting to perform a thorough diagnosis of a computer
system is due to the design and complexity of the
system. In diagnosing a computer system of some com
plexity, one is not just faced with attempting to diag
nose a single combinational or single sequential logic
system but rather a complex interconnection of combi
national and sequential logic systems. Probably the
most serious problem in performing diagnosis in a
computer system is that of accessibility to the indi
vidual logic system being tested. Usually, it is not
possible to access the individual combinational or
sequential logic system by itself from the virtual
machine level. Often, it is simply not possible to
create effective and practical diagnostics from the
virtual machine level due to the design of the system.

Condition 3 provides assistance in attempting to
deal with the problem of system diagnosis. Condition
3 states that the MSG is the only element capable of
observing the action of the FTU directly. By using the
MSG, it is possible to utilize microsequences to per
form diagnosis on the FTU. Diagnosis by use of micro
sequences is commonly known as microdiagnosis.
Microdiagnostics have been employed for some time on a
number of commercially available computer systems (1,2,
4,5). Common arguments for the use of microdiagnostics
are usually based on the fact that it gives greater
access to individual logic systems in the computer.
Also, use of microdiagnostics releases the diagnosti
cian from having to build his diagnostic tests around
the standard virtual machine instruction cycle of fetch
instruction, fetch operand, and execute instruction.
However, the use of microdiagnostics implies that the
proper CR sequences either always exist in the reper
toire of the MSG or that the repertoire of theMSG is
not fixed and can be altered to meet the needs of the
microdiagnostician. If the MSG of the system is

132

microprogrammable, then the repertoire of CR sequences
is considered to be variable. An MSG with a fixed
repertoire is known as a hardwired MSG.

Before proceeding to develop relations which are
concerned with diagnosis of the system, the procedure
of diagnosing the MSG/FTU system model will be examined

In the case of either the use of a microprogrammed
MSG or the use of a hardwired MSG, the MSG is the first
logic system to be diagnosed because without assurance
of the integrity of the MSG, no diagnosis of the FTU is
possible. In the case of a hardwired MSG, diagnosis
can present extremely serious problems. Normally,
hardwired units do not possess a regular logical struc
ture. As a result, external diagnosis by human diag
nostic test input can be an extended project. Diagno
sis of a microprogrammed MSG can be much more straight
forward. Normally, a microprogrammed MSG unit possess
es a much simpler and more regular logic structure than
a hardwired MSG unit of similar ability. Additionally,
since the repertoire of the MSG is variable, certain CR
sequences can be included to aid the human diagnostic
tester in performing diagnosis on the MSG. Once the
integrity of the MSG has been verified, diagnosis of
the FTU is the last step to be performed in diagnosis
of the MSG/FTU system.

Diagnosis of the FTU can be performed by one of
two different methods. First, diagnosis of the FTU can
be performed through the use of virtual machine in
structions which initiate a number of CR sequences
determined by the type of virtual machine instruction.
Second, individual CR sequences can be used to ex
pressedly diagnose portions of the FTU. In the case of
a hardwired MSG, only the first method is available,
while in the case of a microprogrammed MSG both methods
can be utilized. Upon completion of FTU diagnosis, the
system will be completely diagnosed.

In a hardwired MSG, one of the most difficult
areas to diagnose is the circuitry used to generate the
microsequences. Commonly, this is a microsequence
selection matrix and associated timing sequence cir
cuitry. For a background on the operation of such
units, see Rosin (6). In actual practice, the control
unit or MSG of systems is diagnosed by executing a
virtual machine program. If the virtual machine pro
gram executes properly, the maintenance engineer assum
es that the MSG or control unit is operating properly.
Needless to say, this often is a self-defeating prac
tice if the FTU contains faults. Unless some type of
hardware tester is available to check the control se
quences produced by the hardwired MSG, the diagnosis
can be a tedious and i:Hfficult job. The inherent
difficulty of diagnosing the hardwired MSG is one of
several serious drawbacks to using the hardwired
MSG in a diagnosable system.

Diagnosis of a microprogrammed MSG can be made a
somewhat more feasible job than diagnosis of a similar
hardwired MSG. This is due to the manner in which the
microprogrammed MSG produces control sequences. The
major component to be diagnosed is the control memory
that stores the control sequences. Once the logic
circuitry used to sequence the fetching and executing
of control sequences from the control memory has been
externally diagnosed, a program of diagnosing the
control memory can be initiated. The type of diagnosis
used for the control memory depends, of course, on the
nature of the memory. If the memory is a read only
memory such as transformer or capacitor read only
storage, then it is likely that a section of control
memory containing diagnostic test patterns will be
inserted into the control memory unit. Once this is
done, a diagnostic sequence can be run using the logic
in the MSG to read the contents of the memory to check

for proper memory operation. Needless to say, this
entails additional logic circuitry to provide for ex
ecuting such diagnostic sequences and a method of
verifying the diagnostic control memory. If the con
trol memory is both a read and write memory, then a
diagnostic sequence can be constructed to both write
and read data to the control memory. Here again,
additional logic circuitry may be required to facili
tate implementation of the diagnostic sequences.
Almost any advantage in diagnosis that the micropro
grammed MSG has over the hardwired MSG is due to the
more regular structure of the microprogrammed MSG.
Even though the structure of the micro programmable MSG
is regular, it is very flexible in that it is pro
grammable and as such retains the inherent power of a
stored program computer.

The next step is to develop four relations which
illustrate the differences between a hardwired and a
microprogrammed MSG. The goal of these relations is
to lend substance to the claim that a microprogrammed
MSG is needed in diagnosable computer system environ
ments.

Relation 1
Given: (1) an MSG with a fixed repertoire of

CR sequences; (2) a specified virtual machine instruc
tion set.

Then, the effectiveness of a diagnosis of the
FTU by a virtual machine diagnosis program is sensitive
only to the design of the FTU.

The basis of Relation 1 is that the given condi
tions constrain the design. Since the virtual machine
instruction set is specified and can command only a
fixed set of CR sequences, the only way to make diagno
sis more or less effective is in the design and organ
ization of the FTU.

The major observation that should be made at this
point is that if it is desired to have effective FTU
diagnosis, then the initial system design is the cri
tical element in the process of system production.
Once a hardwired system is physically realized, the
only way to improve diagnosis is to write better vir
tual machine diagnosis programs. It is often the case
that due to system design little improvement can be
achieved on the virtual machine level. In fact, due to
the complexity of most systems, many problems are un
known during the design phase and are only discovered
upon fabrication of the system. This can lead to ex
tremely serious diagnosis problems commonly reflected
in the statement that the "diagnostic programs are
programs that execute correctly when no other programs
can execute due to hardware faults".

Relation 2
Given: (1) an MSG with a variable repertoire

of CR sequences; (2) a specified virtual machine in
struction set.

Then, the diagnosis of the FTU is sensitive
to the design of the FTU and to the CR sequences
available in the MSG repertoire.

The basis of Relation 2 is that even though the
virtual machine instruction set is specified, addition
al CR sequences can be added to aid in the process of
FTU diagnosis. In this way, the design of the FTU is
not the sole determining element as it is in the case
of Relation 1.

The key point to observe here is that by having
a variable repertoire of CR sequences in an MSG it may
be possible to enhance diagnosis after the system is
fabricated. This is not to say that the design of the
FTU is not as critical as it is in the case of the
hardwired MSG. The design of the FTU is still a major

133

factor in the effectiveness of its own diagnosis.

Relation 3
Given: (1) MSG/FTU system A having an MSG

with a variatTle repertoire of CR sequences; (2) MSG/
FTU system B having an MSG with a fixed repertoire of
CR sequences; (3) virtual machine instruction set C;
(4) both system A and system B can execute only in
struction set C; (5) both system A and system B po
ssess identical FTU units.

Then, (1) the ability of FTU diagnosis in
system A to detect FTU faults during the diagnosis
procedure is greater than or equal to the ability of
system B to perform the identical operation; (2) the
ability of FTU diagnosis in system A to isolate FTU
faults is greater than or equal to the ability of
system B to perform the identical operation.

Both parts of Relation 3 are based upon the same
concept. The sets of CR sequences that can be executed
in system B is fixed by the virtual machine instruction
set and the design of the FTU. Hence, system B can
only perform fixed sets of CR sequences. In the course
of performing the diagnosis procedure on the system B
FTU it can possibly be that either fault detection or
fault isolation or both can be improved by the addi
tion of a CR sequence not available in system B. If
no CR sequences can be added to improve system B
diagnosis, then system A will have a level of diagnos
ability equal to system B.

Relation 3 shows that enhanced FTU diagnosis may
possibly be achieved simply by use of an MSG unit
having a variable CR sequence repertoire instead of an
MSG unit having a fixed CR sequence repertoire.

Relation 4
Given the conditions in Relation 3.
Then, the number of CR sequences used to per

form diagnosis in system B is greater than or equal to
the number of CR sequences used to perform FTU diagno
sis in system A.

The proof of Relation 4 is based on the fact that
since the CR sequences are fixed in system B, it is
possible that unneeded CR sequences will be executed
in the course of FTU diagnosis since every virtual
machine instruction causes execution of a predetermined
set of CR sequences. If there are unneeded CR se
quences, these CR sequences can be omitted in the
diagnosis of system A since the MSG repertoire is
variable. Hence, the length of the diagnostic se
quence in system B is greater than that of system A.
If no CR sequences can be omitted, then the lengths
of the diagnostic sequences in both systems are equal.

IV. DESIGN GUIDELINES

To achieve the design goal of diagnosabi1ity it is
necessary that the system designer always keep con
current fault detection and fault isolation central in
the system design. The next section deals with guide
lines pertaining to the MSG. Throughout this section
it should be remembered that the guidelines are for
the purpose of ~chieving the design goal of diagnos
ability.

There are a number of important items to be con
sidered in the designing of an MSG. The design guide
lines are as follows:

1. The MSG should have a variable repertoire of
CR sequences, i.e. it should be microprogrammed.
Relations 1,2,3,and 4 illustrate the advantages that
are avaDa5Te to the mic-roprograrnmea MSG in diagnos-is
of the FTU. These advantages cannot be ignored since
diagnosis of the FTU is a key part of designing a

diagnosable computer system. This is not to imply that
a hardwired MSG system is completely undiagnosable.
The difficulty encountered with the hardwired MSG/
virtual machine instruction diagnosis is that it im
plies attempting to diagnose the real machine by means
of the virtual machine which itself is being simulated
by the real machine. The process is somewhat self
defeating.

2. The MSG has to satisfy the diagnosable system
design goals. That is, ideally all faults must be
detected, and ideally all faults must be capable of
being isolated. This goal is more easily approachable
in a microprogrammed MSG due to its structure, which
is more regular and often less complex than a compar
able hardwired MSG. External fault diagnosis and iso
lation procedures for a microprogrammed MSG are more
straightforward to develop than for a comparable
hardwired MSG.

Many techniques exist for concurrent fault
detection in a microprogrammed MSG. For example, the
control memory could utilize fault detection techniques
as proposed by Szygenda in his fault tolerant memory
design(7). Coding techniques can be utilized to pro
vide fault detection on gating function lines.
Another important area of fault detection is in the
area of timing sources used to sequence the operation
of the MSG and FTU operations. A number of techniques
for detecting faults in timing sources are avai1able(3).

It is necessary to next consider the problem of
FTU access for diagnosis. This is needed since the
MSG must access the logic subsystems of the FTU in
order to facilitate diagnostic testing of the FTU.
Since, in any nontrivial system, diagnostic testing
will be conducted on a non-monolithic or modular
basis. It is important to consider the diagnosis of
partitions and combinations of partitions.

134

Figure 3 illustrates a system composed of two
partitions - SSI and SS. If both SS and SS are
strictly combinational togic, it is q~ite pos~ib1e that
access to only the input of partition SS and the out
put of partition SS2 will be sufficient tor diagnostic
testing and fault isolation. To determine if this is
true, diagnostic test generation can be employed to
discover how faults can be detected and how well they
can be isolated. If either SSl and SS or both are
sequential logic systems, the picture ~hanges and be
comes less predictable. Problems arise in attempting
to diagnose the composite system by means of using only
the system input and the system output.

FIGURE 3

A Two Partition System

These problems arise from the nature of sequential
logic systems. Sequential logic systems can be diffi
cult to diagnose for three basic reasons. First, the
sequential logic must be initialized to some known
state for diagnosis. Whether or not this is a diffi
cult task depends upon the design of the logic in
question. If no means exists to preset the logic to a
known state by using an additional input or preset lin~
then it is necessary to use a homing sequence to drive

the sequential logic to a known state before diagnosis
can be started. Second, if the sequential logic is
incompletely specified, there will be input sequences
which can cause unpredictable outputs. Third, se
quential logic can possess a large number of states
which can make diagnostic testing a very extended task.
For example, a 24 binary digit counter has over 16
million states. If the sequential logic is complex
with a large number of possible states, diagnosis can
be a difficult effort to accomplish. Combining
sequential logic subsystems such as in Figure 3 can
often result in a system that is more difficult to
diagnose than its constituent subsystems. In most
computer systems, usually more than just two subsys
tems are combined to obtain the system. Combining
sequential logic subsystems results in a larger
sequential logic system which presents correspondingly
more difficult problems in diagnosis. Providing
accessibility to the logic subsystems for the purpose
of diagnostic testing is important. On computer
systems not designed with sufficient access for
diagnosis to logic subsystems, maintenance engineers
often externally access logic subsystems with os
cilloscopes and other instrumentation to facilitate
diagnostic testing. Access to logic subsystems for
diagnosis must be included in the initial system
design.

V. CONCLUSIONS

The relations that have been presented in this
paper illustrate that a microprogrammed control unit
can have several important advantages in a diagnosable
computer system. Namely, a microprogrammed control
unit may enjoy enhanced fault isolation and a shorter
diagnostic test sequence over a comparable hardwiLed
control unit. Integrally enmeshed in the design of a
diagnosable computer system is the need for access to
the logic subsystems of the FTU for the purposes of
diagnostic testing by the MSG. Design of a diagnosable
computer system is a process of balancing access to
logic subsystems with the corresponding ability of the
MSG to properly use available FTU access points for
effective diagnostic testing. To achieve a diagnosable
system, the designer must keep this balancing process
in mind in all of his design activities.

BIBLIOGRAPHY

1. Bartow,N., and McGuire, R. "System/360 Model 85
Microdiagnostics." AFIPS Conference Proceedings.
Proceedings of the 1970 Spring Joint Computer
Conference. Montvale, N.J.: AFIPS Press, 1970.
2. Guffin, R.M. "Microdiagnostics for the Standard
Computer MLP-900 Processor." IEEE Transactions on
Computers, Vol. C-20, No.7, July, 1971, p. 803.
3. Hemphill, J .M. "The Development of Procedures
for the Analysis and Synthesis of a Highly Defined
Class of Fault Tolerant Computer Systems," Ph.D.
Dissertation, August, 1971, Southern Methodist
University.
4. Husson, S.S. Microprogramming Principles and
Practice. Englewood Cliffs, N.J.: Prentice-Hall,
1970.
5. Johnson, A.M. "The Microdiagnostics for the IBM
System 360 Model 30." IEEE Transactions on Computers,
Vol. C-20, No.7, July, 1971, p.798".
6. Rosin, R.F. "Contemporary Concepts of Micro
programming and Emulation." Computing Surveys, Vol. 1,
No.4, December, 1969, p. 197.
7. Szygenda, S .A., and Flynn, M.J. "Coding
Techniques for Failure Recovery in a Distributive
Modular Memory Organization." AFIPS Conference
Proceedings. Proceedings of the 1971 Spring Joint
Computer Conference, Montvale, N.J.: AFIPS Press,197l.

l35

DESIGN OF FAULT-TOLERANT
ASSOCIATIVE PROCESSORS~:~

Behrooz Parhami
Aigirdas Avizienis

Computer Science Department
University of California, Los Angeles

ABSTRACT

Recent advances in computer technology have made
the design of large and very flexible associative proc
essors possible. Such systems are extremely complex
and must be adequately protected against failures if
they are to be used in critical application areas such
as air traffic control or for performing control func
tions in fault-tolerant computers. This paper summa
rizes the results of a study which has indicated the
techniques that are applicable in the design of fault
tolerant associative processors. Associative process
ors are divided into four classes of fully parallel,
bit-serial, word-serial, and block-oriented systems. A
technique for modularizing the design of an associative
processor is given. The detection of errors within
modules is discussed for the four classes mentioned
above. Several schemes for reconfiguration are dis
cussed which allow us to establish an appropriate inter
communication pattern after replacing the faulty module
by a spare. The· design of a fault-tolerant associative
processor, which uses some of the techniques discussed
previously, is presented.

BACKGROUND

Associative processors are of interest since they
enable us to solve many data processing problems for
which digital computers with conventional architectures
are either unsuitable or highly inefficient. Based on
the applications that have been proposed for associa
tive processors, there are at least two reasons for
studying the fault tolerance problems of such devices:
(1) In some proposed application areas, such as air
traffic control [1], the effect of an undetected fault
induced error may be catastrophic. (2) To be able to
perform control functions [2] in a fault-tolerant com
puter, an associative device must itself be fault
tolerant, since, otherwise, it will become part of the
system's hard core and will contribute heavily to its
unreliability. In addition, the extreme complexity of
large, general-purpose associative processors necessi
tates the incorporation of fault tolerance features
into their design.

It is remarkable, therefore. that the problem of
fault-tolerance of associative devices has remained
virtually untouched. Ewing and Davies [3] give tech
niques fo~ coping with some hardware malfunctions in a
plated-wire implementation of a particular associative
processor. Proudman [4] suggests that a single error
*This research was supported by the U.S. National

Science Foundation under Grant No. GJ 33007X

correcting code can be used in conjunction with mis
match detectors with a threshold of 2 to detect storage
errors. This paper summarizes the results of a study
on fault tolerance techniques for associative process
ors [5]. We will concern ourselves with hardware
faults and will assume the programs to be correct repre
sentations of intended algorithms for the specified do
main of operation. We may note, however, that the
simplified software of associative processors (e.g.
fewer loops) with respect to conventional systems, re
sults in a proportional simplification in the problem
of software fault tolerance.

In the remainder of this paper, we will refer to
fully parallel, bit-serial, word-serial, and block
oriented architectures for associative processors.
This classification, which is based on the degree of
parallelism in operations or, alternatively, the amount
of storage associated with each unit of processing
logic, is described briefly as follows. A more detailed
discussion of these concepts and a comprehensive set of
references can be found in [6].

(1) In fully parallel associative processors, proc
essing logic is associated with each bit of
stored data. Most fully parallel systems im
plement only the exact-match search operation
in hardware and use software techniques for
arithmetic, logic, and more complex searches.

(2) In bit-serial associative processors, process
ing logic is associated with each word of
stored data. All the words can be processed in
parallel, each in a bit-serial manner.

(3) In word-serial associative processors, a single
processing unit operates serially on all the
words. This approach essentially represents
hardware implementation of a simple program
loop which is used for linear search.

(4) In block-oriented associative processors, one
block 'of information is associated with a unie
of processing logic. A low-cost implementa
tion of such a system may use a head-per-track
magnetic recording memory in which each block
is stored on one or more tracks.

FAULT TOLERANCE APPROACH

Figure 1 shows a model for an associative processor
which applies to the three classes of fully parallel,
bit-serial, and block-oriented systems. Since word
serial associative processors closely resemble conven
tional systems, their fault tolerance problems can be
studied separately. Each processing element (PE) in

141

Figure 1 consists of one unit of processing logic and
its associated storage elements. In general. the proc
essing elements in the PE array communicate with each
other and the exact pattern of intercommunication is
application-dependent.

A study of fault-induced errors in an associative
processor shows that they are not easily detectable
since a single fault may cause an arbitrary number of
errors. This is evident for faults in global subsys
tems of Figure 1. such as the input and mask registers.
A single 'fault in one processing element may cause
errors in others because of PE intercommunication. The
problem is further compounded by the fact that each PE
performs logic and selective write operations on indi
vidual data bits which as we know are not easily check
able without a high level of redundancy.

ADDRESS
DECODER

Figure 1. Associative Processor Model

The associative processor of Figure 1 can be made
fault tolerant by dividing the PE array into identical
modules which share spares. Let us assume that we have
M modules. each consisting of P processing elements.
It is possible to distribute the decoding and response
resolution functions among the modules in order to re
duce the complexity of the non-array portion to a mini
mum. Figure 2 shows the modules and their interconec
tions. One-dimensional intercommunication between mo
dules has been assumed for simplicity.

CONTROL
UNIT

Figure 2. Modularized Associative Processor

Given a modular associative device as shown in
Figure 2. it can be made fault tolerant by the follow
ing steps: (1) Incorporating internal failure detection
ability within each module; (2) Adding S spare modules;
and (3) Designing switching mechanisms and correspond
ing algorithms for reconfiguration. We will assume
that the M + S operating and spare modules are perma
nently connected to the main data buses and that spe
cial isolating circuits exist between each module and

the data buses. Therefore. reconfiguration takes place
by "power switching" and by providing alternate inter
communication paths between modules.

DETECTION OF MODULE FAILURES

We first discuss the problem of error detection in
associative processors with respect to the four classes
mentioned previously. Then we will consider a technique
which is applicable in all cases.

A fully parallel associative memory with only
exact-match search operation and without masking capa
bility can be protected against storage errors by using
a code with a minimum distance of k in conjunction with
mismatch detectors with a threshold of k. With this
scheme. stored words containing k-1 or fewer errors will
never respond to a search operation and are effectively
isolated from the rest of the system until periodic di
agnosis routines detect their failure. The difficulty
is that such an associative device will have no appli
cation besides simple table look-up. For most other
applications. masking capability. more complex search
types. and arithmetic operations are essential.

Considerations for bit-serial systems are similar
to those for fully parallel systems. One advantage
which exists here is the serial processing of bits in
each word. This allows us to artificially extend each
operation to the entire word by performing "null" opera
tion on bit positions not originally specified. 'Now.
since all the bits of each word are processed serially.
codes with low-cost serial encoding and decoding can be
used to protect against storage errors. It should be
noted. however. that if operations on small fields with
in the words are to be performed frequently. the above
scheme may result in a significant reduction of speed.

As noted earlier. because processing is performed
serially in a word-serial system. protection against
failures becomes relatively simple. Low-redundancy
coding can be used to protect against storage errors.
Failures in the processing logic may be detected through
self-checking [7] design. Self-checking translators may
be needed to convert the storage encoding (S-encoding)
to an encoding suitable for processing (P-encoding).
The main requirement on the P and S encodings is that
fast (parallel) translation between the two must be
possible.

One favorable property of block-oriented systems
with respect to fault tolerance is that during each
operation cycle. a processing element operates on the
entire block of information assigned to it. This en
ables the use of block codes which result in relatively
low redundancy and have simple serial checking algo
rithms. If mechanical storage devices are used to im
plement such devices. error bursts become very probable
due to dust particles. minute scratches. or defects in
the oxide coating. It has been noted that low-cost
arithmetic error codes are very effective for coping
with such burst errors [8].

As can be seen from the previous discussion. low
redundancy coding techniques are applicable only in spe
cial cases. Design of logic circuits in self-checking
form [7] (l.e., in a way that internal circuit failures
manifest themselves on the circuit's outpu~particularly
if 1-out-of-2 encoding is used, appears to be promising.
However. because of the relatively higher complexity of
the self-checking design approach as compared to low
redundancy coding techniques. this approach should be
used when others fail or for protecting the system's
hard core. A detailed discussion of self-checking de
sign concepts is beyond the scope of this paper [5).

RECONFIGUBATION THROUGH SWITCHING

For a modular associative device to tolerate module
failures, the module interconnections should not be ri
gid as shown in Figure 2. Rather. the modules should be
interconnected through specially designed switching cir-

142

cuits which prevent a system failure as a result of the
failure of a module. The setting of these switching
mechanisms determines the system configuration and can
be changed by a central monitor if required. If a
module error is indicated and the existence of a perma
nent failure is determined, reconfiguration procedures
must be initiated to establish a new working configur
ation. In general, data transfers between modules and
correction of fault-induced errors are needed as part
of the reconfiguration process

We will assume only unidirectional (left to right)
data flow between the modules in Figure 2. The gener
alization of the results to bidirectional data exchange
is straightforward. After detecting the existence of a
faulty module, the following steps must be taken before
normal operation can resume: (1) Locating the faulty
module; (2) Determining a new working configuration;
(3) Initiating appropriate data transfers; and (4)
Effecting reconfiguration through switching. The cri
teria that should be used in evaluating each reconfi
guration scheme include: (1) The amount of data trans
fers needed; (2) The complexity of the reconfiguration
algorithms; (3) The number of spares S needed for toler
ating f module failures; and (4) The complexity of
additional switching circuitry.

We first discuss centralized reconfiguration
schemes in which the switching hardware is external to
the modules. A straightforward solution is the use of
a "permutation network" [9] which can interconnect the
modules in any order. Such a permutation network can
be implemented as a cellular array [10] of two-state
basic modules. Since the complexity of such a cellular
permutation network is roughly proportional to the
square of the number of modules, its use can be justi
fied only if a relatively small number of modules are
involved. The two-state basic modules can be used in
a different way to form a "shorting network" [9]. As
shown in Figure 3, such a shorting network can be used
to route data around the faulty and spare modules. One
disadvantage of this scheme, particularly as shown in
Figure 3, is the excessive amount of data transfers
needed in the case of a failure. The number of trans
fers needed can be reduced by optimal placement of the
spare modules [5J.

UNIT

ta) m + I MODULES CONNECTED TO A SHORTING NETWORK

SPARE

(b) NORMAL OPERATION WITH ONE SPARE

te) OPERATION AFTER THE FAILURE OF MODULE NUMBER 2

Figure 3. Reconfiguration with a Shorting Network

Another approach to the reconfiguration problem is
the use of a distributed switching mechanism; i.e., dis
tributing the switching hardware among thellloiulea. This
can be done by providing each module with a set of input
and output lines instead of one as shown in Figure 2.
Then if a successor module connected to one module out
put fails, a module connected to another output can act

as its successor. The simplest case, which will be dis
cussed here, is when each module has two sets of inputs
and two sets of outputs. The two inputs and two outputs
are distinguished by the letters H and V (horizontal and
vertical). The module has four states denoted by HH,
HV, VH, and VV, depending on whether the H or V input is
used and whether the output is generated on the H or V
output.

Figure 4 shows a two-dimensional arrangement of the
basic modules. It can be seen in Figure 4 that the 9
modules can be connected into a string. If any single
module fails, the remaining 8 can continue their opera
tion. Double module failures will leave at least 6
usable modules. Hence, with M=8 and S-l, this scheme
can tolerate all single module failures. With M=6 and
S=3, all double failures can also be tolerated as well
as some triple failures. The problem of optimal inter
connection patterns for the tolerance of a maximum num
ber of module failures has not been solved. The basic
advantage of this scheme is that the switching mechanism
is not part of the system's hard core since a failure in
the switching circuits is equivalent to a module failur~
The main disadvantages of this scheme are the complexity
of the reconfiguration algorithm, excessive data trans
fers, and tolerance of fewer than S failures.

FROM TO
CONTROl--+---J 1-1-+-- CONTROL
UNIT

(a) THE INTERCONNECTION PATTERN

HV VH HV

Ibl NORMAL OPERATION WITH ONE SPARE

te) OPERATION AFTER THE FAILURE OF MODULE NUMBER 2

Figure 4. An Example of
Distributed Reconfiguration

A CASE STUDY

UNIT

In this section. we illustrate the applicability of
some of the techniques discussed previously by present
ing the design and evaluation of a fault-tolerant asso
ciative processor called SPARE (inverse acronym for
Error-tolerant and Reconfigurable Associative Pr.ocessor
with Self-repair). -SPARE is essentially a fau~t-toler
ant version of an associative processor which has been
described previously [3]. Figure 5 shows a blockdia~
gram of the non-redundant system. The random-access
memory is used for storing instructions and constants
and consists of 4096 24-bit words. The associative
memory contains 512 96-bit words.

The non-redundant associative processor of Figure
5 can be divided into two parts: (1) The associative
(parallel) section, which consists of the associative
memory array, bit column selection logic, and word lo
gic; (2) The control and sequencing (sequentia. section,

143

which contains all other subsystems of Figure 5. The
sequential section uses status signals and test inputs
for monitoring the operation of the parallel section.
We now briefly discuss the three main features of
SPARE; i.e., error tolerance, reconfigurabi1ity, and
self-repair.

Figure 5. The Non-Redundant
Associative Processor

To achieve error tolerance, the parallel section
of SPARE is divided into M identical modules. S spare
modules are shared by the operating modules. Each mo
dule has internal failure detection capability which is
provided by self-checking design of its circuitry using
two-rail encoding of logic variables. When a module
error is indicated to the sequential section, the re
covery mode is entered and the final result may be the
replacement of the faulty module by a spare module.
The sequential section of SPARE resembles a small
general-purpose computer and can, therefore, be made
fault tolerant by conventional techniques.

One of the very important properties of associa
tive processors is simple modular growth. The size of
an associative processor can grow without a need to al
ter its algorithms. This suggests that if additional
processing capability is required, the redundant proc
essing logic in SPARE can be utilized. Even the two
channels of the two-rail circuits can be used indepen
dently to double the processing capability if certain
design criteria are met [5]. Specifically, we postu
late the following operation strategy for SPARE: (1)
During normal operation the system works in redundant
mode with a number of spare modules; (2) If a module
failure occurs or additional processing capability is
needed and if a sufficient number of spares are avail
able, they are switched in; (3) If a module failure
occurs or additional processing capability is needed
and spare modules are not available, the system ~
figures into simplex mode by utilizing the two channels
of tbe two-rail circuits independently.

Of the reconfiguration techniques discussed in the
previous section, the one using a permutation network
sesma to be suitable for SPARE since only one inter
communication line (two in self-checking design) exists
between modules and the number of modules is expected
to be small (M-4 or 8, for example). The self-repair
process will then essentially consist of computing and
setting of a new state for the permutation network.
Thia process must be followed by a recovery procedure
to transfer the data stored in the failed module to
the one which replaces it. The permutation network has
a two-rail self-checking design but no spare is pro
vided for it.

In computing the reliability of SPARE, we will
assume that the coverage factor C includes the reliabil
ity of the permutation network. Using the reliability
modeling technique of Bouricius et at [11], we find the

_ reliability improvement factor defined as [l-Rnr(T)] t
[l-Rr(T)] as a function of mission time T for several
configurations of SPARE (Rnr and Rr denote the non
redundant and redundant re1iabi1ities. respectively).
Figure 6. which depicts the resulting curves, shows
that for mission times which are short compared to the
MTBF for the non-redundant system. a significant in
crease in reliability is possible with a low 1ev1e of
modu1arization and a relatively small number of spare
modules.

30

20

10

100 1000 10,000 50,000

TIME (HOURSI

Figure 6. Reliability Improvement
Factor for SPARE (C-O.99).

CONCLUSION

In this paper. we have presented some results of a
study on the fault tolerance of associative processors.
Our main conclusions are as follows:

(1) Dynamic redundancy is to be preferred over
static approach because associative processors
lend themselves naturally to modu1arization
and since spares can be shared by a number of
identical modules.

(2) Low-redundancy coding techniques are applicable
for error detection in associative processors
but only in special cases. In particular, the
use of arithmetic error codes for b1ock
oriented systems appears to be promising.

(3) Application of self-checking circuit design
techniques seems to be an attractive alterna
tive for error detection in associative device&

(4) Complex switching mechaniSIB and algorithms need
to be devised to enable the sharing of spares
by a collection of identical modules which
communicate with each other.

Further research is needed in two equally important
areas. The first area is the design of completely
checked digital circuits. Systematic techniques need
to be developed to aid the designers in choosing suit
able input and output encodings and producing a se1f
checking design when presented with a non-redundant cir
cuit or its functional behavior. The second area deals
with general techniques for reconfiguration in array
processors. Extension and generalization of the results
presented here are possible in two directions. First.
one can conceive of other interconnection schemes for

144

the case where one-dimensional intercommunication ex
ists between modules. For example, we may consider a
three-dimensional interconnection pattern in which
there are three choices for each of the left and right
neighbors for a module. Second, one may seek general
izations to the cases where multi-dimensional module
intercommunication is used. This is a considerably
more complex problem.

REFERENCES

[1] Thurber, K.J., "An Associative Processor for
Air Traffic Control," AFIPS Conference
Proceedings, Vol. 38 (1971 Spring Joint Computer
Conference), AFIPS Press, Montvale, New Jersey,
1971, pp. 49-59.

[2] Berg, R.O. and M.D. Johnson, "An Associative
Memory for Executive Control Functions in an
Advanced Avionics Computer System," Proceedings
of IEEE International Computer Group Conference,
June 1970, pp. 336-342.

[3] Ewing, R.G. and P.M. Davies, "An Associative
Processor," AFIPS Conference Proceedings, Vol. 26
(1964 Fall Joint Computer Conference), Spartan
Books, Baltimore, Maryland, 1964, pp. "147-158.

[4] Proudman, A., "Bulk Associative Memory with Error
Correction," IBM Technical Disclosure Bulletin,
Vol. 12, No.7, pp. 1076-1077, December 1969.

[5] Parhami, B., "Design Techniques for Associative
Memories and Processors," Technical Report UCLA
ENG-7321, Computer Science Department, University
of California, Los Angeles, March 1972. (Also
published as a Ph.D. dissertation).

[6] Parhami, B., "Associative Memories and Process
ors: An Overview and Selected Bibliography,"
Proceedings of the IEEE, Vol. 61, No.6, pp.
722-730, June 1973.

[7] Carter, W.C. and P.R. Schneider, "Design of
Dynamically Checked Computers," Information
Processing 68, (P~oceedings of IFIP Congress.
Edinburgh. Scotland, August 1968), North Holland
Publishing Company, Amsterdam, 1969, pp. 878-883.

[8] Parhami, B. and A. Avdienis, "Application of
Arithmetic Error Codes for Checking of Mass
Memories," Digest of International Symposium.
on Fault-Tolerant Computing, Palo Alto,
California, June 1973, pp. 47-51.

[9] Levitt, K.N., M.W. Green, and J. Goldberg, "A
Study of Data Commutation Problems in a Self
Repairable Multiprocessor," AFIPS Conference
Proceedings, Vol. 32 (1968 Spring Joing Computer
Conference), Thompson Book Company, Washington,
D.C., 1968, pp. 515-527.

[10] Kautz, W.H., K.N. Levitt, and A. Wakaman, "Cell
ular Interconnection Arrays." IEEE Transactions
on Computers. Vol. C-17, No.5. pp. 443-451, May
1968.

[11] Bouricius. W.G., W.C. Carter. and P.R. Schneider.
"Reliability Modeling Techniques for Se1f
Repairing Computer Systems." Proceediys of the
24th National Conference of ACM. San Francisco,
California. August 1969, pp. 295-309.

145

A FAULT TOLERANT MULTIPROCESSOR ARCHITECTURE
FOR REAL-TIME CONTROL APPLICATIONS

M. A. Fischler
O. Firschein

Lockheed Palo Alto Research Laboratory
Palo Alto, California

ABSTRACT

This paper presents a fault tolerant multiprocessor
architecture suitable for real time control applications
requiring an extremely high degree of reliability.
The architecture satisfies the following requirements:

1) Ability to deal with software as well as hardware
faults: The proposed architecture is based on the
assignment of distinct but redundant software modules
to each task.

2) Efficient use of resources: The proposed archi
tecture is a multiproces sor using time redundancy for
fault correction. Thus, redundancy (beyond that
needed for fault detection) is invoked only when a fault
is detected. In normal operation, this extra capacity
is available as an additional computing resource.

3) No hard core: In addition to the usual replication
of system components, a partitioned system executive
and a unique cOIllIIlunication facility is defined which
insures that the available redundancy will not be lost
through a "domino" effect.

4) Interaction of com.puting units with sensors and
effectors: The m.anner in which system architecture
m.ust be responsive to the' amount and type of redun
dancy provided by the sensors and effectors is shown.

5) Use of current technology: The proposed archi
tecture is based on the use of currently available
hardware for the major system. components.

After a detailed description of the architecture and
the method of system operation, the system is related
to existing fault tolerant systems, and unique charac
teristics of the present design are indicated.

I. INTRODUCTION

There are m.any comm.ercial and military control
applications for which the com.puter technology is
currently available, but due to the dire consequences
of failure, computer systems cannot directly be used.
These applications usually involve control of systems
in which human life may be at stake, such as fly-by
wire aircraft control, or autom.atic braking of a train
or an automobile. The present paper is concerned
with techniques for achieving a sufficient degree of
reliability to make presently available computers
applicable to such systems.

PROBLEM DEFINITION
In this paper we are concerned with problem.s of com.
puter control of real time processes under the follow
ing conditions: 1) Ultra-reliable system operation
(probability of failure approaching zero). 2) Use of
current technology and mainly off-the-shelf components
and subsystems, 3) Realistic cost constraints (i. e. ,
limited use of hardware redundancy), 4) Completely
specified task environment: all operations and actions
required by the system. are known and can be factored
into the design, 5) Sensor and effector redundancy is
sufficient not to be a limiting factor.

ARCHITECTURE CONCEPTS
The following architectural concepts, used in-the
deSign, are discussed in some detail in the balance
of the paper:

a) Use of multiple and distinct software modules to
detect faults (including design and translation faults).

b) Use of time redundancy to correct detected errors
(time redundancy is efficient in that the redundant com
putation, beyond that needed for fault detection, need
be invoked only after an error is detected; resources
can be.used productively under normal operation).

c) Integrated consideration of sensors, computer and
effectors.

d) No hard core items: distributed and partitioned
executive control; redundant hardware, software, in
form.ation storage, sensors, effectors, comm.unications,
power, etc.

e) No 'domino' effect: isolation via hardware restric
tions on communication and control.

UNIQUE ASPECTS OF THE PROPOSED ARCHITECTURE

We believe that the architecture presented in this
paper is unique with respect to the following items:

a) A non-interfering type of broadcast communication
system. (A discussion of alternative types of inter
module comm.unication system.s is presented in
Appendix A.)

b) A system executive which is partitioned into iden
tical, independent, autonom.ous units. (A discussion
of alternative types of fault tolerant executives is pre
sented in Appendix B.)

c) The consideration of design and translation errors
(as well as dam.age faults) in both hardware and software.

Fault tolerance is achieved by the use of redundancy;
however, unless a suitable degree of isolation exists
between the m.ajor system com.ponents, it is possible
that a single failure can destroy a redundant system..
Item.s (a) and (b) appear to offer an extrem.ely high
level of isolation at a low cost in both system and hard
ware com.plexity. The increasing use of LSI circuits
in the construction of com.puter hardware, with the
associated infeasibility of exhaustive testing of such
complex units, increases the probability that a com
puting unit will have undetected design errors. In the
case of software, it is com.m.on knowledge that the
com.plexity of such program.s also m.ake their exhaustive
testing impractical. Therefore, it is necessary to
design fault-tolerant com.puters not only from. the point
of view of protection against future device dam.age
failure; rather, it may have to be assumed that both
hardware and software design and translation errors
are present initially. Consideration of this class of
errors appears to be lacking in previously published
works dealing with fault tolerant architectures.

RELATION TO OTHER FAULT TOLERANT SYSTEMS
Even though organized in a unique way, m.any of the
goals, constraints, and concepts we invoke are com.
m.on to other system.s. These include (references
are exam.ples, this is not m.eant to be an exhaustive
listing): a) Off the shelf major subsystem.s, Ref. 9,2;
b) Lack of hard core, Ref. 9,7; c) Multiprocessor
organization, Ref. 9,7; d) Tim.e redundancy, roll
back, Ref. 1,7; e) Minim.al special hal'dware for-
fault detection o,r correction, Ref. 9; f) Loose syn
chronization, no lock-step, Ref. 9,1; g) Adjustable
degree of fault tolerance. Com.m.ent:· This item.

151

appears to be conunon to almost all of the FT archi
tectures.

A comparison of the present system with.J;hree other
fault tolerant systems is given in Ref. 6.~

II. ARCHITECTURAL CONCEPT

In the following discussion, we will present an arch
itectural concept rather than a complete system de
sign; therefore, decisions concerning the "best" .
alternative for some of the more detailed structure
will not be made here, but must be determined by
the specific environment to which the system will be
applied. The level of detail of the discussion will be
limited to the following major system components:

• Processing Units (PU): (mini) computers contain
ing computational capability, registers, and
scratch-pad memory.

• Memory Units (MU): random access memory
augmented by some minimal logic capability (to
be described later). Each PU has a MU assigned
to it.

• InterModule Communication System (IMCS): the
bussing and special registers used for internal
communication.

• Timing and Synchronization System (TSS): the
conventions by which the system components co
ordinate their activities.

• Input/Output Processors (lOP): elementary pro
ces sors which interface between the computing
system and the sensors and effectors. Input func
tions include A/D conversion, multiplexing, and
buffering. Output functions include voting, buffer
ing, and D/A conversion.

• Work Schedule and Contingency Plan (WSCP): a
complete schedule for performing the required
tasks, including allocation of resources to the tasks,
and a contingency plan for task performance under
various fault conditions (i. e., loss of resources).

• System Executive Software (EXEC): primarily the
functions of fault detection and system status eval
uation, as well as implementation of the WSCP.

• Sensors (S)

• Effectors (E)

• Application Software (AS)

GENERAL SYSTEM DESCRIPTION

The system consists of two or more (preferably)
identical PU, each with its own (functionally) iden
tical resident EXEC and copy of the WSCP. Each
PU, MU, and lOP has an output bus (which only it
can write on) which goes to a dedicated read-only
register in every other PU, MU, and rop. The set
of all such dedicated read-only registers in a system
component will be called its Communication Memory
(CM).

In the basic configuration, the computing system
operates in a 4-phase cycle. During Phase I (PI),
each PU works on one or more of the tasks as signed
to it by the WSCP. Each task which forms a subset

*S . f ome copIes 0 this report are available from the
authors.

152

of the application software is produced in three or
more distinct versions and each version is partitioned
into segments which can be run in the PI time interval.
(Typically, the execution of such a segment will result
in a control signal to be sent to one of the effectors
in P4 of the cycle.) During PI, exactly two versions
of each task are executed on separate PU, and for
this reason, the simplest arrangement would be an
even number of PU grouped into pairs, with each
pair of PU performing the same set of tasks.

During P2, paired PU compare results (partial or
complete) via the IMCS. If an error is detected (dif
ference in results), a HELP request is transmitted
to the other PU of the system; otherwise, the valid
data can either be saved for further processing,
stored in the MUls assigned to the PUIS, or stored
in an lOP for later output to an effector.

During P3, a PU designated by the WSCP will respond
to a HELP request by executing additional versions of
the questionable computation. If no HELP requests
are outstanding, low output rate, background, high
output rate (but not fully protected), self-check,
housekeeping, etc., jobs are performed as specified
by the WSCP.

During P4, HELP request situations are resolved by
majority (or plurality) vote. This decision process
is carried out in every PU of the system by comparing
the data available in its CM. Defective system com
ponents are identified by their lack of agreement with
majority, and their status is recorded in every PU.
This up-dated status information, in conjunction with
the WSCP, determines new job assignments and re
source allocations within the system. Other activities
carried out in P4 include acceptance, verification,
and storage of sensor data and transmission of control
signals to the effectors.

In the following subsections, we will expand and
clarify many of the concepts presented in the above
general system description.

THE INTERMODULE COMMUNICATION SYSTEM (IMCS)

The IMCS aids in the performance of four primary
system functions; these are: (a) Fault detection. It
provides the means by which the PU can compare
results. (b) In1ilt/Output Communication. (c) Recon
figuration. IIi eevent of .failure of one of the phy
sical units of the system, the communication patterns
between the remaining units will typically change; the
IMCS provides a simple means for accomplishing this
function. (d) Isolation. The IMCS provides commun
ication without allowing a defective unit to damage
either other functioning units, or the iMCS itself.

As described earlier, the IMCS is implemented by
having a (possibly redundant) bus aSSigned to each
physical system module which only the assigned
module can write on. The bus, simultaneously,
drives a dedicated read-only register in every phy
sical system module. The receiving module, based
on its as signed duties as specified by the WSCP, will
typically be attentive to only one of the registers in
its CM at any given time, and ignore the remaining
registers. Relevant multi-word messages are saved
by the receiving unit reading and internally storing
the incoming information; ignored data is overwritten
and lost.

In a complete system design, a number of decisions
concerning the IMCS and involving cost/performance
trade-offs must be made. These include the width of
the busses (i. e., serial or parallel data transmission),

the possible use of error detecting or correcting
codes to protect the transmitted information, re
dundant registers in a CM (or even redundant CM's
in each unit). etc. While these decisions have im
portant practical significance, they do not signifi
cantly alter the architectural design in a logical
sense.

THE SYSTEM EXECUTIVE SOFTWARE (EXEC)

The EXEC, a duplicate copy of which is resident in
each PU, performs three primary system functions;
these are:

(a) Fault detection. This is accomplished in P2 of
the basic system timing cycle by comparing the out
puts of the PI application computations produced in
the resident PU with those produced in the "paired"
PU. This comparison is enabled by having each PU
broadcast its PI outputs over the IMCS during P2.
When the comparison yields out-of-tolerance results
(tolerance limits are supplied by the WSCP for each
application module as part of the descriptive informa
tion associated with the module), the EXEC signals
the detection of a fault by broadcasting a HELP mes
sage to the system via the IMCS.

(b) Status determination; a recording, in each PU,
of the proper or improper functioning of all system
units. In P3, following the issuance of a HELP
request, the original computations are repeated
(original PU's, and software, unless resources are
reduced to the point that status determination is no
longer feasible) together with the running of one or
more additional versions, of the software on addi
tional PU's. In P4, the fault is resolved by majority
(or plurality) vote as all PU's issue their results on
the IMCS. In addition, each PU can also make a
determination as to the source of the fault (localiza
tion to a PU / software module combination). If, in
the repeated computations of P3, the fault disappears,
a transient error is recorded against both the re
sponsible PU and software module. If the fault is
repeated, then at the earliest pos sible later time, as
specified by the WSCP, the computation is repeated
with the suspect software (and original data set) run
in a PU other than the original one; a correct result
now permits assignment of the fault to the original
PU, an incorrect result causes assignment of the
fault to the software module. Status determination
for MU's and lOP's is also performed and will be
discussed later.

(c) Implementation of the WSCP. Each PU has its
own copy of the WSCP, and record of the status of
the various system units which is compiled as de
scribed above. The WSCP is a complete description
of the duties to be performed by each system unit,
keyed to the operational condition (status) of the
system resources. Thus, without the need for any
additional coordination between system units, each
EXEC schedules its portion of the system workload
on its host PU.

The existence of a system EXEC in each PU does not
rule out the presence of a complementary local
executive which might be concerned with such func
tions as local fault isolation and recovery, interrupt
processing, service calls, etc.

THE WORK f-CHEDULE AND CONTINGENCY PLAN
(WSCP)

As defined previously, the WSCP is a complete de
scription of how the workload is to be carried out by
the system units. Such a plan, of cours e, must be

153

custom-tailored to the specific application environ
ment and its requirements. However, the question
of how to treat units which have demonstrated faulty
behavior is of a somewhat more general concern.
The architectural philosophy we are advancing here
is one which anticipates and is tolerant of occasional
errors (including those caused by faulty design) in
both hardware and software. Thus, unless a unit
produces such a high incidence of failures that the
timing commitments of the system are threatened,
no redistribution of workload is required. As a pre
cautionary measure, software modules showing
faulty performance could be reloaded from permanent
storage. Further, local diagnostic and recovery
procedures (e. g., invoking redundant hardware
within a PU) might improve the condition of a dam;l.ged
hardware unit. In general, even when a unit is
severely damaged, it should still be able to perform
some functions correctly and thus contribute to veri
fication tasks. That is, if a damaged unit "A" pro
duces an answer to a computation which agrees with
unit "B" but disagrees with unit "C", we would be
inclined to accept the answer of "B" as correct.
The architecture presented here is able to accept
such marginal contributions by damaged units.

THE TIMING AND SYNCHRONIZATION SYSTEM (TSS)

The four phase basic system timing cycle has been
functionally described in previous sections and we
will restrict our discussion here to the questions of
timing requirements and synchronization.

In a real-time control application, we have the re
quirement to provide control signals to the effectors
at (typically) regular intervals. For full fault toler
ant operation, the basic system timing cycle should
have a duration less than the duration of the cycle
corresponding to the highest rate control signal. A
basic system cycle time of 10 ms. or larger appears
suitable for a wide range of applications. This im
plies that hundreds of individual commands can be
executed (phases I and 3) prior to result comparison
(phases 2 and 4). with buffering of results prior to
comparison employed as required. Coordination of
activities in the various system units does not re
quire a lock-step type of synchronization, and thus
we do not require a precision timing system. In
particular, it appears advisable to adjust the task
completion time of the tasks to be somewhat less
than the phase interval (PI or P4) in which the tasks
are performed. Tasks which are not completed in
their designated time intervals are assumed to have
failed.

The actual timing mechanism could either be a single
fault-tolerant system clock (Ref. 6). or could be
accomplished by each PU announcing over the IMCS
the current system phase according to its own internal
clock. A majority vote of these timing signals is used
to determine the actual system phase time and the
various PU's can be resynchronized accordingly. By
allocating a small amount of tolerance (or dead) time
to each phase, slower units should be able to com
plete their tasks and resynchronize without trouble.

During startup, or resynchronization after a cata
strophic failure, each unit follows the procedures
specified by the WSCP and announces its current
perception of the system state over the IMCS, just
as it would for any other task.

For some applications, outputs might be required at
a rate faster than feasible for the basic timing cycle.
In such a case, two alternatives are possible. Three
(rather than the normal two) versions of the task can

be executed in parallel and conventional majority
logic used to determine the output. Such special
handling of a task would not interfere or conflict
with normal system operation. The second alter
native is to transmit the control signals at the re
quired rate with no assurance of immediate correct
ness, but the existence of faulty output would be de
tected, and corrective action initiated within one
basic system cycle time.

THE PROCESSING UNITS (PU)

These devices are assumed to be conventional, off
the-shelf (mini) computers, or even single chip com
puters, with the possibility of a few minor additions.
In particular, each machine requires a CM whose
registers can be individually loaded under external
control. A hardware (multiargument) voting opera
tion would be very desirable, though certainly not
essential. Each PU has a small amount of internal
working storage capacity (scratch pad memory).

THE MEMORY UNIT (MU)

The MU's are random access storage devices which
have the primary responsibility for verifying and
maintaining the application data bases; that is, the
sensor data and precomputed information needed to
calculate the new effector control signals. Thus , if
a disagreement is detected in the computed outputs of
paired PU's, and a new PU is assigned the task of
resolving this disagreement, the new PU can access
one of the relevant MU's to obtain the data appropriate
to its computational task.

Like all other major system units, the MU has a CM
and some simple logic which includes the ability to
compare and vote on multiple data items. During
normal operation, a MU is assigned to a single PU
and obeys its storage (only during P2 and P4) and
retrieval commands (at any time) by paying attention
to the appropriate register in its CM. It also inter
cepts, votes on, and stores data from sensors rele
vant to the tasks assigned to its associated PU. If
the sensor data is not consistent, it stores the ma
jority opinion and tallies the disagreement for later
fault reporting. Before storing data from its own PU
(i. e •• permanently altering the data base), it com
pares this data with that produced by the paired PU;
if there is a disagreement, no storage takes place
until after the resolution of the resulting HELP re
quest. During the HELP procedure. it responds to
information requests from other PUIS assigned to
the failed task. In P4, following the help request, it
determines and stores the majority opinion.

A MU can be reassigned to another PU if its own PU
is judged to be inoperative by a majority vote of the
PUIS in the system. It can also be used in a shared
mode (i. e., it now services more than one PU) when
so instructed by either its own PU, or by a majority
vote of the system PUIS.

We note that the data base associated with each task
is normally stored (in verified form) in two MU's.
However, to be able to resolve a disagreement in the
stored data should one of the MU's suffer a failure,
we require that error detecting encoding be employed
by the MU's.

THE INPUT/OUTPUT PROCESSORS (lOP)

Input functions such as signal sensing, AID convers
ion, multiplexing, and buffering are usually required
in interfacing a computing system to the real world.
In a fault tolerant system, these functions must

satisfy the same criteria with respect to redundancy
and isolation that we require of our computing com
ponents. Thus, we 'would expect that critical sensing
devices be at least triply redundant, and their signals
reach the computer through at least three independent
processing (A/D conversion, multiplexing, and buffer
ing) paths. We will call each such path an Input Pro
cessor, and assign it a register in all CM's of the
system.

The normal output functions of a real time control
system, including D/ A conversion, demultiplexing,
and buffering. as well as final effector activity. must
again satisfy the fault tolerant criteria that is required
of the rest of the system. In the case of the effectors,
this consideration can be critical, since a single (non
redundant) effector performing a vital function can
render useless all the prior redundancy built into the
system. Thus, for each task which involves effector
activity, we require at least triple redundancy. Some
effectors can provide this capability in a single device
by internally performing a voting operation (e. g., an
actuator with multiple inputs which performs the vot
ing hydraulically); however, even this capability is
not satisfactory due to the lack of isolation in achiev
ing the redundancy (i. e. , this single device is still a
hardcore item).

Given that we have at least three independent signal
paths to three independent effectors for each output .
task, we now must drive each of these paths with the
control signals produced by two or more independent
PUIS. An Output Processor is defined as a device
which includes the Signal path terminating in an effec
tor, and which obtains its output information based on
a vote of the relevant information appearing in its CM
(i. e., either agreement of two data items in P2, or
plurality of three or more items in P4).

THE APPLICATION SOFTWARE (AS)

The proposed architecture imposes a number of con
straints and requirements on the AS; these include:

(a) The requirement for three or more distinct ver
sions of the software for each application task (to
help detect design and translation errors, as well as
damage faults, in both hardware and software). While
considerable attention has been devoted to determining
whether two logical constructs are identical, the
question of criteria for establishing degrees of dis
tinctiveness does not appear to have been previously
considered. For most cases of practical interest. we
might assume that modules programmed by different
programmers would satisfy the distinctness require
ments. The topic of distinct software is discussed
furthe r below.

(b) The requirement for a common data base; that is,
all software versions of each specific task must be
able to use information stored in a common data base.
This programming convention is necessary to allow a
new version of a software module to be called into
execution to resolve a conflict, without having to
either maintain or generate a separate data base for
such a standby software module. In a control applica
tion environment, where the data base would typically
contain previously recorded sensor values and com
puted system states, a standard method of storing
such data seems quite reasonable.

(c) The requirements for partitioning the software
into segments which can be executed within the PI
time interval, and which will produce an (intermediate
or final) output suitable for comparison and fault de
tection. The partitioning requirement is compatible

154

with the need for control signals at short periodic
intervals typical of the control environment. Even in
those cases where the computation must extend over
many basic system cycles, and no reasonable inter
mediate results can be produced prior to completion
of the computation, normal error protection can still
be provided if the computation time interval (in system
cycles) is a suitably small fraction of the required out
put cycle time. In thi s case the verifying computation
will not be completed in a single P4 interval but will
extend over a series of P4 portions of successive
system cycles.

Distinct software. As noted above, an important
aspect of the present fault tolerant design is the avail
ability of distinct software, i. e. , processors per
forming the same task must each have a program
which satisfie s the same specifications, but each pro
gram must use procedures that are "different" in some
sense. Since identical processors are to be used in
the system, the motivation for such distinct programs
is that if identical processors are subject to the same
fault situation, the programs (and hence the proces
sors) will be in a different state when the fault occurs.

In converting from specification to procedures, dis
tinct programs can be obtained by utilizing:

1) Different theoretical methods of converting speci
fications' e.g., using different methods for mechan
izing the z -transform, or different methods of mech
anizing trigonometric functions.

2) Different procedural methods, obtained eithe r by
using two or more persons writing programs based
on the same specifications, or by the conscious inter
change of independent software procedures.

III. SUMMARY AND CONCLUSIONS

In this paper, we have presented an architecture
which satisfies the following requirements for real
time control applications:

1) Ability to deal with software as well as hardware
faults: The proposed architecture is based on the
assignment of distinct but redundant software modules
to each task. We have shown how communication,
synchronization, and resource allocation can be hand
led at the system level to deal with the problems
arising from such an approach.

2) Efficient use of resources: The proposed archi
tecture is a multiprocessor using time redundancy
for fault correction. Thus, redundancy (beyond the
minimal requirement of duplicate computation needed
for fault detection) is invoked only when a fault is
detected. In normal operation, this extra capacity is
available as an additional computing resource.

3) No hard core: In addition to the usual replication
of system components, we have defined a distributed
and partitioned system executive and a unique com
munication facility which insures that the available
redundancy will not be lost through a "domino" effect.
In particular, we have addressed and posed a solution
to the question of a defective unit "locking-up" the
communication channels, and bringing down the entire
systeIn.

4) Interaction of computing units with sensors and
effectors: We have discussed how system architecture
must be re'sponsive to the amount and type of redun
dancy provided by the sensors and effectors.

5) Use of current technology: The proposed archi
tecture is based on the us e of currently available

hardware for the major system components. For
example, the processing units will typically be con
ventional minicomputers or even single chip computers.

Since we have been primarily concerned with the logi
cal organization of a fault tolerant architecture at a
systems level, there are many questions we have not
addressed. Thus, for example, the details of making
the individual PU' s internally fault tolerant has not
been considered. We would assume that redundant
power supplies are used, but have not discussed this
point. Physical separation of the units and separation
of the communication busses seems desirable, but was
not discussed.

We raised the question of distinct but redundant appli
cation software modules with requirements for a
standard data base, and rough synchronization of
computation. While achieving these requirements for
a particular application seems relatively straight
forward, our continuing efforts will be directed to
formalizing this proces s. Finally, we feel that the
proposed architecture is suitable for a general prob
lem environment as well as real time control appli
cations; we plan to extend the simple supervisor pre
sented here to permit extension to the general multi
processor domain.

BIBLIOGRAPHY

1. Avizienis, A. A., et al., "The STAR (Self-Testing
And-Repairing) COInputer: An Investigation of the
Theory and Practice of Fault-Tolerant Computer
Design," IEEE Trans. on Computers, Vol. C-20,
No. 11 (Nov. 1971)
2. Brosius, D. B. and Jurison, J., "Design of a
Voter-Comparator Switch for Redundant Computer
Modules," FTC/3 (See Ref. 3)
3. Daly, T. E., Tsou, H.S.E., Lewis, J. L., and
Hollowich, M. E., "The Design and Verification of a
Synchronous Executive for a Fault Tolerant System, "
Int. Symposium on Fault Tolerant Computin (FT / 3),
June 197 , Palo Alto, California IEEE Cat. No.
73CH0772-4C)
4. Daly, W. M., Hopkins, A. L., and McKenna, J. F. ,
"A Fault-Tolerant Digital Clocking System," FTC/3
(See Ref. 3)
5. Farber, D. J., et al., "The Distributed Computer
System," Sixth Annual IEEE Computer Society Int.
Conf. (Compcon '72), San Francisco, California,
Sept. 1972 (IEEE Catalog No. 72CH0659-3C)
6. Fischler, M. A. and Firschein, 0., "A Comparison
of Fault Tolerance Concepts for Computer Architecture,"
Lockheed Missiles & Space Company Report, Oct. 1973
7. Hopkins, Jr., A. L., "A Fault-Tolerant Informa-
tion Processing Concept for Space Vehicles," IEEE
Trans. on Computers, Vol C-20, No. 11 (Nov.l97I}
8. Roberts, L. G. and Wessler, B. D., "Computer
Network Development to Achieve Resource Sharing, "
Proc. AFIPS 1970 SJCC, VoL 36, AFIPS Press,
Montvale, N. J.
9. Wensley, J. H., "SIFT-Software Implemented
Fault Tolerance," AFIPS Con£. Proc., Vol. 41, Part
II, 1972, Fall Joint Computer Conf., AFIPS Press,
Montvale, N. J.

155

APPENDIX A

TECHNIQUES FOR INTERMODULE COMMUNICATION

Given a set of computing, memory, and I/O modules
which are to contribute to the processing tasks of a
system, there are two major factors which affect
the communication between these modules:

1 - Connection characteristics, the nature and topology
of the paths between the module s.

2 - Control mechanisms and communications protocols,
the method of controlling the communication be
tween modules and the nature of the communication.

Various types of topology and control commonly used
are indicated in Table A-I, and examples of some of
the communications systems used in fault tolerant
designs is tabulated in Table A-2.

TABLE A-I

Types of Communication Interconnections, Control
Mechanisms, and Protocols

1 - Connection characteristics

a - Topology
Each module connected to a central
module
Each module connected to n other
modules
Each module connected so as to
form a ring

b - Nature of connection
Direct wire, module to module

redundant
links may
be used in
each of
these
topologies

Single or multiple common bus (uni- or
bi-directional)

2 - Control mechanisms and protocols

Permission to send/ receive given by central
unit, or according to standard protocol (e. g., as
in a conventional computer multiplexer bus).

Each module has specified time slot to send/
receive.

"Lazy Susan", messages inserted into communi
cation stream when empty slot appears.

Random transmit/receive.

TABLE A-2

Examples of Different Communication Approaches

Topology

ARPA Net
(Ref. 8)

Each station communi
cates with two or three
other stations

Controls and Protocols

No central control. Lazy
Susan variation; packet of
information addressed to
destination with no specific
routing indicated. Packet
is forwarded from node to
node until destination is
reached.

UC Irvine Ring
(Ref. 5)

Topology

Ring

Controls and Protocols

No central control. Lazy
Susan arrangement with
each processor examin
ing the data stream as
it goes by. Addressing
is by process rather
than destination.

SIFT, Stanford Research Institute
(Ref. 9)

Topology

Multiple common bus
to each module; single
dedicated line between
each processor and
its memory

Topology

Common busses

Topology

STAR, JPL
(Ref. 1)

TRW
(Ref. 3)

Each CPU and as sociated
memory are connected to
an input/ output control
unit (IOCU). Each IOCU
is connected to a set of
multiple data busses.
External devices com
municate with the com
puter via these busses.

Controls and Protocols

Processors can read
from any memory via
common bus; processor
can only write into its
own memory.

Controls and Protocols

Central control by T ARP

Controls and Protocols

Central system control
unit monitors and con
trols communication.

Autonetics
(Ref. 2)

Topology

Four CPU's on multiple
common data bus

Controls and Protocols

VCS control to external
output.

Proposed System

Topology

Multiple common busses,
one bus originating at each
module, and leading to
read-only registers in
all other modules

Controls and Protocols

Random transmit capa
bility by each module
on its own bus. Random
receive/ read capability
by each unit with respect
to its read-only registers
which receive information
from the multiple bus s es.

156

APPENDIX B

TYPES OF SYSTEM EXECUTIYES

The executive of a fault tolerant system. receives
reports of system. failure, controls the procedures
that are to be followed when such failures occur, and
re-allocates resources as required. The executive
can take one of the following form.s:

I - Central executive

A central executive is one in which a single
m.onolithic structure controls the overall system.
from. a single PU. The two m.echanizations possible
are:

Hardware executive, e. g., a voter/ com.parator/
switch (yeS) unit, whose logic design determ.ines
the procedures to be followed. This type of executive
is usually lim.ited to controlling system output based
on m.ajority vote of identical com.putations, switching
out defective m.odules, and switching in spares. (Ref. Z)

Software executive. An executive m.echanized in soft
ware is usually designed to handle a more com.plex
set of situations. The software executive often deals
with failures by changing the task allocation tables,
so that defective modules are lightly loaded or ignored
altogether. For reliability purposes, duplicate copies
of the executive may be available in auxiliary storage,
or even used to monitor the perform.ance of the con
trolling executive. (Ref. 3)

Z - Distributed executive

In the distributed executive, an attem.pt is m.ade
to spread the executive functions for both efficient
operation and so that in case of damage to one part
of the system, executive capability will still be
available. Two types of distributed executive are
possible:

Multiprocessed executive. The tasks of the executive
are carried out by m.ore than one com.puter, and vot
ing is then used on the multiple outputs. An exam.ple
of this approach is the SIFT, Ref. 4.

Partitioned executive. The present design uses a
partitioned executive in which each part of the system.
operates autonom.ously, based on observations of how
the rest of the system. is perform.ing.

Discussion

In m.ost of the m.ultiprocessor approaches, if the
executive encounters a design error which causes it
to fail, the entire system. can fail. For example, if
a particular com.bination of tasks causes a "lock-up"
condition, then the system. will not be able to proceed
past that state. In the case of the partitioned executive,
however, each m.odule is operating in its own task
sequence under its own executive. If an executive
failure should occur, only that processor is affected
by the failure.

157

A VARISTRUCTURED FAIL-SOFT
CELLULAR COMPUTER

G. J. Lipovski
University of Florida

ABSTRACT

The architecture of a von-Neumann class computer
is considered, in which the user programmer can request,
at the beginning of his task, one of many word widths,
and one of many memory heights. Several users are able
to space share the computer. We call this feature
varistructure. The computer is a minimally, yet
strongly connected cellular structure consisting of
microcomputers, and has the capability of being fail
soft.

1. INTRODUCTION

There is a growing desire for fail-soft computers.
Especially where the computer performs an essential or
very important function, it would be very desirable
that the whole system need not stop working where one
part fails. There is also a strong desire for a
computer that is made of at most a few basic modules
which are connected in a regular way, that is, a
cellular computer, especially if the number of con
nections is minimal. If these objectives can be
obtained for a computer that looks like a conventional
von Neumann clas.s computer to programmers, that computer
should be quite effectivel We will show a computer
having these characteristics.

In this paper, we will consider the techniques used
to support varistructure. In the next section we look
at the cell interconnections. We consider the nature
of the interconnections, the topology. Then we
interpret this in terms of data transmission paths. In
section 3, we examine the cell. We consider the con
struction of a suitable cell for our examples, general
operation of an instruction cycle, and the meaning of
STRUCTURE states. In section 4, we consider the
operation of the cellular machine for the memorize of
recall cycles. We describe the variable structure
concept and the mechanism to select the height and
width of memory. In section 5, we show how the execute
cycle can be done. In particular~ we consider the carry
link operation in this machine. Section 6 shows the
fetch cycle. Section 7 shows how the structure can be
set up and section 8 gives our conclusions concerning
this machine.

In order to explain the techniques used in this
processor, we will arbitrarily choose an eight bit wide
CPU and memory configuration. We will assume the
address is sent on a separate link. We will also assume
a standard one accumulator CPU structure. None of these
assumptions are necessary for the architecture. In
particular, there are many ways to time-share the links
to decrease the number of pins, and so on. We would
not propose building the machine in the way we describe

it. However, it is expedient to simply describe an
example of this architecture so that the techniques are
clearer. We choose the simplest example.

2. CELL INTERCONNECTIONS

2.1 Topology

The study of the interconnection of cells, the
topology, is the key to minimal connected fail-soft
computers. We propose to seek out the class of all
structures with the property that, for a fixed number
of nodes, there is a minimum number of (bidirectional)
links such that the graph is strongly connected, and
if any link is deleted, it is no longer strongly con
nected. All such graphs are trees I As we noted earlier
(1), and as T. C. Chen also observed (2) the tree struc
ture is fail-soft such that if any node is faulty, say
an output driver is stuck-on-one, then the subtree can·
be pruned from the remainder of the tre'e, and the re
maindercan continue operating at reduced capacity.
Since, in a homogeneous ~-level tree with fexed fanout
f, there are f~ leaf nodes. f -1 nodes on the next
higher level, and so on, almost all nodes are leaf
nodes. For example, in a binary tree, half are leaf
nodes, and in a t.ernary tree about 65% are leaf nodes.
So a failure in most of the tree will cause small loss
of performance because only a small subtree containing
the failure will be extracted.

We also observe that a tree with fanout f having
n nodes has delay approximately proportional to logf n.
It is also possible to put the tree structure in a
physical space in which the total delay is proportional
to a Tn + b logf n (3). Although there are structures
that have lower delay, they also have more connections
through which it is difficult to stop a stuck-on-one
fault.

2.2 Broadcast Domains

The tree links consist of a data link say, L[O-7],
an address link A[O-lS]. a control link, say, K[O,l],and
priority/carry lookahead circuitry,to be used for normal
operation. (Four more links will be introduced later.)
Links A, Land K are bidirectional amplifiers which
are independently opened or closed electronically (4).
A subgraph of the tree in which 1 is connected is
called a data domain, for which A is connected, an
address domain, and for which K is connected, a control
domain. These three domains are broadcast domains.
During an event of the process, one or more cells will
broadcast into a data domain in L, the data will be
wire-OR'ed, and, transferred to all cells in the data
domain in the same event. The control domain in!. and

161

address domain in A work the same way.

3. THE CELL

3.1 Construction

The cells consist of a microcomputer CPU and some
random access memory (see Figure 1). For simplicity,
we will assume that the random access memory is, say,
a lK x 8 bit page with a 16 bit address. The high order
6 bits of the address of the words on this page will be
the same, and will be called the page number. The page
number will be stored in a register PAGE[O-S] in the
memory decoder. When an address A[O-lS] is presented
in an address domain, the memory with PAGE[O-S] equal
to address A[O-S] will read, or write data from the
link b into a word on that page chosen by bits A[6-lS].

The microcomputer will have an arithmetic-logic
unit, a microprogram store, an instruction register
I[0-7], and a suitable collection of registers for
programming. For simplicity, we will assume that these
are a temp register TEMP [0-7] , an accumulator ACC[0-7j,
a program counter PC[0-15] and one index register
X[O-lS]. Even though more registers will be required
in a practical machine, these registers will be
suitable to demons'trate the technique of varistructure.

Microprogram
PC 0 - 15] Store L-. _____ -I

X[0 15]

I A[O", 71 I Arithmetic
ITEMP [0 IV 7]! Logic Unit

1~;-N-;]Ti ;R;T~;:lI
[M[OMl023jO 7J I

Figure 1. A Cell

3.2 General Operation

CPU

Operation of the microcomputer will be similar to
that of the von Neumann computer. An instruction will
consist of a sequence of microinstruction cycles
including a fetch cycle and a memorize cycle, recall
cycle, or execute cycle. For example, a typical ADD
instruction would consist of: 1) a fetch cycle, where
PC is sent out as an address on link A, the returning
data on b being stored in the instruction register I
and decoded; 2) a recall cycle in which the word
pointed to by index register X is put in TEMP and; 3)
an, execute cycle, in which TEMP and ACC are added, the
result being left in ACC. The contrOI"""link K is used
to setup broadcast domains for each cycle. -Fora fetch
cycle, ! is 00, for an, execute cycle, 01, for a memorize
cycle, 10, and for a recall cycle, 11.

3.3 Operation of STRUCTURE

Finally, each cell will have a structure state
STRUCTURE [0,1]. During each cycle, STRUCTURE will
determine the limit to which the address and data
domains extend and the behavior of the CPU. (The

memory behaves the same for all states.) We will
discuss the four values of this variable as we consider
the operation of the processor. The programmer
determines his configuration by loading the value of
STRUCTURE in each cell before the program and data are
loaded in. In general, when STRUCTURE is 00, the CPU
in the cell will become "passive" and the K, A and L
links above (towards the root from) this cel~closed
switches; when STRUCTURE is 01, the CPU will be a "byte
slice". It will behave as a one byte slice of a
parallel ALU other than the left slice (containing the
sign bit), the microinstruction decoder will be ac
tivated, and L will be open while K and A are closed
above the cell. When STRUCTURE is-lO, the CPU will be
a "left terminal". It will behave as the leftmost one
byte slice of a parallel ALU. Only one CPU of a group
will determine branching and so on. The left slice CPU
will send out control lines to memory. The micro
instruction decoder will be activated, to decode an
instruction, and L, K and A are o,pen above this cell.
Left terminal andbyte slice CPU's will be called
"active" CPU's. (Another mode can be added to handle
vectors, but we will not consider this simple ex
tension.) We will discuss the operation of the recall/
memorize cycle in the next section, which will show
how data can be brought into the ALU in such a way that
it can be treated as variable width data. We show how
this is done in the following section, when the execute
cycle operation is shown.

4. MEMORIZE AND RECALL CYCLE ,OPERATION

4.1 Variable Structured Data

We will now consider a technique whereby the pro
grannner can select the width and height of his random
access memory. We will consider a uniform tree with
fanout 3, although other configurations are obviously
possible. With this configuration, the programmer can

n
select heights of 1, 4, 13 or any number E 3n K

i=O
words, and widths of 1, 3, 9 or any number 3n bytes per
word. Of course, with a fanout of f, the height can be

n
E fn K and the width can be fn.

i=O

4.2 Selection of Memory Height

Starting at the leaves of a tree, all cells can
have STRUCTURE equal to 00 so that the CPU will be
passive and the memory will, be made available to the
data and address links. Suppose there is one that is
n levels (say 2) away from the leaves that has STRUCTURE
not equal, to. 00, all those below it having STRUCTURE
equal to 00 (see Figure 2).

STRUCTURE is 00
(CPUs passive)

n = 2 levels ,t .. -..
from leaves

t

STRUCTURE is 10 5 or 01 (CPU active)

numbers

9

Figure 2. Height selection of byte slice

162

The A, Land K links between the cells in this subtree
are ~on~ected-together, and only the topmost CPU is
active, the others being passive. Since, in the recall
cycle, any cell can read a word into the link, and from
there to the active CPU, we can assign different page
numbers to different cells. They do not need to be in
any order (see Figure 2). The numbers next to the nodes
are pages numbers. On the recall cycle, an address is
sent by the active CPU to all cells on the connected A
link in the address domain, and one of them will matcl1
the high order bits of the address with its page number
PAGE. It will send a word on the connected L link in
the data domain. The active CPU will load this data
into its TEMP register. The memorize cycle will, of
course, be similar.

4.3 Selection of Memory Width

A collection of subtrees that constitute a data
domain can be in a large subtree that constitutes an
address domain.

Figure 3. Width selection combining byte slices

This can be accomplished by making the root cell of the
larger subtree have STRUCTURE 10 making it a left slice
CPU. It will also completely delimit the link com
munication above it. In this way, when a cell with
STRUCTURE 10 broadcasts an address on the A link below
it, it goes to all data domain subtrees simultaneously,
and each recalls or memorizes a word of data separately
at the same logical address.

It should be noted that the leftmost data domain
subtree is larger than the other two data domain sub
trees in Figure 3. All that we require is that each
data domain has a unique page number for every page of
data that contains data to be used with a memorize or
recall cycle. The leftmost data domain will have an
extra memory page which, at this point, need not be
assigned. Indeed, because of the failure of some cells,
it may well be that each data domain has a different
number of nodes. If n is the minimum of the number of
good nodes in any data domain, then pages in all data
domains can be numbered. from 0 to n-1.

It should be evident that during a recall or
memorize cycle, the size of memory can be any of a
number of widths and heights. This selection is made
by assigning the values of the value of STRUCTURE in
each cell. Finally, since the topmost cell in an ad
dress domain disconnects all links above it, it should
be evident that a large tree can be space-shared, where
different problems are run in different address domain
subtrees.

5. EXECUTE CYCLE OPERATION

In the execute cycle, we assume that an operand is
available in ACC and possibly one is available in TEMP.
For logic operations such as negate or AND, the a.ctive
CPU's will simply compute the result in parallel. (We
will discuss in a later section how instructions appear

in all active cells so that the cell CPU can execute the
correct operation.) The only real problem is the com
munication on the carry link or the right shift link
between active CPU's. We will consider the carry link.
The right shift is similar. To see how this operation
is done, we first look at the operation of the carry
lookahead adder. In particular, we choose a standard
carry lookahead module (74182). (We assume the reader
is familiar with the operation of carry propagates,
generates and carry inputs of this module.)

to left to center to right
subtree subtree subtree

C is CRY
carry input
P is PROP
propagate output
G is GEN
carry generate

Figure 4. Connections of a carry lookahead unit

The carry-in, generate and propagate links of the
CPU in that node are connected to the fourth (leftmost)
set of links to this module, and the carry-in, generate
and propagate links going rootward from each subtree of
the node are connected to the carry lookahead module
of that node. The set of links, group carry-in, group
generate, and group propagate, are connected to the
next rootward node carry lookahead module. The effect
of this connection is to put all nodes in so-called
left list matrix order (5) so that they can be thought
of as being ordered in a chain, even though the delay
is logarithmically related to the number of cells.

a) A subtree

is 1
is 0

b) Equivalent chain
Figure 5. Carry logic

The manner in which the tree is made to look like
a chain of CPU's is as follows (see Figure 5). LOOK
AHEAD 0 distributes carry signals to its attached CPU's
and forms a group generate and group propagate shown
above it. This is input to LOOKAHEAD 1 as though it
were a CPU input in LOOKAHEAD O. Consequently, CPU 4
will see a carry generated by a CPU to its right if
the intermediate propagates are all ones. This is
equivalent to the operation of the ripple adder con
nected as in Figure 5b. Note also that if the group
generate of LOOKAHEAD 1 is connected to its own carry
input, and the unconnected inputs have Propagate = I,
Generate = O. then the carry out of CPU 4 is the carry
into CPU 0, which isequival.ent to the end-around carry
shown in Figure 5b. While end-around carry is not used
as in one's complement arithmetic,this path .enables the
root cell of an address domain to set the carry input
of the least significant CPU.

To operate the execute cycle, then, we use the

163

following scheme. The general scheme is to generate a
carry input for the end-around carry in the topmost
cell of a data domain, which serves as the leftmost CPU
in the .chain. The carry is passed from one active CPU
(having STRUCTURE 01) to another, bypassing inactive
(STRUCTURE 00) CPU's and subtrees (roots having
STRUCTURE 10) that are disconnected from it. Bypassing
is done by setting generate to 0 and propagate to 1.
The ru1es- for connecting the cells are shown in Figure
6. Figures 6a and 6d show how root cells of data
domains should behave. The end-around carry is im
plemented for the cell itself, and the links above it
are connected so that the tree above it bypasses it.
This enables the root cell to set the carry into the
whole adder to zero for addition, or to one for sub
traction and so on. (Were this not possible, the cell
in the tree corresponding to the rightmost cell of the
carry chain of Figure 5b would also have to be specially
designated by having a different value of STRUCTURE.)

~tt~
CRY \ 1"0' . GEN

PROP~~
CPU

a) leaf cell (10)

t ti
'f"6'

bM
c) leaf cell (00)

e) non-leaf (01)

b) leaf cell (01)

tot t

~
d) non-leaf (10)

'tL.of1rfm'
.. ~

f) .non-leaf (00)

FIGURE 6. Connection ~f leaf and non-leaf cells
for different values of STRUCTURE (given in
parentheses) during the execute cy~le.

Secondly, a data domain root .cell, with STRUCTURE
01, will connect as in Figure 6b or 6e. Because it is
a CPU in a byte slice of a larger chain, it contributes
carry generate and propagate signals, and accepts carry
in signals in the normal way.

Thirdly, an inactive cell, with STRUCTURE 00 will
behave as in Figures 6c and 6f.

It should be apparent that the carry chain is
connected for addition, subtraction, and shift left
(i.e., add a number to itself). The right shift re
quires a link that is easily connected in the reverse
direction to the carry link.

6. FETCH CYCLE

The fetch cycle is responsible for getting the
instruction to all active CPU·s. We will show how an
eight bit instruction can be sent to all of them. It
is accomplished by the following scheme. We will assume
that conditional branching will be done only on the
sign bit for simplicity. Since the sign bit is in a
left end CPU, that CPU is the only one that can evaluate
a conditional branch. So it alone will send out the
address of the instruction in a fetch cycle, as it did
for the recall/memorize cycles. The address is derived
from PC and PC is incremented if no branch is taken,
or from! if -a branch is taken, as in standard computer
organizations. However, the data domain is made the
same as the address domain so that the instruction is
sent to all cells. This is done by delimiting the
data link L only above a cell with STRUCTURE 10. All
cells will-load the instruction into their! register.

In order to support this scheme, it is necessary
that the words addressed as instructions are in only
one memory page in the entire address domain. This is
accomplished by storing instructions in pages that are
not used for data. For example, in the tree in Figure
3, each byte slice subtree may have a page address from
o to 11 for data. Each byte slice subtree then has one
page left over, and the leftmost byte slice has two
pages left over. Thus, four pages are available to
store instructions (assuming no faulty pages are in the
tree). These pages will be given page addresses 12 to
15. All instructions will then have to be in pages 12
to 15 so that just one 8 bit word will be read during
a fetch cycle.

It should be evident that at the end of a fetch
cycle, all active CPU's have the same instruction.
Thus, they can decode the instruction in parallel. The
decoded signals will control the CPU·s. Only the left
slice CPU will control the address and memory, however.

7. SET-UP OF THE STRUCTURE

The normal operation of the machine is defined in
terms of address, control and data domains, as we have
shown in the earlier sections. These are established
by setting STRUCTURE and PAGE in each cell. This can
be done to avoid faulty c~. We consider how this is
done now. The problem of identifying faulty cells and
excising them is first discussed as part of the set-up
procedure. Then the problem of arranging the structure
is considered. Finally we consider the input/output
strategy, which is also used to request a set-up.

7.1 Identification of Faulty Cells

As we noted earlier, the bidirectional amplifier (4)
can be used to isolate faulty cells, especially those
in which an output amplifier is stuck-on-one. The
bidirectional amplifiers in the links can be arranged
so that they transmit information only from the rootward
cell to the 1eafward direction. Hence, a stuck-on-one
fault in a tree structure cell tends to be in a leaf
cell, so that most of the machine is able to receive
information from the root of the entire tree. A fault
diagnosis program can be entered at the root to exercise
all the memory chips independently, as memory is
commonly exercised in a diagnostic program in any
computer. The CPU can also be exercised, either with
instructions from the root of the entire tree or from
routines stored in the memory pages when they have been
checked out. A faulty memory can be given a PAGE number
that is not used by the programs to be executed, so
that it is not used. A faulty CPU can excise itself

164

by setting STRUCTURE to 00. A subtree containing a
faulty link (stuck-on-one) can be excised by setting
STRUCTURE to 10 in the root of the subtree. The test
for a faulty link is simple. If a cell and each of its
sons in the tree structure are found to be faulty, the
cell will have its STRUCTURE set to 10.

This scheme simplifies the fault detection program
to the problem of checking just one cell. All cells are
then checked in parallel in this machine.

7.2 Setting of STRUCTURE and PAGE

Several techniques are possible for setting these
values in each cell. A simple technique is serial
transmission of the address and data on two broadcast
links, U and V, and a propagating (store and forward)
link T (see Figure 7). We discuss a binary tree here
for simplicity. This scheme is similar to Berkling's
address scheme (6). U contains (sequentially) the
address and values of STRUCTURE and PAGE. V is 1 if
the corresponding bit is an address,~o otherwise.
At the beginning, V is I, T is 1 into the root cell.
The bit on U carries T to become 1 on the link to the
left son of the root if U is 0, and the right son of the
root if U is 1. The sequence of address bits can be
sent on U as V is 1, while T walks down the tree. For
example, to address cell A in Figure 7, U would be the
sequence I, followed by O. When the desired cell has
been reached, V is set to zero. The register pair
STRUCTURE, PAGE then would operate as a shift register,
shifting the value of V into it. The cell would be
rendered inoperative until the eight bits have been
shifted in. This process would be repeated, first
setting T to 1 and V to 1 at the input to the root for
supplying addresses and values, to all cells.

T
U T IS 10000 ••• 0

V IS 11000 ••• 0
U IS 10101 ... 0,

ADDRlffr STR~TURE
AND PAGE

T IS A STORE AND
FORWARD POINTER

Figure. 7. Selection of Cells by Tree Address
The above procedure can be executed to set up a

structure. It can even be set up in one subtree while
other subtrees are doing useful work. It only requires
that a way is available to move data into the pages set
up, and conversely, for a processing tree to request the
root cell to change the structure. This is part of
the general input/output problem, which we consider
next.

7.3 Input and Output

One feasible scheme for input and output would be
to build a tree of bidirectional links (I/O link) in
parallel to the tree used for processing. The input
scheme would be to select a cell, as we did in the last
section, and broadcast the data on the I/O link. Only
the selected cell will respond. For output, the entire
tree can have a hardware priority structure such that
a cell can request a path from the root to select the
cell. Then it can broadcast into the I/O link tree.
Only the root of the tree will respond. Data can be
output, and requests to change the structure can be

sent to the root cell in this manner. However, a large
number of possibilities exist, with different advantages
in terms of cOst or throughput. It is necessary, how
ever, that faulty cells can be deleted from this tree
as well as the tree used for processing to avoid stuck
on-one faults in the link. The same procedure that we
discussed for checking for stuck-on-one faults in the
processing tree can be used in this particular I/O link
tree.

8. CONCLUSlOOS

We have described· a novel computer architecture
that offers most of the advantages of cellular machines,
yet is sufficiently similar to a standard von Neumann
computer once it is set up that it will be possible to
program it. The techniques described in this paper
show it is possible to select the height and width of
memory to be used in a task. It is also possible to
avoid faulty cells in this structure.

REFERENCES

1. LIPOVSKI, G.J., "The Architecture of a Large
Associative Processor," SJCC, 1970, Vol. 37,
pp. 385-395.

2. CHEN, T.C., "Distributed Intelligence for User
oriented Computing," FJCC, 1972, Vol. 41,
pp. 1049-1056.

3. LIPOVSKI, G. J ., "The Architecture of a Large
Distributed Logic Associative ProcessQr,"
Coordinated Science Laboratory Report R-429,
July, 1969.

4. VICE, W.E., LIPOVSKI, G.J. and BRODERSEN, A.J.,
"On Integrated Circuit Bidirectional Amplifiers,"
IEEE Journal of Solid State Circuits, Vol. SC-8,
No.5, Oct. 73, pp. 381-388.

5. IVERSON, K.E., A Programming Language, Wiley, 1962.
6. BERKLING, K.J., "A Computing Machine Based on Tree

Structures," IEEE Trans. on Computers, Vol. C-20,
No.4, pp. 404-418, April 1971.

165

A HARDWARE LABORATORY FOR
COMPUTER ARCHITECTURE RESEARCH

Jean Vaucher
Christian Rey

Universite de Montreal
Montreal, Canada

ABSTRACT

Because of dramatic reductions in cost of mini-compu
ters, peripherals and logic modules, it is becoming
evident that many problems confronting the computer
system designer will be solved in the future by hybrid
designs involving not only software but also speciali
zed computers with architectures best suited to each
application. Accordingly, hardware research must no
longer be considered as a separate discipline by sys
tem programmers but as a tool in exactly the same way
as languages. To illustrate this philosophy, a hard
ware laboratory has been set up at the University of
Montreal. The primary interest of the founders was in
designing and building small specialized computing sys
tems.
This paper describes some of the aspects of the labo
ratory with emphasis on two major developments:
(1) The design of a programmable I/O switch between
two mini-computers.
(2) The addition and monitoring of a writable control
store connected to one system.

1. INTRODUCTION

Because of dramatic reductions in cost of mini-compu
ters,peripherals and logic modules, it is becoming
evident that many problems confronting the computer
systems designer will be solved in future by hybrid
designs involving not only software but also specia
lized computers with architectures best suited to each
application. It follows that hardware research is im
portant to any Computer Science Department as a whole.
However, research in computer architecture is not pos
sible on existing Computer 'Centre machines. These are
committed to providing a service to the software com
munity and cannot allow internal modifications or the
attachment of non-standard peripherals. Further, be
cause of the time required to produce and market com
puters, these machines are obsolete and their design
is 5 to 10 years behind that of the prototypes being
developed by the manufacturers. By working only with
available machines, a university researcher is, in a
sense, developing algorithms for yesterday's compu
ters.
To fill this hardware gap, at the end of 1971, a hard
ware laboratory was set up by the authors and Prof.
Paul Bratley at the Computer Science Department of the

University of Montreal. The primary interest of the
founders was in designing and building small speciali
zed computing systems but the aims of the laboratory
went beyond this in that the laboratory should provide
hardware facilities to aid research in all areas of
the department in roughly the same way as a computer
center provides software facilities. In short, we
wanted to extend the range of options available to our
researchers to the fields of hardware and firmware[14].
To determine the equipment needed in the laboratory,
it was necessary to consider the probable uses that
would be made of this equipment. Here is a list of
research areas that were thought to be likely users of
the laboratory facilities (asterisks indicate that pro
jects are currently under way in a given area):
(1) Microprogramming [2, 5, 12, 15)

- Testing new instruction sets *
- Emulation of high level machines *

(2) Storage management [1, 3]
- Virtual memory and segmentation *
- Hardwired garbage collection

(3) Real-time operation [6, 7)
- Process control
- Time sharing supervisors *

On-line processing of sounds and images *
- Telecommunication networks

(4) Performance measurement [8)
- Hardware monitors *

(5) Trial designs with new technology
- LSI, COSMOS, MOSFET *

(6) Specialized peripherals
- Adaptive learning networks [9)
- Stochastic computer * [4)
- Associative memory for network algorithms [11)
- Sort-merge processor *

To provide hardware support for the projects listed
above, the laboratory should have a very flexible com
puter "test-bench" in addition to the traditional elec
tronic test instruments. There are four major require
ments for this "test.,..bench":

171

- it should support microprogramming;
- connection to peripherals and other computers

should be simple;
- it should have software writing tools from the

start (compilers, assemblers and secondary
storage);

- the cost should be as low as possible.
In the rest of this paper, we describe the computing

hardware purchased for the laboratory and consider in
detail two important hardware modifications that were
necessary to give the system the required flexibility:
the addition of a writable memory for microprograms
and a modification to the I/O structure to allow sha
ring of peripherals between two computers.

2. LABORATORY COMPUTING EQUIPMENT

The "test-bench" is based on two nearly identical
INTERDATA 4 mini-computers. Experience in the labo
ratory has shown that it is essential to have two com
puters so that software development can proceed on one
While the other is laid up for hardware modifications.
The INTERDATA 4 was chosen because it has several fea
tures useful for our applications [16] :

2.1. Microprogram control: The INTERDATA 4 runs under
the control of a microprogram in a read-only memory.
The machine structure permits the replacement of this
memory by a writable control store, allowing dynamic
microprogramming.

2.2. 16 General purpose registers: When emulating
virtual machines, it is possible to reserve a few re
gisters for special use and still leave enough for ge
neral purpose use by the programmer.

2.3. Instruction set: The instruction set is closely
related to the IBM/360 and the INTERDATA is programmed
like bigger machines. Out of 256 instructions possible
with the 8 bit OP-code, only 86 are implemented by
INTERDATA. There is therefore room for new micropro
grammed instructions.

2.4. Simple I/O BUS [17]: The standard multiplexer
I/O BUS is simple and easy to connect to. It has only
27 lines: 8 for input, 8 for output and 11 for con
trol, test and initialisation. This compares favour
ably with another machine which was also considered
for the laboratory: the DEC PDP/II. The DEC UNIBUS
has 56 lines which combined with 64 grounds make a 120
wire BUS. The INTERDATA BUS uses the "handshaking"
principle to reduce the effect of transmission delays.
Eight bits are used to address peripherals so that 255
units could be connected to the BUS. A wide variety
of peripheral devices are connected to the two compu
ters. These include standard units such as: a high
speed paper tape reader/punch, a matrix printer (165
char/sec), 2 disc drives with a capacity of 1.5xl06
bytes each and 2 selector channels to control high
speed data transfers.
Other peripherals are available for real time and
time-sharing operation: telephone line controller,
A/D and D/A converters, memory protect which is con
trolled as an I/O device and a high precision program
mable clock.

3.A NEW CONTROL STRUCTURE FOR DYNAMIC MICROPROGRAMMING

The standard INTERDATA has its control microprogram
stored in a magnetic read-only memory, MMF, wired at
the factory. To allow dynamic microprogramming expe
riments, a writable microprogram memory, MMA, was ad
ded to the system. This section first describes how
instruction fetch and execute is carried out by the
INTERDATA; this will show the extent to which machine
behaviour can be modified by microprogramming. Then
the strategy presently employed to make simultaneous
use of both MMF and the new MMA will be given [18,19] •

3.1. Instruction proc~ssing: The INTERD~lA is not a
''pure'' microprogrammed computer. The microinstructions
are short (16 bits) and highly coded. Each micro ins-

truction has a 4 bit op-code which determines, along
with internal status registers, the meaning of the
other bits in the instruction. A microprogram location
counter determines the next microinstruction to be exe
cuted. The normal FETCH-DECODE-EXECUTE cycle of the
INTERDATA is shown in Figure 1. Some frequently used

'functions of this cycle, steps 2, 4 and 6, have been

172

speeded up through the use of special hardware. These
functions which are used by the DECODE microinstruction
are mainly concerned with the interpretation of the op
code part of user "macroinstructions". Naturally, they
make certain implicit assumptions about instruction
format and the structure of the op-code. For example,
in step 2, the DECODE microinstruction determines the
instruction type and causes a branch to the appropri
ate microroutine to fetch the operands. Later, in
step 4, use is made of a special high-speed decoding
read-only memory or DROM. When provided with an op
code, the DROM returns the address of the corresponding

INTERDATA Instruction format

RR I 'P, ood. I Rl I R2 I

[

lop, ood.

RS

I address

1 Rl

[
I 'P' "d. 1 Rl X I

ex Ir------.
• address

[: --I"

* Under microprogram control

.... Hardware operations (Micro instruction "Decode")

Figure 1: Instruction execution and formats

EXECUTE microroutine. Any op-code which is not imple
mented in the standard INTERDATA results in a branch
to an "Illegal Instruction" microroutine which in turn
causes an interruption in the user programme.
The microprogrammer is therefore faced with a trade
off between speed and flexibility. If a standard ins
truction is replaced by a new one with the same format
but different meaning, he can use the DECODE hardware
to get fast execution. On the other hand, he can mi
croprogram without using DECODE and obtain complete
freedom in the interpretation of macroinstructions. In
this case, the DECODE phase of the instruction proces
sing will be lengthened. However, if the new instruc
tions are fairly sophisticated and have long EXECUTE
times, the penalty incurred in bypassing the DECODE
hardware will be minimized. In the near future, we
plan to replace the DROM by a writable decoding memory
to regain some speed while retaining full flexibility.

3.1. The writable control memory (MMA): The- writable
memory is a thin film memory with non-destructive read
out obtained from Memory Systems Inc. of California. It
has 1024 l6-bit words with 400 n sec access time. It
is slightly slower and smaller than MMF which contains

2K words with 300 n sec access. The speed difference
does not affect proper operation of the machine and
the size difference is not critical since the standard
microprograms occupy only 35% of MMF. The MMA is con
nected to the INTERDATA in two different ways: (a)
It is connected through a controller to the Multiple
xer I/O BUS and can be used as a fast external memo
ry accessed by the standard I/O commands - this is the
way in which user microprograms are introduced into
MMA; (b) It is also connected to the internal regis
ters of the machine and works in parallel with MMF.
When the INTERDATA requires a new microinstruction,
both MMA and MMF respond and try to place their out
put into the internal data register. Which memory
word is selected is decided by an electronic switch
which is controlled by MMA's I/O controller. Initial
ly, MMF is connected but control can be passed to MMA
by a special output command to MMA.
This system is very flexible. The INTERDATA can run
under exclusive control of either memory or control
can be passed from one to the other during execution.

3.3. Changing the instruction set: Here two possibili
ties must be considered: (a) The replacement of all
the old instructions by a completely new instruction
set and (b) The addition of a few new instructions to
the already existing set.
In the first case, the complete new microprogram is
loaded into MMA through the I/O BUS under control of
MMF. Control is then passed to MMA by an output com-
mand.
The second case is more complex since, ideally, the
existing firmware in MMF should be used for the old
instructions and control should be given to MMA only
for the new instructions. In this way the limited
space of MMA is not wasted by duplicating the firmware
already in MMF. This mode of operation gives rise to
two problems: a) deciding whether an instruction is
"old", "new" or "undefined" and b) finding the address
of the microroutine in MMA corresponding to a "new"
instruction. In MMF, this second problem is resolved
through the use of the DROM. In our system, the first
problem is partially solved through the use of the
"illegal instruction" microroutine already in MMF.When
an undefined instruction is encountered, the standard
firmware causes an interrupt an~ stops executing the
current program to branch to a monitor routine located
at a predetermined address in core. This process is
accomplished efficiently through the exchange of Pro
gram Status Words (PSW's). The action of the monitor
routine depends on the operating system; in our BOSS
supervisor, it prints an error message and aborts the
user job. "New" instructions are treated by MMF as il
legal instructions and it is a simple matter to modify
the monitor routine so that it transfers control to
MMA before printing the error message. To decide whe
ther the instruction is "new" or illegal, the MMA
microprogram uses a table in core with an entry for
each possible op-code. In the case of a "new" instruc
tion, the entry contains the address of the required
microroutine; for an undefined instruction, it contains
a special indicator. In the first case, the proper
micro routine is executed and the program location coun
ter is set to point to the next instruction in the user
program. Then MMA issues an output command to return
control to MMF. In the second case, control is retur
ned to MMF immediately without altering the location
counter so that the monitor routine can resume execu
tion. This simultaneous use of MMA and MMF is summa
rized in Figure 2.

3.4. Conclusions: As indicated by Rosin et al. [13],
the choice of an inexpensive host machine for dynamic
microprogramming is severely limited. We have shown
that with a few relatively inexpensive modifications,
the INTERDATA 4 can be made suitable for microprogram
ming experiments. The resulting system does not have

173

Figure 2: Simultaneous use of MMA and MMF

the full flexibility of a machine designed specifically
for the purpose and the main deficiencies are:
(a) The amount of parallel internal operation is limi
ted due to the highly coded format of the microinstruc
tions;
(b) There is no support for subroutine linkage at the
microprogram level;
(c) Addressing is restricted by the division of the
micromemory into 256 word blocks;
(d) The instruction decoding mechanism (DROM) is not
alterable dynamically. This, however, will be modified
shortly.
In spite of these deficiencies, the present system is
adequate for most of our needs: virtual memory manage
ment is being implemented through microprogramming, a
new instruction set for LISP programs is in the design
stage and fast instructions for waveform synthesis have
been microprogrammed.

4. INPUT/OUTPUT MODIFICATIONS

Although the laboratory has two mini-computers, each
with its own teletype, the other I/O units have not
been duplicated: for example, there is only one high
speed paper tape reader-punch and only one printer.
The present I/O capacity is sufficient for both machines
but it is often necessary to transfer units from one
computer to the other. To simplify this procedure, a
programmable I/O switch (PIOS) has been designed allow
ing the units to be shared between the two systems.
This pros is relatively simple and its low cost (under
$500) is compatible with the rest of the system.

4.1. INTERDATA I/O channels [16, 17]: As shown in

Figure 3, the INTERDATA does I/O in either of two
ways:
(a) Directly via the multiplexer Bus (MB), misleading
ly called channel by INTERDATA. The INTERDATA instruc
tion set includes several instructions to transfer in
formation along this BUS. Although up to 64 K bytes
can be transferred with one instruction, it is impor
tant to note that the CPU is fully occupied by the
transfer and cannot execute any other instructions in
parallel.
(b) Through an optional Selector channel. This device
is controlled via MB. It has a direct access to the
memory and can transfer data between memory and units
on the selector BUS (SB). After a transfer has been
initiated, the channel works in parallel with the CPU.
However, the parallelism is limited in that the chan
nel does not fetch Channel Command Words from memory
and each transfer must be initiated by the CPU.

Figure 3: Systems Interface - Block Diagram

The INTERDATA also has an interrupt mechanism similar
to the IBM/360's which can be used to eliminate "busy
waitiIl:g" on the part of the CPU.

4.2. The programmable I/O switch (PIOS): In our sys
tem, shown in Figure 4, each bus has been divided into
three sections. Each computer has exclusive use of
one section and the third can be connected to either
system under control of PIOS. It is on the third seg
ments, SB and MB, that the shared units are connected.
SB and MB are controlled separately. Manual switches
on PIOS can force connection to either system or leave
the connection to program control. It should be noted
tha~ switching applies to the buses and not to indivi
dual I/O units.
Requests for the use of the shared units are sent to
PIOS via OUTPUT COMMAND and WRITE instructions along
MBI or MB2. The result of a request is indicated by
the status bits of PIOS which can be tested from ei
ther system through SENSE STATUS instructions. Cor
rect sharing of the common units requires cooperation
between the two systems. To simplify the process, a

174

5B MB

Figure 4: PIOS - General Structure

hardware "reservation" procedure has been built into
PIOS. This hardware does not make the system "idiot
proof" and ways in which the system can be misused will
be shown later. The reservation mechanism, however,
makes it quite easy for the supervisor routines hand
ling I/O, to avoid deadlock and excessive lock-out.
This is in keeping with the general philosophy of the
laboratory to integrate hardware and software design.
Hardware verification of possible errors would more
than double the PIOS hardware with no increase in over
all efficiency. To implement the reservation mechanism
PIOS maintains two registers, one for each system,
where each bit corresponds to a unit on the common
buses. These registers are consulted whenever a re
quest is made to PIOS. PIOS accepts two types of re
quest which operate as follows:
(a) Reservation request - Here a system provides one
word of information indicating the unit or units it
wishes to reserve. The word has the same format as
the internal reservation registers. This word is com
pared with the reservations made by the other system
and if conflicts arise, the request is rejected; other
wise, the request is accepted and the first system's
reservation register is updated;
(b) Connection request - Although connection is made
to the bus and not to individual units, this request
must indicate the unit it wants to access. This is
done in the same way as a reservation by providing one
word with the appropriate bit "ON". Only if the unit
has previously been reserved and the bus is free, is
the connection made.
In this system, a bus, once connected to one of the
computers, remains connected until the computer re
leases it. There is also no check made by PIOS upon
the use the computer makes of the bus. To cancel re
servations or to disconnect a bus, a request is sent
with a null information word. If the common units are
to be shared properly, a certain protocol must be ob
served by both systems. This protocol is best explain
ed with an example. Assume that computer A wishes to
use the printer connected to the shared multiplexer
bus. At the same time, computer B is using the paper
tape reader-punch on the same bus. The necessary ope
rations for computer A are shown below:

1. Start of job;
Reserve printer;

For each output to the printer the following
3 step sequence should be observed:

2. Connection to MB by requesting printer;
3. Output to printer;
4. Disconnect MB;

N-I. Cancel printer reservation;

N. End of job;
By reserving the printer for the duration of the job
we ensure that computer B output will not be mixed with
computer A's. By disconnecting the bus (step 4) after
each output, we allow computer B to access the punch.
The process works well only as long as the two systems
cooperate. If one system neglects to disconnect the
bus, the other will be locked out. Also, since PIOS
does not check the activity on the bus, it is possible
to bypass the reservation system by requesting connec
tion to one unit and doing I/O to another. In step 3
of the example, computer A could have used the punch
reserved by computer B. However, the required cooper
ation can easily be enforced by appropriate supervisor
software in both systems.
The problem of deadlock can also be avoided by soft
ware. Deadlock commonly occurs when: system I has X
and wants Y, and, system 2 has Y and wants X. The so
lution makes use of the reservation procedure and pro
ceeds in two steps: (1) cancel all reservations, and,
(2) reserve all units required with a single request.

4.3. Conclusions: A programmable I/O switch has been
designed and built to allow two mini-computers to share
I/O units. The I/O switch makes use of a novel hard
ware "reservation" scheme to facilitate cooperation
between the two computers. The complexity (120 inte
grated circuits) and cost (~ $400) of the I/O switch
are low, in keeping with the rest of the system. The
"reservation" hardware is not meant to prevent I/O
programming errors; but it does make it easy to write
supervisor software to ensure correct operation. The
I/O switch is modular in design and it is planned to
add more features to it: in particular, a channel to
channel communication facility to enable the two com
puters to exchange data efficiently. Research is also
being done to find a foolproof scheme to handle inter
ruptions from the shared units and direct them to the
proper system.

5. SUMMARY

In spite of its short existence, the hardware labora
tory has proved to be a very useful research facility.
The flexible computing "test-bench" described in this
paper is already being employed by several projects.
One project in the field of graphics is of special in
terest since it uses most of the system's facilities:
it involves the design of a hardware vector generator
driven by software and firmware routines. Two major
software projects are under way: WADOCH, a real-time
operating system and a compiler for the PASCAL lan
guage. To run efficiently, these programs require more
memory than presently available on our machines. This
should be solved by the next major improvement to the
computing system: the addition of virtual memory. At
first, the address modification will be done entirely
by microprogram but later associative registers will
be added to speed up the process.
The current projects are not only from the systems
section of the department. Two numerical analysts are
studying the possibility of microprogramming special
instructions for interval arithmetic [lOJ and a group
in artificial intelligence is building an adaptive
learning network to be controlled by the INTERDATA.
The laboratory has also been invaluable for a course
in Computer Architecture given to undergraduate stu
dents.
By basing our computing test-bench on standard mini
computers and peripherals, the investment required to
set up the laboratory was modest: $110,000 divided
into $85,000 for the computing hardware and $25,000
for electronic equipment and tools. The flexibility
required for research was achieved through the two mo
difications described in this paper. The main charac-

teristic of the laboratory is that it permits integra
ted research into three related areas: software, hard
ware and firmware. This approach has already proved
fruitful and should remain successful in the future.

6. ACKNOWLEDGEMENTS

We are grateful to the Quebec Ministere de l'Education
and the National Research Council of Canada for the
grant required to set up the laboratory and support
our research.

7. BIBLIOGRAPHY

[1 J Bell G., Newell A. "Computer Structures: readings
and examples", McGraw-Hill (1971).
[2 J Boulaye G., Mermet J. (Eds.), "Microprogramming",
Hermann, Paris (1972).
[3J Dalley R.,Dennis J.B., "Virtual Memory, Processes,
and Sharing in Multics", Comm. of ACM, Vol. 11, Number
5, May 1968.
[4] Gaines B., "Advances in Information Systems
Science", Vol. 2, Chap. 2, Ed. J. TOU, Plenum Press,
1969.
[5] Husson S. S., ''Microprogramming: Principles and
experience", Prentice Hall (1970).
[6] Liskov B. H., "The Design of the Venus Operating
System", Comm. of ACM, Vol. 15, Number 3, March 1972.
[7] McGee W.C., and Petersen H.E., "Microprogram
control for the experimental sciences", Proc. AFIPS
1965 FJCC, Vol. 27, p. 77.
[8 J Miller E. F ., "Bibliography on techniques of Com
puter performance analysis", Computer, i, 5, pp. 39-47,
(Sept. 1972).
[9] Minsky M., Papert S., "Perceptrons", The MIT
Press (1969).

175

[10 J Moore R. E., "Interval analysis", Prentice Hall
(1966) .
[11] Orlando V .A. and Berra P. B., "Associative Proces
sors in the solution of Network Problems", 39th Natio
nal ORSA Meeting, Dallas, Texas, May 5-11, 1971.
[12] Rosin R. F ., "Contemporary Concepts in micropro
gramming and emulation", Computing Surveys, Vol. 1,
Number 4, Dec. 1969, pp. 197-212.
[13] Rosin R.F., Frieder G., Eckhouse R.H., "An Envi
ronment for research in microprogramming and emulation"
pp. 341-395, in Reference [2] .
[14] Taylor L. et aI., "Minicomputers in the digital
laboratory program", Report by the Cosine Task Force
on Mini computers, Computer, pp. 28-42, Vol. 6, Num
ber 1, January 1973.
[15] Weber H., "A microprogrammed implementation of
EULER on IBM S/360 Model 30", Comm. ACM, 10, 9, pp.
549-558, (September 1967). ---
[16] ------- , "INTERDATA Reference Manual", Publ.
#29-004R02, Interdata Oceanport, New Jersey, USA.
[17 J ------- , "Systems Interface Manual", Publ.
#29-003R02, Interdata, Oceanport, New Jersey, USA.
[18] These abbreviations come from the French: MMF
micromemoire fixe and MMA = micromemoire alterable.
[19] Rey C. and King C., "Implantation d'un systeme 11
Microprogrammation Dynamique sur un Interdata 4", Pub
lication #146, Dept. Informatique, Universite de Mont
real, 1973.

SIMULATION EXERCISES FOR COMPUTER
ARCHITECTURE EDUCATION

P. J. Knoke
Radiation, Inc.

Melbourne, Florida

ABSTRACT*

In a case studies approach to computer architecture education,
there is a need for small-scale simulation exercises to illustrate
significant concepts and to provide hands-an student experi
ence with architectural tradeoffs. Two such exercises are
discussed, and one is described in some detail. The exercises
cover virtual memory and multiprogramming systems' architec
ture, and are suitable as projects students can do within a ten
week academic quarter. Some hindsight based on student
reaction to these exercises is provided, together with estimated
costs to the educator and students for exercise development and
execution.

I. INTRODUCTION

A case studies approach to computer architecture education has
a number of advantages, one of which is that there exists today
an excellent text in support of such an approach'<l) However,
a disadvantage of the approach is the difficulty of going
beyond computer system overviews and comparisons to ensure a
solid grasp of significant concepts and to develop a student's
feel for actually doing computer architecture. One way to
accomplish these ends is to supplement the student's diet of case
studies with a special interest architectural topic to be explored
in some depth during the term. Examples of such topics are
virtual memories, multiprogramming, parallel processing,
higher level language architectures, etc.; and computer simu
lation can be a powerful tool for in-depth exploration of these
topics if simulation exercises can be defined which are con
sistent with the various constraints of an academic environment.

Ideolly, simulation exercises for these tutorial purposes should
be comprehensive, realistic, computatianally feasible and
student compatible.

A well-designed simulation exercise can be expected to improve
a student's understanding of important architectural concepts
and his feel for the impact of architectural tradeaffs in varying
computer system environments. It is interesting that even the
(inevitable) imperfections of the models used in the simulation
exercises can serve as tutorial assets, because an imperfect
madel can serve as a ''straw man" and provoke student thought
as to what form a better model should take.

*

This paper is based on the author's experience with two small
scale computer simulation exercises which have been used in
support of case studies type computer architecture courses taught
by the author at Wright State University. The exercises cover
virtual memory and multiprogramming systems' architecture,
and each exercise was developed and executed as a supplemen
tary project during a ten-week academic quarter. Because it
is assumed that the primary audience for this paper is computer
architecture educators, the emphasis of the paper is objectives
and strategy for both exercises, and only the virtual memory
exercise is described here. Additional details on both exercises
are available in(2) for those interested.

II. GENERAL OBJECTIVES, STRATEGY AND COSTS

Since the general objectives and strategy were the same and
costs were similar for both exercises, it is most effici.ent to cover
these matters in a separate section. Specific objectives and
strategy will be covered later in sections dealing with the indi
vidual exercise particulars.

General Objectives

Some of the general objectives of both exercises can be com-
pactly described with the aid of formulas, as follows: Let

Yi = value of the ith system performance
figure of merit (1)

X. value of the performance or capacity
I of the ith system component (2)

W = system workload ar job environment (3)

p = system price (4)

Yi = fi (Xl' X2' ••• ~, W) (5)

y';p = system performance/price with respect
I

to the ith system figure of merit (6)

ay.
I

sensitivity of the ith system performance w.- =
I index to changes in performance of its

jth component (7)

The work reported on here was done when the author was Visiting Associate Professor in the Computer Science Department of
Wright State University, Dayton, Ohio, 9/12-6/13.

181

aYe
I

aw sensitivity of the ith system performance
index to changes in system workload (8)

aYe
I

ap- sensitivity of the ith system performance
index to changes in system price (9)

Then the general objectives of both exercises can be succinctly
stated as follows:

1. To improve a student's understanding of the architectural
concept being explored by having him construct a model
of a system which incorporates this concept; i.e., by
having him write a program to implement the (f.).

I

2. To imprave a student's understanding of the behavior of a
system bosed on this concept by having him run his model
with varying component values and workloads, and having
him observe associated variations of performance indexes,
i.e., by having him determine various values of
aYj aYi
ax: and aw .

I

3. To improve a student's understanding of system performancE(
price and variations thereof by having him include price
data explicitly in the above calculation; i.e., by having

Yi aYi
him determine values of -P- and ""8'P

General Strategy

In the context of these objectives, the general strategy took
the form of the following seven steps:

Instructor's Role

1. Decide on a suitable spec ial interest architectural topic
for in-depth exploration during the quarter.

2. Provide a specific description of model inputs and outputs.

3. Provide a loose description of the model to be implemented,
together with details of configuration, component per
formances, and component prices.

4. Provide background information directly relevant to the
selected topic in whatever form it may be available
(e.g., papers, lectures, movies, etc.).

5. Provide loose guidelines regarding the desired form and
coverage of the report to be prepared describing the
exercise.

Student's Role

6. Write simulation program implementing the model in the
language of his choice (usually Fortran) to be run on the
computer of his choice, and exercise the model with
varying component parameters and varying workloads.

7. Prepare a report describing the simulation experiment,
interpreting the results, and critiquing the experiment,
including recommendations for its impravement.

182

In the case of both exercises, as conducted at Wright State
University, the main criteria for the instructor's decision in
step 1 were significance and timeliness of the topic in the light
of contemporary computer architecture developments, and com
patibility of the topic with the case studies to be conducted
concurrently. The former criterion tended to guarantee rele
vance and an ample supply of current background material;
thus it eased execution of step 4, while at the same time
increasing student interest. In step 2, it was necessary to
specify the interface between model and its inputs and outputs
early and quite precisely, so that students could get on with
the matter of model building as soon as possible in the quarter.
The model descriptions given in step 3 were quite loose,
thereby rei ieving the instructorof a potentially heavy burden
while at the same time increasing student benefits from the
exercise by requiring them to do their own analyses of fairly
complex problems. The report guidelines of step 5 were
necessary because of the low average level of student experi
ence in architectural analysis, but the guidel ines were kept as
loase as possible to encourage independent thought about the
simulation experiments themselves.

Exerc ise Costs

Each exercise was presented and explained to students on a
piecemeal basis rather than all at once, i.e., the various
necessary descriptions were introduced by portions of lectures,
handouts, etc., over the lO-week course period. The cost to the
instructorofrunning the exerc ises was about 20 percent of avail
able lecture time, plus the time required to develop and pub-
I ish descriptive materials in the form of handouts (examples of
the latter are given in(2».

Other costs of running the exerc ises are the amount of student
time required, and the amount of computer resources used.
Thesecosts, of course, vary widely, depending greatly on
student's modeling and programming skills. One of the better
students in the class gave the following estimates of these costs
(programs in Fortran, run on a PDP-lO):

Virtual Memory Exercise
Multiprogramming Exercise

Programming Time Program Run Time

10-12 hours
10-12 hours

7 minutes
15 minutes

Howeve'r, the above figures are for two of the most sophisti
cated models developed, and so the run time figures are not
typical of the class as a whole. The following program run time
figures are more typical of student models:

Virtual Memory Exercise
Mul tiprogramm ing Exerc ise

Program Run Time

15 minutes on IBM 1130
5 minutes on IBM 360/65

III. VIRTUAL MEMORY SIMULATION

The virtual memory exercise was described to students in a
series of partial lectures, a movie and handouts, with the latter
containing configuration, performance and price data and the
former serving to explain the virtual memory concept and the
associated handouts. Because the IBM 1130 computer system
was the only computer system with which all students in the
class were reasonably famil iar, and because the question of
appl icabil ity of the virtual memory concept to small-scale

computer systems is an interesting one, the exercise took the
form of a feasibil ity study for adding a virtual memory to a
small IBM 1130 system.

Specific Objectives and Strategy

Specific objectives can be obtained from the general by
assigning particular meanings to the performance figures of
merit, etc., given in Section II, equations 1-9. This is done
next. A fixed-page-size type of virtual memory system is
assumed.

Y number of memory accesses per second

page replacement algorithm

page size (words)

real memory size (words)

w address stream

P system price

Y

f = mathematical model of the virtual memory system
for these purposes

Essentially, in this exercise, it is assumed that an 1130 user
has a choice between an 1130 system with a real memory of
64K 16-bit words, and a Virtual Memory (VM) 1130 system
with a virtual memory of 64K words and a real memory of less
than 64K words plus an address mapping device, called a VM
box, with a certain assumed price and performance. Price
and performmce data used was that from IBM 1130 price lists
and manuals for standard system components. All price data
was reduced to equivalent dollars per month, and in cases
where only an actual or estimated selling price was known,
an estimated dollars-per-month figure was obtained by dividing
the sell ing price by 40. In cases such as that of the VM box,
an estimate of cost and performance wos made and the sell ing
price wos obtained by assuming a 4:1 ratio of sell ing price to
cost, this being quite typical in the computer industry. Details
such as this provided an opportunity for the instructor to point
out to the student the important distinction between price and
cost in computer architecture studies. As a result of the above,
it was estimated that a 4K VM-l130 system could reasonably
rent for about $2500/month, while a 64K non-VM-1130 could
reasonably rent for about $5300/month, with both offering the
user 64K words of addressable main memory. Furthermore, it
was estimated that the VM-ll30 system could have additional
4K word increments of real memory for about $205/month each.
Thus, the stage was set for examining the performance and
price/performance consequences of the VM-1130with the aid
of simulation.

Model Inputs and Outputs

The particular inputs and outputs are loosely defined in the pre
vious section. More specifics of these were described in

student handouts, with the understanding that students could
deviate from these specifics if such deviations seemed desirable
on the basis of preliminary experiment results. Students were
advised to use the following parameter values initially in
exercising the model:

Xl (page replacement algorithm): FIFO, LRU, PA*

X2 (page size, words): 16, 32, 64, 128, 256, 512

X3 (real memory size, words): 4K, 8K, 16K, 32K

W (address stream): AG-l, AG-2, AG-3A

Most of these inputs are self-explanatory, except that the PA
poge replacement algorithm is not as widely known as the other
two, md the synthetic address stream ('IV) was invented for
purposes of this exercise. The PA algorithm (3) is essentially
one wherein information as to whether or not a page in main
memory has been al tered in the course of references made to it.
If a particular page has not been altered, then when that poge
is ousted fram main memory it is unnecessary to write it back in
the disk supporting the virtual memory scheme because that disk
already contains an identical copy of the poge in question.
Thus, the saving of this type of poge status information can
lead to a substantial reduction in the number of disk accesses
required, and therefore increases virtual memory performance.

The virtual memory system model is driven by a synthetic
address stream, which is essentially a sequence of numbers on
the virtual memory address spoce (0,65535) obtained by suit
able modifications of a random number generator. Address
generators AG-l, AG-2 and AG-3A are simple empirically
derived address streams which are intended to be statistically
similar to various passible actual address streams. Roughly
speaking, they may be characterized as a severe thrasher, a
moderately severe thrasher, and a moderate thrasher,
respectively. There is, of course, no implication that these
labels are valid relative to real-warld "typical" address
streams, since it is not known to this writer what these real
world entities actually are. The generalized algorithm for all
address generators is given below:

Generalized Address Generation Algorithm

Step 1. Define address space = S = (O, MAX)

Step 2. Select starting address randomly on S = Al

Step 3. Given address AI' Select AI + 1 as follows:

• with 50 percent prabobil ity, AI + 1 = AI + 1

• with 25 percent probability, AI + 1 = fl (O, AI)

• with 25 percent probability,
AI + 1 = f2 (AI' MAX)

Step 4. Return to Step 3.

In the above, fl and f2 are functions which map the address
domain into itself. The various address generators differ in the
particular form of the functions fj •

* FIFO = First In First Out, LRU = Least recently used, .
PA = Push AI ter. In the use of PA, it is assumed that 90 percent of the time a page is not al tered when referenced. See (3)
for further details. -

183

Model Description

The mode1 used to simulate the virtual memory system is quite
simple, and is given in Figure 1. The numbers used in the
bottoms of the flow chart boxes indicate the time required for
the system being simulated to execute the indicated step. It is
assumed that the VM box can determine whether or not the
desired page is in memory in the time of 1 1lS, and that it can
execute the desired page replacement algorithm and perform
housekeeping (update page tables, etc.) in an additional 1 1lS.
The value of the PA algorithm is clearly revealed by this model,
since, in this case, block 4 can frequently be bypassed.

DETERMINE PAGE
TO BE OUSTED AND

UPDATE PAGE TABLES

1 PSEC

STORE OUSTED PAGE
NDISK IF NECESSAR

®
PT2

FETCH NEW
PAGE FROM DISK

PT

ADDRESS
GENERATOR

o PSEC

NOTES:

®

<D "A" MEANS DESIRED VIR
TUAL ADDRESS IN (0,65535)

@ "PT" MEANS AVERAGE TIME
TO READ OR WRITE A PAGE
ON DISK

PT = (132.5 + .03P) mSEC
WHERE

P = PAGE SIZE IN NUMBER
OF 16 BIT WORDS

Figure 1. Virtual Memory System Model

Results and Discussion

Some simulator outputs for varying core sizes, page sizes, page
replacement algorithms and address generators (program envi
ronments) are given in Table 1. * The virtual memory figure of
meritwas token as the number of main memory accesses per secorid.
The LRUA algorithm indicated in Table 1 was invented by the
student whose results these are, and it uses a combination of
the basic concepts of the LRU and the PA algorithms.

For scientific research purposes, the experiment, itself, clearly
needs much more refinement. Nevertheless, these crude results
are both interesting and provocative. Consider, for example,
the following sample observations:

• Performance varies widely as simulation parameters
are varied, from a low of about 5 to a high of about
313 memory accesses per second.

• The ATLAS algorithm is consistently one of the worst of
the five algorithms examined.

• The more random the address stream, the smaller the
page size should be unless the ratio of real memory
size to virtual memory size is large (say, > 0.5).

• Of all the algorithms, the ATLAS algorithm seems
least sensitive to page size.

The provocative nature of the results is illustrated by the fact
that students tended to do much more with the simulation than
was required. For example, in Table 1, the data for LRU,
FIFO, and PA algorithms was required, but the LRUA and the
ATLAS algorithms were investigated ,on the student's own
initiative.

In conclusion, the virtual memory simulation exercise accom
plished three main objectives, namely: 1) complement the case
studies approach to computer architecture; 2) improve student
understanding of the virtual memory concept; and 3) improve
student feel for tradeaffs associated with implementation of
that concept.

IV. SUMMARY AND CONCLUSIONS

A general strategy and objectives for simulation exercises use
ful in a computer architecture education have been described.
Some costs associated with implementation of two such exercises
have been discussed, and one of these exercises has been
described in some detail. That exercise concerned the virtual
memory concept, and it was found suitable for use as a quarter
project for senior or first-year graduate level students. It was
designed to complement a case studies approach to computer
architecture education.

Student feedback from the exercise indicated that it resulted in
an improved grasp of the associated concepts, and an increased
interest in the course itsel f. Better initial de fin ition of the
exercises and, in same cases, better student background in both
computer architecture and simulation itself would probably have
resulted in increased benefits to students, but to some extent
the evolutionary nature of the exercise development increased
student participation in the modeling process itself, and the
benefits from this tend to offset the disadvantages of the piece
meal, evolutionary approach actually used.

1.

2.

3.

4.

BIBLIOGRAPHY

Bell, C. G. and Newell, A., Commter Structures:
Readings and Examples, McGraw-HiI , N.Y., 1971.

Knoke, P., Simulation Exercises for Computer
Architecture Education, Radiation, Internal Memo,
15 October 1973 (Copies available from the author at
Radiation, P.O. Box 430, Melbourne, Florida 32901).

Belady, L. A., A Study of Replacement Algorithms for
a Virtual Storage Computer, IBM Systems Journal, Vol.
5, No.2, 1966.
Kilburn, T. et al., One-Level Storage System, IRE
Transactions on Electronic Computers - 11, Vol. 2,
pp. 223-235, April 1962 (also, Ref. (1) Chapter 12,
pp. 276-290).

* Supplied bY a student, Jeffrey D. Wise, Wright State University Computer Science Department, 29 November 1972.
184

Table 1

Virtual Memory Simulation-Some Results*

Virtual Memory Figure of Merit (Memory References per Second)

CORE PAGE AG-l** AG-2 AG-3A
SIZE SIZE !,R\! _F!FQ _P~ _L~U.~ _ ATL~S !,R\! _ F!FQ -P~ _LIJU~ _ ATL~S !,R\! F!FQ -P~ - LIJU~ ATL~S

4K 16 24 24 25 48 9 22 21 23 44 8 11 11 20 23 11
32 24 23 25 47 9 23 22 25 45 9 12 12 22 22 12
64 8 8 25 15 9 9 9 26 17 9 13 13 22 22 13

128 8 8 16 14 9 9 9 19 16 9 15 15 25 25 14
256 8 8 16 15 8 8 8 18 15 9 22 22 41 34 22
512 8 8 16 14 8 9 9 18 15 9 -30 29 57 42 29

1024 8 7 14 13 7 8 8 17 15 8 33 32 63 44 31
2048 6 6 11 11 6 7 7 15 12 7 34 32 64 43 33
4096 5 5 9 8 5 6 6 11 10 6 28 28 56 35 28

8K 16 28 28 27 56 10 26 25 26 51 9 13 13 25 27 14
32 28 28 27 57 10 28 27 28 55 10 14 14 27 28 15
64 29 27 27 57 10 29 26 30 58 10 14 14 25 28 16

128 7 8 26 16 10 11 15 30 20 10 16 16 27 29 18
256 9 9 17 16 9 10 10 21 18 11 25 25 46 40 26
512 9 10 18 16 9 11 10 21 18 11 33 31 64 50 35

1024 9 9 16 15 9 10 9 20 16 9 41 40 73 58 37
2048 8 7 13 13 7 8 8 17 14 8 43 43 86 56 38
4096 5 6 12 10 5 7 7 15 11 6 54 34 67 43 34

16K 16 44 40 36 87 16 42 40 39 84 15 17 17 31 34 17
32 41 40 36 81 15 42 41 39 83 15 20 20 34 40 19
64 41 40 35 83 15 44 41 38 89 15 21 21 31 43 20

128 42 37 33 83 14 43 38 39 85 15 25 24 33 50 22
256 13 31 34 23 13 42 34 38 85 15 33 35 55 64 32
512 14 12 33 23 13 17 15 44 28 16 47 44 87 80 43

1024 13 13 24 22 12 15 14 36 25 15 59 57 113 88 48
2048 10 11 19 17 10 12 13 26 19 12 61 68 117 83 54
4096 8 8 16 13 7 10 10 24 16 10 52 44 98 61 44

24K 16 75 72 55 150 27 157 134 107 313 55 28 28 48 55 27
32 72 67 55 144 26 144 125 107 288 55 33 33 53 66 30
64 74 66 55 149 26 143 109 106 286 55 30 30 46 61 30

128 73 63 52 147 25 115 96 105 229 54 41 40 46 81 33
256 71 58 53 143 23 127 71 102 254 56 51 50 78 102 54
512 80 50 57 161 20 113 65 154 225 68 80 77 113 161 60

1024 28 29 42 46 22 44 36 133 73 43 109 9.6 161 204 73
2048 17 23 37 29 18 38 29 59 53 34 86 8b lIS 136 81
4096 20 16 32 30 20 17 22 41 25 21 89 98 163 115 70

* Address generators produced address streams on (0,32767)

** LRU = Least Recently Used PA = Push Alter ATLAS Replacement Algorithm
FIFO = First In First Out LRUA = Least Recently Used Alter Used for Atlas

185

COMPUTER ARCHITECTURE COURSES IN
ELECTRICAL ENGINEERING

DEPARTMENTS
M. E. Sloan

Department of Electrical Engineering
Michigan Technological University

Houghton, Michigan

ABSTRACT

This paper traces the history of computer architecture
courses in electrical engineering departments. Pre
viously unpublished data from the Fall 1972 COSINE
survey are given to show current computer architec
ture course offerings and texts. Computer architec
ture courses offered in 1972-73 are analyzed. com
pared with ACM and COSINE recommendations, and
classified into five categories: introductory computer
engineering courses with a computer architecture fla
vor, software-oriented computer organization courses,
hardware-oriented computer organization courses,
case study courses, and topical seminars. Future
trends in computer architecture education are predicted.

INTRODUCTION

Computer architecture (or computer organization) is in
tended in this paper to correspond to the definition
given by Foster (Jan. 1973):

Computer architecture embraces the art and
science of assembling logical elements into
a computing device. As normally conceived
of a computer architect accepts from a logi-
cal designer units such as stacks, memory
blocks, and tape drives and puts them to
gether so that they form a computer and turns
this over to a systems programmer who then
constructs an operating system for the machine.

Computer architecture courses comprise a major and
rapidly growing division of computer engineering
courses taught in electrical engineering departments.
The 1972 COSINE survey of U. S. and Canadian elec
trical engineering departments (Sloan, Coates, and
McCluskey. 1973a and b) found that the two COSINE
recommended computer architecture courses were
taught at more schools than any other COSINE-recom
mended computer engineering courses except for intro
ductory programming, introductory switching theory
and logic, and numerical analysis. Ninety per cent of
the retlponding schools taught both computer architec
ture courses, although nearly half taught one or both
outside of electrical engineering.

HISTORY OF COMPUTER ARCHITECTURE COURSES

The early history of computer architecture courses is

difficult to trace. A survey by Cook in 1963 showed
that only two EE departments surveyed taught three or
more computer courses and only six taught two or
more in his sample of major engineering schools,
granting nearly half of all ECPD-accredited bachelor's
degrees. This survey and a perusal of major engineer
ing school catalogs from the late 1950s and early
1960s suggest that few EE departments offered sepa
rate courses in computer architecture much before
1965.

Table I, adapted from the Fall 1972 COSINE survey,
traces the adoption of the two COSINE-recommended
computer architecture courses, called by COSINE
Machine Structure and Machine Language Program
ming and Computer Organization; (descriptions of both
courses appear in the appendix with descriptions of
ACM-recommended computer architecture courses).
Although COSINE had intended Machine Structure and
Machine Language Programming to be prerequisite to
Computer Organization (COSINE. Jan. 1970), EE de
partments were quicker to adopt Computer Organiza
tion and were more likely by a margin of nearly 20"/010
teach it rather than the software-oriented machine
structure course. Machine Structure and Machine
Language Programming were taught in 13% of EE de
partments before 1965 and are taught in 55% of EE de
partments today; the corresponding figures for Compu
ter Organization are 18% before 1965 and 73% today.

TABLE I
ADOPTION OF COSINE-RECOMMENDED

COMPUTER ARCHITECTURE COURSES

Not taught
Taught outside EE
First taught in EE:

Before 1965
1965-66 to 1968-69
1969-70 to 1970-71
Since 1970-71

Machine Structure
and Machine

Language
Programming

9.5%
35.1

12.8
20.9
17.6
4.1

Computer
Organization

4.9%
26.8

18.3
20.7
22.0
7.3

191

CURRENT COURSE OFFERINGS

The remainder of the data for this paper is drawn pri
marily from previously unpublished data from the Fall
1972 COSINE survey. Of the 151 EE departments re
sponding to the survey (67.4% of the 224 U. S. and
Canadian departments polled), 126 departments (56. 2%
of the departments polled) provided varying degrees of
information on their course offerings ranging from
listing of titles or notation of texts to catalog descrip
tions and complete course outlines. These depart
ments gave 47 different titles for courses which they
identified as computer organization courses. Compu
ter Organization, Computer Architecture, and Digital
Computer Organization were the most popular titles,
but misleading titles such as Programming Principles
and Introduction to Information Structures and opaque
titles such as Computer Engineering II were also used
to designate computer architecture courses. More
than one-third of the EE departments teach exactly
two computer organization courses, and nearly one
tenth teach three or more.

About one-third of the departments surveyed listed the
texts they intended to use in 1972-73 in their computer
organization courses. Their responses are shown in
Tables II and III, showing texts for first computer or
ganization courses and for advanced computer organi
zation courses (i. e. any courses after the first), re
spectively. Booth (1971), Foster (1970), and Gschwind
(1967) were the most frequently reported texts for first
computer organization courses: Bell and Newell (1971)
was by far the most frequently reported advanced text.
Some overlapping of texts can be noted with five texts
being used for courses at both levels.

TABLE II

TEXTS FOR FIRST COMPUTER
ORGANIZATION COURSES

Bartee (1966)
Beizer (1971)

Bell and Newell
(1971)
Booth (1971)

Chu (11)62)

Chu (1970)

Flores (1969)
Flores (1965)
Foster (1970)
Gear (1969)

Digital Computer Fundamentals
The Architecture and Engineering
of Digital Computer Complexes
Computer Structures

Digital Networks and Computer
Systems
Digital Computer Design Funda
mentals
Introduction to Computer Organi
zation
Computer Organization
Computer Software
Computer Architecture
Computer Organization and
Programming
Design of Digital Computers

TABLE III

TEXTS FORADVANCED COMPUTER
ORGANIZATION COURSES

Bell and Newell
(1971)
Chu (1972)

Flores (1963)

Foster (1970)
Gear (1969)

Gschwind (1967)
Hellerman (1967)

Husson (1970)

Computer Structures

Computer Organization and
Microprogramming
The Logic of Computer Arith
metic
Computer Architecture
Computer Organization and
Programming
Design of Digital Computers
Digital Computer System Prin
ciples
Microprogramming Principles
and Practice

Peatman (1972) The Design of Digital Systems
Assorted computer manuals

RECOMMENDATIONS FOR COMPUTER
ORGANIZATION COURSES

Two major national groups, the ACM Curriculum Com
mittee on Computer Science and the COSINE Commit
tee, have made recommendations for computer organi
zation courses. A comparison of their courses, des
cribed in the appendix, shows much similarity and
serves as a basis for considering courses actually
taught in EE departments. COSINE's Machine Struc
ture and Machine Language Programming resembles

. ACM's B2, Computers and Programming, while
COSINE's Computer Organization corresponds roughly
to ACM's 13, Computer Organization. ACM also rec
ommends an advanced course, A2, Advanced Computer
Organization.

ACM and COSINE probably never expected that depart
ments would pattern courses exactly after their recom
mendations. COSINE (Jan. 1970) noted that they were
more concerned with recommending topiCS which should
be treated somewhere in the curriculum than they were
with packaging topics into courses suitable for all
schools. An ACM survey (Engel, 1971) of 26 doctor
ate -granting computer science departments showed
that only 5 offered computer organization courses as
specified by ACM while 17 offered similar courses.

CLASSIFICATION OF COMPUTER
ORGANIZATION COURSES

The courses actually being taught in EE departments
in 1972-73 differed from the recommendations in their
diversity and appeared to cluster roughly into five
categories: Gschwind (1967)

Hellerman (1967)
Lewin (1972)

Digital Computer System Principles
Theory and Design of Digital
Computers

1. introductory computer engineering courses with
a computer architecture flavor:

Sobel (1970)

Stone (1972)

Introduction to Digital Computer
Design
Introduction to Computer Organi
zation and Data Structures

Ware (1963) Digital Computer Technology and
Wiener (undated) l?g~iFuman Use of Human Beings
Assorted computermanruns

2.
3.
4.
5.

software-oriented computer organization courses:
hardware-oriented computer organization courses:
case study courses: and
topical seminars.

Introductory computer engineeri~ courses with a com
puter architecture flavor appear to be emerging rapidly

192

to meet a need apparently not foreseen by either ACM
or COSINE. The increasing importance of digital
technology has made it desirable for all EE under
graduates to have a course in digital computers beyond
the usual FORTRAN or other first programming
course. Survey courses, combining switching theory,
machine language programming, computer organiza
tion, and sometimes other topics, are being developed,
usually for sophomores and often as required courses.
These courses serve to introduce computer engineer
ing to prospective specialists as well as to overview
the area for other engineering students. They can also
serve as an introductory hardware course for compu
ter science students. A suitable text is Booth (1971).

Software-oriented computer organization courses cor
respond roughly to COSINE's Machine Structures and
Machine Language Programming and to ACM's B2.
The software emphasis makes the course relatively
more likely to be taught in computer science depart
ments than the other types of computer organization
courses. This course is taught most frequently at the
sophomore or junior level and usually includes sub
stantial hands-on programming experience with a
minicomputer. Gear (1969) and Stone (1972) are typi
cal texts.

Hardware-oriented computer organization courses
comprise the most commonly taught group of compu
ter organization courses. They are taught at both the
introductory and advanced levels. The introductory
courses correspond roughly to COSINE's and ACM's
Computer Organization and are usually taught to juniors
and seniors. Their approach to computer organiza
tion is more passive than the advanced courses; em
phasis is placed on the student's understanding of the
way a computer operates rather than on his prepara
tion for designing computers. The courses mayor
may not include switching theory and logic design;
(ACM recommended including logic design topics while
COSINE recommended that logic design be a prerequi
site to the course). The course is often accompanied
by a laboratory, especially when logic design is in
cluded. Chu (1970) and Gschwind (1967) are suited
for introductory hardware-oriented computer organi
zation courses.

Advanced hardware-oriented computer organization
courses tend to have a greater design flavor and to
overlap with the material of courses usually called
digital systems design. The courses frequently cul
minate in student design, usually just a paper design,
of some digital system, such as a simple minicompu
ter. Laboratories and computer simulation languages
mayor may not be included. Foster (1970), Peatman
(1972), and Hill and Peterson (1973) may be used, but
the most advanced courses are usually taught from
notes or the literature.

Case study computer organization courses are usually
preceded by one or more other computer organization
courses and concentrate on comparing organizations
of several computers. The text, if one is used, is in
variably Bell and Newell (1971), but frequently the
course is taught from computer manuals and journal
articles. The study is usually primarily descriptive
although Bell and Newell have contributed to the con
ceptualization of the subject.

193

Topical seminars are the least common courses but
may become increasingly more important as compu
ter architecture education continues to expand. These
advanced seminars usually center on one topic, such
as microprogramming or memory organization, for
a term or more and are based on discussion of papers
from the literature or ongoing research.

TRENDS

Trends for the future of computer architecture educa
tion are hard to predict because the subject depends
so heavily on changes in technology. At least for the
near future a continued growth of introductory courses
seems assured as more engineers, both electrical and
other, will need to understand computer organization
and machine language programming in order to imple
ment increased numbers of digital systems. Fewen
gineers taking computer organization courses are
likely to design computers; hence greater emphasis
on interfacing and computer evaluation is needed.
Perhaps in the long term the architecture of such sys
tems will have changed to allow implementation by
less knowledgeable engineers.

Growth of advanced courses also seems likely as the
technology continues to proliferate. As computer
architecture matures, the courses will become less
descriptive and more conceptual. The decreasing ex
pense and increasing applications of digital components
will combine to promote greater emphasis on simpli
fied interfaces with more awareness of users' needs
so that, for example, study of computer-assisted in
structional systems will emphasize the learner's
needs resulting in faster response time, better de
signed terminals, etc. at the expense of optimal use
of components.

ACKNOWLEDGEMENTS

The author thanks the COSINE Committee for access
to the 1972 survey of electrical engineering depart
ments and for other help. The author thanks the
referee for his comments. However, the author
bears all responsibility for interpretations and
opinions.

APPENDIX

ACM 65 - Required Basic Course

2. Computer Organization and Programming

Prerequisite: Course 1 above

Logical basis of computer structure, machine
representation of numbers and characters,
flow of control, instruction codes, arithmetic
and logical operations, indexing and indirect
addressing, input-output, subroutines, linkages,
macros, interpretive and assembly systems,
pushdown stacks, and recent advances in com
puter organization. Several computer projects
to illustrate basic concepts will be incorporated.
(ACM, Sept. 1965)

COSINE Recommendations for Computer Architecture
Courses

Machine Structure and Machine Language
Programming

Content. Computer organization model for
interpreting a machine language, machine
representation of data and instructions,
programming in assembly language, 1/0
processes, equipment interrupts, stacks,
and multiprogramming.

Computer Organization

Content. Elements of a stored program
computer, data representation, algorithms
for operating on data, arithmetic units,
control units, memory units, processor
structures, and selected computer exam
pIes. (COSINE, Jan. 1970)

ACM 68 - Computer Architecture Courses

Course B2. Computers and Programming

Prerequisite: Course B1

Computer structure, machine language, in
struction execution, addressing techniques,
and digital representation of data. Computer
systems organization, logic design, micro
programming, and interpreters. Symbolic
coding and assembly systems, macro defini
tion and generation, and program setmenta
tion and linkage. Systems and utility pro
grams, programming techniques, and recent
developments in computing. Several compu
ter projects to illustrate basic machine struc
ture and programming techniques.

Course 13. Computer Organization

Prerequisites: Courses B2 and B3

Basic digital circuits, Boolean algebra and
combinational logic, data representation
and transfer, and digital arithmetic. Digi
tal storage and accessing, control functions,
input-output facilities, system organization,
and reliability. Description and simulation
techniques. Features needed for multi
programming, multiprocessing, and real
time systems. Other advanced topics and
alternate organizations.

Course A2. Advanced Computer Organization

PrereqUisites: Courses 13, 14 (desirable),
and 16 (desirable)

Computer system design problems such as
arithmetic and nonarithmetic processing,
memory utilization, storage management,
addressing, control and input-output. Com
parison of specific examples of various
solutions to computer system design prob
lems. Selected topics on novel computer

organizations such as those of array or cellu
lar computers and variable structure compu
ters. (ACM, March 1968)

REFERENCES

ACM Curriculum Committee on Computer Science.
"Curriculum 68, " Communications of the ACM,
March 1968, pp. 151-169.

ACM Curriculum Committee on Computer Science.
"An Undergraduation Program in Computer
Science - Preliminary Recommendations, "
Communications of the ACM, Sept. 1965,
pp. 543-552.

Bartee, T. C. Digital Computer Fundamentals. New
York: McGraw-Hill, 1966, 1973.

Beizer, B. The Architecture and Engineering of
Digital Computer Complexes. New York:
Plenum, 1971.

Bell, C. G. and Newell, A. Computer Structures.
New York: McGraw-Hill, 1971.

Booth, T. L. Digital Networks and Computer Systems.
New York: Wiley, 1971.

Chu, Y. Computer Organization and Microprogram
ming. Englewood Cliffs, N. J.: Prentice-Hall,
1972.

Chu, Y. Digital Computer Design Fundamentals.
New York: McGraw-Hill, 1962.

Chu, Y. Introduction to Computer Organization.
Englewood Cliffs, N. J.: Prentice-Hall, 1970.

Cook, C. C. Digital Computer Instruction in Most
Major U. S. Engineering Colleges, Dept. of
Industrial Engineering, West Virginia University,
Morgantown, April 1963.

COSINE Committee. An Undergraduate Computer
Engineering Option for Electrical Engineering,
Washington, Jan. 1970.

COSINE Committee. An Undergraduate Electrical
Engineering Course on Computer Organization,
Washington, Oct. 1968.

Engel, G. "Input from ACM Curriculum Committee
on Computer Science, " SIGSCE Bulletin, Dec.
1971, pp. 30-31.

Flores, I. Computer Organization. Englewood Cliffs,
N. J.: Prentice-Hall, 1969.

Flores, I. Computer Software. Englewood Cliffs,
N. J.: Prentice-Hall, 1965.

Flores, I. The Logic of Computer Arithmetic.
Englewood Cliffs, N. J.: Prentice-Hall, 1963.

Foster, C. C. Computer Architecture. New York:
Van Nostrand Reinhold, 1970.

194

Foster, C. C. Computer Architecture News. Jan.
1973, p. 13.

Gear, C. W. Computer Organization and Program
ming. New York: McGraw-Hill, 1969.

Gschwind, H. W. Design of Digital Computers. New
York: Springer-Verlag, 1967.

Hellerman, H. Digital Computer System Principles.
New York: McGraw-Hill, 1967.

Hill, F. J. and Peterson, G. R. Digital Systems:
Hardware Organization and Design. New York:
Wiley, 1973.

Husson, S. S. Microprogramming Principles and
Practice. Englewood Cliffs, N. J.: Prentice
Hall, 1970.

Lewin, D. Theory and Design of Digital Computers.
New York: Wiley

Peatman, J. B. The Design of Digital Systems. New
York: McGraw-Hill, 1972.

Sloan, M. E., Coates, C. L., and McCluskey, E. J.
"COSINE Survey of Electrical Engineering
Departments, " Computer, June 1973z, pp.
30-39.

Sloan, M. E., Coates, C. L., and McCluskey, E. J.
COSINE Survey of Electrical Engineering
Departments. Purdue University, 1973b.

Sobel, H. S. Introduction to Digital Computer Design.
Reading, Mass.: Addison-Wesley, 1970.

Stone, H. S. Introduction to Computer Organization
and Data Structures. New York: McGraw
Hill, 1972.

Ware, W. H. Digital Computer Technology and De
sign. New York: Wiley, 1963.

Wiener, N. The Human Use of Human Beings. New
York: Avon, undated.

195

INCREASING HARDWARE COMPLEXITY
A CHALLENGE TO COMPUTER
ARCHITECTURE EDUCATION

R. Hartenstein
Karlsruhe University
Karlsruhe, Germany

ABSTRACT

The paper starts with a survey over history and present
day situation of educational concepts and design methods
in computer architecture. Complexity problems, bad de
sign habits, cooperation problems between specialists,
as well as their changing range of responsibility are
covered, and the consequences of the developmental
trends are discussed: now it is time for switching over
to an integrated teaching of hardware/software design
methods. The HIM scheme (hierarchy of interpretive mo
dules) is suggested as a conceptual machine organization
framework for modelling the implementation of language
hierarchies. The application of the HIM scheme for bet
ter understanding of semantics, and for a derivation of
designing guidelines is discussed.

I. INTRODUCTION

SOFTWARE COMPLEXITY

About 5 years ago the slogan "software crisis" was
coined for a wide variety of problems, caused by in
creasing complexity and by a lack of design methodology.
The most important suggestions to meet those problems
rely on imposing restrictions to the freedom of design
decisions in a sense to avoid "tricky program structu
res". The slogan "ego-less" programming has been coined
(19) for the virtues of the disciplined programmer, who
is needed to meet the software crisis. It becomes
apparent, that the software crisis is an educational
problem (e.g. see 16).

HARDWARE DESIGN PROBLEMS

The Hardware/Software "Interface Crisis"

The introduction of LSI and decreasing hardware cost
more and more give reason for a discussion on the re
placement of pieces of software by hardware. By in
creased utilization of LSI capabilities we are going to
face similar complexity problems in the hardware field
too. One reason, why the computer architecture communi
ty in not yet clearly aware of a "hardware crisis", is
the existence of cooperation problems: the lack of mu
tual understanding between hardware men and software
men (one might speak of an "interface crisis" - a sub
set of the hardware crisis).

Changing Ranges of Responsibility

The analysis of changes in the partitioning of design
activities among specialists shows, that every new
system generation brings us closer to settling the hard
ware crisis and the interface crisis. Illustration I
shows the methodological levels of system synthesis (see
"hierarchy of levels", chapter I in ref. I), and the
movements of the fields of activities of components/chip
manufacturers (C), hardware designers (H), software
engineers (S), and language designers (L) in the course

201

of system generations. The H field of generation I co
vers level 2 thru 7. Unsoved problems in level 2 keep
designers from spending much time for levels 3 thru 7.
In generation 2 the L field is taking over level 7 and
the S field level 6. In generation 3 the S field takes
possession of level 5 via microprogramming (survey:
e.g. 12, IS), and the C field extends downwards to le
vel 2 by SSI chips. In generation 4 the C field will
take over the level 3 via LSI technology, reasonable
chip family planning provided (pragmatic definition of
"reasonable": ref. 10).

Towards an Integration-of_Design Methods

Design activities in a well formed level 4 mean the use
of high level hardware design languages. So design and
description methods without the use of any tools from
levels 3 thru I will be possible, a proper set of re
gister transfer primitives provided (9). This means
close similarity of formal tools between S field and
H field. So generation 4 is the opportunity for a fu
sion of S field and H field to form an I field of "in
tegrated design methods" (see Illustration I). This
would settle the interface crisis by integrated design
approaches such as "top-down design" (14) or "bottom
up design", as practised in developing some high level
language machines (survey: in ref. 5).

Excellent teaching of integrated design requires a com
bination of software mens procedural way of thinking
and of hardware mens functional and black-box-oriented
way of thinking. Descriptional tools for such a metho
dological combination would be the use of high level
programming languages with hardware description features,
together with a "grey box" (14) block diagram language
(9,10). Illustration 2 shows an example of such a "grey
box" block diagram, equivalent to the register transfer
statement

~ t do PA := if AE then PE2 e1.se PEl;

where t is a clock signal and AE is a static condition.
Such a simultaneous use of a symbolic notation and a
grey box diagram in teaching would help to keep aware
of the duality of algorithms and their hardware carrier
structures. The grey box diagram in this case is no des
cription of a particular hardware component, but it is
some sort of low level extension of semantics or some
thing like generalized pragmatics of a language.

The "Hardware Crisis"

One symptom of the "hardware crisis" (and of an in
creasing awareness of it) is an arizing discussion on
hardware design philosophies, accompanied by a condem
nation of a certain kind of traditional hardware struc
tures, which could be called "tricky hardware". ROSIN
discovers (but not approves) 4 "rules of thumb", un
consciously used by many machine designers (17), and so
causing lots of trouble and inefficiency on the software

ILLUSTRATION I

H hardware design S software design
L language design I integrated design

C component/chip manufacturer

level generation no.

no. design activity
1 2 3 4

I component development V C" C
V, V '\ I'. C

2 circuit design V H' H c H
3 logic design 1\ It I\, /

machine
H "!CD 4 organiza tion .)

5 machine architecture 1/ "'\
S

6 implementation S 1\ ./ Int.

7 language design L L i\ ~ ..II'.

side:

Rule I: "In case of doubt, sacrifice a design concept
to preserve cycle time". Rule I refers to an unreasonab
short-sighted MIPS-squeezing, neither regarding effi
ciency of the instruction set, nor the hardware/software
cost ratio.

Rule 2: "Some facilities are cheap". Rule 2 refers to
~re links not intended in the original plan, in
troduced for adding "extra features with no extra cost".

Rule 3: "Design constraints don't allow the realization
of some otherwise good ideas". The design constraints
in rule 3 are those, imposed by an unreasonable set of
preconceived components.

Rule 4: "If it looks nice, it must be beautiful". Rule
4i:'eIDembers to features, which are "monuments to the
cleverness of the designer" (17).

To meet these problems we need a strong influence on
the designing habits in the field of machine organi
zation, aiming at the design of "structured hardware"
instead of "tricky hardware". We need the promotion of
the virtues of "ego-less" hardware designing. The HIM
scheme, presented in this paper, used as a design guide
line will be a help in designing "structured hardware".

THE MODELLING OF DIGITAL PROCESSORS

Sequential models

The subject of this paper is based on the sequential
version of the information structure model on the exe
cution of programs (see chapter 4 in ref. 18), where
an information structure model is a tripel M = (J,Jo,F),
with the set J of information configurations (snapshots),
its subset JO c: J of initial information configurations,
and the set F of operators on J. The set J is subdivided
by J = (C,P,D) into a control component C, a program
component P, and a data
component D, according
to illustration 3. In
struction pointer ip and
data pointer dp are scan
ning P and D under con
trol of C. The scheme in
illustration 3, not be
ing delivered from hard
ware men, is incomplete
for architectural use, as
is not showing the em
bedding of F into the
model.

ILLUSTRATION 2

PA

7U98 n
I R [3:0 I I

...it.

-~- -...;

I
I

AE PEl PE2

The embedding of F is performed by another model, not
being delivered by software men, showed by illustra
tion 4, and described elsewhere (e.g. 20,21). The con
troller" K combines P and C from illustration 3. Block
F containes the recources for the implementation of the
set F of operations. F and D are connected by data paths
for the transfer of arguments and results. The "order
vector" Y is a selector word for selecting and acti
vating the particular subset of F, required for the
actual step. Status vector X denotes the feedback from
F to C for decision purposes.

Automata-oriented Modelling:Some authors model K sepa
rately (e.g. 3,7) and one models the combination of K
and C (20,21) by finite state machines. It has been
demonstrated (8), that these models may be extended in
to a hierarchy by replacing the model of K by a finite
state transducer (see illustration 5). Thus we get a
hierarchical model, according to illustration 6, where
a machine Mi receives instructions in its machine
language Li' Controller Ki inside Mi translates (on-li
ne) L· into orders in language Li - I , the machine
langu~ge of an inner machine Mi - I . This scheme may be
nested to form a hierarchy of machines: Mi is the inner
machine of Mi+l' Mi _ 1 may have an inner machine Mi-2 etc.

Programming Language-oriented Modelling: The hierarchy
of processes in a program-controlled digital processor
implements a hierarchy of languages (e.g. see ref. 13),
and does not primarily appear as a hierarchy of auto
mata. One important disadvantage of automata-oriented
modelling is, that it fails in modelling the entry of
immediate data form instruction streams or statement
streams. (By the way: that is an important difference
between microprogram control and hardware control).
What is needed, is a model, that is more language
oriented. From a hardware point of view, this leads to
modelling in terms of interpretations, instead of state
transitions.

"Grey Box" Use for Integrated Modelling: "structured
progrannning" techniques for the design language de
scription of computer architectures and machine organi
zations makes flow charts superfluous. The space made
free by throwing out flow charts may be used for "grey
box" diagrams. In teaching we achieve by this a better
understanding of progrannning language principles and
its semantics, of hardware/software interface problems,
as well as integrated design methods. The next section
of this paper suggests the HIM scheme as a "grey box"
modelling framework for these purposes.

II. INTERPRETIVE MODULES AS MODELS

REFINEMENT OF AUTOMATA-ORIENTED MODEL

A model, which may be regarded as a refinement or an
implementation of automata-oriented models, can be de
rived by the fact. that each program execution is sub
divided into cycles with the following 3 subcycles (13):

I. The fetch subcycle for the selection of the next
element lk E L from the program sto:e P, whe:e L,is
the lang~age ~ = {11.12 ••••• 1~}. Th~s,selec~~on ~~ per
formed v~a adJustment of the ~nstruct~on po~nter ~p
(see illustration 3).

2. The recognition subcycle, which performs a test,
whether the selected element P[ipj] is a legal element
with P[ipj] E L. and. which performs the recognition of
the specific lk E L, being represented by P [iPjl, if
legal.

3. The execution subcycle. which performs
semantic operations on the data structure
ting from the recognition subcycle.

the proper
D, as resul-

202

ILLUSTRATION 3 ILLUSTRATION 5

r--- r---
CP

0 §] ~ P i--- r--- D
Si Kj Xi

I Machine I u---- L--

program control data
part part port

Vi order alphabet

Xi feedback alphabet

ILLUSTRATION 4 Ai start alphab.t

(transitions to

I ~ ~ I

initial states)

F D
Si status alphabet

K
(lables of final

states)

controller prozessing data
K :(C,P) module storage

("resources ")

In a particular level i within the hierarchy. the sub
cycles 1 and 2 are performed by controller Ki. while
subcycle 3 is executed by the machine Mi-l' A refine
ment of Ki according to subcycles 1 and 2 is showed by
illustration 7: Pi denotes the program store. con
taining the interpreter Ii. Ci denotes the control mo
dule. responsible for the proper sequencing of the
stream of instruction words from Pi. entering Ci via
instruction buffer IBi' Ri denotes the recognition de
vice. having the 2 submodules (not showed here) CL
(classifier) and AL (action lexicon). The output of Ri
(produced by AL) is the order vector Yi. evoking se
mantic actions to be performed by machine Mi-l' and the
control vector Yi', evoking control actions to be per
formed by control module Ci.

A second step of refinement is the subdivision of Mi-l
into the submodules Fi (functions) and Di (direct data).
By both refinements we get a scheme. as showed by illu
stration 8. Fi is the implementation of the available
set of operators on Di. The direct data structure Di is
a set of registers for temporary storage. The control
ler Ki • refined by this scheme, will be called "inter
pretive module" (1M).

LINKING INTERPRETERS TOGETHER TO FORM A HIERARCHY

Vertical Linkage

Before the description of signal transfers between the
modules in illustration 8 is completed. the synthesis
of a hierarchy of such structures is demonstrated (see
illustration 9). The Ii programs in Pi and the modules

I Mj

Kj+1

'--- I
language

Lj

ILLUSTRATION 6

K" I

Mj-1

language
Li-l

r--- ~

Kj -1
~

Mj-2

'----r-~

language
Lj-2

I /0

ILLUSTRATION 7

Kj

U
i L Sj V'2 Xj - Pj r---- Cj I-- Rj f---

r--l
[Lj-1 [Lj) I Ij I --n I I f---- r-

Aj L __ ...1 Vj

j

Ej

Cit Ri. Fi. and part of Di are the tools for implemen
ting the semantic unit Fi+l of the next higher language
level i+l. As showed by illustration 8. the module Fi+l
receives orders via the transfer path Ai from module
Ri+l of the next higher level. After having transmitted
an order word via Ai to Fi+l the module Ci+l' together
with Pi+l and Ri+l and all modules of all higher levels.
remain in an inactive "waiting state", until via path Si
an "end-of-execution" message (end) is fed back from
F·+ 1• Thus the two paths Ai and-si (see also illustra
tIon 5) are vertical links to the next higher level of
carrier hardware modules. On the other side the two
paths Yi and Xi are links to the next lower level mo
dules. formed inside Fi (also see illustration 5). Thus
a hardware-supported block structure (or a grey box
structure) of nested interpretive modules. called HIM
scheme (hierarchy of interpretive modules) is formed.
The above linkage for-communication between language
levels of different order is called "vertical linkage"
or "vertical subroutine linkage" (as this scheme links
interpreters like a subroutine calling mechanism).

Connections Inside One Level

Inside one level of the HIM, there the following trans
fer paths for interconnecting the modules (see illu
stration 8). A call via path Ai causes the transition
of Ki to an initial state via adjustment of IPi to the
appropriate program entry point of Ii' Such a call is
evoked by the end message of the forerunner program in
Pi. recognized~ Ri as described above. The fetched
instruction Pi[IP]. buffered into lB. is analyzed by Ri'
The resulting order vector Yi is looked up from ALi in
Ri and fed to Fi, evoking the activation of the required
subset of data paths in Fi for the appropriate transfers
between registers in Di and from emit fields Ei (in IB)

ILLUSTRATION 8

Si (status info)

~~-----~~-------~l
I I
I
I
I
I
I
I
I
I
I

Pi

r,
(I" (
I 'I
L...J

Vi'
R" ,

(recog -
nition)

Vi

D,

(data
struc
ture)

I
Ai (calls) Ei (data from emit fields) I ________________ J

Ei~ (data from emit fields)

203

or Ei (from higher levels. if implemented).

I/O to or from Di is activated in an indirect manner
by placing I/O control messages into special inter
face registers in Di. as for instance a "read"-bit
or a "write"-bit. when core storage is external. as
in the microprogram level e.g. The control vector Yi'
derived by Ri from IBi controls via decision logic
DLi (see illustration 10) inside Ci the adjustment
of IPi for the next fetch cycle. The adjustment of
IPi is executed by the modify paths in MDY in the
feedback loop at IPi' MDY containes adder. incremen
ter etc. By path Xi the following influences on the
operation of Ci are implemented: the cycle time of
Ci via a clock bit in Xi. the decision for the ad
justment of IPi by status bits in Xi. and the request

ILLUSTRATION 9

Fi+ 1

Pi+l Ci+l Ri+l [il[:JB[J
c-,
IIi+l1
L_.J

t '---y--------'

Ki+l Ki

of the next call from the next higher level by an
end-bit in Yi , •

Functional Partitioning of resources may be modelled
by splitting Yi up into subvectors Yi(I}. Yi(2} •.••
and transmitting them to separate submodules Fi(I}.
Fi(2} •.•. of module Fi' Such a partitioning may be
modelled in any level. Modelling the submodules of
Fi by the HIM scheme shows several Ki-I modules and
module Ki selectively calling one particular Ki-I
module per cycle.

Parallelism and its modelling by the HIM scheme is
not the subject of this paper. The modelling of
clocked parallelism is trivial .and is included into
the aIM scheme automatically. The introduction of
synchronizing devices for asynchronous parallelism
into the model is not impossible and may be achieved
by modifying the C module.

Horizontal Linkage or "horizontal subroutine linkage"
is the name for a subroutine calling mechanism within
the same language level: the call of a subroutine
within the interpreter program Ii (both. the called
subroutine. and the calling routine are within the
same module Pi)'

THE SUBMODULES WITHIN ONE LEVEL

The P module may be a simple program store. when all
parts of Ii are always resident. But the P module
may be extended by mechanisms for "load and call" or
for "compile. load and call" of non-resident parts
of the interpreter Ii. and may include tables.

The C module may be a relatively simple structure. if
no subroutine techniques for Pi are used. For model
ling subroutine techniques IPi is extended into a
pointer stack IPSi. and in the case of an internal
subroutine call the request of an order via path Ai
is replaced by push operation on IPSi.

In some cases "immediate orders" are entering Ci via
Ai (e.g. the ~ module of the DEC pdp-S machine.
during the processing of microcode from special ma
chine instructions). In this case IBi receives its
input directly from the Ai input. and not from Pi.
The decision logic DL has to provide a tag sensing
feature for recognizing "immediate" orders entering
Ai' If we extend IBi into a stack IBSi for pushing
immediate orders and use another stack in the Di mo
dule. we are able to model the direct evaluation of
expressions. such as illustrated by the shunt sta
tion model.

The R-module may be a decoder network, when used for
modelling the decoding of a machine instruction or a
microinstruction. Ri may be implemented in a more so
phisticated manner and sequentially. when constructs
of a higher level language with a wide variety of
sentence formats have to be analyzed. The decoding of
instructions of byte-oriented machines is an example
of decoding variable lenght objects in parallel. In
ref. 9 is demonstrated. how the equivalence of se
quential networks and combinatorial networks can be
used for a uniform modelling of decoder networks and
a class of parsin& algorithms in terms of a set of
register transfer primitives. This idea allows a uni
form modelling of a wide variety of R-modules from
different levels of a complex digital systems. So the
AL-submodule of Ri may be a table (in higher levels),

ILLUSTRATION 10

r,;----- - ---------- -1- - -,r.-----,
I Fm 1 I II Om I
I r--2;, C -'- OfJ II I
: I ~ fJ r OL ~ ~:I I XR I I

, ~' r - ,:t'u. dl = 1 c"'I: , PfJ MOY _J RfJ f-- Gates, ~ II ~ Stor. I'
, etc.l 1\

rill I ,uS I -- 0:IIAccl I ,t j II ,
, E.u1 II ,
L~~~ .. : .. h:!.'!' ______________ JL ___ -..J

Pm

I mS J
t

Am emit field of mB (EmJ

204

a wiring scheme (in lower levels) or even a model for
the pulse phase level below the register transfer level,
which is useful for pedagogic purposes and for the ana
lysis of the behavior of certain register transfer
structures without using formal tools of the level of
logic design (10).

The F-module is a combination of all transfer carriers,
used for semantic purposes, such as gated transfer
paths, paths from and to registers for the implementa
tion of register assignment operations, and transfor
mational Transfer paths, such as arithmetic and logic
units, when it is used for modelling Fi in the micro
program level. In higher levels the F-module appears
as a combination of abstract transfer carriers, yielded
by omittion of intermediate transfer steps, implemented
in lower levels.

The D-module is the set of all data containers, such as
read/write registers and read-only registers (constants
or input terminals from emit fields), which are direct
ly or implicitly adressable by constructs of the
language, used for Ii' Those data containers, which
are adressable by language of Ii only indirectly, are
parts of the external data structures, called I/O in
illustration 9. Those data containers are directly or
implicity addressable only within one of the higher
levels of the hierarchy. Those registers, which are not
at all addressable by the language of Ii' may be addres
sable within lower levels of the hierarchy, not mo
delled in the present level. Sometimes there are re
gisters, which belong to 2 (or more?) levels' D-modules
simultaneously, as for instance the accumulator register
or sometimes other general registers, addressable by
Lm and by lu and thus belonging to Dm and IV simul
taneously (see illustration 10). In such a case Dm and
IV are overlapping, as e.g. shown in illustration 9 and
10 (here m stands for "machine language" and]l for
"micro language").

III. POSSIBLE APPLICATIONS OF THE HIM SCHEME

MODELLING EXISTING SYSTEMS

Illustration 10 demonstrates the pedagogic use of the mo
del for structuring the register transfer carriers of a
microprogrammed instruction set processor by modelling
it into a 2 level's scheme. The HIM scheme also is use
ful for modelling more than two levels, and, for mo
delling higher language levels. The embedding of com
piler and assembler software into the framework of the
HIM scheme will be possible by using 2 different schemes:
one scheme for compile time modelling, and one scheme
for run time modelling.

Classification of Architectures in Terms of the HIM

All digital systems are implementations of language
hierarchies. A very useful criterion for classifying
computer architectures is the degree of directness of
the hierarchy implementation. It is more direct in pure
interpretive systems, than it is in compiler-oriented
systems. It is the more direct, the more language le
vels have C modules and R modules, being implemented
in hardware, instead of software. Virtual (software
implemented) C and R modules require a time-sharing of
lower levels'C and R modules, and in many cases of F
and D modules too. In conventional instruction set pro
cessors, for instance, the higher language levels share
with the machine language level in the interpretive mo
dule of the latter level. Let me classify this as
"tricky" implementation of hierarchy and call it "ver
tical multiple use". It seems practical, however, to
classify "horizontal multiple use" (subroutine mecha
nisms within the same language level) not as "tricky".

205

Let me give further definitions of hardware structures.
"Structured hardware" is the basis for a direct imple
mentation of a hierarchy, and an indirect implementa
tion of a hierarchy of languages results in hardware,
which is less "structured". Another criterion of the
directness of an implementation is the existence of
vertical mUltiple use of working stores and its acces
sing hardware for P and D modules. At least in this
respect the "stored-logic machine" and the "von-NEUMANN
machine" show a considerable degree of indirectness in
hierarchy implementation.

Trends towards Structured Hardware

In the 70ies there is a tendency for transferring more
and more complexity from the software part to the hard
ware part of systems. This is demonstrated by the suc
cessive advent of the following classes of architecture
(5) :

1. von NEUMANN-type architecture

2. syntax-oriented architecture (e.g. the B 5500)

3. IHLL-architecture (indirect high-level language,
survey: ref. 5, also-see ref.-I J) -

4. DHLL-architecture (~irect HLL (5, also: 2,6»

This sequence of architectures demonstrates the
following developmental trends in system concepts re
search:

I. Increasing directness in implementing
language hierarchies, which means in
creasing similarity to the HIM scheme.

2. The increasing complexity of hardware
makes it more and more advisable, not
to produce tricky hardware, but to
produce structured hardware instead.

3. Because of low hardware cost, the ex
tremely efficient utilization of parti
cular hardware submodules is no more
a relevant design objective. We now can
afford idling modules. This leads to
~ hardware instead of tricky hardware.

4. A growing tendency to functional parti
tioning of hardware (e.g.: ref.5) yields
a tendency to more structured hardware.

These developments make systems more and more appro
priate for beeing modelled by the HIM scheme, and the
use of integrated design methods, as e.g. supported by
"grey box" modelling via HIM scheme.

Straight-on Teaching of Computer Architecture

For the use as examples for teaching computer architec
ture we have now available: considerable know-how out
of papers on DHLLP design (bibliography: 5), as well
as knowledge and teaching experience on conventional
architectures. The question arises: which type of
examples gives us more benefit in understanding pro
gramming language principles and semantics, in the
linkage between language levels, in computer architec
ture and machine organization? The author believes,
that for the student the direct implementations of
hierarchies are less opaque, than indirect hierarchy
implementations. The introduction into the "tricks" of
indirect implementations would be better scheduled as
a second step, after a successful teaching of direct
implementations, relying on "structured hardware"-type
hypothetical (or real) architecture examples.

IV. CONCLUSIONS

For the philosophy of straight-on teaching, the HIM
scheme has been proposed as the framework for a hypo
thetical direct architecture example, as a "grey box"

model for teaching integrated hardware/software design,
and (with some restrictions for economical reasons),
as a s,uideline for teaching structur~d hardware design,
in order to avoid cumbersome tricky hardware and so to. ..
promote the virtues of the "ego-less" ·system"desfgn.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to
Profs. W. Gorke and D. Schmid for encouragement to work
on this subject and for critical and constructive
comments, and to Profs. R.F. Rosin and S. Wendt for
valuable discussions.

BIBLIOGRAPHY

I. Bell, C. G., Newell, A., Computer Structures: Rea
dings and Examples, McGraw-Hill, New York 1970
2. Bjlllrner,D.,"On the Definition of Higher-Level
Language Machines~ Proc. Symp. on Computers and Auto
mata, New York 1971, Poiytechniy Press, Brookly, N.Y.
1971
3. Cascaglia, G.F., Gerace, G.B., Vanneschi, M., Equi
valent Models and COmparizon of Microprogrammed Systems,
Internal Rep. 3, Spec.Ser.Conv. CNR-ENI, CNR Pisa 1971
4. Chu, Y., Computer Organization and Microprogramming,
Prentice Hall, Englewood Cliffs, N.J. 1972
5. Chu, Y., Introducing to High-level-language Computer
Architecture, TR-227, Univ. of Maryld. Compo Sc., Feb.
73
6. Frick, A., Ein Rechner mit Problem-orientierter Ma
schinensprache BASIC, Informatik-Kolloquium, Karlsruhe
1973
7. Glushkov, V., "Automata Theory and Formal Micropro
gram Transformations: KIBERNETICA, vol. I, no. 5 (1965)
8. Hartenstein, R., Uber die Schnittstelle zwischen
Hardware und Software, Informatik-Colloquium, Hamburg
1971
9. Hartenstein, R., "A half-baked Idea on a Set of Re
gister Transfer Primitives~ SIGMICRO Newsl. 4/2, 1973
10. Hartenstein, R., '~owards a Language for the Des
cription of IC Chips~ SIGMICRO Newsl. vol. 4, no. 3
(1973)
II. Hassit, A., Lageschulte, J.W., Lyon, L.E.,"Imple
mentation of a High Level Language Machine~ Comm.ACM
vol. 16 (1973), no. 4
12. Husson, S.S., Microprogramming - Principles and
Practices, Prentice Hall, Englewood Cliffs N.J. 1970
13. Lawson jr., H.W., The Changing Role of Micropro
gramming, ACM Seminar Course Readings, 1972
14. Lipovski, G.J. ,"A course in Top-down Modular Design
of Digital Processors~ Workshop on Education and Com
puter Architecture, Atlanta, Ga., august 1973
15. Rosin, R.F., "Contemporary Concepts of Microprogram
ming and Emulation;' Compo Surveys vol. I, no. 4 (1969)
16. Rosin, R. F. ,"Teaching about Programming: Comm. ACM
vol. 16, no. 7 (1973)
17. Rosin, R. F. ,"The Significance of Microprogramming';
ACM IntI. Computing Symp., Davos, sept. 4 - 7, 1973
18. Wegner, P. ,''Data structure Models for Programming
Languages;' SIGPLAN Notices vol. 6, no. 2 (febr. 1971)
19. Weinberg, G., The Psychology of Computer Program
ming, van Nostrand Reinhold, New York N.Y. 1971
20. Wendt, S., "Eine Methode zum Entwurf komplexer
Schaltwerke unter Verwendung spezieller Ablaufdiagram
me~' Elektron. Rechenanl. vol. 12, no. 6 (1970)
21. Wendt, S.,"Zur Systematik von Mikroprogramm-Struk
turen~ Elektron. Rechenanl. vol. 13, no. I (1971)
22. Wendt, S., Entwurf Komplexer Schaltwerke, Springer
Verlag Berlin/Heidelberg/New York 1973

206

REVIEW OF THE WORKSHOP ON
COMPUTER ARCHITECTURE EDUCATION

George Rossmann
Palyn, Inc.

Abstract

This paper reviews the presentations and discuss
ions of the participants in the Workshop on Education
and Computer Architecture held in Atlanta, Georgia on
30 August 1973.

INTRODUCTION

A workshop on education and computer architecture
was held on 30 August 1973 in Atlanta, Georgia. It
was cosponsored by the ACM Special Interest Group on
Computer Architecture (SIGARCH) and the IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA).

The goal of the workshop, as stated in the invi
tation to participants, was to develop the foundations
for a series of courses that would provide a good ed
ucation in computer systems design. What we had in
mind was the detailed specification of two or more
courses in computer architecture which would replace
both the computer organization course developed by a
COSINE TASK FORCE (3) and the organization courses (13
and A2) outlined by the ACM Curriculum Committee on
Computer Science (1). However, the contributions re
ceived from the workshop participants addressed such a
broad perspective of computer systems design that we
ended up discussing most of the elements of a typical
computer engineering curriculum (4). The workshops'
observations about current programs in computer engi
neering education and its proposals for introducing
some fresh ideas into these programs are the primary
reason for circulating this summary of our discussions.

To insure a broad perspective, participants were
invited from universities and computer manufacturers.
They were asked to contribute in whatever way they
could. We solicited papers for oral presentation as
well as position papers from those invitees who were
unable to attend but still wanted to contribute their
ideas. The result was a workshop attendance of twenty
four. There were ten formal presentations given and
three position papers which were summarized.

The program was as follows:

WORKSHOP ON EDUCATION
AND COMPUTER ARCHITECTURE

Program

9:00 a.m. - 12 Noon

W.J. Watson, "What is This Thing Called Architec
ture, and Where is it Going?"

R.A. Dammkoehler, "Experimental Modular Machines"

D. Siewiorek & J. Grason, "Using Register Trans
fer Modules (RTM's)in Teaching Computer
Architecture"

R.

R.

Ashenhurst, "Hierarchical Systems for Labora
tory Automation"

Rosin & B. Shriver, "Towards Reasonability in
CPU Design: A Case Study"

T. Rauscher, "The Influence of Specific Problems
on Mach i ne Arch i tecture"

1 :00 p.m. - 5:00 p.m.

F. Brooks, "Computer Architecture Education"

S. Fuller, "An Annotated Reading List for a
Topics-Oriented Course On Computer Struc
tures"

C. Hooper, "Study of Computer Architecture
Through Simulation"

G. Lipovski, "A Course in Top-Down Modular De
sign of Digital Processor~!

H. Hell erman, "New Emphas I sin Computer System
Education"

H. Lorin, "Operating Systems Education"

F. Hill, Position Paper on "Digital Systems:
Hardware Organization and Design"

The workshop presentation and discussion can be
approximately partitioned into three main topics: Dis
cussion of the educational methods used to build com
puter systems design experience, specification of the
structure and content of some courses to be included in
a computer architecture sequence, and finally, descrip
tion of some of the elements of computer science educa
tion which are considered to be essential In the train
ing of a computer architect.

" Educational Methods

Several strategies for teaching computer systems
design have emerged: simulation, modular systems de
sign, the case study approach, and theoretical studies.
The appropriateness of each of these depends upon the
objectives and the level of the instruction.

Simulation is well accepted as a means for study
ing computer structures (3). Its use was discussed by
C. Hooper. In conjunction with a senior-level course
on computer architecture, he offers an extensive soft
ware laboratory component In which students are requir
ed to design and program a simulator and cross assem
bler for some well defined computer system In order to
study its characteristics and evaluate its features.
This requires an enormous amount of time. The student
increases his programming experience and finishes the

211

course having examined at least one machine architec
ture very closely. This Is probably sufficient accom
plishment for an undergraduate course, but it would
not be appropriate for developing the breadth of under
standing needed by a professional computer architect.
It was suggested that hIs needs might be better served
in other ways. For example, he might be required to
program a few problems on a set of machines to get a
feeling for the effect of architectural decisions on
problem processing. Or he might work with a single
machine and a single problem and determine the effect
on the program for that problem caused by deleting cer
tain features of the machine.

Modular systems introduce an efficient experiment
al dimension to computer systems design. The October
1973 issue of COMPUTER surveys the state of their de
velopment, describes experiences various groups have
had in us i ng them,' and offers some conj ectu res on why
designers and users are attracted to them. At the
workshop, Fred Dammkoehler and Dan Siewiorek discussed
the impact of modular systems in studying computer ar
chitecture.

Dammkoehler argued that in engineering effective
modeling of real phenomena is the key to understanding
them. He suggested that, in the context of computer
engineering, modular systems which lend themselves nat
urally to model construction and manipulation as well
as allowing students to maintain contact with reality
serve the learning process best. The ways in which
macromodules accomplish this were observed in the con
text of a comparative architecture study conducted by
his graduate students. Experiments were undertaken in
order to determine the extent to which the efficiency
of a structural analysis procedure could be improved
by systemati"cally increasing processor concurrency.
Three processor structures, serial, asynchronous and
pipelined, and a hardware monitor were built within a
reasonably short period of time and the analysis pro
cedure was executed on each of the processors. Good
results were obtained Indicating that by using a set of
appropriately designed modules it is possible in "rea
sonable" amounts to time to explore a number of design
alternatives.

Siewiorek described similar experiences with the
use of Register Transfer Modules (RTM's) in studying
computer architecture. A series of laboratory exer
cises of increasing complexity; design of a desk cal
culator, display processor, simple computer, pipeline
processor, etc., were used to develop computer systems
design experience. What is remarkable about this lab
oratory is that it is used in conjunction with a junior
-senior level Computer Systems course.

Modular systems make it possible to consider rel
atively complex digital systems at a functional level
where they can be handled by the electronically naive,
and they make the design and implementation of such
systems quick and understandable. The modular approach
results in extraordinary student motivation. Labora
tory experiences in which students can work in close
co-operation to bui Id systems which solve real prob
lems are becoming much more significant. Simulation
approaches fail to develop that intense commitment.

Jack Lipovski presented the description of a
course for designing digital systems in an MSI and LSI
hardware envlornment. Commercial chips are used as
modules. They are Incorporated into a design by de
ducing from the statement of the problem via a high
level hardware design language what modules are requir
ed and how they should be interconnected.

212

The case study approach addresses the upper levels
of computer systems design: computer architecture,
which defines the attributes of a computer system as
seen by t'he programmer; and physical implementation,
which includes the organizations of processors, mem
ories, switches, input-output devices, etc. There
was no dispute with the proposition that at the grad
uate level the proper study of the machine designer is
machines and that there is no substitute for close ex
amination of other designers' machines. Fred Brooks,
Sam Fuller, and Joe Watson discussed this strategy.

Professor Brooks point of view was especially in
teresting. He distinguishes computer architects from
computer engineers. In his view, computer engineers
are responsible for implementation and computer arch
itects are responsible for the principles of operation
manuals. Further, he characterizes training in compu
ter architecture as elementary and advanced. The ele
mentarylevel is designed to teach every computer sci
entist how machines work and to help him understand
the forces that led to the design decisions which he
has seen reflected. Any competent computer science
instructor can teach it from the literature. The ad
vanced level is designed to teach the 5 to 10 profes
sional computer architects who are needed by industry
each year how to come up with a master plan. This
training, he asserts, can only be offered by experi
enced and practicing computer architects. It cannot
be acquired from the literature and there is not sub
stitute for learning it from someone who has been
through the design experience of a real machine.

I I I A BasiC ~ourse

There are three
puter architecture.
of a two demensional
Figure 1.

aspects to Brooks' course on com
The first is an in-depth analysis
computer space like that shown in

The first four topics form the fundamentals of
computer architecture; although, Tom Rauscher pointed
out that the design of special purpose machines to
solve specific problems may make other aspects of com
puter systems designs more significant. The computer
systems are ordered to preserve their evolutionary
development. The space is scanned in both directions
in parallel. The horizontal dimension compares dif
ferent techniques for solving classical problems and
charts their evolution. The vertical demension shows
how solving one of the problems in a particular way
constrains the solution of another problem to be less
than best. Studying individual machines in the ab
sence of such a typical framework; i.e., a pure case
study approach, frequently produces unsatisfactory re
sults.

The challenge in analyzing systems is to figure
out what the designers' reasons for their decisions
were. The space helps to discover the rationale be
hind some of these decisions. The reasons for the re
maining ones may not even be technical and impossible
to deduce.

Bob Rosin and Bruce Shriver discussed some of
these subtlet i es wh i ch accompany des I gn. I tis the i r
contention that some of the decisions made by computer
systems designers and implementers are unreasonable.
They are based on invalid rules of thumb, a narrow and
.incomplete view of the ultimate users' needs, and the
use of inappropriate tools. Their paper presents a
case study of a real machine design and shows how it
was possible to make a somewhat reasonable system out
of a potentially unreasonable one without sacrificing
anything other than some traditionally held bad ideas.

Figure 1

Com~uter Slstems

IBM UNIVAC IBM
701- 1101- 6so-
7094 1110 7074

Representation

Addressing
VI
E
Ql Operat ions
~

.0
0
'- Sequencing Q..

c
OJ I/O Control .-
VI
Ql

C Ari thmet i c
aJ Character & Bit Operations VI
>-

V)

'- Memory Hierarchies
Ql
.....
:J Microprogramming a.
E
0

u etc.

In light of this, the students problem is not
only to seek the reasons for decisions, but he must
try to assess their ultimate consequences. The teach
er should provide as much real frequency data; e.g.,
opcode distributions, branching conditions, etc., as
he can locate to support the students analysis. Ul
timately, the student has to develop an intuitive
sense for the dynamics of machine activity.

The second aspect of Brooks' course is a complex
software laboratory project based on a real industrial
or university need. The goal of such a project is not
to learn how to program, but, just as in the case of
modular systems, to learn to work as a member of a
team which must build, debug, document, and demon
strate something on a schedule.

The final aspect involves reading classical pa
pers. Sam Fuller offered an annotated reading list in
which student reaction to many of these papers is sur
veyed. Statistics were gathered on responses to five
questions: Did you read it?, clarity, detail, under
standability, and value. Fortunately, many papers are
available in the text by Bell and Newell (2).

Some comments suggested that an equally valid ap
proach to teaching a course like this could be devel
oped from an implementation driven point of view.

IV Essential Su~~orting Courses

An essential part of any computer system is its
operating system. The architecture and implementation
of a machine cannot be separated from the operating
system which runs on it, since together they consti
tute the environment which the user sees A course in
opcre+'",q 5'(lofe 'P.rl"CI,'C.S IS)t,..."'- .S$eM (.... , .. " •• ., ih .. ~ ~~ 'rt
computer arcnltecture t~J. OtherWIse, as Sam tUI ler
pointed out, the rationale behind various architectural
decisions and the reasons for including certain topics;
e.g., virtual memory, in computer architecture courses
would be incomprehensible to those students who have no
operating system experience.

Hal Lorin addressed the fundamental problem of op
erating systems education directly. The problem is

IBM
1401- BSOOO
7010 STRETCH KDF 9 MUS PDP11 etc.

that there is so much material and so many paths
through the material that it is almost impossible to
manage or defend a single unified approach to design
or discussion. The working solution to the problem has
been to fragment the material into separate disciplines,
to design elegant internal structures without compre
hending or investigating their impact on the user, to
concentrate on a few problems of current interest to
the exclusion of others, to represent the structure of
a single system as a natural structure for all systems,
to exclude historical material, and to avoid the full
implications of systems use. All these prevent the
computer architect from achieving significant in~ights
into the dynamics of the relationship between operating
systems, computer architecture, and the computational
environment. The fundamental need in education there
fore is to create an appreciation within the computer
architect for the essential unity with which a user
sees his system, the various ways in which his machine
will be used, and how the user judges the success or
failure of his system.

This last point was expanded by Herb Hellerman.
He argued that a consciousness of system performance,
which he defined as an assessment of the qualities and
features of a system by as objective a set of measures
as possible so as to judge its ability to process work
for some end and to compare it with other systems,
should permeate throughout the computer science curric
ulum. By using objective and quantitative measures of
performance as much as possible and qualitative measur
es when real measures do not exist, a student ought to
be able to develop some sense of the worth of a com
puter system. If he combines these with cost data, he
should be able to evaluate the cost effectiveness of a
system. Joe Watson also represented this process as
fundamental from the manufacturers point of view.

V Conclusions

Based on what the workshop considered, it might
have been more appropriately entitled Workshop on Com
puter Engineering Education. It clearly demonstrated
the growth and interdependence of the subjects recom
mended for a computer engineering curriculum in (4).

213

Of particular interest is the emphasis now being placed
on the laboratory experience, both hardware and soft
ware, which should accompany these upper'-level courses.

A special task force is now being constituted to
realize the original goal of the workshop; the develop
ment of new course descriptions for computer architect
ure courses. The suggestions and contributions made by
the participants in this workshop should make that ef
fort simple and fruitful.

Acknowledgements

The author wishes to acknowledge the assistance of
Allan Marcovitz and Willis King. They helped provide
much of the energy and work required to make the work
shop a rea Ii ty.

BIBLIOGRAPHY

1. ACM Curriculum Committee on Computer Science.
Curriculum 68, Comm. ACM 11,3 (Mar. 1968),
151-169

2. Bell, C.G. and A. Newell, Computer Structures:
Readings and Examples, McGraw-Hill Book Co.,
1971

3. COSINE Task Force II. An Undergraduate Electrical
Engineering Course on Computer Organization,
Oct. 1968

4. COSINE Task Force Report IV. An Undergraduate
Computer Engineering Option for Electrical
Engineering, Jan. 1970

5. COSINE Task Force VII I. An Undergraduate Course
on Operating Systems Principles, June 1971

214

MICROMODULES: MICROPROGRAMMABLE
BUILDING BLOCKS

FOR HARDWARE DEVELOPMENT
Richard G. Cooper

National Security Agency
Fort Meade, Maryland

I. Introduction

The algorithm design phase in the deve
lopment of special purpose hardware is
usually a very small part of the overall
effort. A much larger portion - often 90% or
more is expended on logic design, fabri
cation, and debug. Furthermore, since the
pure algorithmic complexity of hardware tends
to be small, algorithm design errors
typically account for a small part of the
total debug time~ errors due to electrical
effects consume the lion's share. Precautions
taken during machine design, fabrication, and
debug to minimize reflection, switching
noise, and synchronization errors are time
consuming and expensive. This situation is
at its worst when various types of equipment
are to be produced in small quantities. As
the use of Schottky-TTL and ECL increases,
the problem will become more severe.

The purpose of the Micromodules project
is to greatly reduce the amount of effort
expended on logic design, fabrication and
debug for small quantity developments.
Secondly, with this modular approach, a quick
reaction capability is sought that would
allow a large reduction in the time interval
between system specification and the delivery
of the finished product. Finally, by simul
taneously simplifying and speeding up the
development process, we aim to improve the
practicability of implementing more complex
equipments.

These goals can be achieved by the
development of a family of microprogrammable
modules. Each module will be architecturally
compatible with a small class of common
hardware structures with obeisance to a
standardized interconnection discipline. The
system designer will obtain a collection of
modules from inventory and configure them, by
means of the interconnection discipline, into
a system which is architecturally suited to

nization were built into each module.
Functionally, their modules are quite simple.
Using adders, registers, memories and other
modules of similar complexity, they can
construct systems of interconnected blocks
which are effectively free from electrical
errors. System implementation can be accom
plished quickly and easily; it is not
uncommon for an engineer to design,
construct, and debug a significant system in
a matter of days.

Due to the functional simplicity of each
module, the relative cost of eliminating
intramodular electrical errors is high.
However, macromodules are intended for the
construction of experimental equipment. A
number of modules are configured to implement
a certain algorithm~ the system is used for a
short period of time and the modules are then
returned to the stockpile for later use. In
such an environment, the cost of each module
is not very important. It will be used in
many different implementations and only a
fraction of each module's cost need be
attributed to each use. The time and effort
required to build each experimental system is
the more important consideration.

Our approach has been to apply the
macromodular concept to the development of
unique operational special purpose equipment.
In this environment, the cost of each module
is quite important~ it will be used in only
one machine1 therefore, the relative cost per
module of eliminating electrical errors must
be reduced. To achieve this reduction, we
chose to increase the functional power of
each module rather than relax the inter
connection discipline. A given algorithm
would be implemented with fewer, more
powerful modules 1 as a result, the overhead
of eliminating electrical errors is reduced.

II. Microprogrammed Machines

solve the problem at hand. Note that a more complex module
It is likely that many systems will increases the danger of sacrificing the

require some special hardware development in flexibility required for constructing special
addition to the standard modules~ our purpose hardware of greatly varied designs.
intention is to m1n1m1ze the quantity and If flexibility is to be retained, individual
complexity of such special equipment. As the types of modules should be modifiable within
project progresses, additional common the range of their architectures to suit a
structures will be identified and the family diversity of applications. For this reason,
of micromodules will be expanded to contain our modules are often microprogrammed, i.e.
them when justified. designed with alterable control memories.

Our approach is not without precedent~ Integrated circuit PROMs (programmable read
the Macromodules project [1,2,3] at only memories) will be used to specify the
Washington University has been a fundamental functions to be performed by each module.
source of inspiration. There, under the When new applications of existing module
direction of W. Clark and C. Molnar, a set of architectures are required, new PROMs will be
asynchronous building blocks were con- designed to tailor the modules to the
structed. These can be interconnected with application. With this approach, we can, in
standard cables. Loading factor allowances, effect, create a wide variety of complex
noise attenuation and techniques for synchro- building blocks for a minimum of

221

developmental ~ffort.
Most projects will still require some

ROM design. Although many data routing and
formatting functions will be satisfiable with
basic designs, it is not likely that needed
processing and sequencing functions will have
been previously designed. Therefore,
compared with the macromodular approach, a
system built with micromodules will require
more effort weeks instead of days.
Nevertheless, the effort involved in system
implementation will be greatly reduced when
compared with that of current, traditional
hardware development methods.

The total cost of a given implementation
will probably also be reduced. Cost
reductions will be achieved in three areas.
Since effort can be translated into dollars,
substantial savings will be gained in
reducing total effort. Because the modules
will be produced in quantity, the economies
of scale create further savings. Finally, the
extensive use of MSI and LSI technology,
usually unjustifiable in one-of-a-kind
equipment development, also contributes to
overall economy. Offsetting these reductions,
several factors require expenditures not
normally accruing to equipment development.
The cost of developing the modules, their
associated production tooling and inventory
maintenance costs must be distributed among
the equipments produced. Any portion of each
module's capabilities that is not effectively
used in a given equipment must still be
purchased. Quantitative comparisons of these
factors cannot be made at this time, but it
appears that the overall cost per equipment
will be reduced.

In order to clearly describe the
micromodular approach, we must examine those
user-microprogrammable machines currently on
the commercial market.

The great majority of commercial
machines are oriented towards emulation, for
this reason, they tend to be complex and
expensive. Because the machines will be used
in stand-alone configurations, the archi
tectural emphasis tends toward high speed
full word arithmetic and logical processing
overlapped with random access memory fetch.
Very limited Boolean capabilities and almost
no multiple Boolean decision and control
functions are included. When used in special
purpose equipment, emulation machines require
considerable interface logic. Relatively
small amounts of local high speed storage are
common, because main memory offers large
amounts of cheaper, slower storage. Due to
the complexity of emulation machines, their
cost prohibits multiprocessing systems for
many hardware applications. Even when mUlti
processing is used, the burden of synchroni
zation falls on the microprogrammer, or
hardware synchronization must be provided.

Another large segment of the commercial
market is directed towards the implementation
of disk and tape controllers. Few of these
are truly user microprogrammable and
virtually all are fixed architecture
machines. Synchronization of multiple machine
configurations must be microprogrammed or
implemented by means of additional hardware.

Recognizing the limitations of current
machines, we decided to use a building block
approach with the micromodules. Each module
is designed to solve a small class of common
hardware problems, without frills. The

emphasis is on low cost, high instruction
cycle rate, and the possibility of coopera
tion between modules. Although the class of
problems compatible with each module's
architecture is small, several modules can be
configured to achieve the requirements of a
given implementation.

III. Modular Design Considerations

The separation of functions is an
important theme in the design considerations.
Since microprogramming can be a difficult
task, the separation of functions is useful
in dividing the problem into subproblems
which can more easily be solved. Each
subproblem can then be attac)ted using the
most appropriate module. As new classes of
subproblems are identified, new modules tuned
to these classes can be developed. System
debug can also be simplified by the
subproblem approach, each subsystem can be
debugged individually, postponing debug at
the system level until the last subsystems
are ready.

Since systems will be constructed from
collections of modules, synchronization and
buffering are also important considerations.
Facilities for synchronization and buffering
are built into each module in hardware.
In most practical cases, loop-free networks
of modules can be constructed, freeing the
designer from these problems. Where loops
must be constructed, some simple precautions
will ensure that no deadlock problems exist.
As will be shown later in this paper, a
minimal amount of programmed synchronization
can greatly improve efficiency for certain
kinds of processes.

222

Connections between modules can be
either arithmetic or Boolean. Arithmetic
paths are eight bits wide (one byte). Each
byte path is constructed by connecting a
polarized ten-conductor cable between a byte
output port on one module and a byte input
port on another. Each port maintains a FULL
flip-flop which specifies whether the port
contains data. When data is transferred from
an output port to an input port, the FULL
flip-flop in the output port is cleared and
the FULL flip-flop in the input port is set.
The transfer of data between ports and
control of the FULL flip-flops during
transmission are performed completely in
hardware. Two wires in the ten-conductor
cable are used for handshaking signals.
Transfer between ports is accomplished by
logic built into each port. Since each port
contains its own data buffer register, the
interconnected modules can be performing
computations while the transfer is taking
place.

Synchronization of byte data transfers
with processing is accomplished by use of the
FULL flip-flops. If a microinstruction
attempts to read data from an input port
which does not contain data, completion of
tha~ instruction is suspended until data is
transferred into the port by the handshaking
logic. When an input port is read, its FULL
flip-flop clears, allowing the handshaking
control to transfer in another byte. Thus
each access of an input port reads a new byte
of data regardless of the input arrival rate.
Similarly, a microinstruction that attempts
to place data into an output port, which
already contains data, is suspended until the

port empties. Since both input and output
ports contain data storage registers, all
byte transfers between modules are double
buffered by the hardware.

Each arithmetically oriented module can
contain multiple input and output ports for
byte data. Thus data words larger than eight
bits can be transferred serially by byte or
in parallel along several cables. Parallel
transfers occur independently. Since modules
can be processing while transfers take place,
and since data is double buffered, the
duration of data transfer can be several
instruction times long without much
degradation of performance. This relatively
slow data transfer, combined with fixed
loading factors and reflection charac
teristics, reduces electrical interconnection
errors to a low level. Resistor terminators
are built into the input ports and
interconnection cables are shielded.

Boolean interconnections are of two
kinds: level signals and pulsed signals.
Level signals are useful for connections
between the modules and peripheral equipment.
Level signals can be used for controlling and
sensing Boolean lines, e.g. tape and disk
drives. Pulsed signals are useful for
synchronization tasks within the network of
modules.

Coaxial cables are used for transmitting
Boolean signals and each module can contain
one or more Boolean input and output ports.
Switches are provided on some modules to
specify whether a port will be a level or
pulsed signal device.

Level signals are strobed into flip
flops at the beginning of each instruction
cycle to assure unambiguous operation.
Schmidt triggers are used in some modules to
perform level conversion and signal
conditioning.

Pulsed signals require a rise and fall
cycle of operation. A two phase flip-flop
configuration is used on the input lines to
synchronize pulsed signal transmission. A
received pulse is stored in a flip-flop until
the receiving module tests that flip-flop.
When a pulsed flip-flop is tested, it is
automatically reset. Pulsed signals are
therefore not acknowledged in hardware by the
receiving device. If a given system
requires acknowledgement, this task must be
performed in firmware.

IV. Des ign Aids

The design of ROMs, as has been
previously stated, is a difficult task. For
many projects, ROM design will be the most
time consuming part of system implementation.
For this reason, numerous ROM design aids are
planned. Design aids will be written in
time-sharing Fortran IV for the DEC PDP-lO.

A basic table-driven assembler will be
constructed. Individual symbolic assemblers
can then be written for each module by
providing the basic assembler with the proper
tables.

A single preprocessor program will be
used to expand macro routines prior to
assembly. Alphanumeric text, consisting
solely of macro control statements, will be
input to the preprocessor. Expansion will
then be independent of the individual
assembly languages, thus the macro capability
need not be provided for every version of the

assembler. ROM designers must expand macro
calls individually and then edit the expanded
macro text into the body of the program.

A functional simUlation of each module
will be provided. The ROM designer can then
debug his microprogram by repeated cycles of
editing, assembly and simulation in a manner
similar to the debugging of software.

An interconnection simulation routine
will be used to debug configurations of
modules. This routine will be an event-table
simulator which enables the system designer
to observe the interaction of the modules in
a system. The degree of overlapped operation
can be observed and the effects of altera
tions to individual modules on the configura
tion can be ascertained.

When ROM designs are completed, each
object program can be dumped to paper tape.
A ROM can then be physically constructed by
"burning" the pattern specified on the paper
tape into PROM integrated circuits.

System implementation would be accom
plished by the software simulation process of
ROM design, followed by ROM pattern fabri
cation. The ROMs would then be plugged into
the appropriate micromodules obtained from
stock. Standard cables, also obtained from
stock, would be used to interconnect the
modules.

V. Networks of Modules

An important goal of the Micromodules
project is to facilitate the construction of
more complex equipments than are feasible
with traditional methods of constructing
hardware. In particular, we wish to encourage
the use of large networks of modules. Two
adaptations of well known techniques are
expected to be of general use in such
systems: pipelining and parallel processing.

223

A. Pipelines

Pipeline structures are particularly
appropriate to the micromodules. Let each
packet of data be represented as x. Let the
function fIx) be computed by a pipeline of n
stages, thus

fIx) - fl(••• fn_l(fn(x» •••)

as illustrated in figure I.
In designing a pipeline, each processing

element should compute the appropriate
function in a fixed time period. Thus each
packet spends an identical amount of time in
each processor. If the subfunctions to be
computed do not have identical computation
times, synchronization circuitry must be
included in the design. If some of the
subfunctions require random computation
times, the buffering of data packets must
also be provided for the sake of efficiency.
Furthermore, each processor should be
designed so that its average computation time
is approximately equal to that of the other
processors. Because of these optimization
problems, pipeline structures are not often
practicable for the implementation of complex
functions.

However, a modified version of the
structure (figure 2) allows the pipeline
concept to be· applied to a larger class of
practical problems. Let the packet y be
defined as the augmented pair of elements

y = (i,x)

where i is a tag value (initially, ian)
representing the next subfunction to be
computed, i.e. fi(x). Let there be m
processing elements gj, for j=l, ••• ,m. After
each processing element, there is a buffer qi
of fixed size. Let bj be a Booleart
feedback signal from qj to gj such that

1
o

iff qj.is more than half full
otherwise.

The b' signal allows the processing
element to aetermine the state of its output
buffer. By considering the tag value i of
its current packet and the state bi of the
output buffer, each processor !flakes the
decision to pass the current packet to the
buffer or to compute the next subfunction.
Thus

gj = 9i(i-l,fi(x» iff (bj=l) and (i>O)
(l,x) otnerwise

for (O<j<m+l).

Note that bm=l regardless of the state
of ~. This fact allows each processing
element to contain the same microprogram.
Furthermore, the microprogram is not
dependent on m or n. Thus a pipeline
executive microprogram can be written and
debugged for arbitrary m and n values. The
executive would only be concerned with
reading and writing data packets, and with
making the decision to process or pass the
current packet. System design of a pipeline
could be performed by combining the executive
with a list of packet sizes and subfunction
addresses in a table indexed by i, and the
microcode for each sub function.

Since the pipeline structure does not
depend on m, fast failure recovery is facili
tated. The faulty module can be quickly
removed from the pipeline and the system can
be restarted with a structure of size m-l.
Performance would be degraded, but the
structure could still operate with up to m-l
failures.

It was stated previously in this paper
that loop-free interconnect structures could
sometimes be implemented for algorithms which
contain loops. The simplest method would be
to contain the loop within a single module by
means of the microprogram. Loops can also
be integrated into the pipeline structure by
a modification of the definition of gj' let
the subfunction microcode also compute ~i(i),
the next value of the tag i. Thus

gj - gj (Si(i),fi(x» iff (b;=l) and (i>O)
(1,X) otherwise

with each iteration of a loop being
considered as a new invocation of the same
subfunction.
Either definition of gj preserves the order
of packet throughput. Although one packet
can be completely processed in the first
element and another packet partially
processed by each stage, each packet will

the type and shape of computation time
distributions (assuming they are independent)
and the packet size for each value of i. By
selecting values of m and by combining or
reducing sub function definitions, he can
determine the most effective implementation
of those considered.

B. Parallel Processing

The use of parallel structures like that
in figure 3 is also anticipated. An input
controller I is used to schedule the flow of
input data to each of the m processors g.,
while output controller 0 merges the resuit
streams. The mode of operation depends upon
the characteristics of the function f. If
f requires a nearly constant amou~t of
processing time regardless of the data packet
values, a phased sequence of processing can
be scheduled by I and O. If packet transfer
time is td and computation requires time tf
for each packet, then for maximum throughput,

m > for td > 0

If tf is random with a significant
variation, a more complex structure and
scheduling algorithm might be used. Data
packets can be buffered as shown in figure 4
with the scheduling controlled by the state
of the buffers. For the input controiler,
let b; be the Boolean state signal defined
previ06sly. Then a· good scheduling
algorithm might be

n = min(j) such that bj=O

where n, if defined, is the subscript
next buffer q to receive a packet of
Similarly, if a; is the Boolean state
for the jth outp6t buffer, then let

of the
data.

signal

k = min(j) such that aj=l
else if no a·=l,

k = min~j) such that rj is not empty.

For maximum throughput,

m > [E «tf + 2td) ltd)]

Note that the order of packet input is
not preserved at the output for the case of
random scheduling. If order -must.-'be pre
served, then an order index can be attached
to each packet at I. This index can be used
by 0 to place the results in order. Let 1 be
the maximum number of packets containable by
the system in figure 4. Let u be the maximum
possible computation time, and let v be the
minimum. Then three buffers of size ware
required for reordering where

w = [(lu)/v]

For the random scheduler, a data flow
simulation is planned that will be similar to
that for the pipeline structure. Several
executive routines for phased and random
schedulers, with and without order indexing,
will be written.

leave ~ completely processed and in the VI. Summary
original order.

Because of the importance of the pipe- The Micromodules project is directed
line concept, a data flow simulator has been towards the simplification of hardware design
programmed. The system designer can specify and implementation. A powerful and flexible

224

x - - -ill-- f(x)

Figure 1. A Pipeline Structure

(n,x) (O,f(x»

= gj (i-l,fi (x»

(i,x)

iff (b.=l) and (i>O)
J

otherwise

Figure 2. A Self-Optimized Pipeline Structure

.1
gl l

1 I
J g2 I
-I I

· I · 0 x f(x)

·
J 9rn I
I I

gj (x) = f (x) (O<j<rn+l)

Figure 3. A Parallel Processing Structure

bl a l

ql r l

b 2 a 2

q2 r 2

•
x I 0 f(x)

~ ~

CJm rm

Figure 4. A Self-Optimized Parallel Processing Structure

225

set of microprogrammed modules is provided.
The use of a standardized interconnection
discipline, .with an emphasis on the elimi
nation of electrical errors, allows the
engineer to concentrate on the architectural
aspects of his problem.

The system designer will have two
powerful structures at hand: the pipeline and
parallel schedulers. He can design micropro
grams for the functions to be computed.
Using the computation time characteristics of
the function microprograms, he can simulate a
data flow model and manipulate the model to
achieve the desired throughput. Finally, he
can assemble an arbitrary network of modules
without bearing the burden of synchronization
and buffering design.

A basic family of four micromodules is
now in the development stage. Future work
will include the identification and realiza
tion of other useful structures, whether
microprogrammed or hardwired. A continuing
effort to construct ROM designs with broad
applicability and to further improve design
aids is anticipated. Some effort will also
be made to discover other basic system
structures which would be useful in
distributing processing tasks among a
collection of modules.

References

(1] W. A. Clark, ·Macromodular Computer
Systems·, 1967 SJCC Proceedings, p335

(2] S. M. Ornstein, M. J. Stucki and W. A.
Clark, ·A Functional Description of
Macromodules·, 1967 SJCC Proceedings,
p337

[3] C. E. Molnar, S. M. Ornstein and A.
Anne, "The CHASM: A Macromodular
Computer for Analyzing Neuron Models",
1967SJCC Proceedings, p393

Bibliography

(4] H. H. Loomis, Jr. and M. R. McCoy, ·A
Scheme for Synchronizing High Speed
Logic: Part I.· and •••• Part II.",
IEEE Trans. Computers, January and
February 1970

[5] H. H. Loomis,
Accumulator·,
August 1966

Jr., ·The Maximum Rate
IEEE Trans. Computers,

(6] C. G. Bell and J. Grason, "Register
Transfer Modules (RTM) and their Design·,
Computer Design, May 1971

(7] D. Misunas,
Independent
August 1973

·Petri
Design",

Nets and Speed
Comm. ACM,

226

COMPUTER MODULES: AN
ARCHITECTURE

FOR LARGE DIGITAL MODULES*
S. H. Fuller

D. P. Siewiorek
R. J. Swan

Departments of Computer Science and Electrical Engineering
Carnegie-Mellon University

ABSTRACT

This paper describes the architecture of Co.mputer Modules,
or eMs. They are large digital modules of about minicomputer
complexity that are specifically designed to take advantage of the
rapidly advancing semiconductor technology. These modules are
intended to be interconnected into systems that implement a wide
range of computational structures. The main features of a CM
include a small processor as the primary control element and
memory distributed among the CMs in the system rather than
centralized into memory modules as in current multiprocessors.
eMs are interconnected into a network via buses that each have
their own virtual address space to facilitate efficient inter-module
memory sharing. This paper includes an ISP description of the
address transiation mechanisms as well as a discussion of several
important implementation issues such as the avoidance of
deadlocks in CM networks and the width of the inter -CM buses.

1. INTRODUCTION

This paper describes a set of digital modules that is being
developed to exploit continuing advances in semiconductor
technology and to enable the construction of high performance
computer structures. These large digital modules, called Computer
Modules or simply CMs, were introduced in two earlier papers
[3,10]. These papers described some of the fundamental ideas
that form the basis for our current research. Here we take a
more detailed look at Computer Modules. Their architecture, as
welf as some important implementatiQn issues, are discussed in
depth.

In the past 15 years, standard module sets have evolved from
circuit elements, to gates and flip -flops, and to register -transfer
level modules (i.e., MSI packages) [11]. Continuing advances in
semiconductor technology led us to enlarge the scope of our
earlier work in register - transfer level modules [4] to include the
study of "larger" digital modules that can exploit the emerging LSI
components. Although Computer MOdules originated in an effort
to "scale up" the results of work on register -transfer modules, we
have also learned much from "scaling down" some of the
principles of multiprocessor systems currently under development
[1, 13, 16]. While Computer Modules can be used to implement a
general purpose computation facility, they are primarily intended
for special purpose systems. The topology of the network will
reflect the interprocessor communication' requirements of the
application.

... This research .is supported by National Science Foundation Grant
GJ32758X.

The following description of Computer Modules is divided into
two main sections: their architecture and their implementation.
The architecture centers around the three types of address
spaces used in CM networks and the features that enable a eM
network to achieve a "tighter -coupling" between processors and
memory than is possible with other multiprocessor or
multicomputer organizations. Section 3 focuses on the more
important implementation issues and presents specific solutions
for eMs based on these considerations.

2. THE ARCHITECTURE OF COMPUTER MODULES

2.1 Fundamental Characteristics of Computer Modules

The primary control element of a Computer Module is a
programable processor. This processor may be microprogramable
to allow tuning to particular tasks. Microprogramable processors
are versatile control elements and are currently l,Ised in such
diverse systems as genral purpose processors, I/O processors
and controllers, device controllers and special purpose language
processors. The use of small (microprogrammed or otherwise)
prOCessors as a primitive component is rapidly becoming
economically feasible. Already a number of small processors exist
in a single LSI package or a small number of packages [11]. This
is in contrast with systems built with MSI components which must
revert to small -scale integration, i.e., gates and flip -flops, to
implement control primitives. Several attempts have been made
to develop a control element for register transfer level modules
[4, 5, 15], but they lack general acceptance. Primarily, this is
because they have not been produced by any semiconductor
manufacturer as an MSI component.

While there certainly exist many applications where a. single,
small processor is sufficient, it is clear that one processor cannot
provide enough computational power to implement the range of
high performance computing systems that are needed. If we hope
to exploit LSI technology , some effective means must be found to
interconnect a number of small processors into a network. The
inter -module communications mechanisms must provide for fast
communication with a maximum potential for concurrency •. In Sec.
2.2 we describe in detail the scheme for interconnecting CMs.

The overall structure of a Computer Module is shown in Fig.
2.1 * .It consists of a processor, PC;. a.local memory, Mp; a number
of ports, K.maps, which allow interconnection to other eMs; and an
intra -eM switch, S(processor, bus, and memory) or simply S.pbm,

*The PMSnotation of Bell and Newell [2] is used throughout this
discussion to describe the organization of Computer Modules.

231

which allows the Pc or any port to communicate with the Mp or
any other port.

It is useful to contrast the "classical" multiprocessor structure,
in which an array of processors have access to a large
homogeneous shared memory via a switching, mechanism, with a
eM network (see Fig. 2.2). The classical multiprocessor memory
is homo"eneous in the sense that memory access time is uniform
for any 0 word within a processor's address space. All memory
accesses incur the delay of a single level of switching. In a CM
network the memory is structured to an arbitrary number of
levels. Access time to the local memory of a CM by the processor
incurs effectively no switching delay. A processor accessing
memory in another CM on a common inter -CM bus incurs t~o
levels (two Kmaps, see section 2.2) of switching delay. Accessing
memory via an intermediate CM incurs four levels of switching
delay, etc. (In a Computer Module network and some other
multiprocessor systems, a processor need not wait for a write
operation to be completed before proceeding with the ne~t

memory reference. Thus, for isolated references or when there IS

little contentron for inter -CM buses, write operations to remote
memory will appear no slower than write operations to local
memory.)

The nonhomogenity of memory access time allows program
locality to be used to advantage. CMs are primarily intended for
special purpose applications, where a process can be bound to a
processor and little or no multiprogramming. is necessary. The
frequently used code and data for a process is placed in the local
memory of the CM which will execute it [13). If code and data
are common to several processors, but infrequently used, only
one copy of each need exist. Other CMs on the same or adjacent
inter -CM buses can access common items via the bus network
when necessary. Thus, references within the primary locality of a
program will be honored faster than with a classi,cal
multiprocessor with homogeneous memory. References outside
the major locality will be honored slower than with a classical
multiprocessor. In general purpose computer systems,cache
memory schemes can be used to exploit dynamically detected
program locality. This is effective for read only code ~nd data,
but severe difficulties arise in multiprocessor systems If shared
writable data is stored in a cache as two of more possibly
different copies of the same data can be created.

The switching mechanism, that provides fast shared -access to
memory, may be a substantial proportion of the total cost of, a
classical multiprocessor system. This is the case with
Carnegie -Mellon's C.mmp [16) where up to 16 concurrent
accesses by 16 processors to 16 memory units are possible.
Sharing N memories among N processors via a crosspoint switc~-i
with a potential concurrency of N, requires on the order of N
switching elements. If a distributed switch is us;?, e.g. as in the
B.B.N. multiprocessor [13) ,on the order of N cables are also
required. Inter -eM memory accesses will be relatively infrequent
if advantage is laken of program locality. Hence the full
concurrency provided in a classical multiprocessor is unnecessary.
Sharing N memories with N processors requires on the order of N
switching elements when using a single bus.

It is also useful to contrast CM networks with typical
computer networks. Ina computer network, a processor is tightly
coupled to its own memory and normally does not have direc.t
access. to the memory of any other computer in the network.
Processes running on different computers,communicate by
exchahgin~ messages which are routed by some combination of
hardware and software. Messages are usually long relative to the
word size of the computers. In the UCI Distributed Computer
System [9], messages contain approximately 1000 bits. In CM
networks communication between processes can occur at the
single w~rd level and all routing is done by nardware over high
performance buses. In computer networks, inter -process

communication usually occurs only at a high level because a
relatively long message must be assembled and then transm,itted
to a potentially geographically distant computer Via relatively
slow communication lines.

In summary, in a classical multiprocessor system all
processors are uniformly and lightly coupled to all memory.
Processes can communicate on a word level. In a CM network
processors are very tightly coupled to local memory and more
loosely coupled to the local memory of other CMs. Processes can
communicate on a word level with slightly more overhead
(minimum of two switching levels) than in a multiprocessor. In ,a
computer network processors are very tightly coupled to their
own memory and very loosely coupled to other memory in the
network. Processes communicate at a message level With
relatively large delays.

S.pbm

Mp -
(time-roul tiplexed crosspoint)

I I I I

·t"I~II
Figure 2.1 The Basic Structure of a Computer Module.

2.2 The Processor, Bus, and Memory Address Spaces

The inter -eM communication is based on mappings between
address spaces. The three types of address space in a CM
network are described in this section. To aid our discussion, Fig.
2.2 depicts a small, but non-trivial CM network: CM[A], CM[B),
CM[C) and CM[D) are interconnected via inter -CM buses Land M.

The most obvious scheme to aIJow processors to share data
and procedure;; in memory is to give them all the same global,
linear address space. This naive scheme is lacking on a number of
counts. The linear address space would have to be very large
(22~ to 2"32) in order to handle many large, contemporary
problems. Hence 32 bit addresses would have to be used
throughout the network and the structure of the CM network
would have to be coded into the memory access routing
mechanisms. Instead, Computer M.odules use a segmentf;ld address
scheme [7, 14). The processor sees a virtual address space, the
processor address space, which is divided into a number of
variable sized segments (currently there are 16 segments). The
memory address space is simply the linear, physical address space
of the 10.cal mf;lmory. In a single CM system the processor
address space and the memory address space corr!!spond to the
virtual and physical address spaces of standard virtual memory
computer systems.

Each inter -CM bus has' a virtual address space. These bus
address spaces allow processors to access the memory of other
Computer Modules, For example, consider a memory reff;lrence by
the processor of CM[A] to the memory of CM[B]. Figure 2.'2
illustrates the mapping between address spaces that must be
done: K.map [A][O) (K.map[O) of CM[A) translates an address in
the processor address space of CM[A) into the bus address space
of inter '-CM bus L. Now K.map[B)[1] recognizes the address on
bus L and translates the address into the memory address space

232

of CM[BJ. Hence K.map[A][O] and K.map[B][1] have been used
to map memory requests from the processor of CM[A] to the
memory of CM[B]. The establishment of this addressability is
discussed in detail in the following section.

CH[A] CH[B]

lip ~ S.pmb I Mp -I S.pmb

I I
K.map[O] K.map[l]

Jc I
inter-em bus L I

K.map[2],
I

I I
K.map[O] K.map[l]

Jc I

Mp -[S.pmb 1 CM[C]

I I'

inter-em Bus M

'rCO] 'T[']

M,' -[S.pmb CM[D]
I

K'jP[O)

Pc

Figure 2.2 A system of four Computer Modules.

2.3 Routing Requests between Address Spaces

The K.maps of Fig. 2.1 each contain a segment table which
specifies the mappings to be performed from one address space
to another. When a K.map recognizes an address on the inter -CM
bus it performs an address translation. The switch, S.pmb, routes
translated addresses to either the local memory or to one of the
three K.maps connected to inter -CM buses. The routing is
specified for each segment in the segment tables. When a K.map
receives an address from the switch it requests the the inter -CM
bus. The address is subsequently placed on the bus without
further translation.

To return to our example of Fig. 2.2, the processor of CM[A]
is able to write a word in the Mp of CM[B] if the segment tables
in K.map[A,O] and K.map[8][1] are set correctly. K.map[A][l]
performs bus arbitration but does not translate the address. This
ability of K.maps to route single word· memory access requests,
independent of the processors is an important aspect of the CM
architecture. It ensures a more closely coupled structure than is
possible with computer networks thai transfer data under the
control of a communication or message processor.

Figure 2.3 illustrates another important property of CMs, their
use as a switch between inter -CM buses. In Fig. 2.3 the
appropriate address spaces are shown for Pc[A] (the processor of
CM[A] in Fig. 2.2) to access a word in Mp[D] (the memory of
CM[D]). K.map[A][O] maps the request from Pc[AJinto the bus
address space of inter -CM bus L; K.map[C][2] maps the request
from inter -CM bus L into the bus address space of inter -CM bus
M; and finally, K.map[D][l] maps the request into the memory
address space of Mp[D]. An alternative fo this scheme is to have
a second module type. It is more efficient, however, to take
advantage of the address translation and bus interface logic
already provided within a CM than to duplicate it with a special
purpose switch module. The ability to automatically route
single -word memory accesses to any memory in a network is
crucial if networks of CMs need to interact in a closely -coupled
manner. Transfer of blocks of information is. also important in

many applications. Special hardware is provided so that the
processor may initiate a block transfer and ihen continue program
execution. This allows a higher data transfer rate and more
productive use of the processor than block transfers by program.

Figure 2.4 illustrates additional ways the bus address space
can be used. In Fig. 2.4(a) several CMs are set up to map the
same bus segment into their local memories. This arrangement
gives CM systems a broadcast, or one -to -m'any mapping ability.
For example, CM[A] in Fig. 2.4(a), writing into a single location
sends information simultaneously to the Mps of CM[B] and CM[C].
On the other hand, Fig. 2.4 (b) shows how a CM system can
implement a many -to -one mapping. This arrangement is needed
whenever several concurrent processes share a common data
structure.

Address Space

of Pc [A)

Segment

Address Space

of bus L

Address Space

of bus M

Address Space

of IIp[O]

K.map[Aj[O) K.map[Cj[2) K.map[Dj[l)

Figure 2.3 Address translation with a CM used as a switch.

Address Space
of Pc[A)

Address Space
of bus L

Address Space
of Mp[B)

K.map[B][l)

K.map[A][O)

(a) Broadcasting

6"ddress Space
of Pc [A)

Address Space
of Pc[B)

(b) Sharing

K.map[Aj[O] Address Space
of bus L

K.map[Bj[O)

Address Space
of Mp[C]

Address Space
of Mp[C)

K.map[C) [2)

Figure 2.4 One-to-many (a) and many-to-one (b) ,address mapping.

233

2.4 The Segment Table and Address Translation Mechanism

The mapping logic within the K.map actually performs two
distinct functions: address recognition and address translation.
Address recognition and translation information is held in the
segment table of each K.map. All the access modes described in
the previous section are achieved by appropriate segment table
entries. This section describes in detail the address translation
mechanism. It is also concisely defined, in ISP notation [2], in the
appendix.

The segment table consists of a set of segment descriptors,
where each descriptor defines how one segment in the source
address space is mapped into a segment in the destination
address space. A segment descriptor is composed of three fields:
the source segment name, the destination segment name, and the
control and status field. One of the subfields in the control field
is the logarithm, base 2, of the segment size. Hence, only segment
sizes that are powers of two are allowed: 1, 2, 4, 8, ... , 4K. By
restricting the segment sizes in this way we avoid the addition
implicit in more conventional base/limit translation schemes.

Figure 2.5 shows the essential properties of the mapping
function performed by the K.map mapping logic. The four most
significant bits of the source address are used an an index into
the segment table to seleel a row, or segment descriptor. The
segment size field, of the selected descriptor, specifies the
position of the boundary between the segment name and the
displacment fields in the source address. The segment name field
of the source address is compared with the segment name in the
descriptor. If they match, the destination address is generated by
concatenating the destination segment name with the displacement
field of the source address. This mechanism ensures unique
recognition of segments provided that each segment is allocated
at a base address that is divisible by its size (which is a power of
2).

For a write operation it is reasonable that two or more
K.maps, on the same inter -CM bus, respond to the same address
(c.f. section 2.3 and Fig. 2.4 (a». For read operations to the
same address it is necessary to ensure that only a single K.map
responds. Thus, apart from conventional protection issues, it is
necessary to be able to specify that a segment is read protected.
It is also possible to entirely disable a segment descriptor, i.e.
prevent it from ever matching.

All the segment descriptors are in the local memory address
space. This circumvents the need for the processor to have
special instructions to maintain the segment descriptors and also
provides a clean protection mechanism for the descriptors. By
suitable setting of the segment descriptors they can be made
available to a remote CM for access via one or more inter -CM
buses. The local Pc can relinqui$h its ability to access its own
segment descriptors.. Thus centralized control of inter -CM
communication is possible and faulty Pcs can be effectively
removed from a network.

2.5 Coordination of Control Between eMs

Inter -CM coordination is a direct extension of the memory
sharing mechanism described in the previous section. Any
segment, which maps to the local physical memory address space
of the CM, may be specified as a control segment. An attempt to
write. into a .control segment causes an interrupt to the processor
and control is transferred to that effective address in the
processor address space. The contents of memory IS not altered.
However, the data part of the write operation is saved and can be
used as a parameter to the interrupt routine;-itcould contain the
identity of the interrupting eM, the value of a parameter, a
poihter to a list of parameters, etc. In multiprocessor systems it

SOURCE ADDRESS

Segment Name Offset

~, I T I

234

...
I Index

,

Destination Address 1
EQUAL yes-+ I I

(addre,ss 1 ...
recognized)

1"-

>< ><

Source Segment Destination Segment Control and S ta tus
name name

Table of 16 Segment Descriptors

Figure 2.5 Address recognition and translation by a K.map.

is usually necessary to provide synchronization primitives, e.g.,
the P and V operators of Dijkstra [8]. CMs allow the
implementation of these synchronization primitives.

2.6 CMs as Modules.

There are many aspects to the design of digital modules:
interconnection rules, number of external pins, individual
performance, etc. Here we are concerned with the extensibility of
a network of Computer Modules. In this context, extensibility
applies to several dimensions: address space, total memory, total
processing power and total data transfer rate. The address space
of an individual processor is, of course, limited by its internal
address size. The address space can be expanded by reloading
the segment registers that provide address ability to the local
memory of other CMs via the inter -CM buses. Further
addressability can be achieved by altering the segment registers
of intermediate CMs used as switches. Thus CMs can be arranged
in tree structures to give addressability to an arbitrarily large
memory (with potentially considerable delays).

Memory can be added to a CM network both by increasing the
local memory of each CM and by adding extra CMs. Similarly, an
arbitrary number of CMs can be added to give extra processing
power. Extra processing power in this form is useful only if the
task can be partitioned to execute in parallel on the extra
processors.

The most direct method of adding CMs to a network is to
extend an existing bus. There is nq limit, at least conceptually, to
the number of CMs per bus. However, since the maximum data
transfer rate per bus is fixed, there is a limit to the useful
number of CMs per bus. It is usually possible to increase the
overall data transfer rate on a bus (with more than three
communicatingCMs) by grouping the CMs by their frequency of
interactiqn, dividing the bus in two, and inserting a eM as a
switch.

3 MAJOR IMPLEMENTATION ISSUES

3.1 Address Translation Logic and the Intra-CM switch.

It is important to find an efficient and economic
implementation of the ports and the internal switch of a CM, since
their complexity may exceed that of the processor. The intra -CM
switch, S.pbm, could be implemented as a cross-point switch to
provide maxiumum concurrency. However, consideration of
locality indicates that a large majority of the traffic through the
switch will be from the processor to local memory. Less traffic
will pass between the Pc and the inter -CM buses and from the
inter -CM buses to memory. Normally only a small fraction of
traffic will pass from one inter -CM bus to another. This suggests
that there would be little performance loss if the switch had a
concurrency of one. By the same argument, much of the address
translation logic within each K.map can be centralized into a single
shared unit. Full centralization of the address mapping logic may
degrade the performance of the inter -CM buses by increasing the
effective address recognition/rejection time. Partial
centralization, however, provides significant hat'dware savings
while minimizing the effed on performance. K.map[O] may be
treated as a special case with accesses to local memory by the
processor being treated in a simpler, faster manner than accesses
to remote memory.

3.2 Deadlock with Inter-CM Memory Access

In a CM network it is clearly necessary to ensure that
deadlock does not occur with inter -CM memory access. A set of
processes is defined to be deadlocked[12] when no process can
proceed without acquiring a resource already held by another
process within that set. The necessary conditions for deadlock
are: resources must not be sharable or pre -emptable, resources
must be retained while a process is acquiring further resources,
and there must be a circularity in the resource requirements of
the processes.

Referring to the four CM network of Fig. 2.2, consider mutual
memory accesses between CM[A] and CM[D] where CM[C] is used
as a switch and may be executing a program independant of the
communication between CM[A] and CM[D). An address generated
by the processor Pc[A], which is intended to reference the local
memory ot CM[D], will be translated by K.map[A][O] and passed to
K.map[A][I]. When the K.map[A][l] has acquired control of
inter -CM bus L the address will be placed on it and then
recognized and translated by K.map[C][2]. K.map[C][I] will
acquire control of inter -CM bus M ahd the address will be placed
on it. This address will be recognized and translated (for the
third time) by K.map[D][I], and is now used to access a word in
Mp[D). This method of implementing inter -CM memory access
where inter -CM buses are acquired in sequence and relinquished
in reverse order we call circuit switched.

Consider the consequences of concurrent mutual memory
requests by CM[A] and CM[D] in Fig. 2.2. It is clear that a
situation may arise where Pc[A] holds bus Land PeeD] holds bus
M. Unless one of the processors can be forced to reliquish a bus,
neither memory access can be completed and the network is
deadlocr,ed. In this simple network the impasse will be clearly
evident at CM[C] and one request may be chosen arbitarily for
pre -emption, thus resolving the deadlock. Deadlock can occur,
even with a trivial two CM network, if they are implemented with
an internal bus which is common to the processor and the local
memory, e.g. the PDP-l1 Unibus[6]. To avoid deadlock it is
essential that a processor be able to make an external reference
while its own local memory is being referenced.

Mp -\ S.pmb
I ,

1-
K.J:P[O] K.ma

l
p[l]

-L __ ~ ___ ~ ______ _

I
Mp -I S.pmb

K.map[2]
I

t ,
K.map[O] K.map[l]

I
Pc

K.map[2]

Mp --l t S.pmb :

K.map[O) K.map[l)

Jc I

S.pmb I- Hp

pc

Figure 3.1 Deadlock, indistinguishable from congestion, with circuit
switching.

In networks where there is more than one possible access
path between any two buses, deadlock may occur without any
single K.map or CM being able to detect it. Figure 3.1 shows a
deadlock situation which is manifest at two K.maps ill the network.
Without global information neither of the K.maps call distinguish
the situation shown from a condition of simple congestion. A
timeout mechanism could be used after which an incomplete
access attempt is pre -empted and later retried. This mechanism
would be very inefficient. There would remain a possibility of
recurrent deadlocks by conflieling access requests since there is
noway to avoid the conflicting access requests being pre -empted
approximately simultaneously. With circuit switching, in an
arbitary network, the only way to guarantee freedom from
de.adlock is for each request to carry a unique priority. This
would ensure that one request is able to complete when an
impasse occurs.

If memory access between computer modules can be
implemented without a request holding more than a single bus at
any time then deadlock over the allocation of buses can be
eliminated. This requires that information which defines the
memory request be buffered at each CM or K.map on the access
path. For read operations it also requires that the buses which
comprise the access path be reacquired * to propagate the data
back to the requesting processor. This type of inter-CM memory
access implementation we call elemen! switching. An element is
the information that defines a memory access request (address,
control signals and usually data). An element is analogous to a
message in a computer network but is considerably shorter.

Although element switching eliminates deadlock with respect
to the allocation of buses it introduces the possibility of deadlock
over the allocation of element buffers. Provision of one buffer
per access path through a CM is sufficient to guarantee freedom
from deadlock. (This property, and other aspects of the deadlock
situation, are the subject of continuing investigations.) Element
buffers are allocated by associating a distinct buffer
(approximately 40 bits) with each segment mapped by a K.map.
This buffer allocation mechanism is sufficient to enable all possible
access networks to be implemented without deadlock provided
sufficien! segment descriptors and/or CMs are available.

*The read element marks the access path on the forward journey.
This enables the address used in the forward direction to
determine a unique return path to carry the data referenced to
the requesting processor.

235

Element switching provides betler bus utilization and hence
alleviates inter -CM bus contention. ,If there is no bus contention,
element switching will increase the time overhead in making a
read access to a remote memory over a corresponding circuit
switched implementation. The extra time overhead is incurred in
reacquiring the buses to deliver the data to the requesting
processor.

3.3 The Width and Nature of the Inter-CM Bus

The number of external pins required to interconnect
Computer Modules will have a significant impact on their cost. A
related factor is the amount of heat dissipated. when driving an
external line. Power dissipation may be the dominant factor
limiting packing density for an LSI implementation of CMs.

While reliability and economic considerations lead to narrow
buses and few pins, performance considerations clearly imply that
the inter -CM buses have a high data bandwidth which i,s
facilitated by wide buses. Both the overall potential maximum
data tranfer rate and the response time for individual read
requests (assuming no contention) are important measures of the
inter -CM bus performance.

Minicomputer system buses usually have distinct lines for
each function (address, data and control) and are fully interlocked
on a word - by -word basis. The absence of time -division
multiplexing of the information carrying lines allows for a high
data -transfer rate and a minimum of complexity in devices
interfaced to the bus. Interlocking provides reliable operation
over a range of bus lengths and loading conditions. Analysis of
bus handshaking protocols shows that time multiplexing of the
information lines between address and data imposes considerably
less than the two to one time overhead expected. Half -width
buses retain the inherent reliability of full interlocking while
significantly reducing the number of pins and cables required for
bus connections.

Further reduction in the number of lines per bus, may be
achieved by increased time multiplexing of' the information lines.
To maintain data transfer rates comparable with a full or
half -width bus the full interlocking on each bit must, be sacrificed.
We are investigating schemes which employ a total of 4 to 10
lines per bus. Address and data information is tranferred as self
clocking pulse trains down each line. Bus control functions are
performed using the same lines that carry information.

4. CONCLUDING COMMENTS

Parallel Algorithms. Computer Modules are ,intended to facilitate
the implementation of parallel algorithms. However a general
solution to the problem of decomposing a task into efficient
parallel processes is not near at hand. Nevertheless, there exist
parallel algorithms for some important problems and there are
ma'ny applications where the task is presented in a decomposed
form. For instance, most process control applications consist of a
number of specialized control tasks with communication at a
higher level occurring infrequently.

Project Status. Currently research is proceeding on two fronts. A
detailed simulation of a CM network is being written. Particular
emphasis is being placed on the effect of interactions between
external memory accesses so that the effects of bus and memory
contention can' be accurately as,sessed. A number of applications
will be run on the simulation with a wide range of CM
configurations. Concurrent with the development of the simulation
a small number of CMs will be built based on existing MSI
components and commercially available processors. These will

236

provide performance figures for the simulation and demonstrate
the technical feasibility of the design.

REFERERENCES

[1] H. B. Baskin, et ai, "A Modular Computer Sharing System,"
CACM, Vol 12, No. 10, October 1969.

[2] C. G. Bell, and A. Newell, Computer structures: Readings
and Examples, McGraw-Hili, New York (1971).

[3] C. G. Bell, R. C. Chen, S. H. Fuller, J. Grason, S. Rege,
and D. P. Siewiorek, "The Architecture and Applications of
Computer Modules: A Set of Components for Digital Design,"
IEEE CompCon '73, (March 1973), pp 177-180.

[4] C. G. Bell, J. L. Eggert ,J. Grason and P. Williams, "The
description and Use of Reg.ister Transfer Modules (RTMs),"
IEEE Transactions on Computers. Vol C-21, No.5, May 1972,
pp 495-500.

[5] W. A. Clark, "Mac:romodular Computer Systems," AFIPS
Conference Proc., Vol 30, SJCC 1967, pp 335-336.

[6] DEC "PDP -11/40 Processor Handbook," Digital Equipment
Corporation, 1972.

[7] P. J. Denning, "Virtual Memory," Computing Surveys, Vol. 2.
No.3, September 1970, pp 153-190.

[8] E. W. Dijkstra, "Cooperating Sequential Processes," in
Programming Languages, Genuys (ed.), Academic Press;
London, 1968.

[9] D. J. Farber, and K. C. Larson, "The System Architecture of
the Distributed Computer System - The Communication
System," Presented at the Polytechnic Institute of Brooklyn,
Symposium on Computer Networks, April 1972.

[10] S. H. Fuller and R. C. Chen, "The I/O port Architecture for
90mputer Modules," Departments of Computer Science and
Electrical Engineering, Carnegie - Mellon University, Pittsburgh
Pa. 15213. (March 1973).

[11] S. H. Fuller and D. P. Siewiorek, "Some Observations on
Semiconductor Technology and the Architecture of Large
Digital Modules," IEEE Computer, Vol. 6, No. 10, October
1973, pp 14-21.

[12] A~ N. Haberman, "Prevention of System Deadlocks," CACM,
Vol. 12, No.7, July 1968.

[13] F. E. Heart, S. M. Ornstein, R. W. Crowther and W. B,.
Barker, "A New Minicomputer/Multiprocessor for the ARPA
Network," Proc. AFIPS NCC 42, 1973, pp 529-537.

[14] B. Randell, and C. J. Kuechner, "Dynamic Storage
Allocation," CACM Vol. 11, No.5, May 1968, pp 297-305.

[15] D. M. Robinson, "Digital System Design with COntrol
Modules," IEEE CompCon '73, March 1973, pp 207-210.

[16] W. A. Wulf and C. G. Bell,' "C.mmp - A
Multi-Mini-Processor," AFIPS ConI. Prot. Vol 41, part II, FJCC
1972, pp 765-777.

IJppelldix: ISP De.lcriptioif of the K.map Ilddre.ls Translatioll

K.map State

Segment_Descriptor\SD[O: 15] (41 :0)
The 16 descriptors ill the .Iogment table define the mapping
between the source addreH .'pace and tha for"r de.ltination
addres.I spacos.

Source_Segment_Name \SSN := SD(41 :30)
Name of .'ource .,ogmont, '1 high order bits of nalllo arc
givoll by tho position in the ta/lle.

Destination_Segment_Name \DSN := SD(29: 14)
Name of destinatioll .,egmClII.

Control_and_StatusJield\CSF (13:0)
Log_Segment_Size \LSS (3:0)

:= SD(13:0)
:= CSF(13:10)

Sizo of .Iogmont in both .'ourCe alld destinulion addre.1S
.Ipaces is 2nSS. ~SS ::; 12.

Mask<l1 :0) := LSS .L 1
The unary encoding of I.SS.

Destination~ddress_Space\DAS(1 :0) := CSF(9:8)
De.,ignatos t/lfl addro.,. space of tho rO.,ult: mamory or tho
threo illter-Gm [JUs addro.'. spaces.

Descriptor ~ctive := CSF(7)
Set to allow translation with this segment_dc.,eriptor.

Write_Protect := CSF (6)
Block translation of writo requosts.

Read_Protect := CSF(5)
Block translatioll of read requests, required when
olle-to-many address mappings arc used.

Referenced := CSF(4)
Sct whenever segment_descriptor i.1 usad.

Changed := CSF(3)
Set WIll!IlC1ler the segl1l<l1a doscriptor is used for a write
request.

Control ... Segment := CSF(2)
Force illterrupt all a wri.te attempt to this .legmc!1It,sec text.

InterrupLEnable := CSF (1)
Interrupt_Pending := CSF(O)

InterrupLDala_Buffer (15 :0)
Register to hold parameter (data part of write operation)
of a.n inter-module interrupt request. Only a .,ingle buffer
i., lIeces.lary because sr"bsaquant interrupt request., queue
ill the clement buffers which are not l)isii>le to the
proB'rammer.

Address Translation Process

x<15:0>
I1ddress of request in source address space.

Index<3:0> := x<15:12>
Field<11 :0> := x(l1 :0>

y[0:3]<15:0>
Result address ill one of four destillatioll address spaces.

Descriptor ~ctive[lndex] "
Test that indexed descriptor is active.

(Field" ... Mask[lndex] = SSN[lndex] " ... Mask[lndex]) "
Test sonrce address matches sourceseglllent lIallle.

(... Write_Protect [Index] v {x is read request}) "
(... Read_Protect[lndex] v {x is write request})

Check protectioll. "* « ... Control_Segment[lndex} v {xis read request}) "* y[DAS[lndex]] .+-. (Field" Mask[lndex]l v
(DSN[lndex] 1\ .. Mask[lndex]));

This is tite trallslated address.

*This ISP has been simplified for clarity.

«Control_Segment[lfldex] 1\ {x is a write request}) "*
Te.'t for interrupt.

(InterrupLData_Buffer +- data;
Sa1)e data from write reqrJ.CJst.

Interrupt_Pending +- 1 ; next
Interrupt_Enable "* {interrrupt Pc}))

Block Tranfer Mechanism State

Source_Address < 15:0 >
Start addres., of sOnrce block.

Destination_Address (15:0)
Start addre.,s of dll"tinalion block

Block_ Tr ansfercontrol\BTC
Enable_Transfer
Interrupt_Pending
Interrupt_When_Complete
Error
Word_Count (11 :0)

:= BTC(15)
:= BTC<l4>
:= BTC<13>
:= BTC(12)
:= BTC(11:0>

The block transfer mechanism operate.1 within the Pc addre.<s
space.

237

A MICROPROGRAMMED ARCHITECTURE
FOR FRONT END PROCESSING

Rodnay Zaks
Universite de Technologie de Compiegne, France

INTRODUCTION

The increasing diversity of hardware devices and software
procedures developed for remote processing has yielded a
multiplicity of new facilities and telecommunication network
structures. The corresponding architectures for front-end
systems range from specialized device control to sophisti
cated multi-purpose multi-terminal support. Simultaneously,
the very complexity of new data transmission and processing
techniques has created a need for flexible and powerful yet
transparent communications processors. The functions of a
front-end system will be analyzed in order to derive the
concepts which will be used to establish a classification.

In a first part, telecommunications and control functions are
analyzed in detail, as well as the user facilities at the
functional level. From these concepts, two types of practical
classifications are evolved. A global classification charac
terizes the front-end system from the operating system's
standpoint. A local classification characterizes it as a local
device, in fuction of its service capabilities to the user.
This dual system allows a simple classification of a given
device and hence a simpler comparison with others in its
class.

The level of support provided by major commercial operating
systems with respect to front-end systems is then examined.
Their facilities and shortcomings provide the basis for front
end systems.

Finally, the architecture of a commercial microprogrammed
front-end processor is presented. A modular micropro
grammed architecture of this type allows efficient and eco
nomical system structuring for a wide range of teleprocessing
services.

FRONT-END SYSTEMS FOR TELEPROCESSING

The basia funations of a telesystem

The telecommunications device, ranging from a simple
hardwired controller to a large programmable processor, is
coupled to the host processor's operating system via a
software communications system. This global system per
forms all the telecommunications functions. It can be called
the telesystem. According to the distribution of functions

from the host processor to the front-end device,it becomes
possible to classify front-ends into logical categories. Such
a classification makes a cost-performance analysis then easily
feasible. In order to establish this claSSification, the func
tions of a telesystem are now considered.

The minimum functions are:

1. transmission initiation, control, and completion.
2. data assembly into required structures: from bits to words,

blocks, packets, or messages.
3. code conversion according to the device, and/or host

processor code.
4. error checking and recovery, possible multiple transmis-

sion, error logging.
5. recognition of control characters and special markers.
6. line monitoring.
7. message routing: to/from device or host processor.
8. bookkeeping procedures associated with beginning and end

of transmission.

More complex functions which may reside at the remote
station are:

1. line discipline and control: procedures for dial, polling
or loop systems.

2. queuing: in a multiple-device or multiprogramming
environment.

3. dynamiC buffer allocation.
4. message editing and compaction.
5. local network traffic control: routing to appropriate device

or process.
6. communication line concentration or multiplex.
7. priority scheduling.
8. logging.

In addition, the following specialized functions may be
provided:

1. fail-soft: automatic recovery from transmission or
system errors or failures

2.- on-line diagnostics
3. on-line operator dialogue
4. specialized data compaction
5. input validation
6. screen regeneration
7. graphic manipulation
8. control of specialized units

241

SOURCE

DATA .. CAPTURE RECORDED

DATA

DATA OR
MESSAGE

... ______ ---1DISPLA YED
OR STORED

t----I

stored in
compute

system

ILLUSTRATION 1. THE STEPS OF DATA ENTRY

9. security and access procedures
10. stand-alone capabilities.

Distinguishing front~end aonfigurations

Front-end systems perform an interface role between the
user and the host's operating system, or the telecommuni
cation procedure. Each of the functions described in the
preceding section can be implemented in hardware, firmware,
or software. Further, most of these modules may reside
either within the host system, or anywhere on the line
between the operating system (or the I/O port) and the user.

This results in a variety of architectures since.once logical
functions are assigned to physical or software modules,
these modules may in turn appear as an arbitrarily complex
front-end system. The resulting complexity does not facili
tate a logical classification of such systems. Since the
physical distribution of logical modules onto hardware sup
ports may vary widely, and still accomplish similar func
tions, it appears practical to classify these systems by the
level of service provided.

Two functional classifications will be made, characterizing
the system either by its appearance to the host processor's
operating system (glohal classification) or by its level of
service to the user (local classification).

A gZobaZ aZassifiaation of front-end systems

When viewed at· an operating system level, the front-end
system is characterized in its glohal environment, and its
capabilities are tied to the host operating system's capa
bilities that it supports or enhances. The notion of operating
system becomes a glohal concept which may be embodied in
one or more processors. It is assumed here that a signif
icant portion of the operating system re~ides in the front
end.

The four essential modes are:

1. real-time.
This applies to all cases where the front-end system can
react in real-time to a modification of its environment.

242

It includes in particular remote process control, where
the host system is v:iewed generally as a data base.

2. time-sharing
Where it becomes uneconomical to have a large number
of slow devices interfacing directly to an I/o channel of
the host processor, a front-end system may provide the
desired interface functions. As in the case of real-time,
this does not preclude the system from performing spe
cial functions prior to communicating with the host. Such
functions may include: editing, formatting, code conver
sion, preprocessing, or even pre-compiling.

3 . data collection
This includes all cases where the front-end system appears
to the host's operating system as a collection of I/O
devices, capturing and managing the data flow. This
includes in particular remote-batch processing (program
entry) as well as data entry, inquiry, and update. Data
may be captured and collected by a variety of devices,
including special-purpose devices. An essential role of
the front-end system is then to look like a standard host
I/O device.

4. packet switching
In this role, the front-end performs the automatic routing
of blocks of information, whether messages or packets,
between software or hardware modules. This implies
elaborate scheduling facilities within the front-end, with
queuing, dynamic buffering, and corresponding facilities
within the next processor's telecommunication module.

A ZoaaZ aZassifiaation of front-end systems

The front-end system is characterized in function of its
specifiC capabilities to the user, as a local device or
service.

The three main types are:

1. Emulator
The emulator is a plug-to-plug compatible device re
placing an existing manufacturer's controller. Typical
applications are IBM 2700 or 3700 series emulators.
These may be hard-wired, micro-coded, or software-

coded devices. Hard-wired devices usually offer cost
savings advantages, while firm- or soft-coded implemen
tations allow more flexibility. This flexibility may be
used for the same device to implement several emulators
(communication with different host processors). It can
also be used to offer extra services, in addition to the
strict emulation capability. As the range of extra services
increases, a second type can be characterized:

2. Intelligent Emulator
With diminishing hardware costs, and an ever increasing
demand for varied user services, emulator devices tend
to increase in sophistication and offer a new range of
services, previously not available on the device they
replace. An intelligent emulator may offer extended user
or operating system dialogue facilities, fail-soft capa
bilities (message accumulation in case of host processor
failures, warning to the users, orderly recovery proce
dures), extended terminal support, local message routing
between terminals (listing cards on the local printer, and
onwards to more elaborate message switching), limited
data validation. A general rule is to consider as an
intelligent emulator a front-end device whose basiC nmc
tion is emulation, and where standard functions have been
extended or improved, or where service facilities have
been added. As more general facilities or functions
become added, a third type must be introduced:

3. general front-end processor
Such a system can be characterized by the fact that it
still appears as a single device to the host's operating
system, yet performs a range of services functionally
distinct from emulation. Such a system may present ad
vantages at two levels. At the user's level by offering
services not previously available with the host manufac
turer's equipment. At the system's level, by incorpo
rating many or most of the functions previously handled
by the host processor and/or specialized equipment or
modules.

Typically, the front-end processor will incorporate a
resident real-time operating system and handle most
telecommunications functions: line polling, device de
pendencies, queuing, buffer management, code conver
sion,error recovery, multiple transmission. "Intelligent"
front-ends provide in addition special software capabili
ties for specialized data capture and validation, field
checking, applications packages, store-and-forward mes
sage switching. The linkage between the front-end
processor and the host's operating system may then
simply consist of a front-end control program, with
nearly all telecommunication functions delegated forward.
Some front-end processors even provide a stand-alone
capability with high-level languages (FORTRAN, COBOL)
available for local execution. This may be an attractive
solution as a back-up, in case of host malfunction, or a
valuable local service (night utilization).

The flexibility and power itself of a general front-end
processor implies the need for oper~ting software facili
ties. At a minimum, host-resident facilities should in
clude the following functions:

(a) front-end cross-assembler
(b) load module, allowing to load the front-end system

from its host
(c) transfer module, allowing to dump core, or transfer

243

information from front-end's storage onto a host
device

(d) network configurator (macroprocessor)
(e) file system facilities for front-end library programs.

operating system support

The various degrees of support afforded by major operating
systems are examined here. The global classification of
front-end systems has already introduced three main types
of support: real-time, time-sharing, data collection, and
message switching. Important subtypes are remote job
processing, inquiry, and transaction support: access to
large data files for update (write) or query (read).

Other facilities which may be included in the telecommu
nications module, interfacing to the Operating System,are:

1. message control.
It provides routing facilities between the user's program
and the telecommunications facilities. In basic access,
messages are simply routed to their destination point,
without simultaneous multi-access. In queued access,
the module manages dynamic buffers and schedules
transmis sion.

2. processing module.
This user program may perform data collection and
compaction, complex message switching, and on-line
data file access. It may be equipped with specialized data
processing packages.

IBM as support

IBM's OS is one of the most widely interfaced operating
systems and deserves a special analysis. IBM 360's or
370's systems use one or more 2700 series transmission
control units. S/370 may also use the 3700 series.

The 2700 is a hardwired controller with three basic
capabilities:

1. character assembly/disassembly
2. control character identification
3. line monitoring (time-out inactive terminals).

All communications control is accomplished in the CPU
under OS (or, in a limited way, DOS). The communications
module is BTAM, QTAM or TCAM ("Telecommunications
Access Method").

BTAM is a simple package which provides elementary
control functions for telecommunications lines. It is invoked
in the user's program by the following two macros: WRITE,
to send a message; READ, to receive data. BTAM is an
interface module between OS and the user program. It does
not provide any queuing. An y moderately complex applica
tion then requires other telecommunications control packages
as additional interfaces. These will usually reside in high
priority partition (time critical I/O control).

TCAM provides the queuing facilities. It includes a traffic
scheduler, handles message switching, and can support a
high degree of multiprogramming. It is invoked with the
GET and PUT macros.

For completeness, the channel control primitives are
outlined. IBM's I/O instructions, labelled CCW (Channel

Command Words), perform three functions: data transfers,
device control, branching within the channel program. Com
munications between the CPU and the channel are performed
as follows:

1. CPU command to channel (four types):
(a) start I/O
(b) test I/O
(c) halt I/O
(d) test channel

2. channel's interrupt to CPU. The main types are:
(a) I/O
(b) programmer error
(c) supervisor call
(d) external
(e) machine check

Back to IBM control units, the 3700 series is a pro
grammable processor which provides 2700 emulation or
front-end facilities under NCP. In that case, it implements
part of TCAM: polling, error recovery, terminal dependen
cy, code conversion; the following functions remain in the
host processor: user - OS linkage and message processing.
Although the 3700 is programmable, it does not provide
spectacular improvement. It is limited to 370's under OS or
VS (no DOS), and does not support local peripherals. It must
also be stressed that 360 OS MFT/MVT remote support is
limited to remote batch initiation.

CDC 6000 series SCOPE 3

INTERCOM 1 provides interactive time-sharing and remote
batch processing support. It is limited to two types of ter
minals: teletype and CRT display. Elaborate file access
and protection facilities are provided, as well as inter-user
communications. In remote batch, commands issued from a
terminal place a file on a batch queue for processing.

HoneyweZZ 200 Mod 4 OS

The communications supervisor supports remote terminals
like local peripherals. This allows remote-batch entry. In
addition, query/reponse programs residing in the user's
partitions provide interactive terminal communication.

Burroughs 6500 MCP

MCP (Master Control Program) provides elaborate commu
nications facilities through a data communi,;Jations processor.
It supports remote computing, inquiring and time sharing. The
message control system handles file maintenance and job
control, and supplies message-switching capabilities and
inter-user communications. Facilities provided include a
variable number of remote stations, line monitoring, condition
al command processing (detection of exception conditions),
initiation of object jobs as independent processes, and main
tenance of file and remote user security.

Univaa 1108 EXEC 8

Remote facilities provide concurrent or on-demand batch and
real-time processing. The executive control language allows
commands to be specified from a user's remote console in
conversational mode. It supports paper-tape input and gene
ralized Inter-process-communications.

XDS SIGMA 5/'1 BTM

BTM (Batch Time Sharing Monitor) provides time-sharing
access, remote batch initiation, file positioning. Only the
operator may communicate with on-line users.

HoneyweZZ GE 600 series GECOS III

GECOS III (GE Comprehensive Operating Supervisor) pro
vides remote-batch and time-sharing. In batch, other

DATA (0-7) DATA (8-15)

INTERNAL BUS
I I

CONTROL MAIN SPECIAL SCRATCH I/O

MEMORY MEMORY
ALU

OPERAT<R: PAD CONTROL

32 OR 64
ROM CORE OR IC

JlEGISTERS

ILLUSTRATION 2 . THE DATA FLOW

244

terminals may be specified for output or messages. Direct
communication with a processing program allows direct
inquiries.

A FRONT END MICROPROCESSOR

A simple 16 bit parallel microprogrammed processor
system, developed for teleprocessing in Europe, is de
sribed here. In its basic version, it has been configured as
a multi-procedure intelligent emulator. Its design provides
an illustration of the structural trade-offs involved in ob
taining the required flexibility at minimum-cost in a fairly
well-defined environment. This front-end system usually
interfaces directly to a host operating system via an I/O
channel. In its Simplest version, it is transparent to the
operating system, and provides teleprocessing services
such as remote-batch. Due to the large variety of teleproc
essing needs, its structure will have to evolve with time. It
is commercialized under the name "Ordo 16" (Societe des
Ordoprocesseurs) .

A single internal 16-bit bidirectional bus connects all logi
cal elements. While limiting the internal transfer speed, and
reducing the possible overlap of microinstruction phases,
this allows the simple insertion of specialized hardware
functions as plug-in modules. A very short microword for
mat (12 bits) limits the possible synchronicity of micro
operations, but uses a highly encoded vertical code to
achieve complex arithmetic or logical operations in a single
microinstruction cycle (250 nsec).

The bus connects the control memory, the main memory,
the ALU (Arithmetic Logical Unit), the scratchpad (a set of
32 or' 64 fast registers), and the I/O controller. This inter
nal bus is bidirectional, half-duplex. I/O modules commu
nicate with the I/O controller through a slower external bus

CONTROL MAIN

ALU

MEMORY MEMORY

I CLOCK I
~

cc: MROL(O 11)

INTERRUPT

ILLUSTRATION 3.

245

(0.666 MHz vs. 4 MHz for the internal bus). In addition, a
number of special-purpose hardware modules may be in
serted on the internal bus. Possible modules are: binary
function generators, BCD arithmetic or conversion oper~
ators, string operators. This simple and modular struc
ture allows the possibility of shifting functions from soft to
firm or hard (see illustration 2).

The control structure of the machine appears on illustration 3.
The control bus includes:

1. 12 control lines emanating from the data register of the
control memory unit. They are gated to all the logical
modules. They select a module and specify an operation
code in 250 nsec. Whenever an operator module requires
more than 250 nsec, another one may be accessed or
initiated, resulting in parallel execution.

2. 9 internal timing lines: clock, test for condition, inter
rupt management.

The control unit organization appears on illustration 4.
The control memory is addressable in four-word blocks
(12 bit words). Its contents define the instruction set for the
teleprocessing application considered. It includes a standard
instruction set and specialized primitives, such as micro
programmed multiplexer channel-control, interrupt manage
ment, and communications control functions.

A real-time monitor performs task scheduling, and buffer
and queuing management. It also handles user communi
cations through a console, and provides inter-terminal
transfers. The system's flexibility is used to tailor its
architecture to the application. In particular. identical
configurations can be interfaced successively to a number
of host processors (multi-procedure facility). Intelligent or
plain emulator versions allow the system to be plug-to-plug
compatible with a large number of commercial hard-wired
front-ends. It is also being used as concentrator, and for

SPECIAL SCRATCH 1/0

OPERAlOR PAD CONTROL

~ l I
'--- g

I
;::::

THE CONTROL FLOW

INTERNAL BUS

DATA (0 -7)

0 11

CONTROL

Q
MEMORY

Ps -'---EI X 1-;:1 ADDRESS ~. ICLOCKI

T 0 11
.J: $

~ (J DATA c: Q) e VI , ~ Q) .c "- VI
Q)
"-

CONTROL $

CLOCK

INCK

SKIP

INTERRUPT

ILLUSTRATION 4. CONTROL UNIT ORGANIZATION

the support of special peripherals. Capabilities under de
velopment are: general-purpose stand;-alone facilities,
multi-device file system, additional terminal support,
user-microprogramming facilities, improved host-based
programming aids.

This type of microprogrammed front-end processor may
implement many operating system functions, and facilities,
of the host processor, as its "intelligence" level increases.
This may occur without any basic structural change, usu
ally by expanding the software facilities. This achieves
dual cost benefits:
1. An evolutionary front-end on a fixed hardware struc

ture.
2. Reduced host processor's time consumption, as more of

its functions get shifted to the front-end.

The increase in intelligence of the terminal is particularly

246

important: by smoothing the man-machine interface, it
increases the human efficiency in using the front-end and
the host processor systems.

PROSPECTS FOR A MICROPROGRAMMED FRONT-END
ARCHITECTURE

The field of front-end processing has been expanding very
rapidly. It has been shown how the increased complexity of
a front-end system is handled in firmware, hardware, or
software modules. Shrinking LSI costs will favor flexible
micro-programmed systems, such as the one outlined here.
Although many other criteria will eventually affect the
marketability of such systems, such a modular and dynami
cally changeable architecture presents the best prospects
for an efficient and flexible implementation.

DESIGN OF A FULLY VARIABLE-LENGTH
STRUCTURED MINICOMPUTER

Z. G. Vranesic
V. C. Hamacher

Y. Y.Leung
Departments of Electrical Engineering and Computer Science

University of Toronto
Toronto, Canada

ABSTRACT

Binary-based and fixed-length structure computers
are often inconvenient and wasteful of resources. In
this paper we present a design for a fully variable
length structured minicomputer. Since all parameters
(instructions and data) are unrestricted in length,
their boundaries and interpretation are effected by
special delimiter codes. For practical reasons (dic
tated by current technology) the machine utilizes a
binary-coded decimal number representation.

I. INTRODUCTION

Present day digital systems show a prevalence of
binary, fixed-length structures. This is dictated by
the technological ease of implementation, low cost and
high reliability. Yet there are a large number of
applications where the binary base and fixed-length
organization are inconvenient and often wasteful of
resources.

Decimal and variable-length data have been imple
mented in differing degrees from the IBM 1620 era [1]
to one of the latest minicomputers, the CIP/2200 [2].
However, most of these machines have achieved these
features in an "added-on" fashion in a structure that
mainly offers conventional binary, fixed-length opera
tions. The recently reported B1700 computer [3] re
flects an attempt to get around the difficulties im
posed by fixed-length constraints by providing a highly
flexible, reconfigurable structure, where specific
lengths may be defined as run time parameters.

In this paper we propose the design of a relative
ly small-scale decimal, variable-length machine whose
structure evolves solely from those two features. In a
sense, the work reported here can be interpreted as an
elaboration or feasibility study on some conjectures
made recently by Foster [4] concerning the architecture
of the average computer of the year 2000. The design
study described in more detail in the following sec
tions in fact supports the feasibility of the basic
concept even in terms of present day technology.

II. MACHINE ORGANIZATION

In order to provide the variable-length characte
ristic for data, OP-codes and addresses, it is necess
ary to employ some "length delimiters". Thus it is
apparent that a truly binary machine could not be cons
tructed to meet such requirements, since the range of
available digits (0,1) leaves no spare codes which
could serve as delimiters. Hence we must turn to a
higher base system, which for practical reasons might
be binary coded.

Our choice is the decimal system with binary coded
i~lementation. This provides us with six codes (other
than 0-9) for use as delimiters. We will call them

D = {a,i3,y,oS,+,-L
The machine has a random-access memory with the

capacity of 100,000 digits, addressable to the digit
(0-99,999).

NUMBER AND CHARACTER REPRESENTATION

In order to represent real numbers of the form N
x loe, both Nand e are expressed as a sign followed by
a 10's complement value. The exponent e is stored
first, followed by the significant digits N, both num
ber fields occurring low-order digits first.

For example +318.27 x 10-12 is represented and
stored in memory as -68+72813*, which is equivalent to
31827 x 10-14 • The decimal point is always implied at
the low order end of N. Note that * could be any deli
miter.

Integer form is used for addressing purposes only
(e = 0 and it is not shown explicitly) and it is recog
nized as such from the context of instructions. We will
refer to {±} followed by a string of digits as a number
field or address, depending on the context, and use the
name number or real number to refer to two successive
number fields.

It is important to observe that the low-order di
gits are stored first, because the arithmetic unit must
be at least partly serial, to enable it to handle arbit
rarily long numbers.

The ASCII character set is represented directly
using 2 4-bit digits per character. Any two digit deli
miter not in the ASCII set, referenced in this paper as
DO, is used as the character string delimiter. In gene
ral, the address of a character string, number, address,
or instruction is the address of the leading delimiter,
since this delimiter usually describes some property of
the information to follow.

251

INSTRUCTION SET

The machine has thirty-one instructions, including
four rudimentary I/O instructions. Instructions are
delimited by a. An unsigned decimal opcode follows the
leading a and its end is indicated by any single digit
delimiter. All instructions except HALT have an ope
rand list which in some cases is preceded by a parame
ter K. The delimiter oS indicates that K is present,
and the possible values for K are integers equal to or
greater than O. The K value may be referenced by any
of the addressing modes of Table 1. The interpretation
of the delimiter set when used to separate items of the
operand list is shown in Table 1. Table 2 gives the
complete instruction set. In instructions where the
parameter K is called for, it may be omitted if K = 1;
there being no ambiguity, since A can never be imme
diate data. The number of operands is variable in ADSB
and MUDI instructions.

A few examples should clarify the appearance in
memory of complete instructions, and give an idea of
instruction execution.

914. If the number field (alidress) stored at
1000 has a fI_" leading delimiter, then another
leVel of indirection is indicated.

(i) aMVNo2+4l90-97+32a -21 (ii) aCPC+OOloD l D2 D3 D4···D -1 D DO a
~~ "n n This instruction inserts the real number 23xlO ,

represented by 2 number fields, into the memory
starting at the address 914; while aMVNo4+4l9-
OOOla moves the four number fields (2 real num
bers or 4 addresses) starting at the address
stored at location 1000 (indirect mode) into

Cl C2 Cn/ 2
compares the character string C1C2",Cn/2 with
the one stored at 100 and sets the 2-bit condi
tion vector in the CPU to 00 if they are equal,
and to 11 if they are not; while aCPC+00ly456+27a

I/lP
C\IlDE

MVN
MVC
MVD
CPA
CPN
CPC
CPD
AND
I/lR
CMPL
TRCT
CLR
MVPN
MVPEN
MVPC
MVPEC
ADSB
MUD I
ADSBA
CMPN
BRZ
BRNZ
BRN
BRP
BR
JMPS
HALT
IN
I/lUT
BIN
BI/lUT

TABLE 1
Interpretation of delimiters ,in instructions

Delimiter Addressing Mode
or Function

Operand Form

+

y

a

I/lPERAND LIST

K,A,B
K,A,B
K,A,B
A,B
A,B
A,B
K,A,B
K,A,B,C
K,A,B,C
K,A,B
K,A
K,A
K,A
K,A
K,A
K,A
A,B,C, •.•
A.B,C •••.
A.B,C, •••
A,B
A
A
A
A
A
A

K.A
K.A
K.A
K.A

direct
indirect
indexed

iJlllllediate

instruction delimiter
operation change
(indicates SUBTRACT
instead of ADD and
DIVIDE instead of
MULTIPLY in the ADSB
and MUDI instructions.)

TABLE 2
Instruction Set

unsigned integer address.
unsigned integer address.
unsigned integer address (the location of
the index). delimited by + or - indicating
a direct or indirect address to follow.
number, address or character string,
appropriately delimited.

DESCRIPTION

Move number fields (up to Kth delimiter) from B to A
Move character strings (up to Kth delimiter) from B to A
Move K digits from B to A
Compare addresses at A and B
Compare numbers at A and B
Compare character strings at A and B
Compare digit list at A and B
Logical "AND" of K digits at Band C into A
Logical "I/lR" of K digits at Band C into A
Logical "complement of K digits at B into A
Truncate number at A to K significant digits
Clear K digits starting at A
Move pointer at A over Kth number field delimiter
Move pointer at A to the end of the Kth number field
Move pointer at A over to Kth character string delimiter
Move pointer at A to the end of the Kth character string
Add/Subtract B,C •••• and put in A
Mult./Div. B.C ••.•• and put in A
Add/Subtract addresses (single number field)

}

9'S complement of the numberB;i:!;ostarting at B into A

conditional branches Br nonzero
to A Br negative

Br positive
Unconditional branch to A
Subroutine linkage to A
stop
I/O w.r.t. device K;
transfer 16 bits of data
I/O w.r.t. device K;
transfer 8 bits of data

252

compares the character string at [[654]+72]
where [...] indicates "the contents of".

(iii) aMVPNo2l+2a takes [2] as an address and, assu
ming [2] points at a number field delimiter, in
creases the value of [2] until it points at the
12th number field delimiter from the starting
point. This would allow [2] to now point at the
6th number down the list from the starting num
ber. This provides the means for accessing
variable length number or character strings in a
list of such items where the programmer knows
explicitly only the address of the first item.

In the above examples, we have used appropriate
mnemonics for the OP-codes, but they are actually spe
cified in memory by unsigned integer codes.

III. HARDWARE DESIGN

Since all parameters may be variable in length, a
fully parallel design of the machine cannot be
achieved. It is apparent that serial by digit struc
ture would be the simplest solution in terms of hard
ware costs. However, in order to attain a reasonable
processing speed, some degree of parallelism must be

introduced.
In our prototype design we have chosen serial

processing of four-digit (16 bits) blocks of data.
Figure 1 shows the block diagram of the machine.

Memory has a 16 bit word length and its address
ing is arranged in a 4 x 25 x 1000 digit pattern,
giving a total capacity of 100,000 digits. It is
digit-addressable, necessitating two internal read
cycles if the address is not 0 or divisible by 4. In
order to avoid alignment difficulties on the data bus
and in the 4-digit parallel arithmetic unit, the memo
ry includes alignment circuits so that the memory data
register always contains the addressed digit plus the
three digits that follow. Thus it is not necessary to
impose any boundary alignment conditions on the prog
rammer for storage of data in the memory.

Internal sequencing and serial control of instruc
tion execution when the operand length exceeds 4 digits
is regulated by the pointer registers PI, P2, P3 and
P4, each being a 5-digit counter-register.

All addressing is carried out via a 5-digit
address bus. Since addresses are obtained directly
from instructions they are not necessarily correctly
aligned on the data bus. This is remedied by
assembling all addresses in the address register which

FIGURE 1
Block Diagram

Memory

Memory Address Reg.

Program Counter

PI Register

Arithmetic P2 Register
Unit

P3 Register !:
lit III
:::I
III lit

III

P4 Register Cb
a '1:J
a '1:J
Q «

R Register Address Register ---------
Alignment Switches

Cp. Code Reg. POI

• I
I

Control
Unit

PON

253

includes the required alignment switches.
Peripheral devices PDl, ... , PDN are addressed

through the low order digits of the address bus, with
data transfer handled by the data bus.

IV. PROGRAMMING CONSIDERATIONS

Consistent with the theme of Foster's [4] brief
sketch of the average computer of the year 2000 which
" ... will-be a monoprocessor doing its own I/O, - most
probably be privately owned and monoprogrammed, - be an
interpretive engine capable of executing directly one
or more high-level languages ... ", it is claimed that
although we do not interpretively execute several high
level languages, the instruction set of Table 2 makes
possible efficient processing on a "one-shot" basis of
relatively small user programs. This is a reasonable
goal for a small, general, privately owned and mono
programmed computer in any event. The efficient pro
cessing we mentioned above is from the programmer
standpoint. This means that the machine language, re
presented in some assembly form, should have instruct
ions and formats that make coding of normal problems
somehow natural and concise.

MATRIX MULTIPLY ROUTINE

We first present a complete program to multiply
two matrices of real numbers. All matrix entries are
of variable length, so normal indexing would not work
on any machine, and the equivalent program in a fixed
word length structure would be somewhat clumsy and un
natural.

The program performs the computation
C = A x B where A is ID rows by JD columns,

B is JD rows by KD columns,
and C is ID rows by KD columns.

Matrices are stored in column order and the program
variables for the matrix dimensions are the same as
above.

Assuming that the matrices A and B have been
loaded in core and ID, JD, and KD have been appropriate
ly initialized, the program is:

KL!/l!/lP:

IL!/l!/lP:

JL!/l!/lP:

ADSBA II+ID+ID
ADSBA K+-KD
MVN JV+O
MVN PT3+#C
MVN M+O
ADSBA I+-ID
MVN PT2+#B
MVPN JV,PT2
MVN PTl+#A
MVPN M,PTl
ADSBA J+-JD
MVN 2,'PT3+O·0

MUDI TEMP+'PTl*'PT2
ADSB 'PT3+'PT3+TEMP
MVPN 2,PT2

MVPN II,PTl
ADSBA J+J+l
BRN JL!/l!/lP
MVPEN 2,PT3
ADSBA M+M+2
ADSBA 1+1+1
BRN IL!/l!/lP
ADSBA JV+JV+JD+JD
ADSBA K+K+1
BRN KL!/l!/lP
HALT

;increment step for PTl
to access successive
row entries.
;load address of C into
PT3.

;sets PT2 to appropriate
column of B.
;sets PTI to appropriate
row of A.
;clear ci k(initial length
unimportant.)
;ai jxbj,k
;accumulate into ci k
;move PT2 across 2 delimi
ters to b(j+l),k
;move PTl to ai,(j+l)

;move PT3 to next Centry

;sets B column accessing
variable.

In this program, and in the remainder of this sec
tion, we have used a suitable assembler notation for

the parameter and operand lists for instructions. For
example, #C 'refers to the address of C, and 'PT3 indi
cates indirect addressing through location PT3. There
are no macro references; and there is a strict one-to
one correspondence between the lines in the program and
machine instructions.

The previous example \~as concerned with ari thme
tic operations and array accessing. We now illustrate
some aspects of non-numerical programming. The example
chosen can be taken as a model of some aspects of sym
bol table manipulation in a language processor. 'The
main idea here is to illustrate the ease of building
and searching tables of variable length mixed data
types.

SYMBOL TABLE MANIPULATION

A particular type of character string made up of
ASCII symbols A,B, .•. ,Z, :,;,$ i? to be processed.

~I...V-'
<A> <D>

A syntactically correct string must start with a
member of <A> and end with a member of <D> followed by
$, with no other occurrences of $, and with all other
occurrences of members of <D> isolated by members of
<A>.

There are also some semantic rules that must be
met. First, we need some definitions. Each occurrence
of a member of <D> will be said to "terminate" the pre
vious contiguous substring of members of <A>, and the
class name <LABEL> will be used to describe any such
contiguous substring of members of <A>. Now, a syntac
tically correct string is also semantically correct if
all <LABEL>' s terminated by ":" are unique and any
<LABEL> terminated by";" also appears in the string
terminated by":".

Examples of correct and incorrect strings are:
(i) START:L!/l!/lP:CTR:L!/l!/lP;OUT:$ is both syntactic

ally and semantically correct.
(ii) A:A;SRCH:;COMP:SRCH:A:$ is both syntactically

and semantically incorrect (see-rhe underlined places).
The processing to be performed on these strings

is as follows: Build a table in core of all unique
<LABEL>'s with an address associated with each. If the
<LABEL> first occurs terminated by":", the address is
provided from the contents of a word addressed as
L!/lCCTR; otherwise, the 5-digit value 00000 is associa
ted with the <LABEL>. This "dummy" address will be re
placed by the correct value from L!/lCCTR when the
<LABEL> later occurs terminated by":".

There are two subroutines used in the program
which we will list in detail. One, called TBLSCH, is
used to search the table for the occurrence of the
<LABEL> currently in 'BUFF. The locations T!/lPl and
B!/lTl are pointers to the top and bottom of the table,
respectively; and PTI is a pointer location for access
ing the table entries. On exit, put "Y" in ANS if the
<LABEL> is found, and leave PTI pOinting at the lead
delimiter for the matching <LABEL>; otherwise, put "N"
in ANS. The routine is accessed from a JMPS instruct
ion which puts the return address in the first location,
TBLSCH, in the routine.
The coding is:

TBLSCH: DA 5
MVN PTl +B!/lTl
CPA T(IlPl++B!/lTl
BNZ CHECK
MVD 2,ANS+"N"
BR 'TBLSCH

CHECK: CPC 'BUFF++'PTI
BZ F!/lUND
MVPC PTl
ADSBA PTl+PT1+2
MVPN PTl
ADSBA PTl+PTl+l

;assembler command to
establish a 5-digit "return
field."
;go to CHECK if table non
empty,

; compare LABEL in 'BUFF
with one in table.
;move PTl to start of next
<LABEL> in table

254

CPA PTI++~PI ;has whole table been
BNZ CHECK searched?
MVD 2,ANS+''N''
BR 'TBLSCH

FOUND: MVD 2,ANS+"Y"
BR 'TBLSCH

The second routine, called TBLINS, inserts the
<LABEL> in 'BUFF onto the top of the symbol table and
associates the address in PARAM with it. The pointer
T~PI is adjusted appropriately.

TBLINS: DA 5
MVN PTl+T!IIPI
MVC 'T~Pl+'BUFF ;add <LABEL>
MVPEC PTl
MVD 2, 'PTl+"[]]"; ; insert character delimi-
ADSBA PTl+PTl+2 ter
MVN 'PTl+PARAM ; insert associated address
MVPEN PTl
MVD 'PTl+'+ ' ;insert number field deli-
ADSBA PTl+PTl+l miter
MVD 2, 'PTI+"[]]" ; insert table-top delimi-

ter
MVN T~PI+PTl ;adjust table-top pointer
BR 'TBLINS

Although we have only presented two of the sub
routines used in the complete program, the type of
coding used at the assembler level for non-numeric
processing should be evident. The complete program
required 110 instructions, including the subroutine
coding.

Due to the radically different structure, it is
difficult to compare our machine with standard minicom
puters. Meaningful comparisons will become possible
only as a result of extensive experience with it. The
machine was simulated and some interesting observations
made. For example, the above matrix multiply routine
was found to require 400 digits of storage with the
delimiter density of 25%.

V. CONCLUSIONS

We have described the design of a fully variable
length general purpose computer. In order to assess
the feasibility of such machines it is essential to
take a close look at advantages gained and difficulties
that might be encountered.

Based on a number of programs that we have written,
it is apparent that programming presents fewer diffi
CUlties than one usually encounters with standard mini
computers.

Limits on computational accuracy, size of operand
labels and data as well as the alignment requirements,
are non-existent from the programmer's point of view
by the very nature of the machine.

In order to determine the physical feasibility of
such machines, we have completed the design on the
basic circuit level (using standard TTL MSI components).
As a result we have found that the hardware complexity
and cost place the machine in the price range of
typical minicomputers. Simulator runs have been used
to verify the logical correctness and adequacy of the
selected instruction set, as well as to obtain an
evaluation of memory and cycle time requirements.

VI. ACKNOWLEDGEMENT

This research was partly supported by the National
Research Council of Canada.

255

VI I. REFERENCES

1 IBM ReferenCe Manual, 1620 Data Processing
System, IBM, 1960.

2

3

4

CIP/2200 Reference Manual, Cincinnati Milacron
Company, Process Controls Division, Lebanon,
Ohio, April 1972.

W.T. Wilner, "Burroughs B1700 memory utiliza
tion," ProceediJigs of FJCC, 1972, pp. 579-586.

Caxton C. Foster, "The Next Three Generations,"
Computer, Vol. 5, No.2, March/April 1972.

HAPPE
HONEYWELL ASSOCIATIVE PARALLEL

PROCESSING ENSEMBLE
Dr. Orin E. Marvel

Honeywell/nc.
Aerospace Division

ABSTRACT

Many problems, inherent in air traffic control,
weather analysis and prediction, nuclear reaction,
missile tracking, and hydrodynamics have common
processing characteristics that can most efficiently
be solved using parallel "non-conventional" tech
niques. Because of high sensor data rates, these
parallel problem solving techniques cannot be eco
nomically applied using the standard sequential
c.omputer.

The application of special processing techniques
such as parallel/as,sociative processing are still
resisted because it is a change from the norm. Past
implementations utilized special hardware, custom
circuits and complex designs. The Honeywell A'sso
ciative Parallel Processing Ensemble (HAPPE) was
built to demonstrate the basic simplicity of hardware
concepts inherent in parallel associative processing.
HAPPE is implemented with the same standard cir
cuit building blocks (MSl's, ROM's, and RAM's) that
are used in all conventional computers. By using
standard building blocks a long time objection to
associative memory systems, that of requiring
special purpose (low usage) circuits is overcome.

The parallel/associative processing element can be
both powerful and versatile. The HAPPE architec
ture proves that one processor element can perform
both correlation (associative) and arithmetic pro
cessing. The HAPPE demonstrator has become a
valuable tool in training system designers and pro
grammers to recognize that new "thinking" can be
applied to advanced processing system
implementations.

Introduction

Problems associated with systems such as radar
tracking and discrimination, air traffic' control,
weather prediction, nuclear reactor control and
hydrodynamic prediction have common character
istics. Each of these. problems exhibits a high
degree of parallelism; that is, many sets of data
must be evaluated, manipulated and reduced by the
same computing process as rapidly as possible and
preferably simultaneously.

Those systems requiring a real time problem solu
tion should take advantage of this parallelism by

261.

solving each problem set in a simultaneous manner.
The architectural solutions to these problems have
led to considerable discussions on special process
ing techniques particularly on pipeline processing
versus parallel associate processing. Numerous
papers have been written on the subject. It has been
shown that with the technology available today (2),
many of the problems discussed earlier can be
solved by the pipeline proceSsor in a more econom
ical way. These problems, however, require that
the input sensor data always occur in the same
order. As the input data becomes more unordered
or random, the parallel associative processor be
comes the only candidate available for real time
processing (1), (4).

The Honeywell Associative Parallel Processing
Ensemble, HAPPE, was built with standard building
blocks to demonstrate the hardware concepts and in
herent simplicity and computing power of parallel
associative processing and the processing element.
Its functional organization is designed to accommo
date both I/O associative processing and simulated
track processing.

During track processing, the input space built into the
hardware is divided into two random sets. Thus if an
input sensor or target has provided an input in one of
the two sets, for associative processing and then
switches to the other set, the track processing asso
ciated with the first set of data will be delayed a cycle.
However, we still have no prior knowledge of when
the data arrives at the processing system. The
HAPPE demonstrator proves that one processor ele
ment (hardware entity) can perform both correlation
(association) and arithmetic processing.

The HAPPE processor is implemented with the same
standard building blocks (MSl's, ROM's and RAM's)
that are used in more conventional computers. This
overcomes a long-time objection to associative mem
ory systems that require special purpose building
blocks, such as complex one-of-a-kind large scale
integrated circuits.

Background

The evolution of the parallel associative processor is
shown functionally in Figure 1. Reference (3) de
scribes the historical evolution of associative
processors.

PARALLEL PROCESSOR 'ASSOCIATIVE MEMORY

PE 1

IRAM AU I PE 2

IRAM AU I PE"

• MANY PE',

• EACH CONSISTS OF
, ARITHMETIC UNIT AND

RANDOM ACCESS DATA
MEMORY

• CAN PERFORM PROCESS
ING OPERATIONS
SIMULTANEOUSLY ON
MANY OA TA SETS

WORD"

• LOGIC DISTRIBUTED
THROUGHOUT MEMORY

• CAN PERFORM SEARCH
(COMPARISON) OPERA
TIONS SIMULTANEOUSLY
ON MANY DA TA SETS

'-----,r---' RESU L T S
.--.1---, REGISTER

WORD 1

WORD 2

WORD"

• MANY PE',

• fi~ft f~DN~~ET~8:DAgr:rfclJfA_
TIVE MEMORY

• CAN PERFORM SEARCH AND
PROCESSING OPERA TlONS
SIMULTANEDUSLY ON MANY DATA
SETS

PARALLEL ASSOCIATIVE PROCESSOR

PE 1

IAME+ul PE2
I
I
I

• MANY PE',

·lAR~Mf:~n~8FA~~ A
COMBINATION OF RANDOM
ACCESS AND ASSOCIATIVE
DATA MEMORY

• CAN PERFORM SEARCH AND
PROCESSING OPERATIONS
SIMULTANEOUSLY ON
MANY DA TA SETS

Figure 1. Parallel Processor I Associative
Processor Relationships

262

The parallel processor is characterized by a control
unit and a number of processing elements that per
form simultaneous operations. The control unit to
processing element bus is used primarily in a se
quential manner to either carry inputs, commands or
outputs.

The Associative Memory is primarily a storage
facility witl1logic added to each memory position to
perform associative searches. These searches are
classified primarily as input searches and output
searches.

When performing an input associative operation, an
input data set is processed by means of the following
search operations:

What stored data is less than the input?

What stored data is greater than the input?

What stored data is within a delta limit of the
input?

No stored data is within a delta limit of the
input.

The input operation is primarily a matching opera
tion between data sets stored in the processors and
randomly occurring input data sets.

The output associative operation searches the asso
ciative memory to determine:

The stored data with the minimum value.

The stored data with the maximum value.

All stored data within a given sector of space.

All stored data outside a given sector of space.

The output operation is used to provide the user with
the exact information he needs to make an opera
tional or control decision.

The associative processor is really closer in func
tional execution to the associative memory than it is
to the parallel processor. Primarily then, it is an
associative memory with minimal processing capa
bility associated with each memory word. The
STAR RAN is an example of the associative processor.

As we move up the functional ladder from associative
memory, to associative processor, to parallel asso
ciative processor, we are asking the system to per
form more and more processing for every associa
tive or correlation operation. Thus the parallel
associative processor is aimed at the application
requiring a high random sensor input rate, accom
panied by a large number of sensor dependent com
putations performed on each input, in real time. The
HAPPE system was designed to demonstrate the
functional sophistication afforded by parallel asso
ciative processors.

HAPPE System

The HAPPE system demonstrates the use of asso
ciative parallel processing in solving the complex
problem of target tracking using a modern phased

263

array radar as a sensor. Phased array radars pro
vide a modern tracking system with the ability to
electronically point and shape one beam, or a multi
plicity of beams, and to steer them at electronic
speeds. Target location coordinates in phased array
radar systems are specified by range and beam num
ber, rather than by range, azimuth, and elevation.
The beam number incorporates both azimuth and
elevation of the target. This data gathered at elec
tronic speeds, demands close coupling with its pro
cessing operation in order to meet the workload and
real time restrictions of this high performance
system.

The HAPPE organizational design consisting of two
global control sections and a number of redundant pro
cessing elements is primarily based on the following
observations:

(A) Radar data is constantly coming into the sys
tem without interruption. First, radar data
comes from random beams in the first half
of the sensor space and then from the second
half of the sensor space.

(B) Target data is associatively assigned to pro
cessing elements then an arithmetic program
(the track processing) is completed using the
correlated data before the next correlation
can take place.

(e) A standard arithmetic building block (the
II 181 ") performs the arithmetic add, subtract,
and logical operations; as well as the less
than, greater than, and equal to correlation
operations.

(D) The radar tracking algorithms can be per
formed without built-in multiply or divide
capability.

An analysis of the requirements stated above led to
the architecture shown in Figure 2. This block dia
gram resembles the parallel associative processor of
Figure 1. But, operationally HAPPE uses a different
philosophy from any other associative processor. In
the HAPPE system, the processing element controls
its own mode and process state. The control units do
nothing but repeatedly broadcast their algorithms or
commands and data, never knowing whether any ele
ments are reacting to these commands or not.

In comparing HAPPE and PEPE, the HAPPE system
contains two control units and one processing element
unit, while the PEPE system contains three control
units and three processing element units. In HAPPE,
the control units alternately control the element unit;
but in PEPE, each of the control units controls only
its associated element unit.

The processing elements operat:)? two modes- - the
correlation mode and the arithmetic mode-- and with
in each mode two states-- active and inactive. Of
course the system must contain a master reset which
sets every element to the correlation mode and active
state.

When an element is in the correlation mode and active
state, it performs all commands and accepts all data
from the correlation control unit.

CORRELATION ARITHMETIC
CONTROL CONTROL
UNIT UNIT

DATA DATA

DATA ELEMENT NO.1
PROCESSOR

DATA

I I I
CONTROL ELEMENT NO. 1

CONTROL

SELECT LOCAL SELECT
CONTROL

ELEMENT NO.2

PROCESSOR

I I I
ELEMENT NO. 2

LOCAL
CONTROL

ELEMENT NO. 3

PROCESSOR

I I I
ELEMENT NO. 3

LOCAL
CONTROL

Figure 2. System Block Diagram

Any element in the correlation mode and inactive
state can perform the following commands from the
correlation control unit:

Activate All

Master Reset

Select Next Inactive.

When an element is in the arithmetic mode and active
state, it performs all commands and accepts all data
from the Arithmetic Control Unit. Any element in
the arithmetic mode and inactive state can perform
the following commands from the Arithmetic Control
Unit:

Activate All

Master Reset.

The correlation control unit provides the following
commands:

Deactivate on Not Equal to

Deactivate on Less Than

Deactivate on Greater Than

Load Local Memory to A Register

Load Local Memory to B Register

Store Global Data to Local Memory

Activate All

Switch Modes

Master Reset

Select Next Active

Select Next Inactive.

The Arithmetic Control Unit provides the following
commands:

Load Local Memory to A Register

Load Local Memory to B Register

Store A Register to Local Memory

Add

Subtract

Switch Modes

Deactivate on Not Equal to

Shift Left

Output

Master Reset

Activate All.

A block diagram of the processing element is shown
in Figure 3. The radar processing problem requires
that a correlation process assign targets to process
ing elements and then process the data associated
with each target. The processing element resembles
any minicomputer containing two registers, an arith
metic unit, and a scratchpad memory. The element
differs by containing a local activity and mode control
which can be modified by the comparison outputs of
the arithmetic unit.

Global

Data

Input

Commando

Figure iJ.
264

A
R

B
Rogistor

18 Word
Mimory

Activity
Modo
Control

Ari1h.
Unit

Processing Element Block Diagram

Each processing element operates like a correlation
unit when in the correlation mode (accepting com
mands from the correlation control unit) and like an
arithmetic unit when in the arithmetic mode (accept
ing commands from the arithmetic control unit).
Each HAPPE processing element performs add, sub
tract, and shift operations, as well as equal to, less
than, and greater than operations. During the arith
metic mode, the track update programs are per
formed and during the correlation mode, the target
data assignment programs are performed.

Demonstrator Description

The HAPPE demonstrator under discussion and
illustrated in Figure 4, consists of three 4-bit pro
cessing elements. The demonstrator operates with
two beam numbers (a realistic system would have
about 250) and two incoming targets that have an
arbitrary decreasing range assignment of 15 to 0
units. A realistic system would look at up to 1000
targets coming in from about 150 KM.

Figure 4. HAPPE Demonstrator

The problem solved by the demonstrator consists of
recognizing the beam number of the target, correla
ting the range of the target with a range gate in each
processing element, and then performing an arith
metic subroutine on the correlated data. A pictorial
of the simulated system is shown in Figure 5 and an
example of the radar return for an incoming target is
shown in Figure 6. An example of a range gate com
putation for one target can be seen in Figure 6, with
the R (minimum) set at 10 and the R (maximum) set
at 13. A target moving through this range gate will
cause four between-limit matches.

Figure 5. Physical Model

RANGE

TIME 10 11 12 13 14 15

I

BEAM
NO.2

I SL
2 lrL
3 ~r1l
4 SL I
5 I SL
6 .l..rL
7 Sll
8 SL I

FiguJ;e 6. Target Movement

Figure 7 describes the control panel, the initialization
of the demonstrator, and the results of the target
tracking program. For example, processing
element 1:

265

A. During the set up of the demonstrator, the
beam number (beam 1) is stored in scratch
pad location (Xl, Y1), the lower gate (Range
2) in (Xl, Y2), and the upper gate (Range 8)
in (Xl, Y3).

B. During the operation of the simulation, the
processing element only reacts to the target,
while it is in the range of 8 to 2.

C. At the end of the operation, the element has
seen the target seven times.

CONTROL PANEL

(Switches Up are On)

Global Data Lines (G 1, G2, G3, G4) - Provides binary coded
data to all elements which are active and in the
correlation mode.

X Data Lines (X1, X2, X3, X4) - Selects the X data
location of the element memories.

Y Data Lines (y1, y2, y3, y4) - Selects the Y data location

of the element memories.

D. O. Allows the wired "OR" outputs of the element
"A" registers (which are active) to be displayed
on the panel lights (A 1, A2, A3, A4, ;6;4).

Auto - Sets the control units in the auto clock or
single step program mode.

Reset - Resets the counters of the control units to
restart the program.

Clock - Allows the control units to be single stepped
through their programs when the auto switch
is off.

CR Sets all elements to the correlation mode.

SW Switches the mode (correlation or arithmetic)
of all the elements that are active.

ACT - Sets all elements to active.

21 - Clocks the data selected by global lines into
the memory location selected by the X, Y
switches (for all active elements in the corre
lation mode).

Clocks the data from the memory location
selected by the X, Y switches into the A register
(for all active elements in the correlation mode).

Clocks the activity flipflop when using the select
commands

SFA - Activates the pointer for selecting the first ~
element in the correlation mode.

SFA - Activates the pointer for selecting the first ~
element in the correlation mode.

SET UP OF DEMONSTRATOR

PUSH CR BUTTON

PUSH AS BUTTON

WRITE (Z1) 0 IN X3, Y1

WRITE (Z1) 0 IN X3, Y2

WRITE (Z1) 2 (G2) IN X2, Y 1

WRITE (Z1) 5 (G3, G1) IN X2, Y 2

266

WRITE (Z1) 4 (G3) IN X2, Y3

WRITE (Zl) 0 IN X 2, Y 4

PUSH SFA AND Z4

WRITE (Z1) 1 (G 1) IN Xl' Y 1

WRITE (Z1) 2 (G2) IN Xl' Y 2

WRITE (Z1) 8 (G4) IN X1, Y3

PUSH SW BUTTON

PUSH SFA AND Z4

WRITE (Z1) 2 (G2) IN Xl' Y 1

WRITE (Zl) 6 (G3, G2) IN Xl' Y 2

WRITE (Zl) 13 (G4, G3, Gl) IN X1, Y3

PUSH SFA AND Z4

WRITE (Zl) 1 (G l) IN X1, Y 1

WRITE (Z1) 4 (G3) IN X1'Y2

WRITE (Zl) 6 (G3, G2) IN Xl' Y 3

PUSH AS BUTTON

PUSH CR BUTTON

SELECT AUTO MODE

RESULTS

A. TARGET TRACKING PROGRAM

B.

C.

Element Number 1

Element Number 2

Element Number 3

ARITHMETIC PROGRAM

7 in A-Reg.

a in A-Reg.

3 in A-Reg.

(All Elements (X2, Y 4) three)

Push As

Select X2, Y 4

Push Z4

Read A-Register

TO RESTART PROGRAM

Push CR Button

Push AS Button

Sel ect X3, Y 1

Push Zl

Push Z3

Clear X3, Y 1

Push Reset

Programs

The sample programs executed by HAPPE are
typical of real-life problems and are described in
the following:

(A) In the correlation program, one of two
beam numbers is compared with the beam
number data stored in the elements. A
between limits search on the range data
provided by the simulator is then made.
During the limit search, each of the three
processing elements will have made use
of its own range gate. At the conclusion
of the correlation processing mode, those
elements that have just performed corre
lations are switched to the arithmetic mode
and those that have completed the arithmetic
processing are switched to the correlation
mode.

(B) The arithmetic program updates and accu
mulates the number of between-limit hits in
each of the elements. This program also
demonstrates typical arithmetic operations
which are required to calculate a new
range gate.

(C) The select highest and output program
selects the one element which has the
highest number of range gate hits and out
puts this number to the control unit.

The page limitations of this paper have prevented the
inclusion of the program flow diagrams. These
can be obtained by contacting the author.

Conclusions

The HAPPE demonstrator shown in Figure 4 was
built to demonstrate several important concepts of
parallel/associative processing through use of a
simulated phased array radar processing system.
These are:

(A) That one processing element implemented
with standard conventional logic circuits
can perform both correlation and arith
metic processing.

(B) That two control units operate simulta
neously on different processing elements.

(C) That the operation, initialization, mode
switching, and activity of parallel pro
ceSSing elements can be easily controlled.

(D) That the signal distribution and busing
required to effectively operate a parallel
associative processor uses standard
circuits.

(E) That the correlation and arithmetic pro
gramming takes advantage of standard pro
gramming methods with the addition of a
small number of parallel control
instructions.

(F) That HAPPE has a built in "Fail Graceful"
characteristic where one element can fail or
be disengaged from the system and the rest
of the system operate at a reduced target
load.

267

(G) That a low cost, three element, 4-bit data
associative parallel processor can be built
to demonstrate the operating characteristics
of a large system. This demonstrator is
also an excellent training tool for advanced
architectures and the software required to
make them operate.

Bibliography

(1) Hobbs, L. C., "Parallel Processor Systems,
Technologies and Applications", Sparton Books,
1970.

(2) Lloyd, G. and Merivin, W., "Analysis of Three
Large Computer Systems", AFIPS National
Computer Conference, June 1973.

(3) Parhami, B., "Associative Memories and
Processors: An Overview and Selected
Bibliography", Proceedings of the IEEE, Vol61,
No.6, June 1973.

(4) Thurber, K. J. and Berg, R. 0., "Applications
of Associative Processors", Computer Design,
Vol 10, pages 103-110, November 1971.

A COMPUTER ARCHITECTURE AND ITS
PROGRAMMING LANGUAGE

Mario R. Schaffner
Massachusetts Institute of Technology

Cambridge, Massachusetts

1. INTRODUCTION

Computer architectures and programing
languages are traditionally developed independ
ently. Through suitable computer architecture:
for instance, one can attempt to speed up the
processing of a stream of data and instruc
tions, leaving to the software the burden of
preparing these streams. Through a suitable
programing language, one aims at efficiently
describing many classes of problems, in a
phrase-structure form that is machine independ
ent. This approach has led to the ever-increas
ing application of computers, but it has also
brought about a growing complexity in the soft
ware systems. As a consequence of the latter,
there is a new trend toward extending hardware
implementation to replace the software ones,
especially in view of the new technology of
large scale integration.

In the past, several computer architec
tures were suggested toward the attainment of
a larger computing power, such as the Solomon
~bmputer [1], the Holland machine [2], a spa
tially oriented computer [3], and a fixed plus
variable structure computer [4]. Then, two
basic techniques appeared of more general ap
plicability, and led to actual implementations:
parallel processing, and pipeline execution
[5]. In parallel processing, an array ·of simi
lar processors work simultaneously on different
data, under the control of the same control
unit. The modularity of such an organization
is attrac~ive in many respects. However, the
performance is heavily dependent on parallelism
in the problems [6], and programing techniques
need to be developed, for exploiting the poten
tial capabilities of the computer and the -
inherent parallelism in the computations [5].
Whereas for particular problems parallel com
puters can achieve a throughput which is orders
of magnitude larger than that of conventional
computers, for general problems they face a
performance degradation that increases with
the number of processors.

Pipe lining consists of the concurrent
execution of the various stages of the process
ing by independent units connected in cascade:
This concurrency can be implemented at differ
ent levels [7]; the overlapping of the proc
essor and memory operations [8], and that of
the steps of arithmetic operations [9] are
examples. The theoretical limits of pipe lining
have been analyzed [10]; in practice, advan
tages depend upon the presence of a stream of
similar tasks [11]. All modern large computers
have some'degree of parallelism and pipelining.
In ord~rto analyze their organization, instruc
tion and data streams can be defined, and the -
management of requests and services considered
[12]. In this context, computer architectures
are, at first, classified as single-instruction
single-data streams, single-instruction multi
pIe-data ~treams, multiple-instruction single-

271

data streams, and multiple-instruction multi
ple-data streams.

The use of these computer architectures
depends heavily on complex compilers, or inter
preters. Compilation requires a preliminary -
run, generally produces no optimum codes and
makes the debugging more difficult. Interpret
ers require a large memory space and produce
a slow execution. For these reasons the ques
tion rises recurrently whether computers con
structed to directly execute programs written
in the user programing language could lead to
a more efficient overall system [13]. The
above question has prompted several works
oriented to the hardware (or a mixture of hard
ware and software) implementation of the produc
tion of phrase-structure programing languages -
that are subsets of existing programing lan
guages, or a slight variation of them. Some
examples are: Anderson's [14] implementation
of Algol 60, Bashkow's et a1. [15] design of
a Fortran machine, Weber's [16] implementation
of EULER, Thurber's et a1. [17] design of a
cellular APL computer, the SYMBOL language and
computer [18], and the APL implementation by
Hassitt et al. [19]. All these studies show
particular advantages in more closely relating
the structure of the programing language and
the structure of the computer hardware. However,
no significant impact was made on the main
stream of computers, in which languages and
hardware are developed independently. One can
argue that in the above cases the languages used
(at least basically) already existed and were
developed independently of any particular
architecture.

This paper shows a case in which computer
architecture and programing language are not
developed independently, but are treated as
two isomorphic forms of representation of the
same structure -- the abstract mechanisation
of the processes as it is conceived by the user.
The user models the desired process in the form
of an abstract Finite State Machine (FSM), at
a proper level, in terms of the elements of a
language for describing FSMs. The description
of this FSM constitutes a description of the
desired pr~cess, but at the same time is also
the specialized architecture of a hypothetical
machine that executes that process. If a physi
cal substratum (isomorphic with the language -
of the FSMs) is available, these hypothetical
machines can be implemented, and the descrip
tion of an FSM constitutes a program for this
substratum. Such a substratum can be seen as
an organizable computer. In this case, the
distinction between hardware and software blurs.

This substratum, i.e. a programable archi
tecture, is outlined in section 2; the isomor=
p~ic programing language is described in sec
tion 3; a~~ in section 4, results and implica
tions are discussed.

FIG 1

assembler -
c: no I I I I I I

I I I I I I
Q)

E ~ l ~
;---

c: r- - ~Cl···CJ po 9 e

fl' r- - .uN p 0 Il!J U···U N r- - memory
'- r-~ programable

L.....o_ network
.-
> l ~ t
c: flp I I I I I I

I I I I I I
Q) packer

2. THE PROGRAMABLE ARCHITECTURE [20] by the expressions

The essential parts of this architecture
are, Figure 1:

(1) a programab1e network PN comprising
an array Q N of registers for holding a page of
data, a second page array Q'N ' and programable
operational elements which can be connected to
these registers with the related control cir
cuitry for the execution of operations on the
'variables;

(2) a memory for holding pages of data,
the structure of which can be programed in
accordance with the data structures of the
processes;

(3) an assembler which, receiving a page
from the memory and new data from the environ
~ent, assembles the variables of a process and
program words (that describe networks perform
ing the operations of the present state of the
process) into a page register-array Q.; and

(4) a packer which, receiving a page from
PN into a page register-array Qp' provides the
routing of output data to the environment, and
the packing of the data needed in the future
into the form of a page for the memory.

A page here is a self-sufficient set of
data related to a job; in the memory, it
contains the present variables of the process
and a key word indicating the present state of
the process; in the assembler and in PN, it
also includes the new input data and the
program words of the present state.

The basic page transfers can be described
with the use of register transfer notations

t , a ,Q. + t2rF,(QN,Q~) + t30fQ~-+ Q N

t2rF2(QN,Q~) + t 4 02 QN-+ Q~

t 5a2Q N + t6~ Qa -+ Q p

(1)

where ~ and ~ are functions executed by the
programable network; t

"
t 2 ' ••. are Boolean

time functions produced by the control; and
a. ' ~, ••• are B?olean condi tion~l coefficient.s
w1th value, mean1ng, and constra1nts as shown·
in the table below.

a, a2 p r 0, °2 Condition

KD ~ ~ 0 0 ~ acquisition of a new
page

~ 0 0 0 ~ ~ recirculation of a
page

cP 0 CD ~ ~ ~ recirculation of a
page by-passing PN

0 0 ~ CD 0 ~ processing of a page

0 cP ~ 0 0) , acquisition from
storage

~ ~ ~ ~ ~ 0) storage of a page or
data

272

The system can process in sequence all
the pages through the paths a1 and a2 ; it can
continuously process a single page, condition
y; it can input and output data without involy
ing PN through the path ~; it can buffer a page
for a certain time in the auxiliary page array
.QIN through the transfers 152 ; it can produce a
new page in array .QIN during processing (comb in.!
tion of paths 151 ,152 and y) for the execution of
a subtask; it can introduce the new page into
circu,lation through transfer 151 ,

The registers of arrays.Qa and .Q p have one
to-one correspondence with the registers .oN
embedded in the programable network. The packer
transfers the data in.Q p into the memory in an
ordered form; the same order is used by the
assembler to allocate the data of a page into
.Qa ' In this way each variable of a process
always goes into the same register of PN,
during the circulation of the page, if not
otherwise prescribed by the program. The memory
moves the pages as a First-Input-First-Output
storage, or with a different rule if indicated
by the program. These features eliminate the
need for explicit addresses. Addresses and
their manipulation account for a large part of
the memory capacit1, and for most of the
overhead of conventional computers. When selec
tive access is required by a given process, -
the corresponding addresses are obviously part
of the variables of that process; accordingly,
the packer has the further feature of using
some process variables also for directing
other variables to specific parts of the data
structure organized in the memory.

The programable network does not have per
se a specific operational configuration. It is
a collection of registers, multifunction ele
ments, and preferred links among them. Program
words enable simultaneous links and functions
in order to implement specialized structures
which perform the data transformations demanded
in each state of a process. A kind of micropro
graming extended to its full allows the use of
a large number of all possible combinations of
the loose elements forming the programable
network [21]. In this way, data transformations
involving several variables are executed as a
single large operation. Several different con
figurations can be implemented sequentially
during one passage of a page through the net
work. The fact that the variables involved are
all present in the network eliminates many
intermediate steps and data movements that
occur in conventional com.puters. When a process
involves more variables than can be contained
in PN, they are grouped in successive pages;
the auxiliary register array .Q~, which is also
part of PN, allows the sharing or transfer of
data. The coefficients 15 in expressions (1) can
be applied to selected data or to the entire
page.

It is interesting to note that the archi
tecture of Figure 1 exhibits properties of
many of the different architectures mentioned
in section 1. The system has a pipeline confi
guration; while the programable network P%Oc
esses a page,the assembler assembles the next
page, and the packer packs and rout~s the pre
vious page. Parallel processing can be imple
mented simply by programing PN as a set of
independent units, or, in virtual form, as a
sequence of pages. The efficiency of a special
purpose computer can be achieved by structuring

PN according to the specific process. But,
because the specialization of PN can change
at each cycle, the machine is a general-purpose
computer. Because of the three basic features
-- the organization of jobs into independent
pages, the circulation of the pages in a pipe
line configuration, and the loose structure of
the processor and memory -- this architecture
has been named the Circulating Page Loose (CPL)
system.

3. THE PROGRAMING LANGUAGE

The most interesting peculiarity of the
architecture described in the previous section
is its programability. This programability
permits the execution of the processes in terms
of structures devised by the user each time,
rather than as simulation by means of a given
structure (arithmetic unit connected to a ran
dom access memory) and instructions of a given
set. Thus, here, the programing language refers
to operational structures and data structures,
rather than to commands and declarations.

The primitive elements that have been found
sufficient to efficiently express the variety
of processes we give a computer are the follow
ing: -

(i) a finite set of process variables x r ' a
subset of which is indicated as Xq ;

(ii) a finite set of input data u r ' a subset
of which is indicated as Uq ;

(iii) a finite set of output devices, and
storages, zr; and

(iv) a finite set of labeled process-states
Sj' where a state is defined by:

(v) a function Fj which produces new values
for a subset Xa as a function of the
values in subsets Xb and U ,

(vi) a function T, which produc~s the label
of the next ~tate as a function of the
values of subsets Xej and Ue , and

(vii) a prescription Rj for routing some
variables xr to some output devices, or
storages, zr'

Time is represented as a sequence of dis~
crete intervals i. A process is modeled as a
finite-state machine represented by the fol
lowing expressions, where the symbols refer to
the primitives defined above:

X(i+l)

s(i+l)

sCi)

Fo (i) [X (i), U (i) I
To(;) [X(i+l), U(i)] (1)

We must note that here states refer to
phases of the model of the processes; they are
neither the total internal states used in au
tomata theory, nor the conditions of an imple
mentation used in particular computers. These
states are few and meaningful to the user. In
each state, in general, there will be a differ
ent F and T. Functions F and T are thought of
as operational networks; thus they can also be
described in the form of digital words that
implement those networks in a digital program
able network [22]. In other words, we use the
mapping

(2)

273

where F stands for a description (in any lan
guage) of a data transformation, NF stands for
an operational network performing that data
transformation, and WF stands for a digital
word describing (in a language) that network.
This global treatment of the data transforma
tions gives conciseness to the modeling of
processes, and the use of corresponding global
words W gives conciseness to the actual pro
grams. A finite - state machine so formulated
is denoted with capital initials Finite State
Machine (FSM). The FSM is the modular block
of the programs.

Complex processes are modeled in the form
of several concurrent FSMs, each of which may
be implemented simultaneously by many pages.
The routing prescriptions R allow the interact
ion among FSMs necessary for their concurrent
work. A page transfers through the states of
an FSM, and can transfer also through different
FSMs. Thus, a process is modeled as an inter
play of processing structures (the FSMs) with
data structures (the pages). A program can be
composed of a single FSM and page; or one FSM
related to many pages; or several FSMs, each
one related to one page; or many FSMs, each
with many pages.

The user develops the FSMs in the form of
state diagrams. Figure 3 shows an example. The
encircled domains represent a state; the data
transformation F is described inside these do
mains; the transition functions T are described
with conditions indicated below horizontal lines
and arrows pointing to the new states; the
routing prescriptions R are indicated, typical
ly, in connection with those arrows. Which no=
tations are used for expressing the variables.
the F. T, and R is irrelevant at this stage.
State diagrams of this form constitute a com
plete description of a process. As such they
also constitute complete programs for a comput
er that is isomorphic to the language of the -
FSM. When all the elements of the state diagram
(both those represented by graphic means, and
those described by alphanumerical symbols) are
expressed in the codes of that computer, the
actual object program is obtained. The object
program is in the form of a set of quadruplets

(3)

where WF and WT are the words that implement
specialized networks performing functions F
and T. WR is a coded form of the routing pre
scriptions R. and WI is a coded representation
of the input data set U .. Uc U Ue • j is the
state label, and k is the total number of states
involved in that program.

The state diagram is problem oriented and
machine independent in the sense that any hypo
the tical machine can be implied in its construc
tion. When a state diagram is expressed in the
form of specific quadruplets, it becomes ma
chine dependent. The transformation between the
ideal machine (the state diagram) and the exe
cutable program (the quadruplets), that is, the
mapping (2), is made by the user. Because the
user is expected to be familiar with his proc
esses. and to know the preferred choices. the
resulting object programs are efficient and
easily understood.

On the other hand, one may think that in
this way, the user is burdened with clerical

274

tasks of which he is usually relieved by the
compilers. But because of the isomorphism be
tween the language of the FSM used for describ
ing the processes and the architecture of the
computer. it turns out that the user works on
his problem and not on the intricacies of a
computer which he is not interested in. More
over, the results produced by the computer can
be easily interpreted. As an example of the
level of mechanization in which the user is
involved, a program in the field of numerical
solutions of partial differential equations is
outlined below.

The dynamics of a hypothetical fluid are
modeled in the form of an initial-value problem
with boundary conditions. The analytical exprei
sions considered are

O'TJ
hI

O'TJ O'TJ
at ~+ h2 Ti
01p h 01p + 01p
at 3 0 X h4 oy (4)

ov h ov + h ..Qy Tt sOx 6 Oy

l~here 'TJ .1p. and v are the variables of the
system, and h, the given parameters. The chosen
finite-difference approximation is given by

'TJ,n.l ..
I,)

'TJ~, -
I,) kl ('TJ~j - 'TJ~_I,j) ~ k2 ('TJi~j - 'TJi~j_l)

1pn+l
I,)

1pn, _
101

k (1pn, _ 111'" ,) - k (n _ n)
3 I.) o-1'j 4 1I1,j 1I1;j-l

(5)

vn+l .. v,n, - ks (v,n, - v n) - k (vn _ v n)
i,j loj loj i-l.j 6 i,j i,j-l

with the conventions:

x = i Llx i = 1, 2. I

Y .. j Lly j .. 1. 2. J

t .. n LIt n .. 1, 2. N

and the k, derived from the b, •

To obtain the solution, an abstract machine
is conceived, that has a page for each point of
the two dimensional space of the system (Figure
2), a page for each boundary point. and a con~
trol page. The symbols 'TJ, 1p. and v. related to
the variables of the process, are considered
as names for three variables x,; initial values
a, b, and c of these variables are treated as
input data u,; the paramete,rs k, also are
treated as input data. Moreover, an additional
three variab les x" named D, E and F, are used
for temporary purposes. The pages related to
the points of the fluid perform an FSM 3 as
described in Figure 3. which implements expres
sions (5); the pages related to the boundary
points perform an FSM 2 which implements a time
evolution of the boundary values; and the con
trol page performs an FSM 1 which controls the
work of the entire system. The pages circulate
in the structure shown in Figure I, with differ
ent scanning as indicated in Figure 2. -

Even without entering into the details of
the language of the programable network, Figure
3 should convey the level of abstraction of
these operational structures. For instance,
FSM 1, which constructs and controls the entire

y

[Q]

D

control page
(FSM 1)

boundary page
(FSM 2)

point page
(FSM :3)

scanning

FSM2

O,t t 1't'\ , I I I ,
, I I I /
, I I I I

A o

275

D,E,F -: D:E:F'
D,E,F 1:- D:E:r'

D,E,F x k~,k~,k6

FSMI

machine, has four states. State 1 is devoted
to creating the page array indicated in Figure
2. In this state, function F consists simply
in incrementing variables A and B by one. Func
tion T is expressed as a self-explanatory decr
sion table (the transition from the corner
corresponds to the "else" condition). The
routing is different for the different transi
tions and consists of creating pages related
to given FSMs and in clearing variable A. State
2 prescribes a horizontal scanning of the pages.
State 3 prescribes a vertical scanning, and
provides for the test of the number of time
steps. State 4 orders an output record of the
computed quantities, and makes the pages disa£
pear (transition to a triangle).

The computation of the variables 'l} ,1/1 ,and
v at each point (FSM 3) is obtained by means
of simple networks of a parallel nature estab
lished by the user in accordance with expres
sions (5). As an example, in state 1 of FSM 3,
the input set U, consisting of the data a, b,
and c, is transferred in parallel into the set
X, consisting of the variables 'l} .1/1, and v. In
state 3 of FSM 3, there is a succession of five
networks: the first produces simultaneously the
accumulation of the original values of D, E, F
into 'l}, 1/1 , v, and the transfer of the original
values of 'l}, 1/1, v into D, E, F; the second
produces an interchange of values between D,E,
F and D', E', F', which are variables that
remain in Q~ of the network during the circul~
tion of the pages; the third produces the sub
traction of D', E', F' from D, E, F; the fourth
produces the mUltiplication of D, E, F by the
data set kz' k4' k6; and the fifth the accumul~
tion of the present values of D. E. F into'l},
1/1, v. A routing prescription sends the present
values of 'l}, 1/1, v to an output storage.

Obviously, the interest for such con~
structs is not to make the user do what can be
provided by a compiler, but to give the user
the possibility either of providing what has
not been anticipated by the software systems,
or of obtaining specific optimizations. In this
example, the aim was to minimize the memory and
the execution time. The entire computation is
made with 6IJ + 3(I+J) + 2 memory words. The
machine cycles are (2N+2)(I+l)(J+l), with an
average of four to five networks per cycle.

4. RESULTS AND DISCUSSION

The results obtained from the use of this
architecture for processing in real-time radar
signals have already been reported [23,24,25,26]
Obviously, in these applications, advantage is
derived from the capability of the programable
network to perform complex operations in one
cycle) and to structure the memory in accor
dance to the stream of data. An application of
significant interest is a program for process
ing weather-radar signals in real time that
discriminates weather echoes from ground echoes,
during the normal operation of the radar.

The easy interaction between user and com
puter is also very significant. The fact that
the same FSM is both the model of the process
used by the user and the program actually exe
cuted by the computer, makes it possible to
develop a program in "real time" as suggested
by the results. In the line of the mechaniza
tion of Figure 3, programs have been experiment
ed that acquire actual initial data, in real -

time, from a weather radar,and then produce
different evolutions of the precipitation pat·
tern in terms of the values of parameters set
by the user at each time, or modifications of
the programs.

In research work, data processing is typi
cally achieved today by means of systems com
prising several special-purpose units and a
general-purpose computer. The former efficient
ly execute the particular data transformations
demanded in the process , and the latter provides
for the computation and the control of the en.
tire system. In these cases, a single computer
with a CPL architecture could advantageously
perform all these activities. The programahle
network is capable of executing hoth the par
ticular data transformations and the computa
tions; the programs in the FSM form are par
ticularly suitable for controlling complex
activities; and the organization of data in the
form of pages makes efficient use of the memory
capacity.

Another field for which this architecture
is particularly efficient is that in which dif
ferential analyzers were advantageously used
[27]. The PN can be programed in the form of
integrators, and each page takes on the role
of a term in a system of equations. Transfor
mations such as the Fast Fourier Transform,
similarly, can be executed efficiently by pro
perly organizing the pages and configurating
PN for complex butterflies [28]. This architec
ture has also been suggested for the computers
in an integrated telecommunication network [29]

But the fact that this architecture accepts
directly programs expressed in the FSM form and
these programs correspond to the image of the
process as developed by the user, triggers a
more general interest in this approach [30].
The next subject of study that seems deserving
of attention is the feasibility of a programing
language that shares the flexibility and con
ciseness of the FSM and the adaptability to
different forms of expression offered by the
well-established use of compilers.

As far as the hardware software trade-off
is concerned, this architecture constitutes an
interesting new approach. The programability
of the hardware configuration allows the effi
ciency peculiar to the hardware implementations
together with the flexibility characteristic of
the software implementations. Moreover, the des
cription of these configurations is also inter
esting as a programing language per se. In using
the first machine constructed with this architec
ture [31], we consistently find that programs -
in the form of FSM are much simpler than the
equivalent programs in conventional machine
language, and they have a complexity comparable
to that of programs expressed in high level
language. For complex processes,the programs in
FSM form seem to be simpler than the equivalent
ones in high level language. This finding has
an interesting similarity with von Neumann's
contention that for complex automata the de
scription of an automaton is simpler than the
description of the process performed by the
automaton [32].

ACKNOWLEDGEMENT

This work has been supported, at different
times, by the National Aeronautics and Space

276

Administration under contracts NASW-2276,
NSR-09-0l5-033, and NASr-158.

REFERENCES

1. Slotnick, D.L., W.C. Borck, and R.C.
McReyno~ds, "The Solomon Computer", Proc.
Fall J01nt Computer Conf., 97-107, l~

2. Holland, J .H., "A Universal Computer Capable
of Executing an Arbitrary Number of Sub
Programs Simultaneously", Proc.Eastern
Joint Computer Conf., 108-113, 1959.

3. Unger, S.H., "A Computer Oriented Toward
Spatial Problems", Proc.IRE, 1744-1750,
1958.

4. Estrin, G., "Organization of Computer Sys
tems - The Fixed Plus Variable Structure
Computer", Proc.Western Joint Computer Conf.,
33-40, 1960.

5. Hobbs, L.C., and a1. (Ed.), Parallel Proc
essor Systems, Technologies, and Applica
tions, Spartan Books, N.Y., 1970.

6. Chen, T.C., "Parallelism, Pipe lining and
Computer Efficiency", Comp. Res., 12., 69-74,
1971.

7. Ramarmoorthy, C. V., and S. S. Reddi, "Towards
a Theory of Pipe lined Computing Systems",
Proc. 10th Allerton Conf. on Circuit and
System Theory, University of Illinois,
Urbana, Ill., 759-768, 1972.

8. Buchholz, W. (Ed.), Planning a Computer
System, McGraw-Hill, N.J., 1962.

9. Hallin, T.G., and M.J.F1ynn, "Pipelining of
Arithmetic Functions", IEEE Trans. C-21,
880-886, 1972.

10. Cotten, L.W., "Maximum-Rate Pipeline
Systems", Proc.Spring Joint Computer Conf.,
581-586, 1969.

11. Graham, W.R., "The Parallel and the Pipe
line Computers", Datamation, Vo1.l6, April,
1970.

12. Flynn,M.J., "Some Computer Organizations
and their Effectiveness", IEEE Trans. C-2l,
948-960, 1972.

13. McKeeman, W.M., "Language Directed Computer
Design", Proc.FJCC, AFIPS Vol.3l, 413-417,
1967.

14. Anderson, J.P., "A Computer for Direct
Execution of Algorithmic Languages", Proc.
Eastern JCC, 184-193, 1961. ----

15. Bashkow, T.R., A.Sasson, and A.Kronfeld,
"System Design ~f a Fortran Machine", IEEE
Trans. EC-16, 485-499, 1967. ----

16. Weber, H., "A Microprogrammed Implementation
of EULER on IBM System/360 Model 30", Comm.
!f!!, 10, 549-558, 1967. ----

17. Thurber, K.J., and J.M.Myrna, "System
Design for a Cellular APL Computer", IEEE
Trans. C-19, 291-300, 197Q. ----

18. Chelsey, G.D., and W.A.Smith, "The Hardware
-Implementated High-Level Machine Language
for SYMBOL", Proc. SJCC, AFIPS Vol.39,
563-573, 1971.

19. Hassitt, A., J.W.Lageschulte, and L.E.Lyon,
"Implementation of a High Level Language
Machine", Comm.ACM, 16, 199-212, 1973.

277

20. Bartee, T.C., I.L.Lebow, and I.S.Reed,
Theory and Design of Digital Machines
McGraw-H111 Co., New York, 1962. '

21. Schaffner, M.R., "A System with Programa
ble Hardware", Digest 5th IEEE Int.Computer
~., Boston Hass., 17-18, 1971.

22. Schaffner, M.R., "A Procedure for Describ
ing Discrete Processes", Proc. 10th Allerton
Conf. on Circuit and System Theory, Urbana,
111.,462-470, 1972.

23. Austin, P.M., and M.R.Schaffner, "Computa
tions and Experiments Relevant to Digital
Processing Weather-Radar Echoes", Prepr.
14th Weather Radar Conf., 375-380, 1970.

24. Schaffner, N.R., "Computers Formed by the
Problems, rather than Problems Deformed by
the Computers", Digest 6th IEEE Int.Computer
Conf., San Francisco, Cal., 259-264, 1972.

25. Schaffner, H.R., "On the Data Processing
for Weather Radar", Prepr. 15th Conf. on
Radar Meteor.,368-373, 1972.

26. Schaffner, M.R., "Echo Movement and Evolu
tion from Real-Time Processing", Prepr.
15th Radar Meteor. Conf., 374-348, 1972.

27. Sizer, T.R.H., (Ed.), The Digital Differen
tial Analyzer, Chapman and Hall, Ltd.,
London, 1968.

28. Schaffner, M.R., "Study of the Applicability
of the CPL System to Doppler Radar Signal
Processing", National Center for Atmospheric
Research, Boulder, Col., 1973.

29. Cappetti, I., and M.R.Schaffner, "Structure
of a Communication Network and Its Control
Computers", Proc. Symp. Computer-Communica
tions Networks andTeletraffic, M.R.I., Vol.
XXII, Polytechnic Institute of Brooklyn,
Brooklyn, N.Y., 1972.

30. Schaffner, M.R., "Study of a Self-Organizing
Computer", Final Report, Contract NASW-2276,
National Aeronautics Space Administration,
1973.

31. Schaffner, M.R., "A Computer Modeled After
an Automaton", Proc.Symp.Computers and
Automata, M.R.I. Symp., Vol.XXI, Polytechnic
Institute of Brooklyn, Brooklyn, N.Y., 635-
650, 1971.

32. von Neumann, J., "The General and Logical
Theory of Automata", Hixon Symposium, 1948,
Pasadena, Cal.; reprinted in John von
Neumann, Collected Works, (A.H.Taub, Ed.),
Pergamon Press, 1963.

/

