i
-
s

.

&

s
g
8
w;@iwmw

|
G

R iy i
i

i
Sl
‘%" ﬁ’g‘ \

il

e
s
?“2‘“‘”’5&3’“@%
T
.

L
s
-

tiiie
e
A

S
S

o
-

-
,;)L,’»
-

e
i
14 i

L
-

)

s

o
zk
@g&q»

Beadl
Lo
i

The ideas and opinions expressed herein are
solely those of the authors and are not
necessarily representative of or endorsed
by the 1964 Fall Joint Computer Conference
Committee or the American Federation of
Information Processing Societies.

Library of Congress Catalog Card Number: 55-44701

Copyright © 1964 by American Federation of Information Processing
Societies, P. O. Box 1196, Santa Monica, California. Printed in the
United States of America. All rights reserved. This book or parts
thereof, may not be reproduced in any form without permission of
the publishers.

Sole Distributors in Great Britain, the British
Commonwealth and the Continent of Europe:

CLEAVER-HUME PRESS

10-15 St. Martins Street
London W.C. 2

CONTENTS

Preface

PROGRAMMING TECHNIQUES AND SYSTEMS
CPSS—A Common Programming Support System
Error Correction in CORC
The Compilation of Natural Language Text into

Teaching Machine Programs
Method of Control for Re-Entrant Routines
XPOP: A Meta-Language Without Metaphysics

EXPANSION OF FUNCTION MEMORIES

A 10Mc NDRO BIAX Memory of 1024 Word,
48 Bit per Word Capacity

Associative Memory System Implementation
and Characteristics

2Mec, Magnetic Thin Film Memory

A Semi-Permanent Memory Utilizing Correlation Addressing

A 10° Bit High Speed Ferrite Memory System-
Design and Operation

NEW COMPUTER ORGANIZATIONS
An Associative Processor

A Hardware Integrated General Purpose
Computer/Search Memory
A Bit-Access Computer in a Communication System

Very High Speed and Serial-Parallel

Computers HITAC 5020 and 5020E
IBM System 360 Engineering

iii

D. BOoRETA
D. N. FREEMAN

L. E. Unr
G. P. BERGIN
M. I. HALPERN

W. 1. PYLE

R. M. MACINTYRE
T. E. CHAVANNES
. E. MCATEER
A. CAPOBIANCO
R. L. KOPPEL
E. E. BITTMANN
G. G. PicKk

H. AMEMIYA

T. R. MAYHEW
R. L. PRYOR

J.

R. G. EWING
P. M. DAVIES
R. G. GALL

E. U. CoHLER

H. RUBINSTEIN
K. MURATA

K. NAKAZAWA

J. L. BROWN

P. Fage

D. T. Doopy

J. W, FAIRCLOUGH
J. GREENE

J. A. Hipp

Page

15

35
45
57

69

81

93

107
123

147

159
175

187

205

MANAGEMENT APPLICATIONS OF SIMULATION

UNISIM—A Simulation Program for
Communications Networks
The Data Processing System Simulator (DPSS)

The Use of a Job Shop Simulator in the Generation
of Production Schedules

DIGITAL SOFTWARE FOR ANALOG COMPUTATION

HYTRAN—A Software System to Aid the Analog
Programmer

PACTOLUS—A Digital Analog Simulator Program
for the IBM 1620

MIDAS—How It Works and How It’s Worked

INPUT AND OUTPUT OF GRAPHICS

The RAND Tablet: A Man-machine Communication
Device

A System for Automatic Recognition of
Handwritten Words

A Laboratory for the Study of Graphical Man-
Machine Communication

Operational Software in a Disc-Oriented System

Image Processing Hardware for a Man-Machine
Graphical Communication System

Input/Output Software Capability for a Man-
Machine Communication and Image
Processing System

A Line Scanning System Controlled from an
On-Line Console

MASS MEMORY

A Random Access Disk File with Interchangeable
Disk Kits

The Integrated Data Store—A General Purpose
Programming System for Random Access
Memories

The IBM Hypertape System

Design Considerations of a Random Access
Information Storage Device Using Magnetic
Tape Loops

iv

L. A. GIMPELSON
J. H. WEBER

D. D. RUDIE

M. I. YOUCHAH
E. J. JOHNSON
D. R. TRILLING

W. OCKER

S. TEGER

R. D. BRENNAN

H. SaNo

H. E. PETERSEN
F. J. SANsoM

R. T. HARNETT

L. M. WARSHAWSKY

M. R. DAvIs

T. O. ELLIS

P. MERMELSTEIN
M. EpEN

E. L. JACKS

M. P. CoLE

P. H. DorN

C. R. LEWIS

B. HARGREAVES
J. D. Joyce

G. L. COLE

E. D. Foss

R. G. GRAY

R. A. THORPE
E. M. SHARP
R. J. SIPPEL

T. M. SPELLMAN

E. C. SIMMONS

C. W. BACKMAN
S. B. WILLIAMS

B. E. CUNNINGHAM
A. GABOR

J. T. BARANY

L. G. METZGER

E. POoUMAKIS

Page

233

251

277

291

299

313

325
333
343

351

363

387

397

411

423
435

TIME-SHARING SYSTEMS

The Time-Sharing Monitor System

JOSS: A Designer’s View of an Experimental
On-Line Computing System

Consequent Procedures in Conventional Computers

COMPUTATIONS IN SPACE PROGRAMS
The Jet Propulsion Laboratory Ephemeris Tape System
JPTRAJ (The New JPL Trajectory Monitor)
ACE-S/C Acceptance Checkout Equipment
Saturn V Launch Vehicle Digital Computer and
Data Adapter

The 4102-S Space Track Program

HYBRID/ANALOG COMPUTATION—METHODS
AND TECHNIQUES
A Hybrid Computer for Adaptive Nonlinear
Process Identification
The Negative Gradient Method Extended to the
Computer Programming of Simultaneous Systems
of Differential and Finite Equations
Quantizing and Sampling Errors in Hybrid Computation

NON-NUMERICAL INFORMATION PROCESSING

Real-Time Recognition of Hand-Drawn Characters
A Computer Program Which “Understands”
A Question-Answering System for High School

Algebra Word Problems
The Unit Preference Strategy in Theorem Proving
Comments on Learning and Adaptive Machines

for Pattern Classification

HARDWARE DESIGNS AND DESIGN TECHNIQUES

FLODAC—A Pure Fluid Digital Computer

Design Automation Utilizing a Modified Polish
Notation
Systematic Design of Cryotron Logic Circuits

Binary-Compatible Signed-Digit Arithmetic

HYBRID/ANALOG COMPUTATION—
APPLICATIONS AND HARDWARE
A Transfluxor Analog Memory Using Frequency
Modulation
The Use of a Portable Analog Computer for Process
Identification, Calculation and Control
Progress of Hybrid Computation at United Aircraft
Research Laboratories
A Strobed Analog Data Digitizer with Paper
Tape Output
Hybrid Simulation of Lifting Re-Entry Vehicle

HoLLis A. KINSLOW
J. C. SHAW

D. R. FITZWATER
" E.J. SCHWEPPE

E. G. Orozco

N. S. NEWHALL
R. W. LANZKRON
M. M. DICKINSON
J. B. JACKSON

G. C. RANDA

E. G. GARNER

J. OsSEAS

B. W. NUTTING
R. J. Roy
A. 1. TALKIN

C.R. WALLI

W. TEITELMAN
B. RAPHAEL
D. G. BOoBROW

L. Wos

D. CARSON
G. ROBINSON
C. H. MAys

R. S. GLUSKIN
M. JACOBY

T. D. READER
W. K. ORrr

J. M. SPITZE
C.C. YaNG

J. T. Tou

A. AVIZIENIS

J. KARPLUS
A. HOWARD
L. H. FRICKE
R. A. WALSH
G. A. PAQUETTE

W.
J.

R. L. CARBREY

A. A. FREDERICKSON, JR.
R. B. BAILEY
A. SAINT-PAUL

Page
443
455

465

477

481
489

501

517

527

539

544

559
577

591

615

623

631

643

651

663

673
685
695
707

717

| CPSS
A COMMON PROGRAMMING SUPPORT SYSTEM

Dushan Boreta
System Development Corporation, Falls Church, Virginia

INTRODUCTION

Over the years many computer software sys-
tems have been developed to serve the program
production process. These systems, variously
known as “production” systems, ‘“utility” sys-
tems, or “support” systems, are designed and
produced for the same purpose: to provide pro-
grammers the tools required to produce com-
puter programs. Beyond this common purpose
these systems have little in common and, in
fact, are unique systems individually tailored
to a particular application. In each system
much of the tailoring occurs because of the par-
ticular computer configuraton, operational sys-
tem support requirements, computer manufac-
turer’s software characteristics, experience of
the designers, schedule pressures, and style
preferences of the programmers producing the
system. The tailoring is reflected in the design
of each program production system and is evi-
dent.in many features, for example, the pro-
gramming languages used, the computer oper-
ating procedures, the programmer’s inputs, the
outputs provided to the programmer, and the
program organization in the system.

In examining program production systems,
most are found to have functional capabilities
for generating code, code-checking the object
programs, and maintaining magnetic tapes con-
taining programs.

In some instances these capabilities are of the
most rudimentary sort. In other instances, very
sophisticated and complete capabilities exist.

What this paper describes is a program pro-
duction system, CPSS, that should assist pro-
grammers and managers in the performance of
their tasks. The principle characteristics of
CPSS provide for programmers an efficient and
effective means for producing their programs.
For managers, CPSS provides for the minimi-
zation of costs for producing programs, and a
relatively inexpensive means for achieving an
effective and efficient program production capa-
bility.

The CPSS characteristics that make these
claims a reality are: first, it provides to pro-
grammers the attributes of higher order lan-
guages in each program production task; sec-
ond, that both the functions of CPSS and its
computer programs largely are transferable;
and third, the totality of functions of a com-
prehensive program production system is pro-
vided in CPSS. Further, the design features
embodied in CPSS should afford the minimiza-
tion of its maintenance costs, reduction in the
possibility of programmer errors, and simplifi-
cation of the programming task itself.

Additionally, the design of CPSS provides
for its “common” applicability. It may be used
in “open-" or ‘“closed-shop” operations in sup-
porting the development and production of sys-
tem, non-system, and “one-shot” programs.

Effectively, its design characteristics, lan-
guage power, scope of applicability, and trans-
ferability make CPSS an off-the-shelf program
production system.

2 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

CPSS is programmed in a subset of the JO-
VIAL language, and in design is compatible
with the full JOVIAL language. Currently,
CPSS is implemented on an IBM 7090 and is
being used to support the development and pro-
duction of a computer program system. This
installation and continued testing will be the
source for refinements to CPSS’s design as the
system continues under development.

CPSS DESIGN CRITERIA
AND REQUIREMENTS

Providing “off-the-shelf” capability is a dif-
ferent type of programming problem than nor-
mally is encountered. The problems in providing
CPSS with the “off-the-shelf” capability stem
from the class of computers on which it may
be installed; the nature of the transferability
task ; some aspects of the programmer training
tasks; the CPSS maintenance task; the pro-
gramming language it provides; and the scope
of its applicability to the operational system
development process.

Class of Computers

CPSS is directly applicable to medium- and
large-scale computers. The computer configu-
ration should have, but need not be restricted
to, a word size of 30 bits, a 32K one-instruction-
per-word or a 16K two-instruction-per-word
core memory, peripheral storage units consist-
ing of four tape drives (or three tape drives
plus drum or disc units), an on-line printing
device, an on-line input device, and some ex-
ternal switches or keys.

The computer configuration need not be de-
fined explicitly in that there are many possible
trade-offs between the computer’s characteris-
tics, the programming conventions and tech-
niques used in CPSS, and the capacity of the
system. For example, by altering the labeling
convention used in the coding of CPSS, the
class of computers could be expanded to include
machines with a word size of 24 bits.

The Transferability Task

The transferability of a program production
system is important for many reasons. The cost
of installing a program production system is
minimized. For applications employing a va-
riety of computers, there is a standard system

and methodology that contributes to program-
mer transferability. The difficulties and costs
inherent in the transition from one computer
to another are reduced. And, a bench mark is
identifiable from which further technology de-
velopment may progress.

The goal, transferability of programs, usually
is interpreted as requiring a program coded
and operating on one computer to be operable
on a different computer and still retain the
capability to perform its functions. The trans-
fer should be completed at least semi-automati-
cally, utilizing clerical or junior personnel and
fixed procedures. The current state of the art
does not afford 100 per cent transferability.
Therefore, we have interpreted this goal to
mean that CPSS is to be transferable with only
a mintmum of known code change. In order
that CPSS be transferable, the functions and
services provided by CPSS also must be trans-
ferable. Additionally, the CPSS documentation,
program and system tests, operating proce-
dures, transferability techniques, and transfer
procedures are designed to be transferable.

It must be emphasized that the transferabil-
ity task being discussed is that of getting CPSS
to run on another computer, different from its
current application (the IBM 7090). CPSS is
designed to be transferred as a system. Al-
though it is modular, the transferability of any
module is a distinctly different task from that
of transferring the whole of CPSS.

One natural design feature of a transferable
system is its independence from machine char-
acteristics. It must be noted that machine in-
dependence is a two-way street. Not only is the
code of CPSS to be machine-independent, but
the functions performed by the code also must
be machine-independent. For example, pro-
grams making transfers to and from storage
should not assume some given unit availability,
transfer rate, segmentation of the transferred
data, unit positioning, or even that it is the only
user of a unit. In CPSS, this example of ma-
chine-independence (transferability) is pro-
vided by a central I/O program in the CPSS
Computer Operations Subsystem (the design of
which is discussed later in this ‘paper).

It will be difficult to measure how trans-
ferable CPSS is until it has been transferred

CPSS—A COMMON PROGRAMMING SUPPORT SYSTEM 3

across several computers. The system’s trans-
ferability could be measurable in several di-
mensions, for example, in time elapsed from
start to installation, in dollar costs for each
economic factor involved in the transfer, in
amounts and types of computer time required,
in the amount of code to be altered per program
and per function, and in the number of errors
discovered in each phase, including installation
and post-installation. Detailed records should
be maintained that identify the transfer costs
and the factors that influenced the cost. Some
of these factors are: the differences in the ma-
chine instruction word format and addressing,
the types and quality of programs available on
the “new’ machine, the frequency of occurrence
and amount of down-time per occurrence of
machine failure, and the location and availabil-
ity of the staging and target computers.

Some of the principaliltechnical problems that
will arise in transferring CPSS to other com-
puters lie in the sophistication of the design
embodied in the system, the power of the lan-
guage provided by the system, the systemiza-
tion of the CPSS design, and the broad class
of computers to which CPSS may be applied.
For example, consider the problem of designing
CPSS so that it will operate on a four-tape
drive computer configuration. The task of com-
piling a JOVIAL program can use (1) an input
device for the source program, (2) an input
device for the library tape, (3) an input device
for the system Compool, (4) a temporary stor-
age device for the intermediate language, (5)
a permanent storage device for the object pro-
gram, (6) an output device for the listings, and
(7) an output device to communicate with the
computer operator (as will be noted later, a
compilation may require other additional “stor-
age devices”’). Further complicate the task and
allow the programmer to generate a test case
and operate his program on the test case, and
allow all this to occur in an uninterrupted sin-
gle job. This problem is resolved in the design
of the CPSS executive and I/0 functions (dis-
cussed later in the paper). In essence, the I/0
problem was resolved by constructing a central
I/0 program that provided machine-independ-
ent I/0 functions for the remainder of CPSS.
The control problem was resolved by allowing
programmers the freedom of directing CPSS

via control card inputs (functionally oriented
to the program production tasks).

All the tasks related to transferability are
not involved in subsequent transfers of CPSS.
Consider the input card; once we have coded
routines to accept floating-field cards and have
levied no special format requirements on the
card, the card input processing functions are
totally independent of the machine. The in-
formation processed from card inputs in one
application need not appear on cards in another
application but could be processed from other
input media in a different input form, e.g.
punched paper tape or teletypewriter.

The methods employed in achieving trans-
ferability, or machine-independence, vary de-
pending on the function being performed in the
program. Some of the more commonly applied
techniques were: the parameterization of cer-
tain machine characteristics (word length,
number of characters per print line, number of
print lines per page, ete.); the establishment
of programming conventions regarding the use
of constants and tags; the use of floating-field
card formats ; and the use of “all-core” indexing
to relocate data and to compute addresses. In
many instances, special methods were required
to achieve transferability. Some of these are
discussed later in the paper during the discus-
sions of the various CPSS subsystems.

Programmer Training

One of the principal benefits achieved by em-
ploying a higher order language and requiring
transferability in CPSS is in the potential re-
duction of programmer training costs.

When a programmer is transferred from one
application to another, a training or learning
period is required to familiarize him with the
particular computer and the program produc-
tion system he will use. This retraining period
varies from a week to a month-and-a-half or
more. During this period a programmer’s ef-
fectiveness is almost nil; and thereafter, it is
less than it should be until the programmer be-
comes expert in the use of the “new” computer
and system.

CPSS should afford a reduction of training
and retraining costs by permitting program-
mers to code and test their programs in a higher

4 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

order language. If CPSS achieves a broad
patronage, these costs are further reducible
since CPSS is designed to reflect a stable form
regarding its interfaces with the programmer.
In effect, CPSS could become a means for
achieving some level of programmer transfera-
bility.

CPSS Maintenance

In producing CPSS, a primary concern has
been maintenance costs. These costs are related
to error correction, program improvement, aug-
mentation of the system’s capability, program
and system documentation, and product release.
The design of CPSS provides for the minimiza-
tion of such costs by isolating, identifying and
documenting the program- and system-type
functions that comprise CPSS.

The system and program documentation are
designed to facilitate the maintenance task. A
CPSS program’s documentation consists of a
heavily commented program manuscript, a de-
tailed flow chart, a functionally organized flow
chart, a program description document contain-
ing descriptions of data referenced, each rou-
tine coded, each procedure used, the input data
formats and structures, the output tables, items
and messages, and the function served by the
program. Another document describes each
machine dependency contained in the program.
Also, a system design document describes each
program function and the interfaces between
programs.

CPSS is designed and documented to facili-
tate the maintenance task. Also, the system is
capable of maintaining itself or of producing
itself.

The Programming Language

Perhaps the most significant decision made
in the CPSS project was the selection of a lan-
guage for the programming of CPSS. The de-
sign of each function contained in a program
production system is influenced by the language
provided by the system. Therefore, certain de-
sign features are required to assure that the
program production system is capable of re-
sponding to the operational system’s program-
ming needs. In a sense, a transferable program
production system must be “overdesigned”. The
design must reflect the current capability of the

language being provided, and also needs to pro-
vide for logical extensions of the language. Con-
sider the situation that exists with CPSS.

There are three levels of JOVIAL represented
in CPSS which form a hierarchy of language
that is upward compatible in language power
and in the language processing algorithms. The
formal JOVIAL, J-3, is subset into two levels:
J-S, being a subset of J-3; and J-X, being a
subset of J-S. The program generation subsys-
tem is coded in J-X and processes programs
that are written in J-S. All other subsystems
are coded in J-S and perform their functions
compatibly with J-3.

The decision range as to which level of lan-
guage capability is to be provided in the pro-
gram production system is bounded on the
upper end by the formal definition of the pro-
gramming language, and on the lower end by
the language capability provided by the pro-
gram generation subsystem.

In the program generation subsystem, the
language capability to be provided is influenced
by such factors as the subsequent use of the
language, the design of the compiler, the level
of transferability desired, and the expected
characteristics of existing languages and com-
pilers having the same generic name.

Other factors influencing the decision in
CPSS were the transferring procedures and
techniques, the testing techniques established to
test the system, and the availability of com-
puters with JOVIAL compilers.

CPSS—Scope of Applicability

CPSS serves programmers and managers in
their performance of several tasks related to
the system development process. Figure 1.
shows a simplified representation of the system
development process that has beeen employed
for several systems, both large and small. The
scope of CPSS is indicated by its applicability
to the program production process, which en-
compasses parts of the program design, pro-
gram generation, program test, and assembly
test stages.

Figure 2. is a simplified representation of
the program production process as served by
program production systems. The programs of

CPSS—A COMMON PROGRAMMING SUPPORT SYSTEM 5

[— — - PROGRAM PRODUCTION PROCESS— —=—— -
SYSTEM SYSTEM PROGRAM PROGRAM PROGRAM ASSEMBLY | SYSTEM SYSTEM
DEFINITION DESIGN DESIGN | GENERATION TEST TEST l TEST OPERATION
ESTABLISH TEST
oy ITONAL PROGRAM I Nisstifaind INDIVIDUAL .
O asion SYSTEM TRANSLATE PROGRAMS
REQUIREMENT (on spEes) | PROGRAMS (w::nmms
TEST) PROGRAM
I | - INTEGRATION
I)
y [y v v pr—
ESTABLISH ESTABLISH TEST TURNOVER AND
DETERMINE OPERATIONAL DATA BASE | —— PROOUCE SYSTEM PERFORMANCE
SYSTEM mpt SysTEM DESIGN DUAL | AssemsLy - —a N THE
foN ANO DATA eere TESTS Mr =T L TEST OPERATIONAL
(osp) I "ACQUISITION . . 1 MiSSION
| 4 I A 4 v A TESTS
ESTABLISH DESIGN DESIGN | DESIGN
FROGRAM l INDIVIDUAL ASSEMBLY SYSTEM
SYSTEM
REQUIREMENTS I PROGRAMS TESTS l TESTS

Figure 1.

the production system are designed to assist
programmers and managers in their perform-
ance of these four tasks: program generation,
program test, system.generation, and assembly
test.

The principal product derived from the pro-
gram production process is the operational pro-
gram system master tape. Other products are
a system data dictionary (referred to as a
Compool) with its documentation and listings,
the program system documents, listings, test
plans, and test results, and the programs that
comprise the program system with their docu-
ments, listings, test plans, and test results.

A major task, related to the system genera-
tion task, is the acquisition and management of
a data base. This paper will not delve into the
data base tasks except where such tasks di-
rectly interface with the program production
system.

Figure 3. depicts the information and data
flow provided for in CPSS. The flow of data

Program Production Process in the System Development Process

between the various functions is automatic. The
execution of the functions is controlled by the
programmer. The four program production
tasks, program generation, program test, sys-
tem generation, and assembly test are served by
this data and information flow.

The preceding figures, ‘Figure 1., Figure 2.,
and Figure 3., depict the scope of applicability
for CPSS in the system development process.

Program Generation. The programmer, em-
ploying the JOVIAL language, encodes a pro-
gram to satisfy the program design specifica-
tions. The code, the symbolic programming
language statements (the source program), is
input to the compiler which translates the code
into machine instructions. During the compila-
tion, the source program is appropriately aug-
mented by routines from the procedure library
tape and by system data descriptions from the
Compool. '

The principal output from the compiler is a
binary program (object program).. The re-

Assembly Test

Figure 2. Program Production Process

6 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

Figure 3. Program Production Process, Information and Data Flow

mainder of the outputs provide information to
the programmer (and to other parts of CPSS)
that facilitate the testing and correction of the
program. The process of compilation in the
early phases of program coding sometimes is
referred to as “grammar-checking”’—where the
result of the grammar-checking is a “good” pro-
gram; that is, one that is syntactically correct.

Program Test. In order to test a program—
that is, validate that the program performs its
functions correctly—the programmer must de-
fine a test case. A test case is comprised of a
simulated data environment for the program,
recording controls to retrive data from the pro-
gram’s environment, and any program modifi-
cations required to correct the program as
shown by previous tests.

The test case is input to CPSS which trans-
lates the programmer’s inputs into a test en-
vironment. When requested, CPSS loads the
test environment and the object program into
the computer for operation. During the opera-
tion of the test, data is recorded as requested
by the programmer in the test case. After the
operation of the test, the recorded data is proc-
essed to provide, as outputs, the hard copy test
results.

CPSS appropriately interprets data descrip-
tions from the program Compool or the system

Compool to translate the test case inputs and
process the recorded data. Essentially, the sys-
tem Compool and the program Compool are the
significant means through which CPSS affords
the programmer the ability to test a program
at a language level comparable to a higher order
programming language.

This loop, the program test phase, is repeated
for as many test cases as are required to satisfy
that the program performs its functions cor-
rectly.

The two tasks discussed so far, program gen-
eration and program test, are common to all
program production processes—whether the
programs are system programs or independent
programs. In this light, the applicability of
CPSS is extended to include both system and
non-system programming tasks,

System Generation. One of the principal
tasks in building a system is to define the system
data dictionary, more commonly known as a
Compool. Essentially, the Compool is the means
for defining the data that comprises a system’s
data base. A Compool can be thought of as be-
ing a central repository of data descriptions
used both by programmers and programs.
Usually, a Compool exists in two forms. The
first is a document containing descriptions of
the system’s data environent, data structures,

CPSS—A COMMON PROGRAMMING SUPPORT SYSTEM 7

data organizations, some commentary related to
the reasons why the data exists in the system,
and a description of the usage of the data. The
second form is a binary tape containing infor-
mation describing data structures, and data or-
ganizations. The binary Compool, in some cases
(including CPSS), contains information that is
usable in the constructing of the Compool docu-
ment. The program production system itself is
a principal user of the binary Compool in that
it retrieves data descriptions from the Compool
during the various phases of the program pro-
duction process.

The Compool, being a central collecting point
for system data descriptions, serves as an in-
tegrating device in the program production
process. In this manner the Compool provides
to program system managers a means for con-
trolling a system’s data environment.

CPSS provides both for the building of the
binary Compool and for the Compool documen-
tation. A programmer employing the appro-
priate data descriptors, encodes data descrip-
tion . statements that describe the data
comprising the data base. These statements
are interpreted by the Compool generator which
produces a binary Compool. Other outputs pro-
vided by CPSS are quality analysis aids, and
data description listings.

The tape file maintenance function provides
the means for building tapes containing pro-
grams. Further, the function provides for modi-
fying, correcting, cataloguing, and in general
maintaining computer tapes.

Assembly Test. The assembly test task, fune-
tionally, is similar to the program test task.
The purpose of the assembly test task is to pro-
vide a means for testing a complex of programs
that form a system or a logical subset of a sys-
tem. In other words, the purpose served in as-
sembly testing is to validate that a complex of
programs acting in concert perform a system
function correctly. Assembly testing can be
thought of as a hierarchy of testing—ranging
from simple program interface tests to complex
full system tests.

Figure 3. depicts an assembly test as being
performed in a controlled environment. The
system control parameters, initializing data,
simulated inputs, and recording controls are

prepared as a test case via an assembly test sys-
tem. The test case is run against the appropri-
ate complex of programs during which record
ing is performed. After operation on the test
case, the recorded data is processed via a data
reduction and test analysis subsystem which
provides the hard copy test results. This loop,
assembly testing, is performed for as many test
cases and test levels as are required to validate
that the program system performs its functions
correctly.

Although CPSS is not designed explicitly to
serve the assembly test task, it does contain
programs that are usable in an assembly test
system; for example, the data recording, data
reduction, and data generation programs. With
very minor modifications to the test environ-
ment load and data reduction programs, CPSS
further could be used to provide a very sophisti-
cated string test (program interface test) capa-
bility.

The reason for not explicitly providing an
assembly test capability in CPSS is that the
higher' levels of assembly testing usually re-
quire programs that reflect the design of the
operational program system- (such as height
reply message simulators, and radar correla-
tion analysis programs).

CPSS PROGRAM DESIGN

One of the principal design characteristics
of CPSS is the functional modularity embodied
both in CPSS and its programs. CPSS has been
separated logically into subsystems, in general,
corresponding to the common program produc-
tion functions: program generation, data en-
vironment simulation, data recording, data
reduction, test environment load, computer op-
eration, Compool generation, and tape file main-
tenance. These subsystems are comprised of
programs which further are partitioned into
functional subroutines. An attempt was made
to isolate each system function and each pro-
gram function into an identifiable subpart of
CPSS. Some of the common program-type
functions have been programmed as JOVIAL
procedures and loaded onto the CPSS procedure
library tape. Additionally, the CPSS programs,
tables, items and the Compool itself are defined
in the Compool. Thus, CPSS is an integrated
system constructed of modules, each of which

8 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

are program-type or system-type functions,
which are organized as 22 major programs, 35
library procedures, 10 common executive en-
tries, 25 system tables with 330 items, and 53
parameter items. The size of CPSS is approxi-
mately 20,000 JOVIAL statements that result
in approximately 65,000 IBM 7090 machine in-
structions.

Program Generation Subsystem

The program generation funection is provided
in CPSS by the JOVIAL language and a JOV-
TAL compiler. With the development of CPSS,
a powerful and comprehensive subset of the
JOVIAL language was developed that should
be sufficient to produce most computer software
systems. This subset, the JOVIAL core-subset
language, J-S, is the language employed in the
programming of CPSS. The power of J-S is
demonstrated by the fact that the programming
of CPSS did not require the totality of J-S.

The principle reasons for developing J-S, and
the goals achieved by this development were:

(1) The definition of a ‘“comprehensive mini-
mum” JOVIAL language that is suffici-
ent for producing most computer pro-
gram systems.

(2) The definition of a JOVIAL subset lan-
guage that affords the production of
transferable programs.

(3) The design, development, and production
of a JOVIAL compiler that can be pro-
duced on shorter schedules than more
comprehensive J-3 compilers.

(4) The improvement of the language proc-
essing speed of a JOVIAL compiler.

(5) The retention of the significant language
and compiler features normally expected
of JOVIAL, for example: Compool sen-
sitivity, procedure library capability,
partitioning of programs into procedures
and closed routines, memory allocation,
packing of items into tables, processing
of packed data, grammar checking, sub-
scripting and indexing, bit and byte
addressing, machine assembly language
coding, logical and arithmetic opera-
tions, and program ‘“debug” listings and
aids.

In general, the differences between the J-S
and J-3 languages should be more than offset
by the improvements in the compiler design
and its compatibility to CPSS. It should be
noted that J-S is a proper subset of JOVIAL,
i.e., that the programs coded in J-S are legal
and valid inputs to J-3.

Some of the significant design features of the
J—S compiler are:

(a) The J-S compiler is a “two-pass”’ com-
piler. That is, a program is processed
twice to produce a binary output. First,
in the JOVIAL language form; and sec-
ond, in an intermediate language form.
The principal result of having only two
passes is that compiling speed has been
significantly increased.

(b) The J-S compiler provides an “alter-
mode” of recompilation. That is, the
programmer can add modifications to
the source program during compilation
without altering the original source pro-
gram, The compiler will produce an up-
dated version of the source program as
one of its selectable options.

(¢) The J-S compiler produces a program
Compool. That is, the J—S compiler pro-
duces a Compool containing complete
data descriptions of all data and labels
referenced or declared by the program.
The program Compool is usable inter-
changeably with the system Compool
throughout CPSS and is compatible in
form and structure with the system
Compool.

(d) The J-S compiler is capable of being
expanded to incorporate additional lan-
guage capability. The practical limita-
tion on this expandability is the size of
core memory.

Additionally, the programmer can select the
outputs he wants, override the Compool, specify
the Compool he wants used, and in general, ex-
ercise those options that specifically control the
inputs to and the outputs from the compiler.

In general, the CPSS program generation
subsystem provides the language power, com-
piler speed, and flexibility of use that affords a
programmer the ability to generate almost any
program conceivable.

CPSS—A COMMON PROGRAMMING SUPPORT SYSTEM 9

Data Environment Simulation Subsystem

The data environment simulation function is
provided in CPSS by a computer program that
processes data assignment statements. The
program produces data records containing the
programmer specified data, and control infor-
mation that is used by the test environment
load subsystem.

The programmer specifies his data environ-
ment requirements in a POL-type language. The
program employs either a program Compool or
a system Compool as selected by the program-
mer. The programmer also may identify the
data being produced, thereby affording future
selective use of the data. The program is com-
patible with the JOVIAL J-3 data forms and
data structures.

The data itself can be coded as floating-point,
fixed-point, integer, Hollerith, Standard Trans-
mission Code, and status-variable, where such
data is organized and structured as tables,
items, strings, or arrays. Subscripting and in-
dexing also is allowed.

The program allows the programmer to set
values into any variable defined or referenced
by his program if the program Compool is used.
If a system Compool is used, the programmer
may set values into any variable defined in the
system Compool. The program imposes no
limits on the volume of data it processes. It
does perform legality checks on the program-
mer’s inputs to determine the compatibility of
the inputs with the defined data environment.

Data Recording Subsystem

The data recording function in CPSS is sep-
arated into two parts, where the actual data
recording is provided under the CPSS computer
operation subsystem. The CPSS data recording
preparation function is performed by a com-
puter program that processes recording request
statements. The program produces a data rec-
ord containing control information for use by
the computer operation subsystem, the test en-
vironment load subsystem, and the data reduc-
tion subsystem.

The programmer describes his recording re-
quests in a fully symbolic language. The CPSS
program employs either a program Compool or
a system Compool as selected by the program-

mer. The programmer also may identify the
recording that would be performed per his re-
quests, thereby affording future selective use of
the recording controls produced by the CPSS
program.

The programmer may select the data to be
recorded under any name defined in the pro-
gram Compool or system Compool and/or any
block of memory. The location in his program
at which recording is to take place can be speci-
fied symbolically (if a program Compool is se-
lected).

The programmer may request a memory
register change survey, or dumps before, dur-
ing, and/or after his program’s operation. The
dumps may be formatted as octal, machine lan-
guage instructions, floating-point, and/or al-
phameric.

Data Reduction Subsystem

The data reduction function is provided in
CPSS by a subsystem of computer programs
that process either CPSS recorded data or mis-
cellaneous data formats. There are four general
classes of printouts produced by CPSS: Com-
pool-defined data, memory dumps, survey
dumps, and tape dumps.

Compool-defined data is processed and ap-
propriately formatted entirely dependent upon
the Compool definition. CPSS interrogates
either the system Compool or program Compool
to determine the appropriate formatting. The
information in a printout reflects the page num-
ber, table name, recording identity, recording
location, table size, entry number, data name,
data type, the converted data, and a security
classification.

Memory dump processing is performed in any
of four formats: octal, machine language in-
structions, floating-point, and/or alphameric. A
printout contains the page number, security
classification, recording location, recording
identity, the beginning and ending locations of
the dump, the contents of the addressable ma-
chine registers, and the contents of the com-
puter words dumped. The page formatting is
determined by the program and is printed as
four or eight words per print line.

The survey dump processing is similar to the
memory dump processing. The significant dif-

10 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

ference is that those memory locations which
contain changed values are printed. The dumps
to be compared are made by the CPSS record-
ing program before and after the operation of
a program in a test. A printout contains the
page number, security classification, the record-
ing identity, the beginning and ending locations
of the survey area, the contents of the addressa-
ble machine registers in the “before” and
“after” states, and a print-line for each changed
computer word containing the address and both
values.

In the tape dump function CPSS provides the
means to print out any tape. The format of the
printout is similar to the memory dump format,
except that the addressable machine register
print lines are not output.

The programmer can request that his data
reduction be performed in either of three
modes: recording, general, or binary.

The recording mode is used to process data
recorded by CPSS. The programmer can select
a subset of the data to be processed, or he can
allow CPSS to process the data automatically
per his recording requests. Processing selection
is performed in exactly the same manner as
specifying recording requests.

The binary mode is used to process tape
dumps. The programmer can specify the “limits
of processing” and the print formats (octal,
floating-point, etc.). The limits of processing
bounds the range of tape that is to be processed.

The general mode is used as a mixture of the
recording and binary modes. All the controls
available to the programmer under these two
modes are available under the general mode.
Further, if a tape containing records similar
to CPSS-type records is to be processed, the
general mode may be used to reduce the data
per Compool definitions even though the tape
was not built by the CPSS recording program.

Test Environment Load Subsystem

The test environment load function is pro-
vided in CPSS by a computer program that
loads a test case into the computer for opera-
tion.

The CPSS test environment load subsystem
provides for loading recording patches to a pro-

gram; loading a data environment; loading
octal correctors to a program; and loading the
program that is to be tested (currently, on the
IBM 7090, CPSS is capable of loading and op-
erating a 25,000 register test case).

Computer Operation Subsystem

The computer operation function is per-
formed in CPSS by a subsystem of programs
that provide for the uninterrupted operation of
the computer.

The functions performed by the computer op-
eration subsystem can be grouped into four
classes: system control, operator communica-
tion, test control, and I/0 monitor.

System Control. The system control function
provides for the continuous operation of CPSS.
It interrogates programmer supplied control
“cards” to determine which function (or sub-
system) is required. The system operates on
stacks of jobs (usually prestored on tape in the
sequence desired) where each job may be com-
prised of many dissimilar requests. For ex-
ample, a job may be to compile a program,
specify several sets of recording controls,
specify several data environments, to load and
execute the compiled program in various test
environments, and to process the data recorded
in the several program runs. The sequence of
CPSS’s operation is specified by the ordering
of the programmer supplied control cards. In
addition to the sequence control function, sys-
tem control provides the normal control-type
functions such as position tapes, clear core, job
error recovery, loading of octals to cycling sys-
tem programs, etc. Essentially, the system pro-
vides uninterrupted operation as long as there
are jobs to be processed, and a test program
does not loop or write into “permanent” core.
Controls are provided through which the com-
puter operator (or the programmer in one spe-
cial case) may interrupt the computer’s opera-
tion,

Operator Communication. The operator’s
communication function provides three methods
for interrupting the system’s operation, (1) at
each 1/0 operation, (2) between control cards,
and (3) recovery from test program loops,
halts or other errors. When the operator has
completed his tasks, he may recover the sys-

CPSS—A COMMON PROGRAMMING SUPPORT SYSTEM 11

tem’s operation, as appropriate, in any of five
ways, (1) skip forward in the job to the next
control “card”, (2) skip forward to the next
job, (8) skip forward to a specified job, (4)
reinitialize the system, or (5) continue from
the point of interruption. Recovery may be per-
formed automatically by CPSS as a result of
the operator’s request, or the operator manually
may enter the system as he desires. While the
system is interrupted, the operator may reas-
sign I/0 units, list the 1/0 unit/file allocation,
take dumps, position to a particular job, or per-
form other similar tasks. The operator may
perform his tasks in response to programmer-
supplied instructions (as printed by CPSS or
otherwise), messages printed by CPSS relating
to the system’s needs, or recognizable error
conditions requiring his actions.

CPSS provides a method for programmers to
“simulate” certain computer operator actions.
They may specify I/0 allocations, list the 1/0
unit/file allocations, or perform other operator
type tasks. By the judicious use of control cards
the programmer may ‘“directly” communicate
with the computer operator to effect the job
desired.

Program Test Control. The program test con-
trol provides for the operation of a test case
loaded by the test environment load subsystem.
Also, the program test control function exe-
cutes the recording program for dumps and sur-
veys, and loads system recovery type program
modifications to the object program. The inter-
facing between the test environment load sub-
system and other computer operation functions
provides to programmers almost complete flexi-
bility in the running of tests. CPSS allows any
one of its functions to be run independently or
in any sequence. Some of the types of computer
runs a programmer might make are:

(1) Compile only

(2) Load and execute his program

(3) Compile, load, and execute his program

(4) Generate test data

(5) Specify recording requirements

(6) Load his program, recording controls,
test data and execute his program

(7) Reload data and re-execute his program

(8) Load a different program, its recording
controls, and execute the “new” program
on the “old” data environment

(9) Re-execute his program

Effectively, CPSS imposes no operating re-
strictions on the programmer in the generation
or testing of a program. In this manner the
programmer is able to selectively test subparts
of his program, his whole program, or strings
of programs all as one job or independent jobs.

I/O Monitor. The principle function per-
formed by the CPSS central 1/0 program is to
provide machine-independent 1/0 operations

for other programs. The 1/0 program performs

all the I/0 operations required by the programs
comprising CPSS. The program provides a
comprehensive set of I/0 operators: Read,
Read-search, Write, Position, Position-search,
Close, Wait (for a specific file), Wait (on all
files), Repeat (the preceding request), Rewind
(initialize the file), and File-status (feed back
the current status of the file). Additionally, the
program provides some elementary data con-
version and manipulation functions in conjunc-
tion with requested I/0 transfers, i.e., transfer
to or from packed or unpacked BCD data im-
ages, convert data to or from “standard trans-
mission code”, convert data to or from BCD,
and/or combinations thereof. Also, the pro-
gram will transfer data to or from specific lo-
cations or standard locations. The program will
either wait for a transfer to be completed or
return immediately as requested.

A program requests 1/0 operations by set-
ting items in a CPSS communication table and
transferring control to the I/0 program. These
items specify the name of the file on which the
operation is requested, the operation to be per-
formed, a wait or no wait condition, and other
information related to the operation such as
data conversion and manipulation, location of
the data to be transfered, amount of data to be
transferred, ete.

Upon completing the operation, the 1/0 pro-
gram automatically enters information into the
communication table relating to the requested
operation and returns control to the requesting
program. This information is usable to deter-
mine the status of the file, file addressing, status
of the requested operation, amount of data
transferred, etc.

In essence the I/0 program determines the
appropriate device, record fragmentation (or

12 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

accumulation), labeling, unit positioning, and
other functions to effect a transfer of data to
or from memory via an I/O device. The pro-
gram monitors each transfer to determine the
validity of the transfer and takes whatever
corrective action is appropriate. The manner
in which these functions are performed pro-
vides CPSS programs their independence from
a machine’s I/0 and yet allows the referencing
programs to perform “efficient” 1/0.

Compool Generation Subsystem

The Compool generation function is provided
in CPSS by a subsystem of computer programs
that build and interpret a Compool. The CPSS
Compool subsystem provides for a comprehen-
sive definition of data. The inputs to the Com-
pool assembler contain the normal type of data
definitions, and a variety of supplementary data
descriptive information (see Appendix B).
Further the Compool assembler provides for
assigning data addresses symbolically, and
allocates core memory for data or program stor-
age. Effectively, the Compool assembler pro-
gram provides the ability to define data for sys-
tem applications, normal utility type needs, and
for the programmer’s information needs. It
facilitates the data description task by accept-
ing a fully symbolic input. In that the contents
of a Compool usually are operational system-
dependent, the Compool assembler program
provides for the definition of the Compool’s con-
tent. The program interrogates a series of
legality matrices to determine the acceptability
of data, the validity of the input, and the com-
pleteness of the data definition. In this manner
the Compool constructed by CPSS can be tail-
ored to the operational system’s needs.

Also, the Compool subsystem contains a pro-
gram whose function is to retrieve the informa-
tion contained in the Compool. This retrieval
program provides two levels of information:
first, that information which is required for the
normal utility type functions, and second, all
the information contained in the Compool. In
the first case the data is printed in alphabetical
order, and in the second case is alphabetized by
data class. The third function provided by the
CPSS Compool subsystem is a quality analysis
of the information contained in the Compool.

The program performs a tag analysis func-
tion that checks for duplicated tags and ambigu-
ous cross-reference tags. The program also
determines the validity of the memory alloca-
tion by checking for violations of reserved
areas, and overlapped allocations of data. In
addition the program performs a capacity anal-
ysis by checking for unallocated addresses, and
by tallying each data occurrence by data type
and amount of memory required. Essentially,
CPSS provides a Compool that is tailored to a
system by its content and the tools needed to
build, interrogate and provide quality control
on a Compool.

Tape File Maintenance Subsystem

The tape file maintenance function is pro-
vided in CPSS by a computer program that
performs those functions necessary to maintain
tapes produced by or for CPSS. Further, the
CPSS program is capable of performing the
same set of functions on almost any tape re-
gardless of format or structure.

Some of the more significant characteristics
of the CPSS program are: it can duplicate, re-
format, position, read, write, close, skip, back-
space, rewind, compare, list the contents of, and
load octals to tapes containing programs, Com-
pools, files, records or any combinations thereof.

The CPSS program interrogates control
cards containing information that describes the
operation to be performed, the units on which
the CPSS program will operate, and the struc-
ture of the data stored on the unit. The CPSS
program provides for labeling of each transfer,
and thereby can handle overlaid and inter-
spersed files of varying structures.

The CPSS program is designed in modules
such that each operator, and each modifier to
the operator are procedures or closed routines.
With this design the CPSS program easily can
be modified to delete, add or modify the tape
file maintenance functions as the particular ap-
plication requires.

The tape file maintenance program estab-
lishes information in “dummy entries” for use
by the CPSS central I/0 program. In this man-
ner the only machine-specifics in this program
lie in its processing of binary cards .

CPSS—A COMMON PROGRAMMING SUPPORT SYSTEM 13

APPENDIX A

CPSS Control

The sequence of the tasks performed by CPSS
is dictated by the ordering in the programmer’s
job deck. A job deck is comprised of system
control cards, and data and/or function con-
trol cards. Data and function control cards im-

'ASSIGN, INPUT, unit $

'CLEAR, area to be cleared $

'‘COMMENT $ commentary

'‘COMPILE $

'COMPOOL, ANALYSIS, control informa-
tion §

'COMPOOL, ASSEMBLE $

'COMPOOL, AUDIT $

'COMPOOL, DISASSEMBLE, control infor-
mation $

’"COMPOOL, LIST, control information $

"ENDJOB $

'GO, address $

'JOB $ ‘

"LOAD, control information $

‘OCTAL $

'OPSIM $

'POSN, file name, control information $
"PROCESS, control information $
'RECORD, control information $
'RETURN, address $

"TABSIM, control information $
'UTILITY $
'WAIT §

APPENDIX B

CPSS Compool

The CPSS Compool assembler builds a Com-
pool from information coded on data declara-
tion “cards”. The program processes nine data
declarator types which are used to define a sys-
tem’s data base, i.e., Program, Table, Item,
String, Array, Free Item, Constant, File, and
Task declarations. Also, the program processes
four declarator types that are used in the build-
ing of a Compool, i.e., Ident, Locate, Reserve,
and End declarations.

1. Ident. The Ident declaration is used to iden-
tify the Compool itself.

mediately follow their related system control
card in the job deck. The first card in a job
deck is the 'JOB card and the last card is an
"ENDJOB card.

The system control cards acceptable to CPSS
are listed below and summarize some of the

system’s capabilities.

Pairs the CPSS INPUT file to the given unit.
Clears the given area of core to plus zero.
The comment is printed.

Initialize the program generation subsystem.
Analyze a Compool as requested.

Assemble a Compool from the data cards.
Legality check the Compool data cards.
Format and print the binary Compool specified.

Format, order, and print the Compool specified

with commentary added.
The end bracket for a job deck.
Transfer control to the given address.
The begin bracket for a job deck.
Load the environment specified.
Load and save octals for CPSS programs.
Injtialize the operator “simulation” function.
Position the given file as directed.
Format and print the data as directed.
Prepare recording parameters as directed.
Load a transfer to the CPSS executive at the
given address.
Prepare a data environment as directed.
Initialize the tape file maintenance subsystem.
Stop the system’s operation.

9. Locate. The Locate declaration is used to
pair address labels to core memory ad-
dresses. These labels are usable in lieu of
actual memory addresses. In this manner,
the programmer is able to allocate memory
and define data addresses in a completely
symbolic method.

3. Reserve. The Reserve declaration is used to
prevent the allocation of data to certain core
memory areas.

4. End. The End declaration terminates the
program’s processing of declarations.

The type of information the programmer
may use to describe data is quite comprehen-

14 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

sive. For example, a program description may
contain the program name, mod, length, mem-
ory location status (absolute, relocatable, or
dynamically relocatable), memory location, pro-
gram type (closed or open, system program,
parameterless subroutine, or parameterized
subroutine), storage location (unit, label, unit
addressing), subsystem name, title, related
commentary, and input and output parameters.

BIBLIOGRAPHY

The following represents a collection of gen-
eral material on the subject of “program pro-
duction” type systems and supplementary ref-
erences for CPSS and JOVIAL.,

1. BARNETT, N. L., FITZGERALD, A. K., “Op-
erating System for the 1410/7010-360
philosophy”, Datamation, Vol. 10, No. 5,
pp. 39-42, May 1964.

2. Bratt, J. M., “Ye Indiscreet Monitor”,
Communications of the ACM, Vol. 6, No. 8,
pp. 506-510, September 1963.

3. BORETA, D., “Introduction to CPSS”, (soon
to be published as a System Development
Corporation tech memo, TM-WD-800/
002/00).

4. BouvarDp, J., “Operating System for the
800/1800—admiral”, Datamation, Vol. 10,
No. 5, pp. 29-34, May 1964.

5. HoweLL, H. L., The Q-32 JOVIAL Oper-
ating System, System Development Cor-
poration, TM-1588/000/00, November
1963.

6. OLIPHINT, C., “Operating System for the
B5000—Master Control Program”, Data-
mation, Vol. 10, No. 5, pp. 4245, May
1964.

7. PERSTEIN, M. H., The JOVIAL Manual,
Part 2, The JOVIAL Grammar and Lexi-
con, System Development Corporation,
TM-555/002/02, March 1964.

8. SCHWARTZ, J. 1., CoFFrMAN, E. G., WEISS-
MAN, C., A General-Purpose Time-Sharing
System, Proceedings Spring Joint Com-
puter Conference, Washington, D. C., pp.
397-411, April 21-23, 1964.

9. SHAW, C. J., “A Specification of JOVIAL”,
Communications of ACM, Vol. 6, No. 12,
pp. 721-735, December 1963.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24.

SHAW, C. J., The JOVIAL Manual, Part 1,
Computers, Programming Languages and
JOVIAL, System Development Corpora-
tion, TM-555, Part 1, December 1960.
SHAW, C. J., The JOVIAL Manual, Part 3,
The JOVIAL Primer, System Development
Corporation, TM-555/003/00, December
1961.

STEEL, T. B., Jr., “Operating Systems—
boon or boondoggle”, Datamation, Vol. 10,
No. 5, pp. 26-28, May 1964.

SUTCLIFFE, W. G., Program Production
System User’s Manual (1604—A JOVIAL
Compiler-—OASIS TUtility), System De-
velopment Corporation, TM—WD-402/000/
00, January 1964.

SwaNsoN, R. W., SPASUR Automatic
System Mark 1, Utility System Users
Manual, System Development Corporation,
TM-WD-28, July 1964.

VER STEEG, R. L., “TALK—A High-Level
Source Language Debugging Technique
with Real-Time Data Extraction”, Com-
munications of the ACM, Vol. 7, No. 7, pp.
418-419, July 1964.

CO-0P Manual, Control Data 1604 User’s
Group, Control Data Corporation, No.
067a, December 1960.

Cosmos IV Manual, System Development
Corporation, TM-LX-81/001/00, October
1963.

H 800 Survey Guide, Honeywell, Elec-
tronic Data Processing Division.

IBM System/360 Special Support Utility
Programs, IBM Corporation, File No.
S360-32, Form C28-6505-0, 1964.

IBM System/360 Programming Systems
Summary, IBM Corporation, File No.
S8360-30, Form C28-6510-0, 1964.

IBM 7090/7094 IBSYS Operating System,
System Monitor (IBSYS), IBM Corpora-
tion, File No. 7090-36, Form C28-6248-1,
1963.

Philco 2000 Operating System SYS Ver-
sion E, Philco Corporation, January 1963.
RCA 501 Electronic Data Processing Sys-
tem, EDP Methods, Radio Corporation of
America, Technical Bulletin No. 16.
SCOPE /Reference Manual, CDC 3600,
Control Data Corporation, August 1963.

ERROR CORRECTION IN CORC,
THE CORNELL COMPUTING LANGUAGE

David N. Freeman
IBM General Products Division Development Laboratory
Endicott, New York

I. INTRODUCTION

CORC, the Cornell Computing Language, is
an experimental compiler fAnguage developed at
Cornell University. Although derived from
FORTRAN and ALGOL, CORC has a radically
simpler syntax than either of these, since it was
designed to serve university students and
faculty. Indeed, most of the users of CORC are
“laymen programmers,” who intermittently
write small programs to solve scientific prob-
lems. Their programs contain many errors, as
often chargeable to fundamental misunder-
standings of the syntax as to “mechanical
errors.” A major objective of CORC is to re-
duce the volume of these errors. This objective
has been achieved to the following extent: the
average rate of re-runs for 4500 programs sub-
mitted during the fall semester of 1962 was
less than 1.1 re-runs/program.

Three features of CORC have enabled it to

achieve this low re-run rate:

(1) Inherent simplicity of the syntax;

(2) Closed-shop operation of the Cornell
Computing Center on CORC programs,
including keypunching, machine opera-
tion, and submission/return of card
decks;

A novel and extensive set of error-
correction procedures in the CORC
compiler/monitors.

The CORC language is briefly described be-
low; it is more fully documented elsewhere.?

(3)

15

The current paper describes the error-correc-
tion procedures in greater detail.

II. THE CORC LANGUAGE

CORC was designed by a group of faculty
and students in the Department of Industrial
Engineering and Operations Research at Cor-
nell. This group has coded and tested two
similar compiler/monitor systems, one for a
medium scale decimal computer and the other
for a large binary computer.

During the definition of the language, the de-
sign group surrendered potency to simplicity
whenever the choice arose. Certain redun-
dancies have been included in CORC, serving
two functions: to facilitate error-correction dur-
ing source-deck scanning, and to aid novice
programmers’ grasp of compiler-language syn-
tax. Excepting these redundancies, CORC is
quite frugal with conventions. For example, all
variables and arithmetic expressions are carried
in floating-point form, avoiding the confusing
notion of “mode.” At the same time, program-
mers are spared all knowledge of floating-point
arithmetic.

Each CORC card deck is divided into three
required sub-decks plus an optional sub-deck of
data cards:

(a) The preliminary-description cards sup-
ply heading data for each page of the
output listing.

16 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

(b) The dictionary cards declare all varia-
bles used in the program, simple as well
as subscripted.

(c) Each statement card may have an in-
definite number of continuation cards.
Statements may bear labels having the
same formation rules as variables. Con-
tinuation cards may not be labelled.

Variables, . labels, numbers, reserved words,
and special characters comprise the symbols of
CORC. Each symbol is a certain string of at
most eight, non-blank characters. Numbers may
have up to twelve digits; decimal points may
be leading, trailing, or imbedded in the num-
bers. There are forty-three reserved words in
CORC, e.g., LET, and ten special characters:
4+ —* /8 = ()., The character string defin-
ing each label, variable, or reserved word is
terminated by the first blank space or special
character. The character string defining each
number is terminated by the first character
that is neither a digit nor a decimal point. Each
special character is a distinet symbol. There
are forty-six legal characters in CORC: letters,
digits, and special characters.

A subset of the reserved words is the set of
fifteen first-words: LET, INCREASE, INC,
DECREARSE, DEC, GO, STOP, IF, REPEAT,
READ, WRITE, TITLE, NOTE, BEGIN, and
END. The first symbol in each statement
should, if correct, be one of these first-words.

There are eight executable-statement types,
plus a NOTE statement for editorial comments
on the source-program listing. (NOTE state-
ments may be labelled; in this case, they are
compiled like FORTRAN “CONTINUE” state-
ments.) To simplify the description of the state-
ment types, single letters denote entities of the
CORC language:

V... a variable, simple or subscripted

E an arithmetic expression, as de-
fined in FORTRAN

L a statement label

B a repeatable-block label (see below)

R one of the six relational operators:

EQL, NEQ, LSS, LEQ, GTR, and
GEQ. A relational expression is a
predicate comprising two arith-

metic expressions separated by a
relational operator, e.g., 2¥*X NEQ
0.9.

The statement types are as follows:

(1)

(2)

(3)
(4)

(5)

(6)

(7

(3)

LET V =E, and two variants IN-
CREASE V BY E and DECREASE V
BY E. (INCREASE may be abbrevi-
ated to INC, DECREASE to DEC.)
IF E; R E,
THEN GO TO L,
ELSE GO TO L,,

IFEy R, Ep IF E. R, Eu.
AND E; R, E;. ORE,; R: E

and two variants

OR E., Ry Ex.
THEN GO TO L,
ELSE GO TO L..

AND Ex, Ry Ex.
THEN GO TO L,
ELSE GO TO L,

GO TO L.

STOP, terminating execution of a pro-
gram.

READ V, V,, ... bringing in data cards
during the execution phase. Each data
card bears a single new value for the
corresponding variable.

WRITE V,, V,, . .., printing out the
variable names, the numerical values of
their subscripts for each execution of
the WRITE statement, and the numeri-
cal values of these variables.

TITLE (message), printing out the re-
mainder of the card and the entire state-
ment fields of any continuation cards.

REPEAT B .. ., comprising four vari-

ants

(82) REPEAT B E TIMES,

(8b) REPEAT B UNTIL E;; R, Es,
AND Ex R. E,.

AND E.; Ry Ey.,
(8¢) REPEAT B UNTIL E;; R, E..
OR E21 R2 E22

OR El\'l RN EZ\'Z;

ERROR CORRECTION IN CORC 17

(8d) REPEAT BFORV =E, E,, ...,
Ei, Ej, Ek), ..., where (Ei, Ej, Ek)
is an iteration triple as in ALGOL.

Closed subroutines—called repeatable blocks
in CORC—are defined by two pseudo-statements
as follows:

B BEGIN

B END,

where the “B” labels appear in the normal label
field. A repeatable block can be inserted any-
where in the sub-deck of statement cards; its
physical location has no influence on its usage.
It can only be entered under control of a RE-
PEAT statement (with a few erroneous-usage
exceptions).

Repeatable blocks may be nested to any rea-
sonable depth. Any number of REPEAT state-
ments can call the same block, although the
blocks have no dummy-variable calling se-
quences. All CORC variables are “free vari-
ables” in the logical sense, which avoids
confusing the novice programmer no less than
it hampers the expert programmer.

III. ERROR ANALYSIS IN CORC

In the CORC compiler/monitor, the author
and his colleagues have attempted to raise the
number of intelligible error messages and
error-repair procedures to a level far above
the current state-of-art for similar systems.
The success of these messages and procedures
is measured by three economies:

(a) reduced re-run loads,
(b) reduced costs of card preparation, and

(¢) less faculty/student time devoted to tedi-
ous analyses of errors.

The detection of each error invokes a mes-
sage describing the relevant variables, labels,
numbers, etc.; why they are erroneous; and
what remedial actions are taken by CORC. Ex-
hibiting errors in detail has improved student
comprehension of the CORC syntax. Of course,
certain errors defy detection, e.g., incorrect
numerical constants.

A principal tenet of the CORC philosophy is
to detect errors as early as possible in:

(1) characters within symbols,
(2) symbols within expressions,

(3) expressions within statements, e.g., the
left and right sides of an assignment
statement, and

(4) statements within the sequencing of
each program.

An explicit message for each error is printed
on the output listing. This listing is the only
output document from a CORC program; all
programs are compiled and executed, and ma-
chine code is never saved on tape or punched
cards.

After detecting a statement-card error,
CORC always “repairs” the error by one of the
two following actions:

(a) CORC refuses to compile a “badly
garbled” statement. Instead, CORC re-
places it with a source-program ‘“mes-
sage statement” reminding the pro-
grammer of the omitted statement.

(b) CORC edits the contents of a “less
badly garbled” statement into intelligi-
ble source language. The edited state-
ment is subsequently compiled into
machine code.

Errors in cards other than statement cards are
repaired by similar techniques.

Thus, the machine code produced by CORC
is always executable, and compilation-phase and
execution-phase error messages are provided
for every program. By continuing compilation
in the presence of errors, CORC provides diag-
nostic data simultaneously on structural levels
(1)—(4) cited above. By also executing these
programs, CORC detects additional errors in
program flow, subscript usage, improper func-
tion arguments, etc.

The correction of a programming error is de-
fined to be the alteration of relevant source-
language symbols to what the programmer
truly intended. Under this operational defini-
tion, many errors are incapable of “correction,”
e.g., the programmer may have intended a
statement or expression not even offered in
CORC. Other errors are capable of ‘“correc-

18 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

tion” by the programmer himself but by no
critic unfamiliar with the complete problem-
definition; an incorrect numerical constant is
again an example.

A third class of errors can be corrected by
an intelligent critic after scanning the source-
deck listing, without recourse to the problem
definition. Some errors in this class require a
profound use of context to elicit the program-
mer’s true intention. Other errors in this class
can be detected and corrected with little use
of context, e.g., the omission of a terminal right
parenthesis.

The author defines a corrigible error to be
one whose correction is automatically attempted
by the CORC compiler/monitor. Thus, this
definition is by cases, for a specific version of
CORC. CORC may correct one error and fail
to correct a second, nearly-identical error.
Error correction is a fundamentally probabilis-
tic phenomenon; the CORC error-correction
procedures attempt to maximize the “expected
useful yield” of each program by strategies
based on a prior: probabilities associated with
the different errors.2*

The majority of corrigible errors are detected
during the scanning of source decks by the
CORC compiler. A few corrigible errors are
detected during the execution of object pro-
grams. For each error, one or more correction
procedures have been added to CORC, repre-
senting certain investments in core memory
and operating speed.

The following paragraph discusses the selec-
tion of corrigible errors, and section IV cata-
logues these errors. The catalogue will be
somewhat peculiar to the structure of CORC,
a population of novice programmers, and the
operation of a university computing center.
However, the discussion of control-statement
errors, arithmetic-expression errors, and mis-
spellings is relevant to most compiler languages.

The author has roughly ranked various error
conditions by two criteria: a priori probabili-
tiest of their occurrence, and a priori probabili-
ties of their correction (if correction is at-

* References 2 and 5 also propose probabilistic cor-
rection of misspellings.

T Probabilities in the sequel are estimates based on
human scrutiny of several hundred student programs.

tempted). Correction procedures were designed
for some errors, while other chronic errors had
such low a priori probabilities of correction
that only explicit error-detection messages were
printed out. For example, omission of a sub-
script is a common error which is difficult to
correct, although easy to detect and “repair.”
CORC “repairs” a subscript-omission error by
supplying a value of 1.

On the other hand, misspellings are com-
mon errors whose a priort probabilities of cor-
rection are high if sophisticated procedures are
used. The author hopes to achieve at least 75
percent correction of misspellings with the cur-
rent procedures; many have not yet been tested
in high-volume operation.?t

IV. ERROR CORRECTION DURING
SCANNING

First, the general procedures for card scan-
ning will be described. The second, third, and
fourth subsections deal with dictionary cards,
data cards, and statement cards, respectively.
The last subsection describes the error-correc-
tion phase which follows scanning, i.e., after the
last statement card has been read but before
machine code is generated by the compiler.

A. CARD SCANNING

Each CORC source deck should have all cards
of one type in a single sub-deck:

(1) Type 1, preliminary description cards
(2) Type 5, dictionary cards

(3) Type 0, statement cards

(4) Type 4, data cards (if used).

The type of each card is defined by the punch
in column 1 (although CORC may attempt to
correct the type of a stray source card).

At the beginning of each new source pro-
gram, CORC scans the card images (usually
on magnetic tape) for the next type 1 card,
normally a tab card bearing any non-standard
time limit and page limit for this program.
(The tab cards are used to divide the decks,
facilitating batch processing and other han-
dling.) This scanning procedure skips any
extraneous data cards from the previous pro-

I Damereau has achieved over 95% correction of mis-
spellings in an information-retrieval application.

ERROR CORRECTION IN CORC 19

gram deck. If the preceding deck was badly
shuffled, misplaced dictionary cards and state-
ment cards will also be skipped.

An indefinite number of type 1 cards may be
supplied: CORC inserts data from the first two
cards into the page headings of the output list-
ing. This serves to label all output with the
processing date and programmer name, avoid-
ing losses in subsequent handling.

The problem identification should be dupli-
cated into each deck; any deviations from this
identification generate warning messages. The
serialization of cards is checked, although no
corrective action is taken if the cards are out of
sequence. If the serialization is entirely
omitted, CORC inserts serial numbers into the
print-line image of each card, so that subse-
quent error messages can reference these print
lines without exception.

The general procedure on extraneous or
illegal punches is as follows: illegal punches
are uniformly converted to the non-standard
character “#”; extraneous punches are ignored
except in non-compact variable/label fields and
in the statement field of type 0 cards, where all
single punches are potentially meaningful.
Rather than discard illegal punches, CORC re-
serves the possibility of treating them as mis-
spellings. Likewise, any non-alphabetic first
character of a wvariable/label field must be
erroneous and is-changed to “=£,” furnishing a
later opportunity to treat this as a misspelling.
All hyphen punches are converted to minus
signs during card reading; the keyboard confu-
sion of these two characters is so chronic—and
harmless—that CORC even refrains from a
warning message.

B. DICTIONARY CARDS

Although the dictionary and data cards are
processed in entirely different phases of a
CORC program, their formats are identical—
with the exception of column 1—and common
procedures are used to scan them. As men-
tioned in the preceding subsection, non-
alphabetic first characters are changed to “s£.”
Embedded special characters are similarly
changed with the following exception: char-
acter strings of the form “(I)” or “(1,J)” are
omitted. Fixed-column subscript fields have al-

ready been provided and students consistently
and correctly use them. However, a common
student error is to supply redundant paren-
thesized subscripts in the label field; these are
ignored by CORC, although a warning message
is supplied.

Non-numeric characters in the subscript
fields and the exponent field are changed to
“I’s. Vector subscripts can appear in either
the first-subscript field or the second-subscript
field. These subscripts need not be right-justi-
fied in their respective fields. After an array
has been defined, subsequent subscripts of ex-
cessive magnitude are not used; the correspond-
ing data entries are put into the highest legal
cell of the array.

C. DATA CARDS

All of the foregoing procedures apply with
these exceptions: if a data card has its vari-
able field blank or, in the case of subscripted
variables, its subscript fields blank, the data
can still be entered with a high probability of
correcting the omission. Information in the
READ statement overrides incorrect or miss-
ing entries on the corresponding data cards.
CORC insists on exact agreement of the varia-
bles and subscripts if warning messages are to
be avoided. Symbolic subscripts may be used
in READ statements, but their execution-phase
values must agree with the numeric subscripts
on the type 4 cards.

D. STATEMENT CARDS

Correction of erroneous statement cards is
a complex technique—and the most fruitful of
those currently implemented in CORC. State-
ment cards comprise over 80% of student
source decks, on the average. Students commit
the overwhelming majority of their errors in
communicating imperative statements to a
compiler, rather than header statements, de-
clarative statements, or data cards. Statement-
card errors fall into two major categories:
those detectable at compilation time and those
detectable only at execution time. The second
category is discussed in section V. Some of
the most useful correction techniques for the
first category—tested and modified during the
past two years of CORC usage—are described
in the following eight sub-sections.

20 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

(1) Misspellings*®

At the end of Section ITI, misspellings were
cited as a class of errors that both occur fre-
quently and have attractively high a priori
probabilities for correction. Accordingly, CORC
now contains a subroutine that compares any
test word to any list of words (each entry be-
ing denoted a list word), determining a “figure
of merit” for the match of each list word to the
test word. Each figure of merit can be con-
sidered as the a posteriori probability that the
test word is a misspelling of this particular list
word. The list word with the highest figure of
merit is selected as the spelling of the test word
“most likely” to be correct.

Various categories of misspelling are defined
in CORC; to each category is assigned an a
priori probability of occurrence. When the test
word and a list word mat¢h within the scope
of a category, i.e., the test word is some par-
ticular misspelling of the list word, the a prior:
probability for this category is added to the fig-
ure of merit for this list word. Actually, the
figures of merit are integers rather than prob-
abilities; they can be converted to probabilities
by the usual normalization, but this is unneces-
sary—they are used merely to rank the possible
misspellings.

All increments used in misspelling analyses
reflect the number N of non-blank characters
in the test word, as follows: a certain base-
value increment is specified for each misspell-
ing; if a match is found, this base value is
multiplied by the ratio N/8, then added to the
corresponding figure of merit.

(a) A concatenation misspelling occurs when
a delimiting blank is omitted between
two symbols, e.g., “LET X ...” is a con-
catenation misspelling of “LET X ...”
When such a misspelling is detected,
any relevant list of words is compared
against the concatenated symbol. The
increment to the figure of merit for each
list word is computed as follows:

(i) If the list word and the test word
do not have at least their initial
two characters in common, the in-
crement is 0.

(ii) For every consecutive character in
common with the list word (after

the first character), an increment
of 2 is added to the figure of merit.

Example: Assume that the test
word is ENTRYA and that two of
the list words are ENT and EN-
TRY. The corresponding figures
of merit are 6 and 10, respectively.
The higher figure reflects the more
exact agreement of ENTRY to
ENTRYA.

(b) Single-character misspellings provide
four different increments to the figure of
merit, corresponding to mutually exclu-
sive possibilities:

(1)

(ii)

A keypunch-shift misspelling oc-
curs when the IBM 026 keypunch
is improperly shifted for the
proper keystroke, e.g., a “17-“U”
error. There are fourteen possible
misspellings of this type, corre-
sponding to the seven letter-num-
ber pairs on the keyboard. The
special character row, including
“0,” does not seem susceptible to
misspelling analysis, since special
characters are always segregated,
never imbedded in symbols.

For each list word which agrees
within a single keypunch-shift
misspelling with the test word, an
increment of (20N/8) is added to
the corresponding figure of merit,
where N is the number of non-
blank characters in the test word.

An illegal-character misspelling
occurs either (a) when a variable/
label has previously required a
“single-letter perturbation” using
the character “s£” or (b) when an
illegal punch in the card is changed
to “s£” Single-letter perturba-
tions are used when the same sym-
bol occurs at both a variable and
a label, or when a reserved word
is used as a variable or label. In
either case, conflicting usage can-
not be tolerated, and CORC ap-
pends “=£” to the symbol for the
current usage. In subsequent
searches of the symbol dictionary,
one may wish to recognize the orig-

ERROR CORRECTION IN CORC 21

(e)

(d)

inal spelling. Thus, for each list
word which agrees within a single
illegal-character misspelling with
the test word, an increment of
(20N/8) is added to the cor-
responding figure of merit, where
N is as above. This increment is
higher than that for a random
misspelling, reflecting the peculiar
origing of the character “5£.”

(iii) A resemblance misspelling occurs
whenever any of the following
character pairs is confused: “I”-
“1,” “0” (the letter)-“0” (the
number) and “Z”-“2.” For each
list word which agrees within
a single resemblance misspelling
with the test word, an increment of
(40N/8) is added to the corre-
sponding figure of merit, where N
is as above.

(iv) A random misspelling occurs when
any other single character is mis-
punched in a symbol. For each list
word which agrees within a single
random misspelling with the test
word, an increment of (10N/8) is
added to the corresponding figure
of merit, where N is as above.

A permutation misspelling provides a
single increment to a figure of merit
whenever the test word matches the cor-
responding list word within a pair of
adjacent characters, this pair being the
same but permuted in the two words,
e.g., LTE is a permutation misspelling
of LET. For each list word which
agrees within a single permutation mis-
spelling with the test word, an incre-
ment of (20N/8) is added to the corre-
sponding figure of merit, where N is as
above. Other permutations may deserve
consideration at some future date, but
adjacent-pair permutations seem to have
the highest a priori occurrence prob-
abilities.
Simple misspellings of the foregoing
types have high probabilities of success-
ful correction insofar as the following
conditions are met:

(i) The list of words does not contain

(e)

many nearly-identical entries.
Otherwise, there will be many
reasonable misspelling possibilities
from which the program may se-
lect only one.

(ii) Neither test words nor list words
are single-character symbols. The
program excludes such list words
from consideration during a mis-
spelling analysis; experience has
shown that only a small propor-
tion—perhaps 10 percent—of sin-
gle-character symbols are success-
fully corrected.

(iii) Context can be extraordinarily
helpful. Associated with each list
word is a set of attributes such as
the count of its usage in the cur-
rent program, its function (vari-
able, label, constant, reserved
word, ete.), and any peculiar
usages already detected (such as
being an undeclared variable).
Certain misspelling possibilities
can be immediately discarded if
the context associated with the
corresponding list words does not
match the context of the test word.
For example, if an arithmetic
statement is being analyzed, any
test for misspelled variables can
immediately discard all misspelled
label possibilities.

The first two -of these three conditions
are controlled by the vocabulary of the
source-deck programmer; CORC gives
far better assistance to programs using
only a few variables and labels of highly
distinctive spelling with at least three
characters apiece.

The increments corresponding to dif-
ferent misspellings were arbitrarily
selected; they can be readily raised or
lowered as experience indicates. The
current values reflect the following
observations:

(i) The weakest communication link
is between the handwritten coding
sheets and their interpretation by
the keypunch operator. Hence, the

22 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

largest increment is assigned to
resemblance misspellings.

(ii) In lieu of exact information, per-
mutation misspellings and key-
punch-shift misspellings have been
judged equally probable.

(iii) Illegal punches in a card image
arise from three sources: illegal
hole patterns, improper use of a
character (e.g., non-alphabetic
character beginning a first word,
or the duplicate use of a symbol as
two entities), and card-reading
failures. Lacking other evidence,
the author considered the incre-
ment to be approximately the same
as in (ii).

(iv) Other single-character misspell-
ings seem only half as likely to
occur.

Examples of the current CORC misspelling
analyses may be found at the end of subsection
E on Post-Scanning Spelling Corrections.

(2) Subscripts

Correction attempts for subscript errors
have low success probabilities, on the whole.
Isolated omission of one or both subscripts
seems almost hopeless. CORC edits such an
omission by appending “(1)” to a vector vari-
able and “(1,1)” to a matrix variable. Like-
wise, if a matrix variable has other than two
subscripts, CORC uses primitive editing tech-
niques to produce executable machine code. Ex-
cessive commas are changed to “+” signs, and
“(E)” is changed to “(E, 1),” where “E” is
the arithmetic expression for the first subscript
of a matrix variable.

Missing right parentheses are supplied and
extra right parentheses are deleted as neces-
sary, although not always correctly.

Definition of new array variables after the
dictionary is complete (i.e., after all type 5
cards have been processed) is an attractive—
if difficult—error-correction procedure. Most
algebraic compilers scan source decks several
times; they have a leisurely opportunity to ac-
cumulate evidence for undeclared array vari-
ables. If such evidence is overwhelming, i.e., if
every usage of a certain variable is immediately

followed by a parenthesized expression, these
compilers could change the status of this vari-
able before the final code-generation scan.

To reduce compilation time, the current ver-
sion of CORC scans each source statement once
and must make an immediate decision when it
finds a left parenthesis juxtaposed to a sup-
posedly simple variable: should “V (. . .)” be
changed to “V*(...),” i.e., implied multiplica-
tion, or should it be treated as a subscript (and
re-designate “V” as an array variable)? The
present error-correction procedure is to encode
“V(...)” into the intermediate language with-
out change; special counters for usage as a vec-
tor/matrix variable are incremented, depend-
ing on one/two parenthesized arguments. At
the conclusion of scanning, these usage coun-
ters are tested for all “simple” variables. Any
variable used preponderantly as a vector vari-
able causes CORC to test for the misspelling
of some declared vector variable. Failing this,
CORC changes the status of the variable to a
vector of 100 cells. Any variable used prepon-
derantly as a matrix variable causes CORC
to test for the misspelling of some declared
matrix variable. Failing this, CORC changes
the status of the variable to a matrix of 2500
cells, comprising a 50 X 50 array.

If a variable is infrequently juxtaposed to
parenthesized expressions, CORC treats these
juxtapositions as implied multiplications. De-
ferral of this decision necessitates a procedure
for inserting the multiplication operator during
the conversion of intermediate language to
machine code, together with the appropriate
message. This error-correction procedure is
one of the few in the code-generation phase.
The message appears at the end of the source-
deck listing rather than adjacent to the offend-
ing card image; the gain in error-correcting
power seems to justify deferring the message.

The a priori probabilities of omitted array-
variable declarations and implied multiplica-
tions are both high. Since the two possibilities
are mutually exclusive, CORC bases its choice
on the percentage occurrence of the ambiguous
usage. If the usage is chronic, i.e., comprising
more than 50 percent of the total usage of some
variable, an undeclared array variable seems
more probable. If the ambiguous usage is a

ERROR CORRECTION IN CORC 23

small percentage of the total usage, implied
multiplication seems more probable.

(3) Arithmetic and relational expressions

The rules for analyzing and correcting arith-
metic expressions are as follows:

(a)

(b)

(c)

Extraneous preceding plus signs are de-
leted, and preceding minus signs are
prefixed by zero, i.e., “—E” becomes
‘KO__E.’!

Thereafter, ({+,” ((_,” (K*,” and (‘/”
are all binary operators. If an operand
is missing before or after a binary oper-
ator, the value “1” is inserted. This
merely preserves the coherence of the
syntax; to correct this error seems hope-
less.

If an expression using two binary opera-
tors might be ambiguous (irrespective
of the formal syntax), CORC prints out
its resolution of the ambiguity, e.g.,
“A/B*C IS INTERPRETED AS
(A/B)*C.”

(4) LET, INCREASE-BY, and DECREASE-
BY

Four components are essential to each cor-
rect statement in this category: the first-word,
the assigned variable, the middle symbol, and
the right-hand-side (RHS) arithmetic expres-

sion.

(a)

(b)

(c)

(d)

The first-word of the statement has been
identified by a generalized pre-scan of
the statement. If “LET” has been
omitted but “="" has been found, CORC
furnishes the former symbol.

The assigned variable may be sub-
scripted; if so, CORC supplies any miss-
ing arguments, commas, and right pa-
rentheses when “="" or “BY” terminates
the left-hand-side (LHS) of the state-
ment. If other symbols follow the as-
signed variable but precede “=" or
“BY,” they are ignored.

“EQU,” “EQL,” and “EQ” are errone-
ous but recognizable substitutes for

6.
.

Any arithmetic expression is legal for
the RHS.

(6) GO TO, STOP, and IF

(a)

(b)

(c)

With one exception—(b) just below—
all unconditional branches begin with
“GO,” followed by an optional “TO.”
STOP is a complete one-word statement.
Also, it may be used in the conditional-
branch statement, e.g., “IF . . . THEN
STOP ELSE GO TO”

A conditional branch always follows one
or more relational expressions in an IF
or REPEAT statement. For IF state-
ments, the first incidence of “THEN,”
“ELSE,” “G0O,” “TO0,” or “STOP” ter-
minates the last relational expression;
missing operands, commas, and right
parentheses are then inserted as needed.
Thereafter, the two labels are retrieved
from any “reasonable” arrangement
with two or more of the above five
words.

Missing labels are replaced by dummy
“next statement” labels, which later in-
hibit the compilation of machine-code
branches. Thus, if an IF statement
lacks its second label, the falsity of its
predicate during execution will cause no
branch. At the end of scanning, certain
labels may remain undefined; here also,
CORC inhibits the compilation of ma-
chine-code branches.

(6) REPEAT

(a)

(b)

If the repeated label is omitted, e.g., in
the statement REPEAT FOR ARG = 2,
CORC scans the label field of the follow-
ing source card. Programmers often
place repeatable blocks directly after
REPEAT statements using these blocks:
Hence, any label on this following card
is likely to be the missing repeated
label: it is inserted into the 'REPEAT
statement. If no such label is found,
CORC creates a dummy label for the
repeatable block. During the execution
of the program, usage of this erroneous
REPEAT statement can be monitored
by this dummy label.
If the REPEAT-FOR variant is used,
CORC tests for three components in
addition to the repeated label:

(i) The bound variable, i.e. ARG in

the example in 6(a).

24

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

(ii) The character “=" or its errone-
ous variants “EQU,” “EQL,” and
([EQ.”

(iii) Any collection of iteration triples
and single arithmetic expressions,
separated by commas. In any iter-
ation triple, CORC will supply a
single missing argument with
value “1.”

(c) As in IF statements, an indefinite num-

ber of relational expressions can be used
in REPEAT-UNTIL statements.

(7) BEGIN and END

REPEAT statements and repeatable blocks
require consistent spelling of labels and match-
ing BEGIN/END pseudo-statements. Through
misunderstanding or carelessness, novice pro-
grammers commit grieyous errors in using
REPEAT statements and their blocks. CORC
attempts to correct a certain subset of errors
whose correction probabilities are attractively

high:

(a) If the label of a BEGIN pseudo-state-

ment is missing, the preceding and fol-
lowing cards are tested for clues:

(i) if the preceding card was a RE-

PEAT statement using a yet-

undefined label, this label is
supplied to the BEGIN pseudo-
statement.

(ii) If (i) fails to hold and if the fol-
lowing card is labelled, this label
is shifted to the BEGIN pseudo-
statement.

(iii) Otherwise, a dummy label is sup-
plied, awaiting further clues to the
identity of the repeatable block. If
such clues never appear, the block
is closed by a CORC-supplied END
pseudo-statement after the last
statement card of the deck.

Should an wunpaired END
pseudo-statement be subsequently
found, the dummy label (on the
BEGIN pseudo-statement) is
changed to match this unpaired
END label.

(b) If the label for an END pseudo-state-

ment is missing, CORC tests for the

(c)

(d)

(e)

existence of a “nest” of unclosed blocks.
If so, the label of the innermost unclosed
block is used in the current END pseudo-
statement. Otherwise, the card is
ignored.

If the label in an END pseudo-statement
does not match the label of the inner-
most unclosed block, the current label is
tested against the labels of the entire
nest of blocks. If a “crisscross” has
occurred, i.e.,

A + BEGIN
B + BEGIN
A END,

CORC inserts the END pseudo-state-
ment for block B before the current
END pseudo-statement for block A.

If the preceding test fails, CORC again
tests the current label against the nest,
looking for a misspelling. If the current
label is misspelled, procedure (c) is
used. If the misspelling tests fail, CORC
ignores the END pseudo-statement.

If the student has programmed an ap-
parent recursion, CORC prints a warn-
ing message but takes no further action.
Although unlikely, there may be a legiti-
mate use for the construction:

A BEGIN
REPEAT A...
A END.

In this situation, CORC makes no at-
tempt to preserve the address linkages
as a truly recursive routine would re-
quire. Thus, the program is likely to
terminate in an endless loop.

(8) READ and WRITE

Only simple or subscripted variables can ap-
pear in READ statements. The subscripts can

ERROR CORRECTION IN CORC 25

be any arithmetic expressions. If a label ap-
pears in the argument list of a WRITE state-
ment, the current count of the label usage will
be printed. Constants, reserved words, and spe-
clal characters are deleted from the argument
lists of READ/WRITE statements.

E. POST-SCANNING SPELLING
CORRECTIONS

The misspelling of labels and variables is
corrected—insofar as CORC is capable—after
scanning an entire deck, with the exceptions
mentioned in section D. After scanning, much
usage and context data have been accumulated.
CORC attempts to resolve suspicious usages by
equating two or more symbols to the same en-
tity.

When the implementation of CORC was
originally under study, heavy weight was given
to the potential benefits from correcting mis-
spellings. Efficient correction of misspellings
seemed to require one of the following similar
strategies:

(a) Two or more complete scans of the
source deck, the first serving primarily
for the collection of data on suspicious
usages such as possible misspellings.

{b) Encoding of the source deck into an in-
termediate language which is tightly
packed and substantially irredundant
but which also permits re-designation of
labels and variables after misspelling
analyses.

A third alternative to these strategies was to
compile the source deck directly into machine
code, then attempt to repair this code after de-
termining the set of corrigible misspellings.
However, this procedure seemed less flexible to
use and more difficult to program than the first
two strategies; it was rejected from considera-
tion.

The second alternative was selected and ap-
pears in both current implementations of
CORC. Details of the strategy are as follows:

(a) BEach new simple variable entered into
the dictionary is paralleled by a pointer-
cell containing the address of a second
cell. This address is ordinarily used
during machine code-generation to rep-

resent the variable in question. Since
any misspelled variable is equated to a
properly-spelled variable after scanning
but before code generation, CORC cor-
rects the misspelling merely by giving
the variables identical pointer-cell con-
tents.

(b) Each new array variable is paralleled by
a pointer-cell containing the base address
of the array. As for simple variables,
only one pointer cell is changed if this
variable is equated to another array
variable.

(c) To each label corresponds a pointer-cell
containing a branch instruction to the
appropriate machine location (when the
latter becomes defined during the gen-
eration of machine code). For an unde-
fined label equated to some other label,
its cell is filled with a branch instruc-
tion to the pointer-cell for the other
label. Thus, execution of GO TO
LABELA, where LABELA is a defined
label, requires two machine-language
branch instructions; if LABELA is an
undefined label equated to LABELB,
three machine-language branch instruc-
tions are required.

The penalty in compilation speed for using
the intermediate language is modest: the aver-
age time to complete compilation for CORC
programs—after the last statement card has
been read—is less than one second; few decks
require more than two seconds.

(1) Correction of misspelled labels

If a label has been referenced but never de-
fined in a label field, it is tested for being a
possible misspelling of some defined label. The
defined label with the highest figure of merit is
selected and the following message is printed:

LABELA IS CHANGED TO LABELB,

where LABELA and LABELB are the unde-
fined and defined labels, respectively. If no de-
fined label has a non-zero figure of merit with
respect to the undefined label, the following
message is printed:

LABELA IS UNDEFINED

Subsequently, all references to this label dur-
ing the generation of machine language are

26 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

treated as “next-statement’” branches. At exe-
cution time, any GO TO or REPEAT state-
ments referencing this label cause the follow-
ing messages, respectively:

IN STATEMENT |
GO-TO NOT EXECUTED.

IN STATEMENT |
REPEAT NOT EXECUTED.

(2) Correction of misspelled simple variables

(a) If an undeclared variable is never used
in suspicious juxtaposition to parenthe-
sized expressions (cf. subsection D(2)
above), CORC attempts to find a de-
clared simple variable meeting the fol-
lowing criteria:

(i) The undeclared variable is a poten-
tial misspelling of the declared
variable.

(ii) The LHS-RHS usage of the de-
clared variable is complementary
to that of the undeclared variable.
By LHS-RHS usage is meant the
following two frequencies:

(aa) Usage on the LHS of an as-
signment statement, in a
READ statement, or in the
initial dictionary. This us-
age corresponds to assigning
the variable a new value.

(bb) Usage on the RHS of an as-
signment statement, in a re-
lational expression, or in a
WRITE statement. This us-
age corresponds to using the
current value of the variable.

The motivation for LHS-RHS analysis
is the following: if two variables are
spelled almost identically, if one has a
null RHS usage and the other a null
LHS usage, then the a priori probability
that the programmer intended a single
entity is higher than the probabilities
for most alternative misspellings.
CORC does not use LHS-RHS analy-
sis alone to determine the best misspell-
ing possibility. Instead, an increment of
5 is added to the figure of merit of each
declared variable whose null usage com-
plements any null usage of the current
test word, i.e., undeclared variable. Un-

declared variables can be equated only
to declared variables, not to other un-
declared variables.

(b) If a declared variable has a null RHS
usage, it may be an erroneous dictionary
spelling of some variable which is there-
after consistently spelled. However,
CORC will announce that the dictionary
spelling is “correct” in this case, after it
detects the misspelling; all “misspelled”
incidences of the variable are equated
to the declared variable.

(3) Examples

Four groups of nearly-matching symbols are
illustrated in Table I. In the first group, the
label ABC requires testing for misspelling. The
label ABCDE is a concatenation misspelling,
figure of merit (FOM) = 6. The label ABD is
a random misspelling, FOM = 3. The label BAC
is a permutation misspelling, FOM = 7. The
label AB=£ is an illegal-character misspelling,
FOM = 7. Thus, CORC would choose at ran-
dom between BAC and AB=£ for the defined
label to which ABC should be equated.

In the second group, the defined label DEI
has FOM = 15 with respect to the undefined
label DE1.

In the third group, three simple variables
have not been declared in the dictionary and
require testing for misspelling. One should re-
member that only declared simple variables,
i.e., XYZ and XYU, are eligible for identifica-
tion with the undeclared variables. With re-
spect to XYV, XYZ has misspelling FOM = 3;
to this must be added the null-RHS increment
of 5, making a total FOM = 8. Since XYU has
only the misspelling FOM of 3 with respect to
XYV, XYV is equated to XYZ.

With respect to YXZ, XYZ has a misspelling
FOM of 7, plus the null-RHS increment of 5,
making a total FOM of 12: since XYU has a
zero FOM for YXZ, CORC equates YXZ to
XYZ.

With respect to YXW, neither XYZ nor
XYU has a positive FOM; thus, YXW is not
equated to a declared variable.

In the fourth group, GH1 was invariably
used as a vector variable. Since it is a resem-

ERROR CORRECTION IN CORC 27

TABLE I. SAMPLE PROBLEMS IN POST-SCANNING SPELLING CORRECTIONS

Declared/ LHS RHS Usage as Usage as Total
Symbol Type Defined? Usage Usage Vector Matrix Usage
ABC label no
ABCDE label yes
ABD label yes
BAC label ves
AB=£ label yes
DE1 label no
DEI label yes
XYZ simple variable yes 1 0 0 0 1
XYU smp. var. yes 2 1 0 0 3
XYV smp. var. no 1 1 0 0 2
YXZ smp. var. no 0 1 0 0 1
YXW smp. var. no 0 2 0 0 2
GHI vector variable yes 2 2 4 0 4
GH1 smp. var. ves 2 2 4 0 4
GHJ smp. var. yes 1 2 2 0 3
GHK smp. var. no 2 2 0 0 4

blance misspelling of the declared vector vari-
able GHI, it is equated to this variable and its
status changed to a vector. GHJ was used 67
percent of the time as a vector variable; since
it is a random misspelling of GHI, it is equated
to the latter. GHK has a positive figure of
merit with respect to each of the three preced-
ing entries. However, GHK was never used as
a vector variable. Since the GHJ and GHI have
been set to vector status, GHK can no longer
be equated to either of them; it thus remains a
distinct, undeclared variable.

V. ERROR MONITORING DURING
EXECUTION

CORC prefaces each compiled statement by
a sequence of machine language instructions to
monitor object-program flow. Additional “over-
head” instructions for monitoring appear in
four types of statements: labelled statements,
statements containing subscripted variables,
REPEAT statements, and READ statements.
The monitoring effort has three objectives:

(a) Prevent the object program from over-
writing the CORC compiler/monitor or
itself;

(b) Continue the execution phase through
untested code when the flow of the ob-
ject program becomes confused (through
misuse of REPEAT statements or in-

complete GO TO, IF, and REPEAT
statements) ;

Provide explicit diagnostic messages for
each error detected at execution time,
followed by an unconditional post-
mortem dump of simple-variable values
and other helpful data.®§

()

A. THE GENERAL MONITOR

(1) CORC accumulates a count of all state-
ments executed, the statement count.
This count is printed in the post-mortem
dump, together with the number of er-
rors committed during the entire pro-
gram and the total elapsed time for the
program. The statement count has two
minor functions: to aid debugging of

§ Many debugging languages such as BUGTRAN
(cf. 6) furnish trace and snapshot information if re-
quested by the programmer. CORC furnishes such
diagnostic information unconditionally; the overhead
instructions cannot be suppressed after programs are
debugged.

28

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

(2)

(3)

(4)

short programs in conjunction with the
“label tallies” (see (3) below) and—
looking towards future CORC re-
search—to exhibit the different speeds
of execution for various programs, e.g.,
with/without heavy subscript usage.
The per-statement overhead of the state-
ment count is 13.2 microseconds, com-
prising a single “tally” instruction.

Before executing each statement, its
source-card serial number (converted to
a binary integer) is loaded into an index
register. Execution-phase messages re-
sulting from this statement retrieve the
serial number and print it as an intro-
ductory phrase to each message, e.g.,

IN STATEMENT 1234, THE PRO-
GRAM IS STOPPED.

Each load-index instruction requires 3.3
microseconds. The percentage of execu-
tion time devoted to items (1) and (2)
is usually less than 3 percent; see (5)
below.

The execution of each labelled statement
is tallied, by label. These tallies are
printed in the post-mortem dump; they
show the progress of the program,
which branches were never taken, end-
less loops, etc. Each tally instruction
requires 13.2 microseconds.

At each labelled statement, a two-posi-
tion console switch is interrogated. In
the normal position, the switch has no
effect on program flow. If set, the
switch causes the program to terminate
at once, printing the message,

IN STATEMENT _________, THE

PROGRAM IS MANUALLY INTER-
RUPTED,

followed by the usual
dump.

post-mortem

Thus, any endless loop can be manu-
ally interrupted without stopping the
computer, although this is rarely neces-
sary. (Cf. the subsequent section on
Terminations.) The switch interroga-
tion is required only at labelled state-
ments, since endless loops must include
at least one label. Each switch interro-

(5)

(6)

(7)

gation requires 7.2 microseconds. The
percentage of execution time devoted to
items (3) and (4) is usually less than
1 percent, as exhibited by the following
analysis.

Assuming that 100,000 statements are
executed per minute, an average state-
ment requires some 600 microseconds.
Since items (1) and (2) aggregate 16.5
microseconds per statement, the over-
head for these items is 2.75 percent. As-
suming that every fourth statement is
labelled, items (3) and (4) are incurred
once every 2400 microseconds on the
average; since these times aggregate
20.4 microseconds, their overhead is
approximately 0.8 percent.

No tracing features are offered in

CORC. If a student requires more diag-

nostic data than is already furnished,

he is encouraged to use WRITE and

TITLE statements generously. However,

he is also warned to print such data

compactly :

(a) If two consecutive pages print less
than 30 percent of the 14,400 char-
acter spaces available (2 pages X
60 lines/page X 120 characters/
line), CORC prints out the follow-
ing message:

——TRY TO USE MORE EFFI-
CIENT WRITE AND TITLE
STATEMENTS AND AVOID
WASTING SO MUCH PAPER

A page-count limit is set for all nor-
mal programs; when this limit is
reached, the program is terminated
at once.

(o)

Each untranslatable source card has
been replaced by a TITLE card during
scanning, bearing the following mes-
sage:
CARD NO. ______ NOT EXE-
CUTED, SINCE UNTRANSLAT-
ABLE.

These messages remind the programmer
of omitted actions during the execution
phase.

ERROR CORRECTION IN CORC 29

B. MONITORING ARITHMETIC ERRORS

CORC wuses conventional procedures for
arithmetic overflow/underflow errors, but
somewhat novel procedures for special-function
argument errors. The machine traps of the
computer detect overflow/underflow conditions,
which are then interpreted into CORC mes-
sages:

(1) IN STATEMENT _____, EX-
PONENT UNDERFLOW. (CORC zeros
the accumulator and proceeds.)

(2) IN STATEMENT _________, EX-
PONENT OVERFLOW. (CORC sets
the accumulator to 1 rather than to some
arbitrary, large number. This tends to
avoid an immediate sequence of identi-
cal messages, allowing the execution
phase to survive longer before termina-
tion from excessive érrors.)

(3) IN STATEMENT ___ | DIVI-
SION BY ZERO. ASSUME QUOTIENT
OF 1.0.

For each special function error, CORC
creates an acceptable argument and proceeds,
instead of taking drastic action, e.g., immediate
program termination, as many monitor systems
do.

®

P
JEXP
SIN
ARGUMENT TOO LARGE. THE RE-

SULT IS SET TO 1.
(56) IN STATEMENT | LN 0

(4) IN STATEMENT

YIELDS (or . . . LOG 0 YIELDS) 1.
" LN

(6) IN STATEMENT) LoG
|SQRT

OF NEGATIVE ARGUMENT. THE
ABSOLUTE VALUE IS USED.

(7) IN STATEMENT , ZERO TO
NEGATIVE POWER—ASSUME 1.

(8) IN STATEMENT ____ $ NEG-
ATIVE ARGUMENT. THE RESULT
IS SET TO 1.

C. TERMINATIONS

Two abnormal terminations were discussed
in the General Monitor section. Altogether,

there are five terminations, caused by the fol-
lowing events:

(1) Console switch set,
(2) Page count limit exceeded.

(8) Time limit exceeded. Overflow of the
real-time clock produces a machine trap
which is intercepted by CORC. For each
program, a time limit (ordinarily of
sixty seconds) is set. (The tab cards
separating the source decks can bear
any non-standard page-count and time
limits.||) When this time is exhausted,
the program is terminated with the fol-

- lowing message preceding the post-
mortem dump:

IN STATEMENT ___ |, THE
TIME IS EXHAUSTED.
Endless loops are terminated by this
procedure, avoiding the necessity of
operator intervention with the console
switch.

(4) Error count too high. After each pro-
gram has been compiled, the total error
count is interrogated. When it exceeds
100, then or thereafter, the program is
terminated with the appropriate mes-

‘sage.
(5) Normal execution of STOP. The mes-
sage
IN STATEMENT _____ |, THE

PROGRAM IS STOPPED

identifies which STOP statement—pos-

sibly of several such statements—has

been met. For all terminations, the post-

mortem dump includes the following:

(a) The final values of all simple vari-
ables. Since arrays may comprise
thousands of cells, CORC cannot af-
ford paper or machine time to dump
them too.

(b) The usage tallies for all labels.

(c) The first fifteen (or fewer) data
card images.

(d) The error-count, statement-count,
and elapsed-time figures.

|| Ordinarily the tab cards are blank. A special re-
run drawer is used for programs which require unusual
output volume or running time; the computing center
inserts special tab cards with non-standard page-count
and time limits before these decks.

30 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

D. MONITORING SUBSCRIPTED
VARIABLES

One of CORC’s most radical innovations is
the universal monitoring of subscripts. CORC
is attempting to trade execution efficiency for
two other desiderata:

(a) Protection of the in-core compiler/moni-
tor against accidental overwriting by
student programs.

(b) Provision of complete diagnostics on all
illegal subscripts: in which statements,
for which variables, and the actual er-
roneous values of the subscripts.

CORC’s excellent throughput speed has de-
pended on infrequent destruction of the in-core
compiler/monitor; in the author’s opinion, sub-
script monitoring is CORC’s most important
protective feature.

Criterion (b)—full diagnostic information
on subscript errors—is also of significance,
since erroneous subscript usage comprises at
least 30 percent of all execution-phase errors.
Students quickly learn that these errors are
among the easiest to commit—although they
are spared the hardship of their detection and
isolation.

Subsecript usage is monitored as follows:

(1) Each reference to a subscripted variable
incurs a load-index instruction corre-
sponding to the dictionary entry for this
variable. If subsequent troubles arise
in the subscripts, CORC can retrieve the
name and other particulars of the vari-
able by using this index register.

(2) The subscript is an arithmetic expres-
sion, whose floating point value is trans-
mitted in the machine accumulator to a
closed subroutine for unfloating num-
bers.

(8) The latter subroutine checks for a posi-
tive, integral subscript.
(a) 0 is changed to 1 with the following
message:

IN STATEMENT
SCRIPT FOR VARIABLE
IS 0. IT IS SET TO 1.

, SUB-

(4)

(b) Negative numbers are also changed
to 1:

IN STATEMENT
SCRIPT FOR VARIABLE
IS NEGATIVE. IT IS SET TO 1.

(¢) If non-integral, the subscript is
rounded to an integer. If the round-
off error is less than 10-°, no error
message is incurred; earlier calcula-
tions may have introduced small
round-off errors into a theoretically
exact subscript. If the round-off
error exceeds 10-°, the following
message appears:

, SUB-

IN STATEMENT ______ | SUB-
SCRIPT FOR VARIABLE
IS NON-INTEGRAL. IT IS

ROUNDED TO AN INTEGER.
(d) After verifying (or changing to) a
positive, integral subscript, the
closed subroutine for unf'oating
subscripts returns control to the
size test peculiar to this variable.

The subscript is tested for exceeding the
appropriate dimension of the array vari-
able. Thus, the first subscript of a
matrix variable is tested against the
declared maximum number of rows, and
the second subscript is tested against the
declared maximum number of columns;
a vector subscript is tested against its
declared maximum number of elements.
An excessive value incurs one of the
three following messages:

IN STATEMENT
FIRST
IS THE {SECOND} SUBSCRIPT FOR

VECTOR
THE VARIABLE SINCE
IT IS EXCESSIVE, IT IS REPLACED
BY THE VALUE

The second blank in the message is filled
with the current execution-phase value
of the subscript. The third and fourth
blanks are filled with the variable name
and its maximum allowable subscript.
This action serves to repair the errone-
ous subscript but hardly to correct it.

ERROR CORRECTION IN CORC 31

The overhead for each error-free
usage of a subscript is 85 microseconds.
With obvious waste of effort, this over-
head is incurred six times for the state-
ment:

LET A(LJ) = B(1,J) + C(1,J).

Future versions of CORC may treat
such repeated usage of identical sub-
scripts with more sophistication. How-
ever, one must remember that “A,” “B,”
and “C” could have different maximum
dimensions, in this example. A row sub-
script legal for “A” might be excessive
for “B,” ete. Also, in statements such as

LET A(I) =A(I+ 1),

one must corroborate the legal size of
“(I + 1)” as well as that of “L.”

The per-program overhead of sub-
script monitoring varies between 0 per-
cent and 90 percent of the execution
time, as one might guess. An average
overhead of 15 percent has been meas-
ured for a representative batch of
programs.

E. MONITORING REPEATED BLOCKS
(1) Each repeatable block is legally used

only as a closed subroutine. Hence, the
exit instruction from the block—machine
code generated by its END pseudo-
statement—can be used to trap any
illegal prior branch to an interior state-
ment of the block. (One cannot enter
a block by advancing sequentially
through its BEGIN pseudo-statement.
However, one can illegally branch to an
interior statement of a repeatable block
from a statement physically outside the
block.) When the block is properly
entered by a REPEAT statement, the
address of the exit instruction is prop-
erly set; after the repetitions have been
completed, a trap address is set into this
exit instruction before the program ad-
vances beyond the REPEAT statement.

Thus, program flow can physically
leave and re-enter a repeatable block in
any complex pattern, as long as the block
has been properly “opened” by a RE-
PEAT statement and has not yet been

(2)

“closed” by completion of the repeti-
tions. In this respect, CORC allows more
complex branching than most compilers.

When the exit instruction traps an
illegal prior entry, CORC prints the fol-
lowing message:

IN STATEMENT ________, AN IL-
LEGAL EXIT FROM BLOCK _____—__
HAS JUST BEEN DETECTED. IN
SOME PREVIOUS GO-TO STATE-
MENT, THE BLOCK WAS ILLE-
GALLY ENTERED. THE PROGRAM
CONTINUES AFTER THE END
STATEMENT OF THIS BLOCK.

To protect against various illegal usages
of the bound variable in REPEAT-FOR
statements, CORC pre-calculates the
number of repetitions and conceals this
count from the repeatable block; the
count is fetched, decremented, and
tested only by the REPEAT statement.
This discussion is amplified in (d) below.

Consider the statement: REPEAT B
FOR V= (E,, E,, E;):
(a) If E; = E;, the block is executed
once.

(b) Otherwise, if E, is zero, CORC
prints the following message: IN
STATEMENT _____ | IN RE-
PEAT-FOR TRIPLE, SECOND
ARGUMENT IS 0. THE REPEAT
IS EXECUTED ONCE.

(¢) Otherwise, if (E; — E,)/E, is nega-
tive, CORC prints the following
message:

IN STATEMENT | IN
REPEAT-FOR TRIPLE, SECOND
ARGUMENT HAS WRONG SIGN.
THE REPEAT IS EXECUTED
ONCE.
(d) Otherwise, CORC uses the count
E. - E,
k>
ber of repetitions. This count is re-
duced by 1 for each iteration, irre-
spective of the subsequent values of
“V,” “RH,” or “E,” Novice pro-
grammers often manipulate “V” in-
side repeatable blocks; CORC pre-

:I to determine the num-

32 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

vents many potentially endless loops
by ignoring this manipulation.

F. MONITORING DATA-CARD INPUT

The reading and checking of data cards was
introduced in Section IV. In brief, a READ
statement causes the following steps to occur.

(1) A new card is read in; if it is of type 1,
CORC assumes it to be the first card of
the next source deck. Thereupon, the
following messages appear:

THE INPUT DATA HAS BEEN

EXHAUSTED. IN STATEMENT
, CORC SUPPLIES A

DATA CARD FOR THE VARIABLE
WITH VALUE 1.0.

Thus, CORC enters a value of 1 for the
READ variable and proceeds with the
program; subsequent READ statements
incur only the second message above.

(2) If the new card is neither type 1 nor
type 4 (i.e., the correct type), CORC
prints this message:

IN STATEMENT | THE
CARD IS ASSUMED TO BE A
DATA CARD.

(3) If the new card is type 4—possibly as
the result of (2) above—CORC checks
the variable field against the wvariable
name in the READ statement. If they
disagree, CORC considers the name in
the READ statement to be correct; the
following message is printed:

IN STATEMENT , THE
VARIABLE ____ WAS READ
FROM THE CARD. THE VARI-
ABLE IN THE READ STATEMENT
WAS

(4) When the variable names have been
reconciled CORC checks for none, one,
or two subscripts on the card, as appro-
priate to the READ variable. Missing
or erroneous subscripts incur the follow-
ing message:

IN STATEMENT , THE
SUBSCRIPT () WAS
READ FROM THE CARD. THE

SUBSCRIPT IN THE READ STATE-
MENT WAS (,),

or

IN STATEMENT | THE
SUBSCRIPT () WAS READ
FROM THE CARD. THE SUB-
SCRIPT IN THE READ STATE-
MENT WAS ().

In every case, CORC uses the value in
the READ statement.

VI. CONCLUSIONS

A. EXPERIENCE IN PRACTICE

Throughout the 1962-63 academic year,
CORC was in “pilot project” status; in 1963—64
CORC was established as the fundamental com-
puting tool for undergraduate engineering
courses at Cornell. In the spring semester of
1964, over 15,000 CORC programs were run,
peaking at 2500 programs in one week.

The performance of CORC programmers far
surpassed the preceding years’ performance by
ALGOL programmers at Cornell in such re-
spects as speed of language acquisition, average
number of re-runs per program, and average
completion time for classroom assignments.

Actual processing time can be evaluated from
the following figures, which are rough esti-
mates based on last year’s experience with
CORC programs:

(a) Average processing time (tape/tape con-

figuration)—500 programs per hour.

(b) Average machine-code execution rate—

100,000 source-language statements per

minute, for a random sample of twenty
student programs.

(¢) Average compilation time for CORC pro-
grams—Iless than two seconds.

(d) Turnaround time for programs—one
day or less, with rare exceptions.

The author has automated the operation of
the compiler/monitor to the following degree:
only a random machine malfunction can cause
the computer to halt. Since programming errors
cannot produce object code that erroneously
diverts control outside the CORC system, the

ERROR CORRECTION IN CORC 33

role of the machine operator is merely to mount
input tape reels and remove output tapes: the
computer console needs almost no attention.

A few error-detection procedures were
altered during 1962-64, primarily to make
diagnostic messages increasingly explicit. A
new CORC manual was prepared for instruc-
tional use in 1963—64 ; this manual omitted any
catalogue of errors, since the author expected
that the compiler/monitor systems could de-
scribe the errors—and the corresponding re-
medial actions—in satisfactory detail.

CORC has imposed a modest load on the two
computers at Cornell. The computing center
is satisfied that neither FORTRAN nor ALGOL
can lighten this load, which is rarely as much
as two hours of CORC runs daily. (FORTRAN
and ALGOL systems have greater capability
but require more facility in programming. The
class of problems for which CORC has been
developed would not warrant the expenditure
of time required to program in the advanced
languages.) In the author’s opinion, this small
commitment of resources is well-justified by
the educational value of the CORC project.

B. POTENTIAL UTILITY OF CORC

The author feels that many universities and
technical colleges can profitably utilize CORC
for introductory instruction. The designers of
CORC are convinced that a simple language is
well suited for initial study; many Cornell stu-
dents have already easily advanced to FOR-
TRAN or ALGOL after mastering CORC.

With respect to the error-detection and error-
correction features, CORC demonstrates the
modest effort required to furnish intelligible
messages and how little core memory and
machine time are consumed. Many CORC error-
monitoring procedures deserve consideration in
future implementations of compiler languages:
unconditional counts of statement labels (or
statement numbers), source-program citations
in diagnostic messages, and brief dumps fol-
lowing all program terminations. The monitor-
ing of subscripts would not be burdensome if
the latter were carried as integers—index
registers are used in most current compiled
codes. Ninety percent of the CORC subscript-

usage execution time is devoted to unfloating
numbers, and only ten percent is devoted to
testing these numbers for size.

C. POTENTIAL IMPROVEMENTS IN CORC

Four areas for significant improvements in
CORC are as follows:

(1) Identification of integer-mode variables
by their context. Index registers can
then be used for arrays and loop count-
ing as in FORTRAN.

(2) A problem-grading mechanism. Each in-
structor can assign a scale of penalties
for various errors. CORC will process
his batch of student programs and as-
sign the appropriate grades.

(3) A permanent file for tabulating errors.
Each time that CORC programs are
run, an auxiliary output device—paper
tape or punched cards—will record the
serial number of each error committed.
Periodically, these tapes or cards will be
summarized. This data will furnish sta-
tistical estimates for the a priori occur-
rence probabilities of the errors.

(4) Remote consoles. These are much dis-
cussed in current computer literature,
and they hold unusual promise for high-
volume university operation. Students
would type in their programs from key-
boards distributed around a campus
covering hundreds of acres. Either these
programs would interrupt a large com-
puter programmed for real-time entry,
or they would be stacked on tape/disk
by a satellite computer. Perhaps results
could be printed/typed at these remote
stations by the satellite computer.

The author and his colleagues are well aware
of shortcomings in the language. However, they
intend to resist changes which increase the
power of the syntax at the expense of linguistic
simplicity. Changes on behalf of additional
simplicity or clarity are willingly accepted.
Continuing efforts will be made to improve the
clarity and explicitness of the djagnostic mes-
sages, so that classroom instruction can be
further integrated with output from the
computer.

34 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

VII. ACKNOWLEDGMENTS 2. DAMEREAU, F. J., “A Technique for Com-
The author is a former student of Professors puter Detection and Correction of Spelling
Conway and Maxwell; he gratefully acknowl- Errors,” Comm. ACM, 7, 171 (1964).
edggs their assistance to the error-correction 3. DAMEREAU, F. J., op. cit.
project. .
4. Ibid.

Other contributors were R. Bowen, J. Evans,

C. Nugent, J. Rudan, and R. Sanderson. 5. BLAIR, C. R., “A Program for Correcting

Spelling Errors,” Inform. and Ctrl., March

VIII. REFERENCES 1960, pp. 60-67.
1. CoNwaY, R. W., and MaxwgLL, W. L., 6. FERGUSON, H. E., and BERNER, E., “Debug-
“CORC: The Cornell Computing Language,” ging Systems at the Source Language

Comm. ACM, 6, 317 (1963). Level,” Comm. ACM, 6, 430 (1963).

THE COMPILATION OF NATURAL LANGUAGE TEXT
INTO TEACHING MACHINE PROGRAMS®

Leonard Uhr
University of Michigan
Ann Arbor, Michigan
Consultant, System Development Corporation
Santa Monica, California

Programmed instruction, via digital com-
puters, must be made as painless as possible,
both in the writing and the changing of pro-
grams, for the author of the programmed text.
Otherwise we will only slowly accumulate a
body of expensive programs that we will never
succeed in testing adequately. It is crucial,
given that we are investigating programmed
instruction at all, that it become easy to write

and rewrite the programs

LVUSL LIS,

A great deal of research is needed as to the
effectiveness of different types and sequences
of items; therefore, programs must be flexible
and easily changed. A large number of differ-
ent programs will be needed, from many dif-
ferent content areas. These programs should
be written by people whose competence is in
these content areas. Such people cannot be ex-
pected to learn about computers, or about pro-
gramming. Ideally, the problems of writing a
program for computer teaching of a course in,
for example, logic, French, botany, or computer
programming should be no greater than the
problems in writing a good book.,

This paper describes a set of two programs
that have been written to (1) allow someone
to write a program in his content area without
having to learn anything new other than what

appears to be an acceptable minimum of con-
ventions, and then compile it (TMCOMPILE),
and (2) interpret the compiled program, thus
giving a running program that interacts with
students (TEACH).

In effect, then, this is a compiler-interpreter
for programs that are written in relatively un-
constrained natural language (no matter
which), so long as they are oriented toward
the specific problem of programmed instruc-
tion, in that they conform to the format con-
straints described below. It is thus similar in
spirit to problem-oriented compilers. Similar
compilers have been coded at IBM (referred to
in Maher?) and SDC (Estavan?!). Despite what
appear to be a significantly simpler logic and
fewer conventions that must be learned, the
present compiler, by means of its branching
features, appears to handle a larger set of pro-
grams than IBM’s, uses a somewhat simpler
set of formatting rules, and offers the ability
to make loose, partially ordered and/or unor-
dered matches, to use synonyms, and to delete
and insert questions conveniently. Estavan has
written a program that assembles instructions
telling a student where to look in a pre-assigned
textbook. This program is restricted to multi-
ple-choice questions.

* The author would like to thank Ralph Gerard for bringing the magnitude of the practical need for such a
compiler to his attention, William Uttal for discussions of some of the features that such a compiler should have,

and Peter Reich for suggestions as to format.

36 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

Description of the Program and the Inputs
It will Accept

If he wishes, the author of a programmed
text might sit down at the keypunch or flexo-
writer and compose in interaction with the
computer. Or he might retire to his study
and write down the set of information, ques-
tions, alternate possibilities for answers, and
branches that he wants, and ask a keypunch
operator to put these onto cards for compiling.
In either of these two modes he must follow a
few conventions, as described below. Or, if he
insists upon his freedom, he might simply be
asked to write his text in any way he desired,
subjeet only to the restriction that it follow the
very general format of containing only: (1)
statements giving information to the student,
and (2) questions about this information,
either (a) multiple-choice, (b) true-false, or
(¢) correctly answerable in a concise way, with
the various acceptable crucial parts of answers
listed by the author right after the question
and acceptable synonyms listed in a synonym
dictionary. In addition, for each alternative
answer (or set of alternatives), the author
should say what question or statement of fact
the program should ask of the student next.
(Or, alternatively, if the author does not bother
to specify this, the program will simply go to
the next item—the next statement or ques-
tion—according to the order that the author
has given them.) A text written in such a way
could easily be formatted by the keypunch op-
erator who punched it onto cards.

In general, then, the type of text that the
author must write must be a set of strings
which are either statements (of information)
or questions. The questions must be followed
by the alternate possible answers, and each set
of alternate possible answers must be followed
by an explicit or implied branch to another
string in the text. Figures 1A and 2A give ex-
amples of such texts.

If the author is willing to go to a little bit of
trouble, he will produce the texts of Figures 1A
and 2A in a form that will be compiled di-
rectly. Figures 1B and 2B show what these
texts would look like then.

If the author makes use of the computer as
he writes, he can delete strings that he would

like to change, by means of an instruction to
“erase string i,” and then, if he wishes, write
in the new version of string i. He can also ask
the program to begin teaching him (or others),
to collect data on successes and failures, and to
give him a feeling of the program from the
student’s point of view.

Rules for Format

A. The peculiarities of this language that the
user must learn are as follows:

1. A new item must be identified by
*NAME.

2. Items are composed of elements, and all
elements are bounded by slashes (/).

3. The following things are elements: (a)
the entire statement giving information
or advice, (b) the entire question, (c)
each alternative possible answer to a ques-
tion, (d) the branch to the next string to
be presented to the subject.

4. The branch element must start with an
asterisk (*).

B. If he so desires, the author can gain a
good bit of additional flexibility by using
the following additional features of the lan-
guage:

5. The NAME is optional: if none is given,
the program names this string with the
integer one greater than the last integer
name given. The name can either be an
integer (in which case care must be taken
that it is never automatically assigned by
the program) or a string of alphanumeric
character.

6. An “otherwise” branch (**) for the en-
tire question is optional, and goes at the
end of the answer portion of a question.

7. Partial matches between a student’s an-
swer and an acceptable answer will be
accepted if they fulfill the following cri-
teria: (a) if a word in the answer is
listed in a synonym dictionary that has
been read into the program as equivalent
to a word that the student uses, (b) if
the correct answer is a connected sub-
string of the student’s answer, (c¢) if a
correct answer is specified as a list of sub-
strings separated by commas and pe-

THE COMPILATION OF NATURAL LANGUAGE TEXT 37

A. 1In Need of Pre-editing.

TO TELL WHETHER AN OBTAINED DIFFERENCE IS SIGNIFICANT, YOU MUST KNOW
WHETHER IT IS IARGER THAN MIGHT ARISE FROM SAMPLING VARIABILITY. SAMPLING
VARIABILITY IS DUE TO ACCIDENTAL OR CHANCE FACTORS THAT AFFECT THE
SELECTION OF OBSERVATIONS INCLUDED IN THE SAMPLE. THESE CHANCE FACTORS
OBEY THE IAWS OF PROBABILITY; FROM THESE IAWS YOU CAN CAICUIATE HOW BIG

A DIFFERENCE MIGHT BE EXPECTED BETWEEN TWO SAMPLES DRAWN FROM THE SAME
POPUIATION. THE IAWS OF PROBABILITY APPLY ONLY TO SAMPIES THAT CAN EE

SHOWN TO BE RANDOM SAMPIES.

A RANDOM SAMPIE MUST BE SELECTED IN A WAY THAT GIVES EVERY OBSERVATION IN
THE - BEING SAMPIED AN EQUAL CHANCE OF BEING INCLUDED.

ANSWER: POPUIATION.

WHEN THE NAMES OF THE STUDENTS IN A COLLEGE ARE WRITTEN ON IDENTICAL
SLIPS AND ARE DRAWN OUT OF A HAT BY A BLINDFOLDED PERSON, THE SAMPIE SO
DRAWN IS A - SAMPIE BECAUSE FACH MEMBER OF THE POPUIATION WOULD HAVE

AN - - OF BEING INCLUDED. ANSWER: RANDOM...EQUAL CHANCE.

A SAMPLE THAT IS NOT RANDOM IS BIASED. IF SOME OF THE STUDENTS'
NAMES WERE NOT IN THE HAT, THE SAMPLE DRAWN WOULD BE - . ¢

ANSWER: BIASED.
B. Prepared for Automatic Compilation.

*/TO TELL WHETHER AN OBTAINED DIFFERENCE IS SIGNIFICANT, YOU MUST KNOW
WHETHER IT IS IARGER THAN MIGHT ARISE FROM SAMPLING VARTABILITY. SAMPLING
VARIABILITY TS DUF TO ACCIDENTAL OR CHANCE FACTORS THAT AFFECT THE
SELECTION OF OBSERVATIONS INCIUDED IN THE SAMPLE. THESE CHANCE FACTORS
OBEY THE IAWS OF PROBABILITY; FROM THESE IAWS YOU CAN CAICUIATE HOW BIG

A DIFFERENCE MIGHT BE EXPECTED BETWEEN TWO SAMPLES DRAWN FROM THE SAME
POPULATION. THE IAWS OF PROBABILITY APPLY ONLY TO SAMPIES THAT CAN BE

SHOWN TO BE RANDOM SAMPIES/

*/A RANDOM SAMPLE MUST BE SELECTED IN A WAY THAT GIVES EVERY OBSERVATION

IN THE - BEING SAMPLED AN EQUAL CHANCE OF BEING INCLUDED/POPUIATION/

*/WHEN THE NAMES OF THE STUDENTS IN A COLLEGE ARE WRITTEN ON IDENTICAL
SLIPS AND ARE DRAWN OUT OF A HAT BY A BLINDFOLDED PERSON, TEE SAMPIE SO
DRAWN IS A - SAMPLE BECAUSE FACH MEMBER OF THE POPULATION WOULD

HAVE AN - - OF BEING INCLUDED/RANDOM.EQUAL CHANCE.=1/

*/A SAMPIE THAT IS NOT RANDOM IS BIASED., IF SOME OF THE STUDENTS'
NAMES WERE NOT IN THE HAT, THE SAMPLE DRAWN WOULD EE - /BIASED/

Figure 1. A Sequence Typical of Those Found in Programmed Instruction
Texts.

Figure la. In Need of Pre-editing.

Figure 1b. Prepared for Automatic Compilation.

38 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

A. In Need of Pre-editing.

JOHN LIKES MARY BROWN.

WHO DOES JOHN LIKE? MARY BROWN.B. MARY.A.

A. MARY WHO? BROWN.B; OTHERWISE TO 1ST

B. BUT MARY LIKES PHIL AND PHIL LIKES BETTY.

DOES MARY LIKE BETTY? YES OR NO.C. DON'T KNOW.D.

C. YOU REALLY CAN'T KNOW FROM WHAT YOU'VE BEEN TOLD. TIF ONE PERSON LIKES
A SECOND PERSON WHO LIKES A THIRD, IT'S NOT CERTAIN THAT THE FIRST PERSON
LIKES THE THIRD.

D. JOHN LIKES BETTY TOO, ALONG WITH JANE, AND CAROL.

WHO DOES JOHN LIKE? BETTY, MARY, JANE, OR CAROL.E. GIRLS, OR WOMEN.F.

E. GENERALIZE. WHAT DO BETTY, MARY, JANE AND CAROL HAVE IN COMMON?

JOHN LIKES - . GIRLS, OR WOMEN.F. WHO JOHN LIKES.G.

F. RIGHT. BUT NOT NECESSARILY ALL. DO YOU THINK JOHN LIKES MOST GIRLS?
YES, OR MAYBE.H. NO, OR DON'T KNOW, OR NOT ENOUGH INFORMATION.TI.

G. TIT DOESN'T ADD MUCH TO SAY "JOHN LIKES THAT WHICH JOHN LIKES." SUCH A
STATEMENT IS CALLED A TAUTOLOGY -- THERE'S NO POINT IN SAYING THE SECOND
HALF ONCE YOU'VE SAID THE FIRST HAIF.I.

H. NO. THIS IS A VERY FALLIBLE AND UNLIKELY SORT OF INFERENCE TO DRAW.
FOR INSTANCE, JOHN CERTAINLY DOESN'T EVEN KNOW MOST GIRLS. GENERALIZATIONS
OF THIS SORT ARE RISKY AT BEST, BUT AT THE LEAST YOU MUST KNOW MUCH MORE
ABOUT THE TOTAL GROUP -~ GIRLS -- AND ITS REIATION TO JOHN AND HOW THE

PARTICUIAR EXAMPLES GIVEN WERE CHOSEN.
I. TIT SO HAPPENS THAT JOHN DOES LIKE MOST OF THE GIRLS THAT HE KNOWS, MOST

MEN AND BOYS DO. BUT THERE ARE AIWAYS EXCEPTIONS. FOR EXAMPLE, JOHN
DOESN'T LIKE ALICE. ON THE OTHER HAND, HE USUALLY LIKES THE GIRLS THAT
PHIL LIKES.

IS TT LIKELY THAT JOHN LIKES BETTY? YES.J. OTHERWISE.K.

J. RIGHT. SINCE PHIL LIKES BETTY AND JOHN TENDS TO LIKE GIRIS AND TENDS
TO LIKE GIRIS THAT PHIL LIKES.L.

K. THERE IS SOME REASON TO THINK YES, SINCE PHIL LIKES BETTY.

L. READ PAGES T-13 OF THE TEXT.

Figure 2. A Contrived Example Exhibiting Some Features of the Program.

THE COMPILATION OF NATURAL LANGUAGE TEXT 39

*/JOHN LIKES MARY BROWN/

*/WHO DOES JOHN LIKE/MARY BROWN/*B/MARY/*A/%%1/

*A/MARY WHO/BROWN/*B/**1/

¥B/BUT MARY LIKES PHIL AND PHIL LIKES BETTY/

*/DOES MARY LIKE BETTY/YES/NO/*C/N.T.KNOW.=2/*D/

%C/YOU REALLY CAN'T KNOW FROM WHAT YOU'VE BEEN TOID. IF ONE PERSOF LIKES
A SECOND PERSON WHO LIKES A THIRD, IT'S NOT CERTAIN THAT THE FIRST PERSON
LIKES THE THIRD/

*¥D/JOHN LIKES BETTY TOO, ALONG WITH JANE, AND CAROL/

*/WHO DOES JOHN LIKE/BETTY,MARY,JANE,CAROL,=0/*E/GIRLS,WOMEN,=0/*F/
¥E/GENERALIZE. WHAT DO BETTY, MARY, JANE, AND CAROL HAVE IN COMMON/
*/JOHN LIKES -/GIRLS,WOMEN,=0/%F/WHO.JOHN.LIKES.=2/%G/**1/

. ¥F/RIGHT. BUT NOT NECESSARILY ALL. DO YOU THINK JOHN LIKES MOST GIRLS/
YES/MAYBE/*H/NO/DON'T KNOW/NOT ENOUGH INFORMATION/*I/

*G/IT DOESN'T ADD ‘MUCH TO SAY "JOHN LIKES THAT WHICH JOHN LIKES." SUCH

A STATEMENT IS CALLED A TAUTOLOGY -- THERE'S NO POINT IN SAYING THE SECOND
HAIF ONCE YOU'VE SAID THE FIRST HAIF/*I/

*H/NO. THIS IS A VERY FALLIBLE AND UNLIKELY SORT OF INFERENCE TO DRAW,

FOR INSTANCE, JOHN CERTAINLY DOESN'T EVEN KNOW MOST GIRLS. GENERALIZATIONS
OF THIS SORT ARE RISKY AT BEST, BUT AT THE IEAST YOU MUST KNOW MUCH MORE ABOUT
THE TOTAL GROUP -- GIRis -- AND ITS REIATION TO JOHN AND EOW THE PARTICULAR
EXAMPIES GIVEN WERE CHOSEN/

*I/IT SO HAPPENS THAT JOHN DOES LIKE MOST OF THE GIRLS THAT HE KNOWS. MOST
MEN AND BOYS DO. BUT THERE ARE AIWAYS EXCEPTIONS. FOR EXAMPIE, JOHN
DOESN'T LIKE ALICE. ON THE OTHER HAND, HE USUALLY LIKES THE GIRIS THAT

PHIL LIKES
/ (Continued)

40 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

*/IS TT LIKELY THAT JOHN LIKES BETTY/YES/*J/%*K/

*J /RIGHT.

'T0 LIKE GIRIS THAT PHIL LIKES/*L/

SINCE PHIL LIKES BETTY AND JOHN TENDS TO LIKE GIRLS AND TENDS

¥K/THERE IS SOME REASON TO THINK YES, SINCE PHIL LIKES BETTY/

*L/READ PAGES T-13 OF THE TEXT/

Figure 2b. Prepared for Automatic Compilation.

riods, and ending with a number, e.g.,
/XX, XX, XX.XX.=N/, the program will
look for an unordered match of the sub-
strings terminating in commas, and an
ordered match (starting from the first
ordered substring) of the substrings ter-
minating in periods. It will count the
number of such matches it gets, and, if
this is greater than N, it will accept the
student’s answer.

To summarize briefly, a new item must start
with an *. Its elements (statement of fact,
question, alternate answer, branch) must be
bounded by /. An item with more than one
element is treated as a question. An item can
have an optional numerical or symbolic name.
A branch for any set of alternate answers can
be specified by * , and an “otherwise” branch
by **.

The following is a short example:

*1/JOHN LIKES JANE,SALLY,JO,AND
BETTY./

*A|WHO DOES JOHN LIKE/JANE,SAL-
LY,BETTY,J 0,—0,/*B/GIRLS/*C/MA,SAN-
TA,MO,—0/*/**1/

+/DON'T BE IRRELEVANT/*A/
*C/BE MORE SPECIFIC/*A/

*B/BILL LIKES MARY,ANN,JANE,
RUTH,SALLY,AND JO./

*/NAME TWO GIRLS BOTH JOHN AND
BILL LIKE./JA,SA,JO,—1/* /**B/

DISCUSSION

Optional Modes of Operation

The program will automatically refrain from
asking a question that has previously been an-
swered correctly with a frequency above a tol-
erance parameter, t, or if the student, at the
time he answered the question correctly, also
said “*EASY*.”

Several other features are optional, depend-
ent upon whether special flags have been raised
for the particular run. Thus, when desired, the.
program will print out any or all of the follow-
ing in response to a student’s answer when a
set of answers is required: “YOU ARE RIGHT
TO SAY—" followed by the correct elements
of the student’s answer, “YOU ARE WRONG
TO SAY—" followed by the incorrect elements
of the student’s answer, and “YOU SHOULD
HAVE SAID—” followed by those elements
that the student left unsaid.

The compiler and interpreter programs were
coded in SNOBOL (Farber?) for the IBM 7090.
As presently coded, the interpreter program
handles only one student, accumulating the fre-
quency of his success and failure on each ques-
tion. If many consoles were used, each console
would have a name and the different students
would time-share the program. It seemed futile
to add this to the present program (although it
would be trivial to do so0), since SNOBOL has
no provision for reading in from on-line
sources.

THE COMPILATION OF NATURAL LANGUAGE TEXT 41

Figure 3 gives examples of a compiled pro-
gram and its interactions with a student.

Some Examples of Types of Material
That Can Be Handled

The person writing the text to be compiled
has a great deal of latitude in formatting his
material. The present set of programs will
handle a wide variety of question and statement
formats, including multiple-choice, true-false,
fill-ins (either connected or disconnected, or-
dered or unordered), short answer questions,
and essays. The limitations of the short an-
swer type of question lie in the ability of the
people who specify the alternate acceptable an-
swers and the synonym dictionary. The key
parts to the answer might be very loosely
stated. A statement might impart information,
or make a comment about the student’s per-
formance, or it might command the student to
read a certain section of a certain book or per-
form a certain series of exercises. A branch
might be to a question that underlies, forms a
part of, or supplements the question missed (or
got). Separate branches can be established for
different answers with different implications
and for different partial answers.

With such programs the distinction between
teaching, testing and controlling the student be-
comes an arbitrary one. Thus a compiled pro-
gram might be used to train the student in
some content area, to simultaneously train and
test, to give a final examination, or to run an
experiment that explored the student’s abilities
under some specified conditions and treatments.

Possible Extensions to the Present Program

The program that has been coded is a simple
first attempt toward what might be done, such
as the following.

A. Rather than branch to a single string, the
strings could belong to one or more classes, and
the branch could then be to a class that con-
tained several strings. For each particular ex-
ecution of the branch, a random choice could
be made; or, better, this choice could be a func-
tion of the difficulty of the different members of
the class.

B. Frequencies of successes and failures
could be collected for (1) each student, (2) all

students, (3) given types of students (e.g., high
1Q, impulsive). Then the choice of the particu-
lar branch could be a function of the appro-
priate individual and/or group information as
to what is likely to benefit this student.

C. The decision as to what group to put a
student into could be made by the program, if
it compared the patterns of successes and fail-
ures across students, and put students with
similar patterns into the same group (e.g., by
Kendall’s tau).

D. The decision as to what string to branch
to after each string could be made by the pro-
gram, by some rule such as the following: (1)
branch to a string whose success-failure fre-
quencies are similar to this string’s, (2) branch
to a string whose answer is a substring of the
answer to this failed string, (8) branch to a
string whose answer contains this correctly an-
swered string.

E. Weights of specific strings can be not
merely functions of success-failure of them-
selves, but also functions of success-failure of
other strings that are related to them by, for
example, (1) equivalence-relatedness as speci-
fied by the author in a simple equivalence dic-
tionary, (2) connectedness in the sense of the
graph formed by the branches cycling through

I oy

tha atn
LI DUriiigsS.

F. At least simple methods could be pro-
grammed for taking an ordinary book, break-
ing it up into a set of statements, interspersing
questions composed by the program, and then,
by pretesting with human experimental stu-
dents, winnowing the questions down to a good
set (e.g., (1) non-redundant, (2) suitably dif-
ficult, (3) reliable, (4) valid).

G. Answers could be recognized by addi-
tional partial and loose matches that would
allow for a wider variety of alternate forms,
for example, misspelled words, than can be rec-
ognized at present.

H. The program could systematically collect
alternate answers (e.g., from students that it
judges to be pretty good) and occasionally ask
its teacher whether these would in fact be ac-
ceptable alternates. It would then add these to
its memory. It could similarly augment its
synonym dictionary.

42 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

*/SUPPOSE WE HAVE TWO SENTENCESs 'At' AND 181, THEN THE SENTENCE
'(A)VI(B)!' IS CALLED THE DISJUNCTION (OR ALTERNATIONs CR LOGICAL
SUM) OF THE SENTENCES 'A' AND 'B'./

*/ A SENTENCE SUCH AS '(C)VI(D)' IS CALLED THE LOGICAL SUMs OR
ALTERNATIONs OR ====w=- «/DISJUNCTION/*/%%1/

*A/ WE AGREE THAT THE DISJUNCTION '(A)V(B)' IS TRUE IF AND ONLY
IF AT LEAST ONE OF THE TWO SENTENCES 'A' AND 'B' IS TRUEs IleFes
IF EITHER 'A' IS TRUE, OR 'B' IS TRUE, OR BCGTH OF THEM ARE TRUE./
*B8/ IF IT IS NOT KNOWN WHETHER 'A' IS TRUEs CAN '(A)VI(B)' BE
TRUE/YeEeSe=1/k/%%A/

¥C/ IF 'A' IS FALSEs CAN '(AIV(B)' BE TRUE/YES//%%A/

*D/ IF 'A' AND 'B! ARE FALSEs CAN '(A)V(B)V(C)!' BE
TRUE/(CA)I)NeTeSA(Y) e=2/%F/%%G/

*E/ YESs IN FACT IT CANe BUT THIS DOES NOT YET FOLLCW FRUM WHAT
YOU HAVE BEEN TCLD./

#*F/ YOU ARE RIGHT IN SAYING THAT YOU DONT KNOW IF YOU MEAN

THAT THIS IS NCT YET DECIDED./

*G/ IN FACT IT CANe BUT THIS HAS NOT YET BEEN STATED EXPLICITLY IN
THE SYSTEM BEING DEVELCPED FOR YCU./

*¥H/ THE SIGN 'V' OF DISJUNCTION CORRESPONDS WITH FAIR EXACTNESS
TO THE ENGLISH WORD 'OR' IN THOSE CASES WHERE 'OR' STANDS BETWEEN
TWO SENTENCES AND IS USED (AS IT MOST FREQUENTLY IS) IN THE
NON-EXCLUSIVE SENSE./

*1/ WITH WHAT COMMON ENGLISH WORD DOES THE SIGN 'V! CCRRESPOND
MOST CLOSELY/CR/#*/%%Hy

*#J/GCODe 'OR' IS CORRECTs CONGRATULATIONS ON FINISHING

THIS LESSONe/

~

Figure 3. A Short Example of a2 Computer Run That Demonstrates Some Simple Uses of the Partial Match Features.

Figure 3a. Listing of the Program to be Compiled.

THE COMPILATION OF NATURAL LANGUAGE TEXT 43

INTERACTIONS WITH STUDENTS FOLLOW.

INFORMATLON~ SUPPOSE WL HAVE TWO SENTENCES, *A" AND 'B'. '(A)V(B)*

E SENTENCES ®A' AND '8'./

QUESTION- A SENTENCE SUCH AS *(C)V{D)' IS CALLED THE LOGICAL Suw,
STYDENT ANSWERED- 'SUM®
NO, WRONG.

INFORMAT LON- SUPPOSE WE HAVE TWO SENTENCES, *A' AND 'B'. '(A)V(B)*

E JENTENCES ®A' AND *B'./

QUESTION-
STYUDENT ANSWERED~ *DISJUNCTION?!
RIGHT. A GOOD ANSWER IS—— DISJUNCTION

INFORMATION- WE AGREE THAT THE DISJUNCTION *(A)VI(B)' IS TRUE IF
I.Ees IF EITHER ®A' IS TRUE, OR 'B* IS TRUE, OR BOTH OF THEM ARE

QUESTIAN- IF IT IS NOT KNOWN WHETHER *A' IS TRUE, CAN *(A}V(B)*
STYUDENT ANSWERED- °*NO*

NB, WRONG.

INFORMATION- WE AGREE THAT THE DISJUNCTION *{A)v(B)' IS TRUE IF

I<E.» IF EITHER 'A* [S TRUE, DR *8' IS TRUE, OR BOTH OF THEM ARE

QUESTION- IF IT IS NOT KNOWN WHETHER *A' IS TRUE, CAN '(A)V(B)®
STUDENT ANSWERED- ‘YAS®

REGHT. A GOOD ANSWER I5-- Y ES

QUESTIBN- [IF 'A' 1S FALSF, CAN '[A)V(B)' BE TRUE

A SENTENCE SUCH AS *{CIV(D)* IS CALLED THE LOGICAL SUM,

1S CALLED THE GiSJUNCTION (OR ALTERNATION, UR LUGICAL SUM) OF TH

0R ALTERNATIONs DR ——-—-- .

IS CALLED THE CISJUNCTION (UR ALTERNATION, OR LOGICAL SUM) OF TH

OR ALTERNATION, OR ~~—==— .

AND ONLY IF AY LEAST ONE OF THE T«0 SCNTENCES YA' AND '8*' IS TRUL,

TRUE./

BE TRUE

AND ONLY IF AT LEAST ONE OF THE TWO SENTENCES 'at' AN *3* IS TRUE,

TRUE./

BE TRUE

STUDENT ANSWERED- *WHY SHOULON'T 1 SAY [T IN FRENCH- MAIS QUI, CERTAINEMENT®

REGHT. A GOOD ANSWER IS-— YES OUI

QUESTION— IF *A™ AND *B' ARE FALSE, CAN '(A)V(B)VI(C)' BE TRUE
STUDENT ANSWERED- *THAT CAN'T REALLY BE SAID®
R¥GHT. A GOOD ANSWER 1S—— CAN T sSAY

INFORMATION- YOU ARE RIGHT IN SAYING THAT YOU DONT KNOW IF YOU

INFORMATLON- [N FACT IT CAN. BUT THIS HAS NOT YET BEEN STATED

INFORMATION- THE SIGN *V* OF DISJUNCTION CORRESPONDS WITH FAIR
BETWEEN TWQO SENTENCES AND IS USED (AS IT MOST FREQUENTLY IS) IN

QUESTION-

STUDENT ANSWERED~ 'AND®
NG, WRCNG.

TNFORMAT LON-

MEAN THAT THIS IS NOT YET DECID:D./

EXPLICITLY IN THE SYSTEM BEING DUVELUPED FUR YOU./

EXACTNESS TO THE ENGLISH WORD *OR' IN THOSE CASES WHERE 'OR' STANDS
THE NON-EXCLUSIVE SENSE./

WITH WHAT COMMON ENGLISH #0RD DOES THE SIGN *v' CORRESPOND MOST CLOSELY

THE SIGN *V' OF DISJUNCTION CORRESPUNDS WITH FAIR EXACTNESS TO THE ENGLISH wORD *OR® IN THOSE CASES WHERE 'OR' STANDS

BETWEEN TWO SENTENCES AND IS USED {AS IT MOST FREQUENTLY IS) IN THE NON-EXCLUSIVE SENSE./

QUESTION-
STUDENT ANSWERED- *NON-EXCLUSIVE 'OR**
REGHT. A GDOD ANSWER [S—— OR

INFORMATION- GOOD. *OR*' IS CORRECT.

WITH WHAT COMMON ENGLISH WORD NOES THE SIGN *V' CORRESPOND MOST CLOSELY

CONGRATULATIONS ON FINISHING THIS LESSON./

Figure 3b. Printout of Interactions with a Simulated Student.

I. It could further try to boil down sets of
equivalent alternate answers, by finding things
in common among them, composing a summa-
rizing statement, and asking its teacher
whether this new statement is equivalent to all
the specific alternates it is presently storing. It
could then substitute this new statement for
the alternates that in fact were equivalent, and
now look only for this common element in stu-
dents’ future answers.

J. It could have various methods for com-
puting branches when appropriate to the prob-
lem domain; for example, (1) using a trans-
form dictionary to analyze mistakes in logic or

arithmetic, (2) using similarity between sub-
strings to analyze types of mistakes in spelling.

K. The program could itself compute the cor-
rect answer, rather than having this answer
stored in memory. It might then also do such
things as check the sequence of a student’s an-
swer (which it would get simply by command-
ing the student “GIVE YOUR ANSWER
STEP BY STEP”) and try to analyze at what
point the student went astray. It could then
generate a new question either on the basis of
such an analysis or as a function of the stu-
dent’s present level of competence.

44 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

L. Some simplifications in the basic format-
ting rules could be implemented with relatively
little trouble. For example, the program might
accept several alternative identifications for
questions; e.g., “*” could be replaced by “*Q”
or “*QUESTION” or ““QUESTION””; «>”
could be replaced by “ “THEN”"; “” could
be replaced by “ “AND””; “/” in the answer
section could be replaced by “ “OR” ”; the “*”
that marks the branch by “ “GOTO” ”; the “-”
that designates erase by ““ERASE””. Ex-
periments might be run to see which form is
preferable. If, as seems likely, the presently
implemented form is somewhat harder to learn
at first, but slightly faster to use once learned
(if only because fewer symbols need be typed),
novices could be trained on the form that looks

more English-like and then given the option of
using the shorter, more cryptic symbols.

REFERENCES

1. Estavan, D. P. “Coding for the class les-
son assembler.” FN-5633. Santa Monica,
Calif.: System Development Corp., 1961.

2. FARBER, D. J., GRiIswoLD, R. E., and POLON-
sKY, I. P. “SNOBOL, a string manipula-
tion language.” J. Assoc, Comp. Machinery,
Vol. 11, No. 1, Jan. 1964, 21-30.

3. MAHER, A. “Computer-based instruction:
Introduction to the IBM research project.”
RC-1114. Yorktown Heights, N.Y.: IBM,
1964.

METHOD OF CONTROL FOR RE-ENTRANT PROGRAMS

Gerald P. Bergin
Programming Systems
International Business Machines Corporation
New York, New York

INTRODUCTION

The use of multiprogramming and multi-
processing raises a question as to the number
of copies of a routine needed in memory for
multiple concurrent use. In the case where two
or more scientific programs are in core at the
same time, each needing the use of a SINE
routine, a private copy can be provided for
each program’s own use, or one copy can be
loaded for all to use. A message processing
program that services multiple terminals can
run into a situation where message A inter-

n A h
D ana oecause

rupts the processing of message
of priority considerations, message A must be
processed immediately bykhe program. Again,
the question of how many copies of the pro-
gram are required in core occurs. Finally, a
multiprocessing configuration with two or more
computers sharing a common core memory may
each be using the FORTRAN compiler. Each
computer could have its own copy of the com-
piler or a single copy of the compiler could be
executed by all computers concurrently. Intui-
tively, the provision of one copy of the routine
or program appears more elegant.

Assuming the use of only one copy of each
routine, the possibility that a commonly used
routine may not run to completion before being
entered again must now be considered. A rou-
tine which permits unlimited multiple entrances
and executions before prior executions are com-
plete is called a re-entrant routine. This paper
describes a method of controlling these routines
and sets forth conventions that must be fol-

45

lowed to produce a routine that satisfies the
requirements of re-entrability.

The terms used in this paper are defined to
eliminate possible misinterpretation.

routine—an ordered set of computer instrue-
tions which is entered by an explicit call

program—a set of routines and associated
data areas

context—the information which a routine
needs to perform its functions

instance—the execution of a routine with a
particular context

read-only routine—a sequence of machine in-
structions which is not self modifiable or
modifiable by others

re-entrant routine — a read-only routine
which accepts and uses the context asso-
ciated with an instance of a routine, such
that multiple entrances and executions can
occur before prior executions are com-
pleted

subexecution—an instance of a re-entrant
routine

task—a set of one or more routines which
define a unit of work, and which can com-
pete independently for computer time

job—a collection of tasks organized and sub-
mitted by a user under a single accounting
number

LIFO—Abbreviation for Last In, First Out.
This pertains to the retrieving of data in
the reverse order in which it was stored.
Also called a push-down, pop-up list

46 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

SCL—Abbreviation for Single Cell available
space List

ATQ—Abbreviation for Active Task Queue

TCL—Abbreviation for Task Control List

SCB—Abbreviation for Subexecution Control
Block

BAL—Abbreviation for Block Available space
List

RE-ENTRANT PROBLEMS

The biggest problem a re-entrant routine
poses is that of referencing proper context. The
routine can be made to conform to a well-
defined set of conventions for its references to
input, output, and working storage-—this solves
only part of the problem. The remainder must
be resolved through the use of a monitor capa-
ble of associating context with each instance
of the re-entrant routine, and, of accepting re-
sponsibility for providing context reference
during re-entrant executions.

The amount of control information which a
monitor must create and maintain is a func-
tion of:

1. The number of unfinished instances of
each re-entrant program

2. The number of unfinished sub-executions
(or current levels down) for each pro-
gram instance

3. The number of context pointers to data
for each unfinished subexecution.

In addition, each routine requires working
storage and data areas associated with a
given instance. To pre-allocate all the space
required for some maximum activity seems
unreasonable in a dynamic environment.
When activity is minimal, a large number of
cells would be unusable for other purposes,
and any change in the size of data blocks
would require re-assembly of the system.

Dynamic space allocation will circumvent
some of these problems; space can be allocated
as needed. When the space for a subexecution
is no longer required, it is returned to available
space and can be used by other subexecutions.

To provide dynamic space allocation, both a
single cell and block allocation scheme were
congidered essential. A small block of space
is pre-linked and constitutes the Single Cell

available space List (SCL). This space is
available for use by the monitor only. The
Block Available space List (BAL) permits
blocks of space of variable size to be allocated
for both program and monitor storage needs.
A description of the Space Allocation scheme
is contained in Appendix A.

RE-ENTRANT CONTROL

Functions

The monitor functions discussed are not in-
tended to be all inclusive even for re-entrant
routines. Functions such as I/0 and interrupt
control are virtually ignored since they are of
little concern in this paper.

The monitor functions which are of impor-
tance for re-entrant control include:

1. Obtaining and returning single cells and

blocks of cells needed for control
information

2. Determining priority of tasks and task
queuing

3. Creating and terminating tasks

4. Maintaining context for each unfinished
instance

5. Maintaining the data structures which
reflect the activity of the re-entrant
routines

6. Handling all inter-routine and intra-
routine communication

Structure

To perform these functions, the monitor must
have control information organized in some
manner. The following data structures are,
therefore, the basis of achieving the required
monitor control.

Job Description Block (JDB)

Pertinent information about each job is con-
tained in a set of contiguous locations called a
Job Description Block. One JDB is created for
each job. These blocks are the source of all
activity to be done in regard to job processing,
especially the sequence of tasks to be accom-
plished within each job. The set of all JDBs
need not reside permanently in core although
information pertaining to some tasks may be
used frequently enough to dictate its presence.

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 47

The major concern this paper has with JDBs
is that they exist.

Active Task Queue (ATQ)

The Active Task Queue is a list of the tasks
which are in some phase of execution in the
computer. There is a scheduling procedure ap-
plied to this list to determine the next task to
be activated or reactivated when interrupts
occur or when a subexecution relinquishes
control.

The ATQ is a simple list structure composed
of cells obtained from the SCL. The monitor
adds or inserts an entry to the list when a new
task is to become a candidate for processing in
the multiprogram environment. An entry is
deleted from the queue when a task is ter-
minated, and the cell is returned to the SCL.

Each entry in the ATQ contains status in-
formation, task identification, priority number,
pointer to the associated task control list, and
a link to the next entry in the ATQ.

Task Control List (TCL)

Associated with each ATQ entry is a Task
Control List. This list is used to establish and
associate context for each level of subexecution
within a task. When a task is added to the
ATQ, a TCL is created for it. The first entry
contains the name of the associated JDB and
the second entry points to a Subexecution Con-
trol Block (SCB). This SCB contains the
pointers to the context needed for the execu-
tion of the main control routine of the task.
When the execution of the control routine is
initiated, each level of descent into nested sub-
executions causes an entry to be added to the
TCL which points to the associated SCB. When
a subexecution terminates, returning to the
prior level of execution, its entry is removed
from the TCL. It should be noted that all trans-
fer of control to and from subexecution is
through the monitor.

The TCL is a push-down, pop-up (LIFO) list
with entry to the list through a header cell—
the cell containing the name of the JDB. The
header cell and push down cells are obtained
from (and later returned to) the SCL. New
entries to the LIFO list are added to the top
of the list with prior entries pushed down. Ter-
mination of a subexecution results in the LIFO

list being popped up and the cell returned to
the SCL (also returning the SCB space). When
the control section terminates, its entry in the
TCL, the TCL header, and the entry in the
ATQ are deleted thereby terminating the
task. The job description may get updated at
this point.

The first entry of the TCL contains a pointer
to and the name of the JDB, and a link to the
top of the LIFO list. Each entry on the LIFO
list points to a SCB, links to the previous entry
on the list, and contains the name of the
subexecution.

Subexecution Control Block (SCB)

Each Subexecution Control Block contains
the context or references to context associated
with its related unfinished subexecution. The
monitor creates an SCB when a subexecution is
called. The pointer to the SCB is pushed down
on the TCL as explained earlier. As a sub-
execution requests more space or asks for data
pointers, the monitor uses the proper SCB to
store or fetch the necessary information. When
space is returned, the monitor updates the
proper SCB appropriately. Termination of a
subexecution results in its SCB being returned
to available space along with the space no
longer needed by the calling subexecution.

An SCB is a block of contiguous celis ob-
tained from the block-space pool. The number
of cells per block may vary depending on the
anticipated requirements of the subexecution.
A minimum number of cells will always be
allocated to contain immediate data and point-
ers to normal data requirements.

There are two types of entries in an SCB:
immediate data entries and data pointers. Im-
mediate data consists of “save console” infor-
mation when a subexecution is entered, and
“save console” and other program status infor-
mation when an interrupt occurs that does not
return to the interrupted code after its servic-
ing. Data pointers are used to define the loca-
tion of input, output, working storage blocks,
extension of the SCB, ete. Each data pointer
contains the name of the data block, the loca-
tion of a cell which points to the cell containing
the upper and lower boundaries of the block,
the register to be loaded with a boundary, and
information concerning the return of the space
which is being pointed to.

48 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

RE-ENTRANT CONTROL EXAMPLE

Table I shows five jobs which are known to
the system. Each job has a Job Description
Block (JDB) which was created when the job
entered the system. Within each JDB is the
list of Tasks to be done.

The monitor has scheduled three Tasks,
which in this case are from different jobs. The
ATQ shown in Table II indicates that Task
“MSG Processor T” is waiting for 1/O to com-
plete, Task “MSG Processor T” (a different
instance of the previous Task) is in execution,
and Task “GO” is pending and will be executed
when both instances of “MSG Processor T”
Terminate or cannot proceed.

Each entry in the ATQ points to a TCL,
shown in Table III. Task “MSG Processor T”
points to the Header cell K which contains the
name of its JDB (Terminal A) and points to
the top of its LIFO list, k,. The “T control”
routine has ‘“called” the routine “Update 3”
which will resume when its wait condition
Terminates.

Task “MSG Processor T” (2nd instance)
points to its TCL entry S. The Header cell
names the JDB (Terminal N) and points to the
Top of the LIFO list s,. The main routine “T
control” is three levels down in routines “Inter-
pret,” SCAN, and SCAN (SCAN has re-entered
itself once). The Tasks at locations E, and E,
of the ATQ are both using program “MSG
Processor T” with the first using the context at
W, and W,, the second using the context at X,
through X,. Task “GO” is associated with
TCL U. Its Header cell names the JDB (Job—
B) and points to the top of its LIFO list u,. A
program ‘“Integrate’” has been loaded and is
now ready for execution with context at Y,.

Each entry on a LIFO list points to an SCB
which associates context with the instance of a
routine. A minimum of m cells has been allo-
cated for each SCB. Table IV shows the content
of the SCB for one instance of a routine.

If another task can be accommodated by the
computer, a task will be chosen from the Job
Description area. The following example shows
what occurs to this new contender for computer
time. The scheduler selects Task “Load” of
Job—C whose priority has changed to 4.

The monitor gets a cell from the SCL (cell
E,). This cell is inserted in the ATQ by chang-
ing the link of cell E, to E, and putting E, in
the link of cell E,. The console information
associated with task “MSG Processor T” (of
Terminal N instance) is saved in its SCB (X,),
and its status in the ATQ is set to P. The
name of the Task (Load), its priority (4), and
the status (E) are inserted in cell E,. Two
more cells V and v, are obtained from the SCL
to establish the TCL at V. A block of space is
obtained for the SCB of the main routine of
“Load.” The initial context for the task is then
entered in the SCB beginning at Z, and Load
is then executed. Table V is a graphic repre-
sentation of the structure created in the preced-
ing example.

RE-ENTRANT ROUTINE CONVENTIONS

By definition, a re-entrant routine is read-
only in nature. Address calculations, internal
indicators, subroutine parameters, and similar
information must be stored and used external
to the routine. The association of context to an
instance of the routine is a function of the
monitor and has already been treated. The
following conventions are those considered im-.

TABLE 1. JDB’S (AUXILIARY OR MAIN STORAGE)

Job—B Terminal N Job—C Terminal Q
Compile Terminal A MSG Proc- E(;ad MSG Proc-
Load MSG Proc- essor T Combile essor H
Go essor T MSG Proc- G P MSG Proc-
. 0
Print essor R . essor R
Print L

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 49
TABLE II. ACTIVE TASK QUEUE (ATQ)
Pointer
Location Link Status Priority to TCL Name
E, ‘/E2 W 3 K MSG Processor T
E, /Es ~ E 6 S MSG Processor T
E; 0 P 7 U Go-Integrate
W = waiting status due to 1/0, etc.
P = pending
E = in execution
portant at present to get, use, and store the 3. To get a new block of cells for use, the

external data (context) required in any routine.

1. All routines must be called through the
monitor.

2. Parameters required for inter-routine
communication are contained in the call-
ing routine’s context. Return of control
to the higher level routine is through the
monitor also, so that return can be con-
sidered an implied call. To call a routine,
the monitor is entered indicating:

a. The name of the routine being called
(or returned to)

b. The name of the register which con-
tains the pointer to the required con-
text (if necessary).

TABLE III. TASK CONTROL LIST (TCL)

Routine Pointer
Location Link Name to SCB
K k, Terminal A loc. of JDB
kl)< 0 T control W,
k, k;, Update W,
S S4 Terminal N loc. of JDB
Sy 0 T control X,
Sz ~ 8, In’cerpreti X,
Ss S, Scan X,
S4 Ss Scan X,
U u, Job—B loc. of JDB
ul/ |0 Integrate Y.

monitor must be entered indicating:

a. Name to be assigned to the block
allocated

b. Number of contiguous cells needed

c¢. Name of the register to be used (if
any)

d. Value to be put in the register (either
upper or lower boundary)

e. Return location or action if space is
not available,

To re-establish a pointer in a register

whose contents have been changed, the

monitor must be entered indicating:

a. Name of the blocl

b. Value to be used (either upper or
lower boundary)

¢. Name of the register to be used if
other than the previously associated
register (if named, the previous asso-
ciation is lost).

To drop a register from use as a context

pointer so that it can be used for other

purposes, the monitor must be entered in-

dicating the name of the pointer.

To return block space to the available

space pool the monitor must be entered

indicating the name of the block to be

returned or the name of a list containing

the blocks to be returned.

The responsibility of returning space

rests with the routine which obtained the

space. The termination of a subexecu-

tion will, however, result in all space

requested for private use being returned

to the block allocation pool.

50 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

TABLE 1V. SUB-EXECUTION CONTROL BLOCK (SCB) FOR THE TASK “INTEGRATE”

Location Control Name Register Pointer to loc. pointing to Data
Y.,-0 1 IN 1 B

~1 IN 2

-2 2 oU 1 E)

-3 oU 2

—4 1 WS 1 €

-5 WS 2

-6 SCB

-7 CONS (

s immediate data
Y-7T+1i CONI l
' s immediate data

-m

Control 1 = can be returned
2 = Returned
3 = common data base

IN = INPUT

ouU = OUTPUT

WS = Working storage

SCB = Additional SCB for additional space if required

CONS = Console save data

CONI = Console save data plus program status information at an interrupt

SUMMARY

Association of context for an instance of a
routine has been achieved through the use of
control information created by the monitor or
furnished to the monitor via program con-
ventions. The organization of the control in-
formation is in the form of a list structure
for ease of inserting and deleting new data.

The Active Task Queue is a list, ordered on

priority, used primarily for task sequencing.
The Task Control Lists are LIFO lists which
relate context in the Subexecution Control
Blocks to routines which are associated with
Tasks in the Active Task Queue.

This method of control, in conjunction with
the conventions that a routine must follow,
allows multiple entrances and executions of a
routine before prior executions are completed.

TABLE V. GRAPHIC REPRESENTATION OF THE MONITOR DATA STRUCTURE

ATQ TCL SCB
Pointer
Location Link Status Priority to TCL Name Location Link Name Pointer to SCB | Location
E, E, W 3 K MSG Processor T 'k, Terminal A Location of JDB
/.'WI_O
k, 0 T Control W —)SCB Data
W1 m‘
//'Wz
k, k, Update 3 W,— SCB Data
W2 —m
P 6 S MSG Processor T S 8, Terminal N Location of JDB
B /X - }
Sy 0 T Control SCB Data
X1 m‘
/Xz 0?
Ss s; Interpret X5 SCB Data
X2 m‘
/X -0 l
Ss s; Scan X SCB Data
X3 m’
/X4 -0
S s; Scan X, SCB Data
X4 m
P 7 U Go Integrate u, Job—B Location of JDB
/ / ' /Yl -0 l
0 Integrate Y. : SCB Data
Y: m‘
E 4 A% Load A% v, Job—C Locatlon of JDB
/ Z—
v, 0 Load Z,— Z lSCB Data
Z; m‘

SANILNOY INVUINH-HY 304 TOUILNOD A0 TOHLIN

8¢

52 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

APPENDIX A
SPACE ALLOCATION

The structure of the control data needed for
re-entrant and recursive routines is based on
list-structure concepts. The use of a list struc-
ture approach requires being able to obtain and
return space dynamically. Part of the space
needed must be prestructured or linked in the
IPL-V (Newell, Simon and Shaw)* manner.
Availability of space in blocks of contiguous
cells is also required to gain a compromise for
efficient use of core storage.

The following is a description of a single cell
and block allocation scheme that was developed
and implemented on the IBM 7094 by Mr. M. R.
Needleman of WDPC-UCLA.+

SINGLE CELL ALLOCATION

A relatively small number of contiguous
cells are linked together to form the Single Cell
available space List (SCL). A fixed cell is
maintained which always points to the next
available cell on the list. Table A-I shows this
construction.

The allocation routine allocates a cell by giv-
ing the requestor the name of a cell (the ad-
dress «) and updates the link of A to point to
the next available cell on the list which is g.
Table A-II shows the result of allocating 1 cell.

When a cell » is returned to the available
space list, it is inserted at the top of the SCL
as follows:

1. Cell A, which contains the pointer to the
next available cell on the SCL, is modified
to point to -.

2. The former pointer g is put into the link
portion of the cell -.

Table A-III shows the results of this process.

* The Rand Corp., Santa Monica, Calif., Newell A.
Editor, “Information Processing Language—V Man-
ual,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1961.

7 Western Data Processing Center, University of
California, Los Angeles 24, California. The scheme was
developed by WDPC under contract with the Advanced
Research Projects Agency (Contract No. SD 184), Office
of Director of Defense, Research and Engineering,
Pentagon, Washington, D, C.

TABLE A-1I. SINGLE CELL AVAILABLE
SPACE LIST (SCL)

Location Link Information
A (fixed loc.) P

44

8 Y

A 0

BLOCK ALLOCATION

The second type of space allocation is called
block allocation. A block of contiguous cells is
reserved for this type of allocation. Two lists
are used to identify the space available and
space allocated. Cells for both lists are ob-
tained from the Single Cell available space List.

Each entry in the block allocation list con-
tains: a flag indicating whether or not the
block is currently available; a pointer to the
cell containing the addresses of the first and
last locations of the block; and a link to the
next cell on the Block Allocation List. The first
cell on the list (header cell) always links to the
last cell put on the list. Table A-IV shows the
block allocation list after three requests for
space.

Each cell on the block-limits list eontains the
address of the first and of the last cell allocated
as a block by the block allocation routine and
is in one-to-one correspondence to the Block

TABLE A-II. SINGLE CELL AVAILABLE
SPACE LIST (SCL) AFTER ALLOCATING

ONE CELL
Location Link Information
A (fixed loc.) B
B Y
Y A
A 0

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 53

TABLE A-III. SINGLE CELL AVAILABLE
SPACE LIST (SCL) AFTER RETURN
OF ONE CELL

Location Link Information

A (fixed loc.) T

B Y
% A
A 0
T B

TABLE A-IV. BLOCK ALLOCATION LIST

(BAL)
Location Link Flag Pointer
a 3 0 B
Y 0 1 A
b Y 1 £
¢ 8 1 U]

Flag = 0, block is available
Flag = 1, block is being used

BLOCK LIMITS LISTS (BLL)

First Last (Allocated
Location Location Location to)
B 10K 20K (available)
A 40K + 1 45K (Z1)
e 30K +1 40K (Z2)
) 20K + 1 30K (Z3)

SPACE POOL MAP
10K

15K Available
wx | 23
mk | 22
wx | %1

Allocation List. An example of this list used
in conjunction with the Block Allocation List
(BAL) and a core map of the block allocation
space pool is shown in Table A-IV.

The method of block space allocation is best
illustrated by some examples. The first is a
request for a block which is immediately avail-
able, the second is the return of a block, and
finally a request for space which exceeds the
length of any one available block. These ex-
amples will assume the previous state of the
lists and blocks allocated and indicate only the
allocation routine action. The monitor is the
implied user. The first example starts with
Table A-IV state.

In general, the user requests a block of N
cells. The allocator assigns space and returns
to the user via the monitor. The monitor sets
the address of the cell containing the address
of the first and of the last cell assigned in the
SCB and places the base value in the register
specified. To return space, the user indicates
the name of the block, via the monitor, to be
returned to the block space pool by the space
allocation routine.

Example 1
A user (Z 4) requests 3000 cells of block
storage. The block allocation routine goes

through the following sequence.

1. From cell « (in the BAL), get the limits
cell B and the subsequent limits. In the
rare case where the block is in use (Flag
= 1) the coalescing of blocks, as outlined
in Example 3 is done first.

2. Determine the number of cells available
and determine if the request can be filled.
(In this case assume the affirmative.)

3. Decrease the upper limit in cell 8 by the
number of cells needed.

4. Get two cells (6, «) from the Single Cell
available space List (SCL).

5. Insert cell 4 in the BAL with a link of
£ (obtained from cell «) and pointer to ..
The address of ¢ is put in the link field
of a.a'nd the flag of 6 set to 1.

6. Set the block limits in cell . equal to
17,001 and 20,000 respectively.

7. Return to the user with the address of
cell .,

54 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

Table A-V shows the result of requesting a
block of cells.

Example 2

User (Z 2) returns the block of space whose
limits are found in cell . The address of this
cell is used to search the BAL for the pointer
to this cell. As can be seen in Table A-VI, only
the flag of the cell (8) which contains the
pointer to the block limits returned is changed
(from 1 to 0). The block limits list is not
altered.

Example 3

User (Z 5) requests 15,000 cells of block
storage. The block allocation routine does the
following. :

1. Using cell « (in the BAL) the contents
of cell g are obtainec'll. The number of

TABLE A-V. BLOCK ALLOCATION LIST

(BAL)

Location Link Flag Pointer
P 9 0 B

Y 0 1 A

S ‘Y 1 £

¢ 8 1 U]

g £ 1 L

BLOCK LIMITS LIST (BLL)
First Last (Allocated

Location Location Location to)

B 10K 17K (available)
A 40K + 1 45K (Z 1)

€ 30K + 1 40K (Z 2)

7 20K + 1 30K (Z 3)

L 17K + 1 20K (Z 4)

SPACE POOL MAP

10K Available
15K

20K Z 4
25K

30K Z3
35K 7 92
40K

45K Z1

TABLE A-VI. BLOCK ALLOCATION

LIST (BAL)
Location Link Flag Pointer
o g 0 B
v 0 1 A
3 v 0 £
¢ 3 1 U
6 £ 1 ¢

BLOCK LIMITS LIST (BLL)

First Last (Allocated
Location Location Location to)
B 10K 17K (available)
A 40K + 1 45K (Z 1)
P 30K + 1 40K (available)
7 20K + 1 30K (Z 3)
¢ 17TK +1 20K (Z 1)

SPACE POOL MAP

10K Avalilable
15K

20K Z 4
25K

30K z3
35K | Available
40K

45K Z1

cells available is determined to be less
than the number requested.

2. Link through BAL putting the limits
pointer of each “in use” entry (Flag = 1)
on a push down list. Each entry with a
Flag = 0 (space returned) is returned
to the single cell available space list along
with its associated limits cell. The BAL
cell returned is also deleted from the
BAL list. The push down list cells are
obtained from the Single Cell available
space List. The entries in the list are
now ordered such that the name of the
cell containing the highest block limits is
last on the list (therefore 1st off) and the
name of the cell containing the lowest
block limits is first on the list (therefore
last off).

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES

55

3. The method to coalesce available blocks

is as follows. Move each used block up
in core so as to pack them to the upper
boundary of the space pool. This will
push any scattered available space
further and further down in core until it
is engulfed by the limits of g; i.e., all un-
used space is in one block at the lower
boundary of the space pool. To imple-
ment the coalescing, the pointers to the
used space limits are popped-up and lim-
its are changed to reflect data movement

which is done when each new block of
unused space is encountered. Table
A_VII shows the results of coalescing
space. Since the user points to a pointer
to the block, the block can be moved and
the pointer to it changed without concern
by the user.

If the request for space can now be filled
from the space available limits at 8, the
method of allocating the block is the same
outlined in Example 1.

TABLE A-VIII. BLOCK ALLOCATION

LIST (BAL)
Location Link Flag Pointer
@ 9 0 B
Y 0 1 A
E Y 1 7
g ¢ 1 ¢
BLOCK LIMITS LIST (BLL)

First Last (Allocated
Location Location Location to)
B 10K 27K (available)
A 40K + 1 45K (Z 1)
7 30K + 1 40K (Z 3)
¢ 27K + 1 30K (Z 4)

SPACE POOL MAP

10K

LK 1 Available
20K

25K

30K Z 4
35K

40K Z3
45K Z 1

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS

Mark 1. Halpern
Research Laboratories
Lockheed Missiles & Swace Co.
Palo Alto, California

INTRODUCTION

The XPOP programming system is a
straightforward and practical means of imple-
menting on a computer a great variety of lan-
guages—in other words, of writing a variety
of compilers. The class of languages it can
handle is not easy to characterize by syntactic
form, since the system permits syntax specifi-
cation to be varied freely from statement to
statement in a program being scanned; the
permitted class includes the best-known pro-
gramming languages, as well as something
closely approaching natural language. We be-
lieve that this distinguishes the XPOP proc-
essor from the syntax-directed compilers,?3
although it shares with them the fundamental
idea that the process of programming-language
translation can be usefully generalized by a
compiler to which source-language syntax is
specified as a parameter.

This paper describes only the more novel
features of XPOP; a fuller treatment is avail-
able elsewhere.*

DISCUSSION

XPOP consists of two major parts: (1) a
generalized skeleton-compiler that performs
those functions common to all compilers, and
(2) a battery of pseudo-operations for speci-
fying the notation, operation repertoire, and
compiling peculiarities of a desired program-
ming language. The programmer creates the
compiler for such a language not by program-
ming it from scratch but by using the XPOP

57

pseudo-operations to modify and extend XPOP
itself, which then becomes the desired compiler.

The use of these facilities involves the crea-
tion by the programmer of functional units
that superficially resemble the programmer-
defined macro-instructions of, for example,
IBMAP (and in fact include such macros as a
subset), but whose effects may be radically dif-
ferent from those obtained by use of conven-
tional macros.* An XPOP macro does not
necessarily generate coding; its possible effects
are so varied that it can best be defined simply
as an element of the source program that, when
identified, causes the processor to take some
specified action. That action may be any of the
following :

(1) The parameterization of XPOP’s scan-
ning routine to make it recognize, either
for the remainder of the source program
or within some more limited domain, a
new notation

The compilation of coding for immedi-
ate or remote insertion into the object
program

The immediate assembly and execution
of any of the instructions compiled from
a source-language statement.

(2)

(3)

* By “conventional macros” we mean the user-defined
operators that some programming systems allow. The
definition of a macro consists essentially of the assign-
ment of a name to a block of coding, after which every
appearance of that name as an operator causes the
system to insert a copy of that coding into the object
program.

58 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

(4) The preservation on cards and/or tape
of the language description currently in
use, in a condensed format that can be
redigested by XPOP at tape speed when
read back in; also the reading-in of such
a language from a tape file created
earlier in the same machine run or dur-
ing an earlier run

(5) The production by XPOP of a bug-find-
ing tool called an XRAY—a highly spe-
cialized core-and-tape dump giving the
programmer the tables and strings pro-
duced by the system in structured, in-
terpreted, and captioned form

In the illustrations of these features, some
conventions that require explanation will be
used. All programming examples offered are
exact transcripts of the symbolic parts of
actual XPOP listings. Lines prefixed by a dol-
lar sign are records output by the processor
as comments; these originate either as source-
program statements printed out as comments
for documentary purposes or as processor-
generated messages notifying the programmer
of errors or other conditions he should be
aware of. No attempt is made to illustrate
XPOP facilities by coding examples of any
intrinsic value. The examples used are merely
vehicles for the exhibition of those facilities
and are therefore generally trivial in size and
effect. The discussion that follows takes up the
chief features of the system in the order of the
five-point outline given earlier.

Notation-Defining Pseudo-Operations

Consider a macro, LOGSUM, created to store
the logical sum of two boolean variables, A and
B, in location C.

$LOGSUM MACRO A, B, C

$ CAL A
$ ORA B
3 SLW C
3 END

Having been defined, this macro may at once
be called upon in XPOP’s standard form,
which requires that the macro’s name be im-

mediately followed by the required parameters
with commas separating these elements and
the first blank terminating the statement. A
standard-form call on LOGSUM would have
this appearance and effect:

$ LOGSUM,ALPHA,BETA,GAMMA

CAL ALPHA
ORA BETA
SLW GAMMA

Suppose we find standard-form netation unsat-
isfactory and want to call upon the function
LOGSUM in the following form:

STORE INTO CELL ‘C’ THE LOGICAL
SUM FORMED BY ‘OR’ING THE BOOL-
EAN VARIABLES ‘A’ AND ‘B’.

There are, from the XPOP programmer’s
viewpoint, four differences between the stand-
ard and the desired form:

(1) The name of the function is no longer
LOGSUM, but STORE.

(2) The order in which parameters are ex-
pected by STORE differs from that of
LOGSUM.

(3) The punctuation required by the two
forms differs; in standard form, the
comma is the sole separator, blank the
sole terminator. In the desired form,
three kinds of separator are used:

(a) The one-character string ‘blank’

(b) The two-character string ‘blank-
apostrophe’

(¢) The two-character string ‘apostro-
phe-blank’

and one terminator

(a) The two-character string ‘apostro-
phe-period’

(4) The desired form contains several
“noise words”’—that is, character strings
present for human convenience but
which XPOP is to ignore.

In the following illustration, we use its
pseudo-ops to teach XPOP the new statement
form, then demonstrate that the lesson has
been learned by offering it the new form as in-
put and verifying that it produces the correct
coding. An explanation of each pseudo-op used
follows the illustration.

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 59

$STORE MACRO AB,C

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

SNEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$ LOGSUM B,CA

$ END

$

$ CHPUNC

$

$

$ CHPUNC 3S1 2 20 1T2.
$

$ CHPUNC 182.. 1TL

$

$ NOISE

$.

$ NOISE 6VARIAB 3AND 3SUM
$

$

$

CAL ALPHA
ORA BETA
SLW GAMMA

The definition of STORE with which the
above illustration begins deals with the first
- two of the four differences noted betwgeen the
desired and the standard statements. It causes
XPOP to recognize STORE as an operator
identical in effect to LOGSUM, and specifies
that the parameter expected as the third by
LOGSUM will be expected as the first by
STORE. The pseudo-op CHPUNC (CHange
PUNCtuation) deals with the third difference.
Its first use, with blank variable field, erases all
punctuation conventions from the system; the
comma is no longer a separator nor is the
blank a terminator. Having thus wiped the
slate clean, CHPUNC is used again to specify
the required punctuation. The variable field
that follows this second CHPUNC may be
read: “Three separators—the one-character
string blank, the two-character string blank-
apostrophe, and the two-character string apos-
trophe-blank; also one terminator—the two-

4INTO 4CELL 3THE 6LOGICA 6FORMED 2BY 60R’ING 6BOOLEA

STORE INTO CELL ‘GAMMA’ THE LOGICAL SUM FORMED BY ‘OR’ING THE. ..
BOOLEAN VARIABLES ‘ALPHA’ AND ‘BETA’.

79y /TTV

character string - apostrophe-period.” (The ad-
ditional punctuation specified by the third
CHPUNC was introduced because the signal to
XPOP that a statement is continued on the
next card is the occurrence, at the end of each
card’s worth, of a separator immediately fol-
lowed by a terminator; here the programmer
wanted to use the string ‘...’ for this purpose.
A separate CHPUNC was necessary simply
because the additional punctuation came as an
afterthought.) The fourth and last difference
is dealt with by means of the pseudo-op
NOISE, which permits the programmer to
specify character strings to be ignored by the
processor. Since strings longer than six char-
acters are taken as noise words if their first
six characters are identical to any noise word,
such strings as VARIABLE, VARIABLES,
and VARIABILITY are effectively made noise
words by the definition of 6VARIAB as an
explicit noise word.

60 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

With these pseudo-ops given, XPOP has
been taught the desired statement form, as
proof of which it generates correctly parame-
terized coding when used as input. That state-
ment was created, of course, only for illustra-
tive purposes; few programmers would care to
use so many words to generate three lines of
machine-language coding. For an application
in which documentation was an unusually im-
portant requirement, however, so elaborate a
statement might serve a useful purpose—and
real macros would average closer to 100 in-
structions than to 3.

The most important property of this tech-
nique for describing a notation to a processor,
though, is the flexibility with which a notation
so specified may be used. All that the XPOP
programmer has explicitly defined is a number
of individual words and punctuation marks,
with no constraints on their combination; they
may be used to form any statement that makes
sense and conveys the necessary information
to the processor. The programmer will often
have a particular model statement in mind
when specifying the vocabulary he wishes to
use in calling for some function, but he will
find that in implementing the model he has in-
cidentally implemented an enormous number
and variety of alternative forms.

If we add to our list of noise words the two
strings OF and AS, we can use any of the
following to generate the required coding:

(a) STORE INTO GAMMA THE SUM OF
ALPHA AND BETA.

(b) STORE AS GAMMA THE LOGICAL
SUM OF ALPHA AND BETA.

(c) STORE AS LOGICAL GAMMA THE
SUM OF THE VARIABLES ALPHA
AND BETA.

(d) STORE LOGICALLY INTO GAMMA
‘ALPHA’ AND ‘BETA.

(e) STORE GAMMA ALPHA BETA.

(f) LOGICALLY STORE INTO ‘GAMMA’

THE VARIABLES ‘ALPHA’ AND
‘BETA.

(g) INTO GAMMA STORE THE SUM OF
ALPHA AND BETA.

As (f) and (g) indicate, both noise words
and operands may precede the operator, pro-
vided only that they are not themselves mis-
takable for operators. If, for example, INTO
were an operator as well as a noise word (such
multiple roles are possible and sometimes use-
ful), statement (g) would be misunderstood
as a call on INTO. Excepting such uncommon
cases, the operator and operands in a state-
ment may float freely with respect to noise
words, and the operator may float freely with
respect to its operands; the sole constraint is
that the operands must be given in the order
specified when the operator was defined. Even
this last constraint will be relaxed when the
QWORD feature is fully implemented. A
QWORD is a noise word that, like an English
preposition, identifies the syntactic role of the
word it precedes; its use enables the program-
mer to offer operands in an order independent
of that specified when the operator is defined.
Applied to the statement type dealt with so
far, the QWORD feature might be used thus:

STORE MACRO $INTO$C,A,B

CAL A
ORA B
SLW C
END

The string $INTO$C informs the system that
if the QWORD “INTO” appears in a call on
STORE, the first operand following it is to be
taken as corresponding to the dummy variable
C. The use of the QWORD would override the
normal C,A,B order and enable the user of
STORE to write, as another alternative:

(h) LOGICALLY STORE THE SUM OF
ALPHA AND BETA INTO GAMMA.

Practically all notation-defining pseudo-ops
may be used within macros as well as outside
them, and the difference in location determines
whether the conventions thereby established
are ‘local’ or ‘global.’” If such pseudo-ops are
given at the beginning of a macro definition
that includes some non-pseude-op lines as well,
they are taken as local in effect. They will
temporarily augment or supersede any nota-
tional conventions already established, and be

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 61

nullified when the macro within which they
were found has been fully expanded. ‘Local’
notation-defining pseudo-ops will be put into
effect in time to govern the scan of the very
statement that calls on their containing macro.
Such internally defined statements need respect
the earlier conventions only to the extent nec-
essary to permit their operators to be isolated.
When pseudo-ops constitute the sole contents
of a macro, they are taken as applying to the
rest of the program in which they appear; the
effect of calling on such a maero-ful of pseudo-
ops is as if each pseudo-op were given as a
separate input statement. Insofar as the nota-
tion a programmer requires is regular and self-
consistent, then, it may be described in a single
macroe whose name might well be that of the
language itself, and which would be called on
at the beginning of any program written in
that language. Statement forms that have spe-
cial notational requirements in conflict with
any global conventions would include the nec-
essary local conventions within the bodies of
their macro definitions. The local-notation
feature will be illustrated in the next section.

As should be evident at this point, it is
possible to teach XPOP to recognize an enor-
mous number of logically identical but nota-
tionally different statements by means of a
few uses of just those pseudo-ops introduced
so far. It should be possible, in fact, to define
a programming language empirically—that is,
to treat a language as a cumulative, open-ended
corpus of those statement forms that experi-
ence shows to be desirable, The full set of
notation-defining pseudo-ops, of which about
one-third is exhibited here, permits the de-
scription of the notations of FORTRAN,
COBOL, and most other existing compiler
languages.

Compilation-Control Pseudo-Operations

The compiler designer also needs, of course,
various kinds of control over the compilation
process. One requirement is for the ability to
call for remote compilation. To meet this need
XPOP provides the pseudo-ops WAIT and
WAITIN. Both signify that the part of any
macro lying within their range is to be ex-

panded as usual—that is, parameters substi-
tuted for dummy variables, system-generated
symbols inserted where called for, and so on—
but that the resulting coding is not to be in-
serted into the object program yet. Instead,
these instructions are put aside, to be inserted
into the object program only when a source-
program statement is found bearing the state-
ment label specified by the WAIT or WAITIN.
(The label to wait for is specified in the pseudo-
op’s variable field, where it may be given as a
literal constant or—more likely—represented
by a dummy to be replaced by a parameter.)
In any case, all instructions waiting for such
a label will appear just after those resulting
from the translation of the statement so
labeled.

The instructions waiting for a label may have
come originally from several various macros,
or several uses of the same macro; if so, the
one difference between WAIT and WAITIN
will make itself felt. If, for example, a group
of instructions lay within range of WAIT
ALPHA, they would be appended to the
threaded list of those already waiting for
ALPHA; if the pseudo-op were WAITIN, they
would be prefixed to it. Those groups of in-
structions made to wait by WAITIN’s will,
therefore, appear in the object program in the
inverse of the order in which they occurred
in the source program—hence “WAITIN”
(WAIT INverse). If the label for which a
batch of instructions is waiting never appears,
the instructions do not appear in the object
program. If no label is specified, they appear
at the very end of the object program.

The following example shows the use of
WAITIN in a simplified version of FORTRAN’s
“D0O”—one that permits only the special case
of subscripting that is formally. identical to
indexing. First, the source program that de-
fines “DO0” to XPOP, and then uses it in a two-
level-deep DO nest: *

* Note that XPOP can process algebraic expressions.
These may be used as source-language statements or
within macros; when used within macros, they may
contain dummy variables to be replaced by parameters
when the macros are used, and those parameters may be
arbitrarily long subexpressions. Subscripts, not now
allowed, are being provided for.

62 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

J EQU 2

K EQU 4
CHPUNC 4S1=112, 1T2

DO MACRO A,B,C,D,01

YA AXT C,B l .
WAITIN A definition
TXI *4+1,B,01 of “DO”
TXL)A+1,B,D
END
DO 15J=13
DO 15 K=2,20,2

PHI,J=RHO,J+BETA,J { “DO” nest
15 TAU,K=PHIL,J+4
END

And below, the object program produced by the above:

J EQU 2

K EQU 4

$

$ CHPUNC 4S1 1=1,2, 1T2

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$

$DO MACRO A,B,C,D,01

$A AXT C,B

$ WAITIN A

$ TXI *4+1,B,01

$ TXL)A+1,B,D

$ END

3

$

$ DO 15 J=1,3

)0001 AXT 1,J

$

$ DO 15 K=2,20,2

)0002 AXT 2,K

$ PHLJ=RHO,J+BETA,J

CLA BETA,J
FAD RHO,J

STO PHLJ

$15 TAU,K=PHLJ +4

15 CLA =4
FAD PHILJ
STO TAUK
TXI *+1,K,2
TXL)0002+1,K,20
TXI *41,J,01
TXL)0001+1,J,3

END

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 63

Another obvious use for WAIT or WAITIN
is the handling of closed subroutines. The
programmer will frequently want a macro to
generate only a calling sequence to a closed
subroutine, with the subroutine itseif appearing
only once in the object program, at the end.
To secure this effect, the programmer would
define the macro in question as starting with
the calling sequence; then he would incorporate
a WAIT with blank variable field, a ONCE
pseudo-op, and then the subroutine. If the
macro were not used in a given source pro-
gram, the subroutine would not be made part

of the object program. If used, the first such
use would output the calling sequence normally,
and the subroutine as waiting instructions to
be put into the object program at its end.
Subsequent uses ¢f the macro in that program
would cause the compilation of the calling
sequence only, the ONCE pseudo-op reminding
XPOP that it had already compiled the sub-
routine. The following examples will illustrate
uses of WAITIN, ONCE and local notation-de-
fining pseudo-ops. The first is the pseudo-DO
with its punctuation defined within its own
body:

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$DO MACRO A,B,C,D,01
$ CHPUNC 481 1=1,2, 1T2
$)A AXT C,B
$ WAITIN A
$ TXI *41,B,01
$ TXL YA+1,B,D
$ END
$
$
$ DO 15 J=1,3
$ CHPUNC 481 1=1,2, 1T2
Y0001 AXT 1,J
$
$ DO 15 K=4,48 TWO
Y0002 AXT 4K
$ PHI,J=RHO,J+BETA,J
CLA BETA,J
FAD RHO,J
STO PHILJ
$15 TAU,K=PHI,J+4.
15 CLA =4,
FAD PHILJ
STO TAUK
TXI *1+1,K,TWO
TXL)0002+1,K,48
TXI *41,J,01
TXL)0001+1,J,3
END

A use of ONCE is shown next. ONCE may
be used in either of two ways, depending upon
whether its variable field is blank or not.
When the macro in which it occurs is being
expanded and a ONCE with blank variable
field is encountered, the name of the macro is
searched for in a table. If it is found, the rest
of that macro is skipped; if not, it is entered

in the table to be found on later searches and
expansion continues. The procedure followed
if a symbol is found in the variable field differs
only in that the symbol found is used rather
than the name of the macro being expanded.
This type of use permits copies of a subroutine,
a set of constants, or a storage reservation to
be incorporated into the definitions of many

64 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

different macros, with assurance that they will
appear in the object program if and only if
one of the macros is used, and not more than
once no matter how many of them are used.
It is this second type of use that is now shown:

$FIRST MACRO AB,C

3 CLA A

$ ADD B

$ ONCE M

$ STO C

$ END

$

$

$

$SECOND MACRO X,Y,C

$ LDQ X

$ MPY Y

$ ONCE M

$ STO C

$ END

$

$

$ FIRST,ALPHA,BETA,GAMMA
CLA ALPHA
ADD BETA
STO GAMMA

$

$ SECOND,PHIL,LRHO,GAMMA
LDQ PHI
MPY RHO

$
END

Last among the compilation-control pseudo-
ops that will be discussed here is XPIFF,
which permits the programmer to specify con-
ditions whose satisfaction is a prerequisite to
the compilation of the next line of coding. (It
is, of course, a direct development of the IFF
familiar to users of the FAP-IBMAP family
of assemblers.) The IFF is almost entirely re-
stricted to testing conditions involving source-
program symbols; the direction in which
XPIFF is being developed is that of greater
range of reference. The conditions upon which
XPOP compilation may be made contingent
will include many referring not to source-
program symbols but to the system itself.
When fully developed, this facility should bring
within the compiler-writer’s reach the means

of specifying as much object-program optimiz-
ation as he wishes, short of that which, like
FORTRAN’s, depends on a flow-analysis of the
entire compiled program.

The kind of optimization available through
XPIFF in its present state is indicated by the
following illustration, where it is used to avoid
compiling loop-initializing and -testing instruc-
tions where they are unnecessary.

$MOVE MACRO AB,O

$ XPIFF 0,X,X

$ MOVMOR A,B,0

$ XPIFF 0,X,Y

$ MOVEL AB

$ END

$

$

$MOVMOR MACRO Q,ED

$ AXT D4

$)A CLA Q+1,4

$ STO E+14

$ TIX YA 4,1

$ END

$

$

$MOVEL MACRO LM

$ CLA L

3 STO M

$ END

$

$

$ MOVE,ALPHA,BETA

$ XPIFF 0,X,X

$ XPIFF 0,X,Y
CLA ALPHA
STO BETA

$

$ MOVE,ALPHA,BETA,5

$ XPIFF 5,X,X
AXT 5,4

Y0002 CLA ALPHA+1,4
STO BETA +1,4
TIX)0002,4,1

$ XPIFF 5X,Y
END

XECUTE Mode—A Compile-Time Execution
Facility

The XPOP processor may at any point in a
source program be switched into XECUTE
mode, in which succeeding source-language

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 65

statements are not only compiled but assem-
bled and executed. The programmer switches
into this mode by using the pseudo-op
XECUTE, and reverts to normal processing
by using the pseudo-op COMPYL; the coding
between each such pair is assembled as a batch,
then executed. XECUTE mode may be used
with great freedom. The programmer may
enter and depart it within a macro; while in
the mode he may use macros (with full nota-
tional flexibility), algebraic expressions, and
everything else that XPOP normally processes
except certain pseudo-ops that would be mean-
ingless at compile time. XECUTE mode was
originally implemented by those working on
the XPOP processor for their own use in main-
taining and developing that program, and has
proved itself better for such tasks than any
other method we know. It enables us to patch
XPOP in a symbolic language practically iden-
tical to the FAP language in which the proc-
essor itself is written, and to cause these
patches to become effective at such points dur-
ing a compilation as we choose—not neces-
sarily at load time. The effectiveness of any
such patch can be made contingent on results
of program execution thus far, so that tests
otherwise requiring several machine runs can
be accomplished in one. A FAP-like assembly
listing is produced by XPOP while in XECUTE
mode, and the symbolic language employed is
so nearly identical to FAP that the very
cards used for XECUTE-mode patches can
later be used for FAP assembly-updating.*

But this facility is by no means usable only
by those working on the processor itself. It
has the further role of giving the compiler-
designer working with XPOP the ability to
specify pseudo-ops for his compiler, and make
it perform any compile-time functions it re-
quires that are not built into XPOP—building
special tables, setting flags, and so on. It en-
ables the designer to make his system, to any
extent he wishes, an interpreter rather than
a compiler, or a monitor/operating system
rather than a language processor.

Compile-time execution makes a great va-
riety of special effects readily available to the

* We have produced a subroutine, entirely independ-
ent of XPOP, equivalent to XECUTE mode, and hope
soon to announce its general availability.

programmer. For example, it allows any maecro
to be used recursively: just before calling on
itself, siich a macro switches into XECUTE
mode, makes whatever test is required to de-
termine whether further recursion is indicated,
then switches back to compile normally either
at or just after the internal call, depending on
the outcome of that test. Another useful facil-
ity it affords is that of trapping any source-
language statement type for such purposes as
counting the number of uses made of it, taking
snapshots of its variables before their values
are changed, or debugging by testing the values
of a procedure’s variables just before exiting
from it. Such trapping could be done even at
the machine-language level. If the programmer
wanted to trap all TRA instructions, for ex-
ample, he would define TRA to be a macro,
enter XECUTE mode within that macro to
take the desired compile-time action, then re-
turn to normal processing. (The psuedo-op
ULTLEV—ULTimate LEVel of expansion—
would be used within such an op-code/macro
to prevent the taking of a TRA instruction
within the TRA macro as a recursive call,
with resulting infinite regress.)

One purpose of replacing op codes by macros
of the same name might be to cause each such
extended operator to step a programmed clock
at execution time (as well as executing the
original op code, of course), so that the pro-
grammer can learn exactly how long his rou-
tines take to run—a critically important mat-
ter in real-time applications, which require that
programmed procedures fit into time slots of
fixed size. This capability, together with its
notational-flexibility and immediate-execution
features, makes XPOP particularly suitable
for command and control programming.®

Language-Preserving Pseudo-Operations

XPOP provides the programmer with a
group of three pseudo-ops that enable him to
order, at any points in his program, that all
macros so far defined be punched onto binary
cards, written onto tape, or both. The use of
any of these pseudo-ops preserves all macros
then in the system in a highly compact form
(binary-card representation takes about one-
sixth the number of cards that symbolic takes)
and, more important, a form that can be read

66 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

into the system at tape speed on any later
XPOP run, without the time-consuming proc-
ess of scanning and compressing the symbolic-
language definitions. Notation-defining macros
may, of course, be preserved on cards and/or
tape along with code-generating macros. The
tape and/or card deck produced may thus con-
tain a complete programming language of the
programmer’s own design in both vocabulary
and notation. This language may then be
changed in any respect during the course of
any ordinary production or debugging run.
Functions may be added or deleted, notation
elaborated or simplified. Because any of these
pseudo-ops can be used as often as desired in
a single program, it is possible to preserve suc-
cessively larger sets of macros, each set con-
taining its predecessors as subsets, as well as
any macros defined since. Each time macros
are punched or written out by means of any
of these pseudo-ops, a report is generated, giv-
ing an alphabetized list of the macros pre-
served and the percentage of the system’s
macro capacity they occupy.

Another two pseudo-ops are available for
ordering, either during a later XPOP run, or
later in the same run, that predefined macros
be read in either from the input tape (if they
had been preserved on cards) or a reserved
tape (if they had been preserved on tape).
Sets of preserved macros may be read into the

system at any point in any program, making
it possible to switch languages in midprogram.
This greatly facilitates the consolidation into
one program of sections written by several pro-
grammers using different XPOP-based lan-
guages—each section simply begins by reading
into the system the language in which it was
written.

The five pseudo-ops, and their exact effects,
are given in Table 1.

As is shown in the following example, the
programmer may override XPOP’s built-in as-
sumptions about the tapes that WMDT,
WAPMD, and RMDT refer to. He does so
simply by specifying, either by logical or by
FORTRAN tape designation, the unit he
wishes to address. He may also assign a name
to each file when he creates it, and later re-
trieve it by name; this permits many languages
to be stacked on a tape while sparing the pro-
grammer any concern over the position of the
one of interest to him. In the example below,
the programmer has used WMDT to write his
language onto logical tape A6 under the name
‘TEST’. His language consists of three macros,
whose names are then listed by XPOP. (Since
the amount of available core storage used by
these three was less than one-half percent, it
is given as zero percent.) He then read this
language back in again, this time addressing
the tape by its FORTRAN designation, 11.

$ WMDT TEST,A6

$THE FOLLOWING MACROS HAVE BEEN OUTPUT ON TAPE
$ TEST2

3 TESTER

$ TESTXC

$ 00 PER CENT OF AVAILABLE SPACE HAS BEEN USED

$ RMDT TEST,11

$ALL PREVIOUS MACROS HAVE BEEN DESTROYED BY THE USE OF RMDT

Debugging Tools—The XRAY

XPOP provides one unconventional tool for
finding bugs that our experience has shown
to be highly useful, and which might readily be
incorporated into other systems. This is the
XRAY—a structured, interpreted, and -cap-
tioned dump of core memory and the output
tape. It prints out the chief buffers, tables,
and character-strings in the system in mean-
ingful format and (where one exists) external
representation, as well as all the program com-

piled so far (whether still in core or already
on tape), and a standard octal dump of as
much of core memory as the programmer may
require. In case of system trouble or source-
program trouble not covered by one of XPOP’s
50-odd error messages, the first thing the
XPOP programmer will want to check is that
the macro definitions were properly accepted
and packed away, and these definitions are
accordingly converted back to original input
form and exhibited first. Because these defini-

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 67

TABLE 1 THE LANGUAGE-PRESERVING PSEUDO-OPERATIONS

Pseudo-op Meaning Action Caused

WMDT Write Macro-Definition tape Writes definitions and associated informa-
tion in binary on logical tape A5

PMDC Punch Macro-Definition Cards Writes definitions and associated informa-
tion in card-image format on system
punch tape

WAPMD Write and Punch Macro Defini- Causes both tape files described above to

tions be written

RMDT Read Macro-Definition Tape Reads in from logical tape B5 a binary
file created by a ‘WMDT’ or “WAPMD’

RMDC Read Macro-Definition Cards Reads in from the input tape binary rec-

ords representing a deck produced by a
‘PMDC’ or a ‘WAPMD’

tions, as seen in an XRAY, have undergone
both compression into internal form and ex-
pansion back into input form, the programmer
who can recognize his macros there can feel
some assurance that they were properly digest-
ed by XPOP. He will next want to see how the
system has scanned the last statement it saw;
for this purpose he is given a print-out of the
table that shows what symbols XPOP ex-
tracted from that statement as the parameters,
and how it paired them off with dummy vari-
ables. Following this he is shown that part
of the compiled program still in the system’s
output buffer, then that part already written
out onto tape. Finally, the XRAY will present
as much of core memory in standard octal
dump format as the programmer may have
specified in the variable field of the XRAY
pseudo-op that triggers this output.

XRAYs can be obtained in two ways. One
is to use the pseudo-op explicitly at whatever
points trouble has shown up in a previous run,
or is to be feared; the other is to order compila-
tion in XPER (eXPERimental) mode, which
may be started at any point in the program by
use of the pseudo-op XPER. In this mode,
the detection by XPOP of any error in the
source program or the system itself causes the
generation of an XRAY—and one will be gen-
erated at the end of the program in any case.
The two methods may be combined, the pro-
grammer calling explicitly for XRAYs at some
points as well as compiling all or parts of his

program in XPER mode. The information
presented by an XRAY as presently consti-
tuted is not fully adequate (hence the selective
octal dump as a backup), and additions to it
are being made, but experience indicates that
the gain in intelligibility of information pre-
sented in XRAY form over that given in octal
dumps is great enough to mark a step forward
in bug-finding methods, as we think that
XECUTE mode does in bug-correction. The

ties suggests the possibility of some experi-
ments in on-line debugging; we hope to report
on these later.

ACKNOWLEDGMENTS

The general macro-instruction concept, as
well as many details of format, are derived
from the BE-SYS systems created at Bell Tele-
phone Laboratories and generally associated
with the names D. E. Eastwood and M. D.
MelIlroy.

Three projects similar at least in spirit to
XPOP but which came to the author’s attention
too late to play any part in the XPOP design
are the Generalized Assembly System (GAS)
of G. H. Mealy,” the Self-Extending Translator
(SET) of R. K. Bennett and A. H. Kvilekval,®
and the Meta-Assembly Language of (presum-
ably) D. E. Ferguson.®

At Lockheed Missiles & Space Company the
author’s principal debt is to B. D. Rudin, W. F.

68 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

Main, and C. E. Duncan for steady faith and
support over long bleak stretches. Much of the
coding of the processor and most of the daily
problems fell to W. H. Mead, Marion Miller,
M. Roger Stark, and A. D. Stiegler.

The author is grateful to C. J. Shaw of Sys-
tem Development Corporation for an acute
critique of XPOP that has helped to improve
the presentation and to pinpoint the areas in
which further development is most needed.*

Thanks are also due to P. Z. Ingerman of
Westinghouse Electric Corporation for useful
discussions on the relationship between XPOP
and syntax-driven compilers, and for the op-
portunity to read part of his forthcoming book
on such compilers.?

REFERENCES

1. IroNs, E. T., “A Syntax Directed Compiler
for ALGOL 60,” Communications of the
ACM, January 1961, pp. 51-55.

2. Froyp, R. W., “The Syntax of Program-
ming Languages — A Survey,” IEEFE
Transactions on Electronic Computers,
EC-13, August 1964, pp. 346-353.

3. INGERMAN, P.Z., A Syntax Oriented Trans-
lator (New York: Academic Press, to be
published).

4.

10.

HALPERN, M. 1., An Introduction to the
XPOP Programming System, Lockheed
Missiles & Space Co., Electronic Sciences
Laboratory, January 1964.

, “Computers and False Economics,”
Datamation, April 1964, pp. 26-28,

, A Programming System for Com-
mand and Control Applications, Technical
Report 5-10-63-26, Lockheed Missiles &
Space Co., July 25, 1963.

MeALY, G. H., A Generalized Assembly
System, Memorandum RM-3646-PR, The
RAND Corporation, August 1963 (2nd
printing).

BENNETT, R. K., and A. H. KVILEKVAL,
SET: Self-Extending Translator, Memo
TM-2, Data Processing, Inc., March 3,
1964,

FERGUSON, D. E., “The Meta-Assembly
Language,” address presented before the
Special Interest Group on Programming
Languages, Los Angeles Chapter of ACM,
July 21, 1964 [information taken from the
announcement].

SHAwW, C. J., “On Halpern’s XPOP,” Sys-
tem Development Corporation, unpub-
lished, undated [early 1964].

A 10 Mc NDRO BIAX MEMORY OF 1024 WORD,
48 BIT PER WORD CAPACITY

Willigm I. Pyle
Theodore E. Chavannes
Robert M. MacIntyre
Philco Corporation
Ford Road, Newport Beach, California

INTRODUCTION

Most of the approaches to fast read access
memories in the past have been centered about
the achievement of either faster conventional
destructive switching, or the use of various
non-destructive readout techniques and storage
devices. Many of these techniques have in-
herent drawbacks for very fast read operation,
such as the necessity for rewriting, in the case
of conventional switching approaches, or the
lack of truly non-destructive properties. The
memory system described in this paper solves
these problems by utilizing the BIAX memory
element, with its inherently non-destructive
readout properties, in a system organized to
minimize circuit delays and utilize transmis-
sion line properties for the various signal
paths. In this manner it is possible to achieve
random read access times of 85 nanoseconds
maximum since most inductive components are
incorporated into the various transmission
lines with the lines being terminated in their
characteristic impedance. Not only is the
memory designed for very high readout rates
in the non-destructive mode, but it is electri-
cally alterable with conventional linear select
methods in five microseconds or less.

The sections which follow will describe the
system design concepts, operation of the BIAX
memory system, and the circuit and packaging
designs which were used to achieve the system
performance,

69

SYSTEM DESCRIPTION

System Design Goals

The basic goals of the memory program
were to design and construct an operating
model of a 1024 word, 48 bit per word memory
capable of 10 Mec. random access non-destruc-
tive readout (NDRO) while being electrically
alterable with a write cycle time of five micro-
seconds. Although the performance require-
ments were of prime concern it was neverthe-
less necessary to utilize state-of-the-art
components to insure that a practical system
would ultimately result. Table I outlines the
system characteristics which resulted. '

System Organization

The organization of any memory system is,
in general, related to the desired speed of
operation. If the primary design goal is the
achievement of very short read access time it

is usually mandatory that parallel operation of
© CAPACITY: 1024 WORDS, 48 BITS PER WORD
© REPETITIVE READ CYCLE TIME: 100 NANOSECONDS

® READ ACCESS TIME: 85 NANOSECONDS (MAXIMUM)
(RANDOM ACCESS)

® REPETITIVE WRITE CYCLE TIME: 5 MICROSECONDS

® REPETITIVE WRITE/READ CYCLE TIME: 10 MICROSECONDS

Table I. Memory System Characteristics.

70 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

many parts of the memory be employed. The
block diagram of Figure 1 shows how this type
of parallel organization is employed to achieve
10 Mc. NDRO operation. In this diagram it
is seen that the flow of information for a typi-
cal readout operation is through the input
buffer, read decoder, interrogate drivers, BIAX
array, sense amplifiers, and output register.
To achieve the goal of 85 nanoseconds read
access time, the propagation delays through
the functional parts of the system as shown in
Figure 2 ' were necessary.

The achievement of these propagation de-
lays necessitated the use of certain specific
organizations of the circuitry within the mem-
ory read system. These organizational factors
and how they were applied to the 10 Me.
NDRO memory are listed below.

1) Every signal path involved in the read
operation, including interconnections,
must be considered in terms of its trans-
mission line characteristic impedance and
propagation delay. This is especially
true in the BIAX array where the in-
ductance of wires passing through many
elements is substantial.

2) When the array signal transmission
paths are portions of transmission lines,
the total array delay is approximately
the sum of the interrogate line delay plus
sense line delay. Therefore the minimum
total array delay usually results when
the number of array words is approxi-
mately equal to the number of bits per
word. In this memory, the 256 word by
192 bit per word array organization per-
mits achievement of near minimum delay
within the array.

e —

DATA
A TS

WRITE WRITE TIING
DECODE AND DRIVERS
BAX
ARRAY outPyY
(192 OUTPUT
ADDRESS - SENSE
0 eTS % AMPLIFIERS RECISTER [a mTs
1024 X 4 (WRITE)
256 X 192 (READ)

READ READ

READ DRIVERS
CONTROL ™ | DECODE

Figure 1. 10 Mc. NDRO BIAX Memory Organization.

ARRAY
ANSMISSION ELEMENT
1 l_swncumc “R“"‘l [DEL“
]
OUTPUT FF
| ADDRESSING H AMP | AND GATING
35 sls| i3 22 s| s
——
! TOTAL ARRAY DELAY a'o I |
85
NANOSECONDS SPEC. crae
MAX TIME

Figure 2. 10 Mc. BIAX NDRO Cycle.

3) Read address decoding must be accomp-
lished at as low a signal level as prac-
tical, with high level gating kept fto a
minimum. In order to effectively ac-
complish this end it is necessary to use
one interrogate driver per array word
and a 1 of 256 decoder. Although 256 in-
terrogate driver circuits are used each
circuit is simple since it drives a trans-
mission line terminated in its character-
istic impedance.

4) The BIAX output signals produced by
the interrogation of a word must be
strobed at the earliest possible time fol-
lowing the interrogation. In this mem-
ory it is accomplished by strobing the
sense amplifier with timing pulses de-
rived from the array itself. By using
these array-derived strobing pulses each
sense amplifier output is strobed at an
optimum time and variation in signal de-
lays due to physical location of the word
within the array or degradation of the
interrogate pulse rise time is automati-
cally compensated for.

5) All circuits associated with the NDRO
portion of the memory must be located
as close as possible to the array to mini-
mize interconnection delays. In the
memory this is accomplished by arrang-
ing the read circuits on two sides of the
array, and making interconnections via
twisted pair lines.

Memory System Design and Operation

The memory described here has two basic
modes of operation, non-destructive readout
and, a writing mode, both of which utilize
linear or word select techniques for address
selections.

NDRO Mode
The basic concept employed to achieve non-
destructive readout in the BIAX element is

A 10MC NDRO BIAX MEMORY OF 1024 WORDS 71

r
.

DIMENSIONS IN MILLI-INCHES

\ /I . P
Figure 3. Nominal BIAX Physical Characteristics.

one involving crossed or quadrature magnetic
fields in a common volume of square loop
magentic material.>®> The BIAX element used
in the 10 Mec. memory is a pressed block of
ferrite material having two non-intersecting
orthogonal holes. The physical dimensions are
approximately 50 x 50 x 85 milli-inches (mils)
with two circular holes, one 30 mils in diam-
eter, the other 20 mils in diameter (Fig. 3).
Information is stored by saturating the mag-
netic material around the 30 mil hole (the
storage hole). The storage hole contains the
windings necessary to write into the memory
element and to sense signal output. The inter-

o BIAX ELEMENT FLUX PATTERN

i

“
IR P

GNESCINT
PLUX STATE

= & A

rogate hole contains a single conductor for
interrogation of the memory element.

Interrogation of the element is accomplished
by applying a current producing flux in the
same direction as flux already established
around the interrogate hole. The -current
causes the domains in the common volume to
be re-oriented toward the direction of the flux
linking the interrogate hole. This reorientation
decreases the flux linking the storage hole and
thereby gives rise to a d¢/dt voltage on the
sense winding passing through the storage
hole. The polarity of this voltage is dependent
on the orientation of the flux linking the stor-
age hole, consequently, a selected polarity of
element output voltage will be observed for a
ONE and the opposite polarity for a ZERO
(See Figure 4C). TUpon termination of the
interrogate pulse, the domains in the common
volume revert back to their original permanent
flux condition and a true non-destructive read-
out is achieved. Several advantages result
from the use of this principle as employed in
the BIAX memory element. First, the interro-
gate process introduces no measurable delay in
the read operation and is therefore quite appli-
cable to very high speed reading. Secondly,
since the interrogation process involves only
shuttling of flux around the interrogate hole,
the inductance of the wires passing through a

sToaso ">~
TERROGATE
PULSE APPLIES PLIE Caa e

sToagp -~

< M-POLAR BIAX ELEMENT OUTPUT

Figure 4. The BIAX Principle.

72 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

number of elements is sufficiently linear to
permit low loss wide bandwidth transmission
lines to be constructed using the BIAX element
inductance and the associated array capaci-
tance. By using the array construction tech-
niques described later in this paper, it was pos-
sible to achieve transmission line impedance
as low as 200 ohms while propagating pulse
rise times less than 5 nsec.

NDRO operation of the memory is initiated
upon receipt of a clocked read command after
the address levels have stabilized. The ten
address bits and their complements are con-
verted by the input buffer to levels required by
the read address decoder. The decoder selects
one unique path of the possible 256 and acti-
vates the interrogate driver connected to the
decoder output. The actual decoding process
starts with the occurrence of the clocked read
command and proceeds through the various
levels of the decoder at a rate limited only by
the response of the circuits in the path corre-
sponding to that address. Figure 5 shows the
functional breakdown of the input portion of
the memory. To accomplish the required 1 of
256 decoding, it is seen that two decoders, a 64
place, and a 4 place, are used. The primary
advantage of this method is that it minimizes
the number of gating levels since the decoders
operate in parallel. The 4 place decoder is a
clocked unit, while the 64 place is unclocked
and the outputs of the two decoders are com-
bined at the input of the interrogate driver

TO WRITE CIRCUITS

circuits with another level of gating. Since
the memory array is organized as 256 words
of 192 bits, only eight of the ten address bits
are required for decoding at the input to the
memory, with the remaining two address bits
being employed to select the desired 48 bits (of
the 192 available) to be transferred to the 48
bit memory output register.

When a particular interrogate driver has
been activated, it is necessary to extract the
stored information from the array within 10
nanoseconds if the total memory read access
time of 85 nanoseconds is to be achieved., To
understand the difficulty of achieving the 10
nanosecond array delay with conventional con-
stant current techniques, consider the follow-
ing calculations: Assume that each interrogate
line consists of approximately 200 elements,
each exhibiting an inductance of 30 nanohen-
ries. By lumping all the inductances, a total
inductance of 6 microhenries would result.
Using conventional constant current drive
techniques, to achieve 80 ma. within 10 nano-
seconds would require the following voltage:

_Lal
E="7F (1)
_ 610 (8010°2)
E=———0s — (2)
E=48 V (3)

It was felt that not only would a 48 volt cur-
rent source be impractical since 256 were re-

'Y ¥ Y
INPUT READ COMMAND INHIBIT
BUFFERS
WRITE COMMAND
_ﬁ
~
|| 64 PLACE R
6 BITS DECODER
ADDRESS DECODER
INPUTS OUTPUT “AND”
10 8iTs) GATES AND JO BIAX
2BITS + INTERROGATE | ARRAY
DRIVERS
COMMAN \ 28T 4 PLACE
EE—AE._D-’ DECODER
Srstem cocx PR ADDRESS | 1o 1 cemERATORS
GENERATOR @ >

Figure 5. 10 Me. BIAX NDRO Memory Input Block Diagram.

A 10MC NDRO BIAX MEMORY OF 1024 WORDS 73

= T T T I, T T3

Figure 6. Simple BIAX Interrogate Line Equivalent
Circuit.

quired, but it also would introduce reactive
transients which would seriously limit the
maximum interrogation rate. In order to bring
the required interrogate drive voltage within
practical limits, and to minimize transients,
the terminated transmission line concept of
operation was employed in the memory array.
Figure 6 shows the schematic representation
of a simple BIAX transmission line. In this
figure, each lumped inductance is represented
by one BIAX element through which an inter-
rogate wire passes, and the capacitance is that
between the wire and the ground plane.

If one calculates the properties of the trans-
mission line ¢, assuming an element inductance
of 30 nh per element, with elements spaced at
approximately 0.125 inch intervals and located
above the ground plane, the line will exhibit a
characteristic impedance of approximately 500
ohms. Were a line with such a high characteris-
tip ‘:mnedahnn +n bn 11god far +tha

tic impedance to be used for the memory inter-
rogate line, certain problems would be en-
countered. First the drive voltage required to
achieve 80 ma. interrogate current would be
40V, and even with a constant voltage driver,
it is excessive from a practical circuit stand-
point. Secondly, such a large excursion in
voltage on the interrogate line introduces noise
onto the sense line by capacitive coupling
through the element, even though this capaci-
tance is only about 0.01 pf. per element. Third,
if this transmission line consisted of 200 sec-
tions, corresponding to the required word
length in the array, the delay would be ap-
proximately 12 nsec. (Fig: 7). In order to
alleviate these problems, several steps were
taken to alter the electrical length, impedance
and driving characteristics of the lines. These
steps are described briefly below.

To reduce the driving voltage requirements,
the line impedance was reduced by two means.
First, the elements were offset as shown in

70/

TIME BASE = 20 NSEC/DIY
VERT. SCALE = 2v/DI¥

0
M

Figure 7. Interrogate Pulse Propagation Through 200
Element Transmission Line.

|
/

il LINE IMPEDANCE = 500 OHMS
[

/

Fig. 8 and treated essentially as two trans-
mission lines in parallel, and further split into
two additional parallel lines, Since each wire
passes through only half as many elements
(and inductance) per unit of capacitance as for
the single line, the impedance is reduced to 0.7
of the single line value. It should be noted that
the delay per section of line is actually greater
for the offset placement by a factor of 1.4, but
since only half as many sections are employed
(by driving in parallel), the net propagation
delay is reduced to 0.7 of the single line value.
The second means employed to reduce the im-
pedance of the interrogate Iine is also shown
in Fig. 8. This method consists of introducing
a perforated metallic shielding mask around
each element between the two holes. This in-
creases the capacitance per section by approxi-
mately another factor of three, and brings the
characteristic impedance down to approxi-
mately 200 ohms.

The methods described above, employed to
reduce the transmission line charsdcteritic im-
pedance, did reduce the drive voltage require-
ments to about 12 V and as a result, the capaci-
tive coupling to the sense line through the
BIAX element was reduced accordingly. Even
50, an objectionable amount of noise was still
observed due to the coupling. Two measures
were taken to eliminate this problem. The
offsetting of the elements as shown in Fig. 8
necessitated driving the two lines in parallel.
Because of the inherent properties of the
BIAX element, interrogation can be accomp-
lished with either polarity pulse, if it is in the

74 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

TO OTHER HALF OF INTERROGATE LINE

(APPROXIMATELY 100 ELEMENTS)

’
INTERROGATE —
DRIVER , .
Ol o | 1010 O o1
SHIELDING MASK GROUND PLANE
ELEMENT PLACEMENT - SIDE VIEW
TO OTHER HALF OF INTERROGATE LINE
/ (APPROXWATELY 100 ELEMENTS)
'{ AP
INTERROGATE —
DRIVER it A
-

ELEMENT PLACEMENT - TOPVIEW

Figure,8. Dual BIAX Interrogate Line—Physical Configuration.

same .direction as the previously established
flux around the interrogate hole. This property
of the BIAX element was used to reduce the
capacitively coupled noise to the sense line by
using pulses of equal amplitude and simultane-
ous rise times but of opposite polarity applied
to the offset lines. Since a given sense line
crosses both of these offset interrogate lines,
the total capacitive coupling is reduced to a
value proportional to the algebraic sum of the
opposite polarity interrogate voltages during
the rise time. Since this method did not,pro-
vide perfert cancellation of the capacitively

BIAX OUTPUT WHEN INTERROGATED

O

-
]
|
|
]
[}
]
|
]
[
vV

coupled noise, an additional method was em-
rloyed to provide partial cancellation of re-
maining noise on the sense line. In Fig. 9 it
is seen that the sense line is divided into eight
segments of 32 bits each. Within each seg-
ment, the electrical length of the line is short
compared to the interrogate pulse rise time,
and one end of each segment is returned to
ground. When capacitive noise is introduced
into the segment, it propagates to the grounded
end and is reflected back to the source in-
verted, providing effective cancellation of the
noise pulse.

ISOLATION RESISTORS

O

[| I"'_____—_'l [0 S |
N |

-

—— e — = ¢

vV
-

Vi SENSE AMPLIFIER

20 OHM STRIP TRANSMIBSION LINES

i |
' 1

———————d ¢

o

\ 44
f i |
vV

e et B H----

SENSE LINE LOCALLIZED GROUND PLANES

Figure 9. Sense Line Summing Equivalent Circuit.

A 10MC NDRO BIAX MEMORY OF 1024 WORDS

75

When an output is produced from an ele-
ment by interrogation, the isolation resistors
shown in Fig. 9 create, in effect, a constant
current source. The sense amplifier is then
designed with a very low input impedance to
provide compatibility with the sense line sum-
ming method. In the present memory, the
sense amplifier has an input impedance of ap-
proximately 15 ohms, and receives its input
from the array not more than 10 nsec after the
50% point of the interrogate pulse.

When the signals are observed at the output
of the sense amplifier the time delay (relative
to the interrogate pulse) depends both upon
the physical word location relative to the sense
amplifier and the location of the bit in the
word relative to the interrogate driver. In
the present memory, this delay ranges from a
minimum of essentially zero to a maximum of
ten nanoseconds, not including the delay
through the sense amgplifier. This variation,
added to the variation in decoding delay, ren-
ders it difficult, if not impossible to strobe all
192 sense amplifiers reliably with a pulse fixed
in time while still maintaining the required
access time. To avoid this problem, the pulse
used to strobe the sense amplifier is derived
from the same region of the array as is the
information. This can best be understood by
considering Figure 10. Each group of 48

sense amplifiers is accompanied by a 49th bit,
identical to the other 48, which provides the
input to a pulse generator (“T” pulse genera-
tor) the output of which is used to strobe the
48 sense amplifiers in that group. In so doing
the inherent time variations in signal output
due to word and bit location within the array,
degradation of the interrogate pulse rise time,
and variations in decoding time are automati-
cally compensated for. Figure 10 also shows a
function block called “S” clock generator. The
pulse from this generator, which is also de-
rived from the array, is used to set those out-
put register flip flops which do not receive a
reset input from the “T” gate. This technique
permits the use of simple one input or “D”
flip flops * in the output register.

The final operation which occurs in NDRO
is selection, by the two most significant address
bits, of the proper group of 48 sense amplifiers
whose strobed outputs are to establish the state
of the memory output register. This selection
is accomplished by permitting only one of the
four “T” generators to be activated at any time
thus producing an output on only one of the
four “OR” inputs to each of the memory out-
put flip flops.

Write Mode

It will be recalled that the organization of
the array for reading is as 256 words of 192

<

256 WORDS

BIAX ARRAY

196 BITS
4 WORDS + 4 T CLOCK BITS

c819

ISENSE AMPI

lSENSE AMP I

FROM ADDRESS _
FLIP-FLOPS
A 4 A y { y A A y
CL% . T1 | sensE Ty | sense T3 | sENsE T4 | SENSE
K ICLOCK| AMPS cLOCK| AMPS cLock] AMPS CLOCK] AMPS
GEN GEN | (48) GEN | “® GEN | 9 GEN | 48
wpn e g =
GATES GATES GATES GATES
A
o OUTPUT RESISTER
(48 FLIP-FLOPS)

Figure 10. 10 Mc. NDRO BIAX Memory Output Block Diagram.

76 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

WRITE CYCLE e

worowmrg “OWE”
S m—— oy
=

wTwiTe CONE”
PULSES

Figure 11. BIAX Array Element Orientation and Write Current Program.

bits per word. For writing however, the
array is organized as 1024 words of 48 bits per
word, and conventional linear select techniques
aye used. The elements are oriented and
wired in the array such that current pulses
pass in both the word and bit directions and
selective writing is accomplished by the coin-
cidence of a word oriented word write pulse
and bit oriented write pulse. The orientations
of the BIAX elements within the array and the

write current program are shown in Figure
11. The word write pulse currents consists of a
fixed sequence of two opposite polarity word
write currents, and a time-overlapping bit
current whose polarity depends upon the
binary state of the information to be stored.
In order to select the appropriate word of the
1024 for writing, a matrix of 16 word drivers
and 64 word switches, organized as shown in
Figure 12, is used.

A TuRE BIPOLAR BIT DRIVERS
YOLTAGE pep > TO: { WORD -1 DRIVERS
REGULATORS WORD -0 DRIVERS
1
ADDRESS o woro .1 R
BUFFER DRIVERS
|1 0F 16
DECODER
ADDR ARRAY
- a4 {ORGANIZATION FOR WRITING)
10 BITS | YORD -0 » 1024 worDS
DRIVERS
4BITS 48 BITS PER WORD
P
10F 684
6 BITS vorD e
DECODER swcHes|
WRITE COMMAND p— ‘ I
M TIMING po
DATA INPUT - L.
b BATA BIT DRIVERS
B8BTS oAt

Figure 12. Memory Write System Block Diagram.

A 10MC NDRO BIAX MEMORY OF 1024 WORDS 77

Receipt of the write command activates the
write cycle by starting the fixed sequence of
word current pulses and permitting the 48 bi-
polar bit drivers to generate currents in a di-
rection dictated by the data inputs (Figure
11). The portion of the write cycle during
which element switching occurs, if it occurs at
all, is determined by the information carried
by the bit current and the previous history of
the element. Both the bit and word currents
are temperature compensated to permit opti-
mum switching of the elements with minimum
disturb over a temperature range of 0°C to
50°C. Nominal write system operating param-
eters for the memory are given in Table II.

MEMORY SYSTEM FABRICATION AND
PERFORMANCE

Fabrication and Packaging

The complete 1024 x 48 memory described in
the preceding portion of this paper was de-
signed, fabricated and tested. The completed
memory is shown in Figure 13. In this photo-
graph are identified the following essential
parts of the memory.

1. Array and Read Circuits

One of the four memory array planes is
visible in Figure 13. Note that the decoder
and interrogate driver circuits, located above
the array, and the sense circuits and memory
output circuits to the right of the array, both
are mounted as physical extensions of the main
array ground plane. This was done primarily

to minimize propagation times and to avoid

ground noise problems. Each of the four array
planes is divided into eight sections as shown
in the photograph. This results from the re-
quired segmenting of the sense lines (refer to
Fig. 9), and because word write lines must be
terminated at 48 bit intervals. The allocation

TOTAL WRITE CYCLE TIME Su SEC MAX

WRITE - READ CYCLE TIME 10y SEC MAX

WORD CURRENT AMPLITUDE FIRST (*'1™") +200 ma
(25°C) SECOND (‘0”") - 200 mo

BIT CURRENT AMPLITUDE % 95 ma

(25°0)

Table II. Write System Parameters.

Figure 13. 10 Mc. NDRO BIAX Memory.

of spare word and bit lines is made so that
each of the eight sections contains two word
spares and two bit spares and a spare for the
“T” line. Therefore each section contains 34
x 52 or 1768 elements. Since each section is
identical, each array plane contains 14,144
BIAX eclements and the entire memory array
consists of 56,576 elements. Figure 14 shows

Figure 14. Detailed View of 10 Mc. NDRO Array.

78 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

a detailed view of one section of the array.
From this photograph can be seen the dual
interrogate lines, offset to permit straight wire
looming. The element-to-element spacing in
both the horizontal and vertical directions is
0.125 inches. A shielding mask can be seen,
positioned between the holes of the BIAX
element forming the ground plane for the in-
terrogate transmission line. In the lower
center of Figure 14 in the gap between the
shielding masks ‘are the sense lines with their
isolation resistors, and the bit lines. Seen near
the top of the picture are the twisted pairs
which connect to the interrogate drivers, the
word write lines and word select diodes.

2. Write Circuits

The write circuits used in the memory can
be seen in Fig. 13 mounted in two card racks
below the array. These dircuits are of con-
ventional design and are the same type of cir-
cuits used in other BIAX memory systems.

3. Power Supplies and Cooling Fans

Power supplies and blowers occupy the
lower regions of the memory cabinet, and are
of standard off-the-shelf variety. All power
supplies have voltage regulation of 0.1% or
better and are current limited to provide pro-
tection to the memory circuits.

Memory System Performance

The 10Mc. NDRO memory has been exten-
sively tested to determine its performance
characteristics. Figures 15 and 16 show wave-
forms at various locations in the memory for
NDRO operation. Figures 15A through F

alalA [
VERT. = IV-DIV. A WEMORY SYSTEM CLOCK
/. oed o
Saisei g
VERT. = ¥ DIV. B. SLOWEST ADDRESS 8iT
VERT. = ov/DWV. X J“ c PULSE
~AAT T
VERT. = 5v/DIV. D. SENSE aupLIRIER ouleuT
L AT
T -1
VERT. = 2v/01%. A"'/!u il E. TIME STROBE (*T") GATE OUTPUT
VERT. = 2¥/DIV. j‘ ‘\ F. MEMORY OUTPUT REGISTER FLIP.FLOP

EXCEPT ASNOTED: TIME BASE = 50 NSEC/DIV
VERT, SCALE = 2v/DIV

Figure 15. 10 Mc. NDRO BIAX Memory Read Cycle
Timing Waveforms.

show the read operation from the beginning of
decoding, through the decoder and interrogate
driver selection, and through the sense ampli-
fier and time strobing, and to the memory out-
put register. Figure 16 shows detailed photo-
graphs of read circuit waveforms. In Figures
16C and D are shown the access time measure-
ment from the 50% point of the system clock
(negative going) to the response of the
memory output flip flop. This access time rep-
resents the longest access time for any word
or bit in the memory.

The memory also underwent considerable
testing to determine its operating reliability
under various conditions of patterns and cycle
rates for both the NDRO and write/read
modes. To facilitate the testing, a memory
exerciser which was capable of generating an
almost unlimited number of bit and word
patterns and error checking each pattern in
both NDRO and write/read, was employed. By

)
VERT. = A INTERROGATE PULSE
ERT. = 0V/DIY. - HOR. = 5N SEC/DIV.

3 5MC READ RATE

VERT. = 5V/DiV. Jr AN _ jfﬁ\ \U ,l} B. SENSE AMPLIFIER OUTPUT / I
T —

~— ¥ \ €. MEMORY SYSTBM CLOCK / %

VERT. < 1V/DIV. I - HOR = 10N SEC/DIY. . - = -

$ /] IN] w0nc rEAD RaTE E INTERROGATE PULSES
e s (POSITIVE AND NEGATIVE)
W% HOR, = 5N SEC/DIV.
VERT. = 1V/DIV. 1 1 D- MENORY OUTPUT REGISTER VERT. = 2v/DIV.
: 3 1~ N rurror

Figure 16. 10 Me. NDRO BIAX Memory Read Circuit Waveforms.

A 10MC NDRO BIAX MEMORY OF 1024 WORDS 79

utilizing this exerciser, errors from any origin
caused the equipment to stop and indicate the
word and bit location of the error. During the
equipment checkout phase, tests representing
voltage and write current variations, as well
as worst-case patterns and cycle times, were
run as a matter of course. To demonstrate
that reliable system operation was being ob-
tained, each pattern was run for a ten minute
period of time, resulting in a total of 3-10'* bits
having been error checked. In this time, each
bit in the memory was error checked 6-10°
times, and because of the memory organiza-
tion, had actually been interrogated 24-10¢
times. As an acceptance test for the memory,
fourteen patterns were each run for the re-
quired ten minute period, representing a total
of approximately 42-10'* error checks of stored
information. Each pattern was also run for
the write-read-error check mode for a thirty
minute period with a read-after-write error
check at a write-read cycle time of 9 micro-
seconds. The entire acceptance test procedure
involved approximately 40 hours of error free
system operating time.

FUTURE AREAS OF INVESTIGATION

Although work has been completed on the
memory system described in this paper, many
extensions of the techniques are possible. Be-
low are described a few of the more promising
approaches and areas in which further work
is being done.

Variations in Word Organization

Although the memory described in this
paper is organized as 1024 words of 48 bits per
word, since the array is organized for reading
as 256 words of 192 bits per word, many varia-
tions in effective memory organization are pos-
sible. For example, a read organization of 256
words of 192 bits per word could be readily
achieved with minimum modifications. Simi-
larly, word lengths between 48 and 192 bits
can be achieved. In summary, many combina-
tions of word lengths and bits per word can be
realized for NDRO operation with the existing
array design, as long as the total storage ca-
pacity is not exceeded, although with the pres-
ent array, writing must still be performed on
a 48 bit per word basis.

Access Time Reduction

In Figure 2 at the beginning of this paper,
it was noted that the BIAX array contributed
only about 10 nanoseconds to the 80 nanosecond
typical access time. In view of this it appears
quite feasible to reduce the access time sub-
stantially by appropriate circuit design effort,
as the NDRO operation of the BIAX element
is not a limiting factor.

Faster Read Cycle Times

In the same way that the access time can be
reduced, it is quite possible to increase the
reading rate to 20 Mc. or more while still using
the same array and system organization prin-
ciples.

Inereased Storage Capacity

The present memory capacity of 1024 words
in no way represents the practical limit for
this fast NDRO technique. It seems quite
likely that word capacities of two or four times
the present memory could be achieved with
perhaps a 120 nanosecond access time.

Reduced System Volume

No effort was made to minimize the physical
size of the present memory, rather it was de-
signed specifically for physical access to the
array. By appropriately folding the array and
repackaging the circuits, the physical size of
a system should be consistent with other. core
memories of similar capacities.

Airborne Applications

The BIAX element and its low power non-
destructive readout properties are particularly
well suited for airborne applications. For this
reason, BIAX elements for use at temperatures
from —55°C to +100°C have been developed
by Aeronutronic and are being employed in
various systems. The techniques used in the
10 Me. NDRO BIAX memory can be readily
applied to this type of element to produce very
fast NDRO operation over a wide range of
temperature.

MicroBIAX Applications

The BIAX element used in the 10 Mc. NDRO
memory employed elements developed before
the start of the memory project. A major in-
house program is now underway to develop a
MicroBIAX element having outside dimensions
of 30 x 30 x 50 mils. These elements offer

80 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

greatly improved characteristics, particularly
for write cycles of 1-2 p sec. In addition,
faster NDRO operation, better performance
over wide temperature ranges, simpler array
wiring configurations, as well as the obvious
size advantages are offered by the MicroBIAX
element. The potential applications for this
class of new elements is almost unlimited, and
it is expected that MicroBIAX elements will
be employed in most of the new memory sys-
tems which are developed in the future.

ACKNOWLEDGMENT

This work was sponsored in part by -the De-
partment of Defense. Many people in addition
to the authors have contributed to the success
of the program, but in particular the efforts of
C. M. Sciandra in preparation of elements and
C. L. Cantor and M. J. VanZanten in the de-
sign and testing of the system are greatly
appreciated.

REFERENCES

1. J. A. RAJCHMAN: “Magnetic Memories;
Capabilities and Limitations”, Computer
Design, September 1963.

2. C. L. WANLASS and S. D. WANLASS, “BIAX
High Speed Computer Element”, WES-
CON, 1959.

3. DubLEY A. BUuck and WERNER I. FRANK,
“Nondestructive Sensing of Magnetic
Cores”, AIEE Technical Paper 53-409,
October 1953.

4, ATHANASIOS PapouLis, “The Nondestrue-
tive Read-Out of Magnetic Cores”, Proceed-
ings of the IRE, Vol. 42, pp. 1283-1288,
August 1954,

5. U. F. GiaNoLA and D. B. JAMES, “Ferro-
magnetic Coupling between Crossed Coils”,
Journal of Applied Physics, Vol. 27, No. 5,
pp. 608-609, June 1956.

6. JAcoB MILLMAN and HERBERT TAUB, Pulse
and Digital Circuits (Mc Graw-Hill Book
Co., Inc., New York, 1956), Chap. 10, pp.
291-295.

7. MONTGOMERY PHISTER, JR., Logical Design

of Digital Computers, (John Wiley & Sons,
Inc., New York, 1958), Chap. 5, p. 126.

ASSOCIATIVE MEMORY SYSTEM
IMPLEMENTATION AND CHARACTERISTICS

J. E. McAteer and J. A. Capobianco
Hughes Aircraft Company, Ground Systems Group
Fullerton, California

and

R. L. Koppel
Autonetics Division of North American Aviation
Anaheim, California

1. INTRODUCTION

The implementation of a new system utilizing
state-of-the-art technologies requires a careful
engineering evaluation of all parameters affect-
ing such a design. In particular, when new sys-
tem concepts are needed and the available de-

a different class of system, the problems become
much more severe. Such is the case with As-
sociative Memory (AM) systems where an en-
tirely new system organizational concept places
exacting requirements on the existing technol-
ogy of information storage, as is evidenced by
the many techniques which have been proposed
for implementation.zs

It has been determined through study and
evaluation of storage media that the BIAX*
element,! a multiaperture ferrite core, possesses
the most desirable characteristics for imple-
menting an associative memory today. The
utilization of the BIAX element in the mechani-
zation of an AM is not limited to one con-
figuration. The repertoire of possible methods
consists of one-BIAX-per-bit and two-BIAX-
per-bit schemes, and, within each of these areas,
there exist different ways of utilization. The

* Registered Trademark, Philco Corp.

81

choice of the mechanization methods is depend-
ent on the application and would be a result of
detailed system analysis and fradeoff studies.
The first part of this paper details the mechani-
zation techniques of an associative memory with
the BIAX element. In particular, a new mode
of use of the BIAX element is presented which
enables extremely fast search times to be real-
ized. The number of functions which an AM
can perform are many and varied. These func-
tions may be broadly classified in the following
way:

1. Search Functions

2. Write Functions

3. Readout Functions

The functions which are provided in a given
system are, as mentioned, dependent on the ap-
plication. In addition, the methods of perform-
ing some of these functions, in particular the
searching types, are dependent on the speed re-
quirements. These in turn will, to some extent,
determine the mechanization method chosen.
The second part of this paper details the vari-
ous functional characteristics an associative
memory might have. A chart is presented
which delineates the pertinent characteristics
as a function of the mechanization technique.

82 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

The last part of the paper shows the results
obtained from a demonstration model of an AM
which utilizes the BIAX in the new mode of op-
eration mentioned above.

2. BIAX IMPLEMENTATION OF ASSOCI-
ATIVE MEMORIES

2.1.0 Normal BIAX Operation, Using Two-
BIAX-Per-Bit

The BIAX is a rectangular block of ferrite
having two orthogonal holes: the storage (in-
formation) hole and interrogate hole are as
shown in Figure 1. Also shown in the figure
are the read and write waveshapes and the
readout signal produced by the BIAX element
when operating in the normal mode. Note that
the sense signal is bipolar and occurs during
both the rise and fall time of the interrogate
current and that the phase of the signal is in-
formation dependent. Thé sense signal is
caused by a domain rotation phenomenon which
results from the interaction of storage and in-
terrogate hole flux, in the material between the
holes, during interrogation. An AM imple-
mented with the normal mode of the BIAX op-
eration requires a serial-by-bit interrogation to
prevent possible cancellation of pulses on the
word-oriented sense lines.

WORD WRITE \Ww)

BIT WRITE (BW)
SENSE

INTERROGATE

WRITE
1
+1/3 Wy m=———————- -
BW / N\
_ —
\ 7/
-1/3!w \—__--"07_—__,
+2/3 lw
ww
“2/3 by
READ - - —
INTERROGATE
e —
SENSE "1" ~
-\
SENSE "0" ~
S

Figure 1. Conventional BIAX Operation.

Figure 2 depicts the technique used in the
two-BIAX-per-bit method. The normal and
complement of each word are stored. In order
to decrease the required search time, the inter-
rogate currents are staggered by an amount
equal to or greater than the rise time of the cur-
rent and left on until the last bit has been
searched. This prevents the output signals
produced by the trailing edge of the interrogate
current from interfering with sense signals pro-
duced by subsequent interrogate pulses.

If the sense signal polarities are as shown in
Figure 1, and if the normal bit is searched when
looking for 0 at a bit position and the comple-
ment bit is searched when looking for a 1, then
the input to the sense amplifier will consist of
a series of negative pulses for a matching word.
This is due to the fact that all elements inter-
rogated would be in the 0 state. Should a mis-
match occur at a bit position, a positive pulse
will occur on the sense line. For example, in
Figure 2, drivers C1, N2, N3, and C4 would be
turned on. In Word No. 1, several elements in
the 1 state are interrogated resulting in a mis-
match (positive) signal, while in Word No. 2
all elements interrogated contain 0 and only
negative pulses occur on the sense line.

2.2.0 Operation of the BIAX in the Hughes
Unipolar Mode

2.2.1 Description of Operation

In the course of the mechanization studies, a
technique for using the BIAX which greatly en-
hances the search speed has been invented. This
new mode of operation results in a signal for a

COMPLEMENT SENSE
i‘— STORE —+AMPLIFIER "

MISMATCH

NORMAL
I‘— STORE ——i

WORD NO, 3
WORD NO. 2

ISMATCH
WORD NO. 1 MIS <

INTERROGATE INTERROGATE

DRIVERS ﬂ DRIVERS

COMPARISON
REGISTER tjofefr

Figure 2. Typical Search Operation.

ASSOCIATIVE MEMORY SYSTEM IMPLEMENTATION 83

stored 1 and no signal for a stored 0, with a
very high element signal-to-noise ratio. Thus,
unipolar rather than the conventional bipolar
operation is obtained. This technique allows
parallel-by-bit interrogation. Thus, the search
time is not directly proportional to the number
of bits per word, as in the serial-by-bit ap-
proach, but is proportional to the number of
bits per word divided by the number of ele-
ments interrogated simultaneously.

Using the same criteria for selecting the nor-
mal or complement driver as before, it can be
seen that for the matching word, no signal will
occur on the sense line since all ¢’s are being
interrogated. Therefore, if the lements are in-
terrogated simultaneously, only 0 noise buildup
will be seen. For a word which mismatches
(interrogation of an element in the 1 state), a
large output signal will result.

The number of elements which may be inter-
rogated simultaneously is a function of the sig-
nal-to-noise ratio of the elements. On a labora-

3

INTERROGATE
HOLE N\

STORAGE HOLE

\K\//

WORD

N
SENSE

BIT WRITE,
INTERROGATE
FLUX DUE
TO 'NTERROGATE
HOLE RESULTANT
FLUX
STORED"1" VECTOR

FLUX DUE TO
STORAGE HOLE

MATERIAL

INTERROGATENSE TWEEN HOLES

FIELD

STORED "0"
RESULTANT

tory basis twenty-bit words have been interro-
gated with resultant word signal-to-noise ratios
(twenty 0 signals versus one 1 signal) greater
than 3:1 (see Section 7). In a practical sys-
tem, the number interrogated simuitaneously
would be smaller due to environmental condi-
tions and circuit tolerances. However, since the
decrease in search time is directly related to
the number of elements interrogated simultane-
ously, dramatic improvements result.

The method of obtaining this mode of opera-
tion is shown in Figure 3. The element is first
written to the 1 state by a current pulse large
enough to saturate the storage hole (Figure
3B). This pulse is then followed by a smaller
pulse of the opposite polarity which is the Word
Write 0 current. If a 0 is to be written then, in
coincidence with the Word Write 0 current, a
current pulse (Bit Write 0) is produced in the
interrogate hole and the flux around the storage
hole is reduced to a very small value. If a1l is
to be written, the Bit Write 0 pulse does not

WORD WR'TE_,HI_"L‘,E"_F_—

||1|| l|1||
BIT WRITE - N
IIOII
INTERROGATE U
II1|l
[1Fal}
ELEMENT OUT M 0
SRESULTANT
REDUCTION
IN STORAGE
FLUX I N
P ”
-1
%S TORAGE P I
A ’j'
#INTERROGATE

INTERROGATION OF
STORED "ONE."

Figure 3. BIAX Element Operation in the Unipolar Mode.

84 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

occur and the storage hole flux remains in a
saturated condition. Part C of Figure 3 illus-
trates the technique by showing what occurs in
the common volume of material between the
two holes.

This technique has one main disadvantage:
Where writing into fields of words is desired,
the disturb characteristics of the element in the
0 state result in a lowered signal-to-noise ratio.
This is due to the fact that the flux around the
storage hole of the unselected bits will “creep”
to a higher value due to the word oriented dis-
turb currents and thus produce a larger output
for the 0 state than is desired. However, the
method has many advantages. One which has
been mentioned is that of decreasing the search
time. This reduction in the basic search time
can be traded for hardware cost by permitting
time-sharing of sense amplifiers and thus re-
ducing the number of circuits required. In ad-
dition, it can be seen from Figure 3A that all
windings are orthogonal and thus the array
noise problem is reduced and, since no woven
windings are needed, the array fabrication is
extremely simple.

2.2.2 Ternary-State Reading in the Hughes
Unipolar Mode

A significant aspect of the unipolar mode of
operation is that by reversing the sense wind-
ing between the normal and complement words
and using serial-by-bit interrogation, a ternary
output results. That is, if a bit matches the
search, then no output results; if a bit mis-
matches, then the output can be positive or
negative dependent upon whether the normal or
complement bit was interrogated. In this man-
ner it is possible to classify all words at one
time as less than, greater than, or equal to the
search word.

This can be explained by Figure 2. Assume
that an element in the 1 state (signal output
during interrogation) in the normal word pro-
duces a positive output due to the reversed
sense winding. If the same criteria are used
as before for selecting interrogate drivers,
Word No. 2 will again produce no signal since
it exactly matches the search word, and thus
all elements interrogated are in the 0 state.
However, Word No. 1 mismatches in the first
bit position and, since the complement bit is in-

terrogated, will produce a negative output in-
dicating that Word No. 1 is less than the search
word. Word No. 3 agrees in the first bit posi-
tion with the search word and thus will pro-
duce no output for that interrogation. How-
ever, in the second bit position a mismatch oc-
curs and, since the normal bit is interrogated, a
positive pulse occurs indicating that Word No.
3 is greater than the search word. Thus, (1)
if a positive pulse appears on the sense line
first, that word is greater than the input word;
(2) if a negative pulse appears on the sense
line first, that word is less than the word; and
(3) no pulse on the sense line indicates an exact
match. '

The technique described is quite significant in
that the search time now is independent of the
search type for these three searches and, with a
tristable sense circuit, all words are classified
simultaneously. With the conventional mode of
operation described previously, only two sense
signals may be derived: positive and negative.
Therefore, in order to accomplish limit type
searches, a stepping algorithm (see the section
on Associative Memory Search Functions)
which alters the search word between steps
must be used or logic in the sense amplifier is
necessary to determine if the first mismatch
occurs when a 1 or a 0 is searched for (if the
first mismatch occurs when a 1 is being
searched for the search word is obviously
larger than the stored word and vice versa).

2.3.0 Operation Using One BIAX Per Bit

Mechanizing an AM with one BIAX per bit
requires a serial-by-bit interrogation. However,
the method of accomplishing this interrogation
can take several forms.

One possible way to interrogate is to ripple
through the bits serially and gate the sense sig-
nal logically at each amplifier against the in-
formation in the corresponding bit position of
the input word. In this manner, mismatches
can be detected and, if a tristable sense circuit
is available, the limit searches (LESS THAN
and GREATER THAN) can be directly im-
plemented without use of an algorithm.

Another way to interrogate involves an inter-
rogate-priming cycle and does not require logic
in the sense amplifier. Referring to Figure 1,
it can be seen that the sense signals for a 1 and

ASSOCIATIVE MEMORY SYSTEM IMPLEMENTATION 85

0 are out of phase for the same interrogation
pulse. If the sense output were examined dur-
ing the rise time of the interrogate when
searching for a 1 and during the fall time when
searching for a 0, it can be seen that, if a match
occurs, the pulses on the sense line would all be
positive. If a mismatch occurs (for example,
examining the output of an element in the 1
state during the fall time of the interrogate
pulse) ; then a negative sense signal occurs.

The above process can be implemented in a
straightforward manner by merely turning on
(priming) all interrogate drivers which are
to search for (’s before rippling through the in-
terrogate cycle and turning them off at the
proper time during the interrogate cycle. Fig-
ure 4 depicts the procedure for accomplishing
the interrogation. I, and I; are turned on dur-
ing the priming period since they are to search
for 0 as indicated by the contents of the Data
Register. In Word No. 1, the corresponding
bit positions contain a 0 and 1 respectively, and
hence no output will appear on Sense Line 1
during the priming period because of cancella-
tion. However, Word No. 2 contains 0 in both
positions and therefore a double amplitude
negative pulse will appear on Sense Line 2. Dur-
ing the interrogate period, a negative pulse ap-
pears on Sense Line 1 indicating that the word
mismatches, while Sense Line 2 has all positive
pulses which indicates a matching condition.

WORD NO. 2 f‘gNSZE LINE

SENSE LiKE
WORD NO. 1 NO. 1

INTERRCGATE
DRIVERS

DATA REGISTER

INTERROGATE
DRIVERS

PRIMING PERIOD

I

|

|

! INTERROGATE
[CURRENT

] LEVEL =0

|

|

|

|

Figure 4. Interrogation Using One-BIAX-Per-Bit.

The method of implementation described here
is quite straightforward and is such that con-
ventional random access BIAX array windings
with some modifications can be used. In addi-
tion, conventional memory circuitry, with the
exception of the word-oriented sense circuits,
can be used, and data readout is provided with
relative ease. This technique would, however,
be somewhat slower than the parallel-by-bit
two-BIAX-per-bit scheme. Since the BIAX is
operated in its normal mode, the disturb char-
acteristics and writing mode are such that al-
teration of arbitrary fields within a word can
be provided.

3. ASSOCIATIVE MEMORY SEARCH
FUNCTIONS

3.1.0 EXACT-MATCH Search

There are a variety of search types which can
be implemented in an associative memory.? 2
These searches can be performed on an entire
data word or on specified fields. The selection
of fields is accomplished by having the ability to
mask the data word. That is, any bit of the
comparison word can be masked to a “don’t
care” state, and only those bits not masked will
participate in the search. Thus, there is inher-
ently a ternary search characteristic (1,0, don’t
care) which may be taken advantage of in some
cases to decrease the search time. A brief de-
scription of search types follows:

The most commonly used search operation is
the EXACT-MATCH search. This search, as
the name implies, would locate all words in
memory which have a one-to-one correspond-
ence with the bits of the search word. That
is, any word in memory which mismatches the
search word in one or more bit positions does
not satisfy the search criterion. The search
time is proportional to the number of bits in
the word with the exception of the parallel-by-
bit techniques.

3-2.0 Limit-Type Searches

Under this category are included GREATER
THAN, GREATER THAN OR EQUAL TO,
LESS THAN, and LESS THAN OR EQUAL
TO searches. The functions of these search
types are fairly obvious. The time involved in
performing these searches is dependent upon
the method of mechanization. In the two-

86 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

BIAX-per-bit scheme, with the ternary output
described previously, the search time is the
same as an EXACT-MATCH search and no
logic gating is required in the sense circuitry.
In order for the other techniques to have a com-
parable search time, logical gating is necessary
in the sense circuitry at each bit interrogate
time.

Another technique for accomplishing the
limit-type searches is to have an "algorithm
which alters the search word and then looks
for exact matches at each step. In its simplest
form this would consist of incrementing or dec-
rementing a counter for each step and per-
forming an EXACT MATCH search. However,
by taking advantage of the ternary character-
istics of the interrogation (1, 0, don’t care), it
is possible to reduce the number of steps re-
quired. With this method the maximum num-
ber of steps required is equal to the length of
the field participating in the search and, on the
average, will be one-half the length of the field.
For example, if a 12-bit field were being used in
a LESS THAN OR EQUAL search the maxi-
mum number of steps required to perform the
search is 12 (contrasted to a maximum of 4096
in the simpler counter approach). Thus, if any
word matches at one of the steps, it satisfies the
search criterion. This method, while not re-
quiring logical gating of the sense circuits, re-
sults in a significant increase in component
count if the fields are not restricted. The proc-
ess of finding all words in memory which lie
between some specified bounds can be accom-
plished by the successive application of the
GREATER THAN OR EQUAL TO and LESS
THAN OR EQUAL TO searches to the same
field with a change of the search word. A LESS
THAN OR EQUAL TO search is performed on
the upper bound search word which therefore
eliminates all words greater than the upper
bound. The GREATER THAN OR EQUAL TO
search on the lower bound search word then
leaves those words lying within the bounds in-
dicating a matching condition. A somewhat
more efficient algorithm can be implemented if
the upper and lower bounds are available simul-
taneously.

3.38.0 Pattern Recognition

Another useful function which can be pro-
vided in an associative memory is a form of

pattern recognition. As an example, consider
the case where it is desired to compare incoming
patterns with stored patterns in the associative
memory.

An incoming pattern is normalized, sampled,
and quantized at set intervals. These quantized
samples then become the keys with which the
search is conducted. Since exact pattern
matches are impractical, there are two words
stored in memory (two-BIAX-per-bit mechani-
zation is used) for a single pattern. The word
outputs, which indicate match or mismatch, are
OR’d together and “don’t care” bits are written
into the words in memory. That is, if a bit
position is in the “don’t care” state, no response
will be obtained from the bit during interroga-
tion for a 1 or a 0. This has the effect of per-
forming a BETWEEN LIMITS search in mem-
ory and thus effectively establishes an envelope
about the desired pattern. For example, if there
are 32 quantization levels and one sample point
has the value of 23, then the words stored in
memory might by 101XX and 110XX (where X
indicates a ‘“don’t care” bit) thus allowing a
match indication for that point if the incoming
waveform has a value between 20 and 27. Thus,
the tolerance allowable is accounted for in the
memory and is subject to control. This is il-
lustrated in Figure 5.

3.4.0 Supplementary Search Operations
Ordered Retrieval—In some problems it is

desired to retrieve information in an ordered

manner. In a conventional system this can be

30 T
e
i -~
110 XX = 24 - 27 i ~
25 101X =20-23 7 23 N
i i , \ \
2 UPPER LIMIT: z J20 N
820 OF ENVELOPE S N ©
2 —A~ Ve \
s 7N / / \
§ ’/ ~ / NI
2 15 N
2 / \ =1/ A N N
2 ol N/ ! \
= 7 N 7 i N
Z 10 /¥ . \ 7 OWER LIMIT ——
H N/ \ OF ENVELOPE
< / N 4 |
y -~
‘S
5 7
/7

QUANTIZATION POINTS

Figure 5. Tolerance Envelope Used in Pattern
Recognition.

ASSOCIATIVE MEMORY SYSTEM IMPLEMENTATION 87

a very time-consuming process. Using the ter-
nary characteristics of the associative memory,
much more efficient ordering is possible.r%113

Minimum and Maximum Searches—In some
applications it is desired to find the word in
memory which has the minimum value, within
the field, with respect to all other words in
memory. The algorithm for accomplishing
this is that which would be used for ordered re-
trieval. The algorithm would terminate when
the first single response occurs.

The maximum search would use the same al-
gorithm as for inverse ordered retrieval.

Nearest Neighbor—The capability of deter-
mining the nearest numerical neighbor above or
below the value of the selected key can be im-
plemented by the use of an ordered retrieval
algorithm. This is accomplished by using ei-
ther normal or inverse ordered retrieval start-
ing from the initial value of the key. A more
complex algorithm can be implemented to ob-
tain the nearest neighbor on either side if it is
desired.

Composite Searches—In some instances it is
desirable to perform searches on different keys
and to specify a logical relationship between
the separate key searches. Accordingly, only
those words which satisfy the logical relation-
ship and key searches are retained. For exam-
ple, if there are five keys, A, B, C, D, and E, it
might be desired to perform an EXACT
MATCH on key A, GREATER THAN OR
EQUAL TO on key B, BETWEEN LIMITS on
key C, and LESS THAN OR EQUAL TO on
keys D and E. In addition, logical relationships
such as ABCDE, ABC4DE, may be required.
This type of search can be very useful in a vari-
ety of applications. The possibility of provid-
ing a match indication if a portion of the search
keys match could also prove useful.

4. AM WRITING FUNCTIONS

As with the search functions there are a num-
ber of different writing functions which may
be provided with an AM. As might be expected
some of these functions are identical with the
normal writing modes encountered in conven-
tional memories. However, there are also those
modes which are peculiar to the AM organiza-
tion and which add to the power of the system

and extend its range of usefulness. The writ-
ing functions which are provided in a system
would be strongly application dependent.

Sequential Load—In some applications,
blocks of data may be transferred to the associ-
ative memory for use in subsequent searches.
Sequential load starting from the first word lo-
cation is then useful as it allows the words to
be loaded very rapidly by minimizing the con-
trols necessary while retaining a spatial rela-
tionship with respect to the source store. In a
partial load, word locations not written into can
be prohibited from responding to subsequent
searches.

Random Load-—Another loading feature
which is often useful is the random load. This
is the same as for a conventional random access
memory and requires that the physical location
(address) to be written into be specified.

Load First Empty Location—An associative
memory can be implemented to keep track of
its own empty locations, such that when a word
is to be entered, it is automatically writtten into
the first empty location. In a memory where
the retrieval time is location dependent, this is
very effective since all data is held at the
“front” of the memory, thus minimizing access
time. This data-packing feature can be very
useful.

Write “Don’t Care” Bit—Masking within the
data word in the associative memory itself can
be accomplished by writing a bit to the “don’t
care” state. With this technique bounds can
be stored in the memory as described previ-
ously. This is one of the more interesting fea-
tures which should find great utility. The two-
BIAX-per-bit schemes are, at present, the only
techniques which can be used to accomplish this.

Field Alteration—The ability to alter a single
bit or field of all words or selected words as a
consequence of the result of a search is another
writing characteristic which might be provided.
This feature is particularly useful when using
the memory as an aid to parallel computation.
The element must be operated in the conven-
tional mode to implement this feature. This
could also be termed “writing through a mask.”

Memory Partitioning—It is possible to parti-
tion an associative memory so that there effec-

88 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

tively exists “micro-associative memories” with-
in the main associative memory. This feature
is useful when several types of data are stored
and the access time needs to be kept to a mini-
mum. Thus, only that portion of the memory
containing the data to be interrogated is ac-
cessed and the non-pertinent data for that
search is bypassed. This of course assumes that
the memory contains multiple planes and the
normal search process consists of a sequential
search of the planes (all words in a plane are of
course searched in parallel).

5. AM READOUT FUNCTIONS

As with the other characteristics of an associ-
ative memory, there are a number of different
types of readout possible. The type of readout
necessary is, of course, dependent upon the ap-
plication.

Address Readout—In an application where
the key or keys are well defined, the use of an
associative memory with a conventional random
access memory may be advantageous. In this
mode, a block of keys is transferred from the
conventional memory to the associative memory
in a specified sequence so that the physical loca-
tion of the keys in the associative memory
is spatially linked with data stored in the con-
ventional memory. Upon searching the associ-
ative memory, the output indicates the ad-
dresses of the words in the random access mem-
ory which satisfy the applied search criteria.
This mode may be particularly useful where the
ratio of the search key to the remaining data
word is small, since at present the associative
memory is expensive relative to conventional
random access memory.

Data Readout—The ability to read out the
contents of an associative memory is another
feature which is useful. The flexibility that
this allows in a system can be significant, since
any portion of the data word may be searched
on, and the data word itself, or perhaps the por-
tion of the data word not searched, can be read
out.

Multiple Match Resolution—In any search the
possibility of more than one word matching the
applied criteria has to be contended with. The
ability to retrieve all matching words is, in most
cases, a necessity. This is usually accomplished

by retrieving them sequentially through a com-
mutating network. An efficient design of the
commutating network is necessary since it can
be an important factor in the retrieval time.

Yes-No—In some applications a decision is
made regarding the next course of action after
interrogation of the memory, based only on in-
formation as to whether or not the search has
been matched. The Yes-No operation is a rela-
tively easy feature to provide.

Count Matches—When the memory is
searched there is a possibility, dependent on the
application, that a significant portion of the
memory could respond to the search. In such
cases, an indication of the number of matches
which exists may be wanted before output oc-
curs. If the dump is excessive, then the search
may be refined to reduce the number of re-
sponse.

6. CHARACTERISTICS OF AM SYSTEMS

The foregoing has been a brief description of
some of the more salient features of AM mech-
anization techniques and functions. Table 1
lists the technique§ mentioned and shows the
relative performance of the mechanization
schemes. It can readily be seen from the dis-
cussion above and Table I that an absolute com-
parison of techniques is not practical. For an
absolute comparison, detailed knowledge of the
system application would be required, so that the
various factors and tradeoffs could be intelli-
gently evaluated.

None of the schemes shown in Table I re-
quires logical gating of the sense circuits for
performing limit-type searches. Thus, for
Schemes 11, 3, and 4, a stepping algorithm
(similar to that in Ref. 11) is used for these
search types and therefore the limit search time
is a function of the length of the field used in
the search. However, by providing logic in the
sense circuit, the limit search time for these
three schemes becomes proportional to M, the
number of bits per word. The merits of pro-
viding this mode would be ascertained from the
total system analysis.

In the equations for the relative limit search
time, the first term represents the time re-
quired for storage of intermediate results (con-
sidering one unit of time as the time between

ASSOCIATIVE MEMORY SYSTEM IMPLEMENTATION 89
Table I. Associative Memory System Characteristies.
Relative
Exact Data Reading Wrife:
Match (Additional Restriction "Don't Care"
Search Relative Limit { Data Array On Fields For Bit '
Scheme Mechanization Time Search Time Writing Re: ts Limit Search* Available
1 Two-BIAX-per-bit 3F + ﬁ (ave) Whole word Additional Fixed fields Yes
M 2 2k only. array windings | only.
Signal-no signal % 2 required.
3F + F©
Binary sense k (max)
output
2 Two-BIAX-per-bit Whole word Additional No restrictions Yes
only. array windings | (any combination
Signal-no signal M M required. of bits selected
by mask permis-
Ternary sense sable)
output
3 Two-BIAX-per-bit 3F + P_‘z_ (ave) Unrestricted No new windings| Fixed fields only Yes
2 2 '@ as to required.
Signal-signal M location and
3F + F° (max) | number of bits
Binary sense
output)
L One-BIAX-per-bit 3F + _F_Z_ (ave) Unrestricted No new windings| Fixed fields only No
7 \@ as to required
Signal-signal M location and
6F + ” (max) | number of bits
Binary sense
output
LEGEND: M = Number of bits per word #3ee text.
k = Number of bits per word interrogated simultaneously
F = Field length used in limit search

successive interrogations). Thus, since the aver-
age number of steps (field interrogations) in the
incrementing algorithm is one-half the field
length, the number of storage cycles required is
F/2 and, in the type of system being considered,
the storage cycle is about three times the “rip-
ple” time, hence the term 3F/2 in Scheme 1.
The second term represents the total “ripple”
interrogate time. Since again F/2 steps are re-
quired on the average, and there are F/k ripple
times, the total is F?/2k. Of course if k = 1

(serial-by-bit interrogation) there results the
equations shown in Scheme 3. In Scheme 4 the
first term is increased due to the priming cycle
and the need for sense amplifier recovery due
to the priming cycle.

The table attempts to compare systems of ap-
proximately equal logical complexity, hence the
restriction on the fields in the limit searches.
Obviously, it is logically possible to have com-
pletely variable fields for the limit searches in

90 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

all Schemes at the expense of additional compo-
nents (which can be quite significant in num-
ber).

7. THE ASSOCIATIVE MEMORY MODEL

Of the techniques for mechanization de-
scribed earlier, the only one which departs sig-
nificantly from the conventional use of the
BIAX is that which produces signal-no signal
operation. For this reason it was decided to
verify the approach experimentally by the con-
struction of a model which utilized this new
mode of operation.

The block diagram of the model is shown in
Figure 6. The array portion of the system con-
sists of 16 words of 10 bits each, and one word
of 20 bits for purposes of signal-to-noise experi-
ments. Since both the normal and complement

of information are stored, there are therefore
340 bits in the array (the complement of the
20-bit word is not needed for the experiments
for which this word is intended).

The block diagram of Figure 6 is not complete
in every detail but shows the more pertinent
features. The Data and Mask Registers con-
sist of a bank of 10 manual switches each with
the provision for patching the address counter
into the Data Register to permit dynamic
search and write operations. The model is also
capable of performing “write” and “read” in a
single step process by means of push button con-
trol. The search timing can be controlled to
allow serial-by-bit operation or parallel-by-bit
with k from two to ten.

Figure 7 shows three photographs of ‘the
demonstration model. The top figure is inter-

PLANE SWITCHES
WORD WRITE
DRIVERS ARRAY
WORD WRITE 16 WORDS SENSE
DECODER 10 BPW AMPLIFIERS
WORD WRITE woRE 20BIT
SWITCHES
INTERROGATE /BIT
WRITE TIMING WRITE DRIVERS
WRITE
tu-:AD
CLOCK
NPT SEARCH SEARCH
TIMING LOGIC
MASK REGISTER
COUNTER (10 SWITCHES)
DYNAMIC
WRITE SEARCH
o DATAREGISTER
—o ’ (10 SWITCHES)
} READ '

Figure 6. Simplified Block Diagram of Model of Associative Memory.

ASSOCIATIVE MEMORY SYSTEM IMPLEMENTATION 91

Figure 7. Photographs of Associative Memory Model.

esting in that it shows that no woven windings
are necessary in the array. This suggests an
array structure with all elements in contact
which provides highly compact and noise-free
systems. The model proved that the technique
is valid and could be applied to larger systems.

Figure 8 shows waveform photographs ob-
tained from the 20-bit evaluation word. The
write program is shown in part (a); part (b)
shows the interrogate current waveform and
the disturbed 1 output of a single element.
Part (c) shows the 0 output of a single ele-
ment, which together with part (b) indicates
S/N = 40. Part (d) shows the result of inter-
rogating a string of 20 elements, 19 of which
have stored 0’s while the 20th has stored in it a
1. Part (e) shows the result of interrogating
the same string of 20 elements while all are in
the 0 state. Comparison of parts (d) and (e)
clearly indicates a sense winding output signal-
to-noise ratio of better than 3:1, which permits
relatively straightforward amplitude discrimi-
nation.

The model has been operated at search clock
rates of 2Mc (limited by external equipment)
with simultaneous interrogation of all bits of
the word (k = 10).

8. CONCLUSIONS

This paper has presented several techniques
for the utilization of the BIAX in an associative
memory system. The techniques presented have,
in some cases, significantly different operating
parameters. In addition, the influence of the
various techniques on the search speeds has
been pointed out. From this discussion it can
be seen that the number of trade-off areas
which exist, and the resulting influence on sys-
tem complexity and performance, make it neces-
sary to have an intimate knowledge of ultimate
system utilization in order to effect a proper
associative memory design.

ACKNOWLEDGMENTS

The work presented in this paper is the re-
sult of the contributions of many people. The
authors would particularly like to acknowledge
the contributions of L. H. Adamson and D. A.
Savitt.

REFERENCES

1. WanLass, C. L, and S. D. WANLASS,
“BIAX High Speed Magnetic Computer
Element,” WESCON Convention Record,
Part 4, pp. 40-54, San Francisco, Cali-
fornia, August 18-21, 1959.

2. KISEDA, J. R., H. E. PETERSEN, W. C. SEEL-
BACH, and M. TEiG, “A Magnetic Associa-
tive Memory,” IBM Journal of Research
and Development, Vol. 5, pp. 106-121, April
1961.

3. BrowN, J. R., Jr.,, “A Semi-Permanent
Magnetic Associative Memory and Code
Converter,” Special Technical Conference
on Nonlinear Magnetics, Los Angeles, Cali-
fornia, November 1961.

4. LEE, E. S., “Solid State Associative Cells,”
Proceedings of the Pacific Computer Con-

ference, California Institute of Technology,
March 15-16, 1963.

5. SLADE, A. E., and C. R. SMALLMAN, “Thin
Film Cryotron Catalogue Memory,” Sym-

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

(A

WRITE PROGRAM
UPPER TRACE WSI, W50
LOWER TRACE PWIO

(B)

UPPER TRACE - INTERROGATE CURRENT -
LOWER TRACE - DISTURBED "ONE "
OQUTPUT FROM SINGLE ELEMENT

©
LOWER TRACE - "ZERO" OUTPUT FROM
SINGLE ELEMENT

D

LOWER TRACE - INTERROGATION OF 20
ELEMENTS; A SINGLE DISTURBED "ONE"
IN SERIES WITH 19 "ZERO'S"

(E)
LOWER TRACE - INTERROGATION OF
20 ELEMENTS - ALL IN'ZERO"STATE

200 MA,CM,
L u SEC,CM

400 MA CM,
luSEC M

100 MA, CM,
0.1x SEC.CM

50 MV, CM,
0.14SEC CM

50 MV CM,
0.1x# SEC CMm

50 MV CM,
0.lu SEC CM

50 MV CM,
0.14 SEC CM

Figure 8. Waveforms Showing Unipolar Operation in the Associative Memory Model.

posium on Superconductive Techniques for
Computing Systems, Washington, D. C.,
May 1960.

NEWHOUSE, V. L., and R. E. FRUIN, “A
Cryogenic Data Addressed Memory,” Pro-

ceedings of the Spring Joint Computer
Conference, May 1-3, 1962.

Davigs, P. M., “A Superconductive Associ-
ative Memory,” Proceedings of the Spring
Joint Computer Conference, May 1-3, 1962.

RowranpD, C., and W. BERGE, “A 300 Nano-
second Search Memory,” Proceedings of
the Fall Joint Computer Conference, No-
vember 1963.

ESTRIN, G., and R. FULLER, “Algorithms
for Content Addressable Memories,” Pro-

10.

11.

12.

13.

ceedings of the Pacific Computer Confer-
ence, November 1963.

SEEBER, R. R., “Associative Self Sorting
Memory,” Proceedings of the Eastern Joint
Computer Conference, pp. 179-188, Decem-
ber 13-15, 1960.

SEEBER, R. R., and A. B. LINDQUIST, “Asso-
ciative Memory with Ordered Retrieval,”
IBM Journal of Research and Develop-
ment, Vol. 6, pp. 126-136, January 1962.

FALKOFF, A. D., “Algorithms for Parallel-
Search Memories,” Journal of the ACM,
Vol. 9, pp. 488-511, October 1962.

LEwIN, M. H., “Retrieval of Ordered Lists
from a Content-Addressed Memory,” RCA
Review, Vol. XXIII, No. 2, pp. 215-229.

A 16k-WORD, 2-Mc, MAGNETIC THIN-FILM MEMORY

Eric E. Bittmann
Burroughs Corporation
Defense and Space Group
Great Valley Laboratory
Paoli, Pennsylvania

INTRODUCTION

Small magnetic thin-film temporary-data
memories’? have been in use in operational
computers since mid-1962, when the prototype
Burroughs D825 Modular Data-Processing Sys-
tem®* was installed at the U. S. Naval Research
Laboratory. To the present, some 43 additional
D825 systems have been placed in use or or-
dered. The experience gained in the successful
operation of these small thin-film stores has en-
couraged the more ambitious construction of a
large, random-access memory for a modular
processing system.

Control of the memory module is effected by
descriptor words containing 52 bits. The de-
scriptors originate at either a computer or I/0
control module. A memory module can receive
four descriptors during one request.

Each memory module can perform a number
of logic manipulations independently of other
modules. A memory module can: execute the
conventional read or write instructions on a
single word, or on two, three, or four consecu-
tive words simultaneously; read n words, where
n is a quantity contained in the descriptor; per-
form a block transfer operation from one area
in memory to another, or to another memory
module; or perform a search for a requested
word or a requested digit, either in itself or in
any other memory module, matching against a
word or digit supplied.

“Party lines” interconnect the memories
with either computer or 1/0. Each party line is

93

assigned a number. If two or more requests
appear simultaneously on different party lines,
the signal on the lowest-numbered line receives
priority. A separate party line interconnects all
memory modules, allowing communication from
memory to memory.

The memory module is physically divided ihto
two cabinets, each storing 8,192 words of 52
bits each, for a total capacity of 16,384 words.
The 52-bit word contains 48 data bits, three
control bits, and one parity bit. The control
bits act as tags which tell the program whether
or not the instruction has been executed.

The read/write cycle of each memory is 0.5
psec, and the access time is 0.3 usec. During
the remaining 0.2 psec, the word is rewritten
or replaced at the selected address.

The two cabinets of a module can be tested
independently of each other. Several test fea-
tures are built into each cabinet. A test word
can be written into all addresses, or into alter-
nate addresses, or into a selected address. A
continuous stop-on-error mode compares every
readout with the test word. Operation halts on
an error, and the faulty word and its address
are displayed on the control panel. Single-cycle
and single-pulse operation are also possible.

MEMORY MODULE ORGANIZATION

Figure 1 is a block diagram of one memory
module; the interwiring in the memory stack
is shown in Fig. 2. To keep the total sense

94 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

PARTY LINESL
108 CONTROL_UNIT
RECEIVERS
TRANSMITTERS

PARITY CHECK
PRIORITY

TIMING
GENERATOR I" IE
4
I~ 3
ADDRESS| ADDRESSI
REGISTER] ;| STORAGE

DECODH 64
R -
FERENCE = swvf?ce?ssl-— MaR | IREGISTER] | L.
{ 4096)
14
3 [INFORMAT »
SWITGHES -

SPUT BIT CONDUCTOR

g
O &

o

EASY (BIT-FIELD) AXIS
{LONGITUDINAL DIRECTION)
RECTANGULAR B-H LOOP
._LH _— HARD (WORD- FIELD) AXIS

(TRANSVERSE DIRECTION}
SQUARE B-H LOOP
WORD CONDUCTOR

STROBE REFERENCE

STROBE
BUFFER

CIH

SENSE CONDUCTOR

Figure 1. Memory Module, Block Diagram.

delay and sense signal attenuation reasonably
low, we organized the stack into a configuration
of 4096 words, of 104 bits each, rather than
8192 words, 52 bits each. This kept the total
sense delay below 100 nsec for the worst-case
address location.

Film elements are deposited 768 per sub-
strate, in a 32 X 24 array. Five substrates
in a row provide storage for 32 words, 120 bits
each. A single five-substrate film word, there-
fore, can easily store two 52-bit computer lan-
guage words. Four such rows (or 128 words
on 20 substrates) comprise a plane. A plane
with certain associated circuit cards, connec-
tors, and structures is assembled as an integral

plug-in unit called a frame; 32 frames comprise -

a 4096-word stack.

A pair of computer words requires 105 bits,
including two parity, six control, and one ref-
erence bit. The unused bits, or spares, are dis-
tributed through the stack for possible replace-
ment use. A row of spare bits can be easily
wired into position to replace another row, if
necessary. This is normally performed during
testing of memory planes, prior to module as-
sembly.

A descriptor word arriving at the control
unit receivers initiates a memory cycle. The
address data is transferred to the address
registers, and a memory cycle is initiated.

The address (6 bits) is decoded at the input
of every word driver and at the input of every
word switch. Selection of a film word occurs
in a diode-transformer matrix. The matrix
contains 4096 transformers and the selection
diodes. The memory is addressed by the word-
organized (linear-select) scheme; each film
word line is driven from a single transformer.
The current from a selected word driver flows
through the matrix to the selected word switch.
The transformers have linear (not square-loop)
characteristics, and the selected film word line
receives a word current pulse. This current
interrogates all the film bits, inducing signals
into the sense amplifiers.

Planar films remagnetize under the influence
of two orthogonally opposed fields. (See inset
in Fig. 1.) A word field applied parallel to the
film’s hard direction rotates the magnetization
vectors from their rest position (easy axis)
into the hard direction. (Vectors of a bit stor-
ing a ONE and a bit storing a ZERO rotate
from opposite directions, each passing essen-
tially through 90°, to an almost common hard-
direction alignment.) This rotational switch-
ing induces a readout signal into the associated
sense line. A second field, the bipolar bit or in-
formation field, applied parallel to the easy di-
rection (by a bit conductor lying in the hard
direction), while the film is still magnetized
in the hard direction, determines the future

2-MC MAGNETIC THIN FILM MEMORY 95

INNARNANY

Figure 2. Memory Stack Interwiring.

state of the cell after the word field has been
removed. (Vectors fall back through 90° to-
ward either the ONE or ZERO orientation,
along the easy axis.)

Interrogation of a word occurs during the
leading edge of the word current, and data is
written into the films during the trailing edge
of this current. Bit currents, present in all
lines during word-current turn-off, ensure cor-
rect storage of data to be written. The polarity
of each bit current determines the storage of a
ONE or a ZERO.

A reference bit in each film word (104 bits)
was included for the following reason. The
sense readout signal has a width of only 50 to
60 nsec, and the delay in the stack can vary as
much as 70 nsec for different address locations.
To generate a variable time strobe pulse, a
strobe reference bit, storing always a ONE,
is included in the stack as the 105th bit. The
strobe reference bit sense amplifier drives a
clock buffer amplifier (strobe buffer) which

supplies a 25-nsec-wide strobe pulse to the in-
formation register flip-flops. The strobe pulse
sets each bit in the flip-flops to the data state
represented by the sense signal passing at that
moment through the corresponding sense am-
plifier. '

The bit current flows parallel to the sense
conductor, and induces large inductive noises
into the sense signal. Transposition of each
sense line with the corresponding bit line by a
crossover connection in the middle of the mem-
ory plane reduces this noise. This connection
in every sense line is made after the glass has
been sandwiched between the printed-circuit
boards. Due to mechanical imbalance between
each sense-line/bit-line pair, some noise (as
much as 5 mV) remains. Further reduction
of this noise is possible by manually adjusting
the small sense end-around loop on the plane.
Bit-noise cancellation prevents sense amplifier
overloading, and ensures reliable operation at
high speed.

96 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

As an additional means of keeping noise in
the sense lines at a minimum, we included an-
other feature in the design; during a write
cycle, the flow of bit current is restricted to a
single memory plane, rather than being per-
mitted to flow through the entire stack. Each
information switch circuit is associated with
one plane (32 per stack). One of the switches
is enabled by the decoding of five address bits.
The information (bit) drivers connect to the
appropriate bit lines on each frame through a
diode-transformer assembly (Fig. 2). Employ-
ing four (rather than two) diodes per trans-
former has the advantage that the bit switch
circuit can be designed for single-polarity cur-
rent pulses even though bipolar bit currents
flow in the plane. Also, the same amount of
current flows through the switch, regardless of
the information being written into the films,
and only two conductors per bit are needed to
interconnect the corresponding bit lines be-
tween frames. Sneak ground currents are also
eliminated with a four-diode scheme. The in-
formation drivers see high impedances in every
plane but the selected one. This arrangement
eliminates the time delay in the bit current, be-
cause the bit lines are effectively connected in
parallel.

Words are stored 128 to a memory plane, on
32 planes, rather than in the more conventional
fashion of a plane storing one bit position for
all words. Because of this geometry, and the
restriction of bit currents to a single memory

NANOSECONDS 50 100 1
—

INITIATE (CLOCK)PULSE

plane, each plane is effectively a 128-word mem-
ory stack in itself, functionally isolated from
other planes, during write. The sense lines, on
the other hand, are series-connected through all
bits in the stack, one line per bit position.

MEMORY TIMING

The memory timing waveforms are shown in
Fig. 3; waveforms of actual word current, bit
current, sense readout, and strobe pulse are
shown in Fig. 4.

Memory read operation begins with an initi-
ate pulse received from the memory control
unit. Storing the address information in the
address register requires 20 nsec. Address de-
coding occurs in a single gate level, and re-
quires an additional 20 nsec. The decoding en-
ables the selected word switch circuit, and also
one of the 32 information switches. A word
gate pulse turns on the chosen word driver at
100 nsec. With a circuit delay in the driver of
50 nsec, current flows in the selected word line
at 150 nsec. The sense signals are induced on
the sense lines during the word current rise,
but, depending upon the location of the word in
the stack, may be retarded at the sense ampli-
fier input by as much as 70 nsec. The earliest
time at which a signal can appear at this input
is at 160 nsec, the latest at 320 nsec. An am-
plifier delay of 40 nsec allows signals to arrive
at the information register at between 200 and
270 nsec. The strobe pulse clocks the informa-

0 300 400
1

;

ADDRESS REGISTER
WORD SWITCH{

. —

0
—
WORD GATE b

WORD DRIVER

WORD CURRENT
SENSE SIGNAL
SENSE AMPLIFIER
STROBE PULSE

|
|
|

] EARLIEST STROBE

INFORMATION REGISTER
iNFoRMATION swiTcH {

INFORMATION GATE

el

RECOVER GATE _ |
FoRMATION/RECOVER] ™~ T ~~.
CURRENT >
Figure 3. Memory Module Timing Diagram.

2-MC MAGNETIC THIN FILM MEMORY

97

Word Current:

Bit Current,
Write ONE:

Word Current:

Bit Current,
Write ZERO:

Amplified Sense
Signal, ONE Readout:

Strobe Pulse:

Amplified Sense

Signal, ZERO Readout:

Strobe Pulse:

Amplified Sense

Signal, ZERO Readout:

Strobe Pulse:

Amplified Sense
Signal, ONE Readout:

Strobe Pulse:

200 mA/cm vertical scale

100 mA/cm vertical scale

40 nsec/cm horizontal scale

200 mA/cm vertical scale

100 mA/cm vertical scale

40 nsec/cm horizontal scale

1 V/cm vertical scale
2 V/em vertical scale

40 nsec/cm horizontal scale

1 V/cm vertical scale
2 V/cm vertical scale

40 nsec/cm horizontal scale

1 V/cm vertical scale
2 V/cm vertical scale

0.1 psec/cm horizontal scale

1 V/cm vertical scale

2 V/cm vertical scale

0.1 pysec/cm horizontal scale

Figure 4. Waveforms: Word and Bit Currents, Sense Readout, and Strobe Pulse.

tion register, which has a delay of 20 nsec. At
the latest possible time of 290 nsec, the infor-
mation register contains the read data.

The write operation begins at 300 nsec. The
write cycle either replaces the data read out
during the previous read (and contained in the
information register), or enters new data into
the selected word location, via information
drivers. The new data is taken from the buffer
register, and is substituted for the signals from
the information register. With a circuit delay
of 40 to 50 nsec in the information driver, bit

current flows at 350 nsec for a duration of 100
nsec. While the bit current is at its crest, the
word current (which has continued to flow
since initiation of read) is terminated. Termi-
nation of the word current allows the mag-
netization vectors of the films to rotate in the
directions established by the bit currents, and
the word is written. To eliminate magnetizing
energy which would otherwise remain stored
in the pulse transformers employed in the bit
circuits, a recover pulse is selectively applied to
bit lines. The recover pulse, opposite in polar-
ity to the bit current, and of about the same

98 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

duration, terminates at 550 nsec, to complete
the write portion of the memory cycle.

MECHANICAL CONSTRUCTION

A single cabinet (Fig. 5) houses one stack
and all associated circuitry; two such cabinets,
one containing certain common circuitry (that
shown in the middle of Fig. 1) make up
a memory module. The front-opening door
on each cabinet carries the control panel for
that stack and permits full access to the in-
terior. The interior of the cabinet (Figs. 6 and
7) contains two circuit-card racks which may
be locked together, and can be swung either
separately, or in unison, around a vertical
hinge. The stack, mounted in the lower portion

Figure 5. Memory Cabinet, Front Door and
Control Panel.

Figure 6. Memory Cabinet, Door Open and Racks
Extended.

of one of these racks, as shown in Fig. 6, has
the following dimensions: height 30 in., width
26 in,, and depth 12 in. The stack housing is
an integral part of the rear card rack, which
can be swung completely out of the cabinet.
The memory frames slide into the stack en-

‘closure from the front, and engage with bit

connectors located in the rear panel. The 32
frames lie in the stack horizontally, with a
frame-to-frame spacing of 0.7 in. The word
driver and switch lines engage the frames
through “side-entry” connectors located at the
left side of the stack. Placing the word-driver
cards and the word-switech cards to the left of
the stack keeps the interconnecting wires quite
short. (The address decoding matrix is con-
tained on the 32 memory frames.)

The five rows of cards above the stack (Fig.
7) contain, in bottom-to-top order, sense ampli-
fiers, information register, bit drivers, address
register, and timing and control circuits.

The separately hinged front rack (Fig. 6)
includes space for five rows of logic cards for
the party-line transmitters and receivers, input

2-MC MAGNETIC THIN FILM MEMORY 99

Figure 7. Memory Cabinet, Showing Rear Rack and
Bit Switches.

and output decoding, receiving and transmit-
ting registers, and parity-generating and check
circuits.

A magnetic shield surrounding the memory
stack reduces the disturbing influence of the
earth’s magnetic field.

A separate power supply is located in the
rear of each cabinet, behind the card racks.

The unit operates in a temperature range
from 0° to 50° C. Fans, located in the top and
bottom of the cabinet, provide air to cool the
equipment.

THE MEMORY PLANE

The magnetic thin films employed in this
system are produced by vacuum deposition of
nickel-iron alloy onto glass substrates, while

under the influence of a magnetic field. The
films are 1000A thick; the glass measures 70
by 43 mm, and is 0.2 mm (8 mils) thick. An
eteching process, applied after deposition, re-
moves the unwanted material from the glass.
The 768 rectangular cells contained on one sub-
strate measure 30 by 80 mils each, spaced on
50-mil and 100-mil centers, respectively. The
easy direction of film magnetization is along
the length of the cell, hard direction along the
width, to accommodate shape anisotropy—the
demagnetizing effect of the air return path is
less significant in this orientation. Two small
registration holes, drilled into the glass prior
to deposition, help in the alignment of the glass
with the conductors during test and assembly.

Each substrate stores 32 words of 24 bits
each. Twenty such glass substrates are assem-
bled into one memory plane, as shown in Fig. 8.
Arrangement of the substrates into five rows
of four each provides storage for 128 words of
120 bits each. (Each word includes 15 spare
bits, which are distributed evenly, for possible
later replacement of weak or faulty bits.)

The glass substrates of each memory plane
are sandwiched between two printed-circuit-
board assemblies which measure 20in.in length

and 9 in. in width. Three conductors address

every memory cell: a word conductor, a sense
conductor, and a bit conductor. The word con-
ductor, 20 mils wide, is parallel to the film easy
direction, and lies orthogonally to the sense and
bit conductors. (The fields associated with the
conductors are, of course, orthogonal to the con-
ductors.) A split bit conductor, each half 20
mils wide, and separated from the other by 50
mils, embraces the 10-mil-wide sense conductor.

Five printed-circuit boards, each with 24 bit
and 24 sense conductors, bond to a single flat
backing board 0.1 in. thick (Fig. 8). The 128
word lines, printed onto 1-mil-thick Mylar,
bond to the rigid sense-bit assembly. All con-
ductors terminate into tab connections on 50-
mil centers, located at the edges of the printed-
circuit boards.

A 9-mil-thick glass epoxy spacer separates
the two printed-circuit assembli€s, and prevents
excessive forces from pressing onto the glass
substrates. A small amount of epoxy glue holds
each substrate in its proper location.

100 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

Figure 8. Elements of Memory Plane.

MEMORY FRAME CIRCUIT BOARDS

A frame (Figs. 9 and 10) surrounds each
completed plane. Three types of circuit boards
mounted on the edges of the frame—the word
selection matrix, five sense boards, and five bit
boards——connect to the plane. (There are five
rows of substrates in the plane.) The attach-
ment of connectors to the frames helps greatly
during debugging and testing, and during re-
placement of faulty semiconductor components
on the plane. (The circuits employed on these
boards—for word selection, sensing, and bit
selection—are described in greater detail in the
next section.)

Word Selection Matrix

The word selection matrix, which is part of
the frame, contains 128 selection elements.
Each element consists of a pulse transformer
and three diodes. The transformer is wound
with three windings—two primary windings

and one secondary winding—with a turns ratio
of 1:1:1. To maintain balanced drive condi-
tions between the word drivers and the word
switches, we included two selection diodes, one
in each primary winding of the transformer.
The third diode in the secondary circuit speeds
transformer recovery (Fig. 11). The trans-
former reduces the capacitive noise induced
into the sense signal from the word current, as
well as the noise generated during transition of
the address selection. Each word line is elec-
trically isolated from all other word lines. Re-
verse biasing of all diodes in a selection matrix
prevents undesired sneak currents. During a

Figure 9. Complete Memory Frame, Front.

2-MC MAGNETIC THIN FILM MEMORY 101

nectors. The 128 paired output terminals of the
matrix, spaced on 50-mil centers, align with
the film word lines, and connect to the word
lines through welded-on jumper wires. Welded
“end-around” connections jumper the far ends
of the word lines on the plane, to complete the
return path. The nominal word-current ampli-
tude is 400 mA, with a tolerance of =10 per-
cent.

Sense Boards

The five sense boards are located at one edge
of the plane, and the five bit boards at the op-
posite edge. Therefore, all sense connections
are made from the same edge. A small wire
loop shorts the far ends of each sense line. The
near end connects to the secondary winding of
a transformer, as shown in Fig. 12. Each board
contains 24 transformers. Each sense trans-
former contains three windings; one connects
to the film sense line, and the other two connect
to an edge-board connectoer. Four output con-
nections per sense line are required. The con-
nector terminals are spaced on 50-mil centers.

Bit Boards L ‘

The bit-line selection scheme employed in this
memory utilizes a transformer in every line
(Fig. 13). The secondary winding connects to
the corresponding bit line. A bit current of
100 mA is required to write a single bit. The
printed-circuit-end tabs on the bit boards mate
with the edge-board connectors located in the
Figure 10. Complete Memory Frame, Back. backplane of the stack (Fig. 7).

memory cycle, this bias is removed from the FRow ’ I ?

row of diodes connecting to the enabled switch. oRveR 3 ' ¥ {
In a matrix without transformers, a large volt- EE WORD Line

age swing would be coupled into the sense line, . ey
because of the capacity which exists between “""‘sj)
word line and sense line. The capacitive cur- EE
rents would induce a normal-mode signal which

cannot be removed in a differential input cir-
cuit. Q

The memory operates at 2 Mc; this selection | |

scheme, however, operates® at speeds up to SwiTcH Swiren
6 Me.

64 PAIRS

The word-drive and word-switch connections .
are made through “side-entry” edge-board con- Figure 11. Word Selection Matrix.

102 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

=~

Figure 12. Sense Line ‘Interwiring.

CIRCUIT DESCRIPTION

Word-Current Drivers and Switches

The word driver and word switch circuits,
which resemble those described by Bates and
D’Ambra,’ can generate currents with 20-nsec
rise and fall times when loaded by a small
(128-word) memory, such as that employed in
the computer module of the D825. The loading
of the 4096-word selection matrix (Fig. 11) in-
creases the current rise time to 35 nsec, the fall
time to 50 nsec. The driver supplies both a
positive pulse and a negative pulse to the in-
terconnecting twisted pair of conductors. The
balanced drive arrangement eliminates ground
currents and radiating fields which can greatly
add to the noise problem. The closeness of the
driver and switches to the stack keeps the inter-
connecting wires short. The total delay (about
10 nsec) from a driver to the word-line end-
around short is less than the current rise time,
and does not deteriorate the current shape. The
drivers and switches supply a current of 200
mA to the selection matrix. The word trans-
formers in the matrix have a 1:1:1 turns ratio,
and the output winding receives a current of
400 mA. The drivers and switches connect to
the stack through twisted-pair conductors, and
both circuits have output impedances of 100 to

150 ohms. Drivers contain a 7-input AND gate
at the input, and the switches contain a 6-input
AND gate. Delay in the circuits is 35 nsec.

Sense Amplifiers

The sense lines are effectively series-con-
nected through all of the bits in the stack. The
sense transformer output windings of corre-
sponding bits connect together from plane to
plane in series fashion. Every sense line con-
tains an end-around loop which shorts the far
end of the line. This short reflects to the be-
ginning of the line connecting to the trans-
former. The sense signal which travels through
a transformer on an unaddressed plane receives
only a small attenuation after the short is re-
flected to the output winding. This reflection
appears at the input after two line delays, and
accounts for the signal delay in the stack. The
pickoff is taken from the middle of each line,
to halve the delay, as shown in Fig. 12. Signal
attenuation for worst-case locations is 6 dB.
Nominal sense output at the plane is 1.5 mV.
The amplifier has a gain of close to 3000, and a
delay of 40 nsec. The amplifier is transformer-
coupled into a differential input stage, which is
succeeded by two amplifying stages. The am-
plifier digitalizes the signal, and sends both
true signal and complement signal to the as-
sociated information register flip-flop.

Information or Bit Drivers

The bit drivers supply bipolar current pulses,
100 nsec wide, to the stack. The bit-driver in-
put circuit contains the decision elements which

Figure 18. Bit Selection Scheme.

2-MC MAGNETIC THIN FILM MEMORY 103

either copy the word stored in the information
register or allow new data, obtained from the
buffer register, to be written into the stack. In
addition, the logic function which determines
whether a ONE should be stored as a ONE or
a ZERO is included. This is necessary because
of the sense-line transposition in the center of
every plane. The sense amplifier amplifies only
single-polarity signals, and all ONEs stored in
the stack must appear as negative signals at
the input to the sense amplifier. Therefore, all
ONEs are stored as ONEs in half of the stack,
and as ZEROs in the other half. The reverse
is true for the storage of ZEROs.

The driver input contains two OR gates
driven from four two-input AND gates. The
bit driver delay is 35 nsec, and the output stage
is transformer-coupled and has an output im-
pedance of 50 ohms.

All lines connecting the stack to the back-
plane are impedance-matched. The bit drivers,
located in the second and third rows, connect
to the middle of the stack through five groups
of coaxial lines, as shown in Fig. 7. On the
frame bit connectors (hidden by wiring and
circuits), corresponding bits interconnect
through twisted pairs, with an impedance of
150 ohms. A matching transformer connects
the coaxial line to the twisted pair.

The bit switches for the eight frames shown
installed in Fig. 7 cover the coaxial bit lines.
Each bit switch circuit is contained in a strip
which aligns with the associated memory
frame. One switch circuit handles the currents
from one row of substrates. Five such circuits
on a strip are driven from a common drive cir-
cuit (visible at the far right in the photo-
graph).

The bit line impedance on the frame is 10
ohms. The nominal bit current is 100 mA. The
bit transformer has a turns ratio of 2:2:1,
which requires 25 mA of current in the pri-
mary. The matching transformer which con-
nects the interconnecting twisted pair to the
coaxial drive line has a 1:2 turns ratio. This
transforms the impedance from 160 ohms to 40
ohms, which is close enough to match the 50-
ohm coaxial cables. The current necessary
from a bit driver, to produce 100 mA of bit

current in a plane, is 50 mA.

The total of 105 times 25 mA of current is
received by the selected information switch.
The switch is divided into five individual cir-
cuits, operating in parallel, each handling a
total of 500 mA ; each circuit handles the bit
currents in one substrate row.

SUBSTRATE TESTER

A substrate tester (Fig. 14) submits every
bit on a substrate to a pulse test which subjects
the bit to disturbing fields resembling worst-
case examples of those encountered during ac-
tual operation.

The films exhibit pronounced magnetic an-
isotropy; the B-H hysteresis loop along the
film easy axis is rectangular, while that along
the hard axis is linear. The films also exhibit
various disturbing thresholds for fields applied
in different directions. Because of the film’s

AR —

“TFigure 14. Substrate Tester.

104 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

linear loop in the hard direction, a low disturb
threshold exists for’ fields parallel to the trans-
verse (hard) direction. (See Fig. 2.)

The test fixture (Fig. 15) is assembled from
circuit boards similar to those surrounding the
memory plane in the actual memory stack. Sub-
strates are inserted and removed through a nar-
row slit located at the word end-around connec-
tions. Two pins through holes in the glass, used
to register substrates and circuit boards in the
actual memory-plane sandwiches, furnish simi-
lar registration in the substrate tester.

A relay rack contains the circuitry necessary
to test the substrates. Indicators for all flip-flop
circuits, located on a control panel, allow ob-
servation of the test, and help during opera-
tional maintenance.

The worst disturb condition exists when a
stored ONE bit is surrounded by all ZEROs,
or when a ZERO is surrounded by all ONEs.
The test word 10001000100. . ., disturbed by
all ZEROs in adjacent locations, is tested for
ONEs; the test word 01110111011. . . ., dis-
turbed by all ONEs in adjacent locations, is
tested for ZEROs.

At the beginning of an operation, the test
word (ONEs) is written into all 24 bits of the
first address. Next, all ZEROs are written into
the adjacent word location; the latter is re-
peated as many as 32,000 times. The rewrite

Figure 15. Substrate Tester Test Fixture.

process subjects the test word to transverse
and longitudinal disturbing fields applied simul-
taneously. The test word is read after the com-
pleted disturb cycle, and its content compared
with a program register. A match continues
the test, by shifting the test word to the next
bit (0100010. . .), and the disturbing continues.
After three shifts, every bit in the first address
has been tested for ONEs. The test word for
ZEROs follows. This test continues until all
bits are checked for ONEs and ZEROs. The
disturb word can be written to the right or to
the left of the test word, alternatively to the
right and then to the left, or parallel to the
right and left. The parallel writing of two
words which embrace the test word constitutes
a more than worst-case condition—a condition
that never occurs during memory operation—
but allows grading of the substrates.

Substrates which pass the 32k disturb test
are assembled into memory frames. These sub-
strates tolerate about 4k to 8k disturb pulses,
when tested in the more-than-worst-case par-
allel mode. The test is fully automatic, and the
output signal of the sense lines is not moni-
tored. The tester operates at a frequency of 1
Mec; one. disturb test requires 8 seconds if no
error occurs. Evaluation of a good substrate
requires about 30 to 60 seconds, because the
substrate is also retested in the parallel mode.
Operation stops on a bad bit, and panel indi-
cator lights display the location of the bad bit,
and whether the failure represents a bad ONE
or a bad ZERO.

Film disturbance shows dependence upon
current rise times. Slower current pulses tend
to disturb less. Current rise and fall times of
20 nsec are available in the tester, as compared
with 35 nsec in the stack. The size and the
larger number of selection elements reduce the
current rise and fall times in the stack.

Substrates which pass the 32k disturb-pulse
test also pass consistently a test of 4 million
word and 250 million bit disturb pulses in the
frame tester.

FRAME TESTER

Evaluation of fully assembled memory planes
(frames) takes place in a frame tester (Fig.
16). A relay rack houses the circuitry and

2-MC MAGNETIC THIN FILM MEMORY 105

power supplies. A specially designed fixture
allows the frame to slide into the word connec-
tor in an upright position. This provides the
connection necessary to address all 128 word
lines. A movable rack, containing sense ampli-
fiers and bit drivers for the examination of 24
bits, can slide vertically to the desired group
of lines. Printed-circuit edge-board connectors
mate with the appropriate conductors. With
this mechanical arrangement, an equal con-
ductor length is consistently maintained during
the examination of the five groups of sub-
strates, to correspond to the actual stack con-
struction.

The evaluation consists of two phases: first,
the bit-write noise is reduced by manual ad-
justment of the “end-around loops.” Secondly,
a disturb test, similar to that performed on
the substrates, is run. The frame tester oper-
ates as a memory exerciser, with the capability
of inserting worst-case patterns into the plane.
The automatic program rewrites the disturb
word up to 32,000 times; manual operation al-
lows any desired number of disturb operations.

The tester operates at one of three different
frequencies: 2 Me, 4 Me, or 250 ke. Single-pulse
operation is also available. Although substrates
cannot easily be removed from an assembled
plane, up to three bad bits can be tolerated in
each of the five sense-bit groups. The spare
lines can replace lines containing faulty or
marginal bits, but a small wiring change is
necessary.

CONCLUSIONS

The operation of this half-microsecond-cycle
memory module represents a significant
achievement in a program of magnetic thin-
film development for computer storage which
was begun at these laboratories in 1955. Large
numbers of substrates were processed and
tested, and memory plane assembly and test are
now routine operations.

Memory frames which contain 20 substrates
(15,360 bits) can be assembled without great
difficulty. The limitations were imposed by the
printed-circuit boards, and were due to dimen-
sional tolerances.

Figure 16. Frame Tester.

Cost-per-bit reduction can be achieved by in-
creasing the number of bits contained in a sin-
gle pluggable unit, because the interconnections
in the stack contribute significantly to the total
memory cost.

A shorter memory cycle can be made possible
by reducing the total sense delay, and by the
elimination of the bit recover pulse. The pulse
transformers “will be replaced by active solid-
state devices. A reduction of 150 nsec—50 nsec
from a shorter sense delay and 100 nsec from
elimination of the bit recover pulse—make a
cycle time of 350 nsec, or 3-Mc operation, pos-
sible.

106 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

The capacity and speed attained with this
memory are clear indication that magnetic thin
films have become the optimum storage ele-
ments for reliable, nonvolatile, fast-access
memory.

ACKNOWLEDGMENT

The author wishes to express thanks to the
many people at these laboratories who were re-
sponsible for the successful completion of this
memory, especially to F. C. Doughty, A. M.
Bates, P. A. Hoffman, J. W. Hart, J. S. Jami-
son, and L. N, Fiore, for their technical as-
sistance; J. H. Engelman and R. P. Himme]
for film fabrication; G. Sabatino, K. McCardell,
and S. V. Terrell for film and memory testing;
B. C. Thompson and F. Rehhausser for logic
design; and R. E. Braun, G. J. Sprenkle, and
G. J. Kappe for mechanical design.

REFERENCES

1. BITTMANN, E. E., “Thin-film memories:
some problems, limitations, and profits,” an
invited paper presented at the International

Nonlinear Magnetics Conference (INTER-
MAG), April 1963, and published in the
Proceedings.

. RAFFEL, J. 1., et al., “The FX~1 magnetic

film memory,” Report: MIT Lincoln Labo-
ratories TR278, November 1962.

. ANDERSON, J. P., et al., “The D825: a multi-

computer system for command and con-
trol,” AFIPS Proceedings, 1962 Fall Joint
Computer Conference, December 1962.

. ANDERSON, J. P., “The Burroughs D825,”

Datamation, April 1964.

. THOMPSON, R. N., and WILKINSON, J. T.,

“The D825 automatic operating and sched-
uling program,” AFIPS Proceedings, 1963
Spring Joint Computer Conference, May
1963.

. BatEs, A. M,, and D’AMBRA, F. P., “Thin-

film drive and sense techniques for realizing
a 167-nsec read/write cycle,” Digest of
Technical Papers, 1964 International Solid-
State Circuits Conference, February 1964.

A SEMIPERMANENT MEMORY UTILIZING
CORRELATION ADDRESSING

George G. Pick
Applied Research Laboratory, Sylvania Electronic Systems
A Division of Sylvania Electric Products, Inc.
Waltham, Massachusetts

Summary: A mechanically changeable, semi-
permanent, random access memory with a
16,384 twenty bit word capacity is described.
This solenoid array memory is useful for stored
programs and tables in computers, character
generation and as a combined input and stor-
age device for special purpose computers. It
utilizes an associative technique to allow ad-
dressing of any of its 1024 sixteen word data-
containing sheets, which completely avoids any
need for electrical connections to the data-con-
taining sheets or for any ordering of the sheets
within the memory. Each sheet is a very thin
printed circuit onto which data is entered by
etching or punch-card controlled cutting. The
data is inductively interrogated by means of
solenoids which pass loosely through the sheets.
The sheets are contained in loose-leaf notebook-
like magazines which fit into a file drawer.

The present memory’s access time is 0.7
microsecond and its cycle is below two micro-
seconds.

INTRODUCTION

In recent years there has been an increasing
interest in read-only random access memories.
This class of memory has developed along two
paths, those electrically alterable and those
mechanically alterable. This device falls into
the latter class. The solenoid array memory
described here is a development which followed
the solenoid array correlator and memories de-

107

scribed in an earlier paper.! In previously
reported work> * * inductive coupling was also
used, but electrical connection had to be made
to the stored data, or else the capacity was
very limited. Some work® ¢ allowed use of
connectionless data containing media, but in
each case, precise data alignment and interleav-
ing structures were needed. The described
memory uses thin copper clad “Mylar” printed
circuit sheets which are placed adjacent to each
other with no interleaving of any sort. All cou-
pling, into and out of the data planes, is by
inductive coupling from and to two respective
solenoid arrays which pass loosely through
holes in the data planes.

The addressing solenoid array is driven by
an input address which has been transformed
into an error-correction type code. The address
is simultaneously correlated or matched to the
stored addresses on each data plane with the
result that the autocorrelation on one plane is
a voltage positive enough to exceed its diode
conduction voltage, and on all unselected planes
the cross-correlations result in voltages which
are well below, or negative, to that voltage.
In consequence, a current is allowed to flow in
only the selected plane’s data path, allowing
only that plane’s data to be sensed by the
pick-up solenoids.

This association between a coded address and
its plane’s data allows the mechanical flexi-
bility mentioned earlier. The data plane may

108 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

be positioned anywhere along five inches of the
solenoids’ lengths, and as long as there is only
one data plane in the stack with that address,
it is uniquely accessible.

Each sheet contains sixteen words or 320
bits. To avoid the need for 320 amplifiers, the
four lower order address bits are used to select
the appropriate group of solenoids and connect
them to the sense amplifiers. This technique
allows the packing of many words on a single
data plane, thereby efficiently multiplying the
capacity of the memory and radically increasing
its effective bit packing density on normal
length words. Single data sheets of practical
size can contain upwards of a thousand bits.

The ease of data change and the low cost of
the storing medium allow this memory to be
considered for tasks where it acts not only as
a memory, but as an input device as well. Maga-
zines, containing tens or even hundreds of
thousands of bits, can be stored on a shelf and
inserted into the memory when required with
an ease comparable to changing a modern mag-
netic tape cartridge. Thus for some computing
systems, mechanical input reading devices may
be replaced by a rugged, mechanically static,
semi-permanent memory of this type.

Overall Description

The solenoid array device described utilizes
long, thin solenoids to provide a simple, non-
critical magnetic coupling between the data
containing planes and the array memory struc-
ture. The memory is organized so that the
data—containing planes need have no connec-
tions other than magnetic, and this realization
required two basic functions—unique data plane
drive and appropriate sensing of the driven
plane for the selected stored data. These two
functions are almost independent and are
realized by a driver solenoid array and a sense
solenoid array. The driver solenoid array is in
essence a substitute for a 1024 line linear ad-
dressing matrix and the resultant connection
pair that would be needed to each of the 1024
data planes.

The sense or pick-up array detects if the vari-
ous bit positions on each driven plane contain
a one or zero. The sense solenoid outputs are
connected so that appropriate gating can con-

nect the output of only one group of solenoids,
a word group, to the sense amplifiers. The
arrays are shown in Figure 1.

The principle of operation of the solenoid
array is based on the transformer. On any
transformer, if a wire passes around its flux
path, there is coupling, and if it bypasses its
flux path, there is only stray or minimal cou-
pling. With solenoids, the same rules apply
with little modification.

In the memory, the drive array and the sense
array are separate components which are only
connected through the stored data planes. In
series with this connection on each plane is a
diode which acts as a switch that allows one
and only one plane to be connected at one time
during the interrogation. See Figure 2.

The address is stored on each plane on that
portion which slips over the addressing array.
This matrix of mutual inductances which couple
a digital input address word simultaneously to
all the data planes perform a correlation or dot
product operation. The operation thus per-
formed is given by

15
Tj = 2 ijUk
. k=1

i=1,2,...1024; where U, and W;, are the
k™ components or cells of the input address
word U and the stored address word W;, re-
spectively, and T; are the simultaneous indi-
vidual output voltages generated on each plane.

The correlation is formed by simultaneously
energizing 15 solenoid pairs, in either the ‘“zero”

e,

PROPRTEY
[T goed”

-
»
%
e
-
.
®
.-
>
L4

-«
s
®
3
{
|
i
i

Figure 1. Solenoid Array Without Planes.

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 109

Figure 2. Data Plane.

(13 2

or “one” positions—depending on the input
address. The individual multiplications that re-
sult are shown in Figure 2A and these positive
and negative voltages on each plane are
summed together because all of the paths are
in a series circuit.

The right portion of the photograph in
Figure 2 shows the addressing paths, plus bias
positions to be described later. It may be noted
that the loops on vertically adjacent aperture
pairs always encircle one and bypass the other.

At the bottom of the photograph is a small
component, a diode, which “detects,” and al-
lows current to flow only in that plane where
the addressing correlation resulted in a posi-
tive voltage sum with respect to the diode con-
duction polarity.

The described addressing operation is, as was
explained earlier, a substitute for a connection
pair to the left portion of the data plane, which
stores the actual data.

The data portion of the plane on the left side
of Figure 2 is organized into 16 rows, each
representing a 20 bit word. Two rows are
paired into one major loop and there are eight
loops on the plane, one above the other. The
sense solenoids are not paired like the drive
solenoids, hence the data for each bit is stored
by cutting the path so that each solenoid, or
bit, is either inside or outside the enclosed area
or loop. The distance between the two sides of
each major loop is of little consequence, hence

two rows or words can be placed on one loop.
(The coupling loops are the paths starting on
the right of the data portion, going to the left,
up a short distance and returning to the right.
All these loops are in series with all the others,
the diode and the addressing array loops on
the right.)

Figure 2B shows the operation of the sense
solenoids and the manner in which they pick
up the stored data. In a later section the orga-
nization for solenoid selection switching will
be described more fully, however, it should be
clear that the interrogation of a data plane
results in parallel output of all data bits on the
plane. The selection switching circuit is used
only to reduce the number of sense amplifiers
and subsequent gating circuits. If each plane
contained only one word, selection would be
eliminated.

STORED ONE /A A 17

/
Cen

‘ | OQUTPUT

N
N
N

sToRED Zer0 /
P

[

l I OuTPUT

INPUT

(
0

stomponed [/ A L7
I

¢
INPUT O—J L———L'I

I I OuTPUT

0
0

,s'r_ousp zo A [/ / /7 _l-_-lggﬂ‘lﬂ

Figure 2A. Data Plane Driving Solenoid.

110 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

i

DATA PLANE CURRENT
—

I - ** ONE " OuTPUT
)
t ‘

I l ** ZERO™ OUTPUT

2B. Addressing Solenoids Driving Stored Address.

The error-correcting code’s first function is to
allow unique selection of ¢ne plane, thereby
addressing many planes with a modest number
of drivers and solenoids. The long “distance”*
of the code brings with it the advantage of
redundancy which results in high reliability and
driver load sharing. (In practice, it has been
found that degraded or missing drive pulses on
a few drivers have little effect on memory
operation.)

The operation of the memory can be de-
scribed by Figure 3. The address is stored in
the address register. The addresses’ lower order
bits are decoded into sixteen sub-addresses for
selecting the appropriate sensing solenoid
group. The higher order address bits are oper-
ated on by the coder to form a Hamming code
which operates the addressing solenoids. When
the addressing array is driven, current rises on
the selected plane and the pick-up or sense sole-
noid array emits the selected word to a bank
of sense amplifiers.

Addressing by Correlation

A solenoid array memory has previously been
built in which the data planes were conduc-
tively connected and were addressed by a rela-
tively straightforward coincident voltage tech-
nique in rectangular matrix with a diode con-
nected in series with each plane’s path at each
crosspoint. Another memory was built in which
a single solenoid was used to drive each single

*In a coding sense.
b

=~
e L RECISTER

_
PICK - UP
e : o
1 |
| —
SUB - ADDRESS

Figure 3. Block Diagram.

data plane with a unique and orthogonal ad-
dress. The first memory required connections
to the data planes, which was acceptable only if
data was to be changed infrequently, and the
latter memory was limited to a modest number
of planes equal to a practical number of drive
solenoids, namely, about fifty planes.

Addressing by correlation provided an exit
from these limitations. Well developed correla-
tion techniques were available! from which a
correlator could be designed that would accu-
rately correlate a binary address and thereby
achieve a form of connectionless associative
addressing. However, the original solenoid ar-
ray correlator used air cored solenoids whose
output voltages were too low to generate
enough voltage to drive a data plane. Ferrite
cored solenoids were designed which improved
the coupling, allowing much higher drive volt-
ages to be delivered to the data planes. How-
ever, in spite of compensation, the cored sole-
noid’s coupling to the data planes was much
less uniform than that of the air cored units
(e.g., 15 per cent versus 1 per cent), and, even
with the high outputs available, single output
voltages were too low for reliable operation.
Hence, the need for load sharing and the re-
quirement for less critical drive voltage ampli-
tudes combined to recommend an error-correc-
tion type code.

Use of a non-orthogonal code causes the re-
quirement for a nonlinear component which
would detect the positive selection voltage and
allow the drive current to flow in the plane—a
diode. Since the diode could be a permanently
prefabricated part of each plane, and a me-
chanical arrangement was found that did not
increase the total thickness of a stack of planes,
the diode was not considered objectionable.

Applicable Error-Correcting Codes

Mathematics recognizes many types of codes
that could be applied to the present device.

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 111

The memory field has seen the use of the usual
binary codes and classes of orthogonal load
sharing codes® for addressing or driving core
memory selector matrices. In the case of the
described memory, binary codes would be un-
satisfactory because the difference between a
matched or selected correlation and the closest
unselected one is too small, namely, one bit. The
aforementioned orthogonal codes excel in that
the selected address correlation would receive
the sum of all or most of the driving bits, and
all the unselected addresses would have no
drive at all, by mathematical definition of or-
thogonality, but unfortunately, orthogonal
codes always require at least as many bits as
there are addresses. They would fulfill the de-
scribed memory’s load sharing requirement,
but would sharply limit the possible number of
data planes.

The error-correcting alphabets were designed
to encode relatively long blocks of bits, hence
the number of possible addresses is relatively
large. The use of a diode detector removes the
need for code orthogonality, and error-correct-
ing codes are inherently efficient in their use
of redundant bits to achieve long coding dis-
tances or weights.

Two codes were found that were easily
applied to the addressing problem. The first is
the well known Hamming code, in particular a
code with 10 information bits, 5 redundant bits
and a “distance” of 4 bits. A second code, even
more attractive, is the Golay code, which for
this application would represent 10 information
bits, with 12 redundant bits and a distance of
8 bits. Both codes can be conveniently gener-
ated by either shift register encoders or paral-
lel modulo-2-sum networks. Many variants of
these codes are available for both larger or
smaller addressing capacity requirements.

For magnetic reasons to be discussed subse-
quently, correlating by means of single sole-
noids, where zero or one is represented by
absence or presence of an input drive, is un-
desirable. A more practical arrangement is to
drive pairs of solenoids in parallel, and to drive
them with one polarity for a “zero,” and the
other for a “one.”

The effect of this arrangement is that the
range of correlation outputs is extended from

0 to +N (N = number of bits) to a range of
—N to +N, thereby doubling the distance or
weight of the code. As a result, using the
Hamming code, an autocorrelation is +15 units
of voltage, and the nearest cross-correlation is
+7. In the Golay code, the respective figures
are +22 and +6. This distribution of Ham-
ming code outputs, with no bias, is shown in
Figure 4.

The correlation outputs, as they stand, pos-
sess the necessary ‘“distance” properties, but
their absolute levels are not optimum for prac-
tical operation. The distribution of the unse-
lected outputs must be shifted so that a diode
(or diode-Zener diode) detector on the plane
can efficiently prevent current flow. (The rea-
sons for choosing either type of detector are
discussed subsequently.) The output distribu-
tion shift is readily achieved by adding fixed
bias in the form of additional solenoid drivers
which always operate in the same polarity.

Application of the Data Plane Addressing
Techniques

This section describes the technique of gen-
erating the codes, the circuitry of the solenoid
drivers, the structure and design criteria of the
drive solenoid themselves and the data plane
detector considerations.

Input Register and Coder

The binary address of the desired data plane
is entered into a buffer register. This address
contains the data plane address along with the
additional address bits for the subselection of
data within the plane. The data plane address
bits, in ordinary binary code, are themselves

DISTRIBUTION FREQUENCY
OF DRIVE OUTPUTS

+15

L,

0.5 VOLT
INTERVALS

Figure 4. Output Distribution on “Paired” Hamming
Code.

112 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

4 SHIFT PULSES AFTER DATA ENTRY

Figure 5. Shift Register Coder.

used to each control a solenoid drive polarity;
and redundant bits must be generated from the
original bits by one of several common tech-
niques.

The best technique for generating the codes
is the shift register encoder as shown in Figure
5. In this device, the original address is en-
tered as shown in shift register positions 2-11
and the modulo-2 adder operates to set position
1 accordingly. The register is shifted, a new
bit generated and the operation is repeated
until the data has been shifted to the left-most
position. For a Hamming code with 5 redun-
dant bits, 4 shifts are necessary. This tech-
nique is simple to instrument, uses a small
number of circuits and is most attractive with
the following exception. The coding must be
done before interrogation, hence the speed of
this operation directly affects the access time.
Thus for a given logic speed, the minimum
access time is clearly limited by the time con-
sumed by the required shifting operations.

The alternative is to generate all the redun-
dant bits in parallel. It can be shown® that
all redundant bits can be determined as mod-
ulo-2 sums of the original information or in-
put bits. Hence by instrumenting parallel mod-
ulo-2 adder logic (exclusive-or), all redundant
bits were generated at once. This is shown in
Figure 6. Unfortunately, efficient codes have
little logical overlap between their redundant
bits, hence the amount of circuitry is not in-
considerable. (Typically, a Hamming coder
requires about 50 NAND circuits and a Golay
coder about 110.) Alternative simplified cir-
cuits and magnetic configurations are available,
but some degree of complexity remains.

For the Hamming codes used in the de-
scribed memory, the code generation was paral-
lel. A second unit now under construction,
uses a Golay code and its redundant bits are
generated serially, with higher speed logic to
partially compensate for the multiple logic
cycles. In that unit, with modest access time,
it was found more economical to supply a sepa-

DATA PLANE ADDRESS

slwlilizinljwole|s7le}s5i41(3i2i|!

1 2 6

MODULO - 2 - SUM I_

rate, faster clock and control counter, all in-
strumented in higher speed logic, than to gen-
erate the Golay code in a parallel.

Drive Solenoids

The drive solenoids are operated in pairs,
with their respective windings connected in
parallel so that for one given drive polarity
the solenoid flux polarities are opposite as
shown in Figure 7. This balanced configuration
achieves an approximation of a closed magnetic
circuit without the need for an actual closure.
Although, because of the air gaps, the mutual
inductance between the two solenoids of a pair
is not large, the superposition of the individual
solenoid fields radically reduces the stray flux.
Further, although the correlation used for ad-
dressing is very non-critical, the drive pattern
sensitivity of individually driven solenoids
would be unacceptable. Thus, to minimize the
need for magnetic shielding between the drive
and pick-up arrays, to minimize drive pattern
sensitivity and to somewhat improve mutual
coupling to the data planes, paired solenoids
can be fully justified.

As a bonus, as was mentioned earlier, the
availability of two bit positions on the plane
allows the storage of positive and negative cor-

l DATA PLANE ADDRESS

! BUFFER REGISTER ? 1w

6 BIT SUBSETS OF ADDRESS BiTS

i O Sk e i

MOD MOD MOD MOD MOD
2 2 2 2 2

SUM SUM SUM SUM SUM
REDUNDANT 12 13 14 : 15

BIT 1

Figure 6. Parallel Coder.

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 113

relation weights, thereby automatically dou-
bling the correlation distance, when the sole-
noids are reversibly driven for one and zero
inputs.

Magnetic Structure

A solenoid using no ferromagnetic core has
a very uniform coupling to a surrounding loop
over almost its whole length as is shown in
Figure 8. However, for a given number of
turns, an air core solenoid has a relatively low
self-inductance, therefore presenting a low
impedance to its driver. Hence many turns
must be used for practical air core solenoids
with the consequence that the transformer step-
down turns ratio is large. To allow a smaller
number of turns, larger diameter air cores or
ferrite cores must be utilized to maintain a
practical level of self-inductance. The resulting
coupling to a loop unfortunately becomes very

-18 -15

DRIVE
PULSE

DRIVE
PULSE

nonuniform as shown in Figure 9 by the dashed
line, an undesirable situation since the drive
voltages induced in the planes would vary de-
pending on the position of the plane along the
solenoid.

To compensate for the nonuniform coupling,
two techniques were evolved. The simplest was
to vary the turns density along the winding so
that regions near the end were more densely
wound than near the middle. For good results,
this technique will require careful control of
winding density, which will be easy to achieve
on production machinery but is difficult to do
in the laboratory. The alternative technique
was to use a linear winding and to vary the
ferrite permeability by using short ferrite rods
butted against each other. Since the reluctance
of the solenoid return path is relatively large,
small air gaps between the rods were found

SOLENOID DRIVERS

N s
- -
ONE
s N
f, N
ZERO
L a
N S

Figure 7. Solenoid Driver Circuit.

114 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

T OUTPUT

A

4

—_—X

POSITION OF LOOP

>

<
é

DRIVE I
QUTRUT o f

Figure 8. Air Cored Solenoid and its Relative Coupling
to a Loop.

quite unobjectionable. Figure 9 shows a sole-
noid constructed in this way with a middle rod
of low permeability and the two end rods with
higher permeability. It may be interesting to
note that this technique bears a similarity to
a triple-tuned bandpass filter with a broadly
tuned middle section and more sharply tuned
end sections. This techniqué'was applied in the
memory described.

The question may reasonably be asked why
it is necessary to use all these techniques and
to pay the price of higher drive currents in-
stead of using a closed toroidal-like structure.
The reasons are as follows:

1. A very elongated thin-legged closed struc-
ture is likely to have high leakage flux
between its long members when the leak-
age reluctance becomes comparable to the
path reluctance.

2. The need for an easy data exchange
would require split cores whose alignment
would need to be carefully maintained.
Since this memory is intended to appli-
cations where data is frequently changed,
precisely mated surfaces would require
critical protection and very precise align-
ment mechanisms.

Further, since the operating pulse widths are
short because of access and cycle time require-
ments, the maximum drive currents remain at
acceptable levels.

To give the structure mechanical strength,
the ferrites are inserted into a phenolic-paper
tube and appropriately glued in, and the wind-
ings are laid into a shallow threaded groove
cut on the outside of the tube. The entire as-
sembly is then appropriately varnished or
epoxy coated.

Solenoid Drivers

The solenoid drivers are designed to supply
a 16 volt, half microsecond long pulse to an
inductive load of about twenty microhenries,
with ample margin. They are also designed to
withstand an inductive overshoot equal to the
drive pulse, or about 32 volts peak.

As was mentioned earlier, each solenoid pair
is connected in parallel, as shown in Figure 7,
so that the solenoids in each pair always have
opposite polarities. A second consideration is
that a “one” input should drive the pair one
way, and a ‘“zero” the other. In earlier designs,
a transformer with two input drive windings
of opposite winding polarity, one from each of
two separate drivers, coupled to an output
winding that was connected to the solenoid
load. When “one” was asserted, one switch
closed and drove the transformer, and when a
zero was asserted, the other switch and wind-
ing drove the transformer, thereby generating
opposite drives on the output winding for the
two states. Unfortunately, the transformers
were relatively bulky and somewhat inefficient.

Instead, each driver solenoid was cut with
2 grooves instead of one to allow a bifilar wind-
ing, and one winding on each solenoid was
driven for a “one,” and the other for a “zero.”
Both of the respective pairs of windings on the
solenoids were connected in parallel, in order
to maintain opposite magnetic polarity on the
solenoids for either drive.

The drivers themselves are arranged to be
controlled by the input address code. The state
of the address turns on either of two currents
I, or I, in the driver, which flow as soon as
the input address code bits are set up. The cur-
rents are shunted to —18 volts by transistors

outPut | T
COUPLINGS

|
OR SINGLE
IF

F:
UNIFORM ROT

Figure 9. Ferrite Cored Solenoid and its Relative
Coupling to a Loop.

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 115

T, or T, which are saturated continually except
during the drive pulse. T, and T, turn on as
soon as power is applied to form a fail safe
timing circuit for the solenoid drivers. T, and
T. can only be shut off by a negative drive
pulse to their bases, and the resistance-capaci-
tance time constant in their base input circuit
is made long enough to allow them to open only
slightly over the maximum desired drive pulse
width. When either I, or I, flows, the opening
of T, and T, shunts the current into T, or T,.
This turns on one drive transistor, causing the
required drive voltage pulse. At the end of the
drive pulse, T, and T. again saturate, rapidly
shutting off the conducting transistor' with a
low impedance drive.

The fail-safe circuit of T, and T, is needed
since the D. C. resistance of the solenoid circuit
is very low, and the drive transistor would soon
be destroyed if allowed to stay on.

It should be noted, that when T, is switched
on, the transformer coupling between the two
solenoid windings causes the collector of T, to
go to double the supply voltage. Similarly, when
T, is switched on, T,’s collector rises. For this
reason alone, the inductive overshoot clamp
diodes on T, and T, must be tied to almost
twice the supply voltage. Thus, the inductive
transient causes an overshoot approximately
equal to the drive pulse both in amplitude and
pulse width. (Volt-time areas are equal.)

The large overshoot transient is desirable
because it shortens the transient duration, but
tends to produce other unwanted transients.
These transient currents in the data planes
occur after the data has been strobed, hence
they do not affect data read-out, but they do
require a few microseconds to settle, thereby
lengthening the cycle time. These transients,
and means to suppress them, are discussed
later.

Correlation Selection Techniques

The addressing solenoid drive causes a paral-
lel correlation operation on all the stored ad-
dresses on each respective plane. Figure 10
shows the outputs of one selected plane, and
three typical outputs of unselected planes, the
former being the positive drive pulse. A means
must be provided to uniquely separate the se-
lected plane by allowing a current to flow in

OUTPUT OF
DRIVER CORRELATION

2V/cem
0.5 ps / div

Figure 10. Correlation-Coder Outputs.

its path which is much larger than the linear
sum of ALL the unselected data plane cur-
rents.t An ordinary silicon epitaxial diode has
a forward-to-reverse resistance ratio of over a
million to one. Its capacitance of a few pico-
farads in series with the data plane impedance
of perhaps ten microhenries and three ohms
allows only an extremely short transient cur-
rent in the unselected planes, and the sum of
all these currents is still far exceeded by the
select current over the drive pulse interval.

The outputs of the stored address code corre-
lations may be represented by a distribution as
shown in Figure 4 if no bias is applied. If a
four or five microsecond memory is desired, a
simple diode may be placed in series with the
path on each data plane and additional solenoid
drive bias of minus nine units may be added to
shift the distribution to that shown in Figure
11A. The diode characteristics in Figure 11B
will allow current to flow in that addressed
plane whose output is to the right of the origin.

Unfortunately, after the data has been
strobed out, and after the drive pulse is.ter-
minated, the overshoot reverses the distribution
so that the unselected planes then go into con-
duction as shown in Figure 11C. As a result,
current flows in many planes for a few micro-
seconds with a period determined by plane in-
ductance; resistance and diode conduction volt-
age drop. Due to less than perfect coupling
from solenoids to planes, the sum of the cur-
rents is far less than would be expected in a
good transformer, hence the solenoid flux col-
lapses rapidly.

The technique used to prevent the flow of
current during the overshoot period is as fol-

+ This statement is actually a simplification intended
to clarify. Actually, the differential of the desired cur-
rent flow over the interrogation period must greatly
exceed the sum of all the unselected differentiated cur-
rents. Since the small, unselected® current transients
are very short, their positive and negative differentials
essentially cancel out during the first fraction of the
driver pulse period.

116 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

FREQUENCY
T OF OCCURRENCE
A. DISTRIBUTION OF OUTPUTS
DURING DRIVE
1
- -2 7 —a outhUT

8. DIODE CHARACTERISTIC

/\— C. DISTRIBUTION OF OUTPUTS
- DURING OVERSHOOT

7. 2 +24

Figure 11. Distribution of Outputs for Given Drive and
Diode Characteristic.

lows. First, the drive bias is changed so that
the distribution of outputs is that shown in
Figure 12A. Second, a zener diode with a break-
down voltage V, is placed in series with the
diode. Its voltage is chosen such that the sum
of the diode forward conduction voltage drop
and the zener breakdown voltage drop equals
a voltage which is two units higher than the
right limit of the distribution at +11 as is
shown in Figure 12B. Now, during drive, only
the selected current flows just as before. How-
ever, during the overshoot period, the distribu-
tion is such that no current flows at all, as is
shown in Figure 12C. Hence, a new memory
cycle can begin in less than a microsecond. The
oscillograph in Figure 13 shows the voltage
sensed by a solenoid in an array loaded with
fifty planes using simple diodes, and the oscillo-
graph in Figure 14 shows a similar output due
to fifty planes utilizing the diode combination.

1FRfQUENCY OF OCCURRENCE

VAR

-n 1 H9 e OUTPUT

A, DISTRIBUTION OF OUTPUTS
DURING DRIVE

8. DIODE - ZENER DIODE
W CHARACTERISTIC

+13

VAR

-19 -n T

C. DISTRIBUTION OF OUTPUTS
DURING OVERSHOOT

Figure 12. Distribution of Outputs for Given Drive and
Diode—Zener Diode Characteristic.

OUTPUT
OF SENSE SOLENOIDS

‘5 mv /cm
0.5 us / div

Figure 13. Worst Case “Ones” and ‘“Zeros”—Diode
Detector.

The diodes are ordinary planar epitaxial
types, but “gold bonded” germanium paint con-
tact types work almost as well. The zener diodes
most commonly available have relatively high
capacitance since they have large junctions de-
signed for high dissipation. The emitter-base
junctions of a small silicon transistor such as
a 2N706 have very sharp and uniform zener-
breakdown voltages, and low junction capaci-
tances on the order of a few picofarads. These
transistors, used as zener diodes, may be seen
in the photograph of the memory in Figure 15
hanging from the sides of the data planes. How-
ever, the diodes are mounted integrally on the
data plane in small holes, staggered around
the planes’ peripheries as shown in Figures 2
and 16. In later units, where the zener diodes
are needed, the diode-zener diode would be in
one component mounted as the diodes are now
mounted as shown in Figure 16. The dual com-
ponent is a commonly built one, and is in
essence a transistor with no base lead connec-
tion, in which the usual collector junction is

0.5 ps/div
100 mV / cm - SOLENOID OUTPUT

0.5 ps/cm - IN PLANE

0.5 ps/ div
50 mV/cm - SOLENOID QUTPUT
0.5 A/ div

Figure 14. “One” and “Zero” Outputs for 3us and
15us Cycle Time with Zener Diode—Diode Detector.

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 117

the diode and the emitter junction is the zener
diode. Dozens of silicon epitaxial type transis-
tors were found to have the desired characteris-
ties, shown in Figure 12B, hence no problems
are anticipated in obtaining these “integrated”
circuits.

Data Readout

The device described up to this point of the
paper constitutes a substitute for a pair of
connections to each plane, with appropriate gat-
ing and drive circuitry. Little has been men-
tioned as to how the current in the plane is
detected and used. The organization for data
readout is the subject of the following
paragraphs.

The current ramp in the data plane consti-
tutes a primary drive to a multitude of long
sense solenoids or transformers. Each loop or
enclosure of a solenoid on a driven plane is a
primary coupled to the solenoid secondary, or a
“one” and each bypassed solenoid constitutes a
“zero,” when that plane is interrogated. A
“one” causes a voltage output of one polarity,
and a zero causes a smaller voltage of opposite
polarity.

Figure 17 is an oscillograph that shows the
drive current in the data plane, and Figures 13

[

and 14 the outputs of a number of “ones” and
‘“zeros” from the respectively driven solenoids.

Obviously, all bits on a plane are emitted in
parallel, hence some gating is usually desirable
to connect only the desired subset, or word, to
the output amplifiers. The method of achiev-
ing this is quite simple. One terminal of each
solenoid in a word group is tied together with
the similar terminals of the solenoids in that
group. This common terminal becomes the
word-select control terminal. All the other
word-groups of solenoids are similarly tied
together. This is shown in Figure 18.

In each word group, the other terminal of
each solenoid representing each bit of the word
is tied to all the other respective solenoids in
the other words by means of diodes. All the
common ‘“word line” terminals are biased so
that their respective diode switches are back-
biased except for those of the addressed word.
The diodes on the addressed word’s solenoids
are forward-biased before the data plane is
pulsed, hence effectively connecting the ad-
dressed solenoids to the preamplifiers before the
interrogating pulse. Since a fraction of a micro-
second is needed for currents to change and for
diodes to switch, this word preselection pro-
cedure is timed ahead of the main pulse.

Figure 15. Photograph of System.

118 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

Figure 16. Diode Mounting Close-Up.

The solenoids themselves for most applica-
tions are air-cored. These are simply phenolic
paper tubing which is wound with a helix of
thin copper wire, typically, number 30 wire
gauge. After winding, it is suitably coated to
protect it with either varnish or epoxy coating.

For applications where higher outputs .are

- desired, ferrite cored solenoids, smaller in diam-

eter than those in the drive array (quarter inch

diameter instead of three eighths) may be

used. To minimize pattern sensitivity, they

should either be paired and connected in series
or spaced far apart.

Output Circuitry

The diodes used at the output of the solenoids
could be matched to those on each bit line to
allow the use of a direct coupled, single ended

CURRENT IN PLANE

100 ma/ cm
0.5 ps / div

Figure 17. Drive Current in Plane Due to Hamming
Correlation.

system. However, for signals below 100 milli-
volts, typical of the simpler air-cored pick-up
solenoids, capacitor coupling is indicated.
Hence the gated signal is amplified in a linear
amplifier, along with any pedestal shifts due
to word-line switching, and voltage restoration
is applied. If the access time is to be short
compared to the pulse width, keying or gating
of the restoring voltage is required. If the
access time is long compared to the pulse, an
ordinary resistance-capacitance high-pass filter
is adequate.

The waveforms of the connectionless memory
shown in Figures 13 and 14 require strobing
for reliable operation, and it is timed to occur
just before the end of the drive pulse.

hd WORD N,

e
i

y
"y

SELECTION

AMPLIFER
R'
+ +
T
L) 2 8T 3

Figure 18. Word Pre-Selection Matrix.

AMPUFER | b-om{ AMPUFER |
R
s

Ry

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 119

In the limit, with a pick-up array of paired
ferrite-cored solenoids, which may deliver out-
puts of as much as a volt, output flip-flops
could be strobed directly from the solenoids.
In a more typical case, one or two transistors
can be used for amplification, and another for
slicing and strobing. For increased speed, a
two-stage amplifier followed by the voltage re-
storing switch, followed by a slicer and output
stage is desirable, and the memory described
here used this system and is shown in Figure
19. It should be emphasized, that in all cases,
the amplifiers were single-ended and differen-
tial amplifiers were not required.

Data Planes

The data planes in the earliest work were
simply thin wire, wound on plastic sheets with
small bobbins attached. However, this tech-
nique did not allow for quick and easy exchange
of individual circuits paths or planes. Copper-
clad Mylar was soon found to the applicable to
the requirement.

The tooling technique involves accurately
drawing the printed circuit layout, drilling a
master template which fairly accurately matches
the layout, and having a stainless steel mesh
“silk screen” fabricated from the printed cir-

7T

At 1
cuit layout.

To avoid critical alignment and fabrication
problems, copper path widths are made about
0.040” wide, distances between closest conduc-
tors are also 0.040” and the closest a copper
path passes to a hole is nominally 0.060”. The
solenoid array base plate and the data planes
themselves are drilled through the same tem-
plate, hence with only modest care, alignment
is no problem. The holes in the planes are about
0.1” larger than the solenoids; hence they fit
quite loosely.

SOLENOID

WORD SOLENOID LINE

Figure 19. Pre-Amplifier.

All data planes contain both alternate paths
around the solenoids. In the laboratory, the
data is entered by simply scraping off the etch
resist before the planes are etched. The result
of this operation can be seen in Figure 2. A
machine has been constructed that mills away
the copper path, under control of an ordinary
punch card, at the rate of six bits per second,
and this is shown in Figure 20, and can be
seen operating on a large 1428 bit plane.

The fabrication of the planes themselves is
straightforward. Silk-screening, mass drilling
under the template, data insertion and etching
comprise the laboratory process. Screening,
drilling and etching are the large scale process
with subsequent data insertion by punching,
scraping or milling on the aforementioned
machine. In the field, the copper paths can be
severed with a knife.

The material used mostly so far has been
one ounce copper (0.00135”) on 2 mil Mylar
(0.002”) which has a total thickness of about
0.004”, allowing well over two hundred planes
per lineal inch along the solenoid.

Mechanical Considerations

In a memory in which changes are not fre-
quent, it is simple enough to slide the planes on
or off individually. For greater convenience,
many planes can be prealigned to thin base

Figure 20. Punch-Card Controlled Cutter for 1428 Bit
Planes.

120 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

plates, covered with another thin sheet, and
handled as magazines. In either case, the only
disadvantage is that in removing data behind
or below other data, which is inaccessible until
the covering data is removed.

A “file cabinet” like mechanism has been de-
signed to avoid this problem. In this tech-
nique, shown in Figure 21, the solenoid array
is fastened to the stationary back panel behind
a drawer section, with the solenoids extending
through the drawer when the file is closed. The
solenoids are withdrawn from the drawer when
the file is opened. Thus when the file is open,
magazines can be removed or replaced indi-
vidually, and closing the file mates the data con-
taining drawer and the solenoid array. A unit
such as this is now under construction.

The magazines themselves contain one to two
hundred planes each, which are aligned to the
magazine by several pins.

Changing one data plane requires opening of
the drawer, opening of the magazine much as
a loose-leaf notebook, finding the “page,” and
exchanging it.

In some operations, entire programs or tables
would be stored or shipped in magazines, and
when the data was to be used, that magazine
simply dropped into the drawer, and the drawer
closed.

Figure 21. “File Cabinet” Mechanism.

Conclusions

At present, a 360,000 bit memory has been
built and about a hundred planes placed in it.
The signal degradation in increasing the num-
ber of planes from a few to a hundred was very
minor, hence extrapolation to full capacity ap-
pears justified. The unit built used a Ham-
ming code and has operated well. However, for
the small increase in complexity, the Golay
code more than doubles the selected current,
hence a unit now under construction will use
that code.

A practical limit to this technique is about
4,000 data planes since the practical but power-
ful Golay code is extendable to a 23—-12 code.
Physical dimensions also suggest that a stack
of 4,000 planes, or about twenty inches, is a
reasonable limit. Lengthening the solenoid
causes linearly increased driver voltage require-
ments, and they show practical limits which are
equivalent to between 2,000—4,000 planes, with
presently available transistors.

The limits on the number of bits per plane
is also between 2,000 and 4,000, imposed by the
limits of the correlation voltage output drives
versus the data planes’ path resistance and in-
ductance as well as the propagation time in
the data planes’ paths.

In summary, the size limit per module is
about 107 bits, and 2 X 10¢ bits appears easy
to reach.

As to access and cycle times, the limits vary
with module capacity, and for a 1 megabit
memory 0.5 microsecond access and 1 micro-
second cycle probably are close to the limit,
and twice this is relatively straightforward. De-
creases in memory capacity, particularly data
plane bit capacity, should be followed linearly
by access and cycle times down to a limit of
about 0.25 and 0.5 microseconds respectively.
Below this, directly connected data plane mem-
ories should be considered.

The cost of these memories is low but highly
variable since the associated electronics, input-
output buffers, coder, sense amplifier and word
line selectors set up an “overhead” that is
almost invariant over a range from under a
hundred to a thousand planes, and goes up very
slowly beyond that. The cost of the array, even

A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 121

in hand-made versions, amounts to only a small
fraction of a cent per bit capacity. The data
plane cost is between a quarter and one cent
per bit, including data entry and all fabrica-
tion; and a full electronics complement can add
anywhere from a quarter to two cents a bit
depending on memory size and speed. In sum-
mary, this memory has a bit cost ranging from
half a cent per bit for large memories to a few
cents per bit for relatively small ones, with some
downward revision when produced in quantity.

It is believed that this type of memory will
find application in digital computers where
large, infrequently changed blocks of data are
used, and other applications where the mem-
ory’s rapid data change capabilities allow it to
be used as an input device as well.

ACKNOWLEDGMENTS

The author would like to acknowledge the
valuable suggestions and discussions with many
of the members of Sylvania’s Applied Research
Laboratory and particularly those of Messrs.
Stephen Gray, Benjamin Eisenstadt, Allan
Snyder, Gerald Ratcliffe ; Doctors Donald Brick,
Richard Turyn and Paul Johannessen and our
Director, Dr. James Storer.

£

EFERENCES

1. PICK, G. G., GRaY, S. B, and BRrICK, D. B,
“The Solenoid Array—A New Computer
Element,” IEEE Transactions on Electronic
Computers, Vol. EC-13, Number 1, Febru-
ary 1964.

2.

YOUNKER, E. L., et al.,, “Design of an Ex-
perimental Multiple Instantaneous Response
File,” AFIPS Conference Proceedings, Vol.
25, Washington, D. C., pp. 515-527, April
1964.

KUTTNER, P., “The Rope Memory, a Semi-
Permanent Storage Device,” AFIPS Con-
ference Proceedings, Vol. 24, Las Vegas,
Nevada, pp. 45-58, October 1963.

BUTCHER, I. R., “A Prewired Storage Unit,”
IEEE Transactions on FElectronic Com-
puters, Vol. EC-~13, No. 2, April 1964.

ISHIDATE, T., YosHIZAWA, S., and NAGA-
MORI, K., “Eddycard Memory—A Semi-
Permanent Storage,” Proec. of the Eastern
Joint Computer Conference, Washington,
D. C., December 1961, pp. 194-208.

FogLia, M. R., McDeErMID, W. L., and
PETERSON, M. E., “Card Capacitor—A Semi-
Permanent Read-Only Memory,” IBM J.
Res. and Dewv., Vol. 68, p. 67, January 1961.

MINNICK, R. C., and HAYNES, J. L., “Mag-
netic Core Access Switches,” IEEE Trans-
actions on Electronic Computers, Vol, EC~
11, No. 3, June 1962, pp. 352-368.

TURYN, R., “Some Group Codes,” Internal
Applied Research Laboratory Note Number
404.

DoNNELLY, J. M., Card Changable Mem-
ories, Computer Design, Vol. 3, No. 6,
June 1964.

A 10°-BIT HIGH-SPEED FERRITE
MEMORY SYSTEM — DESIGN AND OPERATION

H. Amemiya, T. R. Mayhew, and R. L. Pryor
" Radio Corporation of America
Camden, New J ersey

INTRODUCTION

With the advancement of computer tech-
nology in recent years, the demand for a very-
high-speed memory has greatly tincreased.
Scratch-pad memories of smaller than 100
words with cycle times faster than 500 nano-
seconds are commonly found in computers on
the market. However, larger memories of the
same speed range are not yet commercially
available, due to the fact that the problems in
building a large memory are much more com-
plicated than those in building a smali memory.
These problems center around the transients
generated in the digit sense system.

In order to understand these problems, a
1024-word 100-bit memory was built. The stor-
age cells consist of ferrite cores (30 mils O0.D,,
10 mils 1.D., 10 mils thick) used in a two-core-
per-bit arrangement in a linear organized array.
In order to simplify the core-threading work,
only two conductors per core are used; one con-
ductor is plated, leaving only one wire to be
threaded.

As a new approach, digit lines are treated as
a set of mutually coupled parallel transmission
lines and are terminated accordingly. Recogni-
tion that different modes of wave propagation
exist on digit lines was probably the most im-
portant step in obtaining the high-speed opera-
tion of the present memory.

The word drive system uses a square selec-
tion matrix with transformer coupling to in-

123

dividual word lines. This arrangement reduces
the noise voltages that are coupled into the
memory stack from the word drive system.

The sense amplifier is a differential amplifier
in which a delay line is used to minimize dc
imbalances and level shift. A tunnel-diode
strobe circuit is used to provide low-level
thresholding and high-speed operation.

Some portions of the electronics of the
memory system are located very close to the
memory stack. Interconnections are made either
by cables or by microstrips. The use of these
techniques has resulted in a memory cycle time

of 450 nanoseconds for the, memory system.

MEMORY CELL OPERATION

Linear selection (word-organized memory)
and partial switching>3%+%%7 are the two
techniques commonly. employed to achieve a
cycle time of one microsecond for a high-speed
ferrite memory. Linear selection offers the ad-
vantage that read currents of large amplitude
(limited only by drivers) can be used to increase
speed. This method contrasts with coincident
current selection, where read currents are dic-
tated by the threshold characteristics of the
ferrite cores used.

As the memory speed is increased by narrow-
ing the width of the write and the digit pulses
and subsequently the width of the read pulse, a
point is reached where two-core-per-bit opera-
tion becomes necessary. There are fwo reasons

124 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

for this: the sense signal generated on reading
a ZERO becomes large as the rise time of the
read pulse is decreased; and the sense signal
difference between reading a ONE and reading
a ZERO becomes small because the digit pulse
in the presence of the write pulse switches only
a small fraction of the core irreversibly. Figure
1 illustrates these reasons qualitatively. The
ZERO signal is due to reversible flux change,
and the ONE signal is due to both irreversible
and reversible flux changes, with the former

contributing -to the net signal difference be-

tween a ONE and a ZERO.

Two-core-per-bit operation provides a means
of cancelling the reversible flux contribution to
the total sense signal. There are many schemes
employing two cores per bit,®%1° but the one
used in this memory is shown in Figure 2. Here,
each core is threaded by two conductors, one in
the word direction and the other in the digit
direction. When writing, both core A and core
B of the same bit pair receive a write pulse. In
addition, either core A or core B receives a
digit pulse depending on the information being
written in. When reading, a read pulse is ap-
plied to both core A and core B in the direction
opposite to that of the write pulse. Digit pulses
are always applied through the cores in the
direction which is the same as that of the write
pulse, because the digit disturb threshold of a
core becomes much lower if opposite-polarity
digit pulses are used.”® '

ONE
- ZERO
s]
[« K
'—
2
o
| J
0 50 100
NSEC

Figure 1. Sense signals of one-core-per-bit memory at
increased speed.

R
b w
TO WRITE
oRIvER Ne- D yi S
ONE) A core a U
DIFFERENTIAL 1BIT
NSE
AMPLIFIER CORE B
DIGIT T />
DRIVER / —i
D Z 4 /
ZERO TO WRITE </
ZERO
(o)
ONE
CORE A CORE B
WRITE ONE w+D w TIME

WRITE ZERO w W+D

ZERO

® - (e}

Figure 2. Two-core-per-bit scheme: (a) basic read-write
scheme, (b) magnetization applied to cores when
reading, (c) net sense signals.

The sense signals generated at core A and
core B are added differentially in a differential
sense amplifier, where the signal due to the
reversible flux change is cancelled. Therefore,
only the net signals as shown in Figure 2(c)
reach the threshold circuit of the sense
amplifier,

This two-core-per-bit scheme has the follow-
ing features:

1. Bipolar sense signals provide more reli-
able sensing compared to a unipolar sense
signal.

2. Word line impedance -is constant regard-
less of the information pattern because
each bit (a pair of cores) presents a con-
stant impedance to word pulses even if a
ONE or a ZERO is stored.

3. Read and write pulses may have loose
tolerances.

4. Balanced digit lines that are paired for
one bit location offer a possibility of con-
trolling wave propagation inside a
memory stack. This point will be de-
scribed in more detail later.

The ferrite cores used in this memory have
an outer diameter of 30 mils, an inner.diameter
of 10 mils, and a thickness of 10 mils. The op-
erating conditions are shown in Table I. A test
has shown that the worst-case disturb pattern
changes the sense signal by less than 10 per
cent. '

" A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 125

Table 1
OPERATING CONDITIONS OF THE FERRITE CORES

CORE DIMENSIONS

30 mils O.D., 10 mils I.D., 10 mils thick

RISE TIME FALL TIME

WIDTH (50% point)

DRIVE PULSES AMPLITUDE
READ 630 ma 5%
WRITE 220 ma +5%
DIGIT 70 ma +=3%

SENSE SIGNAL FROM CORES :
KICKBACK VOLTAGE WHEN READING

80 nsec
40 nsec
30 nsec

30 nsec 80 nsec
40 nsec 80 nsec
30 nsec 75 nsec
=50 mv

0.25 v/bit

WAVE PROPAGATION IN THE MEMORY
STACK AND TERMINATIONS

It is a very basic requirement that a memory
system must be able to store any information
pattern desired at any word location. Since
some words are located close to the digit drivers
and sense amplifiers whereas others are located
far away from them, it is required that digit
lines must be able to carry digit pulses and
sense signals without distortion. These require-
ments make it essential that the wave propaga-
tion ingide a memory stack be well under-
stood.’>:22 The problem is complicated because
many digit lines are parallel for a considerable
distance and because many word lines cross the
digit lines at right angles, with ferrite cores at
the intersections. A relatively simple mathe-
matical analysis of this structure can be made
if one assumes that the delay on the word lines
is zero. Then, the presence of word lines may be
considered as contributing only to the coupling
between digit lines. With this assumption, the
problem of two-dimensional wave propagation
changes into that of one-dimensional wave
propagation on multiple parallel transmission
lines with mutual coupling. The mutual cou-
pling now consists of two parts, namely, the

JL —
LINEn ¢ —2
PAIR n A — /
LINE n' @ 1 —
EQUAL
COUPLING
i LINEk 3
Figure 3. Equalization of coupling and differential
mode.

inherent coupling due to digit lines running in
parallel and the coupling due to word lines.

To fulfill the requirement that digit lines
carry digit pulses and sense signals without dis-
tortion, it is necessary that digit lines be lossless
and that there be no interference among waves
propagating on separate digit lines. The first
condition is met approximately by a memory
stack. The second condition is normally not sat-
isfied because of mutual coupling. However,
there is a wave mode that propagates on a pair
of lines without interference, provided that:a
certain manipulation of coupling is made.

In Figure 3, line n and line n’ belong to pair
n, and line k is a line outside pair n. Assume
that the coupling between line n and line k is
made equal to that between line n’ and line k.
Then, the differential-mode propagation on pair
n (i.e., simultaneous propagations of same
amplitude but of opposite polarities on lines
n and n’) does not induce propagation on line k,
because of cancellation effect. In other words,
if digit lines are paired, each pair can have in-
dependent differential-mode propagation with-
out interference, provided that equalization of
coupling is made.* The transposition method
used in the stack to obtain equalization of cou-
pling will be explained later.

Therefore, it is desirable to have all the
propagations in differential mode. However,
this is not the case with the memory being dis-
cussed here. In Figure 2(a) it is shown that
digit lines are paired, a result of the considera-
tion given above. But the digit pulses are not
applied differentially because negative digit

* Proof is given in the appendix.

126 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

pulses are not permitted. Since either of the
two lines of a pair is always driven by a digit
pulse, whether a ONE or a ZERO is being writ-
ten in, digit pulse propagation can be regarded
as a superposition of the differential-mode
component and the common-mode component as
shown in Figure 4, with current amplitude one-
half that of the digit pulse on each line.

The differential mode component consists of a
number of differential mode propagations, one
for every digit line pair, that are made inde-
pendent of each other by equalization of cou-
pling. The common mode component obviously
has no interference problem, since all the digit
lines carry the same current pulses simultane-
ously. The information is carried by the differ-
ential mode component and not by the common
mode component, as the latter merely serves as
a fixed bias, independent of the information
being written in.

Digit lines are terminated to eliminate re-
flections, since undesired reflections reduce sys-
tem reliability and prolong cycle time. For
instance, a proper termination is the only means
to minimize the waiting time between writing
and reading, as the digit pulses must be com-
pletely dissipated before sense signals can be
detected.

PAIR 2Z4

PAIR

"] — Fu
a | [+ J a)
PAIR
—_— s I
o — J [+ R | Q J
p— r i
T D Q) [)
PAIR
Il U I
d) Q -) [0 — -
I I I
[¢ — —) ¢) Q@ —
PAIR
—_ 1r i
1] J [V}) [0} J

(a)) te)

Figure 4. Propagation of digit pulses: (a) digit pulses
on digit lines, (b) differential mode component, (c)
common mode component.

The differential mode component and the
common mode component require different im-
pedance for termination. As shown in Figure
5, let Z; and Z. be the proper termination for
the differential mode and the common mode,
respectively. Zq is smaller than Z., and the dif-
ference between the two is rather appreciable
due to the effect of word lines. To terminate
both modes, either a T network or a = network
may be used, as shown in Figure 5(c) and (d).

J1—
————{ Z i

11—
—————{ Z[—

(b)

—— Dz

PAIR ZyHi PAIR Zp
C—— 24 Ze—n
74 « 26724 7 «2ZcZd
2 Zc-Z4

(c)

(d)

Figure 5. Digit line terminations: (a) differential mode termination, (b) common mode
termination, (¢) T termination (both modes), (d) » termination (both modes).

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 127

When reading, signals are sensed by differ-
ential sense amplifiers. It is noted that the net
signal is propagated in the differential mode,
and there is no interference problem. Since
common-mode voltage is not sensed by the
amplifiers, the common-mode termination is less
critical than the differential mode termination.
The fact that the digit lines are terminated
means that only one-half of the raw sense sig-
nal reaches the sense amplifier. This seeming
disadvantage is far outweighed by the advan-
tage of being able to control the wave propaga-
tion generated in the memory stack.

Since the actual memory stack consists of
eight memory planes, digit lines are folded.
Figure 6 shows digit lines unfolded in order to
show the transposition details. This transposi-
tion method equalizes coupling between any two
adjacent line pairs if transpositions are done at
short intervals. Figure 6 also shows that the
digit lines are terminated on both ends by T
terminations and that digit drivers and sense
amplifiers are connected to the mid-points of
digit lines. This connection minimizes the digit

WORD PULSE
TIMING

<

B
2

WORD PULSE
TIMING A

WORD PULSE
TIMING B

line delay measured from the driving and sens- -
ing point. Yet, the digit line delay across 1024 -
words of 40 nanoseconds requires two different
timings for the read and write pulses. Digit
pulses used have negative polarity and are ap-
plied through diodes. These diodes disconnect
digit driver cables and digit drivers from digit
lines to avoid loading the sense signals. The
emitter followers are the first stage of a sense
amplifier and work as impedance transformers.
These diodes and emitter followers are mounted
on the stack assembly.

The effect of the new termination method on
the digit pulse waveform and on the digit
transient will be shown later.

DESIGN OF MEMORY STACK

In the memory, one of the two conductors
that go through cores is a conventional wire and
the other is a plated conductor. Figure 7 shows
the plated conductor as well as how memory
cores are assembled into a strip. Individual
cores are first metallized by vacuum deposition
and then inserted into a groove cut in the mid-

N
,{‘ij‘}\\

X
7 TERMINATION

~,

Y / PLANE
" 128 WORDS

DIGIT DRIVER CABLES
FROM DIGIT
€) DRIVERS

SENSE AMPLIFIER
FIRST STAGE

) TO SECOND
STAGE

SENSE AMPLIFIER CABLE

Figure 6. View of unfolded digit lines showing trans-positions to obtain equalization of coupling and connec-
tions to digit drivers and sense amplifiers.

128 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

CONNECTING
CONDUCTORS

Figure 7. Ferrite core strip.

dle of an insulator strip, with: connecting con-
ductors already etched. Then the strip is electro-
plated to improve contact and also to lower the
over-all resistance of the conductive path.? Since
the connecting conductors on an insulator strip
connect two neighboring cores on the same side,
the resulting conductive path has a zig-zag
pattern.

Each ferrite core strip contains 128 cores,
with each memory plane holding 200 strips.
Since plated conductors are used as digit lines,
each memory plane contains 128 words of 100
bits each with 8 planes comprising a full
memory stack. Plated conductors were used as
digit lines because they permit pairing two
neighboring conductors to form a bit pair. Such
pairing is helpful in maintaining a good bal-
ance between the two lines of a pair and also
to simplify transposition. If, on the other hand,
the plated conductors are used as word conduc-
tors, it will be necessary to pair two nonad-
jacent digit lines because of the zig-zag pattern
of the plated conductors.

As shown in Figure 8, a memory plane con-
sists of a substrate and 200 ferrite core strips,
of which 100 are mounted on the top surface
and the remaining 100 on the botfom surface.
This packaging technique causes the word lines
to be folded into hair-pin shape to facilitate con-
nection to the word drive system. Two opposing
sides are used for word line’connections; i.e.,
on each memory plane 64 word lines have their
ends brought out to one side and the other 64
word lines to the other side. Ground planes are
provided on the top and the bottom surfaces

FERRITE CORE STRIPS

WORD LINES
(32 WORD LINES
PER CONNECTOR)

Figure 8. Memory plane.

of a substrate, over which ferrite core strips
are placed. The ground planes are connected
to the supporting structure on the four corners
of the memory stack assembly.

When eight memory planes have been assem-
bled, ferrite core strips are connected to form
digit lines. Since each strip contains 128 cores,
eight strips connected in series make up a full
digit line. One group of 50 bit pairs (100 digit
lines) is made up of core strips mounted on the
top surfaces of the eight memory planes;
another group of 50 bit pairs consists of core
strips on the bottom surfaces of the memory
planes. This packaging technique is shown in
Figure 9. It is noted that these two groups have
symmetry; i.e., (b) is obtained by rotating (a)
180 degrees. The digit system is divided into
two groups to make the best use of the stack
surface areas for external connections, which
include 200 transistors, 400 diodes, 600 ter-
mination resistors and 300 cable connectors for
the digit system. (See Figure 6.) Figure 10
shows the utilization of the memory stack sur-
faces for the digit and the word connections;
all usable surfaces are being used. The top and
bottom surfaces are actually the top surface of
the top memory plane and the bottom surface
of the bottom memory plane, and are not usable
for external connections.

In the construction of the present memory,
bit sense signal testing was done after each
memory plane had been completed with core
strips. Bad cores were then replaced. The re-
sistance of the digit lines (plated conductors)
across 1024 words was found to fall between
1.6 and 2.0 ohms.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM

129

END o—— — =
—0 END
MIDPOINTo—$ i — = ,
_$—oMIDPOINT
— MEMORY
PLANE
T » S« SUBSTRATE |C =)
END o
oEND
{a) {b)

Figure 9. Methods of connecting ferrite core strips: (a) one group of 50 bit-pairs is

obtained by connecting ferrite core strips on the top surfaces of all eight planes, and

(b) the other group of 50 bit-pairs is obtained by connecting ferrite core strips on the
bottom surfaces.

WORD

-
—~ P CONNECTIONS
oot~ ><_ S12WORDS
CONNECTIONS el
__—~ 50 BITS “
~ ~
l</ MEMORY STACK | \I>|
~< 1024 WORDS e
| > X100 BITS ol
~ /./
#// | |
~ 7~ |
~ I e
~ s
| ~< - | T~_- 16 |
, \r ‘I(connsgnons)
WOR
| connecr?ous l | //
| 512 WORDS | Y
I /
I | e
K\\ I 7~ { / g
yd S~
= ~ ~ I 7 - \\ \l/ d
<

Figure 10. Utilization of the memory stack surfaces for external connections.

130

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

ELECTRONICS FOR THE 1024-WORD
MEMORY

Figure 11 is a block diagram of the memory
system, which has four major portions:

1. Memory stack assembly,
2. Control system,

3. Word system,

4. Digit system.

The memory stack has been described. The
control system generates and supplies all timing
pulses for the drive system and for transferring
data. The word system at the command of the
control system supplies the proper read and
write current pulses to a selected word for
reading and writing information out of or into
the memory. The digit system is used in a dual
fashion: to provide sensing of the information
stored; and to write back into the memory,
simultaneously with the write pulse, formerly
stored or new information. Parts of both the
word system and the digit system are packaged
on the memory stack.

WORD Aooszss

CONTROL SYSTEM

The control system is built of a logic building
block,whichhas atypical two-leve]ANDI-OR logic
delay of seven nanoseconds with fan-out of six.
The system controls all the necessary timing
pulses for each of three cycle types: 1) read
cycle, 2) write cycle, 3) split cycle. The first
two are standard for destructive random access
memories, the first being the standard read-out
operation which must be followed by regenera-
tion while the information is still in the memory
register. The second is the standard means of
getting new information into the memory, the
read half of the cycle being used only to clear
the memory while the strobe pulse is inhibited.
The memory register is loaded with the new
information which is then written into the
memory. The only feature which is unusual is
the split cycle. The first command for this cycle
generates only a read operation accompanied
by a strobe of the sense amplifier. The retrieved
information is available for processing but is
not regenerated since the entire memory cycle
has been temporarily suspended. When the con-

SYSTEM
MEMORY ADDRESS REGISTER CONTROL COMMAND
10 BITS SYSTEM
‘5 BITS 5 BITS
TIMING GENERATOR
RE RIT
SWITCH DECODER ONIVER SRIVER
4x8 DECODER DECODER
ax8 4X8 1
32 CABLES ;Lnnngé;s
o | L T oierr
32 ~ ; IV 1V SYSTEM l
MEMORY REGISTER
DIODE-) T
TRANSFORMER | 32 CABLES 32 CABLES 100 BITS
MATRIX
32X 32 C_ _ ki
B SENSE
100 AMPLIFIER
TCABLES sug%gglsm
MEMORY STACK Tizg':g'&"s
1024 WORDS [+ N | o DIGIT
AMPLIFIER " CABLES | DRIVER
100 BITS FIRST STAGES | | ONE
| 100 DIGIT
o | o
MEMORY STACK AND

SURROUNDING ELECTRONICS

Figure 11. Block diagram of the memory system.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 131

tinue command is given, the memory register
is reset a second time to receive the newly proc-
essed information which is then stored in
memory. Thus, the first half starts a conven-
tional “read” cycle which stops itself in the
middle, upon later command to continue as a
“write” cycle after clearing the memory regis-
ter. The time-saving features of this type of
cycle are compatible with many of the common
computer operations. The timing pulses gen-
erated by the control system for a read cycle
are shown in their time relationships in
Figure 12.

WORD SYSTEM

The word system is required, with the gen-
eration of minimum noise, to distribute a large
read pulse, followed by a smaller write pulse
of opposite polarity, to any of the 1024 words
which happens to be addressed by the 10-bit
address register. The bulk of this decoding is
done in a bipolar diode matrix driven by 32
pairs of read and write drivers along one side

A

and 32 switches along the other side. The 1024
intersections of this main matrix are trans-
former-coupled to the 1024 word lines of the
memory stack. The dc level of the word line is
restored by a diode-resistor network in the
secondary of the transformer. Without this
network a de level shift will appear, as the read
current pulse is greater in amplitude and dura-
tion than the write current pulse. The circuitry
of the main matrix is shown in Figure 13. Each
of the drivers and each of the switches has its
own preamplifier channel complete with an
AND gate having one negative and one posi-
tive input. The complete read and write driver
channels are shown in Figure 14, and the
switch channel in Figure 15. These driver and
switch channels are arranged in three 4 X 8
matrices. These matrices permit the selection
of one of 32 switch channels and one each of
32 read drivers and write drivers to select any
word and drive it.

The main problem encountered in designing
a word drive system for a high-speed, high-bit-

READ COMMAND PULSE

ADDRESS TRANSFER PULSE J\

SWITCH TIMING PULSE

READ TIMING PULSE

—/

WRITE TIMING PULSE

DIGIT TIMING PULSE

MEMORY REGISTER
RESET PULSE

STROBE PULSE

DATA AVAILABLE PULSE

(COMMUNICATION PULSE)
CYCLE COMPLETE PULSE

N

(COMMUNICATION PULSE)

Figure 12. Timing diagram for a read cycle. Read and write timing pulses shift in time
depending on the word address. (Solid lines show “Timing A” and broken lines show
“Timing B”).

132

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

READ
DRIVER
CHANNEL

WRITE I ’

WORD LINE

WORD LINE

=

%

N/

READ
DRIVER
CHANNEL -

WRITE
DRIVER
CHANNEL

DRIVER

WORD LINE

L

WORD LINE

\V/

CHANNEL
f : SWITCH
S \ CHANNEL

SWITCH
S \ CHANNEL

Figure 13. Portion of the 32 x 32 bipolar matrix.

capacity memory is that of minimizing the
noise introduced into the stack. As the elec-
tronics are a significant cost factor, it is desir-
able to use a bipolar diode matrix performing
selection with drivers and switches; such a
matrix reduces the cost of the word-system elec-

NEGATIVE
"AND"
INPUT

tronics for a 1024-word memory about ten to
one. It has been our experience, however, that
with all the types of bipolar matrices that we
can devise, severe switching transients are in-
troduced on n lines of an n? matrix when the
switch selection is made. Moreover, it is found

43?pf 34801WEI1%
) 450 oupur 12
POSITIVE iwii% MATRX
"AND" 2N22I8 il
INPUT 304 2200}1000 2N834 | 2N2635
o 35608
-12v -35vy 1

(a)

INPUT.

3048

<)
-2v

2200lil002 2N834 | 2N2635

W% TR
wti
‘<hlﬂh~——ﬂ§:?28 MATRIX
5600
-35v

(b)

Figure 14. Word drivers: (a) read driver channel, (b) write driver channel.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 133

G512

- NEGATIVE .
AND 2N1495
INPUT 3

2N2410

508 ,6FT
CABLE TO

MEMORY STACK OUTPUT
-0 TO BIPOLAR
MATRIX
2NI1495
18K
qIw
910 L. >
of T 68
120 1000
uh
POSITIVE
“AND" O-

INPUT O-35v

Figure 15. Switch channel.

that the characteristics of the memory stack,
both with conventional core memories and with
our partially automated fabrication techniques,
show much tighter capacitive coupling between
the network of word lines and the network of
digit lines than can be made to exist between
either of these networks and a ground plane.
The result is a tendency for the conventional
word selection matrix to introduce a very siz-
able common-mode noise onto the network of
digit lines.

An analysis of the switch-noise injection pro-
cedure in the memory, where the word lines
connected to a single switch are uniformly in-
tersected along the terminated digit line, shows
that a voltage step on the selected switch cou-
ples via the 32 word lines controlled by the
switch all along the digit line simultaneously.
Thus, a step at the switch generates a common-
mode noise, the amplitude of which can be pre-
dicted from the inter-line and line-to-ground
plane capacitances. The portion of this com-
mon-mode signal which the stack converts into
the differential mode depends on the balance
between the two digit lines of a pair and varies
from one line-pair to another.

A pulse transformer for each word line was
used for capacitive decoupling between the
word selection matrix and the memory stack.
The interwinding capacitance of the trans-
former is a maximum of 7 picofarads, whereas
the capacitance between a word line and all the
digit lines connected together is about 60 pico-

farads, resulting in a switching noise attenua-
tion of about 10 to 1. Starting with a 85-volt,
30-nsec rise time step for switch selection, the
half-selected word lines experience only a 8-volt
step because of the isolation afforded by the
transformer. This condition in turn causes a
0.5-volt common-mode spike to exist on the digit
line. In the worst case this spike generates a
differential noise signal almost as large in
amplitude as a sense signal. This noise must
be displaced in time from the. sense signal by
causing the timing pulse for the switch to start
earlier than the timing pulse for the read driver.

As shown in Figure 12, the switch timing
pulse is used to select a switch. This technique
differs from normal practice, which does with-
out a timing pulse, with the result that at least
one switch is turned on all the time. In the pres-
ent memory, a switch is turned on for a spe-
cific length of time to let the read and the write
currents go through; otherwise, no switch stays
turned on. The switch noise is appreciably re-
duced by holding the switches off until after the
memory address register has completely settled
from the address transfer transient, as other-
wise a spurious selection of switches during the
address transfer transient will inject additional
noise into the stack. By turning off the switch
as soon as the write pulse is terminated, the
problem of slow switch turn-off can be easily
eliminated.

Another closely associated problem is injec-
tion of noise via the half-selected word lines

134 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

controlled by the same switch during the read
pulse. This is due to the passage of the read
pulse through the finite impedance of the switch
circuit, with its mechanism of noise injection
being very similar to the one described above.
This type of noise is a threat due to the fact
that it always coincides with the sense signal.
It is obvious that this problem can be minimized
by lowering the impedance of the switch cir-
cuit. A low switch impedance is also desirable
from the standpoint of matrix operation be-
cause it permits unimpeded flow of the read and
the write pulses. The problem was solved by
avoiding cables for connecting the switch chan-
nels and the word selection matrix altogether,
and instead packaging the output stages of the
switch channels at the memory stack. Here
again the isolation provided by the use of cou-
pling transformers alleviates the noise problem
greatly.

Another advantage in using coupling trans-
formers is the speed increase of the switch op-
eration due to the capacitive isolation afforded
by the transformers. Actually, this speed in-
crease and the switch turn-on noise reduction
brought about by the coupling transformers are
closely related. The capacitive charging and
discharging currents that must come from a
switch when it is turned on and off are made
small by the use of the transformers. Thus,
the switch speed is increased. Since the switch
noise is caused by the same charging current
entering the memory stack, the noise is reduced
by the transformers.

As shown in Figures 6 and 12, the read and
the write pulses have two different timings, de-
pending on the word address. This feature is
necessary because the digit line delay of 20
nanoseconds from the driving and sensing point
to the termination is not negligible compared
with the drive current widths. The problems
here are basically that of aligning the read and
the strobe pulses and that of aligning the write
and the digit pulses. In the present memory,
the strobe and the digit pulses are fixed and
the read and the write pulses are shifted accord-
ing to the word address. The 1024 words of the
memory are divided into two groups of 512
words. One group is closer to the digit-driving
and sensing points while the other group is
closer to the terminations as showi in Figure

6. The former group uses Word Pulse Timing
A, and the latter group Word Pulse Timing
B. Figure 12 shows that the read pulse of
Timing A is delayed compared to that of Tim-
ing B, and the write pulse of Timing A is ad-
vanced compared to that of Timing B. The
difference is 10 nanoseconds, which is one-half
of the effective digit line delay.

DIGIT SYSTEM

The digit system (Figure 16) is composed -
of the circuits that are used to detect and to
write or regenerate information in each of the
one hundred bits of a selected word. The cir-
cuits include 100 sense amplifiers, 100 digit
drivers and the 100 flip-flops that form the
memory information register.

Digit Driver

During the write time, the digit driver pro-
vides a T70-milliampere current pulse into one
of the two digit lines in a direction to add to
the write pulse in one of the two cores of a
memory bit. The digit driver consists of two
identical current drivers which are under the
dual control of the timing generator and the
flip-flop in the memory information register.
The width of the digit pulse, 756 nanoseconds, is
controlled by the digit timing pulse.

The first stage of the digit driver produces
a gated 10-volt pulse. The pulse is produced in
one of the current drivers by the coincidence of
the positive digit timing pulse and a low voltage
level from one side of the flip-flop in the
memory information register. The second cur-
rent driver is inhibited by the positive level
from the second side of the flip-flop.

The gated pulse is applied to the second stage
through a capacitor that is used to give the
pulse a negative level shift so that at the input
to the second stage the pulse goes positive to
—25 volts from a reference level of —35 volts.
The second stage is a double emitter follower
which is used to provide a voltage drive for the
output stage.

The output stage is a nonsaturating current
driver whose output current is determined by
the resistance in the emitter circuit and the
voltage swing at the base of the transistor. The
output stage drives the center of the digit line

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 135

[DIGIT ORIVER
%

)

T IN3605

FIRST STAGE

IN3605

2n708

VL

DIGT DRIVER ONE

Figure 16. Digit system. -

through a 100-ohm cable and a series diode, pro-
viding a 70-milliampere pulse into each half of
the digit line. The diode is used at the memory
stack to isolate the digit driver cable from the
digit line when the driver is not in use so that
low-level signals in the memory are not loaded
by the cable.

Sense Amplifier's 1415 16

The digit lines are terminated at both ends
in order to reduce the recovery time of the
memory stack. As a result, only half of the
difference signal from the two cores of a bit is
available at the sense amplifier input. The
difference signal is bipolar where one polarity
represents a ONE and the other polarity repre-
sents a ZERO. The sense amplifier amplifies
the difference signal and is strobed during a
portion of the read time. The polarity of the
sense signal at strobe time is sensed and if a
ONE is detected, the sense amplifier produces
a 3-volt negative-going output pulse which sets
a flip-flop in the memory information register.
If a ZERO is sensed, no change occurs at the
sense amplifier output. During the write time,
a negative digit pulse of approximately 20 volts

is applied to one of the two digit lines, depend-
ing on whether a ONE or a ZERO is being writ-
ten into the memory. The sense amplifier is
inhibited during the write time by the strobe
circuit and recovers in less than 50 nanoseconds
after the last difference-mode reflections from
the digit pulse have ceased to exist on the digit
lines.

The first stage of the sense amplifier consists
of two emitter followers which are connected
to the center of the digit lines as shown in
Figure 16and are used to provide a high input
impedance so that the sense amplifier does not
load the digit lines and does not interfere with
the termination of the lines. The emitter fol-
lowers and series diodes are physically mounted
near the center of the memory stack and are
connected to the plug-in board that contains the
regeneration loop circuits by means of a 125-
ohm shielded twisted-pair cable.

The twisted-pair ecable is terminated at the
input to the second stage with resistors con-
nected to a decoupled power supply. When the
negative digit pulse is applied to one of the
digit lines, the corresponding emitter follower

136 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

is turned off and the transient at the input to
the second stage is limited to 300 millivolts,
since the currents in the cable termination are
reduced to zero. The diodes are used in series
with the emitter-follower outputs in order to
prevent the flow of current if the base-to-emitter
breakdown voltage is exceeded by the "digit
pulse.

The second stage of the sense amplifier is a
differential amplifier, with the transistor collec-
tors connected together through a delay line.
This stage amplifies the difference between the
input signals and sums the inverted amplified
difference signal and the delayed amplified dif-
ference signal. This produces output voltage
waveforms at the collectors that do not have a
dc level shift with repetition rate variations.
The output waveforms are on a well-determined
reference voltage level which is determined by
the current in the large resistance in the emitter
circuit. Practically all of the emitter current
reaches the transistor collectors and produces
a constant operating voltage across the parallel
combination of the collector resistors. The op-
erating voltage is constant even if the current
is not shared equally by the two transistors,
since the delay line provides a dc short circuit
between the collectors. The collector resistors
are used to terminate the delay line so that
there will be no reflections and the outputs of
the second stage will recover to the reference
level in a minimum of time after the end of
the digit transient.

The delay of the delay line is long enough that
a usable amount of the inverted amplified sense
signal is passed before the output is reduced
by the delayed amplified sense signal. The de-
lay in this system is 25 nanoseconds, which is
approximately one-half the base width of a
sense signal,

The third stage of the sense amplifier is an
ac-coupled differential amplifier. One output is
used as a test point for observing amplified
sense signals, and the other output drives the
next stage. The third stage has a maximum
output current swing that is limited by the cur-
rent in the emitter current sources. This pre-
vents the digit transient from overpowering the
inhibit current in the strobe circuit.

The last stage is the strobe and pulse-stretch-
ing circuit. This stage contains a bistably biased
five-milliampere germanium tunnel diode which
drives an output transistor. The tunnel diode
has two inputs. One input is from the third
stage which provides the amplified sense signal
and also provides the normal bias current for
the tunnel diode. The second input is from the
strobe circuit which during the inhibit time
provides sufficient reverse current through the
tunnel diode to keep it in the low-voltage state
during the digit transient.

The operation of this stage is illustrated in
Figure 17, which shows the tunnel diode volt-
ampere characteristic and its load line. The
tunnel diode is normally biased in the low-
voltage state at point A and is unable to switch
to the high-voltage state during the digit transi-
ent because of the current-limiting action of
the third stage. During a portion of the read
time the sense amplifier is strobed by removing
the inhibit current, thereby biasing the tunnel
diode in the low-voltage state near the knee at
point B. A difference signal of five millivolts
at the input of the sense amplifier and the
polarity of a ONE signal is sufficient to trigger
the tunnel diode to point C in the high-voltage
state. The tunnel diode turns on the output
transistor which produces a three-volt negative-
going pulse used to set a flip-flop in the memory
information register. The tunnel diode re-
mains in the high-voltage state until the inhibit

TUNNEL DIODE
CHARACTERISTIC

LOAD LINE

CURRENT

VOLTAGE

Figure 17. Tunnel diode characteristic and load line.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 137

current is applied by the strobe circuit. The
inhibit current resets the tunnel diode to point
A and terminates the output pulse.

The operation of the sense amplifier is illus-
trated by the waveforms in Figure 18. Figure
18 (a) shows superimposed the read-out signals
and digit transients on the two lines of a digit
line-pair. The stored information is represented
in the difference between the two signals that
appear on the lines at read time.

Figure 18(b) shows the signals that appear
at the sense-amplifier test point when the delay
line is removed from the circuit. The solid
line shows reading and regenerating a ONE
and the dotted line shows reading and regen-
erating a ZERO. The amplifier has amplified
the difference in the read-out signals and has
limited the digit transient. It can be observed
that these waveforms have a dc component
which would result in a de shift in an ac ampli-
fier. This shift would be particularly objection-
able at high repetition rates. In addition, the
waveform base line is dependent on the de
balances of the previous stages.

Figure 18(c) shows the test point signals
with the delay line in the circuit. The wave-
forms represent the sum of the inverted
amplified difference signal and the delayed
amplified difference signal. These waveforms
have no de component other than the base-line
voltage, which is well determined.

READ TIME WRITE TIME

(a) SIGNALS ON DIGIT LINE PAIR

WAVEFORMS AT TEST POINT
(b) WHEN DELAY LINE IS REMOVED
FROM CIRCUIT

WAVEFORMS AT TEST POINT

() WITH DELAY LINE IN CIRCUIT

(d) STROBE PULSE

{e) SENSE AMPLIFIER OUTPUT

Figure 18. Sense amplifier operation.

Figure 18(d) shows the strobe pulse which
is positive only during the first peak of the
amplified sense signal shown in Figure 18(c).

Figure 18 (e) shows the sense amplifier out-
put. The negative-going pulse indicates the de-
tection of a ONE.

PACKAGING

The circuitry of the memory, except for
those parts that had to be near the memory
stack for special reasons, is packaged in four
nests surrounding the memory stack as seen
in the photograph in Figure 19. Each nest
has 10 removable motherboards, each of which
could potentially contain up to 56 small plug-in
modules. Individual modules contain such parts
as logic blocks, portions of drivers, portions of
the sense amplifiers, etec. When a nest is com-
pletely assembled, all of the circuitry within it
is interconnected by 70-ohm-impedance printed
strip lines on both sides of the motherboards
and perpendicular grandmother boards. Inter-
connections between nests are made by coaxial
cables. Some of the memory circuitry which
did not lend itself to modular packaging be-
cause of power dissipation or size considera-
tions, such as driver output stages, was pack-
aged on specially built motherboards by remov-
ing some or all of the provisions for pluggable
modules. All logic level interconnections are
made via 70-ohm cables. Read and write driver
outputs are transmitted to the bipolar diode
matrix at the stack via 70-ohm cables. To ob-

Figure 19. Memory system.

138 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

tain a lower impedance, the output stages of
the switch channels are located at the memory
stack. These stages are connected to the rest
of the switch channels via 50-ohm cables. The
digit driver outputs are transmitted to the
stack via 100-ohm cables, and the sense ampli-
fier first stages are connected to the rest of the
sense amplifier by twisted-pair balanced cables
having a common ground sheath and a differ-
ential impedance of 125 ohms.

TEST RESULTS

The 1024-word two-core-per-bit memory was
built with a complete word system and a full
digit system of 100 bits. Also, a special mem-
ory exerciser was built to thoroughly test the
memory system.

Figure 20 shows a switch voltage, read and
write currents and a digit current. The switch
waveform was observed at the center tap of a
word line transformer primary winding (see
Figure 13). The undulations on the plateau
were caused by the flow of read and write cur-
rents through the switch circuit. These undu-
lations would have been much larger if the
switches had not been mounted on the memory
stack. Read and write pulses of both Timing A
and Timing B are shown in the figure. Note
that the read and the write pulses of Timing

SWITCH

\/
WAVEFORM 10*/DIVISION

READ AND
WRITE PULSES
(TIMING A)

200M4/pIvISION

READ AND
WRITE PULSES
(TIMING B)

200MA/pIviSION

DIGIT PULSE

AT THE END
OF DIGIT LINE,

7a"4/DIvisIiON

— 100NS/DivisION

Figure 20. Switch voltage, read and write puises
(“Timing A” and “Timing B”), and-digit pulse.

A are close together, while those of Timing B
are slightly separated. The digit pulse was
observed at the end of a digit line.

As shown in Figure 21(a), T termination
networks are used to terminate digit lines. The
termination impedances are Z, = 137 ohms and
Z. = 133 ohms. For practicality, the same ter-
mination networks are used for all the 100 digit
line-pairs, although there is some indication
that the optimum value changes from bit to bit,
not so much for Z; but to some extent for Z..
The calculated value of the common-mode ter-
mination is Z. = 403 ohms. The word lines
crossing digit lines are responsible for the large
difference between the differential mode and
the common-mode termination impedances.

Figure 21(b) shows the voltage waveforms
at the three points on a termination network
as indicated in Figure 21(a). It is seen that
the voltage waveform at the end of the un-
driven line B and that at the junction C in the
T termination are the same. This is important
because it means that no current flows out of
the undriven digit line, which is a basic re-
quirement for memory operation as shown in
Figure 2. To make the net current propagation
on the undriven line zero, there must be a volt-
age propagation on it. (Here, the same velocity
is assumed for all the propagation modes that
exist in the memory operation.) It is to be

CURRENT PULSE

DIGIT
LINE PAIR] NO CURRENT

VOLTAGE AT A
(DRIVEN LINE)

VOTAGE AT B
(UNDRIVEN LINE)

10Y/DIVISION

VOLTAGE AT C

—— 100/ DIviSiON

(b)

Figure 21. Voltage waveforms at a termination net-
work: (a) T termination network (Zs = 137 ohms and
Zs = 133 ohms), (b) voltage waveforms.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 139

noted that the condition shown in Figure 21 is
realized only when all the 100 digit drivers are
operating.

Figure 22 shows waveforms at a sense am-
plifier test point, together with related wave-
forms. Figure 22(a) shows two bits, one at
the edge of the memory stack and the other at
the center, regenerating ONES and ZEROS
alternately over the entire memory of 1024
words. Note that the sense signals are delayed
to avoid the switch noise. The switch noise, al-
though comparable in amplitude to the sense
signal, could have been made as small as it
is only by the use of coupling transformers.
The negative-going sense signal represents a
ONE and the positive-going sense signal a
ZERO. The digit transient takes about 350
nanoseconds to die down, measured from the
start of the digit pulse. This time includes
approximately 300 nanoseconds attributed to
the base width of the digit pulse and the stack
recovery time, plus 50 nanoseconds attributed
to the sense amplifier. This relatively slow re-
covery of the stack, even with the elaborate T

WAVEFORM

SENSE SIGNAL .
SWITCH NOISE DIGIT
|§| §| TRANSIENT |
AT TEST POINT

(EDGE OF MEMORY
STACK)

IV/DIVISION

WAVEFORM

AT TEST POINT
(CENTER OF MEMORY
STACK)

IV/DIVISION

READ COMMAND
PULSE
WAVEFORM

AT TEST POINT
STROBE PULSE
SENSE AMPLIFIER
OUTPUT

MEMORY REGISTER
ONE SIDE

WAVEFORM NO. 2
IV/DIVISION

5V/DIVISION
OTHERWISE

READ COMMAND
PULSE

WAVEFORM AT
TEST POINT
STROBE PULSE
SENSE AMPLIFIER
OUTPUT

MEMORY REGISTER
ONE SIDE

WAVEFORM NO. 2
IV/DIVISION

5V/DIVISION
OTHERWISE

———= 100 NS/DIVISION

Figure 22. Waveforms at sense amplifier

test points: (a) regeneration of ones and

zeros, (b) regeneration of ones, (¢) regen-

eration of ones and zeros at 450-nsec cycle
time.

termination, seems due to the imperfection of
digit lines as transmission lines.

Figure 22(b) shows regeneration of ONES
on all the 1024 words. It is seen that the infor-
mation is available at the memory register in
about 230 nanoseconds from the beginning of
the read command pulse. Figure 22(c¢) shows
a higher repetition rate operation of about 450-
nanosecond cycle time. It shows regeneration
of ONES and ZEROS on alternate words over
the entire memory. Here, the switch noise and
the digit transient recovery are made concur-
rent without affecting the sense signals.

The waveforms shown above represent only
a small portion of the tests performed on the
memory with the aid of the memory exerciser.
These tests confirmed the soundness of the de-
sign philosophy, the effectiveness of the prob-
lem solving approach, and the practicality and
reliability of the memory system actually built.

CONCLUSION

Development of the present memory system
evolved the method of control of wave propaga-
tion. Unless wave propagation is controlled, it
is almost impossible to operate a high-speed
memory. The basic requirements for control
are:

1. Use of two neighboring digit lines as a
pair for one-bit location

2. Equalization of coupling between the
digit lines
Use of differential sense amplifiers

4. Termination of digit lines on both ends
for all the existing wave propagations
with particular emphasis on the differen-
tial-mode termination.

The last requirement is met by the present
memory due to the particular digit drive
scheme used. It requires careful study to choose
a digit drive scheme, as otherwise, a simultane-
ous termination for all the possible propaga-
tions becomes a very complex problem, with no
practical answer. Although not applicable to
the present memory, it is preferred that only
the differential-mode propagations exist. This
may be accomplished by the proper selection
of memory cell types and digit drive schemes,
and will simplify the propagation problem

140 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

greatly. It should be emphasized that the
approach used in this paper in treating wave
propagations in a memory stack is applicable
to any word-organized memory.

The use of transformers to couple read and
write pulses to individual word lines proved
very successful in alleviating the noise problem
associated with the word selection matrix.
There is still a possibility of reducing the noise
further by reducing the transformer inter-
winding capacity, which will increase the sys-
tem reliability and at the same time enable a
faster access time.

The use of a delay line in a differential sense
amplifier minimized the problems of dc im-
balances and level shift when sensing small
signals in an environment of large digit pulses.
In addition, the use of a tunnel diode strobe
circuit provided low-level thresholding and
high-speed operation.

There seems to be no basic difficulty in build-
ing a memory with twice as many words, using
the basic design described here. It is expected,
however, that the cycle time will be slightly
longer since the digit lines are twice as long.

APPENDIX

WAVE PROPAGATION ON MULTIPLE
PARALLEL LINES WITH EQUALIZED
COUPLING

The analysis given below shows the modes
of wave propagation that can exist on a set
of multiple parallel lines with equalized cou-
pling. The following assumptions are made:

1. Propagation is in the direction of the
digit lines only. This implies that the
word lines are considered as contributing
only to the coupling among digit lines.

2. Digit lines are distributed constant lines.
This is justified because for the frequen-
cies of interest, it is not necessary to con-
sider the line irregularities caused by
memory cells.

3. Digit lines are uniform and have no dis-
continuities. This assumption may not
hold precisely in practice, but is made to
permit a mathematical analysis,

4. A ground plane is present. This assump-
‘tion is also made to permit a mathemati-
cal analysis.

A similar problem of multiple line wave
propagation was studied a long time ago.r” The
solution given here is more general than the
one given in the reference and more readily
applicable to memories.

Let the number of lines be 2n, where n is an
arbitrary integer. From these, we form n
pairs. Pair i consists of line i and line —i,
wherei =1, 2,...,n. This is shown in Figure
A-1. Pair-to-pair coupling is equalized, which
implies that, when we consider pair i and pair j
(i£j,andi,j=1,2,...,n), the coupling is
the same between line i and line j, line i and
line —j, line —i and line j, and line —1i and line
—Jj. To be general, the coupling is made a func-
tion of i and j. The case in which the coupling
is constant regardless of i and j has been
treated elsewhere.'”

Using matrix notation, the pertinent differ-
ential equations are

d
[— —‘i] — (2] [1] (A-1)
dx
dI 7
[——— = [Y] [V] (A-2)
dx |
The above factors are defined as follows:
r V1 A (11 3
V., 1,
[V] = (1= -
Vll III
L V-n J . I_" J

where

V; = Voltage on line i
V_; = Voltage on line —i

I; = Currentonlinei
I, = Current on line —i
i =1,2,3, ,

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 141

PAIR j ---PAIR N

PAIRI PAIR2 e
Vb

=

(-] o o (-] o [+] o o [+] o [+] o o [} o [+]
Pt t t
GROUND | . l
LINE i l LINE j 1
LINE —i LINE -j

Figure A-1. Cross section of a system of 2n parallel lines.

rzsl Zml Z12 Z12 Zln Zln— Where
Lot Zor Boa Lo ... Zan Zin Y., =Self parallel admittance per unit
o g g e Zan T length of line i or line —i, i = 1, 2, 3,
[Z] — Z21 Z21 Zmz Zsz Z2n Z2n

: Y..; = Mutual parallel admittance per unit
Loy Ly Loz Lz - .. Zn Zimo length between line i and line —i,

‘an an Zn2 an Zmn Zsu i: 1’ 2, 3, , n.
where Y;; = Mutual parallel admittance per unit

length between either line i or line
—i and either line j or line —j, i
andi, j=1,2,3,..... , .

=Y;; i%jandi, j=1,23,...... , I

Z,; = Self series impedance per unit length
of lineiorline —i,i=1,2,3, y -
n. Y,
Zn; = Mutual series impedance per unit
length between line i and line —i,

i=1238,....... , L [dZV

From Equations (A-1) and (A-2),

=@ m =1 @)

Z;; = Mutual series impedance per unit dxz.
length between either line i or line —i h
and either line j or line —j, i j and where
,j=1,2,38, , n. (equalized) [v] = [Z] [Y]
Zi; =Z;; i#%£jandi,j=1,2,8,....... , . ™ et i flas faz e e e pa pan]
Yo You Yo Yoo ... Y Y] Fmi Bey Bz Bazeeees Han fin
Yo:r Yoo Yoo Yoo oo.... Y Yoo Hoi fa1 Bez Pz oo fzn flzn
Yo Yo Yoo Yoo ... Y., Y., i pan fon
[y = | Yo Yo Yoo Yoo oo Ya Y BRI
SRR b o s o - B
Ynl Y'“1 Y'112 Y’112 st Ymn __F-nl Mn1 MUn2 Mn2 .- e o MPmn Msn J
‘Ynl Ynl Yuz Ynz ------ Ymu st‘ and
Mss — Zsi Ysi + Zmi Ymi + 2 2 Zik Yki; 1 = .1, 2, 3, ,
k#1i
Bmi = Zgi Yomi + Zimi Yoi + 2 2 Zix Yis; i=1, 2, 3 » 1
kK#i

by = Zis (Yo + Yo) + Yoy (B + Zn) +2 D ZaYays i, 4.

andi, j=1,2,8,...., n.

142 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

In general
P«ij?é”'.ﬁ; i#j:andi’j = 1,2r3: RIS { B

Assume a solution for Equation (A-3) of the form

Vi = Voieyix
i=12,....,n
In order that the solution not to be trivial (i, V,;, =0,i=1, 2,, n), the following must

hold:

Ms1 'Yz Hm1 M1z P12z e e Pan Hin

Mem1 Mst — ‘)'2 iz P1z e Kin Hin

21 M21 Pom2 Pm2z e e Fa2n Feon

W21 M1 Ps2 — ¥ Ms2 }'2 ------ M2n Pezn =90

Hon1 M1 Mn2 Mn2 e e Mosn Y Pmn

Hai Mni Hnz Moz e Fann fsn — Yz
or

(ps1 = pm1 = 7% (o2 — Pz — ¥?) «ven.. (fon — pama — ¥?)
(P'sl = Pm1 T 72) 2!»‘«12 .- 2#-m
X 211-21 Hsz2 + Bmz T 72 .. 2#2n =0
2}’-1\1 2Mn2 .. Psu + Man 72

This is a 2n* degree equation in y2.. Let the roots be

2 Msk — Mmk k=1,2,....,1’l
7= — 1 Root of the determinant k=n+1,n+2,2n

Consider only the forward propagation, because the backward propagation is the same except for
direction. Then

_\/P‘sk—ﬂmk k:1,2,....,n
Y — v/ Root of the determinant k=n+1,n+2,2n

Now the solution of Equation (A-3) is

k =
V.= Z V. eykx S
K

Substituting Equation (A—4) into Equation (A-3) to find relationships among V, and V_;,
Z.ﬂn (Vi + V-jk) + (l-tsi - 712:) Vie + Pani V—ik =0 (A"5)
b i

2!’-” (Vie + Vo) + pi Vi + (a1 — Y:) Vog=10 (A-6)

i i

i

i,g,....,nand (A-4)*

y cre 2N

’

* Here it is assumed that Mis are all single roots. Inclusion of multiple roots, however, does not change the
form of Equations (A-11) and (A-12), because the terms of the form xPe’*, where p is a non-zero integer, can-
not appear in the solution.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 143

where
i=1,2,nandk=12,....,2n.
By substracting Equation (A-6) from (A-5),

(P-si — Mmi }'i) (Vi — V—ik) =90

If K5£1, pei — pmi — ye 5~ 0. Therefore

Vie=V_, where k=£4i,and k=1,2,,2n (A-7)
Then, Equation (A-5) can be rewritten as
Z 2ty Vi + (et + it — 7% Ve e (Vi + Vo) = 0 (A-8)
i3
itk
where
k=#i,andi,k=1,2,....,n.

k=1 pox — ye = pmx (k=1,2,,1).
Then, from Equation (A-5)

Z 2F-kj ij + Pmk (ka + V-kk) =0 (A—Q)
i$k
where (n — 1) equations, because i can take (n — 1)
different values. Therefore,

k=1,2,....,n

: . . ij:() j;ék,andj,k=1,2,....,n
For a given k, Equations (A-8) and (A-9) to-
gether form n simultaneous equations in Vy and
(j#k;and:jzl;z,....,n)and (‘\'Ikk +‘vr_kk). Vi + Vi =0 kzlrgx"--sn

In other words, if k is fixed, Equation (A-9) These are combined with Equation (A-7) to
gives one equation and Equation (A-8) gives obtain

Vik:—V_ik i=k=l,2,....,n‘
V=V =0 iztkandi, k=12,n } (A-10)
Vik:V—ik i=1,2,....,nandk=n+1,n+2,....,21’1
Now Equation (A—4) becomes
Vi=V,e + 2 Vi e« l
e i=1,2....,n (A-11)
2n
V-i ="Vii eY‘x + 2 Vik ey"x S
k=n+1
Using Equation (A-1), current equations areobtained:
2n
]:.1 = Y.Eeyix + Iik ey“x
oi k=n+1 X
i=12,n (A-12)

; ¥
I, :h.Yl‘. eli* + Ixe™

01
k=n+1

144 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

where

Yi= 7 Visi = fmi = — \/(Zsi — Zimi) (Ysi - Ymi)

Equations (A-11) and (A-12) show that the
possible modes of propagation are:

1) Independent differential mode for each
line-pair

2) Common modes in which the two lines of
a pair have identical wave propagation.

ACKNOWLEDGMENT

The authors wish to acknowledge the assist-
ance given on this project by the members of
the Computer Advanced Product Research
Group. Credit is due to them for designing the
two-level logic modules, developing the new
packaging techniques, and designing and con-
structing the memory exerciser. Special credit
is due to.H. C. Nichols for his invaluable con-
tribution in the fabrication of the memory
system. Additional acknowledgment is due to
Memory Products Department, RCA Electronic
Components and Devices, for the construction
of the memory stack.

REFERENCES

1. V. L. NEWHOUSE, “The Utilization of Do-
main Wall Viscosity in Data Handling De-
vices,” Proc. IRE, vol. 45, no. 11, pp. 1484—
1492, November 1957.

2. W. S. KOSONOCKY, “Memory System,” U.S.
Patent 3,042,905, filed December 11, 1956,
issued July 3, 1962.

3. J. A. RAJCHMAN, “Ferrite Aperture Plate
for Random Access Memory,” Proc. IRE,
vol. 45, no. 3, pp. 325-334, March 1957.

4. M. M. KAUFMAN and V. L. NEWHOUSE,
“Operating Range of a Memory Using Two
Ferrite Plate Apertures per Bit,” Journal

of Applied Physics, vol. 29, no. 3, pp. 487-

488, March 1958.

- Zmi
- Ymi

..,n

5. R. E. McMaHON, “Impulse Switching of
Ferrites,” Solid State Circuit Conference
Digest, pp. 16-17, February 1959,

6. R. H. TANCRELL and R. E. McCMAHON,
“Studies in Partial Switching of Ferrite
Cores,” Journal of Applied Physics, vol.
31, no. 5, pp. 762-771, May 1960.

7. R. H. James, W. M. OVERN, and C. W.
LUNDBERG, “Flux Distribution in Ferrite
Cores under Various Modes of Partial
Switching,” Journal of Applied Physics
Supplement to vol. 32, no. 3, pp. 385-395,
March 1961.

8. C. J. QuarTLY, “A High Speed Ferrite
Storage System,” Electronic Engineering,
vol. 31, no. 12, pp. 756-758, December
1959.

9. H. AMEMIYA, H. P. LEMAIRE, R. L. PRYOR,
and T. R. MAYHEwW, “High-Speed Ferrite
Memories,” AFIP Conference Proceedings,
vol. 22, pp. 184-196, Fall 1962.

10. W. H. RHODES, L. A. RUSSEL, F. E. SAKA-
LAY, and R. M. WHALEN, “A 0.7-Microsec-
ond Ferrite Core Memory,” IBM Journal,
vol. 5, no. 3, pp. 174-182, July 1961.

11. G. F. BranDp, ‘“Directional Coupling and
Its Use for Memory Noise Reduction,”
IBM Journal of Research and Develop-
ment, vol. 7, no. 3, pp. 252-256, July 1963.

12, W. T. WEEKs, “Computer Simulation of
the Electrical Properties of Memory Ar-
rays,” IEEE Transactions on Electronic
Computers, vol. EC-12, no. 5, pp. 874-887,
December 1963.

13. G. H. GoLDSTICK and E. F. KLEIN, “Design
of Memory Sense Amplifiers,” IRE Trans-
actions on Electronic Computers, vol. EC-
11, pp. 236-253, April 1962.

A 10° BIT HIGH SPEED FERRITE MEMORY SYSTEM 145

14. T. R. MAYHEW, “The Design of a Sense

15.

Amplifier for a Thin Film Memory,” Mas-
ter’s Thesis, University of Pennsylvania,
June 1962.

R. T. LURvEY and D. F. JosgpH, “RCA
N7100 Microferrite Array,” Application
Note SMA-9, RCA Semiconductor and
Materials Division, Somerville, N.J., Au-
gust 1962,

16.

B. A. KAUFMAN and J. S. HAMMOND, III,
“A High Speed Direct-Coupled Magnetic
Memory Sense Amplifier Employing Tun-
nel-Diode Discriminators,” IEEE Transac-
tions on Electronic Computers, vol. EC-12,
pp. 282-295, June 1963.

. J. R. CARsSON and RAY S. HoyT, “Propaga-

tion of Periodic Currents over a System of
Parallel Wires,” Bell System Tech. Jour-
nal, vol. 6, no. 3, pp. 495-545, July 1927.

AN ASSOCIATIVE PROCESSOR

Richard G. Ewing and Paul M. Davies
Abacus Incorporated, Santa Monica, California

1. INTRODUCTION

This paper describes the computer system de-
signed under an Air Force sponsored study pro-
gram to develop a non-cryogenic Associative
Processor organization and to study its possible
use in a variety of Aerospace applications. Two
approaches were considered to this problem:
one in which an associative memory would be
added to a more or less conventional computer
and another in which a new organization would
be developed around the principle of memory
distributed logic. The latter approach was
chosen because it appears to result in a more
efficient form of parallel processor.

Because of the nature of the intended use of
the processor, emphasis was placed on network
simplicity, on reduction of size and power, and
especially, on reliability. While the processor
organization was designed in terms of a partic-
ular mechanization-wire memory and inte-
grated circuitry—the organization and algo-
rithms are described here in general terms, and
questions of mechanization are postponed to a
final section.

When the fundamental limits of electrical
and optical signal propogation speeds are
reached, there are just two ways to further re-
duce the time to perform a given computation.
One of these is by making things smaller, and
the other is by performing parallel processing.
But efforts to achieve efficient parallel proces-
sors have encountered several difficulties. First
is the problem of providing sufficient memory
and computing capability within a simple
module. Some parallel processors, such as the
Holland * machine, have employed relatively

147

simple modules, but the memory capacity and
computing capability of each module were lim-
ited. Others, such as the Solomon Computer 2,
provide greater memory capacity and comput-
ing capability in the module, but each module
approaches the complexity of a small computer.

Another serious problem is that of communi-
cation. For a periodic computing structure to
be useful, it is essential that there be efficient
paths for the communication of control signals
and operands among the modules. In some
parallel processors, the communication net-
works are more complex than the processing
modules themselves.

The associative memory suggest itself as a
basis for another approach to the problem of
parallel processing. Logical operations are per-
formed within the individual memory cells of
this memory, and communication within the
structure is particularly efficient. Extension of
these principles to permit full logical and arith-
metic capability within each memory cell would
provide a high degree of processing parallelism.
We shall call an associative memory structure
and its control logic, which is capable of per-
forming such distributed computation, an As-
sociative Processor.

In addition to the parallel computing capa-
bility, there are several other advantages which
one may expect to achieve in the Associative
Processor. These are:

1. The data storage and retrieval capabil-
ities of the Associative Memory, which
greatly simplify or eliminate such com-
mon data manipulations as sorting, col-

148 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

lating, searching, matching, cross refer-
encing, updating and list processing;

2. Programming simplifications based upon
the possibility of ignoring the placement
of data in memory and the extensive use
of content addressing and ordered re-
trieval;

3. The periodic structure of a large portion
of the processor. Periodicity of structure
lends itself to integrated circuit tech-
niques and batch fabrication. Inter-
connections between components become
shorter and less tangled, reducing propo-
gation delays and simplifying layout and
checkout. Since the structure is periodic,
it can easily be expanded in size;

4. Fault Tolerance. The periodic structure
may permit an organization which is tol-
erant of memory or circuit element fail-
ures. If a cell fails, it may be possible to
avoid its further use with little loss to the
system capability. A program for an as-
sociative structure makes little or no ref-
erence to a unique cell so that loss of a
cell would not confuse the program.

Two approaches have been taken in the past
to solve the problems of parallel processing by
using associative processing techniques. Rosin 3
and Fuller +° have considered an associative
memory under control of a general purpose
computer. In Fuller’s work, algorithms for a
variety of arithmetic operations are built up as
sequences of elementary operations performed
by the rather limited word logic of the associ-
ative memory. In Davies® more extensive
word logic is provided, and the control is inte-
grated into the associative processor. The pres-
ent paper represents an attempt to achieve the
higher speed of the second approach with a
considerably simpler logical structure, which
could be mechanized from non-cryogenic com-
ponents.

The design which was adopted provides a
random access memory for program storage
and a bit serial associative memory for data
storage and parallel processing. The ability to
write tags (i.e. to simultaneously write data in
a selected bit position of a number of selected
words), coupled with simplified word logic net-
works, permits relatively efficient bit serial
algorithms for many kinds of parallel searches,

parallel arithmetic and ordered retrieval.
Methods were developed for treating certain
classes of memory and circuit failures. For
these cases, the processor can continue to op-
erate in spite of a failure with only slight im-
pairment of the overall system capability. In
the area of communication, methods were de-
veloped for treating operand pairs in a variety
of relative locations.

2. MEMORY DISTRIBUTED LOGIC

One of the fundamental features of the asso-
ciative memory is that logical operations are
performed within the memory cells. However,
even in the random access memory a limited
amount of logic is performed in the memory
cell. The boolean function X; °Y; °S;; is per-
formed, where X; is the selected X address co-
ordinate, Y; the selected Y address coordinate,
and S;; the bit stored at location ij. The value
of the function is read out on the sense line. In
an associative memory, the memory logic is ex-
tended to permit selection of a memory cell on
the basis of stored data. In some associative
memories, this is accomplished by the function

(8;<R)) - (S:oR.) 0 (SaeRa)

which is mechanized in each memory word cell.
“S;<R;”, the equivalence function, is the same
as S;*R; + S;*R,. S; is the bit stored in the
i-th bith position of a typical word, while R, is
the corresponding bit of a reference word
stored in an external register. The function
selects all words whose stored contents match
the reference word. This can be improved to
permit masking of selected bits as follows:

[(Sﬁ—-)RJ -+ Ml] [(S:)(—)Rz) + Me]
[(SaeRa) +M,]

where M; indicates whether the i-th bit is to be
ignored in the comparison.

In addition to providing logic in each mem-
ory bit position, it is also profitable to have logic
associated with each word cell. This is the case
in certain word organized random access mem-
ories and in associative memories. In the first
case, there is the word driver which may be a
magnetic or semiconductor amplifier which re-
sponds to X and Y coordinate selection lines
just as the typical bit cell does in a coincident
current memory. In associative memories,
there is usually a match detector with each

AN ASSOCIATIVE PROCESSOR 149

word which responds to the match logic de-
scribed above. Ordinarily, the match detector
has memory. These operations at both the bit
level and the word level suggest the possibility
of providing sufficient distributed logic to per-
mit parallel computation throughout the mem-
ory structure.

In arriving at an Associative Processor capa-
ble of such parallel computation a number of
important decisions must be made. One basic
choice is whether to use a separate random ac-
cess memory or the associative memory itself
for program storage. The first choice is prob-
ably more practical since the random access
memory is less expensive; furthermore, it will
be easier to protect the associative portion from
fault if the program is kept separate.

A second choice to be made is between bit
parallel and bit serial operation. Certain asso-
ciative operations such as the matching of fields
for equality can be performed in bit parallel.
On the other hand, to perform the more com-

plex functions of arithmetic, it appears more

convenient to use the bit serial approach, sim-
plifying the bit cell by time sharing one logic
module among all bits of a word.

A third problem is that of communication.
To perform parallel computation, one must
have access to the operands and operand pairs.
In some cases, the operand pairs are stored
together in the same word. In other cases,
they are in adjacent words, while in still others,
they are in non-adjacent words, but always
some fixed number of words apart. Another
common requirement involves operand pairs in
which the first operand of each pair is common
while the second operands are distinet. In this
case, the common operand, in an external reg-
ister, must be communicated to the others,
stored in various memory cells. Still another
communication problem is based upon the fact

that while large portions of a problem may be

susceptable to parallel processing, other parts
may be essentially sequential. These also must
be performed efficiently by the Associative
Processor if they are not to offset the advan-
tages gained in the parallel processing.

“Techniques for solving these communication
problems include the following:

1. Transmission of a common operand to all
memory word cells.

2. Flexible control of field selection to per-
mit operation on pairs of operands in the
same words.

3. Use of shift registers for communication
between words. These can be uni-direc-
tional or bi-directional and can be ex-
tended to two or more dimensions to give
greater flexibility.

4. Forms of entry-exit ladder networks
which permit rapid communication be-
tween non-adjacent word cells.

The following sections will describe the As-
sociative Processor, which is based upon spe-
cific choices of these options.

3. ORGANIZATION

A Dblock diagram of the Associative Proces-
sor is shown in Figure 1. It contains both
a conventional random access memory (RAM)
and an associative memory. The RAM pro-
vides ‘storage for instructions and constants;
it is accessed parallel by bit and serial by
word. In processing operations, the Associa-
tive Memory is accessed parallel by word and
serial by bit. In the organization under con-
sideration, RAM contains 4000 twenty-four
bit words, and the ‘Associative Memory con-
tains 500 ninety-six bit words.

Instructions accessed from RAM are trans-
ferred to the Instruction Register where they
are held during execution. The D-Register,

WORD
ASSOCIATIVE LoGIC,
MEMORY SE:SE
WRITE
) AMP'S
BIT COLUMN
SELECT LOGIC
A COUNTER] [B COUNTER] [C COUNTER] CONTROL
A LIMIT B LIMIT . UNIT
ouTPUT
D REG ADDER | D |
O——_
INPUT

MEMORY
REG

RANDOM
ACCESS
MEMORY

. | INSTR REG

Figure 1. Block Diagram of Associative Processor.

150 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964

which has the same length as a RAM word,
serves as temporary storage for operands
which participate in associative operations.
For instance, the D-Register may hold the
argument of a search, may receive data being
retrieved from the Associative Memory, or
may communicate with the external world.
Data originating from outside of the Associa-
tive Processor can be transferred directly to
either the Associative Memory or RAM. Direct
input to the memories is under an automatic
interrupt control.

In the Associative Memory, only one bit
column at a time may be operated upon. The
particular bit column is selecfed by either the
A Counter, the B Counter, or the C Counter.
Associated with the A and B Counters are the
A and B Limit Registers. Each may contain
a value which serves to define a maximum or
minimum value of its companion counter. To-
gether, each counter and limit register define a
field which can be any length up to the number
of bits in the Associative Memory word, and
may overlap the field defined by the other coun-
ter and limit register.

The design of the Associative Processor is
sufficiently general to permit implementation
by a variety of memory elements and logic
techniques. Therefore, the following descrip-
tion of the Associative Memory, shown in
Figure 2, will present those characteristics
which are essential to the design of the As-
sociative Processor.

Storage for one bit is provided at each inter-
section of a word and a bit line. A pulse on
a bit line causes a signal to be emitted by each
bit on that line. The signals are transmitted
through the word lines to the sense amplifiers.
WORD SENSE-

BITLINES woite amp's
wono
LOGIC |—
A n]
WORD) . .
LINES . et
| ':>" WORD| ~ |
LOGIC|]
VAWAYA I g
E o o0 ‘
sheee WO
BIT DRIVERS o~

CONTROL SIGNALS

Figure 2. Associative Memory.

The equivalence function is obtained in one of
two ways depending upon the particular mem-
ory element. In some memories it is sufficient
to exercise control over the polarity of the
interrogating pulse, thereby achieving a signal
output for a match and no output for a mis-
match. In these cases, the bit element itself
performs the equivalence function, S&R. In
other memories, the stored bit is merely read
out; the reference bit is transmitted to all
sense amplifiers and logic associated with each
sense amplifier generates the equivalence func-
tion.

Writing at a particular bit location is ac-
complished by passing a current through the
intersecting bit and word lines. The polarity
of the current in the world line, or in some
cases the word and bit lines, determine the
state of the written bit. By energizing all the
word drivers and one bit driver, one bit of each
word can be written into. The latter opera-
tion, which is sometimes referred to as “tag-
ging”, plays a signifi