
AFIPS
CONFERENCE
PROCEEDINGS

1984
NATIONAL
~

COMPUTER
CONFERENCE

July 9-12, 1984
Las Vegas, Nevada

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1984 National Computer Conference
or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 80-649583
ISSN 0095-6880

ISBN 0-88283-043-0

AFIPS PRESS
1899 Preston White Drive

Reston, Virginia 22091

© 1984 by AFIPS Press. Copying is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) reference to the AFIPS
1984 National Computer Conference Proceedings and notice of copyright are included
on the first page. The title and abstract may be used without further permission in
computer-based and other information service systems. Permission to republish other

excerpts should be obtained from AFIPS Press.

Registered names and trademarks, etc., used in this publication, even without spe
cific indication thereof, are not to be considered unprotected by law.

Printed in the United States of America

Preface

RUSSELL K. BROWN
1984 NCC Chairman

The purpose of the National Computer Conference is to provide an atmosphere in
which designers, suppliers, users, managers, educators, and representatives of gov
ernment and society at large can meet and interact. Discussions of new technical
developments, as well as national and international issues and challenges facing the
information processing community, are encouraged.

This year's discussions and developments are included, for the most part, in this
anniversary Volume 53 of the Proceedings of the National Computer Conference,
completing 12 years as the world's premier computer exposition.

The decision to chair a second National Computer Conference may well be one
of the more major choices one makes in even a complicated lifetime. Certainly this
choice was compounded by the change in site from Houston to Las Vegas, made
only 15 months before the Conference date. Perhaps a few words on that move are
in order.

In Fall 1982 the NCC Committee and Board were again faced with a dilemma of
great magnitude. After the move of the 1982 NCC from New York to Houston
because of space (3,200 booth units) and facility considerations-aQd the plan to use
Houston in 1984, the plan for 1984 was also scrapped because of the same consid
erations. With a need to expand yet another 600 booth units, only Las Vegas and
Chicago could house the show. And since Chicago is the site of NCC '85, the
decision seemed obvious.

Compounding the decision, however, was the fact all NCCs of the past were
presented in a major population center. Over the past four years, local and nearby
interest added as much as 50,000 to the total attendance. It was obvious that a total
nationalization of the NCC, with massive publicity, would be needed to turn out
crowds approaching those of recent years. This week, we hope, you will be able to
observe our success.

A major show in Las Vegas in July presents its own special challenges. Thirty
thousand hotel rooms guarantee close-in housing for those attending. And certainly
no one can fault Las Vegas' ability to entertain its guests. In addition, you will see
no shortcuts or shortcomings in the presentation of this NCC.

What you will see is a display of 650 companies filling 3,800 booth units for a new
NCC record. You will be exposed to a high-quality program, high-quality Profes
sional Development Seminars, a major keynote address, a special Pioneer Day
program, and numerous other attractions that we feel will make this a noteworthy
week. It is the intention of the CSC to give attending registrants all the positive
values of moving to a new city and to make any negatives as invisible as possible.

iii

An example of this is the largest busing expenditure in Las Vegas history for the
various round trips between hotels and the Conference during the warm summer
days.

If I may return to our program, I may be able to elicit in you a feeling of
satisfaction to match the pride I feel. The program is made permanent by the
archival record of the Proceedings. Here we capture for posterity the most current
reports on recent achievem~nts and new applications, on advances at the frontiers
of computer science and technology.

Dr. Dennis Frailey of the Texas Instruments corporation was buffeted in mid
preparation of this program and these Proceedings by the move. Through all the
personnel shuffling and turmoil, he managed to steer a straight course toward a
superior presentation.

Dennis recognized, early on, that the registrant has only three days, on the
average, to assimilate all aspects of an NCC. His first decision was to direct that
with a superior Professional Development Program and 12 football fields of
exhibits-the program as defined in the past be intensely screened for short
comings. His Committee introduced a much finer mesh in their screen than has ever
been used before. The number of papers and sessions are down slightly from what
you have seen in previous NCCs, but we are confident that their value to you will
be high.

Volunteers, for a conference of this magnitude, number in the hundreds. They
are members of the NCC Sponsoring Societies and the other AFIPS Constituent
Societies. To these groups and their participating members I would like to give my
heartiest thanks, particularly in view of the truncated schedules on which we were
all operating.

To the Las Vegas Convention Bureau, which greatly eased our move into a new
city, my thanks for the myriad arrangements and assistance you provided.

To the NCC Board and Committee, who well knew the danger to NCC '84 if plans
were not well organized, my thanks for your confidence and support.

To the AFIPS Headquarters Staff and all the members of our CSC, thank you for
your dedication, time, and effort you have contributed to an ongoing tradition of
excellence.

To my wife, who in 1981 asked, "Why?" in 1982 asked, "How can I help?" and
in 1983 said, "Let me be a part of this," you know my thoughts.

And finally, to ten of the previous NCC Chairmen, thank you for your .assistance,
guidance, and inventiveness. Much of what you created is embodied here.

iv

Introduction

DENNIS J. FRAILEY
1984 NCC Program Chairman

1984! Orwell's year is here! Have events happened as Orwell predicted in 1984?
Have computers become the tool of those who would suppress our individual
freedoms? These were the obvious questions when the program committee first sat
down in fall 1982 to develop a theme for the 1984 NCC. Each of us reread Orwell's
classic. We discussed ideas for a conference theme that would truly represent the
current state of computing. And we were struck by a simple fact: computers are
being used today in many ways that were. totally unexpected. The choreographer
whose computer provides a breakthrough in explaining his ideas to dancers; the
businessman whose spread sheet program turned his company around financially;
the physically handicapped whose voice-activated personal computers give them
control over their environment-these and others whose uses of computers were
only recently the stuff of science fiction serve to point out what is really important
and unique about computing today--creative use of computers by individuals.

The availability of computers to individuals has evolved from timeshared main
frame systems to minicomputers to personal computers. Each step has provided a
significant increase in availability and power through dramatic cost reduction. Data
communication technology has kept pace in recent years, enabling a truly world
wide system of information exchange to be developed. What is important about this
technology, and indeed what is anti-Orwellian about it, is that control is migrating
away from the center-toward the individual. This is what's different about comput
ers today. This is what promises to continue the computer revolution. And this
creative use by individuals-in the office, the factory, and the home-is the theme
that ties together the diverse topics addressed by the NCC program.

The program consists of over 90 sessions, presented over a four-day period. Ten
topic areas or tracks represent the committee's way of dividing a broad set of
subjects into manageable components. In addition to a wide range of sessions on
such topics as hardware and architecture, software, management, automation of
office and factory, databases, data communications, personal computers and soci
etal issues, we've augmented the program in the areas of artificial intelligence and
computer graphics and entertainment-areas where those attending recent NCCs
have shown particularly high interest. We've also oriented the focus toward the
questions we believe are uppermost in the minds of NCC attendees: "What's new?"
and "How will it affect me?"

Although this Proceedings volume contains more than 80 papers, they represent
less than a third of the total NCC program. Panel discussions occupy more than half
of the program, and some of the sessions include presentations on topics too recent

v

to meet the publication deadline for the Proceedings, such as the very latest micro
processors and networks. The Proceedings are organized by track, and each section
begins with an overview of the whole track-panel sessions as well as papers. For
those attending, this serves as a guide to the program as a whole. For those unable
to attend, it serves to give the flavor of the program and helps to put the papers into
perspective. Because of the frequent overlap of topics, readers are likely to find
sessions and papers of interest in several of the tracks.

The 1984 Nee program is the combined effort of almost 1,000 people, most of
whom are unpaid volunteers. This includes 12 program committee members; more
than 90 session organizers and chairs; almost 300 presenters, panelists, and authors
of technical papers; and nearly 500 referees who helped us select the technical
papers. (There were also several hundred people whose high-quality papers and
session proposals could not be accommodated.) In addition, recognition must go to
at least a dozen AFIPS staff members; the program committee staff, headed by Jean
Presnell; and the spouses and employers of all of the above, whose forbearance and
assistance made their contributions possible. All of us sincerely hope that each
person attending Nee will find the program stimulating, helpful, and educational.

vi

CONTENTS

Preface .. .
Russell K. Brown

Introduction .. .
Dennis J. Frailey

THE AUTOMATED OFFICE
Michael Alsup

Implementing a large office automation system-how to make it work
Jack Golden and Stuart Bell

COMPUTER HARDWARE AND ARCHITECTURES
Faye Briggs

A multiaccess bus arbitration scheme for VLSI-densed distributed systems
Jie-Yong Juang and Benjamin W. Wah

DMERT -An operating system for telecommunications systems .. .
S. F. Ho, C. J. Richardson, and W. C. Schwartz

Global concurrency control mechanisms for a local network consisting of systems without concurrency control
capability .. .

Yahiko Kambayashi and Sei-ichi Kondoh

Synapse tightly coupled multiprocessors: A new approach to solve old problems
Steve Frank and Armond Inselberg

Throughput of multiprocessors with replicated shared memories .. .
Sigurd L. Lillevik and John L. Easterday

The DCS-A new approach to multisystem data-sharing
Akira Sekino, Keizo Moritani, Teruaki Masai, Toshiaki Tasaki, and Kazuo Goto

Reduced-instruction set multi-microcomputer system .. .
Lewis Foti, David English, Richard P. Hopkins, David J. Kinniment, Philip C. Treleaven, and
Wang Long Wang

System considerations in the NS32032 design
Richard Mateosian

An inside look at the Z80,OOO CPU: Zilog's new 32-bit microprocessor
Anil Patel

An interleaved array-processing architecture
J. R.o Jump, J. D.Wise, and D. T. Harper III

Compatible software and hardware implementations permitted by IEEE standard for binary floating-point
arithmetic .. .

Harry W. Look

Goals and tradeoffs in the design of the MC68881 floating point coprocessor
Joel Boney

An extended-precision operand computer for integer factoring
Jeffrey W. Smith and Samuel S. Wagstaff, Jr.

New microprocessor-based computer architectures .. .
Omri Serlin

How smart the computer: Status and future on building its brain
David J. Elliott .

IDAS-An integrated design automation system .. .
Stephen Y. H. Su

vii

iii

v

3

13

23

31

41

51

59

69

77

83

93

101

107

115

123

131

143

A versatile VLSI fast Fourier transform processor .. . 151
Kuang-cheng Ting and Chuan-lin Wu

Design diversity: An approach to fault tolerance of design faults ' 163
Algirdas A vizienis

Tradeoffs in system level diagnosis of multiprocessor systems 173
A. Kavianpour and A. D. Friedman

SOFTWARE
A. Winsor Brown

Maintenance as a function of design .. ' .. 187
James R. McKee

Maintaining user satisfaction with performance of an online system 195
A. Martin Sellers

Redocumentation: Addressing the maintenance legacy .. . 203
Gary Richardson and Earl D. Hodil

System information database: An automated maintenance aid .. . 209
Linda Brice and John Connell

COBOL-80: The new structured language 217
Jerome Garfunkel

Is COBOL-8X cost effective? .. . 223
Marco Fiorello and John Cugini

Technology transfer in the maintenance environment. 229
Florence J. Bell

Two perceptions of software maintenance performed by an on-site contractor . 235
Bernard Narrow and John Kelly

Prolonging the life of software. 243
John Connell and Linda Brice

Software maintenance in fourth-generation language environments " '" 251
Paul C. Tmnirello

Specification and implementations of interactive information systems. 259
Anthony I. Wasserman

Software management issues for new systems designs .. 267
Robert E. Loesh, Donald J. Reifer, and Steven M. Jacobs

Results of modem software engineering principles applied to small and large projects. 273
Peter R. H. McConnell and Wolfgang B. Strigel

A portable Modula-2 operating system: SAM2S '" 283
Larry D. Wittie and Ariel J. Frank

Giving away the data processing store, or Does the data processing department as we know it today
have a future? . 293

Lois Zells

Are methodologies and system design techniques independent of one another? . 303
Denis A. Connor

Aspects of integrated software. 311
Clyde W. Holsapple and Andrew B. Whinston

The integrated software ~'1d user interface of Apple's Lisa. 319
Edward W. Birss

FlowGuide-A programmer's work station. 329
Phil J. Grouse

viii

Information resource planning and management methodologies ... 337
Keith Greystoke

IRPIIRM methodologies. 343
Michael R. Wood

Simulation as an aid to software transferability . 349
Aaron H. Konstam and Ronald G. Reinhard

Software manufacturing techniques and maintenance. 357
Paul Bassett

A prototyping environment for real-time graphics. 367
Nola Donato, Robert Rocchetti, and Janet Tom

A publisher's view of writing successful software. 375
Gary Swanson

Versatile packaging: Software for all retail environments. 381
Elwin E. Lages

Commercial and military software documentation: Different steps to a common goal. 389
Faye C. Budlong

One person's perception of military documentation , 395
Don Mather

Simple dynamic assertions for interactive program validation. 405
Christer Hulten

A tool-based approach for software testing and validation. 411
J. C. Huang, Peter Valdes, and Raymond T. Yeh

Guidance for test selection based on the cost of errors 423
David A. Gustafson

COMPUTER GRAPHICS---COMING OF AGE
Alan Paller

PERSONAL COMPUTERS
Jean Yates

Will notebook computers revolutionize computer usage? , , .. 435
David H. Ahl

EDUCATIONAL AND SOCIETAL ISSUES
Alfred Riccomi

Fifth-generation computing as the next stage of a new medium. 445
Mildred L. G. Shaw and Brian R. Gaines

A framework for the fifth generation. 453
Brian R. Gaines

Computers and the future of human creativity. 461
Michael Conrad and M. A. Rahimi

A national computer policy: Forging the final synergy of computers and society . 469
Ben G. Matley

INFORMATION PROCESSING MANAGEMENT
Eugene Smith

Decision support in a distributed environment. 477
Daniel T. Lee

Issues in the design of expert systems for management . 489
Robert W. Blanning

ix

An investigation of task team structure and its impact on productivity
Kathy Brittain White

Incentive compensation for information systems departments
Howard A. Rubin and D. L. Von Kleeck

Gaining competitive advantage, or how to succeed as the vice-president of information systems
M. Victor Janulaitis

DATABASE MANAGEMENT
Darrell Ward

An interface for novice and infrequent database management system users
James A. Larson and Jennifer B. Wallick

REQUEST: A testbed relational database management system for instructional and research purposes
Bogdan Czejdo and Marek Rusinkiewicz

Sibyl: A relational database system with remote-access capabilities .. .
Manfred Ruschitzka, Andrew Choi, and John L. Clevenger

Functions of the database workbench .. .
Yahiko Kambayashi

Fourth-generation languages (4GLs) and personal computers
Boulton B. Miller

SALVO--A fourth-generation language for personal computers .. .
Marvin Elder

Uniform organization of inverted files
Dalia Motzkin, Kenneth Williams, and Karl Chang

A generalized method for maintaining views
Kathryn C. Kinsley and James R. Driscoll

The representation of debate as a basis for information storage and retrieval
David Lowe

KSAM: a B+ -tree-based keyed sequential-access method .. .
Kemal Koymen

A database machine based on the data distribution approach
Yahiko Kambayashi

ARTIFICIAL INTELLIGENCE
James R. Miller

Menu-based natural language understanding
Harry Tennant

An analysis of scripts generated in writing between users and computer consultants
David Chin

Transportable English-language processing for office environments .. .
Bruce W. Ballard, John C. Lusth, and Nancy L. Tinkham

Really arguing with your computer in natural language .. .
Margot Flowers and Michael G. Dyer

Introducing VIPS: A voice-interactive processing system for document management
Alan W. Biermann, Kermit C. Gilbert, and Linda S. Fineman

An expert system for drafting legal documents
James Sprowl, Periyasamy Balasubramanian, Taizoon Chinwalla, Martha Evens, and Henriette Klawans

x

497

505

513

523

531

537

547

555

561

567

587

595

605

613

629

637

643

651

661

667

COMPUTER COMMUNICATIONS
Neal Laurance

LCNET: Ethernet concepts + ubiquitous RS232C ports = Low Cost NETwork
Jay B. Jordan and Victor P. Holmes

Direct work station to remote computer communications via satellite
Michael H. Aronson

CARGuide-On-board computer for automobile route guidance
M. Sugie, O. Menzilcioglu, and H. T. Kung

Telecommunications and business strategy: The basic variables for design
Eric K. Clemons, Peter G. W. Keen, and Steven O. Kimbrough

xi

677

685

695

707

The automated office

Michael Alsup, Track Chair

The Office Automation track at this year's NCC includes
12 sessions rich with ideas and information. The contributions
that office systems can make to productivity and managerial
effectiveness are reviewed from functional, technical, stra
tegic, and end-user perspectives; and the depth and breadth
of office automation is presented by a number of industry
experts.

The current state of the art In office automation is outlined
in the first session, entitled "Office Automation: State of the
Art." Noted consultants summarize current trends in the mar
ketplace and analyze vendor offerings.

The key to the implementation of successful office systems
is to identify user requirements and select equipment that
satisfies those requirements. Two sessions outline approaches
that have been successful in the definition of user require
ments. In "Analyzing Managers'/Professionals' needs for
OA," a consultant will discuss how to evaluate user require
ments for office systems, and representatives from two organi
zations that have recently evaluated these requirements and
implemented advanced office systems will share their experi
ences. In a second session, "Office Automation in Large
Organizations," two organizations that have implemented
very large and integrated office systems summarize their ex
periences and outline their successes and failures. Organiza
tions that are considering their requirements for office auto
mation have a valuable opportunity in these sessions to learn
from others who have pioneered in this area.

As microcomputers and word processors have become
more powerful, additional attention is being focused on de
sign and functionality in office systems. Vendors are integrat
ing the delivery of a number of functions and application
systems into a single work station with powerful communica
tions capabilities and a standard user interface to all applica-

tions. Four sessions explore the changing role of work stations
in the office. "Design and Functionality in Office Systems"
examines how the user aspects of office systems are evolving.
A consultant summarizes the trends and likely market direc
tion and evaluates several well-known products. A second
session, "Management Work Stations and Integrated Infor
mation Systems," examines three new work stations that in
clude powerful capabilities for data, voice, and video; and it
evaluates the issues involved in the successful implementation
of these systems. "The Micro-Mainframe Connection" ex
plores benefits and pitfalls in the connection of micro
computers and mainframe computers from software, commu
nications, and end-user points of view. Finally, the role and
potential of voice in office systems will be explored in "Voice
Technology in the Office." These sessions are especially use
ful to organizations considering the role and fast-evolving ca
pabilities of work stations in their organizations.

The strategic and managerial implications of office auto
mation are explored in tWo sessions. "Strategic Systems Plan
ning: Art, Science, or Nonsense?" explores whether it is pos
sible to develop a strategic plan for office automation in the
face of rapid and profound technological change. "Office Au
tomation Selection Criteria: A Q&A Session" explores and
defines appropriate selection criteria for office automation
systems from a management point of view.

Communications networks are becoming the nervous sys
tems of large organizations. Three office automation sessions
examine the impact of developments in communication tech
nology for the office environment. The advantages and disad
vantages of three different approaches for integrating office
systems equipment are presented in "Integration Alternatives
and Strategies." Representatives of a well-known mainframe
vendor, a PBX vendor, and a local area network vendor out-

line the short- and longer-term advantages of their systems
architectures in the office.

One of the principal advantages of a local area network is
the attachment of devices whose capabilities are shared
among the work stations on the network. These devices in
clude intelligent copiers, electronic file cabinets, communica
tions gateways, and mainframe computers. "Shared Network
Resources" summarizes the advantages and capabilities of

these resources, and two leading vendors summarize their
offerings.

Electronic mail is an important and practical way to im
prove productivity and reduce costs. It can be broadly defined
as the transmission of messages by electronic means. "Elec
tronic Mail: Current Developments" summarizes the alterna
tives available in electronic mail, and three vendors with
leading-edge products summarize their offerings.

Implementing a large offi'ce automation system-how
to make it work

by JACK GOLDEN and STUART BELL
The MITRE Corporation
McLean, Virginia

ABSTRACT

This paper discusses the implementation of a large office automation system to be
used by nondata processing as well as data processing staff, i.e., the knowledge
worker. At its completion the system will encompass more than 1,000 terminals
(one terminal per office). The paper covers the nature of the basic system, IBM's
Professional Office System (PROFS), what it does, how it functions, the extent of
use, and how to encourage potential users to use it. The paper reviews training
procedures from one-on-one to higher ratios and the reasoning behind them, and
goes over in detail the nature of the "innovation" curve. Also reviewed are the
computer performance and the Local Area Network (broadband with Sytek bus
interface units). We currently serve more than 500 users with around 300 terminals
already distributed.

3

INTRODUCTION

We discuss here the implementation of a large office automa
tion (OA) system and how we made it work. By and large,
we're talking about one terminal per office, or a total of 1,000
terminals, covering nine buildings within a two-mile radius.

Our discussion will go over the nature of the corporation, a
nonprofit organization that does business primarily with the
federal government. We will review our office automation
architecture and design goals, our implementation strategy in
terms of our basic system, the pilot group used in developing
the system, and how we controlled additions to the group.

And most importantly, we'll cover what actually hap
pened in terms of acceptance of OA concepts by the pilot
group, communications problems, and wide-implementation
problems.

Corporation Background

The MITRE Corporation is a not-for-profit systems en
gineering company chartered in the public interest. MITRE
was established in 1958 to assist the Air Force, but today
assists most federal civilian agencies, as well as other DoD
agencies in the areas of command and control systems, infor
mation systems, as well as the energy/environmental area.
The major product of the corporation is information, utilizing
the media of reports, specifications, memos, briefings, etc.
paper in general.

We cover here office automation activities supporting the
1,500 or so staff at the Washington center. We will allude to
other systems used throughout the rest of the corporation and
how we interface with them. Additionally, we wish to stress
the implementation problems and solutions, not the specific
hardware or software components of the system.

OA at MITRE

MITRE entered the office automation area in 1972 when we
developed a centralized word processing support facility with
an administration support center. During this period we had
two shifts (eight operators each shift, working six days per
week at its high point). In 1976 we migrated to the decentra
lized word processing concept (approximately 40 word pro
cessing terminals off cluster controllers). From 1976 until
1980, word processing and computer useage was growing at a
rapid rate.

In 1981, the Corporate management decided it was time to
develop an integrated plan for the spread of information ser
vices to our professionals, secretaries, and administrative

Implementing a Large Office Automation System 5

staff. An internal study group, consisting of four senior man
agers, was chartered to review the computer and telecom
munication support needs of the company. The committee's
work was completed in the fall of 1981 with corporate man
agement's acceptance of a "target system," a four-phase im
plementation plan, and authorization and funding for the
plan's first two phases.

The system was designed to account for the heterogeneous
user population in terms of data processing skills, typing
skills, the nature of work being performed, and the level of
each person in the company. The design encompassed hun
dreds of terminals and tens of computers with multiple ven
dors making up the system.

The target system networked computer resources, allowing
the users to share data, programs, and special-purpose periph
erals. We also strongly wanted to have a local area network
that would support video in terms of both security (e.g., badge
readers from remote buildings) and instructional TV (e.g., the
lunch-time seminars).

Based on the 1981 recommendations of the committee, our
1983 architecture evolved to a fully connected system. We are
basically utilizing a Sytek LocalNet 20 bus interface unit in our
broadband data distribution system. We now have connec
tivity and information transfer among all of our major seg
ments, internally in the Washington Center and with the out
side world.

Implementing a Large-Scale OA System

We would now like to discuss how our implementation
strategy obtained a workable office automation system.

There are four major components that make the system
work:

• the computer system
• the local area network
• user acceptance
• applications software

Our implementation strategy was as follows. In late 1981 we
evaluated the available software options in the office auto
mation area. Our primary concern, beyond the normal OA
functions, was that the software reside on our IBM main
frame. The Professional Office System (PROFS) was chosen
because of cost, maturity of the product, breadth of applica
tions, and relative ease of use. 1982 was spent debugging,
customizing, testing the product, and implementing a proto
type system. By mid-1983 we were ready for corporate-wide
implementation.

PROFS is a menu-driven system; that is, the capabilities are

6 National Computer Conference, 1984

accessed through menus (or lists). There are three main
menus and numerous submenus. The display terminal's Pro
gram Function Keys (PF Keys) are used to move between
menus and to invoke specific functions. The system was cus
tomized over time to offer the various user segments different
levels of information. These included (what we deemed im
portant) management needs, and staff needs.

As was stated, the PROFs architecture allows for the ready
access of information not provided by the basic software. The
basic software offers general OA tools such as electronic mail,
calendar functions, electronic filing/retrieving, reminder func-.
tions, and document preparation.

From March to August 1983 we undertook several studies.
These included a system evaluation, communication options
between buildings (statistical multiplexing, microwave option,
etc.), a definition of our FY84 configuration, a definition of an
adequate support structure, a finalized training mechanism,
and, of course, a study of the role of the personal computer
in our environment.

Starting in August 1983 and extending to August 1984, we
have been installing an additional 180 terminals (which trans
lates to an additional 270 or so users to the system). This is
Phase 1 of across-the-company implementation. FY85 will be
an additional 180 terminals, and so on until there will be one
terminal per office.

The Local Area Network

For our local area network we used a broadband CATV
system utilizing Sytek LocalNet 20 system. LocalNet is a
packet-switched local area data communications network pro
viding communication functions and standard broadband
CATV coaxial cables. The properties of a broadband system
permit LocalNet to construct independent subnetworks
terminal channels. Each of those subnetworks provides data
communications for hundreds of users. In the summer of
1982, we initiated a limited test of the system within one
building to ensure functional compatibility of all components.
In 1983 we extended the network to cover our five remote
buildings, all within a two-mile radius. Our problems arose
when we could not physically connect the buildings with a
cable. We experimented with a host of alternatives; these
included telephone lines at 9,600 bits per second, microwave
transmission at a very high effective data rate, laser transmis
sion, and the use of statistical multiplexors. We are currently
utilizing all of these for one reason or another.

The LocalNet medium provides the high band with 300 to
400 MHZ proven reliability and multidrop capability required
for growing data communications requirements. Analog vid
eo or voice applications can share the same cable using dedi
cated frequency channels. A single channel can accommodate
approximately 100 simultaneous virtual circuits.

Getting The System "Used"

Vie wOlild now like to discuss how one goes about gener
ating productive use of the system. Nothing is more important
than having senior management commitment; however, 100%

commitment is really not needed to have successful imple
mentation. Management should not be negative. Once this
commitment is in place, the road to success can then be fol
lowed.

Aside from the typical notes and messages on any office
automation system, it is important to have tools on the system
that would be helpful to the knowledge worker or the profes
sional. We chose to have project financial information as the
first application on the system for management use. This fi
nancial planning and analysis tool proved to be most useful
inasmuch as the system was used immediately (in other words,
users took the time to become familiar with the system be
cause they were getting something useful out of it). People will
not take the time to learn a system that does not have useful
information: if all they have are the note and message func
tions, its utility is small, (although these functions are impor
tant and some OA systems are designed just around notes).

We sugges~ that the system population be enriched as soon
as possible. We added approximately 15 terminals per month
(25 users per month), but doubling this number would have
been more productive. Additionally, the service divisions or
entities of the corporation should be made part of the system
as soon as possible. This allows the support people to become
productive almost instantaneously. The message here is to not
be discouraged by the lack of enthusiasm among the users. At
the beginning, having a sparse population is like having a
telephone with no one to call.

In an early, sparse system, the financial systems and other
individual productivity aids predominate. As the system be
comes richer and the conductivity fuller, mail and documents
become the most popular features.

We would now like to discuss the implications of having a
"rich" vs. "sparse" network in terms of individual use of the
system. From observation, the typical nondata processing
user can be thought of as going through five phases. We call
the first phase tinkering or learning. Depending on the num
ber of people on the system, this can last anywhere from one
to six months, with the average around three months. During
this time the unsophisticated user (not data processing or
iented) learns how to use the machine, not that it actually
takes three months to learn, but rather that the user is "too
busy" to read the manual or ask questions. After the initial
tinkering stage, there is a two- to three-month getting ac
quainted period. The user starts to generate mail, type a few
documents, and use some of the applications on the system.
No (real) productivity is gained during this time, just an
awareness of what can be done. We call the next phase the
suggestions phase. During this phase the user realizes the
potential of the computer and becomes an instant expert on
how to do things better. Suggestions come pouring in on what
to put on the system and how to make it more productive.
Overlapping this suggestion phase is the commitment phase.
At this point in the user profile, he will not move to another
office when office moving time comes around unless there is
a terminal in his office (similar to a telephone). The next
phase is the most important, the synergistic phase. It is at this
time that individual users help and compliment one another
on the system, and we finally see corporate productivity in
creases rather than just individual productivity gains. From

beginning to end this cycle can take anywhere from 6 to 18
months depending on the background of the individuals in
volved. This is why we previously stated, "Don't get discour
aged during the early life of the system or when suggestions
come pouring in."

Initially, we spent about three months (one person) in de
veloping the training manual and procedures. For the first 50
users, we trained on a one-to-one basis; for the next 100 users,
we trained on a one-to-three ratio, with one-to-seven for the
remainder of the early population, (the first 250 users). Our
philosophy was that we should build a strong foundation dur
ing the first 50 users, so that they could be called upon to
ans.wer questions from their coworkers (the next generation of
users). This philosophy works out very well.

Concurrent with training, we established a user services
group (three staff); one telephone number was established by
which all questions could be handled. We also instituted
monthly user meetings where innovations and particular ques
tions could be discussed and guest lecturers presented. We are
now starting to use computer-aided instruction.

Although we feel that our initial training mode worked out
well, we recommend a slightly different approach. More ef
fort should be spent in the development of training material,
and several skill-Ievellposition-Ievel materials should defi
nitely be prepared. A training ratio of one-to-five with a large
screen terminal projection, followed by a 30-minute one-to
one follow-up is recommended.

Once the network is enriched, users tend to help each
other; so, the task of training should actually decrease as users
are added to the system. Although there are more individuals
to train, there are more training aides around.

We keep an accurate record of all questions and comments
that come into our user services group as an example of the
problems and questions that arise. The format is as follows:

• General PROFS (five categories)
• General "other" software
• Hardware (when system is down)
• Administrative (training requests (other than PROFS);

documentation)

• software
• Word Processing (Wang or NBI questions)
• UNIX
• Cable Plant
• Personal Computer
• Miscellaneous
• Consulting (more than 15 minutes on the phone)

Once a significant number of users have been added to the
network, system reliability is a major issue. Therefore, it is
prudent to have accurate records of why the system, or any
component, is down and what the "fix" or resolution is. This
is important, since you will often hear, "the system is always
down," when actually it may have been down for only five
minutes during a given week.

In regard to our local area network (LAN), we found that
there is plenty to choose from. But remember, a LAN may
not be for you. In our installation the cost for the backbone
cable ran from $5 to $10 per liner foot, depending on the

Implementing a Large Office Automation System 7

building layout size (e.g., needing amplifiers). This averages
$300 to $1,000 per drop or tap, depending on the building
configuration. For comparison, point-to-point averages $500
per terminal.

One important item is new skills; the type of person needed
to run this type of activity is usually not within the organiza
tion. And, of course, the LAN facilitates office moves.

One is always asked, What are your productivity gains?
How many people have you let go?, etc. The answer to the
first is, "don't know and probably won't," and the answer to
the second is, "none ... but you can be sure, things get done
faster, more efficient, and with better results." We usually
don't get rid of people, but redefine their roles.

We make no attempt to get a productivity figure, but we do
make an attempt to evaluate the system. This is done in sev
eral ways): first, we get user feedback on a daily basis; then
meetings and our PROFS Answer Line (PAL) provide addi
tional feedback. We also investigate the usefulness of the
system by means of questionnaires, telephone interviews, and
usage data.

Most importantly, we get feedback on how the system has
changed the way we do business, both as individuals and as a
group. As individuals, we see uses other than OA functions
being used, e.g., spreadsheet. As a group, we see reports
going electronically to our sponsors, remote sites sending
their documents for review back to the main office, and more
dialog among and between groups. We see the service orga
nizations modernizing in large ways.

Health Effects

When the potential health effects of using VDTs came up,
we performed a literature review in the area of terminal effect
on operator fatigue. The study covered optical, musculoskele
tal, morale, and radiation issues. The medical literature re
vealed little risk in all areas. We realize that the specific area
of radiation is not satisfactorily documented and is still an area
of volatile discussion. Additionally, VDT use and eye strain
are still being investigated.

The Computer

In this section, we describe the facilities we employ to deliv
er the office automation service to our customers.

The overriding goal in an office automation environment is
excellent response. The most important aspect of excellent
response is choosing the correct definition of excellent. At the
MITRE Washington Computer Center (MWCC), we aim for
a general consensus that our response is excellent. Customers
are encouraged to send notes or mail to the computing center
management whenever they see a response problem. Regular
presentations are made to the community describing our re
sponse measurement techniques, and as a consulting com
pany, we have an internal interest in both the techniques and
the results.

Office automation makes everyone neighbors and removes
(at least in its initial phases) the traditional management lines
of filtering. Everyone becomes a performance expert, every-

8 National Computer Conference, 1984

one wants a hand in running the computing center; and every
one has instant access to everyone else. Thus, the systems
team must be selected and trained to be customer-oriented;
and although we have a user services section, each member of
the systems team and operations staff must always be aware,
and willing, to work with any user or customer who is having
a problem with the delivered system.

Our present configuration is an IBM 4341 with 16 million
characters of main storage. Please note that this is a historical
accident and not an endorsement of either IBM or the 4341
product line. While this device serves our needs very well,
MITRE is in no way suggesting this as a recommended device,
nor are we in the position to comment on the strength of this
compared with other, similar configurations proposed by
other vendors.

The local area network has substantial performance impact
since it presents each terminal image to the central computer
as though it were locally attached to the CPU, thus yielding
substantial (over one second) performance improvements.
The customer on the remote end of the local network sees
these performance improvements directly.

The path between the central computer and the remote
terminal is operated at 9,600 bits per second, roughly 1,000
characters per second. In a normal IBM remote terminal en
vironment, the screen of a remote terminal remains blank
until the full image is transmitted (1,920 characters plus over
head). Thus, in a normal multibuilding campus environment
such as MITRE, the fastest response that can be delivered is
a woeful two seconds per screen (assuming zero CPU).

Performance in a growth environment requires an under
standing of both the growth effects and the P!ediction of
added load to be placed on the system. As we described
earlier, we have a clear understanding of our expected load
growth. We are adding 15 terminals per month for the next
three years (approximately). The main effect is in the increase
in logged-on-users. We are growing at the rate of approxi
mately five users per month (about one peak logged-on user
per each three new terminals).

The number of active users is a better indication of the load
on the central facility. It is well known that a CPU will support
a large number of terminals if they are not used. In our office
automation environment, logged-on terminals tend to be ac
tive because of a strange anomaly of our office automation
software: it keeps a clock on the screen up to date by refresh
ing the screen once each minute. Thus, the active user count
is also growing by about one user for each three terminals
added to the network.

Capacity comes in chunks; a machine is typically either
upgraded or replaced whenever there is insufficient capacity
to support the required workload. Given this fact, we can
expect response to degrade slowly as the user load grows until
the response goals are no longer being met consistently. At
that point (or ideally, just before), a capacity upgrade is re
quired. This, in tum, causes an improvement in response and
the cycle starts again.

There are many elaborate tools for capacity planning on the
market. Each attempts to predict, based on past performance,
when the present hardware will become saturated and require
upgrade. If you are fortunate to locate a measure. of perfor-

mance that correlates well with response, you may save a lot
of money and time. In our case, interactive response time is
reported by the system. The reported figure is the inboard
response and does not include communication software, line,
and terminal delay. The time the user sees is not as good as
this number, but it is a constant ratio.

We have determined from previous experiments that inter
active response time below 200 milliseconds is excellent. We
are not claiming that the end user sees response within 200
milliseconds of the pressing of a function key. While we be
lieve it is close, we have not measured this number and can
make no such claims. We prefer, however, to state that the
response delivered is well correlated to the number presented,
and the majority of our users feel that response is excellent
when numbers below 200 milliseconds are reported by the
system reporting software.

During a typical day, six to seven seconds per minute are
devoted automatically by the computer scheduling software to
the interactive OA users. This low percentage of the CPU
resource (10%-12%) is sufficient to provide a repeatedly
measured response time of less than two-tenths of a second for
all interactive transactions of a short duration. Those inter
active functions of a longer duration, such as database queries
and massive report generations, are detected by the computer
scheduler and scheduled over a one- or two-second period by
the remaining 80% to 90% of the CPU resource.

Modem disk subsystems provide a large amount of data per
disk. We have found that our disk access mechanism will serve
between 15 and 30 simultaneous office automation users, pro
viding for their storage and systems support needs in an effi
cient and timely manner. Currently disks yield about 10 mil
lion characters of storage per user by just providing sufficient
disk drives to meet the needs of system responsiveness.

This leads to a very well balanced condition in a modem
operating system environment that permits the mixing of sys
tem and user data. Each increment of user growth requires
more storage for private data and more access arms to ensure
excellent system response time. Both are delivered in a bal
anced package with modem disk subsystems.

Real memory is the critical factor in delivering excellent
performance in a central support office automation configura
tion. Each vendor's scheme for mapping virtual storage into
real memory differs in its implementation detail; however, all
must be provided with sufficient real storage to ensure that
most of a user's program is in real storage whenever required.

In our environment, we feel that a program portion, or
page, once referenced should remain in real memory for a
minimum of 10 seconds before being replaced by another
user's pages. Our current 16 million bytes of real memory
constantly better this goal for a peak of 180 simultaneous
users.

Bottlenecks always exist in meeting the stated performance
goals for any computing center. In an office automation envi
ronment, they extend beyond the traditional CPU and DISK
SPACE numbers normally considered in a batch environ
ment. The nontraditional bottlenecks extend to printers, com
munication POrlS, and terminals. High-quality printers are a
must in an office automation environment. It is a myth that
electronic mail replaces paper. Try to read a 500-line message

on a video terminal. A hundred or so lines into it, you auto
matically reach for a magic marker and circle something to go
back to for further study. The result, in our case, is needing
a cloth and a spray bottle to clean the screen several times per
day.

Our customers depend on the timeliness of the printing
facility to meet their production schedules. Several very high
quality printers must be utilized to ensure sufficient capacity
and redundancy for any expected action. For example, this
briefing was prepared electronically on an IBM 6670 LASER
printer using software developed at the MWCC. The final
charts were previewed on the terminal and only a single,
camera-ready copy was produced on the printer.

You might think this would reduce the printing demands.
Actually, the opposite has proven to be true. Our customers
were expecting several-day turnaround for the production of
high-quality VUGRAPHs by the reprographics department.
We have shortened that time to 15 minutes. Unfortunately,
the customer has also shortened the time before the briefing
to work on the presentation by a Jike amount. Thus, the
computing center must be able to deliver very rapid turn
around with extreme reliability whenever the VUGRAPH
software is invoked.

CPU BUSY is the first number everyone wants to know
when looking at response. It is not an important number in an
OA environment since BUSY is normally a measure of batch
rather than interactive workload. A better number is the num
ber of seconds per minute the CPU spends servicing the inter
active workload.

A channel is a path from memory to a direct access device,
tape, or communications controller. In our environment, no
more than six disk drives share a single channel. You may be
able to support more or fewer disks per channel depending on
the speed of the pack and the size of the disks.

There is no single value that can be determined for all
hardware and software configurations; however, anyone con
figuration should work for a balanced configuration, acquiring
hardware and relocating data to meet this need.

In the environment shown, we began an aggressive bal
ancing program in January and are now running a balanced
I/O configuration.

Real memory is the critical determination of response in
office automation or any other environment employing IBM
equipment. We suspect real memory is the critical response
factor in any environment. Real memory usage is a difficult
item to measure precisely. We have examined many different
reports to try and identify a single number of sets of numbers
that characterize the utilization of real storage in our environ
ment.

In doing this, we examined the dynamics of paging in our
computing center. Our system operates in a demand paging
environment. This means that a user's program does not re
quire storage sufficient to hold the entire program before it
can begin operating. The result, in a memory-constrained
environment, is frequent suspension of the program while
additional portions of the code or data are brought into
memory from a backing storage device such as a disk.

When a user's program finishes executing, the code and
data remain in storage for some time until that area of mem-

Implementing a Large Office Automation System 9

ory must be reused by other users for their code or data.
Ideally, an active user will always have all code and data in
storage for each execution of a program. Since OA customers
tend to perform the same functions over and over, there is
generally little or no paging or other I/O activity required;
thus, excellent response is possible without exotic system.
tuning.

In our environment there is a table, called the CORE
TABLE (historical interest in core memory), that is scanned
to find free pages. The system reports the rate of scanning of
this table (SCAN RATE) in one of its regular performance
charts. The change in SCAN RATE took place when we
added an additional eight million characters of real memory to
our overloaded computer.

SCAN TIME, the reciprocal of the SCAN RATE, is a
derived number that IBM does not directly report in their
performance software. A portion of a user program will re
main in real memory for 10 seconds if it is not utilized. For
example, if an OA customer uses a program section more
often than once per 10 seconds, no I/O will result when the
SCAN TIME is longer than 10 seconds.

There is a tendency to understate the costs of implementing
an OA program throughout the company. Management is
prone to forget the second-order costs and focus on the cost
of the terminal and the terminal support cable plant.

Often there is a CPU replacement or upgrade required.
There is always more printout, and printout of a more urgent
nature. In our environment, much of the new printout can be
of a sensitive nature (performance reviews, interview reports)
and must be specially handled and retained for the users in a
dispatch area.

The training demands jump. Prior to OA, our systems pro
grammers conducted classes informally, as our user commu
nity was small and stable. Now, we have a very large percent
age of nondata processing users with urgent training demands.
Frequently, these training demands are placed on us by high
executives who are satisfied only with, "Yes" or "Yes, sir," as
answers to our schedule conflicts.

Documentation must often be written (or rewritten) to ad
dress customers who have never used a central computer be
fore. Have you ever pondered how many different ways to
spell ENTER as you survey the range of terminals that use'
RETURN or various graphic symbols rather than one consis
tent symbol?

Everyone wants to manage the computing staff. Systems
team members suddenly get messages from vice presidents
and are expected to be at their beck and call. Substantial
interpersonnel training is required of the systems team. Mem
bers who were accustomed to hiding are suddenly connected
electronically with everyone in the company.

Operations and system members must become diplomats!
We have replaced nearly our entire systems team since the
office automation project began. New systems programmers
are selected as much for tact as for technical skills-it is a
myth that systems people are hard to deal with and each
systems programmer tries to cultivate that myth. There is a
large group of professional systems programmers who under
stand they are responsible for many millions of dollars and
long for the respect and responsibility that such investments

10 National Computer Conference, 1984

demand. Our staff has an excellent attitude toward our cus
tomers and recognizes that each of them directly contributes
to support our mortgage, hobbies, growth, and professional
aspirations.

One of the good (and bad) side effects of a centralized
office automation configuration is that everyone in the com
pany becomes a performance expert. Terms such as 01 TIME,
SRM, RMF, PAGE RATE, and such are not the measure of
excellence in performance. Use terms such as excellent, good,
fair, and poor; and encourage complaints when response is
other than excellent.

Measure everything easily available in your environment
and look for items that correlate well. Hunt for those numbers
that change sharply with a small change in response. Consider
yourself, or your performance expert, as a detective. Request
regular reports and expect presentations on trends and bottle
necks on a frequent basis.

Excellent performance is mandatory for office automation.
Our software performance measurement tools report the
introduce response time, excluding network delays, as 200

milliseconds maximum. This number is not an absolute mea
surement, but an indication of excellence. Users are consis
tently satisfied when the number is two-tenths of a second or
below and begin to grumble when it rises above three-tenths
of a second.

You must rethink and understand your goals in a large OA
environment. Batch production must take second place on the
machine dedicated to supporting the office automation cus
tomer.

The growth of the computing terminal network will be a
byproduct of OA. The decision to introduce OA carries the
decision to provide a very large number of terminals for use
by professionals and support staff. It is MITRE's goal to
install a terminal in every office occupied by professional or
support staff. You cannot expect people to walk down the hali
to use the telephone or read their morning mail.

User support is absolutely required in an OA environment.
We select a portion of our user support team from the secre
tarial staff to ensure a minimum of jargon and ensure a gOOf

relationship between the customers and the support peopl

Computer hardware and architectures

Faye Briggs, Track Chair

Achieving high performance in computer systems depends not
only on using faster and more reliable hardware devices but
also on major improvements in computer architecture and
processing techniques. The Computer Hardware and Archi
tecture track focuses on these issues. The track is composed
of nine sessions that address the new generation of high
performance computers. The topics of these sessions are

1. Trends in Supercomputer Systems
2. The Fifth Generation
3. VLSI Design
4. 32-Bit Microprocessors
5. Attached Numerical Processors
6. New Microprocessor-Based Computer Architectures
7. Multiprocessor Systems
8. Distributed Processors
9. System Reliability

"Trends in Supercomputer Systems: Design and Use," a
panel session, discusses five major issues: new system organi
zations, design trends, application software, the implications
in operating systems and languages, and the Japanese effort in
these areas. Another panel, "The Fifth Generation Re
visited," follows the very successful panel on the same subject
last year. The objective of this year's panel is to present an
updated report on the status of the various worldwide pro
grams that are fifth-generation computer research and devel
opment efforts.

"VLSI Systems" is a paper session investigating the impact
of VLSI designs and structures on computer architecture and
hardware. The session starts with a tutorial paper on the status
of VLSI. A design automation system and a sample design
and application of a VLSI co-processor will be presented.

The new generation of "32-Bit Microprocessors" and mi
crocomputers is organized as a paper session. This session
looks at the organization of these new high-performance mi
croprocessors and the new challenge for integrating them into
systems. They display advanced architectural features often
found in minicomputers and mainframes. Examples of fea
tures presented are pipelining, prefetching schemes, larger
virtual and physical address spaces, and data buffering
schemes. "New Microprocessor-Based Computer Architec
tures" takes a look at complete computer systems based on
these newer microprocessors.

The next paper session, "Attached Numerical Processors,"
looks at the software and hardware approaches to imple
menting floating- and fixed-point arithmetics for use in the
new generation of powerful microprocessors. The goals and
design tradeoffs for one specific system are presented, and a
new approach to designing a fast numerical workbench is
also discussed. The latter scheme uses a set of replicated
functional processors for fine and coarse granules of numer
ical processing.

Two sessions are devoted to multiprocessing systems. The
previously mentioned session, "New Microprocessor-Based
Computer Architectures," focuses on how to exploit these
new microprocessors in multiprocessing and other distributed
applications. A paper session on multiprocessing investigates
general multiprocessing concepts. The first paper illustrates
the design of a high-performance multiprocessor using off
the-shelf microprocessors. The other two papers discuss new
data-sharing techniques and models to estimate the through
put of multiprocessor systems.

The. "Distributed Processors" session consists of papers
looking at new techniques for network control. The first paper
investigates a new bus arbitration scheme when VLSI func-

tional units are destributed on the network. An innovative
concurrency control mechanism and a practical implementa
tion of a network operating system are also presented.

Finally, we have a paper session, "System Reliability." This
session investigates innovative methods for diagnosing a mul
tiprocessor system and methods for incorporating fault toier-

ance in system-level designs.
In summary, the Computer Architecture and Hardware

track presents exciting continuity in the quest for reliable
high-performance computing structures that are needed for
the exploding computing needs of the late eighties and
nineties.

A multiaccess bus arbitration scheme for
VLSI-densed distributed systems

by JIE-YONG JUANG
and BENJAMIN W. WAH

Purdue University
West Lafayette, Indiana

ABSTRACT

A VLSI-densed shared-bus distributed system is a computer system consisting of a
large number of VLSI processing units (VPUs) connected to one another by a
high-speed bus. Data traffic in such a system is characterized by three distinct
features: large population, bursty transmission, and task-dependent accesses with
priority. A bus arbitration scheme is required to resolve contentions when several
VPUs generate requests simultaneously. Conventional schemes such as daisy chain
ing, polling, and independent requests are shown to be inadequate. In this paper,
a multiaccess code-deciphering (MACD) scheme is proposed. Two versions of the
scheme are studied. The first version is a load-dependent scheme that can resolve
contentions of N VPU s in an average time of O(1ogKJ2 N) steps where K is equal to
the bus width. The second version estimates the number of contending VPUs and
resolves contention in a constant average time independent of load. The proposed
schemes can support task -dependent accesses with priority.

13

INTRODUCTION

Recent advances in very large scale integrated logic (VLSI)
and communication technology, coupled with the explosion in
size and complexity of new applications, have led to the devel
opment of distributed computing systems. These systems pos
sess a large ~umber of general- and special-purpose pro
cessing units joined by an interconnection network. Notable
examples are the PUMPS architecture,l the systolic-array ar
chitecture,2 the recently announced Cyberplus computer /
and specialized systems, such as the processors at the joints of
robot arms. PUMPS is a pattern analysis and image database
machine that incorporates pools of special-purpose VLSI pro
cessing units. In a systolic-array architecture, sets of VLSI
systolic processors, which perform functions such as matrix
inversion, fast Fourier transform, and sorting, are connected
to a host. The Cyberplus computer has a maximum config
uration of 64 processors and a speed of 16 billion calculations
per second. We call this kind of system a VLSI-densed system,
and the processing unit, a VPU.

In a VLSI-densed system, one of the most important issues
is the connection of the VPUs. A shared bus is widely used
because of its simplicity in connection, flexibility in expan
sion, and efficiency in communication. Figure 1 depicts a
typical configuration of such a system. Wah has shown that a
shared bus provides enough bandwidth for a large class of
VLSI-densed systems.4 Large computer systems usually im
plement a number of relatively independent shared buses.
The Cyberplus Computer has four independent "rings" that
can partition the processors for four different applications.

In this paper, we propose a bus arbitration scheme for
resolving contentions when several VPUs try to access the bus
simultaneously. Characteristics of data traffic in a VLSI
densed system are discussed in the next section. Three con
ventional bus arbitration schemes, namely daisy chaining, pol
ling, and independent requests are compared. 5-7 These

Datal Address/Control

SHARED BUS

Bus Interlaces

VPU-! VPU-2 VPU-n

Figure l--{::onfiguration of a VLSI-densed system

A Multiaccess Bus Arbitration Scheme 15

schemes are found to be inadequate for VLSI-densed systems.
A load-dependent Multiaccess Code-Deciphering (MACD)
bus arbitration scheme is proposed, and this scheme is ex
tended so that an estimate of the number of contending VPUs
is taken into account. The enhanced scheme can resolve con
tentions in a constant average time, independent of the num
ber of contending stations.

CONVENTIONAL BUS ARBITRATION SCHEMES

The operations of a VPU alternate between computations and
data communications. We assume that when a VPU requests
bus access, it has a large volume of data to transmit and
requires a rapid response. That is, there is a large peak-to
average ratio of bus use. This type of data traffic is called
bursty traffic. 8 Another characteristic of data traffic is that
messages may have different priorities. Priority, in turn, de
pends on the urgency with which the bus is needed by a certain
VPU for executing a task. The bus should be granted to the
message with the highest priority.

On the other hand, a bus shared by autonomous VPUs
alternates between bus contentions and data transmissions
(Figure 2). A VPU with data ready to transmit is allowed to
contend for the bus during a contention period. In order to
resolve the contentions in the minimum amount of time, a
good bus arbitration scheme should be used. Three bus arbi
tration schemes have been proposed for conventional com
puter systems. They were identified by Thurber as daisy
chaining, polling, and independent requests. 7

In daisy chaining, all input-output devices are connected
serially along a common control line. During the bus-granting
process, a bus grant signal propagates sequentially, device by
device, until a requesting device is encountered. This device
blocks further propagation of the signal and gains control of
the bus by setting the bus busy line. This scheme involves the

Time .----: .. ~

~~

i l Bus utilization period

L .Bus contention period

Figure 2--Operation mode of a shared bus

16 National Computer Conference, 1984

use of at least three control lines: bus grant, bus request, and
bus busy.

In a bus system with polling, a set of poll count lines is
connected directly to all the devices on the bus. In response to
bus requests, a sequence of numbers, each of which COrre
sponds to the address of a device, is generated on the poll
count lines. When a requesting device finds that its address
matches the number on the poll count lines, the bus is granted
to this device, and the bus busy line is set. This scheme re
quires flogz Ml poll count lines, where M is the number of
devices on the bus, and two additional control lines are for bus
request and bus busy.

In an independent-request scheme, each device has a sepa
rate pair of bus request and bus grant control lines connected
to the arbitrator. When a device requests bus access, it sends
a request signal on its bus request line. Bus control will be
granted to one of the requesting devices based on prede
termined priorities assigned to the devices. For M devices on
a system implementing this scheme, more than 2M control
lines are necessary. This scheme is the most costly as far as the
number of control lines is concerned.

As VLSI -densed systems bear distinctions in the operating
environment from that of conventional systems, the above bus
arbitration schemes are found to be inadequate. We examined
these schemes with respect to the control line complexity, the
time complexity and the capability of task-dependent priority
accesses.

1. Control-line complexity. The polling scheme is imprac
tical when the number of VPUs is large because the
number of poll count lines must be large enough so that
each VPU can be identified by a unique address. A pair
of control lines is needed for each VPU in the inde
pendent-request scheme. This is impractical even when
the number of devices is moderately large.

2. Time complexity. Daisy chaining and polling are basic
ally sequential schemes. They are inadequate for han
dling bursty traffic, which is characterized by a high ratio
of peak-to-average data transmission rate and the fact
that only a few VPU s are requesting bus access at any
time. Suppose there are N out of M independent re
questing devices, the average time to identify a re
questing device is MIN. When N is small and the data
transmission time is short, the overhead for bus arbi
tration is large.

3. Capability of task-dependent priority accesses. Priority
of a device connected in a daisy chain is determined by
its physical position in the chain. In a polling scheme, it
is determined by the device's order in the sequence of
polling counts. The priorities of the bus request lines in
an independent-request scheme are usually fixed at de
sign time. Since the priority of devices cannot be
changed easily, the three existing schemes are incapable
of handling task-dependent priority accesses.

The above observations reveal that none of the three con-
ventional bus-arbitration schemes is sufficient for the needs of
VLSI-densed systems. They call for a new arbitration scheme
that can handle bursty traffic and that will access with priority.

LOAD-DEPENDENT MULTIACCESS ARBITRATION
SCHEME FOR VLSI-DENSED SYSTEMS

In this section, a deterministic MACD scheme is presented.
The scheme is discussed with respect to access without and
\\lith priority.

MACD Bus Arbitration for Access without Priority

We have previously studied a window search scheme to
resolve contentions in a local multiaccess network.9, 10 In that
scheme, a global window is maintained by ali the stations, and
each contender generates a contending parameter. A con
tender is eliminated from contention if its parameter is outside
the window. A distributed control rule is applied to expand or
to shrink the window in each contention step. As the con
tending process proceeds, the window size becomes smaller
and smaller. Eventually, a unique contender is isolated in the
window.

We can adapt the above scheme for resolving bus con
tentions. To support the scheme, two mechanisms are needed:
a collision detection mechanism and a window control mech
anism. The collision detection mechanism can be imple
mented by using the Wired-OR property of the bus. When
two or more VPUs write simultaneously on the bus, the result
is simply the bitwise logical OR of these numbers. By inter
preting the result after a write, each VPU can determine
whether a collision has occurred. The window control scheme
described in References 9 and 10 is based on information of
previous contentions and an estimate of the channel load. It
is too complicated to be useful in the bus environment. The
MACD technique, however, is a fast and effective scheme
that combines window control and collision detection in a
simple manner.

To describe the scheme formally, let us assume that there
are N requesting VPUs, and each VPU writes a binary num
ber ~ (i = 1,2, ... ,N) to the bus. The ~s are chosen from a
structured code space S with the following properties:

Xi, X j E S, i =F j, are related, i.e.,
Xj>Xj or Xj<Xj (1)

f(XI EB Xz EB ... EB XN) ~

max{X1' Xz, ••. ,XN} Xj E S, N ~ 1 (2)

where EB is the bitwise logical OR operator. By reading data
on the bus and applying the code-deciphering function, f, a
VPU knows the maximum number written on the bus. This
information provides a basis for the window search mech
anism to set the window. If the initial window is set so that the
maximum value is included in the window, then an optimal
detection procedure can be designed so that exactly one VPU
will be isolated finally.

In order for the MACD technique to work properly, we
need to prove that a code space that satisfieS Equations 1 and
2 does exist. The following theorem shows the existence of at
least one such code space.

Theorem: There exists a code space S of n-bit binary num
bers and a deciphering function f which satisfy the con
straints in Equations 1 and 2.

Proof:LetS={Oa10b la+b=n-1, a 2': 0, b2':O}where
(Y' represents a consecutive sequence of k zeroes. Then for
any two different elements u and v in S, it is easy to verify
the relatedness property. For any n-bit binary number,
X = (Xl X2' .. xn)' we define a deciphering function f on X
such that:

f(X) = ()p lOn-p-1, if Xp +1 = 1, Xj = 0 for all 1:5 j:5 p.

We claim that Sand f as defined above satisfy Equations 1
and 2. To verify this, we can define N codes such that:

Ci = oa(l) 10n- a(0-1, i = 1, ... ,N

By definition of S,

~ES,

and

where m = min{a(i) Ii = 1,2, ... ,N}. An overlapped vari
able Y = (Y1 Y2' .. Yn) is defined to be the bitwise logical
OR of the CiS; that is,

(Y1 Y2'" Yn) = C1 EB C2EB·· . EBCN.

Y as defined retains the following properties:

Ym+1 = 1,

and

Yk = 0 for all k :5 m.

By definition of the deciphering function f,

feY) = om lOn-m-1

or

Using code deciphering, a bus arbitration protocol can be
designed. The network supporting the protocol should have
the following components: a synchronous parallel bus for
transmitting data and codes, a bus status control line for indi
cating the busy status of the bus, and an intelligent VPU-bus
interface for each VPU that is capable of (1) sensing the
bus-status control line, (2) reading data from the bus, (3)
writing data to the bus, (4) generating random codes, and (5)
deciphering codes read from the bus. The time interval for
generating a random number, writing the number to the bus,
and deciphering the code read from the bus is called a slot.

Whenever a VPU has data ready to transmit, it checks the
bus status first. If the bus is in use, it waits until the bus
becomes idle. To contend for the bus, a VPU chooses a code
randomly from the code space S and writes it to the bus. The
resulting code written on the bus is the bitwise logical OR of
all the codes written by the contending VPUs. Each con
tending VPU reads the resulting code written and computes
the deciphered code using the code-deciphering function. It
compares the deciphered code with the code generated lo
cally. Three results are possible:

A Multiaccess Bus Arbitration Scheme 17

1. the locally generated code is equal to the code read
2. the locally generated code is not equal to the code read

but is equal to the deciphered code
3. the locally generated code is equal to neither the code

read nor the deciphered code.

The last outcome implies that this VPU has not generated
the maximum code and has to wait until the next contention
period. The first and second outcomes imply that this VPU
has generated the maximum code and should be allowed to
transmit. However, there may be other VPUs that have gener
ated the same code. If there are more than one VPU in this
set (hidden collision), the contention resolution process has to
be repeated. There are two ways to detect hidden collision.
First, each VPU in this set generates an n -bit random number
and writes it to the bus. To prevent the possibility of two VPUs
generating the same random number, each VPU can use a
distinct n-bit station identification code as the random num
ber. If the number read from the bus matches the number
written, then hidden collision has been resolved. If collision is
detected, the MACD scheme is repeated. Second, we can
assume that hidden collision is not resolved, and the collision
detection process is repeated. The process has to be repeated
a number of times until there is high confidence that exactly
one VPU is isolated.

When the probability is high that a large number of stations
have generated the maximum code, the second method of
resolving hidden collision is better because it is very likely that
the MACD process has to be repeated, and the time for
propagating the random number in the first method is lost. On
the other hand, if the probability is high that exactly one
station has generated the maximum code, the first method is
better because hidden collision can be detected efficiently. In
the second method, the code space S is much smaller (the size
is n for an n-bit number). As a result, a few additional steps
are necessary in order to achieve a high enough confidence
that there is no hidden collision. In this paper, we have used
the first method of resolving hidden collisions because the
number of contending VPUs is usually relatively small com
pared to the bus width. Even when this is not true, we propose
in the next section a method of using a variable-sized code
space so that the number of VPUs contending in a slot is
small.

It is important to note that the code space discussed in
Theorem 1 (unary representation) is not unique. If binary
codes are used, Equation 1 is still satisfied. A new code
deciphering function has to be designed so that Equation 2 is
satisfied. By detecting the most significant bit that is mis
matched among the codes generated by the contending VPUs,
half of the stations, on the average, can be eliminated in each
contention. This is not as efficient as unary-code representa
tions because 1fW stations remain (W is the bus width) after
each contention, if unary codes are used.

MACD Bus Arbitration for Priority Access

In a system with priority accesses, a VPU is assigned a
priority level by the task that invokes its execution. The set of

18 National Computer Conference, 1984

VPUs with the same priority level constitutes a priority class.
The global priority class is the class of contending VPUs with
the highest priority level in the system. In a contention period,
bus control is granted to a VPU that belongs to the global
priority class.

To support accesses with priority, the system should be able
to identify the global priority. One way to do so is to add a set
of control lines to the system, each of which corresponds to a
priority level. A requesting VPU is responsible for setting the
corresponding priority line. The global priority level can then
be identified by finding the control line with the highest prior
ity level that is being set. This scheme works well when there
are a limited number of priority levels.

On the other hand, the MACD scheme proposed earlier
can be adapted to priority accesses in two ways: First is
MACD by code space partitioning. The code space of the
original MACD scheme is partitioned into subspaces so that
each subspace corresponds to a priority level. The partition
should satisfy the following condition:

If X E Sj, Y E Sj and i > j, then X > Y

where Si and Sj are subspaces corresponding to priority levels
i and j respectively. Using this partitioning, priority levels are
encoded into the contending codes, and the deciphering func
tion proposed in Theorem 1 can identify the global priority
level and the largest code in this level.

The other method of adaptation is MACD by two-phase
identification. The partitioning of code space is practical when
the number of priority levels is relatively small as compared to
the size of the code space. When the number of priority levels
is large, a contention period can be divided into two phases:
a priority resolution phase followed by an intraclass conten
tion phase. In the priority resolution phase, a strictly in
creasing function, which maps a set of priority levels onto a
code space, is defined in each contention slot. The mapping is
done so that the minimum number of priority levels is
assigned to the same code. In a contention slot, every con
tending VPU writes. its code to the bus and deciphers the
number read from the bus. A set of VPUs with the highest
priority levels (corresponding to the deciphered code) is iden
tified. The process is repeated until the set of VPUs with the
highest priority level is identified. When the bus width is
larger than or equal to the number of priority levels, this phase
can be completed in one contention slot.

Evaluation of Load-dependent MACD Bus Arbitration
Scheme

Bus arbitration schemes can be evaluated with respect to
the following attributes: complexity of implementation, com
plexity of contention time, flexibility, reliability, and priority
access capability. The MACD scheme requires one control
line (bus busy). The control logic for the bus interface is
relatively simple. A VPU can be added to or removed from
the bus without disturbing other components of the system.
This system is, therefore, flexible for expansion and con
venient for the removal of faulty units. The MACD scheme

can support accesses with priority. Moreover, the scheme is
efficient as far as contention time is concerned. The analysis
and simulation results are shown in the remaining part of this
section.

The time complexity of contention resolution can be mea
sured by the mean number of contention slots in each con
tention period. To analyze this complexity, let N be the num
ber of contending VPUs at the beginning of a contention
period and K be the size of the code space equal to the bus
width W. Assuming that codes are chosen randomly, a VPU
generates a given code c; (i = 1,2, ... ,N) with probability
IfW. Designate the maximum of N such CiS as em, the m-th
code in the code space, i.e., Cut = max{c; I i = 1,2, ... ,N}. If
exactly one VPU generates code Cm and other VPUs generate
codes less than em, then the contention is resolved. The proba
bility for this event to occur is:

(
1)(m _1)N-l

q(mIN,K=W)=N W W- (3)

Since m ranges from 1 to Wand these W events are mutually
exclusive, the probability that contention is resolved in one
step is PK,W,N where K = W is:

W

PK,W,N = L q(mIN, K = W)
m=l

_ w (1) (m - I)N-l -LN- -
m=l W W

_ N ~l N-l
--.LJ U

WN
u=l

(4)

In Figure 3, PK, W, N is plotted against NfW. It is observed that
the probability of success in one attempt is higher if the code
space (equal to bus width) is larger and the number of con
tending VPUs is kept constant. It is observed that PK, W,N is a
strictly decreasing function of N and decreases to zero when
N is large. This means that the MACD technique is unable to
resolve contention in one step when the load is extremely
heavy. However, most of the contending VPUs are eliminated
in one attempt. The number of survivors is reduced signifi
cantly as contention proceeds, and the probability of success
is increased consequently. The following analysis demon
strates this phenomenon.

Given that the maximum of codes generated by the con
tending VPUs is Cut, the m-th code in the code space. Define
indicator variables Xi, i = 1, ... ,N,

Let

Xi = {OI with probability 11m
with probability 1 - 11m

i=l

The random variabie Z indicates the number of VPUs that
generate Cm in the contention. These VPUs are allowed to
contend in the following steps. The expected value of Z given

m, N, and W, E(Z I m, N, W), represents the average number
of surviving VPUs. It is easy to show that:

N
E(Zlm,N,W=K) =-.

m
(5)

Furthermore, the probability that the current maximum code
with N contending stations and a bus width of W is Cm can be
expressed as:

(m)N (m l)N p(mIN,W=K)= W - ; (6)

The expected number of VPUs that would survive a con
tention is:

E(ZIN, W=K)= ~lE(zlm,N, W=K)

p(mIN, W=K)

2N
<--W (7)

E(ZIN,W=K) 2
The ratio 'Y = N < W is a measure of the aver-

age fraction of contending VPUs that can survive a con
tention. Let Nt(t = 0, 1, ...) be the expected number of con
tending VPU s in step t. By Equation 7, we have

t~O.

Therefore,

z
.;
:.::
~

~
§
:s
rtJ

"-'
0

~
.-t
.D
m

.D
0
<..
0...

A Multiaccess Bus Arbitration Scheme 19

1.10

W=32 K=5N
.9S0

.800 load-independent MACD Scheme

.6S0 W=8 K=5N

• SOD

.350

.200
load-dependent MACD scheme

.OSO

-.100 +---...--...--.,--.,--.,---r---r---r--""T"""--i
0.00 2.00 't.00 6.00 8.00 10.0 12.0 1't.0 16.0 18.0 20.0

(No. of contending VPUs) /w

Figure 3-Probability of success in one contention using multiaccess
code-deciphering bus arbitration scheme (K is the size of code space; W is

the bus width, N is the number of contending VPUs)

7.00 ~-------------------...,

6.00

Load-dependent MACD scheme

5.00

't.00

3.00

2.00
Load-independent MACD scheme (K= 5N)

1.00 +----,---.,----,---.,----r---r--~---i
10 70 100 115 130

No. of contending VPUs(N)

Figure 4--Average number of contention slots for resolving conflicts of bus
requests using multiaccess code-deciphering scheme (K is the size of code

space; W is the bus width, N iG the number of contending VPUs)

(8)

As shown in Figure 3, we can see that PK , W,N~ 1 as N < W,
and PK , W, N ~ 0 as N ~ W. This fact reveals that the con
tention process of MACD can approximately be divided into
two phases. The effect ofthe first phase, that is, when Nt > W,
is in reducing the number of contending VPUs. When the
process enters the second phase, Nt::S; W, contention can be
resolved in about one step. The overall contention process will
stop within an average of logwl2 No steps. Figure 4 shows the

20 National Computer Conference, 1984

simulation results that confirm our analysis. The number of
contention slots shown includes the additional slots required
for resolving hidden collisions. MACD performs better when
the bus width is large.

LOAD-INDEPENDENT MACD BUS ARBITRATION
SCHEME

As shown in Equation 8 and Figure 4, the scheme proposed in
the last section is load-dependent and performs well when the
bus width is large and the number of contending VPUs is
small. Since the number of contention slots grows logarith
mically with the number of contending VPUs, the scheme is
inefficient when the number of contending VPUs is large or
the bus width is small.

The cause for the load dependency is the fixed code space.
In order to reduce the number of VPUs contending in a slot,
th code space can be designed so that it is a function of the
number of contending VPUs and the bus width. By choosing
the size of the code space so that the number of VPUs con
tending in a slot is a relatively small constant as compared to
the bus width, contention can be resolved in a time that is
load-independent. We have studied a similar scheme for con
tention resolution on carrier-sense-multiple-access bus net
works. 9

,l0

The solution depends on choosing the size of the code space
and estimating the number of contending VPUs. Suppose N
can be estimated accurately, and a code is chosen so that
KIN = r. The probability that contention is resolved in one
step (refer to Equation 4) is:

PK,N,W = ± q(m I N = Klr, K, W)
m=K-w+l

I \ N K-l

= N{ I-)' L UN
-

1

\N u=K-W
(9)

where q(m I N = Klr, K, W) is defined in Equation i The val

ue of PK, N, W is plotted in Figure 3. It is seen that the success
probability is higher and load independent as a result of the
increase in the code space size.

The expected number of VPUs that would survive a con
tention can also be derived similarly. In this case, the number
of surviving VPUs is N if no station contends in the slot. That
is, Equation 5 is changed to:

E(Z I m, N = Klr, W) = {-N~ K s; m s; K - W + 1
1s;ms;K-W

(to)

The definition ofp(m I N, W) in Equation 6 remains true. The

expected number of surviving VPUs in one contention is:

E(Z I N = Klr. W) = f E(Z I m, N
'I "m=l ' I

= Klr, W)p(m I N = Klr, W)

Q)

bO
C1l

~
>

<>:

•. s {

".13 \

I' ,\

3·715i"

3.38

3.00

I
··Q1
2'~1

1._1
1.:50

1

estim\ated load /
I

, I , / '-___ ~~---J - --.... _------_ ..

i i i i i i

3 .. 6 7 9 10

I
I

I
I

I

i

I
I

I

12

r = (code-space size) / (number of contending VPUs)

I
13

Figure 5-The optimal choice of the code-space size (W = 16, N = 60)

m=K~W+l ~. p(~ I N

= Klr, W) + :~~N.p(m I N

=Klr,W)

s;2~ + [(K~W)N _

(K -~ -1)NJ<K - W)N

(11)

Since KIN = r is a constant, E(Z I N = Klr, W) is a constant

independent of load (= N) if K is large as compared to W.
The correct choice of r is shown in Figure 5. There is an

optimal choice of r so that the number of contention slots is
minimum. The optimal value depends on the value of Wand
is load independent (assuming that N is known). The value is
approximately five for the combinations of Wand N tested.
Using the optimal value of r, the performance of the load
independent MACD scheme is plotted in Figure 4. In gener
ating these results, the size of the code space, K, is chosen to
be W if r x N is smaller than W; that is, the scheme proposed
earlier is used when the load is light. It is observed that the
proposed scheme requires a small constant number of slots
when the load is heavy.

The proposed scheme "requires N to be known. In general,
this is not possible due to the distributed control. One way is
to estimate N based on information collected during the con
tentions. However, this information can indicate that one or
more contending VPUs have generated the same code, but
cannot reveal the exact number of contending "'PUs. If the
number of VPUs contending in a contention slot is small, a
reasonable estimate of N can be obtained by using the number

A Multiaccess Bus Arbitration Scheme 21

Table I-Comparison of MACD with conventional bus arbitration schemes. (M = number of VPUs connected to the bus)

r ..

Comparison or MACD with Conventional Bus-Arbitration Schemes

f----

Attributes Hardware Compiexity Contention Time Relia. bility Flexibility Priority

I I

I I Control Control light I I Schemes Logic I Line Loa.d

l

I
!.fACD O(M) 1 ",1

Da.isy-
O(M) 3 O(M)

Cha.ining

Polling O(M) 2+log2M O(M)

I

Independent
O(M) 2M O{log2M)

Requests

of bits that ate ones in a contention slot, B, as the number of
VPU s contending in this slot. That is,

" BxK N=-
W

(12)

This will systematically underestimate the actual value of N,
and some correction to the value of r used should be intro
duced. In Figure 5, the optimal value of r that should be used
is slightly different when the estimate in Equation 12 is used.
The number of contention slots required is slightly increased
when N is estimated.

A maximum-likelihood estimate of N also can be derived.
However, the complexity of such a scheme is high and cannot
be used in real-time applications.

CONCLUSION

In this paper, we have studied the problem of bus contentions
in VLSI-densed shared-bus systems. Data traffic generated by
VPUs in such systems are characterized by three distinct

Hea.vy Fa.ilure Ea.sy Ta.sk

Loa.d Tolera.nce Reconfig. Dependence

NI Yes Yes Yes

NI No No No

Nt Yes No No I
!

O{log2M) Yes No No I

features: large population, bursty transmissions, and task
dependent priority accesses. A bus arbitration protocol is nec
essary to resolve access conflicts when several VPU s are trying
to access the bus simultaneously. Conventional schemes such
as daisy chaining, polling, and independent requests are
shown to be inadequate because of the large overhead or the
high complexity of implementation.

The load-dependent MACD scheme presented in this paper
can resolve contention of N VPUs in an average time of
0(10gW/2 N) steps where W is the width of the bus. For bursty
traffic in a system with a parallel bus, N is usually relatively
small as compared to W. Nearly perfect bus scheduling is
achievable. An extended scheme is proposed that estimates
the value of N and uses a code space of variable size de
pending on N. It is found that contentions can be resolved in
a time that is load-independent.

The proposed MACD scheme can support task-dependent
priority accesses that cannot be supported by conventional
bus arbitration schemes. Comparisons between the MACD
and the conventional bus arbitration schemes are summarized
in Table I. These comparisons clearly indicate that the MACD
scheme is superior in almost every respect.

22 National Computer Conference, 1984

ACKNOWLEDGMENT

This research was partially supported by National Science
Foundation Grant ECS80-16580 and by CIDMAC, a research
unit of Purdue University, sponsored by Purdue, Cincinnati
Miiicron Corporation, Controi Data Corporation, Cummins
Engine Company, Ransburg Corporation, and TRW.

REFERENCES

1. Briggs, F. A., K. S. Fu, K. Hwang, and B. W. Wah. "PUMPS Architecture
for Pattern Analysis and Image Database Management." IEEE Trans
actions on Computers, C-31 (1982), pp. %9-983.

2. Kung, H. T. et al. VLSI Systems and Computations. Rockville, Md.: Com
puter Science Press, 1981.

3. Control Data Corporation. "Technical Information: Control Data Cyber
plus." News Release and Fact Sheet, Oct. 1983.

4. Wah, B. W., "A Comparative Study of Distributed Resource Sharing on

Multiprocessors." Proceedings of 10th Annual International Symposium on
Computer Architecture. Stockholm, Sweden: ACM, 1983, pp. 300-308c.

5. Baer, J. Computer Systems Architecture, Rockville, Md.: Computer Sci
ence Press, 1980.

6. Hayes, J. P. Computer Architecture and Organization. New York: McGraw
Hill,I978.

7. Thurber, K. J. et al. "A Systematic Approach to the Design of Digital
Bussing Structures." AFIPS, Proceedings of the National Computer Confer
ence (Vol. 41), 1972, pp. 719-740.

8. Tobagi, F. A. "Multiaccess Protocols in Packet Communication Systems."
IEEE Transactions on Communications, COM-28 (1980), pp. 468-488.

9. Wah, B. W. and Y. Y. Juang, "Load Balancing on Local Multiaccess Net
works." Proceedings of 8th Conference on Local Computer Networks, Min
neapolis, Minn.: IEEE, 1983, pp. 55-61.

10. Juang, J. Y., and B. W. Wah. "Unified Window Protocol for Local Multi
access Networks." Proceedings of Third Annual Joint Conference of the
IEEE Computer and Communications Societies. San Francisco, California:
IEEE, 1984, pp. 97-104.

11. Metcalf, R. M., and D. R. Boggs. "Ethernet: Distributed Packet Switching
for Local Computer Networks." Communications of the ACM, 19 (1976),
pp. 395-404.

DMERT-An operating system
for telecommunications systems

by s. F. HO, c. J. RICHARDSON, W. C. SCHWARTZ
AT&T Bell Telephone Laboratories
Naperville, lllinois

ABSTRACT

The duplex multi-environment real-time (DMERT) operating system is a process
oriented, fault-tolerant operating system designed to provide a versatile software
base for telecommunication systems. DMERT provides general fault recovery capa
bilities, virtual machine layers to meet application needs, a UNIX environment, and
110 interfaces to peripheral devices. This paper gives a detailed description of the
DMERT architecture and its capabilities.

This paper is a revision of the paper presented in the 1983 National Communications Forum.

23

DMERT -An Operating System For Telecommunications Systems 25

INTRODUCTION

A major goal of the duplex multi-environment real-time
(DMERT) operating system is to provide a versatile software
base to fulfill the varied processing needs of telecommunica
tion applications. While the needs of these applications are
different, they have several common characteristics. First, a
major component of these applications is software. Second,
the major mission of this software is real-time oriented with
response times as short as several milliseconds. Third, each
application has a need for continuous operation and hence
stringent processor availability requirements. Fourth and fi
nally, each application is to be operated over a long period of
time, which requires extensive software for monitoring and
reporting on system status as well as changing and upgrading
the system while it is in operation. To satisfy these needs,
DMERT is designed to:

1. Support multiple real-time applications. It is necessary
for the DMERT operating system to support many
applications, each with different real-time demands.
Some applications include databases that need many
disk jobs serviced quickly. Others control telecommuni
cation equipment requiring rapid response to an event
such as an interrupt and dedicated processing capacity
for an interval thereafter. To satisfy these diverse needs,
a design objective was established to provide modularity
in the operating system that allows a high degree of
application tailoring.

2. Improve application development productivity. Soft
ware for telecommunication applications is usually im
plemented in assembly language. To increase pro
ductivity of the developers, an objective of efficiently
supporting the C programming language l was estab
lished. Telecommunications systems often have major
software components that are not time critical. Hence a
design objective of DMERT was to support a UNIX
interface as a familiar operating system environment for
the non-time-critical software.

3. Be fault tolerant. To meet the reliability objectives of the
applications, it is necessary to support software packages
for error checking and recovery. In order to reduce the
complexity of both the operational and recovery com
ponents of the system, a design objective was established
to separate recovery software from the core of the sys
tem. An objective of incorporating extensive internal
consistency and integrity checks within all software com
ponents was established to ensure that critical software
modules protected themselves from errors in other parts
of the system.

In summary, DMERT is a process-oriented operating sys
tem designed to support both real-time and time-shared oper
ations, with an emphasis on high reliability and availability.
This paper outlines the DMERT capabilities and describes
how these design objectives are achieved. The second section
gives an architectural overview of DMERT. The process
types, process communication primitives, and the time
sharing and real-time scheduling policies are described. The
last section highlights DMERT features for achieving the high
reliability and availability goals.

DMERT ARCHITECTURE

The architecture of DMERT is based on an earlier system,
MERT,2 a real time operating system derived from the UNIX
operating system.3 The "D" in DMERT reflects one of the
characteristics that distinguishes it from the previous two
operating systems, namely DMERT is designed to execute on
a fault-tolerant 3B20D duplex processor.4 Thus, the DMERT
architecture is dependent on proven concepts from UNIX and
MERT, which are extended to support highly reliable
telecommunication applications.

One of the basic goals for DMERT was to build modular
and independent processes, each having localized data known
only to itself. Hence, the notion of a process is fundamental
to the DMERT architecture, which is essentially composed of
a kernel and a collection of cooperating, concurrent pro
cesses. The following sections define what a process is and
how processes communicate with each other.

Definition of a Process

A process is a collection of related, logical segments (pro
grams and data) that can be brought into memory to form an
executable entity. A segment is the basic memory entity in
DMERT. A segment is composed of 1 to 64 pages, each 512
32-bit words in length. Segments can grow dynamically in
increments of a page. A process typically consists of four
segments: code or text, a stack used for temporary data, a
data segment containing global data, and a special type of data
segment called a process control block (PCB). The PCB seg
ment contains unique information that identifies the process
to the operating system. This information includes the process
number, type of process, priority, and address space qualifiers
that define the virtual address for a process. Each process has
its own virtual address space of up to 128 segments. These
virtual addresses are mapped to physical addresses by 3B20D
hardware under the control of the DMERT operating system.

Besides the regular process entries for handling process

26 National Computer Conference, 1984

events and interrupts, any process may have a fault entry. A
process is entered at its fault entry when another process sends
a fault to this process, or a hardware/software fault is detected
by the system when the process is running. The purpose of the
fault entry is to give the faulted process an opportunity to
perform some recovery action based on where the process was
faulted and why. Every faulted process has a fault code that
indicates the nature of the fault and state information that
indicates the state of the process at the time the fault
occurred.

A process can be dynamically created to perform a set of
functions and then terminated when the task is completed.
Processes that continually perform work remain "alive" at all
times, however, they may sleep or be inactive until an event,
message, or interrupt occurs. An inactive process may be
swapped out to the disk, i.e., the process memory image is
copied to the disk and the memory occupied by the process is
released. This keeps main memory to be loaded with the
working set of processes at a given point in time.

Process Types

DMERT has four basic types of processes: kernel, kernel
process, supervisor process, and UNIX process. DMERT
may be viewed as a hierarchy of virtual machines, where
successive levels put additional restrictions 'on access right and
further remove the programmer from details of the physical
machine. However, the high level may take advantage of ser
vices provided by the lower levels. In general, the higher the
level, the more services are available to the application pro
grammer; the lower the level, the more real-time efficient is
the program execution. This level structuring of virtual ma
chines permits DMERT to manage real-time applications,
while at the same time providing the flexibility of a time
sharing system. This approach avoids contention for system
resources with priority tasks and simplifies the implementa
tion effort for lower priority tasks.

Kernel

The DMERT kernel provides the most primitive virtual
machine. The kernel handles hardware interrupts, timer inter
rupts, and operating system traps. In all cases, the kernel
saves the state of an interrupted process, provides whatever
service is requested, and restores the state of the interrupted
process. The kernel services are basic and they execute
efficiently.

Also part of the DMERT kernel are special processes that
provide scheduling, memory management, and other ser
vices. Special processes behave as kernel processes, except
that they do not have their own virtual address space, but
rather reside in the kernel's address space. These special pro
cesses communicate with the kernel through function calls
instead of operating system traps, and they have access to
global system data. For example, the memory manager and
the scheduler are two special processes in DMERT. The
memory manager loads processes into memory, selects seg
ments to be swapped out to disk when additional main memo-

ry is required, and provides routines that may be called by the
kernel. The scheduler controls the execution of time-shared
processes, i.e., supervisor and UNIX processes.

Kernel processes

Kernel processes comprise the next virtual machine layer in
DMERT. They are completely interrupt driven and are de
signed to provide time-critical processing in a real-time envi
ronment. Kernel processes have their own virtual address
space. However, they share the kernel's stack and the kernel's
message buffer segment to provide quick access to arguments
of operating system traps and fast message communications
between processes. Kernel process segments are always
memory resident to ensure rapid response to events such as
interrupts. The various peripheral device drivers and the file
manager are examples of kernel processes.

Supervisor and UNIX processes

Supervisor and UNIX processes form the third layer of
virtual machine. These processes can use all the services pro
vided by the kernel and kernel processes. Supervisor and
UNIX processes provide time-sharing services that can be
considered background tasks. They share the real time of the
processor with each other according to priorities administered
by the scheduler. In general, these processes are not locked in
memory and can be swapped out. Thus, supervisor and UNIX
processes may take longer to dispatch than special and kernel
processes.

UNIX processes are actually supervisor processes, but a
shared library hides the supervisor interface and replaces it
with a UNIX environment. Conceptually, supervisor and
UNIX processes are different, but they are the same from the
operating system's point of view.

Inter-process Communication

DMERT provides a rich set of inter-process communication
and synchronization mechanisms including messages, events,
inter-process traps, and shared memory. These inter-process
communication primitives are fundamental to the DMERT
structure. Most of the system services are requested by an
exchange of events and messages between a requesting pro
cess and either a system process or the kernel.

Messages and ports

Processes are in general independent and distinct entities.
Two processes working together on a task must be able to
exchange information. To satisfy this need, messages may be
sent from any level process to any other level process. The
sender needs only to know the target process number and a
pre-agreed format of the message. An optional acknowl
edgement message is provided so the sender can synchronize
actions with the receiver.

Process ports permit processes to communicate with each

DMERT -An Operating System For Telecommunications Systems 27

other without knowing each other's process number. A pro
cess port is a globally known "device" to which a process may
attach itself for receiving messages. Other processes may com
municate with a process connected to a port by sending mes
sages to that port. Thus process ports permit unrelated pro
cesses to communicate with each other.

Events

Communications between processes may occur using an
event mechanism. An event is a one-bit message that can be
sent from one process and be interrogated by the receiving
process. Presently, 32 events are available, of which the
DMERT operating system reserves 16 for its use. Application
processes communicating using events can define the usages
of the remaining 16 events. Thus, two or more processes can
communicate internal states using events.

Inter-process traps

Trapping implies a transfer of control from one process to
another with the passing of input parameters to the target
process. The trapped process returns status and control back
to the trapping process after if has completed the requested
service. Any process may trap to another process, as long as
the argument-passing protocol is mutually agreed upon.

Shared memory

Processes are built with a view of their own virtual address
space and in general cannot access any other process's address
space. This affords protection. However, sharing of large
amounts of data is difficult with messages or events. Cooper
ating processes that must exchange information at higher rates
than those supported by message or events can share seg
ments. A shared segment is a part of the virtual address space
of several processes simultaneously.

Process Scheduling

The DMERT operating system simultaneously supports
both a real-time and a time-sharing philosophy. Kernel pro
cesses operate in the real-time environment. The remaining
processor time is shared among supervisor and UNIX
processes.

Real-time

DMERT's real-time allocation strategy is based on exe
cution levels and preemptive scheduling. DMERT maintains
a process hierarchy based on 16 execution levels. A kernel
process can belong to levels 3 through 15 (levels 0 through 2
are reserved for the time-sharing environment). Kernel pro
cesses are used to implement tasks with stringent real-time
requirements. DMERT dispatches processes at the highest
execution level first. Generally, once a kernel process is dis-

patched, it is allowed to run to completion, i.e., until the
kernel process relinquishes its control of the processor. How
ever, if another kernel process at a higher execution level is
awakened, DMERT preempts the executing process. Upon
completion of the preempting process, if no other higher level
processes were also awakened, DMERT resumes the sus
pended process.

DMERT applications are allowed to assign their own pro
cesses' execution levels, thus allowing applications to control
and distribute the real time. This approach is flexible and
supports a variety of applications.

Time sharing

The portion of real time not utilized by the kernel and
kernel processes is time shared among supervisor and UNIX
processes. Processes supporting the time-shared environ
ment, such as the scheduler and memory manager, reside at
execution level 2. These processes are at the bottom of the
real-time hierarchy and gain control of the processor only
after all other real-time work is completed.

Supervisor and UNIX processes execute at levels 0 and 1.
The scheduling hierarchy of supervisor processes is based on
software priority. The major difference between priority in
the time-sharing environment and execution levels in the real
time environment is that DMERT adjusts software priorities
dynamically depending on the I/O characteristics of the pro
cess and the system load, whereas execution levels are fixed.

RELIABILITY AND AVAILABILITY

The DMERT operating system must be able to support the
stringent electronic switching system's reliability require
ments. To minimize the number of system failures and the

. associated down-time per failure, DMERT supports audits
and overload control, progressive initialization, reconfigura
tion, preventive and corrective maintenance, field updates,
and system updates. These features are described in the fol
lowing sections.

Audit and Overload Control

The DMERT audit package verifies the validity of critical
system data. Audit strategies are based on the inherent prop
erties of the data structures and redundancies that are built
into the structures. Audits are distributed throughout the sys
tem within processes that control the data to be audited.
Audits can be issued by manual requests or the audit control
structure. The DMERT system integrity monitor (SIM) is
responsible for scheduling and dispatching all audits, and for
handling all overload conditions. SIM receives overload con
ditions from DMERT operating system processes. The appli
cation and the craft are then notified that these conditions
exist.

DMERT overload controls handle conditions in which crit
ical system resources (e.g., message buffers, swap space, etc.)
are in short supply or the system's real-time performance falls

28 National Computer Conference, 1984

below a predetermined limit. These conditions occur when
the system is overloaded with input requests, or sufficient
resources are lost due to software errors over a long period of
system operation. Most overload strategies involve changing
the policy of assigning resources to processes and running
audits to recover system resources. The combination of audits
and overload control is a powerful mechanism to maintain
system integrity.

Progressive Initialization

The DMERT recovery strategy attempts to minimize the
service disruption caused by an initialization in response to
hardware and software faults. Several levels of recovery ac
tions are provided to match the level of initialization to the
severity of the fault. Although DMERT attempts to recover at
the lowest possible level, the recovery level is automatically
escalated if the current level fails.

The initialization of application processes only is the least
disruptive or the lowest level of initialization. Applications
determine their own recovery strategies. This level of initiali
zation can be requested by a craftperson or by an application
process. DMERT administers the initialization counts and
timers, but a DMERT operating system initialization is not
taken.

The next level of recovery involves initializing DMERT
processes as well as application processes. This level is the
primary recovery mechanism in DMERT and uses a rollback
strategy. The goal of this initialization level is to restore the
system to a sane and operational state with minimal effect on
service. Each process in the system is notified by its fault entry
that a system initialization has been taken. Using state infor
mation that is maintained during normal operation, each pro
cess cleans up any transactions in progress and then returns.
This strategy is effective because only a few processes are
actually active at any given time.

If the rollback strategy fails, DMERT is rebooted from
disk. Even when such a bootstrap occurs, several regions of
memory are protected to maintain some continuity. The suc
cessively more severe levels of initialization involve re
initializing these protected regions. However, one protected
memory region is preserved for applications, and is initialized
only by manual request or a power up.

Reconfiguration

DMERT takes full advantage of the redundancy provided
by the 3B20D processor. The equipment configuration data
base maintains information concerning the hardware config
uration and hardware error rates. This provides a basis for
automatic reconfiguration and allows the recovery strategy to
be tuned to meet the needs of the individual applications.

In processing a hardware error interrupt, the unit causing
the error is determined. The error count for that unit is then
incremented and compared with its error threshold. If the
threshold has not been exceeded, the unit remains in service.
If the threshold has been exceeded, the configuration man
agement routines decide on the corrective action. This deci-

sion is based on the availability and status of a replacement
unit. Configuration options include removing the unit, switch
ing in a replacement unit, or continuing operation on the
faulty unit.

Preventive and Corrective Maintenance

DMERT provides a comprehensive set of diagnostics that
can be invoked directly by the craftperson or under program
control. Diagnostics ensure the operational capabilities of
hardware units.

A routine exercise is performed daily to verify the oper
ation of all units in the system. These units are diagnosed and
a status report is generated indicating their conditions.

In addition to the routine exercise, if a unit is removed from
service because of a fault condition, diagnostics are sched
uled. If the unit fails diagnostics, a report is generated indi
cating the failure cause. If the unit passes diagnostics, it re
mains in service. However, to prevent a unit remaining in
service that passes diagnostics, but fails repeatedly during
actual operation, a count is kept of the number of times oper
ational failure occurs. Any unit that exceeds a predetermined
limit may be removed from service, pending some correc
tive action (e.g., more exhaustive diagnostics and unit
replacement) .

Field Update

Field update, which is typically called overwriting in tradi
tional electronic switching systems, is the problem correction
mechanism for DMERT. Field update may be used to modify
data and programs on the 3B20D disk or in main memory.
Field updates must be performed without disturbing system
operations (e.g., call processing, critical system functions,
etc.). The features of field update are the ability to change a
file both instantaneously and in a temporary way, the ability
to update a function in a running process, the ability to coor
dinate changes to functions within a process, and the ability to
change data contents or the structure of data in a running
process. Changes made to the running process update the disk
image of the process as well as the main memory image.

System Update

DMERT system update provides a safe, reliable mech
anism to introduce new versions of DMERT and application
software into the 3B20DIDMERT systems, while minimizing
service disruption. System update differs from field update in
the magnitude of the program and data changes being in
stalled. Normally, a system update will replace all the soft
ware in the system, which is a complete reissue of DMERT,
application software, andlor data. For this reason, system up
dates always include a memory reinitialization of all processes
and data from disk. Only the protected memory areas are not
reinitialized.

DMERT -An Operating System For Telecommunications Systems 29

SUMMARY

The DMERT system has achieved its objective of providing a
cost- and real-time-effective base for a wide variety of
telecommunication systems. The concepts of multiple levels
of functional support, reliability and availability features, and
versatile lIO interfaces provide an adaptable base that can be
tailored to many differing needs. More than one hundred
DMERT systems have been installed in the field. These sys
tems include electronic switching applications, database
applications, as well as add-on extensions to existing switching
machines to enhance processing power. The DMERT system
is also the basis of a number of telecommunication system

designs currently under way. This widespread use of 3B20D/
DMERT marks it as a processor/operating system combina
tion of significance in telecommunication systems.

REFERENCES

1. Kerninghan, B. W., and D. M. Ritchie. "The C Programming Language,"
Englewood Cliffs, N.J.: Prentice-Hall, 1978.

2. Lycklama, H., and D. L. Bayer. "The MERT Operating System." The Bell
System Technical Journal, 57 (1978), pp. 1905-1929.

3. Ritchie, D., and K. Thompson. "The UNIX Time Sharing System." The Bell
System Technical Journal, 57 (1978).

4. Toy, W. N., and L. E. Gallaher. "Overview and Architecture of The 3B20D
Processor." The Bell System Technical Journal, 62 (1983).

Global concurrency control mechanisms for a local network
consisting of systems without concurrency control capability

by YAHIKO KAMBAYASHI

Kyushu University*
Fukuoka, Japan

and
SEI-ICHI KONDOH

Mitsubishi Electric Co.
Kamakura, Japan

ABSTRACT

A powerful and expandable system can be economically realized by a local com
puter network consisting of various kinds of microprocessor-based systems. The
following three problems must be solved to organize a distributed processing system
using nonidentical elements: (1) communication, (2) query conversion, and (3)
global concurrency control. Except in the case when all transactions are read-only
ones, (3) must be handled. Since each system in a network does not usually have
concurrency control capability or may not use the identical mechanism, it is neces
sary to develop a global concurrency control mechanism for a local network consis
ting of systems without such capability. In this paper two such mechanisms are
presented. By assigning ordered numbers to the component systems, a consistent
and deadlock-free global mechanism is realized for a semijoin-based query proce
dure. To improve efficiency, a mechanism permitting dynamic modification capabil
ity of ordering is also presented.

*This paper was written when the authors were at Kyoto University.

31

Global Currency Control Mechanisms for a Local Network 33

INTRODUCTION

The top-down and the bottom-up approaches are those that
can be used to organize a distributed system. Through the
former approach, which takes a global view of the whole
system, consistent and efficient systems can be easily de
signed. This paper, however, will discuss the latter approach,
since it is a practical solution to the problem of constructing
a distributed system using already existing systems, such as
work stations with database capability, database machines,
and picture file systems using laser discs. For this approach the
following problems must be solved: (1) communication proce
dures among systems, (2) conversion of user requests, and (3)
global concurrency control. Except for the case when all
transactions are read-only ones, Problem 3 must be solved.
Since Problems 1 and 2 are handled by various authors, this
paper will focus on Problem 3.

As described below (see Figure l(a)), Problem 3 must be
considered even when there exists no global write transaction.
That is, considering only query processing procedures is not
enough to handle global read-only transactions when local
write transactions at each site are permitted. Although this
problem is very important when constructing a network using
various different subsystems, the authors believe that it has
not been discussed before. To simplify the problem, we will
use the following three restrictions, which are considered to
be reasonable:

1. To avoid Problems 1 and 2, we assume that the com
ponent systems realize relational databases with an iden
tical query language.

2. For a network we only consider an Ether-type local net
work with broadcasting capability.

3. We decompose a global transaction into a global read
only transaction and local read-write transactions so that
global read-write transactions can be avoided. Since
handling of such a global read-write transaction makes
discussion complicated, it is excluded in order to present
basic ideas.

tl : read A

t3 : write A,B

t2 : read B

site 1

(a)

t2 : read C

4 : write C,D

tl read D

site 2

(b)

Figure 1-Necessity of the global concurrency control mechanism even if
there are no global write transactions

For the global concurrency control problem, the following
three cases must be considered:

1. There may be a system that does not have any concur
rency control mechanisms. All transactions are pro
posed serially at this system, and local locking mech
anisms are not available to global control mechanisms.

2. Even if a system has a concurrency control mechanism,
it may not be usable for global control. That is, there
may be a system with an independent concurrency con
trol mechanism in order to improve efficiency at its own
site, which is not suitable for distributed control.

3. Even if all the systems have global concurrency control
mechanisms, they may not be identical. For example,
some systems use time-stamp-based mechanisms,
whereas other systems employ two-phase lock mech
anisms. We cannot combine these different global con
currency control mechanisms.

Since Case 1 is the most restrictive, this paper will discuss
that case. Since the locking mechanism is not available for
global concurrency control, a query modification approach is
used to realize such control.

Figure l(a) shows that we need a global concurrency control
mechanism when all global transactions are read-only. We will
consider the following four transactions where t1 and 1z are
global read-only ones and t3 and 14 are local write transactions:

t1: After reading value A at site 1, read value D at site 2.
t2: After reading value C at site 2, read value B at site 1.
h: Modify values A and B at site 1.
14: Modify values C and D at site 2.

The order of the transaction processing at sites 1 and 2, by
the schedule shown in Figure l(a), is as follows:

site 1: t1~h~h
site 2: h~t4~tl

Since these two orderings are not compatible, we have to
restart either tl or t2. This example shows that we need a
global concurrency control mechanism even if all global trans
actions are read-only.

In order to avoid such a problem, the order of transaction
processing at each site should be controlled by a global con
currency control mechanism. We will present a global concur
rency control mechanism that uses ordering numbers assigned
to the sites. A semijoin-based query-processing procedure is
combined with the mechanism. Another mechanism is also
presented, which improves efficiency by modifying the site
ordering numbers adaptively.

34 N~tional Computer Conference, 1984

BASIC CONCEPTS

Concurrency Control

For efficient processing, it is important to execute many
transactions concurrently. In this case a semantically correct
schedule must be generated. Here a schedule consists of a
sequence of read and write operations (see Figure l(a)). Gen
erally we shall assume that the schedule is consistent if and
only if its effect is equivalent to that obtained by executing the
same transactions serially in some order, called serializable. I
We say that two schedules are equivalent if and only if the
value that one transaction reads was written by the same
transaction in both schedules. For example, in Figure l(a), t2
reads the value that h wrote at site 1, so tz must be before h
in an equivalent serial schedule. The graph in Figure l(b)
shows this kind of precedence relationship among transac
tions. Since it has a cycle, there is no equivalent serial sched
ule; that is, this schedule is not serializable. To guarantee
serializability, many methods have been introduced. In cen
tralized database systems, concurrency control mechanisms
are not essential, since transactions can be executed serially.
In distributed database systems, however, since transactions
are executed in parallel at several sites, a global concurrency
control mechanism is necessary even if each site has a local
concurrency control mechanism. When many transactions are
executed concurrently, deadlock may occur; so a deadlock
free mechanism is also required.

One of the methods used to ensure that schedules are seri
alizable and deadlock-free is the tree protocol.3 If each
transaction obeys the tree protocol, no global scheduler is
required. The relationship among data is assumed to be repre
sented by a tree, which is true for hierarchical database
systems.

The basic operations to be considered are LOCK and UN
LOCK. Only one transaction is permitted to lock a datum at
a time. We use L(A) and U(A) to represent LOCK A and
UNLOCK A, respectively. A tree protocol is satisfied by a
transaction with respect to T, a tree whose nodes corresponds
to data if

1. Any datum can be locked for the first time.
2. A datum can be locked if its parent is currently locked.
3. Any datum can be unlocked at any time.
4. No datum is ever locked twice by one transaction.
5. Transactions requiring access to data at different levels

of the tree structure must lock each record connecting
the different levels.

Example 1: We will consider the four transactions used in
Figure 1. We assume that the tree showing the relationships
among data is shown as Figure 2. In order to obey the tree
protocol, transactions are modified as follows:

t!: L(A)L(C)U(A)L(D)U(C)U(D)
h: L(C)L(B)U(C)U(B)
t3: L(A)L(C)U(A)L(B)U(C)U(B)
t4: L(C)L(D)U(C)U(D)

A

I
c

/\
B D

Figure 2--Drdering on data for the tree protocol

Although tl requires A and D only, it has to lock C because
of the requirement 2 of the tree protocol. Since the first lock
of a transaction is not restricted, t2 and 4 start by locking C.

Query Processing

Let R be a relation on a set {AI" .. ,A.t} of attributes,
where the set is denoted by R, the relation schema of R. Let
u be a tuple of a relation and u[X] be the part of u correspond
ing to the attribute set X. In this paper the following notations
of relational algebra will be used:

Projection: R[X] = {u[X] I u E R}
Natural equijoin Ri [XlRj = {u I u E R, u[Ra E R, u[Rj] E

Rj, R = RiURj}

A query graph Gq = (V,E,L) corresponding to a natural
join query q is a labeled undirected graph. V is a set of
vertices, where Vi in V corresponds to relation Ri referred to
in q. Two vertices Vi and Vj corresponding to Rand Rj are
connected by an edge if and only if there is Ri 1><1 Rj. The label
of the edge is a subset of Ri n R j • E is the set of edges, and L
is the set of labels for E.

A query is called a tree query if there exists a query graph
that corresponds to it and it is circuit-free; otherwise it is
cyclic.

A semijoin of Ri by Rj is denoted by Ri I>< Rj and defined
as

Ri t>< Rj = (Ri [Xl Rj)[R]
= Ri [Xl Rj[R n R j]

In distributed database systems semijoins are used in order to
reduce the cost of communications. For tree queries there
exists an efficient procedure to calculate partial results for all
relations using semijoins only. Here a partial result for R is
the result of the join projected on R. Since conversion meth
ods exist which can transform cyclic queries into tree que
ries,4,5 we consider tree queries only in this paper.

Although there may be more than one relation at each site,
for simplicity we assume that each site Si contains exactly one
relation R j , which is obtained by preprocessing all relations at
site Si involved in the query. This assumption is commonly
used, and the scheme shown here may be easily extended to
handle more general cases.

A general semijoin-based tree query-processing procedure
is as follows (because of space limitations, we have simplified
the description):

Global Currency Control Mechanisms for a Local Network 35

Procedure 1: Query-processing procedure for a tree query
using semijoins.

1. In the tree graph representing the given query, select an
arbitrary relaton as a root of the tree.

2. Phase 1: Starting from the leaf relations, perform semi
joins by sending values of join attributes.

3. At the root relation, a partial result is obtained.
4. Phase 2: Starting from the root relation, perform semi

joins by sending values of join attributes. At each site
partial results are then obtained.

Example 2: Let us consider the tree query in Figure 3. The
attributes of the relations are as follows:

We assume that each Ri is stored at site Si (i = 1,2,3,4). The
following R is required as the result:

Partial results for these relations are as follows:

R[AD] R[ABCE] R[BF] R[CG]

If only partial results are required, the semijoin-based algo
rithm is sufficient. If this is not the case (i.e., if R is required
at some site), the algorithm can be used as a preprocess.

1. We can select any relation as a root. Let Rl be the root.
2. Phase 1:

(2-1) Send B values ofR3 from site S3 to site S2' Perform
a semijoin with R2.

(2-2) Send C values of ~ from site S4 to site S3. Perform
a semijoin with the result of (2-1).

(2-3) Send A values of the result of the above two oper
ations from site S2 to site SI. Perform a semijoin
with R l.

3. At site SI the partial result R[AD] is obtained.
4. Phase 2:

(4-1) Send A values of the above result to site S2. Per
form a semijoin and the partial result R[ABCE] is
obtained at site S2.

(4-2) Send B (and C) values ofR[ABCE] to site S3 (and
site S4, respectively). By performing a semijoin the
partial result R[BF] (and R[CG]) can be obtained
at site S3 (and site S4, respectively).

BF CG

Figure J-A tree query

THE PROBLEM

Although an overview of some of the problems involved with
global concurrency control, as well as the assumptions made,
were discussed in the introduction, we will give specific details
here.

Consider the case when systems without concurrency con
trol mechanisms are connected by an Ether-type bus line. This
network satisfies the following properties: (1) a message can
be broadcast to all the sites, and (2) it is not possible to
transmit messages simultaneously from more than one site.

All global transactions are assumed to be read-only.
Modification of relations is assumed to be realized by local
transactions. This is similar to a relational database system
that realizes views. Usually, however, modification operations
are permitted to be applied to the base relations only (read
only views), because the general view update problem is
known to be very difficult.

Since semijoin-based query-processing procedures are very
efficient, we will use them in this paper. We have to modify
the procedure, however, because of the following problem.

If the data are modified between Phase 1 and Phase 2 in
Procedure 1, we may not get the correct result. If we organize
a distributed database system by the top-down approach, we
usually use a locking mechanism to prevent such a modifica
tion. Since the assumption that the subtransaction at Phase 1
and one at Phase 2 are considered to be different at the
processing site, data may be modified before the second sub
transaction. To handle the problem caused by such a local
write transaction, one simple method is to store the values at
Phase 1 that will be used at Phase 2. This approach, however,
may require many duplicated data, and there still exists a
global consistency problem (Introduction); so we will discuss
methods to prevent this problem in following sections.

We will consider query-processing procedures together with
concurrency control mechanisms. Usually read-only trans
actions are called queries. In the following sections we use the
term query instead of transaction when a transaction performs
only read requests.

A QUERY-PROCESSING PROCEDURE AND A
BASIC GLOBAL CONCURRENCY CONTROL
MECHANISM

As shown in the previous section, it is necessary to modify the
semijoin-based query-processing procedure when local write
transactions are permitted. In this section we will present a
query-processing procedure having the following properties.

1. Instead of visiting the same site twice at Phases 1 and 2,
it requires that each site be visited only once.

2. Relations in a query tree can be processed in an arbitrary
order.

We need the first property because of the problem pointed
out in the previous section. The second property is used
to combine the query-processing procedure with a tree
protocol-based global concurrency control mechanism.

36 National Computer Conference, 1984

First we modify the basic semijoin-based procedure to sa
tisfy Property 1 above.

Example 3: Let us consider the same query as Example 2.
We assume that the target relation R[ABG] is required at site
Sl' By sending values contained in ABG together with the join
attributes, the result can be obtained at site Sl by performing
Phase 1 only.

1. Let Rl be the root.
2. (2-1) Same as Example 2.

(2-2) Send ~(CG) to site S2, since C is the join attribute
and G is contained in the target. Perform a join.

(2-3) Send combined values of ABG to site Sl and per
form a join.

3. At site Sl R[ABG] is obtained.

We assume that projection R[X] of the join of all relations
in the query is required at one site. In such a case we only need
Phase 1 of Procedure 1 by transmitting attributes in X to
gether with join attributes.

A tree query is usually processed from leaf sites by Proce
dure 1; but by using the broadcast capability of Ether-type
networks, we can change the order of processing.

Procedure 2: Query-processing procedure using the broad
cast capability.

1. Let T be the tree representing the given query.
2. Select one arbitrary relation Ri in T. Let X be the attri

bute set of the target relation (i.e., R[X] is required at
site St, where R is the join of all relations involved in the
query). Let Y be the union of attributes satisfying

Y=Rn (XyRj)
i,*i

where U R j denotes the union of all the join attributes
J

i-#i

of Ri. Broadcast Ri[Y] to all sites.
3. Let RjI, ... ,Rjm be all relations satisfying Ri n R j =1= 0.

Let Rk be one of the relations.
(3-1) Except Rk, perform the following semijoin at the

site of R j (j = h, ... ,jm)'

(3-2) At the site of Rk perform the following join:

Note that attribute set of Rk may change if Ri contains
attributes in X that were not originally contained in Rk.

4. Let T' be the new tree obtained from T by eliminating
Ri. T' can be obtained by the following steps:
(4-1) Remove all edges connecting between Ri and Rj

(j = h, ... ,jm) directly. Remove R.
(4-2) Connect Rk and R/s (j = h, ... ,jm, j =1= k) directly.

The conversion of (4-1) and (4-2) is shown in Figure 4(a) and
(b). Let T' be the new T and goto step (2).

Rjrn

R
Rjl 1 ~

k >JD ~kt><l'Ri[Rn(XjUfu)]
Rjl~ j'i'i

Rj2

(a)

/

Figure 4--Conversion of a tree

5. Repeat the above process until only the relation at the
target site remains. At that time the result R[X] is ob
tained at the site.

Theorem 1: Procedure 2 is correct.
Proof' We only need to prove that the transformation

shown in Figure 4(a) and (b) is correct. It is easily shown by
the following equation.

Ri t><l R j1 t><l ••• t><l R jm = (RjI C>< R)
t><l (Rj2 C>< R)
t><l ••• t><l (Rjm C>< Ri)
t><l (Rk t><l Ri[YD

QED

One possible problem of Procedure 2 is to find a method to
determine Rk in Step 3.

Procedure 3: Select of Rk at Step 3 of Procedure 2.

1. Let So be the site where it is required to obtain the target
relation.

2. Among R/s select Rk which is close to Ro. Here distance
on the tree is determined by the number of edges be
tween the two nodes.

Example 4: Let us consider the tree query shown in Figure
3. We assume that the target relation R[ABG] is required at
site Sl' X = ABG.

1. Let R2 ~ R3 ~ R4 ~ Rl be the linear order of the re
lations; we assume that relations are processed in this
order.

2. R2 :

(2-1) Select Rl as the relation to apply to the join.
(2-2) Broadcast R2[ABC] (A, B, and C are join attri

butes) and perform a join at Sl and semijoins at S3
and S4. The resulting relation at each site is as
follows:

R1(ABCD) R2(BF) ~(CG)

(2-3) By eliminating R2 , a new query graph, shown in
Figure 5, is obtained.

(2-4) Process R3 and ~ by the conventional tree-query
processing procedure.

3. At site Sl R[ABG] is obtained.

Global Currency Control Mechanisms for a Local Network 37

!\:D
BF CG

Figure 5-A new query graph

Since for any query we can use the same order to process
relations, the following concurrency control mechanism can
be used:

Procedure 4: Query-processing procedure for a tree query
preserving global consistency.

1. There is a fixed ordering of the sites. Let Sb S2, ... , Sn
be the sequence of the sites in this order. Since we as
sume that each site does not process queries concur
rently, at any moment each site processes at most one
query.

2. For each query we use the ordering (Sl, S2, ... , Sn) to
select sites by Procedure 2. We must consider the follow
ing two cases in order to apply Procedure 2.
(2-1) After processing R, we must proceed to Ri+b but

there are cases when Ri+ 1 is not contained in the
query. In such cases we need put dummy pro
cessing of Ri+1 in the query.

(2-2) The target site Rt may not be Rn, which is the last
relation to be processed. In such a case we apply
Procedure 2 as if Sn is the target site. After obtain
ing the result at the site it is transmitted to the
target site.

3. After processing Ri, if Si+l is occupied by another query,
wait until it completes. When Ri is assigned to process
query qb it starts to perform joins received from R j

(j < i) for qi (see Example 4).

The pipeline processing is achieved by (1) serial processing
at each site and (2) the serial processing property of the com
munication bus line.

Theorem 2: Procedure 4 is correct, and it ensures seri
alizability and deadlock freedom.

Proof" In the method shown in Procedure 4, a mechanism
similar to a special case of the tree protocol is used. Data
items are replaced by sites, and the chain showing the order
ing (Sb ... , Sn) is a special tree structure. Thus, serializability
and deadlock freedom result from the fact that the tree proto
col satisfies these conditions.

QED

Example 5: Let us consider the tree query shown in Figure
6(a). Here attributes of relations are as follows.

85:R:;(CG)

83: R3(BF)

(a)

C

(c)

o

85: (RlI><1RzH><l (R3!>«RlfXIRz)) ~ R5

= Rll><!RzI><1R3I><1 R5

(d)

Figure 6---An example of Procedure 4

(b)

We assume that each Ri is stored at site Si (i = 1,2,3,5) and
that the joins of all relations is R. R is required to be calcu
lated at site S2. We give a fixed linear order as follows:

Sl: Send Rl to S2. The resulting query graph is shown in
Figure 6(b).

S2: Perform a join. Select Rs as Rk and broadcast Rl f><l R2.
At site Ss, Rl f><l R2 is stored. The computation starts
when Ss becomes the site to process the query.

S3: Perform a semijoin and R3 t>< (Rl f><l R2) is obtained.
Broadcast R3 t>< (Rl f><l R2)'

S4: Since ~ is not contained in the query, it is used to
synchronize with other queries. No computation is
made at S4'

Ss: Perform a join (Rl f><l R2 from S2, R3 t>< (Rl f><l R2) from
S3, and Rs at Ss) and R is obtained. Send its result to the
S2.

A GLOBAL CONCURRENCY CONTROL
MECHANISM USING ADAPTIVE ORDERING
OF SITES

In the previous section we discussed a basic global concur
rency control mechanism. Since every query has to visit all
sites in a fixed order between the first site and the last site
required, it has the following disadvantages: (1) for each
query the optimal ordering is usually different, so the cost for
processing may become high; and (2) there are queries that
need to visit only a few sites. The base mechanism may require
that several sites be visited which are not used. This produces
unnecessary overhead.

In this section we will develop a mechanism that changes

38 National Computer Conference, 1984

ordering adaptively according to the query set. As the net
work has broadcasting capability, each site can know the sta
tus of processing at other sites as well as queries in the queue.
By the new mechanism, the ordering of the sites is modified
according to the queries in the queueing list.

We will define a graph showing the order of the sites.

Definition 1: An order graph Go(V,E) is a directed graph.
V is a set of vertices, where Vi in V corresponds to site Si. E
is a set of all directed edges. If there exists an edge e;j from Vi
to Vi> site Si precedes Sj in order. Let Vo be vertices in V that
have an incoming edge and/or an outgoing edge.

For the first query for the system we can determine an
arbitrary order of sites. For the second query, sites that are
not used by the first query can be processed in an arbitrary
order. The order determined by the queries currently pro
cessed is shown by the order graph in Definition 1. When a
new query is added or a query is completed, we can change the
graph to improve the efficiency as compared to the fixed
order approach. We assume that the order graph is kept by all
the sites.

Procedure 5: Procedure for the order graph modification.
Let Vo be a set of vertices corresponding to the sites cur

rently involved in the query processing. A subset V m of Vo
determined by Case 2 is called a set of vertices whose orders
are modifiable. Initially Vo= 0 and Vm = 0.

Case 1: When a new query 0 is added.
Let S be the set of sites used by O. We can determine

the ordering of sites as follows:
(1-1) For sites in S n (Vo - V m) the order does not

conflict with the current order graph.
(1-2) For the sites S n V m the following graph modifi

cation process can be applied:
(1-2-1) Let a vertex in S n V m be Vi. We assume that

there are edges eki and eih. By the condition
implied when generating a vertex in V m,

each vertex in V m has an outgoing edge. Add
edge ekh.

(1-2-2) Remove eki and eih' If Vi does not have in
coming edges, Step 1-2-1 is not necessary.

(1-2-3) The position of Vi is arbitrary if the new posi
tion is the successor of the old Vi'

(1-3) For sites in S but not in Yo, an arbitrary order can
be assigned. Since 0 is assumed to be a tree
query, we can determine the ordering necessary
to obey the ordering determined by the query
graph as much as possible. Vo U S becomes new
Yo, and Vm - S becomes the new Vm.

Case 2: When a query 0 terminates, sites used by 0
only may be eliminated from the graph. There
are the following two cases.

(2-1) The site used by 0 only has an outgoing edge.
We cannot eliminate the vertex corresponding to
the site, but the position of the vertex can be
moved. We put the vertex to V m'

(2-2) The site used by 0 only does not have an out
going edge. In such a case we can eliminate the
vertex corresponding to the site from Yo. This
process is applied recursively until no further
elimination is possible.

Example 4: We assume that the following queries 0 1 and O2
are currently processed in the system:

01: It uses S1 and S2 in the order S1 ~ S2
02: It uses S3, S4, and Ss in the order S3~ S4~ Ss

We assume that 03 which uses S}, S2, S4, and S6 is added to the
system.

Vo = {S1, S2, S3, S4, Ss}
V m =0

S = {St, S2, S4, S6}

For S n Vo = {S}, S2, S4}, we must follow the orders deter
mined by the queries 01 and 02, that is S1 ~ S2. The order for
03 must not conflict with S1 ~ S2. Let the order for 03 be

By merging these orders we get the following order:

Now we assume that 02 terminates. Sites used by 02 only are
S3 and Ss. Since Ss does not have outgoing edges, it can be
eliminated from Yo. Since S3 has an outgoing edge, V m = {S3}'

An outline of the proof of the correctness of Procedure 5 is
as follows. For any currently executing queries the visitation
order is the same, so the process is the same as that in Proce
dure 4. The problem is caused by queries that have already
terminated when query 0 is added. We assume that the last
site of 0 is S1' If such a query terminates at S1'S descendant,
it is obvious that it is before 0 in the equivalent serial sched
ule, so there is no contradiction. If it terminates at S1'S ances
tor, the sites that it used cannot become the descendant of
sites used by 0, so no contradicton occurred.

SUMMARY

In this paper we have shown global concurrency control mech
anisms for a local network consisting of systems that do not
have concurrency control capability. Because of this assump
tion we do not use a locking mechanism at each site. The
whole query is decomposed into subqueries at the site where
the query is produced. Since the data flow control can be
expressed in a query, the whole mechanism can be realized by
a so-called query modification approach. The major reasons
why we do not need locking or timestamp mechanisms are
th::lt (n ::It p::Ich ~ltp ol1erie~ ::Ire ~eriallv nrocessed and (2) hv - _.. '-.I -~. - - - -- - - ~ ~ ~ -- - - - -.~ -" - - - - ~. J 1.. , ./ -.I

observing the data transmitted on the bus line, the status of
the processing can be determined.

Global Currency Control Mechanisms for a Local Network 39

ACKNOWLEDGMENT

The authors are grateful to Professor Shuzo Yajima and
members of Yajima Laboratory for helpful discussions.

REFERENCES

1. Bernstein, P. A., and N. Goodman. "Concurrency Control in Distributed
Database Systems." ACM Computing Surveys, 13 (1981).

2. Eswaran, K. P., J. N. Gray, R. A. Lorie,and I. L. Traiger. "The Notions of

Consistency and Predicate Locks in a Database System." CACM 19
(1976).

3. Sllberschatz, A., and Z. Kedem. "Consistency in Hierarchical Database
Systems." JACM, (1980).

4. Kambayashi, Y., M. Yoshikawa, and S. Yajima. "Query Processing for
Distributed Databases Using Generalized Semi-Joins." I Proceedings of the
ACM SIGMOD, June 1982.

5. Kambayashi, Y., and M. Yoshikawa. "Query Processing Using Depen
dencies and Horizontal Decomposition." I Proceedings of the ACM SIG
MOD, June 1983.

6. Bernstein, P. A.., and D. M. Chiu. "Using Semi-Joins to Solve Relational
Queries." JACM, 28 (1981), pp. 25-40.

Synapse tightly coupled multiprocessors: A new approach
to solve old problems

by STEVE FRANK
and ARMOND INSELBERG

Synapse Computer Corporation
Milpitas, California

ABSTRACT

The theoretical merits of a tightly coupled multiple-processor/shared-memory ar
chitecture have long been recognized. Two major problems in designing such an
architecture are the performance limitations imposed by shared-memory bus con
tention in cached processors and multiple-processor data coherency. In the Synapse
system, memory contention was significantly reduced by designing a processor
cache employing a non-write-through algorithm, which minimized bandwidth be
tween cache and shared memory. The multicache coherency problem was solved by
a new bussing scheme, the Synapse Expansion Bus, which includes an ownership
level protocol between processor caches. Using a non-write-through cache and the
Synapse Expansion Bus, Synapse has designed a symmetric, tightly coupled multi
processor system, capable of being expanded on line and under power from two
through twenty-eight processors with a linear improvement in system performance.

41

INTRODUCTION

Imagine being able to plug dozens of processors together, and
have them become a single, logical, transaction-processing
entity. The significant tasks of load balancing and system
tuning would be an impossibility in current efforts to use
multiple, loosely coupled microprocessors in on-line trans
action processing.

With the new Synapse mainframe system,1,2 designed for
high-performance database transaction processing, as many
as 28 processors can share a common, fault-tolerant memory
system. The more processors there are, the faster a common
transaction job queue is handled. Measured results with many
processors have shown that incremental processing power has
increased additively with more processors. In other words,
four processors linked together produce the same computing
power as four independent processors, a ten-processor Syn
apse system has the power of ten processors, and so on. The
key to the Synapse Expansion Architecture approach is a
focus on the nature of on-line transaction processing, and a
new look at bus arbitration and caching in tightly coupled
systems.

HISTORICAL ASPECTS OF CACHING

Memory hierarchies in the form of cache memories are used
in most current computer systems to improve processor per
formance. Cache memory temporarily holds the in-use con
tents of main memory. Data present in cache memory can be
accessed by the processor in much less time than if located in
main memory. Thus, processor performance is increased,
since less time is spent waiting for instructions and for data to
be fetched. Typically, cache memory can be accessed 5-10
times faster than main memory.

Increases in performance due to cache memories are ex
plained by the properties of temporal and spatial locality.
Temporal locality, or locality by time, means that data refer
enced in the near future are likely to be in use already. Tem
porallocality is exhibited by program loops in which instruc
tions and data are reused. Spatial locality, or locality by space,
means there is a high probability of making references in the
near future that are close to the locations of the current refer
ence. This behavior is influenced by some common character
istics of programs: Instructions are mostly executed se
quentially, and related data items, such as arrays, are stored
together.

Optimizing the design of cache memories has four aspects. 3

They are (1) maximizing the hit ratio, (2) minimizing the
access time to cache data, (3) minimizing delay due to a cache
miss, and (4) minimizing the overhead of updating main

Synapse Tightly Coupled Multiprocessors 43

memory and maintaining cache coherency. Optimizing these
aspects maximizes single processor performance by min
imizing the average processor memory access time. Band
width between the cache and backing store (memory) is often
larger th,an would be necessary without a cache.

MULTIPLE-PROCESSOR CONSIDERATIONS

When designing a system where more than one processor
share common memory (Figure 1), a major limiting factor on
system performance is the number of processors that can
share memory effectively. The limiting factor on the number
of processors is the bus bandwidth and, in tum, memory
contention. As memory contention increases, the average
memory access time increases, and the performance of each
processor decreases. 4

-
6 It became clear that the design goals

required to maximize the performance of the Synapse multi
processor system were to maximize bus and shared-memory
bandwidth, and to minimize the bus bandwidth required per
processor. More specifically, in order to meet these goals, the
most critical aspect of the Synapse multiprocessor, shared
memory cache design, was to minimize bus bandwidth use
between cache and shared memory.

Techniques for maximizing bus and shared-memory band
width are straightforward. A description of how the Synapse
Expansion Bus (XBUS) meets these goals is described later in
this article. A more significant problem is that of designing a
cache that minimizes bus bandwidth use per processor.

NON-SHARED CACHE

MEMORY

I
I I I

CACHE CACHE CACHE

I I I
CPU CPU CPU

Figure 1-Multiple processors sharing common memory

44 National Computer Conference, 1984

WRITE-THROUGH VS. NON-WRITE-THROUGH

Extensive studies have been conducted on the effects of stan
dard cache design parameters (such as cache size, block size,
set associativity, prefetch and fetch algorithms, and replace
ment algorithms) on the bandwidth between cache and
memory. 3,7,8 Two different techniques for processing write
operations have significantly different effects on bus band
width between cache and memory.

In the write-through method of write operations, a pro
cessor write to cache is immediately written through to shared
memory. This method is used in systems such as the IBM 3033
and the VAX 11/780.

In the non-write-through method,3,4,9 processor reads and
writes are treated alike: If the block to be written is currently
not present in the cache, it is copied from shared memory. All
subsequent read or write accesses to this block are processed
by the cache until such time as selected by the replacement
algorithm. At this time the data are written back to shared
memory. Data need not be written back to shared memory if
they were not modified. A single cache access by the pro
cessor can potentially cause zero, one (read), or two (purge
old block, read new block) accesses to shared memory.

The advantage of the non-write-through algorithm is that
the access rate between the cache and shared memory can be
reduced to any value by a sufficient increase in cache size. In
contrast, in the write-through method, the access rate be
tween cache and shared memory can only be reduced to the
write access rate of the processor. Instruction mix analyses
show that write accesses vary from 10% to 30%, depending on
processor architecture and application. Therefore, when
write-through is used, a minimum 10-30% of processor acces
ses also generate accesses to shared memory. The non-write
through approach results in a three- to tenfold reduction in the
transfers between cache and shared memory.

THE MULTICACHE COHERENCE PROBLEM

Unfortunately, in a multiple-cache/multiple-processor sys
tem, both methods of cache write operation run into diffi
culties with memory coherence (Figure 2). A shared-memory
scheme is coherent if the data returned on a read are always
the data last written to the same address. 3,4,10

As a specific example, assume that in a two-processor sys
tem, two caches use the non-write-through method and share
memory connected by a common bus. Let "A" be the mem
ory address of a block of data which is read and modified by
both processors. A modification of the contents of address
"A" is done by processor "0" in its cache, but the result is not
transmitted to memory. A subsequent read of address" A" by
processor "1" causes cache "I" to read the contents of "A"
from shared memory, which contains stale data for address
"A." There are several possible solutions to this:

First, all processors in the system can use a shared cache
(e.g., the Urlivac 1100/80 has two processors sharing one
cache). This solution is not feasible because the bandwidth of
a single cache is not sufficient to support a large number of
processors. In addition, longer cache access time delays are

MEMORY A ITII

ACIII
CACHE

CPU

A OIl
CACHE

CPU

Figure 2-Multicache coherency

incurred, because the shared cache cannot be physically close
to all processors.

Second, each time a processor performs a write to the
cache, it broadcasts the write to all other caches in the system.
If the address is found in another cache, it can be invalidated.
The IBM 3033 processors use invalidation. The major draw
back to broadcasting all writes is that an increase in bus band
width is required (write-through method).

Finally, software control can be used to guarantee coher
ency. Certain addresses containing such items as semaphores
or a job queue can be designated noncacheable and can be
accessed only from shared memory. The drawback of non
cacheable data is that the access time between the processor
and shared memory is substantially increased. Thus, for effi
ciency, some shared data must be cached. The processor must
then be equipped with commands that allow it to purge any
address from its cache. An additional disadvantage of this
technique is that the caching mechanism is no longer software
transparent. The Honeywell Series 66 and Elxsi 6400 system
use similar techniques.

THE SYNAPSECACHE

The Synapse System uses a fourth method, ownership, to
solve the multicache coherence problem. The processors
(general-purpose-GPP, and input/output-lOP) and the
XBUS implement a distributed ownership protocol to ensure
that no data are write-shared. In addition, GPP caches use the
non-write-through method to minimize required bandwidth
between cache and shared memory. The protocol allows data
to shift dynamically from multiple-cached copies in a read
only mode, to a single copy, which can be modified. System
performance is optimized by ailowing efficient sharing of data
while minimizing the overheads of multicache coherence.

Figure 3 is a block diagram of the Synapse N + 1 system.

Synapse Tightly Coupled Multiprocessors 45

SYNAPSE EXPANSION ARCHITECTURE

UP TO 16 MBYTES
MAIN SHARED MEMORY

" 1 MS--""'" //.- -----i-MB -----"

(SHARED MEMORY)

/~Ms-,
/ -------i-M-B -----,

(SHARED MEMORY)

'-.. MC /
~........... ./

\ MC I
"........... ..".,.,/ III---ril I 11---1 II

SYNAPSE
EXPANSION

BUS
(64 MBYTES/SEC)

Figure 3-The Synapse N + 1 system

Two types of processor module, GPP and lOP, access shared
memory via the XBUS. Each processor type uses the Motor
ola 68000 microprocessor as its instruction engine. Shared
memory is the repository for the operating software, applica
tion programs, control structures, and lists used by several
processors to schedule system activities. Shared memory can
be expanded in I-mbyte increments for a total of 16 mbytes
distributed over as many as four main memory controllers
(MMCs). Each MMC contains a 15-entry job queue to handle
multiple requests and to pipeline requests with responses.

The GPP is the instruction processor that executes user
programs and the majority of the operating software from
shared memory. Each GPP includes a 16-kbyte non-write
through cache, which increases processor performance while
minimizing XBUS use. Each cache participates in the bus
ownership protocol to ensure data coherency. Other functions
include a paged-address translation and protection scheme
implemented with an address translation cache.

The lOP also interfaces to the XBUS and accesses shared
memory. Each lOP has a private, 512-kbyte local memory in
which a portion of the operating system software resides.
Each lOP manages up to 16 device controllers including Ad
vanced Communication Subsystems (ACSs), Disk Control
lers, and Multiple Purpose Controllers (MPCs). Even though
the lOP does not contain a cache, it also participates with
GPPs and MMCs in XBUS ownership protocol.

SYNAPSE EXPANSION BUS: UNIQUE FOUR-LEVEL
PROTOCOL

The XBUS consists of two independent buses, which ensure
the highest possible system availability. The buses are identi
cal, allowing accesses to be interleaved on both buses, but can
be used singularly when one bus fails. The XBUS provides
checked parallel information transfer, synchronous with a

46 National Computer Conference, 1984

common system clock (in actuality, dual clocks for fault
tolerance reasons), but asynchronous with respect to device
read and write cycle times (deferred response). Words of
32-bits are transferred at a lO-MHz rate simultaneously on
each bus, with bus transactions consisting of one quadword
(four words, or 16 bytes). Total bandwidth of both buses is 64
Mbytes/second when address overhead is accounted for.

XBUS protocol can be broken down into four levels: elec
trical, signal, transaction, and ownership. Most single
processor bus protocols consist of the first three levels. The
ownership level protocol supplies the additional logical inter
face required to allow several processors to share memory,
while maintaining data coherency. The ownership level proto
col is implemented in a distributed manner among GPPs,
rops, and MMCs, to allow incremental on-line system
expansion.

ELECTRICAL AND SIGNAL LEVEL PROTOCOL

XBUS data and control signals are implemented using the
Schottky TTL logic family. System clocks are distributed
using differential ECL technology. Each bus consists of 61
signals, which are divided into three signal groups: arbitra
tion, information transfer, and acknowledge.

XBUS arbitration uses a unique binary tree technique to
allow one-clock synchronous arbitration of up to 64 devices
using only nine signal lines, rather than one signal per device.
Arbitration policy has two priority levels, with responses at
the higher level and requests at the lower level. Within each
level, priority is by device slot number with round-robin en
forcement allowing all requesting devices access to the bus
before any device can gain a second access.

The information transfer group consists of a four-bit com
mand field, a 32-bit address and data field, and a six-bit
requestor-number field. Each field is protected by at least
byte parity. The requestor-number field contains the card slot
number of the transmitter for requests and the requestor card
slot number for responses.

The acknowledge group allows the receiver to communicate
to the transmitter that the data or addresses have been trans
ferred correctly and accepted. The acknowledge group is al
ways valid two timeslots (clock periods) after the data are
transferred. The receiver signals a negative acknowledge code
to the transmitter if parity or protocol errors are detected. If

A_tlve 1 2 3 4 5 6 7 8 TIm_lot

Arbitration
Group arb

Information reed
Group addr

Acknowledge I I I I !lCk I I I I
Group addr I

I

the receiver is unable to execute the transmitted command, it
signals a busy acknowledge, which causes the transmitter to
retry the command after a retry interval. For example, if the
MMC job queue is full, a read request from a GPP would be
busied. Ownership protocol uses the busy acknowledge to
serialize simultaneous requests for the same quadword ad
dress. Busy acknowledges are infrequent in normal system
operation.

TRANSACTION LEVEL PROTOCOL

There is a fixed, pipelined, timeslot relationship between arbi
tration, information, and acknowledge groups. For the infor
mation group transmitted during timeslot "n," arbitration
takes place during timeslot "n - 1," and acknowledge takes
place during timeslot "n + 2." All bus transactions are broken
into unidirectional transfers, called exchanges. The six types
of exchanges are read-request-public, read-request-private,
read response, write-modified, write-unmodified, and write
new data. The unidirectional nature of XBUS exchanges max
imizes the efficiency of bus and shared-memory use by allow
ing up to 64 pending interleaved requests.

A read transaction consists of a read request followed by a
deferred read response. Figures 4a and 4b show the timing
relationship between the three signal groups. The request
consists of one timeslot of address and the response consists
of four timeslots of data (16 bytes). Note that the timeslots
between the read request and deferred response are variable
and are available for additional exchanges initiated by other
processors.

Bus timing for write exchanges is shown in Figures 5a and
5b. Write-modified and write new data consist of one timeslot
of address and four timeslots of data. The write-unmodified
consists of one timeslot address only. The pipelined nature of
arbitration, data transfer, and acknowledgement is illustrated
by multiple read and write exchanges in Figure 6.

OWNERSHIP PROTOCOL

The key to Synapse's ability to allow a large number of tightly
coupled processors to execute in a linear, performance
additive manner is the XBUS ownership protocol and its
implementation in the GPP, lOP, and MMC. This protocol is

Aelative 1 2 3 4 5 6 7 8 Timeslot

Arbitration
Group arb hold hold hold

Information data data data data
Group wordO word1 word2 word3

Acknowledge I I I .~" I . ~ ... I .~~ ...
Group

Figure 4-A read request (a) followed by a deferred read response (b)

Synapse Tightly Coupled Multiprocessors 47

Relative 1 2 3 4 5 6 7 8 Timeslot
RelatIve 1 2 3 4 5 6 7 8 Tlm .. tot

Arbitration ArbItratIon
Group arb hold hold hold hold Group arb

Information write data data data data InformatIon wrIte
Group addr wordO word1 word2 word3 Group addr

Acknowledge ack ack ack ack ack
Group addr wordO word1 word2 word3

Acknowledge ack
Group addr

Figure 5-The write transaction (a) includes four words of data; the write-unmodified transaction (b) does not include data

Relative 1 2 3 4 5 6 7 8 9 10 Tlmeslot

Arbitration
Group arb arb arb hold hold hold hold

Information read read write data data data data
Group addr addr mod

__ dO
_1 word2 _3

Acknowledge ack ack ack ack ack ack ack
Group addr addr write dataO data1 data2 data3

Figure 6-Multiple read and write exchanges

made up of a basic set of general concepts that can be imple
mented in a straightforward manner on all XBUS devices.

The physical shared-memory system is partitioned into
quadwords of 16 bytes each. Each quadword is identified by
a unique physical quadword address. All data transfers in
volve one complete quadword. Partial transfers (bytes, half
words, or words) are not supported on the bus, although
cache-processor transfers of these types are, of course, pro
vided. For each physical quadword address in the system,
there is one XBUS device that is said to be the current owner
of that quadword address. By definition, the owner of a quad
word address always has the correct value of the quadword
data for that address.

Each quadword address in the system also has a usage mode
of public or private associated with it. The usage mode of a
quadword address applies to any and all copies of the quad
word data for that address. If the usage mode of a quadword
address is public, then the shared memory is the owner of the
quadword address and has the correct data for that address;
other XBUS devices may have copies of the quadword data
for the quadword address, and these copies are guaranteed to
be correct; and the value of the quadword data for the quad
word address cannot be modified by anyone.

If the usage mode of a quadword address is private, then the
owner of the quadword address has the correct quadword data
for that address and can modify it in any way, and there are -
no other valid copies of the quadword data for that address in
the system.

The current owner and usage mode of a quadword address
will change dynamically as the system executes. The owner
ship and usage modes of a quadword address can always be
determined from the last bus transactions that occurred for
the given quadword address.

EXAMPLES OF SYNAPSECACHE QUADWORD
OWNERSHIP

The following set of examples illustrates the ownership level
protocol using three GPPs and one MMC. At the start of this
sequence, the memory is the owner of quadword address
"A." The GPPO cache issues a read request public, and the
shared memory responses with quadword data for address
"A" (Figure 7). Quadword address "A" is still owned by
shared memory with a public usage mode. The GPPO cache
has a copy of quadword "A," which cannot be modified. In
Figure 8, a second read request public is issued by GPP1 cache
with the owner, shared memory, responding with quadword

LA.
SHARED
MEMORY

READ A f I
.J

J RESP.

CACHE l~_ CACHE CACHE

GPPo GPP1 GPP2

Figure 7-The read-request-public exchange

~
SHARED
MEMORY

R£SP. READ A

CACHEl..!- CACHE l~_ CACHE

GPPo GPP1 GPP2

Figure 8-A second read-request-public exchange

EXPANSION ..

EXPANSION

BUS

48 National Computer Conference, 1984

data for "A." At the end of the second read public trans
action, both caches (GPPO and GPP1) contain read-only co
pies of quadword "A" with a public usage mode. Shared
memory is still the owner. Most requests in the system are
public (70-80%) for such items as processor instructions and
read-oniy data. In generai, the public usage mode aHows data
that are not being modified to be shared by all processors with
no interference. Since shared memory owns quadword "A,"
the cache just invalidates the entry corresponding to quad
word address "A" when it must be purged.

GPP2 next decides it must modify quadword address" A."
The GPP2 cache issues a read private to transfer ownership of
quadword "A" from shared memory, with shared memory
responding with quadword "A" data. GPPO and GPP1 caches
monitor the XBUS for all exchanges corresponding to cached
quadwords. When GPPO and GPP1 detect the read private
"A," public copies of quadword "A" are invalidated in real
time. Figure 9 shows the result of GPP2's read private ex
change: GPP2 owns quadword "A," with a private usage
mode, and has the only correct value of quadword "A" data;
shared memory no longer owns quadword "A," and the GPPO
and GPP1 public copies are invalidated.

GPPO next requires that it modify quadword address" A."
The GPPO cache issues a read private to transfer ownership of
quadword "A." The GPP2 cache bus monitor detects a read
private to quadword "A," which it owns with a private usage
mode, and so issues a cache acknowledge to GPPO. The GPP2
cache then responds directly to GPPO while also transferring
ownership. This is a direct cache-to-cache transfer. Shared
memory has ignored the read request for quadword "A" be
cause it is not the owner. This is accomplished by an addi
tional mode bit for each quadword. Storing the mode bit adds
one 64-kbyte dynamic RAM per one megabyte memory,
which implies a memory overhead of less than 1 %. The results
of this exchange are shown in Figure 10. GPPO is the owner of
quadword "A," with a private usage mode; GPP2 no longer
owns quadword "A"; and shared memory is not involved in
the transaction.

If GPPO needs to purge quadword "A" to make room for
another entry, it must return the ownership, and the correct
data, to shared memory. If the data have been modified,
GPPO issues a write-modified exchange, which returns both
ownership and data to shared memory. If the data have not

SHARED
MEMORY

EXPANSION

----:;::::+======i=~;::;;;:~:_Ir- BUS

GPp!) GPP,

Figure 9--Public-to-private transition

READ A

I
CACHE ~

GPPo

SHARED
MEMORY

I

RESP.A 1
CACHE CACHE

GPP1 GPP2

Figure lO-Cache-to-cache response

E

~

XPANSION

BUS

been modified, GPPO issues a write-unmodified command,
which returns ownership to shared memory and uses the last
value of the data in shared memory as the current correct
data.

If GPP2 cache issues a read public request (Figure lla),
GPPO's bus monitor detects a public request for quadword
"A" with private usage mode and issues a busy acknowledge
to GPP2. The GPPO cache then passes quadword "A" own
ership and data back to memory using a write-modified or a
write-unmodified exchange. GPP2 then reissues (Figure lIb)
the read public request (since it was previously busied) and
memory responds with quadword "A" data. At the end of this
sequence, shared memory owns quadword "A," the GPP2
cache contains a public copy of quadword "A," GPPO no
longer owns quadword "A," and its copy has been invali
dated. Transitions of the usage mode from public to private or
private to public between GPP caches occur very infrequently.

Several requests for the same quadword address are auto
matically handled, since the current owner of the quadword is
responsible for acknowledging each request it owns. If a re
quest is received for a quadword address for which a response
is already pending, the current owner (who is waiting for the
response) is responsible for issuing a busy acknowledge to the
requestor. The requestor will reissue the read request after a
retry period.

The lOP reference characteristics are markedly different
from the GPP's. The nature of lOP accesses is to move large
contiguous blocks of data, to or from shared memory, which
exhibit little temporal locality. For example, disk data are
transferred in multiples of disk sectors which are 2 kbytes
long. One strategy in order to modify a quadword in shared
memory would be to have the quadword read privately first
and then written with the write-modified command. This is
inefficient because the quadword data read are immediately
replaced with new data and will not be referenced again by the
lOP. A solution to this problem is to create a command to
allow the quadword data to be written directly to memory
without requiring a read request private to gain ownership and
still maintain memory coherency. The write new data com
mand steals ownership of the quadword address from the
current owner and transfers ownership to shared memory. All

. public or private cache entries corresponding to the quadword
address of the write new data are invalidated.

Synapse Tightly Coupled Multiprocessors 49

~
SHARED SHARED
MEMORY MEMORY

READ A t E
WRITE A j t T RESP.A

XPANSION EXPANSION

r
BUSY ACK'1

l

1
BUS BUS

READ A

CACHE ~ CACHE CACHE L CACHE ~ CACHE CACHE L~

GPPo GPP1 GPP2 < GPPo GPP1 GPP2

Figure ll-Read public request (a) causes the owner to busy the request; (b) shared memory responds to subsequent request

GPP IMPLEMENTATION

The GPP is a single-board, Motorola 68000-based processor,
which serves as the execution unit for system software and
application programs. The major GPP subsystems are shown
in Figure 12. The 68000 subsystem includes a lO-MHz 68000,
32-KB EPROM for selftest, timers, and two serial ports that
can be used for a system debugger and local console.

The remainder of the GPP is controlled by a microengine,
which includes a 1-kbyte-by-72-bit-wide microinstruction
word and special-purpose data paths. The microengine con
trols all GPP datapaths, implements the address translation
mechanism, controls the address translation cache, controls
the data cache (including algorithms), and controls the XBUS
interfaces and monitors.

The GPP cache permits reads and writes by the 68000 with
no wait states for cache hits. It is physically separated into
quadword address tag RAM, including address comparitors
and quadword data RAM. Figure 13 illustrates the GPP cache
organization. Three mode bits included with the cache ad
dress tags are the valid bit (which indicates that the corre
sponding cache entry is allocated), the usage mode (private or
public) bit, and the data-modified bit. The generation of ad
dress tags, cache replacement algorithms, and transfer of data
between the quadword data RAM and the XBUS is controlled
by the microengine.

10 MHz 68000
32 K BYTE EPROM
3 TIMERS
2 SERIAL PORTS

Figure 12-Synapse general-purpose processor

Cache size is 16 kbytes divided into blocks of one quadword
(16 bytes). The cache is two-set associative and uses the non
write-through method in conjunction with XBUS ownership
protocol. The replacement algorithm is random between
sets. 3,8

Dual XB US interfaces allow data to be transferred between
the shared memory or another processor and the GPP data
cache. Each XBUS interface contains bus monitor logic,
which monitors all exchanges on each bus. Data cache tags are
replicated (for a total of three copies of the cache tags) in each
bus monitor, to allow the tags to be accessed and updated in
parallel with 68000 execution. The bus monitor provides two
types of functions. A real time function includes invalidation
validation or acknowledgment of read requests based on ex
changes with quadword addresses corresponding to cache en
tries. When a response is required, the bus monitor queues
the address and issues an interrupt to the microengine. The
microengine then initiates the response by controlling transfer
of the data from the data cache to the XBUS interface.

CONCLUSIONS

Why did Synapse go to the trouble of tying multiple proces
sors-tightly coupling them-to a shared-memory system?
One reason is that the interprocessor communication that

31 14 13

4

1
3 BYTE IN QUADWORD 0

1
ADDRESS TAG 1 HASH INDEX

PHYSICAL QUADWORD ADDRESS

SETA SET B

DATA ~~~ ____ T_A_G ____ ~_D_A_TA~
ADDRESS TAG 1 Ml vl P QUADWORD

TAG

511 L-_____ ---L __ ---'

Figure 13-Synapse GPP cache organization

50 National Computer Conference, 1984

arises in a loosely coupled multiple-computer system signifi
cantly reduces the total system's performance. This inter
processor communication does not appear in the Synapse
tightly coupled mUltiprocessor architecture. Fault tolerance in
a multiple-computer system requires excess processing capa
bility that does not directly contribute to the production envi
ronment. In contrast, the N + 1 multiprocessors of the
Synapse system all directly contribute to the total system's
performance in a fully operational system.

In addition, a large part of the effort in designing and imple
menting on-line transaction processing applications for loose
ly coupled systems is in the areas of system growth, tuning and
load balancing, and file distribution. A tightly coupled archi
tecture automates these areas, thereby accelerating project
development atid reducing project costs. The system can grow
on line because distributed ownership protocols allow mod- .
ules to be added or deleted under power; it requires no load
balancing or tuning because all processes are dispatched from
a common list in shared memory; and it requires no file distri
bution because all files are equally available to all processors.

The Synapse XBUS ownership protocol is designed to min
imize bus bandwidth required per processor (GPP or lOP),
while maintaining memory coherency. The non-write-through
algorithm always produces less bus traffic than does the write
through algorithm for caches larger than 1-2 kbytes and block
sizes that are not too large. The 16-byte quadword block size
is a tradeoff between minimizing bus traffic (small block size
is better) and maximizing cache hit rate. Cache allocation
algorithms are optimized such that most quadwords are
fetched with a public usage mode that has two positive per
formance effects. First, since public quadwords are read-only,
they need not be written to memory when purged from cache.
Second, several GPPs can have public copies in their in
dividual caches, without interfering with each other. Single
processor modification of quadword data is handled effi
ciently. Concurrent write access to a quadword has been
infrequent in operating the Synapse system.

Measurements during system operation have verified that
bus bandwidth use per processor is very low. The percentage
of Synapse XBUS bandwidth used per GPP has been mea
sured at 2% of the total bus bandwidth. Performance has
increased linearly with each processor added. During that

time, the cache hit rate was found to be in excess of 95%.
A final advantage of the Synapse bus ownership protocol is

that it allows future flexibility in the actual algorithms used by
GPP caches. Because ofthe non-write-through algorithm, bus
bandwidth used by any processor can be further reduced by
increasing the cache size.

ACKNOWLEDGMENTS

We would like to thank Scott Merritt for his help in developing
the ownership protocol and Mark Francis, George Franzen,
John Galloway, and Joe Hull of the OS Group for their input
and extreme patience during the debugging of the multi
processor system. We are also grateful for the support and
assistance given by many members of the Hardware and Soft
ware Development Groups.

REFERENCES

1. Inselberg, A. "Multiprocessor Architecture Ensures Fault-Tolerant Trans
action Processing." Mini-Micro Systems, 16 (1983), pp. 165-172.

2. Jones, S. "High Application Availability." In Proceedings ofCompcon83.
New York: IEEE, pp. 12-17.

3. Smith, AJ. "Cache Memories." ACM Computing Surveys, 14 (1982),
pp. 473-530.

4. Goodman, J. R. "Using Cache Memory to Reduce Processor Memory
Traffic." SIGARCH Newsletter, 11 (1983), pp. 124-131.

5. Pohm, A V., and O. P. Agrawal. "A Cache Technique for Bus Oriented
Multiprocessor Systems." In Proceedings of Compcon82. New York:
IEEE, pp. 62-66.

6. Ravishankar, C. V. and J. R. Goodman. "Cache Implementation for Mul
tiple Microprocessors." In Proceedings of Comcon83. New York: IEEE,
pp. 346-350.

7. Smith, J. E., and J. R. Goodman. "A Study of Instruction Cache Organiza
tions and Replacement Policies." SIGARCH Newsletter, 11 (1983),
pp. 132-140.

8. Strecker, W. D. "Cache Memories for the PDP-ll Falnily Computers." In
Proceedings of the 3rd Annual Symposium Computer Architecture. New
York: ACM, pp. 155-158.

9. Briggs, F. A and M. Dubois. "Effectiveness of Private Caches in Multi
processor Systems with Parallel-Pipelined Memories." IEEE Transactions
on Computers, C-32 (1983), pp. 48-59.

10. Dubois, M. and F. A Briggs. "Effects of Cache Coherency in Multi
processors." IEEE Transactions on Computers, 3-32 (1982), pp.
1083-1099.

Throughput of multiprocessors with replicated shared
memories

by SIGURD L. LILLEVIK
Oregon State University
Corvallis, Oregon

and
JOHN L. EASTERDAY
Tektronix, Incorporated
Beaverton, Oregon

ABSTRACT

Multiprocessors with replicated shared memory use a memory structure consisting
of a set of memories, one for each processor, with identical contents. This minimizes
read interference since each processor simply accesses its own private copy of the
shared memory. To ensure shared-memory integrity, write requests transfer data to
all copies in parallel. Compared to traditional shared memories, multiprocessors
with replicated shared memories may achieve a speed-up which approaches O(N),
with N equal to the number of processors. This speed-up occurs for systems with
large N, a small number of shared memories, and large shared-memory use and
fractions of read requests.

51

INTRODUCTION

Multiprocessor computers provide the potential for increas~d
performance through concurrent computation, and for in
creased fault tolerance through hardware redundancy. Theor
etically, a mUltiprocessor computer with N processors should
achieve an O(N) speed-up compared to a uniprocessor com
puter. Of the several factors limiting multiprocessor speed-up,
the interprocessor interference of shared memory signifi
cantly degrades performance. One method to minimize
memory interference involves use of replicated shared-mem
ory structures. Rather than a single memory, replicated
shared memory consists of a set of memories, one for each
processor, with identical contents. Reads may occur concur
rently since each processor accesses its own copy. To maintain
shared memory consistency, writes update all copies in paral
lel, and require arbitration and synchronization. Replicated
shared memory structures increase Illultiprocessor throughput
because of decreased interprocessor interference. In addition,
these shared-memory structures may provide for increased
fault tolerance because of multiple copies. Still, given a multi
processor computer with replicated shared-memory struc
tures, which application characteristics affect the increase in
throughput, and to what extent? These questions will be stud
ied in this paper.

A following section of this paper reviews previous work in
replicated shared-memory structures and outlines a through
put model used to determine the speed-up of such memories
compared to single memories. Next, some definitions and an
example are provided to describe the parameters of an appli
cation. Using these definitions, the last section discusses the
speed-up of generalized, symmetrical multiprocessors with
replicated shared memories.

BACKGROUND

Experience with multiprocessor computers has shown de
signers that minimizing interprocessor interference is one of
the keys to exploiting parallelism. To minimize interference,
several techniques have been investigated including crossbar
switches, reconfigurable busses,l and multiport memory. The
latter, multiport memory, requires several sets of address,
data, and control busses, one for each port. Both Covo2 and
Pearce and Majithia3 have suggested that memory replication,
a copy for each port, may be used as a multiport memory
structure. More recently, Lillevik et al. 4 have presented guide
lines for the design of multiport memory using replication
techniques.

One specific example of the decrease in bus interference
provided by replicated shared memory is in implementing

Throughput of Multiprocessors 53

global data such as semaphores. Usually, semaphore "busy
waits" require consecutive accesses of the system bus. But
with replicated shared memory, processors first read their
local copy of the semaphore until released (which does not use
the system bus), and then perform a "locked" read-modify
write cycle (which does use the system bus). This feature has
led Borri1l5 and the IEEE P896 Future Bus Committee to
consider supporting replicated shared memory in their stan
dard.

Replicated Shared Memory Example

At Oregon State University, a five-processor computer has
been developed and is in operation to investigate replicated
shared memory structures. 6 From the PMS diagram in Figure
1, the system contains five 8086/8087 microprocessors inter-

PROCESSOR ZERO

• • •

PROCESSOR FOUR

MUL TIDBG

INTERRUPTS

Figure I-PMS diagram of a multiprocessor with replicated shared memory

54 National Computer Conference, 1984

connected with Intel's MULTIBUS. Each of the five pro
cessors contains 256 Kbytes of dynamic random access mem
ory (RAM) of which 128 Kbytes is shared. The multiprocessor
functions as follows: For reads from shared memory, each
processor accesses its own copy of RAM using a resident bus,
but for writes to the shared memory, the MULTIBUS pro
vides an arbitration protocol and data path for broadcasts. In
this case, all of the shared RAMs become slave resources and
data are transferred on the bus to all slaves in parallel. In
Reference 6, the authors point out that each processor,
memory copy, and set of switches could be integrated on a
single chip as a versatile building-block for multiprocessor
computers.

Multiprocessor Throughput Model

To assess the performance of multiprocessors, Lillevik et
al. 7 have developed a model of throughput under conditions
of interprocessor interference. The model assumes a hard
ware environment of N processors connected to M shared
resources (memory, coprocessor, input-output, etc.) as
shown in Figure 2. In this figure, notice that each processor
also connects to local or resident resources, and that an N x M
conflict-free interconnection network links the processors to
the shared resources. Besides Nand M, the model considers
the bandwidth ratios of processors to shared and resident
resources, the priority assignment of processors, and the use
of shared and resident resources by processors. This stochastic
model combines the above information, considers interfer
ence conditions, and generates individual processor and total
system throughput.

Basically, the model functions as follows: For each possible
combination of requests for shared and resident resources
(which describes one of many possible system states), some
processors ,vill experience a delay because another processor
has higher priority. The sum or union of the probabilities of
occurrence of those states causing processor delay then equals
the total probability of delay for the time interval of interest.
And one minus this delay indicates the probability of no delay
or the average throughput for a specific processor. To deter
mine the probability of occurrence of a specific state, the

• · • I
~ 1.------.1 I

NETWOIlK

I RESO~11CES H PROC~SSOIl ML--___________ ---l
Figure 2-A multiprocessor computer block diagram

model considers the intersection event that all of the pro
cessors are accessing the resource as defined by that state.
Since the individual processor requests are assumed indepen
dent, the probability of occurrence of a state equals the prod
uct of individual processor occurrences. These individual
probabilities of occurrence may be determined from the use of
shared and resident resources by processors. Using the experi
mental multiprocessor described above, Easterday has col
lected laboratory data to verify the model. 8 For total shared
resource use of 60-70%, the error is less than 3%, and at
saturation (100%) it increases to 10%. This results from the
assumption on independence, which begins to fail at higher
use because the hardware queues requests. The model has
been programmed on an HP-1000, which requires, for exam
ple, approximately 20 seconds for an N = 16 and M = 16 mul
tiprocessor.

DEFINITIONS

Algorithms intended for execution on multiprocessor comput
ers seek to exploit the inherent parallelism of the application.
Typically, programmers separate the problem into several
tasks, which may either execute concurrently or which may
require a strict sequential order. The operating system must
manage the tasks and resolve such dilemmas as mutual exclu
sion of shared resources, intertask communication, and task
synchronization and scheduling. Although the interaction of
the hardware and software changes dynamically, an approxi
mate description may consider it constant over an interval of
time. Fundamentally, one may characterize a multiprocessor
system in terms of the hardware involved and its extent in
solving a problem. To represent this involvement, consider
the following:

Definition 1

A multiprocessor algorithm A (N, M, U) describes over an
interval of time the interaction of N processors connected to
M shared memories, where the use of each memory by each
processor may be found from an N x M matrix U defined as
follows:

with Unm = probability that processor n accesses shared
memory m. As probabilities, the sum over m of the Unm must
be less than or equal to one. In fact, processors access resident
resources with probability one minus this sum. Notice that the
definition of U exactly parallels the role of processor use as
described for the model of the previous section. Since access
to a shared memory may contain both read and write requests,
as defined by the instruction mix, each Unm actually consists of
two factors as follows:

Definition 2

Each element Unm of utilization matrix U contains a read
utilization rnm and a write utilization Wnm such that

u nm = rnm + Wnm (1)

where rnm = probability that processor n requests a read from
shared memory m, and Wnm = probability that processor n
requests a write to shared memory m. Furthermore, let (lnm

represent the fraction of read requests compared to total re
quests,

rnm rnm
(l = =-

nm rnm + Wnm Unm
(2)

The above definitions provide a method to determine the
speed-up of multiprocessor computers with replicated shared
memories compared to single or conventional shared memo
ries. Since replicated shared memories provide nearly
conflict-free read requests, the read fractions (lnm may be used
to determine a modified utilization matrix U', which depends
on a given application. Specifically, consider the next defini
tion.

Definition 3

A modified N x M utilization matrix U' represents the ef
fect of replicated shared memories as follows,

U'= [
Ui1 '" U{M]

um'" uft/M

where U~m = probability that processor n requests a write to
replicated shared memory m.

Using Definition 2 and Equations 1 and 2,

U~=Wnm
= Unm (1 - (lnm) (3)

In Equation 3, the u~m represents reduced values of the U nm

because some fraction (lnm of the total requests for a replicated
shared memory are nearly conflict-free-the reads-and es
sentially accesses to a resident memory.

From Definitions 1 and 3, an expression may be developed
for the speedup of a multiprocessor with replicated shared
memories compared to single, conventional shared memories.

Definition 4

Let T(a) represent the throughput of a multiprocessor exe
cuting algorithm "a. "The speedup S of a multiprocessor with
replicated shared memories compared to conventional, single
memories may be found from

S = T(A')
T(A)

(4)

where A' = an algorithm defined with modified utilization
matrix U', and A = an algorithm with utilization matrix U. In
Equation 4, the throughput T(A') will be greater than
throughput T(A) because fewer memory accesses will result
in interference. To determine numeric values for Equation 4,
the model presented in the previous section may be used.

Throughput of Multiprocessors 55

FFT Example

To solidify the definitions and methodology of the previous
sections, consider a multiprocessor implementation of an
eight-point fast Fourier transform (FFT) as shown in Figure 3.
Each output value will be found by a specific processor, so the
assumed hardware consists of N = 8 processors. Also, it will
be assumed that a single shared memory (M = 1) holds the
initial, intermediate, and final data of all processors. At each
node in the figure, a processor must complete a computation
of the form:

(5)

where I = node row, m = node column, and mI, m2, r, Ware
constants.

If in Equation 5, each operation requires one instruction
fetch, two argument reads, and one resultant write to mem
ory, then the total number of memory accesses for 3 nodes
equals:

R = total number memory requests for one processor
= (2 ops)(1 fetch + 2 reads + 1 write)(3 nodes)
=24

Next, assume the 6 instruction fetches are from resident
memory. Thus, from Definition 1

X(D} V(D}

X(l) V(4}

X(2) Y(2)

X(3) V(6)

X(4) YO)

X(5) Y(5)

X(6) V(3)

X(7) v(7}

Figure 3--Signal flow graph for an eight-point FFf

56 National Computer Conference, 1984

24-6
Unm=~ =0.75; l~n ~N, M = 1

V= (6)

Of the 18 accesses to shared memory, 12 involve read requests
and 6 involve writes; hence, from Definition 2

6
<lnm = 18 = 0.33

and from Equations 2 and 1

Tnm = <lnmUnm = 0.25, with

Wnm = Unm - Tnm = 0.50; for 1 ~ n ~ N, M = 1

From Equation 3, the modified utilization matrix V' may be
determined as:

V'=

0.5
0.5

0.5

(7)

From Equations 6 and 7, the eight-point FFf application may
be characterized as A (N, M, V) and A '(N, M, V'). Using the
two utilization. matrices V and V' in the model produced the
following result,

s = T(A ') = 4.99 = 1 66
T(A) 2.99 . (8)

Thus, in Equation 8, the use of a replicated shared memory
produced a speed-up of 1.66, or a 66% increase in throughput.
For this example of an eight-point FFf, this implies that the
hardware could sample data at a 66% greater rate.

The obvious question at this point is "How realistic a result
does this represent?" Clearly, the processors require syn
chronization to share memory and intermediate data. In addi
tion, the multiplication operations require more time than the
additions, and neither of the operations may require three
memory accesses for arguments. And what about the inherent
error of the model itself? All of these factors and others
modify the results somewhat, but Equation 8 represents a
first-order, approximate speed-up and possibly an. upper
bound on the problem. Thus, the example serves a useful
purpose and illustrates the methodology involved in the anal
ysis of multiprocessors with replicated shared memories.

SPEEDUP OF SYMMETRICAL MULTIPROCESSORS

From the results of the previous example, clearly the use of
replicated shared-memory structures with multiprocessor
computers provides the potential for significant speed-up.
This section will discuss several unanswered questions: Was
the eight-point FFf example an isolated case? More precisely,
can speed-up be determined for the more general case? What
are the key application characteristics that influence speed
up, and how much speed-up can be expected? To answer these
and other questions, one must begin with a set of assumptions
about the hardware and software of the multiprocessor com
puter.

Rather than consider an unlimited number of combinations
of N processors, M shared memories, and various utilizations
and read fractions, we will analyze symmetric multi
processors. Here, each processor divides its memory accesses
equally between the M shared memories. In addition, we will
vary the read fraction <lnm over the range 0.1 ~ Clnm ~ 0.9.
Also, we will let the number of processors and shared memo
ries be less than or equal to five. Using the above assumptions,
utilizations for various numbers of shared memories and read
fractions may be found in Table I. The first column in this
table corresponds to processor use of conventional memories,
and the remaining columns correspond to processor use of
replicated shared memories (which change with the read frac
tion). For example, an N = 3 and M = 2 system with read
fraction <lnm = 0.7 would correspond to the following utiliza
tion and modified utilization matrices:

[0.5 0.5]
V= 0.5 0.5

0.5 0.5

[0.15 0.15]
U' = 0.15 0.15

0.15 0.15

By using Equation 4 and the model discussed in the previous
section, a table of speed-ups may be developed to provide a
database for the following discussions (see Table II).

The speed-up as a function of read fraction for several
values of the number of processors (and constant number of
shared memories, M = 2) is shown in Figure 4. In all cases,
the speed-up begins at zero percent for read fraction zero, and

Table I-Use factors for various numbers of memories and read
fractions

M a • Read Fraction
Memories 0.0 0.1 "'8.3 0.5 0.7 0.9

1.00 0.90 0.70 0.50 0.30 0.10

0.50 0.45 0.35 0.25 0.15 0.05

0.33 0.30 0.23 0.16 0.10 0.03

0.25 0.11 0.17 o. iZ O.Oi 0.01

0.20 0.18 0.14 0.10 0.06 0.01

Table II-Percent speed-up for various numbers of processors,
memories, and read fractions

M ~' Read Fraction
Processors Memories 0.1 O. 0.5 0.7 0.9

19 51 75 91 99

1) 25 30 33

11 16 19 20

11 13 14

10 11

30 87 138 176 197

12 34 52 64 71

8 21 32 39 42

14 22 27 29

12 17 21 23

40 119 194 256 294

18 52 80 100 111

12 32 48 60 66

22 34 42 46

17 26 32 35

50 150 247 333 391

24 69 108 138 156

15 42 65 85 90

10 30 46 57 63

23 35 44 48

as the read fraction increases the speed-up increases. More
over, the greater the number of processors, the greater the
speed-up. One would expect speed-up to increase with read

c...
::J
0

"" UJ
c...
'"
I-
:z

~

160r-------~------~------~~------~------~

140

120

100

80

60

40

20

0.2 0.4 0.6 0.8

"'nm' READ FRACTION

Figure 4-Speed-up as a function of read fraction
for M = 2 shared memories

1.0

Throughput of Multiprocessors 57

400~--____ ~------~--------r---~--'-------~

350~----__ ~ ______ -4 ________ ~ ____ ~~ ______ ~

300~ ______ ~ ______ -4 ________ ", ______ ~ ______ ~

250~------~----__ -4 __ ~~ __ ~ ______ ~ ______ -1

200~------~------~ ________ ~ ______ 4-______ -1

150~--____ ~ __ ~ __ -4 ________ ~ ______ ~~~~-1

100~ ______ ~ ______ -+~~ ____ ~ ______ ~ ______ ~

"'nm' READ FRACTION

Figure 5---Speed-up as a function of read fraction for N = 5 processors

fraction because fewer write requests (which require arbi
tration) imply reduced shared memory interference. Yet as
the number of processors increases, the speed-up increases.
This occurs because for a fixed number of shared memories,
a greater number of processors results in increased inter
ference, and replicated shared memories reduce interference
to a greater extent.

Next, how does the number of shared memories affect the
speed-up? Figure 5 illustrates the speed-up as a function of
read fraction for several values of the number of shared
memories (and constant number of processors, N = 5). As
before, the speedup begins at zero percent for read fraction
zero, and increases with read fraction for the same reasons
(fewer writes and interference). But now the speed-up de
creases with increasing number of shared memories. For a
fixed number of processors, individual memory use and inter
ference decrease as the number of shared memories increases.
Replicated shared memories produce less of an effect with a
greater number of shared memories because processor inter
ference is less to begin with. Thus, the speed-up decreases
with an increased number of shared memories for fixed num
ber of processors.

In both Figures 4 and 5, the speed-up flattens as the read
fraction approaches one, or 100% reads and no writes. This
occurs because the processors have now become essentially
independent of each other, which results in no interference
and maximum possible throughput O(N).

58 National Computer Conference, 1984

Summarizing Table II, maximum speed-up occurs for a sin
gle replicated shared memory with all N processors perform
ing reads only. In fact, the maximum speedup equals O(N). To
generalize this result, a multiprocessor with replicated shared
memories will increase the throughput of a multiprocessor
with conventional shared memories to the greatest extent,
when the multiprocessor contains a large number of proces
sors, all accessing a single replicated shared memory, with all
accesses reads. Under such ideal conditions, the processors
experience no shared memory interference and achieve max
imum theoretical throughput O(N). So the net effect of repli
cated shared memories is to decrease interprocessor inter
ference and increase system throughput.

CONCLUSIONS

A mUltiprocessor with replicated shared memory uses several
copies of the memory, one for each processor, to decrease
interference. Each multiprocessor application may be de
scribed over an interval of time using a utilization matrix U,
which specifies the interaction of the N processors and M
shared memories. For multiprocessors with replicated shared
memories, a modified utilization matrix U I may be used,
which also considers the fraction of read requests (Xnm. Speed-

up of a mUltiprocessor with replicated shared memories com
pared to a multiprocessor with conventional shared memories
approaches O(N). This maximum occurs for a large number of
processors, a small number of shared memories, large shared
memory use, and a large fraction of reads.

REFERENCES

1. Arden, B. W., and R. Ginosar. "MP/C: A Multiprocessor/Computer Archi
tecture." IEEE Trans. Comput. C-31 (1982), pp. 455-473.

2. Covo, A. A. "Analysis of Multiprocessor Control Organizations with Partial
Program Replication." IEEE Trans. Comput. C-23 (1974), pp. 113-120.

3. Pearce, R. c., and J. C. Majithia. "Analysis of a Shared Resource MIMD
Computer Organization." IEEE Trans. Comput. C-27 (1978), pp. 64-67.

4. Lillevik, S. L., H. T. Voorheis, and M. L. Skinner. "Multiport Memory
Design." Proceedings 14th International Symposium Mini and Micro. Ana
heim, Calif.: ACTA Press, 1981, pp. 2-6.

5. Borrill,P. L. "Multiprocessor Synchronisation Primitives on Backplane
Busses." Report to IEEE P896 Committee, University College (London,
U.K.) Mullard Space Science Laboratory, September 1982.

6. Lillevik, S. L., and J. L. Easterday. "A Multiprocessor with Replicated
Shared Memory. " AFIPS, Proceedings of the National Computer Conference
(Vol. 52), 1983, pp. 557-564.

7. Lillevik, S. L., J. L. Easterday, and M. L. Skinner. "Multiprocessor
Throughput with Shared Resource Interference," Proceedings 16th Asilomar
Conference on Cir., Sys., and Comput. November 1982, pp. 524-530.

8. Easterday, J. L. "Design and Analysis of Multiprocessors with Replicated
Shared Memory." M.S. thesis, Oregon State University, May 1983.

The DCS-A new approach to multisystem data-sharing

by AKIRA SEKINO, KEIZO MORITANI, TERUAKI MASAI, TOSHIAKI TASAKI,
and KAZUO GOTO
NEC Corporation
Tokyo, Japan

ABSTRACT

This paper describes a special purpose computer, the Data-sharing Control System
(DCS), which was developed for mUltisystem data-sharing. This computer enflbles
efficient block-level data sharing among several loosely coupled computer systems.
Major architectural features incorporated into the design of the DCS are discussed
in some detail, in the light of general requirements for such systems. The DCS
based loosely coupled multiprocessor architecture, together with the traditional
tightly coupled multiprocessing, provides a new framework for the design of reliable
large-scale database systems.

59

INTRODUCTION

With the cost of computer hardware falling steadily and the
need for processing power and high availability ever-rising,
the demand is growing for a new kind of multiprocessing
computer architecture that allows efficient data processing,
smooth and extensive system growth, and a high degree of
overall reliability. Mainframe computer manufacturers tradi
tionally have offered tightly coupled and loosely coupled mul
tiprocessor architectures,l and minicomputer manufacturers
offer new fault-tolerant architectures,2 in order to satisfy this
kind of demand. The traditional tightly coupled multipro
cessor architecture allows connection between several pro
cessors under the control of a single operating system at a
main storage level, while the loosely coupled multiprocessor
architecture allows connection of several computer systems
under the control of multiple operating systems at a channel
connection level. Each of these multiple computer systems
may well be a tightly coupled multiprocessor.

Large-scale commercial computers can usually include up
to four central processing units (CPUs) to improve their per
formance, as well as their availability in tightly coupled multi
processor (TCMP) configurations, as seen in IBM 3080 series
or NEC ACOS 1000 computers. 3 To build a larger, more
reliable system, one needs to introduce a loosely coupled
multiprocessor (LCMP) capability, which connects indepen
dent computer systems by a shared secondary storage and
optional direct channel-to-channel intersystem adapters. This
capability often becomes essential in the design of large-scale
on-line database systems. Japanese banking systems, for ex
ample, are expected within the next few years to execute 300
to 500 transactions per second.4

Today's LCMP architecture, however, has some difficulties
in achieving effective data-sharing among multiple loosely
coupled computer systems. Multisystem data-sharing requires
that the data-sharing control information necessary for data
access serialization be accessible commonly from all the com
puter systems. In one LCMP implementation, this is done by
storing the control information at commonly accessible disk
controllers.4 In another implementation, the same effect is
produced by passing data-locking request information all
around the computer systems, using a ring of channel-to-chan
nel intersystem adapters spanned between these systems.5

Low intelligence of the disk controllers will limit the number
of lockable data entities in the first implementation, while the
communication overhead between loosely coupled computer
systems will become a serious performance bottleneck in the
second implementation, thereby limiting the performance of
the entire computer complex. It is therefore difficult in these
implementations to achieve effective multisystem data
sharing for a high transaction environment.

The DCS-for Multisystem Data-Sharing 61

This paper presents still another approach that attempts to
solve the above problem of multisystem data-sharing, by de
scribing the architecture of NEC's newly developed Data
sharing Control System (DCS). The DCS-based LCMP archi
tecture and the traditional TCMP architecture combine to
provide a new framework for the practical design of reliable
large-scale database systems.

DESIGN REQUIREMENTS

Given a general background of the demand for a new kind of
multiprocessing computer framework, the following describes
a set of design requirements that were postulated in deter
mining the DCS-based LCMP system architecture:

1. Flexible structure to allow cost-effective large-scale sys
tem designs-Both TCMP and LCMP architectures
must be usable in configuring an optimized computer
complex to satisfy various application needs. Large-scale
computer complexes, involving up to eight computer
systems, each of which may be a TCMP system, should
be configurable in this architectural framework, with low
incremental cost.

2. Efficient data-sharing in high transaction environments
-Efficient data-sharing among large-scale computer
systems must be achievable in order to facilitate cost-ef
fective high-transaction system designs. For this pur
pose, the DCS must have sufficient performance capa
bility for processing up to several thousand data lock
unlock requests per second, for data access serialization.
It must be possible to choose granularity of locks at a
data-block level.

3. Reliable system operation-The resulting computer
complex must be fault-tolerant at various levels and have
extensive serviceability and data recovery considerations
to improve system availability. The DCS, being a critical
component of the computer complex, should be ex
tremely reliable.

4. Smooth field migration and upgrade capability-The
new architectural framework must allow smooth field
migration from a single-system environment to a loosely
coupled, multisystem environment. It also must allow
smooth field upgrades involving additions of various sys
tem components, preferably with minimal or no stop
page of system operation.

5. System operation with minimal human intervention
The resulting computer complex must have considera
tions to reduce human intervention in operating the
computer complex.

62 National Computer Conference, 1984

SYSTEM ARCHITECTURE

The approach chosen by the DCS is to design a reliable new
high-performance control system, which is specialized in
multisystem data-sharing management and does not require
significant hardware changes to existing host computers or
their secondary storage systems.

Overall System Organization

The overall organization of a lage-scale DCS-based LCMP
computer complex is shown in Figure 1. It specifically includes
eight host computers (NEC's ACOS computers), a secondary
storage system (disks), and the DCS.

Each of the host computers may have up to four CPU s
organized as tightly coupled multiprocessors. Therefore, the
entire computer complex may include 32 CPUs. The second
ary storage system contains ordinary disk controllers and disk
units, which may store sharable data. In order that sharable
data be accessible from a host computer, there must be at least
one channel path between the host computer and the disk
controller, which controls access to the sharable data stored
on a disk unit. It is not necessary to modify the secondary
storage system, the stored data itself, or application programs
that run on host computers when an installation migrates from
a single-system environment to a multisystem environment.
Thus, users' investment in purchased hardware and developed
software are protected from undesirable system changes. The
DCS is a new stand-alone special-purpose computer designed
to control data-sharing among the loosely-coupled host com
puters. It is a sophisticated processor complex by itself, as will
be described later, which makes it a very reliable high-perfor
mance control system. There must be at least one channel
path between each host computer and the DCS.

Division of Functions

The major functions offered by the DCS include block-level
and file-level serialization of conflicting host task accesses
made to sharable data in the secondary storage system; inter
host message communication; graceful degradation of the
DCS configuration, upon detection of unrecoverable failures;
functions related to data recovery, such as multisystem jour
nal serialization, bad block freezes, etc., and statistical data
collection.

The multisystem data-sharing requires a functional cooper
ation of host computers and the DCS in the following way.
Serialization of conflicting data accesses made by host tasks
are conducted either by host computers or the DCS, in order
to control data integrity efficiently. If a host task accesses
global data, that is, data that potentially can be accessed by
tasks of multiple host computers, the operating system of the
host computer issues a LOCK command to the DCS before it
issues a data access command to the secondary storage sys
tem. The DCS then attempts to execute this command for the
host task, but if it detects a deadlock situation, it notifies the
host task that the command would cause a deadlock. If a host
task accesses local data, that is, data accessed only locally

HOST
COMPUTERO ••••••

HOST
COMPUTER7

Figure l-Overall system organization

within a particular host, the operating system similarly issues
a LOCK command to itself and attempts to process the re
quest within that particular host. If the command cannot be
immediately executed because of conflicting data accesses,
the operating system must notify the DCS of this situation for
a deadlock examination, as described in more detail later.
This kind of arrangement is called a hierarchical deadlock
detection protocol. 6

Another example of host-DCS cooperation is data recovery
needed in the event of data damage due to malfunction of the
secondary storage system. The operating system for each host
computer normally keeps its own journal in the secondary
storage system. When damaged data must be recovered,
several journals created by the host computers must be
merged by using a journal serialization function of the DCS.
In addition, the DCS normally freezes the damaged data area
upon detection of data damage, to prevent further host access
to the damaged data.

Diversity in Serialization Commands

The DCS command repertoire has a variety of control com
mands to make efficient and reliable multisystem data-sharing
possible. However, most distinctive commands are data-ac
cess serialization commands, which include a set of LOCK
UNLOCK commands and a WAIT STATUS NOTIFICA
TION command.

LOCK and UNLOCK commands

A LOCK command is used by a host operating system to
obtain exclusive control of a particular data entity, such as a
physical file or block of data, on behalf of a specified applica
tion task; the use of the data entity can thus be seriaiized
properly. Without this kind of serialization control, sharable
data might lose its integrity in various ways because of uncon-

Task 1 time Task 2

READ RECORD A t1
(=100)

t2 READ RECORD A
(=100)

ADD 10 t3

REWRITE RECORD A t4
(=110)

ts ADD 100

t6 REWRITE RECORD A
(=200)

(a) Task l's update is lost

Task 1 time Task 2

LOCK RECORD A t1
(~ grant)

WRITE RECORD A t2

t3 LOCK RECORD B
(~ grant)

t4 WRITE RECORD B

LOCK RECORD B ts
(~ wait)

t6 LOCK RECORD A
(~ wait)

(b) Deadlock occurs at time t6

Figure 2-Inconveniences caused by multiple data accesses

trolled simultaneous updating of the same data.7 In a situation
shown in Figure 2(a) , for example, a record update operation
in Task 1 will be lost, because of a conflicting update oper
ation in Task 2. This inconvenience, however, can be avoided
by delaying the read operation in Task 2 until the completion
of the rewrite operation in Task 1, in order to serialize the use
of this record.

A lock request using a LOCK command mayor may not be
granted by the DCS, depending on the status of data in ques
tion and the nature of the request. Once a lock request is
granted, this situation continues until an unlock request con
cerning the same data is received from the same task. There
are two kinds of locks; exclusive locks, which are generally
used for data updates and shared locks, used for data re
trievals. An exclusive lock request is granted only to a single
task at a time, whereas a shared lock may be simultaneously
granted to several independent tasks, each requesting shared
data access using a shared lock. If a lock request cannot be
granted, the DCS advises the task to wait until that data are
released.

At this point, care must be taken to avoid a deadlock, by
advising the task to wait. This requires that the DCS deter
mine whether or not a new wait would cause a deadlock and
to advise the task to wait only when deadlock will not be

The DCS-for Multisystem Data-Sharing 63

caused. If it does cause a deadlock, as shown in Figure 2(b),
for example, the DCS informs the host operating system of
the resulting deadlock, instead of asking the task to wait.
Then, the operating system rolls back the task and releases all
the data entities held by it. The detailed information on the
deadlock is available to the operating system for later analysis.
If the task is advised to wait, it will be notified by the DCS
when the data becomes available, that the wait is over.

Data entities held by a task are normally released by the
task's release request using either an UNLOCK or an UN
LOCK ALL command. The former unlocks a set of specified
data entities, while the latter unlocks all data entities held by
the task. When several tasks share the same buffer area in the
main storage, the use of an UNLOCK AND LOCK command
allows a complete transfer of all data entities held by one task
to another, thus saving the cost of executing another set of
data input commands.

WAIT STATUS NOTIFICATION command

A WAIT STATUS NOTIFICATION command is used by
a host operating system to notify the DCS of a wait status for
a local sharable data. When this command is used to notify the
DCS of an occurrence of a new local wait, the DCS deter
mines whether or not this new wait will cause a deadlock
involving both local and global data. If it finds a deadlock, the
DCS informs the host of this situation; otherwise, it records
the new wait-status concerning the local sharable data. The
DCS keeps this information for other deadlock examination
involving local and global data, until it receives another WAIT
STATUS NOTIFICATION command notifying it of the ter
mination of the local wait.

DCS ARCHITECTURE

It is important that a DCS have architecture that is suitable to
its design requirements. In particular, special considerations
are necessary to satisfy requirements in regard to performance
and reliability. The following describes the architectural as
pect of the DCS hardware and software, which is crucial to the
DCS design.

Des Hardware

The DCS hardware organization is shown in Figure 3. The
major components are host interface controls (HICs), data
sharing control processors (DCPs), common storage units
(CSUs), and the associated interconnection buses. This or
ganization allows highly parallel DCS operations, which are
important in achieving high processing throughput, as well as
dynamic reconfiguration based on component redundancy,
which is important to attaining high availability.

Host interface control

The DCS has a maximum of eight HICs, each of which
provides up to four channel paths. These channel paths oper-

64 National Computer Conference, 1984

• MM • • • • HI Co HIC I HIC2 HIC3 • • • HIC6 HIC7

I~~~ !
IUIJI HIli 1111 1111 III 1111 II II IlJl IUlJUUU U11IIlilil

I
~} . . . • . . • • • . . • • •

r-----,

~ ,Jh ~ ~ ~
DCPn DCP! OCP') ilCP2 DCPc DCP7

v L ...I v

PROCESSOF PROCESSOll PROCESSOR PROCESSOR PROCESSOll IPROCESSOR

MAIN MAIN MAIN MAIN • • • MAIN MAIN
STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE

~ ~ ~
CSUO CSUI CSU3

)r::::::::::::::
:--

.>

Figure J-DCS hardware organization

ate in parallel, receiving the DCS commands from multiple
host computers and returning the corresponding final re
sponses to these computers. The DCS can receive these com
mands at any HIC and pass them to any DCP for command
execution. However, which DCP will execute a given data
access serialization command is decided upon by hashing
based on the identifier of the data entity under consideration,
because DCPs are designed in such a way that each individual
data entity can be controlled only by a certain DCP. A min
imum of one channel path is required for a host-DCS con
nection.

Data-sharing control processor

A maximum of eight DCPs, which are responsible for com
mand execution, exist in the DCS. The DCPs are organized as
DCP-pairs for reasons of availability, as shown in Figure 3,
but normally work as independent processor~ach exe
cuting a separate stream of DCS commands. Each DCP has a
three-million-instructions-per-second (MIPS) processor and
its own main storage. The control program and data-sharing
control tables reside in this main storage. Therefore, data
access serialization commands are executed in parallel by the
DCPs. However. if a wait situation results from a LOCK
command execution by a DCP, the DCP reports to one of the
DCPs specifically designated as the deadlock examiner, using
one of the inter-DCP buses. The deadlock examiner then

looks for the possibility of a deadlock-using its deadlock
detection tables--and returns the answer to the previous
DCP. The results will be given to the original HIC, through
which the LOCK command was received. DCPs organized as
DCP-pairs can back each other up in the event of an un
recoverable DCP failure, including that of the deadlock
examiner DCP.

Common storage unit

A common storage unit (CSU) is used to keep duplicate
copies of the DCP control program, data-sharing control ta
bles, and so on. This information is not necessary for normal
DCP operation, but it is essential to the DCP recovery func
tions described later. The DCS contains a maximum of four
CSUs.

Power supply

Various components of the DCS have their own power sup
plies, so that independent maintenance of failed components
may be possible without stopping the DCS operation.

DCP Control Softwa.re

The DCP control software includes various program mod
ules, in addition to data-sharing control tables, as outlined in

• • •

The DCS-for Multisystem Data-Sharing 65

J OTHER TABLES

DATA-SHARING
CONTROL TABLES

-

Figure 4--DCP control software

Figure 4. Major components are as follows.
The basic monitor is the nucleus of the DCP control pro

gram. This module controls task switching, main storage man
agement, configuration management, exception handling,
etc. The HIC driver is responsible for receiving DCS com
mands from HICs. The command processor consists of a
collection of program modules capable of executing DCS
commands. The CSU driver is responsible for CSU data read
write operations. The DCP driver is responsible for inter
DCP communication using the inter-DCP buses. The recov
ery manager manages DCS recovery functions. These are de
scribed in the next section. Finally, the deadlock examiner is
responsible for examining the possibility of a deadlock. It
resides with other program modules mentioned above only on
a DCP designated as the deadlock examiner.

The general flow of control within the DCP control pro
gram that is needed to execute a LOCK command is depicted
in Figure 5. Though this figure is almost self-explanatory,
brief comments are in order.

The path most frequently taken is 1-2-10-11-12. It repre
sents the case where a lock request can be granted immedi
ately. This path is the shortest one. On the other hand, paths
1-2-3-4-5-8-9-10-11-12 and 1-2-3-4-5-6-7-8-9-10-11-12
represent cases where the same request results in a wait, re
spectively involving and not involving a deadlock. Boxes 6 and
10 represent duplicate table-update operations. The length of
the most frequently taken path, 1-2-10-11-12, is about 1500
steps, requiring about a 500-microsecond processing time on
a three-MIPS DCP. In other words, a single DCP is capable
of executing roughly a thousand typical DCS commands, with
50% DCP utilization. This implies that the maximum DCS
configuration, including eight DCPs, has performance cap a-

1 12

HIC HIC
DRIVER DRIVER

2 T 10 11 i
COMMAND

_ CSU COMMAND
EXECUTION

,.
DRIVER ~ TERMI NATION GRANT

lWAIT T
9 3

DCP DCP
DRIVER DRIVER

T j
8 4

DCP DCP
DRIVER DRIVER

5
!

7
r

DEADLOCK ES DEADLOCK

EXAMINATION EXAMINATION
TERMI NATI ON

~ 6
/

CSU
DRIVER

Figure 5----General control flow representing a "LOCK" command execution

66 National Computer Conference, 1984

HOST HOST
COMP UTE R3

Figure ~ystem redundancy in a four-host DeS configuration

ble of processing as many as 8000 simple DCS commands per
second.

RELIABILITY, AVAILABILITY, AND
SERVICEABILITY CONSIDERATIONS

Satisfactory operation of loosely coupled multiple computers
requires various reliability-related considerations on the
DCS, in addition to locking and recovery considerations on
multisystem sharable data. In fact, high availability of the
DCS is most essential to the overall system operation. The
DeS offers several reliability, availability, and serviceability
considerations, which are discussed in the following sections.

1. System-wide hardware and software redundancy to al
low dynamic system reconfiguration upon various un
recoverable failures

2. Automatic rebooting of the DCP software as a means of
recovery from DCP software troubles

3. Continuous bookkeeping of a set of duplicate data
sharing control tables in CSUs

4. DCP-pair mutual backup capability to improve system
availability

5. Faulty component maintenance simultaneous with the
DCS operation, and on-line addition of recovered
components

Redundant Organization

Figure 6 explains system redundancy by showing a DCS
based multisystem computer complex involving four host
computers. A number of redundancy types exist in this config
uration, making graceful degradation possible, based on dy
namic reconfiguration. Each host computer has two channel

ncp· 1. ncp i+l

PROCESSOR PROCESSOR

MAIN MAIN
STORAGE STORAGE

\ I

\ CSUi / 2 /
~

'" I BUFFER I l BUFFERI

-~ w
I STORAGE

I

J I AREA
I

Figure 7--{:;SU internal organization

connections with the DCS. Although failure of a channel or an
HIC might occur, the host computer can still issue DCS com
mands using the remaining host-DCS channel connection.
DCPs organized as a DCP-pair (e.g., DCP 0 and DCP 1) can
back each other up in the event of an unrecoverable DCP
failure. Data-sharing control tables exist in duplicate, one in
a DCP main storage and the other in the associated CSU.
Failure of a CSU, however, will not cause stoppage of the
associated DCPs. Two inter-DCP buses exist for message
communication. Failure of an inter-DCP bus will not separate
DCPs.

Automatic DCP Software Rebooting

This is useful for straightening out a situation where some
unknown portion of the DCP software is suspected of damage
caused by a possibly undetected intermittent DCP failure.
The DCP software, including the control programs and data
sharing control tables, is reloaded from its CSU, and the DCP
operation is then automatically restarted. Automatic DCP
software rebooting decreases the probability of unrecoverable
DCP failures.

Bookkeeping of Duplicate Control Tables

Each DCP keeps an up-to-date duplicate copy of the data
sharing control tables it maintains in main storage. This dupli
cate copy is held in the associated CSU and is updated every
time its counterpart in the main storage is dynamically up
dated by each DCP. It exists only as a backup copy of the
data-sharing control tables and, as such, is normally not read
by the associated DCP for the purpose of data-sharing con
trol. As a matter of fact, each DCP occasionally reads out the
content of the duplicate data-sharing control tables from its

The DCS-for Multisystem Data-Sharing 67

DCP i MAIN STORAGE DCP i +1 MAIN STORAGE

CONTROL CONTROL NOT WORK CONTROL NOT CONTROL WORK
PROGRAM TABLEi USED AREA PROGRAM USED TABLEi+l AREA

I
CONTROL CONTROLlcONTROL WORK
PROGRAM TABLE. \TABLE i +1 AREA

1

DCP i MA I r~ STO RAGE DCP i +1 OUT OF OPERATION

CONTROL CONTROL CONTROL WORK
PROGRAM TABLE. TABLE i +l AREA

1

r--------------,
I I
I I
L ______________ --1

Figure 8--Storage area allocation maps

CSU, just to make sure that the contents of both tables are
consistent.

Special consideration is needed in updating the content of
duplicate control tables in a CSU. It must be assured that a set
of specified table entries is always updated as an atomic
action;8 a set of table updates must either be all done or not
be done at all, in order to maintain system integrity. For this
purpose, a CSU has two independent 4000-byte buffers,
through each of which the CSU receives a set of specified
table-update requests from the associated DCP, as shown in
Figure 7. If a set of table-update requests is fully received, the
CSU proceeds to update actual table entries in the storage
area. However, if only a partial set of requests is received
because of a DCP failure, this partial request is simply dis
carded by the CSU. Thus, it is possible for each DCP to keep
an up-to-date copy of duplicate control tables in the associ
ated CSU, without losing integrity of table data.

DCP-Pair Mutual Backup Capability

A rough sketch of storage area allocation maps for DCP
main storage and the associated CSU is shown in Figure 8.
This allocation makes it possible for one DCP to back up its
mate-DCP by receiving a copy of the mate's data-sharing
control tables from the associated CSU, whenever the mate
DCP suffers from an unrecoverable DCP failure. This kind of
DCP-pair reconfiguration is automatically carried out in the
DCS.

All of these reliability-related functions must be imple
mented very carefully; if erroneously implemented, they can
introduce additional problems. False failure techniques are
being used for system debugging.

CONCLUSION

This paper describes a special purpose computer approach to
multisystem data-sharing, as taken by the DCS. In particular,
major architectural features incorporated into the design of
the DCS have been discussed to show their implications for
large-scale loosely coupled computer systems. These features
include support of various access serialization commands, a
hierarchical deadlock-detection mechanism involving host
computers and the DCS, a modular computer-complex DCS
organization based on DCP-pairs, a CSU design with an
atomic data-update capability, DCP-pair mutual backup ca
pability, and so on. All of these considerations significantly
contribute to satisfying the overall system design require
ments stated at the beginning of this paper.

It is now possible to envision a very reliable special purpose
computer, the DCS, capable of processing several thousand
block-level access serialization commands per second, for re
alization of cost-effective multisystem data-sharing. Finally, it
should be stressed that the DCS-based LCMP and traditional
TCMP architectures blend naturally to form a new framework
for the design of reliable large-scale database systems.

ACKNOWLEDGMENT

The authors would like to thank the many people who par
ticipated in the design and development of the DCS. We are
especially grateful to the management of NEC for continuous
encouragement concerning the DCS project, and to K. Oht
suka, T. Torii, M, Araki, A. Tashiro, T. Terayama, Y. Ebino,
T. Takahashi, S. Nomiyama, and M. Terao for stimulating
discussions on the DCS architecture.

68 National Computer Conference, 1984

REFERENCES

1. Enslow, P. H. (ed.), Multiprocessors and Parallel Processing. New York:
John Wiley and Sons, 1974.

2. Katzman, J. A. "A Fault-Tolerant Computing System," 11th Hawaii Confer
ence on System Sciences, (Vol, 3). Honolulu: University of Hawaii Press,
1978, pp. 85-102.

3. Tashiro, S. and K. Tomita. "A Fault-Tolerant Computer with Processor
Relief," Transactions of the Institute of Electronics and Communication En
gineers of Japan, J65-D (1982), pp. 1065-1072 (in Japanese).

4. Abe, Y., "A Japanese On-line Banking System," Datamation, 23 (1977),
pp.89-97.

5. IBM Corporation, OSIVS2 MVS Planning: Global Resource Serialization,
IBM Manual GC28-1062. Poughkeepsie, N.Y.: IBM, 1981.

6. Ho, G. S. and C. V. Ramamoorthy, "Protocols for Deadlock Detection in
Distributed Database Systems" IEEE Transactions on Software Engineering,
SE-8, (1982), pp. 554-562.

7. Gray, J. N. "Notes on Data Base Operating Systems," in R. Bayer, R. M.
Graham, and G. Seegmiiller, (eds.), Operating Systems. Berlin: Springer
Verlag, 1978, pp. 393-481.

8. Randell, B., P. A. Lee and P. C. Treleaven, "Reliability Issues in Com
puting System Design," Computing Surveys, 10 (1978), pp. 123-165.

Reduced-instruction set multi-microcomputer system

by LEWIS FaT!, DAVID ENGLISH, RICHARD P. HOPKINS, DAVID J. KINNIMENT,
PHILIP C. TRELEAVEN, and WANG LONG WANG
University of Newcastle upon Tyne
Newcastle upon Tyne, England

ABSTRACT

This paper presents the initial design and implementation of a simple micro
computer with a reduced instruction set, which forms a building block for a parallel
multi-microcomputer system. The microcomputer has a 16-bit word size, with each
register and data element being 16 bits. It has less than 20 operators. Each micro
computer in the multi-microcomputer system is addressable, and behaves as a
combined memory cell and processor that is able to service the LOAD, STORE,
and EXECUTE operations. The multi-microcomputer system centers on a 16-bit
global address space. An address consists of two parts: the high eight bits define a
specific microcomputer, and the low eight bits define a word in that microcomputer.
When the top eight bits are zero the address is considered local to the microcom
puter. Although a microcomputer can load or store any word in the global address
space, an attempt to execute code at an alien address causes execution to transfer
to the specified microcomputer. Although the microcomputer design is based on
16-bit units, we ultimately wish to design the simplest microcomputer that is able to
handle variable length information. 1,2

69

DESIGN PHILOSOPHY

Traditionally, the trend in designing microprocessors and
mainframe computers has been toward increasingly complex
instruction sets and associated architectures. 3

,4 In contrast,
designs based on the so-called reduced-instruction set philos
ophy have a simple set of instructions, and a correspondingly
simple machine organization tailored to their efficient exe
cution. 3 In very large scale integration (VLSI) scaled to sub
micron dimensions, the traditional approach of attempting to
make larger single microprocessors becomes self-defeating
because of communications problems and the escalating costs
of designing and testing such complex processors. One obvi
ous solution is miniature (reduced-instruction set) microcom
puters that can be replicated like memory cells and operate as
multiprocessor systems. In such systems the potential per
formance benefits of VLSI are exploited by parallelism, rath
er than by attempting to improve the performance of a single
processor. Provided that appropriate means for programming
can be found, this is a more general solution. The aim of the
ongoing reduced-instruction set multi-microprocessor system
(RIMMS) project is to design the simplest conventional mi
crocomputer-with primitive communications mechanisms
-able to form a component of a tightly coupled multi-micro
computer system.

The initial design and implementation of a RIMMS micro
computer is presented below. This microcomputer has a 16-bit
word size, with each register, data element, and address being
16 bits. Instructions, however, are 2 x 16 bits and use a
three-address format. There are less than 20 operators. Each
microcomputer in the multi-microcomputer system is address
able, and behaves as a combined memory and processor that
is able to service the LOAD, STORE, and EXECUTE oper
ations. Design of the multi-microcomputer system centers on
the 16-bit global address space. An address consists of two
parts: the high eight bits define a specific microcomputer,
while the low eight bits define a word in that microcomputer's
memory. Although a microcomputer can access any word in
the global address space, an attempt to execute alien code
causes execution to transfer to the specified microcomputer.

This design contains a number of important concepts. First,
although a microcomputer can make a data access to any word
in the global address space, code is always executed by the
local microcomputer. Second, a microcomputer has the min
imal basis for parallelism, namely a FORK instruction, which
creates a parallel flow of control. Third, a microcomputer
executes a process to completion, thus providing a primitive
form of synchronized access to the contents of its local mem
ory. Finally, to facilitate simple process migration, the
amount of state information held in the processor's registers
is minimized.

Reduced Instruction Set Multi-Microcomputer System 71

In this paper we present the architecture and implementa
tion of an initial RIMMS microcomputer. We follow this with
a discussion of problems with the current design and of future
work of the RIMMS project.

ARCHITECTURE

The architecture and programming of RIMMS is described in
terms of two levels of machine: the multi-microcomputer level
handles interprocess and interprocessor communication sup
porting nonlocal LOAD, STORE, and EXECUTE oper
ations; and the microcomputer level services these operations
and handles the atomic execution of a single process.

Multi-microcomputer System

RIMMS consists of a linear array of up to 255 microcom
puters that communicate via a shared bus, as shown in Figure
1. Each microcomputer has a simple processor and 256 words
of local memory.

The system has a 16-bit address space: (see Figure 2). The
top eight bits are a global address (in the range 1-255) defi
ning a microcomputer, while the bottom eight bits are a local
address (in the range 0-255) defining a word in its memory.
Global address zero is the default for specifying the current
local address space and is therefore not recognized at the
multi-microcomputer level.

When one microcomputer wishes to communicate with an
other, for example to access its local memory, the micro
computer generates a "packet." The format of a packet, as
shown in Figure 3, consists of a two-bit operation field, a 2 x
8-bit destination address, and a 16-bit operand. The four

8-bit global address

1 1 21 2551
processor processor processor

memory memory memory
(8-bit local (8-bi t local (8-bit local

address) address) address)

Figure I-Multi-microcomputer system

microcomputer I memory cell

Figure 2-RIMMS address

72 National Computer Conference, 1984

2 bits
global
8 bits

local
8 bits 16 bits

operation I address operand

Figure 3-Multi-microcomputer packet format

Packet Received

LOAD STORE REG STORE MEM EXECUTE
Processor Status

BUSY
EXECUTING error reject

• WAITING accept reject

IDLE error accept

Memory Status
BUSY reject reject reject reject

IDLE accept accept accept accept

Figure 4--Microcomputer status versus packet received

bus

I
Processor Memory
(ALU + registers) Controller

1 0 c a 1 m e m 0 r y
256 x 16-bit words

Figure ~Microcomputer

operations are: load from memory (LOAD), store into regis
ter (STORE_REG), store into memory (STORE_MEM),
and execute instruction (EXECUTE).

The packet operations are defined as follows: LOAD copies
the contents of MEMORY [address] to the microcomputer's
register defined by the 16-bit operand. This is implemented by
the destination microcomputer generating a STORE_REG
packet. STORE_REG places the operand in the micro
computer's register defined by the address. STORE~EM
places the operand into the MEMORY[address]. EXECUTE
starts a new process whose code is at MEMORY[address) and
data environment is at MEMORY[operand]. For all these
packets the global address defines the destination micro
computer.

Microcomputers take turns to send a packet on the bus.
When a packet is sent the destination microcomputer may
accept or reject the packet. In either case the source micro
computer relinquishes the bus. If rejected, the source
microcomputer will attempt to send the packet again at its
next turn to use the bus. Whether a packet is accepted or
rejected depends on the status of the processor and memory
of the destination microcomputer. In simple terms, LOAD
and STORE operations may be serviced by the memory con
currently with the operation of the processor. However an

memory operation register
memory address register
memory data register

MOP
MAR
MDR

(2 bits)
(16 bits) ,

Figure 6-Memory controller registers

EXECUTE packet may be accepted only when the processor
is idle, having completed the execution of its previous process.
Figure 4 lists the complete rules for processing packets.

In Figure 4, BUSY EXECUTING specifies that the pro
cessor is executing instructions, and BUSY WAITING speci
fies that the processor is executing but temporarily waiting for
an operand to be loaded from a memory. Next we examine
the architecture of a microcomputer.

Microcomputer

The microcomputer-level machine consists of three basic
components: the local memory of up to 256 x 16-bit words,
the memory controller, and the 16-bit processor for arith
metic, as illustrated by Figure 5. The memory controller is
connected to the global bus, and to the local processor and
memory. It supports communication-in the form of packets
-between these three units. To hold a packet, the memory
controller has three registers: a 2-bit memory operation regis
ter, a 16-bit memory address register, and a 16-bit memory
data register (Figure 6). These registers correspond to the
operation, address, and operand fields, respectively, of a
packet.

When a memory controller is idle it can receive a packet
either from the local processor or from some other micro
computer. A packet from the processor can be destined for
the local memory or for another microcomputer, whereas a
packet from the bus can be destined for the local processor or
memory. A packet's destination is specified by the top eight
bits of the address in the memory address register (MAR).

The processor, the last component of the microcomputer,
consists of an arithmetic logical unit (ALU) and seven regis
ters supporting a 16-bit word size. Each register, data ele
ment, and address is 16 bits. Instructions, however, are 2 x 16
bits and use a three-address format. Figure 7 shows the seven
registers of which only the first two are addressable. The
program counter, C, points to the local code currently being
executed. The data register, D, points to the current data
environment, which may be anywhere in the global address
space. I1, 12 holds the current 2 x 16-bit instruction. AI, A2,
and A3 are the input registers to the ALU, holding the current
instruction's operands. Their contents have no meaning from
one instruction to the next.

program counter
data register

instruction registers
ALD register 1
ALD register 2
ALD register 3

C
D

(16 bits)
(16 bits)

11,12 (2x16 bits)
Ai (16 bits)
A2
A3

Figure 7-Processor registers

Reduced Instruction Set Multi-Microcomputer System 73

M1 M2 M3 01 02 03
5 bits 1 1 8 bits 8 bits 8 bits

0 - literal
1 - address (memory [0+ signed literal])

Figure 8--Microcomputer instruction format (2 x 16 bits)

Operation

arithmetic

logical

shift

compare

control

movement

Mnemonic

ADD
SUB
AND
OR
NOT
LSHIFT
ASHIFT
EQ
GT
IF
FORK
HALT
MOVE
STORE C
LOAD D
STORE D

Description

logical shift
arithmetic shift
equals
greater than
if TRUE jump
fork flow of control
halt processor
move argument to address
store program counter
load data register
store data register

Figure 9-Processor instruction set

An instructions format, as illustrated by Figure 8, consists
of a five-bit operator field, 3 x I-bit mode (Mi) fields, and
3 x 8-bit operand (Oi) fields. Modes and arguments are inter
preted as follows. If the value of mode bit Mi = 0, then the
corresponding eight-bit operand Oi is treated as a literal. Oi is
sign-extended to 16 bits and the resulting argument is placed
in the corresponding ALU register Ai. If the mode bit Mi = 1,
then the eight-bit operand Oi is treated as a signed displace
ment relative to the data register D. The resulting address,
D + Oi, is dereferenced (via the multi-microcomputer level if
necessary) and the memory content is placed in the ALU
register Ai. Notice that the modes and operands are inter
preted independently both of the operator and of whether
they are to be used for input and output by the ALU. How
ever, the operator does determine how many of the three
arguments are used by the ALU.

The ALU supports only two information types: 16-bit in
tegers (2's complement) and booleans (TRUE = FFFF,
FALSE < > FFFF) , and following the reduced instruction set
philosophy only a minimal set of operators are provided.
These operators are listed in Figure 9. Finally, note that the
reason we have chosen a three-address instruction format and
only two addressable registers is to minimize the state infor
mation that needs to be moved from one microcomputer to
another, when control is transferred.

Programming

In briefly examining the programming of RIMMS we will
continue to discern two levels of machine. At the multi-micro
computer level, because of the shared 16-bit address space,
the system can be programmed as a single, sequential com-

Time Micro Micro 2
C D C D

I 0100 9999
I
I
I , 01FF 9999

0200 9999
0200 9999

Figure 10----Sequential execution

puter with up to 255 x 256 words of memory or, more inter-:
estingly, as a parallel computer with up to 255 processors each
with 256 words of memory. For instance, if allocated con
secutive memory locations, a large sequential program will
span a number of microcomputers. As control reaches the
boundary of a microcomputer (Figure 10) its program counter
will contain a nonlocal address, causing the contents of the
program counter C and the data register D to migrate to the
next processor.

For parallel execution a separate process must be placed in
each processor. These processes are started by the use of
FORK instructions; a FORK may be thought of as a GOTO
that not only transfers control but also continues execution.
Normally in a p~rallel-control-flow computer additional oper
ators are necessary to synchronize access to shared memory
locations. With RIMMS, the programmer has a choice of
causing unsynchronized LOAD and STORE operations,
which compete for memory access, or of executing code in the
target microcomputer, which accesses its local memory. Since
code is executed atomically by a processor, such an access is
treated as a critical region. Figure 11 illustrates the RIMMS
parallelism. In this example, a series of FORK instructions in
Microcomputer 1 are executed to create parallelism. A FORK
specifies new C and D values, and causes the generation of an
EXECUTE packet. Having created the parallelism, Micro
computer 1 executes a HALT instruction. Then as each pro
cessor finishes, it returns controls "GOTO 1040" to Micro
computer 1. For each processor, Microcomputer 1 subtracts
one from the count of processors, executing "SUB pIp," and

Micro 1 Micro 2

Create
parallelism C' 0'

0100: FORK 0200 02EO
0102: FORK 0300 03EO 0200:
0104: FORK 0400 04EO 0202:

Hal t processor Return
0130: HALT 0260: GOTO 0140

Count terminating
processors

0140: SUB pIp
0142: GT p 0 c
0144: IF c 0148 0146
0146: HALT
0148:

Micro 3

0300:

Return
0360: GOTO 0140

Figure ll-Parallelism and synchronization in RIMMS

74 National Computer Conference, 1984

Data Bus 2 x 8 bits

<= Address Bus =>
<= Control ==>

Figure 12-Bus and memory controllers

then tests to see if the count "p" is still greater than zero "GT
pO c." If greater, "c" then control-goes to instruction "0146"
which HALTs the processor, otherwise it control-continues at
instruction "0148."

At the microcomputer level, as the reader will see from
Figure 9, CALL, GOTO, LOAD C operators, and so forth,
are not included in the instruction set as might have been
expected. This is for two reasons: First we have attempted to
minimize the operators, therefore CALL, etc., must be pro
grammed, and second, because of the 2 x 16-bit, three
address instruction format, operators such as GOTO and
LOAD C can be specified as "IF TRUE address null. " Having
examined the architecture and programming of RIMMS, in
the next section we examine its actual implementation.

IMPLEMENTATION

In the initial implementation of RIMMS our aim has been to
keep the structures as simple and conventional as possible in
order to concentrate on a realization that would highlight any
design difficulties relevant to the system rather than the imple
mentation. At the multi-microcomputer level, this consists of
a passive bus connected to an array of microcomputers. At the
microcomputer level, because of present limitations in avail
able level of integration and in order to ease testing, the
computer itself is implemented as three components: a CPU
chip, a programmable logic array (PLA) chip for the memory
controller, and commercially available parts for the memory.

Multi-microcomputer System

The multi-microcomputer system centers on a bus, as illus
trated by Figure 12. The bus carries a 16-bit address made up
of an 8-bit micro address, an 8-bit memory address, 16 bits of
data, and three memory operation bits to cover a fifth "no
operation" memory access. In order to reduce the total pin
count on the CPU and memory controller chips, both data and
address are sent as two bytes on two parallel eight-bit busses
between communicating microcomputers and between CPU
and memory.

[OR

@:fc.l~ I I ~ (

Figure 13--CPU chip

Access to the bus by the microcomputers is controlled by an
additional wire loop, which is daisy-chained through the mi
cros. This wire conveys a single "token" successively from one
microcomputer to the next. When the token is received, the
microcomputer may attempt to transmit a packet of data and
address bits. When a packet is accepted, the packet is trans
mitted between the memory controller registers of the source
and destination microcomputers. When the microcomputer
finishes with the bus, the token is passed to the next micro
computer.

Microcomputer

Implementation of a microcomputer centers on the design
of two custom chips for the memory controller and the pro
cessor. The memory controller, as illustrated by Figure 12, is
a PLA; for simplicity its registers are part of the CPU chip
(Figure 13). The task of this PLA is to control the movement
of packets between the processor, the local memory, and the
bus.

The processor, as shown in Figure 13, is a simple, conven
tional two-bus data pathS consisting of a register file, shifter,
ALU MARlMDR registers, and a control PLA to implement
the instruction set. The register file contains the 7 x 16-bit
registers shown in Figure 7. Next comes the shifter. Then the
ALU with two 16-bit input and two output registers. Lastly,
there are the memory address and memory data registers,
whose contents are moved between the processor-local
memory-bus, under control of the memory controller PLA.

Both the memory controller PLA and the CPU chip are in
the final stages of design, and an estimate of the CPU chip size
indicates that it will occupy approximately 8 x 8 mm in an
NMOS process with A = 3J.L. The floor plan of the CPU chip
is shown in Figure 14. Within this overall floor plan the system
is partitioned into three distinct sections, a data path, micro
program control unit, and I/O ports.

The data path "DATAPA" contains a set of registers, a
shifter and an ALU. The microprogram control unit contains
a PLA "CNTROL," buffer drivers "CTLDRV," and de
coders "UPDECD" and "LRDECD." The micro-instruc-

CNTROL

Ul
ICTLI~.E.\{_ .. ___ ±GSETI LCJ

W W
IT IT
2 DAT.~DI\ i Hi H

2
LRDECD

Figure 14--Floor plan of CPU chip

tions are partially encoded in the PLA, and the control inputs
from the PLA to the data path determine which operations
occur in the data path during a given clock cycle. Decoding is
done by upper and lower decoders, which drive the data path
directly. Control sequences not only depend on the data
stored in the registers but also on external signals from the
memory control chip to the control unit.

Data communication between the data path and the other
chips in the set is through I/O ports "MMREGS," i.e., MDR
and MAR. The communication itself is achieved using packet
operation instructions. The ports are tristate and can be used
as inputs or outputs.

DISCUSSION

For a multi-microcomputer system the most fundamental
problem to be solved is how to orchestrate a single com
putation so that it can be distributed across an ensemble of
processors.6

,7 One good example of special-purpose multi
processors is Kung's Systolic Arrays.8,9 Examples of general
purpose multi-processors are the INMOS Transputer and the
OCCAM programming language. 10

The RIMMS design is a more conventional solution, which
achieves the programming and distribution of a single com
putation across multiple processors by minimal extensions to
conventional microprocessors. To achieve this distribution,
the RIMMS design is based on a number of important con
cepts. First, each microcomputer has its own local memory,
thereby encouraging locality of reference and reducing sys-

Reduced Instruction Set MUlti-Microcomputer System 75

tem-wide communication. Second, each microcomputer
forms part of a global address space and is able to access the
contents of any other microcomputer's memory. Finally, each
component microcomputer may be viewed as a single compo
nent able to service LOAD, STORE, and EXECUTE opera
tions on its contents.

Architecture

To conclude the presentation of RIMMS, in this section we
discuss problenis with the current design and future work of
the project. In designing architecture for RIMMS, three areas
require optimization: the handling of parallelism, the pro
grammability of the instruction set, and the layout of the
microcomputer chip. For parallelism, we believe, the initial
architecture has a number of important properties. These
include the two-component address, FORK instructions, the
minimal state information held in registers (C and D registers
and three-address instructions), and the local (and atomic)
execution of code.

In contrast, the programmability of the microcomputers is
poor. The three-address format leads to large instructions and
redundant fields for certain operators. The decision to process
the modes and operands of an instruction before examining
the operator leads to dissimilar input and output arguments.
And the choice of modes (i.e., literal, MEMORY[D + Oi])
makes programming difficult. A choice of MEMORY
[C + Oil and MEMORY[D + Oil would have been an im
provement.

Architectural improvements to assist layout also are neces
sary. Implicit in the architecture is that registers AI, A2, and
A3 are the input registers of the ALU. In fact, during im
plementation it was necessary to use extra input and output
registers for the ALU. In addition, the choice of eight-bit
instruction operands requires all operands to be sign-ex
tended before use.

Implementation

Because the initial RIMMS architecture is not intended to
be optimum and the development is continuing, detailed crit
icism of its implementation is best deferred. In a new imple
mentation the common bus will be replaced by bidirectional,
point-to-point connections between microcomputers, allow
ing greater parallelism in data transfers between each unit.
We intend to make the local memory part of the CPU by
increasing the number of registers in the data path. Finally, we
expect to be able to implement the whole of a microcomputer
on one chip, as a step towards the aim of an integrated VLSI
mUlti-microcomputer system.

ACKNOWLEDGMENTS

Numerous people have contributed to the multi-microcom
puter design presented in this paper. In particular, as part of
special computer architecture courses, P.C. Treleaven led
group designs of RIMMS microcomputers at Vrije University

76 National Computer Conference, 1984

in Brussels, Belgium in 1981 and at the Federal University of
Rio Grande do SuI in Porto Alegre, Brasil in 1983. We also
thank the United Kingdom Science and Engineering Research
Council for funding and encouraging this research.

REFERENCES

1. Treleaven P. C. and R. P. Hopkins. "A Recursive Computer Architecture
for VLSI." Proceedings of the Ninth International Symposium on Computer
Architecture, April 1982, pp. 229-238.

2. Wilner W. T. "Recursive Machines." Xerox Palo Alto (Calif.) Research
Center, Internal Report 1980.

3. Patterson D. and D. Ditzel. "The Case for the Reduced Instruction Set
Computer," Computer Architecture News, 8 (1980), pp. 25-32.

4. Treleaven P. C. "VLSI Processor Architectures." COMPUTER, 15 (1982),
pp. 33-45.

5. Mead C. A. and L. Conway. Introduction to VLSI Systems. Reading,
Mass.: Addison-Wesley, 1980.

6. Seitz C. "Ensemble Architectures for VLSI-A Survey and Taxonomy." In
P. Penfield (ed.), Proceedings of the 1982 Conference on Advanced Re
search in VLSI, MIT, January 1982, pp. 33-45.

7. TreleavenP. C., D. R. Brownbridge, and R. P. Hopkins. "Data Driven and
Demand Driven Computer Architecture." ACM Computing Surveys, 14
(1982), pp. 93-143.

8. Kung H. T., "Why Systolic Arrays." COMPUTER. 15 (1982), pp. 37-46.
9. Fisher, A. L., H. T. Kung, L. M. Monier, and Y. Dohi, "Architecture of

the PSC: A Programmable Systolic Chip." Proceedings Tenth International
Symposium on Computer Architecture. June 1983 pp. 48-53.

10. Taylor R. and P. Wilson. "OCCAM Process-oriented Language Meets
Demands of Distributed Processing." Electronics, 55 (1982), pp. 89-95.

11. Patterson D. and D. Sequin. "A VLSI RlSC." COMPUTER, 15 (1982),
pp.8-21.

System considerations in the NS32032 design

by RICHARD MATEO SIAN
National Semiconductor
Santa Clara, California

ABSTRACT

The key element in the high-performance systems toward which the 32-bit micro
processors are targeted is the memory and its buses. Viewing memory rather than
the CPU as the key system element leads to an important rule for CPU designers:
don't hog the bus. The NS32032 avoids hogging the bus by increasing the informa
tion content of memory transactions, and by keeping key data where it's needed
rather than moving it across the bus each time it's used. The information content
of transactions is increased through the use of a wide bus and a compact instruction
encoding. Key data is kept in registers and in an MMU translation lookaside buffer.

77

INTRODUCTION

The high-performance 16-bit microprocessors introduced
over the last five years have broken ground in a new market
for microprocessors: high-performance systems such as en
gineering and CAD workstations, and even general-purpose
mainframe-level computers. The 16-bit microprocessors gen
erally have plenty of computing power, but suffer in these
applications from an inefficient use of memory. The principal
purpose of the 32-bit microprocessors now reaching the mar
ket is to overcome this difficulty and to provide efficient en
gines for high-performance systems.

Designing high-performance microprocessor-based systems
requires viewing the memory and its buses as the critical
elements. DMA, graphics, and multiple CPUs must all con
tend for this resource, and the key design criterion for CPU s
intended for this environment is that they provide high levels
of computing power without hogging the bus. In this paper
we shall see how the NS32032 was designed to meet that
criterion.

HOW NOT TO HOG THE BUS

If the memory bus is seen as the critical resource in a system,
then there are two main ways to optimize its use. The first is
to convey more information per transaction, and the second is
to keep key data where it is to be used, without passing it
across the bus each time it is needed. The NS32032 design
makes use of both of these techniques.

Conveying as much information as possible in each trans
action is made possible in the NS32032 in several ways. First
is the 32-bit width of the bus. Since many of the entities dealt
with in workstation applications are 32 bits in size, a 32-bit bus
represents a substantial increase in the efficiency of accessing
such items, when compared with a 16-bit bus.

The second way that the NS32032 maximizes the informa
tion content of bus transactions is to use a compactly encoded
instruction set. Variable sized instructions and displacements,
special addressing modes, complete orthogonality, and un
restricted instruction alignment all contribute to program
compactness. To further improve the bus efficiency of instruc
tion fetching, accesses to instruction memory are made asyn
chronously to execution. An 8-byte instruction prefetch
queue (FIFO) allows transfers to be made on 32-bit bound
aries and at low priority. Instruction alignment is handled
automatically inside the CPU, and under normal circum
stances instructions are presented to the execution unit as fast
as it can handle them, but without placing undue demands on
the memory.

Keeping data where it is to be used is facilitated in the

System Considerations in the N32032 Design 79

NS32032 design in several ways. Most importantly, general
purpose registers in the CPU and in the floating point unit
allow frequently accessed variables to be used without an
argument transfer over the memory bus. Similarly, in the
MMU, a cache of recently used translations allows address
translation to proceed with infrequent access to the large
memory-based translation tables required for demand paged
virtual memory.

NS32032 DETAILS

The architecture of the NS16000 Family has been described
elsewhere. In brief, the main processing chips of an NS16000
system are a CPU, Memory Management Unit (MMU), and
Floating Point Unit (FPU). All CPUs of the NS16000 Family
have the same 32-bit architecture and 32-bit internal imple
mentation. They differ only in the width of the bus to mem
ory. The NS32032 has a 32-bit bus.

Instruction Encoding

The compact instruction encoding of the NS32032 arises
from a number of interrelated factors:

1. Orthogonality of operation, data type, addressing mode
2. No instruction alignment restriction
3. No instruction size restriction
4. Variable sized displacements
5. A variety of register-relative addressing modes

Orthogonality serves to reduce the number of instructions
required to perform typical high-level language functions. For
example, the statement

A=A+B

normally translates into a single NS32032 instruction, regard
less of whether A and B are local, global, or external and
whether they are variables, array elements, or record fields.
Furthermore, this instruction rarely occupies more than 4
bytes of instruction memory.

Instructions for the NS32032 can be any number of bytes in
size and can begin at any byte of memory. This requires
special circuitry in the CPU (see Figure 1), which could be
avoided if size and alignment restrictions like those of older
microprocessor families were enforced. The resolution of the
tradeoff in favor of special circuitry is easily understood when
the memory and its buses, rather than the CPU, are regarded
as the critical system resource.

80 National Computer Conference, 1984

NS32032 CPU Block Diagram
CONTROLS & STATUS

REGISTER SET

INTBASE
SB
FP
SPt
SPO
PC
RO
Rt
R2

MICROCODE ROM
AND

CONTROL LOGIC

o:rn

I
I
I
I
I
I
I
I
I L _________________ ...l

Figure l-Special NS32032 circuitry avoids alignment restrictions

Variable sized displacements and the register-relative ad
dressing modes that use displacements contribute to the com
pactness of NS32032 programs. Figure 2 shows the NS32032
addressing modes. Note that many involve the use of a base
register to contain a memory address, and a displacement
encoded in the instruction. The first two bits of a displacement
are used to encode its size in bytes. The encoding allows
displacements ranging between -64 and 63, by far the most
common case, to be encoded in a single byte, while displace
ments up to 4 bytes in size allow the entire addressing range

DEDICATED

I 0 1 PFIOGIWI COUNTER 1 PC

I 0 I STATlCBASE 1 58

I 0 1 _POINTER 1 FP

1 0 I USER STACK Pn!. I SPI) SP

o I INTERRUPT STACK PTA. I spo

o I NTEMUPT BASE IINTBASE

PSR MOD

STATUS MDDUI.£

FSR

RIll :: ===:::;======;
RI ~I==============~
R21 ;: ==========:
R3 ;:1 ========:
IW ~I ========:
R5 ;:1 =========:;
A6 ;:1 ========: m l~ ______ ~ ______ ~

Fo~==~I}LO

F3 ~=====~: J"
:: ~~~~~~~~~~~~~i 1"
Fe ; l
:::=====~l t

Figure 2-Many NS32032 addressing modes use displacements

ENCODING

Reglater Rel8tlve
01000
01001
01010
01011
01100
01101
01110
01111

Memory Rel8t1ve
10000
10001
10010

AlMoIute
10101

ExtemIII
10110

Memory SplIce
11000
11001
11010
1101'

MODE

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

Absolute

External

Frame memory
Stack memory
Static memory
Program memory

ASSEMBLER SYNTAX EFFECTIVE ADDRESS

diSP(RO)
disp(Rt)
diSP(R2)
diSP(R3)
diSP(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(displ (FP))
disp2(disp, (SP))
disp2(disp' (S8))

@disp

EXT (displ)+ disp2

disp(FP)
disp(SP)
disp(S8)
o+disp

DiSp + Register.

Disp2 + Pointer; Pointer found at
address Displ - Register. "SP"
is either SPO or SP', as selected
in PSR.

Disp.

Disp2 ~ Pointer; Pointer is found
at Link Table Entry number Disp'.

Disp + Register; "SP" is either
SPO or SP', as selected in PSR

Figure 3-Registers reduce bus traffic

to be spanned. The base register can be either a general
purpose register or one of several registers designed to sup
port directly the data structures most frequently used by com
piled code.

General Registers

The general-purpose registers of the NS32032 CPU and its
associated floating point unit (the NS16081 FPU) reduce bus
traffic by eliminating memory transactions for operand
accesses. The use of compiler techniques like data flow analy
sis, which optimize the use of general-purpose registers by
high-level language programs is further facilitated in the
NS32032 architecture by orthogonality, which allows all vari
ables to be treated uniformly.

Figure 3 shows the register set of the NS32032, which con
tains eight general purpose registers and eight floating point
registers. Even though floating point operations are handled
by a separate chip, the floating point operations and regist~rs
are integrated with the NS32032 architecture so that floatmg
point variables can be handled exactly like integer variables by
compilers.

---,
I
I
I
I
I

INDEX 2 PAGE TABLE

I

L-__ +---.JJ.....

PHYSICAL ADDRESS L..-__ ~ __ --,

Figure 4-NS320321NSl6082 memory management uses memory-based
tables

Memory Management

Demand paged virtual memory for the NS32032 is achieved
with the NSl6082 MMU, which uses extensive memory-based
tables to define three-level address translation and access pro
tection for user and supervisor address spaces. (See Figure 4.)
Memory management for the NS32032 avoids burdening the
memory bus in two ways. First, memory accesses with or
without address translation look identical to the memory. The
MMU automatically inserts an additional cycle into translated
transactions, but does so invisibly to the memory.

The second feature of the MMU that avoids burdening the
memory bus is a 32-entry cache of recently used page transla
tions, automatically updated with a clocked FIFO algorithm.
In typical applications this cache allows translation to proceed
without access to the memory-based tables better than 98% of

System Considerations in the N32032 Design 81

the time. Without this feature, each memory access would
incur an address translation overhead of between two and four
memory accesses.

SUMMARY

The key element in the high-performance systems toward
which the 32-bit microprocessors are targeted is the memory
and its buses. Viewing memory rather than the CPU as the key
system element leads to an important rule for CPU designers:
don't hog the bus. The NS32032 avoids hogging the bus by
increasing the information content of memory transactions
and by keeping key data where it's needed, rather than
moving it across the bus each time it's used.

An inside look at the Z80,OOO CPU:
Zilog's new 32-bit microprocessor

by ANIL PATEL
Zilog Corporation
Campbell, California

ABSTRACT

With recent advances in very large scale integrated circuit (VLSI) design, the
once-distinct boundaries of micro-, mini-, and mainframe computer architectures
are eroding. For example, the Motorola 68000, the Z8000 CPU, and the Intel 8086
have broken the once-distinct boundary between micro- and minicomputers. Now
the Z80,OOO CPU, Zilog's new 32-bit processor chip, has broken the distinct bound
ary between mini- and mainframe computers by featuring a mainframe power on an
integrated-circuit chip. The distinguishing features of the Z80,000 CPU-such as
on-chip virtual memory management, on-chip cache memory, six-stage pipeline
architecture, burst memory transfer, and multiprocessing support-put it ahead of
any CPU in its class.

The CPU supports linear and segmented addressing. The regular instruction set
and rich and powerful addressing modes are well suited to compilers and operating
systems. The flexibility and simplicity of the Z80,000 provide an easy solution to
hardware and software system design.

83

ARCHITECfURE

The ZSO,OOO CPU is a register-oriented machine that provides
sixteen 32-bit general purpose registers (Figure 1). The regis
ters are truly general purpose, with no restrictions on their use
as accumulators, addressing registers, Stack Pointers, or data
registers. Therefore, bottlenecks encountered with register
organizations that dedicate specific registers for accumulators
(or data) and addressing are eliminated. In addition, because
any register can be used as a Stack Pointer, the registers lend
themselves to high-level language support by providing the
multiple Stack Pointers required for parsing operations.

The organization of the registers also provides for efficient
handling of mixed data types. Registers can be used for 8- or
16-bit arithmetic and logical operations without loss of the
high-order 24 and 16 bits, respectively, giving the effect of a
much larger register space. In addition, 32-bit registers can be
paired for 64-bit data.

The Z80,OOO CPU uses 32-bit logical addresses to directly
access up to 4 gigabytes of memory in each of 4 address
spaces. Separate address spaces are provided for system and
normal modes and for instructions and data. The programmer
has available four different address representations in access
ing the memory space (Figure 2), providing maximum flexibil
ity in applying the processor to the specific requirements of
the application environment. Two bits in the flag and control
word (FCW) select compact, segmented, or linear address
representation.

Compact mode uses a 16-bit address, which gets concate-

{
RRO

ROO
RR2

{

RR4
R04

RR6

{

RR8
R08

RR10

{

RR12
R012

RR14

R016 { RR16
RR18

{
RR20

R020
RR22

(RR24
R024~

l RR26

{

RR28
R028

RR30

7 RHO 0 7 RLO 0 7 RH1 0 7 RL1 0

7 RH2 o 7 RL2 0 7 RH3 0 7 RL3 0

7 RH4 o 7 RL4 o 7 RH5 0 7 RL5 0

7 RH6 o 7 RL6 o 7 RH7 0 7 RL7 0

15 R8 o 15 R9 0

15 R10 o 15 R11 0

15 R12 0 15 R13 0

15 R14 o 15 R15 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

Figure I-General purpose registers

RO, R1

R2,R3

R4,R5

R6,R7

An Inside Look at the zgO,OOQCPU 85

nated to the upper 16 bits of the Program Counter to form a
32-bit address. Programs operating within a 64K workspace
can take advantage of the compact mode's dense code and
efficient use of base registers.

Many applications lend themselves to the use of segmented
mode, where individual objects are allocated to separate pro
tected segments. the segment remains unchanged during ad
dress calculations; only the offset is affected. There are two
segment sizes available with the Z80,OOO CPU, controlled by
the most significant bit of the address field. Thus, the pro
grammer has the flexibility of having 128 segments of up to 16
megabytes, and 32K segments of up to 64K in size.

Applications requiring a large linear address space without
the formal structure of segmentation include graphics and the
processing of large arrays. Additionally, with the availability
of 32 bits of addressing, certain application-specific imple
mentations use address lines creatively and would otherwise
be hampered by the structure imposed by segmentation. The
ZSO,OOO CPU supports 32-bit linear addressing, as well as
segmented and compact addressing, to provide maximum
flexibility to the system designer.

Nine general addressing modes provide efficient access to
the many types of data structures. A rich instruction set com
bines with the address modes to operate on a variety of data
types, including 8-, 16-, and 32-bit integer and logical values,
as well as bits, bit fields, packed decimal, and dynamic length
strings. Additionally, high-level language support is enhanced
by instructions for procedure linkage, array indexing, and
integer conversion, as well as the more common operations.

A separate system mode, with its own Stack Pointer and
protected address space, supports operating systems. Because
some instructions are privileged, executing only in system
mode, the operating system and system resources are protec
ted from programs operating in normal mode. The System
Call instruction is used by the normal mode program to com
municate with the operating system through the Z80,OOO CPU
trap facility. The processor also includes an extensive trap
mechanism for run-time error detection and software de
bugging.

MEMORY MANAGEMENT

The ZSO,OOO CPU memory management mechanism has been
integrated with the CPU on-chip, offering two primary advan
tages to the system designer: a parts count reduction and
faster access to memory. Memory access is faster because the
CPU generates physical addresses, thus eliminating the delay
of an external memory mapping device.

The CPU's Paged Memory Management Unit (PMMU)
provides translation of logical addresses to physical addresses,

86 National Computer Conference, 1984

15 o

(A) COMPACT ADDRESSES

31 30 16 15 o

o SEGMENT OFFSET

(i) 64K BYTE SEGMENT SIZE

31 30 2423 o
SEGMENT OFFSET

(ii) 16M BYTE SEGMENT SIZE

(B) SEGMENTED ADDRESSES

31 o

(C) LINEAR ADDRESSES

Figure 2-Address representation

memory access protection, and protected access to memory
mapped lIO devices. Demand-paged virtual memory is easily
implemented without special software recovery routines or
storage of the internal state following address translation
faults. The implementation is accomplished through early de
tection of translation faults, resulting in the ability to restart
all instructions efficiently. Besides providing access protec
tion, the page attribute mechanism also contains referenced
and modified bits that aid the operating system in determining
which page in physical memory should be swapped with the
required page from mass storage.

To manage the ZSO,OOO CPU's 4G-byte logical address
space, the translation scheme divides it into fixed-size,
1K-byte pages. The logical address's 22 high-order bits select
a page in the address space, while the 10 least significant bits
select a byte within the page. Similarly, physical memory is
divided into 1K-byte units, called frames. The memory man
agement unit maps a logical page to a frame. Having both
logical and physical units of the same size simplifies the oper
ating system's memory allocation problem.

The CPU and operating system cooperate to translate a
program's logical addresses into ph)1sical addresses that are
used to access memory. The CPU's paging scheme is similar
to that of most mainframes and super-minicomputers. First,

the operating system creates translation tables in memory,
then initializes pointers to the tables in control registers. The
CPU automatically references the tables to perform the ad
dress translation and access protection for each memory ac
cess. Delays that would be associated with referencing the
translation tables are minimized by using an additional on
chip cache associated with the Memory Management Unit,
the Translation Lookaside Buffer (TLB). Logical addresses,
their corresponding physical addresses, and access attributes
are stored in the TLB (Figure 3) as they are translated through

31 10 9

LOGICAL ADDRESS PAGE ADDRESS

TRANSLATION LOGICAL PAGE P~~!I;:L
~~~~::IDE ADDRESS TAGS ADDRESSES 

31 

P~YS!CAI. ADDRESS I ..... __ FR_.A_ME_A_D_DR_E_SS __ ....... _OF_F_SE_T-..II 

Figure 3--Address translation using the TLB 



An Inside Look at the Z80,OOO CPU 87 

31 24 23 16 15 10 9 o 

LOGICAL ADDRESS S1·NO I S2·NO I P·NO I P·OFFSET I 
I I 

~ ~ ~ 
TABLE DESCRIPTOR 

LEVEL 1 PAGE TABLE REGISTERS LEVEL 2 
SEGMENT TABLE SEGMENT TABLE 

31 + 10 9 0 

FRAME ADDRESS P·OFFSET 

Figure 4-Address translation 

the translation tables. Subsequent accesses to the same page 
do not require access to the translation tables stored in memo
ry; they are simply retrieved from the TLB. The tables are 
accessed only when an entry does not exist in the TLB, a TLB 
"miss." The least recently used entry is then replaced with the 
new address translation and access information. The TLB can 
hold the 16 most recently referenced pages, providing a TLB 
hit ratio that is typically over 96%. 

The Z80,OOO CPU implements a three-level address trans
lation process. Once the operating system creates the trans
lation tables and initializes the control registers, the CPU 
automatically references the level-1, level-2, and page tables 
to perform address translation and access protection (Figure 
4). Access protection is encoded in a 4-bit field at any level of 
the translation process. This allows access protection to be 
accomplished at the page level, level-1, level-2, or a mixture 
of the 3. The use of 3 levels of translation is dictated by the 
32-bit logical address of the ZSO,OOO CPU, whereas a 2-level 
translation mechanism would be appropriate for 24-bit logical 
addresses. 

It is possible to reduce the number of levels of translation 
by specifying in the table descriptor registers (the control 
registers containing pointers to the translation tables) that 
either or both the level-1 and level-2 tables should be omitted 
during the translation process. Skipping level-1 tables is useful 
when only a 24-bit address space is required. Both tables can 
be skipped when 16-bit addressing is sufficient for the needs 
of the application. Additionally, the tables can be reduced in 
size by specifying in the table entries the size of the next level 
table in increments of 256 bytes. Thus, maximum flexibility in 
translation, access protection, and table organization is main
tained by the Z80,OOO CPU memory management implemen
tation. 

PERFORMANCE BOOSTERS: CACHE, SIX-STAGE 
PIPELINE, BURST MEMORY TRANSFER 

The ZSO,OOO CPU implementation includes a six-stage pipe
line (Figure 5) supported by two 32-bit ALUs, one assigned to 
address calculation and the other associated with the execu
tion stage. The pipeline allows concurrent operation of up to 
six instructions. 

All pipeline stages can operate in a single processor cycle, 
which is composed of two clock cycles. The pipeline allows 
simple instructions, such as register-to-register Load and 
memory-to-register Add, to be executed at a rate of one in
struction for each processor cycle, leading to a peak perfor
mance of 12.5 million instructions per second with a 25-MHz 
clock. In practice, the actual instruction rate is about one
third of the peak rate because of certain delays. 

Because the pipeline may require two memory fetches dur
ing each processor cycle-one to fetch the instruction and the 
other for the operand fetch stage-it is necessary to buffer the 
high execution rate of the pipeline from the relatively slow 
memory access rate. Because memory fetches typically take 
three or more bus cycles, the pipeline would be idle most of 
the time if all references had to access main memory. By 
including an on-chip cache that can be accessed in one pro
cessor cycle, most memory references can be made without 
external bus transactions, allowing the pipeline to function at 
an extremely high level of performance. 

The cache holds copies of the most recently accessed 
memory locations. On each memory fetch, the CPU examines 
the cache to determine if the data at that address is available 
on chip, in other words, a cache "hit." If available, the data 
is read from the cache rather than from external memory. If 
it is not available, a cache "miss," the CPU generates an 



88 National Computer Conference, 1984 

INSTRUCTION FETCH INSTRUCTION DECODE ADDRESS CALCULATION 

ADDRESS ARITHMETIC 
PROGRAM CACHE DATA AND LOGIC UNIT 
COUNTER ~ READ ~ ~ 

iNCREMENT TRANSLATION· 
MICROWORD LOOKASIDE·BUFFER 

CACHE TAG TAG COMPARE 
COMPARE 

GENERATION 

TLB DATA READ 

OPERAND FETCH EXECUTION OPERAND STORE 

CACHE TAG REGISTER READ 
FLAG SETTING ~ ~ COMPARE 

ALU EXECUTION 
MEMORY WRITE 

CACHE DATA READ 
REGISTER WRITE 

Figure 5-Six-stage pipeline 

external memory transaction to fetch the data and then stores 
the fetched information in the cache. The ZSO,OOO CPU cache 
is organized as 16 lines, or blocks, of 16 bytes, for a total of 
256 bytes of data (Figure 6). Each block is associated with a 
28-bit tag that represents the most significant bits of the ad
dress of the block. The lower 4 bits of the address select the 
appropriate byte, word, or longword within the block. There 
are eight validity bits, each corresponding to a word within the 
block. This structure represents an optimum tradeoff between 
performance and silicon area ( cost). 

The ZSO,OOO CPU cache is mode programmable to best fit 
the requirements of the application. Modes include instruc
tion only, data only, instruction/data (all mainframes imple
ment instruction/data), and local memory. Whereas particular 
applications for the ZSO,OOO CPU may require instructions 
only to be cached, caching data along with instructions will 
typically increase cache performance by 20%. Local memory 
allows a specific address to be assigned to each block; thus, 
the cache takes on the form of an extremely fast 256-byte 
memory. For example, in a highly intensive interrupt driven 
environment, the interrupt service routines (ISR) may be allo
cated to the on-chip local memory to maximize ISR through
put. 

For references requiring operand stores, the data is always 
written to main memory. The cache is also updated if it con
tains the addressed location; otherwise it is unaffected. This 
mechanism, called write-through, ensures that main memory 
represents the most recent value stored at any address. With
out the ability to write through cache to main memory, the 
CPU would be required to update memory whenever the least 
recently used cache line is flushed to allow space for new code 

or data during a cache miss operation. The write-through 
mechanism allows processing to continue, concurrent with the 
bus activity associated with the write. The pipeline allows 
concurrent operation because the next instruction is most 
likely to be present in the CPU. Additionally, burst transfers 
into cache further increase the probability that instructions 
are present on-chip, minilT'izing the potentia! of write-through 
operations conflicting with bus read transactions. 

Increased bus bandwidth can be achieved by taking advan
tage of the optional burst transfer capability of the ZSO,OOO 
CPU bus interface. Burst memory transactions use multiple 
data strobes following each address strobe to transfer con
secutive memory locations. The CPU uses burst transactions 
to prefetch a cache block on an instruction fetch cache miss. 
A read transaction with a single data strobe and one wait state 

ADDRESS TAG 
ASSOCIATIVE 

MEMORY 
(16 x 28) 

MATCH 
LINES 

16 

BLOCK 
HIT 

PHYSICAL 
ADDRESS 

CACHE DATA VALIDITY 
MEMORY BITS 
(16 x 128) (16 x 8) 

32 

DATA CACHE 
HIT 

Figure 6-Cache organization 

LRU 
STACK 
(16x4) 



requires three bus clocks. However, with burst transfers, a 
transaction with four data strobes and one wait state requires 
six bus clocks, resulting in twice the bus bandwidth of the 
single transfer transaction. With a 12.5-MHz bus clock (25-
MHz CPU clock), 32-bit data path, and 4 data transfer per 
transaction, with no wait state, the bus bandwidth is 40 mega
bytes a second. Burst transactions are also used for fetching 
and storing operands when multiple transfers are necessary, 
such as string operations, Load Multiple instructions, and 
loading of program status, and when unaligned accesses oc
cur. 

MULTIPROCESSING 

The CPU provides support for interconnection in four types 
of multiprocessor configurations (Figure 7): coprocessor, 
slave processor, tightly coupled multiple CPUs, and loosely 
coupled multiple CPUs. Coprocessors work concurrently with 
the CPU to execute a single instruction stream using the Ex
tended Processing Architecture (EPA) facility. This allows 
extension of the Z80,000 CPU architecture to include floating 
point operations and other specialized functions. Addition
ally, the processing speeds offered by extended processing 
units (EPUs) optimized for particular operations, such as the 
Z8070 Arithmetic Processing Unit, can provide significant 
performance improvements. 

When the CPU encounters an EPU instruction (and the 
EPA bit in the FCW is set to 1), it begins a CPU-to-EPU 
instruction transaction that broadcasts the first two words of 
the EPU instruction to all (as many as four) EPUs in the 
system. If a data transfer is required, the CPU and the se
lected EPU conduct the appropriate data transfer transaction. 
The CPU is the bus master, handling address translations and 
bus transactions. The EPUBSY signal is used by the CPU and 
EPUs to synchronize transfers. EPU operations are efficient 
because the CPU is not required to wait for completion of the 
EPU operation, and no elaborate handshaking is necessary. 
In fact, up to four EPUs can be actively processing data while 
the CPU handles other chores. In systems supporting the 
functionality of an extended processing unit without the actual 
EPU present ( the EPA bit in the FCW is cleared to 0), the 
EPU instructions are trapped and emulated in software. 

Slave processors, such as the Z8016 DMA Transfer Con
troller, perform dedicated functions asynchronously to the 
CPU. The CPU and slave processor share a local bus, of which 
the CPU is the default master. When the slave wishes to use 
the bus, it requests the bus using the BUSREQ line. The CPU 
responds by asserting BUSACK and placing all other output 
signals in 3-state. The slave then gains control of the bus (and 
in the case ofthe Z8016, it provides DMA capabilities). When 
the slave no longer needs the bus, it relinquishes the control 
back to the CPU. 

Tightly coupled, multiple CPUs execute independent in
struction streams and generally communicate through shared 
memory located on a common (global) bus using the CPU's 
GREQ and GACK lines. Each CPU is default master only of 
its local bus; an external arbiter chooses the global bus master. 
The CPU also provides status information about interlocked 
memory references so that bus control is not relinquished 

An Inside Look at the Z80,OOO CPU 89 

(A) COPROCESSOR 

LOCAL BUS 

(C) TIGHTLY-COUPLED MULTIPLE CPU 

(B) SLAVE PROCESSOR 

(D) LOOSELY-COUPLED 
MULTIPLE CPU 

Figure 7-Multiprocessing support 

during an indivisible operation such as Test and Set or In
crement Interlocked. 

The Z80,000 CPU's I/O and interrupt facilities support 
loosely coupled multiple CPUs, which generally communicate 
through a multi-ported peripheral, such as the Z8038 FIFO 
I/O Controller. 

EXCEPTION PROCESSING 

The Z80,OOO CPU supports four types of exceptions: reset, 
bus error, interrupts, and traps. A reset exception occurs 
when the reset line is activated. In responding to a reset ex
ception, the CPU fetches the program status (FCW and PC) 



90 National Computer Conference, 1984 

from physical address 2 and resets itself into the initialized 
state. 

When external hardware indicates a bus error exception on 
the memory response lines RSPo-RSP1 , the CPU terminates 
the transaction in progress. The CPU also terminates the 
instruction in execution. In processing bus error exception, 
the CPU saves the program status, the physical address for the 
transaction, and a word identifying the status and control 
signals used for the transaction. 

Three types of interrupts are supported: vectored, non
vectored, and nonmaskable. The vectored and nonvectored 
interrupts have mask bits in the FCW. All interrupts read an 
identifier word from the bus during an interrupt acknowledge 
transaction and save the word on the system stack. Vectored 
interrupts use the lower byte of this word to select a unique PC 
value from the program status area. 

The CPU supports 12 trap conditions: extended instruction, 
privileged instruction, system call, address translation, re
served instruction, odd PC, trace, breakpoint, conditional, 
integer overflow, bounds check, and subscript error. 

In descending order, the priority of exceptions is: reset, bus 
error, trap, nonmaskable interrupt, vectored interrupt, and 
nonvectored interrupt. 

zso,Ooo CPU PERFORMANCE 

Cache memory and the pipelined structure cause the per
formance evaluation of the Z80,000 CPU to be complex. The 
best approach is separation of instruction processing time into 
a sum of three components: execution time, pipeline delays, 
and memory delays. Performance was evaluated by statisti
cally measuring activities of 10 C language programs and then 
performing a computer simulation of the cache, Translation 
Lookaside Buffer, and pipeline mechanisms. 

The execution time for an instruction is the number of 
cycles required to execute the instruction if there are no other 
delays such as cache miss or register interlock. Common in
structions, such as loading a register with a word operand 
specified by a base-register-plus-displacement addressing 
mode, execute in 1 processor cycle (2 clock cycles), but the 
average instruction execution time is 1.3 processor cycles. 

Pipeline delays are caused by branch instructions, register 
interlocks, and other miscellaneous delays. The most signifi
cant of these is delay due to branch instructions. When a 
branch is taken, instructions in the pipe behind the branch 
instruction are flushed. Unconditional branches introduce a 
delay of two processor cycles. Conditional branches cause a 
three processor cycles delay if the condition is met and no 
delay if the condition is not met. The average delay due to 
branches is 0.5 processor cycles per instruction. 

Another significant pipeline delay is register interlock. 
Whenever the execution stage modifies a register that is to be 
used in a subsequent instruction as an address register, the 
address calculation must be held up (interlocked) until the 
execution is complete, The interlock ensures that the proper 
register value is used in the address caicuiation. The average 
register interlock delay is 0.2 processor cycles per instruction. 
All the other miscellaneous delays add up to 0.2 processor 

cycles. Therefore, the total average pipeline delay is 0.9 pro
cessor cycles per instruction. 

Memory delays are caused by cache misses and TLB misses. 
When the processor fetches an instruction or operand for 
which a corresponding entry in the cache or TLB does not 
exist, a reference to main memory is generated. The average 
delay due to these memory transfers is 1.2 cycles per instruc
tion. This delay calculation is based on a 32-bit data path, a 
memory cycle time of 3 processor cycles, and support of burst 
transfers. 

Instruction processing time, Ti = 
Execution delay + Pipeline delay + Memory delay. 
Therefore Ti = 1.3 + 0.9 + 1.2 = 3.4 processor cycles. 

The total processing time is an average of 3.4 processor cycles 
per instruction. At 10 MHz, this corresponds to 1.5 MIPS; at 
25 MHz, the instruction execution rate is 3.7 MIPS. 

EASE OF SYSTEM DESIGN 

The ZSO,OOO CPU allows particular cost and performance 
objectives to be met by allowing designers to balance memory 
access and bus bandwidth appropriately and to incorporate 
burst transfers into designs. The Hardware Interface Control 
register (HICR) defines the characteristics of the hardware 
configuration surrounding the CPU. By setting appropriate 
bits in the HICR, the system designer can specify bus speed, 
memory data path, and the number of wait states to be auto
matically inserted for different types of bus accesses. 

The bus speed can be one-half or one-fourth the CPU's 
clock frequency. Because the cache effectively decouples the 
CPU from the external bus, high processing rates can be 
achieved on-chip supported by an external bus that is not only 
easier to design but also less costly than one operating at the 
high clock frequencies of the ZSO,ooO CPU. A performance of 
1.5 MIPS can be achieved at 10 MHz, using slow and inexpen
sive memory of 6OO-nanosecond memory cycle time. Using 
240-nanosecond memory cycle time, a performance of 3.7 
MIPS can be achieved at 25 MHz. In addition, because the bus 
can operate at two frequencies relative to the processor's 
clock, design migration to faster versions of the CPU will not 
incur major redevelopment. For instance, a 10 MHz Z80,000 
design using a 5 MHz bus can be increased to 20 MHz while 
maintaining the same external bus speed. 

The memory data path width can be specified separately for 
the upper and lower portions of the memory space as either 16 
or 32 bits. The number of wait states to be automatically 
inserted during bus accessses can be specific to the upper and 
lower portions of the memory and 110 spaces. Thus, a system 
can accommodate a slow, 16-bit-side ROM and a fast 32-bit
wide RAM. 

CONCLUSION 

Tn~ Z80,OOO provides the foliowing benefits: 

1. High performance 
a. On-chip Memory Management Unit (MMU) 



b. On-chip cache-instruction/data 
c. Six-stage pipeline architecture with two 32-bit ALUs 
d. Burst memory transfers 
e. EPU overlap (CPU is able to run while coprocessor is 

running) 
2. Flexible architecture 

a. Available linear, segmented, and compact addressing 
b. Programmable hardware configuration (e.g., bus 

speed, wait states) 
c. Support for mUltiprocessing: tightly coupled, loosely 

coupled, slave processor, coprocessor 
3. Simple and regular architecture 

a. Regular use of operations, addressing modes, and 
data types in instruction set 

b. Rich and powerful addressing modes 
4. Miscellaneous benefits 

a. Instruction set well suited for high-level, structured 
languages like C , PASCAL 

An Inside Look at the Z80,OOO CPU 91 

b. Architecture well suited for operating systems 
c. On-chip MMU for easy and cost-effective hardware 

design 
d. Simple memory management and task switching for 

operating system 
e. Largest virtual memory available per task 
f. Largest register set 
g. Execution rate of up to 12.5 MIPS 
h. Memory mapped I/O 
i. Single phase clock 

The Z80,OOO CPU addresses a wide range of system applica
tions including high-performance, desk-top general purpose 
computing, graphics, and array processing, wherever main
frame performance is at low cost. 





An interleaved array-processing architecture 

by J. R. JUMP, 
J. D. WISE, 
and D. T. HARPER III 

Rice University 
Houston, Texas 

ABSTRACT 

This paper describes an array-processing architecture capable of executing high
level vector operations. There are two distinguishing features of this architecture: 
First, the user can define for later use complex vector operations that involve several 
arithmetic operations and branching. Once defined, they appear as built-in vector 
instructions to the user. Second, the algorithms for accessing and aligning vectors 
are implemented in hardware, eliminating the need for user programs to deal with 
memory addresses. 

93 





INTRODUCTION 

This paper presents a bus-organized array processor designed 
to execute high-level vector operations. Unlike conventional 
array processors that can only execute basic arithmetic vector 
operations, such as addition and multiplication, and that rely 
heavily on pipelined arithmetic units, the system proposed 
here uses programmable processing units that can execute 
complex vector operations involving several arithmetic oper
ations as well as conditional branching within the body of the 
operation. One of the primary motivations for this work is to 
provide an experimental research system for investigating dif
ferent methods for implementing vector algorithms. It is felt 
that by organizing vector calculations so that the basic oper
ations on the vector components are more complex than sim
ple arithmetic operations, a higher degree of parallelism can 
be realized. 

The next section provides a discussion of the considerations 
that have motivated this high-level approach to array pro
cessing. The third section presents the array processor archi
tecture we have developed to support this approach. The final 
section summarizes some of the research projects planned for 
and motivated by the array processor presented in section 
three. 

BACKGROUND AND MOTIVATIONS 

A major problem encountered in the design and use of high
performance parallel systems involves the movement of data 
between functional units. As the speed and number of pro
cessor and memory units are increased, the capacity of the 
data transfer paths between these units becomes the critical 
bottleneck to overall system performance. There are two gen
eral solutions to the problem: (1) increase the number and 
bandwidth of the data transfer paths in the system, or (2) 
organize computations to decrease the amount of data that 
must be transferred between the different units. While the 
first solution is more general-it does not place additional 
restrictions on how the system is used-it is usually the most 
expensive. An implied objective of the second solution is to 
reduce the need for expensive, high-speed data transfer paths 
by reducing the amount of data that must be passed between 
functional units. This is usually possible only if the class of 
computations to be performed is restricted in some way. 

The simplest scheme for connecting several functional units 
is a bus shared by all of the units (Figure la). The problem 
with this interconnection structure is that only one item of 
data at a time can be transferred between functional units. 
Several techniques for increasing the capacity of data transfer 

An Interleaved Array-Processing Architecture 95 

paths in a computer system have been developed. Most of 
these use multiple data paths to reduce the number of func
tional units that must share a common data path. For exam
ple, if the number of functional units is relatively small (less 
than 16-20), a crossbar switch (Figure Ib) can be used to 
provide a direct connection between any two units. 1, 2 While 
the cost of such a switch is proportional to the square of the 
number of functional units, any two or more different pairs of 
units can transfer data simultaneously. If the number of func
tional units is large (more than 16-20), a multistage intercon
nection network (Figure lc) can provide a more cost-effective 
interconnection structure than the crossbar. 3

,4 These are net
works that provide the capability for any unit to transfer data 
to any other unit, but they cannot support as many simulta
neous transfers as a crossbar. However, for n functional units, 
the cost of a multistage interconnection network is only on the 
order of n(log n) instead of n2 for the crossbar. 5,6 

This paper is concerned with the second approach to re
lieving the data transfer bottleneck, namely, restricting the 
amount of necessary data movement between functional units 
so that a simple bus can be used for all data transfers between 
functional units. While this will not work for all types of 
computations, it will usually be successful for algorithms that 
can be decomposed into a large number of independent sub
algorithms. One source of algorithms with this property is the 
class of vector calculations where the same operation is ap
plied to all elements of one or more vectors. Since the oper
ations on different components of a vector are usually inde
pendent, these calculations can involve a large number of 
independent operations with little if any sharing of data. 
Therefore, the architecture proposed in this paper will be 
bus-organized and optimized to execute vector calculations 
with a minimum of data movement between processors and 
memories. It is intended to be used as a back-end processor 
that adds vector-processing capability to a general-purpose 
processor. 

The key to using a bus effectively in vector calculations is to 
organize the system and the algorithms so that the time re
quired to perform a component operation is large relative to 
the time required to transfer the operands and results on the 
bus. In this way the bus can be time shared among several 
functional units without significant loss of performance. To do 
this, the processing units should be capable of performing 
operations that are more complex than simple arithmetic 
operations. In fact, they should be capable of executing algo
rithms composed of several arithmetic operations and simple 
branching instructions. Then, the execution of several oper
ations on several vector components can be executed simulta
neously in different processors and overlapped with the trans
fer of operands and results. 



96 National Computer Conference, 1984 

2x2 Sw1tcn 
I 

y 

I 
I 
I 

~'L: 
I 
I 
I 

• • • 

BUS 

(a) Bus-organized architecture 

L __________________ ~ 

(b) Crossbar intrconnection structure 

(c) Multistage interconnection structure 

Figure l-Intermodule communication 

Let N denote the maximum number of processing units that 
can be kept busy, each performing an operation on different 
components of a vector, in a bus-organized system. Then N is 
equal to rtpl'tt 1 + 1, where ~ is the processing time of the 
operation, tt is the bus transfer time for its operands and 
results, and fxl denoteS the smallest integei gieater than or 
equal to x. To see this, note that an operation can be initiated 
in a processor each ~ time units. After ~ + tp time units, the 

operation in the first processor is complete so that it can be 
assigned another. The number of processors that can be as
signed an operation before the first one is free is just rtpl'ttl. 
Hence, rY~l + 1 processors can be kept busy. If more pro
cessing units were available, they would not increase the per
formance of the system, since the bus would be saturated and 
unable to supply data fast enough to keep all of the processors 
busy. Therefore, by organizing a vector algorithm so that the 
time to execute operations on vector elements is large relative 
to the time to transfer data between memory units and 
processors, the performance limitations inherent in a bus
organized system can be alleviated. Again, this argues for 
general-purpose functional units that can be programmed to 
perform complex operations. 

If [tpl'tt 1 + 1 processors are used to perform an operation on 
vectors of length k in a bus-organized system, then the total 
time required to perform the operation is given by 

This follows from the fact that the bus is saturated so that all 
processing time is overlapped with bus transfers. Therefore, 
the total time to perform the vector operation is approxi
mately equal to k . tt , the time required to transfer the oper
ands and results for the k component operations. The extra tp 
term is for the time to complete the last component operation 
during which no bus transfers are taking place. 

To illustrate the concepts outlined above, consider per
forming the operation Z ~ X2 + Y2, where X, Y, and Z are 
vectors of length 100. Figure 2 shows two ways this calculation 
could be organized for a system in which all data transfers 
between memory and processing units take place via a com
mon time-shared bus. The 200 multiplications and 100 addi
tions that must be executed to perform the vector operation 
are shown in Figure 2a. For the purpose of illustration assume 
that the multiply and add instructions each require two time 
units, and one time unit is required to transfer a single com
ponent of a vector between a memory unit and a processing 
unit. Figure 2b shows the instructions that must be executed 
if the instructions in Figure 2a are executed horizontally (i.e., 
row 0, then row 1, then row 2). 

Figure 2c shows the other possibility where the instructions 
are executed vertically (i.e., column 0, then column 1, ... , 
then column 99). Four time units are needed to execute each 
of the first 200 rows in Figure 2b and five time units are 
needed for each of the last 100 rows. In both cases only two 
processors can be used giving a total execution time of approx
imately 700 time units for the complete calculation of X2 + y2 

using two processors. If the instructions are organized as 
shown in Figure 2c, then the instructions in each row of that 
figure require nine time units, but three processors can be 
kept busy. This gives a total computation time of 300 time 
units using three processors. The improvement of more than 
a factor of two for the algorithm in Figure 2c, over the one in 
Figure 2b, is due to two factors: 

1. 400 of the 700 data transfers in Figure 2b have been 
eliminated 



po~Xo·Xo; Pl ~Xl·xl; ••• P99~x99·x99 

~ ~'io·'io; Ql ~'il·'il; ••• Q99 ~'i99·'i99 

Zo ~ Po~o; Zl ~ Pl~l; ••• z99 ~ P99~99 

(a) Arithmetic instructions involved in computing X2 + Y2 

fetch 10; Po ~ 1o*Xo; store PO; 

fetch xl; P1 ~ Xl *Xl ; store Pl ; 

fetch X99 ; P99 ~ X99*X99 ; store P99; 

fetch yo; QO ~ 'iO*YO; store QO; 

fetch Yl ; Ql ~Yl*Yl; store Ql; 

fetch y99 ; Q99 ~ Y99*'i99; store Q99; 

fetch PO; fetch ~; Zo ~ PO*~; store ZOo 

fetch P 1; fetch Ql; Zl ~ P 1 *Ql; store Zl; 

(b) Horizontally organized computation 

fetch XO; fetch yo; P ~ XO*XO; Q ~ YO·yO; Zo ~ P~; store Zo 

fetch Xl' fetch Yl , P~Xl*Xl; Q~Yl·Yl' Zl ~~j store Zl 

(c) Vertically organized computation 

Figure 2-Computation of X2 + Y2 

2. three processors can be effectively used (kept busy) exe
cuting the algorithm in Figure 2c, while only two can be 
used effectively for the algorithm in Figure 2b 

As another example of this approach, consider the follow
ing FOR loop, which might be part of a larger program. 

FOR I = 1 TO 100 DO 
T~X[I] + Y[I]; 
IF (X[I] > Y[ID 

THEN U ~ X[I] - Y[I]; 
ELSE U ~ Y[I] - X[I]; 

Z[I] ~T2 + 4*U 
END 

If the body of this loop is considered as an operation per
formed on the vectors X and Y to produce the result vector Z, 
then the type of advantages illustrated by the previous exam
ple can also be realized for this example. In particular, the 
components of X and Y only need to be transferred from 
memory to a processing unit once, and only the result Z must 
be stored. Moreover, because several arithmetic operations 
are performed during each execution of the loop, the ratio of 
processing time to data transfer time should be large enough 
to enable the concurrent use of several processing units. If 
the processors were unable to execute programs involving 
branches and several arithmetic operations, these advantages 
would not be realized. 

An Interleaved Array-Processing Architecture 97 

Scalar , 
SUbSystem, 

TO Host 
Computer 

Vector 
Subsystem 

sp , pp pp 8
" , 

MEl'! MEl'! I Mil 

,p ~: 0---0 0---0 i---I] 
1 11 11 1 1 1 

Figure 3-Array processor block diagram 

OVERVIEW OF THE ARRAY PROCESSOR 

The general organization of the array processor is shown by 
the block diagram in Figure 3. It is composed of two major 
subsystems, the vector subsystem consisting of the PG, VM, 
and PP modules, and the scalar subsystem consisting of the IP 
and SP modules. The system functions by passing packets of 
information between the modules along a high-speed bus. A 
general description of the operation of each of the five types 
of modules is given below. 

The Interface Processor 

This module provides an interface between the array pro
cessor and a host computer. Programs and data for the array 
processor are downloaded from the host processor, and re
sults are uploaded through the interface processor module. 
Since the array processor is used as a back-end processor for 
a general-purpose computer, it has no I/O capability. All 
access to large-capacity storage devices (e.g., disk and tape 
drives) is provided by the host computer through the interface 
processor module. A consequence of this is that the array 
processor does not support virtual memory, and all data for a 
computation must be present in the array processor's memo
ries during the computation. 

The Scalar Processor 

The scalar processor is a general-purpose processor in that 
it contains both a CPU and local memory, and it interprets 
programs by fetching and executing instructions from its local 
memory. It is the module that is in overall control of a com
putation performed in the array processor. Such a computa
tion is specified by a main program containing instructions 
executed by the scalar processor as well as special vector 
instructions. These are instructions that initiate vector oper
ations to be performed in the vector subsystem using vectors 
stored in the vector memory (VM) modules. The main pro
gram is executed by the scalar processor until a vector in-



98 National Computer Conference, 1984 

struction is encountered. At that point, the vector subsystem 
is instructed to perform the vector operation and inform the 
scalar processor when it is finished. Thus the vector subsystem 
can be viewed as a powerful slave processor for the scalar 
processor that provides storage space for vectors and per
forms all vector operations. 

The Packet Processor 

The normal operation of the vector subsystem is for each 
packet processor to be performing the same operation, but on 
different components of the operand vectors. In the previous 
section, it was argued that if this is to be most effective, the 
processors should be capable of executing relatively complex 
operations. For these reasons, the packet processors are small 
and fast general-purpose computers with local memory. Prior 
to initiating a computation on the array processor, copies of 
programs defining all of the vector operations to be per
formed must be downloaded to all of the packet processors. 
Programs for frequently used operations could also be stored 
permanently in the packet processors using ROMs. A packet 
processor is idle until it receives a packet containing com
ponents of the operand vectors, an op-code specifying which 
operation is to be performed, and addresses in vector memory 
for the results. Then, the processor proceeds to execute the 
program for the specified operation. When that program ter
minates, the packet processor forms a new packet consisting 
of the results and their vector memory addresses and sends it 
to the vector memory modules. It then returns to the idle state 
and waits for another packet of operands. 

The Vector Memories 

These modules are used to hold all vector operands and 
results during a computation performed by the array pro
cessor. All vector operands must be downloaded from the 
host computer to these modules before the computation can 
be initiated. Similarly, all result vectors must be uploaded to 
the host computer when the computation is complete. When 
a vector operation is performed, the components of the vector 
operands are sequentially fetched from the memory modules 
and passed to the packet processors. When a component 
operation completes execution in a packet processor, the re
sulting components are passed back to the memory modules 
and stored in the result vectors. It was observed in section two 
that the highest performance is achieved when the bus is satu
rated. For that reason, multiple interleaved vector memory 
modules can be used to increase the memory bandwidth and 
match it to the bandwidth of the bus. 

The Packet Generator 

Once a vector operation is initiated by the scalar processor, 
it is under the control of one of the packet generator modules. 
These modules also control downloading and uploading of 
data between the vector memory modules and the host com
puter. Multiple packet generators are allowed so that several 

vector operations and data transfers can be active simulta
neously. If this capability is not needed, only one packet gen
erator module is required. 

To explain the operation of the packet generators, consider 
the vector operation Z +- X2 + y2. To initiate this operation a 
packet generator would be passed a command packet from the 
scalar processor that specified the number of operand and 
result vectors, their lengths, their starting locations in vector 
memory, and an op-code specifying the operation X2 + y2. 
Recall that the program defining this operation would have 
been preloaded into the packet processors. The packet gener
ator would then proceed to generate a sequence of packets for 
the packet processors. The i-th packet would contain the oper
ands Xi and Yi , the op-code, and the address of Z. There
fore, the packet generator must be capable of generating a 
sequence of addresses for each vector involved in .the oper
ation. To form the i-th packet, the packet generator first sends 
fetch requests to the vector memory modules for components 
Xi and Yi • When these operands are available, it combines 
them with the op-code and the address of Z to form the 
packet. The packet generator also must monitor the bus to 
know when all of the generated packets have been executed 
and their results stored in vector memory. When this occurs, 
the packet generator notifies the scalar processor that the 
vector operation is complete. 

Since the packet generator must be capable of generating 
the sequence of addresses for the components of a vector, it 
is the logical choice for controlling the transfer of data be
tween the host computer and the vector memory modules. 
This process is similar to the generation of operand packets. 
To upload a vector the IP generates a sequence of packets 
where each one contains one component of the vector and 
sends these packets to the interface processor instead of the 
packet processors. To download a vector, a sequence of store 
addresses is generated and paired with vector components 
requested from the interface processor instead of the vector 
memory modules. These packets are then sent to the vector 
memories instead of the packet processors. 

The array processor is used by the host to perform computa
tions that contain a number of vector operations. The pro
grams for these computations are compiled in the host 
computer and then downloaded to the array processor for 
execution. The identification and definition of the vector in
structions are done by the compiler or the user before the 
programs are downloaded. The operation of the array pro
cessor as it performs one of these computations is summarized 
as follows: 

Phase I-Initialization 

1. The main program defining the computation is down
loaded from the host computer to the scalar processor. 

2. Programs defining each of the vector instructions are 
broadcast from the host computer to the packet pro
cessors. Identical copies of each are loaded into every 
packet processor. 

3. Data vectors needed during the computation are down
loaded from the host computer to the vector memory 
modules under the control of a packet generator. 



Phase 2-Execution 

1. The scalar processor executes the main program. All 
instructions except vector instructions are executed se
quentially in the scalar processor. 

2. When a vector instruction is encountered by the scalar 
processor, it sends a command packet to one of the 
packet generators. This is a packet that contains all of 
the information needed by the packet generator to con
trol the execution of the vector instruction. 

3. Once it receives a command, a packet generator controls 
the execution of the vector instruction corresponding to 
that command by generating and sending packets to the 
packet processor modules. Each packet corresponds to 
the operation performed on one component of the oper
and vectors and contains an op-code for the operation, 
addresses for the results, and the vector components 
fetched by the packet generator from the vector memory 
modules. 

4. When a packet is received at a packet processor, it exe
cutes the operation specified by the op-code and forms 
a packet containing the results and their vector memory 
addresses. This packet is then sent to the vector mem
ory, and the packet processor enters an idle state waiting 
for another packet. 

5. When all of the components of the operand vectors have 
been processed, the packet generator notifies the scalar 
processor of the completion of the vector instruction. 

Phase 3-Termination 

1. Once the main program terminates, the scalar processor 
initiates a transfer of result vectors to the host computer. 

2. When all results are transferred to the host computer, 
the computation is complete and the array processor 
waits for the host to initiate another op.e. 

We note two distinguishing features of the proposed ar
chitecture. First, the generation of addresses, the memory 
accesses, and the execution of operations are all decoupled 
and implemented by independent functional units. Second, 
the functional units are data driven. That is, there is no central 
control unit that synchronizes the different units. Instead, 
their operations are initiated by the arrival of packets from 
other units. Similar features can be found in several other 
architectures. 7

-
9 However, most of these systems have applied 

the concepts at a relatively low level (e.g., the machine in
struction level), and many have used complex parallel inter
connection networks. An important goal of our research is to 
explore the possibility of improving the effectiveness of a 
bus-organized system by applying these two concepts at a 
higher level. 

An early version of the proposed architecture and the con
cept of interleaving both memory and processor modules was 
studied by S. Ahuja in his doctoral dissertation.1O His tech
nique of interleaving the processors was also reported in Ref
erence 11. A method for using queues to match the per
formance of interleaved memory modules and interleaved 
processor modules can be found in Reference 12. 

An Interleaved Array-Processing Architecture 99 

CONCLUSION 

A prototype of the array processor described in this paper is 
currently under construction at Rice University. We expect to 
produce a system capable of sustaining from one- to five
megaflop performance over a wide range of vector operations. 
While this will provide a powerful tool for numerical com
putation, our main goal is to develop a testbed for research 
into the best way to organize computations for this type of 
architecture and to compare it with other types of array pro
cessors. To this end, the following three research projects 
have been identified. 

Project 1-Data Skewing in Vector Memory 

In order to sustain a high rate of data transfer to and from 
the vector memories, it will be necessary to use several inter
leaved modules. However, when vectors are fetched with a 
stride that is a multiple or divisor of the number of memory 
modules, the memory requests will not be equally distributed 
among the modules, negating the effect of interleaving. To 
alleviate this problem, different algorithms for skewing vec
tors across memory modules can be used. Both the vector 
memory modules and the packet generators are being de
signed to support the implementation of different skewing 
algorithms. The goal of this project is to use this ability to 
investigate the effects of different skewing algorithms on over
all system performance. 

Project 2-Numerical Algorithms 

The purpose of this project is to develop new algorithms 
that take advantage of the unique properties of the array 
processor. The initial effort will concentrate on numerical 
algorithms that can be formulated naturally using vector in
structions. Here, the goal is to find ways to partition and 
vectorize the algorithms to use the ability of the packet pro
cessors to execute complex operations. 

Project 3-Compiler Design 

This is a long-range project with the goal of producing a 
FORTRAN compiler for the array processor. This compiler 
will be capable of recognizing vector operations and produc
ing programs that realize them on the packet processors. It is 
expected that with the ability of the packet processors to 
execute complex operations, the compiler will be able to vec
torize complex data-dependent FOR loops. 

ACKNOWLEDGMENT 

This work was supported by National Science Foundation 
Grants MCS-800l661-0l and MCS-8121884. 

REFERENCES 

1. Kuck, D. J., and R. Stokes. "The Burroughs Scientific Processor (BSP)." 
IEEE Transactions on Computers, C-31 (1982), pp. 363-376. 



100 National Computer Conference, 1984 

2. Wulf, W. A., R. Levin, and S. P. Harbison. HYDRAIC.mmp. New York: 
McGraw-Hill, 1981. 

3. Barnes, G. H., and S. F. Lundstrom. "Design and Validation of a Connec
tion Network for Many-Processor Multiprocessor Systems." Computer, 14 
(1981), pp. 31-41. 

4. Batcher, K. E. "The Multidimensional Access Memory in STARAN." 
IEEE Transactions on Computers, C-26 (1977), pp. 174-177. 

5. Patil, J. H. "Performance of Processor-Memory Interconnections for Multi
processors," IEEE Transactions on Computers, C-30 (1981), pp. 771-780. 

6. Dias, D. M., and J. R Jump. "Packet Switching Interconnection Networks 
for Modular Systems." Computer, 14 (1981), pp. 43-53. 

7. Cobler, E. U., and J. E. Storer. "Functionally Parallel Architecture for 
Array Processors," Computer, 14 (1981), pp. 28-36. 

8. Smith, J. E. "Decoupled AccesslExecute Computer Architectures." In 

Proceedings of the 9th Annual Symposium on Computer Architecture. New 
York: IEEE, April 1982, pp. 112-119. 

9. Treleaven, P. c., D. R Brownbridge, and R. P. Hopkins. "Data-Driven 
and Demand-Driven Computer Architecture," ACM Computer Surveys, 14 
(1982), pp. 93-143. 

10. Ahuja, S. R "A Modular Multiprocessor Architecture for Array Pro
cessing." Ph.D. Dissertation, Electrical Engineering Department, Rice 
University, Houston, Tex., May 1977. 

11. Ahuja, S. R, and J. R. Jump. "A Modular Vector Processing Unit." In 
Proceedings of the 1976 International Conference on Parallel Processing. 
New York: IEEE, August 1976. 

12. Ahuja, S. R., and J. R. Jump. "A Modular Memory Scheme for Array 
Processing." In Proceedings of the 4th Annual Symposium on Computer 
Architecture. New York: IEEE, March 1977. 



Compatible software and hardware implementations 
permitted by IEEE standards for binary 
floating-point arithmetic 

by HARRY W. LOOK 
Zilog Corporation 
Campbell, California 

ABSTRACT 

Zilog's* System 8000, a UNIX*-based system using the Z8000 microprocessor 
family, incorporates the vision held by the authors of the IEEE 754 Standard for 
binary floating-point arithmetic. Floating-point implementation can be realized 
entirely in software with Zilog's Z8070 Software Emulator, or entirely in hardware 
with the FFP-8/01 processor board or the Z8070 chip. Each of these implementa
tions is examined separately. Because the IEEE standard specifies numerical pre
cision and exception handling, the user can choose either the software or the 
hardware implementation without any sacrifice in the accuracy of the results. And 
as the hardware availability increases and the cost decreases, floating-point oper
ations can be easily transported from software to hardware for increased per
formance. 

*UNIX is a trademark of Bell Laboratories; Zilog is licensed by AT&T. 

101 





Z8070 SOFTWARE EMULATION PACKAGE 

The Software Emulator provides floating-point arithmetic ca
pability for Zilog's 16-bit microprocessors, the Z8000 CPU 
family. The Emulator deals with a range of integers from - 9 
x 1018 to 9 X 1018 and with a range of real numbers from 3.4 
x 10-4932 to 1.2 X 104932

• Like the Z8070 chip, the Emulator 
can operate on single precision (32-bit), double precision 
(64-bit), or double extended (80-bit) data types. Integer for
mats supported are long (32 bits), quad (64 bits) and decimal 
(80 bits), which can include up to 19 binary-coded decimal 
digits and a sign bit. All computations and all values are 
automatically converted to the 80-bit double extended format 
when they are loaded into the Emulator. 

The Z8000 trap structure permits floating-point operations 
to be performed with either the Software Emulator or a hard
ware device. Bit 13 of the Z8000's Flag and Control Word 
register (FCW) is set by the user to indicate the presence of 
the Extended Processor Unit (e.g., Z8070 chip). The EPU 
instruction set serves as an extension of the Z8000 instruction 
set and has a unique set of opcodes to distinguish it from 
Z8000 instructions. If an EPU instruction is encountered and 
Bit 13 of the FCW is reset to indicate that the EPU is not 
present, an extended instruction trap will occur, and the Em
ulator will be invoked. If the EPU hardware is present and Bit 
13 is set, no trap is generated, and the hardware captures and 
processes the instruction. 

The Emulator itself consists of a system dependent module 
and a system independent module. The system independent 
module, which contains the floating-point routines used for 
computations, is about 5,000 bytes of code and requires fewer 
than 30 words of stack space for operation. The system depen
dent module, which is used to call the independent module, is 
a small set of assembly language interface routines that can be 
tailored to the host system. Functionally, the Emulator, which 
is a software trap handler for floating-point instructions, is 
responsible for the following functions: 

1. Decoding the floating-point Instruction that was not 
"recognized" by the Z8000 (Bit 13 of FCW reset) 

2. Performing the floating-point computation with a format 
in conformance to the IEEE standard 

3. Handling exceptions either by a trap to a service routine 
or by default (the user selects the approach by setting a 
bit) 

4. Saving the required status information prior to the trap 
and restoring the information (the computational engine 
is the Z8000 rather than the Z8070 EPU chip) 

Most floating-point operations with the Emulator finish in 
about 1 ms, using a 6 Mhz Z8000, which includes the trapping 
and operating system overhead. 

Compatible SoftwarelHardware Implementations 103 

ZILOG'S FPP-8/01 FLOATING-POINT PROCESSOR 
BOARD 

Zilog's FPP-8/0l is a two-board hardware implementation of 
the full IEEE standard. Like the Software Emulator, it per
forms all internal operations in double extended format. De
signed for the 32-bit Z-Bus Backplane Interconnect (ZBI bus) 
used in Zilog's System 8000, it greatly increases the speed of 
floating-point operations. Typically performing 125K floating
point Operations per second (KFLOP), performance is over 
100 x that of the Software Emulator. The performance fig
ures were obtained by finding the dot product of two 
1,OOO-element vectors. The FPP-8/01 board set contains 400 
equivalent integrated circuits, which includes 4K-by-4-bit 
static RAMS, 16-bit-by-16-bit multipliers, and 4-bit micro
processor slices. 

Functionally, the FPP-8/01 (Figure 1) consists of five units: 

1. The ZBI interface 
2. A microcode sequencer and control store 
3. A sign engine 
4. An exponent engine 
5. A fraction engine 

The ZBI interface serves as the communication path be
tween the FPP-8/01 and the rest of the System 8000. Floating
point microcode is loaded into the control store through the 
ZBI bus when power is applied to the system. 

Once loaded, the FPP-8/01 monitors the ZBI bus for 
floating-point instructions. When the CPU encounters an 
FPP-8/0l instruction, it performs the address calculation and 
provides the address and data timing signals for data transfer. 
The microcode control sequencer then captures the in
struction and data and begins processing. Unlike the Software 
Emulator, which uses the CPU trap structure, the FPP-8/01 
operates as a coprocessor, and no CPU trap is generated. 
While the FPP-8/01 is performing number crunching, the CPU 
continues its normal functions. But if the CPU detects a sec
ond FPP-8/01 instruction while the first is being executed, the 
CPU stops until the first floating-point instruction finishes. 
When finished, the CPU completes the instruction fetch, and 
operation resumes. The sign, exponent, and fraction engines 
perform the actual floating-point operations with sixteen 4-bit 
slices. The fraction engine also uses 16 x 16 multipliers. 

The FPP-8/Ol is a hardware emulation of the Z8070 chip. 
There are a few minor exceptions, which, of course, have no 
effect on the precision of the calculations or the handling of 
exceptions. With the FPP-8/01, the CPU stops if sequential 
floating-point instructions are encountered. Processing of the 
first floating-point instruction must be complete before the 
instruction fetch of the second instruction is completed. The 



104 National Computer Conference, 1984 

ZS070, on the other hand, has a one-deep queue. The CPU 
may not need to stop at all for sequential floating-point in
structions. The CPU stops only if the subsequent floating
point instruction is one of the following: 

1. A Load or Store operation where a value from the first 
operation is needed by the second instruction. 

2. A Load or Store operation where conversion of data 
types is involved. 

3. Waiting because the instruction queue is full. 

In addition, the User and Flags registers, which are present 
in both the FPP-8/01 and ZS070, cannot be bit-set. The FPP-
8/01, unlike the Z8070, required that the entire register be 
reloaded to change bit information. 

Z8070 EXTENDED PROCESSING UNIT 

With the ZS070 Floating-Point Processor, floating-point oper
ations can be performed significantly faster (100 x to 500 x ) 
than if done through software emulation. Applications like 
graphics, engineering workstations, C and PASCAL pro
grams declaring floating-point variables, and FORTRAN pro
grams can benefit from the addition of a floating-point co
processor to a system. Because of the ZSOOO's trap structure, 
software does not need to be rewritten if the ZS070 is added. 
One simply sets Bit 13 of the FCW register to indicate that the 
ZS070 is present, and the Z8070 processes the floating-point 
instructions; this is in contrast to trapping to floating-point 
subroutines for ZSOOO processing if the ZS070 is not present. 

Execution times for the Z8070 chip are listed below in clock 
cycles. 

80-bit 
32-bit 64-bit (Double 

(Single) (Double) Extended) 

Addition/subtraction 18 18 18 
Multiplication 28 42 48 
Division 29 43 49 

(Execution time in microseconds is obtained by dividing clock 
cycles by the clock speed in Mhz. For example, a 32-bit Mul
tiply will take 2.8 microseconds using the standard 10-Mhz 
Z8070.) This performance level is 1.7 x to 7 x that of other 
announced floating-point chips at their standard clock rate. 

Z8070 Architecture 

The ZS070 is functionally organized as two processors: an 
Interface processor and a Data processor. These two proces
sors, which are integrated onto the same chip, have separate 
clocks (Figure 2). This allows a slower speed microprocessor 
to operate with a faster ZS070 (or vice versa) by matching the 
interface processor clock to that of the system microprocessor 
and still operate the data processor at a faster clock speed. 
The interface and data processor operate independently. The 
interface processor fetches and aligns floating-point instruc
tions and data, manages the internal queue, and executes 

Figure I-The FPP-8/0I Floating-Point Processor 

certain control and data instructions. The internal queue can 
store one instruction with associated data while another sepa
rated instruction is being ex~cuted. The data processor con
tains eight 80-bit data registers and performs the actual 
floating-point processing. Like the Software Emulator and the 
FPP-8101, all computations done internally are in the double 
extended format. All floating-point· operations fully comply 

CPU ADDRESS/DATA LINES 

INTERFACE PROCESSOR 

I INSTRUCTION REGISTERS 
DECODER AND TRANSLATOR 

STATUS, CONTROL AND I 
INTERRUPT REGISTERS 

~ I I INTERFACE CONTROL I 

DATA PROCESSOR 

I DATA AND OPERAND I REGISTERS 

I MULTIPLY I I 
+ 

r ALU I 
+ r ACCUMULATE I I 

I,. SHIFT 

Figure 2-Z8070 Block Diagram 



with the IEEE standard, including exception handling, ma
nipulation of de normal numbers, infinities, and NaNs. 

Z8070 Interface 

Unlike the FPP-8/01, which monitors the ZBI bus, the 
ZS070 monitors the CPU bus for floating-point instructions. 
The ZS070 supports interfaces to the ZSOOTM 16-bit CPU, 
which is code-compatible with the ZSO® CPU, the ZSOOO 
CPU, the ZSO,OOOTM 32-bit CPU with on-chip cache and 
MMU, and a Universal Interface. The interface is selected by 
configuring two pins as high or low in the 68-pin Leadless Chip 
Carrier package. Interface selection using this approach pro
vides a universal device without the problem of balancing the 
production and inventory mix. With the Universal Interface, 
the Chip Select line, rather than the microprocessor's bus 
signals, is monitored. An active signal on this line indicates 
that the instruction on the bus is meant for the Floating-Point 
Processor. The Z8070 then reads data from the bus during 
each processor cycle until it collects the full instruction and 
data. Data bus widths of 8, 16, and 32 bits are supported with 
the Universal Interface. 

With the Z8070's Coprocessor Interface, the CPU always 
remains a bus master. This eliminates the overhead that re
sults if the Bus request/Bus acknowledge approach is used. 
For a transfer of data between the Z8070's internal registers 
and main memory, the CPU calculates the memory address, 
places it on the address/data bus, and generates the appropri
ate timing signals. The data are then placed on the address! 
data bus by the Z8070 and written into memory. This bus 
efficiency contrasts with alternative approaches, which re
quire a transfer of data from the Floating-Point Processor to 
the CPU and then to memory. 

Compatible SoftwarelHardware Implementations 105 

IEEE 754 STANDARD FOR BINARY 
FLOATING-POINT ARITHMETIC 

The IEEE standard assists in accuracy of results, independent 
of the particular hardware or software implementation. The 
ZS070 Software Emulator, the FPP-8/01, and the ZS070 fully 
comply with the standard. The standard specifies the follow
ing: 

1. The minimum number of bits to represent exponents 
and mantissas in the single, double, and double-ex
tended formats 

2. The set of floating-point operations that must be sup
ported (Add, Subtract, Multiply, Divide, Square Root, 
Remainder, Rounding integer to floating-point, Data 
Type Conversion, and Compare) 

3. Bit representations for plus and minus infinity, zero, 
denormalized numbers, and NaNs 

4. Acceptable rounding methods 
5. Default handling of exceptions caused by overflow, un

derflow, division by zero, square root of negative num
ber, and operation on an NaN 

SUMMARY 

For floating-point intensive applications where computational 
speed is critical, hardware solutions such as the ZS070 and 
FPP-8/01 are more suitable than software solutions. For other 
applications which may require occasional floating-point com
putations, a Software Emulator is more cost effective. What
ever method is used, a microprocessor like the ZSOOO provides 
a convenient trap structure that supports both software and 
hardware solutions without software redesign. And, because 
of compliance with the IEEE standard, accuracy of results is 
ensured. 





Goals and tradeoffs in the design 
of the MC68881 floating point coprocessor 

by JOEL BONEY 
Motorola Inc. 
Austin, Texas 

ABSTRACT 

This paper describes the goals and tradeoffs in the design of the MC68881 Floating 
Point Coprocessor. The Motorola MC68881 is a complete implementation of the 
proposed IEEE floating point standard on a single VLSI chip. It is a coprocessor 
for the MC68020 microprocessor and is a peripheral processor for other M68000 
family processors. 

The design of the MC68881 was guided by a set of goals. This paper discusses the 
major goals of the MC68881 project and their impact on the design. During the 
definition of the architecture of the MC68881 many engineering tradeoffs were 
made by the design team. This paper also documents how some of these tradeoffs 
affected our decisions. Lastly, the paper gives enough of an overview of the 
MC68881 to make the discussions of the goals and tradeoffs meaningful. 

107 





Goals and Tradeoffs-MC68881 Floating Point Coprocessor 109 

INTRODUCTION 

No design project should be undertaken without a good set of 
clear goals that are the guiding information allowing the de
signers to make the necessary tradeoffs during the design 
process. This paper documents the design goals and some of 
the architectural tradeoffs of the MC68881 design project. 
This VLSI design project will take about 4 years from the first 
preliminary specification to first silicon (which is expected 
about the time this paper is published). 

The Motorola MC68881 is a complete implementation of 
the proposed IEEE floating point standard on a single VLSI 
chip.1 It is a coprocessor for the MC68020 microprocessor and 
is a peripheral processor for other M68000 family processors. 
Since it will be necessary to have some knowledge of the 
MC68881 in order to understand the goals and tradeoffs, this 
paper also includes an overview of the MC68881. More spe
cific detail about the MC68881 can be obtained from other 
papers and articles published by the design team. 2

,3,4 

AN OVERVIEW OF THE MC68881 

The MC68881 is a high performance floating point unit de
signed to interface with the 32-bit MC68020 as a coprocessor. 
It can also be used as a peripheral processor with some per
formance degradation, in systems where the MC68020 is not 
the main processor (e.g. MC68000, MC68008, MC6801O). 
The configuration of the MC68881 as a coprocessor or a 
peripheral processor can be completely transparent to user 
software. 

The MC68881 utilizes the general purpose M68000 family 
coprocessor interface to provide a logical extension of the 
CPU's instruction set and register set such that it is trans
parent to the programmer. The programmer is never aware 
that the coprocessor and main processor are implemented on 
two separate chips. 

Internally the MC68881 is divided into two processing ele
ments, the Bus Interface Processor (BIP) which handles the 
coprocessor interface and the Arithmetic Processor (AP). All 
interaction with the main processor is handled by the BIP 
while the AP executes all MC68881 instructions.4 

Bus Interface Processor 

All interprocessor transfers are initiated by the MC68020. 
During the processing of an MC68881 instruction, the 
MC68020 transfers instruction information and data to the 
coprocessor via standard M68000 write bus cycles using a 

unique CPU function code and receives data, requests for 
service, and status information from the coprocessor via stan
dard M68000 read bus cycles. 

The MC68881 contains a number of coprocessor interface 
registers which are addressed like memory by the MC68020's 
micro-machine. These registers are not part of the program
mer visible register set. 

Reserved opcodes in the M68000 instruction map that 
formerly trapped out to an exception routine (Line 1111 Em
ulator Trap) are now defined as coprocessor instructions. 
Only the MC68020 tracks the instruction stream. When it 
detects a coprocessor instruction, it writes the next word in the 
instruction stream to the coprocessor and reads the co
processor's response. The BIP encodes in the response any 
additional action required of the main processor on behalf of 
the coprocessor. A typical request for service is "evaluate the 
effective address and transfer N bytes of data to the co
processor interface operand register." 

The coprocessor interface permits the MC68881 to execute 
most floating point instructions concurrent with the 
MC68020's execution of non-floating point instructions. 

The MC68881 is designed to operate over 8-, 16-, or 32-bit 
data buses. The part is packaged in a 64-pin DIP or 68-pin 
Pin-Grid-Array package. 

The coprocessor interface is fully compatible with the 
MC68020's on-chip instruction cache and virtual memory ar
chitecture. The interface insures that all coprocessor exe
cution time exceptions, including instruction single-step, are 
handled identically to main processor execution time excep
tions. Both the MC68020 and the MC68881 are designed for 
16.67-Mhz operation. Since the interface is based solely on 
standard M68000 asynchronous bus cycles, the MC68881 need 
not run at the same clock speed as the main processor. 

Arithmetic Processor 

Once the BIP has decoded an instruction and requested any 
operands it needs, the microcode in the Arithmetic Processor 
is started to acquire the operands and to perform the re
quested operation. The AP is implemented as a pseudo two
level micro-machine much like the MC68000.7 

Architecture Overview 

The architecture of the MC68881 appears to the user as a 
logical extension of the M68000 family architecture. It is a 
register oriented, one-and-a-half-address processor similar to 
the MC68000 and its derivatives. 6 



110 National Computer Conference, 1984 

Programmer's model 

The MC68881 adds the following registers to the pro
grammer's model of the M68000 family: 

1. Eight 80-bit floating point data registers analogous to the 
M68000 integer data registers. 

2. A 32-bit control register contains enable bits for each 
class of exception trap, and mode bits to select rounding 
mode and rounding precision. 

3. A 32-bit status register contains the floating point condi
tion codes, quotient bits set by remainder and modulo, 
and exception status information. 

4. A 32-bit instruction address register contains the address 
in memory of the last floating point instruction. This 
address is used in exception trap handling. 

Data formats 

The MC68881 supports the following data formats: 

1. Byte, word, and long word integers, 
2. Single, double, and extended precision binary real, 
3. Decimal real string (packed BCD). 

The three integer data formats are identical to those sup
ported by M68000 family processors. The floating point data 
formats, single precision (32-bits), and double precision 
(64-bits) are as defined by the IEEE standard.2 

The extended precision data format is also in conformance 
with the IEEE standard, but the standard does not specify this 
format to the bit level as it does for single and double. The 
format on the MC68881 consists of 96 bits, 3 long words, with 
an explicit most significant mantissa bit. Only 80 bits are 
actually used, the other 16 bits are left for future expan
dability. 

The decimal real string format consists of a signed 3-digit 
base 10 exponent and a signed 17-digit base 10 mantissa. All 
digits are packed BCD so that a whole string fits in 96 bits. 

Integer, single precision, double precision, and decimal real 
string format operands are always converted to an extended 
precision floating point number prior to participating in an 
MC68881 operation. The floating point data registers always 
contain extended precision values, and all internal computa
tions are performed to extended precision. 

Instruction set 

The instruction set of the MC68881 can be subdivided as 
follows: 

1. Moves; register to register, external operand to register, 
and register to external operand forms are provided. 
The external operand may be any of the 7 data formats 
supported, and may be specified by any MC68020 ad
dressing mode. 

2. Arithmetic and Transcendental Operations; register to 
register and external operand to register forms are pro
vided. The external operand may be any of the 7 data 
formats supported, and may be specified by any 

MC68020 addressing mode. The result is always placed 
in the specified floating point data register. 

3. Miscellaneous; move multiples (in and out) branches, 
set on condition, trap on condition, save context, restore 
context, etc. 

The arithmetic and transcendental operations are listed in 
Figure 1. Dyadic operations (those requiring two operands) 
are listed first followed by the monadic operations. 

Add 
Compare 
Divide 
Modulo 
Multiply 

Absolute Value 
Arc Cosine 
Arc Sine 
Arc Tangent 
Hyperbolic Arc Tangent 
Cosine 
Hyperbolic Cosine 
e to the x Power 
e to the x Power - 1 
Get Exponent 
Get Mantissa 
Integer Part 
Log Base 10 

IEEE Remainder 
Scale Exponent 
Single Precision Divide 
Single Precision Multiply 
Subtract 

Log Base 2 
Log Base e 
Log Base e of x + 1 
Negate 
Sine 
Sine and Cosine 
Hyperbolic Sine 
Square Root 
Tangent 
Hyperbolic Tangent 
10 to the x Power 
Test 
2 to the x Power 

Figure I-Supported operations 

All operations required by the IEEE standard are provided 
on the MC68881 plus many more. All instructions support all 
IEEE defined special values (normalized, zeroes, infinities, 
de normalized numbers, and 'not-a-numbers'), and return the 
IEEE specified results with accuracy as specified in the 
standard. 

Following the precedent set by the orthogonal instruction 
set in the M68000 family of processors, MC68881 instructions 
are provided for move, arithmetic, and transcendental oper
ations using any data format and any addressing mode. The 
domain of an operand in a given data format is unrestricted 
for all operations. No operations require software envelopes 
to conform to the standard. Similarly, for the transcendentals, 
all argument reduction is performed on-chip. 

The MC68881's conditional instructions utilize 32 floating 
point conditional predicates encoded in five bits. The four 
possible relations between two floating point numbers, 
greater than, equal, less than, or unordered, are encoded into 
four bits. The fifth bit, as required by the proposed standard, 
indicates whether an exception should be raised if the predi
cate evaluation yields an unordered relationship. 

GOALS AND TRADEOFFS 

Goals 

There were five major goals for the MC68881 project given 
in the following priority: 



Goals and Tradeoffs-MC68881 Floating Point Coprocessor 111 

1. The MC68881 should have the same style of architecture 
as the other members of the M68000 family 

2. Performance 
3. Functionality and user friendliness 
4. Reduce design time and long term design costs 
5. Producibility 

M68000 Family Style of Architecture 

Since we felt that the functionality of the MC68881 would 
eventually be moved onto the same die as the main CPU, an 
important goal was to insure that the architecture of the 
MC68881 fit in with the rest of the family. The MC68881 
should expand the instruction set of the main CPU in an 
orthogonal manner that was transparent to the programmer 
(i.e., the user should not be aware that the MC68020/ 
MC68881 consisted of two devices). 

The coprocessor interface scheme is crucial to achieving this 
goal. The philosophy was to split the work done by the co
processor interface between the main CPU and the co
processor such that each element does what it can do best. For 
example, the MC68020 decodes the original instruction and 
determines that it is a coprocessor instruction. It then informs 
the coprocessor by writing a coprocessor defined operation 
word to the coprocessor. The coprocessor decodes this word 
and requests that the main CPU do the effective address cal
culation and transfer operands of 'n' bytes to the coprocessor. 
Or if a floating point exception occurred, the coprocessor 
might ask the main CPU to commence exception processing. 
Thus it can be seen that the MC68020 does what it already 
knows how to do: decide basic instructions, calculate effective 
addresses, and take exceptions. The coprocessor knows about 
its defined operation and knows what kind and size of data it 
wants from the main CPU or if an exception occurred. 

A tradeoff was made in the coprocessor interface scheme to 
use standard asynchronous M68000 bus cycles for communica
tion between the main CPU and the coprocessor. There was 
a minor speed penalty for this method when the MC68881 was 
used as a coprocessor for the MC68020, but it allowed the 
MC68881 to be used by all other M68000 family members as 
a peripheral. 

This decision, along with the decision to not make the 
MC68881 a bus master (i.e., the MC68881 does not fetch its 
own operands; they are fetched by the main CPU and passed 
to the MC68881) greatly simplifies the system hardware inter
face to the MC68881 and allows flexibility. 

Another tradeoff/decision made by the MC68881 design 
team was the selection of a register based one-and-a-half ad
dress architecture. In this type of architecture one of the 
operands typically comes from memory while the other oper
and comes from a register with the result going to the register 
or memory. This architecture is consistent with the architec
ture of the other M68000 family members. Further, since the 
M68000 processors have 8 integer data registers, the decision 
was made to have 8 additional floating point data registers. 
Studies have indicated that 8 registers are optimal for expres
sion evaluation, etc.; and by having the same number of in
teger and floating point data registers compiler writers should 
be able to use the same register allocation algorithms for 
integers and floating point. 

Orthogonality across the instruction set and addressing 
modes is a feature of the M68000 family that was preserved by 
the MC68881. All the addressing modes of the MC68020 are 
available for accessing floating point operands. Further, the 
safety features supported by the M68000 processor such as 
illegal instruction and illegal addressing mode traps are also 
supported by the MC68020IMC68881 pair. 

Performance 

Within the constraints of M68000 family architectural con
sistency, performance was the next most important design 
goal for the MC68881. Both the MC68020 and the MC68881 
were designed for a clock speed of 16.67 Mhz. Even though 
the HCMOS process results in a slightly larger die, it was 
selected for both projects because of speed and low power 
consumption. 

Performance of the basic functions, add, subtract, multiply, 
and divide, was emphasized. Special hardware was added to 
the execution unit to speed up these basic operations. Table I 
gives the execution times for the register to register forms of 
these operations on a MC68020IMC68881 pair. These times 
do not reflect the potential throughput increase from 
concurrency. 

The single multiply and single divide operations assume 
that their operands are single precision, and produce a single 
precision result (while maintaining the range of extended). 
These operations are provided for special applications where 
multiply and divide performance is more important than loss 
of significance. 

Even though we wanted the operations to be very fast on 
the average, one tradeoff we made was to insure that the worst 
case execution times would not be significantly different from 
the best case times. In some applications the only important 
item would be the average execution time, but in real-time 
applications the whole system usually has to be designed using 
the worst case time. Floating point units that depend on slow 
software envelopes to handle special cases will be very hard to 
use in real-time applications. 

All calculations in the MC68881 are done internally to full 
IEEE extended precision. Even though we might have 
achieved marginally faster single and/or double precision 
times by including special hardware for single and double 
precision, we decided to concentrate our efforts in making 
extended precision very fast. This gives us very competitive 
times for all operand size not just single or double. 

The last major performance-related tradeoff was the deci-

Operation 
(reg-reg) 

Add 
Subtract 
Multiply 
Divide 
Single Mul 
Single Div 

TABLE I-Execution times 

Clock 
Cycles 

40 
40 
60 
92 
46 
58 

Time (J.Lsec) 
@ 16.67 Mhz 

2.4 
2.4 
3.6 
5.5 
2.8 
3.5 



112 National Computer Conference, 1984 

sion to support concurrent operation. Concurrency means 
that once an instruction is started in the MC68881 the 
MC68020 is free to continue executing other non-MC68881 
instructions. Thus the two processors overlap their execution, 
which increases the overall throughput of the pair. The sup
port of concurrency did cost some silicon area and added some 
complexity, but we felt that the potential benefits outweighed 
the silicon costs. 

Functionality and User Friendliness 

Probably the biggest tradeoff we made toward functionality 
and user friendliness was the decision to support the proposed 
IEEE standard in its entirety in ,silicon. 1 As participants in the 
standardization process we felt the accuracy and safety pro
vided by the standard greatly outweighed the minor impact it 
had on die size and hence, cost. Many people seem needlessly 
frightened by the complexity of the standard. If all the de
faults of the standard are selected, the user is hardly aware of 
it except that he gets better results and has fewer problems 
with his algorithms blowing up than with conventional floating 
point implementations.5 Most of the special modes are in
cluded for the expert numerical analysts and can be ignored by 
the average user. 

Conformance to the standard involves much more than just 
conformance to the specified data formats. The standard 
specifies what operations must be supplied in a conforming 
implementation, and what accuracy is required for the oper
ations. Further, it defines exceptions, specifies their detec
tion, and specifies the results of exceptional operations in 
both trapping and non-trapping environments. The standard 
specifies special data types within each format (signed zeroes 
and infinities, not-a-numbers, denormalized numbers) and 
specifies the results of operations involving these special data 
types. It also specifies user selectable modes for rounding 
mode and precision. Any floating point hardware element 
that does not support all these requirements does not conform 
to the IEEE standard. 

In addition to the functions required by the standard we 
decided to support many additional functions including a com
plete set of transcendental functions. As with the IEEE re
quired functions, no software envelope is required to make 
the functions work correctly. The transcendentals even do the 
argument reduction on chip. 

A slightly more efficient use of silicon would have been 
made if we had just implemented a set of primitive transcen
dentals on the chip. All the functions we support can be de
rived from a subset of primitives. There are perhaps a few 
hundred people in the world who know how to derive these 
correctly. It took us several years to figure it out. We didn't 
want our customers to have to go through what we did to 
become numerical experts in order to use our part, nor did we 
want to ship a large, slow software envelope with every part. 
The silicon impact was minimal, so we just put everything on 
the chip. 

Another major tradeoff we made was whether to support all 
of the data types supported by the M68000 family in addition 
to the floating point data types and conversions required by 

the standard. We decided to support all data types including 
a decimal real string type. This feature along with the fact that 
all internal operations are done to full extended precision 
makes the MC68881 very easy to use and very accurate. The 
old FORTRAN problem of mixed modes goes away when an 
MC68881 is used since all sizes and types of data can take part 
in a floating point calculation with maximum accuracy. 

As mentioned previously, we decided to support concur
rency for performance reasons; however, we made a lot of 
minor design tradeoffs to insure that the concurrency is com
pletely transparent to the programmer. 

Reduce Design Time and Long Term Design Cost 

As VLSI chips have gotten bigger, the time it takes to do 
the architectural design, the circuit design, and the layout has 
increased dramatically. We therefore made many tradeoffs in 
the design to reduce the design complexity. The MC68881 is 
implemented as a pseudo two-level microcode machine. It has 
a very wide control word with very little residual control. 7 

Several PLAs are used for microcode address generation and 
for the coprocessor responses. 4 

Nearly all the cost of implementing the IEEE standard is 
contained in several PLAs and a small amount of microcode. 
There is almost no random logic used to implement the IEEE 
standard or for that matter any of the other functionality 
improvements of the MC68881. The only time we used ran
dom logic was in the performance paths in the execution unit 
for the basic four functions and in parts of the BIP. The 
MC68881 is the most regular non-memory VLSI micro
processor device we have ever produced. 

As for long term design cost, we felt that no manufacturer 
could afford to make a whole family of floating point 
coprocessors-the market just isn't big enough to justify the 
cost. Because we felt this way, we were more likely to include 
extra functionality on the MC68881 so that we don't have to 
do an enhanced version later. Further, the general purpose 
coprocessor interface insures us that we won't have to do a 
new version of the MC68881 for each existing M68000 family 
member nor will we have to do a new version for any new 
family members. Therefore, we may have put more design 
effort and cost into the original MC68881 design, but we feel 
we greatly reduced the long term design cost to Motorola. 

Producibility 

The best paper design in the world is useless unless it can be 
produced cheaply in volume. Although at times we did trade
off die size for regularity and functionality, the final die size 
is producible in the HCMOS process. And if processing im
provements continue at the pace they have in the past, in a few 
years the MC68881 will seem like a tiny die. 

In fact, testing and package costs will dominate the device 
cost over time. To this end we will package the MC68881 in a 
64-pin DIP or 68-pin Pin-Grid-Array package. Both of these 
packages will be high volume packages. For testing, the 
MC68881 has extensive on-chip test logic to reduce test costs 
that I am not free to discuss in this paper. 



Goals and Tradeoffs-MC68881 Floating Point Coprocessor 113 

SUMMARY 

This paper has attempted to provide a glimpse into the 
thought processes of the designers of the MC68881. The 
project had more goals than the 5 mentioned and there were 
an endless number of tradeoffs made daily with only the major 
ones mentioned here. Of course, dozens of people participate 
in the design of any VLSI device from the initial marketers 
who gave us customer input to the final layout draftsmen who 
put it on silicon. Rarely were any of the decisions mentioned 
in this paper made by one or two people, but rather by groups. 

REFERENCES 

1. IEEE Computer Society Microprocessor Standards Committee Task P754. 
"A Proposed Standard for Binary, Floating Point Arithmetic, Draft 10.0." 
January 1983. A copy may be obtained now from Richard Karpinski, UCSF 

U-76, San Francisco, Calif. 94143, and ultimately from IEEE, 345 East 47th 
St., New York, NY. Draft 10.0 is a substantial revision of Draft 8.0 published 
in Computer, March, 1981. 

2. Boney, J., P. Harvey, and V. Shahan. "Floating Point Power for the M68000 
Family." Proceedings of 1983 Mini/Micro West, November 1983, Session 16, 
paper #5. 

3. Cawthron, D. and C. Huntsman. "The MC68881: Motorola's Floating-Point 
Solution." IEEE Micro, December 1983. 

4. Shahan, V. "The MC68881: The IEEE Floating Point Standard Reduced to 
One VLSI Chip." Proceedings of COMPCON, Spring 84. 

5. Kahan, W. "The Proposed IEEE Standard p754 for Floating Point Arith
metic: What Good Is It?" Proceedings of 1983 Mini/Micro West, November 
1983, Session 16, paper #l. 

6. Zolnowsky, J. and N. Tredennick. "Design and Implementation of System 
Features for the MC68000." Proceedings of COMPCON, Fall 79, September 
1979, 
pp.2-9. 

7. Stritter, E. and N. Tredennick. "Microprogrammed Implementation of a 
Single-Chip Microprocessor." Proceedings of the I I th Annual Workshop on 
Microprogramming (Micro-H), November 1978, pp. 8-16. 





An extended-precision operand computer for integer 
factoring 

by 

JEFFREY W. SMITH 
University of Georgia 
Athens, Georgia 

and 
SAMUEL S. WAGSTAFF, JR 

Purdue University 
West Lafayette, Indiana 

ABSTRACT 

We describe an extended-precision operand computer (EPOC). The single
precision word length is 128 bits. This makes possible calculations with large in
tegers without resort to multiprecision techniques in software. Since this is a special
purpose machine, the hardware and software have been developed from scratch to 
implement it. The application toward which the EPOC is directed is the factoring 
of large integers using the continued fraction algorithm. This application presents 
interesting mathematical and architectural problems to solve and has implications 
in cryptography. 

115 





INTRODUCTION 

We have built a special-purpose computer with properties that 
facilitate the calculations for a class of mathematical prob
lems. These are problems in number theory, specifically the 
factoring of large (50- to 80-digit) integer numbers. We 
present some features of this computer, an Extended
Precision Operand Computer (EPOC), which differs from 
conventional architectures in several ways. 

The most prominent feature of the computer is the ex
tended precisioIi of the operands. In most computer architec
tures, large numbers must be handled by multiprecision soft
ware routines. This is time-consuming (8+5n operations per 
multiprecise operation in one package on the S/370, where n 
is the degree of extra precision). Quadruple precision addi
tion, for instance, requires 28 operations rather than one. To 
make calculations with large numbers faster, EPOC provides 
128-bit operands in memory and registers that the program
mer can fetch, store, and manipulate with single operations. 
This degree of precision accommodates up to 38-digit decimal 
numbers. The operand length of the EPOC is extendible with
in the architecture by linking additional hardware and adjust
ing the timing. 

One measure of a computer system is its speed. In compute
bound applications, the speed of the processor directly limits 
performance. Traditional architectures expend processor time 
in the instruction fetch portion of the instruction cycle. This 
expenditure is avoided if the instructions are fetched in paral
lel with their execution as pipelined processors do. In micro
coded processors, the next microinstruction is fetched while 
the present micro operation is executed. Microcoded proce
dures run up to ten times faster than those coded in software. 
EPOC is microcoded in a user-defined language, making use 
of a family of system programs developed specifically for this 
project. 

The factoring problem to which EPOC is directed must 
operate on candidate numbers by calculating their residues 
modulo a set of prime numbers. EPOC includes an array of 
remainder elements which will figure the residues of a candi
date by all members of a set of primes at once. This has some 
aspects of parallel processing, some aspects of vector or array 
processing. The dividers are a set of separate (but not auton
omous) arithmetic elements which are hard-wired to perform 
the specific remainder operation required. 

Many of the problems to which EPOC will be applied have 
long running times (on the order of months). To assure correct 
operation, we have built sanity checks into the operational 
software, can run diagnostics quickly between program seg
ments, and have segmented the algorithm so that it can be 
checkpointed periodically. Checkpoint and restart procedures 

An Extended-Precision Operand Computer 117 

are necessary when problems must run for an extended period 
of time in an exposed environment. 

EPOC HARDWARE 

EPOC is a prototype. It has been constructed with simplicity 
and ease of maintenance in mind. A multibus backplane holds 
multibus prototype cards on which sockets and integrated 
circuits are mounted. The circuit interconnection technique is 
wirewrap, chosen for its simplicity, flexibility, and reliability. 
The circuits used in EPOC are from the Schottky TTL and 
Advanced Schottky TTL families. 1

,2 These technologies are 
fast at the circuit level, rugged, and straightforward as a design 
medium. EPOC consists of 18 cards, but only 4 card types. 
There are 12 dividers, 4 ALUs, and one each sequencer and 
IOTE. (See Figure 1). 

Input/Output Terminal Emulator (IOTE) 

The IOTE is an input/output terminal emulator. This de
vice is the channel between EPOC and the external world 
(host computer and operator). EPOC's channel need not have 
a high data rate, since the EPOC application is processor-

CONSOLE 

HOST 

Figure l-EPOC hardware connections 



118 National Computer Conference, 1984 

bound. This fact has been exploited in the EPOC system by 
providing all input/output via terminal emulation. This means 
that when EPOC wishes to communicate with the host sys
tem, it appears to the host to be a user typing on a terminal 
keyboard. When the host system is sending, EPOC must be 
able to 'read' the data off the emulated terminal screen. Doing 
input/output via terminal emulation has the benefits of sim
plicity and inherent portability, since any system to which a 
terminal can be attached could serve as host to EPOC in 
operation. 

The 10TE is a microcomputer subsystem that provides syn
chronous control of EPOC in addition to buffering and 110 
functions. The hardware is based on a ZSOA processor and 
has minimum circuitry to support the required activities, most 
functional capability and operational logic resident in the pro
gram. The 10TE handles communications connections to the 
host and operator's console on one side. It buffers and de
codes or encodes messages, and inserts or removes protocol 
information. On the other side, the 10TE has access to the 
EPOC control register, can respond to EPOC service re
quests, and can request the processor to stop. When EPOC is 
stopped, the 10TE acts as a DMA channel to/from the EPOC 
data store. One of the purposes to which this capability is put 
is the loading of the microcode store on the sequencer and the 
initialization of the data store on the ALU. Another is the 
unloading of results from EPOC to the host computer. In this 
case, the transfer is requested from the EPOC side of the 
interface. To report these results, the 10TE will sign on to the 
host computer system, transfer the required data, then sign 
off. 

Sequencer 

The microprogram of the EPOC processor resides on the 
sequencer (SEQ), which assures that operations are per
formed in the correct order. The function of SEQ is to pro
duce the address of the next microinstruction, given the 
present instruction and the status of the machine. The EPOC 
sequencer is based upon the AMD2910 microprogram 
sequencer!. This device has the ability to handle up to 12-bit 
addresses (implying a 4K microinstruction space), a 5-deep 
call/return stack, a counter, and 16 instructions (most of them 
conditional). Conditions are fed into the sequencer from 
around the EPOC dataflow by the P2 bus on the backplane, 
and selected by fields in the microword. SEQ configures the 
ALU slices, holds the microprogram store (4K x 64bits), and 
controls the operation of the divider bank. The microinstruc
tion store is loaded over the EPOC backplane bus by the 
10TE. SEQ controls and monitors ALU operation by means 
of the conditions bus on the backplane, and a command bus 
which is broadcast to the ALU slices and other parts of the 
processor on the top cable bus. SEQ also controls the divider 
bus, and provides the main system 8MHz clock to the rest of 
the hardware. 

Arithmetic and Logic Unit (ALU) 

Central to the calculations done by EPOC is the 128-bit 
arithmetic and logical unit (ALU). The AMD2903A register 

and arithmetic and logic unit (RALU) 4-bit slice l is the central 
component in the ALU. 25 operations can be performed 
among the accessible operands, with sources and destinations 
selectable. The ALU gives the progammer 16 gpr's and a Q 
register, each 128 bits in length. The ALU board also contains 
a 128-bit 65MHz shift register which is used to provide a 
general shifting capability and to communicate with the di
viders. The ALU board contains the operand store, a 
4k x 128bit static RAM with 100nsec access (MOSTEK 
4804). 

Packaging an ALU of this size is challenging, especially 
when performance contraints are considered. EPOC is built 
on multibus prototype boards; the 128 bit ALU is made up of 
4 such boards, each with 32 bits of ALU, GPRs, store, and 
shifter. The partitioned ALU communicates with more sig
nificant and less significant neighbors via top-card cables in 
such a way that the hardware of each slice is identical to the 
others and no positional dependency is built in. The ALU has 
carry look-ahead so that the cycle time will be limited as little 
as possible by the length of the operands. 

Divider 

The factoring algorithm to be used on EPOC relies on the 
identification of possible factor components as survivors of a 
trial division process. 128-bit candidate numbers are divided 
by small primes from a factor base. All the numbers are 
positive and the quotients are not of interest, only the remain
ders. This means that trial dividers can be made from a simple 
16-bit ALU and shift register. Division then consists of shift
ing and conditional substraction. An EPOC with 10 dividers 
attached will perform 6-8 times better at the factoring algo
rithm than EPOC without the dividers. Since the dividers are 
simple and inexpensive, they are a cost-effective way to accel
erate this algorithm. The dividers are clocked at 16MHz, so 
they process one bit of the input value every 62.5 nsec. A 
remainder will be produced after 8 usec. With 10 dividers in 
operation, allowing for overhead in startup and termination of 
the operation, the divider bank can produce a remainder on 
the average of every microsecond. 

The dividers are packaged separately from the main EPOC 
logic and controlled over a dedicated bus and cable. The 
separation in the package makes it possible to expend the 
divider subsystem independently to meet future needs. This 
flexibility may prove useful in adjusting EPOC performance, 
since the best mix of dividers to main processors for the 
CFRAC factoring algorithm (see below) is not known. 

EPOC SYSTEM SOFTWARE 

EPOC is a hardware implementation of the inner loops of a 
specific algorithm. It is a special-purpose processor. The com
ponents however, have some generality and can serve as the 
basis for other special-purpose devices. The source of this 
generality is the programmability of the devices. Pro
grammability also permits modification of the operational al
gorithm (tuning) as the EPOC application evolves. (See Fig
ure 2.) 



roTE 

EPOC 

Figure 2-EPOC system software 

Definition Program 

To allow the maximum flexibility to the programmer in the 
language in which he will program EPOC (and because the 
machine specification was not complete when the assembler 
project was begun) there is a definition program. Using this 
program, the programmer can define to the assembler the 
target machine and source language of the program. This is 
functionally equivalent to the definition statements included 
in the AMDASM microcode assembler3 but the details differ. 

Input to this program is a machine definition file, while 
output is a set of internal-format tables suitable for insertion 
into the assembler. These are passed to the assembler along 
with the user's symbolic source code as primary inputs. The 
definition program serves as a 'shock absorber' in the 
processor-to-assembler interface. Two programmers can be 
programming the same machine in two different languages by 
the use of different definition files. One programmer or team 
of programmers can program two different machines in the 
same language by adjustments to the definition of the 
machines. 

Microcode Assembler 

To program EPOC in a reasonable format, we have devel
oped a symbols-to-binary translator in the form of a symbolic 

An Extended-Precision Operand Computer 119 

assembler4
• This assembler is a nontraditional two-pass as

sembler. Mnemonics are not built in, but are read from the 
definition program output described above. The assembler is 
a cross-assembler which is portable from one host system to 
another to the extent that RATFOR programs are portables. 
Generality in the target machine is attainable by providing 
parametric mnemonics, word lengths, and other semantic at
tributes of the assembler. Only the syntax must be preserved 
to use this one assembler for two entirely different machines. 
With a preprocessor to absorb syntax differences, this assem
bler can assemble code for many assembler-level languages. 
Generality arises by treating the assembler as the most gen
eral possible translator-from symbols to bit fields. The gen
erality is purchased at the expense of efficiency, in this case of 
speed of assembly and complexity in the definition file. 

Linker 

Assembler output is in the form of an object module which 
is not directly executable. In addition to the binary micro
words that are the object of the assembly, there is relocation 
information (RLD) pointing to the location in the object code 
where the relocatable values are located, and library sub
program linkages (ESD) asking for code from the system 
libraries. The linker will convert the object file into a load file 
with all addresses which require it to be properly modified for 
relocation and all external references to be resolved in the 
linkage process. The linker also maintains the subprogram 
libraries, allowing additions and deletions and entering new 
object files into the library if the user requests it. 

Portability is a characteristic of the linker as of all EPOC 
systems programs. The library format is also portable, since 
library files are text files. Files in text (ASCII hex) are at least 
double the size of the same information in binary. Assuming 
that the EPOC microcode files will be small makes the use of 
text files reasonable and convenient. 

Loader and Unloader 

The structure of the EPOC system files and the host con
nection method makes the process of loading data or a pro
gram to be executed into EPOC store more than a simple copy 
from the disk to memory. The host system, upon which the 
linker-output load file exists, is connected to EPOC over a 
(terminal) communication line. The loader must account for 
buffer size in the IOTE, a communications protocol from the 
host to the IOTE, and a code conversion from ASCII-hex to 
binary. The loader consists of two programs, one written in 
RATFOR and resident on the host system, the other written 
in 8080 assembler and controlling the IOTE. The loading 
process is accomplished by cooperation between these two 
programs. Since there is a communication line involved, mes
sages are checked for correct transmission and retransmitted 
if necessary. There is a communications protocol embedded 
inside the loader programs. 

When EPOC reports the results of a calculation, those re
sults must be unloaded from EPOC and placed into a file on 
the host disk. The unloader program and IOTE accomplish 
this task in cooperation similar to the loader process described 



120 National Computer Conference, 1984 

above. The results file will be processed by a subsequent 
program on the host to produce the answer to the mathe
matical problem. EPOC has completed its subtask once the 
intermediate result has been transmitted to the host. 

Microcode Simulator 

EPOC is programmed directly in horizontal microcode. 
This means that each bus in the machine data flow is con
trolled by the programmer during each instruction cycle. This 
level of programming is difficult to master, but it can yield the 
best possible machine performance. Debugging micropro
grams is challenging, since the code is so close to the hardware 
that nonstandard debugging techniques are required. Even 
when a microcode compiler becomes available, the debugging 
of both compiled and assembled programs is a necessary 
facility. 

The IOTE allows operator-interactive support for program 
debugging. This, however, is expensive in both programmer 
and machine time and provides a limited window on oper
ation. The microcode can provide a test driver that permits 
the display of interesting values at breakpoints during oper
ation. The microcode simulator, though, is the best facility for 
the functional checking of microprogams. 

The microcode simulator has the same transfer function 
that the EPOC itself has. It is a program written in RATFOR 
that will process data exactly as EPOC would. Since it is a 
simulator, any internal state that the programmer may wish to 
access can be made available. Using the simulator, the pro
grammer can run the same load modules that will be sent to 
EPOC and see that they are operating correctly or where a 
malfunction has occured. 

EPOC OPERATIONAL SOFIWARE 

Diagnostic Programs 

In the course of system development, many small micro
programs have been developed that test the SEQ, ALU, and 
divider dataflows for expected results. These diagnostic pro
grams exercise the logic and flush the data paths of the ma
chine. When the diagnostic set works properly, the user can 
be confident of the operational readiness of the EPOC hard
ware. This capability is useful in operation as well as in devel
opment. For reasons of speed and cost, there is little error
checking circuitry built into EPOC. In order to assure that the 
device is producing good results, the diagnostic set is run 
periodically. Since EPOC is not involved in real-time or life
critical processing, this periodic diagnosis is the most cost
effective way of ensuring proper operation. Calculated results 
are compared with expected values and agreement indicates 
correct operation. 

Console and Host Connection 

To allow the operator to communicate with the machine 
while it is in operation, a simple console interface for alter/ 
display has been provided. This facility accomodates the de-

sire of the operator to monitor and affect the progress of the 
calculation. The class of problem upon which EPOC will work 
may require many (hundreds or thousands) hours of calcu
lation. During this time, the operator can check the progress 
of the algorithm. The host can compile reports as described 
above, but, actual hands-on contact with the machine is useful 
in both development and operation. 

Continued FRACtion Algorithm 

The continued fraction (CFRAC) algorithm6 is a useful 
method in the factoring of large integers. Large (l00-digit) 
integers and the difficulty in factoring them are the fundamen
tal reason why RSA public key cryptosystems5 are considered 
secure. CFRAC was discovered about 1970, and has since 
been extensively use by investigators factoring numbers of 
mathematical interest. Pomerance and Wagstaff at the Uni
versity of Georgia have recently improved the performance of 
the CFRAC algorithm by the use of early exit heuristics to cut 
short a calculation when its continuance does not appear 
promisinglO 

• 

CFRAC is an algorithm for the factoring of large numbers, 
and EPOC is a processor tailored to the accomplishment of 
certain portions of the CFRAC algorithm. CFRAC deals with 
numbers in the range of the square root of the number to be 
factored. These numbers are generated by the algorithm, then 
divided by a set of small prime numbers called the factor base. 
When a candidate number divides completely over this factor 
base, this intermediate result is noted. When enough such 
numbers have been found, a factorization of the original num
ber is possible. EPOC performs only one part of the CFRAC 
algorithm, the generation of candidate numbers and their trial 
division by the factor base. This part requires much computa
tion but small memory. The final result is produced by the 
second phase of the algorithm which requires less computa
tion but much store. This phase runs on the host system. The 
combined system, EPOC and host, solves the CFRAC 
problem-the capability of each processor is complementary 
to the other in this calculation. 

EPOC DEVELOPMENT ENVIRONMENT 

Portable Systems 

A system can be said to be portable to the extent that its 
operation does not depend on the specific hardware upon 
which it runs. Various degrees of portability can be provided 
by different techniques in systems. The method which has 
been employed in the case of the EPOC development system 
is the use of the RATFOR7

,8 preprocessor for FORTRAN. 
This allows the code in which the development system is writ
ten to be ported to any system with a FORTRAN compiler 
and SOFIWARE TOOLS support8

• 

Software Tools 

With the adoption of RATFOR as the system programming 
language, the development aids which come with the software 



tools7 system are also available. We have made extensive use 
of these-some of the utility programs (cat, rev, tsort, sort) 
are integral parts of the procedures which are executed in the 
systems programming process. 

A good set of development tools that are mature and free 
from significant flaws, and available in source form so that 
they can be adapted the specifics of a project, is priceless. For 
the EPOC project, this role was taken by the SOFIW ARE 
TOOLS environment8 provided by SA Barman and his staff 
on the departmental Cyber computer, and at a greater re
move by Kernighan and Plauger et.al. to the computing 
community7.8. 

Computer-aided Design 

The hardware design task for EPOC has been performed 
using a computer-aided design (CAD) system of programs to 
keep track of pin numbers in networks, signal names, faninl 
out levels, etc9

• This CAD system of programs was developed 
for prototype digital system fabrication, and has served the 
EPOC case well. 

EPOC is a prototype; interconnection is done by wire wrap
ping. The CAD system bridges the gap between a computer
readable wire list that can be used to fabricate wrapped boards 
by automatic wire-wrapping machine and a user-readable 
representation of the design that can be used to document, 
communicate, and update the design. 

CAD is notable for its simple hardware description lan
guage (HDL). The language has only two statement types: a 
declarative statement denoted by the keyword DEFINE 
which tells the symbolic (designer-assigned) name of a de
vice( s), its type (index into a technology table), and its loca
tion. The other is a connective statement denoted by the 
keyword WIRE and takes the form: 

WIRE listl TO list2 

where listl and list2 denote pins which are to be connected. 

While simplicity has advantages, this language is verbose in 
description. Computer-readable hardware descriptions are a 
valuable form of design documentation and the more readable 
a HDL, the better. CAD has served to make the hardware 
portion of the EPOC project possible. It is a significant step 
toward the capability of programming hardware design with 
computer development aids as is done with software. 

In any hardware project, a CAD system, even a primitive 
one, is vital to success. The CAD software used for EPOC has 
delivered up much useful information which has helped to 
avoid problems or repair them quickly when they arise. De
signing hardware without a CAD system is like developing 
programs in binary-it is not productive, though it is possible 
if the problem is small enough. If the problem is of reasonable 
size, it is possible in theory, but not in practice. 

SYSTEM SUMMARY 

EPOC is an extended-precision operand computer. The 
single-precision word length is 128 bits, making it possible to 

An Extended-Precision Operand Computer 121 

process large integers without resort to multi precise software 
routines. Since this is a special-purpose device, the hardware 
and software have been invented from scratch to realize it. 

The hardware consists of an IOTE, ALU, SEQ, and a bank 
of divider elements that are specifically for a factoring prob
lem EPOC can solve. The IOTE is a microcomputer system 
which handles the host and console interfaces to EPOC as a 
buffered DMA channel. It handles the interface to the host 
system by emulating a terminal for communications. The SEQ 
holds the microstore and executes the microinstructions in a 
sequence dictated by the program and the conditions that 
arise in the dataflow. The ALU can perform 128-bit oper
ations in a single cycle (some cycles which produce carries are 
lengthened in time). With the exception of the dividers, 
EPOC is a general-purpose, fast, small-store, microprogram
mable, 128-bit processor data flow. 

The software consists of a family of system programs for 
producing and testing EPOC microprograms: assembler, link
er, loader, and a definition program, and a microcode simu
lator to check the function of the produced code. To make the 
programs portable, they are all written in RATFOR. To make 
them as general as possible, they are heavily parameterized. 

One point in summary, a system of things is more difficult 
to develop and operate than a collection of things. A signifi
cant fraction of the EPOC design and debugging effort has 
been spent on the interconnection of the components rather 
than on the components themselves. The bus layouts, proto
cols, interfacing conventions and other design considerations 
of components interconnection and packaging are a lot of 
work to generate without errors. This significant effort was 
consistently neglected and underestimated, and this may be in 
general a cause of systems integration problems. 

ACKNOWLEDGMENT 

This research was funded in part by the National Science 
Foundation, MCS - 8302877. 

REFERENCES 

1. Advanced Micro Devices. Bipolar Microprocessor Logic and Interface Data 
Book. Sunnyvale, Calif.: AMD, 1983. 

2. Mick, J., and J. Brick. Bit-Slice Microprocessor Design. New York: 
McGraw-Hill, 1980. 

3. Advanced Micro Devices. AMDASM Reference Manual. Sunnyvale, Calif.: 
AMD,1978. 

4. Egan, R. c., and J. W. Smith. "A General Assembler for Horizontal Mi
crocode." Proceedings of Southeastern Regional Conference of ACM. New 
York: ACM, 1983. 

5. Rivest, R. L., A. Shimar, and L. Adelman. "A Method for Obtaining 
Digital Signatures and Public-Key Cryptosystems," Communications of the 
ACM, 21 (1978), pp. 120-126. 

6. Morrison, M. A., and J. Brillhart. "A Method of Factoring and the Factori
zation of F7," Mathematics of Computation, 29 (1975), pp. 183-205. 

7. Kernighan, B. W. and P. J. Plauger. Software Tools. Reading, Mass.: 
Addison-Wesley, 1976. 

8. Hall, D. E., D. K. Scherrer, and J. S. Sventek. "A Virtual Operating 
System," Communications of the ACM, 23 (1980), pp. 495-502. 

9. Raymond, I. C. "LSIIVLSI Design Automation," Computer, 14 (1981), 
pp.89-101. 

10. Pomerance, C. B. "Analysis and Comparison of Some Integer Factoring 
Algorithms," Computational Methods in Number Theory. Amsterdam: 
North Holland 1983. 





New microprocessor-based computer architectures 

by OMRI SERLIN 
ITOM International Company 
Los Altos, California 

ABSTRACT 

The maturing 16/32 bit microprocessor technology is making possible a variety of 
multiprocessor architectures, which are either new, or have not been economically 
feasible heretofore. Such architectures are now being commercially applied to both 
extremes of the computing spectrum: in multi-user, transaction processing systems, 
as well as in personal office and engineering workstations. This paper outlines the 
key architectural features of several notable microprocessor-based, multiprocessor 
designs. 

123 





INTRODUCTION 

In addition to software standardization, two other unexpected 
developments are arising out of the maturing microproces
sor technology. On the one hand, the proliferation of 
microprocessor-based, desk-top computers is casting doubt 
on the validity of the notion that the computer is an expensive 
resource which must be shared and centrally-controlled. The 
technical capabilities and price/performance of personal, 
desk-top workstations, coupled with advances in local area 
networks, lend plausibility to future scenarios in which the 
role of central computers (including today's superminis) will 
no longer be to supply computing power, but will be limited 
to the control of shared data bases. 

On the other hand, the same powerful, low-cost, off-the
shelf microprocessors are making possible a variety of new, 
multiprocessor architectures, which are especially suitable for 
handling on-line transaction processing and other multi-user 
missions. Because of the sensitivity of the data they control, 
and because many employees and/or customers will be heavily 
dependent on their availability, these systems often offer 
fault-tolerant (FT) features. 

Microprocessor-based architectures are thus destined to 
playa significant role at both ends of the computing environs: 
on the user's desk, and at the "central" facility, where the 
latter can range from a departmental file server to the central 
corporate data depository. 

This paper examines some of the new microprocessor-based 
architectures now becoming commercially available for ser
vice at these extremes of the spectrum. 

FAULT-TOLERANT SYSTEMS 

Perhaps the most interesting microprocessor-based architec
tures are evolving in the field of fault-tolerant (FT) systems. 
The goal of a fault-tolerant computer system is to protect the 
applications processes and the data base from being adversely 
impacted by hardware faults. The system's ability to do this is 
measured by its depth, which is the number of faults of a 
particular type that can be tolerated concurrently (typically 
just one), and coverage, which is the range of fault types with 
which the system is equipped to deal. 

Demand for FT systems, originally limited to such fields as 
process control and telephone switching, is now driven mainly 
by the exploding popularity of on-line transaction processing 
(OLTP) applications, of which the airline reservations sys
tems were early harbingers in the mid-1960s. Tandem Com
puters (Cupertino, CA) has been the premier supplier of FT 
systems for OLTP applications since it shipped its first system 
in 1976. 

New Microprocessor-Based Computer Architectures 125 

It is of value to review the key features of the Tandem 
system (Figure 1) to provide a perspective on the newer archi
tectures. Each Tandem system is a network of up to 16 
minicomputer-class processors, implemented in ad-hoc TTL 
logic. Inter-processor communications is carried by a du
plexed, 16-bit-parallel, 6.7-MHz bus system. All peripheral 
controllers are dual ported, so each is accessible from two 
processors. Disk drives are accessible from two controllers. 
Disk mirroring can be invoked, under which the operating 
system automatically maintains identical copies of the data 
base on two separate disk drives. 

The message based operating system, a copy of which re
sides in each processor, isolates the user processes from con
figuration details. A user process needing disk service, for 
example, addresses a "message" to the disk server process; 
the operating. system determines the location of the requested 
resource, and routes the message accordingly. Thus the user 
process need not know which two processors are connected to 
the disk in question, or which of the two currently runs the 
"primary" disk server process. 

Fault-recovery in the Tandem system is achieved by main
taining, for each process, a semi-active backup copy in an-

Figure I-Tandem's NonStop system architecture 



126 National Computer Conference, 1984 

other processor. The primary process keeps its backup in
formed through a series of checkpoints, each of which defines 
the state of the process at some strategic point in the computa
tion. Should the processor running the primary become dis
abled, (detected by the absence of the I'M ALIVE message it 
is expected to broadcast every second), the backup resumes 
from the last good checkpoint. Applications programmers 
originally had to explicitly implant checkpoint calls in their 
processes; new software elements have now largely isolated 
the end-user from the checkpointing details. 

The duality in the Tandem architecture eliminates single
points-of-failure, while the message-based software architec
ture facilitates on-line repair, graceful (modular) growth, and 
geographically-dispersed networking. 

"Pair and Spare" and Related Strategies 

Stratus Computer (Natick, MA) is a 1980 start-up that 
became public in 1983. Stratus addresses the same OLTP 
markets as Tandem, but offers a drastically different, 
microprocessor-based Ff architecture. 

The key architectural concept in the Stratus system, infor
mally known as the "pair and spare" philosophy, involves 
quadruplication of all major internal functions. First, each 
internal subsystem has a duplicate counterpart, its "spare." 
Both such subsystems are self-checking; each consists of a 
"pair" of identical functions which are given identical inputs, 
and whose outputs are compared on each clock pulse. A 
mismatch in the outputs of its internal halves creates an error 
signal in the given subsystem. 

In normal operation, a subsystem and its spare run in tight 
lockstep; both get identical inputs from the duplexed system 
bus and produce identical outputs to the bus. Once a sub
system discovers an internal mismatch through the "self
checking" comparison process, it immediately "pulls out," 
letting the spare subsystem carry on with the task at hand, 
without missing a beat. 

Until the faulty subsystem is detected and repaired, the 
system will operate at a reduced Ff depth. To assure that 
failed subsystems are promptly replaced, Stratus equips its 
systems with dialers that automatically report such failures to 
a service center. 

When a repaired subsystem is returned to service, an inter
rupt is generated to the CPU (the spare CPU if the repaired 
subsystem is the other CPU). The CPU then undertakes to 
"re-educate" the fresh subsystem and bring it into syn
chronism with its functioning spare. For example, a new 
memory board is brought to mirror-image condition by copy
ing into it the contents of the functioning memory. This pro
cess may use up to a few seconds. 

Although self-checking is employed in each subsystem, the 
pair-and-spare strategy is limited to those subsystems that can 
be tightly synchronized, e.g., the CPU and memory. The disk 
controllers are self-checking through duplicate read and write 
sections (Figure 2). Signals are not allowed on the system bus 
(on read) or onto the disk (on write) unless both parts of the 
relevant section agree. Conventional disk mirroring is imple
mented by the operating system. Similarly, the communica-

SIr_t_BUS ~BUS A 

r-----~----------------~ ~----------~ r-BUSB 

Disk-control 
logic 

Unequal causes 
red light and 

interrupt to VOS 

Disk·contrc! 
logic 

Figure 2-A stratus self-checking disk controller 

I 

tions controllers are self-checking but are not in lockstep; 
instead, each normally handles half the load, but both have 
access to all terminals. Should one controller fail, the other 
picks up the entire load. 

The modularization into self-checking subsystems is at the 
printed circuit board level. Each of these large (16" x 20") 
boards contains a self-checking implementation of one of the 
following functions: CPU; memory control; I-MB memory; 
disk controller; tape controller; and communications control
ler. A fully-duplexed, basic Processing Module (PM) contains 
11 boards (the tape controller is not usually duplicated). 

This basic PM contains 18 microprocessors. Each CPU 
board carries 4 Motorola 68000 MPUs: two to implement a 
basic demand-paging CPU (a pecularity of the original 68000 
prevented this from being accomplished with one MPU), and 
two more to create the duplicate function for on-board self
checking. The disk, tape, and communications controllers are 
each based on a Zilog Z80A MPU; again duplicated for the 
self-checking implementation. 

While the "pair and spare" strategy is not new, the imple
mentation of the required function quadruplication could not 



New Microprocessor-Based Computer Architectures 127 

be achieved economically before the advent of low-cost, off
the-shelf microprocessors. A fully-duplexed Stratus system is 
comparable in price to non-Ff superminis, and is well below 
a similarly configured Tandem system. 

Each of Intel Corp. 's 432 microprocessor chip family mem
bers contains Functional Redundancy Checking (FRC), a fea
ture which facilitates the construction of pair-and-spare sys
tems. With FRC, the comparison circuits needed to perform 
self-checking in a subsystem are built into the chips. Two chips 
can be configured in a self-checking pair by merely feeding 
them identical inputs, and connecting all corresponding out
put pins together. An external signal determines which chip in 
a self-checking pair is the "checker" by enabling the com
parison circuits on that chip. 

A related architecture, dubbed "n-modular-redundancy," 
replicates each function an odd number of times. Special vot
ing circuits compare the outputs and "vote out" wrong results. 
Thus in a triple-modular-redundant system, the two functions 
that agree will suppress the deviant result produced by a pre
sumably malfunctioning third. 

August Systems (Tigard, OR) is building Ff systems based 
on a variation of this principle, for service in industrial auto
mation and process control applications. In the August sys
tem, the three Intel8086-based processors perform the voting 
in software. This is possible because of the repetitive nature of 
the computation involved in these applications. Voting occurs 
just prior to launching the next iteration of the control algo
rithm. (This control algorithm is usually implemented in 
PROMs rather than RAMs). Through a set of read-only links, 
the processors can read, but never write each other's memory; 
thus they can read the values to be voted on, but erroneous 
results are isolated within the malfunctioning processor. 
Again, the availability of off-the-shelf microprocessors has 
made the high degree of duplication involved in such schemes 
economically feasible. 

The "pair-and-spare" scheme is in one sense more robust 
than the backup/checkpointing strategy, since a single fault 
cannot "crash" a function, but merely results in the temporary 
loss of Ff depth. This in turn means that the system need not 
employ backup processes, thereby dispensing with the check
pointing traffic and related programming complexity. Also 
unnecessary are the I'M ALIVE broadcasts. All applications 
software, and most system software, can treat the system as a 
conventional computer. 

The principal disadvantage of the "pair-and-spare" and n
modular-redundant strategies is that system growth can only 
be achieved in large steps, if at all. In the Stratus system, for 
example, processing capacity is increased by interconnecting 
additional Processing Modules, each accompanied by its own 
memory, controllers, and peripherals, over an 11.2-Mbitlsec 
ring-type local area network. Each PM is essentially an inde
pendent system; load sharing, if any, is achieved by explicit 
user programming. 

Tightly-coupled, "Pool" Systems 

Synapse Computer (Milpitas, CA), a well-funded 1980 
start-up, has developed a load-sharing, tightly-coupled multi
processor architecture that is more flexible in its ability to 

accommodate growth. Synapse, too, focuses on the OLTP 
field. 

The strategic concept in the Synapse N + 1 system is to treat 
the multiple processors as a pool, from which the system 
draws idle resources to service the next pending transaction. 
By configuring just one more than the N processors needed to 
service a given load, the system attains essentially the same 
resiliency as a 2N system, where each processor is backed by 
another. 

The key architectural element is a shared memory system, 
which holds the only copy of the operating system, and is 
accessible to up to 28 processors via a duplexed, 8-MHz, 
32-bit-parallel bus system (Figure 3). The processors, all of 
which are based on the Motorola 68000 MPU, are of two 
types: general-purpose processors (GPPs), and I/O processors 
(lOPs). Dual ported controllers for disk/tape and communica
tions allow access from two lOPs to each peripheral. Thus the 
"pool" concept does not strictly apply beyond the applications 
processors; the lOPs and disk controllers use the 2N strategy. 
Disk mirroring may be optionally invoked to protect against 
disk drive failures. 

In normal operation, the GPPs and lOP schedule work for 
each other by making dispatching requests against queues in 
shared memory. When idle, the processors look up these 
queues for work to do. An elegant "memory data ownership" 
scheme is used to prevent two processors from assigning them
selves to the same task. lOPs have 128 KB of local storage, 
while the GPPs have 16 KB of high-speed cache to minimize 
memory bus loading and permit operation at an optimum 
speed. 

The cache employs a non-write-through policy, so requests 
for memory "owned" by a given cache are satisfied by inter
processor communications. The 16-MB address space of the 
68000 is divided into domains of 1 MB code and 1 MB data 

Figure 3-The Synapse system architecture 



128 National Computer Conference, 1984 

each. This was done in order to facilitate rapid context switch: 
a process domain calling on a system service, for example, is 
switched in about 100 microseconds by merely switching the 
address space. Since the system requires small program mod
ules in any case (see below), this limitation on the address 
space size was deemed acceptable. 

Process and processor failures can be easily handled by 
merely reassigning the incomplete tasks to the "work to do" 
queues. A semi-transparent checkpointing system is main
tained. The users need not implant explicit checkpoint calls; 
however, they must build their applications from small mod
ules, called "Program Units," according to specific design 
rules. The system automatically invokes checkpoints between 
Program Units (this feature can be optionally disabled). 
Crashed processes are restarted in a functioning processor 
from the last good checkpoint. Checkpoints are saved on disk. 

The related data base system, which is integrated with the 
operating system rather than imposed on it at a higher level, 
implements a COMMIT strategy that assures the effects of 
incomplete transactions can be completely removed. This is 
achieved by the "write-ahead log" technique. 

A ROM-based bootstrap program allows a freshly-installed 
processor to load the needed code into its buffer (lOP case), 
or begin execution at the right point (GPP case). 

A memory failure is the most severe problem that can occur 
in the Synapse system, since such a failure can wipe out the 
work queues, data base buffer pool, and pieces of the oper
ating system. Rather than maintain a duplicate, mirror-image 
memory system, the Synapse system deals with this situation 
by automatically rebooting the system. The memory control
ler detecting this failure raises an interrupt signal that tells all 
processors to reset. Then the mass-storage controller in the 
first I/O slot attempts to reboot the operating system into 
shared memory, bypassing the bad module. Should it fail to 
do so within a given time interval, the second mass-storage 
controllers will attempt the boot. A data base recovery pro
cess then uses the mirrored log file to undo all uncommitted 
transactions, and implement pending committed transactions. 
End users are guaranteed to sustain no more than the loss of 
the screen they were manipulating at the time of the crash 
since such screens are not yet checkpointed. 

Each system component (CPU, Memory Control, 1-MB 
memory, lOPs and controllers) occupies one 15" x 17" board. 
There are 64 slots in the cabinet; however, not all are inter
changeable. A triple-redundant, majority-voting power sys
tem protects against the loss of a power supply. 

Tightly-coupled multiprocessor "pool" systems are not en
tirely new. In the mid-1960s, using mainframe technology, 
IBM employed elements of the idea in the 9020 system, a 
three-processor arrangement used in air traffic control cen
ters. A few years ago, BTl (Mt. View, CA) implemented such 
a system in minicomputer technology. Elxsi (San Jose, CA) 
recently began shipping a high-performance, ECL-based, 
mUltiprocessor "pool" system. 

The availability of off-the-shelf 16/32 bit microprocessors 
has made this architecture considerably more appealing in 
terms of both economics and impiementation time. To assure 
some degree of independence in selecting the underlying mi
croprocessor, Synapse coded most of its operating system in 
PASCAL. 

The Auragen Synchronized Cluster Scheme 

Auragen (Ft. Lee, NJ) is another 1980 start-up that is tar
geting the OLTP market with a mUltiprocessor, 68000-based 
FT system. Conceptually, the Auragen system is rather simi
lar to Tandem's, but indudes severai interesting improve
ments in hardware and software capabilities, and in price/ 
performance. 

The system consists of up to 32 clusters, interconnected 
over a duplexed, 32-bit-parallel, 4-MHz bus system. Each 
cluster is a self-contained mUltiprocessor system using the 
VERSAbus to interconnect a number of specialized proces
sors with a shared-memory subsystem of up to 8 MB. The 
68000-based Executive Processor interfaces to the duplexed 
system bus and has 128 KB of private memory. It executes the 
local operating system, which is based on UNIX System III. 
The system is modified and augmented to provide inter
process communications in the multi-cluster environment, 
synchronization functions (see below), and crash recovery. 
The Exec Processor generally does not need access to the 
cluster's shared memory. 

The Work Processor consists of two 68010 MPUs, each of 
which can work on an independent process, while interleaving 
their memory requests to obtain the maximum benefit from 
the shared-memory bandwidth. The Work Processor executes 
user tasks, as well as such "global" system tasks as the page 
server, file server, TTY (terminal) server, and "root server" 
or process scheduler. 

Other processors which may be part of the cluster include 
the 68000-based Communications Processor with its own 
128-KB memory, and a disk/tape controller implemented with 
2901 bit slices. The disks and communications interfaces are 
dual ported, to be accessible to two controllers residing in two 
separate clusters. Although the AUROS operating system 
presents the user with UNIX-compatible interfaces, internally 
it is implemented as a message-based system. All inter-pro
cess communications is via system-controlled messages. 

Fault-tolerance in the Auragen system is based on synchro
nization. This is a variation of the checkpointing scheme, 
which is user-transparent and more efficient. Each primary 
process has an inactive backup in another cluster. The backup 
has access to all the input messages sent to its primary, and 
keeps track of the number of messages sent by its primary. At 
either periodic intervals, or when the number of input mes
sages read by the primary exceeds an installation-defined 
limit, the backup is automatically synchronized with its prima
ry; at that point, input messages and output counts may be 
discarded. 

Should the primary process fail when detected by the usual 
local mechanisms, plus I'M ALIVE broadcasts, the backup 
restarts from the state defined in the last synchronization. It 
reprocesses the input messages accumulated since the last 
synchronization, taking care to suppress output messages al
ready issued by the primary (indicated by the output message 
count). By keeping the backup only approximately in step 
with the primary, the scheme conserves system resources, at 
the expense oi some additional processing steps that are in
voked only when recovering from a (presumably rare) fault. 

More details on the systems described above may be found 
in References 7-17. 



APOLLO DOMAIN: DISTRIBUTED 
VIRTUAL MEMORY 

A testimony to the attraction of the "one man, one computer" 
concept is the dazzling success of Apollo (Chelmsford, MA), 
a 1980 start-up that was well on its way to becoming a $100-
million company in 1983. Apollo was one of the first to recog
nize the potential market for personal engineering worksta
tions, made possible by the technological advances in micro
processors, Winchester disks, and local networking. 

The Apollo product philosophy is to combine the best fea
tures of time-sharing systems (resource sharing) with those of 
dedicated minicomputers (interactiveness and quick re
sponse). To achieve these goals, the Apollo DOMAIN system 
consists of locally-networked, 68000-based, personal worksta
tions, running under control of a multi-tasking operating sys
tem, driving a multi-window, high-resolution graphics display. 

The powerful local processing capabilities of these worksta
tions are augmented by a resource sharing scheme, promoted 
by a network-wide object name space. Programs, data files, 
and some system structures are accessible as addressable ob
jects across the entire network. Users may identify desired 
objects with a UNIX-like path name, which is translated by 
the system into a 96-bit object address. The object address 
consists of a 64-bit unique object identification (UID) and a 
32-bit, byte-within-object address. UID uniqueness is assured 
by encoding into it the serial number of the workstation that 
created it, and the time of its creation. 

Within the workstation, processes have a 24-bit virtual ad
dress space, defined by the hardware addressing capability of 
the 68000. Objects requested by user commands are mapped 
into the 16-MB virtual process address space in segments. 
Thus the user process need not do explicit lIO. No data move
ment takes place until a page fault actually occurs. The 1-KB 
pages are retrieved as needed from either local storage, if any, 
or from a remote disk structure, across the network. 

The network is a coaxial ring, operating at a 12-Mbits/sec 
signaling rate. Access arbitration is implemented by a token
passing scheme: stations may transmit only after receiving a 
unique bit pattern, the token, from the station immediately 
upstream, and must regenerate this pattern at the end of the 
transmission and send it to the next downstream station. Bit 
stuffing is used to distinguish several flag characters, including 
the token, from random data. 

Several models of the Apollo workstations have evolved 
but the internal architecture is largely invariable across th~ 
line. It consists of a proprietary 32-bit bus connecting the 
68000-based CPU, two-level memory management unit, dis
play subsystem, disk subsystem, and network interface. In 
addition, a Multibus controller is available on some models to 
allow attachment of additional peripherals. The display s~b
system consists of a large, high-resolution display (typically 
1024 x 800) driven from a separate, dual-ported display 
memory. Special high-speed, bit-moving hardware facilitates 
scrolling and window moves. 

CONVERGENT TECHNOLOGIES' MEGAFRAME 

A 1979 start-up, Convergent Technologies (Santa Clara, CA) 
has been notably successful with its A WS and IWS lines of 
personal office workstations. These workstations, now both 

New Microprocessor-Based Computer Architectures 129 

based on the Intel 8086 MPU, are optionally configurable into 
a resource-sharing cluster. The proprietary operating system, 
CTOS, supports multi-tasking and real-time capabilities. 

In mid-1983, Convergent introduced the MegaFrame, a 
microprocessor-based multiprocessor system. Full fault
tolerance had been considered at the start of the project, but 
due to various constraints, the designers settled on less ambi
tious goals. The system was designed to accommodate modu
lar growth while shielding existing applications from its im
pact. In particular, one or more, Applications Processors, 
running a version of UNIX, are supported by several special
ized support (e.g., file and terminal) processors, whose num
ber can also be increased in the field. The support processors 
run specialized software based on CTOS. A 2.7-MHz, 
32-bit-parallel bus system interconnects all processors. 

The Applications Processors (APs) are based on Motorola 
68010, which improves on the original 68000 by allowing the 
processor to recover from, rather than crash on, page faults. 
A full two-level, demand-paging, 4-MB virtual memory sys
tem is supported. Up to 4 MB of real memory can be associ
ated with each AP, using a private bus. Up to 16 APs can be 
accommodated. 

The File Processor (FP) uses the Intel 80186 MPU, which is 
upward compatible from the 8086 employed in Convergent's 
previous products. The File Processor executes the UNIX file 
system portion, which has been removed from the kernel in 
the AP. In addition, the FP can execute more sophisticated 
file systems (e.g., ISAM) or even a relational DBMS. The FP 
directly controls up to three 50-MB disk drives. Up to five 
additional FPs may be present, each with its own set of up to 
three drives. One FP is designated as the "master": it is re
sponsible for system initialization, and for coordinating the 
other FPs. 

Other specialized processors include the 186-based Cluster 
Controller, which interfaces to a network of existing Con
vergent workstations and the new, 8088-based Personal Ter
minal (PT); the 186-based Terminal Controller, which allows 
"dumb terminals" to access the UNIX-running APs; and the 
Signetics 8X300-based SMD controller, supporting SMD-type 
disk drives. 

Processors communicate over the bus via a message-based 
communications software system, supported by "hardware 
mailboxes" and a "doorbell interrupt" that alerts a given pro
cessor to look into its mailbox for a message. A system-wide 
address space is defined by 4O-bit addresses. Each consists of 
an 8-bit "slot number," which specifies a processor, and a 
32-bit address, allowing a larger address space than is cur
rently supported by either the 186 or the 68000. 

The Master File Processor, in addition to its duties in ini
tializing the entire system and in coordinating the other FPs 
(e.g., by initiating parallel path name searches through the 
individual UNIX file trees on each FP), also maintains a mul
tiple "watchdog timer" system: every second it sets a value in 
a designated memory location of every processor in the sys
tem. Should any processor fail to clear that location, the MFP 
assumes that processor is crashed or stalled, and initiates diag
nostic and recovery procedures. Each processor occupies one 
large PCB, which also hosts 256-512 KB of local memory. Up 
to six 6-s10t "low boy" cabinets may be configured on the 
system bus. 



130 National Computer Conference, 1984 

SUMMARY 

The term "new computer architectures" tends to be associ
ated today with such long-range undertakings as Japan's AI
based "Fifth Generation" project, or Columbia University's 
"Non-Von" program, In contrast, the innovative multi-

processor architectures made possible by the maturing 16/32 
bit microprocessor technology, illustrated by the examples 
cited above, are currently available. Microprocessor-based 
designs are rapidly claiming large stakes not only in desk-top, 
personal workstations, but also in multi-user and transaction 
processing systems. 



How smart the computer: 
Status and future on building its brain 

by DAVID J. ELLIOTI 
Shipley Company 
Newton, Massachusetts 

ABSTRACT 

Silicon "intelligence" is explored from the viewpoint of integrated circuit manu
facturing technology. The capabilities of future computers are largely predicated on 
its brain function, or integrated-circuit-based intelligence. The major technologies 
that comprise integrated circuit fabrication are explored. The current status and 
likely future direction of each is presented. The major areas are integrated circuit 
design, silicon crystal manufacturing, wafer preparation, imaging, etching, doping, 
and deposition. 

Microelectronics technology, the science of microstructure formation, is ex
plored, and various imaging strategies necessary to extend the resolution limits of 
VLSI devices are summarized. The various device manufacturing technologies are 
presented on a time scale, showing current mature technologies (1983), emerging 
technology (1984-1987), and future technology (1987-1990). Finally, VLSI device 
functions are compared to human brain functions, with projections made to the year 
2000. 

131 





INTRODUCTION 

The intelligence we increasingly ascribe to computers is de
rived form the integrated circuit (IC) "brains," or chips re
siding in their cores. ICs are the source of the increasing 
power embodied in the disciplines of microelectronic device 
fabrication. The "suborders" of this technology are IC pattern 
design, silicon crystal manufacturing, wafer preparation, 
imaging, etching, doping, and deposition. 

In this paper, we will examine each of these areas, consid
ering the current and future state of technology and its relative 
ability to meet the demands of future IC device fabrication. 
The overall challenge in producing a VLSI chip is one of 
transferring a computer-generated series of patterns into a 
silicon or gallium arsenide crystal slice, along with a specified 
level of dopant to provide conductive paths for electron move
ment. This must be done at submicron resolution levels in 
volume production on semi-automated equipment and in 
super-clean environments. Last but not least, the process 
must produce economic chip yield. Figure 1 summarizes the 
decrease in IC geometries. 

1983 1986 

1. Die Size 150 mils 100-350 mils 

2. Cell Size 45pm2 11pm2 

3. Mask levels (total) 10 12 

4. Mask levels (critical) 3 5 

5. Line space size 2.5J,Lm 1.5Jlm 
6. Alignment tolerance 1.5pm 0.1pm 

7. Critical dimension 
tolerance 0.4pm 0.15pm 

B. Total dimensional 
tolerance 0.5pm .:!:.0.3pm 

9. Diffusion widths 5.0pm 1.5pm 

10. Metallization line 
widths 3.0pm 2.0pm 

11. Contact size 2.0pm O.8J.Lm 
12. Resolution 2.0pm O.8pm 

13. Metallization 
thickness 1.2J.Lm 1.0pm 

14. Oxide thicknesses 
(minimum) BOO angstroms 200 angstroms 

15. Junction depths 1.5pm 200 angstroms 

16. Etch selectivity 
ratio (Si) B:1 20:1 

Figure I-Integrated circuit feature size and registration control trends 

How Smart the Computer: Building Its Brain 133 

IC PATIERN DESIGN 

The design, layout, and data preparation for integrated circuit 
patterns have evolved from a laborious task done almost en
tirely by hand to a highly automated process with very little 
human intervention. Computers have invaded the IC design 
and layout process to a considerable extent, first as electronic 
drafting boards and recently as highly interactive systems re
quiring only simplistic circuit stick drawings, or even concepts, 
in order to completely implement a set of finished VLSI 
masks. All computer-aided design (CAD) information is fed 
into a digitizer, which converts information into digital data 
for the photo or e-beam master reticle generator. 

Increased computer assistance in mask pattern design has 
resulted in almost fully automated processing. This is accom
plished by first selecting a type of pre-established or optimized 
software that approximates or ha~ built-in algorithms coin
ciding with the type of device being built. When overall design 
parameters for chip architecture are set, the designer's role is 
reduced to one of placing individual sections of the chip in 
different places within the chip, and even then the computer 
optimizes these decisions. The number of circuit elements per 
section must be specified, and again tested electronically (in 
the computer) for violation of design'rules. 

Highly automated chip design software is used for arrays, 
microprocessors, logic chips, and other device types with pre
dictable elements. Automatic placement and routing software 
routines are also used to reduce circuit layout time. The de
signer may place various elements within the chip area and the 
computer is used to place the circuit pathways and find inter
connections. Figure 2 shows the stick-diagram input and 
coIP-puter-generated pattern output, automatically compen-

. sating for preprogrammed design rules. 
A major benefit of computer 'design, layout routing, and 

interconnection is freeing the creative talents of a designer 
from monotonous and time consuming essential mechanical 
tasks. Advanced software, such as silicon compilers, uses 
high-level abstract language that will take a very simple sketch 
or statement from a designer and automatically determine the 
macro- and microelements of the chip; creating first a dia
gram, then an actual pattern. Placement and routing functions 
are performed by a silicon assembler. These approaches min
imize human intervention into areas where time consumption 
would be high, thereby freeing designers to think about more 
important aspects of design. 

In the future, even higher levels of abstraction will be used 
for design and artwork production. Symbolic logic, device 
modeling by the computer, and silicon compilers are examples 
of the reduced role of the human in these functions. A print
out of a computerized three-dimensional model of a device is 



134 National Computer Conference, 1984 

10 

5 

o ' 
o " 

-x - ... ~: .... ~ 
I * ~:.-.-T---~ -+---""'"'t""'t.' 
I 

10 20 

_ ... _ ..... - r I I 

A--W~:ff~ l~ 
':'ri 

... 

-- j" ~ ~ ~'-'. q .. - I~, : L1 ~ 

~ 

-.1 = 1t:8!~, r- r~ 

LJl 
t""'t ~ -I~ .... -j 

-l~ I ~ ~ 
- -. J.-.-::_ ~ ,-r ----_1-, 

, 0 
_. -

:: 4--J : :r-' 1:'7 I ,oJ ' 0 00 

: .t;: ,0 

00 

....... I~ , ' 
l""':' ' 'f- -, ' . J ' : :-, -- .. I ~c: I' . .. , 

Jji~ ~ 
, ' 

J1 
' ' , , 
, ' 

... - _&..- . -

:~ -: R-f- ' ' - ..:.. - -. . ' , ' 

-Vi ..... -- ' ' ...:.. . ' ,'-
g ::: : : -- --I , ' ~ 

] h ~ •. - _1 : :. l.! - . 
tl . - r-

...: -p 0..::.. ~ - :[=, - - -
:I r--

... ..I ~_. __ • 

..:....; 

r ~ r -T-:-l. - . 
~ -' I - ..L ______ Ij- , , 

L~ . , 

~ J 

Figure 2-Stick·diagram input and computer output 

shown in Figure 3. More complex designs are produced faster 
and at much lower cost. 

SILICON CRYSTAL MANUFACTURING 

A large part of the success of future VLSI devices rests on the 
quality of silicon and other crystals from which wafers are 
made. In order to meet current demands for high-quality 
silicon ingots, computer-controlled manufacturing is essen
tial. The challenge of supplying a nearly perfect, defect·free 
crystal is complicated by the rapid increase in wafer diameter, 
as shown in Figure 4. 

In the past two years, four-inch wafers have become the 
dominant production size, yet five- and six-inch wafers are 
already used in limited quantities, and plans for eight-inch 
crystals are being made. The primary problem in crystal
pulling technology is the removal of internal impurities and 
defects. Increasing crystal diameter by 50% per year magni-

Figure 3-Example of computerized device modeling 

fies this problem many times. For example, carbon and oxy· 
gen impurities occur in silicon and act as unwanted dopants by 
modifying the charge-carrying properties of the crystal. While 
ambient helium or argon is used as the gas during crystal 
growth, these impurities enter in ppm levels as contaminants 
from surrounding equipment and gases. The carbon content 
affects the electrical properties, and oxygen may weaken the 
structure of the crystal, as well as forming complexes with 
carbon to alter electrical properties. Heat treatments, such as 
annealing, are used to keep defects and impurities at a min
imum level. Defects in the as-grown ingot are called intrinsic, 
and include stacking faults, point defects, oxygen, carbon and 
other impurities, crystal dislocations, interstitial vacancy clus· 
ters, and swirls. 

Figure 4-Crystal diameter trends 



Computer control of all major crystal growth parameters is 
essential to producing dislocation-free crystals. These param
eters include melt temperature, crystal and crucible rotation 
speed, lift speed, heater temperature, and other variables. 
The most promising location for producing perfect crystals is 
a space lab, where a zero-gravity environment is available. 
The Sony development of a high-magnetic field (MCA
magnetic field CA) greatly improved crystal quality by sup
pressing thermal convection in the melt, and thereby reducing 
oxygen content and growth defects. Figure 5 compares CZ 
with MCZ crystal growth environments. The MCZ process 
also reduces distortion and warpage in wafers sliced from 
MCZ ingots. 

In the future, new crystal material, including gallium arse
nide, which is now used for special high-speed IC applica
tions, will be put into production for higher speed devices. 
Future crystal production in a zero-gravity space lab will most 
likely provide the ultimate in crystal quality. 

WAFER PREPARATION 

The physical dimensions of silicon wafers, and specifically 
flatness and surface uniformity, have become critical in ad
vanced IC fabrication processes. Many additional steps are 
now taken to classify these important wafer parameters. For 
example, wafers are identified by the ingot from which they 
came, since nonuniformities in wafer batches are often trace
able to a crystal growth problem. 

Surface flatness across the water diameter is critical because 
it acts essentially as an optical plane. After resist is coated 
onto the wafer surface, it becomes an optical medium for 
microstructure formation. Energy of various wavelengths will 
be reflected off the water surface, and thus the degree of 
surface "polish," a chemical process, is important. If either 
the overall flatness or individual area nonuniformity vary, 
microimaging variations will occur. 

Wafer preparation involves making one side of the silicon 
wafer surface as optically perfect as possible. The availability 
of software-driven, iaser-based analytical equipment for map
ping the contour of the wafer surface allows for careful screen
ing of all substrates. Figure 6 shows a typical wafer surface 
"map." 

Silicon Melt 

Pulling Direction 

I CZ :vI.thod I 

Silica 
Crucible 

N 

Magnetic FieJd 

I MCZMethod) 

Figure 5----CZ and MCZ crystal types 

s 

How Smart the Computer: Building Its Brain 135 

Figure ~Wafer surface map 

An ultra-flat wafer that enters the wafer fabrication process 
must be checked· continually because the wafer process steps 
involve high-temperature operations. Thermal stress induced 
in ion implantation or etching causes warpage, and future 
processes will strive for temperature reduction at all steps. 
Since wafers are continually reimaged during fabrication, sur
faces should be defect free (zero particulates above 0.5-f.Lm 
diameter) and flat to one-half wave. 

IMAGING 

The technology that drives IC fabrication is microlithography, 
the process of forming microstructures on semiconductor sur
faces. When resist-patterning technology proves its capability 
for a record level of resolution, pressure is exerted on etching 
and other fabrication processes to at least equal the new level 
of resolution. Current microimaging for IC production is ac
complished primarily with a mix (die-by-die) exposure and 
scanning-slit imaging. These methods are being used for 246K 
RAM production, but may not be capable of the sub micron 
imaging needed for one-megabit and denser devices. Current 
resolution levels (minimum geometries) are -1.5 f.Lm, and 
minimum geometries needed for devices by 1985 or 1986 will 
be 0.9-0.7 f.Lm. Current printing technologies can image the 
level of resolution, but not with sufficient control to deliver 
acceptable device yield. 

On the immediate horizon are several patterning tech
nologies that all promise to deliver the submicron geometries 
needed to produce one-megabit and denser memories in pro
duction. These technologies are either extensions or optical 
methods now in use, or fall into the category of "beam" 

. techniques. Extending current technology will certainly place 
a strain on optical stepping capabilities, perhaps requiring 



136 National Computer Conference, 1984 

multilevel resist processes. At best, optical methods will be 
working near their practical resolution limit to pattern lines 
and spaces that are 0.5 j.Lm wide. 

Optical Lithography (Nonbeam) 

Multilevel structures are one method used to obtain higher 
resolution, and are produced by using a three-level structure 
consisting of a thick (2 j.Lm) planarizing layer, a thin (1000 A) 
middle oxide (deposited) layer, and a thin (7000 A) "top" 
coating of positive resist. The top layer is patterned with high 
resolution geometries, and the oxide etched, followed by 
reactive-ion etching through the planarizing layer with the 
etched oxide as the mask. Many variations on this central 
multilevel theme are possible, but conceptually and prac
tically are very much alike in both degree of process difficulty 
and resolution potential (Figure 7). 

Multilevel lithography has advantages in that it uses existing 
imaging equipment, provides resolution possible down to 0.5 
j.Lm, and retains existing process experience (same learning 
curve). The disadvantages include the addition of extra pro
cessing steps, increases in potential defects due to handling, 
and the requirement of a higher level of process control. 

Optical lithography with nonbeam exposure sources has as 
its limit the exposing wavelength. This translates into a resolu
tion of between 0.21 j.Lm and 0.44 fJ-m. Current technology 
limits the practical resolution of optical (nonbeam) imaging at 
0.5-0.7 j.Lm. This figure will undoubtedly be reduced with 
time, as shorter wavelength steppers and shorter wavelength
sensitive resists become available. 

Optical Beam Lithography 

Laser beams are the logical extension of optical lithography 
for advanced IC fabrication. Ultraviolet laser beams from a 
308-nanometer wavelength eximer laser have carved 0.5-j.Lm 

Figure 7-SEM of Multilevel resist image 

images in resist as thick as 1.0 j.Lm. The super-bright (10 W) 
emission of the UV eximer laser will permit exposure 
throughput above that of conventional UV mask aligners. The 
chlorine and fluorine gases associated with these tools, and 
their size, are a concern, but the results shown in Figure 8 are 
very impressive. Computer-directed laser imaging will cer
tainly become a key lithography technique. 

Lasers also are used in holographic lithography, where ho
lograms of the various masks are made. In resist exposure, a 
laser "reads out" the hologram, projecting the mask images 
onto the wafer. The projected image is spatially filtered to 
remove defects. 

Optical beam lithography can be summarized as follows: 

Pros 
-Extends resolution limit to 

sub-half-micron range 
-Potential cost is below 

e-beam and X-ray for 
equivalent throughput 

-Technology remains "optical" 

Cons 
-Requires new process 

technology 
-Production equipment not 

available 

Figure ~Laser-generated resist image 

Electron Beam Lithography 

A complete modulated beam of electrons is the primary 
method for electron lithography. The flexibility of pattern 
placement makes electron beams ideal for custom mask and 
"small-run" prototype devices. The principle of operation is 
shown in Figure 9. 

Electron beam lithography is limited by slow exposure 
throughput, but provides excellent 0.5-j.Lm resolutions as indi
cated in the SEM shown below. Advancements include prox
imity shadow printing for improved resolution and high
voltage systems to reduce electron scatter effects. The 
extremely good registration capability of the e-beam method 
provides a means to make VLSI masks and reticles for other 
lithography approaches. 

E-beam lithography seems to be finding a niche in custom 
chips (which may grow to constitute a large percent of the 
market), mask making, and critical mask levels in wafers. Pros 
and cons are as follows: 



Pros 
-Rapid turnaround on mask 

sets for protoevaluations 
-High level of alignment 

tolerance 
-Excellent chip customization 

tool 

Cons 
-Relatively small wafer 

exposure throughput 
-Electron scattering in resist 

detracts from resolution 
-Relatively high capital 

equipment costs as a 
beam-writing technique 

Figure 9-E-bearn exposure principle and resulting resist image 

X-ray Lithography 

X-rays promise the highest resolution and throughput prod
uct of all existing lithography techniques. Wavelengths are 
optimized around 7 A, and conventional X-ray sources to emit 

How Smart the Computer: Building Its Brain 137 

this energy are well understood. The operating principle is 
shown in Figure 10. 

Sharp point sources are needed to cast a sharp shadow 
through the mask and into the resist. Plasma gas discharge 
X-ray sources are more powerful than the 1-2 W electron
beam-generated X-ray sources, but are unreliable. Plasmas 
are equivalent to electron-gun-generated X-rays as point 
sources, but both lack the power needed for good production 
rates. 

Electron storage rings promise power, highly collimated 
X-rays and tunable wavelengths, but cost about $5 million. 
Even though X-ray storage rings offer several exposure sta
tions, companies are still reluctant to plunge into a relatively 
new technology with such high initial investment. Lithog
raphers are left to choose between low-power X-ray sources 
and a multilevel resist with only a thin top layer to expose, or 
a more powerful source and a simpler one-level resist process. 
An example of the high resolution attainable with X-rays is 
shown here along with a summary of this technology. 

Pros 
-Extremely high resolution 
-Not dust sensitive 
-Blanket exposure favors high 

throughput 

Cons 
-High-quality masks difficult to 

produce 
-Sources not powerful enough 

for good throughput 
-Alignment for sub-half-micron 

geometries critical 

Figure 10-X-ray exposure principle and resist image 

Ion Beam Exposure 

Collimated beams of protons (hydrogen ions) are the basis 
for ion beam imaging, and resists (positive optical) have great
er sensitivity to ions than they do to electrons, X-rays, or UV 
light. Production throughput is further enhanced by the be
havior of ions, since protons do not have high-energy elec
trons that scatter into unwanted areas. All ion energy resides 
in the desired area during resist exposure. The mechanism 
used for ion beam lithography is shown in Figure II. 

Ion scatter in a mask material is a problem, and good masks 
are difficult to produce, especially when made from O.4-lJ.m 
thick, single-crystal silicon. Ion beam exposure does have very 



138 National Computer Conference, 1984 

Ion 
beam 
(protons) Aperture 

plate 

Figure ll-Ion beam exposure principle and resist image 

high resolution potential, as indicated by the ion-imaged 
photo below. Throughput is currently pegged at 40 wafers per 
hour. The advantages of this lithography include the sub
micron (0.5-f.1m) resolution in single-level resist, that good 
resists are available, and the high exposure sensitivity of re
sists. The disadvantages include masks that are hard to pro
duce, alignment that is semi-critical, and that commercial sys
tems are not available. 

In summary, both optical and nonoptical imaging technol
ogies are available for submicron imaging in the near future. 
The higher resolution devices will require beam-writing stra
tegies. Which one is chosen depends on equipment through
put, cost, and resolution, the winner being most efficient in all 
areas. The likely result of these various emerging techniques 
will be the integration of several imaging strategies for a single 
chip. 

The most likely scenario for wafer imaging in the future will 
be a hybrid of several methods. Assuming 10-12 masking 
steps used in a given device, the highest resolution~entral 
imaging method will be used for the two or three most critical 
mask levels. In descending order of resolution, subsequent 
imaging methods will be used for various mask levels. A mix
ture of the methods shown below is likely (Figure 12). 

ETCHING 

The etching process in IC fabrication involves selective re
moval of several different types of films. Films typically 
etched include silicon dioxide, silicon nitride, polysilicon, alu
minum alloys, tungsten, and metal silicides. Etching is used to 
open windows for dopant ions, to form areas for ohmic con
tract~ to create the interconnection patterns, or to form bond
ing pads. 

Etching technology has moved rapidly from wet acid im
mersion processes to dry reactive ion removal. The driving 

Z(I") 1 
Qz 
§~ ou 
ff3~ 
~~1.0 
2~ u:::! 
=>co 
a~ 
0« 
g: UO.5 

0.4 
0.3 
0.2 
0.1 

Exposure Throughput (Wafers/Hour) 

Figure 12-IC lithography strategy vs. image resolution and wafer 
throughput 

force in this change is the need to conserve silicon area by 
eliminating lateral etching. Both wet and dry plasma etches 
act isotropically (etch equally in all directions) in films being 
etched. Reactive-ion etch technology is anisotropic, etching 
only in the vertical plane, keeping etched structures narrow 
and deep, as shown in Figure 13. 

The advantages of reactive-ion etching (RIE) include the 
elimination of toxic chemicals posing waste disposal and 
safety problems. A typical RIE etcher schematic is shown in 
Figure 14. 

The challenge of future etch technology is to provide very 
precise control of the etch process as films approach 200-300 
thickness and less. Etching of a given film must be complete 
without attacking the underlying layer or "chewing up" or 
pinholing the mask, above the etched layer. The removal rate 
of etched films vs. films not to be etched is called the selec
tivity ratio. This ratio is kept high (10:1 to 20:1) by carefully 
blending active e~ch specie gasses, optimizing power levels in 

Figure 13--Reactive-ion etched structure 



RADIO
FREQUENCY 
GENERATOR 

TO PUMP 
SYSTEM 

Figure 14-Reactive-ion etched schematic 

BELL JAR 

HEXODE 

THROTILE 
VALVE 

the etcher, and treating etch masks-such as deep-UV curing 
of resist etch masks. laser end-point detection has been added 
to the etch process to prevent overetching. 

DOPING 

Doping is the IC fabrication step that differentiates the silicon 
wafer's electrical properties, giving rise to the conductive elec
tron pathways that form the actual circuit. Doping is placing 
"impurity" ions of phosphorus, boron, or arsenic within the 
silicon crystal lattice. The higher the level of impurity ions, the 
greater the conductivity of the silicon. Areas of the wafer left 
undoped become the insulating areas of the circuit. The steps 
prior to doping are imaging and etching of a mask, which is 
usually a silicon dioxide film, to open up areas directly to the 
base silicon. 

Traditional doping processes, where pre deposition of the 
dopant is followed by thermal "drive-in" or diffusion, are 
quickly being replaced by ion implantation. The reasons for 
this change are the same as for the move into anisotrophic dry 
etching from isotropic wet etching. The lateral diffusion of 
ions in standard doping processes results in a consumption of 
silicon area that is no longer tolerable with current high
density VLSI chips. Ion implantation provides a more aniso
tropic dopant ion profile, keeping the concentration shallow 
and deep. The damage to the silicon crystal caused by smash
ing a highly accelerated ion into the silicon is removed by laser 
annealing, also a relatively low-temperature operation. Ion 
implantation is still a blanket process where the wafer is 
scanned by a stream of ions, and a resist or oxide mask delin
eates the dopant profile. 

The future for doping processes in IC fabrication may be 
direct doping, where the ion implant mask steps are com
pletely eliminated. This would greatly simplify the process by 
removing two steps (imaging and etching), and probably re
sult in a yield increase. A new tool for maskless ion doping is 
depicted in Figure 15. Announced in 1983, the submicron 
probe, which uses a liquid metal source, represents a major 
advancement in chip fabrication capability. The computer 

How Smart the Computer: Building Its Brain 139 

Ion source 

Figure I5-Direct ion implant technique 

programmed ion probe permits precise delivery of ions to 
coordinate with accuracies of less than 0.1 /-Lm. A high degree 
of control is made possible by using digitally controlled ion 
optics and beam-monitoring electronics. 

DEPOSITION 

A primary technology in IC fabrication is the application of 
high-quality semiconductor films. Deposition of a wide range 
of materials is required, and many new metals silicides and 
refractory metals are now used along with conventional oxides 
(doped and undoped), polysilicon, silicon nitride, aluminum 
alloys, and even special polymeric films. Deposited layers 
must be extremely uniform, cover wafer topography well, and 
be relatively free of contaminants or defects that arise in the 
manufacturing process. 

Deposition technology has kept pace with the other pro
cesses in IC fabrication by supplying lower temperature envi
ronments, suitable reactant gases, and high film uniformity. 
Advances in chemical vapor deposition (CVD) have led to 
plasma-enhanced CVD (PECVD), a very promising technol
ogy for low-temperature deposition of a wide variety of mate
rials. DECVD also has a high deposition rate, but needs 
improvements yet in the areas of film stress and. particulate 
level. PECVD reactors need to be designed for high through
put as well. The two reactors shown in Figure 16, one single
plate and there other multiple-plate, illustrate approaches 
currently used. 

Film uniformity is more easily achieved in the larger but 
lower throughput parallel plate system, while the multiple
plate reactor may result in uneven film thickness at the edges 
of wafers. The factors that must be monitored to achieve good 
film properties include load size, process cycle time, gas 
depletion rates, deposition rate, system pressure and tem
perature, "radiation" energy flux to the substrate (determines 
stress); and system cleanliness. The need for lower tem
peratures in all aspects of IC fabrication makes PECVD at
tractive for future applications. 

A primary concern in the area of deposition is the materials 
used. The material used for interconnection patterns has tra
ditionally been aluminum alloyed with copper and silicon. 
Advanced deposition methods, including magnetron sputter
ing, have satisfied the physical requirements for thin, uniform 



140 National Computer Conference, 1984 

Graphite Electrode 

~ 
Pump 

I 

l Gage, 
Pressure 

Figure Ifr-Two types of PECVD reactors 

films. However, aluminum is subject to electromigration, has 
a low melting point, and interacts with silicon. Gate materials 
likewise suffer from limitations due to rapid advances in IC 
technology. Polycrystalline silicon has been the material of 
choice in MOS circuits, but suffers from high sheet resistance, 
which reduces circuit speed. At elevated temperatures, poly
silicon undergoes grain growth, a factor that interferes with 
fine-line imaging. 

The new replacements for aluminum alloys and polysilicon 
are refractory metals and their silicides. While electron beam 
evaporation, sputtering, and CVD can be used to apply these 
materials, PECVD is very desirable. Tungsten, molybdenum, 
and tungsten silicide films have been successfully applied with 
PECVD, as shown in Figure 17. 

Figure 17-Step coverage of tungsten 

Transition metal and metal silicide films represent the fu
ture direction for high-density and high-speed integrated cir
cuits. Smooth, pinhole-free films of new materials deposited 
in high-purity environments with low stress and good step 
coverage are moving from the laboratory to the production 
line to meet future chip specifications for many applications. 

IC FABRICATION PROCESS TRENDS 

A comparison of the current and projected technological level 
of key IC process parameters is shown in Figure 18. The areas 
cited represent critical areas of change needed to implement 
the high-density chips of the future. In general, all films using 
IC manufacturing will need to be thinner, and produced with 
more exact control. All key IC dimensions that regulate IC 
electrical behavior are being reduced, such as gate thickness 
and width. All dimensional tolerances are necessarily smaller, 
bringing the degree of control of some dimensions to ± 0.1 
!-Lm. 

The necessity for all of these changes will bring consid
erable pressure in equipment and material supplies alike. For 
example, reducing the thickness of an oxide layer from 800A 
to 200A affects several aspects of IC process technology, in
cluding deposition, imaging, etching, doping, and design. The 
incentive that drives all of these disciplines within IC fabri
cation technology is the production of chips with greater 
application capabilities at lower cost. 

The "more-for-Iess" improvement has been an earmark of 
semiconductor technology since Ies first went into production 
more than 20 years ago. The continuance of this unique eco
nomic value, in a world where inflation causes a a more typical 
"less-for-more" relationship in products, has made IC-based 



2.5-r-----.-----r------r-------. 

2.0-+----..JIoo.----+----+-----+------l ." 
1.5-+-----+~ 

Resolution 
in 

Micrometers 

1.0~,",,----1--------l-''''''' 

0.5-+-=--===--+---
0.37 
0.25 
0.12 

1986 
YEAR 

1988 

Figure I8-Pattern transfer technology trends 

z(/) 1.5 
Qz 
3~ 
00 
~~ 
~~1.0 
~~ o::::! 
::::)00 

O~ 
O<{ 
~00.5 

0.4 
0.3 
0.2 
0.1 

Exposure Throughput (Wafers/Hour) 

Figure 19--Lithography strategy vs. resolution vs. throughput 

1990 

products pervasive. The incentive for all IC industry par
ticipants is the opening up of new, large markets. 

SUMMARY 

The major disciplines that make up integrated circuit fabrica
tion technology have been examined with respect to current 
technology status and likely future developments to meet 
VLSI device trends. At the end of 1983, current technology 
considered mature for IC device manufacturing is summarized 
along with emerging and future technology. Time frames indi
cate technology used for the bulk of IC devices worldwide. 

How Smart the Computer: Building Its Brain 141 

Ie Device Fabrication: Technology Used Vs. Time 

1984-1987-Emerging 
Technology 1983-Mature Technology 

-Scanning projection printing -Mid-UV wavelength imaging 
-Proximity and contact -Deep UV wavelength imaging 

printing 
-Optical resists 
-E-beam masking 
-Barrel plasma etching 
-Diffusion doping 
-Track-type wafer handling 
-Wet etching 
-LPCVD deposition 

-Reactive ion etching 
-MOCVD and PECVD 

deposition 
-Optical stepping 
-E-beam wafer writing 
-Ion implantation 
-Planar plasma etching 
-Ion milling 

-Semiautomated process -Galium arsenide crystals 
-Multilevel resists and e-beam 

resists 
-Fully automated process 

segments 

1987-1990-Emerging 
Technology 

-X-ray storage ring en
ergy for imaging 

-Ion beam imaging 
-Laser doping and 

imaging 
-Resist-less imaging (ion 

beam and laser) 
-Holographic imaging 
-All-dry resist developing 

and etching 
-Novel IC structures (3-D, 

superlattices, etc.) 
-Robotic interface with 

automatic equipment 
-Software-controlled 

processing 

Finally, a comparison of semiconductor device operating pa
rameters with the hUman brain is made as a benchmark for 
technological progress. Indeed, the "silicon brain" is begin
ning to rival ours in certain areas of comparison. In terms of 
total density, however, the human brain is likely to stay ahead 
of silicon chips well into the 21st Century. 

Semiconductor Technology 
Area of Comparison Human Brain 1960 1980 2000 

Memory Density 
(bits/cm3

) 1016 1~ 105 109 

Computing Power 
(switches/second) 1012 1012 1013 1015 

Speed (cycles per 
second) 102 106 108 1010 

Total Density 
( circuits/cm2) 107 10 102 105 

ACKNOWLEDGMENT 

The author wishes to acknowledge Ms. Lynn Glusco for her 
work in preparing the manuscript. 



142 National Computer Conference, 1984 

SUGGESTED READINGS 

1. Integrated Circuit Microlithography-Market and Technology Repon. Wo
burn, Mass.: Semiconductor Information Services, Jan. (1983), pp. 5-21, 
6-14. 

2. IEEE Proceedings on Electron Devices, Special Issue on Device Design, 
Aug. (1983). 

3. Moody, J. W., and R. A. Frederick. "Developments in Czochralski Silicon 
Crystal Growth." Solid State Technology, Aug. (1983), pp. 221-225. 

4. Huff, H. R. "Chemical Impurities and Structural Imperfections in Semi~ 
conductor Silicon." Solid State Technology, May (1983), pp. 211-212. 

5. Sony Corporation Newsletter. "High Quality Silicon Crystals with MCZ 
Technology. Aug. (1980), pp. 1-4. 

6. Tell, W. c., and J. T. Luxon. Integrated Circuits: Materials, Devices and 
Fabrication, Englewood Cliffs, N.J.: Prentice Hall, 1982. 

7. Einspruch, N. G., Ed. VLSI Electronics Microstructure Science, New York: 
Academic Pres, 1981. 

8. Elliott, D. J. Integrated Circuit Fabrication Technology. New York: 
McGraw Hill, 1982. 

9. Proceedings, International Conference on Microlithography, Sept. 26-29, 

1983, Cambridge, England. (Copyright Dept. of Engineering, Cambridge 
University, England). 

10. Special Issue on Multilayer Resist Lithography, Semiconductor Interna
tional, June (1983). 

11. Harrell, S. "X-Ray Source Technology for Microlithography," Semicon
ductor International, Sept. (1983), pp. 74-77. 

12. Sain, R. J., and B. Gorowitz. "High Rate Aluminum Etching in a Batch 
Loaded Reactive Ion Etcher." Solid State Technology, April (1983), 
pp. 247-252. 

13. Ion Beam Technologies, Beverly, Mass. Technical Data Sheet on ion im
plant, September, 1983 

14. Johnson, W. L. "Design of Plasma Deposition Reactors. Solid State Tech
nology, April (1983), pp. 191-195. 

15. Tong, C. c., J. K. Chu, and D. W. Hess. "Plasma-Enhanced Deposition 
of Tungsten, Molybdenum, and Tungsten Silicide Films," Solid State Tech
nology, (March 1983), pp. 125-128. 

16. Editor, Semiconductor International. "MOCVD Technology," October, 
1983, p. 34. 

17. Status 1983: A Repon on the Integrated Circuit Industry, Phoenix, Ariz.: 
Integrated Circuit Engineering, 1983. 



IDAS-An integrated design automation system 

by STEPHEN Y. H. SU 
State University of New York 
Binghamton, New York 

ABSTRACT 

Computer-aided design tools are vital to the design of VLSI (very-large-scale inte
gration). This paper presents a new integrated design automation system for de
scribing, documenting, simulating, and synthesizing digital systems. The system 
consists of a new hardware description language, LALSD II; a translator; a simu
lator; and a logic synthesizer. The language allows the designer to describe a digital 
system at various levels of detail, to define modules for implementation, and to 
describe the system at the behavior level, the structure level, or both. The language 
can accurately describe the timing for various operations. It can precisely describe 
multilevel, parallel operations. LALSD II can describe synchronous, asynchronous, 
or mixed systems. 

The translator converts the language into a database for simulation and logic 
synthesis. It can translate each module of the system independently. This means 
that a designer can modify any module without retranslating other modules. 

The multilevel hierarchical simulator is a six-valued, table-driven, significant 
event simulator with selective trace capabilities. Synchronous, asynchronous, or 
mixed systems and concurrent events can also be simulated. It can simulate intricate 
timing relations among different components. 

The logic synthesizer accepts the database, the library of logic modules, the key 
modules, and the clock period specified by the user and produces the logic design 
in terms of logic modules and their interconnections. 

143 





INTRODUCTION 

With the advances in very-large-scale integration (VLSI) and 
the increasing complexity of digital systems, computer-aided 
design is no longer optional; instead, it is vital for designing 
modern VLSI digital networks. The gap to be bridged in the 
design automation area is the automated logic/system design, 
simulation, and testing of digital systems. 1

-
S 

Under the direction of this author, the research work has 
been performed and the implementation of an integrated de
sign automation system has been carried out by the Research 
Group on Design Automation and Fault-tolerant Computing 
at SUNY-Binghamton. 

Our goal is to develop a design automation (DA) system 
that will reduce the design effort and make complex system 
design possible. It will allow the designer to experiment with 
various design configurations. The system should greatly re
duce the time and effort required to implement, test, and 
refine the design. A powerful hardware description language 
(HDL) should be the basis of this design automation system. 
With it, a single hierarchical simulator will be used to check 
the performance and the operations of a digital system from 
the behavior level to the gate level. A logic synthesizer will 
allow systematic transformation of the behavior description 
into the connections of hardware modules under the user's 
directions. Even a functional test generator can be used to 
generate tests automatically from behavior description. 

The DA system is shown in Figure 1. The designer uses the 
new language,6,7 called Language for Automated Logic and 
System Design (LALSD II), to express his design. The trans
lator checks the syntax of the language and reports errors for 
the designer to modify the description. x When the language 
statements are free from syntax errors, the translator pro
duces a common database to be used by the simulator, the 
logic synthesizer, and the test generator. The simulator9 veri
fies the design and evaluates the performance at various levels 
of detail. The logic synthesizer produces logic design contain
ing two parts: the structure part and the control part (imple
mented in microcode). 2,7 The translator, simulator, and logic 
synthesizer have been implemented. Some research results on 
hardware description language-driven test generation have 
been reported by our Research Group. 10-13 The test genera
tor, when implemented, will generate test sequences for de
tecting faults in hardware modules at different levels. 

In the next section, the features of the new language, 
LALSD II, will be discussed. An example will be given to 
show that the same language can be used for describing the 
same module at various levels. The third section outlines the 
key features of the translator. The LALSD-driven simulator 
is described in the fourth section, with examples of simulation 
runs. In the final section, the key features of the logic syn
thesizer are pointed out, and computer time for translation 

IDAS-An Integrated Design Automation System 145 

and synthesis of several digital systems (effective address 
computation, blackjack machine, PDP-8. and Chu's com-
puter) are given. ' 

THE NEW LANGUAGE-LALSD II 

For a hardware description language to cover the broad design 
spectrum-i.e., to achieve the purposes of describing, simu
lating, synthesizing, and testing digital systems-it should 
contain the following features: 

1. Hierarchical structure with user-definable modules. The 
hierarchical structure permits the functional decomposi
tion of large systems. It allows the descriptions of sub
systems at various levels. Breaking up the description 
into subsystems can also make the design easier. A hier
archical system allows either top-down or bottom-up de
sign procedure, which will provide smooth transitions 
from one level to another. The modular construct is the 
basis for the hierarchical structure. The modules will 
bear a close resemblance to the actual hardware com
ponents. The interaction between a module and the out-

r---- -- -- ------- ------1 

r 

I 
t<-------------

(
--[--

LALSD II S~~Ula) 
I 

LALSD II 

Logic \
---- -

SY"'-he;> 
I 

I J 
\I} 1 I 

L - - ___ 'L _________ 'i' _________ y 

Figure l-LALSD-II-driven design automation system 



146 National Computer Conference, 1984 

side should go through its input/output ports, and the 
design language should allow the user to define his/her 
own modules. 

2. Multilevel description. The design of digital systems is 
usually an iterative process. In the early stage of the 
design process, emphasis is placed on the behavior of the 
system. More and more structural implementations are 
added to the design until the final implementation, com
posed of hardware primitives only. Besides that, in de
sign or simulation, only a part of the system is under 
close investigation at one time. The language should 
allow the detailed description of this part and high-level 
descriptions of the others. This will substantially reduce 
both design effort and simulation time. 

3. Behavior-level control description. The language should 
provide the capability of specifying the system's behav
ior in a concise, systematic, structured, readable form. 
No implementation detail should be required for the 
high-level description. 

4. Detail-level accurate timing facility. The language 
should provide the facility of accurately describing the 
digital system operations without requiring gate-level 
implementation. In the lower level, not only the oper
ations but also the timing of a module must be defined. 
The race, hazard, etc., should be detected by simulating 
the description of a digital system. 

S. Parallel operation description. In hardware systems 
many activities occur concurrently. Hence the language 
should provide a simple way of describing parallelism. 

The new language, LALSD II, possesses all five of these 
features. 6,7 

The following example shows the flexibility of LALSD II in 
describing the same system at the behavior or structure level 
or a mixture of both. First, only behavior description is given. 
Second, only the structure is given to describe it as a con
nection of 8 full-adders with ripple carries. It is assumed that 
a UNIT-TYPE called full-adder has been defined. The state
ment "USE add (0 .. 7): full-adder;" instantiates (activates) 
eight I-bit full adders. In the last part, it is described as com
posed of two 4-bit adders, with the behavior specified in the 
last CONTROL part. The WAIT procedure is required before 
the reading of the bit 4-add's output. Note that the UNIT 
adder contains a subunit which is a 4-bit adder that can further 
be decomposed into four subunits; each is a one-bit full
adder. Note that in all examples, capital characters are used 
for system keywords. Lowercase words are user-defined 
entities. 

Example 1. The three levels of description for an 8-bit adder 

Description No.1: behavioral level only 
UNIT adder; 

b(O .. 7), c(O .. 7): INPUT; 
a(O .. 8): OUTPUT; 

CONTROL 
a: =b +c; 

END adder; 

Description No.2: structural level only 
UNIT adder; 

b(O .. 7), c(O .. 7): INPUT; 
a(O .. 8): OUTPUT 

STRUCTURE 
USE add (0 .. 7): full-adder; 

CONNECTION 

END adder; 

add (*).inl = b(*); add (*).in2 = c(*); 
FOR i:O to 6 DO add(i).cin = 

add(i + 1).cout; 
add(7).cin = 0; a(*) = add(O).cout 

@ add(*).out; 

Description No.3: mixed-level description 
UNIT adder; 

b(O .. 7), c(O .. 7): INPUT; 
a(O .. 8): OUTPUT; 

STRUCTURE 
USE add4(0 .. 1): bit4-add; 
CONNECTION add4(0).cin = add4(1).cout; 

add4(1).cin = 0; 
UNIT-TYPE bit4-add; 

inl(O .. 3), in2(0 .. 3), cin: INPUT; 
out(O .. 3) ,cout: OUTPUT; 

CONTROL 
add4(0).inl @ add4(1).inl: = b; 
add4(0).in2 @ add4(1).in2: = c; 
wait (20); 
a: =add4(0).cout @ add4(0).out @ add4(1).out; 

END adder; . 

Examples describing the timing facility of LALSD II and an 
LALSD II description of the PDP-8 computer can be found in 
References 6 and 7. Readers are encouraged to read these 
references for detail. The syntax and lexicon of LALSD II are 
available from the author. 

TRANSLATOR 

The block diagram for the LALSD II translator is given in 
Figure 2. The translator consists of three components: lexical 
analyzer, parser, and semantic routines. The lexical analyzer 
takes the text program as input and separates it into proper 
tokens. A source listing is provided during the process. A 
proper token can be a keyword, an operator, or a delimiter. 
If an improper token is found, an error message is generated, 
and the lexical analyzer neglects this token and goes on to find 
the next one. 

The parser calls the lexical analyzer to get the next token of 
the input text. It also drives the translation process to accept 
the proper syntax and perform the corresponding semantic 
actions. The translator uses a syntax-directed translation 
scheme. The syntax of LA LSD II is defined in nonambiguous, 
context-free productions. These productions are fed into a 
parser generator to produce a lookahead left-to-right (LALR) 
parsing table. The parsing process starts at the initial state. If 
the lexical analyzer provides a token that the parser does not 



Figure 2-Block diagram for translator 

ERROR 

MESSAGE 

expect to see, the parser is in an error state. An error message 
is then issued. 

The semantic routines are for the sole purpose of gener
ating all tables as a database output of the input digital system 
description. The language hierarchy of LALSD II is a block
oriented language. There are four types of blocks: UNIT, 
UNIT-TYPE, FUNCTION, and PROCEDURE. Each block 
corresponds to a module table, and the table contains pointers 
to all other tables necessary for describing the information of 
a block. Within each block there are three sections: INPUTI 
OUTPUT (110) PART, STRUCTURE PART, and CON
TROL PART. However, not all these sections are mandatory; 
it depends on the level of description desired. For example, a 
digital system described in functional level will probably dis
regard the interconnections as well as detail timings. 

The 110 part translation will produce the 110 part table 
through which we can obtain the number and the type of 110 
pins (input, output, tristate, bidirection, open collector) of a 
module. The structure part translation will produce tables 
conveying all structural information. All physical components 
(corresponding to a symbol in the language description) are 
stored in the symbol table. All physical boundaries and attri
butes are stored in the type table. The interconnection be
tween modules is shown by the connection table and the 110 
identification table together. Finally, the control part of the 
translation records all behavior descriptions of a module in 
the control table and the condition table of the database. 

SIMULATOR 

The LALSD-II -driven simulator uses the database produced 
by the translator. It is a six-valued, significant event simulator 
with selective trace capabilities. The six values are 0, 1, Posi
tive edge P, Negative edge N, Unknown U, and High
impedance Z. Inclusion of P and N is to represent signal rise 

IDAS-An Integrated Design Automation System 147 

( START 

, 

[ LALSD II Descri ption I 

, 
I LALSD II Translat~ 

~ 

I Co mmon Database 1 

\ " 
I phase I: preprocessing J 

I 

1 Phase II: Sir::ulation I 

I phase III: postprocessing I 

'It 

I END I 
Figure 3-Overall structure of LALSD-II-driven simulator 

(transition from 0 to 1) and fall (transition from 1 to 0). In 
initializing the system, certain signal values are not known; 
they are represented by U. Any signal at the high-impedance 
state is represented by the Z value. The choice of significant 
event and selective trace is for reducing simulation execution 
time. This is done by simulating only units whose input(s) 
have changed. Furthermore, if after the change of an ele
ment's input(s) its output does not change, then the fanout of 
that element is not simulated. The simulator can simulate a 
digital system at various levels. It can simulate synchronous, 
asynchronous, or mixed systems as well as concurrent events. 
The LALSD II simulator is capable of simulating intricate 
timing relations among different components of a system. 

The simulator has been implemented in PLiI for ITEL AS/6 
(similar to IBM 370/158). Several examples, such as the PDP-
8 computer, blackjack machines, Chu's computer, and Su and 
DuCasse's reconfiguration fault-tolerant system, have been 



148 National Computer Conference, 1984 

run by the simulator to show its salient features. The entire 
simulator consists of 71 subroutines. The source code contains 
approximately 10,000 lines. The simulator consists of three 
phases, as shown in Figure 3. 

Phase 1: Preprocessing Phase-In this phase, all necessary 
processing of the common database is done to prepare it for 
the simulation phase. This includes database inputting, event 
queue creation, space allocation and initiation, and the pro
cessing of simulation command language such as RUN, INIT 
(for initialization), DISPLAY, TRACE, ACTIVATE, and 
END. 

Phase 2: Simulation Phase-In this phase, the simulation of 
the behavior of the system takes place. This includes unit 
activation, the processing of connection and control parts, and 
expression evaluation. 

Phase 3: Postprocessing Phase-In this phase, the HIS
TORY file generated during the simulation phase will be pro
cessed to print the desired value ~f I/O parts or variables of 
the system under simulation. The HISTORY file contains all 
the changes to the I/O parts and variables of the system and 
the corresponding time of their changes. 

The overall flow of the simulation process is given in Figure 
4, starting from the top block. The common database, gener
ated by the LALSD II translator from the LALSD II descrip
tion of the digital system, is one of the simulator's input files. 
The other input file is the user-specified simulation command 
file, shown on the left side of Figure 4. The function of the 
main routine is to control the entire operation of the simu
lator. All other blocks in the next level are subservient to this 
main program. Each routine at each level invokes one or more 
of the next level subroutines to carry out appropriate pro
cessing. The preprocessing routine's task is to allocate space 

Simulation 
Result 
Printing 

Figure 4-Overall flow of the simulation process 

for all the data structures in the database, transform the com
mon database to a form more readily usable by the next phase 
of the simulator, and initialize all the required variables into 
either unknown or user-specified values. The preprocessing 
program invokes the time queue creation and unit activation. 

The time queue creation is responsible for setting up the 
required data structures to implement the event queue and 
event scheduling mechanism. The unit activation activates 
either all units in the system-in the absence of a user
specified activate command-or only units specified by the 
designer in the activate command. 

The main program calls upon the control-processing rou
tine. This routine serves as the control statement recognizer. 
It indentifies the type of the control statement, and, de
pending on this recognition, takes the appropriate action to 
implement that control statement properly. The control pro
cessing routine in tum, in cases where it is required to evaluate 
an expression or a conditional statement, calls upon the ex
pression evaluation program. This evaluation program, de
pending on the type of the expression to be evaluated, either 
evaluates the final value of the expression or returns a TRUE 
or FALSE value for the condition to be tested. This routine 
also returns a delay value equal either to zero or to the amount 
of delay associated with the expression to be evaluated. The 
expression evaluation routine in tum calls upon one of its 
subordinate routines, shown in Figure 4. The operation of 
each block in this level is self-explanatory, except the last one, 
which contains subroutines for implementing all the primitive 
operations in the LALSD II not included in the other catego-' 
ries. For the list of these operations the reader may see Refer
ence 9. 

The final block in the second level is the simulation trace file 
generator, which produces the trace of all the changes during 
simulation. This file includes all the changes in the system 
variables with the corresponding time for the changes. It can 
be processed either off line to print it in different formats, or 
by the simulation result printing routine to print the designer
specified variables' states for the entire simulation run. 

Table I shows the results of simulation runs for six exam
ples: Adder, Address Generation, Multiplier, Chu's com
puter,14 Su and DuCasse's reconfiguration scheme for fault
tolerance,15 and the PDP-8 computer. 

LOGIC SYNTHESIZER 

Although almost all manufacturers have a design automation 
system for the physical design, very few have included an 
automated logic design system. This system will expedite the 
design process, shorten design time, and reduce design cost. 
The system should allow the designer to experiment with var
ious design configurations as easily as possible. The system 
should also greatly reduce the time and effort required to 
implement, test, and refine the design. 

With the user-specified key components, the library of 
other comnonent~. ~ncl the nenocl for dock. the loglc ~vn------- -----r--------J _.--_. ---- r----~ ._-"" - -- J 0 -.1--

thesizer transforms the common database produced by the 
translator into the integrated circuit chips and their inter
connections instead of producing a logic diagram in terms of 



gates and flip-flops and going through the tedious process of 
partitioning and assignment. 

The essential features of our logic synthesis approa~h are 
given below: 

1. ~odular primitive binding. The synthesis output is given 
In terms of the integrated circuit chips (functional prim
itives, such as registers, adders, multiplexers, etc.) and 
their interconnections. It is more suitable for contem
porary hardware design than gate-level implementa
tions. Since the synthesizer output is of the same format 
as the original program, it can be directly used as simu
lation input. 

2. Inherent parallelism exploitation. Since LALSD II de
scription does not require operations to be specified 
clock cycle by clock cycle, the synthesizer tries to ar
range operations to be executed as fast as possible under 
the given configuration. In this instance, a hardware 
module may be shared by several operations at different 
times. 

3. User-directed configuration. Unlike some HDLs, which 
require the data part to be specified exactly, the syn
thesizer needs only user's directions on key components. 
By changing key component specification, the user can 
try several different configurations to pursue the opti
mum design. 

4. Iterative design procedure. The output of the synthe
sizer is compatible with the LALSD II program. Hence, 
the user can even change part of the output, then rerun 
the synthesizer to get results. 

5. Behavior-level redundancy elimination. One drawback 
of a high-level language is that many redundancies exist 
in the description, though they may not be needed in the 
actual implementation. These kinds of redundancies are 
eliminated by the synthesizer. 

Several examples have been run using the logic synthesizer 
to produce the implementation in terms of ICs and inter
connections. Four of them will be included here: the address 
translation, the blackjack machine, the PDP-8 computer, and 
Chu's computer. 5 A brief summary of computer runs is given 
in Table II. 

By changing the key components, two designs for the ad
dress translation and three implementations of the blackjack 
machines are generated by the computer, using the logic syn-

TABLE I-Statistics of simulator example runs 

No. of Stmts. 
Example Name of in LALSD II Simulation Virtual 

No. Circuit Description Time (Sees) Storage 

1 ADDER 61 9.17 760K 
2 ADDGEN 24 6.73 710K 

ADDGEN 24 6.82 710K 
3 MULTIPLY 29 7.83 708K 
4 CHUCOMP 65 10.72 710K 
5 NMR 106 12.84 730K 
6 PDP-8 143 19.50 712K 

IDAS-An Integrated Design Automation System 149 

thesizer program. The third column shows the CPU time in 
terms of the number of seconds for translating the LALSD II 
description. The next column gives the time for logic syn
thesis. Note that it only took a little over two and one':'half 
minutes of CPU time on the ITEL AS-6 computer to design 
(translation and synthesis) the PDP-8 automatically. The last 
column gives the number of clock cycles needed in the con
troller for activating the structure part of each implementa
tion. The above results for this logic design automation are 
very encouraging. 

CONCLUSION 

This paper has introduced the various parts of this integrated 
logic design automation system-the new design language, 
logic synthesis, and simulation. This system will greatly re
duce design effort and make complex system design possible. 
Furthermore, new research problems can be solved by using 
the system as the basis. 

Using LALSD II, a user can describe the function of the 
system to be designed in a systematic way. In the beginning, 
the description is procedure-oriented, with no explicit timing 
relations. The LALSD II simulator can be invoked to check 
its operation. When the description is correct, the logic syn
thesizer is applied to transform the sequential procedural de
scription into parallel nonprocedural modular interconnec
tions. By changing variables such as technology to be used and 
quantity and types of key modules used, the user may try tens 
or hundreds of different design configurations. This greatly 
aids the user in finding a very good, if not an optimum, design 
configuration. The same simulator can be invoked again, this 
time to check the detailed timing relations. After the user is 
satisfied with the design configuration, he/she may choose the 
actual integrated circuits for each module used by the syn
thesizer. Then the logic design is completed. 

Even with our prototype logic synthesizer, the reduction of 
design time is very promising. The user usually spends an hour 
to describe a digital system, such as the PDP-8 computer. The 
synthesizer needs only 89 seconds to generate an implementa
tion consisting of the interconnections of modules and the 
control signal chart. If the user is not satisfied with the de
signed configuration, he/she can try again by specifying differ
ent key modules. Usually three or four runs can generate a 
satisfactory design configuration. 

TABLE II-Summary of computer runs 

No. of No. of 
Computer Source Trans. Synth. Clock 

Run Statements Time Time Cycles 

ADDGENI 22 7 4 2 
ADDGEN2 22 7 5 5 
BLACKI 52 13 13 18 
BLACK2 52 13 13 17 
BLACK3 52 13 13 16 
PDP-8 140 68 89 87 
Chu's 
Computer 50 27 33 35 



150 National Computer Conference, 1984 

Of course more work needs to be done on this approach in 
order to facilitate really automated design. An automated 
module selector for choosing the actual integrated circuits will 
be very useful. Some criteria need to be established to help 
the user to choose key modules. Alternatively, these criteria 
can be combined with the logic synthesizer to generate a 
near-optimum design without the user's directions. 

One problem for future research is to establish some crite
ria for the automatic logic synthesis. Instead of using com
ponents selected by the user, algorithms may be investigated 
to pursue the optimum design under the established criteria. 
Another problem is the design for testability. Extra com
ponents and test points may be incorporated to enchance 
testability. The third problem deals with the combination of 
logic design and physical design-i.e., instead of partition, 
placement, and routing being performed at the final gate 
level, they may be applied at the hardware modular level. We 
speculate that in the future the difference between hardware 
and software will become smaller and smaller, and a digital 
system may be designed using one algorithmic language. 
When the actual implementation is performed, cost, per
formance, and reliability will be taken into consideration so 
that part of a digital system is implemented in hardware and 
the others in software. 

ACKNOWLEDGMENTS 

The author expresses his sincere appreciation to Dr. Chi-Lai 
Huang for revising the original LALSD16 and implementing 
the logic synthesizer, to Patrick Y. K. Fu for implementing the 
translator, and to Dr. Bahram Amini for implementing the 
simulator. 

REFERENCES 

1. Huang, Chi-Lai, and S.Y.H. Suo "Approaches for Computer-Aided Logic! 
System Design Using Hardware Description Language." Proceedings of 
International Computer Symposium 1980, Taipei, Taiwan, December 1980, 
pp.772-79O. 

2. Huang, C. L., and S.Y.H. Suo "Logic Design Automation Based on 
LALSD II (Language for Automated Logic and System Design)." Pro
ceedings of the Sixth International Symposium on Computer Hardware De
scription Languages and Their Applications, Pittsburgh, May 23-25, 1983. 
Amsterdam: North-Holland, 1983, pp. 165-178. 

3. Su, S.Y.H., and T. Lin. "Functional Testing Techniques of Digital LSI! 
yr~SI Systems." Proceedings of the 21st Design Automation Workshop. 
New York: IEEE and ACM, 1984. 

4. Zimmerman, G. "The Minola Design System: A Computer-Aided Digital 
Processor Design Method." Proceedings of 16th Design Automation Con
ference. New York: IEEE and ACM, 1979, pp. 53-58. _ 

5. Siewiorek, D. P., and M. R. Barbacci. "The CMU RT-CAD System-An 
Innovative Approach to Computer-Aided Design." AFlPS, Proceedings of 
the National Computer Conference (Vol. 45), 1976. 

6. Su, S.Y.H., C. L. Huang, and P.Y.K. Fu. "A New Multi-Level Hardware 
Design Language (LALSD II) and Translator." Proceedings of 5th Interna
tional Symposium on Computer Hardware Description Languages and Their 
Applications, Kaiserlautem, W. Germany, Sept. 8-9, 1981. Amsterdam: 
North-Holland, pp. 155-169. 

7. Huang, Chi-Lai. Computer-Aided Logic Synthesis Based on a New Multi
Level Hardware Design Language-LALSD II. Ph.D. dissertation, Com
puter Science Department, State University of New York-Binghamton, 
1981. 

8. Su, S.Y.H., and P.Y.K. Fu. "LALSD II Translator." Technical Report, 
Research Group in Design Automation and Fault-tolerant Computing, 
State University of New York-Binghamton, December 1981. 

9. Amini, B. "LALSD II Simulator." Ph.D. thesis, Computer Science De
partment, State University of New York-Binghamton, 1984. 

10. Su, S.Y.H., and Y.I. Hsieh. "Testing Functional Faults in Digital Systems 
Described by Register Transfer Languages." Digest of Papers, 1981 Test 
Conference, pp. 447-457. Also J. of Digital Systems, SummerfFall, 1982. 

11. Min, Y., and S. Y.H. Su, "Functional Testing of VLSI." Proceedings of the 
19th Design Automation Conference, pp. 384-392, 1982. 

12. Shen, L., and S.Y.H. Suo "VLSI Functional Test Generation Using Critical 
Path Traces at a Hardware Description Language Level." Paper presented 
at the IEEE VLSI Test Workshop, Atlantic City, N.J. March 21-22,1984. 

13. Shen, L., and S.Y.H. Suo "A Functional Testing Method for Micro
processors." Proceedings of 14th International Symposium on Fault-tolerant 
Computing, June 1984. 

14. Chu, Y. Digital Computer Design Fundamentals. New York: McGraw-Hill, 
1962, Chapter 11. 

15. Su, S.Y.H., and E. DuCasse. "A Hardware Redundancy Reconfiguration 
Scheme for Tolerating Multiple Module Failures." IEEE Trar.sactions on 
Computers, C-29, (1980), pp. 254-258. 

16. Su, S.Y.H., and M. B. Baray. "LALSD-A Language for Automated 
Logic and System Design." Proceedings of the International Computer Sym
posium, Vol. 1, Taipei, Taiwan, August 1975, pp. 31-42. 



A versatile VLSI fast Fourier transform processor 

by KUANG-CHENG TING and CHVAN-LIN WU 
University of Texas at Austin 
Austin, Texas 

ABSTRACT 

A versatile special-purpose VLSI fast Fourier transform (FFT) processor is pre
sented. It can process variant data sizes of FFT and cooperate with other identical 
FFT processors to accomplish cascade and parallel FFT processing schemes. The 
operations of the single processor FFT processing scheme, the multiprocessor cas
cade FFT processing scheme, and the multiprocessor parallel FFT processing 
scheme are described. The results of performance analysis show that the combina
tion of adaptive architecture capability and VLSI technology can provide a practical 
solution for meeting the goal of advanced real-time FFT processing. 

151 





INTRODUCTION 

The fast Fourier transform (FFT) algorithm2 is one of the most 
widely used tools in digital signal processing systems. A large 
body of knowledge has been generated on the subject of the 
FFT algorithm, and its parallelism has been studied exten
sively.3,4,5,6,7,8 Recently, the VLSI FFT computational net
works were proposed9,lO,11 for constructing the special
purpose FFT processor. However, these studies of VLSI FFT 
computational networks do not consider the flexibility of pro
cessing different data sizes. The VLSI technology is con
strained by the chip density, packaging area, and pins num
ber. These constraints also cause the problem of I/O bound 
and computation bound. If one processes a user's FFT task in 
a special-purpose hardware FFT processor, the I/O operations 
of the source and result data may easily impose the perfor
mance limitation. In addition, for the distributed processing 
system, the distrubuted source data might be stored in a com
puter unit with several I/O ports or be arranged (or mapped) 
in mUltiple-port memories. Processing a user's FFT task with 
the arrangement of source data and available resources can 
improve the resource utilization and can prevent the per
formance limitation imposed by the I/O operations. 

This paper presents a versatile VLSI FFT processor for the 
Star local network,l which not only can process variant data 
sizes of FFT but also can cooperate with other identical FFT 
processors to accomplish the cascade and parallel FFT 
processing schemes. Star is a local computer network de
signed to integrate image database management and image 
analysis into a system. It consists of a reconfigurable commu
nication subnet (Stamet), heterogeneous resource units, and 
distributed-control software entities. The fault-tolerant, 
reconfigurable communication subnet interconnects mUltiple 
host computers, special VLSI units, and various memory units 
for real-time management of the image. Figure 1 is the block 

Communica tim 

subnet 

(Starnet) 

Figure 1-The block diagram of the Star communication subnet. 

A Versatile VLSI Fast Fourier Transform Processor 153 

diagram of the Star communication subnet. The system com
ponents are attached to the interface unit,l which in tum 
connects to multiple ports of the interconnection network. 
The communication path is established via the destination 
tag-routing technique, and a path establishment is less than 
one microsecond. Star is flexible and can be configured into 
various topology to provide better peformance level than 
other rigid special architecture. 

In Section 2, the various parts of the versatile VLSI FFT 
processor are described. A detailed description of the pro
cessing user's FFT task on Star is given in Section 3. The 
operations of the single processor FFT processing scheme, the 
multiprocessor cascade FFT processing scheme, and the mul
tiprocessor parallel FFT processing scheme are discussed sep
arately. The performance analysis is done in Section 4. Sec
tion 5 is the conclusion. 

A VERSATILE VLSI FFT PROCESSOR 

Figure 2 is the block diagram of a versatile VLSI FFT pro
cessor. The processor communicates with other processors 
and data units through four interface units (IUs), denoted as 
IUoo, IUOl , IU lO , and IUn , that connect to the Stamet. The 
processor control unit (PCU) accepts the FFT task description 
from the user (or other processor) and decides the sequence 
of actions to be taken; it coordinates and controls the activities 
of the whole processor. The MCSW switches between the 
memory bank unit and the computation unit (CU) serve the 
function of switching the input and output ports of the CU 
with two memory bank units MBo andMB 1• Such config-

processing 
direction switch 

Figure 2-The block diagram of a versatile VLSI FFT processor 



154 National Computer Conference, 1984 

from 

processor control unit(PCU) 

INO 

I 
I 
I -, 

I 
I 
1°3 

INl 

" 

Figure 3-The circuit diagram of memory bank unit 

uration and bidirectional IUs eliminate the restriction of fixed 
I/O ports and allow the FFT processor to act as a bidirectional 
FFT processing processor. The memory bank control unit 
(MBCU) generates the memory address sequences and con
trols the read/write operation of four data storages MO- 3 in the 
memory bank unit. The switch control signals MSWC and Co-3 
set up the paths among data storages, IUs, and CU. The 
memory enable (ME), memory read (MR), and memory 
write (MW) signals control the operation of individual data 
storage. The circuit diagram of one of the memory bank units, 
is shown in Figure 3. 

The computation unit is an FFT VLSI chip that contains a 
pipeline butterfly computation element (PIPECE) and a par
allel FFT quotient network (PARQUO) as shown in Figure 4. 
The PIPECE offers the capabilities of a fast butterfly com
putation rate and the overlapping of I/O operations with the 
computation. The PARQUO offers the capability of parallel 
processing the FFT within certain data size ranges. The twid
dle factors of the PIPECE come from the outside of the VLSI 
chip, while the twiddle factors of the PARQUO come from 
the presorted Read Only Memory (ROM) associated with 
each computation element (CE). Considering the pins limita
tion, the I/O ports of the VLSI FFT circuit are denoted as 
INO, INl, OUTO, and OUT1. The hand-shaking mechanism 
of the VLSI FFT circuit with the external world is done by the 
control unit with four hand-shaking signals: input available 
(INAVL), input acknowledge (INACK), OUTPUT available 
(OUTA VL), and output acknowledge (OUTACK). The con-

INACK 
INAVL 

P 
U 
T 

Parallel FFT 

Quotient network 

(PARQUO) 

Control unit 

control reg. 

. . . . .. 
Pipeline butterfly 
computation element 
(PIPECE) 

U 
T 
P 
U 
T 

Figure 4--The block diagram of a VLSI FFf circuit 

o· VL 

OUTO 

OUTl 

trol unit performs the function of accepting the operation 
command from the external world, coordinating the data 
input/output operations, and controlling the operations of 
CEs. The external world issue command to the control unit by 
activating the Command Strob (CMSB) signal and putting the 
command work into the INO and/or INI ports. The command 
word contains parameters to specify the active PIPECE or the 
active PARQUO operation mode. 

The construction of the PIPECE is straightforward. With 
three pipeline real adders, three pipeline real subtracters, four 
pipeline real multipliers, and delays, one can form a pipeline 
butterfly computation element as shown in Figure 5. Consid
ering the PIPECE as L concatenated computation stations, 
each station performs a portion of the butterfly computation. 
For computation station i, 1 < i < L, it can accept data from 
station i-I only if its intermediate result was accepted by 
station i + 1. Therefore, the last computation station accepts 
data from its previous station only after the external world has 
received its output. The hand-shaking mechanism can be in
corporated between computation stations and implemented 
by means of simple hand-shaking protocol. 12,13 

The transformation from the complete parallel FFT com
putational network such as the Shuffle-Exchange network4 to 
the equivalent quotient network can be found in Fishburn and 
Finkel's paper.14 Figure 6 is the circuit diagram of the 
PARQUO. Since each CE in the quotient network emulates 
the actions for several CEs in the large network, buffers are 
required to hold data, and this is accomplished by two parallel 
double queues (DEQs) denoted as DEQO and DEQ1. Two 
DEQs share two common pointers and an INQUE signal that 
controls one of the DEQs in accessing data from the INO or 



A Versatile VLSI Fast Fourier Transform Processor 155 

Re(INO) 
Re( OUTO) 

Im(INO) 
Im(OUTO) 

Re(INl) Re(OUTl) 

Im(INl) Im(OUTl) 

Re\.:W~ ____ ~ 
D: delay 
Re: real part 
Im: imaginary part 

Im(....;.W.:..) ___ ---I~ [JJ]: computation 
stations 

Figure 5-A pipeline butterfly computation element 

INI port. Assume that the PARQUO is designed with 2a CEs, 
which are addressed as Ca- I .•. Co, and its maximum pro
cessing capability is 2Q-point FFT, where a < q. The input 
sequence of source data A(k), where k = 0 to 2b -1 and 
a < b ::::;; q, is defined as 

INO : = A(Oib- 2 ••• io); 
INI : = A(lib- 2 ••• io); ib- 2 ••• io = 0 to 2b- 1 

- 1. 

The control unit enables the CE(OCa- 2 ••• Co) and 
CE(ICa- 2 ••• Co) to access 2b- a data points from the INO and 
INI ports, respectively, by activating the INQUE signal and 
the CE addressing signals. After completing the external data 
input operation, each CE(Ca- 1 ••• Co) holds the source data 
A(Ca- l ... CoOib- a- 1 ••• io) in DEQO and A(Ca- 1 ... 
Colib- a- I ... io) in DEQ1. The control unit starts activating all 
CEs to process the FFT. At the end of FFT computation, each 
CE(Ca- l ... Co) holds the final Fourier coefficients X(OiI ... 

ib-a-1Co ... Ca- 1) in DEQO and X(lil ... ib-a-1Co ... Ca- I ) in 
DEQI according to the bit-reversal output order of the DIF 
isogeometry algorithm with perfect shuffle permutation. The 
output operation is then accomplished by sequentially acces
sing 2b- a- 1 pairs of data from the DEQs of each CE, and it is 
expressed as 

X(OiI .•. ib- I ) : = OUTO; 
X(lil ... ib- 1) : = OUTl; il ... ib- I = 0 to 2b- 1 -1. 

The PARQUO accepts the next group of data only if its DEQs 
are empty. This nonpipeline restriction simplifies the design 
of the control unit, but a price is paid for increasing the 
processing time. 

PROCESSING THE FFT WITH VERSATILE VLSI FFT 
PROCESSORS 

From a careful observation of Gentleman and Sande 
Decimation-In-Frequency (DIF) FFT algorithm 15 as shown in 

CEs selectio 
DEQs pointer 
twiddle facto 
address 

computation 
I/O control 

~ ________ -+OUTO 

r------OUTl 

MSB 
INO~~ __ ~~ ______________ ~ 
IN1~-----4~~~~~~~~~~~ 

Figure 6--The circuit diagram of the parallel FFT quotient network 
(PARQUO) with four computation elements 

Figure 7, one can see that a 2m-point FFT can be processed as 
s stages of butterfly computation and then 25 groups 
2m- s -point FFT, where 0 ::::;; s ::::;; m - 1. Since the PARQUO has 
the maximum processing capability of 2Q-point FFT and the 
minimum processing capability of 2a

+
1-point FFT without 

zero padding, the decision in decomposition is based on the 



156 National Computer Conference, 1984 

A(O) 

A(l) 

A(2) 

AD) 

A(6) 

A(7) 

A(8) 

A(9) 

A~A+B 

B ~(A - B) * W(16,i) 

(10) 

(1) 

(13) 

(J} 

(ll) 

Figure 7-The signal flowgraph of a 16-point raclix-2 
Decimation-In-Frequency FFT algorithm with the in-place property 

data size and the processing capability of the PARQUO. To 
avoid the side effect of zero padding, when the data size is 
smaller than 28 +1, the given FFT task is processed by acti
vating the PIPECE. If the data size is larger than 28 and 
smaller than 2Q+

1
, then it is processed by the PARQUO. As 

the data size 2m exceeds the the maximum processing capabil
ity of the PARQUO, the FFT computation will first be 
performed by processing m - q stages of butterflies in the 
PIPECE, and then the intermediate results of the (m - q)th 
stage are treated as 2m

-
Q groups 2Q-point FFT, which can be 

processed by the PARQUO. When the PIPECE is activated, 
the intermediate results of one iteration are arranged in the 
internal data storages properly to be ready for the next itera
tion. After each iteration, the processor will change the pro
cessing direction by controlling the MCSW switches. Follow
ing the above decomposition rules, variant sizes of FFT can be 
processed in a single FFT processor. 16 

Multiprocessor Cascade FFT Processing Scheme 

In Figure 7, after the first half of the butterflies in stage 1 
are done, the successive output of stage 1 can be processed in 
stage 2, and so on. Hence, for a given FFf task with G groups 
of 2m data points, one can linearly connect an m number of 
FFT processors, and according to the sequence order of the 
linear connection, each processor is then assigned a Pseudo 
Number (PSN) to charge one stage of butterfly computation. 
The Linear(P ,j ,i) defines the linear connection pattern such 

I 

UiO 

FFT 
processor 
with PSN:l 

FFT 
processor 
with PSN:2 

FFT 
processor 
with PSN:3 

FFT 
processor 
with PSN:4 

I Source 
data input 

Source 
data input 

data output 

I 

Figure 8--The topology and connection pattern of the linearly connected 
FFT processors 

that the IUjo and IUj1 of the FFT processor with PSN = k 
connect to the IUio and IUil of the FFT processor with 
PSN = k + 1, where P is the number of processors and 
1 ~ k ~ P and i,j represent the two IU groups. The FFf pro
cessor with PSN = 1 accepts pairs of source data from its IU lO 

and IUn , whereas the processor with PSN = P produces the 
Fourier coefficients from its IUjo and IUj}, which are con
nected to the destination unit through the Starnet. Figure 8 
shows the connection pattern of Linear(4, 1 ,0). 

The data movement operation is divided into three phases 
and is shown in Figure 9. Suppose a 24-point I-D FFT task, as 
shown in Figure 7, is processed by four linearly connected 
processors. At phase 1, the first processor queues the OUTI 
data of the first four butterflies in M1 and sends the OUTO 
data through the IUjO to the next processor, which will queue 
the received data in Mo. At phase 2, the first processor queues 
the OUT1 data of the next four butterflies in M3 and send the 
OUTO and queued M1 data through the IUj1 and IUjo to the 
next processor. The second processor stores the incoming 
data from the IUm and M1 data storage and processes the 
queues Mo data and the incoming data from the IUn as a pair 
of INO and INI data. Finally, at phase 3, the first processor 



A Versatile VLSI Fast Fourier Transform Processor 157 

FFT processor 
with PSN:k 

Starnet 

Starnet 

-----wired-in path 

_phase 1 

FFT processor 
with PSN:k+l 

____ phase 2 

-. ---phase 3 

Figure 9--The data movement of cascade 1-D FFT processing scheme 

(*COMMENT: 
TASK TYPE: 
TOPOLOGY: 
DATA SIZE: 
REQUEST: 
ASSIGN: 

SOURCE: 

*) 
Begin 

CAScade Multiple One Dimensional FFTs. 
Linear. 
G groups of M-point data, M = 2m

, 

log2M processors. 
Pseudo number PSN, v = 0 and u = 1, where PSN is an 
integer and 1 s; PSN s; m. 
Source data are sent to the processor with PSN = 1 
as the sequence of 

Forl=Oto G-1 

lUiO - A(I, k); 
lUil - A(I, k + Mi2); 

where 0 s; k s; Mi2 - 1 and i = v. 

Linear(m, 1,0); (* establish linear connection*) 
MCSW: = pass; i: = v; j: = u; (* set direction *) 
s: = PSN; (* specify computation stage*) 
(* performing the FFT computation *) 
For I: = 0 to G - 1 do 

For c: = 0 to 2s- l -1 do 
For k: = 0 to 2m - s - 1 do 

Begin 
[INPUT DATA FEEDING PROCESS] 

Case of s 
s=1: MBi(COj,ClL~j,~t); 

1N0-lUiO; 
1N1-IUil ; 

s> 1: If k<2m - s- l 

Then 
If I = 0 and c = 0 

(phase 1) Then MBi (Cl i ); 
Mo(k)-lUiO; 

(phase 2) Else MB; (Co i, Cl t, ~ t); 
MBi(~ t ,MSWC=pass); 
INO-Mo(k); 
1N1-lUil ; 
Ml(k)-lUiO; End. 

Else MBi(CoLCl L~ i); 
MB; (~t ,MSWC = pass); 
If I = G - 1 and c = 2s- l - 1 
Then INO-Ml (k- 2m- s- l); 
IN1-IUil ; 

(phase 1 & 3) Else INO_Ml (k-2m - S
-

l); 
1N1-IUn; 
Mo(k - 2m-s-l)_IUiO; 

End of Case; 
[COMPUTATION PROCESS] 

(* active PIPECE *) 
OUTO -INO + 1N1; 
OUT1-(INO - IN1) * W(M,k*2s- l); 

[OUTPUT DATA HANDLING PROCESS] 
Case of s 
s = m: MB j (Co i , Cl t ,~ i , C3 t ); 

IUjo-OUTO; 
IUjl -OUT1; 

s<m:If k<2m - s- l 

Then MB j (Co j, Cl j, ~ i); 
MBj(C3 t , MSWC = cross); 

IfI=Oandc=O 
(phase 1) Then IUjo-OUTO; 

Ml (k)-OUT1; 
(Phases 1 & 3) Else IUjo-OUTO; 

Ml (k)-OUT1; 
IUjl -M3(k); 

(phase 2) Else MBj (Co t , ~ t ); 

End; 
Ifs<m 
Then MBj (~t); 

MBj (~i , ~ i , MSWC = cross); 
IUjo-M2 (k - 2m - S

-
l ); 

1Uj1-0UTO; 
M3 (k - 2m - s- l) -OUT1; 

End of Case; 

For k: = 0 to 2m - s- l do 
IUjl -M3(k); 

Figure lO--CASMOD algorithm 



158 National Computer Conference, 1984 

sends its M3 data through the IUjl to the next processor, which 
processes the queued MI data and the incoming data from the 
IUn and a pair of INO and INI data. Similarly, the data move
ment operation is available for the second and third processor, 
and so on. In general, the processor with PSN = k, 1 ~ k ~ m; 
repeats 2k

-
1 times of phase 1, 2, and 3 operations, and each 

processor overlaps the phase 3 operation with the next repet
itive phase 1 operation. In the case of processing G groups of 
1-D FFf, the first processor (i. e., PSN = 1) overlaps the phase 
3 operation with the next group's phase 1 operation, and the 
rest of the processors (except the last processor) repeat 
G*2k

-
1 times of phase 1 to 3 operations. Note that the cascade 

FFf processing scheme only involves the active PIPECE 
operation mode. 

The algorithm CASMOD (Figure 10) describing the cas
cade FFf processing scheme is given as follows. The notation 
"destination ~ source" stands for the data transfer operation, 
and the transfer operations in each PROCESS occur concur
rently except when they are separated by the conditional 
statement If-Then-Else. The INPUT DATA FEEDING 
PROCESS, COMPUTATION PROCESS, and OUTPUT 
DATA HANDLING PROCESS are pipelined. The states of 
switch control signals Co-3 are represented with " t " or " ~ " 
to stand for the upper or lower link. The data path set by the 
MCSW or MSWC is either "pass" or "cross." 

The multiprocessor cascade FFf processing scheme be
comes attractive when the G value is greatern than one, be
cause it reduces the external data transferring time by over
lapping the receiving of source data and the transmitting of 
the results with the butterfly computation. 

Parallel Processing Multiple One-Dimensional FFTs 

Representing 2x FFT processors in binary form as PSN = 
Px- I ' .. Po, the Cube(P,c,i) defines the connection pattern of 
the lUi! of processor Px- I ..• Pc ... Po connecting to the lUi! 
of processor Px- I '" Pc ... Po, and the IUiO of processor 
Px- I ... Pc ... Po connecting to the IUio of processor 
Px- I ... Pc ... Po, where P = 2x, and ° ~ c~ x -1 and i repre-
sent one of two IU groups. Figure 11 shows the connection 
pattern of Cube(4,1,1) and CUbe(4,0,0). Suppose one re
quests four FFT processors with PSN = PIPO to process a 
16-point I-D FFT task as shown in Figure 7, then each pro
cessor will charge two-butterfly computations in each stage 
according to the order of PSN. Assume that the source data 
input ports will the IUoo and IUoh before starting the 
computation, and that each processor establishes Cube(4,1,1) 
as shown in Figure 11. Those processors with PI = ° queue the 
OUTO data and send the OUTI data through IUlO , and pro
cessors with PI = 1 queue the OUTI data and send OUTO data 
through IUn . This data exchange operation is shown in Figure 
12. When the last pair of incoming source data arrive, each 
processor establishes Cube ( 4,0,0) as shown in Figure 11 and 
stage 2 computation can start after finishing the exchange of 
intermediate results and switching the processing direction. It 
allows each processor to have two-butterfly computation time 
to establish the next connection pattern CUbe(4,0,0). In Star
net, a path establishment time is less than one microsecond. 

I 

Un 
Cube(4,l,l) 

FFT 

processor 

PSN:PoPl =10 

FFT 
processor 

I 

UOl Cube(4,o,o) 

Figure ll-The topology and connection pattern of Cube(4,1,1) and 
Cube(4,O,O) 

This procedure is then continued until there is no need to 
exchange data; i.e., c = O. In general, processing 2m-point 
FFT with 2x processors, where 0< x < m, requires x times of 
exchange steps and each step takes 2m- x- 1 data transfer 
operations. After the xth data exchange step, each processor 
processes 2m- x -point FFT independently. The operation of ' 
parallel-processing multiple one-dimensional FFT is de
scribed in the PARMOD algorithm (Figure 13). 

When x = 0, the above parallel processing scheme becomes 
a single processor FFT processing scheme. If x = m-l, i.e., 
each processor executes only one butterfly computation in 
each stage, one obtains the maximum parallelism in pro
cessing one-dimensional FFT. 

PERFORMANCE ANALYSIS 

The following parameters are defined. 

1. Ts = one data item transfer operation time between the 
source/result data unit and the FFT processor. 

2. Te = one data item transfer operation time between FFT 
processors. 

3. Ti = the input or output operation time of the P.A~SQUO 
for one pair of data. 

4. Tb = one butterfly operation time. 



FFT processor with 

PSN:Px_1"'Pc"Po 

FFT processor with 

PSN:Px_1"'Pc"Po 

Figure 12-The data exchange of parallel1-D FFT processing scheme 

5. L = the number of computation stations in the pipeline 
butterfly computation element (PIPECE). 

6. The number of CEs in the PARQUO is2a and its max
imum processing capability is 2Q-point FFT, where a < q. 

Suppose the PIPECE and the CEs of the PARQUO are de
signed with the same kind of real adderlsubtracter/mutiplier; 
then the input-output time of the PIPECE is also denoted as 
T b and the time to start the successive butterfly computation 
in the PIPECE is T JL. In addition, according to the defined 
parameters, assume that Ts;;::: T e ;;::: T JL ;;::: Ti . The FFT pro
cessing time will be calculated from the receiving of source 
data to the end of transmitting results and without concern for 
the output sequence of the final Fourier coefficients. Also, the 
overhead time spent in the processor control unit after accept
ing the user's FFT task description is neglected. 

The Performance Measures of the Single FFT Processor 

The total FFT processing time of G groups 2m -point FFT is 
the single versatile FFT processor is formulated as follows: 

A Versatile VLSI -Fast Fourier Transform Processor 159 

(* COMMENT: 
TASK TYPE: PARallel Multiple One Dimensional FFTs. 
TOPOLOGY: Cube. 
DATA SIZE: G groups of M data pointss, M = 2m. 
REQUEST: 2x processors, where 0:5 x < m. 
ASSIGN: v = 0, u = 1 and PSN = Px- 1 •.• Po, 
SOURCE: For processor PSN = Px- 1 ' " Po, the incoming source 

*) 
Begin 

data follows the sequence of 

IUiO-A(I, OPx- 1 '" POjm-x-2'" jo); 
lUil - A(I, 1Px- 1 ' •• POjm-x-2' .. jo); 

where jm-x-2' .. jo = 0 to 2m- x- 1 - 1, i = v. 

For s: = 1 to x do 
(* setting the processing direction *) 
If s = even 
Then MCSW: = cross; i: = v; j: = u; 
Else MCSW: = pass; i: = u; j: = v; 
(* path establishment *) 
Cube(2X,x - s,j); 
(* performing the FFT computation *) 
For I: = 0 to G - 1 do 

End; 

For k: = 0 to 2m- x- 1 - 1 do 
[INPUT DATA FEEDING PROCESS] 

Ifs=1 
Then (* access the source data *) 

MBj(Co i ,C1 t,~ i ,C:, t); 
INO-lUoo; 
IN1-IU01 ; 

Else (* access internal data *) 
If Px- s = 0 
Then MB; (MSWC = cross, Co i ,C1 i ); 

INO-Mo(I,k); 
IN1-~ (I, k); 

Else MB j (MSWC = cross, Co t ,C1 t ); 
INO-M1 (I,k); 
IN1-M3 (I, k); 

[COMPUTATION PROCESS] 
(* active PIPECE *) 
t =:k + PSN * 2m- x- 1; 

OUTO - INO + IN1; 
OUT1-(INO- IN1) *W(M, t *2s- 1); 

[OUTPUT DATA HANDLING PROCESS] 
(* including the data exchangement *) 

If Px- s =0 
Then MBj (Co i ,C1 t ,~ i ,C:, t ); 

Mo (I, k) - OUTO; 
IVjl -OUT1; 

M2 (I, k) - IUjo; 
Else MBj (Co i ,CI t , ~ i ,C:, t ); 

IUjo-OUTO; 
M3(1, k) -OUT1; 
~(I,k)-lUjl; 

m: =m=x; v: = j; u: =i; 
Single processor Multiple 1- D FFT (Section 3.1); 

End. 

Figure 13-PARMOD algorithm 

Case 1. m:5 a, active PIPECE. 

TFFT = Ts*G*2m + Tb*[m + G*(m - 2)1L*2m
-

l
]. 

Case 2. a<m:5q, active PARQUO. 

TFFT = G*Ts*2m + G*Tb*m*2m
-

a
-

1
• 

(1) 

(2) 



160 National Computer Conference, 1984 

o 
o 

o 
o 

vi 

o 
o 

A Machine A(idealized machine) 

Versatile VLSI FFT 

a=6, q=lO, L=32, Ra=40 

°o+.-o-o-----4r.-oo------8r.o-o-----.12~.-O-O----1'6-.-0-0----.20.00 

m : log2(number of data points) 

Figure 14-The logz speed-up of the machine A and versatile FFf processor 
in I-D FFf processing scheme as a function of m and Rb 

Case 3. q <m, active PIPECE and PARQUO. 

Twr = G*Ts*2m + G*Tj*2m
-

1 

+ Tb*[m - q + G*(m - q -1)1L*2m
-

1 

+ G*q*2m
-
a- 1

]. (3) 

To evaluate the speed performance of the designed versatile 
FFf processor, two conceptual machines are defined. The 
first one, named machine A, can always process any given size 
of FFf in maximum parallelism. The second machine, named 
machine B, is the sequential-type hardware FFf processor 
that sequentially executes the butterflies. If machine A and B 
each have two input ports and two output ports, then the 
processing time of 2m -point FFf in machine A is expressed as 

(4) 

and in machine B it is expressed as 

TMB = Ts*2m + m*2m
-

1*Tb. (5) 

One might note that the speed-up ratio of machine A is about 
O(mJ2*T tITs) over machine B. 

Denote Rb as TJTs, Ra as TJTj, and let a = 6, q = 10, 
L = 32, and Ra = 40. Figure 14 shows the log2 speed-up of 
machine A and a versatile V LSI FFT processor, compared 
with machine B, as a function of m and Rb. As Rb decreases, 
the I/O operation becomes a dominate term in evaluting the 

0 
0 

r-= 6 o!I .& I Rb=5 

I Rb=l 

0 G: number of groups 
0 

cD 

0 
0 

vi 

0 
0 .. 

&< 

~ G=5 
&< 

'- 0 

§! 0 

&< cri 

C\l 
IlD 
0 

r-I 0 
0 

N 

0 
0 

...: 

o 
o 
~+.-O-O-----3~.-OO----~6.-0-0-----9~.-O-O-----1~2.-0-0----~lS.OO 

m log2(number of data points) 

Figure 15---The logz speed-up of the cascade I-D FFf processing scheme, as 
a function of m and G 

FFf processing time. In some applications, the source/result 
data might be stored in the medium-speed storage, which may 
cause the Rb value to be small. In such a case, further im
provement of the speed performance should be done by using 
either the multiprocessor cascade FFf processing scheme or 
the mUltiprocessor parallel FFf processing scheme. As semi
conductor technology progresses, the increasing speed of 
hardware circuits reduces the T b value and results in the im
portance of the 110 consideration. 

The Performance Measures of the Cascade Processing 
Scheme 

Since the cascade FFf processing scheme only activates the 
PIPECEs and each processor overlaps its butterfly computa
tion with the incoming data from the previous processor, its 
output handling rate is determined by the next processor. For 
easy illustration, assuming that Te = Ts and counting from the 
time the first pair of source data arrive at the first processor, 
the second processor can start its butterfly computation after 
Ml4*Te + Tb time units and the third processor can start 
its butterfly computation after (M/4 + Ml8)*Te + 2*Tb time 
units, and so on. This means that it takes about Ml2* 
Te + m*Tb time units to produce the first pair of Fourier coef
ficients. The total processing time of G groups 2m -point FFf 



with m linearly connected versatile VLSI FFT processors is 
then formulated as 

(6) 

Figure 15 shows the log2 speed-up ratio of the cascade FFT 
processing scheme, relative to machine B, as a function of m 
and G with Rb = 5 and Rb = 1 respectively. As G increases, 
the CASMOD FFT processing scheme gets better perfor
mance, and its throughput is twice as high as that of machine 
A for large G value. In applications where the source/result 
data storages only have several input/output ports, the de
signed cascade FFT processing scheme can achieve both high 
performance and high throughput. 

The Performance Measures of the Parallel Processing 
Scheme 

The total processing time of 2x processors, ° < x < m, 
parallel-processing G groups 2m-point FFT is formulated as 

Case 1. m - x ~ a. 

TFFf = G*Ts*2m- x 

+ G*Te*[1 + (x - 1)*2m- x
-

1
] 

+ Tb*[m + G*(m - x -1)1L*2m- x
-

1
]. 

Case 2. a<m -x~q. 

T FFf = G*Ts*2m- x 

+ G*Te(l + (x - 1)*2m
-

x
-

1
] 

+ G*Ti *2m- x
-

1 

+ Tb*[G*(m - x)*2m- x
-

a
-

1 + x]. 

Case 3. q < m - x. 

T FFf = G*Ts*2m- x 

+ G*Te*[l + (x - 1)*2m- x
-

1
] 

+ G*Tj *2m- x
-

1 

+ Tb*[m - q + G*(m - x - q)IL*2m- x
-

1 

+ G*q*2m- x
-

a
-

1
]. 

(7) 

(8) 

(9) 

Because the data exchange of the first stage is overlapped 
with the butterfly computation and the incoming source data, 
its actual data exchange operation time is the last produced 
intermediate result. Siegel6 has presented a parallel proces
sing 1-D FFT algorithm for the SIMD machine. Performing 
2m -point FFT in an SIMD machine with 2x processing ele
ments, 0< x < m, takes m*2m- x

-
1 butterfly operations and 

x*2m- x
-

1 external data transfer operations. Due to the lack of 
information about the internal data transfer operations in the 
processing elements of an SIMD machine, which depends on 
the detail hardware circuit design, the processing time of 
2m-point 1-D FFT in an SIMD machine is approximately and 
optimistically expressed as 

Assuming that Te = Ts , Figure 16 is the logz speed-up of an 
SIMD machine and designed FFT processors in the parallel 
1-D FFT processing scheme, relative to machine B, as a func
tion of x and Rb. The result shows that the parallel FFT 

A Versatile VLSI Fast Fourier Transform Processor 161 

E-<~ 

o 
o 

vi 

o 
f..< 0 
o ai 

o 
o· 

I ide&lized SIMD machine 

A A A I versatile VLSI FFT 
processors 

data size: 216 

a:6, q=10, L=32 , Ra=40 

°o+.-o-o----~3.-0-0-----6~.O-O-----9~.-O-O----~12~.-O-O--~15.00 

x : log2(number of processors) 

Figure 16-The log2 speed-up of an idealized SIMD machine and versatile 
FFf processors in parallel1-D FFf processing scheme as a function 

of x and Rb 

processing scheme of designed versatile FFT processors gains 
higher speed performance. Note that in Figure 16, with 
Rb = 10, 32 designed FFT processors can have the same per
formance as an SIMD machine with 1,024 processing ele
ments. Such comparison gives only the approximation; in fact, 
the processing elements of an SIMD machine are usually not 
designed to process the FFT algorithm only. Hence, the Tb 
value of an SIMD machine will be larger than that of a special
purpose FFT processor. 

CONCLUSION 

As semiconductor techology progresses parallel FFT com
puting architecture becomes more and more attractive in real
time applications. However, the associated communication 
problem and the related I/O problem also become more and 
more important. Performance of a theoretical special-purpose 
hardware FFT processor that can process any given size of 
FFT with maximum parallelism can easily be limited by the 
I/O operation. 

The versatile special-purpose VLSI FFT processor de
scribed in this paper facilitates single and multiple processors 
using cascade and parallel FFT processing schemes for various 
applications and source data arrangements. The design of the 
FFT VLSI computation unit takes a more practical approach 
by considering the pins limitation and the progress of VLSI 
technology. The flexible memory organization and bidirec
tional processing capability allow the processor to deal with a 
variety of source input and result output sequences. Further
more, the flexibility of processing variant sizes of FFT in 
single FFT and multiple FFT processors will be suitable for a 
multiuser real-time processing environment. 



162 National Computer Conference, 1984 

The results of the performance analysis show that the com
bination of Star architecture capability with VLSI technology 
and related technology developments can provide a practical 
approach toward meeting the goal of advanced real-time FFf 
processing. The cascade FFf processing scheme offers the 
capability of meeting both the high performance and high 
throughput requirements with limited I/O ports. Such a 
scheme appears to be attractive for collecting and processing 
large amounts of data in real-time. It is concluded that the 
parallel FFf processing scheme with multiple versatile VLSI 
FFf processors in Star can achieve higher performance than 
can the SIMD machine. In addition, the achievement of high 
performance through an exploitation of parallelism using a 
distributed computing approach not only significantly im
proves fault tolerance but also allows maximum flexibility. 

REFERENCES 

1. Wu, c., Feng, T., and Lin, M. "Star: A Local Network System for Real
Time Management of Imagery Data. IEEE Trans. on Computers (Vol. 
C-31), 1982, pp. 923-932. 

2. Cooley, J. W., and Turkey, J. W. "An Algorithm for the Machine Calcula
tion of the Complex Fourier Series." Math. Comp., 19 (1965), pp. 297-301. 

3. Pease, M. C. "An Adaption of the Fast Fourier Transform for Parallel 
Processing." J. ACM, 15 (1968), pp. 252-264. 

4. Stone, H. S. "Parallel Processing with Perfect Shuffle." IEEE Trans. Com
puters (Vol. C-20), 1971, pp. 153-161. 

5. Parker Jr., D. S. "Notes on ShufflelExchange-type Switching Networks." 
IEEE Trans. Computers (Vol. C-29), 1980, pp. 213-222. 

6. Siegel, L. J., Mueller, P. T., and Siegel, H. J. "FFT Algorithms for SIMD 
Machines." Proc. 17th Allerton Con! Commun., Contr., Comput., Octo
ber 1979, pp. 1006-1015. 

7. Gold, B. and Bially, T. "Parallelism in Fast Fourier Transform Hardware." 
IEEE Trans. Audio Electroacoustic (Vol. AU-21), 1973, pp. 5-16. 

8. Groginsky, H. L., and Works, G. A. "A Pipeline Fast Fourier Transform," 
IEEE Trans. Computers, (Vol. C-19), 1971, pp. 1015-1019. 

9. Thompson, C. D. "Fourier Transform in VLSI." International Con! on 
Circuits and Computers, 1980, pp. 1046-1051. 

10. Preparata, F., and Vuillemin, J. "The Cube-Connected-Cycles: A Versatile 
Network for Parallel Computation." 20th Annual Symp. on Foundations of 
Computer Science, IEEE Computer Society, 1979, pp. 140-147. 

11. Kung, H. T. "Why Systolic Architecture?" IEEE Computer Magazine, 
January 1982, pp. 37-46. 

12. Kung, D., et al. "Wavefront Array Processor: Language, Architecture and 
Applications." IEEE Irans. Computers (Vol. C-31), 1982, pp. 1054-1065. 

13. Kung, S. Y., and Galezer, R. J. "Synchronous vs Asynchronous Computa
tion in VLSI Array Processors." SPIE Con! Arlington, May 1982, 

14. Fishburn, J. P., and Finkel, R. A. "Quotient Network." IEEE Trans. 
Computers, (Vol. C-31), 1982, pp. 288-295. 

15. Gentleman, W. M., and Sande, G. "Fast Fourier Transform for Fun and 
Profit." AFlPS, Proceedings of the National Computer Conference (Vol. 
29), 1966,pp. 563-578. 

16. TIng, K. "A Versatile VLSI Fast Fourier Transform Processor Star Local 
Network." Master's thesis, University of Texas at Austin, August 1983. 



Design diversity: An approach to fault tolerance 
of design faults 

by ALGIRDAS A VIZIENIS 
University of California, Los Angeles 
Los Angeles, California 

ABSTRACT 

Diversity of design is discussed as a means to attain fault tolerance with respect to 
latent design faults in software and hardware. Some potential advantages of this 
approach in software versus a single design protected by fault avoidance (verifica
tion, validation, and proofs) are presented. An extension to design fault tolerance 
in VLSI circuits is identified. The results of earlier experimental studies are re
viewed, and new results of a specification-oriented multiversion software experi
ment are summarized. 

163 





Design Diversity for Fault Tolerance of Design Faults 165 

INTRODUCTION: THE DESIGN DIVERSITY 
APPROACH 

Over the past two decades, several successful fault-tolerant 
systems (tolerating faults of physical origin, to be called 
"physical faults" in this paper) have been designed, built, and 
used in important applications.6

,7 Major examples are the 
JPL-STAR (Self-Testing And Repairing) computer for multi~ 
year interplanetary space missions,3,4 the Bell Laboratories 
duplexed ESS central processors,33 and the advanced SIFT20 

and FTMp21 designs intended to serve as real-time control 
computers for commercial airliners of the future. THE SIFT 
and FTMP designs use a minimum of three complete and 
separate computing channels with majority voting (by soft
ware in SIFT; by hardware in FTMP) to assure system survival 
after the first physical fault. Reconfiguration and sparing are 
then used to lower the probability of system failure to the 
desired value of 10-9 for a lO-hour flight. 

In contrast to the successful systems that exercise tolerance 
of physical faults, there are no examples of operational sys
tems that tolerate design faults either in software or in' hard
ware. The fault-avoidance approach is exclusively used to 
eliminate design faults. The inevitable left-over design faults 
are removed by maintenance procedures applied off-line, i.e., 
after a system crash has occurred. The question whether de
sign faults can be successfully tolerated by extensions and 
generalizations of fault tolerance techniques has remained 
unanswered. The question can be addressed in two parts: 

1. Is it possible to implement design fault tolerance regard
less of cost? 

2. Can this approach compete, with respect to cost, with 
the currently prevalent design fault-avoidance ap
proaches that use verification, validation, and correct
ness proofs? 

In setting out to investigate the potential of fault tolerance 
techniques in the domain of design faults, we note that a 
strong analogy exists between physical and design faults, as 
show in Figure 1. 

The existence of systems with strong tolerance of physical 
faults attained through multiple-channel computing is an en
couraging fact. However, it is evident that the channels are 
identical and therefore do not possess the critically important 
property of design diversity that is needed to tolerate the 
manifestation of a latent design defect. Clearly, the multiple 
computing channels will have the potential for design fault 
tolerance only if there is a very high probability that the left
over design faults do not evoke the same forms of undesirable 
behavior in a majority of channels; that is, if their symptoms 
are not isomorphic at the points of observation. 

Consequently, design diversity is the new key requirement 
for design fault tolerance that needs to be added to a multi
channel system that tolerates physical faults. Design diversity 
in this context means the independent generation of two or 
more software or hardware elements (e.g., program modules, 
VLSI circuit masks, etc.) to satIsfy a given requirement. It 
must be noted that the discussion of diversity applies not only 
to the initial generation of programs and designs but also to 
subsequent modifications or redesigns that are made in order 
to improve performance or to correct discovered defects and 
inadequacies. 

CONDITIONS FOR THE INDEPENDENCE 
OF DESIGN FAULTS 

Independence of the design and implementation efforts is the 
mechanism that is employed to minimize the probability of 
identical design-fault symptoms in a majority of computing 
channels. It is approached first by the use of different algo
rithms, programming languages, translators, design automa
tion tools, implementation techniques, machine languages, 
and so on. The second condition for independence is the 
employment of independent programmers or designers, pref
erably with diversity in their training and experience. 

The third and most critical condition for independence of 
design faults is the existence of a complete and correct initial 
statement of the requirements to be met by the diverse de
signs. This is the hard core of the fault-tolerance approach. 
Latent defects, such as inconsistencies, ambiguities, and omis
sions in the initial statement, are likely to bias otherwise en-

ADVERSE PHYSICAL PHENOMENON 

CHANGE OF COMPONENT 
PARAMETERS, FAILURE 

! 

HUMAN MISTAKE 

/~ 
LOGIC DESIGN SOFTWARE OR HARDWARE 
IMPERFECTION DESIGN IMPERFECTION 

! t 
MANIFESTED AS MANIFESTED AS MANIFESTED AS 

PHYS~ ~ ;;: FAULT /INFORMATION FAULT 

EXPECTED LOGICAL BEHAVIOR DISRUPTED 
LOGIC ERROR 

~ 
EXPECTED INFORMATION PROCESSING DISRUPTED 

INFORMATION ERROR 

! 
ERRORS IN OUTPUT AND/OR 

FAILURE OF INFORMATION PROCESSING FUNCTIONS 

Figure 1-An analogy between physical and design faults 



166 National Computer Conference, 1984 

tirely independent programming or logic design efforts so that 
they produce isomorphic design faults. 

The most promising approach to create the initial statement 
is the use of formal, very-high-level specifications that them
selves can be automatically tested for latent defects, or even 
proven to be defect-free. Here perfection is required only at 
the highest level of specification; the rest of the design and 
implementation process and its tools are not required to be 
perfect, but only as good as possible within existing con
straints on resources and time. 

POTENTIAL ADVANTAGES OF DESIGN DIVERSITY 

The most immediate and direct application of design fault 
tolerance through design diversity exists in the multichannel 
systems with very complete tolerance of physical faults (e.g., 
SIFT20

) that are employed in life-critical applications. The 
hardware resources and architectural features to support de
sign diversity are already present, and implementation of de
sign diversity is a logical extension of the existing physical 
fault tolerance mechanisms. Furthermore, design faults in the 
hardware of a channel can be tolerated by choosing for each 
channel functionally compatible hardware building blocks 
from different suppliers. 

A more speculative, but also much more general applica
tion of design diversity is its use as a partial replacement for 
current software verification and validation (V & V) proce
dures. Instead of a thorough V&V of a single program, two 
independent versions are to be executed in an operational 
environment, completing V & V concurrently with productive 
operation. The doubled cost of producing the software is com
pensated by a reduction of the V & V time and a decrease in 
the cost of manpower and special tools needed for the very 
thorough V&V effort. The second (backup) version can be 
taken off line. when adequate reliability of operation is 
reached, and then returned for special operating conditions 
that require greater reliability assurance, especially after 
modifications or after maintenance. A potential system life
time cost reduction exists because such a system can support 
continued operation after latent design faults are uncovered, 
providing near 100% availability. The cost of fault analysis 
and elimination should be reduced because of the lesser ur
gency of the repair actions, since operation is not interrupted 
as long as the majority of channels are not affected. 

A very intriguing long-range implication of the design di
versity approach in software is the possibility of using a "mail
order" approach to the production of two or more versions of 
software modules. Given a precise formal specification that 
includes a set of fundamental tests, the software can be gener
ated by programmers working at their own preferred times 
and locations, possibly using their own personal computing 
equipment. Two potential advantages have been identified: 

1. The overhead cost of programming that accrues in highly 
controlled professional programming environments 
would be drastically reduced through this approach, 
which allows free play to individual initiative and uses 
low-cost home facilities. 

2. The potential of the rapidly growing number of com
puter hobbyists to serve as productive programmers 
would be tapped through this approach. For various rea
sons, many individuals with programming talents cannot 
fill the role of a professional programmer as defined by 
today's rigorous approaches to quality control and use of 
centralized sites during the programming process. 

Finally, an important reliability and cost advantage through 
design diversity may be expected for VLSI circuit design. The 
growing complexity of VLSI circuits, with 400,000 gates/chip 
available today and 1 million gates/chip predicted for 1986, 
raises the probability of latent design faults, since a complete 
verification of the design becomes very difficult to attain. 
Furthermore, the design automation and verification tools 
themselves are subject to latent design faults. Even with 
multichannel fault-tolerant system designs, a single latent de
sign fault would require the replacement of all chips of the 
class, since on-chip modifications are impractical. Such a re
placement would be a costly and time-consuming process. On 
the contrary, use of design diversity of VLSI circuits does 
allow the continued use of chips with design faults, as long as 
their symptoms are not isomorphic at the circuit boundaries. 
Reliable operation throughout the lifetime of a system may be 
obtained by means of design diversity without having a single 
chip with a perfect design and without any modification of the 
basic structure of the VLSI circuits. 

INITIAL STUDIES OF MULTIVERSION SOFTWARE: 
AN EXPERIMENTAL APPROACH 

The potential advantages that were identified in the preceding 
section have provided the motivation for study of design di
versity and design fault tolerance as alternatives to the gen
erally used verification, validation, and proof methodology 
that aims to deliver perfect software products and hardware 
circuits. 

An increasing awareness of the need for design fault toler
ance led to the initiation of a research effort at UCLA in 
1975.5 The work was founded on a 14-year background of 
continuous investigations in tolerance of physical faults,3,8 and 
its goal was to study the feasibility of adapting to software 
design fault tolerance the technique of N-fold modular redun
dancy (NMR) with majority voting, which is effective in the 
tolerance of physical faults. The approach was called N
version programming (NVP), and the first experimental study 
of its feasibility was completed in 1978. 11 A literature search 
in 1975 revealed few other efforts in this area. Suggestions that 
this approach might be a viable method of software fault 
tolerance had been published recently.14,15,17,25 However, 
quite arguably, the first suggestion on record has been made 
by Dr. Dionysius Lardner, who wrote in his article "Bab
bage's Calculating Engine," published in the Edinburgh Re
view, No. CXX, July 1834, as follows: 

The most certain and effectual check upon errors which arise in 
the process of computation, is to cause the same computations 
to be made by separate and independent computers; and this 



Design Diversity for Fault Tolerance of Design Faults 167 

check is rendered still more decisive if they make their computa
tions by different methods.28 

A second approach already under investigation in 1975 was 
the recovery block (RB) technique, in which alternate soft
ware routines are organized in a manner similar to the 
dynamic-redundancy (standby-sparing) technique" in hard
ware.3D The prime objective is to perform run-time software 
design fault detection by an acceptance test and to implement 
recovery by taking an alternate path of execution. This tech
nique is also being continuously investigated at several 
locations. Some comparisons of RB with NVP have been 
made. 11 ,16 Several related research activities have been re
ported more recently.18,24,27,34 

N-version programming is defined as the independent gen
eration of N ~ 2 software modules, called versions, from the 
same initial specification. 2 Independent generation here 
means that programming efforts are carried out by individuals 
or groups that do not interact in the programming process. 
Wherever possible, different algorithms and programming 
languages or translators are used in each effort. 

The goal of the initial specification is to state the functional 
requirements completely and unambiguously, while leaving 
the widest possible choice of implementations to the N pro
gramming efforts. The initial specification also states all the 
special features that are needed in order to execute the set of 
N versions in a fault-tolerant manner. 11 An initial speci
fication defines (1) the function to be implemented by an 
N-version software unit; (2) data formats for the special mech
anisms: comparison vectors (c-vectors), comparison status in
dicators (cs-indicators), and synchronization mechanisms; (3) 
the cross-check points (cc-points) for c-vector generation; (4) 
the comparison (matching or voting) algorithm; and (5) the 
response to the possible outcomes of matching or voting. We 
note that comparison is used as a general term, while match
ing refers to the N = 2 case, and voting to a majority decision 
with N > 2. The comparison algorithm explicitly states the 
allowable range of discrepancy in numerical results, if such a 
range exists. 

It is a fundamental conjecture of the N-version approach 
that the independence of programming efforts will greatly 
reduce the probability of identical software design faults oc
curring in two or more versions. Together with a reasonable 
choice of c-vectors and cc-points, this is expected to turn 
N-version programming into an effective method to achieve 
tolerance of software design faults. The effectiveness of the 
entire approach depends on the validity of this conjecture, so 
an expenmental investigation was deemed to be the essential 
next step of the study. The initial research effort at UCLA 
addressed two questions: 

1. ~ich constraints (e.g., need for formal specifications, 
SUItable types of problems, nature of algorithms, timing 
constraints, inexact voting algorithms, etc.) have to be 
satisfied to make N-version programming feasible at all 
regardless of the cost? 

2. How does the cost effectiveness of the N-version pro
gramming approach compare to the two alternatives: 
nonredundant programming and the recovery block30 

approach? 

The scarcity of previous results and an absence of formal 
theories on N-version programming led to the choice of an 
e~perimental approach: to choose some conveniently acces
SIble programmmg problems, to assess the applicability of 
N-version programming, and then to proceed to generate a set 
of programs. Once generated, the programs were executed in 
a simulated multiple-hardware system, and the resulting ob
servations were applied to refine the methodology and to 
build up theoretical concepts of N-version programming. A 
more detailed discussion of the research approach and goals 
is available,6 as are detailed discussions of two sets of experi
mental results, using 27 and 16 independently written pro
grams. 12,11 

THE SPECIFICATION-ORIENTED MULTIVERSION 
SOFTWARE EXPERIMENT 

The preceding experimental work demonstrated the prac
ticality of experimental investigations and confirmed the need 
for high-~uality software specifications. As a consequence, 
the first aIm of the subsequent research was the investigation 
of software specification techniques. Other aims were to in
vestigate the types and causes of common software errors, to 
propose improvements to software specification techniques 
and to the use of these techniques, and to propose future 
experiments in the investigation of design fault-tolerance in 
software and in hardware.22

,23 

The following software specification languages were exam
ined as candidates for use in the experiment: OBJ,19 SPE
CIAL,32 DREAM,31 SEMANOL/ UDSS,9 and PDL. lO Key 
attributes required for selection were comprehensibility, test
ability, maintainability, explicit handling of error conditions, 
and availability for immediate use. 

To examine the effect of specification techniques on multi
version software an experiment was designed in which three 
different specifications were used. The first was the formal 
specification language OBJ. 19 The second specification lan
guage used was the nonformal PDL 10 that was characteristic of 
current industry practice. English language was used as the 
third, or control, specification language, since English had 
been used in the previous studies. 11 

A specification is formal if it is written in a language with 
explicitly and precisely defined syntax and semantics.26 This 
leads to some very advantageous properties: the specification 
can be studied mathematically; it can be mechanized and 
tested to gather empirical evidence of its correctness; it can be 
computer processed to remove ambiguities, to remove incon
sistencies, and to be made complete enough (at least) for 
empirical testing; the interpretation by implementors and cus
tomers in an unambiguous way is easier; and writing rigorous 
specifications is easier with a formal methodology. OBJ was 
chosen as the formal specification language because the mech
anism necessary to construct and test specifications using OBJ 
was available at UCLA along with local expertise. This proved 
to be important since, like all other formal specification lan
guages examined, it had quite inadequate existing documen
tation. OBJ did, however, promote modularity and explicit 
handling of error conditions. 

The nonformal specification language PDL lacks the power 



168 National Computer Conference, 1984 

and sophistication of OBJ, but it does have adequate 
documentation, is reasonably well known, and has been in use 
in industry for several years. Writing specifications in PDL is 
straightforward, the ease of understanding depending largely 
on the amount of care taken by the writer. PDL provides 
extensive cross referencing and indexing-a feature that 
would be very useful in OBJ. Specifications written in PDL do 
tend to be rather long, however. 

The problem chosen for the experiment was an "airport 
scheduler" exercise. This database problem concerns the 
operation of an airport in which flights are scheduled to depart 
for other airports and seats are reserved on those flights. The 
problem was discussed originally by Ehrig, Kreowski, and 
Weber13 and later used to illustrate OBJ by Goguen and 
Tardo. 19 Because the problem is transaction oriented, the nat
ural choice of N-version cross-check points was at the end of 
each transaction. With the OBJ specification as a reference 
point, a specification was written in PDL and another one in 
English. 

EXECUTION OF THE EXPERIMENT 

Programmers with reasonable proficiency in PU1 were re
cruited among the Computer Science students at UCLA. 
They were assigned to work with one of the three specifica
tions; no specification was tackled by a group whose overall 
range of abilities was not representative of the total range. 
The programmers were given a realistic deadline and a mon
etary incentive to produce programs of at least minimal qual
ity by the deadline. The experiment proceeded in several 
steps: (1) recruiting, (2) teaching OBJ and PDL, (3) exam
ining and ranking, (4) Assigning the problem, and (5) evaluat
ing programs. 

A seminar was held at the UCLA Computer Science De
partment to announce the need for programmers; and over 
the next four weeks 30 programmers were recruited, whose 
abilities ranged from good to excellent, who were senior or 
graduate students, and who had anywhere from no profes
sional experience at all up to several years of experience. The 
next stage was the presentation of a one-day course on OBJ 
and PDL, which was necessary because of the total lack of 
familiarity with OBJ and very little familiarity with PDL. 
Study material was distributed and an examination was held 
two days later, at which the 30 participants were ranked as 
good, average, or poor. The members of each ranking were 
then assigned in roughly equal numbers to use the OBJ, PDL, 
and English specifications. The purpose of the examination 
was to avoid loading any of the specifications with either 
predominant!y good or predominantly bad programmers. 

At a subsequent meeting each programmer was given a 
packet containing the specification, a notebook to record pro
grammer effort, bugs encountered, and other problems, and 
a questionnaire on the specification and its use. It was also 
made clear that the programmers would not be paid for their 
work unless their programs passed a straightforward accept
ance test. While an example of a typical acceptance test was 
given, the actual test to be used was not revealed. They were 
strongly requested to avoid working with other participants, 

and the goal of the experiment was once again carefully ex
plained to support this request. 

At the end of the four-week interval 18 of the 30 pro
grammers returned working program versions of the airport 
scheduler written in PL/t. Of the 18 program versions seven 
were written from the OBJ specification, five from the PDL 
specification, and six from English. All 18 programs were run 
with the standard acceptance test data. After minor modifica
tions were made to two programs by the original program
mers, all 18 were judged satisfactory and were prepared for 
more detailed testing. 

To conduct the more extensive testing, a very demanding 
set of 100 input transactions was developed in an attempt to 
exercise as many features of the programs as possible. The 
immediate consequence of running the programs with this 
input data was the discovery that 11 of the 18 programs 
aborted on invalid input. This is, of course, a very dangerous 
situation to encounter in N-version programming, as Chen 
had found out. 11 In this case, one aborting bad version usually 
causes operating system intervention for all versions, effec
tively allowing the bad version to outvote two otherwise 
healthy versions. To fix this situation all programs were instru
mented using PU1 language capabilities to detect and to 
attempt recovery from these otherwise catastrophic errors. 
After such instrumentation, all programs survived the test 
case input, with 10 of the 11 previously abortable programs 
making reasonable recoveries. 

Program size and time requirements varied considerably. 
Table I shows, for each program version, the number of PU1 
statements used in the program (PU1 Stmts), the number of 
procedures used (Procs), the compile time (PU1 MUS*), the 

TABLE I-Characteristics of all 18 versions 

Version 
OBJ1 
OBJ2 
OBJ3 
OBJ4 
OBJ5 
OBJ6 
OBl7 
PDL1 
PD1.2 
PDL3 
PDIA 
PDLS 
ENOl 

ENOl 1 ENG3 
ENG4

1

1 

II ENOS 
ENG6 

PU1 
Stmts 
423 
400 
398 
328 
455 
243 
336 
455 
501 
242 
437 
217 
260 
372 
385 
689 

481 I' 
387 

Procs 
22 
28 
17 
14 
14 
16 
23 
27 
33 
19 
39 
11 
21 
19 
30 
2S 
15 
12 

PU1 
MUS 
15.14 
11.35 
7.42 
8.62 

14.79 
4.71 
8.30 

16.96 
19.58 
4.31 

16.31 
4.26 
4.75 

1

12.41 
8.12 

128.23 

II 8.76 
19.23 

GO 
MUS 
3.89 
3.96 
4.33 
4.77 
3.10 
2.70 
4.92 
3.16 

19.58 
4.09 
2.84 
4.30 

Size 
37600 
28048 
30904 
29920 
32304 
20960 
34808 
24928 
29656 
27360 
30896 
26440 

3.33 27552 

3.89 1377921 
2.41 20648 
2.94 I 26864 I 

2.42 12405611 
3.99 24656 



Design Diversity for Fault Tolerance of Design Faults 169 

TABLE II-Test results for individual versions 

OK Cosmetic Good Detected Undet. Version Points Errors OK+Cos Errors Errors 
ORT1 73 0 73 2 25 
ORT2 71 18 89 8 3 
ORT3 67 11 78 4 18 
ORT4 69 3 72 8 20 
ORT5 67 12 79 0 21 
ORT6 46 0 46 0 54 
OBT7 52 17 69 7 24 
PDLl 59 2 61 1 38 
PD12 54 2 56 32 12 
PDLJ 95 0 95 4 1 
PDIA 45 28 73 0 27 
PDLS 94 0 94 5 1 
ENG1 74 12 86 0 14 
ENG2 67 27 94 0 6 
ENG3 97 1 98 0 2 
ENG4 30 5 35 25 40 
ENG5 55 6 61 0 39 
ENG6 53 3 56 9 35 

execution time for the 100-point test case (GO MUS), and the 
program size in bytes (Size). 

The output produced for each of the 100 input data points 
was classified as "good" if the output was completely correct 
or was logically correct with "cosmetic" errors. The numerous 
cosmetic errors were due mainly to misspelling and bad out
put formatting. Other data points were classified as either 
detected or undetected error points. A point was considered 
to be a detected error if the program version caused execution 
of the instrumented code that had been added to detect and 
attempt recovery from abort conditions. In the far more seri
ous case that the output looked legal but was in fact wrong, 
the point was considered an undetected error detectable only 
by external means. Table II shows the results of this classifica
tion. 

Next, all possible triple combinations of the 18 versions 
were executed as an N-version module. Table III lists the 
breakdown of these 816 combinations. There were now three 
output points to consider for each input point, with the output 

TABLE Ill-Three-version triplets 

Triplet Number of 
Comnosition Triolets 

000 3S 
PPP 10 
EEE 20 
OPE 210 
OOP lOS 
OOE 126 
OPP 70 
OEE lOS 
PPE 60 
PEE 7S 

All 816 

TABLE IV-Outputs of members of a triplet 

Code Meanin2 
G Good: error free or cosmetic error 
D Detected error in sinale version 
U Undetected error: distinct 
U· Undetected error: common 

TABLE V-The three-version decision function 

No. of Function Result Decision Confidence Type Errors Level 
V1 0 V(G,G,G) G Triplex 3 
V2 1 V(G,G,D) G Duplex 2 
V3 1 VeG,G,U) G Triplex 2 
V4 2 V(G,D,D) G Simplex 1 
V5 2 V(G,D,V) D Duplex 0 
V6 2 VeG,u,U) D Triplex 0 
V7 2 V(G,U-,U-) U- Triplex 2 
V8 3 V(D,D,D) D Null 0 
V9 3 V(D,D,U) U Simplex 1 

VIO 3 V(D,U,U) D Duplex 0 
Vll 3 V(D,U-,ui) U- Duplex 2 
V12 3 V(U,U,U) D Triplex 0 
V13 3 VcU,U-,U~ U- Triplex 2 
V14 3 . V(U-,U-,U-) . U- . Triplex 3 i 

points coded as in Table IV. Note that U is an undetected 
error that is not duplicated in one of the other two versions, 
U* an undetected error that is common to both or all three of 
the versions. The 14 meaningful combinations of these codes 
are shown with the corresponding voting function output in 
Table V. The distribution of the experimental results over the 
14 voting categories is shown in Table VI. 

All common errors were tabulated and traced to their 
causes. It was found that there were 21 different cases of 
common errors. Five of these were caused by specification 
limitations or errors, seven by logic errors made by the pro
grammers, and nine by implementation errors. These com
mon errors were tabulated in Tables VII-IX. 

WORK IN PROGRESS AND GOALS FOR 
LONG-RANGE RESEARCH 

One major goal of the experiments described in the preceding 
sections is to apply the accumulated experience to the design 
of the next experiment. It has become evident that the general 
UCLA campus computing facility is an unsupportive and of
ten hostile environment for multiversion software experi
ments. With a view to establishing a long-term research facil
ity for such investigations, an effort is in progress to create a 
multichannel fault-tolerant system as an integral part of the 

*Machine unit second (MUS) is actually a measure of time and other resources 
such as I/O needs. 



170 National Computer Conference, 1984 

TABLE VI-Decision function results 

3-Version Group 
Type 

All 000 PPP EEE OPE Other 
V1 36665 1703 448 820 9354 24340 

44.9% 48.7% 44.8% 41.0% 44.5% 45.0% 

V2 5292 129 128 166 I 1341 3528 
6.5% 3.7% 12.8% 8.3% 6.4% 6.5% 

V3 22105 842 274 554 5939 14496 
27.1% 24.1% 27.4% 27.7% 28.3% 26.8% 

V4 1283 48 8 32 347 848 
1.6% 1.4% 0.8% 1.6% 1.7% 1.6% 

V5 3986 141 88 80 1046 2631 
4.9% 4.0% 8.8% 4.0% 5.0% 4.9% 

V6 6838 264 18 206 1747 4603 
8.4% 7.5% 1.8% 10.3% 8.3% 8.5% 

V7 1944 86 12 82 386 1378 
2.4% 2.5% 1.2% 4.1% 1.8% 2.5% 

V8 176 4 0 0 65 107 
0.2% 0.1% 0.0% 0.0% 0.3% 0.2% 

V9 477 20 7 4 123 323 
0.6% 0.6% 0.7% 0.2% 0.6% 0.6% 

V10 867 11 6 22 274 554 
1.1% 0.3% 0.6% 1.1% 1.3% 1.0% 

V11 87 6 0 0 28 53 
0.1% 0.2% 0.0% 0.0% 0.1% 0.1% 

V12 1415 173 1 20 275 946 
1.7% 4.9% 0.1% 1.0% 1.3% 1.7% 

V13 353 48 0 8 62 235 
0.4% 1.4% 0.0% 0.4% 0.3% 0.4% 

V14 112 25 10 6 13 58 
0.1% 0.7% 1.0% 0.3% 0.1% 0.1% 

Total 81600 3500 1000 2000 21000 54100 
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

UCLA Computer Science Department advanced local net
work facility, which uses the LOCUS distributed operating 
system. 29 The projected six-year effort consists of four phases. 

The first phase is the implementation of a multichannel 
fault-tolerant subset NIFTS, composed of at least three iden
tical computing nodes (DEC VAX 111750 computers) of the 
UCLA local network. It is to serve as an experimental vehicle 
for subsequent design fault tolerance studies. The SIFT20 con
cept is being adapted at UCLA.to serve as the foundation of 
NIFTS. In the second phase NIFTS will be used as the means 
to continue and expand the ongoing experimental research on 
the tolerance of software design faults that has been described 
in this paper. In the third phase we will investigate and imple
ment a generalization of NIFTS to encompass N computing 
nodes with nonidentical hardware. Such an "N-fold diverse 
hardware" form of NIFTS is intended to tolerate faults due to 
left-over design errors and to errors introduced during modifi
cation and maintenance. In the fourth phase we plan to con
duct extensive fault tolerance experiments with NIFfS as 
developed in the first three phases. The main goal is to evalu
ate the effectiveness and to refine the methodology of using 
N-version soft\X/2!e and N-version hard'.vare as mechanisms of 
design fault tolerance. 

A second planned extension of our research is to employ 
the mail order concept of obtaining multiversion software. We 

TABLE VII-Common specification errors 

Error Aj)peaI'S In Description 
om PDL ENG 

S1 1,4,5,7 Onlv defmes four destinations 

S2 4,5,6 Tune shown as 09:45 in example 

S3 4,5,6 Error message order ambiguity 

S4 2,4 Duplicate error message ambiguity 

S5 6 Parameter checkina ambiguity 

TABLE VIII-Common logic errors 

Error J~In Desaiption 
om POL ENG 

L1 1 CANCEL does not work on last entry 
I2 3 5 CANCEL works only on partial database 
1.3 7 CANCEL unknown cancels last entry 
IA 1 Cannot retrieve record 
LS 1 Allows duplicate record 
1..6 4 CANCEL, RESERVE-SEAT ignored 
L7 4 Bad input leads to chaos 

TABLE IX-Common implementation errors 

Error ADDean In Description 
om PDL ENG 

I1 2 1.23.4.5 Did not check inPUt parameten fIBt 
12 1.4 E.rpects time as 09:45 
13 12,5 4 1 Wrona error messqe on Wellal inOllt 
I4 4 4 1 CREATE does not work the second time 
IS 2.4 5 Error messaae outout on lellal input 
I6 3 1 6 Allows null Darameten 
I7 1 4 Allows invalid parameten 
IS 6 No output after fIBt list J)l'Oduced 

19 2 Cannot handle invalid inOllt 

are working to secure the cooperation of fault toierance re
search groups at several universities in the USA and in Eu
rope. Members of these groups will participate in writing the 
programs for a larger experiment that will be evaluated on our 
new experimental facility, NIFTS. 

The practicality and generality of the design diversity ap
proach as an alternative to fault avoidance remain to be estab
lished or disproved; however, the design fault problem in both 
software and VLSI circuits remains quite serious, and we 
consider our research results to be sufficiently encouraging to 
warrant further and more intensive efforts. 

ACKNOWLEDGMENT 

The research for this article was supported by NSF Grant No. 
MCS-78-18918 and by a research grant from The Battelle 
Institute. (Drs. Liming Chen and John P. J. Kelly have been 
major contributors to the research effort at UCLA.) 

REFERENCES 

1. Anderson, E. R., F. C. Belz, and E. K. Blum. "SEMANOL(73), A Met
alanguage for Programming the Semantics of Programming Languages." 
Acta Informatica 6, 109-131. 



Design Diversity for Fault Tolerance of Design Faults 171 

2. Avizienis, A., and L. Chen. "On the Implementation of N-version Pro
gramming for Software Fault-Tolerance During Execution." Proceedings of 
COMPSAC 77, (First IEEE-CS International Computer Software and 
Application Conference), 1977, 1949-155. 

3. Avizienis, A. '~An Experimental Self-Repairing Computer," Information 
Processing 1968, (Proceedings of the 1968 Congress of the International 
Federation for Information Processing, Edinburgh, Scotland). Amsterdam: 
North Holland Publishing Co., 1969, pp. 872-877. 

4. Avizienis, A., et al., "The STAR (Self-Testing-And Repairing) Computer: 
An Investigation of the Theory and Practice of Fault-Tolerant Computer 
Design," IEEE Transactions on Computers, C-20, (1971), pp. 1312-1321. 

5. Avizienis, A., "Fault-Tolerance and Fault-Intolerance: Complementary 
Approaches to Reliable Computing." Proceedings of the 1975 International 
Conference on Reliable Software, pp. 458-464. 

6. Avizienis, A., "Fault-Tolerant Computing: Progress, Problems, and Pros
pects." Information Processing 77, Proceedings of the IFIP Congress 1977. 
Toronto, August 8-12, 1977, p. 405-420. 

7. Avizienis, A., "Fault-Tolerance: The Survival Attribute of Digital Sys
tems." Proceedings of the IEEE, 66, (1978), pp. 1109-1125. 

8. Avizienis, A. "The Four-Universe Information System Model for Fault
Tolerance." Digest FICS-12: The 1982 International Symposium on Fault
Tolerant Computing, Santa Monica, CA, June 1982. 

9. Biggerstaff, T. J., "The Unified Design Specification System (UDSS)." 
Proceedings on Specifications for Reliable Software, April 79, 104-118. 

10. Caine, S. H., and E. K. Gordon. "PDL-A Tool for Software Design." 
AFIPS, Proceedings of the National Computer Conference, 1975 
(Vol. ), pp. 

11. Chen, L., and A. Avizienis. "N-Version Programming: A Fault-tolerance 
Approach to Reliability of Software Operation," Digest FTCS-8, Toulouse, 
France, June 1978, pp. 3-9. 

12. Chen, L. "Improving Software Reliability by N-version Programming." 
UCLA Computer Science Department Technical Report, UCLA-ENG-
7843, University of California, Los Angeles, 1978. 

13. Ehrig, H., H. Kreowski, and H. Weber. "Algebraic Specification Schemes 
for Data Base Systems." Proc. VLDB, 1978,427-440. 

14. Elmendorf, W. R. "Fault-Tolerant Programming." Proceedings of the 1972 
International Symposium on Fault-Tolerant Computing, June 1972, 79-83. 

15. Fischler, M. A., et.al., "Distinct Software: An Approach to Reliable Com
puting" Proc. 2nd USA-Japan Computer Conference, Tokyo, Japn, 1975, 
1-7. 

16. Granarov, A., J. ArIat, and A. Avizienis. "On the Performance of Soft
ware Fault-Tolerance Stategies." Digest of the 1980 International Sym
posium on Fault-Tolerant Computing, Kyoto, Japan, October 1-3, 1980, pp. 
251-253. 

17. Girard, E. and J. C. Rault. "A Programming Technique for Software 
Reliability." Proceedings of the 1973 IEEE Symposium on Computer Soft
ware Reliability, 44-50. 

18. Gmeiner, L., and U. Voges. "Software Diversity in Reactor Protection 
Systems: An Experiment." IFAC Workshop SAFECOMP 1979, Stuttgart, 
May 16-18, 1979. 

19. Goguen, J. A., andJ. J. Tardo, "An introduction to OBJ", Proc. Specifica
tions for Reliable Software, April 1979, 170-189. 

20. Goldberg, J., "SIFT: A Provable Fault-Tolerant Computer for Aircraft 
Flight Control", Information Processing 80 (Proceedings of the IFIP Con
gress 1980, Tokyo, Japan), pp. 151-156. 

21. Hopkins, A. L., Jr. et. al., "FTMP-A Highly Reliable Fault-Tolerant 
Multiprocessor for Aircraft", Proc. IEEE, vol. 66, no. 10, Oct. 1978, pp. 
1221-1239. 

22. Kelly, J. P. J., "Specification of Fault-Tolerant Multi-Version Software: 
Experimental Studies of a Design Diversity Approach," Ph.D. Thesis, 
UCLA Computer Science Department, June 1982; also UCLA CSD Tech
nical Report No. CSD-820927, September 1982. 

23. Kelly, J. P. J., and A. Avizienis, "A Specification-Oriented Multi-Version 
Software Experiment" IEEE 1983 FTCS 13th Annual International Sym
posium Fault-Tolerant Computing, pp. 120-126. 

24. Kim, K.H., and C.V. Ramamorthy. "Failure-Tolerance Parallel Pro
gramming and Its Supporting System Architecture," AFIPS, Proceedings 
of the National Computer Conference, 1976 (Vol. 45), pp. 413-423. 

25. Kopetz, H., "Software Redundancy in Real Tune Systems." Proc. IFIP 
Congress 1974, 182-186. 

26. Wegner, P., (ed.), B. H. Liskov, and V. Berzins. "An Appraisal of Pro
gram Specifications," In Research Directions in Software Technology. Cam
bridge, Mass.: MIT Press, 1979. 

27. Long, A. B., C. V. Ramamoorthy, et al. "A Methodology for Develop
ment and Validation of Critical Software for Nuclear Power Plants." Proc. 
COMPSAC 77 (IEEE-CS Int. Computer Software & Applications Conf.), 
620-626. 

28. Morrison, P., and E. Morrison, (eds.) Charles Babbage and His Calculating 
Engines, New York: Dover, 1961, p. 177. 

29. Popek, G. et al., "LOCUS-A Network Transparent, High Reliability 
Distributed System," The UCLA Computer Science Department Quarterly, 
9, (1981), pp. 75'-88. 

30. Randell, B. "System Structure for Software Fault-Tolerance." IEEE Trans
actions on Software Engineering, SE-1, (1975), pp. 220-232. 

31. Riddle, W. E. et al., "Abstract Monitor Types." Proceedings on Specifica
tions for Reliable Software, April 1979, pp. 126-138. 

32. Robinson, L., and O. Roubine. "SPECIAL-A Specification and Asser
tion Language." SRI Technical Report, CSL-46, January 1977. 

33. Toy, W. N. "Fault-Tolerant Design of Local ESS Processors." Proceedings 
of the IEEE, 66, (1978), pp. 1126-1145. 

34. Voges, U. "Aspects of Design, Test and Validation of the Software for a 
Computerized Reactor Protection System," Proceedings of the 2nd Interna
tional Conference on Software Engineering, San Francisco, 1976, pp. 
606-610. 





Tradeoffs in system level diagnosis 
of multiprocessor systems 

by A. KAVIANPOUR 
Sharif University of Technology 
Tehran, Iran 

and 
A.D. FRIEDMAN 
The George Washington University 
Washington D.C. 

ABSTRACT 

The development of LSI technology makes it possible to partition a system into 
replaceable modules, and the advent of low-cost microprocessors makes possible 
networks of hundreds (or more) of interconnected modules. The problem of repair
ing such a system is becoming a matter of major importance in digital systems. 

In this paper a new procedure for defining an optimal design with respect to cost 
of repair for a system consisting of replaceable modules (processors) is introduced. 
Also the tradeoff between the number of repetitions of the diagnostic test (speed 
of diagnosis), the number of testing links in the system (complexity), and the 
number of replaced fault-free modules (accuracy) is considered. 

In an early paper, Preparata, Metze, and Chien4 formulated a model of system 
level diagnosis and defined two types of diagnosability measures, i.e. one-step 
t -fault diagnosability, and sequential t -fault diagnosability. They proved that Dst is 
one-step t-fault diagnosable and single loop connection is sequentially t-fault diag
nosable. Friedman12 later generalized this measure to one-step t-out-of-S (tiS) diag
nosability, in which t faults are diagnosed to within S ;::: t modules. This introduces 
the possibility of inexact diagnosis-i.e. such that some fault-free modules may have 
to be replaced in order to repair a system in one step. 

So far most of the results that are available are only for single-loop or Dst design, 
and the results for a system in between these two extreme cases are not available. 
A Dst system needs more testing links and a single-loop system needs more steps in 
order to be repaired. In this paper we have defined a design in between Dst and 
single-loop systems; also the tradeoff between the number of repetitions of the 
diagnostic test (speed of diagnosis), the number of testing links (complexity), and 
the number of replaced fault-free modules (accuracy) is considered, and the optimal 
design with respect to cost of repair is defined. 

173 





INTRODUCTION AND BACKGROUND 

Several papers considering various aspects of self-diagnosable· 
systems have appeared in the literature,I-15 and it appears that 
a graph-theoretic model can be effectively used in the area of 
system diagnosis. A system is partitioned into a number of 
modules 1110, mb m2, ... ,mn -l that can correspond to the pro
cessors in a multiprocessor system, and it is assumed that each 
module can test or be tested by some other modules. The 
outcome of a test in which mi tests mj is denoted by aij' The 
variable aij is binary; aij = 1 indicates "mi finds module mj 
faulty," aij = 0 indicates "mi finds module mj fault-free." If mi 
is faulty, then the outcome aij is unpredictable. 

Preparata et al. 4 originally considered this graph-theoretic 
model for the purpose of diagnosis of multiple faults. They 
defined two types of diagnosability, namely one-step t-fault 
diagnosability and sequential t-fault diagnosability. 

Definition 1. A system of n units is one-step t-fault diagno
sable if all faulty units within the system can be identified 
without replacement provided the number of faulty units 
present does not exceed t. 

Definition 2. A system of n units is sequentially t-fault diag
nosable if at least one faulty unit can be identified without 
replacement provided the number of faulty units present does 
not exceed t. 

In a sequentially diagnosable system, at each step at least 
one faulty module can be diagnosed. This module can be 
replaced by a module that is assumed to be fault-free and the 
test can be applied again. This is equivalent to identifying one 
fault-free module. This procedure is repeated until the system 
is completely fault-free. Preparata et al. proved that it is pos
sible to design a system which has n modules and is one-step 
t-fault diagnosable if and only if n 2: 2t + 1 and each module 
is tested by at least t other modules (when no two modules test 
each other). They defined the following canonical system. 

Definition 3. A system S is a Dl)t system if there exists a 
testing link from mi to mj if and only if (j - i) = 8m (mod
ulo n) where 8, m are integers and m assumes the values 
1,2, ... , t. 

Figure 1 shows a D12 design. Preparata et al. showed that 
Dl)t systems are one-step t-fault diagnosable. They also consid
ered a single-loop design that is sequentially t-fault diagnos
able (a special case of Dl)t, Dl1)' Such a system is obtained by 
connecting the n elements in a cycle. They gave a lower bound 
on the value of n; Preparata5 proved that a single loop is 

Tradeoffs in System Level Diagnosis 175 

sequentially t-fault diagnosable if and only if n 2: (m + 1)2 + 
~(m + 1) + 1, with t = 2m +~, m an integer, and ~ = O,l. 

Friedman12 later generalized this measure to one-step t-out
of-S(t/S) diagnosability, in which t faults are diagnosed to 
within S 2: t modules. This introduces the possibility of inexact 
diagnosis and replacement of the faulty modules plus some 
modules that may not be faulty. Friedman introduced the 
following measure. 

Definition 4. A system V is k-step tiS-fault diagnosable if by 
k applications of the diagnostic test sequence any set of :::; t 
faulty modules can be diagnosed and repaired by replacing at 
most S modules. 

Obviously S 2: t and n 2: S (if n = S repair is trivial since the 
entire system is replaced). Friedman also considered a one
step repair of a single-loop system with n » t, which requires 
the replacement of at most S modules, where S = 
max f( t - f + 2) - 1 and f:::; t is the actual number of faults in 
the system. 

TRADEOFFS IN SYSTEM LEVEL DIAGNOSIS 

In this paper we will develop a procedure for defining an 
optimal design with respect to cost of repair in a system con-

Figure I-D12 design 



176 National Computer Conference, 1984 

sisting of replaceable modules, and we will consider the trade
off between (1) the number of steps (i.e. test iterations) for 
repairing a system (speed of diagnosis), (2) the number of 
replaced fault-free modules (accuracy), (3) the number of 
testing links in the system (complexity). The following general 
problem will be solved: Given n (the number of modules of 
the system), and t (upper bound on the number of faults), in 
order. to minimize the total repair cost, 

1. In how many steps should the system be diagnosed? 
2. What bound on the number of fault-free modules to be 

replaced should be used? 
3. How many testing links should be used? 

In order to design a minimum-cost design we must define 
the parameters that affect the cost. A single-loop system 
(n» t) is sequentially t-fault diagnosable and the number of 
testing links is equal to n. A Dat design is one-step t-fault 
diagnosable and the number of testing links is equal to nt; 
however, a single loop design needs more steps, k, in order to 
be diagnosed (in a worst case the diagnostic test may have to 
be repeated t times) but needs fewer testing links, L, in com
parison to Dat design; thus there is a tradeoff between the 
number of steps for repairing a system and the number of 
testing links. Another factor that affects the minimum-cost 
design is the number of replaced fault-free modules, Sg. Con
sider a system with a single-loop connection. This system can 
be repaired sequentially in at most t steps (k :s; t) if no fault
free module may be replaced (Sg = 0). However, we can repair 
this system in one step (k = 1) if some of the modules that are 
possibly faulty may be replaced (Sg;;::: 0). Thus there is a trade
off between the number of steps for repeating a diagnostic test 
(k) and the number of replaced fault-free modules (Sg). In 
general, by considering D8t and single loop designs one sees 
that there is a tradeoff between the number of repetitions of 
a test, k (speed of diagnosis), the number of replaced fault
free modules, Sg (accuracy), and the number of testing linksl 
module, L (complexity). Tables I and II illustrate this trade
off. 

k-STEP DIAGNOSABILITY 

As was explained, a single-loop system is sequentially t-fault 
diagnosable, and a D8t system is one-step t-fault diagnosable. 
However, a design in between these two extreme cases was 
not defined. For example, a design that can be repaired (with
out replacement of fault-free modules) in two steps, three 
steps, or in general in k steps is not available. In the following 
we will define a system that can be repaired in at most k steps 
for arbitrary k. In this paper by n » t we mean n;;::: (l t/2J + 
1)(f tl2] + 1) + 1, * which is the condition of sequentiality. 4 

This is because both sequential and tiS diagnosability require 
the identification of at least one fault-free module. 

In the following we define a system that is k-step t-fault or 
k-step tiS fault diagnosable. 

* ( J indicate the greatest integer s t/2. r 1 indicate the smallest integer ~ t/2. 

TABLE I-Tradeoff with no fault-free modules replaced (Sg = 0) 

Design 

single-loop 
Dst 

k 

t 
1 

L 

TABLE II-Tradeoff with one testing link (L = 1), 
single-loop design 

k 

t 
1 

NOTE: See equation (5) and following for definition of t2/4. 

Definition 5. A system S is said to belong to a design DIL 
when a testing link from mj to mj exists if and only if j - i = m 
(modulo n) where m = 1,2, ... ,L (special case of D8L with 
8= 1). 

Lemma 1. If a system S with n » t modules employs design 
DIL with L = ftlkl, then S is k-step t-fault diagnosable. 

Proof. Since each module of the system S is tested by f tIk 1 
other modules and n »t this implies that at least one fault
free module can be identified. Thus at each step the status of 
at least ftlk] faulty modules can be diagnosed, and in at most 
k steps k ftlkl = t faulty modules will be diagnosed. 

From Lemma 1 it is seen that when k = 1 then L = f t/k 1 = t 
and the system can be repaired in one step. If k = t, then 
L = f tlk J = 1, and the system can be repaired in at most t steps. 
Using Lemma 1 the following corollary is immediate. 

Corollary 1. If a system S with n» t employs design DIL 
with L = ftlal then S is k-step tiS-fault diagnosable. Where 
a> k and 1 < a < t. 

In design DIL with L = f tla 1 each module is tested by r t/a 1 
other modules. As will be seen later, the value of a affects the 
number of replaced fault-free modules Sg for a fixed k; in 
Corollary 1, the value of Sg is explicitly considered. That a = k 
implies k-step t-fault diagnosability; if k < a, in order to repair 
a system in k steps some fault-free modules may have to be 
replaced. The value of k/a also affects the number of replaced 
modules. When k = a = 1 the total number of testing links is 
nkft/al = nt and no fault-free module will be replaced. When 
k/a < 1, that is, in k-step tiS-fault diagnosability, each module 
is tested by fewer than [tlk 1 other modules and we have to 
repair the system in at most k steps. Thus some of the fault
free modules may have to be replaced. 

MINIMUM COST DESIGN OF DIGITAL SYSTEM 

For cost evaluation we define the following parameters: 

Cr = cost of repeating a test/moduie. 
CL = cost of testing link/module, i.e. neL = cost of a single 

loop connnection. 



Cg = cost of replacing a fault-free module. (We assume that all 
modules have identical costs and that all tests must be 
repeated.) 

First we will find the minimum cost design for k-step tlS
fault diagnosability. Then by using a = k and Cg ~ 00 we can 
find the minimum cost design for k-step t-fault diagnosability. 
Cg~ 00 means that in k-step t-fault diagnosability the cost of 
replacing a fault-free module is very high and we are not 
allowed to replace fault-free modules. One factor that affects 
the number of replaced fault-free modules in the strategy for 
repair, i.e. which module to replace, and when, for minimum 
Sg. We must define a strategy for repair that is constrained; 
that is, a strategy in which we can decide in how many steps 
we wish to repair a system (the value of k will be specified by 
the designer, which can be found by the procedure of this 
paper). 

Constraint Strategy 

We define the following constraint strategy, which we call 
A(k - 1,1). In this strategy, in the first (k -1) iterations we 
replace those modules that are definitely faulty and at the kth 
step we replace all modules that may be faulty, i.e. all modules 
that cannot be definitely determined to be fault-free. The 
following example illustrates how strategy A(k - 1,1) can be 
used for repairing a system. 

Example 1. Consider a single-loop connection with n = 17 
and t = 6. Let modules mbm3,~,m8, and m9 (f = 5) be faulty. 
We wish to repair the system by using strategy A(k - 1,1) with 
k = 3. In this strategy, at the first and second applications of 
the diagnostic test we replace those modules that are defi
nitely faulty and at the third step we replace those modules 
that are definitely faulty plus those modules that are possibly 
faulty. The fault pattern in the first iteration is assumed to be 
as follows: 

* * * * * 
mi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

a(i-l)i 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 

Module ml (and only ml) is definitely faulty. Therefore we 
replace module ml and reapply the test. The fault pattern in 
the second iteration is then as follows: 

* * * * 
mi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

a(i-I)i 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 

Module m3 (and only m3) is definitely faulty. We replace 
module m3 we reapply the test. The fault pattern in the third 
iteration is as follows: 

* * * 
mi 0 123 4 5 6 789 10 11 12 13 14 15 16 

a(i-I)i 0 000 o 0 1 110 0 0 0 0 0 0 0 

Since we wish to repair the system in 3 steps, we have to 
replace modules ~,m7,m8,m9,mlO (of which ~ is definitely 

Tradeoffs in System Level Diagnosis 177 

faulty and the others possibly faulty). The total number of 
replaced modules is equal to 7. In this example 7 - f = 
7 - 5 = 2 fault-free modules are replaced; Sg = 2. If we want to 
repair the system with Sg = 0, we have to apply the test 6 
times. 

Minimum-Cost Design 

In order to find a minimum-cost design for the constraint 
strategy we proceed as follows: We restrict ourselves to system 
DIU in which each module is tested by L = rt/a1 other mod
ules. For minimum-cost design of k-step t-fault diagnosability, 
a = k and the total number of testing links is equal to r ntlk l
In order to calculate the number of replaced modules we will 
use stategy A(k - 1,1). The value of S can be calculated as 
follows: since each module is tested by L = ft/al other mod
ules and n» t, in k iterations we can detect at least rtk/al 
definitely faulty modules. However, since t is the upper bound 
on the number of faults, there may possibly be tf = t - [tk/a] 
more faulty modules. 

The maximum number of modules that may have to be 
replaced in a worst case for t' faulty modules is S = 
f*(t' - f* + 2) - 1, where f* = max [number of (Ol)'s, r! num
ber of one's 1], 13 Thus the total number of replaced modules is 

S = rtk/a + f*(t' - f* + 2) -11 (1) 

where t' = t - rtk/a1. Thus we have 

S = rtk/a + f*(t - tk/a - f* + 2) - 11. (2) 

The maximum value of S occurs when ~~ = O. Equation (2) 

implies 

t - ~ - f* + 2 - f* = O~f* = t - t~a + 2. 

Hence 

f* = It - ~k/a J + 1 = l (~ -~!) ] + 1. 

Substituting the value of f* into equation (2) results in the 
following: 

(3) 

where 1 ~ a ~ t; 1 ~ k ~ t; k ~ a. Thus the number of replaced 
fault-free modules is at most 

(4) 

* It is possible to consider a diagnostic model in which some of the modules are 
performing computation while others are doing testing. In this case the term 
kner will decrease but the control unit will be more complex, because it has to 
decide which module must be in the computation or testing phase. 



178 National Computer Conference, 1984 

Hence the parameters for minimum-cost design are as fol
lows: 

1. k = Number of test iterations; I:=:; k:=:; t. 
2. L = r nt/a 1 = Total number of testing links; I:=:; a :=:; t; 

k:=:;a. 
3. Sg = r(t/2 - kt/2a)21 = Number of replaced fault-free 

modules. 

When k = 1 (i.e. for repairing a system in one step) from 
equation (4) Sg = [(t/2 - tkl2a)2] = O. Thus if each module is 
tested by t other modules, we will not replace any fault-free 
modules. From equation (4) it is seen that for minimum-cost 
design of a system two cases can be considered: Case 1 when 
Sg is not constrained and its value can be obtained from other 
parameters (a, k); and Case 2 when Sg is constrained and the 
optimal-cost design will be obtained with respect to it. In this 
case, since one of the parameters (Sg) is fixed the optimal cost 
may be higher than in Case 1, when all three parameters can 
vary. 

Case 1: Optimal-cost design when Sg is not constrained 

The total cost in terms of k,L, Sg is as follows: Total 
cost = cost of testing links + cost of repeating a test + cost of 
replacing fault-free modules, 

C = r~l CL + knC + [(t/2 - tkl2a?]Cg (5) 

Where I:=:; a :=:; t; I:=:; k :=:; t; a;::: k. In equation (5) the term 
kncr * means that all of the modules are taking part in testing 
during k steps repair. In order to find an optimal-cost design 
the total derivative must be equal to zero: 

ac ac 
aa da + ak dk = O. 

-nt C + tk (.! _ tk) C = 0 
a 2 L 2 2 2a g . 

t (t tk) nC-- --- C =0. a 2 2a g 

Thus we have 

(6) 

(7) 

(8) 

Substituting equation (8) into equation (6) and simplifying we 
have 

(9) 

From equation (9) the optimal-cost design for k-step t-fault 
diagnosability can be obtained by substituting Cg~ 00. Thus 
we have 

k
3 

C _ kt + nCL = 0 ~ k3 
Cr _ kt = 0 ~ k 

2 CL 2 Cg 2 CL 2 

= rVtCJcJ (lOa) 

Or from equation (8) by substituting a = k the same result can 
be obtained as follows: 

C = r ~ 1 nCL + knCr 

~; = 0 ~ k = rVtCJCr 1. (lOb) 

From equation (10) it is seen that when CdCr ;::: t, then k ;::: t 
and a single-loop design is optimal with respect to cost of 
repair for t-fault diagnosability. When CJCr :=:; lit then k:=:; 1 
and one-step repair should be used in t-fault diagnosability. 
This is a consequence of the fact that when CL , the cost of a 
testing link, is very high a single-loop design is the obvious 
choice, and when Cr is very high one-step design must be 
considered. Figure 2* shows cost versus k for Cr/CL = 2 and it 

'" The actual forms of the graphs are in the form of step function, but in order 
to illustrate the actual value of cost between two integer values of k or L, we will 
draw all graphs in a continuous form. 

cost 

14 -

13 

12 

11] C 
J. :: 2 

10 
CL 

9 

8-

7-

6 

5-

4 t=10 

3 

2-

l~ 
I ~ 

1< 
1 2 3 5 6 7 8 9 

Figure 2-Cost versus k for k-step t-fault diagnosability 



TABLE III-Tradeoffs of C" Cu nCu and Cg for t-fault 
diagnosability, t = 20 ,. 

k tlo. Sg Cost 

c" 1 nCL 
8 2 4 4.25 nCL -=- -=16 

CL 4' Cg 

c" 1 nCL 
6 3 6.16 nCL -=- -=6 

CL 2' Cg 

is seen that when testing links are relatively less expensive 
than repeating a test, then more testing links and fewer test 
repetitions must be used. 

Example 2. Let t = 20 and 

Cr _ cost of repeating a test _ 1 
CL - cost of a single loop - 4" 

nCL _ cost of a single loop 
1; - cost of replacing a fault-free module 16. 

The values of k, tin, Sg, and cost can be calculated as follows: 

k3Cr kt nCL k3 

---+-=O~--lOk+ 16=0~k=8. 
2CL 2 Cg 8 

~ = [ k ~ 1 = 8·1 = 2 

Sg = r (~ - ~~) 21 = (10 - 8)2 = 4 

Cost = r :1 CL + nkC + r (~- ~~r1 Cg =4.25 nCL • 

Thus the optimal cost design is as follows: 

1. Procedure = tiS-fault diagnosability 
2. Maximum number of test applications = 8 
3. Number of testing links/module = 2 
4. Maximum number of fault-free modules which may have 

to be replaced = 4 
5. Cost = 4.25 (cost of a single loop) 

Now if we consider the case that the cost of replacing a 
fault-free module is relatively high in comparison with the 
above example, then we have the following: Let C/CL = 112, 
nCJCg = 6. From equations (8) and (9) we obtain 

TABLE IV-Cost for tiS = Fault and t-fault diagnosability, t = 20, 
CjCL = VI, nCdCg = 16 

tiS fault diagnosability 
t-fault diagnosability 

k 

8 
9 

t/o. 

2 
3 

4 
o 

Cost 

4.25 nCL 

5.5 nCL 

Tradeoffs in System Level Diagnosis 179 

TABLE V-Cost for tiS-fault and t-fault diagnosability, t = 20, 
c"JCL = liz, nCdCg = 6 

tiS-fault diagnosability 
t-fault diagnosability 

k 

6 
7 

From equation (8) we have 

tin = [k CrJ = ~ = 3 
CL 2 

tlo. 

3 
3 

Sg = [ (~ - ~~rJ = (10 - 9? = 1 

1 
o 

Cost 

6.16 n CL 

6.5 n CL 

Cost = [: J CL + nkCr + [ (~ - ~~) 2J Cg = 6.16 nCL . 

Table 3 shows the comparison of these two cases. From 
Table III it is seen that the value of k decreases as C becomes 
expensive. The number of testing links increases since CL 

becomes cheaper, and the value of Sg decreases since Cg be
comes expensive. 

If we wish to use k-step t-fault diagnosability (i.e. Sg = 0), 
then from equation (10) we have k = [VtCJCr] which results 

cost 

12 

11 

10 -

9 

8 

7 

6 

4 

3 

2 

1 

o 1 

CL t-=20. k=.~. c- = 1/2 
r 

2 3 5 6 

Figure 3--Cost versus L for k-step US-fault diagnosability 



180 National Computer Conference, 1984 

in k = 9, [tlk] = 3, and cost = 5.5 nCL if nCr/CL = 1/4. Also, 
k = 7, [tlk] = 3, and Cost = 6.5 nCL if nC/nCL = 112. Thus we 
have the results shown in Tables IV and V. Comparing the 
cost of repair for these two cases, we see that in both cases the 
cost of tiS-fault diagnosability is lower than the cost of t-fault 
diagnosability if nCJCg > O. 

Figure 3 shows the graph of cost versus L for t = 20, 
CdCr = 112, k = 4, and nCdCg = 24,12,6,4,2,1/2. From Figure 
3 it is seen that all curves intersect at point L = [tla] = 5. This 
is because k = 4, and L = [tla] = 5~a = 4~ k = a = 4. Thus 
at point k = a we can use the design for t-fault diagnosability 
and the cost associated with this design is independent of the 
cost of replacing good modules. Therefore all curves meet at 
L = 5 and they have the same value. Figure 4 illustrates the 
effect of the value of t on the cost of repair. 

Case 2: Optimal-cost design when Sg is constrained 

In Case 1 we have considered the optimal cost design for a 
case in which Sg is not constrained and determined its value so 
that the total cost is minimum. We will now consider the case 
that Sg is constrained, i.e. its maximum value is fixed, and the 
optimal-cost design is required subject to this constraint. 
Since in this case we already have fixed one of the parameters, 

cost 

60 

56 

52 

40 

36 

32 

20-

12 _ 

o 

t=20 

t=15 

t=10 

I i j 

1 2 3 
I 
5 

nCL 1/2, C-- = 5, k=2 
g 

I j"'L 
6 7 8 

Figure 4-Cost versus L for k-step tiS-fault diagnosability 

the total cost will always be at least as great as and may be 
higher than in the previous case. 

From equation (4) we have the following: 

Solving for tla we obtain 

tla = [(t - 2~)/k] (11) 

Equation (11) shows that as the number of testing links de
creases, the number of replaced fault-free modules increases. 
Using equation (5) we have the following result: 

(12) 

For the optimal cost design we have dC/dk = 0, 

(13) 

(8) 

cost 

7 
CL nCr. 

t=20, C
r 

= 2, c;- = 5 

6 

5 -

4 

3 

2 

1 

I Sg=25 

~ .. I k 
0 1 2 3 5 6 '( 8 9 

Figure 5--Cost versus k for k-step tiS-fault diagnosability (Sg is constrained) 



Figure 5 illustrates cost versus k for k-step tiS-fault diagnos-' 
ability when Sg is given. 

COMPARISON OF k-STEP tiS-FAULT 
DIAGNOSABILITY WITH k-STEP t-FAULT 
DIAGNOSABILITY 

From the preceding results we can conclude that since the cost 
of repeating a test divided by the cost of replacing a fault-free 
module is always greater than zero, i.e. in practice Cg 4- 00, and 
that even in a worst case that C/Cg or nCdCg is very small, 
k-step tiS-fault diagnosability results in lower costs than k-step 
t~fault diagnosability. (See Figure 3.) Before constructing an 
optimal cost design we may wish to know the difference in cost 
between the optimal-cost designs of a k-step tiS-fault diagnos
ability and of a k-step t-fault diagnosability. In order to find 
the difference in cost we proceed as follows. 

1. k-step t-fault diagnosability 
a. Find value of k from k = [V tCdCr]. 
b. Find cost from C = [ntlk] CL + nkCr. 

2. k-step tiS-fault diagnosability (Sg is not constrained) 
a. Find value of k from k3Cj2CL - ktl2 + nCdCg = O. 
b. Find value of tin from tin = [kCiCd. 
c. Find cost from C = [ntln] CL + nkC + SgCg. 

3. k-step tiS-fault diagnosability (Sg is constrained) 
a. Find value of k from k2 = (t - 2~)(CdCr). 
b. Find value of tin from tin = [(t - 2~)/k]. 
c. Find cost from C = [(t - 2~/k]nCL + nkCr + SgCg. 

Now we can compare the costs for each design option. If we 
wish to use only k-step t-fault diagnosability (although the 
cost of tiS procedure is lower), then by using the values of Cr 

and CL we can find whether to use one-step or k-step t-fault 
diagnosability immediately; 

1. If CdCr ~ t then we use single loop design for t-fault 
diagnosability. 

2. If CdCr :5 lIt then we use one-step repair for t-fault diag
nos ability . 

3 .. If lit < C/Cr < t then we use design D1L. 

DISCUSSION OF THE RESULTS 

In this paper the design of a digital system that is k-step 
tiS-fault diagnosable or k-step t-fault diagnosable was consid
ered. The tradeoff of the number of iterations of the diagnos
tic test for repairing a system (speed of diagnosis), the number 

Tradeoffs in System Level Diagnosis 181 

of testing links (complexity), and the number of rephlced 
fault-free modules (accuracy) was presented. The procedure 
for finding an optimal-cost design in terms of cost parameters 
Cg,CL,C for repairing a digital system was explained, and the 
comparison between k-step t-fault and k-step tiS-fault diagno
sability was considered. Our results show that the cost of 
k-step tiS-fault design may be less than k-step t-fault design 
and that the selection of parameters k,L,Sg is very important. 

REFERENCES 

1. Forbes, R. E., D. H. Rutherford, C. B. Stieglitz, and L. H. Tong. "A 
Self-Diagnosable Computer.'.' AFIPS, Proceedings of the Fall Joint Com
puter Conference, (vol. 27), 1%5, pp. 1073-1086. 

2. Agnew, P. W., D. H. Rutherford, R. J. Suhocki, C. M. Yen, and D. E. 
Muller. "An Architectural Study for a Self-Repairing Computer." U.S. 
Space Systems Division, Final Tech. Doc. Rept. SSD-TR-65-159, 
AD47976, November 1%5. 

3. Ramamoorthy, C. V. "A Structural Theory of Machine Diagnosis." AF
IPS, Proceedings of the Spring Joint Computer Conference, (vol. 30), 1967, 
pp.743-756. 

4. Preparata, F. P., G. Metze, and R. T. Chien. "On the Connection Assign
ment Problem of Diagnosable System." IEEE Transactions on Electronic 
Computers, EC-16, (1967), pp. 848-854. 

5. Preparata, F. P. "Some Results on Sequentially Diagnosable Systems." 
Proceedings Hawaii International Conference System Science, University of 
Hawaii Press, 1968, pp. 623-626. 

6. Seshagiri, N. "Completely Self-Diagnosable Digital System." International 
Journal of Systems Science, 1 (1971), pp. 235-246. 

7. Hakimi, S. L., and A. T. Amin. "Characterization of Connection Assign
ment of Diagnosable System." IEEE Transactions on Computers, C-23 
(1974), pp. 86-88. 

8. Kime, C. R. "An Analysis Model for Digital System Diagnosis." IEEE 
Transactions on Computers, C-19 (1970), pp. 1063-1073. 

9. Russell, J. D., and C. R. Kime. "System Fault Diagnosis: Masking, Expo
sure, an Diagnosability Without Repair." IEEE Transactions on Comput
ers, C-24 (1975), pp. 1155-1167. 

10. Russell, J. D., and C. R. Kime. "System Fault Diagnosis: Closure and 
Diagnosability with Repair." IEEE Transactions on Computers, C-24 , 
(1975), pp. 1078-1089. 

11. Adham, M., and A D. Friedman. "Digital System Fault Diagnosis." Jour
nal of Design Automation and Fault-Tolerant Computing, 1 (1977), 
pp. 115-132. 

12. Friedman, A. D. "A New Measure of Digital System Fault Diagnosis." 
Digest 1975 International Symposium Fault-Tolerant Computing. IEEE 
Computer Society Publications, 1975, pp. 167-170. 

13. Karunanithi, S., and A D. Friedman. "System Diagnosis with tiS Diagnos
ability." Digest 1977 International Symposium Fault-Tolerant Computing. 
IEEE Computer Society Publications, 1977, pp. 65-71. 

14. Kavianpour, A, and A D. Friedman. "Design of Easily Diagnosable 
System." Third USA-JAPAN Computer Conference, 1978, San Francisco. 

15. Kavianpour, A "Diagnosis of Digital System using tiS Measure." Doctoral 
dissertation, University of Southern California, Los Angeles, June 1978. 

16. Kavianpour, A, and A. D. Friedman. "Different Diagnostic Models for 
Multiprocessor System." 8th World Computer Congress, IFIP, October 
1980. 





Software 

A. Winsor Brown, Track Chair 

A track on software presents an interesting challenge. All 
the tracks (except "Hardware and Architecture") have a great 
deal to do with software. So what should the focus of the 
software track be? This problem was solved by a proposed 
description for the track from an archetypical hardware per
son's view of software: "The problem is just a simple matter 
of programming." As those of us in software know, the prob
lem is more than just a simple matter of programming. This 
slight change in wording makes the focus clear. The track 
explores various aspects of the software life cycle: specifica
tion, design, implementation, integration, test, delivery, and 
maintenance. 

The sessions from the Software track have more to do with 
the why, how, and wherefore of the development process than 
they do with the what of any particular application or area. 
Therefore, in the program booklet they are listed in Informa
tion Processing Management as well. Despite this listing, all 
software sessions are described in the present overview. 

Using a combination of comparisons, case studies, panel 
discussions, and formal papers, the Software track attempts to 
bring to the fore useful information on maintenance, develop
ment processes and methods, practical tools and techniques, 
integrated software, UNIX, delivery, and programming lan
guages. Having maintenance at the top of the list may seem 
backwards, but its importance is justified by the number of 
dollars being spent on it. This year also marked a first for 
maintenance: the Data Processing Management Association 
now has a special interest group just for maintenance
SIGMA. It assisted in organizing the two sessions on main
tenance, which address the subject from two different 
perspectives. 

A session addressing the creative ways being found for 
doing and managing the enhancement and correction of exist-

ing application software, "Software Maintenance: New Syn
ergy," presents some practical methods. Systems information 
databases, redocumentation, maintaining user satisfaction, 
and factoring maintenance into the requirements and design 
of a system are the four specific areas covered. The session 
thus looks at both what is being done and what can be done 
now. 

"Maintenance: The Future of Present Systems," on the 
other hand, focuses on how to ensure that present software 
systems can be made to serve the needs of the future. Con
cepts like technology transfer, contracted maintenance, pro
longing life, and fourth-generation language environments 
are covered in the papers in this session. All of these come out 
of a realization that past software systems have survived 
longer than was expected. 

The huge sums of money being spent in data processing 
system development are probably second only to the costs of 
maintenance. These large outlays attract the interest and con
cern of management, practitioners, and providers of services. 
Not surprisingly, then, the three sessions covering software 
development processes and methods seem to focus on the 
traditional data processing software environment and cover 
the areas of structured tools and methods, development 
productivity management, and information management 
methodologies. 

"A Battle Royal: Structured Tools and Methods" compares 
and contrasts the Warnier and Data Flow structured systems 
development approaches. Panelists represent both training 
organizations' and users' perspectives. Perhaps hints of the 
future of systems development tools and methods will be 
glimpsed in these presentations on productivity improvement 
techniques. 

"Software Development Productivity Strategies" will con-



centrate on the processes by which costs can be reduced and 
yields increases in systems development. It will address the 
topics of conditioning the organization for restructuring the 
development environment, phased production and implemen
tation of corporate data models, and resolving the conflicts 
presented by integrating differing schools of development 
techniques and methodologies. 

"New Information Management Methodologies" will dis
cuss how the traditional methodology life cycle must change in 
order to support corporate information resource management 
environments. New methods for using the new productivity 
tools, such as prototyping and fourth-generation languages, 
will be covered. These new tools allow trial implementation to 
begin after only the planning or specification phase is com
plete, and mean that the database cannot wait until after the 
design phase is complete. 

The results of software engineering are seldom directly vis
ible (unlike some of the results of computer hardware en
gineering). One of the few ways for practitioners to find out 
about the successes and failures of others is at conference 
sessions. Focusing on the development process from more a 
software engineering perspective (and from less a manage
ment and data processing perspective) are six sessions 
presenting results of the use of practical tools and techniques: 
prototyping, software engineering work stations, software en
gineering techniques, software automation, software engi
neering management, and test and validation. 

Three different perspectives will be used in the examination 
of the concept of rapid applications prototyping in the panel 
session titled "Applications Prototyping." Congruence with 
general design theory, experiences within a large aerospace 
firm, and the use of knowledge-based systems are all dis
cussed as they relate to rapid prototyping. As a result, the 
prerequisites, tools, techniques, and experiences with applica
tions proto typing will be addressed. 

Are the cobbler's children finally going to get shoes? Will 
there be "Software Engineering Work Stations" in our future, 
as indicated by the title of this session? A lot of effort has gone 
into work stations for other branches of engineering, so why 
not software too? In fact, this session discusses issues in the 
evolution of computer-aided software engineering, using the 
lessons learned in existing computer-aided engineering sys
tems. Work has been on going in university environments; 
and information on Plexsys, a workbench environment for 
information system design (an enhancement of the PSLlPSA 
system), is presented by one of the panelists. In addition, a 
paper is presented that shows the possibilities of the personal 
computer as the basis for software engineering work stations. 

"Software Engineering Techniques" reports on specific 
methods that are all covered by papers in this session: simu
lation, software manufacturing (code generation), and proto
typing. The objectives of the techniques are software transfer
ability, affecting maintenance, and quick implementation or 
real-time graphics, respectively. The session thus provides an 
excellent opportunity for software engineers to find out about 
techniques that others have used. 

New aspects of the development process will be addressed 
in the panel "Software Automation-An International Per
spective." The international perspective broadens the topic to 

include issues of societal/cultural impacts, what the "ad
vanced" nations must do to keep their lead, and hoW the 
developing nations might get ahead by avoiding the mistakes 
that have already been made. Two other questions the panel 
will attempt to address include whether there is a software 
revolution in the making and what fifth-generation software 
will be like. 

The first of the three papers in the "Software Engineering 
Management" session is concerned with the interplay of an 
integrated methodology and the tools that support it. The 
second addresses the software management challenges raised 
by new computer system designs: networks, distributed sys
tems, multi/coprocessors, fault tolerant systems, etc. The 
third paper presents the results of the application of software 
engineering principles to real-time projects. 

"Software Test and Validation" presents practical results 
from the application of various techniques to the problems of 
testing and validating software. Test case selection based on 
the cost of errors, dynamic assertions for interactive program 
validation, and tool-based approaches to testing are reported 
on in three papers. 

Two of the hottest topics in software lately have been the 
UNIX operating system and integrated software. There is a 
lot of talk about UNIX, but not many end users are actually 
using it. On the integrated software front, the industry has 
heard announcements from some of the major software 
houses, but third-party integrated applications built around 
those announced products are not yet available. 

The existing and proposed integrated systems do have 
widely varying characteristics-in the core about which they 
are integrated, in their user interfaces, and in the way the 
various pieces communicate, among others. "Emerging 
Trends in Integrated Software" explores the major ap
proaches being used to realize integration and presents two 
examples of existing integrated software, of which one is icon
based and the other uses a more traditional user interface. 
The session thus promises to provide some insight into the 
kinds and forms of integration. 

The panel "UNIX: State of the Art" will report on the 
current status of UNIX technically and commercially. It 
should thus provide a status report on UNIX, which has been 
steadily evolving and growing in market importance over the 
last three years. The panel will then prognosticate the future 
directions of UNIX from both the market and the technical 
points of view. What they say about the future of UNIX will 
actually provide some interesting insight into the realities of 
the present. 

Despite all the ballyhoo about integrated software and 
icons, users can seldom survive without documentation, the 
paperware that is often sorely lacking. While concentrating on 
mini-computer and embedded systems, the comparison of 
military and commercial documentation requirements in 
"Military vs. Commercial Documentation" should present 
factors that also apply to mainframe and microcomputers. 
Writers must meet not only technical but marketplace require
ments, and this session should help them adapt to the differ
ences between military and commercial documentation. 

It seems that every Tom, Dick, and Harry is writing micro 
software, or would like to write it. As book publishers enter 



the production and distribution channel, it should be easier 
for budding authors to get their products to market. "Writing 
Microcomputer Software that Sells" provides three perspec
tives: publishers', wholesalers', and authors'. The publishers' 
software editorial philosophy, the wholesalers' evaluation 
process and services provided to the retailer and consumer, 
and the authors' viewpoint when working for a publisher 
should give an interesting glimpse into this new channel of 
distribution. 

Where would the software industry be without program
ming languages? Three sessions on programming languages 
complete the software track. The language debates go on 
much like political ones-seldom with clear winners or losers. 
The sessions that cover programming languages will address a 
relatively new language (Modula-2), a new version of an old 
language (COBOL), and large versus small languages. 
"Modula-2 and Its Applications" will show this new language 
in use through case study presentations. The uses cover oper
ating system implementation, computer-aided design, and in
tegrated programming (development) environments. During 
the presentations, examples of Modula-2 in use as a portable 
systems implementation language and as a computational 
applications development tool will be discussed. 

Believe it or not, good old COBOL has been back in the 
news recently. "COBOL-8X-The New Standard" discusses 
the features of this new version of the language, presents a 
costlbenefit analysis of the effects of COBOL-8X, and dis
cusses criticisms of potential incompatibilities. The session 
promises to provide a quick update on the happenings in the 
COBOL language world. 

The panel session "Large vs. Small Programming Lan
guages: Pros & Cons" will provide a forum for a discussion of 
the merits and demerits of large and small languages. The 
terms large and small may be poorly defined, but they are 
intuitively clear to many. The size of a language is determined 
by the number of its syntactic and semantic elements and the 
complexity of their interaction. Specific languages will be used 
as illustrations, but the session is not a debate about them. For 
example, the original BASIC represents a small language, 
whereas PL/I is obviously a large language. Panelists with 
experience in both large and small languages present their 
views on the relative advantages and disadvantages of each 
size. 

The Software track obviously covers a great deal more than 
just programming. Is software just a simple matter of pro
gramming? You be the judge. 





Maintenance as a function of design 

by JAMES R. McKEE 
International Monetary Fund 
Washington, D.C. 

ABSTRACf 

Changing one's point of view on the maintenance function can lead to a better 
understanding of the relationship between maintenance and other aspects of soft
ware products. This can lead to an improved allocation of effort when building 
software products. 

187 





INTRODUCTION 

The maintenance requirements of software products are gen
erally given insufficient consideration by software product de
signers because they miscalculate the importance of the main
tenance function as a cost component in the life of a software 
product. One aspect of the problem may be attributable to an 
inappropriate point of view. The life cycle model most com
monly used to portray software development misrepresents 
the activity it is intended to explain and gives insufficient 
emphasis to maintenance. 

Corrections to these problems may lead to more optimal 
solutions in the process of software development. This is likely 
because the trade-off between maintainability and other com
ponents of a software product will become more properly 
balanced. Correspondingly, the analysis and design docu
ments associated with software products will include items of 
greater value to the maintenance function. 

POINTS OF VIEW 

When practitioners first started trying to bring some order to 
the process of software development, they developed the con
cept of a "life cycle" for new software. The cycle generally 
began with problem recognition or goals. It then stepped 
through analysis, design, coding, installation, testing, and 
operation. The last step of the cycle was maintenance. The 
problems with this model are numerous. As Zvegintzov has 
pointed out, this model does not accurately describe a sys
tem's life. Moreover, the model is generally portrayed as a 
linear concept, not as a cycle. 1 In reality the life cycle model 
mixes a linear concept with a cyclical concept. It ties the 
concept of the process by which good operational product is 
generated to the operation of a system that uses the product. 

Perhaps the most egregious error in the traditional life cycle 
model is the mishandling of the concept of maintenance. 
Maintenance is generally shown as a single step at the end of 
the cycle; in fact, it is better portrayed as second- (or 
3rd-,4th-, ... ,nth-) round development. The life cycle then 
becomes develop, operate, develop, operate, develop, and so 
forth. The model now looks more like a cycle, but has become 
less useful. This is because the relationship between product 
building and operations is not so tightly coupled. Much as an 
airframe manufacturer typically does not operate an airline 
(and vice versa), the operations of most software products are 
separated from their manufacture. As an aside, one can make 
the argument that the failure to isolate software development 
from operations is a fundamental error that results in a prod
uct of extremely poor quality. 

What we have left when we dispense with the life cycle 

Maintenance as a Function of Design 189 

There is one other effect of the wide acceptance of the life 
cycle model with which we must deal. When maintenance 
(dealing with old products) is included at the end of the cycle, 
then it is presumed that the beginning sections of the cycle 
are to be applied to new products. This leads not only to a 
rather wrong-headed view of how the efforts of the analyst
programmer are distributed, but also fosters the impression 
that structured techniques are best applied only to new 
projects. As shown in Figure 1, if we are to divide analyst
programmer activity between existing and new applications, 
at least two thirds of the activity will be attributable to existing 
applications. 2,3 

Although the analysis to prove the point has not been devel
oped here, it is perfectly clear that the application of struc
tured techniques is equally valid for all analyst-programmer 
activity. It then follows that the greatest absolute benefit will 
occur when the analyst-programmer is engaged in mainte
nance. While this conclusion has been recognized, the process 
by which we obtained it here has not. 

COSTS AND ALLOCATION OF EFFORT 

In software development, the validity of a project should be 
determined by traditional cost-benefit analysis.4 This ap
proach uses a model in which costs are seen to be rising and 
benefits falling as the scope of a project expands. The discus-

Maintenance of 
existing systems 

Creation of new systems 

Figure I-What analyst-programmers do 



190 National Computer Conference, 1984 

sion here will be limited to the cost side of the model with the 
operating assumption that minimization of the total cost of a 
software product over its entire useful life is a reasonable 
objective function for the software engineer. This assumption 
is held to be valid whether the product is an addition, cor
rection, or modification to an already existing product, or a 
completely new product. 

For our discussion the total cost to be minimized consists of 
three fundamental components: maintenance cost, operating 
cost, and original development cost. This schema includes all 
costs of fixing problems or errors, all enhancements, and all 
changes required by alterations in the operating environment 
of a product-that is, the costs of any and all changes to a 
product after it is first delivered-within the definition of 
maintenance. Operating costs include hardware costs, con
sumables, and any labor and management costs associated 
directly with the running of the product. Development costs 
include all the original analysis, design, coding, and testing 
costs of a new product. The behavior of these cost compo
nents is of considerable interest to the software engineer, as 
they should be a major determinant of the structure of his 
product. 

The historical trends of these cost components are worthy 
of review. Operations costs per unit of work are declining 
largely because the hardware component of these costs is 
rapidly declining-this overwhelms other operations cost 
components. However, as the cost of a unit of work has 
declined, the demand for additional units has expanded in 
greater proportion. Thus, the overall trend of this expenditure 
is up, not down. (This behavior can be explained by a concept 
well known to economists, that of elastic demand. The de
mand for computer hardware has been highly price elastic 
throughout the history of the industry and is expected to 
remain so for the foreseeable future.) Development costs and 
maintenance costs are both labor intensive and thus are in
creasing. Maintenance costs may also be increasing because 
the useful life of software products is increasing. Certainly, 
our realization of the enormity of maintenance costs is 
increasing. 

The distribution of costs between these major components 
is likely to vary widely depending on the nature of the work, 
the maturity of the system, and the work style of the organiza
tion. Figure 2 shows the implied distribution between mainte
nance activity, hardware operations activity, and all other 
activity within fifteen federal installations surveyed by the 
General Accounting Office (GAO). 3 The other category in
cludes personnel costs attributable to operations, administra
tive support, and management, as well as new-product devel
opment. The figure is interesting because it demonstrates the 
great importance of the maintenance function as well as the 
continuing importance of hardware cost. 

The point of this aspect of our discussion is that while 
hardware costs have traditionally been given, and should con
tinue to be given, great attention, the next most important 
cost component is software maintenance. Original develop
ment costs, which receive tremendous attention in the 
structured-analysis literMnre; ::Ire a distant third in the actual 
cost of most systems. 

Hardware for operations 
38.7% 

Other 
29.2% 

Maintenance 
32.1% 

Figure 2-Implied distribution of costs in GAO study 

TRADE-OFFS 

In all development projects there are many trade-offs. For our 
purposes, the trade-off between maintenance and other cost 
components is of interest. 

The strong relationship between a well-structured develop
ment process and the maintainability of a system is well recog
nized in the software-engineering literature. In almost every 
treatise on structured analysis or structured design, long argu
ments are made about the efficacy of these structured tech
niques. The arguments always include testimony to the fact 
that structured development produces systems that have fewer 
errors, are much easier to understand, and thus much easier 
to maintain. However, they tend to view maintainability as a 
fallout of good structured techniques. A better point of view 
would be to view maintainability as a quantifiable character
istic of software. Maintainability could then be included more 
usefully in the objective function for a product, and more or 
less of this quality could be included in the delivered product 
as a result of design decisions. 

Using this view, one can trade additional product develop
ment effort for reduced maintenance costs. The technical op
timum is when the last added-development costs are just cov
ered by the reduced-maintenance costs, the assumption being 
that any further development efforts generate insufficient 
benefits. On a practical basis very few people have hard num
bers to cover this issue. Nevertheless, it is probably safe to 
assert that in most cases the trade-off between development 
and maintenance costs can be pushed much further in terms 
of increased development costs. It is also most likely to be the 
case that this development effort should be pushed beyond the 
amount of maintainability that falls out of good structured 
techniques. This additional maintainability is designed in the 
product. 



The same optimality presumptions apply with respect to the 
trade-off between maintenance and operations costs. How
ever, one should take great care in making any assumptions 
about operations costs. In all probability the sum of all oper
ations costs for a product over its useful life is not declining. 
Nevertheless, operations costs have always been given consid
erable attention, while maintenance costs have not. Thus, on 
this latter basis alone one could presume that some trade-off 
in favor of increased operations costs and lowered mainte
nance costs would be reasonable. 

PLANNING FOR MAINTENANCE 

As Reutter points out (see Figure 3), most of the activity in 
maintenance is directed toward product capabilities or charac
teristics not included in the original product design. 5 More
over, most of the remaining maintenance activity is directed 
toward changes in the environment in which the software 
product operates. Only a small portion of maintenance is 
directed toward correction of errors. While this may not re
flect the experience with all software, it probably does repre
sent what one should expect from fairly well-designed and 
well-written software products. In high-quality software the 
error rate may approach zero; this should be an attainable 
objective. On the other hand, we expect the environment to 
be changing. We also expect demands for enhancement. 
Moreover, we expect both ofthese to occur on a regular basis. 
What needs to be done is to develop software that is very 
amenable to these expected changes. 

Many areas of expectation for change are identified at the 
analysis and design stages of product development. In these 
stages decisions are made that determine the scope of the 
project. Characteristics to be included in the product are then 
given the detailed attention necessary to complete the devel
opment process and characteristics to be excluded are fre
quently forgotten. While it is true that many specification 
documents have a brief statement about avenues of possible 
extension for the product-and a few even have sentences 
scattered throughout about points of expandability-these 
statements are usually treated as asides to the process of build
ing the specified product. 

There is another side to the coin of features not included in 
a product design. This has to do with features or technical 
solutions that were rejected as being in some way unsuitable 
for the product. These include all those dead ends encoun
tered during the anaysis and design stages. Also to be consid
ered are those features that once looked so promising, only to 
be found fundamentally inconsistent with the accepted devel
opment of the product. The information and knowledge asso
ciated with these considered but rejected features are almost 
never found in any specification document. 

A major set of additions to the specification document is 
necessary to capture the analysis of features excluded from a 
product. These additions may be of some value to the builders 
of the currently specified product, but their objective is specif
ically to aid the maintenance analyst-programmer. In a sense, 
these additions will be a resource library that the maintenance 

Maintenance as a Function of Design 191 

Environment changes 
35% Upgrades and enchancements 

57% 

Figure 3-Reutter's distribution of maintenance costs 

programmer can explore to see if his problem has already 
been addressed. It will also serve another important purpose. 
It will stand as the justification for the design decisions in the 
current product that are related to potential extensions of the 
product. Finally, these additions w:ill be spread throughout 
the specification and design documents. They will serve as a 
continuing reminder to all those involved in the development 
process to include maintenance-related issues in every deci
sion process. 

Case Study-The Economic Information System 

The Economic Information System (EIS) is a large (15 
gigabyte) database system for the time series data describing 
the economies of all countries in the world. The system is 
currently under development at the International Monetary 
Fund and is scheduled to begin operation in June 1985. The 
EIS serves well to illustrate some of the points that have been 
made in this paper. It is a moderately large software project 
(budget in excess of $3.5 million) that in some aspects is a 
conversion of a current system and in other aspects a major 
extension of that system. Thus, it is typical of most of the 
software projects found in the commercial world. Both com
ponents of the project fall within the realm of maintenance. 

The current database system consists of a set of ISAM files 
and home-grown database programs resident on a Burroughs 
mainframe. In addition, a large set of operations programs 
have been developed to generate a number of major publica
tions that are run from the database. Most of the code for both 
the database and the operations are in COBOL. All of the 
operations code and a subset of the original database code 
(152,000 lines) will be converted directly to the IBM environ
ment. This will be the batch production part of the new sys-



192 National Computer Conference, 1984 

tern. An on-line access and update system is also being con
structed as an addition to the previous system. 

The original charge to the development team was to move 
the current system to an IBM environment with the on-line 
extensions, use a commercially available database manage
ment system (DBMS), and be up in 18 months. In the initial 
justification for the project it was stated that "productivity 
aids would become available in the form of programming tools 
and software packages which will significantly reduce staff 
resources required for future systems development and on
going systems maintenance.,,6 Thus, the continuing cost of 
maintaining systems was given primary focus prior to project 
initiation. 

The first major decision in this project was the choice of 
DBMS. The question was formed around the type of DBMS 
(hierarchical, network, inverted file, and relational) as much 
as the particular vendor. Hierarchical- and relational-type 
DBMSs were dropped early in the decision process, the 
former because of its inflexibility to change and large up-front 
design requirements, and the latter because of known per
formance problems and the absence of any product with per
formance experience in large database applications. In the 
evaluation of the remaining two types of DBMSs, three crit
ical areas-DBMS data structures, database implementation 
and maintenance, and user access and manipulation capabili
ties-were identified. Critical requirements were developed 
within each of these areas. Candidate systems were then eval
uated against these requirements. 

This DBMS choice provides an excellent example of trade
off. Because of the mix between batch and on-line activity in 
this application, neither the network- nor the inverted-file
type of DBMS was found to have an advantage with respect 
to hardware resources. However, with respect to implemen
tation and maintenance, the inverted-file-type DBMS had 
an overwhelming advantage. The database design process is 
much simpler in an inverted-file database. Moreover, in
verted-file structures are much more amenable to extension 
and change than network structures. This became the basis of 
our choice. 

Another example of the maintenance concept entering into 
a major decision in this project arose in the database design 
process. In the batch operations process on the current system 
large data records (10 Kbyte) are read into a buffer. The 
applications then use a central utility to obtain the sections of 
the records that they need. This works well in the current 
batch system; however, the approach is completely inap
propriate for on-line update and inquiry activities. The on-line 
requirements of the project have led to the development of 
much smaller records in the target database. The question is 
then whether to build up the large buffer the entire batch 
stream expects, or to make some major changes in the data
gathering procedures of the batch application code. From the 
design and development effort point of view, building the 
buffer would be the best choice. From an operations point of 
view, building the buffer would be more expensive. However, 
overnight batch costs are 10% of daytime costs in our environ
ment and there is a succession of use of various parts of the 
large buffer in our current operations. Thus, the operations 
costs are not an overriding issue. What is clear is that the large 

buffer structure is not likely to be suitable for the extensions 
of this application that will be forthcoming after it is put in 
place. Moreover, the structure that is chosen now will be cast, 
if not in steel, at least in bronze for some years to come. 

It was decided to change the data presentation procedures. 
This decision will raise development costs for the project. The 
decision will also have a negative effect on our ability to 
produce a product on a timely basis. However, the ability to 
enhance the product after its initial delivery will be signifi
cantly increasd. 

CONCLUSION 

There is still substantial room for improvement in our under
standing of the process by which software products are con
structed. A more carefully constructed life cycle model will 
improve this understanding. In addition, a clear analysis of the 
cost trade-off between maintenance and other cost compo
nents of a software product is likely to lead to a better re
source allocation. However, these suggestions are limited to 
creating the setting in which improved maintainability may be 
developed. The many techniques that may be employed for 
improving maintainability have not been explored. This re
mains the task of future explorers in this field of endeavor. 
The growing cost of software maintenance suggests such ef
forts be given high priority. 

ACKNOWLEDGMENTS 

I would like to thank my colleagues, Soon Choi, Thomas L. 
Williams, Kathleen X. Nelick, and S. Stuart Morrison, and 
my wife, Mary Jane McKee, for the many suggestions and 
improvements they have provided in the production of this 
paper, and the Graphics Section of the IMF, for providing the 
charts. The errors and omissions remain my own. 

The ideas and opinions expressed herein are solely those of 
the author and are not necessarily representative of, or en
dorsed by, the International Monetary Fund. 

REFERENCES 

1. Belady, L. A. "Software Complexity." In Tutorial on Models and Metrics 
for Software Management and Engineering. Los Alamitos, Calif.: IEEE, 
1980. 

2. Belady, L. A., and Lehman, M. M. "A Model of Large Program Develop
ment." IBM Systems Journal, 15 (1976), pp. 225-252. 

3. Boehm, B. W. Software Engineering. Redondo Beach, Calif.: TRW, 1976. 
4. Boehm, B. W., Lipow, M., and White, B. B. Software Q~ality Assurance: 

An Acquisition Guidebook. Redondo Beach, Calif.: TRW, 1977. 
5. Chapin, Ned. "Productivity in Software Maintenance." AFIPS, Proceed

ings of the National Computer Conference (Vol. 50), 1981, pp. 349-352. 
6. IMF. IMF Economic Information System Planning Document. Internal 

(mimeographed) document, International Monetary Fund, Washington, 
D.C. 

SUGGESTED READINGS 

1. DeMarco, T. Structured Analysis and System Specification. Englewood 
Cliffs, N.J.: Prentice-Hall, 1979. 



2. Elshoff, J. L., and M. Marcotly. "Improving Computer Program Read
ability to Aid Modification." Communications of the ACM, 21 (1982), 
pp. 512-521. 

3. Harrison, W., K. Magel, R. Kluczny, and A. DeKrock, "Applying Soft
ware Complexity Matrice to Program Maintenance." Computer, 15 (1982), 
pp.65-79. 

4. Hester, S. D., D. L. Parnas, and D. F. Utter. "Using Documentation as a 
Software Design Medium." The Bell System Technical Journal, 60 (1981), 
pp. 1941-1977. 

5. Linger, R. C., H. D. Mills, and B.1. Witt. Structured Programming: Theory 
and Practice. Reading, Mass.: Addison-Wesley, 1979. 

6. Myers, G. J. Software Reliability: Principles and Practices. New York: John 
Wuey & Sons, 1976. 

7. Page-Jones, M. The Practical Guide to Structured Systems Design. New 
York: Yourdon Press, 1980. 

Maintenance as a Function of Design 193 

8. Reutter, J. III. "Maintenance is a Management Problem and a Pro
grammer's Opportunity." AFIPS, Proceedings of the National Computer 
Conference (Vol. 50), 1981, pp. 343-347. 

9. Schwartz, B. "Eight Myths About Software Maintenance." Datamation, 
28, (1982), pp. 124-128. 

10. U.S. General Accounting Office. Federal Agencies' Maintenance of Com
puter Programs: Expensive and Undermanaged. Report AFMD-81-25, Feb
ruary 26, 1981. 

11. Yau, S. S., and J. S. Collopello. "Some Stability Measures for Software 
Maintenance," IEEE Transactions on Software Engineering, SE-6, (1980), 
pp. 545-552. 

12. Yourdon, E. Techniques of Program Structure and Design. Englewood 
Cliffs, N.J.: Prentice-Hall, 1975. 

13. Zvegintzov, N. "What life? What cycle?" AFIPS, Proceedings of the Na
tional Computer Conference (Vol. 51), 1982, pp. 561-568. 





Maintaining user satisfaction with performance of an online 
system 

by A. MARTIN SELLERS 
OCLC, Online Computer Library Center, Inc. 
Dublin, Ohio 

ABSTRACT 

This paper discusses the experience of OCLC, Online Computer Library Center, 
Inc., with maintaining user satisfaction with performance of its online system. 
OCLC is an innovator in the field of automated library services. Because it is a 
service organization, user satisfaction with its online services of cataloging, inter
library loan, serials control, and acquisitions is a major concern. An important 
component of that satisfaction is online system performance, primarily measured by 
response time and system availability. 

This paper also discusses the considerable effort that has been devoted to system 
support activities to address response time and availability improvement. Among 
the system support activities discussed are creation of an internal problem reporting 
and monitoring system, organizing to more clearly delineate responsibility and 
authority, and communication of system support activities to the user. These activ
ities have had a positive effect on user satisfaction with OCLC's online system. 

195 





INTRODUCTION 

OCLC, Online Computer Library Center Inc., a privately 
funded, not-for-profit corporation, was founded in 1967 to 
help libraries improve patron access to the ever expanding 
body of worldwide knowledge and information. The first on
line service in support of that corporate purpose was the 
OCLC Shared Cataloging subsystem originally designed for 
54 academic libraries in the state of Ohio. As libraries' recog
nition of cost savings and service enhancement possible with 
with this system grew, the OCLC computer system, the com
plexity of software, and the need for corrective, adaptive, and 
perfective maintenance also grew. OCLC's current system of 
custom manufactured terminals, dedicated telecommunica
tions lines, front end minicomputers, network supervisor, 
host computers, and back-end database processors provides 
cataloging, serials control, acquisitions, and interlibrary loan 
services to approximately 3,500 member instituions serving 
over 6,000 libraries internationally via more than 5,000 
terminals. 

Our physical facility, located in Dublin, Ohio, contains over 
44,000 square feet of secure, environmentally controlled com
puter floor space, a dramatic change from the space rented 
from Ohio State University little more than a decade before. 
More dramatic, however, is the change in the people who 
support and use the system. 

OCLC was founded by the Ohio College Association, a 
group of university presidents, to increase availability of li
brary resources and reduce costs among the academic institu
tions in the state. That founding resulted in an initial 
computer-based system that was designed, developed, and 
modified almost experimentally by a few dedicated people 
committed to making dramatic-at the time, revolutionary
changes in the library community. From that foundation 
evolved the current OCLC organization of over 670 staff and 
a customer base of over 6,000 libraries of all types-not just 
college libraries, but public, governmental, school, medical, 
law, and corporate libraries, serviced through a multiple-tier 
distribution channel. 

Associated with the internal change of OCLC is a change in 
user expectations. System performance expectations continue 
to grow with increased user sophistication regarding online 
systems use. Additionally, as the OCLC system becomes the 
backbone of operations in a growing number of customers' 
libraries, high expectations of maintaining adequate online 
system performance are not unreasonable. 

THE PROBLEM 

The problem of maintaining user satisfaction with perfor
mance in an online system entails a complex system of exter-

Maintaining User Satisfaction with an Online System 197 

nal and internal perceptions and constraints that vary over 
time. Key factors of perceptions and constraints are inter
related and seem to be part of a zero-sum game in informal 
systems such as ours; if one ,area -9f performance is satis
factory, another area is perceived less so by some measure. 
Therefore, one element of a solution is more formal measures 
of acceptable performance for each component that affects 
user perceived system performance. 

Users' perceptions of performance areas for interactive sys
tems include response time, system availability, and reliability 
measures as well as expectations of database integrity, com
pleteness, currency, and high expectations of new systems 
development and responsive maintenance. As is only proper, 
failure to meet formal performance standards results in un
acceptable performance from the users' perspective. How
ever, if performance is measured informally, even what at one 
time was satisfactory performance may no longer be so; 
change takes place in the level of user expectations of ade
quate performance to target the lowest area of performance as 
unacceptable. This change in level of expectation seems to be 
natural; and systems performance expectations seem to vary 
with user sophistication, which in the OCLC system has grown 
substantially during the last decade. 

The key aspects of this increasing demand for maintaining 
user satisfaction with performance in an online system are 
understood measures of performance consistent over time;1 
development of new systems; and adequate system mainte
nance in terms of its adaptive, perfective, and corrective as
pects. It is because of the universality and typical symptomatic 
treatment of those needs that OCLC's approach may be ap
propriate to other interactive environments. 

SYMPTOMATIC TREATMENT 

Using internally defined measures of response time and avail
ability and using informal, individually conceptualized mea
sures of other performance factors mentioned above, OCLC 
staff have had their hands full chasing the illusion of satis
factory performance; users continued to be dissatisfied. The 
effects of this lack of measurability have materially affected 
system support activities where patchwork maintenance and 
damage control have been consuming activities to keep the 
system available in the short term to the exclusion of address
ing other user-perceived performance criteria for a longer 
term. Attaining the right mix of performance levels in an 
informal system may be harder than finding the pot of gold at 
the end of the rainbow, but it has the same allure. 

To help understand the shifting nature of priorities and the 
long-term effects of looking only at short-term system per
formance, we must understand our online environment. OC
LC online is a dynamic system that accommodates growth of 



198 National Computer Conference, 1984 

accessibility for added terminals and new functions. Barbara 
Taute calls this type of environment unstable, and that is 
certainly the case. 2 Users and OCLC staff agree that growth 
has typically been followed by periods of unacceptable re
liability, availability, and response time. Growth demands 
have taken their toll on maintainability. The environment is 
not a desirable one, because induced periods of instability 
have caused wholesale shifts of staff for support at the expense 
of new development. The result of these shifts is conflicting 
performance criteria: new development vs. current system 
stability.3 This unacceptable trade of performance issues high
lighted our need to address internal problems requiring imme
diate remedy as longer-term remedies were formulated. 

INTERNAL PROBLEM 

The OCLC online system is growing: over 600 user terminals 
and over a million new records are added per year. The result 
of this growth is a continuing imbalance of staff need and 
availability. Reactive approaches to~ this imbalance included 
cutbacks in training, increases in Band-Aid problem fixing, 
and redirecting staff from other areas to help. We did all of 
these things we knew were harmful in the long term but that 
we could easily justify in the short term. The result was a 
temporary increase in system stability, but at a heavy cost, 
akin to running faster to keep from falling; it only works for 
awhile. 

As if things weren't bad enough, there were role perception 
difficulties regarding software maintenance. What is it? Who 
does it? When and how is it done? How is it regarded in the 
company? The diversity of answers to these questions ad
versely affected even short-term maintenance activities. 
Meanwhile, users were demanding that we do something to 
improve performance. 

DOING SOMETHING 

We isolated four areas to address: user expectations, system 
problems, procedures, and the organization. As we were 
thinking about how to manage our problems, we focused on 
time to repair as a critical element in user-perceived perfor
mance in an online system. 

Doing Something About User Expectations 

Although user expectations have always been considered by 
OCLC staff, it is increasingly important to address those 
expectations formally in the development and operation of a 
system, l and it is acutely important in interactive systems. 

Developing understood measures of system performance, 
improving communications about system aberration and ex
pected resumption of normal service, improving problem-call 
handling, and increasing availability of problem-call staff, in 
addition to the Herculean task of improving system perfor-
mance, are the activities we felt most important to bring user 
expectations and actual performance closer together. 

Developing commonly understood measures of perfor
mance that relate well to user experience at a terminal, and 

yet can be monitored and controlled at a central site, is a 
nontrivial task in an online environment. In addition, user
perceived measures of performance in an online system of 
transaction response time, system availability, and system re
liability are made even more complex by potential misinter
pretation of the statistics necessary to describe these perfor
mance measures. 

To explore the complexity of communicating online system 
performance characteristics, let's look at response time. Cer
tainly we should be able to agree that user-perceived system 
response time can be measured as the interval of time between 
the SENDIDO IT key stroke of the terminal user and the full 
screen display of the system's response. Figure 1 shows the 
components of our system a transaction may exercise; how
ever, not all components are used for every transaction. Add 
human-related variables, and it should be obvious that a state
ment of an average response time of 8 seconds can mean many 
different things to many people. 

Other complicating factors are the nonhomogeneous re
source requirements for different ways of requesting the same 
information, cyclical use of the system by season, week within 
season, day within week, and hour within day, continuing 

ONLINE SYSTEM 

COMMUNICATION 
PROCESSORS 

NETWORK 
SUPERVISOR 

APPLICATION 
PROCESSORS 

DATA BASE 
SYSTEMS (3) 

(32) 

(16) 

(11 ) 

(35) 

Figure l-Online system 

(140) 



change in system environment, and lack of monitoring tools 
for understanding those changes better. A system person's 
approach is to make various assumptions concerning un
measured activities and add that to monitored activities to 
calculate an average over time. A user's approach is to time 
activities at the terminal, whether with a clock or not. Our 
experience indicates that the system person and the user have 
difficulty communicating performance measurements with 
such disparate baselines of measurement. Therefore, develop
ing common measures is precisely what must be done for 
effective communication. 

OCLC is currently conducting investigations to determine 
how best to characterize user-perceived online system per
formance in order to relate it to our characterization of per
formance; the first step is to come to a common definition. 
The first investigation consisted of 14 user institutions that 
manually timed specific transactions at a predetermined time 
of day and reported their observed response times and system 
availability to OCLC for summarization. This manual ap
proach was meant only to give us a feeling of users' experi
ence. The other study involves a hardware device attached to 
a user's terminal to directly measure and calculate response 
time statistics over a period of terminal use. The user reported 
statistics are then correlated to OCLC-measured computer 
system response times. Figure 2 shows user vs. OCLC mea-

PERCENT 
25 

SYSTEM DOWN TIME 

OeLe VERSUS USER 

15 {\ f' \ \ 
, . \ A 

~, . 1 \. \./\ i\ 

) \ l'~\\' \. \;; 1\ . \,..(" . \ I • \ 
" /. \ , ~. I> : ".' 

\; \. \ t~/.· '/ /~\ "+'~i \. ~ ..... ,. 7 \¥ \I . .:.:.,-- \ ~~··.7· 
o 

0411 0502 01523 0613 0704 0725 0115 0105 0126 1024 1121 121e 0116 

WEEK BEGINNING DATE AS OF 19830411 

SECONDS 
16 

SYSTEM RESPONSE TIM E 

OeLe VERSUS USER 

0411 0102 0A3 0613 0704 0725 0115 0105 1003 1031 1128 1226 0123 

WEEK BEGINNING DATE AS OF 19830411 

--- USER OClC 

Figure 2-8ystem performance 

Maintaining User Satisfaction with an Online System 199 

sures for response times and system availability over a 
41-week period. This has dramatically improved our ability to 
communicate response time and availability performance 
measures with the user. 

Other activities to promote user satisfaction with system 
performance are to increase communication about system ac
tivity, increase the use of meaningful broadcast messages via 
the users' terminals, and increase responsiveness to trouble 
calls by providing a hierarchy of user-call handling. 

The entry level of our hierarchy of problem-call handling is 
the OCLC reception staff, which discriminates between infor
mational and assistance calls and transfers calls that require 
more attention to a second level. At the second level, the 
Marketing and User Services Division of OCLC staffs a trou
ble call function where further discrimination among user-, 
application-, and system-caused problems is made. Only 
computer system problems are then passed on to network 
operation technicians for further diagnosis and resolution. 
Network operation technicians dispatch field service aid for 
terminal and modem problems and deal with the telephone 
companies for telecommunications problems; computer hard
ware and software problems are passed to system support 
personnel for resolution, the final level of the problem resolu
tion hierarchy. The severity of the problem coupled with the 
estimated time to repair determines the mechanics of problem 
resolution. 

Doing Something About the System 

Although terminal and telecommunications are com
ponents of our online system, it is our computer environment 
that is the subject of this section. Our computer hardware is 
stable at over 99% availability for each major component on 
a regular basis. Although 99% component availability seems 
more than adequate, the number of components and the num
ber of terminals can produce over 5,000 terminal hours outage 
per week. That much outage translates into user dissatisfac
tion and lost revenue for the period. OCLC from the begin
ning adopted a philosophy of self-reliance. It currently has 
24-hour-a-day, seven-day-a-week computer maintenance sup
port to provide immediate reaction to any hardware malfunc
tion to try to reduce the mean time to repair and hence in
crease system availability. A substantial investment in spares 
inventory, test equipment, staff, and staff training help keep 
our computer hardware running at that relatively high avail
ability. The software component is not as stable as the hard
ware, nor is the environment as straightforward. 

Dealing with software has resulted in major changes to our 
existing environment. Some of those changes are further iden
tified in the following sections on procedures and organiza
tion. The main change to be identified here is a recognition by 
the corporation of the primary importance of user perception 
of performance and a recognition that maintenance of ade
quate performance had failed. As part of an overall effort, 
OCLC temporarily redirected the work of our development 
staff from installing additional software to an already unstable 
system to attending to medium-term-problem resolution. The 
support group, which has primary responsibility for restoring 
the system after a failure, necessarily operates in the short 



200 National Computer Conference, 1984 

term, often allowing only symptomatic treatment and leaving 
the real problem unresolved. Recovery vs. resolution is a 
resource problem intensified by online systems. OCLC recog
nized the unmet need for problem resolution as an activity 
simultaneous with the requirement to recover on a day-to-day 
basis. 

The significance of this recognition of time between recov
ery and medium-term resolution resulted in new procedures 
for problem solving. It also allowed system support staffs 
significant expertise to be more productively employed in re
solving problems rather than continuing symptomatic treat-

alill 
TO RECOVERY COORDINATOR IREPORT DATE 

SYSTEM SUPPORT DEPT. ,M.C.373 
REPORTER !lAME 

PROBLEM TITLE (Use 24 ehlract!!rs or l!!ss--for Corpor.tI! ProDl_ LUtl 

SYSTE,OFFECTED (e.g., ACQ, ADT, MS, etc.) rLASS N"ER 11-4) 

USER/NETWRK CONTACT (Person reporting probl .. l 

! ... iORlWllZATION !lAME 
~S 
ie; 

'" ~UTHORlZATlON M"£R ITER!lllIAL LOGICAL ~ER(S) 

f~ 
IIMUSD REPORT MANAGER 

PRIBLEM DESCRIPTIIlM 

ment, a result of sufficient resources to use innovative meth
ods to combat long-neglected problems.4 We call the system 
support activities of resolving maintenance hot spots systems 
manageability . 

Doing Something About Procedures 

The most significant result of dealing with procedures was 
the creation of a problem reporting and monitoring system 
that is itself an online application. Previous attempts at prob-

PROBLEM REPORT 
rEPORT 

OME\I DUPDATE 

PROBLEM NUMBER (Ass i gned Dy SSD) 

PHOIIE EXT. IMAll CODE 

rATE AND TIME (J' PRceLE'" OCCURRENCE 

TELEPHONE NUMBER 

( ) 
rLC SYMBOL NETWORK 

AUTHOS SUBSYSTE~ 

PHONE EXT. IMAa. CODE 

Describe COIIPletely tile condltlons/eire_tinces It tile tl_ of tile probl", whit hap~ned 
Ind how often, c_nds entered, en-or ..ssiges, .tc. Attach Iny related reports or listings. 

PROBLEM RESOlUTION 
RESOLVER (Dept ..... n.ger RlspOllsll11e) IASSlliNED TO DATE ASSI(;NEO 

NOTES (RKord ehlnges in sUtus below. Describe results of Investigation .nd any .etion Uken on tile back of this report.) 

PROREP·820617 

Figure 3-Problem report 



Maintaining User Satisfaction with an Online System 201 

lem reporting and monitoring systems had not been effective. 
This time success is directly attributable to the managers, who 
regard this process as their communications tool. 

The problem resolution process is a result of analyzing what 
was needed to identify and resolve significant problems. It 
required line managers to take an active role in refining the 
process as well as to accept responsibility for managing prob
lem resolution as they would a development project. It re
quires their commitment to be effective. 

The essence of the problem resolution process is its use as 
a common mechanism for problem reporting, responsibility 
assignment, status communication, priority reassignment, and 
reference for similar problems. This process is recognized 
across the company as the way to bring problems of signifi
cance to light and to ensure appropriate recognition a~d reso
lution of those problems. The element of time is used in this 
process to identify the type of effort and responsibility for 
problem resolution: short, primarily recovery and patches; 
medium, planned problem fixes and small rewrites; and long, 
inclusion of fix in redesign and new development projects. All 
problems of any significance are entered into this process. A 
problem report form is shown as Figure 3. Biweekly problem 
report process meetings have a specific purpose, have well 
prepared attendees sharing a common problem solving atti
tude, and enable continuing refinement of the resolution pro
cess to take place. 

Doing Something About the Organization 

The organization is the framework within which staff per
form activities. Intuitively, the better the definition of organi
zation within the context of desired goals, the more likely it is 
that there will be congruence of activities and goals. Ob
versely, the fuzzier the organization is in terms of definition, 
the more likely it is that conflict will appear as a result of 
overlapping responsibilities and accountabilities. 

In software maintenance, OCLC's experience displayed the 
characteristics of a fuzzy organization. Improved organiza
tional definition was required to set the stage for assigning 
goal-congruent responsibilities. Our definition of support or
ganizations embodied the attributes of adaptive, perfective, 
and corrective maintenance as defined in current software 

'maintenance documents. 5 Additionally, we used maintenance 
response time as a qualifier of organizational definition, since 
it is a critical factor in availability as a component of per
formance of online systems. 

Maintenance response time is defined and measured as the 
elapsed time between problem recognition and problem re
covery, where recovery may mean patch or repair. We identi
fied three intervals of maintenance response time to help 
emphasize organizational maintenance responsibilities: short
term, medium-term, and long-term. Immediate problem re
covery is a special case of short-term maintenance response 
time. These may seem trivial; however, simplicity has an el
egance of its own, and the addition of response time to the 
definitions of maintenance helped us identify solutions to our 
responsibility problems. 

Each of the operations organizations, shown as the lower 

four boxes in Figure 4, have some system maintenance re
sponsibilities. Time helps identify specific responsibilities. For 
immediate maintenance, Computer Operation recovers and 
Systems Support provides corrective and perfective mainte
nance. Short-term maintenance is the responsibility of 
Systems Support. Medium- and long-term maintenance in
volving system software is the responsibility of Computer Sys
tems Engineering; medium- and long-term maintenance for 
application software is handled in the Product Development 
Division. 

Other universal software maintenance issues were also 
treated after a combined look at procedures and organization. 
Maintenance adhocracy is giving way to increased planning, 
and motivational improvements have resulted from recog
nition of maintenance staff expertise and their accom
plishments.6 

An additional motivational boost has resulted from effec
tive use of support staff in more than short-term corrective 
maintenance. Although not eradicated, artificial status barri
ers between development and maintenance within OCLC 
have been reduced. However, our experience with recruiting 
indicates that the term maintenance still has negative connota
tions in the data processing world, something we'll all have to 
continue to campaign against. User recognition of accom
plishments of improving the performance of the OCLC online 
system has also been a great help in solidifying the importance 
of support staff. 

The improved procedures and organizational responsibility 
described above are providing more effective online system 
maintenance, which has a direct positive effect on systems 
performance and on users' perception of system performance. 

SUMMARY 

Positive effects of this integrated program to improve OCLC 
online system performance have been measured by its users 

Figure 4--OCLC organization 



202 National Computer Conference, 1984 

and providers. System performance measures of response 
time, availability, and reliability have improved significantly 
since these activities have started. This improvement has al
lowed us to resume scheduling system enhancements to in
crease users' satisfaction with online system performance in 
the area of system enhancements. 

Although not as amenable to measurement as external 
ones, internal effects such as staff morale and productivity 
have improved also. 

A program of systems manageability is under way to ensure 
maintaining user satisfaction with the OCLC Online System 
by improving response time and availability. It includes re
finement of the above activities of formalizing and communi
cating system performance measures, increasing the quality of 
software maintenance, and improving the systems environ
ment, as well as showing progress in new feature development 
with engineered maintainability improvements. 

REFERENCES 

1. Stevens, Barry A., and Phillip C. Howard. "Management Control of EDP 
Performance." Applied Computer Research. Phoenix, Ariz.: Applied Com
puter Research, 1980. 

2. Taute, Barbara J. "Quality Assurance and Maintenance Application Sys
terns." AFIPS, Proceedings of the National Computer Conference (Vol. 52), 
1983, pp. 122-129. 

3. Parnas, D. L. "Designing Software for Ease of Extension and Contraction." 
IEEE Transactions on Software Engineering, SE-5 (1979), pp. 128-137. 

4. Kapur, Gopal. "Software Maintenance." Computer World, 17 (1983), "In
depth" section, pp. 13-22. 

5. Glass, Robert L., and Ronald A. Noiseux. Software Maintenance Guide
book. Englewood Cliffs, N.J.: Prentice-Hall, 1981. 

6. Marselos, Nicholas L. "Human Investment Techniques for Effective Soft
ware Maintenance." AFIPS, Proceedings of the National Computer Confer
ence (Vol. 52), 1983, pp. 131-136. 



Redocumentation: Addressing the maintenance legacy 

by GARY RICHARDSON and EARL D. HODIL 
Texaco Inc. 
Houston, Texas 

ABSTRACT 

Over the past decade or so there has been much attention paid to techniques and 
methodologies to produce high-quality systems. A concurrent development has 
been the emergence of software tools that aid in the production and maintenance 
of software systems; yet the maintenance environment continues to be littered with 
poorly written and poorly documented programs. 

The focus of this paper is to outline a conceptual approach to the allocation of 
software maintenance resources and the role of automated tools in this process. It 
is contended that software maintenance tools cannot be simply purchased or built 
and then used indiscriminately. Rather, it takes an administrative activity to quan
titatively decide which code units are best for resource allocation. Finally, to dem
onstrate the utility of this approach, a case study based on the author's experience 
is presented. 

203 





Redocumentation: Addressing the Maintenance Legacy 205 

THE MAINTENANCE LEGACY 

Over the past decade or so much attention has been paid to 
techniques and methodologies to produce high-quality, main
tainable systems. Yet DP management still finds itself left 
with a swelling production library containing a hodgepodge of 
code that shows little resemblance to what we now define as 
good. 

In the late seventies Dr. Gerry Tompkins of UCLA sur
veyed 120 DP organizations.1 This survey found the mean age 
of installed systems to be nearly five years and the average size 
of these systems to be approximately 23,000 lines of source 
code. A review of the typical production library often reveals 
high levels of poorly written code with inadequate documen
tation, a statistic that is not surprising when one considers the 
time-consuming, laborious nature of manually producing 
high-quality code that is also well documented. This impetus 
has stimulated the recent proliferation of software mainte
nance tools. 

The author believes that structured code, clear mechanical 
format, and other such forms of architectural definition are 
positive when produced at reasonable cost. Studies indicate 
somewhat conclusively that structured programming can 
lower maintenance costs. One point, however, is becoming 
increasingly clear. That is, methodologies and tools in and of 
themselves will not automatically correct all the errors of the 
past. Indeed, the new techniques can become costly and inef
fectual if they are used randomly. Our challenge here is to 
describe a rational approach to correcting this maintenance 
legacy by proper allocation of resources, including a growing 
set of software tools designed to aid in this process. 

PROBLEM DEFINmON 

The road to reduced maintenance effort begins with the an
swers to two questions: 

1. Which programs abend most frequently? 
2. Which programs, though they may run perfectly, are so 

poorly written and/or documented that they cannot be 
easily changed? 

The significance of these two questions is considerable 
when one considers that two of the essential activities associ
ated with software maintenance are correcting program errors 
and implementing user-requested changes to software. Even 
though many firms have recognized the need to answer these 
questions, most large DP shops have found the quest arduous. 

Surprisingly, many organizations find the first question dif
ficult to answer. They can neither locate nor statistically quan-

tify their production source code, much less begin to describe 
quantitatively which code units could be classified as good, 
average, or poor. This situation must be resolved before sub
sequent steps, outlined below, can be undertaken. The three 
administrative systems following can aid in this process. 

Library Control 

An automated control package to insure that all production 
source code is located in approved libraries and that produc
tion load modules contain only these source modules. Though 
there are many reasons for installing such a system, its pur
pose is to bind the execution errors associated with executing 
a load module to the source code responsible for them. 

Operations Logging 

A tracking system that traps all production jobs and records 
completion status (e.g., good completion, space abort, JCL 
error, bad completion code). This tool should provide exe
cution information at least down to the load module level. 

System Profile 

A text-oriented system, summarizing basic system metrics 
such as 

1. age, 
2. language, 
3. total lines of source code, 
4. user evaluations of the current system, 
5. future enhancement plans at the aggregate level. 

By using these three techniques it is possible to identify the 
target code population accurately, then array the code units 
according to abort frequency. 

Phase 2 of the problem definition activity begins once oper
ational statistics are available regarding code performance. It 
is then necessary to divide code units into three broad 
categories: 

1. Good Code-low abort frequency 
2. Bad Code-high abort frequency 
3. Marginal Code-borderline abort frequency 

Here we are left with both a philosophical and a tech
nological problem. Philosophically, we may believe that well
written code has a low abort history and vice versa. Alterna
tively, some believe that abort history is independent of code 



206 National Computer Conference, 1984 

structure. It is observed that some systems require highly 
skilled operational support personnel and code modifications; 
are complex, owing to a lack of a coherent design architec
ture; yet are stable, judging by abort statistics. It is the au
thors' opinion that the subject of good versus bad code is 
multidimensional, involving both mechanical and operational 
factors. The maintenance function involves both aspects of 
operation and enhancement; therefore goodness of code must 
involve more than one view. A second philosophical issue 
surrounds the idea of documentation value. When one looks 
at the millennia of existing production code without support
ing documentation, some doubt must exist about whether it is 
of value to be concerned about such things. In attempting to 
rationalize such behavior there is at least the obvious con
clusion that the cost of documentation production outweighs 
its value. The authors believe that an automated approach 
to producing documentation improves both software accuracy 
and cost effectiveness. 

Now for the technical problem: It is theoretically possible to 
quantify abort frequency and arbitrarily divide code units into 
good, marginal, and bad categories; however, we have already 
said that this is not enough. There are at least two other code 
grading technical issues that should be addressed. First, code 
complexity needs to be evaluated. McCabe2 and others have 
defined quantitative measures of code complexity, although 
once again there is no broad agreement about when a code 
unit is too complex. Indeed, some productive code requires 
complexity; and in some cases it is rationally added to the 
code architecture for efficiency or other reasons. In any case, 
high-complexity index values could be warnings to review an 
existing code unit and decide whether it is feasible to simplify 
it in some way. A third aspect of the technical problem is the 
architecture of the code unit itself. This is manifested by un
structured or large modules. Within this realm one might 
attempt to review style, language, structure, size, and existing 
documentation of the unit in order to supply a qualitative 
grade. The final aspect of code review requires judgment 
about whether the code should be a candidate, based on stra
tegic objectives. For example, if an old batch system is being 
replaced in less than one year with a new online system, then 
it makes sense not to give that code any extra support. Alter
natively, an old system with no upgrade planned would be a 
candidate. This activity is designed with a view to future 
evaluation. 

We have indicated that in order to effectively allocate main
tenance resources it is necessary to quantify where current 
operational problems now exist through formalized abort his
tory statistics. In addition to this we should provide some type 
of grading scheme at the code unit level to identify potential 
modules for which resources can be profitably allocated to 
repair. It is feasible to use automated tools to do much of the 
scanning work for items such as size (lines of code), complex
ity, adherence to code standards, and other related functions. 
After all the automated statistics are summarized it should be 
possible to select high-priority targets for closer manual exam
ination. From this aggregation of data it is then necessary to 
select and rank cede units te be given special consideration for 
rework. Some day this process can be highly automated; 
however, it currently will involve a high degree of subjective 
judgment. 

THE PURIFICATION PROCESS 

We have outlined an analytical process designed to identify 
systems and code units (i.e., programs) that are candidates for 
rework. The key question now is, "What do we do with the 
subset of problem code defined?" Figure 1 shows schemat
ically the process described above. Note that two new items 
show up at the bottom of the figure, rewrite and redocumenta
tion. Each of these deserves more discussion here. Rewrite 
represents code units in such shape that manual rearchitecture 
of the system is required to resolve the indicated problem. 
Typically this means that new functionality is required or that 
the basic database design approach is flawed. Obviously 
placement of code in this category should be done only as a 
last resort because of inherent cost and time to accomplish. 

The second form of code repair is automated redocumenta
tion, which is defined as the software-driven process of pro
ducing documentation for existing code directly from the syn
tax itself. Elshoff and Marcotty from General Motors have 
documented their company's approach to the use of similar 
automated techniques to improve code readability and modi
fication. 3 We feel that these tools are most useful when used 
as an aid to the maintenance programmer who is trying to 
draw understanding from a block of unyielding (and usually 
undocumented) source code. These tools may be categorized 
as follows: 

1. Dynamic analyzers 
2. Static analyzers 
3. Restructure/recoding tools 

Dynamic analyzers have long been accepted as a part of the 
maintenance programmer's workbench. Debugging compilers 
and interpreters compose this group of tools. Usually, the 
dynamic analyzer is used in conjunction with test data during 
an interactive session. Features commonly associated with dy
namic analyzers are (1) fast syntax checking, (2) one step 

+----------------------------------------------------------+ 
PRODUCTION LIBRARY 

:::::::::::::::::::::::::::::::::: 
Type I 

(leave alone) 
:::::::::::::::::::::::::::::::::: 

Good Code 

:::::::::::::::::::::::::::::::::: 
:::::::::::::::::::::::::::::::::: 

Type II 
(leave alone) 

:::::::::::::::::::::::::::::::::: 

Marginal Code 

:::::::::::::::::::::::::::::::::: 
:::::::::::::::::::::::::::::::::: 

Type I II 
(retrofi t) 

:::::::::::::::::::::::::::::::::: 
Rewrite Redocument 

manual effort auto. tools 

$5 to $50/LOC $.2 to $2/LOC 

:::::::::::::::::::::::::::::::::: 

+----------------------------------------------------------+ 
Figure I-Decision schematic for production code 



Redocumentation: Addressing the Maintenance Legacy 207 

compile and run, (3) program path tracing, (4) execution 
suspension and restart, and (5) variable dump and 
modification. 

The difficulty with this method of analysis is that it consid
ers only the paths traveled by the selected test data. Dynamic 
analysis is, therefore, analysis by trial and error. It is best 
suited for the investigation of a particular test case or a limited 
set of test cases, not for gaining an all-path understanding of 
a program. 

Static analyzers are more of a newcomer to the maintenance 
environment. To be sure, flowcharting programs have existed 
for some time. Yet the flowcharting program merely provides 
a rehashed version of program logic in graphic form. In the 
output of a typical static analyzer, we see the beginnings of an 
attempt to unravel program logic. Moreover, static analysis 
can provide useful information regarding program style and 
complexity . 

Yet of all the tools now available to maintenance program
ming, the restructuringirecoding tools are surely the most ex
citing. They combine the intelligence of the static analyzer 
with the ability to generate code. Unstructured code (i.e., 
code with GOTO statements) is the input to this tool. The tool 
analyzes the unstructured code and produces a structured 
version. Collectively, this family of tools represents our cen
tral focus here. 

THE ECONOMICS OF REDOCUMENTATION 

We believe that automated redocumentation is the preferred 
alternative for code repair. For some justification of this let us 
first look at the resource economics involved in the code re
pair decisions. 

Type I and II code (see Figure 1) represent the code library 
that is to be essentially left alone. For this segment of the 
library it is generally possible to allocate resources at the rate 
of one maintenance programmer per 40,000 to 70,000 lines of 
source code (independent of the language). This allows for a 
small amount of enhancement but generally provides for very 
little extra resources for more than daily operational require
ments. Obviously, numerical guidelines such as this need to 
be validated locally before extensive reliance is placed on 
them. For the Type III subset, it is a truly complex job to 
specify an appropriate level of resource allocation. In many 
DP organizations, the aggregate resources dedicated to the 
maintenance function can range from almost 90% to as low as 
30%. A proper number lies only in management's eyes and is 
closely tied to a general philosophy of maintenance. We are 
suggesting that at least 10% of the maintenance library has 
been neglected. Various studies, reported by Jones4 at IBM 
and HermannS at Shell Oil and others, document the develop
ment cost of systems at values ranging from $5 to $50 or more 
per line of code produced. Our experience, however, is that 
automated documentation can be produced at a cost of be
tween 20¢ and $2.00 per line. This represents a cost ratio of 
25:1! In stable database situations the redocumenation strat
egy is often viable and cost effective. A small allocation of 
resources can produce dramatic results for properly chosen 
code units. It is true that even more dramatic improvements 
can be made through the rewrite process. However, the 

allocation of resources is concomitantly much higher; and the 
benefit often occurs much later, after an extended develop
ment cycle. 

Having now examined how to identify targets for profitable 
use of redocumentation tools and the economic rationale for 
using automated redocumentation, let us tum to a case study, 
drawn from the authors' own experience, to demonstrate the 
utility of this approach. 

A CASE STUDY 

Texaco Inc. is typical of many large DP operations and re
cently faced the problem of rising maintenance costs. There 
were a large number of diverse applications, each with its own 
maintenance staff and procedures. Also, like many DP or
ganizations, Texaco had invested a considerable amount of 
money and staff time in learning to use new design tech
nologies and tools. These efforts notwithstanding, many staff 
members felt that the level of effort expended on maintenance 
was still too high, primarily because of the large volume of 
old, poorly written code that had existed before the new meth
odologies were implemented. 

To quantify the actual maintenance effort, functional 
applications were manually inventoried. This inventory con
firmed the previously held suspicion that approximately half 
of the professional programming staff worked on mainte
nance. Because of the increasing backlog of new applications 
and enhancements to existing systems, and because of the 
omnipresent goal of holding costs to a minimum, this situation 
was deemed unacceptable. Early schemes to reduce this effort 
called for the mass redocumentation of all the production 
libraries via automated tools. Despite the relative cheapness 
of these tools, cost-benefit estimates precluded the use of this 
tactic. Hence it was decided that particular systems and sub
systems would be targeted for rewrite or redocumentation. 

First, manual methods were used to identify the relevant 
applications. Two points become apparent as this process was 
carried out: (1) manual code reviews were too time con
suming, and (2) manual records of abends were difficult to 
organize. 

It was decided to expand the use of automated tools to 
address these problems more effectively. In addition to the 
previously stated features, an automated library management 
system was required to improve control of source and load 
libraries across multiple sites. Having unsucessfully searched 
the outside software market -for an integrated tool that would 
meet these requirements, it was decided to create a custom 
library management system, LIBMAN. LIBMAN is a control 
system using the services of several existing software tools 
(SPF, VTAM, PANVALET, ACF2, etc.) to provide control 
over both the repair and enhancement of production pro
grams. The operational logging system used for the actual 
identification of problem programs was the MVS Integrated 
Control System (MICS) from Morino Associates, Inc., which 
gathers information from diverse sources such as SMF and 
TSOIMON. This information was then collected on a SAS 
database from which reports on code unit performance were 
derived. Finally, profiles were created to assist in the process 
of describing current systems. Originally a manual effort, this 



208 National Computer Conference, 1984 

system has now been converted into an online one, using 
DATAMANAGER as a repository. 

After the administrative-level systems were in place and the 
code universe was well defined, it was possible to identify code 
that was structurally poor. This subset of the code population 
became the target code, which would be examined in more 
depth. Through the process outlined earlier, some of these 
code units were amenable to automated redocumentation. At 
this point several automated tools were applied to the selected 
programs. First, for the COBOL systems an outside product, 
SCAN/370 from Group Operations, Inc., was selected. 
SCAN/370 produces a report that traces all the logic paths of 
a given program. This program also provides a source listing 
containing imbedded path data, complete with identification 
of dead code. 

Later a restructuring/recoding tool for COBOL source pro
grams' became available. This program, called SUPER
STRUCfURE (also by Group Operations, Inc.), creates a 
scorecard that identifies unacceptable program flaws such as 
(1) interparagraph GOTO statements, (2) run away paths, 
and (3) fall-through execution of paragraphs. Having created 
the scorecard and identified the paths of a program, SUPER
STRUCfURE rewrites the program paths using only struc
tured constructs (sequence, iteration, and selection). The re
sultant source code contains essentially none of the flaws of 
the original source program. 

Most of the company's developmental programming is pro
duced'in PUI. Though the language itself contains elements 
that may encourage good programming style, a number of 
older systems were found to abend with regularity and were 
difficult to modify. A significant review was undertaken to 
find analyzers and documentors that fit a PLII development 
environment. Unfortunately, no vendor-supplied tool was 
found that would be compatible with the current methodolo
gies, so an in-house too! was developed. The tool, TEXJAX, 
conducts static analyses of program paths via code scanning 
and renders several forms of documentation: 

1. Complexity measures 
2. Jackson style structure charts 
3. Module hierarchy charts 
4. Annotated source code 

The next documentation tool selected was a system redocu
mentation tool linked to JCL. This tool, DOCUITEXT from 
Diversified Software Systems, Inc., was tested on a few se
lected applications; and it appeared that it could be used on 
all the JCL libraries. This was in marked contrast to the way 
the other tools were used, but in this case it seemed to be 
feasible. Our evaluation is that system-level tools of this type 
cause one of two events to occur. Either you modify the tool 
to fit the prevailing customs, or prevailing customs have to 
change. In this case, the traditional system documentation, 
manually produced, was so widely used that output from the 
purchased version of DOCUITEXT required extensive modi
fication to fit desired formats. Consequently. work is ongoing 

to implement a JCL scanning process that will use DOCUI 
TEXT as a nucleus. Its output will be used to duplicate and 
replace the current manual run books used by the operations 
group. 

All the tools and techniques outlined in this paper continue 
to evolve. As with most management-oriented concepts, it is 
difficult to quantify the relationship of improved productivity 
to the use of automated tools. We have, however, recorded a 
decline in resource requirements in the period during which 
these tools have been installed. Part of this is due to manage
ment's increased interest in this subject, as well as improved 
procedures and tools. 

CONCLUSION 

There are many disjointed software tools on the market to
day, and more are emerging daily. Various combinations of 
these tools will fit unique organizations. We have attempted to 
outline an approach to the selection of target code units and 
general types of tools that collectively aid in the maintenance 
function. A most important conclusion resulting from our 
experience is that tools cannot be purchased or built and then 
used indiscriminately. Rather, it takes an administrative activ
ity to identify which code units are best for resource alloca
tion. Then, management has to support these efforts with 
rational levels of resources designed to "purify" production 
libraries. Even more pertinently, it requires a high level of 
management focus to cause the process to occur in an orderly 
manner. Within the software tools marketplace we anticipate 
more innovation in the area of automatic restructuring/ 
recoding. It seems inevitable that artificial intelligence (expert 
systems) may lead the way in this area. One possible way to 
implement such a scheme would be to create an expert system 
that is well versed in one of the popular design methodologies 
(Jackson, Yourdon, etc.), give it access to the path informa
tion provided by static analysis tools, then restructure accord
ingly. Once this can be successfully done, the family of 
redocumentation tools will become more coherent. 

Whatever the case may be, it is probable that tools will 
continue to play an increasingly visible role in the mainte
nance of software systems and will require continued manage
ment effort to keep them cost effective. 

REFERENCES 

1. Lientz, B. P., and E. B. Swanson. Software Maintenance Management. 
Reading, Mass.: Addison-Wesley, 1980. 

2. McCabe, Thomas J. "A Complexity Measure." IEEE Transactions on Soft
ware Engineering, SE-2 (1976), pp. 308-320. 

3. Elshoff, James L., and Michael Marcotty. "Improving Computer Read
ability to Aid Modification." Communications of the ACM, 25 (1982), 
pp. 512-521. 

4. Jones, T. C. "Measuring Programming Quality and Productivity." IBM 
Systems Journal, 17 (1978), pp. 39-63. 

5. Hermann, L. T. "Productivity and Performance Measurement." Paper 
presented to the American Petroleum Institute (API) Subcommittee on 
Systems and Programmer Productivity, December 199::~; H(lH~tOI! 



System information database: 
An automated maintenance aid 

by LINDA BRICE 
and JOHN CONNELL 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

ABSTRACT 

Documenting application systems has long been considered a necessary evil. Neces
sary because documentation provides a map to present systems, serves as a mainte
nance aid, and is required by the auditors; evil because it is an activity generally 
dreaded by those who develop the systems. Since normal behavior regarding un
pleasant chores is avoidance, application systems documentation is sometimes ab
sent and often incomplete. 

Documenting may be unpopular for a number of reasons, including psychological 
ones. One very obvious problem is that, except for a few automated tools at the 
program level, documentation is a manual process used in an automated environ
ment. Automating the process is a way to reduce the laboriousness of the task. 

This paper is a case study of how one data processing organization applied student 
labor and a relational database management system in a prototype to automate 
much of their applications systems documentation function. The capabilities, fringe 
benefits, and future enhancements of the tool are discussed. 

209 





System Information Database: An Automated Maintenance Aid 211 

INTRODUCTION 

Why should maintenance aids be automated? In many instal
lations system documentation is still a cumbersome manual 
process. There are automated data dictionaries and program 
documentors on the market, but few link to other aspects of 
an organization's functions, and most take several years to 
populate with data. Some organizations commit to five or ten 
years' worth of data gathering and data entry, unassured of 
the results. Others accept as a fact of life that manual docu
mentation is not an effective maintenance aid, but continue to 
set up frameworks with strict requirements and standards. 

This paper shows how a relational data base management 
system was used to develop an in-house automated documen
tation system for the Administrative Data Processing (ADP) 
Division of the Los Alamos National Laboratory. The data
base has been given the acronym SID, system information 
database. It contains much of the documentation pertaining to 
production application systems. This documentation has his
torically been maintained manually in Central File folders. At 
the time of this writing, SID has proven to be very effective for 
entering, updating, and retrieving documentation data rapidly 
and accurately. 

WHY THE NEED TO DOCUMENT 

Documentation is considered the "map" of present systems, 
and a valuable aid to maintenance programmers. Accurate 
documentation is also a reliable guide to relationships within 
and between systems. It provides a means for reducing the 
risk of introducing errors during maintenance work. If an 
error does occur, a visual picture of control flow is available 
to help locate the source of the error. In the normal course of 
events, clear documentation makes staff turnover less dis
ruptive by providing a useful training aid. Finally, adequate 
documentation will satisfy auditors' requirements for infor
mation about how systems work. 

Data processing professionals have long been admonished 
to document in certain standard ways. Most shops were led to 
believe, by the literature of the 1970s, that visual tables of 
contents (VTOCs), IBM's hierarchical input process output 
(HIPO), and flow charts, for example, were the best tools for 
documentation and were necessary. Now, we are told to pro
duce data flow diagrams, structure charts, Chapin charts, data 
models, Jackson diagrams, and Warnier-Orr diagrams, as 
well as myriad forms supplied by structured methodologies. 

Many installations simply have not sorted out which old 
tools to discard, which new ones to adopt, what to make 
retroactive, or whether or not all tools need to be applied at 

the system, task, and program level. Most organizations have 
viewed documentation as a program level activity, with recent 
emphasis on the data element level. There is much more than 
a program in the makeup of most application systems. They 
are also composed of operating system procedures, database 
interfaces, data files, and other elements. Documentation 
must not only be present, it must be flexible. Few DP organi
zations can bear the expense of throwing a system away and 
rewriting it from scratch. When "the intent is to modify func
tionality or capability or even performance, the trend is to add 
code, a front end, or a box ... 'Add on, not replace' is the 
trend in software.,,1 Documentation must be enhanced easily, 
just like software. Martin and McClure state that "what is 
needed is succinct, high-quality documentation that is easily 
accessible and easily updatable. To be maintainable, pro
grams and their associated documentation must be flexible 
and extensible.,,2 To that statement we could add that all 
documentation pertaining to an applications system must fit 
the same description as that for a program. 

BASIC ELEMENTS OF DOCUMENTATION 
GENERALLY NEEDED FOR EACH APPLICATION 

Regardless of the tool used or the level at which it is applied, 
the basic elements of documentation needed for a typical 
business application include: 

1. The basic purpose of the system 
2. Identification of the customer 
3. How the system runs (tasks, procedures, call files, jobs, 

operating system commands) 
4. How execution begins and proceeds 
5. Which groups of higher level languages or fourth-

generation language instructions exist 
6. How the groups of languages (or programs) are invoked 
7. Which functions are performed 
8. Which files exist 
9. How is the data processed-and by which tasks or 

programs 
10. What the output (input) looks like (files, screens, re

ports, etc) 
11. Who is responsible for the system maintenance 

Whatever the capacity of the hardware, the size of the applica
tion, the programming language employed, the number of 
staff members, or whether a database management system is 
used or not, these types of basic elements need to exist for 
maintainers and auditors of the system. 



212 National Computer Conference, 1984 

BATCH 
PROCESS 

NO.12 

DAILY BACKUP 
MONTH 

UPDATE RECOVERY 
END 

REPORTING 

EDIT PRODUCE PRODUCE 
AND MASTER MASTER 

UPDATE LIST LIST 

Figure I-Visual table of contents (VTOC) 

WHY DOCUMENTING IS SO UNPOPULAR 

Documentation, useful if not absolutely necessary, is often 
the least favorite part of most DP professionals' duties. This 
is so because documentation is seldom scheduled as part of the 
job. When schedules slip, system implementation is a more 
important feature; there must be a system. The documenta
tion portion of the schedule, often inadequately allotted at the 
start, is diminished because it is often performed after the fact 
and because it is usually a clumsy, manual system. Sometimes 
documentation begins when maintenance begins. 3 

Documentation in ADP was completely manual prior to the 
development of SID and included several elements: First was 
a visual table of contents (VTOC) describing the hierarchy of 
tasks. This is a manually drawn set of boxes within a strict 
format. The major functions of the system appear as text 
within the boxes of this system schematic (Figure 1). The 
VTOC was initiated during system design and maintained, 
during the life of the system. It was normally produced after 
system implementation, to merely fulfill a documentation re
quirement, and often was not maintained because of the ne
cessity to manually redraw and retype the chart. 

The next item was a hierarchical input process output 
(HIPO) describing the flow of input and output with respect 
to the functions of a program or task. Special symbols to 
represent files, output listings, and direction of flow (arrows) 
were drawn by hand with the aid of a template, and a narrative 
was typed (Figure 2). HIPOs were intended to be design aids, 
but were usually produced post-implementation and then only 
because of standards requirements. Obviously, due to the 
nature of the format, changes of any consequence required 
redrawing of one or more pages, or a manual cut-and-paste 
procedure. Such inconvenience discouraged the maintenance 
of the charts to accurately reflect the state of the system as it 
changed character over time because of maintenance and 
enhancement. 

BATCH PROCESS NO. 21 

EDIT TRANSACTIONS 

UPDATE SEOUENTIAL -----' •• IF? 
FILEA ~ 
PRODUCE UPDATE 
REPORT 

(
PROCEDURE C 

_ 2 ~ PRODUCE 
_____ ~ MASTER LIST 

® 
C PROCE3DURE ( __ 1" PURGE OLD 

_ _ DATABASE 

2. CREATE NEW - ___ •• ~ 

62.-
DATA BASE ~ 

FIALE --... FROM SEQUENTIAL 
FILE 

Figure 2-Hierarchial input process output (RIPO) 

Next were the indices of programs and files, which provided 
simple lists, usually alphabetized. Other information, such as 
what task invoked the listed program, or what files were refer
enced by the program was usually included (although some of 
the data existed in other forms in the HIPO). The frustration 
in manually maintaining such lists is that the data must be 
recorded at least twice (the I/O files are listed on the program 
index; the referencing programs are listed on the file index). 

Also included was information about file and data ele
ments. Data elements were typically described by a record 
layout form (Figure 3). The record layouts often were 
hand-drawn. 

Finally, there were program listings, which were main
tained in hard-copy form in folders arranged in an order 
meaningful to the organization (by section, by function, and 
so on). The listings were checked out to maintenance pro
grammers in a library-type arrangement. 

FILE NAME: A RECORD NAME: EMPLOYEE 

FIELD EMPLOYEE EMPLOYEE DATE OF SEX 
NAME: NUMBER NAME BIRTH 

CHARACTE R ISTICS: X(6) X(14) XIS) 9 

I 

I RELATIVE 1-6 7-20 21-26 27 
I POSITION: I I I 

Figure ~Record layout 



System Information Database: An Automated Maintenance Aid 213 

AUTOMATION CAN MAKE DOCUMENTATION 
MORE PALATABLE 

Streamlining of documentation procedures may improve the 
product to the point that it becomes a true maintenance aid 
instead of a mere fulfillment of standards requirements. There 
are psychological reasons that programmers are more com
fortable with automated tools than with manual ones. Data 
processing professionals, like the shoemaker with his barefoot 
children, automate the lives of others, but often have no time 
to automate their own business. Naturally, programmers be
come frustrated at being forced to deal with internal paper 
work when they are accustomed to automation in every other 
aspect of their work. 

If manual processes are clumsy, they also tend to produce 
incomplete and inaccurate results. Although management 
makes rules in the form of standards, having an understand
able incentive for profit, they reinforce the message to their 
staff that the most important part of a job is to get the system 
up and running. Of course, the message is well received by 
programmers, who often view documentation as a nuisance. 

Automated documentation has all of the advantages of any 
other automated system, including interactive retrievals, si
multaneous access by several parties, and easy aggregates. 
One particular advantage of automated documentation is the 
retrieval of information across systems. For example, manual 
documentation shows program and file relationships within a 
particular system, but if one wanted to list every program that 
reads File XXX because the format must change to increase 
the field length of a data item, then all manual documentation 
for systems suspected to relate to the file must be searched, or 
all machine-readable files across those systems must be 
searched to complete the list; an easy retrieval for a properly 
formatted system information database. Size considerations, 
an aid in estimation of the effort required for a job, are also 
available, e.g., the number of files within the number of sys
tems that reference Purchase Order Number or one of its 
aliases. As Brown writes, "the most common error in docu
mentation is to provide masses of detail ... but little on overall 
organization ... and on the relationship between parts.,,4 

AUTOMATING DOCUMENTATION: A CASE STUDY 

At Los Alamos National Laboratory, management and staff 
agreed that an automated documentation process should be 
attempted. A relational database system was already licensed 
in-house, had proved to be an excellent tool for other applica
tions, and was chosen to inventory and manage parts of our 
documentation function. There existed, however, a resource 
problem. All available analysts, designers, and programmers 
were committed to other projects. Given the work load facing 
the entire division, there was little justification in hiring staff 
for the documentation project, which was considered over
head. It was not a development of an application desired by 
the customers who pay the bills. There also was a little skep
ticism on the part of management. There had been no official 
cost-benefit study performed for the project and management 
could not be certain it would be worth the effort to disturb the 

status quo to implement a new documentation system when 
the staff was in the throes of a great deal of new development. 

By a fortunate circumstance, the ADP Division was host for 
the summer to four young men from the service academies. * 
The Service Academy Research Associates (SARAs) came to 
us from the Air Force and the Naval academies; three of them 
were in their senior year, one was a computer science major, 
and none had practical data processing experience. They were 
enthusiastic about learning a state-of-the-art tool, so it was 
decided to assign them the documentation project, even 
though they could not work as a true team since their four- to 
six-week tenures overlapped very little. Armed with a name, 
SID, and a database management tool, they produced a pro
totype that proved to be quite successful in convincing man
agement and staff that the documentation procedures could 
indeed change for the better. 

While the first SARA was en route to Los Alamos, a sys
tems requirements definition was produced as a guide to the 
current manual system and what we wanted to accomplish 
with SID. Normally, a systems design document follows the 
requirements definition in the development of any new 
project. In this case, however, the detailed design was re
placed with the prototype version of the system. 

A pilot system was rapidly available for management to 
evaluate in terms of cost and benefit and for the staff to 
evaluate in terms of usability. The pilot project had small
scale actual data; data were entered for small but complete 
systems. 

The system was refined by submitting the prototype version 
to selected members of the programming staff for critique. 
Tables were easily restructured to add and delete data ele
ments or to modify attributes, without the loss or troublesome 
reloading of any of the real data. Additional live data were 
loaded from a hierarchical database on a separate computer 
via magnetic tape. Live data also were loaded from files that 
programmers had set up to keep track of various systems for 
which they were responsible. It was interesting to note that 
many programmers had already discovered that the manually 
maintained central files were inadequate for maintenance pur
poses and that several members of the staff had taken steps to 
record applications data in a more usable state. 

A recent survey of programmer opinion indicated that the 
current ADP staff was 100% in favor of maintaining an auto
mated system to map the state of present systems and the 
evolution of future systems. When a representative task force 
of the programming staff viewed demonstrations of the re
trievals, they responded favorably. 

Some of the automated retrievals that replaced manual 
documentation elements include the VTOC (Figure 4), HIPO 
(Figure 5), index of programs, index of files, index of tasks, 
and catalog of systems (Figure 6). The VTOC is somewhat 
different in format from the original. To allow for an unre
stricted number of high level functions, the information is 
spread down the page instead of across. The informational 

*Midshipman Christian N. Haugen, U.S. Naval Academy; Cadet Edwin O. 
Heierman, U.S. Air Force Academy; Midshipman Matthew J. McKelvey, 
U.S. Naval Academy; Midshipman Gard J. Oark, U.S. Naval Academy. 



214 National Computer Conference, 1984 

VISUAL TABLE OF CONTENTS 
FOR SYSTEM 23 

CAPITAL EQUIPMENT BUDGET SYSTEM 
(CEBS) 

PROCEDURE NO. 10 

PROCEDURE 

2301 
CEBS 

NIGHTLY 
UPDATE 

PROCEDURE 

C230100 
UPDATE 

PROGRAM 

100 
COBOL 
SORT 

PROGRAM 

101 
UPDATE 

PROGRAM 

102 
SUMMARY 

REPORT 

PROCEDURE 

CEBS 
PURCHASE 
REQUEST 

TRANSFER 

PROGRAM 

103 
TRANSFER 

Figure 4-VTOC 

elements are retained, however, and both hierarchical and 
sequencing attributes are preserved. A catalog of systems 
relates files to programs, programs to tasks, and tasks to 
systems. In the example in Figure 6, the capital equipment 
budget system (CEBS) is documented. CEBS is identified as 
system 23. Task 2301 is a procedure file that executes three 
programs-230601, 230605, and 230625. Each program is also 
identified by its generic name. Files appearing as 110 within 
the programs are documented in the rightmost column. 
Source data is input to the database using the input screen 
tools supplied by the database management system (Figure 7). 
Updates to documentation of the present system are accom
plished using the same screens. 

FRINGE BENEFITS 

SID was devised with the intent of helping programmers to 
map present and future systems. However. once in piace. it 
provided several other benefits. A matrix describing system 
identifiers and associated responsible programmers had been 

HIERARCHICAL INPUT PROCESS OUTPUT 
FOR SYSTEM 23 

CAPITAL EQUIPMENT BUDGET SYSTEM 
BATCH PROCESS NO. 27 
PROCEDURE NO. 2301 

INPUT FILES PROGRAM 

• TRANSACTIONS 230501 

• FILE A 

• FILE A 

• FILE A 

• OLD DB 

SYSTEM 

ID 

23-CEBS 

• EDIT 
TRANSACTIONS 

• UPDATE FILE A 

• PRODUCE UPDATE 
REPORT 

230605 

• PRODUCE 
MASTER LIST 

230625 

• PURGE OLD DB 

• CREATE NEW DB 

Figure 5-HIPO 

CATALOG OF SYSTEM, 
TASK, PROGRAM, FILE 

TASK 
(PROCEDURE) PROGRAM 

ID NAME 

2301 230601 

OUTPUT FILES 

• FILEA 

• REPORT 

• MASTER 

• NEW DB 

FILE(S) 
USED 

FILE A 
EDIT/UPDATE REPORT 

230605 FILE A 
MASTER LIST MASTER 

230625 FILEA 
NEWDB OLD DB 

NEWDB 

Figure 6-System catalog 

maintained on word processing equipment. A similar matrix 
detailing application system, organizational section where the 
functional responsibility for that application resides, and pro
grammers identified in order by level of responsibility (pri
mary responsibility, back-up to primary responsibility, and 
secondary back-up responsibility) can now be made by a fairly 
simpie merge of relations. Tne query language commands are 
collected into an executable procedure so that the matrix can 
be produced with one operating system level command. The 



System Information Database: An Automated Maintenance Aid 215 

SYSTEM 
IDENTIFIER 

i __ 

LINES OF 
CODE 
i __ _ 

SUBROUTINE 
OF? 

c _____ _ 

PROGRAM UPDATE FORM 

SUBSYSTEM 
IDENTIFIER 

i_ 

LANGUAGE 
USED c ______ _ 

PROGRAM 
NUMBER 

i __ _ 

TYPE OF DATABASE 
SYSTEM USED 

c ___ _ 

NAME OF PROCEDURE 
WHICH CALLS 

PROGRAM c ______ _ 

Figure 7-5m data entry screen 

word processing files have been deleted and the clerical staff 
updates employee information as it relates to system responsi
bility directly on the database. Section leaders (first-line man
agement to whom the responsible programmers report) like
wise record responsibility changes directly on the database. 
Figure 8 is an example of the responsibility matrix. Of course, 
responsibility information can be retrieved by name of staff 

member as well as by application system. It is sometimes 
useful for management to know-by employee-for which 
systems each employee maintains responsibility, and what 
constitutes the level of responsibility. Once system responsi
bility data are captured, it is a simple step to report organiza
tional entity, telephone number, and location for members of 
staff, either as a complete organizational report or as re
trievals for single individuals or groups of individuals. 

Another fringe benefit of storing gross system data in one 
place is the ability to estimate system size. Many installations 
can list the modules present in a system, but few can report 
much about actual system size, because expansion and con
traction take place continuously with modification. There is 
an occasional need to give at least approximate-figure answers 
to questions about how long it will take to convert completely 
to a new hardware vendor or what the estimate is for con
verting to a new language version or a different control lan
guage. These questions frequently are not just academic; en
tire installations can change hardware vendors, and it is not 
unusual for vendors of software to cease support of earlier 
versions. Approximate figures for lines of code per language, 
languages per system, programs per system, tasks (operating 
procedure level commands) per system, and other sums can 
provide the basis for estimating conversion effort, and there
fore, monetary cost. Such queries can be processed easily by 
the count and sum features of most databases. 

FUTURE ENHANCEMENTS 

While the primary intent of the database is to serve the pro
gramming staff who maintain present systems and develop 
new ones, the functions can be expanded to include the oper
ations side of systems production. Run and recovery instruc-

RESPONSIBILITY TABLE 

SYSTEM SYSTEM ORGAN IZATIONAL 1 st 2nd 
10 NAME SECTION PRIMARY BACKUP BACKUP 

12 PAYROLL EMPLOYEE HAWKINS RICH McCALISTER 
INFORMATION 

20 COMM ITMENTS ACCOUNTING TOMLINSON HUDGINS ARMSTRONG 
AND OPERATIONS 

23 CAPITAL BUDGET AND ROYBAL HILL 
EQUIPMENT PLANNING 

70 GENERAL ACCOUNTING HUDGINS OSBORN 
LEDGER AND OPERATIONS 

85 PROPERTY MATERIALS ARMSTRONG 
MANAGEMENT 

Figure 8-SID retrieval 



216 National Computer Conference, 1984 

tions, file access and permits, account restrictions, job setups, 
file retentions, expected outputs, and other operations data 
can be appended to system, task, program, file, or data ele
ment relations as appropriate. Operations information is a 
natural addition because operators and production controllers 
are also interested in employee system responsibilities and 
system functional descriptions, which have already been de
scribed in the database. 

Information about system functions, responsibilities, and 
operations can form a useful link to controlling resources and 
measuring activities associated with a system. The level of 
activity against a system is a guide to future staffing in an 
organization. Activity in the form of customer requests for 
service (maintenance, enhancements) on a particular system 
can be married to the system information database to get a 
complete picture of current system activity levels. For exam
ple, it can be noted that system #98 is general ledger , that task 
#107 account update executes 12 programs and 7 files (from 
SID), that the task is executed approximately 30 times per 
month (from SID), that program #203 aborted seven times 
last month (from SID with operations data), and that program 
#203 had five service requests logged against it in the past six 
weeks (from the resource control or metrics database). Other 
data, such as the effort required to 'complete the requests for 
service on the program and history of the program, can be 
used in assessing staffing levels for the system as well as for 
considerations in the program's redesign. 

CONCLUDING REMARKS 

No database, even a modern relational database, is magic. 
The organization considering support of a SID must commit 
to some amount of overhead. As in the case of the automated 
systems we deliver to our customers, data must be entered, 
the database tool must be understood, and more likely than 
not, programs will have to be designed and maintained to 
perform sophisticated retrievals and to provide links from one 
database to another . . 

When SID was developed by ADP at Los Alamos, the 
prototype was brought up almost entirely by the SARAs, a 

real tribute to the ease of use of the relational database man
agement system. Yet several programs were required, adding 
to the overhead of maintenance and documentation for those 
remaining after the student apprentices have left. Like all 
systems, data processing's management information systems 
must be staffed to watch for and prevent system degradation. 

REFERENCES 

1. Zvegintzov, N. "Nanotrends." Datamation, 29, (1983), pp. 105-116. 
2. Martin, J., and C. McQure. Software Maintenance: The Problem and Its 

Solutions. Englewood Qiffs, N.J.: Prentice-Hall, 1983. p. 174. 
3. Schneider, E. "Structured Software Maintenance." AFIPS, Proceedings of 

the National Computer Conference (Vol. 52), 1983, pp. 137-144. 
4. Brown, P. J. "Why Does Software Die?" In G. Parikh and N. Zvegintzov 

(eds.), Tutorial on Software Maintenance. Silver Spring, Md.: IEEE Com
puter Society Press, 1983. 

5. Parikh, G. "Structured Maintenance the Warnier/Orr Way." In G. Parikh 
and N. Zvegintzov (eds.), Tutorial on Software Maintenance. Silver Spring, 
Md.: IEEE Computer Society Press, 1983. 

6. Yourdon, E., and L. L. Constantine. Structured Design: Fundamentals of a 
Discipline of Computer Program and Systems Design (2nd ed.). New York: 
Yourdon Press, 1978. 

7. De Marco, T. Structured Analysis and System Specification. New York: 
Yourdon, 1978. 

8. Chapin, N. "New Format for Flowcharts." Software Practice and Experi
ences, 4 (1974), pp. 341-357. 

9. Rigo, J. T., and J. R. Rudikoff. "HIPO: Structured System Design 
Documentation." Auerbach Information Management Series. Philadelphia, 
Pa.: Auerbach Publishers, 1975. 

10. Hunter, B. "Documentation-Management Problems and Solutions." 
Auerbach Information Management Series. Philadelphia, Pa.: Auerbach 
Publishers, 1977. 

11. Page-Jones, M. The Practical Guide to Structured Systems Design. New 
York: Yourdon Press, 1980. 

12. Yoder, C. M., and M. L. Schrag. "Nassi-Shneiderman Charts-An Alter
native to Flowcharts for Design." Software Engineering Notes of the ACM, 
5 (1978), pp. 79-86. 

13. Nassi, I., and B. Shneiderman. "Flowchart Techniques for Structured Pro
grflIllDling." Sigplan Notices of the ACM, 8 (1973), pp. 12-26. 

14. Allen, F. W., M.E.S. Loomis, and M. V. Mannino. "The Integrated 
DictionarylDirectorySystem." ACM Computing Surveys, 14 (1982), 
pp. 245-286. 

15. Center for Programming Science and Technology. "Functional Specifica
tions for a Federal Information Processing Standard Data Dictionary Sys
tem." National Bureau of Standards Publication 82-2619, Washington, 
D.C., 1983. 



COBOL-SO: The new structured language 

by JEROME GARFUNKEL 
Jerome Garfunkel Associates, Inc. 
Litchfield, Connecticut 

ABSTRACT 

This paper includes a presentation of the most important new features of COBOL-
80, with examples for each. In addition, an analysis of the potential costs and 
benefits of this new language is presented. Finally, criticism of potential incompat
ibilities is discussed. 

©1982 by Jerome Garfunkel. Previously published in Data Management Magazine, October 1983. 

217 





The features discussed in this paper are among the more 
significant new features of the draft proposed revised X3.23 
American National Standard Programming Language 
COBOL (COBOL-80). The features presented here repre
sent only a sample of all the new features of the revised 
COBOL standard. Many other more subtle features of 
COBOL-80 are included as well. 

Based on my own analysis as well as on a government analy
sis conducted on a sizable sample of its own program inven
tory, I expect a significant increase in productivity will be 
derived from using COBOL-80 in program development and 
maintenance. Particularly in the area of program mainte
nance, although the cost savings will be deferred as programs 
go through their normal life cycle, the productivity gains de
rived from the maintenance of well-structured COBOL-80 
programs will be a significant factor in systems maintenance 
operating costs. 

This revision of the COBOL standard has, in addition to the 
new features, numerous clarifications of poorly defined (am
biguous and undefined) rules that existed in the previous 
COBOL-74 and COBOL-68 standards. These clarifications, 
although constructively serving the COBOL user community 
at large, may inadvertently conflict with a specific imple
mentor's COBOL compiler. This occurs when a specific 
implementor-defined interpretation of an ambiguous rule oc
casionally differs from the newly defined standard interpreta
tion. Much attention has been paid to this group of features 
over the past few years. 

Many of the new features of COBOL-80 will greatly ease 
the use of COBOL in structured programming environments. 
Some of the new features specifically useful in structured pro
grams are included in the following sections. 

EVALUATE 

The EVALUATE verb provides a means of testing multiple 

EVALUATE AGE-OF-DEBT ALSO 
WHEN OTHRU30 ALSO 
WHEN OTHRU 30 ALSO 
WHEN 31 THRU 60 ALSO 
WHEN 31 THRU 60 ALSO 
WHEN 31 THRU 60 ALSO 
WHEN 61 THRU 90 ALSO 
WHEN 61 THRU 90 ALSO 
WHEN 61 THRU 90 ALSO 
WHEN 91 THRU 999 ALSO 
WHEN 91 THRU 999 ALSO 

END-EVALUATE 

COBOL-80: The New Structured Language 219 

conditions and specifying multiple control branches (s'ee Fig
ure 1). 

PERFORM 

An in-line version of the PERFORM statement is now per
mitted. In addition "DO-while" and "DO-until" constructs 
can now be written with the addition of the WITH TEST 
BEFORE and WITH TEST AFTER clauses. 

PERFORM WITH TEST AFTER UNTIL X > = 100 
ADD 1 TOX 
MOVE TABLE-ITEM (X) TO TABLE-ITEM ( X + 1) 

END-PERFORM 

Note the new relational operator GREATER THAN OR 
EQUAL, and the new relative subscript (X + 1). 

STRUCTURED CONDITIONAL STATEMENTS 

With the inclusion of 19 scope terminators (i.e., END-IF, 
END-READ, END-ADD, etc.), constructs of nested condi
tional statements may be written with clarity. 

IF FINAL-RECORD-PROCESSED 
THEN PERFORM LAST-TRANSACTIONAL-PROC. 

READ BATCH-KEY-FILE 
AT END EXIT PROGRAM 

END-READ 
IF BATCH-KEY = "D" 

THEN PERFORM DELETION-PROC. 
ELSE PERFORM MODIFY-PROCEDURE 

END-IF 
ELSE PERFORM NORMAL-RECORD-PROCEDURE 

CONTINUE 
END-IF 

CREDIT-RATING 
"A" THRU "B" PERFORM NO-NOTICE 

"e" PERFORM MILD-NOTICE 
"A" PERFORM MILD-NOTICE 
"B" PERFORM NORMAL-NOTICE 
"e" PERFORM FIRM-NOTICE 
"A" PERFORM NORMAL-NOTICE 
"B" PERFORM FIRM-NOTICE 
"e" PERFORM COLLECTIONS 
"A" PERFORM FIRM-NOTICE 

"B"THRU"C" PERFORM COLLECTIONS 

Figure I-The EVALUATE Statement 



220 National Computer Conference, 1984 

FALSE CONDITION BRANCH 

To add structured symmetry to all conditional clauses (AT 
END, ON SIZE ERROR, etc.) a negative version of the 
clause is also allowed as in: 

READ 
AT END 
NOT AT END 

END-READ 

MASTER-FILE 
EXIT PROGRAM 
PERFORM PROCESS-RECORD 

NESTED PROGRAMS 

Complete programs may be wholly contained within other 
programs. This permits, among other things, the outside pro
gram to specify GLOBAL data items, which may be shared by 
any of the contained (inside) programs; as in this example: 

01 SHARED-DATA IS GLOBAL PIC X(20). 

Additionally, GLOBAL USE procedures may be specified 
in the DECLARATIVE section of the outer program that 
allows for file error processing in the contained programs to 
be centralized and controlled by the outer (Master) program: 

USE GLOBAL AFTER STANDARD ERROR 
PROCEDURE ON INPUT. 

CALL 

Data items that are passed to "sub-programs" may protect 
their contents from being modified by the addition of the BY 
CONTENT phrase of the CALL statement. 

CALL PAYROLL USING BY CONTENT WEEKLY-PAY, 
YTD-PAY. 

INITIALIZING SUB-PROGRAMS 

When the PROGRAM-ID of a subprogram contains the 
phrase IS INITIAL after its program name, the programmer 
can be assured that all data values will be initialized before it 
starts executing. 

PROGRAM-ID. ACCOUNTS-PAYABLE IS INITIAL. 

OCCURS-VALUES AND SUBSCRIPTS 

Seven dimensions (seven levels of subscripting) may now be 
specified (previously only three levels were provided). Also, 
initial values may now be specified for table elements without 
the need to REDEFINE the table. 

01. 
03 TABLE-ELEMENT PIC 999V99 OCCURS 100 

TIMES VALUE ZERO. 

SYMBOLIC CHARACTERS 

The symbolic character clause in the SPECIAL-NAMES 
paragraphs provides a means for a programmer to specify a 
user-defined name for nonprintable characters in the ASCII 
(or other) character sets. 

SYMBOLIC CHARACTER BELL IS 8 IN ASCII 

In this example 8 refers to the eighth ordered character in the 
ASCII character set, and BELL is a user-defined figurative 
constant. 

FILLER 

The word FILLER is optional and is no longer restricted to 
elementary data items. 

01. 
02 
02 
02 

DE-EDmNG 

COUNTER-1 

COUNTER-2 

PIC 
PIC 
PIC 

999V99. 
X. 
999V99. 

Numeric-edited data items (PIC $$$,$$$) may be moved to a 
purely numeric data item (PIC 9(6)V99). This results, for 
example, in moving a data item that contains $1,234 to a data 
item containing 00123400. 

SORT 

Multiple output files are permitted. In addition, the WITH 
DUPLICATES IN ORDER clause now allows the pro
grammer to specify that duplicate sort keys appearing on the 
input file will be in the same sequence on the output file. 

SORT 
ON ASCENDING KEY 
WITH DUPLICATES IN 
INPUT PROCEDURE IS 
GIVING 

SORT-WORK FILE 
WORK-ORDER-NUMBER 
ORDER 
ED IT-INPUT-PROCESS 
DAILY-WORK-SEQ 
DAILY-WORK-REL 
DAILY-WORK-INDX. 

Note also that the SORT input procedure (EDIT-INPUT
PROCESS) may reference procedures outside of the SORT 
section. Likewise, procedures within the SORT may be refer
enced by procedures in the main program. 

REFERENCE MODIFICATION 

Programmers may now reference a portion of a data item 
without needing to REDEFINE that portion previously in the 
DATA DIVISION, 

MOVE TELEPHONE (4:3) TO EXCHANGE 



In the above example only the fourth, fifth, and sixth position 
of the data item TELEPHONE are moved (starting in posi
tion 4: for a length of 3). I suggest that programmers be 
careful when using this feature because its misuse can lead to 
poorly documented programs. 

INITIALIZE 

A series of subordinate elementary data items may be initial
ized all at once using the INITIALIZE verb. Given the follow
ing group data item: 

01 SCREEN-PAGE. 
03 NAME 
03 TELEPHONE 
03 BALANCE-DUE 
03 CUST-STATUS 

PIC 
PIC 
PIC 
PIC 

X(20). 
999B999B9999. 
9999V99. 
A. 

if a programmer writes INITIALIZE SCREEN-PAGE, all 
numeric data items will be cleared to zero and all nonnumeric 
data items will be cleared to spaces. There are facilities to 
restrict the initializing process to certain classes of data (nu
meric only, alphanumeric-edited only, etc.) as well as to ini
tialize fields to values other than zero and spaces. 

INSPECT ... CONVERTING 

The CONVERTING clause of the INSPECT statement per
mits a shorthand way of writing multiple character replace
ment clauses. 

01 BOTTLE PIC X(5) VALUE "WATER". 

INSPECT BOTTLE CONVERTING "ATR" TO "IN" 

This INSPECT statement results in three character replace
ments ("A" to "I", "T" to "N", and "R" to space). It is a 
cheap way to PERFORM miracles in COBOL-80 by con
verting WATER to WINE. 

REPLACE 

To aid the programmer in dealing with possible conflicts in 
new reserved words with COBOL-74/68 pro~ams, the RE-

COBOL-80: The New Structured Language 221 

PLACE statement operates on source text and converts the 
source program before it is compiled. 

REPLACE 

= = END-READ = = BY ==END-READ-PROCEDURE== 
= = CLASS = = BY ==DATA-CLASS== 
==ALPHABETIC== BY = = ALPHABETIC-UPPER = =. 

I expect that this will be most useful where COBOL installa
tions create standard conversion library routines that can be 
copied into individual programs. 

RECORD DELIMITER 

A means of specifying Variable Length Record conventions is 
provided in the FILE-CONTROL paragraph. 

SELECT 
ASSIGN TO 
ORGANIZATION IS 
RECORD DELIMITER IS 

DAY-OF-WEEK 

INDEXED-FILE A 
DISC 
INDEXED 
STANDARD-I. 

This reserved word DAY-OF-WEEK represents a one digit 
character: 1 = Monday, 2 = Tuesday, 3 = Wednesday, etc. It 
is used as follows: 

ACCEPT DAY-CODE FROM DAY-OF-WEEK 

CLASS 

A new CLASS clause in the SPECIAL-NAMES paragraph 
allows a programmer to name his own class of characters. 

CLASS FIRST-HALF-ALPHA-UPPER IS "A" THRU "M" 

These new features, along with some other more subtle addi
tions and changes, contribute to an up-to-date application 
language complementing current trends in structured pro
gramming methodologies. * 

* Those with questions regarding the revised COBOL 80 standard are invited to 
contact the author at Jerome Garfunkel Associates, Inc., Cobble Court, Litch
field, Connecticut 06759. 





Is COBOL-8x cost effective? 

by MARCO FIORELLO 
Tztan Systems 
Vienna, Virginia 

and 

JOHN CUGINI 
National Bureau of Standards 
Washington, D.C. 

ABSTRACT 

The purpose of the study is to assess the estimated costs and benefits to the federal 
government that would result from adoptien of the proposed revision of American 
National Standard COBOL as a Federal Information Processing Standard (FIPS). 
Potential benefits of $90.2 million have been identified, stemming primarily from 
improved productivity in both the development and maintenance of COBOL pro
grams. Estimated costs of $17.9 million have been identified, arising principally 
from the effort needed to convert old COBOL programs to the new specification, 
which is incompatible in some respects with the current one. In support of the study, 
we conducted interviews with federal ADP managers and officials, and also ana
lyzed more than one thousand federal COBOL programs for various syntactic 
characteristics. 

Extracted from National Bureau of Standards Internal Report 83-2639; not subject to copyright in the U.S. 

223 





STUDY SCOPE AND QUALIFICATIONS 

The scope of this study is limited to COBOL-related effects on 
the federal ADP community. Of course similar effects may be 
expected in the private sector insofar as the characteristics of 
its COBOL usage resemble those of the federal government. 

In this analysis, we are concerned with effects that may 
result if the proposed changes to ANSI COBOL-74 are also 
adopted in the Federal Information Processing Standard 
(FIPS) for COBOL. Data available on applications software 
development and maintenance in the federal government are 
general and approximate in nature, and are particularly lim
ited regarding anyone specific programming language such as 
COBOL (although COBOL is by far the most commonly used 
language within the government, and therefore can hardly be 
regarded as atypical). We augmented the available general 
data with staff interviews at nine federal agencies and with a 
detailed analysis of a sample of 1068 COBOL programs from 
eleven federal agencies. 

BASE CASE STATISTICS 

The base case statistics are derived from various reference 
materials, cited in this document, and the study survey and 
program sample. 

Programmer Pool 

For the past 10 years the number of federal agency staff 
programmers has remained fairly steady-in the range of 
118,000-120,000 staff-years. 1 Of those work-years, roughly 
60% were primarily for COBOL-related activities in 1980, 
with a growth to 65% projected for 1985.2 Depending upon 
the federal agency, the annual programmer turnover rate will 
vary from a low of 10% to a high of 30%. A reasonable 
average appears to be 20%. In most installations, more than 
half of the staff are devoted to maintenance (corrective, adap
tive, and perfective) activities, which reflect the life cycle 
distribution of application software costS. 3

-
5 Based on very 

limited data, it appears that on the average a programmer 
spends 15% to 25% of available time performing coding 
functions. 

CO BO L Program Inventory 

There are roughly 500,000 application software programs in 
the federal inventory. Of these, 50% to 60% are in some form 
of COBOL. Very few, 5-10%, of these 250,000-300,000 

Is COBOL-8x Cost Effective? 225 

COBOL programs are in full conformance with the current 
COBOL FIPS 21-1. The average COBOL program in our 
sample contains about 1270 lines of source code and was de
veloped about six years ago. This latter figure compares rea
sonably well with the 5.4-year estimate given in Reference 4. 

In our sample of 1068 COBOL programs, with more than 
1.3 million lines of code from 11 federal agencies, we learned 
that 80% use one or more of the 50 proposed incompatible 
changes analyzed in this study. If we discount the somewhat 
special case of the incompatibility concerning the DISPLAY 
verb (see below), this figure drops to about 40%. 

An important point about interpretation of the statistics is 
that the detection of incompatibilities was done by a syntactic 
scan of the source code. Where the incompatibility involves a 
syntactic change (e.g., the deletion of ENTER), this is a 
reliable procedure. In those cases where the semantics are 
being changed or clarified (EXIT PROGRAM closing out 
PERFORMs, for example), however, the best that can be 
done is to look for source code where such a change might 
make a difference. This analysis represents, therefore, only a 
worst-case estimate. The DISPLAY incompatibility is an es
pecially striking example of this. Syntactically, we counted 
every occurrence of DISPLAY as an incompatibility, even 
though the great majority of vendors currently implement this 
verb as described in the revision. 

The age of programs was determined simply by the contents 
(if any) of the DATE-WRITTEN paragraph. This is, of 
course, not a foolproof metric. Nonetheless, we feel the data 
are worth presenting, and they do agree with a previous Gen
eral Accounting Office estimate. We were able to find a 
DATE-WRITTEN entry in 58% of the sample programs. 

Application Program Conversion and Maintenance 

In the current setting, the source code for application pro
grams is updated for a variety of reasons: 

1. Conversion to a new or modified host system (hardware 
or software) 

2. Accommodation of modified functional requirements 
3. Correction of errors detected in the code 
4. Reprogramming to reduce the number of compilers used 

or to improve processing efficiency 

The interviews with federal ADP managers revealed that 
COBOL programs are recompiled at least once a year be
cause of maintenance activities, and sometimes as often as six 
times annually. A reasonable average is two or three times per 
year. 



226 National Computer Conference, 1984 

COSTS AND BENEFITS 

Program Development 

The proposed revised standard COBOL features that have 
the potential to enhance programmer productivity include the 
following: 

1. Nested programs provide a facility for segmenting large 
programs into smaller logical units 

2. Scope delimiters assist in the generation of structured 
code 

3. Reference modification allows the programmer to access 
any part (substring) of a character field without having 
to redefine the item 

4. EVALUATE statements incorporate a well-known con
struct from structured programming practices, the multi
way conditional 

5. Other constructs that should prove useful in clearing up 
previously awkward aspects of COBOL are the ability to 
PERFORM routines in-line, set up tables with more 
than three dimensions, accept as well as generate num
bers in edited form, and INITIALIZE the values in 
tables. 

Of the above, we were able to search the sample programs for 
programming practices in which features 3 and 4 could have 
been used and would have saved time for the programmer. 
For feature 3, we searched for data items defined as PIC X 
(one character only) with an OCCURS clause. For feature 4, 
we searched for GO TO ... DEPENDING ON. In our sam
ple, roughly 22% of the programs could have employed fea
ture 3, and 5% could have used feature 4. 

Feature 1 will be especially useful for organizing large pro
grams. In our sample, programs with more than 1500 lines of 
source code account for approximately 65% of all the lines of 
code (even though they constitute only 25% of all programs). 
We note that all COBOL programs can make use of feature 
2. Moreover, in the interviews conducted with representatives 
of various federal agencies, this enhancement was the one 
most often cited as potentially improving programming prac
tice. Thus, we anticipate that the enhancements to COBOL 
will apply to some degree to virtually all programs in the 
federal inventory. For a considerable percentage of the code, 
the effect will be quite significant. 

We make the following conservative assumptions: First that 
COBOL-8x will be adopted by federal agencies at the rate of 
approximately 10% per year, and second, that the use of the 
advantageous features will result in a 5% increase in produc
t~vity during the coding phase of development. These assump
tIOns generate a savings of $36.1 million over the next ten 
years. 

Program Maintenance 

Program maintenance concerns those activities involving 
correcting, perfecting, and adapting existing application soft
ware, and currently represents 50-70% of the program life 
cycle costs. 3-5 

The principal ways in which the proposed changes to stan
~ard C?BOL would affect the maintenance function are by 
mcreasmg the understandability of COBOL programs and by 
reducing the error-prone features of COBOL-74. The en
hancements to the language cited above under program devel
opment apply strongly to program maintenance as well. since 
they make it easier to read and write code. Many ~f the 
proposed 50 incompatibility changes are intended to eliminate 
or clarify certain error-prone or ambiguous features of the 
current COBOL standard. 

Again, assuming that federal agencies adopt COBOL-8x at 
the rate of 10% per year, and that the advantages of COBOL-
8x generate a 1% savings in maintenance activities, the re
sulting savings will be $54.1 million over the next 10 years. 

Program Conversion 

Software conversion is the transformation, without func
tional change, of computer programs and data elements to 
new hardware or software processing environments. The 
greater the degree of incompatibility between the source and 
target systems and the setting, the more difficult the 
conversion. 

Clearly, there will be an extra cost associated with moving 
programs from a COBOL-74 compiler to a COBOL-8x (this 
is the name sometimes used to refer to the proposed new 
standard) compiler insofar as there are incompatibilities be
tween the two. This cost is the object of the quantitative 
analysis. It is also true, however, that in those cases involving 
the definition by the proposed revision of features that had 
been ambiguous or implementation-defined, there will be an 
associated benefit. This is because future conversions within 
the COBOL-8x standard will not be vulnerable to different 
implementation of these features. 

Programs may be brought into conformance with COBOL-
8x in the following ways: 

1. Recoding for the sole purpose of conforming to the new 
standard 

2. Recoding in conjunction with a system conversion to a 
new host system 

3. Recoding in conjunction with normal software mainte
nance requiring recompilation 

4. Reprogramming to meet new functional requirements of 
the application 

In assessing the effect of the incompatibilities, it is useful to 
consider the federal COBOL inventory as a whole, and to ask 
how many of these programs will eventually be converted to 
COBOL-8x (as opposed simply to being left as-is until no 
longer needed), and in which of the four ways listed above this 
will occur. The list is ordered from greatest to least effect per 
program. At one extreme, if a program is converted purely for 
the sake of conformance, then the entire cost of conversion is 
attributable to the adoption of the new standard. At the other 
~xtreme7 if a program is completely redesigned anyway; there 
IS no measurable additional cost in seeing that it conforms to 
the standar~ .. Midway between these cases would be bringing 
a program mto conformance in conjunction with some other 



form of updating, be that conversion or maintenance. While 
there is some extra effort involved, much of the conversion 
overhead (e.g., recompilation, retesting) is "free," in that it 
would be done even if the two versions of the standard were 
completely compatible. It is worth recalling that programs are 
recompiled rather frequently (at least once a year) for routine 
maintenance, and so there is plenty of opportunity for re
coding in category 3. 

The cost effect is the additional effort expended in each of 
the above categories. Based on interviews with federal agen
cies, and also on a review of the transition process from 
COBOL-68 to COBOL-74, we conclude that very few, if any, 
conversions will be done merely for the sake of conformance. 

Also, the previous experience in making the transition from 
COBOL-68 to COBOL-74 indicates that installations will 
continue to maintain the compiler for the previous version of 
the standard for a considerable time after introduction of the 
new version. We conclude, then, that the cost of achieving 
conformance in categories 1 and 4 is negligible, because virtu
ally no conversion will be done in category 1 and there is no 
effect on conversion in category 4. 

Measurable costs, then, are confined to categories 2 and 3, 
which we will treat together. The key questions are how many 
conversions will be done this way (as opposed to category 4 or 
not being done at all), and how much extra effort will be 
introduced by the incompatibilities. 

The first question, about the percentage of programs to be 
converted, may be approached by noting some of the charac
teristics of the age of programs. The statistics on age allow us 
to formulate only a rough idea about the pattern of longevity 
for the current federal inventory. Note that the statistics are 
for the age of existing programs. This age distribution would 
directly reflect longevity only if we assumed that COBOL 
programs were being created at a constant rate over the past 
15 years or so--clearly not the case. Nonetheless, almost any 
reasonable model one can develop that assumes an average 
age of six years for federal COBOL programs will yield a 
result no greater than 70-75% for the share of programs that 
will be converted to COBOL-8x over the next 10 years. 

Next, we must consider the degree of extra effort entailed 
by the incompatibilities. For this analysis, we decided to use 
various parts of the Federal Conversion Software Center mod
el. 6 Its formulation is exclusively oriented to and based on 
federal ADP systems. Also it provides reasonable definitions 
of the conversion complexity classes and of average conver
sion cost per line of code by class. Through the use of this 
model, we can express in a precise way the intuitively natural 
notion that the costliness of a given incompatibility will de
pend strongly on how often the incompatibility is used (as 
measured by the sample) and how complex is the conversion 
that it entails. Based on this model, the cost of converting to 
COBOL-8x over the next 10 years is $17.9 million. 

Sensitivity Analysis 

The principal objective of a sensitivity analysis is to assess 
the degree of variation in the cost-benefit effect estimates 
generated by changes in the study assumptions, and to pro
vide insight about the validity of the study findings (see Table 

Is COBOL-8x Cost Effective? 227 

I for a summary). Therefore, we will discuss in greater depth 
those assumptions that are most subject to doubt and that 
affect the outcome most strongly. 

Benefits 

The benefits, as is typically the case for standards, are broad 
but shallow. Estimating the breadth (i.e., scope) of the bene
fit is relatively simple: Clearly, the effect extends throughout 
the use of COBOL in the federal government. The difficulty 
is in arriving at a reasonable estimate for the depth: How 
much good will the new standard do in an "average" federal 
agency? We have tried to be cautious in our estimates of the 
programming savings factor (PSF = 5%) and maintenance 
savings factor (MSF = 1 %). The less precise of these is prob
ably MSF. If we assume that MSF is 2%, instead of 1 %, the 
maintenance benefit increases by $54 million. Such value is 
well within reason, but cannot be demonstrated with the avail
able data. 

Cost 

We now examine those assumptions upon which depend the 
most likely cost estimate of $17.9 million. Clearly, the bulk of 
the cost stems from those incompatibilities that both occur 
frequently and force a more severe modification. There are 
four of these that deserve some individual comment: 

1. Deleting MEMORY SIZE from the standard 
2. Deleting ENTER from the standard 
3. Defining the effect of EXIT PROGRAM on 

PERFORMs 
4. Defining the order of evaluation of subscripts within 

PERFORMs 

TABLE I-Sensitivity analysis 
(figures in $ millions) 

Assume 

MSF = 1% 

Assume 

MSF = 2% 

-----------------+---------------------------------------
most likely 

assumptions 

Benefit: 90.2 

Cost: -17.9 

Net: 72.3 

144.3 

-17.9 

126.4 

-----------------+---------------------------------------
assume ENTER Benefit: 81.2 129.9 

unchanged, 10% Cost: -11.3 -11.3 

benefit loss Net: 69.9 118.6 

-----------------+---------------------------------------
Conversion of Benefit: 90.2 

50% of Program Cost: -12.8 

Inventory Net: 77.4 

144.3 

-12.8 

131.5 



228 National Computer Conference, 1984 

Items 3 and 4 cannot reasonably be changed back to the 
original specification of COBOL-74. They simply define the 
semantics of two cases that were not described in COBOL-74. 

For item number 1, the effect was completely dependent on 
the implementation in any event; almost all modern systems 
accept such information as part of their system control lan
guage. For item 2, it is technically feasible to keep the 
specifications of COBOL-74. If this were done, the cost esti
mate would shrink to $11.3 million. There would also be, 
however, an adverse effect on the benefit side. ENTER was 
deleted precisely because it encourages the development of 
the code that is error-prone and difficult to maintain. It would 
take only a 7% reduction of the benefits to cancel out the $6.6 
million cost savings. 

It is worth noting that in all four cases above, programs 
depending on the COBOL-74 specification were not guaran
teed to be portable by that specification; all four changes are 
examples of taking aspects of the COBOL-74 standard that 
were ill-defined (purposely or not) to begin with, and either 
deleting the feature outright, or simply defining its effect. In 
none of these cases is a truly well-defined portable feature 
being affected. 

The final issue is which policy federal agencies will adopt 
governing coding practices in the years leading up to the actual 
transition to a COBOL-8x implementation. We have some
what pessimistically assumed that as new code replaces dis
carded programs, it will have the same degree of incompat
ibility. If, on the other hand, new code under development 
were monitored for conformance to COBOL-8x, then the 
effective percentage of code actually needing to undergo con
version would shrink from 70% to 50% within a few years. A 
figure of 50% implies conversion costs of $12.8 million. 

FINDINGS AND RECOMMENDATIONS 

This study shows that the effect of revising the COBOL stan
dard as proposed should not be dramatic, either for good or 
ill. There is a real opportunity to improve certain features of 
the language, which should not be ignored, but the changes 
will hardly revolutionize COBOL programming in the federal 
sector. At the same time, there will be some problems created 
by incompatibility. These are not unusual, either in kind or in 
degree. Nor should it be surprising that the effect is relatively 
small; the proposed revision is just that: a revision of an 
existing standard-and not that markedly different from it. 

It is important to put the projected costs and benefits into 
perspective. An effect of $100 million, spread out over 10 
years, represents 0.3% of the salaries (unadjusted) of federal 
programmers over that same period. Concerning incompat
ibility, there was virtual consensus among the ADP personnel 
we interviewed that modifying source code was among the-

easier aspects of conversion. They had experienced far more 
difficulty with conversion of data and of job control code. 
Some agencies actually had to write their own input-output 
routines, rather than use those of the new system, because of 
data incompatibility. When asked what their biggest problem 
was, most answered, "the lack of documentation." One inter
viewee characterized this as the problem of "portability of 
programs between programmers." 

There is no need to improve compatibility between the 
current and proposed versions of COBOL. While there are 
theoretical problems, the way in which COBOL is actually 
used in the federal government renders them relatively minor. 
The introduction of any further incompatibilities, however, 
should be subject to careful evaluation to ensure that their 
effects are no more adverse than those considered in this 
study. 

The benefits of revising the COBOL standard are largely 
associated with the COBOL programs yet to be written. The 
costs are associated with those that already exist and depend 
on features unique to COBOL-74. Therefore, the sooner the 
standard becomes known and adopted, the better. The prob
lems of incompatibility, real as they are, do not justify de
laying the ongoing maintenance and improvement of the 
COBOL language. 

REFERENCES 

1. The Effects of Future Information Processing Technology on the Federal 
Government ADP Situation, A. D. Little, Inc., General Systems Group, 
Inc., Aurora Associates, Inc., NBS GCR 81-342, National Bureau of Stan
darcls, September 1981. 

2. Gray, M. G. An Assessment and Forecast of ADP in the Federal Government, 
NBS Special Publication 500-79, Institute for Computer Sciences and Tech
nology, Washington, D.C.: National Bureau of Standards, 1981. 

3. Boehm, B. W. Software Engineering Economics, Englewood Cliffs, N.J.: 
Prentice Hall, 1981. 

4. Comptroller General. Federal Agencies' Maintenance of Computer Pro
grams: Expensive and Undermanaged. GAO, AFMD-81-25, Washington, 
D.C.: General Accounting Office, February 1981. 

5. Lientz, B., and E. Swanson. "Problems in Application Software Mainte
nance," Communications of the ACM, 24 (1981), 

6. FCSC. Federal Conversion Support Center Conversion Cost Model (Version 
2), Office of Software Development, Report No. GSAlFCSC-821001, Falls 
Church, Va.: General Services Administration, June 1, 1982. 

SUGGESTED READINGS 

o. Cugini, J. V. "Assessing the Impact of Revisions to Standards: the COBOL 
Example." Computers & Standards, 1 (1982), 

O. Fiorello, M., and J. Cugini. Cost-Benefit Impact Study on the Adoption of the 
Draft Proposed Revised X3.23 American National Standard Programming 
Language COBOL, NBSIR 83-2639, Washington, D.C.: National Bureau of 
Standards, March 1983. 



Technology transfer in the maintenance environment 

byFLORENCEJ.BELL 
The Equitable Life Assurance Society 
of the United States 
New York, New York 

ABSTRACT 

In 1982 The Equitable Life Assurance Society of the United States recognized that 
software maintenance requires major management attention, and established a 
maintenance producivity project (MPP). Maintenance was defined as any pro
gramming effort that requires at least 25% of a programmer's time to be spent 
understanding an existing system. Three potential areas were identified for tech
nology transfer: the maintenance function, the maintenance environment, and 
maintenance metrics. Ongoing programs include cooperation with vendors in devel
oping an integrated environment for the maintenance programmer and manager, a 
maintenance management handbook, and a maintenance managers' round table. 
Maintenance is becoming an established and recognized area of specialization for 
systems professionals at The Equitable. 

229 





Technology Transfer in the Maintenance Environment 231 

INTRODUCTION 

The Equitable Life Assurance Society of the United States is 
the third largest mutual life insurance company in the U.S., 
with assets of more than $45 billion and about $230 billion of 
life insurance in force. The company installed its first main
frame, an IBM 650, in 1956, and at that time established its 
systems development department, with a total complement of 
three people. Twenty-seven years later The Equitable had a 
total of eight mainframes with over 60 mips capacity, 750 
systems professionals, an annual systems budget of $100 mil
lion, and an inventory of approximately 350 major systems 
with 7000 program modules. 

In 1974, in keeping with a general decentralization of the 
company's management, the systems development depart
ment was divided into five independent units, whose heads 
reported to line management. By 1983 there were nine auton
omous systems departments. When the systems development 
department was decentralized, an EDP coordinating commit
tee was formed, composed of the officers who headed each of 
the systems departments, the head of the data processing 
department, and the technology officer. The committee was 
responsible for ensuring that the systems needs of the cor
poration as a whole were met; specifically that hardware sup
port was available, that well-qualified systems professionals 
were recruited, trained, and developed, that advances in hard
ware and software technology and in systems development 
management were introduced into the company, and that the 
economies of scale of an EDP installation as large as The 
Equitable's were not lost through the decentralization. 

In 1980 the EDP coordinating committee established an 
application productivity group (APG) with the charter of 
technology transfer, specifically to increase the productivity 
of The Equitable's systems effort by a factor of ten within a 
period of five years. Within its first two years, the APG intro
duced interactive computing throughout all systems areas, 
selected and installed the hardware and operating systems for 
the interactive testing environment, and established a special 
interactive testing support organization. The group also intro
duced the concept of end-user systems development, brought 
the FOCUS language and database management into the 
company, and conducted extensive user training. 

In 1982, the EDP coordinating committee conducted an 
off-site planning session to set the direction for future efforts 
of the APG. At this time, maintenance, methodology, and 
prototyping were identified as primary areas of concern. Of 
these, maintenance-which at the beginning of the session 
had little support-emerged as the top priority, primarily be
cause of an awareness that although maintenance used over 
half of the systems resources, it had been disregarded in the 
systems development methodology installed 10 years earlier. 

INITIAL SURVEY 

Between September and December of 1982, the APG con
ducted its initial survey of the maintenance effort throughout 
the company. The purpose of this survey was to define the 
specific goals of a maintenance productivity project (MPP) , to 
estimate the realizable benefits, and to establish a level of 
effort and a timetable. 

As a first step, the group contracted for the services of 
Julien Green, a senior consultant with wide systems experi
ence and a thorough knowledge of The Equitable's systems 
environment. With him, we reviewed current literature and 
interviewed managers in most of the systems areas to identify 
the specific needs of The Equitable's maintenance managers 
and programmers. 

The results of this investigation were published in De
cember 1982, and can be summarized under the following 
headings: 

1. Definition of the maintenance function 
2. Definition of the maintenance environment 
3. Definition of maintenance metrics 
4. Project deliverables 

Definition of the Maintenance Function 

The industry has developed what is now a generally agreed 
upon terminology in describing maintenance, based upon 
Swanson's original classification: corrective, adaptive, and 
perfective maintenance. 1 Corrective maintenance is fixing er
rors. Adaptive maintenance is changing software to accom
modate changes in the computing or business environments 
without affecting the software's function. Perfective mainte
nance is enhancing function. 

These three quite dissimilar activities have in common the 
requirement that the programmer spend a considerable por
tion of time (estimated by Fjeldstad and Hamlen at 50%) in 
understanding existing materials (code, documentation and 
procedures).2 It is this requirement that distinguishes systems 
maintenance from systems development. 

For the purposes of our MPP we define maintenance as any 
programming effort that requires at least 25 % of the pro
grammer's time to be spent understanding an existing system. 
We believe this is the point at which programmers begin to 
benefit from maintenance-specific tools, which facilitate the 
analysis of systems as opposed to their synthesis. If we were 
to set this cut-off at a lower percentage, we would include 
some clearly development-type programming, which in a ma
ture EDP environment such as ours usually requires inter
facing with, and therefore understanding, existing systems. 



232 National Computer Conference, 1984 

We had reviewed other operational definitions used by sys
tems managers; some distinguish small jobs (maintenance) vs. 
large ones (development); others distinguish modification of 
existing code (maintenance) vs. the creation of new modules 
(development); still others, following Barry Boehm,3 include 
redesign of less than 50% of existing code (maintenance) vs. 
redesign of more than 50% (development). We noted how
ever that some small jobs are free-standing, while some large 
jobs are large precisely because they involve manipulation 
(i.e., maintenance) of a large existing system; that some 
projects that require little or no modification of existing sys
tems nevertheless require a major effort in understanding 
them; and that the redesign of a larger percentage of an exist
ing system requires a greater maintenance effort than the 
redesign of a smaller percentage. 

Accordingly, we concluded that the level of effort required 
by a technician to understand an existing system is a more 
fundamental criterion than others that have been proposed. 
Furthermore, it appears that an operational definition of 
maintenance from the systems manager's point of view must 
factor in the cost of understanding code. From this viewpoint, 
defining maintenance in terms of the effort required to under
stand existing code makes sense. 

Definition of the Maintenance Environment 

Our initial survey also identified three components of the 
maintenance environment, each with its own needs. The first 
component is the programmers' environment. We found that 
many tools used in development work were used by mainte
nance programmers, but that there was a need for tools that 
addressed the maintenance-specific function of understanding 
existing code. We also found that, although there were useful 
maintenance tools, no single product purported to provide an 
integrated environment-a situation quite different from that 
on the development side of the house, where it has long been 
recognized that the greatest productivity gains come not from 
the sum of the tools, but from the integration of the tools into 
a structured environment. 

The second component of the maintenance environment is 
the managers' environment. Here we found a need for man
agement tools--packages to assist in estimating programming 
effort, scheduling and controlling maintenance work, budget
ing, and reporting. Again some tools used for development 
were useful, but some, such as an effort estimator for mainte
nance work, were not available. In addition there was a need 
for a description of the sequential steps in maintenance work, 
and for a checklist with which to determine the accomplish
ment of each step. 

The third component of the maintenance environment is 
the institutional environment, which encompasses the issues 
of the image of maintenance, selection and training of 
m~intenance personnel, and career paths for maintenance 
professionals. 

Definition of A1aintenanCe lr1etrics 

Finally, the initial survey identified the need for a good set 
of maintenance metrics upon which to base rational mainte-

nance decisions. Two types of metrics are needed: First are 
macro-metrics-used to provide a multidimensional profile of 
our software inventory. These metrics will allow us to estimate 
the size, complexity and state of deterioration (or health) of 
our existing software portfolio, predict the resources needed 
to maintain our inventory, estimate the cost of maintenance, 
and identify areas of largest payoff. An example of a macro
metric is the number of man-months required to maintain the 
"average" program module. 

Second are the micro-metrics-used to provide information 
needed for decisions concerning the maintenance of individ
ual systems. These metrics will serve as a basis for determining 
when to retire, restructure, or retrofit a system, for measuring 
productivity trends, for estimating the time and cost of 
specific maintenance jobs, for preparing an annual mainte
nance budget, and for evaluating proposed new software 
tools. An example of a micro-metric is an algorithm to esti
mate the man-months required to implement a specific pro
gram enhancement. 

Project Deliverables 

Maintenance improvement is an unusually difficult environ
ment for technology transfer. Installed systems cannot be eas
ily adjusted to use a predefined tool or component; nor can an 
abrupt change of method be implemented by a staff carrying 
a full load of projects already in progress. A maintenance 
productivity project does not consist of installing tools, or 
adopting a methodology, or establishing management poli
cies. Instead, it requires continuing of action on several levels. 

Therefore, the initial survey defined our objective as intro
ducing technology transfer into an integrated maintenance 
environment upon a foundation of sound maintenance met
rics. A set of project deliverables for each component of the 
environment was developed. 

These included, for the programmers' environment, a 
maintenance workbench, i.e., a set of software tools inte
grated through a common gateway or front end. 

Project deliverables specified for the managers' environ
ment were a handbook containing an inventory of the tools in 
the maintenance workbench, with guidelines for their appro
priate use, costs, and expected benefits, a description of the 
maintenance process, and a milestone checklist; and a set of 
software tools, probably resident on a personal computer, for 
estimating, scheduling, controlling, and budgeting mainte
nance work. 

Finally, for the institutional environment, a maintenance 
managers' round table was recommended. This is a periodic 
meeting of systems managers to define common maintenance 
concerns, exchange successful solutions, and channel tech
nical advance. The round table is designed to build a commu
nity of interest and to be the main line of communication for 
technology transfer, for evaluating and integrating tools, for 
drafting the handbook, and for originating new avenues of 
investigation. 

In November 1982, the Application Productivity Group began 
to address the programmer's environment. There were many 



Technology Transfer in the Maintenance Environment 233 

reasons why we chose to begin our maintenance project with 
this activity. 

Evaluating and installing software tools is the easiest task 
for us to work at. Tools pre-exist our efforts, are concrete, and 
demonstrate measurable results. The APG has had consider
able experience in finding, piloting, and evaluating software. 
Good results are readily realizable through the installation of 
these tools. Therefore, although we believe that in the long 
run activities other than the installation and even the integra
tion of tools will prove more important, we started our 
implementation effort by identifying and evaluating mainte
nance tools. 

Seven types of software tools for the Maintenance Work
bench were identified for further investigation. They were 
retrofitters, restructurers, static code analyzers, interactive 
debuggers, test data generators, automated documentors, and 
specialized editors. From among these, we selected a new 
interactive code analyzer to evaluate and pilot. 

INTERACTIVE STATIC ANALYZER BETA TEST 

James Martin and Carma McClure had written that "the tool 
the maintainer most needs is an interactive code analyzer that 
will help him to understand how the code works, and to pre
dict the side-effects of modification.,,4 At the time we com
pleted our initial survey, a vendor was preparing to beta-test 
an interactive analyzer. 

The APG's preliminary evaluations at the vendor's site indi
cated that the product had powerful functionality. On the 
basis of this evaluation, The Equitable agreed in February 
1983 to be a beta site. 

The product loaded COBOL source code to an on-line 
database, which a maintenance programmer could then access. 
interactively. It presented three views of the program: the 
structure chart view, which gave the programmer an overview 
of the design of the program; a source code view, which 
allowed a programmer to look at selected units of code; and 
a source code difference view, which presented different ver
sions of the program. In each of these views the programmer 
could select and trace data flows and control logic. It was at 
the time the only interactive static analyzer that we were able 
to find. 

Objectives of the Beta Test 

The objectives of the beta test were to: 

1. Confirm the functionality of the product. Would it ef
fectively trace the logic and data flows of actual produc
tion systems, provide accurate flow charts, and com
pare differences in source code? 

2. Determine the quality of the product. How many bugs 
would be encountered during the beta test, and how 
seriously would they affect the product's functionality? 

3. Evaluate the usefulness of the product in a production 
environment. Would it provide answers to real mainte
nance questions, and information actually needed to 
modify programs? 

4. Ascertain training requirements. How long would it 
take programmers to learn to use the product? 

5. Determine the practicality of using the product with 
programs written for the non-IBM-compatible systems. 
Could minicomputer programs be analyzed? 

6. Evaluate the acceptance of the product by The Equita
ble's maintenance professionals. If installed, would the 
product become the systems community's Edsel? 

7. Evaluate the support given by the vendor during the 
beta test. What level of support might we expect when 
the product was released? 

8. Evaluate the system resources required by the product. 
What effect would its use have on our data centers? 

9. Estimate the transfer charges that systems areas would 
incur for the use of the product. What would it cost to 
analyze code with it? 

10. Estimate the actual productivity gains that could be 
expected. Would benefits outweigh costs? 

Results of the Beta Test 

The beta test ran from Feb. 2 through April 15, 1983. Dur
ing the course of the beta test 100 program modules were 
analyzed, and approximately 250 hours of interactive testing 
were logged. 

At its conclusion, the functionality of the static analyzer was 
confirmed. On all other factors, except quality, the product 
received an acceptable or better rating (Figure 1). However, 
the vendor withdrew the package. 

We learned three major lessons from this experience: First, 
an interactive static analyzer is a valuable tool, and will be well 
received by programmers. Since the beta test, whenever pro
grammers evaluate a software tool, they invariably compare it 
to the analyzer and begin their evaluations, "Well, it isn't a 
(product), but ... " We found that a static analyzer can reduce 
the time a programmer spends understanding code by 
20-50%. In our environment a 23% reduction in programmer 
time for this function would have offset the machine charges. 
We look forward to the day when a viable interactive static 
analyzer is on the market. 

Functional ity 

Quality 

Usefulness 

Training Requirements 

Hi n i -coqluter programs 

Progri\llllll!r Acceptance 

Vendor Support 

Resource Requirements 

Running Costs 

Productivity Gains 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
XXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

xxxxxxxxxxxxxxxxxxx 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Legend: 1. Poor; 2. Acceptable; 3. Satisfactory; 4. Very Good; 5. Excellent 

Figure I-Evaluation of interactive static analyzer 



234 National Computer Conference, 1984 

Second, we learned more about evaluating maintenance 
tools. Although most of our criteria had been defined before 
the test, others emerged during the weekly review meetings 
we held with the programmers. It was at these meetings that 
the distinction between functionality, quality, and usefulness 
was hammered out. We will evaluate other tools against these 
criteria, as well as against additional criteria that may apply. 
We expect other maintenance products to appear on the mar
ket in the near future, and we intend to integrate the best of 
them into our environment. 

Third, we conclude that the maintenance workbench is a 
facility whose time has come. The productivity improvement 
realized by having static analysis functions available in an 
interactive harness demonstrated the potential benefits of 
putting many other maintenance functions in such a harness. 

CONTINUING ACTIVITIES 

At the time of this Writing, The Equitable's maintenance 
productivity improvement program is progressing along the 
lines laid out in the initial survey. For the programmers' envi
ronment, maintenance tools continue to be evaluated. We are 
particularly looking at packages that restructure and re
document existing code. 

For the managers' environment, a maintenance effort esti
mator has been developed by another consultant to the 
project, Howard Rubin, as a component of the ESTIMACS 
package.5 The maintenance management handbook is being 
outlined by Julien Green. For the institutional environment, 
Nicholas Zvegintzov6 is working with us as a consultant to 
coordinate the initial meetings of the maintenance managers' 
round table. 

A new software metrics project has been established. Its 

team will develop the metrics for maintenance specified by the 
maintenance productivity project, as well as software develop
ment measurements. 

CONCLUSION 

Software maintenance has been a major systems function at 
The Equitable for many years. It is now recognized as a func
tion whose contribution to the systems and corporate effort 
deserves the serious attention of upper management. A main
tenance productivity improvement program has been devel
oped, approved, and funded. Maintenance is becoming an 
established and recognized area of specialization for systems 
professionals at The Equitable. 

REFERENCES 

1. Swanson, E. B. "The Dimensions of Maintenance." IEEE Computer Soci
ety, 2nd Inte17Ultional Conference on Software Engineering. Los Angeles, 
California: IEEE Computer Society, 1976, pp. 492-497. 

2. Fjeldstad, R. K., and W. T. Hamlen. "Application program maintenance 
study-report to our respondents." IBM Corporation, DP Marketing 
Group, January 23, 1979. Reprinted in: G. Parikh, and N. Zvegintzov. 
Tutorilll on Software Maintenance. Silver Spring, Md.: IEEE Computer So
ciety, 1983. 

3. Boehm, B. W. Software Engineering Economics. Englewood Cliffs, N.J.: 
Prentice-Hall, 1981. 

4. Martin, J., and C. L. McOure. Maintenance of Computer Programming. 
Carnforth, England: Savant Institute, 1982. Reprinted as: Software 
Maintenance-The Problem and its Solutions. Englewood Cliffs, N.J.: 
Prentice-Hall, 1983. 

5. Rubin, H. "Macro and Micro-estimation of Maintenance Effort: the 
ESTIMACS Maintenance Models." IEEE Computer Society, Software 
Maintenance Workshop Record, Los Angeles, Calif.: IEEE CS, 1984. 

6. Zvegintzov, N. "What life? What cycle?" AFlPS, Proceedings of the Na
tional Computer Conference (Vol. 51), 1982, pp. 561-568. 



Two perceptions of software maintenance performed by an 
on-site contractor 

by BERNARD NARROW 
NASA Goddard Space Flight Center 
Greenbelt, Maryland 

and 

JOHN KELLY 
Lockheed, EMSCO 
Greenbelt, Maryland 

ABSTRACT 

Software maintenance is a difficult task under the best of circumstances. Having 
work performed by an on-site contractor adds an additional layer of complexity to 
the customer's task. This type of relationship places greater emphasis on formal 
work procedures and detailed reports of the work in progress. It also promotes the 
use of performance norms for evaluating contractor performance. These factors are 
all on the positive side. However, such a relationship also calls for a special aware
ness of contractor ploys calculated to increase their performance evaluation. 

From the contractor's point of view, being on-site imposes a more disciplined 
environment and places special importance on the manner and means of dealing 
with the customer. Another special feature is that the contractor receives formal 
feedback from the users, through periodic performance evaluations, indicating how 
well the software maintenance group measures up to expectations. 

This paper describes the lessons learned by one customer and one on-site 
contractor. 

235 





USTOMER'S VIEW 

contracting is likely to become more pervasive due to 
b.asis in the federal government! (a la the Office of 
ment and Budget Circular A-76) as well as in state 
lents and municipalities. An account is given here of 
lrge data processing facility with extensive experience 
acting out software maintenance has learned to cope. 
lata processing installation is a large, multisystem gov
t facility, comprised of a mix of manufacturers and 
ncluded are on-line systems, database systems, batch 
and intercomputer systems. Types of hardware in
~M (370, 4341), UNIVAC (1100, Varian), SEL (32), 
tleywell (Sigma). Altogether, there are 20 stand-alone 
that require software maintenance support. A large 

~ of the applications run on these systems deal with 
c data; however the operational mode is akin to a 
mltistep production process. Other applications relate 
lction control, cost accounting, inventory control, and 
e maintenance. 

:zed vs. Decentralized Support 

lly, our technical control over the work performed by 
tractor was split along application and functional lines. 
I to several independently run units, both on our side 
the contractor's side. However, we exercised overall 
il stewardship over the contractor's activities for evalu
~rformance. 

arrangement, while providing us with a close working 
.ship and a strong grasp of the technical details, natu
I to parochial viewpoints on both sides. If a key sys
rson in one area resigned, contractor personnel could 
ily call upon another area for temporary assistance 
~ of reluctance by the latter to dilute their level of 
. Support problems, resulting from poor management, 
ienced or inadequate numbers of personnel, and the 
tlded to be prolonged and not pursued aggressively. 
lrly 1982, we reorganized to centralize all software 
lance within a single unit. The contractor's organiza
o was reconstituted on a centralized basis. A number 
~fits----some obvious and some not so obvious-were 
d, including 

lniform reporting of maintenance activities 
lniform and tighter configuration control 
tlore effective communications channels 
mproved response in correcting or resolving problems 
eparation and independence of programming and test
tlg groups 

Two Perceptions of Software Maintenance 237 

6. improved documentation (due to configuration control 
oversight) 

7. more effective control within the program library 
8. more effective establishment of priorities and better 

allocation of resources 
9. more consistent manner evaluation of contractor per

formance and determination of award fees 
10. more availability of the information to build a central

ized database for deriving work performance metrics 

Establishing an Effective Working Relationship 

Because software maintenance cannot easily or readily be 
translated into a set of well-defined products, the connection 
between customer and contractor needs special emphasis. 
This is a critical factor in determining the quality and cost 
effectiveness of the support provided by the contractor. The 
key elements characterizing the customer-contractor relation
ship can be labeled as the three Cs: credibility, coverage, and 
clout. Credibility hinges largely on the competence of cus
tomer personnel. The level of competence should be such as 
to convince the contractor personnel that the customer is fully 
aware of work factors--do's and don'ts-and that expecta
tions of the contractor's performance are re~sonable. Cus
tomers need to be candid in their dealings with contractors 
and to view them as co-workers rather than as subordinates or 
in a potentially adversarial position. Unfortunately, this can 
easily lead to a "chummy" relationship, which can be harm
ful. Customer personnel should not forget that, basically, this 
is a business relationship that calls for critical assessment of 
the contractor's performance. In particular, customer person
nel need to distinguish between legitimate extenuating cir
cumstances and groundless excuses. Otherwise, the contrac
tor will not make a concerted effort to correct deficiencies. 

Coverage, as used here, refers to the organizational or func
tional level at which the customer-contractor connection 
takes place, as well as the depth of reporting detail. Good 
starting points are the systems and methods for selecting and 
controlling the jobs to be performed. These come under the 
general heading of configuration control. In our case, a formal 
system was agreed upon that would govern the submission, 
review, disposition, and reporting of change requests. These 
include system and application software errors, deficiencies, 
enhancements, and new system releases. Also included are 
special tasks that compete for the programming group's 
resources. 

At least weekly status meetings should be held and should 
include contractor line managers (the heads of system soft
ware, applications software, and testing), along with the cus
tomer technical monitors. Coverage is really a corollary of 

( 



238 National Computer Conference, 1984 

credibility in that it is meant to ensure that the technical 
discussions are substantive and are more likely to flush out 
causes, rather than treat symptoms. 

Clout is a two-edged sword. It can be and should be used 
both to reward the contractor for better-than-expected per
formance and to penalize for below-expected performance. 
One way to accompli~h this is by way of a cost-plus-award-fee 
contract, with the award ranging from 0% to 10% of the cost. 
Expected performanc,e results in a fee in the 4% to 6% range, 
thereby leaving ampl,! allowance for award level variations 
based either on positive or negative factors. Another impor
tant consideration is tl.'e level of management-both sides
that is involved in or is made aware of the fee determination. 
On the customer side, th!S should mean the top person in 
charge of the data procensing facility; on the contractor's side, 
it should mean at least one level above the on-site manager, 
depending on whether software maintenance represents part 
or all of the contract. If the latter, the involvement should be 
at least two levels above 1 he contract manager. 

What You Need to Know 

What do customers need to know about the contractor's 
activities in order to monitor and evaluate the contractor's 
performance effectively? In our case, we have stipulated that 
reporting should be at the functional (or third) level with 
system and project reporting being the higher levels. 

For our purposes functional reporting was broken down as 
follows: validation and assessment of the effects of a proposed 
change (prior to approval by the configuration control board); 
programming (analysis, coding, and unit testing); acceptance 
testing; and implementation. This breakdown is predicated on 
the objective of closely monitoring the work in progress so as 
to be conversant with current problems and to assess effec
tively whether proper and timely actions are being taken to 
resolve them. 

Some might argue that on a routine basis it is only necessary 
to monitor the contractor's activities at either the system or 
project levels and thereby reduce the cost of monitoring. It is 
further argued that either periodic or unannounced audits can 
be made to dete~ine the contractor's performance at the 

functional level. The problem with this argument is, ;: 
that substantive deficiencies are uncovered by an al 
customer monitors are not in a position to assess i 
dently whether the contractor is taking the proper c( 
measures-and doing so in a timely manner. Waiting 
next audit takes place to make such a determination 
effective way to deal with such problems. 

It should not be inferred that effective monitoring 
an item-by-item review. One suggestion is to have an 
placed in the margin of a report to highlight those i 
which actual hours exceeded estimated hours or for 
data change was made since the last report period. Thi 
the monitor's attention to the items that require clos 
vation and that should be accompanied by a writte 
nation. A complementary tactic is to specify the t 
important items in a separate report, which is distribl 
higher level of management than is the full detailed 

Specifying the detailed items to be reported on is ( 
the battle. The reports must be reviewed carefully f 
racy, completeness, and currency. Contractor perso: 
prone to adopt a casual attitude toward reporting if 
not held closely and consistently accountable for th 
contents. Figures 1 and 2 are sample formats of mont] 
mary reports by system, showing, respectively, the cl 
status of all work in progress and the actual hours e) 
by type of job. 

Games Contractors Play 

Wherever there are performance-type contracts, th€ 
inclination to "shade" the reporting of activities and e 
a way that is advantageous to the contractor. Althou~ 
ing can, in reality, be a euphemism for fraudulent P] 
it is more likely to manifest itself in more subtle ;: 
odious forms. Also, on-site contractors are less like!' 
gage in these practices than off-site contractors, be~ 
the more personal relationship in the former case. 

Noted here are both known and suspected tactics tl 
tractors have used. These tactics represent an oven 
pilation drawn from a number of different contractol 

NUMBER OF JOBS 
OPERATING SYSTEMS 

FIXES ENHANCE. OTHER 
APPLICATIONS PROGRAMS 

FIXES ENHANCE. OTHER 
SPE( 

J( 

Open - Beginning of Month 
Added During Month 
Closed During Month 
Open - End of Month 

--- ---

Figure 1-Monthly change in work status 



Two Perceptions of Software Maintenance 239 

OPERATING SYSTEMS APPLICATIONS PROGRAMS 
FIXES ENHANCE. OTHER 

SPECIAL 
JOBS TOTAL HOURS EXPENDED FOR FI XES ENHANCE. OTHER 

Analysis 
Code and Unit Test 
Implementation 

FOR CLOSED JOBS 

Analysis Hours - Est. 
Act. 

Code & UT Hours - Est. 
Act. 

Implementation Hours-Est. 
Act. 

Total Hours - Est. 
Act. 

Figure 2-Manhours expended during month 

Creative bookkeeping 

To prevent actual hours from exceeding estimated hours on 
a given job, time is charged to "miscellaneous." A variation 
of creative bookkeeping is where the contractor in the process 
of trying to correct an error takes a shortcut, e.g., bypassing 
testing, in order to stay on schedule. Should this in turn cause 
additional errors, these are reported as new errors and are 
disposed of expeditiously. This, of course, leads to "favor
able" measured performance. 

Technical obfuscation 

When analysis or diagnosis of a persistent problem does not 
turn up anything definite, or when an embarrassing event 
occurs, the contractor might try to talk his way around it. 
J argon and vague but technically imposing reasons might be 
offered to convince customer monitors that the problem is not 
due to any fault of the contractor. 

All in the family 

Here, contractors try to be particularly responsive to the 
customer monitor's pet projects. This is coupled with ego-

boosting tactics, which together are an attempt to foster the 
impression that "we are all family" and we ought to be protec
tive of the other party's interests. A variation of this game is 
to seek the company monitor's advice and suggestions about 
how to handle a given problem. This tends to compromise the 
company monitor's objectivity in assessing the contractor's 
performance. 

End-around play 

Should the customer monitors prove rather astute in deal
ing with the contractor's games, or if the customer monitors 
are frequently critical of the contractor's performance, a play 
can be made to a higher level of management. An attempt is 
made first to establish a close liaison with higher management 
and then to convince them that the monitors are biased and 
unreasonable. 

Old standbys 

Briefly noted here are the more familiar excuses and tactics 
used by software personnel. 

1. overly generous padding of estimates to perform jobs 



240 National Computer Conference, 1984 

2. blame it on the vendor's documentation 
3. blame it on the operating system 
4. blame it on the hardware 
5. blame it on the person no longer employed by the 

contractor 

Performance Measurement 

Under an incentive-type contract, it is necessary to face the 
issue of performance measurement squarely. First to be ad
dressed is the formulation of which elements and factors are 
to be evaluated and measured. The candidate elements are 
those from which one can derive the desired factors. Exam
ples of such factors include management, productivity, re
sponsiveness, timeliness, communication, planning, and ini
tiative. Factors such as management, communication, and 
planning are highly subjective in nature and are evaluated in 
an indirect or on an event basis. Others, such as productivity, 
responsiveness, and timeliness, are adaptable to objective 
measurement, and these are the ones discussed herein. 

Before qualifying a set of metrics for performance evalua
tion, it is necessary to define and establish a database. In our 
case, pertinent information is collected from all jobs including 
application software changes, operating systems mainte
nance, and special software tasks. Information about these 
jobs is collected from the individual programmers, and en
tered into a database. Weekly reports compiled from this 
information are carefully reviewed both by the contractor 
supervisors and the monitors to assure complete reporting and 
overall accountability. A list of the metrics that we observe is 
shown in Table I. 

Each of the metrics in the table can be further categorized 
by computer system, language, type (i.e., systems or applica
tion software), and so forth. Such breakdowns enable com
parisons to be made within the given category; e.g., how does 
the average time per fix for system A compare with that for 
system B? 

After a sufficient amount of time has elapsed to compile a 
substantial database and to analyze and interpret the derived 
metrics, the final step can begin. This is to establish the norms 
for each of the selected metrics. Here again, contractor per
sonnel should participate in this determination in order to 
arrive at a set of norms that is deemed to be fair and reason
able to both parties. 

Such objective performance measures can be weighed and 
coupled with the subjective factors referred to earlier so as 
to arrive at the contractor's overall technical performance 
assessment. 

THE CONTRACTOR'S VIEW 

Interfacing with Customer Personnel 

The role of the software professional within a company that 
performs facility man.agemen.t services is somewhat different 
from that of a programmer nestled comfortably in a corporate 
structured arena. Being on-site readily exposes a casual or 

TABLE I-Performance Metrics 

Metric 

Average time to make a fix or 
enhancement 

Average elapsed time to make 
a fix or enhancement 

Actual vs. estimated time per 
fix or enhancement 

Elapsed time of highest prior
ity fixes vs. others 

Trend analysis of reported 
software failures 

Correlation of number of 
fixes with size of program 

Standard deviation of esti
mates of large vs. small 
programs 

Ratio of analysis time per fix 
to coding and unit testing 

Derivation 

Total hours for analysis, 
coding, unit testing di
vided by total number of 
fixes and enhancements 

No. of days from start to im
plementation divided by 
total number of fixes and 
enhancements 

Total actual hours divided by 
total estimated hours for 
fixes and enhancements 

Average elapsed time to make 
highest priority fixes di-
vided by average of 
elapsed time to make all 
other fixes 

Comparison of distributions 
of failure occurrences for 
different systems 

Dependent variable is the 
number of fixes for each 
program; independent 
variable is the size of each 
program 

Standard error of actual vs. 
estimated hours for each 
fix, grouped by program 
size 

Total hours for analysis of all 
fixes divided by total 
hours for coding and unit 
testing 

sloppily managed working group and calls for an awareness or 
presence that should be calculated to command the respect of 
the customer. Sloppy personal demeanor, unoccupied desks, 
persons reading newspapers, and so on, are perceived by the 
customer as indicators that the contractor is unreliable, un
professional, or underworked. In effect, the contractor has 
two "bosses"-the on-site customer as well as company man
agement. This presents a unique dilemma-how to please 
both factions and maintain proper professional perspective 
(and sanity) in successfully fulfilling job requirements. 

Acquiring the confidence of customer-monitoring person
nel is an important goal that must be achieved quickly if 
successful performance ratings are to be attained. The ability 
to grasp the technical jargon and the complexities of the cus
tomer's subject matter makes customer communication a nat
ural extension of the monitor's working environment. 

When special requirements are addressed, the contractor 
should obtain customer concurrence on how the workload 
shOUld be adjusted to satisfy ali affected users. Too oiten, 
additional task requirements are accepted by the contractor 
without informing the customer of current manpower con-



straints and the effects of new tasks on current completion 
schedules. The contractor must not be afraid to oppose addi
tional customer requests and should be prepared to convey to 
customer management that in reality there is no free lunch. 
When possible, suitable alternatives should be recommended. 

Effective communication of task performance appraisals is 
an area that requires special contractor attention. The cus
tomer needs appropriate status information to provide a suf
ficient base for pointing out shortcomings, giving plaudits for 
tasks well done, and recommending an appropriate award 
fee. Formats for contractually required reports should be 
determined mutually, at the beginning of the contract, and 
should be reviewed periodically for possible alteration to re
spond to changing customer management reporting require
ments. In addition to these reports, regularly scheduled status 
meetings between software management and key customer
management-technical-monitoring personnel should be es
tablished. These meetings, which are by design less formal 
and in the nature of committee sessions, are mUltipurpose. 
They not only provide a forum for presenting firsthand status 
information, but also are an excellent opportunity for dis
cussing customer priorities and perceived deficiencies prior to 
their being written into the customer's evatuation report. 
Another helpful measure is to provide a self evaluation
representing the software management's view of task per
formance-to the customer for consideration in determining 
periodic award fees. 

How Work is Divided and Allocated 

As noted in the first part of this paper, we are a centralized 
software organization, responsible for maintaining more than 
50 software systems functioning on more than 20 mainframes, 
and for all developmental work. Major functions are sepa
rated into applications programming, systems programming, 
and software acceptance testing. By definition, applications 
programmers are responsible for maintaining the production 
software (primarily FORTRAN coding, with some assembly 
language) and the systems programmers are the caretakers of 
all operating system software. Systems analysts, however, 
provide the necessary expertise for assuring the validity of 
both new and modified software through the development and 
execution of detailed acceptance test plans. 

Because of the size of this organization-approximately 85 
software professionals-the numerous specially developed 
computer systems, and the frequency of software changes 
attributable to data-related and user requirement variances, it 
is difficult to impose conventional software management tech
niques. An internal task-tracking system has been developed 
to monitor several hundred tasks ranging from discrepancy 
reports (something doesn't look right) to change requests 
(modifications to accommodate specific problems or require
ments). Included within this range are customer-initiated 
tasks (often new requirements) and tasks generated internally 
by software management (usually related to normal mainte
nance activities, such as evaluating release tapes for existing 
operating systems). Due to the high volume of tasks, com
plexities of interorganizational interface, and management 

Two Perceptions of Software Maintenance 241 

requirements for up-to-date status reporting, a full-time ad
ministrator is employed to maintain and coordinate all trans
actions and report generation attributed to this tracking 
system. 

Assignment of programmers to support each system can 
often be a difficult process. Software management must be 
prepared to evaluate the overall complexity of the system, be 
familiar with the intricacies of various program components, 
and be knowledgeable about the stability or volatility of the 
software. These variables are then matched against individual 
programmer experience profiles to determine the most appro
priate manpower allocation. 

Acquiring and Retaining Technical Personnel 

Our typical maintenance programmer has almost five years 
of college training and more than six years of technical experi
ence. Turnover, however, is surprisingly low in our case, be
cause of an unusual phenomenon known as incumbency. 
Many of our software professionals have selected this area 
because of the nature of the work-it is highly scientific and 
very interesting; the physical plant is conveniently located and 
easily accessible; there is no charge for parking; etc. Even 
though the contract is bound by a prenegotiated amount of 
time, the technically oriented employee has little fear of losing 
a position due to contract expiration. Obviously, even under 
a new contractor, the job must continue to be performed. 
Who else, other than those currently doing the job, could 
satisfy customer requirements with no untoward effect on 
daily operations? Of course, if there is a new contract 
awarded, management must be sensitive to the apprehension 
programmers are likely to exhibit during the recompetion 
and, if necessary, the changeover periods. 

Programmers, like many other skilled professionals, con
sider themselves creative and take special pride in developing 
"eternal" systems. There exists, then, an innate stigma at
tached to the label of "maintenance programmer." This is a 
difficult but not insurmountable hurdle for software manage
ment to overcome. One of the ways to maintain good person
nel,morale is by offering diversification in mainframes, oper
ating systems, and programming languages. For example, in 
our case the opportunity to use FORTRAN, assembly lan
guage, or PLII may be found on IBM (370/145 and 4341) using 
VSl, VM, or MVS; IBM (Series-I) using EDX; UNIVAC 
(1100/82) using EXEC-8 38R2; SEL (32/77 and 32/75) using 
RTM and MPX-32; VARIAN 77 using VORTEX; SIGMA 
5/9 using BPM and CP-V; and various -other special purpose 
image-processing systems. 

Although the term maintenance is used to describe the 
main functions, many tasks require such extensive systems 
analysis prior to making appropriate changes that the pro
grammer receives as much challenge and satisfaction as if the 
program was actually being developed. Another factor is 
training. In order to keep the staff abreast with state-of-the
art developments, management encourages formal vendor
supplied training classes. Specific analytical and systems
oriented techniques and skills are addressed in these courses. 
Attendance at user and general conferences is also an added 



242 National Computer Conference, 1984 

incentive provided to the programming professional for ac
quiring and dispensing information. 

Dealing with Newly Developed Software 

Almost all software maintenance groups encounter the 
problem of assuming responsibility for new software devel
oped by another organization. In our case, this problem is 
compounded by the fact that the new programs are developed 
by another contractor. To deal effectively with this situation 
requires getting involved well before the software is delivered. 
Plans and interface definitions should be mutually agreed 
upon and include acceptance testing, documentation, and for
mal sessions for acquainting the maintenance personnel with 
the inner workings of each program. 

The development of the acceptance test plan requires ex
tensive communication between the maintenance and the de
velopment groups. Program design walk-throughs are highly 
recommended for this purpose, as well as for familiarizing the 
maintenance personnel with the software. This should be 
done prior to the tum-over of the program since afterwards 
development personnel are reassigned to other tasks and of
ten are not easily accessible. 

As on-site contractors, we need to be particularly con
cerned with the way information concerning our dealings with 
development personnel is presented to the customer. Group 
interaction problems, such as competing for computer time, 
should if possible be transparent to the customer. When these 
problems need to be brought to the customer's attention, it is 
best to avoid a finger-pointing session. Such sensitivity and 
awareness contribute measurably to harmonious relations 
With the customer. 

CONCLUSION 

Overall, the use of on-site contractors can be a viable and 
effective means for accomplishing software maintenance in a 
large data processing facility. To achieve these ends, however, 
calls for a proper appreciation by both the customer monitors 
and the contractor management personnel of the factors and 
considerations described herein. 

REFERENCE 

1. Office of Management and Budget Circular A-76. This circular has been 
incorporated into the Federal Acquisition Regulation as Subpart 7.3, effec
tive April 1, 1984. 



Prolonging the life of software 

by JOHN CONNELL and LINDA BRICE 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

ABSTRACT 

Presented here are methods for successfully controlling software maintenance activ
ity so that present systems will be more useful and less expensive to support. While 
it is based on experience at Los Alamos National Laboratory, it is not based on 
solutions developed and implemented there. Los Alamos is presently struggling 
with the problems identified in this paper and is impacted by them to the same 
extent as the rest of industry. An idea has emerged from this struggle: The deteri
oration of production software is basically a quality control problem the rate of 
which can and should be minimized. Many data processing shops currently have two 
options concerning old (over five years), marginally useful systems; pay the high 
cost of supporting them or undertake a rewrite. If the principles presented in this 
paper are applied, a third option may become available; prolonging the useful life 
of software by making it more cost-effective to support. 

243 





INTRODUCTION 

The Administrative Data Processing Division of the Los Ala
mos National Laboratory supports over 70 production soft
ware systems for various users within the laboratory. Each 
system represents a particular financial, personnel, or inven
tory application consisting of a related set of software mod
ules. Altogether there are about 900 computer programs in 
production, most of them written in COBOL. The systems 
reside on both minicomputers and mainframes. There are 50 
programmer/analysts involved in developing, implementing, 
and maintaining the systems. 

When new systems are developed or old ones rewritten, a 
costlbenefit analysis is required prior to design. Assumptions 
must be made about the expected economic life of a proposed 
new system in order to estimate future operating costs and 
determine the payback period. The current standard is to 
design for a minimum five year economic life. Extrapolating 
to a ten-year goal for keeping software alive, return on invest
ment is doubled and slack is built in for unanticipated chang
ing requirements that can necessitate premature rewrites. 

To prolong the life of software, it is necessary to maximize 
the continuing maintainability, operability, and usability of 
current systems. This paper contains suggestions, based on 
experience at Los Alamos, for that maximization. No new 
software engineering concepts are introduced. Instead an ex
tant body of knowledge is drawn upon and related to manag
ing the maintenance of current systems in a cost-effective 
manner. 

THE EFFECT OF UNSTRUCTURED MAINTENANCE 

Entropy of Structure 

Programmer productivity aids such as structured tech
niques, introduced in the last few years, are now in use in 
many DP installations and are expected to ease the future 
maintenance burden. However, many installations have been 
slow in adopting such techniques and those that have still 
experience the entropy problem. One of the worst effects that 
maintenance work can have on production software systems is 
the deterioration of the original structure of the system. Doz
ens to hundreds of small, seemingly insignificant patches ap
plied during the life of a system can cause degeneration of 
even the most structured, modular, top-down original code. 
The author of an old program is rarely able to tell the current 
maintenance programmer what the code is doing, primarily 
because the author cannot remember. Many times the author 
cannot be located, or even identified. A little-considered fac
tor in the general maintenance dilemma is that the program is 

Prolonging the Life of Software 245 

really co-authored by all of the programmers who have ever 
worked on it. Given that many different styles and design 
philosophies have been incorporated, there is little chance 
that the current code bears much resemblance to the original. 

Introduction of Defects 

Many good maintenance programmers might take offense 
at the suggestion that defects are inserted into systems as they 
perform their valuable work. They might argue that they al
ways conduct thorough tests before putting changes into pro
duction. It should be pointed out that the term thorough, 
when applied to testing of maintenance changes, is probably 
a contradiction in terms. As an example, suppose three lines 
of code in one program of a sixty-program system are 
changed. Should the entire system be tested as thoroughly as 
it was during the development phase of the life cycle? If not, 
is there some chance that although the modified program will 
work fine, other unsuspected parts of the system will be nega
tively impacted? Might the system work perfectly for the first 
several production runs after the changes are put in place, 
only to have the inserted defect surface and cause trouble 
months later? Problems involving the worth of regression 
testing and phenomena such as the ripple effect are well
documented. 1 

The above questions are difficult if not impossible to an
swer. In many cases, the maintenance programmer has no 
time to do complete, thorough testing for the same reason that 
there is no time for elegant coding; the fix is made in a crisis 
mode. It is not even clear that rigorous, extensive testing is 
cost-effective for minor changes. On the other hand, it should 
be assumed that the lack of such testing will guarantee the 
insertion of defects into the system in at least some cases. It 
is not pessimism but the logical conclusion that, over time, a 
system will become increasingly bug-ridden. 

Introduction of Psychological Complexity 

Psychological complexity can be defined as elements of pro
gramming style which make programs difficult to understand. 
Complexity increases the effort required to make successful 
maintenance changes and thus increases maintenance costs. 
An example well documented and measured mathematically 
is use of the GO TO statement. Use of GO TO's is a violation 
of structured programming concepts and has been discour
aged for some time. At the same time, a GO TO is the easiest, 
quickest way to modify the control flow of a program and is 
frequently done, on the fly, to correct a logic flaw. In some 
cases to do otherwise would involve extensive rewriting of 
major portions of the program. 



246 National Computer Conference, 1984 

Again, a good programmer would be offended at the sug
gestion that some maintenance changes introduce psycho
logical complexity into the system. Nevertheless, it must be 
true that at some point in our career all of us have been guilty 
of making a quick fix with a GO TO, neglecting to thoroughly 
document a midnight maintenance change, or adding another 
level of nesting to an already complicated IF statement to 
incorporate a new requirement. Several years of this type of 
activity will make the simplest program almost impossible to 
follow. 

Increase in Future Maintenance Costs 

As an old application system begins to deteriorate due to 
entropy of structure and the insertion of defects and psycho
logical complexity, the cost of maintaining that system will 
begin to rise. At first the increase will be very slight, but as the 
factors mentioned above are compounded the rate of increase 
for maintenance cost will become geometric. The level of pain 
experienced in maintaining a production system can and 
should be measured; at some point it will become cheaper to 
scrap the old system and build a new one from scratch. This 
theory is suggested graphically in Figure 1. 

In most data processing organizations, it is politically ad
vantageous and more satisfying to the users to devote develop
ment resources to desired new applications than to the rewrite 
of existing systems, even when it can be demonstrated that 
there would be a costlbenefit payoff derived from a rewrite. 
After all, it is somewhat embarrassing to confess to the user 
that his system has been damaged such that it is no longer 
maintainable and will have to be frozen for a period of time 
while it is being rewritten. Therefore, considerable benefits 
could be derived from putting into place goals, objectives and 
procedures that would help to delay the necessity for a rewrite 
by minimizing the rate of deterioration of applications sys
tems. Zvegintzo~ has stated the desirability of this succinctly 
in a recent article in Datamation, where he says, "Replace
ment of functions incurs a development cost that more D P 
organizations will not bear. 'Add on, not replace' is the trend 
in software." (p. 110) 

COMPARISON OF COSTS FOR MAINTENANCE VERSUS 
REWRITE 

1 COMPLETED 

~ REWRITE I 
::l f ---o ------------~------o 

I~ 

",' 

,,-------_ .... 
~BREAKEVEN 

POINT 

-----TIME'------"~· 

Figure I-BreakevenJpayoff 

A BRIEF METHODOLOGY FOR MAINTENANCE 
WORK 

Impact of Changes on Previous Analysis 

Analysis documents, if they are accurate, can serve as valu
able maintenance aids. If the maintenance programmer un
derstands what the system is supposed to do and what the 
significance of the implemented functions is to the user, then 
slhe will have a good basis for knowing how to respond to 
emergencies that might arise. A document such as an essential 
requirements definition will also help the maintenance pro
grammer know when the system is or is not successfully per
forming its required functions. 

There are three direct implications of the above assertion. 
First, it implies that analysis documents such as a System 
Requirements Definition should become part of the retained 
system documentation for implemented systems. Second, the 
portions of this documentation which map the current system, 
such as Data Flow Diagrams, should be accurately revised 
when the user's changing requirements result in maintenance 
changes that modify the functions of the system. Third, to 
understand and be able to modify an analysis document cor
rectly, a maintenance programmer must also be somewhat of 
an analyst. 

External documentation such as control flows and run pro
cedures also helps to identify the impact of changes to one 
program on other parts of the system. Such documentation is 
helpful in testing systems and in returning them to production 
upon successful test. Like requirements specifications, if the 
external documentation is to be useful and reliable, it must 
be revised accurately when maintenance changes affect its 
correctness. 

Structured Maintenance Walkthroughs 

Actually coding changes to production source code files can 
be a frightening activity. Statistics indicate that a line of main
tenance code costs 10 to 100 times what a line of development 
code costS.1 For the reasons given above, each new line of 
maintenance code contributes to destroying the viability of a 
system that cost thousands, maybe millions of dollars to de
velop. A worthy goal is to minimize mistakes made during this 
activity. 

Walkthroughs are becoming more common in the data pro
cessing profession. Managers have been accepting the fact 
that walkthroughs save time and money by discovering errors 
more efficiently than any known testing method. Unfor
tunately, current opinion seems to be that this is a process 
applicable only to the development phase of the system life 
cycle. It is true that walkthroughs are critically important 
during the early phases of development because errors are 
much less expensive to correct at that time than they are later. 
This does not constitute proof that walkthroughs would not be 
effective during the maintenance phase. If walkthroughs are 
to be successful, they should contain the following elements: 
checklists, criteria, objectives, trained coordinators, estab
lished roles, feedback and feed-forward. The reader is re-



ferred to other works3
,4,5 for more information on the walk

through concept. 

Applying Maintenance Walkthroughs 

The following explains how maintenance is organized at the 
Los Alamos National Laboratory. Each system is identified 
with a unique two-digit number, e.g. General Ledger = 70. 
The table shown in Figure 2 shows how maintenance re
sponsibility is allocated between these systems where primary 
responsibility is in the center column, secondary responsibility 
is in the column labeled backupl, and the person responsible 
for the system in the event that the first two are unavailable is 
shown in the rightmost column labeled backup2. In actual 
operation, systems are not maintained in a fashion as clean as 
the table suggests. In many cases the secondary backup knows 
nothing about the system and simply hopes it will never break 
at a time when neither the primary nor the backup are 
present. The backup often only has a passing acquaintence 
with the system, gained when the primary was sick or on 
vacation and a problem occurred. Even the primary's knowl
edge may be limited because staff shortages and large service 
request backlogs mean assigning too much maintenance re
sponsibility to too few programmers. 

A suggested format for walkthroughs of maintenance 
changes under the above circumstances is: the programmer 
making the change assumes the role of presentor/imple
mentor; the other two programmers are responsible for the 
review and critique; and a fourth person with appropriate 
training becomes the coordinator/moderator/scribe. Such 
walkthroughs do not always have to be as comprehensive as a 
walkthrough for a major development project. A IS-minute 
walkthrough for a change that took 8 hours to make would 
seem sufficient. Such a process would simultaneously accom
plish three objectives: insertions of defects and psychological 
complexity and deterioration of structure would be min
imized; maintenance of external documentation would be 
maintained; and the members of the walkthrough team would 
be educated through the preparation and attendaJ;lce neces
sary for the walkthrough. If such walkthroughs were always 
required, systems would (we hope) live longer, break less 
often, and be easier to maintain. In addition, the terms back
up and secondary backup would come to have a more reliable 
meaning. 

primary backupl backup2 

12 payroll hastings smith mcdonald 
20 commitments tompkins johnson zeindt 
2S materials dist. benjamin garfunkle conners 
30 employee info. hastings temple roberts 
36 travel hunker lowe stamp 

j8 ~~~~~:l ledger ~~~~ert ~:~i~nkle ~~~k~~son 
71 accounts payable zeindt schutz tompk ins 
7S operating plans marks wacker lake 

~~ ----- - ------~~~:: ~ ~ ~~ -~~~~~ ~ -- ---~:~~~~: ---- - -::~~- -- -- -----~::~~: ---

Figure 2-System responsibility 

Prolonging the Life of Software 247 

Summarizing the Top-Down Approach to Maintenance 

Good maintenance work requires a maintenance analyst 
who is just as professional in terms of software engineering 
know-how as a good senior programmer/analyst in the devel
opment area. The same basic activities are involved: analyze 
the program, develop a solution, test the solution, implement 
the solution. The ideas presented in the preceding sections 
suggest a miniature life cycle approach to making mainte
nance changes as follows: 

1. Do a thorough analysis of the change request to deter
mine needed modifications to system functionality. 

2. Study the old functional analysis to determine the impact 
of the proposed changes on the total system. 

3. Revise functional analysis as appropriate. 
4. Revise design and internal specification documents as 

appropriate. 
S. Make the changes according to the new analysis and 

design. 
6. Test the changes using both dynamic (standard test beds) 

and static (walkthroughs) procedures. 
7. Implement the changes when they pass all tests. 

CONTROLLING THE QUALITY OF MAINTENANCE 
WORK 

Given the above means for doing quality maintenance work, 
what controls should be put in place to assure that quality will 
improve? It is recommended that controls consist of workable 
mechanisms for measurement, evaluation, and feedback. A 
non-workable mechanism is micro-management, whereby the 
line manager watches the maintenance programmer carefully 
and constantly to ensure that mistakes are avoided. If, in
stead, meaningful measurement of the quality of maintenance 
work is taking place, it can provide the basis for effective 
performance evaluations and feedback that should produce 
the desired results. Ways of evaluating quality include: user 
surveys; tracking of maintenance costs via measurement of 
reliability; and counting defects. 

User Surveys 

Since most data processing professionals belong to organi
zations whose budget or income is derived by providing a 
service perceived to be useful by users outside of their organi
zation, user satisfaction surveys should be one of the most 
important means of measuring quality. Figure 3 shows a por
tion of such a survey that was taken of users of administrative 
applications software systems at Los Alamos. Users were 
asked to give their degree of satisfaction for different classes 
of services on a numeric scale, providing a means for mea
suring the degree of user satisfaction quantitatively. 

Because users have different personality profiles, some are 
easier to please than others. Ideally, user personnel would be 
held constant while the surveys were taken in a time-series 
fashion, allowing for measurement of change in degree of 
satisfaction over time. The program of personnel tum-over in 



248 National Computer Conference, 1984 

The following systems are supported by ADP for your organization. 
Please fill in the blanks rating ADP services using: 1 ~ poor, 2 = 
below average, 3 = average, 4 = above average, 5 = excellent. You 
need only rate those systems with which you have personal knowledge 
and experience. 

SYSTEM DEVELOPMENT MAINTENANCE 
lQ ~ QUALITY QUALITY PRODUCTIVITY 

71 ACCTS PAYABLE 3 3 4 
12 PAYROLL -5- -4- -4-
30 EIS -4- -4- -3-
20 COMMITMENTS -1- -4- -3-
70 GENERAL LEDGER -1- -4- -3-
36 TRAVEL =4= =4= =4= 

Figure 3-User satisfaction survey 

the user organization can be circumvented if a profile for the 
entire organization can be developed. Data relating to quality 
of maintenance work should come from feedback on the use
ability, operability, and usefulness of the user's system. 

The Importance of Measuring Maintenance Costs 

Accurate measurement of maintenance effort in pro
grammer hours is critically important for several reasons. Our 
goal is to control the quality and the expense of software 
maintenance, and it has been pointed out that you can't con
trol what you can't measure. 6 Maintenance effort measure
ment can be used for cost/benefit analysis of proposed re
writes.7 If maintenance effort is decreasing dramatically on a 
particular system, the decrease may be an indication that high 
quality maintenance work is being performed. Useful mea
surement should differentiate between bug-fixing and making 
changes necessitated by changing user requirements. This 
would provide a means for knowing when the quality of a 
production system was deteriorating if bug-fixing effort begins 
to rise significantly. 

Measuring Software Reliability 

Aborts, reruns, and user trouble calls are costly. They can 
also be reduced by the performance of high quality mainte
nance work, although recognition of quality can sometimes be 
difficult. It is possible to force a program to execute success
fully under almost any circumstance, but if the output is not 
correct this will usually be caught either by production control 
or the user, reSUlting in a rerun or a trouble call. Careful 
records of aborts, reruns, and user trouble calls in production 
logs must be kept and published. The objective of this mea
surement is to evaluate the quality of maintenance with re
spect to software reliability. 

Measuring Insertion of Defects 

We should be very concerned about the rate of insertion of 
defects into a production system. The walkthrough pro
cedures discussed above should help reduce the insertion of 
defects, but it provides no guarantee that zero defects will be 
inserted. Furthermore, it provides no measurement of the 

insertion of defects since the walkthrough team must stipulate 
that they are unable to find any defects before a change will 
be put into production. A measure of defects is the count of 
fix-a-bug requests from users. Defects reported by users must 
be differentiated according to the sources of the problem; 
original code or a maintenance change. The important mea
sure here is the actual number of such requests, not the 
amount of effort spent on them. Increases in the receiving rate 
of these requests should be an indictment of the walkthrough 
team as well as the responsible programmer. Decreases in the 
receiving rate would indicate that high quality maintenance 
work is being performed. 

Evaluating Maintenance Performance 

To effectively implement the controls suggested above, cri
teria for acceptable performance of maintenance work should 
be published and distributed among the maintenance pro
grammers. In order to do high quality maintenance work, the 
staff needs to know what the goals are, how goal achievement 
will be measured, what constitutes a satisfactory level of per
formance and how hislher level of performance compares to 
the rest of the group. Figure 4 shows suggested performance 
evaluation guidelines for maintenance programmers. 

CAREER PATHS FOR MAINTENANCE 
PROGRAMMERS 

Who should do maintenance work? How long should they do 
it? What should appropriate rewards be for successful mainte
nance programmers? What should the organizational goal be 
for maintenance activity as a whole? These topics could serve 
as the basis for further research, but they deserve at least brief 
attention within the scope of this paper. 

Criteria Description 

1. Encourages a free 
exchange of ideas. 
Gives and accepts 
criticism and 
comments. 

2. Contributes in a 
positive manner to 
user satisfaction 
with production 
systems. 

3. Makes changes wh ich 
do not cause systems 
to be more difficult 
to maintain. 

4. Makes changes in a 
manner which tends to 
increase the 
reliability, opera
bil i ty and usabi Ii ty 
of systems. 

5. Makes changes in a 
manner which tends to 

¥~~~~i~~ai~~y· of the 
system. 

Measurement 

Walkthru 
reports. 

User Survey. 

Maintenance 
effort 
statistics. 

Aborts, reruns 
and trouble 
calls. 

Number of user 
requests for 
enhancement 
changes. * 

Satisfactory Level 

Effectively participates 
in structured walkthrus. 

User satisfaction does 
not deteriorate over 
time. 

Effort required to make 
changes does not 
increase. 

Problem incidents 
decrease over time. 

Rece i vi ng rate 0 f 
incoming enhancement 
service requests does 
not increase. 

*Note that a burst of changes may indicate a need for a new system. 

Figure 4-Acceptable performance criteria for maintenance work 



Maintenance As a Training Experience 

In many organizations, maintenance work serves as an ini
tiation period for programmer trainees. This is not an entirely 
bad idea. Recent graduates have been schooled in the latest 
structured programming techniques and may have an inclina
tion to keep the code they are responsible for as clean as 
possible. Also, it provides a series of little problems for the 
trainee to solve before being faced with a big problem. It 
becomes a bad idea when an organization llas only green 
recruits supporting its production systems. This situation usu
ally signifies an organizational attitude that maintenance work 
is not as important or technically demanding as development 
work. It has been pointed out recently2 that this attitude is not 
appropriate since it is software maintenance that keeps the 
business running smoothly by supporting critical applications. 

Maintenance Trouble-Shooters 

In most medium- to large-size organizations, it is possible to 
find several maintenance experts. These software "doctors" 
are proficient at quickly identifying and solving very complex 
problems. They usually derive a great deal of enjoyment from 
it. This is not hard to understand since people usually enjoy 
doing things at which they excello These people should be 
provided with career paths and monetary rewards which en
courage them to keep doing what they enjoy and do welL 
They should not be "promoted" to development projects, 
which among other negative results, starve them of the plea
sure of immediate feedback present in problem-fixing. These 
seasoned professionals can provide excellent supervision and 
gu~dance for the trainees mentioned above. 

Maintenance Groups as a Separate Entity 

If it makes sense to have different types of employees doing 
the maintenance work, then it may follow that iUs also sensi
ble to have a separate maintenance group in the data pro
cessing organization chart. This group would have a different 
set of talents and/or interests than those doing development 
work and would be evaluated on a somewhat different basis. 
Trainees could work on teams with more experienced mainte
nance analysts supporting production systems. Very success
ful maintenance analysts could be promoted to team leaders. 
Those who are very successful and have valuable management 
talent (proven as team leaders) become likely candidates for 
line manager of the maintenance group. 

Performance Rewards and Appropriate Goal Setting 

A suggested goal for the organization is to minimize re
quired maintenance effort and the occurrence of problems 
with production software on a per-system basis over all pro
duction systems. Hopefully, some of the ideas detailed above 

Prolonging the Life of Software 249 

will prove useful in accomplishing this goal. If all these ideas 
are implemented, how should a successful maintenance ana
lyst be rewarded? This person has improved the degree of user 
satisfaction with data processing service, reduced the amount 
of effort required to maintain systems, extended the useful life 
of critical applications, and provided excellent guidance and 
training for new hires. It doesn't take much imagination to see 
that this is one of the most valuable people in the entire 
organization, who should receive monetary rew~rds and ca
reer opportunities accordingly. If, for exampl~, most data 
processing organizations are spending the largest portion of 
their budget on software maintenance, then an effective data 
processing manager is one who has demonstrated that slhe can 
control this activity successfully. 

CONCLUSION 

Each modification made to a software system carries a risk of 
weakening it through the introduction of defects or the com
pounding of psychological complexity or both. As systems 
become more complex and defect-ridden, they become mOre 
costly to maintain. A data processing organizati()n will accom
plish its mission more effectively if it is able to prolong the life 
of the software it supports. 

Solutions to the application systems maintenance dilemma 
include: the retention and maintenance of design documents; 
the conducting of dynamic system tests; and the conducting of 
static tests in the form of team walkthroughs. Via walk
throughs the maintenance programmer can share responsi
bility, maintain external documentation, educate others in the 
functioning of the system, and minimize entropy. 

The methods of controlling the solution inclu,de: conducting 
user surveys; measurement of the maintenance effort; mea
surement of insertion of defects; measurement of system re
liability; establishment of proper criteria by which to evaluate 
maintenance performance; and creation of a separate mainte
nance group where motivation and incentives are consistent 
with talents and interest. 

REFERENCES 

1. Martin, James, and Carma McClure. Software MaintenfJnfe: The Problem 
and Its Solutions. Englewood Cliffs, New Jersey: Prentice-Hall, 1983. 

2. Zvegintzov, Nicholas. "Nanotrends." Datamation, August 1983, pp. 
105-116. 

3. Fagan, M. "Design and Code Inspections to Reduce Errors in Program 
Development." Writings of the Revolution. New York: Yourdon Press, 1982. 

4. McCabe, T. Software Quality Assurance: A Survey. Columbia, Md.: 
McCabe & Associates, 1980. 

5. Yourdon, E. Structured Walkthrus. New York: Yourdon Press, 1978. 
6. DeMarco, T. Controlling Software Projects. New York: Yourdon Press, 

1982. 
7. Brice, L., J. Connell, and J. Taylor. "Deriving Metrics for Relating Com

plexity Measures to Software Maintenance Costs." Proceedings of the 1982 
Computer Measurement Group International Conference, CMG, Inc., Phoe
nix, Arizona, pp. 134-141. 





Software maintenance in fourth-generation 
language environments 

by PAUL C. TINNIRELLO 
AT&T Communications 
Piscataway, New Jersey 

ABSTRACT 

It is often asserted that fourth-generation languages will resolve the problems 
associated with software development in traditional languages, and in particular the 
technical and morale problems of software maintenance. The analysis of this paper 
suggests that fourth-generation languages do not solve all of the present problems 
of maintenance, and indeed they can introduce problems of their own. The success
ful user of fourth-generation languages will be the organization that takes appropri
ate countermeasures. 

251 





INTRODUCTION 

The evolution of software technology coupled with the de
mand for more productivity from data processing organiza
tions has prompted a widespread appeal for fourth-generation 
languages (4GL). The term/ourth-generation language is ap
plied to a class of DP languages developed in the mid-1970s 
that offer simplified expressions for common DP tasks. These 
languages allow for system development in significantly less 
time than third-generation languages such as COBOL, FOR
TRAN, and PLII. Advocates of these new languages are con
fident that they will lessen many of the problems that have 
burdened traditional language environments. 1,2 Such prob
lems include a heavy backlog of requests, lack of maintain
ability, lack of adaptability, and human resource issues. High 
expectations, however, especially in the area of software 
maintenance, could lead to disappointment for many profes
sionals who are seeking to escape the frustrations encountered 
in third-generation systems.3 The overconfidence in a fourth
generation language's ability to eliminate most of the software 
maintenance issues could seriously jeopardize the recent ef
forts to improve software maintenance attitudes. An untimely 
eagerness to abandon concern for software maintenance could 
also compound maintenance problems in current systems as 
well as initiate maintenance problems in systems using fourth
generation software. 

This paper focuses on several fundamental issues of soft
ware maintenance that will continue to exist in many fourth
generation language environments. It is not the intention of 
this paper to critique the overall effectiveness of fourth
generation languages or to evaluate the necessity of their use, 
but rather to discuss the impact of these new languages on the 
software maintenance process. 

, FACTORS INFLUENCING THE USE OF 
FOURTH-GENERATION LANGUAGES 

Before examining maintenance issues in fourth-generation 
language environments, it would be advantageous to review 
the following factors that are promoting the spread of these 
new language systems: 

1. System development problems 
2. Maintenance problems and request backlogs 
3. Increased DP knowledge by users 
4. Pressure for productivity/accountability 

System Development Problems 

Apportioning of monetary resources and time has been an 
inherent consideration in traditional system development. 

Software Maintenance with 4th-Generation Languages 253 

Software costs may account for as much as 80% of the total 
cost of system development.4 Much of this cost is attributed to 
escalating programmer salaries; further, many user groups 
resent department budget cuts because of the high expenses 
incurred by data processing.3 Often the time required to re
place and/or develop a system is much longer than is accept
able to end users. Fourth-generation languages offer system 
development with less effort than traditional development 
techniques, thus offering a savings in time and cost. 

Maintenance Problems and Request Backlogs 

Software maintenance problems have been a well-known 
stumbling block for years. Negative attitudes about mainte
nance work are held by DP managers, programmers, and end 
users.s These attitudes inhibit the necessary effort needed to 
perform maintenance work successfully. Maintenance prob
lems also include unmaintainable, unadaptable programs and 
systems. Some systems do not fulfill user requirements and 
specifications. Numerous corrective measures within these 
systems have left them in an unmaintainable state. Other 
systems have been poorly designed, and modifying or enhanc
ing their capability is only possible through rewriting large 
portions of the system. Software maintenance accounts for as 
much as 50%-80% of the software activities performed by 
programmers.6 

System maintenance problems have created a flood of user 
requests. Often users submit requests for replacement sys
tems even though there are already numerous outstanding 
requests for maintenance work on these systems. Request 
backlogs in some companies may be as high as 21/2 years.3

,7,8 

Vendor advertising of fourth-generation systems emphasizes 
the vast improvement in application development over tradi
tional programming methods. These advertising claims sup
port the premise that maintenance problems and lengthy 
request backlogs, which are attributed to traditional pro
gramming, will be reduced. 

Increased DP Knowledge by Users 

With new technological applications in industry, many end
user professionals have sought to become more computer lit
erate. Much of this need for literacy is due to an increased 
number of automated business functions that require data 
processing knowledge to use with them. In other instances, 
professionals have educated themselves in preparation for the 
new technology of the personal computer. With this increased 
knowledge of computing technology, end users are becoming 
less dependent on data processing professionals and com
puting resources. 3 Many users want to apply their new found 



254 National Computer Conference, 1984 

computing knowledge at the workplace in an attempt to make 
their jobs easier. Numerous vendors claim that their fourth
generation la~guage allows writing a program to be a simple 
and uncomplIcated task. This simplicity gives the non-data
processing professional the ability to use computing resources 
advantageously. 9 

Pressure for Productivity/Accountability 

The problems of development, maintenance, and request 
backlo~s have. been apparent to many non-data-processing 
professIonals m the computer-based organization. User 
groups are expressing dissatisfaction with budgetary spending 
as more funds are being allocated to data processing de
partments rather than to user departments. The reaction from 
upper management in response to this dissatisfaction has been 
to allow end users to write their own application programs. 
Upper management would ultimately be making end-user de
partments more accountable and productive in relation to 
data processing activities. It has already been recognized that 
end users have a tremendous optimism toward the use of 
fourth-generation software products.7 Vendors of these prod
ucts pr~pose .that the simplicity and ease associated with pro
grammmg Will allow the end user the time to write more 
programs and thus increase productivity. 

EXAMINING THE MAINTENANCE ISSUES 

In a previous paper, the author suggested that the software 
maintenance process could be segmented into the three fol
lowing areas: maintenance management, maintenance pro
gramming, and maintenance attitudes. 5 Maintenance man
agement is defined as the management process necessary 
when performing maintenance tasks. Maintenance pro
gramming is defined as the technical methodology in which a 
correction, modification, or enhancement takes place. Fi
nally, the maintenance attitude is defined as the position that 
programmers, managers, and users take toward maintenance 
tasks. 

The fourth-generation language environment will not solve 
all the problems associated with the three areas of the mainte
nance process. More specifically, the remaining problem 
areas of the fourth-generation language environment with re
spect to the three maintenance segments are the following: 

1. software ownership responsibility 
2. documentation 
3. software selection and quality assurance 
4. product releases and software warranty 
5. software standards 

Software Ownership and Responsibility 

Software ownership/responsibility is defined as a policy for 
maintaining the programs and systems written in fourth
generation languages. 3 The need for such a policy becomes 
evident when consideration is given to several facts that will be 

present in the fourth-generation language environment. First, 
there will be a diverse population of potential language users 
t~at inclu~e data processing and non-data-processing profes
sIOnals With varied technical skills. Second, there will be a 
need to make changes to fourth-generation application pro
grams for product release changes, for business changes, and 
for ensuring hardware efficiency. Although the last issue was 
present in third-generation systems, it was usually resolved by 
a narrower population of language users-programmers. 
With a broader population of fourth-generation language us
ers, there is concern as to how capable end users are in making 
the changes to application programs described above. 3

,8 

Software ownership/responsibility can be categorized as 
part of maintenance management. It will require the cooper
atio~ and coordination of upper management, data pro
cessmg, and end-user departments. Without formal agree
ment on software ownership/responsibility, the maintenance 
management function would be ineffective and more com
plex. In addition, required changes to fourth-generation lan
guage programs might be circumvented by the data processing 
and end-user departments as a result of the conflict over which 
group is better prepared to perform maintenance tasks. Nu
merous companies who have already implemented fourth
generat~on language systems may still be in the process of 
developmg ownership/responsibility policy. 10 

One of the more popular ownership/responsibility methods 
is found in the information center concept that numerous 
c~mpanies are implementing.1O In this method, the informa
tIon center serves both as a product support group for vendor 
cha~ges ~nd as a consulting group for end-user applications. 
While thIS approach has merit, there is still a need to manage 
the end-user application system more carefully. A suggested 
method of ownership/responsibility that will help the mainte
nance management function is the designation of end-user 
department specialists. These individuals will manage the use 
of the software product or group of software products at the 
department level. Operating within an established set of com
pany standards ~or a given product, these specialists will help 
ensure the qualIty of code, documentation, and standards in 
end-user systems. The end-user department specialists will 
need to have skills in both the department business function 
and the application software product. 

A potential danger of such a position is the reliance of the 
ownership/responsibility process on one individual. These 
highly specialized end users could find their combination of 
b.usiness and data processing skills very marketable. It is pos
SIble that th~y woul~ begin the migratory habits that have long 
been assOCIated WIth data processing professionals. This 
might create a kind of maintenance problem similar to the one 
that exists ~t~ programmers in traditional language systems. 
Perhaps assIgnmg several people as end-user specialists could 
alleviate this problem. 
Anothe~ alternative for software ownership/responsibility is 

the formatIOn of an end-user product group. This group would 
serve all end users of a specific software product in the 
computer-based organization. The end-user product group 
would oversee an development and maintenance work per
formed with a particular language system. The group would 
also be responsible for reviewing documentation, release lev-



Software Maintenance with 4th-Generation Languages 255 

els, and standards in end-user application systems. This meth
od is simiiar to the information center concept, with the ex
ception of its decentralized role. The end-user product group 
could be accountable to the information center department in 
a company's organizational hierarchy. 

Documentation 

Documentation problems are not unique to data processing 
departments. Many end-user departments, which also require 
retained written information specific to their business func
tions, suffer from poor or too little documentation. Documen
tation activities are often the last phase of a business develop
ment project, and frequently this phase is hastily completed in 
an effort to meet project deadlines. In traditional· data pro
cessing systems, maintenance programmers found that docu
mentation problems accounted for much of the difficulty in 
maintaining a system. 11 Poor documentation has caused pro
grammers to spend hours tracking errors that could have 
taken minutes to locate. Inadequate documentation has also 
made it difficult to locate key system areas where modifica
tions and/or enhancements are required. Although the fourth
generation language concept deemphasizes the need for elab
orate documentation, there are still several issues about these 
new languages that make documentation vital to the software 
maintenance process. 3 

The first issue is that some fourth-genertion languages are 
not as self-documenting as the software vendor would have 
end users believe. In fact, some end users find that many new 
languages are complex and not so user friendly.7,10,12 This 
complex command structure, combined with potential use of 
complicated end-user logic, could make the maintenance pro
cess in new language systems as difficult as it is in third
generation systems. 

Another issue concerning documentation is evident when 
considering the life expectancy of systems developed with 
fourth-generation software. In several companies, new lan
guage systems have been running in a production mode for as 
long as five years.8 It would seem unlikely that the applica
tions developed with fourth-generation software would imme
diately be replaced when the next software evolution occurs. 
Such is the case for many third-generation systems, which will 
probably continue to run for the next decade. 13 Given this 
anticipated longevity of new language systems, it is only prac
tical to document them. 

Still another documentation issue is changes in the business 
environment that will probably occur during the life cycle of 
an end-user application system. End-user professionals are 
subject to promotions, career changes, and relocation. 
changes. Without documentation, systems written by these 
individuals become extremely difficult to maintain from the 
viewpoints of both business function and programming 
function. 

Finally, the ad hoc development technique that many envi
sion as commonplace in the fourth-generation language envi
ronment may create an ad hoc attitude about documentation 
needs. Thus, end users may become lax in their creation of 
meaningful program and system documentation. 

Several documentation practices can be implemented by 
the computer-based organization to help minimize software 
maintenance problems. One practice would be for the end 
user to document an application system on a business level. 
Included in this business application description is a section 
that identifies special algorithms or formulas that are used 
within the end user program. A business application descrip
tion is similar to the high-level functional overview found in 
traditional documentation, except that it reflects more of the 
business functions than technical functions. This may encour
age end users to document more thoroughly, since the style of 
documentation is in business terminology. Another documen
tation technique is the establishment of standards that require 
documentation to be written on the basis of the length of the 
end-user program or the number of executable commands. 
This may vary from one software language to another, de
pending upon the clairty of the command language. Each 
technique, of course, will require the review of either the 
end-user departmental specialist or the end-user product 
group. Whichever documentation plan is chosen, it is impor
tant that the issue of documentation be recognized as an inte
gral part of both the software maintenance process and the 
successful use of the end-user application system. 

Software Selection and Quality Assurance 

Selecting a fourth-generation language system that will 
serve the broad needs of the computer-based organization 
warrants careful consideration.10 Besides finding agreement 
among end users on application needs, the advertising strat
egy used by software vendors makes the selection process 
difficult even for data processing professionals. An important 
aspect in software selection is acquiring a language system 
that will fit the needs of end-user applications. Without a close 
matching of application needs and language capabilities, end 
users will struggle with programming logic in an effort to 
achieve the desired result. Usually the struggle in language 
usage results in the use of trick code techniques. Often found 
in third-generation programs, trick code is extremely difficult 
to correct, modify, or enhance, because the logic does not 
follow the intended vendor system design. Therefore, the 
fourth-generation software selected should be readily adapt
able to the present business environment. 

A variety of techniques can be used to survey the list of 
potential software products; however, the best method for 
deciding on the final end-user product is to pilot the system 
within a typical application environment. The software pilot
ing phase can best determine the true application capabilities, 
as well as help establish a set of language standards to be 
followed by end users when the language system is finally 
installed. The software selection process will affect both the 
maintenance management and maintenance programming 
segments of the software maintenance process. 

Quality assurance is as vital a process in fourth-generation 
language environments as it is in third-generation systems. 
The quality assurance function should certify that the final 
end-user system performs all the functions for which it was 
designed. Quality assurance should also review the efficiency 



256 National Computer Conference, 1984 

of the end-user application programs, since fourth-generation 
languages can make a heavy demand on hardware. 14 

Quality assurance affects the software maintenance process 
in several ways. First, poorly designed systems will eventually 
require corrective action if the system is to remain functional 
to the end user. As with traditional systems, corrective main
tenance can be an ongoing process. Second, inefficient pro
gramming techniques and poor program design will compli
cate modifications and enhancements made to a system. 
Though modifications and enhancements may be accom
plished with greater ease in fourth-generation language sys
tems, the possibility of producing unmaintainable systems can 
still exist if intended structured procedures are not followed. 
Finally, the potential problems of trick code from either poor 
product selection or unique application requirements can 
make system maintainability poor. This can be even more 
critical in fourth-generation language systems, because ven
dors may not be providing diagnostic tools. 8 

The quality assurance function should be addressed within 
the software ownership/responsibility phase of the new lan
guage implementation process. A central quality assurance 
group could be formed with both data processing and end
user professionals. Aside from exercising their normal func
tion, the quality assurance group would educate end-user 
specialists who are unfamiliar with programming logic and 
design. It would be unfair to expect all end users to possess the 
design and logic expertise acquired by data processing profes
sionals. The end result of this education process would help 
prevent maintenance problems that are created as a result of 
poorly designed programs and systems. 

Product Releases and Software Warranty 

The appeal of new software language systems has created a 
very competitive environment for software vendors of fourth
generation languages. Many data processing professionals 
recognize that the software marketplace is flooded with prod
ucts claiming to have fourth-generation technology. This 
highly competitive environment has created two important 
issues that will affect the software maintenance process. 

The first issue is that of vendor product releases. When 
traditional languages systems such as COBOL and FOR
TRAN underwent release changes, certain difficulties were 
encountered. In numerous companies, conversions from one 
release level to another took months and perhaps years to 
complete, even when vendors provided conversion tools and 
aids. 15 Although the release changes were supposed to 
provide upward compatibility, there were countless programs 
that· required line-by-line examination for conversion 
conflicts. 

Release changes have been infrequent in traditional lan
guages when consideration is given to the length of time these 
languages have been used. There exists a strong possibility, 
however, that product release changes for fourth-generation 
language systems will be much more frequent than with tradi
tional languages. The primary reason for these potential re
lease changes, in the author's opinion, is the competitive envi
ronment in which software vendors must survive. When a 
software vendor issues a product with capabilities not found in 

current fourth-generation systems, there is a tendency for 
other software vendors to match product capabilities in order 
to preserve their share of the software marketplace. As men
tioned previously, language releases can wreak havoc on the 
software maintenance process, even though a promise of up
ward compatibility is given by the vendor. 

The second maintenance issue derived from the competitive 
software marketplace is that of software warranty. When ven
dors upgrade language capabilities as a result of competition, 
what guarantees are extended to the computer-based organi
zation concerning the reliability of the new product? The tra
ditionallanguages of COBOL and FORTRAN have national 
committees that carefully evaluate language release changes, 
and even then there are upgrading problems. In the com
petitive software marketplace, vendors may not have the time 
that is required to test a new release level thoroughly; the 
consequences to the software maintenance process and 
to the computer-based organization are severe. Warranty 
problems also occur when a software vendor quits the market
place, leaving the product, and therefore the end users, 
unsupported. 
. Product releases and warranty issues affect all segments of 
the software maintenance process. Maintenance management 
is affected whenever product release conversions are re
quired. Maintenance programming is required when release 
conversions fail as a result of special language and logic uses. 
Maintenance attitudes are affected by the frequency of release 
changes and the frustration associated with them. 

An important consideration in selecting a fourth-generation 
language system is the reliability of the software vendor. It is 
beneficial to examine the business history of a prospective 
vendor and also to inquire about the software warranty. The 
time invested in selecting a competent software vendor will 
minimize the problems the computer-based organization will 
encounter through frequent and unwarranted release 
changes. 

Software Standards 

A deficiency in many fourth-generation languages is the 
absence of a standard set of language commands. 1o

•
11 Consid

ering the variety of specialized software products available on 
the marketplace, it is probable that numerous companies will 
use more than one fourth-generation language system. End 
users, who interact with these systems, will find that a lack of 
standardized commands among products can be confusing 
and frustrating. This will be especially true when users write 
applications with commands that are familiar to them from 
one language and expect similar results when using other 
language systems. Nonstandard language commands can yield 
functional errors that will require correction, either at the 
time of design or through a maintenance request. 

Until language standards are established, it will be im
portant for users to gain an awareness and understanding of 
the possible differences that exist between new language sys
tems. This information can be imparted by the end-user de
partment specialist or the end-user product group. Without 
this awareness, much confusion will probably develop among 
users who work in a multiple-software-product environment. 



Another important issue of standardization is the incom
pieteness of external language interfaces found in numerous 
fourth-generation languages.7 This problem can be sub
divided into two areas. First, there are few, if any, standard 
interfaces among fourth-generation products from different 
vendors. Second, there are poor interface standards for the 
traditional langu~ges of COBOL, FORTRAN, and PL/I. 
With the bulk of information stored within traditional sys
tems, there will be a definite need for application programs 
written in fourth-generation software to interface with many 
of the existing systems. 

For many companies that have implemented fourth
generation software, interfacing problems may have been cir
cumvented by using data transfer programs written in tradi
tional software languages. These data transfer programs are 
highly specialized and frequently require modifications when
ever the data input requirements of an end-user application 
program change. Data transfer programs may also need modi
fication whenever changes are made to either the new soft
ware language, through release upgrades, or to the old soft
ware system, through normal maintenance. The data transfer 
method used to 'solve the interface problems of fourth
generation software will require both maintenance manage
ment and maintenance programming activities. The mainte
nance management process will be further complicated by the 
possibility of highly dynamic data interfacing between new 
language systems and the existing traditional systems. Unless 
data interfacing requirements between systems are con
trolled, maintenance personnel could be spending most of 
their time modifying the data transfer programs. 

One technique that can be used to control frequent modifi
cations to data transfer programs is to establish a selection 
criterion for data items from the corporate database that will 
be available for end-user application programs. The criterion 
for selecting transferable data should consider the data items 
that are most often used in company business functions. Once 
established, this selection criterion would prohibit end users 
from making frequent and special requests for transferable 
data that are infrequently used by the majority of end-user 
departments. An extension of this technique might be to de
velop a group of data transfer programs based on different 
criteria, as prescribed by end-user departments. In this man
ner, end-user departments can access data unique to their 
business function and still remain within a controlled process. 

CONCLUSION 

The movement toward using fourth-generation languages in 
the computer-based organization is understandable. How-

Software Maintenance with 4th-Generation Languages 257 

ever, the software maintenance process, as shown in this pa
per, is an area that will continue to exist in the fourth
generation language environment. This critical fact should be 
recognized by organizations that are planning to use these 
new language systems. Forgoing the recognition of mainte
nance issues will generate unrealistic expectations in the end
user community that will eventually lead to disappointment 
and frustration. In addition, the efforts to improve the current 
maintenance process will suffer as a result of increased 
complexity . 

As important as the recognition of the continued mainte
nance process is the selection of an implementation strategy 
that reflects the limitations and capabilities of fourth
generation languages. This strategy should include tech
niques, like those suggested in this paper, that help reduce the 
impact of fourth-generation languages on the software main
tenance process. Finally, the organizations that successfully 
use fourth-generation software will be those that have not 
been deceived into thinking that technical advancements that 
have solved some problems have solved all problems. 

REFERENCES 

1. Cochran, Henry T. "Fourth Generation Languages." Computerworld, 17 
(1983), pp. 47-49. 

2. Goetz, Martin A., Richard L. Kaufman, and Adam N. Rin. "Integrated 
Fourth Generation Software Languages." Computerworld Extra, 16 (1982), 
pp.37-41. 

3. Coble, D. F. "Fourth Generation Languages Will Impact Productivity 
If ... " Data Management, 20 (1982), pp. 29-32. 

4. Gutz, Steven, and Anthony I. Wasserman. "The Future of Programming." 
Communications of the ACM, 25 (1982), pp. 196-206. 

5. Tmnireno, Paul C. "Improving Software Maintenance Attitudes." AFIPS, 
Proceedings of the National Computer Conference (Vol. 52), 1983, 
pp. 107-112. 

6. Kapur, Gopal. "Software Maintenance." Computerworld, 17 (1983), 
pp.13-22. 

7. Batt, Robert, "Fourth Generation Tools Get Mixed Reviews." Computer
world, 16 (1982), p. 15. 

8. Stamps, David. "Hail 4th Generation Languages." MIS Week, 4 (1983), 
pp.18-19. 

9. Martin, James. "Software Application Development Without Conven
tional Programming." Software World, 14 (1983), pp. 14-21. 

10. Rifkin, Glenn. "The Information Center: Oasis or Mirage." Computer
world, OA 17 (1983), pp. 12-15. 

11. Lientz, B. P., and E. B. Swanson. "Software Maintenance Management." 
Reading, Mass.: 1980, Addison-Wesley. 

12. Paul, Lois. "Info Center Has Its Drawbacks, Study Warns." Computer
world, 17 (1983), p. 11. 

13. Zvegintzov, Nicholas. "Nanotrends." Datamation, 29 (1983), pp. 106-108. 
14. Read, Nigel S., and Douglas L. Harmon. "Assuring MIS Success." Data

mation, 27 (1981), pp. 109-120. 
15. Shoor, Rita. "Travelers Says COBOL Conversion Could Cost a Cool $20 

Million." Computerworld, 15 (1981). 





Specification and implementations of interactive 
information systems 

by ANTHONY 1. WASSERMAN 
University of California 
San Francisco, California 

ABSTRACT 

User Software Engineering is a methodology supported by automated tools for the 
development of interactive information systems. The specification process decom
poses the system into user-program dialogue, database definition, and formal and 
informal description of system operations. Evolution of the specification is sup
ported by tools for rapid construction of prototype versions of the system, and the 
resulting specification is easily transformed into the programming language PLAIN. 
This paper gives an overview of the USE development process, illustrating it with 
a development dictionary example. 

259 





INTRODUCTION 

The process of developing a software system may be divided 
into two steps: producing an accurate specification of what the 
system is to do, and implementing a system that meets that 
specification. Other activities typically associated with the 
software development life cycle may be viewed as supporting 
one or both of these steps. For example, analysis of system 
requirements makes it possible to write a better specification, 
and architectural design leads to program structure. 

In practice, these activities are affected by time and 
resource limitations, organizational structures, inadequate 
tools, poor analysis, incomplete testing, and communication 
difficulties, leading to many of the well-known problems of 
software development and evolution. 

The User Software Engineering (USE) project is concerned 
with the process of developing an interactive information sys
tem (lIS), a particular class of software system characterized 
by conversational access to data. Frequently, the users of an 
lIS are not experts in computing, and are given a predefined 
set of operations to use. Examples of such systems include 
airline reservation systems, bibliographic searching systems, 
decision support systems, and text editors. 

METHODOLOGY OVERVIEW 

The USE methodology combines the systematic approach to 
software development inherent to the life cycle approach, 
with effective user involvement in the specification process. 
We view creation of an accurate specification as being more 
difficult than implementation of a system from the specifica
tion. This situation is especially true with an lIS, where users 
may have a poor concept of their needs and a limited idea of 
the potential capabilities of a computer system. Thus, produc
tion of a functional specification requires extensive analysis 
and communication. 

The USE methodology combines traditional activity- and 
data-modeling techniques with efforts to design the user
program interface. It creates a preliminary version of the di
alogue at the earliest possible stage. 

The specification of an lIS is seen to consist of three parts: 
the user-program dialogue, the database design, and the 
operations (transactions) associated with various user inputs. 
The interaction is described in a set of augmented state tran
sition diagrams, each of which is termed a conversation. Var
ious user inputs may cause state transitions, including the 
invocation of a "subconversation" (another diagram). Ac
tions may be associated with a transition, so that all of the 
operations may be attached to transitions. The database is 
described as a set of normalized relations. 1 

Specification and Implementations of IISs 261 

The operations are described both formally and informally 
in the USE methodology to satisfy the different audiences for 
the specification. The informal approach is simply a short 
paragraph (two or three sentences at most) of narrative text, 
whereas the formal approach uses a formal notation employ
ing preconditions and postconditions in conjunction with a 
description of the behavior of operations similar to that devel
oped for Alphard.2 For those operations involving database 
access or modification, the database operations are shown in 
a data manipulation language. 

The following list of steps for the USE methodology shows 
the emphasis on development of the specification: 

1. Preliminary analysis-activity and data modeling, lead
ing to preliminary informal specifications and identi
fication of user characteristics 

2. External design-user-program dialogue 
3. Creation of a prototype of the user-program dialogue 

with revisions as needed 
4. Completion of the informal functional specification of 

the system operations using narrative text 
5. Preliminary relational database design 
6. Creation of a functional prototype system, providing at 

least some, and possibly all, of the system's functions 
7. Formal specification of the system operations using be

havioral abstraction3 

8. Software design at the architectural and module levels 
9. Implementation in PLAIN 

10. Testing and verification 

There is considerable flexibility in the application of these 
steps, and the methodology supports variations in which some 
of the steps are emphasized or omitted. 

In the remainder of this paper, we first describe the speci
fication process. We then show the RAPIDIUSE application 
development tool for the rapid construction of user program 
dialogues and interactive systems. We then discuss the struc
tured programming language PLAIN, which can also be used 
for implementation of a system. We use a simple development 
dictionary system as an example. 

DEVELOPING THE SPECIFICATION 

A major hindrance to the analysis and specification of inter
active information systems is that the user and developer must 
reach agreement on system capabilities and operation at a 
very early stage, often with little understanding on the user's 
part. The resulting system is then, at best, only partly satis
factory, necessitating an expensive process of evolution. 
Many engineering disciplines build preliminary models of pro-



262 National Computer Conference, 1984 

posed products or systems. A similar approach of prototyping 
a system is taken in USE. If a prototype system can assist in 
reaching better user understanding, then there can be signifi
cant improvements in system quality and reductions in main
tenance costs. The rapid construction and modification of 
prototype versions of the system are important aspects of the 
USE methodology. 

We perform an initial analysis to identify the principal data 
objects and the operations upon them. This information is 
used to define a set of "structured operations" (transactions) 
visible to each user class, aiding both the formal definition of 
system properties, which are defined as abstract operations on 
objects, and the design of the user-program interface. 

Analysis also includes the identification of user character
istics, such as user skills, user motivation and intelligence, and 
physical workplace constraints. These characteristics, when 
combined with information about output needs (volume; hard 
copy vs. "soft" copy), are essential to the system design 
process in general and to the dialogue design process in 
particular . 

DESIGN AND MODIFICATION OF USER-PROGRAM 
DIALOGUE 

In many respects, the user-program dialogue is the most crit
ical aspect of an lIS, since that is what the user sees. Elegant 
and efficient implementations are useless if the lIS is difficult 
to use or does not meet the user's needs. Accordingly, our 
next step is to define the user interface to the system for each 
identified user class. 

The interface can take many forms, including multiple 
choice (menu selection), a command language, a database 
query language, or natural-language-like input. In all cases, 
however, the normal action of the program is determined by 
user input, and the program may respond in a variety of ways, 
including results, requests for additional input, error mes
sages, or assistance in the use of the lIS. 

At this early stage, the dialogue design is far from complete. 
Typically, only the major operations are identified, and the 
options for different operations may not be fully defined. 
Also, the first design effort may omit some needed oper
ations, and rarely includes more than rudimentary error han
dling and help facilities. 

In short, the initial dialogue design is seen as a starting point 
for a process of gradual refinement that is achieved through 
partnership between the developer and the user. The dialogue 
is represented with USE transition diagrams, an augmented 
form of state transition diagrams.4 Initially, we used the dia
grams as the sole basis for communication between the devel
oper and user community. 5 While that worked successfully 
and we were able to show the nature of the interactive inter
face, we sensed that the users did not really have a very good 
idea of how the interface would actually behave. (We ob
served that few people would purchase an automobile without 
first taking a test drive.) 

Accordingiy, we sought to automate the USE transition 
diagrams. The primary intent of such automation was to be 
able to encode the diagrams quickly and to generate the inter
face so that the prospective user could use it. Another advan-

tage would be the ability to encode the error-handling and 
on-line assistance parts of the more detailed diagrams so that 
users could gain experience with those aspects of the dialogue. 
In this way, the set of diagrams can be encoded, and a running 
prototype produced. 

There are several other reasons for building such a proto
type: 

1. It enables the user to evaluate the interface in practice 
and to suggest changes 

2. It enables the developer to evaluate user performance 
with the interface and to modify it to minimize user 
errors and improve user satisfaction 

3. It facilitates experimentation with alternative interfaces 
and modification of interfaces 

4. It gives the user a more immediate sense of the proposed 
system and thereby encourages users to think more care
fully about needed and desirable characteristics 

The prototype gradually evolves into a model of a usable 
interface, thus yielding a formal description of one aspect of 
the system specification: the user-program dialogue. Since 
the database aspect is specified by the data-modeling activity, 
and by subsequent refinement into normalized relations, the 
only remaining aspect is the set of operations. 

EXAMPLE: DEVELOPMENT DICfIONARY 

Some of the concepts of the USE methodology can be seen in 
the effort to design a static development dictionary to support 
the methodology, an activity presently underway. The idea of 
the tool is to support definitions of data elements, data stores, 
data flow, and processes that are identified during the mod
eling of USE. In addition to the insertion, deletion, and modi
fication of entries of these different types, the development 
dictionary system should support the following user queries: 

1. List all the data elements contained in a given data flow 
or data store 

2. List all the data flows that contain a given data element 
or lower-level data flow 

3. List all the data stores containing a given data element or 
data flow 

4. List all the processes that input or output a given data 
element or data flow 

5. Display in alphabetic order all entries of a given type 
6. Display all entries whose names contain a given input 

string (partial match) 
7. Display all undefined entries 

Finally, the system should perform certain consistency 
checks, such as prevention of duplicate names, and restricted 
deletion of entries that are part of other entries. 

Part of the user-program dialogue, encoded in RAPID/ 
USE, is shown in Figure 1. This segment shows the "main" 
dialogue in which the user initiates the dialogue, the subcon
versation dealing with the required retrievals, and the re
trieval subconversation for listing the data elements contained 
in a given data flow or data store. (This figure comprises about 
30% of the entire dialogue, but only one action.) 



rl9,t_O,'7: Display undefined list.', r23,cO,'$' 
node Help Queries 

cs~3,cO, 'Development Dictionary Retrieval.', 
r+2,'For information about a selected query, enter', 
r+ I,'command number and ask for help.', 
r+ 1, 'To quit, type "q" or "Q".' 

node More? 
cs,r2I,cO,'Another retrieval?', r23,cO,'$' 

node X 
arc S skip to Queries 
arc Queries on 'h','H','?' to Help_Queries 

on '1' to <DISPLAY_MODIFY> 
on '2' to <E IN FS> 
on '3' to <F=WITH_C> 
on '4' to <S WITH C> 
on '5' to <P-INOUT> 
on '6' to <SCAN> 
on '7' to <UNDEFINED> 
else to X 

arc Help Queries else to Queries 
arc <DISPLAY MODIFY> skip to More? 
arc <E IN FS> skip to More? 
arc <F-WITH C> skip to More? 
arc <S-WITH-C> skip to More? 
arc <P-INOUT> skip to More? 
arc <SCAN> skip to More? 
arc <UNDEFINED> skip to More? 
arc More? on 'n','no,'N' to X else to S 

diagram E_IN_FS entry S exit X 
alpha itemname [I :201 
node S 

cs 
node Name 

rl2,cO,'Please enter flow or store name.', r23,cO,'$' 
node Help 

cs,r6,cO, 'List all the elements in a given data flow or data store.', 
r+I,'All flow components in the list will', 
r+ I,'be broken into the elements which comprise them.' 

node Display 

node X 

cs,r20,cO,' Above is a list of all the elements which are', 
nl,'contained in " itemname, 
nl,'Press " rv, 'RETURN', sv, 'to continue.', 
nl,'$' 

arc S skip to Name 
arc Name on 'h','H','?' to Help 

on 'q' ,'Q' to X 
on itemname do 1 to Display 

% Troll/USE implementation of action is shown in Figure 3 
arc Display else to X 
arc Help else to Name 

Specification and Implementations of IISs 263 

diagram MAIN entry S exit X 
tab t_O 4 
node S 

cs,r5,cO,'USE Development Dictionary' 
node Select 

r2I,cO,c1,r22,cO,c1, 
rI2,cO, 'Please enter command number or first letter of command', 
r+2,t 0,'1: Add a dictionary entry.', 
r+I,t-0,'2: Delete a dictionary entry.', 
r+ 1,t-0,'3: Modify a dictionary entry', 
r+ 1,t-0,'4: Retrieve information from development dictionary', 
r+1,t),'5: Help', r+I,t_O,'6: Quit" r$-1,cO,'$' 

node Help 
cs,r6,cO, 'Type "q" or "Q" to quit.', 
r7, 'For more information about a command, enter', 
r8,'command number, press return and ask for help', 
r9,'by typing "hO :H", or "?"' 

node More? 
cS,r21 ,cO,' Another command?' ,r23,cO, '$' 

node GOOF 

node X 

r21,rv,'Unrecognized command. Please try again.',sv, 
r22,'Press ',rv,'RETURN',sv,' to continue' 

arc S skip to Select 
arc Select 

on 'I','a','A' to <ADD> 
on '2' ,'D' ,'d' to < DELETE> 
on '3','M','m' to <MODIFY> 
on '4','r','R' to <RETRIEVAL> 
on '5','h','H','?' to Help 
on '6' ,'q' ,'Q' to X 
else to GOOF 

arc < ADD> skip to More? 
arc <DELETE> skip to More? 
arc <MODIFY> skip to More? 
arc <RETRIEVAL> skip to More? 
arc GOOF else to Select 
arc Help else to Select 
arc More? on 'no','n','N' to X else to S 

diagram RETRIEVAL entry S exit X 
tab t_O 3 
node S 

cs 
node Queries 

r9,cl4,'USE Development Dictionary Retrieval Options', 
rll ,cO,'Please enter the number of the desired retrieval type.', 
r13,t 0,'1: Display or modify entry with a given name.', 
r14,t-0,'2: List elements in a given flow or store.', 
rl5,t-O,'3: List flows which contain a given element or flow.', 
r16,t-O,'4: List stores which contain a given element or flow.', 
r17,t-O,'5: List processes which input or output a given element or flow', 
rl8,(0,'6: Scan entries of a given type.', 

Figure I-Portion of dialogue specification in RAPIDIUSE for USE development dictionary 

Recall that each transition in the diagrams may have an 
associated action. Thus one may describe, informally at first, 
all of the actions of the system and the point at which they are 
performed. The entire lIS may be specified in this manner, 
showing the dialogue and associated actions as a set of transi
tion diagrams, accompanied by specifications of the actions 
and the database design. The user may review these diagrams 
and see the valid inputs and the actions that occur as a result 
of those inputs. This activity yields an informal specification 
of the system, along with the prototype of the user-program 
dialogue previously developed. 

ADDING FUNCTIONALITY TO PROTOTYPES 

The informal specification and the executable interface gives 
the user a good sense of what the system will be like. How
ever, with only dialogue management in the prototype tool, it 
is difficult to provide realistic output messages and impossible 
to program the lIS functions. From a system construction 

standpoint, the goal is to have a tool that permits the rapid 
construction of an lIS that performs many of the lIS functions. 

A key observation was that many of the operations involve 
database access and modification, so the desired functionality 
could be provided by combining dialogue management with a 
database management system. One of the tools used for sev
eral purposes in the methodology is the TroillUSE relational 
database management system.6 By linking the dialogue man
agement tool with TrolllUSE, one can then store actual data 
in the database, so that user input can cause actual operations 
to be performed. In practice, it is necessary to provide some 
additional operations beyond those of the database man
agement system, so the linkage mechanism is designed to 
include routines written in the TrolllUSE data manipulation 
language or in anyone of a variety of programming languages 
(PASCAL, C, FORTRAN, or PLAIN). 

This tool, called RAPIDIUSE, permits a rapid implementa
tion of the lIS specification with a notation that provides a 
close match to the specification method itself.7 Output mes-



264 National Computer Conference, 1984 

relation data element [key el name] of 
- el name, el description, el code : string; 

eCcounter ~integer; {refe;:-ence counter} 
end; 

relation data_store [key store_name] of 
store_name, 
store_components, {elements & data flows} 
store_notes: string; 

end; 

relation data flow [key flow name] of 
- flow_name,-

flow components, {elements & lower level flows} 
flow=notes: string; 
flow_count: integer; {reference counter} 

end relation; 

relation process [key pros name] of 
pros_name, pros_number, 
pros_inflow, pros_outflow, 
pros_module, pros_notes: string; 

end; 

Figure 2-Preliminary relational database design for development dictionary 

sages are associated with nodes, and actions may be associ
ated with arcs. The message facility is screen-oriented, so that 
full cursor control is available along with output. 

As with the dialogue portion, the prototype can be continu
ously modified, gradually providing the essential functions of 
the system. The features desired by users in the prototype 
affect the specification. In short, the prototype system is used 
to develop a more accurate specification. User experience 
with the prototype yields a specification that is a closer fit to 
the user's perceived requirements, so that less effort will be 
required for evolution of the system, thereby reducing the 
overall life cycle costs while increasing user satisfaction. 

Turning to the USE development dictionary example, the 
preliminary relational database design to support the dictio
nary is shown in Figure 2. In Figure 1, in diagram E_INYS, 
observe that one of the paths from arc Name, reads itemname 
and invokes an action ('do 1'). Figure 3 shows the TrolllUSE 
data manipulation language for performing that action, using 
the database structure of Figure 2. 

RAPIDIUSE links all of the necessary action routines, in
cluding the invocation of TrolllUSE scripts. Thus, one could 
write Troll/USE scripts for the other development dictionary 
actions and thereby create a working system. 

IMPLEMENTATION IN PLAIN 

The specification, of course, is used to design and implement 
a production version of the IIS, should the system created 
with RAPIDIUSE be insufficient. A production implemen
tation frequently is necessary to provide a complete set of 
IIS functions, along with needed error handling, in a we11-
structured program. An important goal, though, is to make 
the interface of the production version identical to that pre
viously developed so that the user will not have to learn a 
different system. While this implementation proceeds, how
ever, the prototype system can be put to good use, both for 
productive work and for user training. 

The methodology proceeds with architectural design, map-

{Troll script for finding components of data flows and data stores} 
if exists (data_flow [$0]) I exists (data_store [$0]) then 

begin 
if exists (data_flow [$0]) then 
begin 

$1 := 0; print data_flow [$Ol.flow_components; 
end else 
begin 

$1 := 1; print data_store [$Ol.store_components; 
end; 

end else 
begin 

$1 : = -1; print 'No data flow or data store named " $0; 
end; 

Figure 3-TroWUSE script for action invoked by RAPIDIUSE 

ping the highest level transition diagram (main conversation) 
into the transaction model of structured design. 8 A program 
design language is used for detailed design of each module, 
associating an operation (action) in the transition diagram 
with a module in the detailed design. The preconditions and 
postconditions derived during the specification phase are sim
ilarly carried over into the modules. 

The production programming language is PLAIN, a lan
guage derived from PASCAL to support both the concepts of 
systematic programming9 and the needs of interactive infor
mation systems. lO PLAIN provides excellent support for ab
straction and modularity through an abstract data-type mech
anism, parameter passing by input and output, and control 
over access to global and external data objects. 

Most of the innovations in PLAIN support the needs of 
interactive information systems. PLAIN provides strings and 
relations as built-in data types, along with appropriate facili
ties for data definition and manipulation. In addition to string 
manipulation, strings may be compared to patterns and sets of 
patterns, with the ability to take action based on the result of 
pattern-matching and comparison operations. PLAIN pro
vides a re1ational algebralike set of operations on relations, as 
well as the ability to do tuple processing and to assign the 
result of database operations to temporary structures (mark
ings).ll· 12 Finally, PLAIN provides a powerful exception
handling facility to enhance the reliability of interactive 
programs. 

As a result, implementation of the specified IIS is straight
forward in PLAIN, since the primitives of the specification 
method, including strings, patterns, relational databases, 
transactions, and pre- and postconditions, have corresponding 
primitives in PLAIN. Furthermore, the encoding of pre- and 
postconditions as assertions makes it easier to verify the cor
rectness of the implemented system. 

While one could implement the system in another pro
gramming language, the USE tools were designed to be used 
together, so that PLAIN provides the best possible lan&Uage 
for transforming the specification into a running system. It can 
be seen that the string-handling and pattern-matching fea
tures support the construction of the user-program dialogue 
directly from the transition diagrams, and that the relational 
database design similarly can be programmed directly. 

The portion of the development dictionary system shown in 
Figure 1 has been written in PLAIN and is shown in Figure 4. 
(Access to the relations is omitted, but the four relations 
defined in Figure 2 must be declared in an external 



program usedd; 
external 

{declare all relations shown in Figure 2 here to make them accessible 
in PLAIN program} 

end external; 

const prompt = '$'; 

var 
command : string; 

procedure main_menu; 
begin 

cursor.pos (21,0); cursor.lineclear; 
cursor.pos (22,0); cursor.lineclear; cursor. pas 02,0); 
write 'Please enter command number or first letter of command.\n'; 
cursor.pos (14,0); 
write' 1: Add a dictionary entry\n'; 
write' 2: Delete a dictionary entry\n'; 
write' 3: Modify a dictionary entry\n'; 
write' 4: Retrieve information from development dictionary\n'; 
write' 5: Help\n'; write' 6: Quit'; 
cursor.pos (23,0); 
write prompt; 

end main_menu; 

procedure retrieve_info; 
imports data element, data store, data flow, process: modified; 
var command: string; - -
begin 

loop < retrieve> 
cursor.screenclr; cursor.pos (9,14); 
write 'USE Development Dictionary Retrieval Options\n'; 
write '\n'; 
write 'Please enter the number of the desired retrieval type.\n'; 
write' 1: List elements in a given flow or store.\n'; 
write' 2: List flows which contain a given element or flow.\n'; 
write' 3: List stores which contain a given element or flow.\n'; 
write' 4: List processes which input or output a given element or flow\n'; 
write' 5: Scan entries of a given type.\n'; 
write' 6: Display undefined list.\n'; 
cursor.pos (23,0); write prompt; 
read command; 
if command in [' 1 ' . .' 6' J then 

case command of 
when '1': entry_in_flow_or_store; 
when '2': flows which contain; {not shown} 
when '3': stores which contain; {not shown} 
when '4': proceSS input output entry; {not shown} 
when '5': scan; fnot shown} -
when '6': undefinedJist {not shown} 

end case; 
cursor.screenclr; cursor.pos (21,0); 
write' Another command?\n'; 
read command; 
if substring (command,I,I) = 'n' then exit <retrieve> end if; 

end if; 
cursor .screenclr; cursor. pos (3, 0) ; 
if command in ['h','H','?'J then {provide help} 
else 

write 'Invalid option (', command, ')\n'; 
write 'Press'; cursor.rv; write' RETURN'; cursor.sv; 
write' to continue.'; read command; {reads return} 

end if; 
repeat < retrieve> 

end retrieve_info; 

Specification and Implementations of IISs 

procedure entry in flow or store; 
imports data flow,-data sto~e: readonly; 
type entries:: (none, flow, store); 
var entry_type: entries; 

entry : string; 

begin 
cursor.screenclr; cursor.pos (12,0); 
write 'Please enter flow or store name.\n'; write prompt; 
entry_type := none; 
read entry; 
if entry in ['h' ,'H' ,'?'J then {provide help} read entry; end if; 
if exists (data flow [entry]) then 

entry type ~= flow; 
write-data_flow [entry].flow_components; 

end if; 
if exists (data_store [entry]) then 

entry_type := store; 
write data_store [entryJ.store_components; 

end if; 
case entry type of 

none: write 'No data flow or data store named " entry,'\n'; 
flow, store: 

cursor.screenclr; cursor.pos (20,0); 
write' Above is a list of all the elements which are\n'; 
write 'contained in data ',entry type,' " entry,'\n'; 
write 'Press '; cursor.rv; write 'RETURN'; cursor.Sv; 
write 'to continue.'; read entry; 

end case; 
end entryjn_flow_or_store; 

begin {usedd} 
cursor.screenclr; cursor.pos (5,0); 
write 'USE Development Dictionary\n'; 
loop <select> 

main_menu; 
read command; 
command := substring(command,I,l); \get 1st character of in"put} 
case command of 

when '1', 'A', 'a': add element; {not shown} 
when '2', 'D', 'd': delete element; {not shown} 
when '3', 'M', 'm': modify element; {not shown} 
when '4', 'R', 'r': retrieve info; 
when '5' 'h' 'H' '?'. -

{~ro;ide hel~} . 
read command; {accepts RETURN} 

when '6', 'q', 'Q': exit <select> 
when others : 

cursor.pos (21,0); cursor.rv; 
write 'Unrecognized command (',command,')'; 
write 'Please try again.\n'; cursor.sv; 
write 'Press', cursor.rv; write 'RETURN'; cursor.sv; 
write' to continue.\n' 
read command; {accepts RETURN} 

end case; 

cursor.screenclr; cursor.pos (21,0); 
write 'Another command?'; 
read command; 
if substring (command,l,l) = 'n' then exit <select> end if; 

repeat < select> ; 

end usedd. 

265 

Figure 4-PLAIN code for portion of USE development dictionary 

statement.) The resemblance between the two versions is 
apparent. 

Indeed, this program structure is characteristic of many 
interactive information systems written in PLAIN. The main 
program consists of a loop in which an input string is read and 
compared to a set of patterns, causing a multiway dispatch to 

the appropriate procedure for the input. The procedure corre
sponds to a "structured operation" or transaction. One possi
ble input terminates the program, causing exit from the loop. 
The declarations in the main program include an external 
section, in which all relations of the supporting database are 
named and brought into the environment of the program. 



266 National Computer Conference, 1984 

CONCLUSION 

The USE methodology provides a series of steps to support 
the process of creating an lIS, from its original conception 
through implementation, verification, and evolution. The 
methodology is supported by a unified support environment, 
including RAPID/USE, TrolllUSE, and PLAIN. In addition, 
other tools exist to assist with project management, including 
TBE, a relation editing and browsing tool, and the Integrated 
Development Environment, a version control and configura
tion management tool that guides the developer in the use of 
the other tools. All of these tools have been designed and 
developed to be used in the UNIX environment, taking ad
vantage of many of the underlying UNIX tools. Most of the 
USE tools are available for a handling charge through the 
UCSF User Software Engineering distribution. (Commercial 
versions and support for the USE are provided by Interactive 
Development Environments, Inc., of San Francisco.) Future 
work will make these tools available on personal development 
systems, leading to a User Software Engineering machine. 

REFERENCES 

1. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks." 
Communications of the ACM, 13 (1970), pp. 3TI-387. 

2. Shaw, M. (ed.). ALPHARD: Form and Content. New York: Springer 
Verlag, 1981. 

3. Leveson, N. G., A. I. Wassennan, and D. M. Berry. "BASIS: a Behavioral 
Approach to the Specification of Infonnation Systems." Information Sys
tems, 8 (1983), pp. 15-23. 

4. Conway, M. E. "Design of a Separable Transition-Diagram Compiler," 
Communications of the ACM, 6 (1963), pp. 396-408. 

5. Wassennan, A. I., and S. K. Stinson. "A Specification Method for Inter
active Infonnation Systems." Proceedings of the IEEE Computer Society 
Conference on Specification of Reliable Software, Cambridge, Mass., 1979, 
pp.68-79. 

6. Kersten, M. L., and A. I. Wassennan. "The Architecture of the PLAIN 
Data Base Handler." Software-Practice and Experience, 11 (1981), 
p.175-186. 

7. Wassennan, A. I., and D. T. Shewmake. "Rapid Prototyping ofInteractive 
Infonnation Systems." ACM Software Engineering Notes, 7 (1982), 5. 

8. Yourdon, E., and L. L. Constantine. Structured Design. Englewood Cliffs, 
N.J.: Prentice-Hall, 1979. 

9. Wassennan, A. I. "The Design of PLAIN-Support for Systematic Pro
gramming," AFIPS, Proceedings of the National Computer Conference, 
(Vol. 49), 1980, pp. 731-740. 

10. Wassennan, A. I., R. P. van de Riet, and M. L. Kersten. "PLAIN: An 
Algorithmic Language for Interactive Infonnation Systems," In J. W. 
deBakker and J. C. van Vliet (eds.), Algorithmic Languages. Amsterdam: 
North-Holland, 1981, pp. 29-47. 

11. Wassennan, A. I. "The Data Management Facilities of PLAIN." Pro
ceedings of the ACM 1979 SIGMOD Conference, (May, 1979). New York: 
ACM, 1979, pp. 60-70. 

12. van de Riet, R. P., A. I. Wassennan, M. L. Kersten, and W. de Jonge. 
"High-Level Programming Features for Improving the Efficiency of a Re
lational Database System." Transactions on Database Systems, 6 (1981), 
pp. 464-485. 



Software management issues for new system designs 

by ROBERT E. LOESH 
Jet Propulsion Laboratory 
Pasadena, California 

and 
DONALD J. REIFER 
Reifer Consultants, Inc. 
Torrance, California 

and 
STEVEN M. JACOBS 
TRW Defense Systems Group 
Redondo Beach, California 

ABSTRACT 

The management of software development for single and dual processor system 
designs is making progress towards becoming a mature discipline. A good part of 
the progress can be attributed to the development and use of standard system and 
software engineering methods and design principles. 

However, new computer system designs (networking, distributed systems, em
bedded systems, multi- and coprocessors, fault tolerant systems, etc.) will create 
new challenges for managers of software development. The reason for this effect on 
management is that some of the system and software engineering methods and 
design principles developed for single and dual processor system designs are not 
valid for these newer designs. 

Some of the issues that software development project managers will need to cope 
with are: 

1. Life cycle model adjustments 
2. Rapid prototyping activities 
3. Different hardware and software phasing 
4. Increased tool development 
5. New trade-offs and hybrid developments of off-the-shelf software and newly 

developed software 
6. Development of concurrent design principles 
7. New software design principles to support fault tolerance and the use of new 

memory technologies 

The above items are just now being recognized as problems, and solutions for them 
either do not exist, or are not widely known. 

These problems create a series of new challenges that managers must deal with 
for software development based on the new architectures and requirements. The 
purposes of this paper are to discuss these issues and to identify some solutions that 
can serve in the interim as the technology changes to meet these new challenges. 

267 





Software Management Issues for New System Designs 269 

INTRODUCTION 

For the past 30 years, there has been one system design ap
proach used to develop computer-based systems; that is, sin
gle or dual processors based on a sequential machine, which 
had limited main memory and similar instruction sets. Pro
cessor technology evolved during this time to become faster, 
bigger, and cheaper. However, there have not been as many 
improvements to software design and engineering as there 
have been for hardware design and engineering. Over the past 
decade, software engineering methods and design principles 
have been developed that are suitable for the single-dual pro
cessor system design approach. As applications became more 
demanding, single-dual processor system design and special
purpose hardware with only minimal software support were 
used. The management of software development for single 
and dual processor system designs has become a mature disci
pline. A good part of the progress is due to the development 
and use of standard system and software engineering methods 
and design principles, as is described in References 1-6. Even 
so, software engineering project management is far from 
being currently recognized as a "discipline,,,7 and is looked 
upon more as art than science. 

Shared-resource designs were accomplished through multi-· 
user interfacing and using hardware front-end and rear-end 
multiplexers and demultiplexers. The same engineering de
sign that was appropriate for multilevel, priority handling of 
interrupts was used almost exclusively. There has been little 
or no effect on development methods or design principles. If 
an application was too large or the time required for pro
cessing too long, designers used some variant of the same 
engineering methods and design principles that were used in 
the early days of computing. These methods and principles 
extrapolated concepts taken from automata theory, which 
preserved the notion of a sequential, centralized database 
machine. 

Whenever an application did not execute as efficiently as 
desired on a given class of processor, designers would select a 
very special high frequency function and would then build a 
special hardware device to perform that function, using, for 
instance, convolvers, frame synchronization detectors~ and 
character converters. The special-purpose function was re
moved from software, and mechanized in hardware such as 
array processors. 

Embedded systems were generally built around miniclass, 
fully integrated computers that interfaced across point-to
point serial communications, or auxiliary storage devices such 
as tape, removable disk, or in some cases, a disk and drum, 
through shared controllers. Existing engineering methods and 
design principles were used with no changes because they 
could cope with limited distribution of function. 

In the not-too-distant past, failure protection and recovery 
management were handled in similar ways. Fault tolerance 
was either designed into the hardware at the integrated circuit 
level, dealt with by checkpointing, or handled by the use of 
mirror image backup. 

Our evolving engineering methods and design principles 
were applicable. Based on a build-up of experience using 
these engineering methods and design principles, manage
ment of single-dual processor system design developments is 
becoming more successful. However, in the past five years, 
progress in the hardware technologies has allowed the devel
opment of applications that previously were not technically 
feasible or were not acceptable from a cost-effectiveness 
standpoint. Unfortunately, the hardware capabilities and sys
tem designs available are radically different from the single
dual processor design that represents today's state of the art. 
Following are some new hardware system designs and the 
attributes they have that affect new software designs: 

1. Microprocessor-based embedded systems 
2. Multiple processor resource sharing systems 
3. Distributed data processing (DDP) systems 
4. Coprocessor designs 
5. Fault-tolerant systems 
6. System architectures 
7. New memory and processor designs (e.g., EPROM) 
8. VLSI or VHSIC systems 

These new design approaches require considerable software 
support and new software de~igns. The development of the 
software for these systems is not supported well by the current· 
software engineering methods and design principles, which 
exist for single-dual processor system designs. In some cases, 
the software engineering methods and design principles are 
not suitable and must be modified. In others, there are voids 
that require new methods to be developed, understood, and 
used before a standard evolves. 

The result of not having appropriate engineering methods 
or design principles will be missed schedules, poor per
formance, unachieved capabilities, cost overruns, and in some 
cases, failure to deliver a responsive system. These deficien
cies will manifest as a software design that does not work, (is 
either poorly mapped onto the hardware or fails to use avail
able capability) or a hardware and software design integration 
that cannot be tested or modified easily. 

Until the proper engineering approach is known and well 
understood (adopted as a standard), an interim solution is 
needed. If we are aware of the problems from initiation of 
these developments, they can effectively be alleviated or 
averted. The interim solution recommended combines those 
approaches that limit the application of such new designs 



270 National Computer Conference, 1984 

used, emphasize some special advanced, front-end en
gineering work to make up for the engineering standards defi
ciencies, and manage projects with special attention. 

EXISTING STATE OF AFFAIRS 

Software project management is demonstrating that many de
velopments can be accomplished successfully. Some of the 
criteria for determining a successful software project are being 
on schedule and within budget, providing agreed-upon and 
reliable capability, and that the software fulfills its require
ments and works. Although a long way from perfect, the 
following factors are contributing to increased successes in. 
software development:9 

1. Projects are estimated and supported more realistically 
2. Project management capabilities and techniques are im

proving and becoming more standard 
3. Software engineering standards are evolving, and being 

more widely accepted and employed 

The first two of these items seem to be continuously im
proving, and are generally unrelated to the system design 
issues. They are nonetheless affected by the technical ade
quacy, maturity, and wide use of proven system and software 
engineering standards. 

For single-dual processor designs, a software development 
life cycle (SDLC) has been defined that incorporates phases 
and delineated products that support good software manage
ment practices. Additionally, standard software engineering 
methods and design principles are evolving that can be applied 
to the various SDLC phases. These standards contribute to 
the development of a good product, and establish an ability 
for software project managers to estimate and control cost, 
resources, and time. As these engineering standards receive 
wider use, they will continue to improve, as well as enhance 
management's ability to qualify and calibrate their effects. By 
virtue of a continued and increased use, and an increase in 
resultant knowledge of effectiveness and cost, software man
agement methodology will improve continually. 

Following are some of the software engineering methods 
and design principles that are becoming industry standards 
that contribute to improved software project management 
capability: 

1. Problem analysis and requirements generation meth
odologies 
a. Operational concepts formulation, system interface 

definition 
b. Man-machine interface definition and prototyping 
c. Data flow diagramslO 

d. Structured analysisll 

2. Requirements generation tools 
a. SREM,12 PSUPSA,13 CADSAT, MEDL-R, DARTS 

3. Program design methods and tools 
a. Structured-design, 14,15 HIPO charts,16 Jackson meth

odology17 
b. PDL,18 SDDL,19 MEDL-D, USE.IT, DBMS 

4. Program construction methods and tools 
a. Structured code, data structure definition tools 

(COMPOOLS) 
b. Languages, word processors, SPF/o library func

tions, checkers 
5. Program testing methods and tools21 

a. White-box testing, black-box testing, module signa
ture 

b. Test coverage analyzers, automatic test program 
6. Resource management awareness and control 
7. Performance tuning as part of final stages of testing 

All of the above contribute to an increased predictability of 
the technical and software management task, and therefore to 
increased success. 

There is still need for improvement. Additional methods 
and design principles must be developed to cope with our 
entry into the age of distributed computer systems. However, 
there exists a good technology base from which to work, and 
considerable attention and effort is being directed to its im
provement and use. Clearly, over the next three to five years, 
the situation will continue to improve. Both engineering 
methods and design principles, and the software project man
agement discipline based on them, will result in a successful, 
highly consistent level of software development for single-
dual processor designs. 

SOFTWARE ENGINEERING STATUS FOR NEW 
DESIGNS 

The prognosis for new system designs, however, is not in the 
same healthy state. Early experience with distributed systems 
indicates that the management of software designs is facing 
considerable difficulty. It is plagued with, for example, poor 
system performance, unreliable system operations, high cost 
overruns, missed schedule commitments, and disappointing 
capability. While the total problem does not lie with the soft
ware engineering and associated management technology 
base, a significant part is due to the following issues: 

• Some of the existing methods and design principles do 
not apply or do not work 

• There are real voids where no methods or design prin
ciples exist 

Following are a number of areas that have significant defi
ciencies: 

1. Existing engineering principles, methods, and tools for 
concurrent technology are only partially applicable 

2. Engineering methodologies are deficient 
3. Requirements tools are deficient 
4. Program design methods and tools are deficient 
5. Program construction methods and tools lag but will 

mature in the next five years 
6. Testing methods and tools are deficient 
7. Performance tuning still must be learned 
8. Resource management will require additional develop

ment of methods and tools 



9. System architecture tools are deficient (1) for specifying 
system configurations for applications, (2) for per
forming hardware-software tradeoffs, and (3) for com
paring candidate system architectures. 

Finding solutions to the above deficiencies, for most software 
development, tends to rely on trial and error. Attempts to use 
methods and best-guess designs proliferate. Some conse
quences of this approach to engineering are increased costs, 
wasted time (delayed schedules), poor performance, and a 
lack of reliability. In some cases the deficiencies have resulted 
in total project failure, that is, in nonexecutable systems; of 
course, the software project manager is held accountable for 
this. 

The situation will improve as problem areas are defined and 
publicized. Energy and funding will be devoted to finding 
solutions. Additionally, the random approaches will crystalize 
methodologies and design techniques that work successfully. 
From these principles will emerge a new generation of de
fined, tried and proven, publicized, and readily usable en
gineering tools and standards. 

It has taken nearly 30 years to achieve a significant thresh
old of software engineering standards applicable to single
dual processor system design. The difficulty of the en
gineering problem for new system designs is mitigated by new 
methods using prototyping, simulation, requirements tools, 
etc. Yet there is a greater focus of interest by many organiza
tions willing to support the research of viable solutions. Indus
trial interest, communication, and concern about system and 
software engineering have increased considerably. 

The result should be that we will make rapid progress in 
developing and identifying appropriate engineering standards 
within these areas in the next seven to ten years. By 1990, 
there should exist a reasonably capable system for engineering 
such new designs, with a high probability for success in the 
management of such software developments. 

WHAT TO DO NOW 

It is clear that implementation of these new system designs is 
an urgent matter. Managers of current systems do not have 
the luxury of waiting a decade to find solutions. Also, if the 
engineering methods and design principles derived by trial 
and error, or discovered through research, are not used for 
actual software developments, they cannot be qualified or 
accepted as standards. Without application, newly developed 
methods and design principles will never fully emerge. There
fore, interim solutions are needed now. 

Experimentation and published results about what works 
and what does not are required. There currently exists a set of 
management and engineering techniques that can be em
ployed to help prevent software development failures and con
tribute to the emergence of new engineering standards. The 
following suggestions, based on the authors' experiences, may 
prevent major problems in software developments resulting 
from these new system designs: 

1. Unless an argument is good, stay with the current design 
technology (single-dual processor system designs) 

Software Management Issues for New System Designs 271 

2. Go to only a part of new system designs; do not try too 
much at once 

3. Allow for more budget and schedule 
4. Do more prototyping 
5. Do more in-house research and tool development 
6. Watch others 
7. Document your experiences 
8. As the engineering methods and design principles 

emerge and become standard, incorporate them 

The bottom line is use caution and preserve resources. The 
key is to control the risk. If indeed we move into these new 
system designs carefully and meet our professional responsi
bilities to share our methods, design principles, experiences, 
and results (both good and bad), we can take advantage of the 
new technology and still not suffer major setbacks in develop- . 
ment and system execution and support. The management of 
software development for such new system designs can be 
applied successfully, both during the interim while standards 

. are being developed, and of course after such standards exist. 

ACKNOWLEDGEMENT 

The authors wish to acknowledge the following people for 
their review of and contributions to this paper: Herman A. 
Regusters, Senior Consultant, Ground Data Systems Group, 
Jet Propulsion Laboratory, as well as William B. Allen
doerfer, Imed Bitar, William B. Howard, Odette Knedr, L. 
David Lutton, Steven P. Munt, and Maria H. Penedo of 
TRW. 

REFERENCES 

1. Loesh, R. E. Software Project Management. New York: Wadsworth, 1983. 
2. Royce, W. W. "Managing the Development of Large Software Systems: 

Concepts and Techniques." TRW Software Series Publication No. TRW-JS-
70-01, August 1970. 

3. Distaso, J. R "Software Management-A Survey of the Practice in 1980." 
TRW Software Series No. TRW-SS-80-lO, September 1980. 

4. Tausworthe, R Standardized Development of Computer Software, Part I, 
Methods, Jet Propulsion Laboratory Publication #SP 43-29, July 1976. 

5. Tausworthe, R Standardized Development of Computer Software, Part II, 
Methods, Jet Propulsion Laboratory Publication #SP 43-29, August 1978. 

6. Jensen, R, and C. Tonies. Software Engineering, Englewood Cliffs, N.J.: 
Prentice-Hall, 1979. 

7. Thayer, R H., A. B. Pyster, and R C. Ubod. "Major Issues in Software 
Engineering Project Management." IEEE Transactions on Software En
gineering, SE-7 (1981), pp. 333-342. 

8. Reifer, D. J. Tutorial: Software Management, IEEE Computer Society 
Catalog No. EHO 146-1, 1979. 

9. Jacobs, S. M. "Software Management for the 80s." Panel Session, 1983 
National Computer Conference, Anaheim, Calif., May 1983. 

10. De Marco, T. Structured Analysis and System Specification. New York: 
Yourdon, 1979. 

11. Ross, D. T., and K. E. Scherman, Jr. "Structured Analysis for Require
ments Definition." IEEE Transactions on Software Engineering, SE-3 
(1977), pp. 2-15. 

12. Alford, M. W. "Requirements Engineering Methodology for Real-Time 
Processing Requirements." IEEE Transactions on Software Engineering, 
SE-3 (1977), pp. 34-40. 

13. Teichrow, D., and E.A. Hershey III. "PSUPSA: A Computer-Aided 
Technique for Structured Documentation and Analysis of Information Pro
cessing Systems." IEEE Transactions on Software Engineering, SE-3 
(1977), 34-40. 



272 National Computer Conference, 1984 

14. Yourdon, E., and L. Constantine. Structured Design. Englewood Cliffs, 
N.J.: Prentice-Hall, 1979. 

15. Yourdon, E. Managing the Structured Techniques. New York: Yourdon, 
1979. 

16. HIPO (Hierarchial Input ProCess Output). Design Aid and Documentation 
Technique, GX20-1851. White Plains, N.Y.; IBM, 1974. 

17. Jackson, M. A. Principles of Program Design, New York: Academic Press, 
1979. 

18. Caine, S. H., and E. K. Gordon. "PDL: A Tool for Software De
sign."AFIPS, Proceedings of the National Computer Conference (Vol. (0), 
1975, pp. 271-276. 

19. Kleine, H. Software Design and Documentation Language, Jet Propulsion 
Laboratory Publication #77-24, July 1977. 

20. SPF (Structured Programming Facility). White Plains, N.Y.: IBM, 1978. 
21. Myers, G. The Art of Software Testing, New York: John Wiley and Sons, 

1979. 



Results of modern software engineering principles applied to 
small and large projects 

by PETER R. H. McCONNELL and WOLFGANG B. STRIGEL 
MacDonald, Dettwiler, and Associates 
Richmond, British Columbia, Canada 

ABSTRACT 

This paper discusses the software development environment, tools, techniques, and 
methodology as applied in two mediums to large real-time software projects. Both 
quantitative and qualitative measures of success obtained in these projects are 
discussed. The quantitative measures are statistics representing the size of produced 
code, the manpower over the project life cycle, and other data relevant to software 
engineering management. The qualitative evaluation is more concerned with results 
obtained from walkthroughs and various aspects of the applied 'methodology. Re
sults are compared with those reported in the literature. Recommendations and 
suggestions for further improvements are presented. 

273 





INTRODUCTION 

The literature abounds with details of the increasing demand 
for software and the limited increases in productivity that have 
been obtained.1

,5,6 Current predictions hold little hope for 
major breakthroughs in the future. The results of a recent 
report by Musa et. al5 indicate that data processing expendi
ture has doubled every five years, but with only minimal in
creases in programmer productivity. These authors' figures 
indicate that software productivity doubles every 25 years. It 
is through the better understanding of the software develop
ment process and the application of new tools and techniques 
to this process that industry will improve this productivity 
factor and meet the increasing demand for software in the 
future. 

The results of a recent survey2 indicate that a large number 
of companies are familiar with the modern software tech
niques but have not applied them in their work environment 
for various reasons. This same survey indicates that a large 
number of companies had moderate to excellent results with 
some of the techniques. One of the problems facing many 
companies that wish to adopt these techniques to improve 
their software quality and productivity is deciding which tech
niques to adopt. The next problem is finding the results of 
applications of these various techniques in a commercial envi
ronment as opposed to a university or an experimental envi
ronment. This paper reports on the experiences in applying 
some of the modern tools and techniques to two medium
sized software development projects in a commercial environ
ment. The tools and techniques which were applied have been 
reported in the literature 7 and are easily transportable to 
other environments. 

The two projects differed substantially in size, duration, 
operating environment, and several other ways. What was 
important, however, was that they shared some of the same 
tools, techniques, and features of the development environ
ment. Table I summarizes the important characteristics of the 
two projects. 

PROJECT DESCRIPTIONS AND RESULTS 

In this section the two projects are discussed in some detail. 
Subjects such as productivity, languages used, and meth
odologies applied are highlighted. 

Project A 

Project A is a real-time data acquisition system for the 
reception and processing of meteorological satellite imagery. 
The system is intended as a tool for weather observation and 

Results of Modern Software Engineering Principles 275 

TABLE I-Characteristics of Projects A and B 

Characteristic Project A Project B 

Effort (programmer-months) 274 37 
Duration (months) 36 9 
Maximum staff loading 17 7 
Principal language PASCAL PASCAL 
Lines of source code, 283,000 67,000 

made up oe 
Executable source 49% 31% 
Header 32% 53% 
Commented PDL N/A 11% 
Comments 19% 5% 

3The percentages for Project B relate only to the PASCAL and PUM com
ponents. 

forecasting. It provides the capability to receive, process, and 
store meteorological data transmitted by geostationary as well 
as orbiting satellites. A VAX 111750 performed most of the 
operator dialogue and all image-processing and display func
tions. The VAX computer was linked via dual ported disks to 
a multi-microprocessor system, based on Intel 8086 CPUs, 
which was designed and built by MacDonald, Dettwiler, and 
Associates (MDA). The software consisted of an MDA oper
ating system and software for real-time image reception and 
storage. 

First, the system as a whole is broken down into two sub
systems, one hosted on the VAX, the other consisting of the 
multi-microprocessor system. The second step was software 
oriented and defined how the subsystems were to be imple
mented in software components. The resulting 100 compo
nents are almost evenly distributed between the two subsys
tems. A software component was sized so that it could be 
handled by one intermediate-level software engineer, the key 
designer. Key designers defined components during the design 
phase and supervised up to three junior programmers during 
the coding phase. The largest component had 3,700 lines of 
code, the smallest only 50. In general, however, an average of 
1,280 lines was observed as the typical component size. 

During the detailed design phase, each component was 
subdivided into about 20 modules. Each module was de
fined as one self-contained subroutine with one entry and 
one exit point. The average module contained 64 executable 
instructions. 

Using strict coding standards, we were able to compile all 
code for the microprocessors on the corporate VAX com
puting facilities by using standard DEC compilers. After mod
ule testing the code was recompiled with a cross-compiler and 
loaded into microprocessors. Software quality assurance was 
implemented by adapting IEEE Software Quality Assurance 



276 National Computer Conference, 1984 

Standard 730. Integration was done bottom-up. This incre
mental integration necessitated some higher level test drivers, 
which were developed and maintained by the integration 
team. During the coding phase a total of 128,000 statements 
were produced. Not all of the 128,000 source lines were new 
code. Some modules were ported from a predecessor system. 
Although reusable, this code still had to be modified and 
adapted to the new system. Therefore one-half of the ported 
code is counted to determine the code production rate below. 
Roughly a quarter of the VAX code could be reused on the 
microprocessors, since it covered identical functions. Again, 
some modifications were necessary to use different system 
calls, etc., and approximately one-half of the original effort 
can be related to this porting effort. As a result, the total new 
lines of executable code are now reduced to 98,470 lines. It 
will be shown later that the total effort of technical staff 
through all phases of the life cycle amounted to 5,479 person
days. This yields a software productivity of 18 lines per per
son-day. Note that for both subsystems more than half of the 
total source lines are in the form of comments and headers. 
The system was integrated from the bottom up. The key de
signer and his programmers were responsible for compiling 
and testing for error-free module interfaces. Once a compo
nent was operational in an isolated and simulated environ
ment, it was handed over to the integration team. At this point 
a component was integrated into a test bed along with the 
previously integrated components. Test drivers were built by 

1"·---..-1 Requirements 

the integration team to exercise the lower level components. 
The next step was covered by the system test, during which 
compliance with the high-level design document was verified. 
At this level the functionality of the system and the interaction 
of the two subsystems was under scrutiny. The final product, 
a functional system, underwent the customer acceptance test 
to prove contractual compliance. 

The distribution of total effort for Project A is shown in 
Figure 1. The area under the curve amounts to 5,479 per
son-days. Only the effort of technical personnel is included in 
the graph. It is not possible to indicate a strict separation 
between the requirement specification phase and the subse
quent high-level design. The line was drawn at the point at 
which the customer had accepted the specification document. 
The peak in September 1981 coincides with the first major 
system design review. A significant increase in staff can be 
noted at the beginning of detailed design. This is because the 
first small components were ready for coding and junior staff 
were added to the team for the actual coding. The system test 
phase includes the customer-witnessed acceptance test, which 
ends with customer acceptance. The installation phase was 
not included in this presentation, since it does not contribute 
to the development effort. 

During all life cycle phases each functional entity went 
through a thorough review process. Software components as 
defined during high level design formed the basic entities for 
review sessions. Aside from the widely published benefits of 

400 I- -I System Design 

~300 
o 
E 

ili 200 
0. 

cJ) 

~ 
co 
LJ 100 c 
co 
Z 

11+4-------...~1 Design Code and 
Integrate 

I.. • System Test 

1981" 1982 1983 

Time 
Figure I-Effort curve fo~ Project A 



the review process, each team member gained and maintained 
a high level of confidence in the whole development process 
as well as in the expected quality of the resulting system. 
During the coding phase the walkthroughs assured strict ad
herence to our quality assurance standards. 

The software integration team started up shortly after the 
beginning of the detailed design phase. Initially it consisted of 
an integration leader, an integrator, and the librarian. Key 
designers submitted software components to the integration 
team as soon as they had completed the module level testing. 
The integrator then ran the component test plan, which exer
cised the new component in the environment of previously 
submitted components. If this test was successful, the key 
designer was discharged of any further responsibility for the 
components, and the integration team maintained the com
ponent from then on. As a result of this approach, the key 
designer was freed to concentrate on another component and 
was not further disturbed with problems that might show up 
in previously submitted components. On the other hand, the 
problem-solving effort was not always the most efficient, since 
the problem solver had to familiarize himself with a com
ponent before efficiently attacking a problem. 

The data gathered throughout the project invites the appli
cation of some of the existing mathematical models in order 
to determine the extent to which practical experience meets 
theoretical expectations. In Figure 1 the Second Level Build-

Results of Modem Software Engineering Principles 277 

up curve, as used in the Aron model,4 is shown with the data 
of Project A. 

In attempts to improve software productivity, one recurring 
question is the optimal software component size. A plot of 
productivity-non-comment source lines per person-day 
(NCSUPD)-versus NCSL per component indicated a maxi
mum performance for components of 1,000 to 2,000 source 
lines. This result was consistent for both the microcomputer
based real-time software and the more application-oriented 
VAX software. In this calculation the ratio of NCSUPD did 
not include the problem-solving effort for a given component, 
since this effort was booked against the integration team. 
With an average of 1,280 source instructions per component, 
Project A has taken full advantage of the optimal component 
size. 

During the implementation and system test phase, close to 
1,000 software problem reports (PRs) were filed. The PR 
reporting mechanism was automated and maintained by the 
integration team. Once a PR was filed, the integration leader 
evaluated its importance and assigned it to a problem solver. 
The PR solver updated the PR to describe the solution ap
proach and the changes applied to the component. This report 
was again verified by the integration leader~ and the integra
tion team took care of regression testing and reintegration of 
the component. Figure 2 shows the incidence of PRs during 
the implementation and testing phases. It also shows the time 

hrs./mo. to fix problems '" 
600 

J:: 200 
~ 
.c 
o 
2 
"'-

E100 
(l) 

..Q 
o 
L 

Cl.. 

prOblems/month~ 

Oct Jan Apr 

Time 

Jul 

Figure 2-Number of problems found per month and the time to fix them 

400 

200 

Oct 

U') 

L 
:J 
o 
I 



278 National Computer Conference, 1984 

spent in solving the problems. It can be seen that during the 
earlier months problems were quite easy to solve, whereas 
toward the end of the reported period the time to solve a PR 
increased significantly. This confirms the well-known prin
ciple that the later a software problem is discovered, the 
greater the cost to repair the problem. The problems reported 
in the beginning were mostly trivial. They were easy to ana
lyze and took an average of only a few hours each to be fixed. 
Most of those problems were categorized as being related to 
implementation. As soon as system test started in July 1983, 
the amount of reported PRs increased remarkably. At about 
the same time the complexity of problems increased signifi
cantly. A high proportion of those PRs was related to design 
faults, which meant that the detailed design documentation 
also required some updates. 

Project B 

The second project consisted of real-time software to con
trol an airborne synthetic-aperture radar system. This soft
ware was required to provide all operator interface to the 
radar system, as well as to respond to and service several 
different hardware-generated interrupts. The particular sys
tem being discussed was a first-time development effort with 
concurrent hardware and software development. The com-

plete system was developed over a period of two years and the 
software over a period of nine months. 

One of the problems with this type of environment is that 
the development team has only limited access to the hardware 
for the software development, and it cannot always be ensured 
that the hardware is fully operational. In this case this prob
lem required that all of the software be developed on multi
user development facility and ported to the target system, 
providing maximum system access for the development team. 

Many of the software development techniques used on this 
project had been applied successfully on projects operating in 
a different environment, and several new techniques were 
applied. 

The actual implementation plan for the entire project is 
shown in Figure 3. This plan was divided into four distinct 
activities, which could be associated with various software 
staff. These were as follows: 

1. Requirements analysis and system specification, which 
were carried out by the senior software engineer with 
assistance from intermediate software staff. 

2. Software system design, which was carried out by the 
senior software engineer with assistance from an inter
mediate software engineer. 

3. Unit detailed design, code, and test, which were carried 

I .... -------...... 1 Requirements 

5 

L 
(l) 3 
0.. 

~ 2 
ro 

""'0 

ffi 1 
2 

Nov Dec Jan 

1...--------III System DeSign 
1.--------...... 1 Implement 

Feb Mar Apr May 

Time 
Figure J-Effort curve for Project B 

1--1 -------I Integrate 

Jun Jul 



out by a number of junior and intermediate software 
engineers. 

4. System integration, which was carried out by an inter
mediate software engineer. 

Tools applied at the various steps consisted mainly of meth
odologies and techniques that have appeared in the literature. 
A survey was done prior to the start of the work to identify 
tools that could be best applied to the various phases of the 
development life cycles. (The term tools is used here because 
these methodologies and techniques serve to aid the software 
engineering process and make the overall effort more 
productive. ) 

The software development life cycle of this project is char
acteristic of most small- to medium-sized software projects 
that use modern software development methodologies. This 
type of project has been referred to by Aron4 as "First Level." 
What distinguishes this from a second- or higher-level project, 
which is typically a larger size project with a labor expenditure 
curve described by the Rayleigh-Norden curve, is the amount 
of effort and duration required for the project. The results for 
this project are compared in Figure 3 with the labor expendi
ture curve for a second-level project. This curve shows good 
qualitative agreement with the curve presented by Aron4 for 
a second-level project buildup. The shape of this curve results 
from the software development life cycle adopted and the 
tools applied at these various steps. These steps were require
ments analysis and system specification, system detailed de
sign, system design review, unit detailed design, unit detailed 
design review, unit code, unit test, unit code and test review, 
system integration, system test, and system delivery. 

The extensive reviews, which required about 10% of the 
overall effort, ensured that reasonable errors could be re
moved early in the development of the software. There is 
extensive information in the literature to support the fact that 
it is much costlier to remove errors discovered late in the 
development cycle. 3 

During the initial phases of the project there was some 
overlap in the requirements analysis and system design 
phases. The reason for this was that the use of the Petri nets 
in describing the operator interaction with the system caused 
us to consider a different approach, which accomplished the 
same operational goals but resulted in considerable simplifica
tion of a major software component. The system design was 
then completed by means of SADT-like activity diagrams and 
Petri nets. Following the system design phase, an extensive 
implementation phase was begun. In this phase each individ
ual software engineer was responsible for the detailed design, 
coding, and testing of his assigned component. This com
ponent consisted of an average of 379 lines of executable 
source code and 840 lines of header, PDL (program design 
language), and comments. These components were further 
broken down into procedures or modules, which averaged 
about 50 lines of executable code each. 

As part of the detailed design process the component de
signer was expected to perform the design process on the 
development VAX and deliver the design material in 
machine-readable form for the design review process. This 
material consisted of component headers and a PDL that 

Results of Modern Software Engineering Principles 279 

described the design. Each module header in the component 
provided information on all module inputs, all module out
puts, an example of the module usage, an English language 
description of the procedure, a revision history for that pro
cedure, and a list of all required procedures and included files 
external to that component. Following the procedure header 
was the PDL, or pseudocode, for that procedure. This PDL 
served the purpose of providing a structured-English descrip
tion of how the procedure processed the inputs and generated 
the outputs. This material was reviewed during the detailed 
design review process to examine the headers and the PDL for 
adherence to the project standards and to check that the 
module interface and the PDL were correctly specified. The 
tool used in creating and judging the detailed design was the 
Myers composite/structured design. 1 

Upon acceptance of the design, the component designer 
was responsible for implementing that component in the 
specified language. Most of the components were imple
mented in PASCAL or PLIM with some of the code being 
done in assembler. In the case of PASCAL, it was possible to 
use a subset of the VAX PASCAL that was compatible with 
the cross-compiler for the target computer. In this way the 
software engineer could create code and test it on the com
pany development machine. In the case of the PLIM and 
assembly code components, testing had to be done on the 
target system. The use of the multiuser development com
puter allowed the software engineer to use the tools available 
on that system, such as source code control and a symbolic 
debugger. The tools available for the target hardware were 
very limited, basically consisting of a monitor/debugger and 
task image transfer utility. When it was desired to test a com
ponent or subset of the final system, the executable image was 
created on the VAX and transferred via a serial link to RAM 
memory in the target system for testing. 

Upon completion of the coding and unit testing, the com
ponent was submitted for the code and test review. The items 
of interest here were the adherence to the project standards, 
a one-to-one correspondence between the PDL and the code, 
and any weaknesses in the coding. 

At the completion of the unit design, code, and test, the 
component was submitted to the integration directory, where 
it was available to the integration engineer. This person was 
responsible for incorporating the components into the total 
system. In terms of integration, a crude skeleton system was 
created early in the development, and all missing components 
were implemented as stubs. As the finished components be
came available, they replaced these stubs and were tested as 
a functioning part of the entire system. This process continued 
until a complete system was available for systems testing ac
cording to an internal acceptance test. The purpose of this test 
was to expose the system to a rigorous set of tests which would 
verify the correct functioning of the software. Any problems 
that were encountered were corrected and the tests performed 
again. 

Throughout the software development process, quantita
tive measures were obtained of the effort expended in each of 
the life cycle steps. These results showed that coding of the 
software occupies a rather small portion (20%) of the total 
effort required to develop the final system product. About 



280 National Computer Conference, 1984 

42% of the actual effort expended was dedicated to require
ments specification, system design, analysis, and detailed 
design. . 

Over the duration of the project, about 30,000 lines of 
executable c()de and 37,000 lines of nonexecutable code were 
developed. The required effort Was 744 person-days, provid
ing an average productivity figure of 40 non-comment source 
lines (NCSL) per programmer-day. About 60% of this con
sisted of PAsCAL and PUM; the remaining 40% was done in 
assembly language. An interesting number obtained during 
the implementation phase of the project was the number of 
terminal connect hours per programmer day. This is the aver
age number of hours per day that a programmer is signed on 
to a terminal. These results indicated an average of three 
hours per day at the start of the detailed design and an average 
of seven hours per day at the peak of the integration. It is 
readily apparent that a software engineer makes significant 
use of the cOmputer system available, especially in the later 
stages of the project, when intensive integration and testing 
efforts are under way. This fact lends support to the belief that 
a programmer's work station forms an important part of the 
software development environment. 

CONCLUSIONS 

Project A was considered a successful project. The results 
obtained coriflhn most commonly found theories on software 
development. Perhaps one of the weakest points in Project A 
was the lack. of automated tools. For each of the life cycle 
phases more design and implementation tools should be made 
available. Enforcing standards on software engineering 
methodology is extremely difficult without computerized as
sistance. The few tools available in Project A were mainly 
geared to integration mechanisms and configuration control. 
This proved to be highly beneficial, even though only a min
imal amount of time was spent to develop those tools specifi
cally for Project A. 

The area of problem solving still seems to leave room for 
improvement. If the problem solvers are not the original de
velopers, high demands are put upon them to familiarize 
themselves with each new component. Our experiment in 
incrementalifttegration seems to have been at least as success
ful as the top-down approach for integration. Low-level mod
ules were the ones exercised for the longest period during 
integration. This is highly desirable, since an error in low-level 
routines is not only harder to find at later stages of the project 
but also has a more detrimental effect on system uptime and 
stability. 

The basic conclusions derived from Project B are that even 
simple modem software engineering techniques can be suc
cessfully applied to a project and can offer positive benefits. 
This has been evidenced by the reasonably high productivity 
figure obtaifl'ed-40 NCSL/PD-compared to averages in the 
literature of 10 to 20. Although only qualitative statements 
can be mad¢ about the resulting software quality, the very 
rapid fall-off of effort after the system integration phase indi
cates that the tools and techniques applied resulted in a very 

low occurrence of errors. The software developed for this 
project is being used as foundation software for a more com
plex system, and preliminary indications are that it is easily 
adapted to the new environment. Tools to be singled out as 
the most positive contributors to the success of the project 
would have to be the walkthroughs and inspections following 
design, code, and test. It is felt that the following positive 
benefits resulted from reviews: 

1. Impending reviews caused engineers to put more 
thought into their work. In addition, most errors were 
caught early, and little rework was required. 

2. They served as a learning forum for other engineers on 
the team. 

3. They provided the opportunity to define exact end 
points for the design and code/test phases of the develop
ment. This is very useful for tracking a project's actual 
status against that planned prior to the implementation 
phase. 

4. They provided convenient checkpoints to ensure that the 
products complied with the project standards. 

The application of simple but effective design tools to the 
project cannot be overlooked. These tools enabled the soft
ware engineer to achieve correct designs. The dedication of 
effort to up-front design is also a must. Any decrease in this 
effort would only show up as problems in the later phases of 
the project. 

SUMMARY 

The application of modern software development techniques 
to a software project requires a commitment of both time and 
money by a company that wishes to benefit from these tech
niques. Although the two projects discussed in this paper did 
not implem!!nt state-of-the-art tools, they both benefited from 
the application of simple tools and techniques. The results of 
the application of these tools and techniques can be sum
marized as follows: 

1. Modern tools and techniques contribute significantly to 
increased software productivity and quality. 

2. Metrics must be developed that can be applied at every 
step of the software development life cycle. These can 
then be used to judge the quality of the results at each 
stage. 

3. Results of the application of new tools and techniques 
must be reported in the literature to allow comparison of 
the various tools and techniques. 

4. Industry must be involved in the evaluation and develop
ment of new tools and techniques for software devel
opment, since this is where the greatest benefits can be 
realized. 

5. Research must continue to define the software process 
better and to develop tools and techniques that better 
serve the user in the design and development process. 



REFERENCES 

1. Myers, Glenford J. Composite/Structured Design, New York: Van Nostrand 
Reinhold, 1978. 

2. Freedman, D. P., and G. M. Weinberg. Walkthroughs, Inspections, and 
Technical Reviews. Boston: Little, Brown, 1982. 

3. Fagan, M. E. "Design and Code Inspections to Reduce Errors in Program 
Development." IBM Systems Journal, 15 (1976), pp. 182-211. 

Results of Modem Software Engineering Principles 281 

4. Aron, J. D. The Program Development Process: The Programming Team. 
Reading, Mass.: Addison-Wesley, 1983. 

5. Musa, John B., et. aI., "Stimulating Software Engineering Progress: A 
Report of the Software Engineering Planning Group." IEEE Software En
gineering Technical Committee Newsletter 7 (4), May 1983. 

6. Beck, L. L., and Thomas E. Perkins. Transactions on Software Engineering, 
Vol. SE-9, No.5 (1983), 541-561. 

7. Peters, Lawerance J. Software Design: Methods and Techrziques, New York: 
Yourdon, 1981. 





A portable Modula-2 operating system: SAM2S 

by LARRY D. WITIIE and ARIEL J. FRANK 
State University of New York at Stony Brook 
Stony Brook, New York 

ABSTRACT 

The Stand-Alone Modula-2 System (SAM2S) is a portable, concurrent operating 
system and Modula-2 programming support environment. It is based on a highly 
modular kernel task running on single process-multiplexed microcomputers. 
SAM2S offers extensive network communication facilities. It provides the founda
tion for the locally resident portions of the MICROS distributed operating system 
for large netcomputers. SAM2S now supports a five-pass Modula-2 compiler, a task 
linker, link and load file decoders, a static symbolic debugger, a filer, and other 
utility tasks. SAM2S is currently running on each node of a network of DEC 
LSI-11123 and HeurikonIMotorola 68000 workstations connected by an Ethernet. 
This paper reviews features of Modula-2 for operating system development and 
outlines the design of SAM2S with special emphasis on its modularity and commu
nication flexibility. The two SAM2S implementations differ mainly in their periph
eral drivers and in the large amount of memory available on the 68000 systems. 
Modula-2 has proved highly suitable for writing large, portable, concurrent and 
distributed operating systems. 

283 





INTRODUCTION 

The MICROS project is exploring ways to organize networks 
of thousands of computers (netcomputers) to solve large 
problems. Its main goals are to develop a portable distributed 
operating system (MICROS) that can efficiently control many 
different netcomputers and to produce cost-effective net
computers that provide high throughput for large classes of 
applications, that extend easily to form more powerful sys
tems, and that are always available to users at acceptable 
processing rates even after component failures. 

A netcomputer consists of many computer nodes, each with 
its own primary memory, physical clock, and attached periph
erals. Nodes are embedded in a network of communication 
links over which messages are exchanged to share data from 
the separate memories. A global decentralized operating sys
tem, with some code resident in every node, unifies the nodes 
into a single computer system. The global operating system 
strives to provide netcomputer users with a powerful com
puting facility that can be accessed as a single virtual multi
processor 'Without regard to physical locations within the 
network. 

Modula-21 is a high-level, general programming language 
that facilitates the building of simple and practical pro
gramming support systems. The Stand-Alone Modula-2 Sys
tem (SAM2S) is a portable, highly modular concurrent oper
ating system. SAM2S was developed initially to assess 
Modula-2 as a language for writing large systems and to pro
vide portable software for Modula-2 programming support 
work stations. SAM2S was first developed for DEC LSI-ll 
work stations and later ported to HeurikonIMotorola 68000 
work stations. When replicated in every node of a netcom
puter, SAM2S forms the locally resident portions of the 
MICROS distributed operating system. 

The next section of this paper discusses features of Mod
ula-2 systems that are important for writing operating sys
tems. The main section describes the design principles for 
SAM2S and the organization of both SAM2S implementa
tions. The last three sections give the current status of SAM2S 
and MICROS, future research plans for MICROS, and con
clusions reached in using Modula-2 to develop and port 
SAM2S. 

MODULA-2 SYSTEMS 

Modula-2 is a concurrent programming language convenient 
for both system and user applications. It is an improvement on 
Pascal, based on the best features of Modula2 and MESA. 3 It 
was designed to be suitable both for high-level programming 

A Portable Modula-2 Operating System: SAM2S 285 

in an architecture-independent manner and for low-level pro
gramming of architecture-dependent aspects such as machine 
access and input/output (I/O) device handling. 

Modula-2 shares most of its conceptual goals and pro
gramming language features with Ada,4 but is much simpler 
and more comprehensible.5

,6 Modula-2 systems are simple but 
practical. They require only a small underlying run-time ker
nel, typically including fewer than 1,000 lines of assembly 
code. The module concept is central to Modula-2, as reflected 
by its name (MODUlar programming LAnguage). Most sys
tem facilities, including I/O operations, are provided by stan
dard library modules. The modularization facilities, exten
sible high-level language interfaces, low-level machine access 
capabilities, and coroutine-based concurrency mechanisms 
all provide an effective environment for modem software 
systems. 

Modularization Facilities 

For true modularity, it is essential to be able to refer to 
another module knowing only the abstract properties con
tained in its specification. Using modular design, several 
programmers can develop different modules independently. 
True isolation of module design decisions can hide 
implementation details and aid in program readability, 
verification, and mainh:nance. Modules can be compiled, 
tested, debugged, and updated without unpredictable effects 
on other modules. Having separate modules is especially im
portant for large research projects using many, and often 
inexperienced, programmers. For example, in three years 
more than 30 students have together contributed more than 
70,000 lines of working Modula-2 code to the MICROS 
project. 

Modularization facilities are strongly supported in Mod
ula-2. A module is a program component, normally repre
sented syntactically by a pair of definition and implementation 
modules. Each module pair provides a separate reference 
scope for a collection of logically related declarations, pro
cedures, and data. All references across module boundaries 
involve a matching pair of explicit export and import declara
tions. All public declarations in the definition module define 
the module interface to module users. An implementation 
module provides the body of code implementing the defined 
interface. Each syntactic module can reside in an independent 
file and can be separately compiled. However, separate com
pilation does not mean independent compilation, since strong 
type checking is enforced between modules. Separate mod
ules can be managed in libraries to enhance software re
usability and to encourage software growth through accretion. 



286 National Computer Conference, 1984 

Extensible Language Interfaces 

A common problem of high-level languages is restrictive 
linguistic constructs. Modula-2 avoids language inflexibility by 
excluding all process control, storage allocation, exception 
handling, and I/O facilities from the language definition. In
stead, these facilities are easily provided by extensible lan
guage interfaces using standard library modules. The burden 
of supporting extensions thus shifts from the language to the 
library, allowing the language, compiler, and language run
time support system to remain small. Users of machines with 
small memories can configure Modula-2 systems with only the 
interfaces required by their applications. Modula-2 also sup
ports procedure-valued parameters and variables. Procedure
valued variables are useful for process control and for passing 
functions to generic procedures. The extensible handling of 
concurrency in Modula-2 provides an example of these 
benefits. 

Low-Level Machine Access 

Since it was designed as a systems programming language, 
Modula-2 provides facilities for low-level machine access. The 
SYSTEM pseudo-module embedded in the compiler provides 
the main machine-dependent interface by encapsulating hard
ware data sizes and address formats. Machine-dependent 
operations include pointer and address arithmetic, relaxed 
type checking, explicit type transfer, and manipulations of bit 
sets. For I/O interfacing, Modula-2 allows access to peripheral 
device registers residing at fixed memory locations, specifica
tion of hardware priorities, and I/O transfers to support inter
rupt triggered context switching. 

Concurrency 

Concurrency provides for logically parallel threads of exe
cution that can cooperate synchronously or asynchronously. 
The process is the fundamental unit of sequential execution 
that is combined for concurrent execution. Modern program
ming languages distinguish the logical process from the phys
ical processor, allowing various mechanisms for allocating 
processors to processes. All concurrent programming lan
guages provide some mechanism(s) for process interaction.7 

There are two contrasting trends in concurrent program
ming languages. Some languages include many high-level lin
guistic constructs for process interaction, directly providing a 
user-oriented interface. However, these languages tend to be 
large and complex, to embed fixed constructs and rigid inter
action mechanisms, and to require an elaborate runtime sys
tem. Examples include Ada,4 Argus,S and MESA. 3 In con
trast, some languages provide only a few lower-level con
structs for process interaction, from which flexible 
higher-level mechanisms can be built. These languages tend to 
be simple and comprehensible, to support various types of 
process interaction, and to require only a modest runtime 
system. Examples include Edison,9 Modula-2,1 and SR.lO 

Modula-2 provides only a low-level coroutine mechanism to 
support concurrent execution. However, coroutines can be 

used to model the mUltiprocess scheduling and execution fa
cilities of any single processor system. In Modula-2, any 
parameterless procedure can be executed as a process. At 
the lowest system level, processes are declared by a 
NEWPROCESS system call and activated with TRANSFER 
and 10TRANSFER calls. Via this coroutine mechanism, con
trol switching can be explicit for transfer and I/O transfer calls 
or implicit as a result of 1/0 interrupts. The conceptual 
unification of planned process switches and forced interrupt 
transfers provides a clean mechanism on which to base 
higher-level mechanisms for process concurrency and 
synchronization. Users directly interact with higher-level 
concurrency models, such as a time-slicing mechanism for a 
uniprocessor. 

STAND-ALONE MODULA-2 SYSTEM (SAM2S) 

The originally released Modula-2 system (M2RTll)11 is a 
Modula-2 programming support environment targeted for 
DEC PDP-ll and LSI-ll systems and dependent on DEC's 
RT-ll operating system for services such as file access, 
editing, and I/O handling. During the summer and fall of 
1981, the MICROS research group developed the Stand
Alone Modula-2 System (SAM2S) for the LSI-ll by writing 
standard Modula-2library modules for all the RT-ll services 
used by M2RTl1. SAM2S was first developed mainly to find 
out whether Modula-2 was adequate for producing entire 
operating systems for programming support work stations. It 
has proved more than adequate. The original version of 
SAM2S actually runs slightly faster than M2RTll, primarily 
because all service routines are kept resident by SAM2S and 
not paged from disk as for RT-ll. 

The small memory (60 Kb) addressable by the LSI-lllimits 
the size of tasks run under the LSI-II version of SAM2S to 
about 30 Kb. In practice, this means that we can edit and 
compile simple modules under SAM2S, but must rely on 
M2RTll to change large modules such as the passes of the 
compiler itself. Since the two systems run on the same pro
cessor with exactly the same file format, switching from one 
to the other requires only a single "boot" command. It was 
the lack of memory space on the LSI-ll, especially as we 
began to write and test communication software, that led us in 
1983 to port SAM2S to work stations based on Motorola 
68000 processors. 

SAM2S has been designed to provide both a stand-alone 
programming support environment and a module library that 
can be the basis for the locally resident portions of the decen
tralized MICROS operating system. SAM2S is a concurrent 
system, but not a distributed one. However, it emphasizes 
flexibility in communications, whether on one machine or 
many, and includes Ethernet drivers and Xerox communica
tion protocols. 12 

SAM2S Design Principles 

SAM2S is a highly portable, independent Modula-2 pro
gramming support environment based on a modularized ker
nel task running on a process-multiplexed microcomputer. 



The design for SAM2S uses many advanced features of 
Modula-2. SAM2S benefits heavily from high-level device 
drivers and from modularization facilities that allow definition 
of hidden and hierarchical type managers as well as layered 
tasks for both system and users. 

Hidden type managers 

The existence of a module facility does not automatically 
ensure software modularity. Some programming standards 
are needed. For example, SAM2S code avoids both exported 
variables and nested modules. Module structuring in SAM2S 
is based on abstract data types, encapsulation concepts, and 
information-hiding principles. 13,14 

A module should be designed to encapsulate one abstract 
data type, which imposes modular structure on data and char
acterizes all allowed operations and values. Each instance of 
a type is referred to as an object. The procedures in a module 
that define all operations on an object collectively form the 
type manager. Basic operations include creation, manipu
lation, and destruction of objects. 

Hidden types in Modula-2 are declared only by name in the 
type definition module. The component substructure for the 
type is fully declared only in the implementation module. 
Hidden type objects are completely encapsulated. Only oper
ations defined by their type manager can access or change 
them. Other modules do not know their structures and cannot 
directly manipulate their components. That hidden objects 
must contain all their own state information also allows their 
type manager to synchronize accesses efficiently. Process 
blocking is reduced by enforcing synchronization on individ
ual shared objects only, rather than on the shared manager 
itself, as is done using monitors. 

Hierarchical type managers 

Two goals of type manager design are simplicity and gen
erality. Simplicity demands a small module with a clean and 
readable structure. Generality means that each type manager 
should support an elaborate type with widely useful oper
ations. These two goals usually are in conflict. Both goals can 
be achieved using policy/mechanism separation15 and hier
archical type managers. 

With policy/mechanism separation, lower levels of the sys
tem focus on providing general mechanisms that are as devoid 
as possible of embedded control decisions, so higher levels 
have maximum flexibility in choosing policies. Type managers 
should be designed to adhere to the type policy determined by 
indicators within the object state. Their mechanisms must 
accommodate all allowed type policies. 

With hierarchical type managers, a first-level manager 
handles the basic version of a general type. A second-level 
type manager uses the facilities of the first-level manager to 
offer more advanced operations and to support an extended 
type. Even higher-level managers may be defined. An exam
ple is a process type manager, which provides basic operations 
like create, suspend, and resume. A more advanced manager 

A Portable Modula-2 Operating System: SAM2S 287 

uses additional information in each process object for 
synchronization. 

High-level message-oriented device drivers 

Physical and logical devices can be regarded as hidden types 
requiring storage access, data transfer, and synchronization 
facilities. Physical device drivers manage the details for pe
ripheral devices. Logical device modules support available I/O 
formats for character and block-oriented devices and interact 
with physical device drivers. Each device module is an active 
type manager, since it contains one or more processes for 
device handling and user interactions. In SAM2S, the only 
processes that are genuinely concurrent are physical device 
processes that do real I/O by using the IOTRANSFER mech
anism. All other processes are preemptively multiplexed by a 
time-slicing scheduler. 

Device modules are written in high-level Modula-2 code, 
instead of assembly language, greatly easing system mainte
nance. Each device driver requires about 500 lines of Mod
ula-2 code. Device drivers use low-level machine access facil
ities to manipulate device registers. Depending on the exact 
configuration of SAM2S, I/O service requests may be made 
directly through procedure calls, locally by interprocess mes
sages using simple queue interfaces, or remotely through 
socket interfaces by messages from processes on other com
puters. Although the message interfaces for I/O are slower 
than direct-entry procedures, they are extremely flexible and 
make it easy to reconfigure SAM2S for differing devices. 

Layered tasks 

A task, or concurrent program, is a software structural unit 
built from one or more modules. Each task is a separate 
loading unit. Processes within a task are scheduling units that 
execute on a single host. Processes communicate and syn
chronize by passing messages and sharing objects. Linkers, 
editors, filers, and debuggers are common library tasks. 

In Modula-2 systems, a task is specified by the hierarchy of 
module import dependencies that start from the main module. 
The modules forming a task are linked together as an overlay 
onto a host. Normally, the operating system kernel forms the 
basis for all other task overlays. Other tasks are loaded in 
layers above it and access its modules by imported proce
dures. Where there is a system configuration choice of differ
ent implementation modules for the same type manager, one 
has to be specified. Linking the chosen modules automatically 
selects any library modules that they import. Modules that are 
needed by higher-level tasks, but have already been provided 
for lower-level tasks, are not linked again. 

The main program module, base task, and selected module 
choices are presented to the SAM2S task linker to produce a 
relocatable load unit. The linker manages the module and 
task libraries, type-checks intermodule interfaces, and places 
the resulting load file in the task library. The file contains 
information for controlling task loading. 

SAM2S supports the open system concept,16 which blurs 
distinctions between system and user tasks to enhance system 



288 National Computer Conference, 1984 

User Tasks - Compiler, Linker, Filer, Debugger, Decoder, ... 

Node Control Modules 

Executive control - ResidentMonitor 

Task Loading - Loader, Commandlnterpreter 

I/O Service Modules 

Virtua~ I/O services - Files, Lines, Times 

Logical formats - RTllFiles, UnixFiles, ADM3Lines, VT101Lines 

Physical devices - PRIAM, SCCZ8530, Z8536CIO, ME3C400, DNA 

Process Interaction Modules 
Communication facilities - Carriers, Messages, Ports, 

Sockets, Routes, Transport 

Name services - Names, Groups, DeviceTypes, NetTypes 

Process management - Processes, Signals, Gates, Semaphores 

Kernel Support Modules 
Structured data types - Lists, Queues, Rings, Maps, 

Caches, ·AddressSets 
Basic modules - SystemTypes, Memory 

Loy-level modules - SYSTEM, MC68000, Exceptions 

Figure I-Structure of the SAM2S/68000 Kernel task 

flexibility. The operating system is viewed as a Gollection of 
possible facilities that users can selectively include. Unneeded 
facilities cause no run-time overhead. All module interfaces 
are available to users. Hierarchical type managers allow users 
to select interfaces suitable for their application. Code for 
modules that are heavily shared among tasks is not repeated, 
reducing task sizes and increasing memory utilization. 

SAM2S Organization 

Currently, SAM2S runs on development systems based 
both on the DEC LSI-11/23 (SAM2SILSI11) and the Heuri
kon HK-68K board version of the Motorola 68000 (SAM2S1 
68000). The LSI-11/23 work stations contain only 60 Kb of 
memory, severely limiting task sizes for SAM2SILSI11. How
ever, there is no similar constraint on the Heurikon HK-68K 
work stations. Each currently has 256 Kb to 768 Kb of 
memory. 

The overlay base for the SAM2S system is the highly modu
larized Kernel task. Most of its modules are hidden type man
agers. They are available to user tasks also. For SAM2S1 
LSI11, the Kernel task is generated by merging it with a 
language support subkernel of 1,000 assembly instructions 
that provide run-time trap handling and coroutine process 
primitives. For SAM2S/68000, the Kernel task contains the 
MC68000 module, written mainly in Modula-2. This module 
provides run-time facilities similar to those of the LSI-11 as
sembly subkernel. The Modula-2 CODE procedure is used to 
generate about 800 lines of assembly code at specific points in 
the MC68000 module. 

The following sections describe kernel modules in func
tional groups. Figure 1 shows the groups of modules in the 
SAM2S/68000 kernel task. Differences between the two 
SAM2S implementations occur only in the low-level kernel 
support modules and in the physical device drivers. 

Kernel support modules 

Low-level kernel modules are machine-dependent. In 
SAM2SILSI11, the LSI11 module encapsulates the architec
ture of the LSI -11/23 microprocessor. It defines machine
specific trap and peripheral addresses that are also used by the 
assembly sub kernel. The MC68000 module in SAM2S/68000 
provides similar trap and peripheral access services. On each 
system, the Exceptions trap handling module is closely 
coupled to the basic trap facilities in the low-level machine 
module. 

The SystemTypes module exports basic constant and type 
declarations used throughout the system. Grouping common 
declarations into a single module lessens the number of inter
faces that have to be imported by most modules. Memory 
management, including compaction, is provided in the kernel 
by the Memory module. Available memory is managed as a 
dynamic heap, using a circular first-fit algorithm. 

The structured data type modules are hidden type managers 
for abstract data structures needed by the kernel and by user 
tasks. For example, the Lists module can efficiently manage 
LIST objects created as a regular list, a descending or as
cending priority list, a circular list, or a stack. The Maps 
module manages MAP objects, which are dynamically varying 
lists that associate an index for a hidden object with a unique 
identifier. Sets and caches of network communication ad
dresses are maintained by the AddressSets and Caches mod
ules. Other structured data types include queues and charac
ter buffer rings. 

Process interaction modules 

Process interaction facilities are provided by a hierarchy of 
type managers. The Processes module provides the basic 
PROCESS type and standard operations, including process 
creation, blocking, resumption, suspension, and termination. 
Priority lists are used for process scheduling. Spawning of 
processes forms tree hierarchies used for process control and 
termination. Processes can be synchronized by use of the Sig
nals, Gates, and Semaphores modules. Signals are events or 
cond.ltions on which processes can wait and about which they 
can be notified. A SIGNAL object manages a list of processes 
queued on the associated event. A GATE object is used as a 
binary semaphore to support mutually exclusive access to 
shared objects or code sections. It can be used to implement 
monitors. More elaborate synchronization can be achieved 
with· the general SEMAPHORE type that provides condi
tional blocking of processes. Other synchronization types in
clude event counts and sequencers. 

The Names and Groups managers provide services for reg
istration and lookup of symbolic names. The NAME type 
associates the name string for an object with its attributes, 
access capabilities, and unique identifier. A capability con
tains addressing information and possibly object access rights. 
To provide for hierarchical name spaces, groups of names are 
managed in tree directories. The GROUP type supports 
none, one, or more associated NAMEs. Symbolic names can 
be searched for on the top level of any specified subtree or 
recursively throughout the subtree. 



Communication facilities are provided by another hierarchy 
of managers. The Ports module uses Queues to support either 
First-In-First-Out (FIFO) or priority ports for sending and 
receiving local messages. It controls port acCess rights, mes
sage forwarding, and conditional passing of messages. For 
network communication, the NetTypes module declares com
mon addresses and services. The Sockets type manager pro
vides location-independent general message transfer services 
either locally, within the same host computer, or remotely, 
between processes on different hosts. A SOCKET is a bidirec
tional port used as an end-address for sending and receiving 
messages between processes. The Transport and Routes mod
ules provide for forwarding of packets over the communica
tion subsystem. 

To provide type uniformity for messages, Ports.arid Sockets 
directly manage carriers, which are standard headers for mes
sages. Information in each carriermcludes source and desti
nation addresses, a unique message identifier, the message 
type, and a pointer to the message itself, if it exists. Empty 
carriers can be posted in ports for incoming messages. The 
Messages module provides packaging facilities for marshaling 
and unmarshaling data into and from packets used for remote 
procedure calls. 

I/O service modules 

I/O services are provided on three levels of abstraction: 
physical, logical, and virtual. There are user interfaces at the 
virtual level for file and· terminal services. The virtual level 
passes user requests as procedure calls or messages to the 
appropriate I/O format module on the logical level. The log
icallevel interfaces with the appropriate physical I/O driver by 
messages using either communication or queue services. ; 

The DeviceTypes module declares constants and types used 
by the physical and logical device modules. At initialization, 
device drivers configured in the Kernel task register their 
existence with the name manager to give users dynamic 3:ccess 
to I/O services. Device modules request I/O services and post 
results by using the IOREQUEST type as a standard 
message. 

In timing experiments, we have found that serving local I/O 
requests through communication sockets takes about twice as 
long as through queue interfaces. As a compromise between 
speed and flexibility, we ordinarily use sockets for higher, 
logical-level I/O interfaces and faster queues for the lowest, 
physical-level interfaces. We have not yet found need for re
mote calls to low-level physical I/O drivers. 

Examples of physical drivers for SAM2SILSI11 QBUS
based devices include a DEC DLV11J serial driver, RX02 and 
RP02 disk controllers, and a QE3C4OQ Ethernet controller. 
The DLVllJ driver manages up to four serial lines and pro
vides type-ahead termin,al handling, using a RING object for 
a character buffer. The RX02 floppy disk controller handles 
two diskette drives. The RP02 module handles eight logical 
partitions of a 169-Mb Fujitsu Winchester disk. QE3C400 
interfaces to one or two 3COM Ethernet boards used for 
netcomputer communication. 

Functionally similar physical drivers exist for MULTIBUS
based devices in SAM2S/68000. The SCCZ8530 module 

A Portable Modula-2 Operating System: SAM2S 289 

drives the Zilog serial communications chip on the Heurikon 
HK-68K board. It also handles up to four serial lines. Cur
rently, SAM2S/68000 has a controller for a Priam 70-Mb 
Winchester disk. Controllers for several other disks (Vertex, 
Micropolis) and the four direct memory access (DMA) ports 
on the Heurikon board are under development. The DMA 
module will support efficient copying of blocks of data for 
both disk and Ethernet facilities. ME3C400 provides a dual 
Ethernet interface for SAM2S/68000. 

Logical device modules include handlers for serial terminals 
and disk formats. The logical devices are independent of ac
tual physical interfaces. The RTllFiles module handles RTll 
directory and file formats. A UnixFiles module for Unix 
format files is currently being written. ADM31Lines and 
VTIOILines control ADM31 and VTIOl terminals. 

The virtual-level modules provide abstract services to their 
clients. The Times module provides time and timeout facili
ties, using the KWllL and Z8536CIO physical clock drivers in 
SAM2SILSI11 and SAM2S/68000, respectively. The Files and 
Lines modules provide an abstract file and serial line interface 
for users. These modules direct user requests to the proper 
logical device modules. 

Node control modules 

The ResidentMonitor executive module receives control 
after kernel initialization and monitors the execution of user 
tasks. It interacts with the command interpreter and kernel 
loader to load, execute, and terminate relocatable user tasks 
on SAM2S. At present, a single user code file at a time may 
be run. The file name serves as a load command. 

SAM2S user-Ievei tasks 

Additional library modules are available for tasks run at the 
system user level. Some allow changes to file names and op
tions. File 1/0 can be abstracted into character I/O by using 
StreaIlls. The Strings module supports standard operations, 
such as extract and concatenate, on strings represented as 
character arrays. InOut provides transparent access to charac
ters on either files or terminals. SAM2S currently supports a 
five-pass Modula-2 compiler, a task linker, link and load file 
decoders, a mini-core debugger, a static symbolic debugger, a 
filer, an import dependency charter, and other utility tasks. 

SAM2SIMICROS STATUS 

SAM2S has recently been ported from DEC LSI -11123 com
puters to the Heurikon version of Motorola 68000 single
board systems. Both LSI-lls and 68000s are combined in a 
heterogeneous network of nodes connected by ten million 
bit-per-second Ethernet links. Between nodes, SAM2S uses 
flexible communication techniques including location
independent sockets, remote-procedure-call interfaces for file 
services, and standard Xerox Network System (XNS) packet 
transport protocols. 12 



290 National Computer Conference, 1984 

MICROS Netcomputer 

LSI11 - 1 LSI11 - 2 

Ethernet 

MC68K - 3 MC68K - 4 MC68K - 5 

Legend: M = Monitor T = Terminal W = Winchester F = Floppy 

Figure 2-Initial network configuration used by SAM2S 

The five existing network nodes, shown in Figure 2, are 
used as programming support work stations controlling one to 
three terminals (T) each. One LSI-ll (node 2) controls a color 
monitor (M) that shows Ethernet traffic among network 
nodes. Packet glyphs move nearly in real time, with just 
enough slowing for humans to see. Both LSI-ll systems 
(nodes 1 and 2) have dual floppy disk drives (F), but two 6800 
work stations (nodes 4 and 5) have no attached disks. The 
flexibility of interfaces in SAM2S allows both diskless 68000 
systems to be booted remotely with files supplied either by the 
other 68000 (node 3) from its Priam Winchester disk (W) or 
by one LSI-ll (node 1), from its Fujitsu disk (W) or its floppy 
disk (F). Individual application programs also are remotely 
loaded into any of the 68000 systems. 

Besides the original LSI-ll compiler from Wirth at 
ETH-Zurich and a V AXlVMS Modula-2 system from the 
University of Hamburg, there are several locally developed 
Modula-2 compilers that are being used to port SAM2S to 
other machines. The most heavily used is a V AXlUNIX cross
compiler that produces 68000 machine code. A recent trans
lation of this compiler from Pascal into Modula-2 allows 
compilation directly on SAM2S/68000 systems. A Modula-2 
cross-compiler system running on V AXlUNIX systems and 
generating code for the Intel 8086 and 80186 processors has 
recently been finished. Partial compilers for both VaxlUnix 
and National 16000/Genix systems generate executable code 
for simple programs, but need much more work to be fully 
functional. 

The original version of MICROS17
,18 was a modular, distrib

uted operating system written in Concurrent Pascal19 and as
sembly code. It ran on a network of DEC LSI-ll systems. 
With the addition of network communication modules and 
remote services berNeen nodes, SAM2S has become the local 
operating system portion of MICROS. This new version of 
MICROS will be written completely in Modula-2 except for a 

few hundred lines of assembly code. Modula-2 MICROS will 
be a highly modular, decentralized operating system that sup
ports transparent execution of distributed applications on net
computers. Its design emphasizes portable, transparent con
trol structures. Control in MICROS is decentralized and 
distributed20

,21 throughout the system as groups of cooper
ating tasks. 

The new MICROS system contains more than 100,000 lines 
of local code. Except for the cross-compilers, almost all is 
written in Modula-2. The local operating system kernel, sup
port, and communications modules for SAM2SILSI11 consist 
of 23,000 lines of code; similar modules for SAM2S/68000 
take 27,000 lines. About 18,000 lines are identical in the two 
systems. The common but different 5,000 lines handle low
level system features and drivers for the almost disjoint sets of 
peripherals. The extra 4,000 lines in SAM2S/68000 are mainly 
a hardware-level debugging monitor for the 68000 processor 
and the more extensive network communication modules that 
the larger 68000 memory allows. The working cross-compiler 
for the 68000 and its translation into Modula-2 together take 
about 40,000 lines. The linker, loader, filer, editor, and other 
user-level system programs require about 9,000 lines. Each 
SAM2S system has about 7,000 lines of machine-dependent 
modules in its compiler, linker, and loader. There are another 
20,000 lines in the code-generation passes of the compilers for 
the 80186, VAX-ll, and 16000 processors. In addition, there 
are about 30,000 lines in LSI-ll compiler, linkerlloader, and 
debugging utilities obtained from Wirth. More than 50,000 
lines of high-level code have been added to MICROS in the 
last year. 

RESEARCH PLANS FOR MICROS 

The major recent theoretical work22 in the MICROS project 
has been in analyzing ways in which to implement and to use 
multicast communication within dynamic groups of computers 
in large networks, especially ones linked by grids of horizontal 
and vertical Ethernets. Group communication techniques de
veloped for Ethernet systems should be applicable to many 
distributed system environments, even those using dedicated 
links. The research has included analysis of efficient net
computer mechanisms to maintain distributed lists character
izing dynamically changing groups and to multicast packets 
within groups. Efficient communication in large groups can 
require spanning trees of multicast routing information. Sin
gle messages multicast to processes scattered over a network 
can follow tree branches and be copied at each fork. 

A modular, integrated group communication subsystem is 
being implemented within MICROS to provide a basis for 
construction of a complete netcomputer system. In the com
ing year, the subsystem will be used to evaluate proposed 
group communication techniques. The subsystem will include 
support mechanisms for planned distributed applications such 
as the in/out medium-level distributed language system23 and 
the BugNee4 parallel debugging system. 

The MICROS system must work well both on different 
types of computers and on networks that are connected in 
different ways - ways not known while the MICROS soft-



3rd Managers Level 

2nd Managers Level 

Figure 3-Hierarchical tree based on dynamic communication groups 

w~e is being written. Distributed control algorithms already 
desIgned for MICROS have included a Focus25 initializer that 
transparently forms a networkwid~ hierarchical control struc
ture and a distributed Wave Schedule?,,27 that assigns idle 
nodes to task forces. The wave scheduling technique relies on 
a control hierarchy, includes mechanisms for avoiding static 
deadlocks, and can extend to any size network. Research in 
distributed task force scheduling schemes18 and netcomputer 
load-balancing mechanisms28 is planned. We also will evaluate 
other decentralized algorithms for management of globally 
shared system resources in large netcomputers with thousands 
of nodes. 

Figure 3 shows one use of overlapping communication 
groups within a decentralized control hierarchy. Each trian
~lar boundary encloses two groups. The working group con
SIStS of a number of sibling nodes plus their common parent. 
The recovery ·group adds the grandparent to the parent and 
siblings. The siblings execute user and management tasks as 
req~ested by the parent. To avoid overloading the parent 
dunng normal working conditions, the siblings pass to their 
parent only task results and summaries of management infor
mation about lower-level groups. If one of the nodes fails the 
remaining members of the recovery group all communica~e to 
redistribute t~e tasks of a failed sibling or to elect a replace
ment for a faIled parent. Management information in a failed 
parent can be regenerated from the combined states of the 
siblings and grandparent. A failed grandparent is replaced as 
a parent by the next higher group in the hierarchy. 

The MICROS network currently consists of three Heurikon 
68000s and two DEC LSI-11/23s connected by a single Ether
net. An expanded network including two DEC LSI-11123 
nodes, at least seven Heurikon 68000 nodes, some Intel 80186 
nodes, and several DEC MICROV AX nodes is planned for 
future research. Each node will have two Ethernet ports, 
probably connected to the nearest two busses in a horizontal! 

A Portable Modula-2 Operating System: SAM2S 291 

vertical grid of Ethernets. Ethernet links to several SUN work 
stations and VAX 7501780 computers running Berkeley 4.2 
U~IX are plan~ed. We have started developing a fully com
patible UNIX file system written in Modula-2 that will allow 
MICROS users to share files and whole disks with UNIX 
system users. MICROS will unify local operating systems to 
present a networkwide UNIX environment to users. 

CONCLUSIONS 

We have found Modula-2 much better for writing system code 
than the combination of Concurrent Pascal19 and assembly 
code that we used for MICROS during 1978-81. The Mod
ula-2 system, running on the same LSI-11 processor, is faster 
by a factor of 4 to 10 in several modalities. The 68000 version 
is even faster. Compiler and system code run faster because 
native machine code, not interpreted P-code, is produced. 
Flexible, selective synchronization operations defined by li
brary modules allow faster execution of highly concurrent 
systems than do Concurrent Pascal monitors, which block 
processes too indiscriminately. System errors can be located 
much faster using the post-mortem symbolic debugging sys
tem that is part of the Modula-2 task library. System correc
tions are faster because only a few modules, not the entire 
system, must be recompiled for each set of corrections, since 
there is type-checked, separate compilation of Modula-2 mod
ules. System development by a group is faster, because only 
the definition modules providing the interfaces between mod
ules need to be approved before all programmers can start 
producing and compiling code. 

The tiny run-time system, small compiler, and use of device 
interfaces. written in high-level code all greatly simplify the 
porting of Modula-2 systems. We did not encounter major 
problems in porting SAM2S to 68000 systems. A few high
level ~o~ules have been changed slightly to make them truly 
machine-mdependent. Almost all the changes have involved 
the consistent use of long and short variants of integers and 
cardinals on the two systems. Communication between het
erogeneous computers requires an external standard for the 
order of byte transmission. We have chosen the Xerox Ether
net standard of high-byte-first order, which is also the stan
dard for the 68000 microprocessor. Bytes are reversed in or
der as they enter or leave any of the LSI-11 systems. Porting 
~AM2S to a new com~)Uter requires rewriting of about 7,000 
lines for code generation and loader modules, 1,000 lines for 
low-level kernel modules, and 1,000 to 4,000 lines for new 
device drivers. 

Use of Modula-2 has allowed us to port SAM2S from LSI-
11 to 68000 systems in six months. It has allowed us to com
bine the efforts of dozens of student programmers into a 
working operating system. The flexibility and portability of 
Modula-2 systems will allow us to continue to explore ways to 
control networks of thousands of computers. 

ACKNOWLEDGMENTS 

Many members of the MICROS research group helped to 
develop SAM2S. Especially important contributions have 



292 National Computer Conference, 1984 

been made by Shridhar Acharya, Divyakant Agrawal, Bill 
Earl, Miguel Garcia, Arun Garg, Mike Palumbo, Yanick 
Pouffary, Soumitra Sengupta, Rick Spanbauer, Shidan 
Tavana, and Kok Sun Wong. 

This research has been supported in part by National Aero
nautics and Space Administration Grant NAG-1-249, Army 
Research Office Contract DAAG-29-82-K-0103, an external 
research grant from Digital Equipment Corporation, and Na
tional Science Foundation Equipment Grants MCS80-
06925 and MCS82-03955. 

REFERENCES 

1. Wirth, N. Programming in Modula-2 (2nd ed.). New York: Springer
Verlag, 1983. 

2. Wirth, N. "Modula: A Language for Modula Multiprogramming." 
Software-Practice & Experience, 7 (1977), pp. 3-35. 

3. Mitchell, J. G., W. Maybury, and R Sweet. "MESA Language Manual." 
Xerox CLS-79-3, Version 5.0, Xerox Palo Alto Research Center, April 
1979. 

4. Ichbiah, J. D. "Rationale for the Design of the Ada Programming Lan
guage." ACM SIGPLAN Notices, 14 (1979), Part B. 

5. Sumner, R T., and R. E. Gleaves. "Modula-2-A Solution to Pascal's 
Problems." ACM SIGPLAN Notices, 17 (1982), pp. 28-33. 

6. Spector D. "Ambiguities and Insecurities in Modula-2." ACM SIGPLAN 
Notices, 17 (1982), pp. 43-51. 

7. Andrews, G. R, and F. B. Schneider. "Concepts and Notations for Con
current Programming." Technical Report 82-520, Cornell University, Sep
tember 1982. 

8. Liskov, B. H., and R W. Scheifler. "Guardians and Actions: Linguistic 
Support for Robust, Distributed Programs." 9th Conference on Prinicples 
of Programming Languages. New York: ACM, 1982, pp. 7-19. 

9. Brinch Hansen, P. Programming a Personal Computer. Englewood Cliffs, 
N. J.: Prentice-Hall, 1982. 

10. Andrews, G. R "SR: A Language for Distributed Programming." Tech
nical Report 81-14, University of Arizona, October 1981. 

11. Wirth, N. "Modula-2." Technical Report 36, Institut fUr Informatik, ETH, 
Zurich, 1980. 

12. Xerox Corp. "Internet Transport Protocols," XSIS 028112, Xerox System 
Integration Standard, December 1981. 

13. Parnas, D. "On the Criteria to Be Used in Decomposing Systems Into 
Modules." Communications of the ACM, 15 (1972), pp. 1053-1058. 

14. Pamas, D. "Designing Software for Ease of Extension and Contraction." 
IEEE Transactions on Software Engineering, SE-5 (1979), pp. 128-137. 

15. Wulf, W. A, R Levin, and S. P. Harbison. HYDRAIC.mmp: An Experi
mental Computer System. New York: McGraw-Hill, 1981. 

16. Lampson, B. W., and R F. Sproull. "An Open Operating System for a 
Single-User Machine." ACM Proceedings of the 7th Symposium on Oper
ating System Principles, 1979, pp. 98-105. 

17. Wittie, L. D., and A. van Tilborg. "MICROS, A Distributed Operating 
System for MICRONET, A Reconfigurable Network Computer." IEEE 
Transactions on Computers, C-29 (1980), pp. 1133-1144. 

18. Van Tilborg, A "Network Computer Operating Systems and Task Force 
Scheduling," Ph.D. thesis, State University of New York at Buffalo, Sep
tember 1982. 

19. Brinch Hansen, P. The Architecture of Concurrent Programs. Englewood 
Cliffs, New Jersey: Prentice-Hall, 1977. 

20. Abraham, S. M., and Y. K. Dalal. "Techniques for Decentralized Manage
ment of Distributed Systems." Proceedings of the IEEE COMPCON 
Spring 80. Piscataway, N. J.: IEEE, 1980, pp. 430-437. 

21. Jensen, E. D. "Decentralized Executive Control of Computers." Pro
ceedings of the 3rd International Conference on Distributed Computing Sys
tems, Piscataway, N. J.: IEEE, 1982, pp. 31-35. 

22. Frank, A J., L. D. Wittie, and A J. Bernstein. "Group Communication 
on Netcomputers." Technical Report #83/057, State University of New 
York at Stony Brook, September 1983. Accepted for the 4th International 
Conference on Distributed Computing Systems. May 1984. 

23. Ahamad, M., and A J. Bernstein. "The Application of Name Based Ad
dressing to Low Level Distributed Algorithms." Technical Report #83/050, 
State University of New York at Stony Brook, August 1983. 

24. Curtis, R., and L. D. Wittie. "BugNet: A Debugging System for Parallel 
Programming Environments." Proceedings of the 3rd International Confer
ence on Distributed Computing Systems, 1982, pp. 394-399. 

25. Van Tilborg, A., and L. D. Wittie. "High-Level Operating System For
mation in Network Computers." Proceedings of the 1980 International Con
ference on Parallel Processing, Piscataway, N. J.: IEEE, 1980, pp. 131-132. 

26. Van Tilborg, A, and L. D. Wittie. "Wave Scheduling: Distributed Alloca
tion of Task Forces in Network Computers." Proceedings of the 2nd Inter
national Conference on Distributed Computing Systems. Piscataway, N. J.: 
IEEE, 1981, pp. 337-347. 

27. Van Tilborg, A, and L. D. Wittie. "Distributed Task Force Scheduling in 
Multi-Microcomputer Networks." AFIPS, Proceedings of the National
Computer Conference (Vol. 50), 1981, pp. 283-289. 

28. Reed, D. A. "Performance Based Design and Analysis of Multirnicro
computer Networks." Ph.D. thesis, Purdue University, 1983. 



Giving away the data processing store, or 
Does the data processing department as we know it today 
have a future? 

by LOIS ZELLS 
Yourdon, Inc. 
New York, New York 

ABSTRACT 

Data processing's position in the organization, as we know it today, does not work! 
There is an ongoing communication gap between data processing groups and the 
rest of the world-the users. This never-ending adversity between users and data 
processing continues to reinforce polarization. The situation hampers productivity 
and drains important energy-energy that could be rechanneled and made to work 
for the organization. 

The first step in solving any difficulty is to establish ownership of the problem. In 
this case, we are faced with a clear case of sibling rivalry. Often, the only way to stop 
the squabbling is for the parent to assume the role as arbiter of peace and establish 
the ground rules for a harmonious family life. 

Because they are in antagonistic positions, users and data processing cannot solve 
problems themselves. It is executive management's responsibility to provide the 
framework for harmony and to continuously and visibly demonstrate the commit
ment to a new approach. Otherwise the whole process will just be another empty 
exercise in futility-better left untried. 

In our attempts to remold the organizational personality we may address 

1. Long-range planning 
2. Managing organizational expectations 
3. Training issues 
4. Public relations 

Then if management recognizes that we cannot continue as we are today, if manage
ment truly can envision a time in the future when the current trend will be reversed, 
and if management is willing to consciously choose to redirect the flow, harmony 
can and will be realized. 

293 





INTRODUCTION 

A new management information system (MIS) director re
cently told me that his department had achieved such poor 
credibility under his predecessor that he was going to run the 
department by keeping the users in the dark as much as pos
sible and not committing to anything. That way, there would 
be no disappointments. In another instance, a chief executive 
told me that he had so little confidence in his data processing 
department that he would only let them maintain existing 
systems. All new work was being handled directly in the 
CEO's office and executed by outside consultants. 

Data processing's position in the organization, as we know 
it today, does not work! There is an ongoing communication 
gap between data processing groups and the rest of the 
world-the users. This never-ending adversity between users 
and data processing continues to reinforce polarization. The 
situation hampers productivity and drains important energy
energy that could be rechanneled and made to work for the 
organization. 

WE WANT TO CHANGE THE BUSINESS 
AND WE WANT TO CHANGE ATTITUDES 

Outdated and nonfunctional, the traditional bureaucratic 
business philosophies need to be swept away so that fresh and 
unbiased approaches can be introduced. The solution to these 
problems lies in restructuring the environment and remolding 

Giving Away the Data Processing Store 295 

the personality of the organization in order to inspire team
work and new ways of viewing the function of data processing. 

There is not, however, a simple and free path to achieving 
these goals. Most important, none of this will work without 
the understanding, approval, and commitment of executive 
management. It will happen only if we move ownership to 
upper management, that is, if the process is executed at the 
highest levels of the organization. Furthermore, it is impor
tant to realize that more than just lip service will be required. 
Executives need to be willing to visibly and continuously dem
onstrate their commitment to this new way of doing business; 
otherwise the whole process will be just another empty exer
cise in futility; better left untried. But, if management recog
nizes that we cannot continue as we are today, if management 
truly can envision a time in the future when the current trend 
will be reversed, and if management is willing to consciously 
choose to redirect the flow, then harmony can and will be 
realized. 

We start by going back to basics and remembering that data 
processing is a service group to the company, and therefore 
should be conducted as a business-whose success is deter
mined by the goodwill it establishes through its customers; 
and, although rarely stated formally, it is necessary to recog
nize that there also are certain responsibilities that users 
should automatically assume in this interchange. 

As a matter of fact, many businesses are successful as a 
result of: good public relations, educating customers to under
stand their roles and responsibilities, as well as what is reason
able to expect from the company and its products. If the 
antagonistic trend is to be reversed, an effective data pro
cessing advertising campaign should be staged so users can 
rethink their images of data processing. 

In this paper, we will crystallize what we can reasonably 
expect from the data processing function, as well as offer some 
suggestions for improvement. However, in order to change 
the future, we must first understand the past. 

WHERE ARE WE COMING FROM? 

A controversial issue that really fires the imagination comes 
from trying to determine what role data processing should 
play in the organization. Turned around, the question is just 
as meaningful if phrased as "What is the organization's re
sponsibility to data processing?" Depending upon which side 
of the fence you are standing, you may have some definite 
opinions on this subject. 

The Corporation 

When asked about their attitudes about the data processing 
investment, many corporate executives voice their dissatis-



296 National Computer Conference, 1984 

faction with the low returns they perceive they are getting 
from data processing expenditures. 

• Often, data processing is viewed as a bottomless pit into 
which enormous amounts of money flow, while requests 
for services continue to pile onto an already overloaded 
backlog. 

• Senior management does not get all of the information 
they need for controlling current operations and planning 
for the future. 

• Improvement drives instituted to clean up data processing 
rarely do more than freshen up existing systems by scrub
bing questionable reports and refining remaining ones. 

• The creation of new computer systems often is abdicated 
to technical personnel, who, in turn, become so caught up 
in state-of-the-art advances that they lose sight of the real 
business problems that need to be solved. 

• Because of their anxieties regarding ownership of the 
information resource, data processing departments jeal
ously guard their territory and often are reluctant, or even 
totally unwilling, to support the acquisition of micro
computers unless they also can maintain control of that 
resource. However, data processing may be unable either 
to effectively introduce micros into the organization or to 
instill corporate confidence in their ability to achieve that 
goal. 

To staff data processing departments, companies employ 
so-called experts. Large amounts of time and money are spent 
on these employees, and expectations are high. Since these 
experts are only people and not infallible, they make mis
takes. Systems are rejected, even when delivered on time and 
within budget. Most often, however, systems not only do not 
deliver what the user expected, but the projects themselves 
are usually completed late and over budget. Credibility suffers 
and data processing gets a black eye. The problem is enhanced 
when dissatisfaction occurs because reliability of already ex
isting systems is low and maintenance budgets become very 
high. 

Data Processing 

While the above complaints may be justified from the cor
porate perspective, interviews from the other side of the fence 
bring to light facts that are just as legitimate. 

• Management professes to believe in realistic planning and 
control, but when project teams present their schedules 
for time, people, and costs, management often tries to 
condense these figures-without reducing the scope of 
the project. 

• Systems developers are no~ always given the time to do 
their jobs correctly. For example, although it has been 
repeatedly demonstrated that more reliable systems are 
developed by front loading the effort into analysis and 
design, project participants are still pressured into doing 
the whole project "quick-and-dirty" or at best are rushed 
through the early phases to where they can do some real 
work-like coding. The desire for quality systems is often 

just lip service. Given the choice between a system that is 
completed late with no errors and one finished on time 
with imperfections, the organization often chooses to 
meet the target date. 

• Companies declare their desire to move away from crisis
reactionary mode (where workers spend long hours of 
overtime in exchange for little or no compensation) to a 
proactive, controlled environment. When the time comes 
to put this into practice, what we really see is a continuing 
request for doing it the old way-just once more. 

• Organizations establish elaborate goals for training that 
are either not used at all or, if trained, students are not 
given the opportunity to use the skills they have acquired. 

• Project participants are required to deliver successful 
projects, but have no control over the environment that 
affects the project development process. In turn, project 
leaders (managers) are required to answer for the success 
of the project, but rarely are given the authority to get the 
job done. 

• Application teams often find it impossible to uncover a 
user, sponsor, or owner of the system who is willing or 
able to participate in and direct the process. 

The lists of complaints from both camps are endless. Time 
and money are wasted, dissatisfaction filters up the corporate 
structure, and declining productivity invades all levels of the 
organization. Departmental segregation within the company 
propagates divisions and barriers that generate independent 
islands of politics, power, and miscommunication. This lack of 
understanding of the organization by the organization ob
structs the integration of any innovations that may benefit the 
organization. Large amounts of energy, which could be chan
neled into productive and beneficial results for the company, 
are wasted. 

EXECUTIVE MANAGEMENT AS THE "CHANGE 
AGENT" 

It has been stated that "everybody complains about the 
weather, but nobody ever does anything about it." Data pro
cessing's black eye cannot be healed by griping about ineffi
ciencies. They are obvious! What is not so apparent is how to 
overcome the problems. 

The first step in solving any difficulty is to establish owner
ship. In this case, we are faced with a clear case of sibling 
rivalry. Often, the only way to stop the squabbling is for the 
parent to assume the role as arbiter of peace and establish the 
ground rules for a harmonious family life. 

Because they are in antagonistic positions, users and data 
processing cannot solve problems by themselves. It is execu
tive management's responsibility, as the parent, to provide 
the framework for harmony and to continuously and visibly 
demonstrate a commitment to a new approach. 

Successful executives know they must act on their environ
ment rather than continue to react to it! Therefore, top man
agement should decide: 

1. What kind of data processing environment they want 
2. What they are willing to pay to get it 



3. When they want it 
4. When they are willing to start 

Ownership of the problem needs to be accepted at elevated 
levels and conscious choices must be exercised in choosing 
how to restructure the environment. 

One high-powered management consulting group I know of 
will only do work for troubled MIS departments after a firm 
liaison has been established with the chief executive. The 
CEO must sign a contract for visible and sustained support of 
the remolding effort. While it is legitimate for the executive to 
withdraw from the process, he or she in doing so recognizes 
that, although withdrawal may be a necessary business choice, 
it will likely cause the demise of the effort. Rather than allow 
the project to then suffer a slow, painful death, it is immedi
ately canceled. However, the consulting group still gets full 
payment. This may be considered a rather extreme approach, 
but it certainly demonstrates an important fact: Either cor
porations sincerely want to improve the situation-or they 
don't! It is necessary to qualify the seriousness of their intent; 
and if it is not present, then the project should not even be 
undertaken. 

Assuming senior management recognizes that there is a 
problem, the project will be conducted at the executive level 
and will involve all segments of the organization. Agreements 
and conflicts will be crystallized, problems will be resolved, 
and an action plan will be developed. This information will be 
disseminated to the whole organization. In our attempts to 
remold the organizational personality, we may address: 

1. Long-range planning 
2. Managing organizational expectations 
3. Training issues 
4. Public relations 

LONG-RANGE PLANNING: DIRECTING AN EYE TO 
THE FUTURE 

Faced with a desire to control company direction, many or
ganizations have adapted advanced planning methodologies 
such as strategic business planning and strategic systems plan
ning. Not only do managers need to be concerned on a daily 
basis about problems of productivity, backlogs, and changing 
priorities, but the solution of these problems must be com
patible with long-range company goals. Each daily decision 
should be evaluated based on its ability to support or obstruct 
future objectives. However, many organizations are still con
fused about exactly what business planning and systems plan
ning are, how these two processes relate, and how to integrate 
them with organizational theory and the behavioral sciences. 

Strategic Business Planning 

During the strategic business planning effort, corporate ex
ecutives identify the performance factors that can improve 
business results. From an analysis of this information they 
may select the long-range goals and objectives for the organi
zation. Strategies and tactics are then devised that should 
enable attainment of these targets. 

Giving Away the Data Processing Store 297 

Who "Drives" The Strategic Business Plan? 

At the top of the organizational structure, we may find a 
function for corporate planning and development. It is un
encumbered by traditional and inflexible divisional borders, 
has the visibility and support necessary for effectiveness, and 
possesses the high-level perspective. This group may be fur
ther divided into: 

• Strategic business planners, who lead the development of 
the "five-year" business plan (goals, objectives, strate
gies, missions, and tactics). 

• Management planners, who analyze the alternatives for 
implementing the strategic business plan. They prioritize 
projects, optimize resources, and maximize staff use. 

• Environmental analysts, who provide economic and po
litical intelligence necessary for evaluating new oppor
tunities and threats. 

• Venture developers, who develop new approaches for 
achieving strategic goals. 

The problems regarding which goals and objectives should 
be important to the company must be elevated to include a 
wide perspective of issues. However, often the current ap
proaches do not demonstrate even a minimal level of social 
awareness. As a matter of fact, most current business
planning efforts tend to limit their attentions to satisfying 
economic and political pressures, resulting in 75-95% of their 
emphasis being placed in the inanimate areas of technology, 
revenues, methodologies, and organizational structures. 
There is little or no concentration on integrating the human
istic views (especially the needs, requirements, and expecta
tions of users and the data processing professionals who plan, 
develop, and support their systems). Nevertheless, we should 
search to find ways to satisfy the conflicting objectives of: 

1. The public and private goals and values of the 
organization 

2. The public and private attitudes of the organization to
ward their personnel 

3. The public and private attitudes of the organization to
ward their customers 

and 
4. The public and the private goals of the employees 

themselves 

We would be wise to acknowledge, at last, that it is necessary 
to consciously implement mechanisms that will foster and feed 
a positive social environment-where users and data pro
cessing groups can focus on common targets rather than on 
personalities and the behavior that supports polarization. 

MANAGING ORGANIZATIONAL EXPECTATIONS 

Every organizational effort is infused with many undefined 
and assumed attitudes. Given any kind of a transaction and 
two to N participants, there will be two to N views of the 
transaction, which may not always be in agreement. There are 



298 National Computer Conference, 1984 

always dozens of subtle nuances floating like puffs of smoke 
above every enterprise, often in conflicting directions. We 
should crystallize these views, resolve the disagreements, and 
disseminate this information to the community. 

The most successful departments within a company are not 
necessarily the biggest or the most visible. Rather, they are 
those that provide what the organization expects. More 
departments fail because of inflated and unreasonable ex
pectations than for any other reason. Therefore, never under
estimate the importance of managing organizational ex
pectations. In any data processing organization, effective 
presentation of the various agreements and decisions is a 
must. The users, who range from executive managers to 
hands-on operators of systems, need to have a clear under
standing of data processing and its functions so they do not 
expect more than can be furnished. At the same time, data 
processing personnel must raise their awareness and appre
ciation for the conflicts the user faces when attempting to 
maintain existing business operations while also supporting 
data processing's efforts. 

Furthermore, the red-flag issues should be brought immedi
ately into the open and dealt with objectively rather than 
suppressed until they become emotional hot potatoes. We 
often try to bury obstacles with the good hope and intention 
that time and short-term success will overcome them; un
fortunately, we know from painful experience that they don't 
go away. Failure often occurs when the organization cannot or 
will not acknowledge problems. However, even the most 
taciturn managers cannot refute clearly stated facts. Organi
zational expectations can then be realistic, approved, docu
mented, and disseminated. 

In a different context, we could say that the group will 
choose what games will be played and will establish the 
ground rules for each game before the playing starts. Any 
rules will be legitimate as long as all of the participants concur. 
With this increased knowledge, management can then assess 
each venture's effect, determine if the organization is com
mitted to successful completion, and decide if the endeavor 
should be continued or abandoned. In other words, every 
enterprise should be evaluated based on its effect on the or
ganization, the organization's ability to complete it success
fully, and whether or not it supports long-range goals. 

What Causes Miscommunication? 

First, we should recognize that data processors are not the 
decision makers for the organization! In the past, our con
scientious enthusiasm to do a good job led to the belief that 
data processing should drive the decision-making process. 
The reality is just the opposite. We would not contract to build 
our dream house without commitment of our sustained in
volvement or the expectation that our opinions will be con
tinuously solicited and our choices incorporated. Since data 
processors are only the builders of systems, why shouldn't 
customers of data processing "constructions" be required to 
provide the same level of participation? 

Data processing should, therefore, be recognized as a ser
vice group to the organization, responsible for providing facts 

about alternatives and risks. The decision-making responsi
bility may then be moved back to the user, where it belongs, 
allowing the choices to become organizational products rather 
than data processing projects. 

Next, we recognize that conflicting objectives are often a 
cause of project failure. Two essentials to the success of the 
process are user participation for successful definition of re
quirements, and detailed specifications for avoiding uncer
tainties, omissions, ambiguities, and error. Difficulties arise 
when data processing prevails upon users for participation to 
document and validate requirements. Because of the need to 
maintain existing business operations, user management may 
be in a bind and need to reduce, or even eliminate, their level 
of participation. Other times, when data processing workers 
negotiate for the weeks and months necessary to complete 
detailed specifications, they are informed that there is simply 
not enough time, and may be advised to do a less thorough job 
in order to meet the target date. 

Thus, we observe conflicting objectives, which are very con
fusing to participants. It may be that the constraints are legit
imate, and if so, recognition must be given to that fact, and a 
concise acknowledgment of the trade-offs must be made. 
Then any results are due to organizational choice, and if 
projects are late or fail, it is because of poor choice rather than 
poor management. If constraints are artificial or arbitrary, is 
it logical or fair to impose unrealistic target dates that serve 
only to reduce quality and reliability of systems? Where is this 
direction coming from? Is it real, or imagined? Does upper 
management need to clarify its position? 

Third, many systems people are advised that it is more 
important to finish a project within a prescribed amount of 
time than it is to worry about maintenance costs. Not only is 
this amazing, but it is also confusing to people who understand 
the high costs of maintenance. What does the organization 
want from its systems? What degree of accuracy is required? 
Is reliability important? At the bottom line, does the company 
know what errors cost? Is reduced maintenance a critical fac
tor? How can we achieve our goals? Is this information being 
communicated to employees? 

Fourth, we must help the organization understand that 
project planning is an iterative process. It is impossible to 
present a comprehensive and detailed schedule for implemen
tation on the first day of a project. Furthermore, it is unlikely 
that an inclusive project plan that is precise can be provided 
before design is finished. Consequently, as we migrate 
through the development life cycle, our knowledge base of the 
project becomes more comprehensive, and we are able to 
refine the plan. 

If management, on the other hand, chooses a target date 
and advises the project team to retrofit a project into that time 
frame, the options are as follows: 

• Apply more resources-work overtime, assign the super-
workers, add more people, and assign the experts. 

• Eliminate features. 
• Do a less thorough job and accept the risk. 
• Agree to do the whole project in the allotted time and 

finish late and over budget. 



• Agree to do the whole project, but only commit to a 
schedule so great that it will cover all contingencies. 

• Agree to the date, but do not commit to any specific 
deliverables. 

• Agree to the date, but make the specifications ambiguous 
and insist that any missing features were not part of the 
original agreement. 

Most of these options are dishonest and none is really highly 
desirable. Does management truly understand and appreciate 
the planning effort? What do they expect from the process? 
Are their expectations realistic? 

Last of all, documenting organizational expectations takes 
time and people. Managers who resist dedicating time and 
resources to this effort are deceived into believing the 
effort will not be expended later in reacting to undefined 
expectations. 

Even with all the work, the effort may not be rewarded with 
enthusiastic response. Tom DeMarco states, "The most per
fect crystal ball makes no guarantee that users will be happy 
when they see into the future, only that what they see will be 
accurate.,,13 Our purpose is simply to minimize the effects of 
surprise and unpreparedness. As we gain experience and 
credibility, we may find that unwarranted endeavors-which 
in the past would have gone on to completion, even though 
they should have been canceled-will be recognized earlier 
and be nullified. People who want the transactions at any cost 
will attack the process or the team members and ignore the 
projections. If approval is received, implementation can 
proceed very rapidly and productivity levels can be raised 
significantly. 

ARE WE ACHIEVING THE DESIRED RESULTS 
FROM OUR TRAINING EXPENDITURES? 

A recent survey of 800 managers revealed that training in 
general was not considered that important to their companies. 
Yet, these very managers also complained that most employ
ees had some very basic holes in their awareness of how tech
nologies can best be exploited to serve the organization. 

With the mounting demand for proficient personnel and the 
parallel increase in salaries, organizations are seeking ways to 
realize a higher return on their personnel-investment dollar. 
Education of the staff is clearly one avenue to that end. How
ever, companies often cannot or do not create an environment 
that nurtures high yields on any educational expenditures. 

Not all companies are in the training dark ages, and those 
that believe they are enlightened take umbrage at being de
scribed in negative tones. We are told that the classes employ
ees do attend are meant to improve the skills of the students 
and are not intended as vacations, a way to break the monot
ony of routine, or simply an exercise to satisfy overall organi
zational training requirements. On the contrary, seminars are 
supposed to enhance the expertise of the participants and 
enable them to be more productive in their jobs. Yet manag
ers often have no idea what is being taught to their employees 
in the classes, have no understanding about whether or not 

Giving Away the Data Processing Store 299 

any of the ideas being conveyed even support company goals, 
and consequently have no plans for implementing the con
cepts being taught. Thus, when students return to work, they 
are not even given the chance to exercise the philosophies or 
skills they have learned. 

On the other hand, there are many times that, although a 
new management policy dictates that the entire group learn 
new concepts or skills, only half-hearted attention is given to 
the implementation of the new approach. Actual execution is 
often obstructed because proper completion is not possible 
within the imposed target dates. 

Most participants in training seminars regard the oppor
tunity as an employment "perk," recognizing that education 
is one road to career advancement. As a matter of fact, many 
employees also are conscientious enough to want to attend 
only those classes that will help them in their jobs. Attendees 
usually are eager and optimistic and this attitude is frequently 
complemented by the enthusiasm and interest of the instruc
tor. But then something goes awry. Disillusionment sets in
either during the teaching session or later on the job. Employ
ees up and down the organization convey feelings of extreme 
frustration and exasperation. Students demonstrate their 
skepticism by asking questions such as: "Why aren't our man
agers here to hear this?" "Will they really do this in my 
company?" "Why is there never time to do it right, but always 
time to do it over?" 

When management prevents the growth of quality by failing 
to train people properly or to support the use of the tech
niques, then talking about the desire to improve productivity 
becomes a sham. Productivity does not increase by osmosis. If 
you are sick and the doctor prescribes medicine, you do not 
get well by filling the prescription and putting it in the medi
cine cabinet. Having students learn new concepts does not 
benefit the organization if these people are not given the 
opportunity to exercise and learn the use of the new skills and 
then apply their new expertise. 

Does the company really know what it wants from the train
ing experience? Are there corporate objectives against which 
they can evaluate training strategies? Have these objectives 
been crystallized and clearly communicated to all of the play
ers? Does the training function have the visibility and recog
nition necessary to support fulfillment of its aims? Naturally, 
there are no answers that will work for all companies all of the 
time. Each organization must choose the correct philosophy 
for its enterprise and this information should then be dissem
inated (and continuously reinforced) to all of the appropriate 
individuals. A continuous, voluntary, and tailored" training 
program that is flexible enough to adapt to the technical and 
managerial needs of the organization should be developed. As 
the company acquires new pieces of equipment, implements 
new technologies or software, and institutes new management 
philosophies, training modules should be provided for em
ployees. It is also essential that managers take the initiative to 
prepare themselves in the subject matter being offered to 
their personnel. Bosses who believe they are too busy for 
training or who think they are above it all will not only experi
ence a loss of credibility but, what is worse, will doom imple
mentation of the new approaches to failure. 



300 National Computer Conference, 1984 

An Action Plan for Improvement 

Determine what you are trying to accomplish (e.g., what 
development and planning philosophies and techniques you 
want to adapt). Make sure your plan fits in with the long-range 
organizational goals. Write it down and get management's 
agreement and support (including executive management). 
Learn what is being taught. Evaluate all courses to determine 
whether they satisfy your criteria. Assure your workers that 
you support these ideas-and upper management must really 
demonstrate that support. Listen to what the people are learn
ing. Provide follow-up support. Look for areas of confusion 
and clarify them. And get your money's worth from your 
training investment! 

PUBLIC RELATIONS 

In the advertising industry, the benefits of good publicity are 
quite naturally recognized and accepted. Why can't we bor
row and integrate their techniques into the data processing 
business environment? Since our goal is to rethink our image 
of data processing, we can use advertising strategies to dis
cover what the organization's current attitudes are, crystallize 
the "new opinion," and plan a public relations campaign. 

Discover the Current Attitudes 

Before committing to this project, the organization should 
be aware of two essentials: First, this is a time-consuming and 
labor-intensive effort. Second, the fact-finding process must 
be conducted in an unbiased manner and by a group with no 
vested interest in the outcome. It follows therefore that it may 
be preferable, both in terms of time and effort as well as 
objectivity, that this project be handled by an outside group. 

All segments of the organization should be interviewed. 
The interviewees must be assured that their interviews will 
remain confidential and that they will be given an opportunity 
to verify and, if necessary, correct their summaries before 
they become public record. When the information is collated, 
it may then be categorized by positive and negative attitudes; 
these groups may then be subdivided into agreements and 
conflicts. It is extremely important, at this point, to give vis
ibility to the red-flag issues that pervade every organization. 

Crystallize the New Opinions 

Executive and middle management must carefully weigh 
and consciously choose to retain or change each idea. Some
times, a business decision dictates that we retain some less
than-desirable approach. While this is certainly legitimate, 
the organization should do so only when it fully understands 
the trade-offs. Managers must set priorities about the kind of 
work environment they want to create and then translate 
these oriorities into effective human resource management 
polici;s. The outcome of this exercise should be a new busi
ness philosophy for data processing's position within the or
ganization. This philosophy, naturally, will include the tech-

nological and economic aspects of the function, but also will 
address reshaping the attitudes of both data processing and 
users. 

Plan a Public Relations Campaign 

If the company were planning to introduce a new consumer 
product, they might stage an advertising campaign to bom
bard the media. Since we are aware of the success of this 
strategy, we may borrow some advertising ideas, shift them 
around, and add some new approaches of our own. 

In the simplest form, strategically placed posters may intro
duce new ideas. For short-term results, contests and cam
paigns are effective. However, the real success of any project 
relies on two components: (1) satisfactory project completion 
and installation and (2) continued follow-up. The demise of 
the first is often the result of insufficient focus on the second. 
If you want something to happen you should make someone 
responsible for it. Since we want to establish an awareness 
function, it may be advisable to appoint the responsiblity for 
the implementation of this approach to the people who 
are ultimately responsible for elevating organizational 
awareness-the educational division of the company. 

Making use of the state-of-the-art training technologies 
such as interactive video and computer-based instruction, 
proper implementation of the campaign may include an inte
gration of strategically placed "message units," tailored train
ing modules, and continuous and voluntary training programs 
(especially for users on reasonable expectations for data pro
cessing and for data processing on reasonable expectations for 
users). 

IN CONCLUSION 

Most of our literature concentrates on what to do about im
proving data processing productivity. By continuing to view 
this as a data processing issue, we reinforce their segregation 
from the mainstream of the organization. We must acknowl
edge that reversal of this trend will be accomplished only 
when we recognize that this is an organization problem. Since 
data processing accounts for so much of the total business 
budget, it behooves executive managers to take a more active 
interest in directing the role of data processing within the 
organization. Users must be educated to understand data pro
cessing and its frustrations, and data processing must be 
trained to appreciate users and their business. 

Finally, we should recognize that a new way of doing busi
ness does not become a fait accompli overnight. Organizations 
that choose to restructure their environments should do so 
only if they acknowledge that these changes will take time and 
money. There is no such thing as a free lunch! But, do you pay 
now? Or do you pay later? 

ACKNOWLEDGMENTS 

I am indebted to Kathy Spencer who typed this manuscript in 
record time, so that I would not miss the deadline for 
submittal-by too many weeks. Dave Appleby of FORD in 



---- - ",--

--=;:: ..... -
) 

London was a dear to let me have his cartoons to help lighten 
up a very serious subject. If I tried to name all of the col
leagues who have discussed my ideas and forced me to crys
tallize my concepts, I'd probably take twenty more pages, so 
thank you, one and all! 

REFERENCES 

1. Yourdon, E. Managing the Structured Techniques. New York: Yourdon 
Press, 1979. 

Giving Away the Data Processing Store 301 

2. Yourdon, E. Managing the System Life Cycle. New York: Yourdon Press, 
1982. 

3. Metzger, P. W. Managing a Programming Project. New Jersey: Prentice
Hall,1973. 

4. Burrill, c., and E. Ellsworth. Modem Project Management. Englewood 
Oiffs, N.J.: Burrill-Ellsworth Associates, Inc., 1981. 

5. Thomsett, R. People and Project Management. New York: Yourdon Press, 
1980. 

6. Peters, L. Software Design: Methods and Techniques. New York: Yourdon 
Press, 1981. 

7. Brooks, F. P., Jr. Mythical Man Month. Reading, Mass.: Addison-Wesley, 
1972. 

8. Myers, G. J. The Art of Software Testing. New York: John Wiley & Sons, 
1979. 

9. Dickinson, B. Developing Structured Systems. New York: Yourdon Press, 
1981. 

10. Page-Jones, M. The Practical Guide to Structured Systems Design. New 
York: Yourdon Press, 1980. 

11. Weist, J. D., and F. K. Levy, A Management Guide to PertICPM. New 
Jersey: Prentice Hall, 1977. 

12. Boehm, B. W. Software Engineering Economics. Englewood Cliffs, N.J.: 
Prentice-Hall, 1981. 

13. DeMarco, T. Controlling Software Projects. New York: Yourdon Press, 
1982. 

14. Block, B. Politics of Projects. New York: Yourdon Press, 1983. 
15. Zells, L. "Strategic Systems Planning." Yourdon Monthly Forum, Novem

ber,1982. 
16. Zells, L. "A Practical Approach To A Project Expectations Document." 

COMPUTER WORLD, 29 (1983), pp. 1-16. 
17. Zells, L. "Should We Really Spend Our Money On Training?" Yourdon 

Europe Forum, August, 1983. 





Are methodologies and system design techniques independent 
of one another? 

by DENIS A. CONNOR 
The Worker's Compensation Board 
Toronto, Ontario, Canada 

ABSTRACT 

This paper discusses a common problem faced by information systems manage
ment; the need to impose management controls over the system development 
process through the use of project management tools such as application system 
development methodologies (ASDMs) and the interfacing of these controls with 
effective information system specification and design techniques. The paper de
scribes a standardized ASDM and examines the effect on this ASDM of five differ
ent information system specification and design techniques in common use today. 

303 





Are Methodologies and Design Techniques Independent? 305 

INTRODUCfION 

During the 1970s, it was recognized th~t large and complex 
systems were being built with virtually no management con
trol, resulting in high cost overruns and late delivery of the 
systems, if delivered at all. Further, systems that were deliv
ered often did not meet the users' requirements and were 
supported by poor or nonexistent documentation, which 
made system maintenance and enhancement a nightmare. 

Nature abhors a vacuum and two types of solutions ap
peared. The first was the design and development of a variety 
of system specification and design techniques such as informa
tion engineering, structured analysis and design, structured 
requirements definition, and Jackson system development 
(JSD). The second was the advent of application systems de
velopment methodologies (ASDMs). The latter were project 
management tools that divided the entire specification, de
sign, construction, and implementation process into a series of 
phases, activities, and tasks. Each phase, activity, and task 
had standard outputs (deliverables) defined and at specific 
checkpoints, user management could decide whether to pro
ceed or not. These methodologies or project control systems 
were developed either by the organizations that used them or 
by vendors. 

Management found that now they had control over system 
development and insisted that these standards be strictly fol
lowed. This meant that any system being planned, developed, 
and implemented had to follow the standard project plan and 
produce the standard outputs or deliverables. This proved to 
be both a blessing and a curse. 

It was a blessing because the standards gave management 
tight control over the total process. The auditors and the 
quality control staff loved it because at last they could demand 
specific documentation in specific formats a!ld containing 
specific information. It was a curse because the standard 
specifications were either in narrative form and too general to 
convert into a system design that effectively met the user's 
requirements, or too specific and directed at particular specifi
cation and design techniques, ruling out the use of other 
techniques. 

There is no general solution to this problem because the 
problem itself is different in every organization. So each orga
nization must solve its own problems. To give an appreciation 
for the type of situation that could be encountered, we de
scribe here the type of information required and a generalized 
model of an ASDM. We then superimpose different specifica
tion and design techniques on the model and discuss their 
effects. 

OUTPUTS FROM SYSTEM DEVELOPMENT 

The outputs or deliverables (as they are often called) from 
system development can be classified under four basic head
ings. These are management decision-making information, 
project management information, system development and 
maintenance information, and system operating information. 

Problems with Standard Outputs 

In general, problems encountered in defining the manage
ment decision-making information, the project control infor
mation, and the operating information are a function of man
agement policy and the computer operating environment in a 
particular organization. But problems encountered with sys
tem specification and design information are a function of the 
system specification and design techniques used. The latter is 
hard to understand because the argument put forward is that 
the requirement is for a set of design "blueprints" and accom
panying documentation. If this works for airplanes, bridges, 
and houses, why does it not work for computer systems? 

In the case of airplanes, hous~s, and bridges, the blueprints 
reflect what is to be delivered. In computer systems develop
ment, the specification and design documents reflect how the 
system has been specified and designed. As a result, the pos
sibilities for differences in specification and design approaches 
are endless. The next question that can be asked is why how 
and not what? The answer is that a part of the development 
and maintenance documentation is "what" information. This 
encompasses logical and physical file structures, record and 
data definitions, program code, system and subsystem con
tent, and input and output definitions. The "how" informa.;. 
tion, that is, the deliverables specified by the techniques, de
scribes how the "what" information was obtained. 

Computer systems are constantly changing entities-unlike 
airplanes, bridges, and hollses. To keep up with this constant 
change, the staff that maintain and enhance these systems 
must have access to the "how" information to save them time 
and effort that could be wasted reinventing the wheel. That is 
why the "how" information is so critical. 

A GENERALIZED MODEL OF AN ASDM 

The major activities that make up an Application System 
Development Methodology are the feasibility study, the busi
ness specification, the system specification, the system design, 



306 National Computer Conference, 1984 

the system construction and testing, the system implementa
tion, and the system review. 

The Feasibility Study 

The feasibility study is done to provide management with 
sufficient information to decide whether to build the system or 
to take other action. The report that is produced defines the 
project scope, the user's system objectives, performance re
quirements, interfacing systems, a general description of the 
system to be developed and the alternate choices, the effect 
on the organization and on the computer environment, the 
cost of development, the cost of operating the system, the 
benefits to be obtained, and the risks of not developing the 
system. It also includes a project plan, a budget, a detailed 
schedule for the next phase or major activity, and an esti
mated schedule and budget for the total project. 

When evaluating the system choices available, the fea
sibility study must take into account the specificaton and de
sign techniques that will be used. The information obtained 
during the feasibility study becomes the foundation for the 
detailed specificaton and design to be done later. 

The Business Specification 

The busines& specification is a detailed definition of the 
user's business needs that should be met by the proposed 
system. This specification could include the user's operational 
objectives, a description of the outputs required to meet these 
objectives and when they are required, the flow of informa
tion between organizational entities, the logical processes re
quired to convert input data into file data and file data into 
output data, and a description of the logical files. 

Every author has a different definition of the business 
specification because his definition fits the particular specifi
cation and design technique he advocates. For example, 
DeMarco's business specification is based on a logical data 
flow diagram, and Orr's is based on an assembly line diagram 
and a description of the outputs. The reader at this point is 
entitled to become confused. Let us examine logically the 
content of the business specification exclusive of the design 
techniques. 

The user needs information to carry out the functions nec
essary to meet specified objectives. So the most important 
items to be defined are the objectives and the data needed to 
meet these objectives. Although some organizations might 
have difficulty defining objectives, they can probably define 
their functions. If we assume that these functions involve pro
cesses to meet objectives (even if undefined), then we can 
define the data needed to carry out these functions. 

Having defined the data, we need to store them so that we 
can access them when needed. This means organizing the data 
into logical groupings. These groupings consist of allied items 
of data or records. As we will be dealing with many such 
records, we need to define logical record files. 

These data must be obtained from somewhere. So we need 
to define the data sources or the inputs. Similarly, the data 
must be formatted before they can be used. So we need to 

define the outputs. The user may decide that specific outputs 
are not needed, but instead may choose to access the files to 
obtain data to meet specific needs as they arise. If this is the 
case, we do not need to define the outputs. The outputs or the 
data in the files will be needed by the user at regular intervals 
oftime, such as immediately, daily, weekly, and so on. So we 
need to define the response time for each output. The organi
zation may be centralized or decentralized, requiring either 
centralized or decentralized files or databases. The data input 
may not be in the format in which it is filed and may need to 
be logically combined with the file data before they are stored. 
Similarly, the file data may need to be processed to produce 
data in a different format in the outputs. All this logical data 
processing must be defined as a set of logical procedures. The 
business specification, like the feasibility study, includes a 
detailed budget and schedule for the next phase, an updated 
estimate of the budget, and a schedule to the end of the 
project. 

The System Specification 

The system specification is the division of the business 
specification into computerized and manual processes. It also 
includes descriptions of how the system could function, for 
example, on-line update and retrieval, overnight batch up
date and on-line retrieval, or a centralized database with 
distributed-data up-date and retrieval. The effect of each 
choice on the organization's hardware and software environ
ment is evaluated. Each system choice is priced and ten
tativelyscheduled. The choices are discussed and appropriate 
recommendations are made to the user. The user decides 
which choice to implement. This choice is budgeted and 
scheduled in detail for the following phase and the total 
project cost and schedule are updated. 

The System Design 

This phase is probably better termed system architecture 
and design. The term architecture is appropriate because the 
physical file or database and network architectures are de
fined at this point. The subsystem, program, and module 
hierarchies are established and the program logic is defined in 
detail. Test plans, file conversion, hardware and software 
acquisition and installation plans, and implementation strate
gies are prepared. The project budget and schedule are up
dated in detail until implementation of the production system 
is completed. 

Construction and Testing 

During this phase, all modules and programs are coded and 
tested, and physical files or databases are established and 
tested with the coded modules and programs at the program, 
subsystem, and system levels using the new hardware and 
software. Forms and screens are designed. user procedures 
are written, and operational documentation prepared. In 
short, the system is built and tested by the builders, the de
signers, and the users. 



Are Methodologies and Design Techniques Independent? 307 

System Implementation 

System implementation involves the training of the oper
ating staff and users, conversion of files and databases, organi
zational changes if necessary, the protection of production 
programs and modules, and the installation of security con
trols for access to data in the files or databases. 

System Review 

During a system review, the system is examined to deter
mine whether the user's requirements are being met and to 
fine-tune the system to improve system processing efficiency. 

THE ASDM AND THE SYSTEM SPECIFICATION 
AND DESIGN TECHNIQUES 

We can assume that a feasibility study is necessary, regardless 
of the specification and design technique to be used, accepting 
that the cost of the specification and design technique will 
influence the system choices described. We can also assume 
that the specification and design technique will not play a 
major role during the coding, testing, and implementation of 
the system because at this time, the files and databases have 
been defined, and the subsystems, programs, and modules 
have been specified and designed in detail. This leaves three 
phases or activities that.must he matched against each specifi
cation and design technique; the business specification, the 
system specification, and the system design. For the benefit of 
the reader, the outputs from these activities, excluding project 
control information, are summarized in Table I. 

To determine whether ASDMs are independent of informa
tion system design techniques, let us examine four well-known 
approaches in use today and how they interface with the gen
eralized ASDM described above. The four are information 
engineering, l structured analysis and design,z,3 structured re
quirements definition,4 and Jackson system development.5 

We will also discuss a fifth technique that goes under the 
heading of "prototyping," which may be combined with some 
of the other techniques. In our examination, we will only 
identify those activities and outputs that are relevant to this 
discussion. Those readers interested in examining this subject 
in depth should refer to References 6 and 7. 

Information Engineering 

The information engineering activities we will examine are 
information analysis, procedure formation, implementation 
strategies, and program specification synthesis. 

In information analysis, the business objectives to be met 
by the system are defined along with the data required to meet 
these objectives. The output from information analysis is a 
normalized data model that provides all the output data re
quired from the system. If distributed processing is included 
in the objectives, the data model should reflect either a cen
tralized data structure or a series of distributed-data models to 
meet the distributed file or database needs. In procedure 

TABLE I-Feasibility, specification, and design outputs 
(excluding project control information) 

Feasibility Study 
-Project scope 
-User's system objectives 
-Performance requirements 
-Interfacing systems 
-General description of system to be developed with alternate 

choices 
-Effect on the organization 
-Effect on the Computer Environment 
-Development cost 
-Operating cost 
-Benefits and risks 

Business Specification 
-Definition of the business objectives or the functions 
-Definition of the data required to meet the objectives or the 

functions 
-Definition of the logical records and files 
-Definition of the data input 
-Definition of the outputs (if required) 
-Identification of when output or file data is required 
-Identification of the need for centralized or decentralized files 

or data bases 
-Definitions of the input process logic 
-Definitions of the output process logic (if required) 

System Specification 
-Logical system divided into computerized and manual 

processes 
-Possible implementation options, such as on-line and batch up

date, on-line data access, etc., with their associated costs, ben
efits, and estimated development schedules 

System Design 
-Physical file or database design 
-Network design 
-Physical architecture of subsystems and programs 
-Detailed program and module logic 
-Test plans 
-File conversion plans 
-Hardware and software acquisition and installation plans 
-Implementation strategies 

formation, the logical input and output processes are defined 
along with the inputs and outputs. The output information 
should include when the outputs are required. Hence, the 
business specification can be obtained using information en
gineering (Table II). 

In system specification, we divide the system into comput
erized and manual processes. We also discuss possible imple
mentation options such as on-line and batch update, on-line 
data access, and so on, with their associated costs, benefits, 
and estimated development schedules. In information en
gineering, these activities are the front-end of the activity 
termed implementation strategies (Table III). 

The system design activity or phase includes physical file or 
database design, network design, the physical architecture of 
the subsystems and programs, and detailed program and mod
ule logic. In information engineering, the file, database, and 
network design are covered under physical database design. 



308 National Computer Conference, 1984 

TABLE II-Information engineering-business specification 

Program 
Inf. Proced. Implem. Spec. 

Anal. format strategies synth. 

Business Objectives, Yes 
functions 

Data required by Norm. 
objectives, functions data 

model 

Logical records file Yes 
definition 

Data input Yes 

Output (if required) Yes 

When output, file data Yes 
required 
Central., decentral. Yes 
files, databases 

Input process logic Event 
diagrams, 
condition 
tables, 
LAMs & 
DADS 

Output process logic (if Yes 
required) 

TABLE III-Information engineering-system specification 

Logical system into 
computerized, manual 
processes 

Implementation options 

Inf. 
anal. 

Proced. 
format 

Implem. 
strat. 

Yes 

Yes 

Program 
spec. 
synth. 

TABLE IV-Information engineering-system design 

Physical file or 
database design 

Network design 

Physical architecture 
of Subsystems, 
Programs 

Detailed program, 
module logic 

Test plans 

File conversion plans 

Hardware, software 
acquisition, installation 
plans 

Implementation 
strategies 

Inf. 
anal. 

Proced. 
format. 

Implem. 
strat. 

Program 
spec. 
synth. 

This is a specific activity in information 
engineering. 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

The subsystem and program architecture, and the detailed 
program and module logic are part of program specification 
synthesis. Test plans, file conversion plans, and hardware and 
software acquisition and installation plans are part of the ac
tivity termed implementation strategies (Table IV). 

We conclude that information engineering can be super
imposed on the business specification, system specification, 
and the system design activities in the ASDM. But when it is 
superimposed, the information engineering and ASDM activ
ities overlap. Though the ASDM's outputs can be produced, 
a project control plan established for the ASDM will not fit 
information engineering unless the information-engineering 
activities are subdivided and reorganized under the ASDM. 

Structured Analysis and Design 

Structured analysis and design are divided into three 
major activities: structured analysis, structured design, and 
implementation. 

In structured analysis, though the business objectives are 
not defined, the system functions provide the basis for the 
proposed logical data flow diagram, the minispecifications, 
and the data dictionary. The data dictionary contains informa
tion on the inputs and the outputs from the system. The 
minispecifications define the process logic. In addition, a nor
malized logical data structure is produced. Though not men
tioned in the text,z it can be assumed that distributed pro
cessing could affect the logical file structures and the data flow 
diagrams. Identification of when the outputs are required is 
left until the structured design activity. Hence, the new logical 
environment defines the business specification, excluding the 
"response" times required (Table V). 

The structured specification includes the partition of the 
proposed logical data flow diagram into computerized and 
manual processes, and the identification of the different phys
ical options available with estimated costs, benefits, and 
schedules. This is the output required from system specifica
tion (Table VI). 

The outputs from structured design are the structure charts 
packaged into physical modules and programs, and the de
tailed program and module logic. Not mentioned but implied 
in the text,3 is the physical design of the files or databases and 
the networks. Also not specifically mentioned but assumed 
are the test plans, file conversion plans, hardware and soft
ware acquisition and installation plans, and the implementa
tion strategies (Table VII). 

Structured analysis and design closely complement the 
ASDM process with minor variations and provide the re
quired ASDM outputs. A generalized project control plan 
developed for the ASDM could be expanded to fit structured 
analysis and design. 

Structured Requirements Definition 

Structured requirements definition consists of two major 
classes of activities; logical definition and physical definition. 
Logical definition is subdivided into the application context 



Are Methodologies and Design Techniques Independent? 309 

TABLE V-Structured analysis and design-business specification 

Business objectives, 
functions 

Data required by 
objectives, functions 
Logical records, file 
definition 

Data input 

Output (if required) 

When output, file 
data required 
Central., Decentrl. 
files, databases 
Input process logic 

Output process logic 
(if required) 

Structured Structured 
Analysis Design Implement. 

Yes 

Data 
dictionary 
Normalized 
data 
structure 
Data 
dictionary 
Data 
dictionary 

Yes 

Yes 

Proposed 
logical 
DFD, 
minispecs. 
Proposed 
logical 
DFD, 
minispecs. 

TABLE VI-Structured analysis and design-System specification 

Logical system into 
computerized, 
manual processes 

Implementation 
options 

Structured 
Analysis 

Yes 

Yes 

Structured 
Design Implement. 

TABLE VII-Structured analysis and design-System design 

Physical file, 
database design 
Network design 

Physical architecture 
of Subsystems, 
programs 
Detailed program, 
module logic 
Test plans 

File conversion plans 

Hardware, software 
acquisitions, 
installation plans 

Implementation 
strategies 

Structured 
Analysis 

Structured 
Design 

Structure 
chart 

Yes 

Implement. 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

definition, the application functions, and the application 
results. 

The mainline functional flow diagram, which is an 
assembly-line diagram for the system, along with the process 
descriptions and the application results or outputs, describe 
the logical system. This logical system is based on the system 
functions and the flow of data between organizational entities. 
When the output data are provided is implicit in the mainline 
functional flow diagrams. The logical records and files are 
organized into logical structures but the text does not indicate 
how this is done.4 No specific mention is made of distributed 
processing needs, but it can be assumed that they could affect 
the mainline functional flow and the logical data structures. In 
general, completion of the logical definition phase provides 
the outputs for the business specification (Table VIII). 

In the physical definition phase, alternative physical solu
tions are examined based on computerizing part or all of the 
logical system. This is in line with the output required from 
system specification (Table IX). 

The system design, that is, the physical design of the sys
tem, is not discussed in the structured requirements defini-

TABLE VIII-Structured requirements 
definition-Business specification 

Business objectives, 
functions 

Data required by 
objectives, functions 

Logical records, file 
definition 

Data input 

Output (if required) 

When output, file 
data required 

Central., Decentrl. 
files, databases 

Input process logic 

Output process logic 
(if required) 

Logical Definition 

Appiic. 
Context 
Definit. 

Entity 
diagram, 
objectives 

Applic. 
Funct. 

Assembly 
Line 
diagrams 

Line dia
grams and 
mainline 
functional 
flow 

Applic. 
Results 

Logical 
data out
put: 
form, 
content, 
structure 

Logical 
bases 
files 

Principal 
outputs, 

include 
inputs 
Orga
niza
tional 
cycles 

Yes 

Physical 
Definition 



310 National Computer Conference, 1984 

TABLE IX-5tructured requirements 
definition-System specification 

Logical system into 
computerized, man
ual processes 

Implementation 
options 

Logical Definition 

Applic. 
Context 
Definit. 

Applic. 
Funct. 

Expansion 
of func
tional flow 

Applic. 
Results 

Physical 
Definition 

Alternate 
physical 
solutions 

TABLE X-Structured requirements definition-System design 

Physical file, data
base design 

Network design 

Physical architecture 
of subsystems, 
programs 
Detailed program, 
module logic 

Test plans 

File conversion plans 

Hardware, software 
acquisition, installa
tion plans 

Implementation 
strategies 

Logical Definition 

Applic. 
Context 
Definit. 

Applic. 
Funct. 

Applic. 
Results 

Physical 
Definition 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

tion, but it is assumed that the selected physical solution is 
expanded in sufficient detail to provide the outputs for this 
activity (Table X). 

The structured requirements definition, like structured ana
lysis and design, closely complements the ASDM with minor 
variations. So a project plan designed for the ASDM can be 
expanded to cover Structured Requirements Definition. 

Jackson System Development 

Jackson system development (JSD) consists of six steps. 
Jackson approaches system development in a unique manner 
where he identifies entities in step 1; maps the actions that can 
be taken on the entities in the real world in step 2; converts 
these actions and entities into initial models for computeriza
tion in Step 3; adds functions to these models to produce 
required outputs in step 4; adds the response or timing re
quirement to the model in step 5; and builds and implements 

the system in step 6. Moreover, until step 5, the design is 
based on a single processor for each entity. 

This approach is completely different from the activities 
and the outputs described in the ASDM. Readers intending to 
use JSD should be prepared to develop on their own or ac
quire from Jackson a project plan or methodology to build 
JSD systems. 

Proto typing 

Prototyping is not a design technique by itself. Effective 
prototyping can only be done in conjunction with another 
system design technique and its use with an ASDM will vary 
according to the technique with which it is combined. 

STANDARD ASDM OUTPUTS 

We concluded earlier that standard outputs could be defined 
for management decision making, project management, and 
system operation. But system design and maintenance out
puts presented problems because they were heavily influenced 
by the system design techniques used. The three ASDM activ
ities affected by these problems are the business specification, 
the system specification and the system design. 

Based on our analysis of the generalized ASDM and four 
system design techniques, we can conclude that standard out
puts can be defined for the business specification, the system 
specification, and the system design. These generic outputs 
are listed in Table 1. There could always be exceptions to these 
standards as we saw in JSD. Further, secondary documenta
tion standards should be defined for the process output from 
each system design technique applied. Examples of process 
outputs are data flow diagrams (DFDs), assembly line dia
grams, condition tables, event diagrams, logical access maps 
(LAMs) and database action diagrams (DADs). This process 
documentation should simplify the tasks of system enhance
ment and maintenance. 

We can conclude further that if an ASDM specifies outputs 
which are confined to individual techniques such as data flow 
diagrams or insists on narrative descriptions of specifications, 
it will probably be rigid and difficult to modify. 

REFERENCES 

1. Martin, J., and C. Finkelstein. Information Engineering. Carnforth, En
gland: Savant Research Studies, 1981. 

2. deMarco, T. Structured Analysis and System Specification. Englewood Cliffs, 
N.J.: Prentice-Hall, 1979. 

3. Yourdon, E., and L. Constantine. Structured Design. Englewood Cliffs, 
N.J.: Prentice-Hall, 1979. 

4. Orr, K. Structured Requirements Definition. Topeka, Kansas: Ken Orr and 
Associates, 1981. 

5. Jackson, M. System Development. London: Prentice-Hall International, 
1983. 

6. Connor, D. Information System Specification and Design "Road Map." En
glewood Cliffs, N.J.: Prentice-Hall, 1984. 

7. Connor, D. Application Systems Development Methodologies: Solution or 
Problem. Carnforth, England: Savant Research Studies, 1982. 



Aspects of integrated software 

by CLYDE W. HOLSAPPLE and ANDREW B. WHINSTON 

Purdue University 
West Lafayette, Indiana 

ABSTRACT 

Numerous microcomputer software systems claim to have a capability of integrating 
several different functions such as spreadsheet, word processing, data base manage
ment, and graphics. This paper considers various alternative approaches to integra
tion and presents a classification scheme. Examples of commercial software pack
ages that fit into the different categories are given. 

311 





INTRODUCTION 

Software packages that integrate multiple functions into a 
single system are becoming increasingly prominent in the 
micro-world. Called all-in-one systems or integrated systems, 
these packages are generalized tools that can be used to store 
and process information in a wide variety of application areas. 
The distinct information processing functions incorporated 
into an integrated system can include facilities for data man
agement, spreadsheet analysis, programming, graphics, ad 
hoc inquiry, text processing, forms processing, and so forth. 

Although many observers tend to lump all integrated pack
ages together into a single pigeonhole, the emerging area of 
integrated packages is by no means monolithic. One obvious 
differentiating factor is the assortment of information
processing components that are available. Even those pack
ages with identical types of components can differ substan
tially from each other. For instance, the data management 
component of one may have extensive, well-developed capa
bilities, whereas another may include only a rudimentary data 
management function. 

Although the assortment of components and the extent of 
each are important in assessing a given integrated software 
package, there is a much more fundamental basis for charac
terizing one package in relation to others. This is the style or 
philosophy of integration embodied in the system. Three dis
tinct integration styles are examined here. Each style has 
unique implications for users. 

STYLES OF INTEGRATION 

An appreciation of the basic styles of integration is valuable 
for classifying integrated software packages and evaluating 
which are most appropriate for a prospective user's needs. 
Integration generally means that multiple components are 
unified into a systemic whole. Style of integration is the nature 
of that unification. It involves the way in which components 
are related to each other, interact with each other, and mutu
ally cooperate within a system. This issue can be examined 
quite apart from a consideration of which components exist in 
the system, although the style can affect the extent of individ
ual components. 

Independent Integration 

One basic approach to integration provides a software set
ting from which a user can invoke anyone of several indepen
dent components. The user is able to select one component at 
a time and to use its information-processing capabilities. To 

Aspects of Integrated Software 313 

carry out a different type of processing, the user exits from the 
current component and begins working with the newly 
selected component's facilities. To ease the switching among 
components, the skeletal software setting may allow results of 
previous work with other components to be seen while using 
a different component. 

Significantly, the components available to a user under this 
style of integration are independent. That is, a user can work 
with one component without a knowledge of how to use oth
ers. The user may even be unaware of the existence of com
ponents whose capabilities he or she does not need. For in
stance, a user who is uninterested in spreadsheet analyses 
does not need to learn about spreadsheets in order to produce 
graphics or carry out file management tasks. A further impli
cation of this component independence is that the character
istics of one component (e.g., a spreadsheet processor) do not 
restrict the capacities or capabilities of other components 
(e.g., a file manager). 

The independent integration style may be likened to a Swiss 
army knife (Figure 1). Several tools, each appropriate for a 
certain set of processing tasks, are united into a single handy 
package. Depending on the task at hand, the user selects the 
appropriate tool. At any time the user can "fold" that tool 
away and "fold" out a different tool. To the extent that the 
original design of the package allows expansion, new tools can 
be attached to the package as they are needed or become 
available. . 

As the Swiss army knife analogy suggests, the structure of 
this integration style does not permit the individual tools or 
components to interact with each other directly or simulta
neously. A user cannot perform a file management task within 
the confines of the spreadsheet component, define spread
sheet cells within a program, or define a spreadsheet cell in 
terms of a program. Nevertheless, some degree of indirect 
component interaction can be achieved with the independent 
integration style by employing a single method of data for
matting for all componenls. 

User 

File 
Management _ 

Graphics-

Spreadsheet 

" " 

/ 
Text '" 
Processing 

/ 
/ 

/ 
/ 

"-- - "-- COIII!lOn Data 
_ --/ Format 

'" / 
'" 

Figure I-The independent integration style 



314 National Computer Conference, 1984 

When each component stores data according to the same 
format, the individual components can interact with each 
other, albeit indirectly through their common data storage 
method. When processing with one component (e.g., a file 
manager) concludes, the results are stored and the user can 
then begin processing that data with a different type of com
ponent (e.g., graphics). Without this commonality of data 
format, the independent integration style remains a bundling 
of disparate components into a handy package that makes the 
selection of anyone of them very convenient. Leading exam
ples of software adhering to the independent integration style 
include Apple's LISA software1 and VisiCorp's VisiOn.2 

Inclusive Integration 

Inclusive integration is based on the existence of a clearly 
dominant component. All other components in the package 
are subservient to and dependent on the dominant com
ponent. A user can work with a subservient component only 
through or in conjunction with the dominant component, 
which component serves as a host environment for the use of 
other components. In a sense, the subservient components 
(text processor, graphics, etc.) are included within the domi
nant component (e.g., a spreadsheet processor) so that its 
processing capabilities are effectively extended beyond those 
of its stand-alone counterparts (e.g., traditional spreadsheet 
processors) . 

The user of a package that adheres to this style of integra
tion must understand the dominant component, even if the 
user has no need for that component's type of processing. 
While subservient components may be used independently of 
each other, they cannot be used independently of the domi
nant component. A further implication of this integration 
style is that the capacities and capabilities of subservient com
ponents may very well be limited by the characteristics of the 
dominant component. 

Consider, for instance, the case of a dominant spreadsheet 
component. It is a fairly simple matter to add a few commands 
that allow a user to treat designated chunks of a spreadsheet 
as if they were miniature files. In so doing, a file (or at least 
a pseudo-file) management component has been included 
within the dominant spreadsheet processing component. This 
emulation of file management is a useful advance over tradi
tional spreadsheet processors. However, the pseudo-file man
ager is constrained by the dominant component's spreadsheet 
dimensions. Because it is actually a chunk of spreadsheet, a 
psuedo-file's capacity cannot exceed the number of spread
sheet rows. 

User ~(~-----)~ 

Subservient 

I 
Component 

Subservient 
Dominant ~ Component 
Component I 

~ Subservient 
Component 

Figure 2-The inclusive integration style 

Though it lacks the quality of component independence, 
inclusive integration has an important advantage over inde
pendent integration. There is the possibility of a much closer 
relationship between components. This closeness typically 
manifests itself in relationships between the dominant com
ponent and its subservient components; the subservient com
ponents mayor may not be able to interact with each other. 
By "closeness" we mean that a user can rapidly alternate 
between the processing capabilities of functionally distinct 
components without being required consciously to leave (fold 
in) one component and enter (fold out) another. The sub
servient component's functions are ready for immediate use 
within the dominant component. Aside from the absence (or 
lessening) of this shuffling, "closeness" also may indicate that 
a user can employ several components' functions in a single 
command rather than a sequence of commands. Leading rep
resentatives of the inclusive integration style include the Con
text MBA3 and Lotus 1-2-34 systems. 

Synergistic Integration 

A third style of integration is the one that establishes close 
relationships among independent components. A high degree 
of direct interaction among multiple components is sup
ported, even though there is no single dominant component. 
Because the components are on an equal footing, anyone 
component can be used without knowledge of how to use the 
others. Beyond this, a user can interweave functions of multi
ple components at will, without formally leaving one com
ponent and entering another. 

A user may interweave these in a linear fashion, or the 
functions of one component may be invoked within the exer
cise of some other component's capabilities (perhaps in a 
single command). Thus, with this integration style, one com
ponent can serve another, and vice versa. However, neither is 

Figure >-The synergistic integration style 



subservient to the other because each can be used indepen
dently. For instance, spreadsheet processing can be invoked 
from within a program. Conversely, programs may be invoked 
within the processing of a spreadsheet. Nevertheless, the 
package's programming component may be used entirely in
dependently of its spreadsheet component. This indepen
dence means that no component unduly constrains the capac
ity or capabilities of any other component. 

An apt term for describing this style of integration is "syn
ergy." Dictionaries define synergy as the simultaneous action 
of separate components which together have a greater total 
effect than the sum of their individual effects. In the syn
ergistic integration style, separate components have individ
ual effects, that is, effects that are uncolored and uncon
strained by the existence of other components. In addition, 
the components can act in tandem to offer capabilities that 
would not exist if the components could only be used one at 
a time. A leading implementation of the synergistic integra
tion style is the Knowledge Manager (KnowledgeMan) by 
Micro Data Base Systems Inc. 5 

ASSORTMENT OF COMPONENTS 

Regardless of style, a consideration of the integrated system's 
assortment of components also is important. This considera
tion is necessarily based on a user's processing needs. For 
instance, the existence of a text-processing component is vital 
for many clerical work~rs, whereas it is probably of lesser 
value to. many managerial workers. The reverse is probably 
true for a spreadsheet, statistical, or ad hoc inquiry 
component. 

The intent here is not to propose prioritized rankings of 
components for various user classes. Instead, we identify a list 
of components that should be considered when assessing the 
suitability of a package's component assortment for a particu
lar user. These components are data management, ad hoc 
inquiry, statistical analysis, spreadsheet analysis, program
ming language, graphics generation, forms management, and 
text processing. 

For some users, a package's facilities for interfacing to ex
ternal data files and external software also deserve consid
eration. When assessing an integrated software system's as
sortment of components in terms of their suitability for a given 
user, two points should be kept in mind. First, the user's needs 
may change or grow in such a way that the existence of a 
particular component becomes more important over time. If 
the user's system does not have that component, then the 
system can become insufficient or obsolete for this user. The 
results are that a different system (having the newly important 
component) must be learned and that data and algorithms 
developed under the first system may need to be converted. 
The obvious implication is that all else being equal, more 
components are preferable to fewer components. An excep
tion is the case of an inclusive integration style in which a user 
may be required to deal with components that are of little 
immediate interest. 

The second point is that within a package all components 
may not be uniformly extensive. Furthermore, a particular 

Aspects of Integrated Software 315 

type of component may be very extensive in one package and 
very primitive in another package. Not only can two packages 
with the same kinds of components differ drastically in their 
integration styles, they can also differ widely in terms of the 
extensiveness of their individual components. Here too, the 
possibility of user growth should not be overlooked. A prim
itive data management component may suffice initially, but 
may become obsolete as data volume and processing require
ments grow. 

EXTENT OF INDIVIDUAL COMPONENTS 

Just as the existence of a given component is very important 
to some users and of lesser importance to others, the impor
tance of an individual component's extent depends on a par
ticular user's needs. For each of the component types cited 
above, criteria for appreciating its extensiveness in a particu
lar package can be identified. These are summarized below in 
a suggestive, rather than exhaustive, fashion. 

As for data management, there is the basic approach to data 
organization. Most micro-based data management systems 
are file handlers: They organize data into multiple files. They 
also allow data to be retrieved selectively from a file, multiple 
files to be merged into a new file based on redundant data 
values, records in a file to be sorted, and so forth. In the 
micro-world, file handlers are often referred to as "relational 
database management systems." However, with few excep
tions, they lack the properties normally expected of a full
fledged database management system. Nor do they begin to 
approach the power and sophistication of the new post
relational approach to database management. 

Disregarding terminology, the crucial criteria of a data 
management component are its data volume capacities, the 
nature of its data access capabilities, and the extent of its data 
security features. Capacity refers to factors such as the num
ber of fields per record type, the number of records per file, 
the number of files simultaneously open for processing, and 
the number of characters per record. Data access should be 
examined from the angles of data creation, modification, and 
extraction. For instance, can records be created interactively 
through user-friendly forms? Are virtual fields supported for 
automatic data updates? Can data be extracted by selective 
browsing with forms and by any of a variety of indexes? Data 
security can be just as important in a micro-environment as it 
is for mainframes. Data security for micro-data management 
is usually nonexistent. However, where it does exist it can 
range from simple password checks to field-level read-write 
access controls and automatic data encryption. 

An ad hoc inquiry component allows a user to interrogate 
the system's data on a spur-of-the-moment basis without re
sorting to a sequence of low-level commands and the produc
tion of intermediate files. The language for specifying an in
quiry ideally should resemble conversational English and 
should be nonprocedural. It should be capable of being used 
by persons who are unfamiliar with common aspects of data 
management. An example of a reasonably extensive facility 
for ad hoc inquiry is the SELECT command supported in 
IBM's mainframe SQL system. SQL-like query components 



316 Nati(;mal Computer Conference, 1984 

are beginning to become available in the micro-world. Criteria 
for assessing the extent of an ad hoc query component include 
the support of multiconditioned inquiry, automatic expres
sion-function evaluation, inquiry directed at multiple data 
tables in a single command, wildcard conditions, dynamic 
sorting of output based on multiple fields or expressions, mul
tilevel control breaks, dynamic editing of generated data, and 
so forth. 

A minimal component for statistical analysis can compute 
the basic statistics including average, variance, and standard 
deviation. It should be able to produce statistics not only for 
stored data but also for expressions based on that data. A 
valuable characteristic for a statistical component is the ability 
to generate full statistics for multiple variables from specified 
subsets of data held in multiple files-in response to a single 
command. More elaborate statistical components would have 
built-in facilities for performing standard types of economet
ric analysis, 

A spreadsheet component should at least have the capabil
ities of traditional stand-alone spreadsheet processors such as 
the popular VisiCalc. Beyond these common capabilities, the 
extent of a spreadsheet component can be judged by such 
factors as the degree to which it permits a cell to be defined 
in terms of multiple data values that do not reside in the 
spreadsheet, the degree of algorithmic flexibility available 
when defining a cell (that is, a simple formula as opposed to 
a program with branching, iteration, etc.), the degree to 
which it supports conditional activation of special audio
visual highlighting of selected cell values, the degree of read 
and write security for cell definitions, and so forth. 

A reasonably extensive programming component should 
provide the major logic control structures, such as conditional 
iteration, conditional branching, parameterized procedure in
vocation, and case testing. There should be no arbitrary limit 
on the depth of nesting. Nor should there be any arbitrary 
limit on the number of variables and arrays available for use. 
Both local and global declarations should be allowed. A 
healthy collection of built-in numeric and string manipulation 
functions also should be present in an extensive programming 
component. For application system developers, the abilities of 
encrypting programs and providing run-time versions of the 
integrated system are also highly desirable. 

Graphics generation can range from low resolution to ultra
high resolution. Given that it has a reasonably high-resolution 
level, a graphics component's extent can be measured in terms 
of the type of graphs that can be produced, the limits on data 
volume used to generate a graph, and the presence of various 
presentation conveniences. If it is intended for research, en
gineering, or business graphics, the component's support of 
the following types of graphs should be considered: bar graphs 
(stacked, clustered, three-dimensional), pie plots (exploded, 
"other" slices), scatter diagrams, high-Iow-close charts, area 
plots (cumulative, percentage), and line graphs. For some 
users, the ability to draw free-form pictures, logos, maps, and 
so forth, is important. 

An extensive graphics component avoids placing low limits 
on the number of variabies whose data can be incorporated 
into a single graph. Use of at least a dozen variables is de
sirable, and in the case of pie plots an extensive graphics 

component supports several dozen slices per pie. As for 
presentation convenience, an examination of the following 
factors is helpful in assessing the extent of a graphics com
ponent: simultaneous display of multiple graphs, multicolor 
graphs, user-controlled pattern (e.g., color, fill type, line 
type, point type) sequences, user-controlled legends and la
bels, rapid recall of previously generated graphs, long-term 
disk storage of graphs, graph printing, and user-controlled 
ranges and scaling. 

A forms management component designs, maintains, and 
uses forms. It is capable of dealing with forms for screen input 
or output, as well as potentially large forms for printer output. 
An extensive forms management component allows a user to 
design or revise forms by interactively "painting" their char
acteristics on a console screen. This includes the drawing of 
various sized blocks of color at desired locations in a form, 
directly creating various literals (labels, titles, and prompts) 
wherever desired in the form, and sketching out the location 
of nonliteral form elements (places where data will be input or 
output through the form). The form designer may be able to 
create various special effects for each literal and nonliteral. 
Reverse video, half-intensity, bell sounding, and blinking are 
examples. The forms management component should provide 
high-level commands that can process, that is, display, clear, 
re-evaluate, and accept data input through an entire form at 
a time. 

Text-processing components may range from simple line 
editors to full-scale word processors. A reasonably extensive 
text-processing component would have facilities that begin to 
approach those of elaborate stand-alone word processing soft
ware. These include flexible cursor movement, automatic ver
tical and horizontal scrolling, block processing, character
line-file insertion, character and line deletion, searches, and 
changes within user-controlled ranges and with wildcard pat
tern matching, and various formatting controls (wordwrap, 
page headers and footers, right and left justification, etc.). An 
extensive text component does not impose an arbitrary limit 
on the number of lines or characters in a piece of text. 

The foregoing points are suggestive of issues to be consid
ered when assessing the extent of an individual component. 
Beyond these, there also is the issue of the degree to which an 
individual component's innate capabilities are enhanced 
through synergistic relationships with other components. Al
though the combinatorial magnitude of such possibilities is far 
beyond the present scope, this difference between the total 
and the sum of its parts should not be overlooked in syn
ergistically integrated packages. 

USER INTERFACE 

The nature of a user interface is a significant aspect of any 
software. It can be based on system-driven interaction 
(through menus), user-driven interaction (through a com
mand language), or some compromise between the two. Each 
has its strengths and each is viable for integrated software 
packageS. Combinations of these interaction protocols are 
also possible in an integrated software package. 

System-driven interaction guides a user through a pro-



cessing session by indicating permissible processing alterna
tives at each step of the way. At each juncture, the user can 
choose one of a number of predefined alternatives. Provided 
that the structure of alternatives can be organized hier
archically and that it is not overly massive in breadth or depth, 
the approach to interaction results in a user interface that can 
be learned quickly. It is also easy to use in certain circum
stances, but can be cumbersome or very difficult to use in 
others. 

The ease of use derives from the fixed structure that system
driven interaction imposes on a user's thought pattern. This 
suffices nicely as long as the user's problems conform to that 
predefined structure. However, system-driven interaction 
using moderately deep structures can become cumbersome as 
a user gains experience. Rather than merely saying what he or 
she wants, the experienced user is still required to trace 
through a structure of alternatives. Furthermore, as a user's 
needs and expertise grow, a structure of alternatives that was 
once sufficient may no longer be so. 

User-driven interaction is predicated on the user taking the 
initiative in telling the system what he or she wants. The user 
acts rather than reacts. The crucial point here is the language 
that is used to tell the system what is wanted. Ideally, this 
language should be conversational and English-like. If it is 
not, it \\Iill be difficult for nontechnical persons to learn and 
use. There is also the issue of the language's richness: It 
should be sufficiently flexible to enable a user to directly 
express both simple and complex needs. 

The assortment and individual extent of an integrated sys
tem's components influence the nature of its user interface. In 
the case of modest extent, system-driven interaction is quite 
suitable. The structure of alternatives can be kept to a man
ageable size. As extent increases, however, attempts to ac
commodate all possibilities by enumerating them tend to re
sult in increasingly complex and cumbersome system-driven 

Aspects of Integrated Software 317 

interaction. Furthermore, there are certain types of compo
nents that inherently are not well suited to system-driven in
teraction. An example is a programming component. User
driven interaction tends to be most appropriate in cases of 
very extensive components, inherently user-driven com
ponents, and highly synergistic integration where processing 
need not be hierarchical. 

SUMMARY 

Integrated packages are rapidly becoming a major force in the 
software world. Three significant directions in the design of 
integrated software packages have been identified: indepen
dent integration, inclusive integration, and synergistic inte
gration. Along any direction the assortment of components 
can vary, being oriented toward certain classes of users. The 
extent of each individual component is another significant 
aspect of an integrated software system. A fourth major con
sideration is the nature of the system's user interface. As this 
type of software continues to mature, we should expect to see 
it incorporate new and more powerful components, data secu
rity mechanisms, the ability to support multiple, simultaneous 
users, user-definable interfaces, and parallel processing 
capabilities. 

REFERENCES 

1. Lisa Owner's Guide. Cupertino, Calif.: Apple Computer Corp., 1983. 
2. VisiOn Planning Seminar. San Jose, Calif.: VisiCorp, 1983. 
3. MBA Reference Manual. Torrance, Calif.: Context Management Systems, 

1983. 
4. Lotus User's Manual. Cambridge, Mass.: Lotus Development Corp., 1983. 
5. KnowledgeMan Reference Manual. Lafayette, Ind.: Micro Data Base Sys

tems, Inc., 1983. 





The integrated software and 
user interface of Apple's Lisa 

by EDWARD W. BIRSS 
Apple Computer, Inc. 
Cupertino, California 

ABSTRACT 

In 1979 Apple began to develop Lisa, a workstation to enhance the productivity of 
office workers. The hardware was built around a Motorola 68000, a bit-mapped 
display, and a mouse. The user interface is intuitive, using real-world concepts 
rather than computer concepts. It is easy to learn, and provides for both novice 
users still learning the system and users that have mastered the system. The user 
interface is modeless and consistent. The uniformity of the user interface supports 
transferrable learning-the ability to learn an operation once and apply it over and 
over again in another application in a different context. 

The user interface also supports data interchange among documents of the same 
or different types. This interchange of data, coupled with the multitasking operating 
system and the multiple windows of the Lisa, permits the use of several tools to 
perform a task that one tool alone could not accomplish. The Lisa user interface and 
its applications provide an environment that allows the user to concentrate on what 
is to be accomplished rather than on how to accomplish it. In this way, Lisa provides 
tools to improve the productivity of the office worker. 

319 





The Integrated Software and User Interface of Apple's Lisa 321 

INTRODUCfION 

Apple Computer formed the Lisa team in 1979 to develop a 
personal computer that would dramatically improve the pro
ductivity of typical office workers (professionals, managers, 
and their assistants). To accomplish this goal, a hardware and 
software solution radically different from current personal 
computer offerings was required. At that time, personal com
puters had the functionality but lacked the capacity, speed, 
and ease of use necessary to reach a market of users who did 
not want to learn the details of how a computer worked. 

Inspired by SMALLTALK1 the Lisa team developed a sys
tem that has the functionality and speed users require, and 
additionally has a common user interface that supports grad
ual learning and promotes interchange of data among the 
same or different applications. The combination of multiple 
tools with a consistent user interface and data interchange 
among applications permits the user to work with several tools . 
concurrently to accomplish a particular task. 

LISA HARDWARE 

The Lisa is a Motorola 68000-based personal computer with 
512 or 1024 Kbytes of main memory, a memory management 
unit, a bit-mapped display, a detachable keyboard, a mouse, 
a built-in 400-Kbyte floppy disk drive, and a 5- or 10-
megabyte Winchester disk (see Figure 1). This hardware pro- . 
vides the functionality, speed, and ease of use required to 
support the Lisa user interface. 

The 68000 microprocessor was not the first choice. Devel
opment began on a home-grown bit-sliced system to provide 
the computing power. When the 68000 became available in 
sample quantities, we evaluated it and found it had good 
performance and was more economical. 

The memory management unit (MMU) provides different 
logical address space contexts for processes and protection. 
The protection ensures that an individual application fault 
does not damage the rest of the system and therefore im
proves system reliability. The MMU also provides for code 
segment faulting and automatic stack expansion. 

The bit-mapped display provides graphics and text support 
needed for the user interface. The display is 720 by 364 pixels 
and supports quality graphics and text fonts of different sizes 
and faces. This permits the word processing applications to 
use black on white images, proportional-spaced fonts, and 
different type styles including boldface, underline, and italic. 

To complement the graphics output, Apple wanted to use a 
mouse for a graphics input device, but existing ones were 
unreliable and had precision bearings that made them ex
pensive and difficult to manufacture. Apple developed a 

mouse that is precise, tracks on almost any surface, and is easy 
to manufacture. The original prototypes had three buttons, 
but we found users spent too much time looking away from 
the screen to determine which button to push; consequently 
we changed to a two-button mouse. Once we found alterna
tive ways to implement the functions of the second button, we 
changed to a one-button mouse. 

LISA SOFTWARE 

Lisa's Desktop Model 

The office system software provides the user with a desktop 
that mirrors the function of a desk in the office. On the Lisa 
desktop, icons (small pictures) depict the office world. In 
Figure 2 we see a variety of icons, a menu bar at the very top 
of the screen, and two windows. One of the windows contains 
the contents of a Lisa Write document, and the other contains 
the catalogue of a disk. 

There are several types of icons: documents, stationery 
pads, folders, a wastebasket, a ProFile disk, a clipboard, and 
one called Preferences. The types of documents are spread
sheets, business charts, lists, text documents, etc. These doc
ument icons quickly show the user not only that the object 
represented is a document, but also what type of document. 
Stationery pads permit a user to create new documents, and 
in addition permit a user to configure predefined forms or 
templates. For example, an office usually has different types 
of paper stock. One might be used for letters going outside the 
office, and another for interoffice memoranda. In the Lisa 
model, a user sets up a stationery pad for both types, and then 
each time the user needs to write a letter, he simply tears off 
a new piece of letter stock from the appropriate stationery 
pad. Since the pad is constructed from a document, the stock 
can be set up with the desired initial format and content. 
Folders provide a convenient way of grouping logically related 
documents together-similar to the function of file folders in 
the office. Thus, folders organize the contents of diskettes, 
disks, and the desktop. 

The desktop supports two icons that represent storage de
vices. The ProFile icon represents the Winchester disk drive, 
and the diskette icon (not shown) represents a floppy diskette 
inserted in the built-in drive. These devices are used for doc
ument and program storage. 

The wastebasket is used to throwaway documents and 
programs. Just as the office worker can retrieve something 
thrown away in the wastebasket, the Lisa user can retrieve 
objects thrown in the wastebasket. 

The clipboard is used by the editing operations. When a 
user edits a document, pieces of information are placed on the 



322 National Computer Conference, 1984 

Figure I-The Lisa 

clipboard. This information can be copied into a different 
place in that document or into a different document alto
gether. Thus the clipboard acts as temporary storage for these 
scraps of information (more on this later). 

The Preferences tool permits the user to customize the Lisa 
to suit his tastes. The user can set the screen brightness, the 
tone generator volume, the key repeat rate, the mouse click 
delay time, etc. Using Preferences, the user also can configure 
printers and disks. 

The menu bar, located at the top of the screen, shows the 
titles of the available pull-down menus. The menus are called 
pull-down because when a user depresses the mouse button 
over a menu title, a rectangular area under the menu title pulls 
down like a roller blind. The rectangular area is called a menu 
and contains a number of labels, which are called menu items. 
The user moves the mouse down through the menu items and 
selects the desired operation. The menus, in conjunction with 
the current selection, give the user the ability to specify ac
tions. For example, one changes a word in a document to italic 
type by seiecting the word and then choosing the itaiic item 
from the Type Style pull-down menu. 

The example desktop also shows two windows. Windows in 

Lisa show the contents of disks, documents, wastebasket, etc. 
Lisa displays up to 20 windows at a time, and windows can 
overlap or completely obscure other windows. The user has 
full control over the size and position of the windows. 

The User Interface Philosophy 

The Lisa user interface is much more than just a mouse, 
bit-map graphics, a desktop with icons, and overlapping win
dows. The Lisa user interface is designed to be intuitive. It 
uses real-world concepts, not computer concepts, and pro
vides familiar office objects and ideas. The natural model 
enables a user to try things out that would make sense in the 
real world. In general they directly transfer to Lisa's desktop 
world. 

The user interface is designed to work the way you would 
expect it to work. In the office, users open documents, move 
them around, edit them, file them, etc. With Lisa, the mouse 
is used to manipuiate objects ditectiy. This is One of the key 
features of the Lisa user interface and is in stark contrast to 
traditional "computerese" of command languages and tex-



The Integrated Software and User Interface of Apple's Lisa 323 

Fi Ie/Print Edit Search T Format' Page layout 

~ ..... ~ . ... ~ lill 
Lisacalc Paper LisaGraph Paper LisaWrite Paper LisaPro.ject Paper LisaList Paper 

m IIIII! N[[ paper :1111: 

UsaDr~ Paper 

I 
Nee paper 

The Integrated Software and User 
of Apple1s Lisa"" 

ABSTRACT 

In 1979 Apple began to develop Lisa.1U
, a. workstation to enhance 

prcductivity of office workers. The hardware was built around a .................. &".:" 

bit mapped display, and a. mouse. The user interface is intuitive, ,-,~..u..~ 

Figure 2-A Lisa screen showing the menu bar, two windows, and several icons 

tual, mode-driven menus. Because there is no command lan
guage, very little typing is required to perform operations. 

To ensure that Lisa is easy to use and learn, Apple devel
oped LisaGuide, an interactive guide that teaches novices how 
to use the mouse as well as the basic principles of selection and 
menus. Once they have been through LisaGuide, they pick an 
application and start learning through actual use. This seems 
to be fairly successful; very few users will actually consult the 
manual. 

The use of a common and consistent user interface provides 
for transferrable learning. The user interacts with the desktop 
and all applications in the same way. For example, titles of 
documents on the desktop are edited the same way as text 
within memos or numbers in LisaCa1c. In addition to the 
editing model, the filing and printing models are the same 
across all applications. The time a user invests in learning the 
editing, filing, and printing operations immediately transfers 
over to the next application. Consequently, the second 
application is easier to learn than the first. 

One of the features of the user interface is that it addresses 
those users learning the system and those that have mastered 
it. The novice can learn a few operations, just enough to 
accomplish his task. As the user becomes more proficient with 

the system, he can graduate to the more advanced uses of Lisa 
including shortcuts to make his interactions even more effec
tive. In contrast to other systems, Lisa does not burden the 
expert user with features intended for beginners. 

Using Lisa 

Wherever possible in Lisa, the user moves the mouse to 
manipulate objects directly. For example, to move a docu
ment from one diskette to another, the user moves the mouse 
over the icon representing the document, depresses the mouse 
button, moves the mouse (and the document icon) over the 
appropriate container, and releases the mouse button. The 
mouse moves windows around, sizes them, scrolls the con
tents of a window, and uses the elevator to jump to a position 
in the document. The elevator is a rectangular white icon in 
the scroll bar found at the bottom and right of the active 
window. 

Another aspect of direct operation is the modeless nature 
of the user interface. A modeless system is a flat, non
hierarchical model, permitting virtually any operation at any 
time. Thus the user need not remember what mode to enter 



324 National Computer Conference, 1984 

Edit Housekeeping 
Set As i de Everyth i ng 
Set Aside "Profi Ie" 

Duplicate 
'r t.~nr Off Shlt~onery 
Make Stat i onery Pad 

Monitor the Printer "' 

:::. .: /', : ....... 

~IIIIIII Prof i Ie 111111 
Backed u 

~ .... 

LisaWrite P~r 

L:J 
Empty Folders 

never. Format: 15. 

~ ffiJ 
LisaProject Paper LisaList Paper 

I 
_1m 

Figure 3-A Lisa screen showing a pull-down menu 

to perform a function, nor what command to use to exit the 
mode. This flat command structure also permits the user to 
peruse the menus to find the most suitable operation. 

When the user wants to operate on objects in the Lisa 
environment, the model we use is to select the objects and 
then operate on them with an action selected from a menu. 
We call this the noun-verb model, and it permeates all the 
applications as well as the Desktop Manager. For example, to 
open a document, the user moves the mouse over the icon of 
the document (named NCC paper in Figure 3), and clicks the 
button once to select the document. Then the user moves the 
mouse up to the menu bar and depresses the mouse button 
over File/Print, which causes the menu to pull down (see 
Figure 3). The user moves the mouse (with the mouse button 
down) over the "Open NCC paper" menu item, and then 
releases the mouse button. 

In addition to a single click to select an object, several 
objects can be selected with single-click drag. This operation 
proceeds as follows: First the user positions the mouse to one 
side of the object, then the user depresses the mouse button 
and moves (drags) the mouse through the objects. w~nen the 
selection includes all the objects, the user releases the mouse 
button. The selection of objects with single click and single-

click drag, combined with menu commands can be used to 
perform every operation. 

Two types of shortcuts are provided for the expert user
multiple clicks of the mouse button (in quick succession) and 
Apple keys. Double- and triple-click operations substitute for 
selecting an object and operating on the object with a specific 
frequently used command. For example, a double click on a 
document icon opens the document. For less frequently used 
operations some menu commands have Apple key sequences. 
For example, text-editing menu commands like cut, copy, and 
paste have Apple key sequences that cause the command to be 
invoked. Apple key sequences involve holding down the Ap
ple key along with an alphabetic character. Thus, multiple 
click shortcuts are used for the most frequently used oper
ations on the selection, and the Apple key shortcuts are used 
for frequently used menu commands. 

Error Handling 

A good user interface has good error handling. There are 
three aspects of error handling in Lisa: error prevention, error 
notification, and error recovery. 



The Integrated Software and User Interface of Apple's Lisa 325 

Edit Search T Format' 

Do you really want IINCC paper ll to revert 
to the version saved 41 minutes ago? 

( Cancel) 

To leave the document as it is now. click 
[oncel. 

Once you click OK. you will not be able to 
change your mind. even by choosing Undo. (_OK_J 

Nee p~r 

ABm'RACT 

In 1979 Apple bega.n to develop fisaW, a workstation to enha.nce 

prcductivity of cffice 'llrorkers. The hardware was bullt ,around a 

bit mapped display ~ and a !neuse. The user interface is intuitive, u 

Figure 4-A Lisa screen showing an alert 

With many personal computers the contents of diskettes 
can be damaged by ejecting a diskette or turning off the ma
chine at an inopportune moment. To protect against such 
errors, Lisa has software-controlled mechanisms for the disk
ette eject and on-off button. To eject a diskette, the user 
selects the eject menu item, the software then suspends the 
processing of all the documents that reside on that diskette 
and writes out those suspended documents to the diskette. 
Once all the lIO has been completed, the diskette is ejected. 
Pushing the on-off button causes suspension of all documents, 
the ejection of all diskettes, and finally the power down of the 
Lisa. These controls help to ensure the integrity of the user's 
data. 

Error notification in Lisa is handled with a special window 
called an alert (see Figure 4). An alert appears whenever the 
user must be notified that an error has occurred, a requested 
operation cannot be performed, or an explanation must be 
given. There are several kinds of alerts: stop, caution, note, 
ask, and wait. Stop alerts are used when the requested oper
ation cannot be performed. Caution alerts inform the user 
that an operation has ramifications, and gives the user the 
opportunity to change his mind. Note alerts notify the user of 
something, ask alerts solicit input from the user, and wait 

alerts tell the user to wait until a lengthy operation completes. 
Alert messages that inform the user that an error has occurred 
have three parts. First, the user is told the nature of the 
problem; second, the user is told how to work around the 
problem; and finally, the user is told where to refer in the 
manual for more help. 

Another level of recovery is provided by the Revert to 
Previous Version menu command. Sometimes a user makes 
several changes to a document and then changes his mind. In 
this event, the user can invoke the Revert to Previous Version 
command to return the document to the state when the docu
ment was last saved. 

In the event of a program failure in Lisa, an alert message 
appears informing the user that the tool failed. The user is 
given the option to redisplay the document and if he chooses 
to do so, the document is shown, usually with the last changes 
intact. 

The final area of error recovery is recovery from external 
errors such as power failures. If power goes off while using a 
computer, the disk is likely to be inconsistent; some of the 
current data are in memory but not on the disk. To protect 
against failures of this kind, the Lisa file system has redundant 
information permitting reconstruction of files on disk. The 



326 National Computer Conference, 1984 

Desktop Manager and the LisaList tool also detect such fail
ures and repair and reconstruct their information. When the 
user powers up the Lisa after such a failure or opens a dam
aged LisaList document, he is informed that repair is needed. 
When the user confirms that the repair operation should be 

. started, the repair begins. 

Lisa Applications 

Apple offers seven Lisa applications (also called tools): 
LisaCalc (spreadsheet), LisaWrite (word processing), Lisa
Graph (business graphics), LisaDraw (graphics editing), Lisa
Project (project scheduling), LisaList (list management), and 
LisaTerminal (terminal emulation). Lisa is an open system 
that permits third parties to develop Lisa applications, hence 
additional Lisa applications also are available. 

The Lisa tools have effective user interfaces for their 
applications. LisaCalc and LisaGraph use the spreadsheet 
user interface developed by VisiCalc, further improved by the 
addition of the mouse. LisaList builds upon the user interface 
techniques developed in QBE. 2 Lisa Write uses techniques 
found in several word processors. 

The unique Lisa applications are LisaDraw and Lisa
Project. LisaDraw is a structured graphics editor that permits 
the user to draw lines, circles, ovals, rectangles (both square 
and rounded), polygons, freehand curves, and text. It is used 
for such diverse applications as preparing diagrams for pre
sentations and architectural drawings. 

LisaProject is a PERT/CPM project-scheduling tool. It uses 
a graphical PERT chart representation to enter a project 
schedule. The user draws the schedule using rectangles for 
tasks and circles for milestones. The user specifies the task, 
the resources needed to accomplish it, the duration of the 
task, and its relation to other tasks. As tasks are added, du
rations changed~ or scheduled dates specified~ the schedule is 
recalculated. 

The user interfaces of LisaDraw and LisaProject have 
opened up these tools to a much greater audience. Just as 
VisiCalc and QBE opened up spreadsheets and databases to 
those who were unable to use other offerings, LisaDraw and 
LisaProject have done the same in their application areas. 
Both these tools magnify the capabilities of the user. For 
example, people like myself who are totally inept at drawing 
are assisted by LisaDraw to the extent that very respectable 
results are easy to achieve. A similar result occurs with Lisa
Project. Administrative assistants unable to use conventional 
project-scheduling tools are now using LisaProject to make 
very large schedules. 

During the development of the Lisa applications and the 
application libraries, we found that application development 
was not as easy as we would like it to be. The library structure 
was very hierarchical and was hard to use. Consequently we 
were determined to make it easier for third parties to develop 
Lisa applications. This led to two ways to develop Lisa 
applications, QuickPort and ToolKit. 

QuickPort permits a third-party software developer to run 
standard PASCAL programs (ones that use standard PAS
CAL 110) in a window in the Lisa office system. In addition, 
QuickPort permits cutting, copying, and pasting of informa-

tion from the QuickPort window to other Lisa desktop win
dows. The modifications the third-party developer must make 
to the application to use QuickPort are minimal. The devel
oper must use a few new units, and possibly make name 

-conflict changes. This process can be accomplished in an after
noon. 

QuickPort is the easiest way to get an application oper
ational in the office system, but such a program cannot use all 
of the capabilities of the Lisa. ToolKit is used to write an 
application that fully uses the features of the Lisa. ToolKit is 
essentially a generic application that calls application-specific 
code to implement application-specific functions. This per
mits the sharing of common control structure code across 
several different ToolKit applications. 

Because different applications have different needs, the 
ToolKit generic application had to be extremely flexible. The 
flexibility required, along with the need to call application
specific code, led to the use of classes similar to those in 
SMALLTALK.l The classes provide the ability to call the 
application-specific code while also permitting the developer 
to override or subclass a class to modify its behavior. 

Both QuickPort and ToolKit promote the development of 
Lisa applications. This open nature of the Lisa office system 
permits third-party developers to develop a specific applica
tion, yet leverage off other Lisa applications. These third 
parties can develop applications that target specific markets 
while relying on the standard tools such as Lisa Write and 
LisaDraw for presentation of the results. 

Integration in Lisa 

Several components of integration in the Lisa system have 
already been mentioned. There is a consistent user interface 
that is common across all applications and the Desktop Man
ager. If the user wants to enter text and makes a mistake 
entering it, he can fix it using the standard text-editing model. 
The user does not have to remember which tool he is in, nor 
does he have to run an editor tool. 

The editing model used by Lisa is the cut-and-paste model. 
Just as an editor might cut up a paragraph with scissors and 
paste-up sentences or paragraphs to improve an article, the 
Lisa user can cut and paste with the Clipboard. The editing 
model also includes the ability to copy to the Clipboard and 
undo the last edit operation. When a user copies or cuts an 
object, the object is copied onto the clipboard, a repository 
for scraps of information. The Paste command pastes the 
information from the clipboard into the active window re
placing the current selection. This model is used for all ob
jects; e.g., text within textual documents, numbers and for
mulas within LisaCalc, and graphics within LisaDraw. A user 
can cut or copy information from a paragraph and paste it into 
the same document or a different document. This copy and 
paste model is also the mechanism for data interchange be
tween documents. 

This data interchange is illustrated by the following exam
ple. Let us assume that a user has data in a LisaGraph docu
ment (a bar chart) and wishes to move them to a LisaDraw 
document to annotate and customize the chart for a presenta
tion. To do this the user selects the entire graph in the Lisa-



The Integrated Software and User Interface of Apple's Lisa 327 

Graph document, and then uses the Copy command in the 
Edit menu to copy the graph to the Clipboard. Next the user 
opens the LisaDraw document and selects Paste from the Edit 
menu. The user can then use the capabilities of the LisaDraw 
tool to add labels, change patterns, etc. 

The direction of software integration that we see for Lisa in 
the future is presented in the following scenario. Lisa provides 
an environment where one can use LisaTerminal and gather 
data from a mainframe, copy the data to LisaList and subset 
them, copy the result to LisaCalc and perform some arith
metic manipulation to analyze the data, copy the resulting 
data to LisaGraph to make a chart, then copy the chart to 
LisaDraw to further customize it, and finally copy that cus
tomized chart to Lisa Write for inclusion in a report. 

This type of integration permits the user to choose the best 
tools for his task. The user is free to concentrate on his task, 
not on the mechanics of typing the data or mastering the 
commands of the application. The model permits the tool's 
developer to concentrate more on the functionality that has to 
be provided, and not on extraneous features. For example, 
the LisaGraph tool can concentrate on drawing the best pie 
charts, without having to provide all the presentation flex
ibility (e.g., detached pie segments), since the chart can be 
copied to LisaDraw where the chart can be customized. 

The open nature of the Lisa office system further expands 
the integration possibilities. The power of an open system 
becomes apparent when third-party tools can be used as 
equals in conjunction with the standard tools. This permits the 
Lisa to be used by a broader range of customers for a wider 
variety of applications. This is in contrast to closed systems, 
which are typically one large program, and do not permit 
integration of other components. 

The Clipboard 

The clipboard provides a common interchange form be
tween documents. There are three distinct interchange 
forms--text, tables, and graphics. In most cases, the user is 
unaware of what type of interchange form is employed. The 
user merely selects the object, and copies or cuts it. The type 
of object determines the form of the data on the clipboard. In 
cases where a particular selection is ambiguous, the user is 
required to further specify his intent. 

The cut, copy, and paste model does require that it be easy 
to move data from one tool's document to another. In the Lisa 
environment, this is provided by the multitasking operating 
system.4 Lisa uses a multitasking operating system to permit 
the concurrent operation of processes. For example, this per
mits LisaGraph and LisaDraw documents to be both on the 
screen and in memory. When the user switches from one 
document to the other, the operation can complete rapidly 
(one or two seconds if both are in memory already). 

The clipboard provides for rapid exchange of data to and 
from the same or different documents. It also provides the 
ability to undo the last cut or copy. In this way the user can 
undo a cut operation and then paste the previous clipboard 
contents. The astute reader will realize that only the last oper
ation is undoable; undo of an undo undoes the undo. 

Productivity Enhancement 

Integrated software of almost any style enhances produc
tivity.5 Just as word processors improve productivity by min
imizing retyping, integrated software has reduced the time it 
takes to perform tasks that require the use of several tools. 

Several studies have been performed by outside groups that 
substantiate the assertion that Lisa enhances productivity. 
Seybold Publications Inc. did a comparison of Lisa, SuperCalc 
3, Context MBA, and Lotus 1-2-3.5 The task was to prepare 
an operating budget, which included spreadsheet calculations, 
making graphs, looking up information, and preparing a re
port. The timings did not include set-up time for the model, 
nor thinking time, consequently the timings do not represent 
the total time to complete the task, but only the time neces
sary to perform the four specific tests. The article reports that 
the total time it took was 27 minutes for a SuperCalc 3 user, 
33 minutes for Context MBA, 47 minutes for Lotus 1-2-3, and 
59 minutes for a Lisa user. 

We couldn't understand how it took them so long to do the 
tasks using Lisa, so we looked into it. It turns out the users 
were experienced IBM PC users, and the users were inex
perienced in using Lisa. We retimed the tests with an experi
enced Lisa user and found that it took 19 minutes. So the 
study should have shown it took 19 minutes for an experienced 
Lisa user, 27 minutes for a SuperCalc 3 user, 33 minutes for 
Context MBA, 47 minutes for Lotus 1-2-3, and 59 minutes for 
an inexperienced Lisa user. The disparity of time between the 
experienced Lisa user and the inexperienced Lisa user is that 
the inexperienced one was unaware of a mechanism for trans
ferring data from LisaCalc to LisaGraph, and cut and pasted 
the data cell by cell. Another reason for the disparity was that 
the inexperienced user did not take advantage of background 
printing. 

This study was chosen because it illustrates several things. 
The fact that an inexperienced Lisa user was in the ballpark 
for these tests shows that an inexperienced user can effectively 
get the job done (especially when the combination of set-up 
time and thinking time dominates). The other important point 
that this study illustrates is that a simple user interface leads 
people to some incorrect conclusions. People wrongly con
clude that simple user interfaces are good only for simple 
things, and that features are not implemented. In the case of 
this study, the simple user interface led the users to believe 
that they had mastered the system, so they failed to look up 
functions in the manual. 

SUMMARY 

Lisa achieves integration in a variety of ways. It uses an intu
itive model using familiar objects that permit direct inter
action as opposed to indirect interaction with a command 
language. In contrast to some systems that always prompt for 
individual steps, Lisa's user interface supports users at every 
point on the learning curve. The uniform user interface also 
provides for transferrable learning; the user needs to learn 
how to edit, print, and file only once, and then can apply that 
knowledge throughout all applicaions. The combination of 



328 National Computer Conference, 1984 

gradual and transferrable learning results in a system that is 
many times easier to use. This ease of use has made it possible 
for individuals to use tools to accomplish tasks that they could 
not before. 

The editing model provides not only for editing information 
within a document, but also promotes the interchange of data 
among documents of similar or different types. This inter
change is fostered by the ability to have several windows dis
played concurrently. The ability to use documents concur
rently and interchange data among them makes it possible to 
use several tools in a cooperative manner to perform a task 
that one tool alone could not accomplish. Since one of these 
windows can be connected to a remote computer, this permits 
exchange of data between mainframes and Lisa documents. In 
contrast to some systems, Lisa is an open system, permitting 
third parties to develop additional applications. Third-party
developed applications function in a manner that is similar to 
other Lisa applications with the uniform user interface, and 
are able to interchange data as well. 

The combination of the uniform user interface coupled with 
multiple tools that operate concurrently, each of which can 
interchange data with others, provides an environment that 
increases office worker productivity. Workers are free to con
centrate on their tasks, not on how to accomplish them. 

REFERENCES 

1. Goldberg, A., and D. Robson. SMALLTALK-80 The Language and its 
Implementation. Reading, Mass.: Addison-Wesley, 1983. 

2. Zloof, M. "Query by Example." AFIPS, Proceedings of the National Com
puter Conference (Vol. 44), 1975, pp. 431-437. 

3. Smith, D. C., C. Irby, R. Kimball, and E. Harslem. "The STAR User 
Interface." AFIPS, Proceedings of the National Computer Conference (Vol. 
51), 1982, pp. 515-528. 

4. Daniels, B. "Lisa's Alternative Operating System." Computer Design, 22 
(1983), pp. 159-166. 

5. Uttal, B. "The Best Software for Executives." Fortune, December 26,1983, 
pp. 136-142. 



FlowGuide-A programmer's work station 

by PHIL J. GROUSE 
University of New South Wales 
Kensington, New South Wales, Australia 

ABSTRACT 

FlowGuide is a programmer's work station developed to assist in the writing and 
maintenance of programming projects. Each project is treated as a tree structure, 
with each node corresponding to a program module. For each module there are 
three documentary members: a requirements specification, a data specification, and 
a structured program. The last of these is expressed in flow-block notation, an 
orthogonal form of the Nassi-Shneiderman diagram. FlowGuide supports the de
sign and maintenance of all three members. The integral program editor is designed 
to support modules expressed as flow blocks. A post-processor translates the 
project tree into the corresponding source code, which may be ported to a separate 
host if desired. 

The system has been written for microcomputers that support CPIM-86, PCDOS, 
or both, although the layered design minimizes the effort in porting the work station 
to other environments. The help facility can be tailored to suit levels of skill ranging 
from beginning students to professional programmers. 

329 





INTRODUCTION 

FlowGuide is a programmer's interactive work station. It is 
oriented to the preparation and maintenance of tree
structured programs in which the nodes correspond to docu
mented source code modules. Its program editor is unique in 
that it is based on the structured graphical notation of the flow 
block,1,2 an orthogonal form of the Nassi-Shneiderman (NS) 
diagram3 more suited to representation on common display 
screens. 

Flow blocks, like program flow charts, allow the program
mer to design and document program logic. While both tech
niques are suited to pencil and paper methods, the flow block 
is designed specifically for line-oriented devices such as dis
play screens and printers. Like the NS diagram, the flow block 
has the advantage of enforcing structured specifications. Both 
methods delimit blocks by enclosing the block text in a rectan
gle. A summary of the graphical syntax for flow blocks is given 
in the Appendix. 

Without supporting software, the maintenance of flow 
blocks can be as difficult as if one were working with logic flow 
charts or NS diagrams. For example, a minor change to an 
inner nested block may result in the redrafting of all sur
rounding block structures. By delegating the drafting details 
to an appropriate text editor, the programmer is freed to 
create and change text at will, with the block delimiters being 
automatically redrawn by the editor. 

FlowGuide's program editor does more than manage the 
drafting of flow blocks. The editor is sensitive to a selected set 
of keywords (such as IF, WHILE, and UNTIL) or their corre
sponding function keys. Accordingly, the appropriate block 
structures can be drawn in anticipation and the cursor posi
tioned to force the programmer's attention to the next log
ically required step. This also requires that text be entered in 
a sequence corresponding to the equivalent high-level lan
guage source program, making the production of that source 
file a simple parallel operation. 

Students in the Department of Information Systems at the 
University of New South Wales have been using the flow block 
as a design tool and for the in-line documentation of program 
logic. FlowGuide is geared to directing and automating as 
much of this process as possible. 

A prototype has been developed for the IBM PC (and 
"workalikes"). The bit-mapped screen graphics of that ma
chine are well suited to FlowGuide's displays; however, the 
system is structured for ease of porting to other hardware 
environments. 

Although a microcomputer-based system, the work station 
is capable of creating source text and associated documen
tation for mainframe installations. 

FlowGuide-A Programmer's Work Station 331 

TWO-DIMENSIONAL LOGIC SPECIFICATIONS 

Flow blocks or NS diagrams are not simply "boxed" alterna
tives to logic specifications written in high-level structured 
languages. By viewing alternative actions side-by-side, the 
programmer is more readily able to perceive the flow of con
trol. By contrast, a program written in a pseudo-code, such as 
PDL 4 , requires the reader to skip blocks of sequential text 
since alternatives are in vertical juxtaposition. If the alterna
tives also are nested, such specifications increasingly obscure 
the flow of control, in spite of the use of indention. The same 
is true of any of the more common high-level procedure
oriented languages. The two-dimensional nature of the flow 
block makes it more suited to the development and mainte
nance of program logic. 

The author's experience with the specification of a system 
involving about 10,000 lines of source code suggests that the 
use of the flow block as a logic design tool materially assists 
productivity. In particular, it was found that their use natu
rally enforces a top-down modular structure, and aids logic 
walk-throughs. Almost all of that system's logical errors were 
located in this manner before being committed to code. 

AN OVERVIEW OF FLOWGUIDE 

The main motivation for the FlowGuide project was the need 
for a coherent and extensive support environment for pro
grammers at all levels of ability. As a teaching tool it has a 
place in the classroom, yet it can also be used by competent 
professional programmers in the course of their normal activ
ities. It automates the formal drafting aspects of the program
ming process and provides active prompting and guidance at 
each stage of the activity. 

For each logical module (node) in a program prepared by 
FlowGuide, the system's editor requires (and assists) the 
preparation of three members: 

1. An English language requirements document 
2. A structured data specification 
3. A target (or operational) language flow block 

Following the completion of a project tree, FlowGuide op
tionally translates the related nodes into source text accept
able to the intended compiler. The output text fully reflects 
the prescribed scope and nesting of its component modules. 

Although the design is intended to support a range of high
level languages, the initial version supports only the G-Ievel of 
PLII. Languages intended for later support include Pascal, C, 
and Microsoft Basic. 



332 National Computer Conference, 1984 

Projects and Productions 

In FlowGuide nomenclature, the term project carries the 
familiar meaning of a self-contained programming project. 
During development, the project is represented and main
tained as a tree structure, which links together a set of nodes. 
Each node consists of the three members described above 
unless that node is simply an alias, or alternative name, for 
another module. The use of aliases permits the normal tree 
structure to represent the most complex of calling sequences. 
A separate project index associates each node with its position 
in the tree, the name of the containing module, and a possible 
alias name. In the PLII version, module and node are syn
onymous with procedure. 

One example of the use of the alias is in the representation 
of recursive calls. If module A calls itself and another module 
"B," then we could use an alias, "C," for A, so that the call 
to·A becomes a call to C. There would then be two branches 
from A--one to B and one to C. The branch to C replaces the 
recursive branch back to A. Since the project index identifies 
C as an alias for A, there would be no actual members corre
sponding to C. The hierarchical tree structure is therefore 
preserved. 

A production is a project subtree. Thus the programmer 
will normally be working with a particular production at any 
time. A production may be abstracted to become a separate 
project. The node replacing the abstracted production is 
marked in the project index as an external reference. After 
the project is compiled, a separate linking operation restores 
the separately compiled abstracted production to the object 
program. A production may be abstracted only if it contains 
no aliases or containment requirements that would result in 
undefined references either in the resultant abstracted project 
or in the remaining project. 

Hardware Considerations 

Recently developed microcomputer-based word processor 
packages highlight the value of a well-designed human inter
face. Cognizance has been taken of object-oriented systems 
that use high-resolution bit-mapped screens. Such systems 
shift the attention from the keyboard to a cursor manipulated 
by a mouse, trackball, or similar device. In particular, the 
ability to roll down a text window partially obscuring the 
current display is applied both to help screens and to specifica
tions of related modules. 

Given the variety of potential supporting hardware, and the 
need for portability, the system is layered in the spirit of the 
ISO model for open systems interconnection.5 The Flow
Guide layers consist of an input layer, a display layer, a 
project management layer (PML), an on-line storage manage
ment layer (SML), and the logical control layer (LCL). Both 
the input layer and the display layer are hardware-dependent. 
The SML is operating-system-dependent. 

Operational Language 

The operational language is the language selected for the 
resulting source code file to be generated by FlowGuide. 

Since languages differ in the selection and syntax of their 
control keywords and block delimiters, FlowGuide uses an 
internal standard for their representation within each code 
member. Similarly, the program text editor assumes a stan
dard relationship between those keywords and certain func
tion or control keys. The user is free to revise that relationship 
as needed. 

Many of the currently available desktop machines provide 
a variety of function keys generally labeled "F1," "F2," etc. 
The input layer is required to translate these keys into stan
dard keystrokes for the LCL. For example, within the pro
gram editor, certain function keys map into control constructs 
such as WHILE, UNTIL, IF-THEN, IF-THEN-ELSE, 
CASE, and CASE with default. An END key is also useful for 
requesting the closure of the current controlled block. Other 
keys fulfill the role of cursor movement and general screen 
editing. 

Provided that code members have been prepared with valid 
statements (excluding control statements), a post-processor 
for the selected operational language may be used to expand 
the embedded internal codes into their corresponding forms, 
then copy the remainder of the member in order to generate 
the required source file. Certain operational languages re
quire that the post-processor include a macro translation facil
ity. In particular, the absence of a SELECT statement in 
G-Ievel PLII requires that the PLII post-processor create an 
appropriate label array together with a "computed" GOTO. 

Support for languages such as PLlI, Pascal, and C is an 
almost trivial exercise since there is a one-to-one correspon
dence between most flow block control structures and the 
equivalent language elements. Various dialects of BASIC also 
will be supported, but the post-processor will need to provide 
for blocks by adding appropriate GOTO statements in the 
output text. 

The provision of alternative operational languages does not 
mean that the code editor is required to perform syntax check
ing during the editing of modules, although such an en
hancement is a possibility. That facility also could support the 
parallel development of a data dictionary as the program 
develops. 

Help Facilities 

The provision of context-sensitive help and tutorial facilities 
is straightforward, however, it can become expensive in terms 
of disk storage requirements. FlowGuide includes an exten
sive help facility, although the help file developed for the 
prototype is limited to allow the system to function effectively 
on systems with only 600Kb of disk storage. Additions to the 
help file may be made with FlowGuide's text editor. Text 
compression for the help file is planned for later release. 

The help facility assists the user with prompts to aid in the 
formulation of answers to questions such as "What am I doing 
now?" "What did I just do?" "What should I be doing next?" 
"What matters are still outstanding?" "How do I do such-and
such?" and "Explain the ... facility. " The presentation of help 
screens is the responsibility of the display layer, since the 
format depends on available graphics facilities. 



The help file also includes all the normal system screens. 
Accordingly, FlowGuide itself is user-language-independent. 
In other words, to redesign FlowGuide for a French-speaking 
user, it would be necessary to rewrite only the help file. 

FLOWGUIDE LAYERS 

The Logic Control Layer (LCL) 

This layer (or kernel) is the "application layer" (in OSI 
terminology). It takes the user through the processes of cre
ating and maintaining projects, allows projects to be re
viewed, and supplies a set of housekeeping utilities. The LCL 
ensures that a project is developed in a top-down sequence. 
As each new node is reached, the LCL requires that its docu
mentation member be completed before the data specifica
tions and program members are commenced. Further, as each 
call to another module is detected, the system tests whether 
the called node exists. If it does not exist, the user is requested 
to supply the documentation member before being allowed to 
return to the point of invocation. When a node is coded (i.e., 
all three members have been prepared), the system allows the 
user to select an unfinished node and displays the appropriate 
requirements specification to assist in its completion. 

The full-screen text editor in the LCL adapts to the type of 
member being prepared. The documentation member re
quires a conventional text-editing facility. The data specifica
tion member, however, requires a structure that requires the 
user to supply named data items, attributes, and related com
ments. Data structures also may be defined in a hierarchical 
manner for languages such as COBOL and PL/I. 

The text editor for the program logic member is a program 
editor tailored to the particular operational language. Al
though this editor is geared to the preparation of flow blocks 
containing operational language statements, it also allows for 
the inclusion of comments. Since comments can consume in
ordinate amounts of text (and as this should not be discour
aged), the editor allows comments to be included as "invis
ible" components attached to individual lines of text through 
links. The user may view individual comments one at a time 
by placing the cursor on the required line and pressing an 
appropriate function key. All the comments are included in 
the final operational language source file created by the post
processor. 

As text is entered within a block, it folds to the next line on 
reaching the current right margin (without justification or 
hyphenation). The end of each "real" line is indicated by the 
carriage return or enter key (which shows as a special charac
ter on the screen). A separate control or function key may be 
used to continue a logical line to the next physical line (with
out effect on resulting source code text). The screen window 
scrolls horizontally or vertically as required should a block 
shift off the screen. 

The Display Layer 

This is responsible for presenting information to the user. 
The normal medium is the computer's display screen (for text 

Flow Guide-A Programmer's Work Station 333 

and graphics). The display layer also handles all output pe
ripherals, such as printers, plotters, or audio systems. The 
LCL-display layer interface definition is independent of pe
ripherals or operating systems. The display layer shares an 
internal device parameter block (DPB) with the input layer. 
The DPB defines the input-output environment. The PML 
also has access to the DPB. 

The Input Layer 

The function of this layer is to communicate "keystroke 
equivalents" from the user to the LCL. Although the standard 
keyboard remains the normal means for the entry of text and 
indication of special functions, the input layer may make use 
of additional input devices. Examples of "keystroke equiv
alents" include normal text-entry keys, function or control 
keys corresponding to keywords or special actions, and signals 
received from special devices. 

The Project Management Layer (PML) 

The PML allows the logic layer to view on-line storage as a 
collection of projects rather than files. This layer depends on 
the storage management layer (SML) to supply a set of util
ities that are independent of the operating system and hard
ware. In particular, each project is maintained as a single 
partitioned data set (PDS) rather than as a set of member 
files. At the SML level, the PDS is a single file with a number 
of internal named members. An index in the PDS allows 
access to the members as if they were normal files. The PML 
adds a tree structure protocol to each PDS. The first member 
of each project PDS is a tree directory containing the names 
of the component nodes in tree-walk order. Each entry in the 
directory provides details concerning alias names, containing 
modules, and position in the tree (nodal reference). The di
rectory structure allows for node names that are generally 
longer than those supported through the normal operating 
system. 

Each project storage volume includes a project index file, 
PROJECT.IDX, which supplies details about each of the 
projects on that volume. Details recorded include a short 
project title, the author's name, date and time of origination, 
date and time of last revision, the operational language, and 
intended target machine. The PML maintains this index 
through SML utilities. 

The Storage Management Layer (SML) 

This layer acts as an interface between the PML and the 
operating system. Its role is to present a standard operating 
system environment to the PML. All transfers between 
memory and external storage are performed by the SML. 

Directory space (at the operating system level) is conserved 
by the use of partitioned data sets accessed via the SML. The 
operating system views each PDS as a normal sequential file. 
The name of this file is the project name with an appended file 
type of .PRJ. The SML maintains individual projects using a 



334 National Computer Conference, 1984 

minimum of storage since each PDS is packed and backed up 
when it is reopened. 

CONCLUSION 

The prototype FlowGuide is a practical attempt to meet the 
needs of programmers with a broad range of skills. By linking 
the program editor component to the flow-block notation, the 
programmer's attention is guided in establishing well
structured source code. The flow of control is rendered highly 
visible through the flow block's side-by-side juxtaposition of 
alternative actions. The program editor is an integral part of 
an overall management function, which supports the pro
grammer in the development and maintenance of projects, 
and attends to the need for a structured nexus between source 
code, data structures; and associated documentation. 

Although implemented for microcomputers, FlowGuide is 
well suited to the production of source code in a variety of 
high-level languages that may be ported to hardware ranging 
from microcomputers to mainframes. It is planned to test the 
system as an educational aid at selected secondary and tertiary 
teaching institutions. Tests also will be conducted shortly at 
selected commercial sites. 

APPENDIX 

Flow Block Syntax 

The syntax of flow-block notation is roughly equivalent to 
that of Nassi-Shneiderman (NS) diagrams. But unlike NS 
diagrams, flow blocks do not use diagonal lines (since these 
are difficult to represent on a VDU screen). The number of 
graphical structures has been reduced to three, corresponding 
to the basic control forms of sequence, repetition, and 
selection-as shown in Figure 1. The CASE statement, in 
particular, is treated as a special form of the selection 
structure. 

The contents of a sequential block may be one or more 
sequential operations, including selective and repetitive 
blocks. Blocks are stacked vertically to show execution se
quence (top-to-bottom). 

Repetitive blocks begin with an opening looping clause. 
Looping clauses define the conditions for the repeated exe
cution of the loop body (a sequential block). Commonly used 
looping clauses are WHILE and UNTIL statements. Figure 2 
illustrates three representative repetitive blocks. 

Certain high-level languages may support other repetitive 
constructs, such as PUI's qualified DO-loop. Unless the be
havior of an unusual language construct is well understood by 
the user, it may be prudent to restrict the range to WHILE 
and UNTIL. 

Selective blocks are marked by an opening selective clause. 
Selective clauses specify the rules for selection from among 
the electives indicated in the inner controlled section. Exam
ples include the IF and CASE statements detailed below. The 
controlled section of a selective block may be a simple se
quential block (such as a then-unit in an IF-THEN construct), 
or two sequential blocks placed side-by-side, where the right-

Sequential 
block 

Looping clause 

I Loop body 

Selective clause 

I Electi ves 

Figure I-The basic flow block graphics corresponding to the three 
fundamental control forms of sequence, repetition, and selection 

WHILE x>O 

I loop body 

UNTIL end-of-file 

I loop body 

FOR I = 0 TO 6 

I loop body 

Figure 2-50me illustrative repetitive blocks 

IF condition IF condition 

then-unit then- else-
unit unit 

IF index=5 

mark=O; call set; 
x=x-l; x=mark/2; 

Figure 3-The two alternative forms of the IF construct and an illustrative 
example 

hand block indicates the default action (e.g., the else-unit in 
an IF-THEN-ELSE construct, or the default action in a 
CASE statement). 

The two preferred selective constructs are IF and CASE. 
Unlike the NS equivalent of the IF block, which heads each 
alternative with YES or NO, we adopt the convention that the 
left-hand block is the TRUE option, the right-hand block (if 
present) being the FALSE option. A lone elective block is 
considered to be a TRUE option. The IF selective clause 
consists of the keyword IF followed by a conditional expres
sion. Figure 3 shows the two alternative forms of the IF block 
together with an example of the IF-THEN-ELSE construct. 

The NS form of the CASE block requires the writer to set 
all alternatives side-by-side, resulting in severe restrictions in 



CASE expression IN set 

I rootname* 

CASE expression IN set 

~ rootname* I default 

Figure 4--The CASE graphics; the second form is used where there is an 
explicit default block 

CASE letter in {'A','E','I','O','U'} 

I VOWEL * I CONSONANT 

Figure ~Example of a CASE block with an explicit default action 

drafting CASE blocks with more than a few options. The flow 
block equivalent has, at most, two such alternatives. Far from 
limiting the choice to two options, there is no practical limit to 
the number of options. Its format is shown in Figure 4. 

The contents of the left-hand (or only) block are shown as 
rootname* where rootname is a partial module name to be 
completed by replacing the asterisk with the expression value 
if found in the set. The second form nominates an explicit 
default block. 

In the CASE clause, the "expression" is a simple expres
sion, resulting in a digit or short character string, which should 
be found within the "set." The set may be explicit (as in 
PASCAL), or it may be the name of a set that has been 
defined previously. Explicit sets consist of a list of elements 
(with possible ellipsis) enclosed in "curly braces." If the ex
pression value is found in the set, it is treated as a string, which 
is used to complete the partial module name, ':rootname." 

FlowGuide-A Programmer's Work Station 335 

The module with the resulting name is then invoked. If the . 
expression value is not found within the set, the default block 
is executed (in the second format), or no action is performed 
(in the first format). 

In the example shown in Figure 5, one of the mod
ules-YOWELA, YOWELE, YOWELl, YOWELO, or 
YOWELU-is executed if "letter" is the corresponding 
vowel. If "letter" is not a vowel, then the module CON
SONANT is performed. Clearly the programmer must specify 
each of the referenced modules separately. 

In some cases, it may be convenient for individual modules 
to be identified by more than one module name. For example, 
if the same actions are to be performed by modules 
YOWELA and YOWELE, both names may be regarded as 
aliases for the one module. By convention, the name of a 
module is written above the top left corner. If there is more 
than one name, the aliases are stacked vertically. 

REFERENCES 

1. Grouse, P. J. "Implementation and Testing." In C.H.P.B. Brookes, P. J. 
Grouse, D. R. Jeffery, and M. L. Lawrence (eds.), Information Systems 
Design (1st ed.). Sydney: Prentice-Hall (Australia), 1982. 

2. Grouse P. J. "Flowblocks-A Technique for Structured Programming." 
ACM SIGPLAN Notices, 13 (1978), pp. 46-56. 

3. Nassi, I., and B. Shneiderman. "Flowchart Techniques for Structured Pro
gramming." ACM SIGPLAN Notices, 8 (1973), p. 12. 

4. Caine, S. H., and E. K. Gordon. "PDL-A Tool for Software Design." In 
Software Design Techniques Tutorial, New York: IEEE, 1976. 

5. Zimmermann, H. "OSI Reference Model-The ISO Model of Architecture 
for Open Systems Interconnection." IEEE Transactions on Commu
nications, COM-28 (1980), pp. 425-432. 





Information resource planning and management 
methodologies 

by KEITH GREYSTOKE 
Database Consultants Europe B. V. 
Amsterdam, The Netherlands 

ABSTRACT 

During the last ten years it has become fashionable to create structured meth
odologies which, in theory, are totally removed from current state-of-the-art tech
nology. This however, is a contradiction in terms since analytical methods are only 
created in the computer world to solve state-of-the-art shortcomings. Thus before 
any analytical methodology is selected first question is knowing where your com
pany lies with regard to the state-of-the-art technology. This paper attempts to show 
the evolution through the previous stages. It would be erroneous to think that the 
methods are driving the technology, as opposed to the other way around. This 
would be the case if the premise of producing methodologies in blind ignorance of 
the state-of-the-art were true. 

337 





This paper discusses the evaluation of analytical methods 
and the reasons for their development-dating from the early 
concept of database technology, where this technology is seen 
as the recognition for a shared data environment. 

To understand the entire analytical process that is necessary 
in order to make information systems work, we must consider 
together three factors, which in theory we would like to sepa
rate, but which in practice are so closely linked that it is of no 
real use to consider them in total isolation. These three factors 
are 

1. The problem of defining the exact requirements of the 
information-handling systems to be installed and recon
ciling those requirements among the various users of 
data 

2. The state-of-the-art software and hardware that is 
available 

3. The analytical tools and methods that can be used as 
tools to achieve specific solutions to problems within any 
given company 

To understand our current thinking one must examine the 
historical evolution that has led us to where we now stand. In 
the 1960s we built computer systems, application-by-applica
tion, by including both the logic and the handling of the data 
into the programs themselves and as a consequence, con
verted the raw elements of data into information. Since the 
words "data" and "information" have distinct meanings, let 
us examine the difference. Data are raw elements. For exam
ple, a number-12709-in itself not very meaningful, particu
larly since it would be necessary to determine what that num
ber actually meant. Let us suppose that this number were an 
order number. We may still consider it to be raw data, and on 
its own, not particularly useful. When combined with other 
data and presented to the user it becomes information. Thus, 
a combination of the order number, plus a product number, 
plus a quantity asked for, plus a price, would provide informa
tion possibly to a salesman. All users within a company com
bine different elements of data to create information as they 
see it. 

If we consider the original systems of the sixties, we can see 
that programs were written based on users' requirements, 
piecing together various elements of data to provide informa
tion to the user. Each program would have the responsibility 
of manipulating, changing, updating, and generally caring for 
the requirements that the user had. The data were turned into 
records and kept inside the machine in the same form that one 
would keep information in a filing cabinet. As a consequence, 
"filing cabinets" sprung up all over the machine. These were 
kept on disks or tapes, since the core of the machine'was not 
large enough to store all of this information. 

Information Resource Planning and Management 339 

Originally, it was necessary for each program to code its 
own access methods to get hold of the information that it had 
put on the disks. However, it was quickly recognized that it 
would be much easier if the hardware manufacturers were to 
provide the access methods required themselves, as a service 
to programmers, since this was a complex procedure requiring 
intimate knowledge of the hardware, channel commands, and 
the like. Nevertheless, the control over the information itself 
lay entirely within the program. As situations arose within the 
company where the structuring of the data needed to be 
changed, e.g., an element such as a delivery number might be 
added, each program using information made up of data from 
the order, which now contained a delivery number, had to be 
changed. Needless to say, this was a long and laborious 
process requiring a great deal of work. The tools available for 
analytical purposes as a consequence of our above-stated 
working methods were limited to the processing require
ment-tools such as flow charts. 

In the sixties certain common problems began to appear 
throughout companies using these conventional methods of 
working. These problems were clearly identifiable and the 
reasons behind their occurrences were also identifiable. The 
first problem was that duplication of data was paramount. 
This was obviously occurring since many users' requirements 
for information used common elements of the data and some 
users even created, or had created for them, systems that used 
exactly the same elements of data but in different sequences 
using different keys. 

For example, a salesman might keep a file of information 
concerning clients using the client name as the key for entry 
into the data, and an entirely separate file by the name of the 
contact he had as the key within the company he was dealing 
with, and yet a third file with exactly the same data elements 
using the address as the key. As a result of the duplication, 
which in itself cost both time and manpower resources to keep 
updated, incompatibility started to creep in. For example, a 
file may change because a certain client changed his address 
and had informed the salesman, but the salesman had not 
informed the accounts department. Thus the files of the ac
counts department continued to contain the old address, al
though the salesman's data were correct. The next problem 
was that control became dissipated and virtually impossible 
since each user of the data was a law unto himself. Likewise, 
the problem of security. It is clear that it is far more difficult 
to protect secrets within the company when there are 50 or 100 
copies of the same data, rather than the existence of only one 
copy. 

The next problem was that the effort required to maintain 
systems using changing data, where those data were being 
used by many and being handled by the program itself, meant 
excessive maintenance when changes occurred. This problem 



340 National Computer Conference, 1984 

was exacerbated by the fact that programmers and analysts 
were all left to work in their own manner with no common 
standards being applied from one to the other. Thus, not only 
was the maintenance excessive but more complex once the 
analyst or the author of the program had left the company. 

The next problem concerns the data dictionary facilities-at 
that time hand-driven-representing an encyclopedia of infor
mation about the programs and the data. Each separate com
pany clearly had such a system, even if it were only in the form 
of listings (which it usually was) spread around the company. 
Thus, there was no easy way for people to derive common 
terminology, find the basis of the work produced by others, or 
find where the data elements were being used to derive the 
required information. 

Another problem lay in the fact that the data were struc
tured solely for the applications that used them; in general this 
was unsatisfactory for other users. Even if an attempt were 
made to structure data over a greater variety of applications, 
the software facilities for achieving such desires were not 
available. The result of these problems was a general mixture 
of unprofessional implementations that proved difficult to 
use. 

In the late sixties all the factors mentioned above caused 
industry to turn its attention to viewing data in a totally differ
ent manner-to removing control and structuring capabilities 
away from the programmer and to creating a records de
partment on the machine itself. With respect to the analytical 
tools, great changes took place. Because the desire to achieve 
the results required a clearer view of the data-separate from 
the processes-in order to solve not so much the technical 
problems but the inherent business problems of attempting to 
share this data among a wider variety of users, questions 
needed to be answered: Who owns the data? Who can see the 
data? Whose data are correct when inconsistencies are found? 
Whose coding systems are acceptable where several exist for 
the same items? How would controls be implemented in terms 
of availability, of security, of privacy, of ease of access, of 
reliability, of back-up, of recovery? 

Thus the industry turned its attention to analyzing the data 
in their own right, pulling out the elements that became 
known as entities, which were chunks of data representing 
real-world items that existed within the company, such as 
employee, building, order, car, invoice, etc., and attempting 
to view the inherent business relationships that existed be
tween these various pieces of data. In theory, we need have 
looked no further, since the overall picture of the data was 
that which we wished to incorporate on the machine. Un
fortunately the manufacturers imposed structuring rules upon 
us from the software, which was provided to handle the data. 
Not all of these relationships could be made optimal. 

It was necessary to question which relationships were more 
important than others, which were used more frequently. The 
only way to gain these answers was to question the actual 
usage of the data in terms of the information that was required 
by the applications that used the data. How frequently were 
activities carried out? Within those activities, which data were 
required? Which activities took priority over others? Thus the 
analytical methods broke into two distinct parts-the first 
attempting to view the entities and their inherent relationships 

that existed through the eyes of the business, and the second 
the processes that acted on those data. 

The clear view was to take a picture of the entire company's 
data so that the database, or records department, would pro
vide information for the entire company-a logical argument 
based on the assumption that the sharing of data and informa
tion was a good thing and could be argued strenuously. It is 
clear that this argument was good for the following reasons. 
First, the data were the only resources available within a 
corporation that clearly could not be replaced. There were 
banks to meet shortfalls of cash. There were other buildings 
if the current ones proved unsatisfactory. There were produc
tion lines to add stock if that were necessary. There was new 
equipment available if the old equipment wore out. There 
were job-seekers to replace those who left. 

But what would a company do if all its information was 
suddenly lost? Clearly it would have to close the doors, it 
could no longer function. And yet if one were to ask any 
question about the other resources; about such things as how 
much money is available; what buildings are ours; or how 
much stock is available, one could get answers to the very last 
detail. In the case of data and information, however, if one 
were to ask the average company how much it cost to collect 
the information they now have; how much they spend on 
maintaining the information they have obtained; or where one 
would find replacements; no satisfactory answer would 
emerge. This is an interesting factor considering that informa
tion is the only resource that is irreplaceable. Nevertheless it 
turned out that both the analytical methods and the software 
provided were incapable of coping with the entirety of a major 
corporation's data resources. This rendered incorrect the first 
assumption that we should share the data throughout entire 
companies. 

The second assumption that was made, and for which tradi
tional databases were produced, was that data would be cen
trally handled on very large mainframe machines. This was a 
logical assumption in the late sixties and early seventies be
cause that was precisely the direction of the hardware manu
facturers. However, as in the first case, this assumption 
proved to be incorrect. From the manufacturers' viewpoint, 
machines became smaller and smaller and more and more 
powerful, while the manpower investments in programming 
became greater and greater. This happened so much that in 
today's world every major department within a given com
pany can afford to acquire its own very powerful micro
computer costing no more than $7,000 or $10,000. Thus, these 
departments declined to use the central service and started to 
build their own systems using their own data. 

The third assumption made by the software manufacturers 
was that the relationships that existed between data were in 
practice, static, whereas the data themselves were volatile. 
For example, if there was a relationship existing between an 
employee and an address, when the employee moved, the 
data-the address-changed. If we consider an exact exam
ple, supposing Mr. Vemer currently lives in Amsterdam and 
then moves to Utrecht, we cross out Amsterdam and change 
the data to read Utrecht. This is a subtle misconception. Just 
because Mr. Vemer leaves Amsterdam, does not mean that 
Amsterdam disappears. What really happened was that the 



relationship that existed between Mr. Vemer and Amsterdam 
changed and the relationship now became between Mr. 
Vemer and Utrecht. Because the assumption that data, as 
opposed to the relationships, were volatile, it was concluded 
by the majority of software manufacturers that it was not a 
problem to incorporate physical pointers within the data; a 
subtle error that rendered most packages very inflexible. Of 
course, they were flexible in their ability to change the data by 
adding records, adding fields, and changing fields, because 
the assumption was that the data were volatile; but they 
proved very inflexible when it was required to change the 
relationships. So much so that several such changes would 
often imply a complete redesign. 

The next assumption was that the encyclopedia-type re
quirement of meta-data provided by the data dictionary would 
require only passive assistance. This means that it would be 
used as a "look-up" mechanism in much the same way as a 
telephone directory would be used for people wishing to find 
information about telephone numbers. This assumption also 
proved to be incorrect because the majority of users of the 
data had difficulty in predetermining the relationships that 
they would use and the pieces of data that would be required 
to view their information. Thus, in our telephone book exam
ple, we may not know the name of the company but only its 
address-an impossible situation if you wish to look up a 
telephone number. In reality, it is necessary to be able to go 
to the dictionary, ask the question, and receive the answer-at 
the time you wish to pose the question. Would it not be easier 
if we had a telephone book or a service we could call and only 
decide at the time of the call which pieces and relationships we 
wished to use-and still be able to acquire our view of the 
information as we wished it to be determined? 

The next assumption was that each user of the data must 
have his own language in order to communicate with the 
database management system. Thus different languages were 
invented-a data manipulation language for the program
mers, a data definition language for the designers, and a query 
language for the users. Once again, if we were all talking 
about the same data, this is a totally incorrect assumption 
because if we are to share things, we must all communicate in 
the same language. 

We can therefore conclude that almost all predetermined 
assumptions made by the industry for its requirements in the 
use of database management systems were wrong. This has an 
impressive consistency-five assumptions and a 100% record 

Information Resource Planning and Management 341 

of failure. As a result of these assumptions being incorrect, 
certain problems began to appear generally throughout all 
companies. Rather than go into them in detail, I shall simply 
list them. 

1. Duplication of data 
2. Inconsistent data 
3. Loss of central control 
4. Excessive maintenance 
5. Lack of standards 
6. Unprofessional implementation 
7. Duplication of effort 

Ironically enough, these are exactly the same problems that 
we had set out to solve initially. Clearly, the analytical tools 
would not on their own solve these problems, although a 
recognition began to emerge. It was obvious that the data 
must be viewed quite separately from the processes that acted 
on them. In theory, data-modeling techniques were enough to 
build a database, but the state of the art did not permit us to 
optimize every relationship that existed between the elements 
of data. Thus the input from the analytical tool on examining 
the activities separately was required in order for us to pro
duce a physical design. This single factor backs up the argu
ment that the analytical tools cannot, in practice, be separated 
from the state-of-the-art technology that exists. Further, tools 
were required to bring together the modeling techniques with 
the activities that acted on and used the data to create infor
mation. It also became clear that there was another require
ment-a clear statement as to why the analysis was being 
performed in the first instance, since analysis on its own will 
solve no problems if it turns out that the problem is not one 
of computer inefficiency or misuse of data. For example, sup
pose a company were to decide that because its bills were not 
being paid quickly enough, a new computer system was neces
sary. Upon further examination it was determined that the 
bills must first be presented to the accounts department, then 
sent to the heads of departments incurring the bills, then sent 
for approval to the persons who incurred them, then sent back 
to the heads of departments, then returned to the accounts 
department, and then sent to the payables department. If this 
cycle took 40 days, no computer system in the world would 
improve the situation. Consequently, it was recognized that a 
clear statement must be made as to the intention and purpose 
of the new system and for the data and analytical tools to be 
used. 





IRP/IRM methodologies 

by MICHAEL R. WOOD 
Helix Corporation 
Westlake Village, California 

ABSTRACT 

Within the next 10 years, the social, psychological, behavioral, and managerial 
disciplines necessary to develop and support information resource planning (IRP) 
and its subsequent management (IRM) will be integrated into most corporations. 
The assimilation, and therefore, impact of these nontechnical disciplines will com
pletely reshape the way organizations evaluate, acquire, and use technologies avail
able to them. 

More specifically-although the EDP industry has traditionally been the primary 
provider of information processing technologies-the most crucial challenge facing 
EDP professionals today is to broaden their exclusively technical focus to include 
the new disciplines and methodologies that support organizational requirements as 
a whole. 

This paper will focus on defining what information resource planning is, who 
should be involved in the process, and the implied impact of IRP and IRM on 
organizations. 

343 





WHAT IS INFORMATION RESOURCE PLANNING 

Information resource planning is the process of identifying the 
fundamental structure of data available to an organization 
from both internal and external sources. The process encom
passes an evaluation of how that identified data must be ac
cessed, formulated, and manipulated in order to support the 
operational requirements, tactical needs, and strategic goals 
of the organization. IRP seeks to discover the true structure 
and behavior of data within an organization. At a minimum, 
any IRP effort must result in a definitive assessment of how 
the data available to an organization can be organized to 
support its current operational information processing re
quirements. Any IRP effort falling short of this goal will result 
in a plan that does not support the most basic organizational 
needs. 

Prerequisites of a Successful IRP Effort 

For any IRP/planning effort to be successful, an organiza
tion must commit to performance of the following activities: 

1. Defining the organization's reason and purpose for 
being 

2. Defining the organization's industry and business 
environment 

3. Defining the organization's short- and long-term goals 
and expectations 

4. Identifying and analyzing existing organizational 
activities 

5. Assessing the technological, social, and organizational 
impact of goals and expectations against the existing 
business practices and activities 

6. Formulating detailed tactical plans to change existing 
business practices and activities to bring them into align
ment with the organization's short- and long-term goals 
and expectations 

Completion of all of these tasks implies a cohesive and highly 
goal-directed effort by an entire organization (not just DP or 
management) . 

IRP as a Methodology and Discipline 

IRP's primary responsibility is to take the goals, expecta
tions, and dreams formulated in the boardroom and tum them 
into operational reality. This planning cycle cannot be accom
plished on a casual basis. A discipline that incorporates prag-

IRPIIRM Methodologies 345 

matic, goal-directed, profit-oriented techniques must be 
adopted and integrated into an organization. The discipline/ 
methodology used and defined for the organization must be 
understandable and applicable by everyone from the board
room to the assembly line. The tools and techniques must 
promote the effective and efficient use of the human resource 
while allowing the exploitation of technological resources. 
The methodology must maintain employee focus on the or
ganization's goals and expectations without sacrificing the 
individual need for self-actualization and positive personal 
experiences. 

Relationship between IRP, Systems Development, 
and IRM Methodologies 

Any systems development effort must presuppose that a 
certain level of commitment, interest, and involvement exists 
on the part of the organization requesting it. That pre
supposition also implies that the requesting organization 
understands what it expects from the new system and how 
the new system will affect the human and technological re
sources available to it. Unfortunately, systems development 
efforts seldom begin with such suppositions and implied 
understandings. 

Furthermore, most development efforts are clouded with 
miscommunications, misdirection, poor documentation, con
fusion, and poor attitudes. The goal of the individuals within 
the organization, therefore, becomes self-preservation, and 
the momentum of the organization and its individuals is 
greatly reduced. 

Although the data processing group in an organization can
not issue an ultimatum to management to adopt the organiza
tional disciplines required to make all development efforts 
successful, it can incorporate certain disciplines into its 
suborganization that can slowly influence and encourage oth
ers in the organization to follow suit. Since DP has tradi
tionally been charged with the task of successfully and effi
ciently servicing and managing the organization's information 
requirements, and because its area of influence transcends 
organizational boundaries, DP is perfectly positioned to as
sume the role of a change agent in an organization if DP is 
willing. 

The Role of DP in the IRP and IRM Process 

Traditionally, DP has been charged with the specification, 
design, implementation, and maintenance of the information 
processing requirements of an organization. Unfortunately, 



346 National Computer Conference, 1984 

DP has traditionally been ill-equipped to effectively execute 
the specification phase of the charter because data processing 
people's background and training has been primarily technical 
in focus. During the 1950s and 1960s, this focus was accept
able and adequate. However, by the early 1970s the grace 
period of innovation was over and organizations had begun to 
realize that the data processing function was not keeping pace 
with the business requirements. Organizational management 
had also begun to realize that data processing cannot be a 
separate entity from the rest of the organization or have an 
unintelligible language. Data processing must be held at least 
as accountable to standard business practice as the rest of the 
organization. 

The true problem is not technically related but rather 
people-related. Since DP has never been required to acquire 
and maintain any skills in interpersonal relationships, busi
ness administration, and business management, the ability of 
the MIS organization to communicate with the business and 
operational counterparts of the organization fell far short of 
management's expectations. Since there was no common 
ground for communication, management seldom got what it 
wanted from data processing. While management lost con
fidence in DP's skills and in DP's ability to perform its re
sponsibilities, DP regarded management as unreasonable and 
incompetent to discuss or decide information issues. Neither 
management nor DP has recognized that the problem is a 
behavioral one. Instead, more money and human resources 
have been spent in an attempt to improve the technological 
foundation of DP. The result has been a critical decline in 
processing productivity, as well as a decline in the productive 
use of the human resource. The electronic and technical revo
lutions of the 1980s have increased the awareness on the part 
of operational and business management personnel that to 
soive the information backlog, a shift must take place in how 
the human and technological resources are employed. 

The concept that information is a resource, a tool, has 
emerged. Terms like decision support, corporate database, 
and fourth-generation environments dominate the literature. 
Even though organizations have begun to realize that re
solving the information resource requirements of an organiza
tion requires more than just technological advances, the focus 
is still on more productive tools and products. Organizations 
are spending their capital and human resources on micro
computers, local area networks, information centers, fourth
generation languages, database management systems, and de
sign methodologies, all in the hope of resolving problems that 
have taken 30 years to create. The sad fact is that all the tools 
in the world will not resolve a single organizational informa
tion resource problem if that problem is not quantitatively 
defined in terms of its value to and impact on the organization 
as a whole. To accomplish this quantitative definition, prag
matic and humanistic planning techniques must be employed. 
DP is most likely to be charged by operational management 
with the responsibility for acquiring the skills necessary to 
develop IRPs and to administer IRMs. This charter, however, 
has a time limit. If data processing does not adopt and become 
proficient in these planning techniques, the chaner win be 
reissued to an emerging group in an organization. 

Information Administration Group 

The new organization will be known as the information 
administration group (lAG) and will report directly to the 
executive branch of the organization. The individuals in
volved in the information administration function will have a 
strong foundation in (1) behavior psychology, (2) organiza
tional behavior, (3) management science, and (4) systems 
theory. 

The information administration group will employ prag
matic planning and management methods, which require par
ticipation by both the staff and line personnel of the organiza
tion, to identify and define information resource management 
requirements. Their charter will be to implement the strategic 
plans of an organization through tactical and operational lev
els in a proactive manner. The lAG's tools will include the 
following: (1) information resource planning methodology, 
(2) prototyping methodology, and (3) fourth-generation ap
plication development tools. 

There is no doubt that this group of individuals will be 
firmly in place in most major organizations during the 1990s. 
The information center concept is evidence of the shift toward 
the lAG. The only questions are where this group will reside 
in the organization and to whom it will report. DP has until 
1987 to provide leadership by implementing a plan to a~om
plish the information resource planning and management 
function, or, by default, have its role reduced to equipment 
operations and applications maintenance functions. Un
fortunately, because it lacks the disciplines and attitude neces
sary to make the change, projections are that all new develop
ment and related maintenance will probably be removed from 
DP's jurisdiction and control. In short, if DP does not shift its 
Jechnological, self-preservation focus, its focus will become its 
negative legacy and therefore its downfalL 

Information Resource Planning Methodologies and Benefits 

For DP individuals and professionals to maintain control 
over their destiny, they must learn to assume the role of 
information resource planner and manager. In order to be 
successful, the DP industry must reassess the manner in which 
systems are currently developed. Traditionally, less than 7% 
of the development cycle is spent on planning of user's 
expectations and needs. Approximately 70% of the develop
ment effort is spent in programming and testing. The remain
ing 23% is usually spent in some sort of design effort. As a 
result of the limited planning, definitive and quantifiable 
project scopes are never set in place. Since user organizational 
needs and expectations are poorly defined, the products de
veloped meet with a less than favorable response from the 
organization. This in turn results in the deployment of tre
mendous effort and resources in maintenance, which is the 
remodeling, rebuilding, and reprogramming of systems that 
were inadequately specified to begin with. 

Poor planning typically results in on-going system mainte
nance costs that often exceed the deveiopment costs by as 
much as 500% within the first five years of use. This standard 



scenario could easily be avoided by reallocating the develop
ment dollar as follows: (1) 30%-information resource plan
ning, (2) 50%-prototyping, and (3) 20%-packaging and 
fine-tuning. 

By focusing 30% of the project effort on IRP, the following 
benefits accrue to the following: 

The human resource: (1) users learn to take responsibility 
for their needs, (2) communication barriers are eliminated 
between management, users, and DP, and (3) definitive 
project scopes are set in place. 

The financial resource: (1) project management costs are 
reduced by 50% or more and (2) overall project costs are 
reduced approximately 20%. 

The technological resource: (1) focus of project shifts from 
individual applications to an overall organizational processing 
environment and (2) data relationships and behavior replace 
programming as primary system foundation. 

As a direct result of performing the IRP phase, the 
documentation required for full support of a proto typing ef
fort is produced. This documentation includes (1) measurable 
statements which define the impact of the new system on the 
existing environment, (2) quantitative statements as to why 
the existing environment requires change and what changes 
are required, (3) definitive models of how each activity in
cluded in the project is and will be performed, (4) a definitive 
model depicting the structural relationship or the data re
quired to support the activities being changed, (5) a complete 
data dictionary, (6) a definitive model of what source docu
ments and data, updates, and outputs are needed to success
fully complete each activity, and (7) a complete understanding 
of the impact of any process on the environment and what 
preventive or monitoring processes must be included to en
sure system integrity. 

IRP Implementation-Prototyping 

By using IRP documentation in conjunction with the 
fourth-generation application development tools available to
day, the following additional benefits are experienced: (1) 
30% reduction in overall project cost and time (50% total), 
(2) 70% reduction in training costs, (3) 70% reduction in user 
and technical manual preparation costs, (4) ongoing mainte
nance costs of approximately 20% of original development 
cost over first 5 years of use, and (5) users whose expectations 
are aligned with the deliverables of the system installed. 

The following example illustrates the dramatic cost savings 
available through the combined use of IRP and prototyping 
techniques, as opposed to more traditional development 
efforts: 

Traditional Project Budgeted at $250,000 
Planning costs $ 
Requirements and design costs 
Programming and testing 

TOTAL $ 

17,500.00 
57,500.00 

175,000.00 
250,000.00 

IRPIIRM Methodologies 347 

Subsequent maintenance cost over 
next 5 years 1,000,000.00 

True System Cost $ 1,250,000.00 
IRP and Prototyping Equivalent 

Planning (IRP) $ 37,500.00 
Prototyping 62,500.00 
Packaging and finetuning 25,000.00 

TOTAL $ 125,000.00 
Subsequent maintenance cost over 

next 5 years 25,000.00 
True System Cost 150,000.00 

OVERALL COST SAVINGS $ 1,100,000.00 

Although the savings appear to be extraordinary, they are 
indeed attainable. However, even factoring the IRP/proto
typing cost example by 100% (i.e., development costs equal to 
traditional development costs), the reduction in ongoing 
maintenance costs is still substantial ($500,000). 

IRPIIRM-The Human Factor 

The above example offers a great deal of encouragement to 
organizations currently buried underneath the proverbial 
applications backlog. Most DP organizations, however, are 
emphatically opposed to any change in the approaches or the 
tools currently being used. On reflection, the reason for DP 
opposition becomes clear-fear of the unknown and fear of 
change. After all, the DP and MIS professionals employed by 
organizations are only human, like the users they serve. Why 
shouldn't they react to change, especially radical change, in 
the same manner as anyone else? In short, technological 
change had a shocking impact on user organizations in the 
past; and now the shock of behavioral science, technology 
management theory, IRP/IRM methodologies, and tech
nological changes is evidencing itself in DP. Management 
must commit itself to rebuilding organizational communica
tion and productivity. 

Pilot projects must be funded to build internal performance 
and achievement statistics (i.e., rebuild mutual credibilities). 
Mutual commitments must be secured from both DP and 
management to institutionalize IRP and proto typing meth
odologies. Programmers must be trained in systems and busi
ness analysis techniques. Strategies must be formulated so 
that they can be transferred from the labor environment and 
the cost-intensive procedural language environment to the 
high-productivity and human-resource-efficient information 
resource management environments. 

CONCLUSION 

This paper began by stating that the disciplines related to IRP 
and IRM will be actively in place in large organizations during 
the 1990s. This prediction is not motivated by desire but by 
the need for survival. The inertia of the productivity tools 
being developed today, along with the fast-increasing price of 



348 National Computer Conference, 1984 

technology, will make painfully obvious the gross inadequacy 
of the traditional practices and approaches used to develop 
and manage effective information-resource environments. 

The only question is who within an organization will be 
given the charter and responsibility for achieving such 
information-resource environments. Although DP depart
ments will be given the first chance, their inability to cope with 

the demands of this newly emerging environment may result 
in a total demise of the DP organization and the emergence of 
a more humanistic and organizationally oriented group. 
There is no doubt that the waves of change are lashing at the 
breakwalls of the nation's organizations. Our success wiIllie 
in our ability to become adaptable and pliable enough to 
profit from it all.. 



Simulation as an aid to software transferability 

by AARON H. KONSTAM 
Trinity University 
San Antonio, Texas 

and 
RONALD G. REINHARD 
The Woman's Shop 
San Antonio, Texas 

ABSTRACT 

Transferring software to a new host environment is one of the major problems 
facing installations wishing to upgrade their computer systems. This study investi
gates the effectiveness of simulation of an old host environment on a new host 
machine as a partial solution to the software transferability problem. A simulated 
environment of a Singer System Ten minicomputer was developed to run on an 
Alpha Micro microcomputer. The results of the project demonstrate that a simu
lated environment can be effectively used as an aid in transferring computer oper
ations to a new host machine. It was also found that this technique is particularly 
suitable when software on the host machine is so dependent on features of the 
hardware that automated software translation is not feasible. The current gener
ation of microcomputers is shown to be more than adequate to support the simu
lated environment of a minicomputer-based system. 

349 





INTRODUCTION 

At present, computing systems are becoming cheaper and 
smaller, but at the same time faster and more powerful. As 
older computer systems are rapidly becoming obsolete, many 
companies have begun to explore ways to transfer their cur
rent computing tasks to these newer microcomputer systems. 

The major problem in making such a transfer is the diffi
culty and cost of software conversion. 1,2,3 Another problem 
arises from the testing involved to determine whether the 
software runs correctly after conversion.4 As for cost, hard
ware may be getting cheaper, but the labor costs of software 
generation are steadily rising. One solution to these problems 
is found in the process of simulation or emulation of the old 
machine on the new machine. Once the simulation or emu
lation software is produced, the old software can run on the 
new machine. If the machines have very different architec
tures, the old software will probably run more slowly and less 
efficiently in the simulated environment; so in most cases the 
simulation provides only an interim solution while new soft
ware accomplishing the same tasks can be written for the new 
machine. 

The use of simulated environments to aid software con
version to a new machine is not a new idea. It has been used 
successfully for at least two decades. 1 What is new, however, 
is the use of microcomputer systems to support such an envi
ronment. This paper discusses the process of generating an 
environment simulating the operation of a Singer System Ten 
on an Alpha Micro computer system. 

The Singer System Ten and the Alpha Micro represent two 
radically different approaches to hardware structure. Con
structing the simulated environment, therefore, was a major 
task in software design. It was necessary to simulate not only 
the processor but also the rather peculiar environment in 
which the System Ten controls its peripherals. 

Although the simulation software described in this paper 
specifically applies only to the two computing systems men
tioned above, the problems encountered in simulating one 
computer system on another computer system are of general 
interest. 

OVERVIEW OF THE SYSTEM TEN COMPUTER 

The System Ten is a multitasking, multiprogramming com
puter capable of executing up to 20 independent programs 
concurrently. The computer hardware is in total control of the 
allocation of CPU time and system resources to each pro
gram. Each of these 20 jobs is executed in a memory partition 
of fixed size. Each job can transfer information in and out of 
the System Ten through a variety of Input/Output Control-

Simulation as an Aid to Software Transferability 351 

lers, can store and retrieve information from data files 
through a File Access Channel, and can access a common 
memory shared by all the jobs running in the system at that 
time. 

All characters used by the System Ten for both data and 
instructions are represented by a six-bit subset of the ASCII 
character set. Character strings of up to 100 bytes can be 
manipulated by the processor in one instruction. 

Numbers on the System Ten are stored in main memory in 
their ASCII representation. Numeric fields of one to 10 bytes 
can be manipulated by the processor in one instruction. When 
the processor is instructed to perform an arithmetic operation, 
it performs binary coded decimal (BCD) arithmetic on the 
numeric parts of the characters in each operand and leaves the 
result as a string of ASCII characters. The System Ten per
forms integer arithmetic, leaving scaling operations to the 
programmer. 

Address fields are four bytes long. The numeric parts of the 
four bytes represent the addresses 0000 through 9999 in BCD. 
A 1O,000-byte page address is formed by ASCII bit five in 
three of the four bytes, and ASCII bit seven in the rightmost 
character determines whether the address is in common or 
partition memory. 

The instruction word is a fixed-length field 10 characters 
long and must always be located at a memory address that is 
divisible by 10. (See Figure 1.) 

Main memory on the System Ten is divided into partitions 
that are byte-addressable. The number of partitions is deter
mined by the number of Input/Output Controllers (lOC) 
physically resident in the system. Partitions from 1,000 to 
80,000 bytes can be allocated by use of a hardware jumper in 
the IOC of each partition. At least 1,000 bytes of main mem
ory are dedicated to a common memory that can be accessed 
by programs running in a partition. The first 300 positions of 
common memory are protected from general memory writes 
and are used by the hardware operating system to store status 
imd program counters for each of the 20 partitions. Each 
partition contains three index registers at fixed memory loca
tions; therefore, no special instructions exist for manipulating 
index registers. Memory addressing within a partition is rela
tive to the beginning of that partition's memory; that is, the 
first memory position for each partition is location 0000. 

The Input/Output Controllers handle all peripherals except 
disk and tape drives. Each device on the IOC is assigned a 
unique one-digit identifier. Device zero is normally a CRT 
used for program loading and execution. A device can only be 
accessed by a program residing in the partition associated with 
the IOC controlling that device. 

The System Ten contains one File Access Channel (FAC) 
that can control up to four magnetic tape drives and up to 16 



352 National Computer Conference, 1984 

CHARACTER 

o 23456789 

ZONE 
BITS 

NUMERIC 
BITS 

4 

3 

2 

IDA 

LA 

F 

PA 

I 

c---f--A-

1 

CA IA IB CB 

I lOB PB EIX 

I 
I-- LB f--""-B-f--

I 

o 23456789 

CHARACTERS OF INSTRUCTION 
F Operation code 

IDA A operand address Is In Indirect mode 

LA A operand length 

CA A operand address is in common or partition memory 

IA A operand addres8 Is indexed by one of three index registers 

PA Three bit page address for the A operand 

A Four digit A operand address (relative to start of partition or 

common memory page) 

lOB B operand address Is In indirect mode 

LB B operand length 

CB B operand address is in common or partition memory 

IB B operand address Is Indexed by one of three index registers 

PB Three bit page address for the B operand 

B Four digit B operand address (relative to start of partition or 

common memory page ) 

EIX Operand indexing indicator : Full memory indexing or page 

memory indexing 

Figure l-System Ten instruction word format 

logical ten megabyte disk drives through associated magnetic 
device controllers, The FAC is a shared facility available to all 
partitions. 

OVERVIEW OF THE ALPHA MICRO SYSTEM 

The Alpha Micro System is a multitasking, multiprogramming 
system based on the Motorola MC68000 microprocessor. The 
largest model will concurrently handle up to 60 users. 

The multitasking, multiprogramming features are imple
mented through a software executive. This software executive 
is part of the Alpha Micro Operating System (AMOS).5 
AMOS is made up of several components: Command Pro
cessor, Job Scheduling and Control System, Memory Control 
~ystem, File Service System, Terminal Service System, and 
Utility Routines. 

Although the Alpha Micro software and System Ten hard
ware approaches to multiprogramming differ considerably, 
they are conceptually similar. Both employ a fixed memory 
structure, set by system initialization on the Alpha Micro and 
set by hardware jumpers on the System Ten. Both the System 
Memory on the Alpha Micro and the Common Memory on 
the System Ten are usable by all jobs running in the system as 
a means of sharing programs, data, and communication be
tween jobs. The Alpha Micro and System Ten both service 

their jobs in a round-robin fashion, sharing the CPU time 
among jobs. 

The project described in this paper utilizes an Alpha Micro 
AM-1042 to support the simulated environment. This system 
consists of the Alpha Micro 1001L processor, 512 kilobytes of 
main memory, one 32-megabyte Winchester-type disk drive, 
one videotape recorder/player for backup, two Ampex D81 
CRTs, one Texas Instruments 810 printer, and the AMOSIL 
version of the Alpha Micro Operating System. 

SIMULATION OF THE SYSTEM TEN 
INSTRUCfION SET 

The System Ten has five addressing modes: Absolute, In
dexed, Indirect, IndirectlIndexed, and Immediate (ADD 
ADDRESS Instruction only). 

Five instructions are used for the manipulation of numeric 
fields. These five-ADD, SUBTRACf, MULTIPLY, DI
VIDE, and FORM NUMERIC FIELD--compose what are 
known as the two-length instructions. In this form the A and 
B operand may each be from one to 10 digits long and may use 
any addressing mode except Immediate. The algebraic sign of 
the operands and results of these operations is indicated by bit 
seven of the rightmost digit of the operand or result. If the bit 
is on, the number is negative; otherwise the number is posi
tive. These instructions perform their functions from right to 
left in the operand fields. The simulator performs these oper
ations in a manner similar to the System Ten, with one excep
tion. The System Ten executes on the operands in place, 
whereas the simulator copies the operands into a work area, 
performs the operation, and copies the result back into the 
target operand field. The instructions perform the following 
operations: 

1. ADD-Algebraically adds the numeric contents of the 
A operand to the numeric contents of the B operand. 

2. SUBTRACf-Algebraically subtracts the numeric con
tents of the A operand from the numeric contents of the 
B operand. 

3. MULTIPLY-Ca1culates the algebraic product of the A 
and B operands and develops the result in the B 
operand. 

4. DIVIDE-Calculates the algebraic quotient of the A 
and B operands and develops the quotient in the right
most positions of the B operand and the remainder in the 
leftmost positions of the B operand. 

5. FORM NUMERIC FIELD-Moves the numeric por
tions of the A operand to the B operand, leaving the B 
operand to contain the numeric value in the form used 
by the arithmetic instructions. 

The System Ten supports five instructions used for the ma
nipulation of character fields. These instructions-MOVE 
CHARACfER, MOVE NUMERIC, EXCHANGE, COM
PARE, and EDIT-make up the System Ten one-length in
structions. In this form, the A and B operands are of the same 
length, from one to 100 characters long, and may be any 
addressing mode except Immediate. These instructions per
form their functions from left to right in the operand fields. 



The simulator performs these operations in the same manner 
as the System Ten: 

1. MOVE CHARACTER-Transfers the characters in the 
A operand to the corresponding characters of the B 
operand. 

2. MOVE NUMERIC-Transfers the numeric bits of the 
characters in the A operand to the numeric bits of the 
characters in the B operand. 

3. EXCHANGE-Interchanges the characters in the A 
operand with the corresponding characters in the B 
operand. 

4. COMPARE-Compares the character in the A operand 
with the corresponding characters in the B operand and 
sets the condition code register to reflect the relationship 
between the operands. 

5. ED IT-Moves numeric parts in the A operand to the B 
operand. The B operand identifies a control field, which 
contains characters to control the suppression of leading 
zeros; insertion of check protection characters; and iU
sertion of punctuation characters such as commas, hy
phens, decimal points, and a sign indicator. 

The System Ten has two instructions that are used for ma
nipulating the four-byte memory address fields. These in
structions are simulated in the same manner as performed on 
the System Ten: 

1. ADD ADDRESS-Adds the address bits of the A oper
and to the address bits of the B operand. 

2. MOVE ADDRESS-Moves the address bits of the A 
operand to the address bits of the B operand. 

The System Ten BRANCH instruction allows the program 
to change the path of execution. The BRANCH may be un
conditional, dependent on the result of a previous instruction, 
dependent on a request for service from an input device, or a 
link to a subroutine. 

The System Ten has one instruction, SET MODE, which 
may be used to inhibit partition switching, to perform a system 
reset, and to allow changes to the protected area of common. 
This permits partition zero to change the program counters 
and status of other partitions, thus forcing another partition to 
load and begin execution of a program. 

Two instructions are used by the System Ten to transfer data 
between memory and peripherals or storage devices: the 
READ and WRITE instructions. The System Ten supports 
two types of input and output devices: Terminal devices 
(CRTs and Printers) and File devices (Disk and Tape drives). 

DESIGN OF THE SIMULATOR 

Prior to developing the simulation of the System Ten on the 
Alpha Micro, other System Ten replacement alternatives 
were explored. The replacements generally entailed redesign 
of System Ten to employ state-of-the-art technology. These 
approaches allow the user to continue using the current soft
ware with conversion efforts ranging from no conversion at all 
to a moderate conversion that uses a totally different disk 

Simulation as an Aid to Software Transferability 353 

management facility. By maintaining the System Ten oper
ating environment, a user would not be able to use the exten
sive software base existing on other machines, such as com
prehensive word processing, spreadsheet programs, program 
development aids, and application packages. 

Consideration was also given to developing a software 
translation program at the source program level. The only 
common language ever successfully developed on the System 
Ten was RPGII, and its use was relatively small. Therefore, 
most System Ten software, both system and application, has 
been developed in System Ten assembly language. Given the 
System Ten method for handling arithmetic operations and 
the programming tricks often required to write working soft
ware, the possibility of writing an effective software trans
lation program was practically nil. 

Obviously, the primary goal in any simulation project of 
this nature is to imitate the operations of the source computer 
on the target computer as efficiently as possible. To accom
plish this goal, the System Ten simulator was designed to 
follow closely the original System Ten hardware implementa
tion. A secondary goal was to allow the concurrent operation 
of simulation and native modes on the Alpha Micro. This is an 
important consideration ",hen the simulation process is ap
proached as a conversion aid· rather than as a permanent 
solution to the problems of changing computer hardware. 
This goal was attained by designing the simulator to observe 
AMOSIL system conventions and therefore to maintain the 
integrity of the AMOS/L operating environment. 

Although the System Ten approach to processing informa
tion and performing multitasking is radically different from 
most of the current computers available, it still has several of 
the same hardware functions, which must be simulated: 
Memory Access, Fetch and Instruction Decode, and Instruc
tion Execution. 

Memory Access is normally the easiest one of these hard
ware functions to simulate. Within the simulator program, 
memory exists as a large variable, and access to memory is 
accomplished by indexing from the beginning of the variable. 
It is important to maintain starting and ending memory ad
dresses to trap memory access violations (e.g., attempts to 
access beyond the end of memory). In simulating the System 
Ten, memory access also involves converting the four-byte 
BCD memory address to a binary address for accessing the 
memory variable. 

The simulated Fetch and Instruction Decode routine per
forms the same functions as the equivalent hardware oper
ation: retrieving the next instruction and maintaining the pro
gram counter. As an instruction is fetched, parts of the in
struction are decoded and placed into registers and variables 
for use during instruction execution. Subsequent to retrieving 
the entire instruction, the remaining functions of the decode 
routine are performed, including operation code validation, 
address modification (e.g., indexing, indirect addressing), 
conversion of instruction address to actual simulated memory 
address, memory address violation checks, operand length 
validations, and passing program control to the proper in
struction execution routine. Since the System Ten has a fixed 
instruction word of 10 bytes for its 16 instructions, the Fetch 
cycle was relatively easy to simulate. In attempting to simulate 



354 National Computer Conference, 1984 

other computers, which may have variable-length instruction 
words, it would be necessary to fetch the operand code, deter
mine operand length by using an operation table or operation 
length algorithm, and fetch the remaining portion of the in
struction. On the other hand, the Decode cycle was more 
complex to simulate because it performs the memory acces
sing verifications and conversions described above for both 
instruction operands. In the case of indirect and indexed oper
and modes, as many as five address conversions may be re
quired for a single operand. When simulating computers using 
binary memory addressing, the tiIlle spent in address con
version would be significantly reduced. 

For Instruction Execution, with the exception of the ADD 
and SUBTRACT instructions, each simulated System Ten 
instruction has its own routine to perform the desired oper
ation. Since the ADD and SUBTRACT executions are so 
similar, there is only one routine to perform these operations. 
Each routine has the effective Alpha Micro address passed to 
it from the Decode function and is responsible for manipu
lating the data as required and for setting the proper condition 
code on the basis of the result of the operation. Upon com
pletion, each Instruction Execution routine returns to the 
Fetch routine. 

In addition to the three hardware functions described 
above, other aspects of the source computer design will influ
ence the simulator design. The System Ten hardware, for 
example, is in control of partition management and time 
allocation and therefore requires a partition Switch Cycle. 
This cycle is generally not present in the operation of other 
CPUs, but in this case it must be simulated so that the multi
tasking feature of the System Ten can be faithfully modeled. 
In addition to its other functions, the Fetch routine is re
sponsible for maintaining simulated instruction times and de
tewining when C! pC!-rtition switch is required. When 2. switch 
is required, the Fetch routine releases control to the Switch 
routine, which is responsible for updating certain portions of 
System Ten status, finding the next partition in sequence to 
receive control, retrieving that partition program counter, and 
releasing control back to the Fetch routine to begin program 
execution for the new partition. 

The System Ten instructions that manipulate data work 
strictly with memory resident operands. There are no registers 
and therefore no register instructions. It should be noted that 
the System Ten allows indexing and therefore does have index 
registers; however, the index registers reside at fixed locations 
in partition memory and are treated as memory operands. In 
designing simulators for computers that have true index regis
ters and data registers, the simulation of registers and register 
operations would have to be addressed. 

Perhaps the most difficult task of simulator development 
resides in imitating input and output, especially terminal input 
and output. Although it is possible to attach a variety of 
terminal devices to the System Ten, the simulator developed 
in this project allowed only CRT input and output and printer 
output. The System Ten interfaces very intimately with its 
peripherals and creates situations very difficult to simulate 
v.rithout totalli}" simulating the peripheral in soft\lt'are. In ef
fect, the latter was necessary to ensure CRT input and output 
compatibility with existing System Ten application software. 

Since the simulation mode in this project was designed to 
coexist with native operations on the new system, it was im
portant to prevent collisions in accessing system resources. 
Since the Alpha Micro uses a print spooler for almost all 
printing tasks, the simulator was designed to channel all print
er output to a spool file and to recognize a special (unused) 
form of the System Ten WRITE instruction to allow the print 
file to be closed and submitted to the spooler for actual print
ing. This also allows a printer to be available for each simu
lated partition, whereas on the System Ten a manually oper
ated peripheral switch is required to attach a printer to a 
partition. It is also important to note that the simulator has the 
responsibility for assigning the print file names. By using a 
combination of partition number, date, and time, unique 
names are assigned to avoid name collisions between par
titions or the same partition at different times. 

The coexistence of simulation and native modes was also 
taken into consideration when designing the simulated disk 
drive interface. The simulator was written to use the random 
file facility of AMOSIL. The System Ten uses a fixed-disk 
sector of 100 bytes. The Alpha Micro uses a fixed-disk sector 
of 512 bytes. The simulator maps five System Ten sectors into 
one Alpha Micro sector, thereby wasting 12 bytes per sector. 
After the six-byte BCD System Ten disk address is converted 
to a binary number, a simple calculation determines the 
record number and displacement within the Alpha Micro file. 
To increase efficiency, the simulated disk read checks the last 
block read against the block to be read to prevent extra disk 
seeks. The simulated disk write, however, always peforms a 
disk write to maintain the integrity of the data. 

PROBLEMS ENCOUNTERED 
IN SIMULATOR DEVELOPME!\TT 

It should be relatively easy to design and develop a simulation 
of one computer in another, providing that the target com
puter has at least the capacities and capabilities of the source 
computer. There are, however, three major areas in which 
problems may be encountered: deviations in simulated and 
actual hardware operations necessitated by differences in the 
source and target computers; interfacing input and output; 
and idiosyncrasies of the source computer. 

Part of the design considerations in planning a simulator 
involve determining the most efficient method to perform the 
simulation on the target machine. Though it may be possible 
to follow the original hardware design exactly, the extra in
structions required may produce an inefficient simulation. It 
therefore becomes necessary to deviate from the original 
hardware design, but it is extremely important to ensure that 
the proper results are generated. One example of this phe
nomenon in the System Ten simulator involves performing the 
arithmetic functions. Although the MC68000 processor has 
BCD add and subtract instructions, they address one byte as 
two BCD digits rather than as an ASCII character. The Sys
tem Ten design also allows the two operands to be of different 
lengths, from one to 10 bytes. To accommodate theSe condi
tions, the simulator copies the operands for the lengths speci
fied in the instruction into work areas, performs lO-digit BCD 



arithmetic, and copies the proper result to the target operand 
for the proper length. 

As mentioned above, interfacing input and output is prob
ably the most difficult part of implementing a simulator. As an 
example of the type of input and output problems encoun
tered in the System Ten simulation, an output operation to a 
CRT that causes the screen to scroll places a 3 in the condition 
code register of the processor. This condition code can be 
used to determine whether the terminal is a hard-copy work 
station (which will not set the condition, since there is no 
screen to scroll) or a CRT. If the device is a CRT, this condi
tion can also be used to determine if the CRT has 20 or 24 lines 
on the screen. Since most terminals currently available do not 
provide this type of feedback, it becomes necessary to per
form terminal simulation as well as a processor simulation. 

Another difficulty of implementing a simulator involves du
plicating the idiosyncrasies of the hardware, which will often 
by used by operating and application systems. The CRT test 
just described is an example of one System Ten idiosyncrasy. 
Another example involves the use of overlapping operand 
fields, which provide consistent and predictable results but are 
often used by programmers to perform data transformations 
whose purpose is difficult to understand. The EDIT instruc
tion, normally used for inserting punctuation characters into 
numeric fields to provide a formatted output, has been clev
erly used to produce the absolute value of a field by over
lapping the source and target operands. Still another example 
uses an obscure feature of the System Ten partition switching 
operation whereby a shared subroutine can safely execute 
self-modifying code in lieu of longer reentrant code. For the 
simulator to allow this, it was necessary to duplicate the rela
tive execution time of each instruction, accumulate the simu
lated elapsed time, and allow a partition switch to occur at the 
exact place that the System Ten would have switched partions. 

To assist in solving these problems it is extremely helpful to 
have debugging aids on both the source and target machines. 
These aids will normally take the form of trace programs, 
which allow single-step and continuous tracing. It is also in
valuable to build a trace function into the initial version of the 
simulator that can produce a display of each instruction as it 
is executed. When this trace is compared to the trace displays 
from the source computer, it should be easy to spot discrep
ancies, although in some cases the comparison will be very 
time-consuming. 

RESULTS 

Following extensive research into the design and structure of 
the System Ten and the Alpha Micro, approximately two 
person-months were required to bring the software simulation 
from initial design to installation of the first production ver
sion. The simulator, written in AMOSIL MC68000 assembly 
language, requires approximately 18Kb of memory plus the 
memory required to simulate System Ten partition and com
mon memory. 

During the initial design phase of the System Ten simulator 

Simulation as an Aid to Software Transferability 355 

program, it was determined that the simulated environment 
would be considerably slower than native System Ten oper
ation. This was due to the inordinate amount of time that 
would be spent encoding and decoding the unique System Ten 
memory addressing scheme and to the significant program
ming involved in simulating the System Ten arithmetic and 
partition switching functions. In reality, the overall simulator 
throughput is twice as slow as the native System Ten used for 
the comparison. Certain arithmetic intensive applications 
proved to be even slower, whereas the difference in the data 
entry type of task appeared to be nominal. It was also deter
mined that adding more than three or four simulated par
titions began to cause a noticeable degradation in both the 
simulated and native system operations. This degradation 
proved to be the result of the terminal simulation required to 
support the System Ten environment rather than overhead in 
the processing simulator. The area of terminal simulation ap
pears to be the only area of the simulation that can be targeted 
for additional development to improve efficiency. 

In the particular installation where the simulated environ
ment is in use, the software transfer plan consists of (1) re
writing the three major applications that consume approxi
mately 80% of the processing load into the native Alpha 
Micro environment and (2) using the simulation to perform 
the remaining 12 applications until they can be scheduled to 
be rewritten. This allows all production work to continue, 
while essential new application development can also be 
aCcomplished. 

CONCLUSIONS 

Simulated environments can be used effectively as aids in 
transferring computer operations to a new host machine. At 
best, this approach may offer only an interim solution to the 
software transferability problem. But it does allow the data 
processing installation to continue uninterrupted while soft
ware for the new host system is generated. 

This is especially true in the case of the System Ten, where 
software is so dependent on features of the hardware that 
automated or semiautomated software translation is not 
feasible. 

It is also evident that current generation microcomputers 
are more than adequate to support a computer environment 
that simulates that of a minicomputer-based system. 

REFERENCES 

1. Snyders, J. "Conversion: Trauma or Tea Party." Computer Decisions, 14 
(1982), pp. 35-50. 

2. Lemoine M., and J. Mullor. "Software Transferability: A Practical Ap
proach." Software-Practice and Experience, 11 (1981), pp. 425-433. 

3. Casey, W. "Hard Facts about Software Transferability." Government Data 
Systems, 6 (1977), pp. 44-47. 

4. Walker, M. G. "Program Portability." Datamation, 28 (1982), pp. 140-149. 
5. Alpha Microsystems. "Introduction to AMOS." Prepared by Alpha Micro

systems, Irvine, California. 





Software manufacturing techniques 
and maintenance 

by PAUL BASSETT 

Netron Incorporated 
Toronto, Ontario, Canada 

ABSTRACT 

"As ye sow, so shall ye reap." 
A good solution to the reusable code problem turns out also to provide a solid 
technical basis from which to understand and deal with the production, quality, and 
maintenance issues of the software industry. To this end, a software manufacturing 
methodology has been developed called Computer-Aided Programming. CAP is 
based on a functional programming concept called a frame. Frames were originally 
developed as a means of resolving the maintenance problems associated with re
usable code. 

The introduction explains the necessary background ideas about frames and the 
types of maintenance that they address. Section two presents the design principles 
for software that uses frames as subassemblies for program assembly purposes. The 
components of an existing CAP system are described in section three, and section 
four discusses the use of CAP as a manufacturing technique. Statistics from a case 
study are presented to indicate that: (1) production-quality commercial software 
can be manufactured at rates exceeding 2000 lines of debugged COBOL per man
day (including systems design time), and (2) less than 10% of this code needs to be 
hand-writte'n or maintained. 

357 





Software Manufacturing Techniques and Maintenance 359 

INTRODUCfION: THE MAINTENANCE PROBLEM 

Software has had a precocious, turbulent childhood, as is 
typical of newly emerging disciplines. In spite of many impor
tant advances, software still remains a hand-made commodity 
designed in an ad hoc manner with few standards; a product 
that is almost always late, poorly documented, and difficult to 
maintain. 

Maintenance, more than any other factor, holds the soft
ware industry captive, strangling productivity and tying up 
vital programming resources. The half-life of a typical pro
gram is approximately 14 months. The maintenance statistic 
now approaches 70% and is still climbing. 

The central thesis of this paper is that a substantial portion 
of the maintenance effort stems from the reusable code prob
lem. A good solution to this problem turns out also to provide 
a solid technical basis to understand and deal with both the 
production and quality of software and the maintenance issues 
currently besieging the software industry. 

The Reusable Code Problem 

In the software industry's current cottage industry style, it 
is common practice to build new programs by cutting and 
splicing pieces of old programs together. This approach dem
onstrates that there is great deal of potentially reusable code 
available, and that it is worth the effort to adapt it rather than 
starting from scratch. Reference 16 shows that unfortunately 

1. The programmer does not have any systematic way of 
isolating just what portions of programs are relevant 

2. The customization process is time consuming, tedious, 
and prone to error 

3. Once the process is finished, both old and new programs 
must be maintained as if each were completely unique, 
despite the considerable common functionality. Mainte
nance effort should be proportional to the novelty in the 
system, not the number of source statements.4 

External Subroutines 

It is still widely believed that external subroutines form a 
satisfactory repository of reusable code. Separately compiled 
and linked subroutines are obviously useful, but they are lim
ited because there is no graceful or systematic means of effec
ting local customization of an external subroutine to fit each 
calling program's particular context of use, or of effecting 
global evolution of a subroutine when it must change to ben
efit all future callers of that subroutine without victimizing 
current callers. 

The subtle and often frustrating side effects introduced 
when common components undergo maintenance directly 
contributes to the severity of the maintenance problem. 

The root cause is that a subroutine is a representation for a 
single function that is not adaptable at source-program (func
tion) construction or maintenance time. It may have consid
erable run-time flexibility, but at the time of actually molding 
the subroutine into the program that must use it, an external 
subroutine (by its very nature) has no flexibility at all. 

Code Generators 

Code generators have been around for years (e.g., RPG). 
Although they offer a potential to drastically simplify the 
maintenance .of large portions of a program, their potential 
goes unrealized.2

,lO 

The simplest kind of code generators are those that gener
ate "raw" source code. The problem with such generators is 
that they are basically "one-shot" tools. Because each gener
ator is expert at only a part of the overall problem,3,17 pro
grammers must supplement and modify the generated source 
code to suit their own needs. Having adapted the code, they 
have no means of reusing the generator without destroying all 
of their manual modifications. This forces the programmer to 
support the life-cycle maintenance of the program at the more 
difficult and error-prone level of generated source code, 
rather than the succinct, declarative level of the original input 
to the generator. 

To be more useful, a code generator must allow some 
follow-on mechanism that can adapt the generated source 
code automatically, thus allowing reuse of the generator with
out the loss of the customizations. 

More sophisticated code generators typically supply "user 
exits" for handling this problem. These provide linkage to 
separately compiled, external suroutines that usually can be 
written in a variety of general purpose languages. The trouble 
is that. this is always an additive technique; there is no way to 
change or remove generated functionality. Also, predefined 
interfaces often omit information that is essential in the 
customization (the "black box" effect). In addition, all non
procedural parts of the generated code, such as data dec
larations, are simply unavailable for refinement. A proper 
solution requires generators to provide for automatic customi
zation of generated code (not just run-time communication 
with generated modules). 

The Frame Methodology 

A frame methodology, 13,14 has been developed to address 
the reusable code problem from the perspective both of pro-



360 National Computer Conference, 1984 

grammers and of code generators.3 A frame is a machine
processable representation of an abstract data type ,9 with "ab
stract" meaning functional.!,3 Because the data operators are 
functionals, not functions, frames can accommodate both lo
cal customization into an individual program and global evo
lution to benefit all future embedding programs. Frames are 
implemented as files containing a mixture of source code 
(e.g., COBOL) and preprocessor macro commands, but are 

; quite unlike the proposals of Backus! or Evans.8 This mixture 
is called frame text. 

There are just four macro commands whose essential role 
is to automate the cutting and splicing of programs: 

1. COPY-INSERT allows a frame hierarchy to be copied 
into a program (by nanling the frame at the root of the 
hierarchy), and causes customizing frame text to be IN
SERTed anywhere into that hierarchy. 

2. BREAK-DEFAULT defines a named "breakpoint." 
Breakpoints mark arbitrary places in a frame where cus
tom frame text can be INSERTed to supplement or re
place DEFAULT frame functionality. 

3. REPLACE systematically substitutes a specific code 
string for a generic one (throughout a frame hierarchy). 
For example, field names and picture clause elements 
are generic if they tend to vary from program to 
program. 

4. SELECT incorporates into a program one text module 
from a set of modules in the frame. SELECTs are like 
CASE statements (with arbitrary nesting), which oper
ate at text construction time. An important use of SE
LECT is to automate version control (global evolution). 

Frames are written both by analysts and by generators. 
Having code generators produce frames solves the problem of 
destroying subsequent refinements by automating the cutting 
and splicing of the customizing frame text into the generated 
frame text. 

All customizing frame text for one program is localized for 
maintenance purposes into a SPECIFICATION, or SPC, 
frame. Typically, the size of this file will be less than 10% of 
the generated source code. An SPC governs the entire process 
of building the compilable source program from its frame 
components. As will be seen, a methodology incorporating 
frames at its heart offers a potential for 

1. Fill-in-the-blank program specifications (rapid proto
typing) 

2. Automation of the process of reusing previously built, 
high-quality software (both human- and machine
written) 

3. Automatic customization in context 
4. Maintenance of only what is unique in a program 
5. Evolution of reusable components without obsolescence 

(elimination of unnecessary retrofits) 
6. Painless enforcement of good programming techniques 

(standards) 

THE DESIGN OF SOFTWARE MANUFACTURING 
TOOLS 

In order to realize the potential of frames, especially with 
regard to maintenance, a software development environment 
has been created, called Computer Aided Programming. CAP 
is fundamentally a manufacturing paradigm, in which stan
dard frames are the standard subassemblies, various frame 
generation steps are the processing operations on basic com
ponents (raw materials) to produce fabricated parts, and the 
CAP processor operating on the SPC frame is the process of 
final assembly with any custom options. 

The Role of Languages 

Our industry continues to proliferate languages unabated, 
and this is both necessary and desirable. 17 The creation of 
each language is motivated by a desire to reduce the effort of 
solving, in computer executable form, some class of problems. 
But does this mean we can eliminate the programming? 

In Reference 5 the following definitions were developed: 
Problem solving is fundamentally a process of finding or com
posing a suitable function (1) whose domain is the problem's 
input information, (2) whose range is the goal of the problem 
(Le., the desired output), and (3) whose function is consistent 
with other problem constraints. 

Playing chess is an example of problem solving. The domain 
of a chess function is the set of legal board positions. The 
range is the set of legal moves associated with each position. 
The constraints include the time available to select a move, 
the need to find a "good" legal move, any memory of what 
moves were "good" in past games and so on. 

Programming is a form of problem solving by function com
position, in which one must deal with either the order of 
composition, or the interfacing of component functions, or 
both. At one extreme, selecting from a menu is an effective 
way for nonprogrammers to solve their problems. At the 
other extreme, selecting assembly language instructions will 
solve an interesting problem only with a great deal of pro
gramming effort. 

By distinguishing problem solving from programming, it 
becomes possible, with respect to a given class of problems, to 
group language expressions into three levels: underspecified, 
optimally specified, and overspecified. 

Optimal specification languages 

A language is said to optimally specify a function space (and 
hence an associated problem class) if and only if:5 

1. The language is isomorphic to the function space; that is, 
each distinct function is denoted by only one distinct 
expression, and only the functions in the space are ex
pressible. 

2. Tne degrees of freedom (constraints) are independent, 
optimally specified subspaces (of constants, variables, or 
functions) . 



Software Manufacturing Techniques and Maintenance 361 

3. The language's well-formed expressions are the "most 
compact" with respect to all languages satisfying (1) and 
(2). 

In practice, this definition is weakened. Part (1) is approx
imated by first designing the language to be virtually one-to
one, then assuming the function space (implied by the lan
guage's semantics) to be what was "really meant" by the 
solutions of the original, unformalized problem class. Part (2) 
is approximated first by striving for as much independence as 
possible, then by applying as many context-sensitive error 
tests as are practical to any remaining dependent degrees of 
freedom. Finally, Part (3) is ignored as long as the language 
users are happy. 

It turns out that such "weak optimal-specification" lan
guages are a realistic approach to problem solving without 
programming. Functions usually can be defined simply by 
grouping the names of some subfunctions under a new func
tion name, without regard to the order in which these sub
functions are performed and without regard to how these 
subfunctions must communicate with each other. Their com
pilers are called code generators because each generator plays 
the role of a programmer, converting a declarative, optimal 
specification into procedural, overspecified code, which itself 
must be compiled. Examples of this type of language as used 
in CAP are described in this paper. As has been noted, CAP 
design principles require the generated code to be in the form 
of frames. 

It should be clear that the properties of optimal languages 
permit maintenance efforts to be minimized, provided that 
the resulting programs can be produced automatically. 

Underspecification 

An underspecification language is like an optimal-specifica
tion one except that the relationship of well-formed expres
sions in the language to the possible solution functions is 
one-to-many. There may be many degrees of freedom that 
play secondary roles in the structure of the overall function 
space. There may be several functions, each expressible in a 
different language, which must be combined, but whose de
grees of freedom intersect or are interdependent. In these 
situations, an underspecification language can be used to 
quickly "broad brush" the major functional features of the 
solution. The code generator then employs heuristics to spe
cify one solution function at the optimal level that is reason
able and consistent with any overlapping degrees of freedom. 

Thus, the underspecified level is the prototyping level, feed
ing the optimal level where the life-cycle maintenance efforts 
are performed. Again, the key requirement is that the soft
ware manufacturing tools automate the flow of specifications 
between levels. 

Overspecification language 

In an overspecification language, the relationship of well
formed expressions to functions is many-to-one, and proper
ties (2) and (3) of an optimal language do not hold even 

weakly. Overspecification languages are ubiquitous. For ex
ample, every computer's binary or assembly language lacks 
the syntax to express directly the right degrees of freedom for 
most of the problem classes to which the machine is applied. 
So programming, which is often done by a compiler, is inevi
table at this final stage of problem solving. 

To date, virtually all software maintenance has been per
formed at the overspecified level (for reasons discussed ear
lier). This is a significant factor in increasing the maintenance 
effort required. Provided that the software environment is one 
where a homomorphic map from the optimal to the over
specified levels exists, an order-of-magnitude reduction in 
life-cycle maintenance effort can be expected based simply on 
the reduction of code to 'be maintained. 

To sum up the role of languages, whenever a useful function 
space can be defined by an optimal specification language, 
programming can be relegated to the computer. To further 
enhance problem-solving leverage, multiple underspecifica
tion, front-end editor-generator pairs can be built that create 
optimal specifications. These expressions are processed in 
turn by editor-generator pairs and create programs at the 
overspecified level, but maintain them at the optimal level. 
Any special-purpose, custom functionality is kept in the SPC 
frame, which directs the CAP processor in its final assembly 
tasks of building or rebuilding the complete source program, 
then compiling and linking it into executable form. 

The Role of Frames 

Frames are used to formalize the common intermediate 
stage in the program construction process, prior to the frames 
being combined and customized into a single program (func
tion). There are two reasons for having this stage. First, recog
nizing the open-ended nature of problem solving, an exten
sible library of standard frames and templates, together with 
generated frames, can support custom programming for any 
problem. Second, the ability to mechanize the assembly of a 
program, given the diversity of its components, depends on 
bringing them to a common notation. 

Standard frames 

As problems are discovered to be related, a standard frame 
can be evolved to span the implicit function space. Each frame 
represents a functional, whose domain defines (using the 
COpy and REPLACE commands) the degrees of freedom 
appropriate to the class of related problems, and whose range 
(all possible instantiations of the frame text) is the corre
sponding function space. By fixing those degrees of freedom 
in various ways, various problems in the class can be solved 
without programming. 

This is not to say that programming has been eliminated. 
Usually real problems refuse to confine themselves to neat, 
predefined classes. Accordingly, a frame's breakpoints and 
SELECT clauses constitute open-ended degrees of freedom, 
where solutions can be arbitrarily extended, if necessary.5 

Standard frames are used whenever the function space is 
too limited in scope or usage to warrant a new optimal 



362 National Computer Conference, 1984 

specification language. This approach to problem solving is 
implemented by using templates. A template is an uncus
tomized SPC frame, and usually spans a hieratchyof frames. 
It collects in one linear list (a file) all degrees of freedom 
appropriate for a useful class of problems. The replacement 
strings, subfunction selection choices, and insertion points for 
the frames in the hierarchy constitute a fill-in-the-blank meth
od of customizing the program. Thus, templates and frames 
together permit problems to be solved in a manner that pro
gressively reduces traditional programming to a minimum, 
given the open-ended nature of real problems. 

To the degree that system design expertise can be stored 
inside the system, the SPC frame can itself be created by 
designer tools working at the underspecified level. 

Generated frames 

Certain function spaces have degrees of freedom too dy
namic to be represented by fixed, standard frames. Well
known examples are screen and keyboard interfaces and re
port definitions. For these cases, optimal languages can be 
developed in association with frame-writing generators. 

By generating frames instead of raw source code, open
ended (programming) degrees of freedom become available. 
Such degrees of freedom are required in the overall problem 
class, but should be suppressed in the various optimal 
specification languages. Further customizing can be specified 
via an SPC without the hand editing or restrictive user exits 
associated with conventional generators. Basically what has 
happened is that the editing that would otherwise be neces
sary to properly customize the generated code has been mech
anized. In so doing, we gain both an assembly line style of 
constructing programs and an ability to maintain the program 
using its optimally defined pieces (rather than its overspeci
fied code). 

Anatomy of a CAPtool 

Figure 1 depicts the flow of specifications from the under
specified or designer level, through the optimally specified or 
customizer level, down to the overspecified or source and 
object levels. Life-cycle maintenance is performed with the 
customizer (special purpose) editors. Please note that where 

Specific screen & report specifications 
Fill-in-the-blank report & screen customizers 
Fill-in-the blank designer 
Specific Needs 
Generate Custom Frames 
Splice Compile Link 
Custom Executable Program 
Specific frame specifications 
Fill-in-the-blank SPC frame customizer 
Model 
Soiution 
Frames 

Figure l-CAP flow specifications 

reference is made to screen and report specifications, these 
are examples of optimal-specification languages with respect 
to the problems of commercial data processing. A CAP tool 
may use either, both, or neither of these languages, as well as 
other notations, if the problems warrant. 

AN AcruAL CAP SYSTEM 

At Netron Inc., a CAP system has been developed for use on 
WANG VS computer systems applied to commercial data 
processing using COBOL. The following reflects current func
·tionality and some soon to be released tools. 

UnderspeciJied Level Tools 

1. CAPinput-for building interactive file maintenance 
and data entry programs 

2. CAPoutput-for building report programs based on 
general data selection criteria 

3. CAPfile-for building general file-to-file transforms and 
interfaces 

These three tools are each structured as shown in Figure 1. 
Specification of a complete program requires that an analyst 
answer a small number of questions (most of which have 
defaults). 

Optimal-SpeciJication-Level Tools 

1. CAPscreen-for designing and maintaining interactive 
screen and keyboard functionality 

2. CAPreport-fol" designing ami maintaining repon 
functionality 

3. CAPframes-a library of standard frames 

The (weakly) optimal notations are used by designer tools and 
by analysts, either in conjunction with underspecified-level 
tools or independently. 

A complete description of these languages is beyond the 
scope of this paper. 5 Very briefly, independence of degrees of 
freedom is typified by having screen (report) layout facilities 
completely independent of the attributes of each screen (re
port) variable. On the other hand, some degrees of freedom 
are not completely independent. For example, if a variable on 
a screen is declared as having run-time error checks, and is 
declared as not being assigned to an internal variable after the 
operator enters it at run-time, then these two degrees of free
dom are in conflict (and the conflict must be resolved). 

The tools themselves generate frames from the optimal 
specification. These frames in tum make extensive use of the 
hierarchy of available CAP frames. Because the frames are 
written using general-purpose (but overspecified) COBOL, 
the programmer has exact control over the "fine tuning" his 
particular application may need in order to convert a func
tional into the required function. 

The CAPframes are the heart of the CAP system. Each 
frame implements a useful function space whose patterns have 



Software Manufacturing Techniques and Maintenance 363 

been recognized by their appearance in several programs. The 
frames are organized into a taxonomy that guides the problem 
solver to the relevant functionality. 

DISCUSSION OF TOOL USAGE 

Types of Users 

The consistent application of the under-optimal-over de
sign principle offers access potential to the industry's three 
major user groups: end-users, analysts, and programmers. In 
CAP's current implementation, it is an analyst-oriented soft
ware manufacturing system. The focus has been to provide 
tools that aid in the manufacture of larger, more complex 
systems. 

CAP could be designed for nonprogrammers, but few are 
inclined to cope with the open-ended applications to building 
and maintenance that are CAP's main strengths. Most people 
like driving cars and some even enjoy fixing or rebuilding 
them. But who wants to design and manufacture them? 

Because CAP is a manufacturing paradigm, most of the 
benefits stemming from the organization of a conventional 
manufacturing enterprise become available to data processing 
shops. In particular, the frame-engineering department is 
quite analogous to a conventional engineering department. A 
useful division of labor is created. Those responsible for de
signing and maintaining the organization's inventory of stan
dard software components (frames) can work independently 
from those charged with getting the application software 
products out the door. The benefit of having centralized stan
dards control is obvious. 

Rapid Prototyping 

While not part of maintenance as such, rapid prototyping is 
a very desirable feature of any software development system. 
Moreover, it is important to ensure that rapid prototypes do 
not lead to maintenance nightmares. 

Conventional wisdom, stemming from the software disas
ters of the sixties and early seventies, has firmly entrenched 
the hedging policies of preparing exhaustive feasibility stud
ies, formal requirements definitions, structured walk
throughs, and the like. Often, the time and costs to plan a 
system are greater than the costs of building it. In turn, the 
specifications are usually out of date by the time they are 
finally approved, and the end-users still don't really know 
what they are getting, or if what they get is what they need. 
Another danger is that it is so easy to specify features that turn 
out to be much more difficult to implement than they are 
worth to the user. In short, the institutionalized policies of 
large data processing groups are no small contributor to the 
enormous applications backlog. 

Conventional wisdom can now be made wiser. 6,7,11,12,15 

CAP tools can write formal specifications that are understood 
both by people and by computers, and then convert the 
specifications to equivalent programs. We can now adopt the 
attitude of "what you see is what you get," and even let small 
prototypes constitute part of the design specification. 

End-users can "kick its tires" and iteratively guide the 
specifications. The implementation team can provide specific, 
detailed arguments as to why certain features should or should 
not be in the system, and can more accurately estimate the 
cost of a system's implementation based on deviations from 
the organization's current frame inventory. 

Productivity and Quality 

Using a tool such as CAPinput typically requires that the 
user spend a few minutes at the underspecified level. Without 
further customization, an executable program is available 
shortly thereafter. The following is the summary from a de
tailed case study that analyzes the actual use of CAP. 

Case study: The manufacture of the Canadiana 
requisition system 

Canadiana Garden Products Inc., is a subsidiary of NOMA 
Industries Ltd. In March 1983 Canadiana employed Netron 
Inc., to create a computerized system to replace Canadiana's 
manual requisition system. The system was created using 
CAP and is run on a WANG VS computer using interactive 
terminals. The system allows requisitions to be created, main- . 
tained, displayed, searched, authorized, ordered, recorded, 
and reported upon. 

After the first week, enough of the system had been proto
typed that the client recognized serious design problems. The 
system was subsequently redesigned and put into production 
by the end of the third week. 

Sixteen programs were written using CAP tools to create 
and control the interaction of the 22 screens and three reports 
through which the requisition system is operated. CAP tools 
enabled the author to create the requisition system by writing 
less than 10% of the total COBOL lines needed. 

One method of judging the effect on maintenance with and 
without CAP tools is to compare the total number of lines of 
submitted source code in the entire requisition system with 
the number of hand-written lines. Purely comment lines were 
discarded. 

The results show a more than 10:1 reduction in lines of 
COBOL to be maintained. Of the 34,000 lines of submitted 
code contained in the 16 programs of the requisition system, 
only 3,000 lines were written by hand. 

The following table shows, for each of the 16 programs 
forming the requisition system, the number of lines hand writ
ten in the SPC frame, in the generated frames, in standard 
frames, and in the total submitted to the COBOL compiler. 

Quality 

Of course, the issue here is not merely to show that there is 
much less code to maintain. Further analysis of the manu
factured programs show that they are more consistent with 
respect to user-interface and structured program style, more 
reliable, more functionally complete, and no less efficient 
than conventional, hand-written programs. 



364 National Computer Conference, 1984 

TABLE I-Number of code liens 

Program Main Total 
Name CAPTool Source 

PREQI CAPinput 2979 
PREQ2 CAPinput 2130 
PREQ3 CAPinput 2318 
PREQ4 CAPinput 1721 
PREQ5 CAPinput 3440 
PREQ6 CAPinput 2776 
PREQ7 CAPinput 1510 
PREQ8 CAPinput 3018 
PREQ9 CAPinput 3238 
PREQA CAPinput 3659 
PREQI CAPinput 3399 
PREQF Frame Lib. 274 
PREQG Frame Lib. 223 
PREQR CAPreport 954 
PREQS CAPreport 1086 
PREQT CAPreport 1152 

The reason is that the standard frames and frame gener
ators are highly seasoned components in the course of whose 
evolution many improvements and optimizations have been 
made. The cumulative effects are capital assets (no pun in
tended) that yield a return on investment in every incorpo
rating program. Programs hand-written from scratch have no 
chance to acquire the quality and thoroughness that is the 
hallmark of a good frame. 15 

Life-cycle Support 

As previously indicated, by storing all source code customi
zations in one spot, factored away from both standard and 
generated frames, typical program maintenance is collapsed 
from 50-60 pages of source listing to two or three pages. By 
having the code generators emit frame code that can be cus
tomized automatically, the declarative specifications also sup
port the life cycle maintenance of the programs in a very 
convenient manner. 

Frame maintenance 

As with software, frames change through time. Standard 
frames tend to be relatively stable since they rapidly become 
seasoned through frequent reuse. But because they are func
tionals, they are able to absorb arbitrary amounts of change 
(including complete rewrites) without risking any previously 
written program. It is easy to arrange that the range (function 
space) of a new version of a functional be a superset of the 
previous version's range simply by providing a version control 
parameter governing a SELECT clause. 

This still allows the improved functional to recreate all old 
functional versions. An old program's SPC, unaware of subse
quent changes, references the frame hierarchy with its old 
version symbol (if any), and gets exactly the same code it has 

SPC Generated Standard 
Frame Frames Frames 

56 1731 1192 
71 1264 795 
78 1013 1227 
62 869 790 

421 1904 1115 
157 1766 853 
40 673 797 

206 1806 1006 
281 1910 1047 
436 2223 1000 
436 1916 1047 
187 0 87 
136 0 87 
140 198 616 
226 216 644 
179 290 683 

always gotten, even though new programs may get something 
quite different (the template always contains the latest version 
symbol). 

This does not mean that frames and libraries become more 
cluttered than in conventional shops. Conventionally, com
plete copies are kept of all versions (using distinct names), 
even though only small changes might have been made. 
Frames keep an automatic audit trail of the version differ
ences, with only occasional rewrites done to eliminate clutter. 
The obsolete (but still active) versions are placed in a separate 
library, again to eliminate clutter. Internal version references 
autom.ate the retrieval of the correct 'versior1. Thus, a single 
external name is common to all versions and less space overall 
is actually required. 

CONCLUSION 

It is important to realize that programs are models: deliberate 
approximations to an elusive and ever-changing external real
ity. Models are useful because they exploit a simplified 
representation. We know that Newtonian physics is wrong, 
yet we never use Einstinian physics when programming every
day calculations. A payroll system has an extremely skimpy 
model of the human beings on file, but it is quite appropriate 
for the intended purpose. 

From this perspective, development and maintenance are 
two sides of the same coin. Converging a software model to a 
useful approximation is called development. But the model 
also must be updated periodically in light of changing circum
stances, and this is called maintenance. The payroll system 
must quickly incorporate each change to the income tax laws 
to the extent that its model of those laws becomes invalid. 

The recent development of a software manufacturing pa
radigm has set the stage for changing our cottage industry into 
a mature technology. By unifying the techniques for program 
construction and maintenance, each productivity gain can si
multaneously benefit both. 



Software Manufacturing Techniques and Maintenance 365 

REFERENCES 

1. Backus, J. "Can Programming Be Liberated from the von Neumann Style? 
A Functional Style and its Algebra of Programs." Communications of the 
ACM, 21,8 (1978), 196-206. 

2. Balzer, R. "An alternative approach to software automation." In P. Weg
ner (ed.), Research Directions in Software Technology. Cambridge, Mass.: 
MIT Press, 1979, pp. 851-856. 

3. Bassett, P. B., and J. Giblon. "Computer Aided Programming (Part I)." 
In Proceedings of IEEE Conference on Software Tools and Techniques. 
(Soft Fair), Washington D.C., July 1983. 

4. Bassett, P. B., and S. Rankine. "The Maintenance Challenge." Computer
world In Depth, May 16, 1983. 

5. Bassett, P. B. "Design Principles for Software Manufacturing Tools." 
Presented at Symposium on Application and Assessment of Automated 
Tools for Software Development, Nov. 1-3, 1983, San Francisco, IEEE, 
(unpublished) . 

6. Bianchi, M. H., and J. R. Mashey. "Rapid Prototyping on UNIX. In 
Proceedings of the Software Engineering Symposium: Rapid Prototyping. 
(IEEE) Columbia, April 19-21, 1982. 

7. Blattner, M., and R. Frobose. "Prototyping and the Life Cycle of Soft
ware." In Proceedings of the Software Engineering Symposium: Rapid Pro
totyping. (IEEE) Columbia, April 19-21, 1982. 

8. Evans, M. "Software Engineering for the Cobol Environment." Communi
cations of the ACM, 25, 12 (1982), pp. 874-882. 

9. Goguen, J. A., J. W. Thatcher, and E. G. Wagner. "An Initial Algebra 
Approach to the Specification, Correctness and Implementation of Ab
stract Data Types." In R. Yeh (ed.), Current Trends In Programming Meth
odology. Vol. 4, Englewood Cliffs, N.J.: Prentice-Hall, 1979, pp. 80-149. 

10. Hammer, M., and G. Rugh. "Automating the Software Development Pro
cess." In P. Wegner (ed.), Research Directions in Software Technology. 
Cambridge, Mass.: MIT Press, 1979, pp. 767-790. 

11. HoughtOIi, R. c., Jr. "Rapid Prototyping Tools: What Can We Learn from 
the MIS World?" In Proceedings of the Software Engineering Symposium: 
Rapid Prototyping, (IEEE) Columbia, Md. April 19-21, 1982. 

12. Mason, R.E.A., and T. T. Carey, "Prototyping Interactive Information 
Systems." Communications of the ACM, 26,5 p. 347. 

13. Minsky, M. "A Framework for Representing Knowledge." In P. Winston 
(ed.), The Psychology of Computer Vision. New York: McGraw-Hill, 1975, 
pp. 211-277. 

14. Rich, J. "Inspection Methods in Programming." Ph.D. Thesis MIT Tech
nical Report AI-TR-604, June 1981 

15. Taylor, T., and T. A. Standish. "Initial Thoughts on Rapid Prototyping 
Techniques." In Proceedings of the Software Engineering Symposium: 
Rapid Prototyping, (IEEE) Columbia, Md., April 19-21, 1982. 

16. Wasserman, A. I., and S. Gutz, "The Future of Programming." 
Communications of the ACM, 25, 3 (1982), 196-206. 

17. Wulf, W.A. "Some Thoughts on the Next Generation of Programming 
Languages." In Perspectives on Computer Science. New York: Academic 
Press, 1977, pp. 217-234. 





A prototyping environment 
for real-time graphics 

by NOLA DONATO 
Four Phase 
Cupertino, California 

and 

ROBERT ROCCHETTI and JANET TOM 

MatteI Electronics 
Chicago, Illinois 

ABSTRACT 

As technology advances, graphics displays are becoming more powerful and less 
expensive, making interactive graphics increasingly popular as a method of man
machine communication. Often, nonprogrammers playa principal roie in the design 
and implementation of applications involving graphics. Because interactive graphics 
require such a high level of feedback with both human and hardware, traditional 
programming languages are not well suited for the graphics environment. 

This paper describes CGRASS, a portable, general-purpose programming lan
guage, and how it is used for prototyping videogames. The design rationale for a 
game-prototyping system is given, followed by an overview of the CGRASS lan
guage with emphasis placed on features particularly helpful for user interface design 
and modeling. We show examples of tools implemented for different hardware 
architectures and targeted for users of varying backgrounds. 

367 





INTRODUCTION 

Programming a production videogame requires a lot of time 
and an experienced assembly language programmer. Hard
ware for both arcade and home video games is very inexpen
sive compared to other types of graphics hardware. Corre
spondingly, resources such as CPU time and memory are 
quite limited, making the use of high-level languages seldom 
feasible. A significant part of game development involves 
modifying a program to fit in the small amount of memory 
allocated for the game. Time is also spent optimizing certain 
areas of code to make the game-play fast enough. A pro
grammer frequently has to take advantage of quirks in the 
game hardware to produce graphic effects. 

Usually, software tools to assist in the creation of a game 
run almost entirely on the game unit. They are programmed 
in assembly language (usually by game programmers) and are 
subject to the same speed and memory constraints as the game 
programs. As a result, tools are limited in functionality and do 
not tend to be very user-friendly; nonprogrammers often find 
them difficult to use. Typically, tools exist to create data struc
tures, such as pictures and sounds, and to manipulate them in 
simple ways. However, to do anything more complex, one 
must resort to assembly language. 

As the relative costs of human professional time and com
puter time shift, the interface between man and machine be
comes increasingly important. Many researchers are investi
gating methods of improving user interfaces for a variety of 
applications. 1

-
4 Powerful, user-friendly software tools are 

especially important in the video game environment where 
nonprogrammers, such as artists, educators, game designers, 
and marketing experts make major contributions to the 
application. 

One way to improve the game design process is to provide 
a way to make a working model of a game in a short amount 
of time. The decision about whether or not to manufacture a 
game can be made much earlier in the game's development 
cycle. Shortening the development loop allows more ideas to 
be tried, improving the quali~y of the game. Parts of the 
prototype (such as graphics,sound, and algorithms) can be 
applied to the final product. Finally, a good user interface can 
take input from novices as well as experts. 5 

DESIGN APPROACH 

We had several objectives for the design of our graphics
prototyping environment. 

1. The system should be easy to learn and usable both by 
nonprogrammers and programmers 

A Prototyping Environment for Real-Time Graphics 369 

2. It should be interactive and provide immediate feedback 
3. The system should have the ability to interface with 

vastly different hardware architectures 
4. The user interface should be consistent across satellite 

and host systems wherever possible. 

We divided the prototyping task into two parts. User inter
action is delegated to a host processor, allowing applications 
to be written in a high-level language. Machine-specific func
tions are programmed on the game unit (or, more generally, 
the satellite processor). By using a reasonably powerful com
puter as our host, we are freed from many of the limitations 
imposed by the smaller game units. Therefore, game develop
ment tools can be more comprehensive, user-friendly, and so 
on. Satellite graphics systems have been used successfully in 
both commercial and research environments. 6 

The type of host and satellite vary, as does the method of 
communication. For example, one configuration uses a large 
host, the V AXlll-780, connected to various types of satellites 
via serial ports. We have also been successful with a 16-bit 
microprocessor-based host linked through a parallel port to a 
graphics display. 

From the host, one can invoke a variety of tools to create 
pictures and sounds, animate objects, and so forth. One can 
also write game prototypes and new applications directly. In 
addition, tools for translating from one target system format 
to another are available. For example, videocamera input 
from a bit-mapped display can be converted into a form usable 
with some character-mapped devices. 

The Host System 

As the basis of our system we chose CGRASS, an inter
pretive programming language written by the authors. The 
CGRASS language is implemented in C and has been success
fully ported to many different machines and operating sys
tems. This choice allows the environment for both program 
development and production applications to be consistent 
across all hosts. 

In addition to being portable, the CGRASS language is 
very extensible. New commands may be implemented in 
either CG RASS or C and are easily added to the system. 
Programmers may create their own data types and define how 
the system operators and commands will interact with them. 
These capabilities make the language good for communicating 
with different satellite processors and for designing human 
interfaces.7 

Because it is interactive and dynamic, CGRASS is easy to 
learn and use. Control structures and data types are high-level 
and the system does much housekeeping automatically. Auto-



370 National Computer Conference, 1984 

matic type conversion, dynamic allocation, succinct expres
sive constructs, and data abstraction mechanisms make 
CGRASS ideal for implementing user interfaces as well as for 
general programming tasks. The system has on-line helps and 
source level debugging facilities, which shorten program de
velopment time. 

The Target Systems 

Because video game hardware is by nature idiosyncratic, we 
decided to implement most of the real-time graphics capabil
ities on the satellites. Each satellite processor has its own 
small, special-purpose, real-time executive that handles the 
coordination of graphic and audio events. This approach al
lows us to isolate the machine dependencies and standardize 
the user interface as much as possible. It also makes efficient 
use of the limited memory and speed resources. 

LANGUAGE OVERVIEW 

CGRASS borrows heavily from its predecessors GRASS3 
(which ran on the PDP-ll)8 and ZGRASS (a subset of 
GRASS3 for the Bally Arcade).9 Many of the ideas for graph
ics tools in the proto typing system are derived from work done 
with GRASS3. 10 Similarly, ZGRASS provided a model for 
development of machine specific capabilities for low resolu
tion bitmap displays. 

CG RASS is a higher level language than G RASS3, with 
more powerful data abstraction capabilities. It has the run
time flexibility of languages such as SNOBOL4,l1 while main
taining a structured nature similar to C. 12 Data types in the 
language include variable-length strings :md lists as '.vell as 
traditional numbers and arrays. Like C, CGRASS is operator
rich and expression-oriented. The global, local, and static 
identifier scoping found in C is also present in CGRASS. In 
addition to the C-like control structures, CGRASS provides 
backtracking and goal-directed evaluation similar to ICON.13 

CGRASS has no storage declarations, explicit allocation, 
or deallocation. Variables may be assigned any value during 
execution. Storage management and type conversion are han
dled automatically by the system. Strings and lists may be 
arbitrarily long, limited only by physical resources. Like 
GRASS3, the number and type of arguments to procedures is 
determined at run time. 

Execution Environment 

CGRASS is a conversational system; any statement that 
may be included in a program can also be typed at the termi
nal. In this way, CGRASS functions as a command language 
as well as a programming language (similar to the UNIX 
shell14

). LISP-based programming environments have shown 
this approach to be successful for numerous applications, in
cluding interactive graphics. 15 

The CGRASS program development environment allows 
code to be written entirely from within the system or imported 
from the outside. The system has a resident editor and the 

ability to invoke any other editor on the host operating sys
tem. Programs are debugged interactively at the source level, 
with assistance from the system in the form of on-line helps 
and descriptive error messages. 

To simplify the user interface with the language, many data 
types are identical at the source level; the differences between 
types are embedded in the implementation. For example, 
files, strings, arrays, and lists may all be printed using the 
same syntax. This holds true for other operations in the lan
guage such as comparison, subscripting, etc. For the most 
part, disk files and stri~gs behave identically; the use of the 
disk is hidden in the implementation. 

Built-in DataTypes 

CGRASS contains numbers, strings, and arrays, and pro
vides ways to compare, subscript and do arithmetic oper
ations. Strings are scalars in CGRASS, not arrays of charac
ters as in conventional languages. They may be compared, 
concatenated, indexed, or executed. Another built-in data 
type is the variable-length list. Like strings, lists can be con
catenated, indexed, or extended. CGRASS uses the same 
syntax for list manipulation as it does for the corresponding 
string or array operations. 

Files are a special data type in CG RASS because they act 
like strings but may also be treated as programs. Any oper
ation allowed on strings also works for files. In addition, they 
may be interactively debugged with the source level debugger. 
Files also have their own set of low-level input--output direc
tives, making it possible to access individual lines or charac
ters in an operating-system-dependent fashion. 

Control Structures 

Parameter passing in CGRASS is derived from the method 
used by its predecessor, GRASS3. A function does not have 
explicit parameters, argument input is done at run time, and 
the language provides a mechanism for automatically prompt
ing the user when a required argument is omitted. 

prompt 'What is your name' 
input name NAME 
prompt 'How old are you' 
input integer AGE 

In the example above, the prompt command will only be 
executed if there are no more arguments left to be parsed. The 
input command will fetch the next argument from the list 
passed to the function. If there are no more arguments left in 
the list, the program prompts the user at the terminal. This 
feature is especially useful for writing user interfaces. 

In addition to the traditional if, while, and switch con
structs, CGRASS supports goal-directed evaluation and gen
erators. 16 Generators allow a single expression to produce 
different values until a computationally useful one is found. 
Other languages like CLU, 17 database systems, and command 
languages, 18,19 have similar constructs, but in a more limited 
setting. 



for THING[count(size(THING»] > 
X print THING[_count] 

for each(THING) > X print this(THING) 

Both of the above statements print all elements of the group 
THING (which may be a list, string, array, etc.) that are 
greater than the value of X. In the first statement, count is a 
generator that returns the values of 1 through its argument 
each time it is invoked. The current value of the counter is left 
in global variable _count. In the second statement, the each 
generator produces as its alternatives the elements of its ag
gregate argument. The for construct forces every alternative 
of the each or count generator to be produced and compared 
with X. Note that this comparison may require type con
version depending on the types of X and this(THING}. The 
body of the loop will only be executed for successful values of 
the for expression. A user can write functions that behave like 
generators. This facility has been used to implement a set of 
string manipulation primitives in CGRASS.20 

Basic Primitives 

Numerous built-in commands are provided to assist with 
input, output, type conversion, calculation, and debugging. 
Almost any data type can be printed on the terminal with the 
print command or input from the terminal with the input 
command. Output from a command or function may be redi
rected into a string or file using the > operator. Similarly, 
input can be redirected with < (like the UNIX shell). Func
tions exist to open and close files, and to read and write lines 
or characters. These functions provide a low-level communi
cation path to serial ports as well as disk files. 

CGRASS has a set of list- and string-processing functions 
that assist in scanning the aggregate types. Each indexable 
data type keeps track of the last element accessed. In the case 
of strings, an element is considered to be a line (not a charac
ter). At any time, one can refer to the first, last, current, 
previous, or next element of an aggregate. 

function bubble { 
input value V 
for V[ count( count( size (V) -1, 2, -1»] < next(V) 

this(V) = > prev(V) 
return V 
} 

The function above performs a bubble sort on its argument, 
which must be indexable. Two nested count generators are 
used; the inner count generates subscripts starting at the back 
of the vector toward the first element and the outer count 
iterates from the first item to the inner index. Consecutive 
elements are compared and exchanged, with the operator, if 
they are out of order. Note that combined use of the scanning 
functions and goal-directed evaluation allows the body of the 
sort to be written in a single CGRASS statement without the 
use of temporary variables. This example illustrates how 
CGRASS can make a programming job easier by reducing the 
amount of information the programmer must handle. 

A Prototyping Environment for Real-Time Graphics 371 

Data Abstraction 

In modern languages, abstract data types provide an im
portant means by which the programmer may extend the lan
guage to include new data types not present in the base lan
guage. 21

,22 CGRASS is no exception to this. Users may create 
their own data types and define how existing operators and 
functions apply to them. Operators may also be defined for 
built-in data types. 

To illustrate how one goes about defining a new data type 
in CGRASS, let's define a table along the lines of SNOBOL4. 
For our purposes, a table will be a heterogeneous vector in
dexed by strings rather than integers. To keep the example 
simple, a linear search is used to look up each element; in 
reality, one would use a more efficient hashed-access method. 
The example below illustrates a class capable of instantiating 
and indexing a table. 

class table { 
if _class = =c~AKE return table(listO) 
input list TABLE 
if _class = = c_IND EX 

{ 
input string S 
for each(V)[l] = = S return this(V)[2] 
V = $ list(list(S, nUll» 
return last(V)[2] 
} 

The class declaration defines a function that will be invoked 
automatically whenever an operation is performed on an ob
ject of the class. The system sets the global variable _class to 
indicate which operation to perform. CGRASS then invokes 
the user-defined class function; this function uses _class to 
dispatch to the appropriate section and returns the result of 
the operation. 

Internally, our table is maintained as a list of index and 
value pairs. Each individual table element is a list whose first 
element is the index string and whose second element is the 
value of the element. To make a table we would do the 
following: 

abc = tableO 
abc['first'] = 1 
abc['second'] = 2 

: instantiate table 
: give it elements 

When the first statement above is executed, the code associ
ated with the class table is invoked with _class equal to 
cJ1AKE indicating that we are instantiating a table. When 
the table is indexed, as in the last two statements, the class 
code is again called, this time with _class set to c.JNDEX. In 
this case, the arguments to the class function are the table 
object and the index value. The code then searches the exist
ing table elements, comparing their index strings to the one 
passed. If a match is found, this element is returned. If not, 
a new table entry is made and appended to the end of the list. 
Similarly, we could define other built-in operations such as 
print, each, this, etc., for our new data type. 



372 National Computer Conference, 1984 

APPLICATIONS 

CGRASS was used in the development of many graphics 
applications. Some of these were prototypes which were later 
recoded in assembler and became part of the satellite pro
cessor repertoire. We developed tools to create and modify 
pictures, to define moving objects, and to animate them in 
various ways. Mechanisms were also provided for color 
animation23 and audio processing. For some satellites, one is 
given direct control over machine-dependent hardware 
features. 

There are two kinds of display hardware in the game 
environment-vector (analog) and raster (digital). Digital 
systems can be further subdivided into character-mapped24 

and bit-mapped25 architectures. CGRASS has been used to 
design tools for several different digital video displays of both 
types. 

The remainder of this section demonstrates how CG RASS 
was applied in the case of a character-mapped architecture. 
We discuss the distribution of work between satellite and host 
and give examples of specific data abstractions. 

Character-Mapped Architecture 

Character mapping is widely used in CRT terminals and 
consumer electronics. It is simple, inexpensive, and supports 
dynamic motion in a somewhat limited framework. The 
screen is broken up into M-by-N pixel rectangles, each of 
which is assigned a pointer. The pointer for a given rectangle 
(cell) refers to the particular member of the character set that 
will be displayed in that position. In addition to a pointer to 
a character, an individual screen cell may have other attri
butes such as ~olol, orit::lltation, and so Oil. Some systems 
have programmable character generators with which users can 
define their own characters. 

For the purposes of this example, we now describe a hypo
thetical, simplified character-mapped display. Each screen 
cell can have two attributes-a character number and a color. 
The background color of each character is fixed across the 
entire screen; the foreground color is variable. User-defined 
characters are not considered in this discussion. 

The following class permits the programmer to view the 
screen as a two-dimensional array. Each element of the array 
has two attributes: the number of the character that occupies 
the cell, and the color of the foreground. 

class screen { 
if _class = = c_MAKE return screen(null) 
input value SCREEN 
if _class = = c~SSN : clear whole screen? 

{ 
gput O_CLR, input(int); ggo : clear to color 
return screen(SCREEN) : return the class 
} 

if _c1ass = = cJNDEX : access cell? 
return Cel1(input(int), input(int), input(int» 

freturn 
} 

There are only two operations defined for the class screen in 
the declaration above. No data are associated with members 
of this class because they are all maintained by the satellite 
processor. 

Assignment into an object of type screen clears the entire 
screen to the given color. In order to produce any visible 
change, we must tell the game unit to clear the screen by 
calling the gput and ggo functions, which send the appropriate 
information to the satellite. In this case, we send a predefined 
opcode (O_CLR) to clear the screen, followed by the color we 
wish to clear it to. The gput function stores each of its argu
ments in an output buffer. Invoking ggo causes the accumu
lated contents of the output buffer to be sent to the satellite 
processor. 

Although references to individual screen cells are trapped 
in class screen, the actual work is done by class Cell, described 
below. 

class Cell { 
if _class = = c_MAKE 

return Cell(1ist(input(int), input(int») 
input list CELL : get cell list 
X = CELL[l], Y = CELL[2] : get coordinates 
switch _class 

{ 
case c_REF 
gput O_CGET,X,Y;ggo 
return list(ggetO, ggetO) 
case c~SSN 

: read cell 
: get cell contents 

: write cell 
input list L : cell contents 
gput O_CPUT,X,Y,L[l], L[2] 
ggo : put card number, color 
return Cell( CELL) 
} 

The Cell class allows one to read or write the contents of an 
individual screen cell-that is, the character number and the 
color. The satellite has opcodes O_CGET and O_CPUT de
fined to read and write attributes of a particular cell. The gget 
function fetches the next input byte from the satellite pro
cessor, in this case the character number and then the color. 

A scheme such as the one above buries a lot of the machine
dependent details inside the satellite processor. For example, 
the dimensions of the screen need not be known to the host; 
limit checks are made on the satellite. The communication 
mechanism used by gput, ggo, and gget is also transparent to 
the application. 

One of our satellite processors has two serial ports and 
connects the terminal to the host. A single serial line trans
mitting ASCII hex format data handles all communication. 
On another system we use two serial lines. One line is used for 
host-satellite communications and uses a binary protocol; the 
other handles a terminal. Still another system uses a parallel 
port. The same low-level set of functions is used in all three 
cases. Whenever possible, we have tried to make the same 
opcodes accepted by different satellite processors. 

Given a general view of a character-mapped architecture 
machine, we can go on to implement an outer layer of soft
ware tools using the abstract data type screen. The following 



is an excerpt from a picture creation utility. It uses the numer
ic keypad on a standard terminal to move a cursor on the 
screen. The space bar controls whether or not the cursor 
leaves a trail as it moves. 

OLD = screen[J, _y] 
screen[J, _y] = list(O, _col) 
ifDRAW==O 

screen[J,_y] = OLD 
C = getch(O) 
switch C 

{ 
case OC8-_y 
case OC2 + + _y 
case OC4-_x 
case OC6++ J 

case OC DRAW = xor(DRAW, 1) 

: old screen cell 
: draw cursor 
: do we draw? 
: no, restore cell 
: get keypress 
: dispatch 

: up 
: down 
: right 
: left 
: toggle draw 

Three global variables are maintained; ....x and _y contain the 
coordinates of the current screen cell and _col is the current 
foreground color. OLD and DRAW are local variables that 
contain the displaced contents of the screen cell and a flag 
determining whether or not the cursor should leave a trail. 

The paint program from which these lines were taken has 
many other features. The color (Lcol) can be chosen from a 
palette. An area of the screen can be reduced and made into 
a character. The cursor is selectable from the list of possible 
characters. 

Using what we learned by implementing the character 
manipulation tools on our proto typing system, we were able 
to determine quickly what capabilities were needed and 
what view we wished to present to the user. Once the 
graphics interface is defined, performance enhancements that 
do not affect functionality can be made without rewriting 
applications. 

For example, on one system we recoded part of the paint 
program, embedding cursor movement in the satellite. For the 
most part, the change was transparent to the rest of the soft
ware; the body of the cursor movement function is replaced 
with a small sequence of code, which asks the satellite for the 
cursor position. Thus, response is still quite good for simple 
functions even when the host is heavily loaded. 

FUTURE WORK 

The next step in designing a game-prototyping system is to 
completely remove the restrictions placed by the target system 
hardware. Making the number and size of moving objects 
variable, for example, would allow a game designer to concen
trate more on the game and less on the limitations of the 
hardware. 

The communications port is also somewhat of a bottleneck. 
Our proto typing efforts to date indicate that the host and 
satellite systems must be tightly coupled for efficient simu
lation. 

We are currently working on a system that uses a high
speed, microcodable frame buffer as a satellite. By defining 
very powerful real-time graphics primitives we hope to have 

A Prototyping Environment for Real-Time Graphics 373 

the satellite processor handie the bulk of the simulation with 
directions given by the host. We will be able to plug in various 
analog devices, such as tablets, joysticks, dials, etc., and use 
them to manipulate aspects of a simulation in real time. For 
example, one could control the position of a moving object 
with a joystick and its size or color with a dial. It is our belief 
that capabilities such as these will elevate the level of game 
design, making it possible to produce a playable game proto
type in a very short amount of time. 

REFERENCES 

1. Anson, E. "The Device Model of Interaction." ACM Computer Graphics 
16, 3 (1982), pp. 107-114. 

2. Buxton, W., S. Patel, W. Reeves, and R. Baecker. "OBJED and the 
Design of Timbral Resources." Proceedings of International Conference on 
Computers and Music. 1980, pp. 1-12. 

3. Hayes, P. J. "Cooperative Command Interaction Through the Cousin Sys
tern." Proceedings of the International Conference on Man! Machine System. 
London, July 1982. 

4. Wong, P., and E. Reid. "Flair-User Interface Dialogue Design Tool." 
ACM Computer Graphics 16, 3 (1982), pp. 87-98. 

5. Wasserman, A. I. "User Software Engineering and the Design of Inter
active Systems." Proceedings of the Fifth International Conference on Soft
ware Engineering, March 1981, pp. 387-393. 

6. Foley, J. D. "A Tutorial on Satellite Graphics Systems." Computer, Au
gust, 1976. 

7. Shaw, "The Impact of Abstraction Concerns on Modern Programming 
Languages." Proceedings of the IEEE 68, 9 (1980), pp. 1119-1130. 

8. Donato, N. "GRASS3---A Language for Interactive Graphics." AFIPS, 
Proceedings of the National Computer Conference (Vol. 50), 1981. 

9. Defanti, T., N. Donato, and J. Fenton. "Basic Zgrass-A Sophisticated 
Graphics Language for the Bally Home Computer." Computer Graphics 
12, 3 (1978), pp. 33-37. 

10. Rocchetti, R. "VISION II-A Dynamic Raster Scan Display." AFIPS, 
Proceedings of the National Computer Conference (Vol. 50), 1981. 

11. Griswold, R. E., J. F. Poage, and I. P. Polonsky. The SNOBOL4 Pro
gramming Language. Englewood Cliffs, N.J.: Prentice Hall, 1971. 

12. Kernighan, B. W., and D. M. Ritchie. The C Programming Language. 
Englewood Cliffs, N.J.: Prentice Hall, 1978. 

13. Griswold, R. E., and M. T. Griswold. The Icon Programming Language. 
Englewood Cliffs, N.J.: Prentice Hall, 1983. 

14. Mashey, J. R. "Using a Command Language as a High-Level Programming 
Language." Proceedings of the 2nd International Conference on Software 
Engineering, San Francisco, October 1976, pp. 169-176. 

15. Levine, J. "Why a LISP-Based Command Language?" SIGPLAN Notices 
15, 5 (1980), pp. 49-53. 

16. Griswold, R.E., D.R. Hanson, and J.T. Korb. "Generators in Icon." 
ACM Transactions on Programming Languages and Systems 3, 2 (1981), 
pp. 144-161. 

17. B. Liskov, et al. CLU Reference Manual, New York: Springer-Verlag, 1981. 
18. W. N. Joy. "An Introduction to the C Shell." Technical Report, Computer 

Science Division, Dept.of Electrical Engineering and Computer Science, 
University of California, Berkeley, Calif., 1980. 

19. S. R. Bourne. "The UNIX Shell." Bell System Technical Journal 57, 6 
(1978), pp. 1971-1990. 

20. Griswold, R. E., and D. R. Hansen. "An Alternative to the Use of Patterns 
in String Processing." ACM Transactions on Programming Languages and 
Systems 2,2 (1980), pp. 153-171. 

21. Goldberg, A., D. Robson, and D.H.H. Ingalls. Smalltalk-80: The Lan
guage and Its Implementation, Reading, Mass.: Addison Wesley, 1983. 

22. B. Liskov, et. al. "Abstraction Mechanisms in CLU." Communications of 
the ACM 20, 8 (1977), pp. 564-576. 

23. Shoup, R. G. "Color Table Animation." SIGGRAPH 79 Proceedings, Au
gust, 1979. 

24. Baecker, R. "Digital Video Display Systems and Dynamic Graphics." 
SIGGRAPH 79 Proceedings, 1979. 

25. Blinn, J. F. "Raster Graphics." In Tutorial: Computer Graphics, Los An
geles: IEEE Computer Society Press, 1982. 





A publisher's view of writing successful software 

by GARY SWANSON 

Portland, Oregon * 

ABSTRACT 

This paper gives dilithium Press's viewpoint of what is required to write successful 
software today. A discussion of the concepts behind the developmental process 
should be are covered as well as how that process relates to a publishing company. 
The basic function of an editorial department is described and the distinction 
between editorial and marketing in publishing is outlined. The importance of edi
torial philosophy is talked about and the philosophy of dilithium Press is explained 
in detail. After describing the editorial philosophy, I give an overview of the type 
of products dilithium Press is looking for. Finally, the editorial process of sub
missions, evaluation and development is covered. 

* This paper was written while Gary Swanson was at dilithium Press, Beaverton, Oregon. 

375 





So you want to write software that sells? Well, first let's talk 
about the meaning of write and software. When I use the word 
write, I'm not talking about the actual coding of the program. 
That is one of the last steps you should perform. A more 
appropriate word, or first step, is design. In the development 
of software, there are many decisions to be made on the road 
to success-all before the coding ever begins. As an author 
you must view your program, whether it is finished or nearly 
finished, as changeable, not as fixed. The editorial process, 
which will be discussed later, necessitates that at least some 
minor changes be made; and in many instances major changes 
are needed to market your program successfully. These sug
gestions for the changes can be frustrating to you as an author 
if you are unwilling to respond to them. If, on the other hand, 
you view your software as a changeable product, the process 
of revising your program is mentally much easier. However, 
before we delve into the editorial process let me first give you 
an overview of what an editorial department does; what our 
software editorial philosophy is at dilithium Press; and, in 
general terms, what type of programs we are looking for. 

The editorial function in publishing serves the same pur
pose as research and development in manufacturing, with one 
exception. Besides defining the markets, anticipating what 
will sell, and developing the ideas to satisfy those markets, 
editors work with authors who have submitted a proposal. 
However, knowing what will sell and why is not enough to 
insure sales. The development of the defined markets is just 
as important as the defining of those markets. This is where an 
aggressive marketing department comes into play. Marketing 
must know where and how to sell the software. 

If knowing what will sell and why is the first step on the 
journey toward a successful software product, then editorial 
philosophy is the road map. At dilithium Press, we realize that 
there hasn't been any serious attempt to make software a true 
consumer product. We also understand that most people 
would prefer to try a product before they buy it. This is as true 
for software as it is for any other consumer product. Our 
approach to the development and marketing of software is 
unique in the way we permit this try-before-you-buy concept. 
Our software package includes both the program itself and a 
well-structured book that explains how to use the program. 
The book is also a marketing tool that can be purchased 
without the program, allowing the consumer to see how the 
program operates and what it can do. After consumers see the 
software's capabilities with real-life examples, they can pur
chase the program separately. 

We also know that to be successful we must deliver good
quality products that are strongly supported and fill a variety 
of needs. With these facts in mind, we've developed our Soft
ware Cycle Concept, the core of our software editorial philos
ophy. The software cycle has four elements. Each of the four 

A Publisher's View of Writing Successful Software 377 

elements of the cycle is related to every other element, yet 
each can stand alone. 

Using an application program as an example, we first de
velop an introductory book that stimulates a demand for the 
software package. This book introduces a solution to a prob
lem that will either help the individual increase productivity or 
help the businessperson increase profits. The methods de
scribed in the book are related to the use of microcomputers 
and a specific software product, but the emphasis is on how to 
solve a particular problem. 

Once we have stimulated a demand for the product, the 
next step in the cycle is to educate and instruct in the use of 
the software product. This is done by publishing a nontech
nical but well-written book that can be either sold separately 
or packaged with the program. The book begins with an intro
duction to the concept behind the software program and is 
followed by a tutorial with numerous screen displays and real
life examples. Next in the book is a comprehensive reference 
section listing all the program functions, with an explanation 
of how and when to use each one. Finally, the last part of the 
book contains a comprehensive giossary and an index. 

The third element in our software cycle is to support the 
sale. We do this by providing a toll-free number and a knowl
edgeable customer support staff that communicates with the 
customer on a nontechnical level. We also send product news 
updates to registered owners, to let them know about en
hancements, and product newsletters, offering tips on how to 
get the most out of the program. 

As the product becomes established in the marketplace, the 
final element is to augment or enhance the product. The 
enhancements either are add-on products for the original 
application program or are standalone, yet complementary, 
products. 

Our software cycle is an innovative approach in stimulating 
and then meeting a demand and in providing a versatile, com
plementary system of software programs for retailers and con
sumers alike. The strength of this approach is twofold. First, 
it gives the retailer a family of products that sell themselves. 
Second, the consumer has different product levels from which 
to choose, from a basic book all the way through to a more 
advanced and sophisticated software product. 

Some products, depending on their scope and complexity, 
do not require or cannot use this full cycle; but the software 
cycle does serve as a model to define the scope of the research 
and development that goes into a particular concept. A com
plex program, say a database management program, will in
clude all the elements of the cycle. A less complex program, 
such as a recreational program, will at least have a book to 
instruct in the use of the program. At dilithium Press, we are 
interested in both programs that are large in scope and those 
that are less complex. In our current catalogue and in pro-



378 National Computer Conference, 1984 

grams under development, the mix between the two is approx
imately equal. 

With an understanding of what our editorial philosophy is, 
we can go on to what sort of products we are interested in. But 
first, let me give a summary of our editorial philosophy by 
emphasizing that dilithium Press is focusing on the consumer 
market. This means we are looking for products that have a 
large, mass-market appeal. We believe that we are not just 
publishers of software, but rather that we are publishers of 
information. With that thought in mind, the kind of software, 
or information, that we are considering is applications that 
focus on personal productivity, home management, educa
tion, recreation, and the "new crop." Each of these markets 
if further expanded briefly below. 

Personal productivity software consists of spreadsheets, 
database management, file management, project manage
ment, business graphics, word processing, and communica
tions. These are all functions that are necessary to increase 
productivity and improve the decision-making ability of the 
individual. Beyond the individual applications of the current 
crop of personal productivity software is what has been called 
work station productivity software. Work station software 
combines all these applications into one system that is net
worked with other computers. 

Home management software consists of programs that can 
perform much the same function as productivity software. In 
many instances, the only difference is the complexity of the 
program. The basic goal of being more productive is much the 
same. The programs in this category must be creative tools 
and either truly save time or allow for more informed decision 
making. 

Educational software consists of two categories, the institu
tional market and the home market. The first category, insti
tutional education, is for the kindergarten through college 
levels. This type of software needs to be designed with a 
specific curriculum in mind and must be entertaining as well 
as educational. The second category is the home education 
market, the market with by far the most potential. The home 
products must be family-oriented, entertaining, and educa
tional. These programs need not conform to a particular cur
riculum, yet they must have a sound educational basis. Also 
included in the educational category are tutorial programs, 
which either educate in the use of a particular product or 
instruct in a particular field of interest. 

In the near future, the recreational category promises to 
deliver some of the most exciting and innovative concepts of 
the software industry. Future recreational products will not be 
based on the current arcade style of entertainment software, 
but rather on the interactive simulations that are now being 
developed and brought to market. These future products will 
incorporate a blending of sound, graphics, strategy, and 
education. 

The new crop of software is composed of unique concepts 
that are just now being imagined by both authors and publish
ers. Areas such as home and educational robotics, the simple 
creation of sophisticated art and music by computers, the 
evoiution of the home computer into an extensive resource 
center of information, and the use of computers for day-to
day, personal communication are just a few of the innovations 

that will change the way we live, work, play, and think. The 
foundations for this category of software are being laid today, 
just as the foundations of the microcomputer revolution were 
being laid back in 1974. 

These are the general markets we are focusing on. How
ever, just because a concept will not fit neatly into anyone of 
the above markets doesn't mean we're not interested. If a 
concept can be developed into a software product with mass
market appeal, we are interested, whether or not the idea can 
use all of the elements of our software cycle. Besides having 
mass-market potential, software published by our company 
must also be easy and intuitive to use, provide a creative 
solution to a problem, be entertaining and challenging, or 
allow the innovative use of a computer. 

With an understanding of the purpose of an editorial de
partment and of our editorial philosophy, let's see what the 
editorial process is. The software editorial process consists of 
three phases: the submission phase, the evaluation phase, and 
the development phase. The submission phase consists of two 
rather different approaches, either the unsolicited proposal or 
the managed project. The first approach is used when I re
ceive a proposal in the mail. This can be either a design idea 
or a program. The proposal is carefully examined and re
viewed to determine its suitability for our editorial philosophy 
and marketing plans. 

To aid in our examination and review, the proposal needs 
to contain a description of the major functions and features of 
the software, emphasizing those that are unique as well as a 
description of the computer system and language require
ments. Next, an analysis of the intended market for the pro
gram, with a review of any competitive products currently on 
the market, is needed, along with a brief description of who 
will purchase the program and why. Finally, an outline for the 
book to accompany the program a..'1d a biographical sketch of 
the author should be included, emphasizing any expertise 
relating to the intended market. Our Authors' Guide presents 
this information in more detail. 

Another means of developing a product is based on what I 
will call a managed project: The editorial department at dili
thium Press originates the idea. We determine the functions 
and features, define the targeted market, and create the de
sign specifications. We then work with one or more authors to 
develop both the book and the software. When the managed
project approach is used to develop a software program, the 
evaluation process is an integral part of the design and devel
opment of the concept. 

However, if a submitted proposal fits within our editorial 
philosophy and has mass-market potential, the next step is the 
evaluation process. The proposal is carefully evaluated by 
both dilithium Press editors and our external editors, who 
review particular projects in their area of expertise for content 
and then recommend any enhancements. A marketing and 
sales analysis is performed. This analysis considers different 
marketing strategies and sales levels to determine the financial 
considerations of the proposal. If the program is included, we 
look at the completeness of the program as well as the re
liability and the functionality of the software. 

Once the evaluation process is completed and a contract is 
signed, the development process begins. The contract outlines 



a description of the items to be delivered as well as a delivery 
schedule. Agreed-upon enhancements, both minor and ma
jor, are incorporated into the design as defined by the con
tract. Now the first coding (or recoding, as the case may be) 
begins. The first version of the program will need to be thor
oughly tested and the book will need to be edited. The sug
gestions from testing and copy editing are then incorporated 
into the final product. This process of coding, testing, and 
revising may take some time, so the schedule as outlined in the 
contract must be adhered to. 

To test the programs, we go through a two-level review 
process. The first review, which is done in house, occurs when 
the manuscript for the book is compared with the program to 
find any inaccuracies. Then we test the program itself to find 
any errors or the need for any improvements. After this first 
level is completed, the program is given back to the author for 
recoding and revision. Once the in-house testing is completed 
and the program is almost in final form, the second review 

A Publisher's View of Writing Successful Software 379 

takes place. For this second level, the program and the manu
script are sent to people outside the company for a thorough 
testing in real-life situations. If corrections or improvements 
are required after this level of testing, the program is given 
back to the author for the final recoding. Once the program 
is tested and found to be reliabile and accurate and the book 
is complete, the software package is sent to production. The 
editorial process is now complete. 

Admittedly, the definition of what an editorial department 
is, what it does, and how that relates to our editiorial process 
is simplified here. What really matters to us is our sound and 
successful editorial philosophy. As I stated before, editorial 
philosophy is the road map on the journey to success, and that 
success is determined by both the publisher who uses that 
philosophy as a guide and by the efforts of authors who be
lieve in that philosophy and are willing to work hard. If you 
are one of those authors, welcome! 





Versatile packaging: Software for all retail environments 

by ELWIN E. LAGES 
Ingram Book Company 
Nashville, Tennessee 

ABSTRACT 

With 40,000 programs already, and the potential for expansion of possible retail 
outlets, the software publisher must package his product in such a way that the 
retailer can exercise any number of options for shelving and display. The package 
must be versatile, attractive, and must display enough information to be able to sell 
itself. In addition, the package has to be able to assist the retailer in terms of 
security. 

381 





INTRODUCTION 

Retail shelves cannot accommodate all the available pro
grams, and salesmen cannot learn how to use and demon
strate even a significant number of them. 1 

New York Times 
10/16/83 

According to P.C. Telemart, of Fairfax, Va., there are more 
than 15,500 titles and 40,000 software products. In addition, 
this title base, according to P.C. Telemart, is increasing by the 
hundreds each month. What this means is that the com
petition for space is all retail environments is intense. 

As a buyer for a distributor, and a former retailer of soft
ware, I am familiar with many of the problems that .. ~eset all 
concerned with how to improve software sales. Being in the 
middle I hear of all the problems from both sides of the 
retailing fence. There is one problem, though;· that seems to 
be talked about more than any other. That problem is pack
aging. It seems so obvious. Packaging is a natural facet of 

SOFTWARE 
STORES 

COMPUTER 

SPECIALTY STORES 

44% 

1983 = $2.1B 

Versatile Packaging 383 

product development in all other aspects of retailing, from 
automobiles to books. It seems odd that software developers, 
all looking to make big bucks _ in the burgeoning software 
market, forget packaging in the rush to get their products out. 

In the rest- of this paper, one word stands out from all 
others: versatility. This is the ability of the package in which 
a piece of software is presented to serve various functions in 
different retail environments. Today a store owner is inun
dated with hundreds of products monthly, each claiming to be 
the premier program of its type available, each claiming to be 
able to sell itself. Sadly enough, no program is currently that 
unique that it can afford any negatives if it hopes to be placed 
on enough retail shelves to be noticed by the buying public. 

The first person that must be impressed by a product is not 
the user, but the distributor or the retailer. Tough choices 
have to be made since no store can stock 4O,OOO-plus titles and 
the package, not the program, is the first thing seen. The 
other sections of this paper will touch upon the new retail 
environments in which software will be sold in the near future, 
and the packaging needs of these new and old retailers. 

COMPUTER 
OTHERI 

SOFTWARE SPECIALTY 

II STORES STORES 

25% 26% 
1/ 
I 

MAss 
MERCHAtlD I S ERS 

21% 

1988 $11.7B 

~ July 1983. Future Computing. Inc •• 900 Canyon Cre~k Center. Richarc;,on. Texas 15080 

Figure I-U.S. personal computer software distribution channels (retail value) 



384 National Computer Conference, 1984 

RETAIL 
LOCATIONS 
(000 DRUG 

50 
STORES 

n 

~ 
TOTAL STORES 

I 
I 

STORES SELLING 
40 HOHE COt'1PUTER 

SOFTWARE 
SUPER OTHER 

30 CONSUMER MARKETS OUTLETS 

ELECTRONIC TOY n 
STORES GAME I HOBBY VARIETY 

20 STORES STORES MUSIC n BOOK 
STORES STORES 

10 n 
CATALOG 

© November 1983. Future C,)mputing, Inc., 900 Ci.!nyon Creck Cent.er, Rich..irdson, '1\:)\a:.; 75080 

Figure 2-Potential home computer software retail outlets 

RETAIL ENVIRONMENTS 

Just a few short years ago there were comparatively few soft
ware packages, and these were largely sold in hardware
oriented computer stores. These stores carried software as 
supplements to the hardware they carried, and most of the 
sales efforts were with the hardware. 

Today, the retail environments for software are expanding 
continuously. There are large software-only franchises; book
stores, both chains and independents; such mass merchan
disers as Sears, Target, etc.; record stores; video stores; even 
a recent experiment where software was carried on some 
newsstands in New York City. 

Future Computing, a marketing research organization 
based in Dallas, Tex., estimated (Figure 1) that in 1983 almost 
half of all software sales would be in computer specialty 
stores, but that by 1988 that share would shrink to approxi
mately one quarter. Software specialty stores and mass mer
chandisers will account for almost half of all software sales. 

In the differing markets for home computers and office 
computers, the potential distribution channels are staggering. 
Figure 2 shows that potential growth in home computer soft
ware. In such outlets as book~tores) the growth potential is 
phenomenal. Software in correct packaging is a natural prod
uct to be distributed in an outlet that is perceived by its cus
tomer base as the purveyor of information and entertainment. 

Figure 3 shows the potential market for business software. 
Although not as varied as the home market, the potential 
growth is many times that of the potential growth of computer 
stores. Fully one-third of all software sales are going to be in 
outlets not specializing in computers or their programs. These 
are outlets where the personnel will not be as fully trained and 
where self-service is the key. That requires the publisher to 
prepare a product that has the potential of selling itself. 

In computer and software stores the staggering number of 
products available from an almost inexhaustible number of 
publishers requires again that the program in large part sell 
itself. Here, the package is the key. Not demonstrations, bro
chures, etc., all of which are indeed useful, but the package 
itself. The package is a retailer's and a potential customer's 
introduction to the program. 

If any publishe~ is willing to forego selling his product to 
almost 75% of the potential market, then he is willing to 
see his competitors enter the market and grab that share 
uncontested. 

THE PACKAGE 

... consumer-oriented products that make learning fun, ap-
pealing packages, geod advertising---are the scft\vare ven
dor's cost of admission into ... the market.; 

C. David Suess, President 
Spinnaker Software Corp. 



LOCATIONS 
(000) 

15 

10 

5 

OFFICE 
EQUIPMENT 

DEALERS 

DEPARTMENT 
STORES 

TOTAL 

SELLING 
SOFTWARE 

COMPUTER 
STORES 

SOFTWARE 

Versatile Packaging 385 

RECORD 
STORES 

BOOK 
STORES 

Q 

© November 1983. Future Computing. Inc •• 900 Canyon Creek Center, l<lcharJ:.iOI1, '1l~X3S 75(;00 

Figure ~Potential office personal computer software distribution channels 

With hundreds of software packages finding their way into the' 
hands of distributers and retailers alike, how does anyone 
decide what to stock? For that matter, with such a prolif
eration of products, how does anyone even decide what to 
look at? No one has the time, the personnel, or the ambition 
to examine every product from every manufacturer. This is 
especially true of the products of new entries into the list of 
companies trying to get their products into the network. A 
retailer or distributor will go out of his way to look at the 
products of an established vendor, and worry about details 
like packaging later, but the new entry will be placed on the 
bottom of any pile, anywhere. If the package looks like noth
ing, the program might never see the light of day. 

Too many vendors concentrate on what they see as the 
"musts" of establishing their products in the minds of the 
public. So millions are spent on advertising to make retailers 
and consumers aware of a product and the company name, 
then this super program is shoved into a baggie or plain brown 
box, and left to fend for itself. The package is the best adver
tising currently available. It is the package that anyone sees 
first, and it is the perceived value as shown by the package that 
prompts anyone, the distributer, the retailer, or the consumer 
to go farther and spend more time to find out if the program 
is all it is advertised to be. 

Packaging must be considered as part of the whole. Each 
facet of the network chain, from manufacturer to consumer, 

has specific needs. As a distributor"I am required to see every 
one, but especially those of the retailer. We all have a com
mon purpose: to sell products. 

As described earlier, the retail distribution of software is no 
longer limited to the hardware-oriented computer store, or 
even the software-only store. At the lower end "consumer" 
market, the potential retail shelf space is in many environ
ments. Does the manufacturer have to do a package for each 
environment? The obvious answer is no. Costs would esca
late, and the time problem would raise its ugly head. A pack
age, though, d<;>es have to be versatile enough to operate 
adequately in all environments. The package should never be 
the limiting factor in distribution. A package should never 
disqualify a product from being sold anywhere. 

All retailers have one thing in common; the desire to sell 
merchandise quickly and with the least amount of problems. 
With this in mind a package must have four facets: flexibility, 
appearance, information, and security. The first three help to 
sell the product, the last helps keep enough of the product in 
the store to sell. 

FLEXIBILITY 

Two years ago there were so few programs available at retail, 
that the retailer, usually a hardware dealer, had trouble find- :. 



386 National Computer Conference, 1984 

ing enough programs to fill available space. Today that is far 
from the truth. Two years ago, almost all software could be 
faced out or placed on pegboards with room to spare. Today 
that luxury is long past. The computer store has to dedicate 
more room to hardware, which, like software, also has prolif
erated over the past few years, and cannot afford to have as 
much space dedicated to relatively low-priced software. The 
nontraditional outlets (if any outlet only a few years old itself 
can be considered traditional) cannot or will not give 100% of 
their shelf space to software. And obviously , there is not a 
store large enough in any case to stock 40,000 titles. 

Forcing any retailer to display a product in only one way is 
asking too much. Entertainment software is a prime example. 
Not very long ago, almost all games came in zip-lock plastic 
bags. They had little holes on the top for display on a peg
board and a store either gave over a large area to games or 
carried fewer than optimal sales would allow. Why? You can 
only shelve these bags one way, face out. Placed edge-on, and 
not only do they all look alike, but you cannot see them in any 
case. 

Today's environment requires a package with more than 
just a face. In addition, a spine is needed that displays such 
simple information as title, manufacturer, and compatible 
hardware. In related retail ventures, books, records, video, 
etc., you might note that virtually all packages have spines. 

In the new retail environments, especially bookstores, 
packages must have the flexibility to be shelved and displayed 
in any way the retailer wants. No outlets that traditionally 
have dealt in other products are going to renovate their stores 
to carry products that they are unsure of to begin with. Unless 
the manufacturers of the programs are willing to forego selling 
in one or more environments they must offer the retailer the 
ability to sell the product in any way he sees fit. And the 
retailer is the one who knows. hj~ ~1Jstomers better than a!!y 
distributor or manufacturer. 

APPEARANCE 

This is so obvious that one wonders why it should be brought 
up at all. But if it is so obvious, why are so many programs 
brought out in such mediocre, if not downright ugly, pack
ages? Each level of software has a different packaging require
ment, but not one of them need be placed in an ugly or plain 
container. No line of software need be so uniform as to sow 
confusion. 

The perceptions of the retailer and his customer are the 
most important aspects to be considered in package design. In 
the mass market, the package that stands out from the pack 
has the best chance of selling. This works for cars, for books, 
and so on. Software, on any level, is no different. 

The perception of the world is that a game should look like 
a game, and that business software should look like business 
software. Distributors, retailers, and customers all have one 
fault in common; the tendency to judge books, as well as 
software, by their covers. If the cover does not look like much, 
it is assumed that the program is not worth buyi!!g. That i!!itia! 
negative view will be almost impossibie to overcome. 

Game programs can be packaged in as bright or original 

way as possible, within the framework mentioned in this pa
per. Other packages have to be done to fit the level for which 
they are intended. Professional software should look that way. 
But again it must be stressed that the package need not be 
plain or ugly. Visicorp has had two package types in its exis- . 
tence. At first, when VISICALC was the major program on 
the market, it came in a plain, brown loose-leaf binder. Looks 
did not matter; it was the only one. As other spreadsheet 
programs began to enter the market, Visicorp upgraded its 
packaging to reflect its position at the time as the preeminent 
professional software package. It created the software pack
age equivalent to the grey pinstripe suit (in three pieces). 
Why? Because with previously unheard of competition it had 
to protect its image by presenting an outward appearance of 
professionalism and quality. 

The appearance of the package is the first thing seen and is 
too important to ignore. It cannot be compromised. 

INFORMATION 

Somewhere out there in the computer world, a rumor has 
been spread that software cannot sell itself, that only by exten
sive demonstration could any customer hope to know what to 
buy. It was great for computer stores, they seemed like the 
gods of the new technology. 

But then came 40,000 programs. No store could possibly 
hire a staff large enough to know them all. No store could 
afford the time to demonstrate a $20 game and risk losing the 
sale of a major software package. Then software left the com
puter store and entered the world of the mass market and the 
bookstore. 

Software at an levels m1.!st either be able to seH itself or :TIust 
provide enough information on itself to help guide the cus
tomer in narrowing down his choices before he goes and seeks 
help. 

How does a book sell itself? It supplies the potential reader 
with enough information on what is contained within. This is 
called a dustcover. After the potential customer is enticed by 
the dustcover, he then has free access to the documentation; 
the book. 

Should software be any different? Software, like books, 
should make the attempt to sell itself without any help from 
overworked, unknowledgeable, or uncaring salespeople. At 
the least, let the customer think about what he is buying, let 
him be able to ask intelligent questions if needed. 

There are two things all people-especially those who are 
about to spend money-hate: feeling pressured and appearing 
stupid. Computer phobia exists even among those who own 
computers. They are using this new contraption for one rea
son or another, but often they do not feel competent to under
stand the computer or its programs. They know how books are 
written, in English, a language they understand, more or less. 
But a program! PASCAL? What is that! 

There is no reason to have a package with large blank areas 
O!! it. Why? Why abandon the customer? Vlhy not help the 
retailer? Why not try to make sales quickly by supplying basic 
information about the program at the outset? 



SECURITY 

This might be the last package requirement considered here, 
but it is not the least important, particularly to the retailer. 
Theft is as much of a problem with software, if not more so, 
as with any other product. "Shrinkage," as it is called in retail, 
is a special concern in nontraditional outlets. Because of its 
size and the fact that a program is often more costly than any 
of the other products the outlet might sell, retailers worry 
about theft. 

Again, the retailer wants versatility to be inherent to the 
package without compromising his need for security. Some 
retailers are willing to display software behind glass counters 
or through plexiglass panels with holes in them, though for 
aesthetic reasons these are few. Most merchandisers want to 
leave the product out for self-service. They are willing to 
accept certain losses, but have no desire to make it overly easy 
for anyone to "shrink" a product out of the store. 

Security in packaging is part of the manufacturer's re
sponsibility. A SV4-inch disk is very thin and relatively small. 
No package should give free access to the disk itself. A loose 
disk will either be stolen, lost, or trampled on, costing the 
retailer the price of the program. Yet with the exception of 
most games, the customer should have access to the documen
tation. In that case the program disk should be sealed as part 
of the binding, the box, or the folder. While theft will not 
disappear and no package can be made theft-proof, there is no 
need to make it easy. After the purchase let the customer 
work a little to get the disk out. 

Versatile Packaging 387 

In all other programs, the packagae simply need be of such 
a size that the program cannot be slipped into the pages of a 
newspaper and disappear. 

CONCLUSION 

It cannot be too strongly stressed that a program's package is 
often as important as that program's documentation. It is the 
package that brings the retailer or the customer to examine 
the program more closely. It is the package that presents the 
image of the program to all who view it. It is that same pack
age that presents its perceived value to any who might con
sider using it. 

With this in mind, the package should be as well designed 
as any other facet of the program. We all judge books by their 
covers. Software is no different. No program in today's com
petitive market needs a negative staring any potential user in 
the face. Conversely, perfect packaging will not make a per
fect program out of a bad one. The product must be seen as 
a whole and it is the publisher's responsibility to his distrib
utors and retailers to supply the best product available, on 
time, at a reasonable price, and in a package that will sell. 

REFERENCES 

1. Suess, C. David. "The War for Retail Shelf Space." Computer Retailing, 
November 1983. 





Commercial and military software documentation: 
Different steps to a common goal 

by FAYE C. BUDLONG 
Wang Laboratories, Incorporated 
Burlington, Massachusetts 

ABSTRACT 

Talking about creativity in software documentation may seem like a paradox, but 
it exists. Even a functional specification for a new product has an element of 
creativity: It outlines a product that will require the creative endeavors of several 
developers over a period of time. Further, user manuals require ingenuity to reduce 
many complex functions to a series of simple, identifiable steps that the user can 
understand and follow. Training documents require creativity to develop examples 
that new users can understand and to reinforce a learning curve that allows the 
reader to become proficient using a new product. And reference manuals require 
perseverence to ensure that all functions of the product are defined and explained 
clearly and concisely. 

This paper is an overview of the development process for software documentation 
from concept to initial release. It lists much of the documentation required for each 
major software development step and compares documentation for commercial 
projects with that required to meet military project standards. 

389 





INTRODUCTION 

The documentation required for different kinds of users in 
different environments, for example military documentation 
vs. user documentation in a commercial environment, may 
vary considerably, and these differences often are difficult for 
development personnel and technical writers and editors to 
understand. This paper is arranged logically in the order of the 
development cycle to help define and compare the steps re
quired in the military and commercial environments to com
plete the documentation process successfully and on time. 

IDENTIFYING A NEW PRODUCT: THE FIRST STEP 

In the commercial environment, market research personnel 
maintain records of what types of computer systems andappli
cations users demand and what trends appear to be unfolding. 
From this information, the market research personnel identify 
products that should be profitable for the company to develop 
and outline the functions the products should possess. They 
give this information to the research department where a team 
uses it to perform a feasibility study, which will examine the 
possibility of creating the software and obtaining the man
power required to complete the project in a timely manner. 
The research team refines and builds upon the outline until all 
functions the software should contain have been identified. 
This team also determines how difficult and time consuming 
the project is likely to be. At this point, the research group 
(sometimes with the help of technical writers) produces a 
functional specification that details their plans. 

Members from the market research group meet with mem
bers from the development group to discuss how the project 
should proceed. When an agreement is reached, the func
tional specification is made final and a project time line with 
identifiable milestones is established. 

The main questions that arise during this early phase in the 
commercial development cycle are: 

1. How well will the product fill an identifiable user need? 
2. Will it be ready for release at a time that will ensure its 

market acceptance? 
3. Can it be developed using manpower and materials that 

will help guarantee its profitability? 
4. Will the new product support the existing product line? 

If the product will fulfill these requirements, the functional 
specification becomes the product baseline and the develop
ment effort proceeds. The appropriate representatives meet 
regularly to track the project's progress, identify problem 

Commercial and Military Software Documentation 391 

areas, outline necessary changes, and identify the groups the 
project will use to market and support the new product. 

At this point, the company's technical writers may become 
involved in planning the documentation necessary to accom
pany the product at release. Nonetheless, all written 
documentation is still informal and subject to major revisions . 
before it is ready for the marketplace. 

Military projects develop differently. The earliest stages in 
product definition generally result from a need defined by the 
Department of Defense or through research on a new system 
or weapon. An example could be the need for a fault-tolerant, 
real-time control system for fighter aircraft. 

The military describes an overall program goal and issues a 
request for proposal (RFP) that defines the project-and the 
time allowed to present a proposal-to firms interested in 
obtaining a military contract. Then the military contracts a 
company to define the requirements and phases of the project 
and, perhaps, to produce the end product. The contract is 
usually awarded on the basis of a competitive bid that re
sponds to the RFP. Since contracts are awarded on the basis 
of proposals, professional documentation personnel begin 
their project involvement while the proposal is being devel
oped-long before detailed specifications or product docu
mentation are considered. (For clarity, the military organiza
tion that awards the contract is referred to as the "contracting 
organization" and the company that holds the contract is re
ferred to as the "contractor" throughout this paper.) 

Generally, a company must produce substantially more 
documentation to win a federal contract based on an RFP 
than it requires to launch its own new product. This documen
tation is required because the military needs to compare dif
ferent companies' proposals for the project outlined in the 
RFP without having the ease of direct communication that 
commercial developers and market research personnel enjoy. 

Military projects require development documentation that 
often is much more complex, and more standardized, than 
that needed for purely commercial applications for a variety 
of reasons, including the following: 

1. The military contracting officer on any contract may 
have to administer several contracts simultaneously. 

2. The contracting officer is remote from the contractor 
and must have some form of formal documentation to 
track the contract's progress. 

3. When the project is complete, the contracting organiza
tion owns the software developed under the contract. 
This means that the contracting organization must have 
enough documentation to maintain and modify the 
product with minimal support from the contractor. 



392 National Computer Conference, 1984 

The main questions a military contract officer resolves 
when awarding a contract are as follows: 

1. Are the contractor's proposed funding requirements· 
competitive? 

2. Does the proposal cover all areas of the RFP? 
3. Does the company that produced the proposal have a 

proven record for completing projects on time and with
in the budget allowed? 

4. Do the proposed subcontractors, if any, have a record of 
completing their project phases successfully? 

When these questions have been answered and the contract is 
awarded, the contractor has its research team complete a 
preliminary functional specification. Writers and editors usu
ally are involved this early in the developmental phase be
cause the documentation standards most military contracts 
require are complex and sometimes difficult to understand. 
One example of complex standards is MIL-STD-490, Military 
Standard Specification Practices, which defines the contents of 
each paragraph of a product specification and how certain 
words, like "will" and "shall," are used in each specification. 

When the preliminary functional specification is complete, 
members of the military contracting organization meet with 
the contractor's representatives to review the functional 
specification and contract time line. This meeting, often called 
a preliminary design review (PDR) , determines areas of 
agreement between the contractor and military. The consid
erations of the PDR include the changes the functional 
specification must undergo to be acceptable to the contracting 
organization. The PDR also determines what changes, if any, 
are necessary in the project time line to complete the project 
in a timely manner. 

Upon completing the PDR, the research team and technical 
writers reVIse the preliminary functional specification to meet 
the new or revised requirements determined during the PDR. 
They produce a detailed design specification, which is the 
design submitted to the contracting organization for review. 
Then representatives from ~he cqntracting organization and 
the contractor meet for a critical design review (CDR), which 
is similar to but more formal than the PDR. 

The revisions required as a result of the CDR are incor
porated into the detailed design specification, which then 
becomes the formal baseline from which the product is 
developed. 

At this early phase of development, documentation for mil
itary contracts is more complex, detailed, and formal than 
that required for a commercial project. It also demands more 
pure attention to detail than commercial documentation. 
Generally, commercial companies can maintain informal con
tacts and documentation longer than is possible in the military 
because the individuals responsible for product development 
are more available in the commercial environment. Also, the 
company developing the product creates its own procedures 
for reporting progress. 

PRODUCT DEVELOPMENT: THE SECOND STEP 

As a product develops in the commercial environment, it 
evolves from the original functional specification into a mar-

ketable commodity. Any fundamental changes are outlined in 
memos from the research team to representatives of the mar
ket research and marketing groups. The market research 
group decides what basic documentation will accompany the 
software at release. They also meet with technical documenta
tion managers to determine the time and manpower required 
to fulfill product requirements. The documentation that exists 
at this point usually consists of: 

1. The functional specification 
2. Any memos that define fundamental changes to the 

product 
3. A market and audience analysis 
4. Marketing plans and support policies 

A technical documentation team, which at Wang Laborato
ries, Inc., consists of writers, editors, and artists, is assigned 
to the project. The team members work with their managers 
to determine the documentation milestones necessary to meet 
the product release date. The company has guidelines for the 
documentation team, but they are usually somewhat flexible 
to allow for creativity in manual design and presentation. 

Often, the language used in reference manuals and training 
guides differs substantially. Even the language used in train
ing guides will differ depending on the audience addressed. 
For example, the tone of a user's manual written for a com
puter programmer will be different from the tone of a training 
manual written for a first-time user of applications software. 
Thus, in many instances, the documentation team has the 
freedom, and the responsibility, to determine the scope, tone, 
and presentation of the materials they produce. 

Technical writers meet with members of the research team 
to learn about the new product and how it works. The writers 
aiso ieam to use the new prodUd sO they can defint: it C1CXU

rately for customers. Then they outline the required docu
mentation and work with editors to determine the most logical 
presentation. When the writing process is complete, the doc
ument is sent to the research team (and any other appropriate 
reviewers) to determine if it is technically correct and meets all 
corporate requirements. 

After the revisions generated by the technical review have 
been incorporated into the document, an editor reviews and 
revises it. The editor and writer work together to prepare it for 
graphic arts and production. 

The software documentation cycle is different in the mil
itary environment. From the time the detailed design specifi
cation is accepted as the product baseline, the military usually 
requires the project to be placed under configuration control 
by the contractor. 

The role of configuration control is to identify all changes 
to the product formally-and in great detail. In other words, 
any deviations from the detailed design specification that oc
cur during software design or coding must be reported using 
a discrepancy report (DR). Then, if a change to the software 
appears to be necessary, a software change request (SCR) is 
begun. 

A software design review board (SDRB) meets regularly to 
review all SCRs, and if they are significant, submits them to 
a software change control board (SCCB) for final disposition. 



When the SCCB decides that the software change is neces
sary, all relevant documentation is changed or revised for
mally (even changes and revisions are defined separately in 
some military standards), and all changes are noted on the 
change and revision pages in the document's front matter. 
Compared to the commercial configuration management 
some companies use, military configuration control is both 
extremely detailed and rigid. 

Technical writers and editors working on a military contract 
spend much of their time during the software development 
cycle tracking changes to the product baseline. The changes 
and revisions require detailed attention to maintain the accu
racy of the documentation and conformance to the applicable 
standards. 

The formality of military documentation requires more 
time and attention during the development cycle than that 
required by commercial projects. Some military contracts 
even mandate a certain level of reading skill to be used for any 
user documentation and have reading specialists check the 
documents 'submitted under the contract to ensure that those 
requirements are met. Further, most military contracts re
quire that members from the contractor's development team 
meet with members from the contracting organization, on a 
regular basis, to present their findings and review the project's 
progress compared to the scheduled project milestones. 

This added formality allows contract officers to maintain 
more control over each project than they would have with 
fewer requirements, and it allows them to stay up to date with 
each project with less effort than would be needed if less 
formal requirements were enforced. 

PRODUCT RELEASE: THE FINAL STEP 

When a commercial software product is ready for release, the 
support documentation must be ready as well. Sometimes, the 
task of producing timely documentation becomes very com
plex during the last stages of product development because of 
the flexibility allowed in the commercial environment. 

Writers and editors must ensure that the documentation 
accurately reflects the final software product, and the de
signers must present the information in a form that will be 
acceptable to the target audience. 

This is the period that requires the most effort by commer
cial technical documentation personnel because they must 
have whatever manuals or specifications required ready for 
distribution at the same time the product is ready for release. 
Now, the documentation team must complete any appropriate 
revisions, produce mechanicals for printing, and make sure 
that the printing cycle proceeds on schedule under very tight 
deadlines. 

The final product represents the company to customers and 
prospects, and the documentation is part of that final product. 
Commercial firms often want to maintain a particular image 
within their documentation. Writers and editors are respon
sible for assuring that the corporate image is maintained as 
well as making sure the documentation is complete, accurate, 
and presented appropriately. 

Since military specifications are updated often and conform 
to military standards, specifications that accurately reflect the 

Commercial and Military Software Documentation 393 

software product exist during most phases of product develop
ment. Thus, most manuals (even training manuals) can be 
outlined and written early in the development cycle and up
dated as the product matures. 

Many military requirements outline exactly what the docu
ments they specify will look like upon delivery. Consequently, 
there is limited or no flexibility in the visual presentation or in 
what will be covered in any given document. In the military 
contract environment, artists create illustrations for the docu
mentation required. The artists are mainly responsible for 
ensuring that mechanicals are prepared correctly for the print
ing process the contractor will use. They have little input 
about how the final product will look because usually the 
design of the documents created is outlined in the military 
standards that apply to any given project. 

Deadlines are tight because development personnel some
times fall behind the contract schedule. However, much of the 
documentation needed to complete the contract and release 
the product already has been through numerous revisions and 
often is near completion before the software product is ready 
for release. 

The job in this case is to complete whatever is necessary to 
comply with contract requirements by the time the contract 
expires. This is especially important b~cause the military 
could use an overdue completion date as a reason to use a 
different contractor when it issues a new RFP or take other 
punitive action against the contractor for failure to comply 
with the terms of the contract. 

Often, even printing is simplified because the government 
specifies the grade and size of paper to be used. Also, some 
military agencies request only mechanicals and a few photo
copies of the required documentation to produce the printed 
versions in government print shops. 

CONCLUSIONS 

The main differences between the documentation process in 
the military and commercial environments are how decisions 
are made about the required documentation and how the 
companies involved produce that documentation. 

In the commercial environment, producing a software prod
uct and documentation that will be accepted in a competitive 
atmosphere is the main concern. Thus, commercial compa
nies try to tailor both the content and appearance of their 
documentation to the particular audiences they are trying to 
attract. This takes flexibility and creativity to achieve. Also, 
commercial companies are more flexible in early product 
documentation because the people responsible for a project 
are on-site and the product may be altered to reflect changing 
market needs. 

"The documentation required to fulfill a military contract, 
on the other hand, is specified in the contract. Contractors 
must produce accurate documentation that reflects the chang
ing state of the software being produced from the time the 
detailed design specification is accepted as the product base
line until the final product is released. Thus, contractors re
spond to given documentation requirements rather than cre
ate their own requirements from any felt market need. 



394 National Computer Conference, 1984 

The differences between the military and commercial 
documentation environments appear in every phase of a de
velopment project, from inception to final release. The differ
ent requirements imposed in each atmosphere require skilled 
professionals to maintain the quality of the final documenta
tion products. The challenge to produce quality documenta
tion in a timely manner crosses all technical documentation 
environments. However, the steps used to meet that challenge 
often require different skills to achieve the goals defined with
in the requirements specified. 

ACKNOWLEDGMENT 

The author thanks her co-workers at Wang Laboratories, 
Inc., for their help and support during the development of this 

paper. Special thanks go to all those who reviewed the paper 
and suggested revisions to make it more effective. 

SUGGESTED READING 

1. MIL-STD-483(USAF). Configuration Management Practices for Systems, 
Equipment, Munitions, and Computer Programs. 

2. MIL-STD-490, Military Standard Specifications Practices, 30 October, 1968. 
3. MIL-STD-847 A. Military Standard Format Requirements for Scientific and 

Technical Reports Prepared by or for the Department of Defense, January 
1973. 

4. OD 45748, Ordnance Data Documentation Guidelines for TRIDENT I, 
MARK 5, USN. 

5. SECNAVINST 3560.1, Tactical Digital Systems Documentation Standards, 
USN, August 1974. 



One person's perception of military documentation 

by DON MATHER 
Sanders Associates 
Hudson, New Hampshire 

ABSTRACT 

Culture shock is perhaps the best way to describe what one experiences in moving 
from the world of commercial documentation into the world of military documenta
tion. This paper uses software documentation to describe the world of military 
documentation. After presenting some similarities and differences between the two 
worlds, it describes the military's software development process in a way that 
highlights documentation. In so doing, it also describes the military's software 
documents and points out the relationships between them. 

395 





INTRODUCTION 

Culture shock is perhaps the best way to describe what one 
experiences in moving from the world of commercial docu
mentation into the world of military documentation. On en
tering the world of defense work, one quickly (1) encounters 
a flurry of new acronyms-CDRL, DID, PPS, B5, PDR, CM, 
PDS, DBDD, PDD, C5, CDR, IDS, and so on; (2) hears 
reference to CDRL items, military standards, data item de
scriptions, data items, binding requirements, configuration 
management, and so forth; (3) learns that plans, specifications 
and even end-user documents must be written "in accordance 
with" standardized annotated outlines; (4) learns that some 
information in some documents is classified and must be 
marked and handled according to set procedures; and (5) 
learns that the money funding documentation projects comes 
from a contract with a military customer who has a good deal 
of influence over documentation. 

The main purpose of this paper is to describe one person's 
perception of the world of military documentation. A second
ary purpose of this paper is to show that there are some 
similarities between writing documents in the two worlds of 
military and commercial documentation. Since the author's 
experience has been mostly with software engineering and 
writing, this paper will use software documentation to de
scribe the world of military documentation. The intended au
dience of this paper is mainly technical writers, editors, and 
managers of editors and writers who have had little or no 
experience in the world of military documentation (especially 
military software documentation). 

This paper presents the following topics: (1) The contract, 
CDRL, military standards, DIDs, and binding requirements, 
(2) a summary of similarities and differences between the 
worlds of military and commercial documentation, (3) the 
military's software development process and its documents. 

THE CONTRACT, CDRL, MILITARY STANDARDS, 
DIDs AND BINDING REQUIREMENTS 

When the Department of Defense selects a company (or team 
of companies) to perform some service for it, it awards that 
company a contract. That company is referred to as a "con
tractor." The contractor refers to that part of the military, 
which awarded it a contract, as the "customer." 

The contract contains a list of documents to be written and 
delivered to the government. The list is called a "Contract 
Data Requirements List," or CDRL. Normally, CDRLs are 
written on standard government forms called DD-1423s (See 

One Person's Perception of Military Documentation 397 

Figure 1). Any item on the CD RL list is referred to as a 
"CDRL item," "data item," or simply a "deliverable." 

A military standard is simply a document that specifies how 
something shall be done. A standard is stronger than a 
guideline-a standard must be complied with. There are many 
military standards and the subject of a standard varies from 
standard to standard. 

The most widely used military standards for software devel
opment are MIL-STD-1679(NAVY), MIL-STD-483(USAF), 
and MIL-STD-490(USAF). MIL-STD-1679(NA VY) covers 
nearly all aspects of software development; it does not cover 
the style and format of software documents much beyond 
stating that the word "shall" is reserved for identifying bind
ing requirements. MIL-STD-483(USAF) is used to control 
software development. MIL-STD-490(USAF) was intended 
to be a universal standard. It can be used to cover the develop
ment of software, hardware, a building, a desk, a train car, 
etc. MIL-STD-490 does have a section pertaining to the style 
and format of documents. Military standards also specify the 
data item descriptions that are intended to be used with them. 
This paper uses the names of documents given in MIL-STD-
1679 to discuss software documents. Both the Air Force and 
the Navy have guidebooks that provide a good deal of in
formation about how those services manage their software 
acquisition. 

A data item description, or DID for short, is an annotated 
outline of one kind of document, e.g., a QA plan or a design 
specification. A CDRL list will specify that a certain docu
ment must be written in accordance with a particular military 
standard and data item description. With a DID in hand, all 
the contributors to a document know the title of the docu
ment, the outline of the document, have an idea of what kind 
of information goes in each section, and who needs the docu
ment and why. 

A binding requirement is a requirement that a contractor 
must meet. It is a legally binding requirement. The word shall 
identifies a binding requirement. For example, if a sentence is 
worded "The operator interface module enables the operator 
to set the time of day," then the software does not necessarily 
have to provide the operator with that capability. On the other 
hand, if the sentence is worded "The operator interface mod
ule shall enable the operator to set the time of day," then the 
contractor can be held accountable in a court of law for sup
plying to the government an operator interface module which 
fulfills that requirement. This style device enables the con
tributors to a document to distinguish between explanatory 
information and what they believe they are required to do in 
order to satisfy the contract. This mechanism also enables the 
customer to perceive that distinction. 



COHTRA(:T DATA REQUIREtAEttTS LIST 
SYSTEMATEJ .. Super System Alrat t.R _ TO EXHIBIT 

Ttl COl'-TRACT /PR 
CATEGORY 

CONTRACTOR Snpel: ~gDtIS1~ tQI ---;r--- -L .!: T.TLa OR D£SCAIPTION 0' DATA .. lQ.· la. I •• 
It;Q'IIENCE TECIHIICAL 

rR~CUE"CY 
- DATE 0,. ..!!t....... J.IUOTITL •. OF.·'Cr. 1ST SUUM,SSIOH DIITRI.UT ION AND AOOA£II££. 

!I 
1" ·~h;·r·u, II. 

;!;t or '''I''OU'''' 
(A ........ - It •• ..,., c ... III'H .... C ..... , 

AUT HORIT Y (De'. " .... IV ........ ' CONT"ACT ... ., .... ,fC. la-no U.1i • he _, 01' DAT. 

r;- II.. 'A' ,., ,"IWIV"" ID 

I!: Program Performance Specification (pPS) ... !.!. • !!o 14. r.ll .... (.. 
I 

A001 It ~l1n~r c ... '0 ... r.n 1 5 MAC 
~- IS' .,. 

l~' ", 
, I. U, 

DI-E-2138, MIL-STD-1679 SOW Para 3.1 8 MAC 
... RaM"'ues. . The government (See block A pre1im1nary copy wIll be subm1tted for approval. 

16) 
wt11 respond with comments 30 day~ after receipt. Final will be delivered !I. 
60 days after receipt of comment. Submission dates based on Jan 1 start. TOTAL 6 

IL I!. .. !!.to !!o 14. 

J. 

~ II. J. I!' r' II, lL 

'''lliaMARa 

11.. 
tOTAL 

r- J Ii. !!I !!: ,.1 
I. 

f-- II. ~ 
J. 

1
1

' I" ii. U. 

I" .. aMAlta 

!l. 
TOTAL 

~ I!: Ie !!. !!. i •• 

_I 
I. Tr.-Ie:-~ I I. ,. -rl. u.. 

, .. RCIIARKS 

iL 
TOTAL -- dE 1 APPROVED DY th ii~ ~,A~~A4 . ..., .~. ~A 2-.. 'D~~T~~ID~ 

DD, !~.1423 ~"L"CIEI ItD'TIOH 0' , " .... ". WHICH'I O •• OLIlTIE • PAG£~O~~PAG£. 

Figure 1-A sample contract data requirements list (CDRL) 

~ 
00 

z 
~ 
::to 
o 
==' a 
g 
.g 
= ..... 
(l) 
'"1 

g 
==' (ij' 
~ 
==' @ 
...... 
\0 

~ 



A SUMMARY OF SIMILARITIES AND 
DIFFERENCES BETWEEN THE WORLDS OF 
MILITARY AND COMMERCIAL DOCUMENTATION 

Perhaps one of the most obvious differences between the two 
worlds is the presence of the customer in the development of 
military documentation. In the military world, the customer 
(1) defines what documents will be written and when they are 
due, (2) requires that the documents comply with standard 
outlines, (3) sets some style and format conventions, (4) im
poses policies and procedures for marking and handling clas
sified information when documents contain classified infor
mation, (5) has the right to approve or reject documents, (6) 
may include in the contract the right to award the contract 
money in parts paying a portion every time a document is 
approved. Thus, in the world of military documentation, one's 
freedom to develop a document as one sees fit is much more 
restricted than in the world of commercial documentation. On 
the other hand, those commercial companies which offer their 
services to other companies may notice a resemblance be
tween their situation and a defense contractor's. 

Technical writers and editors in the two worlds probably 
work on different kinds of documents most of the time. In the 
world of military software documentation, writers and editors 
work mostly on development documents rather than end-user 
documents. Just the opposite seems to be true in the commer
cial world. 

Companies that are practicing a methodical software devel
opment process which emphasizes documentation may per
ceive a similarity between their process and the military's. The 
names of the documents and the emphasis given topics may be 
different. Generally, however, those companies will probably 
write the same kinds of documents, produce them in the same 
order and in the same software development phases, and 
cover the same topics. 

The planning of documentation projects is probably simi
lar. In both worlds, planning must answer the questions: (1) 
Who needs documentation and why? (2) What documents will 
be written and what are the objectives of each one? (3) How 
will those objectives be met? (4) How will it be determined 
which purposes were achieved and the degree to which the 
others were met? (5) What are the required sources, schedule, 
and costs? 

In the world of military documentation, the CDRL list an
swers the question "What documents will be written?" and 
specifies when they will be due and how many copies will be 
delivered. Furthermore, the data item descriptions (1) iden
tify who needs documentation and indicates why, (2) state the 
objectives of each document, (3) provide a partial answer to 
the question "How will those objectives be met?" in providing 
an annotated outline. The applicable military standard will 
shed more light on the question "How will those objectives be 
met?" to the extent that it specifies style and format. 

Perhaps the most obvious and greatest similarity between 
the world of military documentation and the world of com
mercial documentation is the existence of a need for docu
mentation. The fundamental goal of every document, 
whether it is a military or commercial document, is to commu
nicate with someone with this need. 

One Person's Perception of Military Documentation 399 

THE MILITARY'S SOFTWARE DEVELOPMENT 
PROCESS AND ITS DOCUMENTS 

It is convenient to regard software documentation projects in 
the world of military documentation as falling into three 
classes: 

1. Proposal 
2. Development 
3. Postdevelopment 

The bulk of the work performed by technical writers and 
editors is in the area of development projects. Proposal 
projects tend to be short and writers perform mostly editing 
and production functions. Postdevelopment projects are 
predominantly software engineering projects and usually re
quire little, if any, writer involvement. Writers do some actual 
writing as well as editing and production in the development 
of software documents and end-user documents. Conse
quently, the focus of this paper is on software development 
documentation. 

The government has been moving toward a standardized 
software development process. The process emphasizes 

1. A methodical development process 
2. Documentation 
3. Structured programming 

The development process is the heart of software manage
ment. A "good" development process plus "good" scheduling 
and cost control result in a high percentage of successful soft
ware projects. A "good" development process is nearly al
ways methodical, i.e., development occurs as a sequence of 
refinements, each of which is produced in a methodical way. 
This paper briefly describes the military's software de
velopment process in a way that brings out the role of 
documentation. 

Software documentation expresses plans and software 
specifications. The government has developed standard sets of 
software documents and each document has a standard an
notated outline. There are a variety of reasons for moving 
toward a standardized approach to documentation. This ap
proach, for instance, is one way to deal with the complexity of 
working with multiple contractors and to aid end users
everyone interested in the same information can find it in the 
same place regardless of the contractor. 

Software documentation is useful to contractors, the gov
ernment, and the end-users alike. Software development 
documentation increases the likelihood of an orderly develop
ment process, establishes well-defined baselines, provides a 
vehicle for change control, provides for personnel changes 
during the entire life of development and maintenance, and 
facilitates maintenance. The end-user documentation pro
vides the ultimate users of the developed system with the 
information they need to perform their jpbs well. Ideally, the 
attributes of software documentation are completeness, accu
racy, appropriateness, and clarity. These attributes result in 
specifications that are internally consistent, explicit, desig
nable and/or testable, traceable between documents, and as
signable to programming personnel. 



400 National Computer Conference, 1984 

Structured programming is a discipline for producing code 
that can significantly improve software reliability and main
tainability. The main attributes of structured programming 
are that the code is modular, top-down, sequential, indented 
to bring out the structure of the logic, has one entry and one 
exit, and uses a restricted set of control and data structures. 
These attributes lead to code that is simpler, clearer, and 
easier to test than unstructured code. 

Software is developed in phases. There are many ways to 
identify those phases. For the purposes of this paper, those 
phases are designated as 

1. Initial Planning 
2. Requirements Analysis 
3. Preliminary Design 
4. Detailed Design 
5. Code, Debug, and Unit Test 
6. Contractor Testing 
7. Acceptance Testing 

Documentation is developed or used in each of these phases. 
The remainder of this paper describes each of these phases 
and the role of documentation in each phase. It also points out 
the relationships between the software documents. 

Initial Planning Software Development Phase 

The documents produced during the Initial Planning Phase 
convey the contractor's plans for fulfilling the contract. Four 
types of software planning documents can be written during 
this phase: 

1. Software development plan (SDP) 
2. Software quality assurance plan (SQA or, simply, QA 

plan) 
3. Software configuration management plan (SCM or, sim

ply, CM plan) 
4. Software standards and conventions 

The software development plan is software management's 
plan for developing the program performance specification 
and producing software, which satisfies the requirements 
specified in the program performance specification, within 
budget and on time. 

The software quality assurance plan is the quality assurance 
group's plan for verifying that all the requirements stated in 
the contract are met. Important parts of a QA plan are the 
plans for verifying that the software group and the config
uration management group (whose function is explained be
low) are complying with the SDP and CM plan, respectively. 

A software configuration management plan is the config
uration managment group's plan for managing changes in the 
software's configuration during software development. (The 
word configuration may require some explanation. Suppose a 
contractor is developing a not-so-plain, everyday, homely 
desk for the government. By the configuration of the desk is 
meant all the information needed to completely describe the 
desk. For instance, if the current configuration of the desk 
calls for a 24-inch drawer and someone wants to make it a 

30-inch drawer, then that is a change in the desk's configura
tion. In the defense industry, a defense contractor has a group 
of people who establish policies and procedures for control
ling, or rather, managing changes in a product's configuration 
and who verify compliance with those procedures.) 

Software standards and conventions can be covered in 
either a section of the software development plan or in a 
separate document. They specify programming standards and 
how some aspects of software development will be conducted. 

Requirements Analysis Software Development Phase 

The documentation produced during the Requirements 
Analysis Phase conveys the contractor's understanding of the 
functional performance requirements to the customer. Two 
kinds of documents can be written during this phase: 

1. Program performance specification (PPS) 
2. Interface design specification (IDS) 

The· program performance specification is a functional 
specification. This kind of document describes what functions 
the software will perform, not how the software will perform 
them. If a function should be tested at the system level, then 
it belongs in the PPS and, otherwise, it does not. A PPS 
addresses 

1. System-level functions that have been delegated to soft
ware and some implied functions 

2. Interfaces external to the product being developed and 
between the major software functions 

3. Hardware environment in which the software will 
perform 

4. Kinds of tests required to verify that the software does 
indeed comply with the requirements described in the 
PPS 

The PPS is a necessary preliminary to setting up test require
ments and beginning the software design. Some software 
projects are sufficiently large or complicated to warrant devel
oping more than one PPS on a project. The CDRL list speci
fies what PPSs must be developed and then delivered to the 
government. 

A program performance specification is referred to by 
several names. MIL-STD-1679(NA VY) refers to it as a pro
gram performance specification. MIL-STD-490 calls it a B5 
Specification. MIL-STD-483 calls it a Part I Specification. 
This kind of document can also be called a data processing 
system requirements specification (DPSR). 

The program performance specification and the software 
development plan are the two most important software en
gineering documents. A software project can be defined as a 
project to produce software, which has agreed-upon func
tions, within budget, on time, and in a manner that has an 
amount of risk that is acceptable to the software development 
manager. The PPS is software management's written vehicle 
for gaining and communicating agreement as to what func
tions the software is supposed to perform. The SDP is soft
ware management's written plan for producing the software 



within budget and on time. Furthermore, any significant error 
in either of these two documents can lead to a situation that 
is singularly challenging (and expensive) to correct. 

The interface design specification describes the software 
interfaces and the data flowing between two digital proces
sors. By "software interfaces" is meant those interfaces which 
send data to the software under development, which the soft
ware hands off data to, or which the software controls. The 
interface design specification was mainly intended to cover the 
interaction of the software being developed with software in 
another system. 

The interface specification has another use when more than 
one company is developing the software. Specifically, it can be 
used to specify the interfaces between the software being de
veloped by two of the companies. This is one way the two 
companies can know what to expect in the way of input from 
the other company and what they are expected to hand off to 
the other company. The interface design specification then 
becomes one basis for managing the interface between the two 
companies. 

The chief importance of an interface specification to a soft
ware development manager is in its potential for shortening 
the Contractor's Testing Phase. This potential can be realized 
when the software engineers know precisely what require
ments they are to implement and their manager exercises rigid 
control over the interfaces between the software developed by 
different programmers and programming teams. An interface 
document increases the likelihood of software developed by 
different programmers or teams of programmers interacting 
correctly. This single improvement can dramatically reduce 
integration time. 

Preliminary Design Software Development Phase 

The documents produced during the preliminary design 
phase describe the top-level design and planning of the con
tractor's approach to fulfilling and verifying the requirements 
specified in the program performance specification. Three 
kinds of documents can be written during this phase: 

1. Program design specification (PDS) 
2. Data base design document (DBDD) 
3. Test plan 

Once again, the CDRL list will define which of these docu
ments must be written and delivered to the government as a 
contract requirement, but the main purpose of a PDS is to 
describe the design approach. It describes the architecture 
and organization of program modules. It provides the pro
grammers with a logical description of the internal design of 
the software. A PDS is not a detailed design document, but 
rather, it communicates the design idea. 

Program design specification is the name MIL-STD-
1679(NA VY) uses to designate this kind of document. MIL
STD-490(USAF) and MIL-STD-483(USAF) do not have an 
exact equivalent to a PDS. Their design documents come out 
of the total design effort; only parts of them are developed 
during the preliminary design phase. 

Typically, a data base design document appears on a CDRL 

One Person's Perception of Military Documentation 401 

list when there is a large data base or the data base is critical 
in some way. A DBDD describes all the data used by two or 
more software components and shows the file organization. 

The test plan is a management document. It identifies the 
major functional areas to be tested, describes the testing 
methodology, and identifies the resources (people, equip
ment, and time) needed for testing. 

These documents are often reviewed at a preliminary design 
review (PDR). A PDR is a formal review conducted during 
the preliminary design phase. The purposes of a PDR are to 

(1) review the top-level design, (2) evaluate progress, (3) 
verify the technical adequacy of the selected design and test 
approach, and (4) verify compatibility between the PDS and 
the PPS, i.e., verify that the design covers all the requirements 
in the PPS and covers no more than that. More than one PD R 
may be conducted if the PDS and DBDD are being developed 
in stages. (Note: The Air Force often conducts a PDR during 
the Requirements Analysis Phase rather than during the de
sign phases.) 

Detailed Design Software Development Phase 

This is the last phase of software design. During this phase, 
the programming team converts the design approach ex
pressed in the PDS and the DBDD into detailed processing 
steps. The results of the conversion are expressed in the pro
gram design description (PDD) document. 

The PDD describes the design details of each software com
ponent to be coded. It includes functions performed, design 
structure, operating constraints, inputs and outputs, diagram
matic/narrative flows, and data base organization. The PDD 
serves as the primary document that development and mainte
nance personnel use for developing software, diagnosing trou
ble, and modifying software. 

In addition to the PDD, several other documents are pro
duced or updated during this phase: 

1. The PDS is revised with comments from the PDR and 
possibly with improvements identified by the contractor 
since the PD R 

2. The DBDD is revised with comments from the PDR and 
Possibly with improvements identified by the contractor 
since the PD R 

3. Test plans are updated with comments from the PDR 
and possibly with improvements identified by the con
tractor since PD R 

4. Test specifications, which describe how the requirements 
will be tested, are produced by the test team using the 
test plans 

The C5 Specification of MIL-STD-490(USAF) and the Part 
II Specification of MIL-STD-483(USAF) are equivalent to 
the combination of aPDS and PDD. 

All the documents produced or updated during the detailed 
design phase are often reviewed at a critical design review 
(CDR). A CDR is a formal review at the completion of the 
detailed design phase and before code development begins. 



402 National Computer Conference, 1984 

The main purpose of a CDR is to review the detailed program 
design. There can be more than one CDR when the detailed 
design is evolving in stages. 

It is at the end of the detailed design phase that the informa
tion needed for writing the first draft of the maintenance and 
operator manuals is known. The definition of menus, 
prompts, error messages, what conditions cause the error 
messages to be issued, and how to respond to error messages, 
initialization and recovery procedures, and so on are all de
fined by the end of the detailed design phase. Thus, if this 
information is written down by the software engineers as soon 
as they know it, then work on the maintenance and operator 
manuals can begin in the next phase. Typically, however, 
these documents are not started until the contractor testing 
phase. 

Code, Debug, and Unit Test Software Development Phase 

This software development phase is when individual pro
grammers will code and debug their software. After a pro- Figure 2-Document tree of the MIL-STD-1679 documents 

SOFTWARE ODCUMEITS 

SOfTWARE OEVElO'MF.T PlAI (SOP) 

SOFTWARE COIFIGURAnOI 
IlAIAGEMEIT ,lAI (eM PlAII 

SOFlWARE OUAUTY ASSURAICE PLAI 
(CUPPUI) 

SOFlWARE STAIOARDS AID 
COlIV£mOIS 

PROGRAM PERFORIWICE 
SPEClFICATIOI I"S' 

PIIEUMIIARY OESIA SPEClflCAnOI 
I'OS, 

PROGRAII DESCRlmOI DOCUMEIT 
(POD, 

DATA lASE DESIGI DDCUMEIT (0100) 

TIlT PUll 

TIlT SPEClflCAnDIICS) 

TIlT PROCEDURES 

~EPTAIICE TlST PlAI 

OPERATOR'S MAlUM 

SYSTEM OPERATOR'S MAlUM 

LEGEIO 
, PREUIIIIIARY 
f fIlM 
• UPlATlD 
.. DRAFT 

'IITW. REOU'REMEITS 
'LAII'IG AOLYS'S 

'"ASE PHASE 

", j 

", 
", 

, 

". 

", 

PlEUMlIIAIY 
DESIGI 
IlfVIEW 
(PORI 

t 

CRITICAl. 
DESHiI 
REVIEW 

(CDR) 

~ 
PREUM'IAIIY DETAILED COOE.OEIUG 

OESIGI OESIGI AID UIIT 
PHASE PHASE TlST PHASE 

I 

• • 

". • 

". 
". 

", 
". 

.. 
.. 

'ROGRAM.'I' 
TEAll TEmlG 

PHASE 

! 

• 
• 

Figure 3-Relationships between software documents and software phases 

TlSTTUII ACCEPTAIICE 
TESnl' TlSTlllti 

PHASE PHASE 

• 

• 

• 
• 

• 
• 

", 
". 

1 



grammer has written some code, he or she will unit test it until 
satisfied that the software performs properly. At this point, 
the software is ready to enter the next phase of software 
development. During this phase 

1. Programmers use the PDD to produce code 
2. Test personnel use the test specifications to write the test 

procedures, which are detailed procedural descriptions 
of how they will perform the tests described in the test 
specifications 

3. Technical writers can begin writing the first drafts of the 
maintenance and operator manuals (though usually 
work on these documents does not begin until the next 
phase) 

Contractor Testing Software Development Phase 

During this phase, the contractor's software development 
team (as opposed to an individual programmer) tests software 
until it is ready for acceptance testing. The programming team 
may do some testing of its own on the software before turning 
it over to the test team. The test team will perform the tests 
described in the test procedures document (and possibly use 
the operator manuals if they are available) and any other tests 
they deem needed. If errors are detected, then the test team 
writes test reports and returns the software with the test re
sults to the programming team for correction. When the pro
gramming team is satisfied the problems have been resolved, 
they submit the corrected software to the test team for re
testing. This continues until the test team (and QA personnel) 
are satisfied that the software is ready for acceptance testing. 

The final versions of the maintenance manuals and end-user 
documentation can be produced during this or the next phase. 
By the end of this phase, all the documentation should be 
revised to reflect the as-built configuration of the software. 
The CDRL will specify whether this will in fact be done. 

One Person's Perception of Military Documentation 403 

Acceptance Testing Software Development Phase 

During Acceptance Testing Phase, the software is tested 
either by the customer or in the presence of the customer. The 
people performing the tests can use the test procedures and 
the user's manuals. When the software passes this test, the 
customer has accepted the software and the software develop
ment process ends. 

SUMMARY 

The following figures summarize the software documents. 
Figure 2 presents the document tree, which relates the docu
ments to each other, and Figure 3 shows relationships be
tween software documents and software development phases. 

SUGGESTED READINGS 

1. MIL-STD-483(USAF), Configuration Management Practices for Systems, 
Equipment, Munitions, and Computer Programs. 

2. MIL-STD-490(USAF), Specification Practices. 
3. MIL-STD-1521A(USAF), Technical Reviews and Audits for Systems, 

Equipments, and Computer Programs. 
4. MIL-STD-1679(NAVY), Weapon System Software Development. 
5. MIL-S-83490, Specifications, Types and Forms. 
6. Software Acquisition Management (SAM) Guidebooks, Electronic Systems 

Division (ESD), Air Force Systems Command, Hanscom Air Force Base, 
Massachusetts. 

7. Software Acquisition Engineering (SAE) Guidebooks, Aeronautical Sys
tems Com.-nand (ASD), Air Force Systems Command, Wright-Patterson Air 
Force Base, Ohio. 

8. Computer Software Life Cycle Management Guide, Naval Electronic Sys
tems Command (NAVELEX), Washington, D.C. 

Note: Readings 1-5 are available from the Naval Publications and Forms 
Center, 5801 Tabor Ave., Philadelphia, PA 19120. 





Simple dynamic assertions for interactive program validation 

by CHRISTER HULTEN 
Syslab, University of Stockholm 
Stockholm, Sweden 

ABSTRACT 

It is well known that more than 50% of software life cycle costs are caused by 
maintenance activities: testing, debugging, modification, regression testing, and 
documentation updating. Therefore the importance of the validation and verifica
tion process in software development cannot be overstated. An interesting tech
nique introduced by Stucki9 is to instrument a program with dynamic assertions. 
The assertions, which are logical expressions regarding program variables, are 
entered into the program as comments, after which a preprocessor generates and 
inserts the code for dynamically checking the validity of these assertions. A number 
of papers describe more or less sophisticated and complicated ways of using dy
namic assertions in test systems.2

,5,6,8,9 The aim of this paper is not to analyze and 
compare these approaches with each other or with our proposal, but rather to 
convey the advantages of a simple, user-friendly system based on dynamic asser
tions for expressing constraints, transactions, and transition constraints. 

405 





Simple Dynamic Assertions for Interactive Program Validation 407 

INTRODUCTION 

It is well known that over 50% of the software life cycle costs 
are caused by maintenance activities: testing, debugging, 
modification, regression testing, and documentation up
dating. Therefore the importance of the validation and verifi
cation process in software development cannot be overstated. 
A survey of validation, verification, and testing techniques for 
computer software can be found in the work by Adrion and 
colleagues. 1 

Program test methods can be classified into static and dy
namic methods. A static program test method does not in
volve executing the target program, but rather executing an 
analysis program that examines the source level program and 
tries to find errors or anomalies in the target program. Typical 
static methods are data flow and control flow analysis, com
piler syntax and type checking, and symbolic execution and 
formal verification (proof techniques). Dynamic program test 
methods, on the other hand, do involve execution of the tar
get program, albeit sometimes in a modified form. Typical 
dynamic methods are "traditional" program test methods 
with various test data generation techniques,7 instrumentation 
and measurement techniques, and finally dynamic assertion 
techniques. This paper is concerned with a system for simple 
use of dynamic assertions. 

DYNAMIC ASSERTIONS 

An interesting technique introduced by Stucki9 is to instru
ment a program with dynamic assertions. The assertions, 
which are logical expressions regarding program variables, are 
entered into the program as comments, after which a prepro
cessor generates and inserts the code for dynamically checking 
the validity of these assertions. A number of papers describe 
more or less sophisticated and complicated ways of using dy
namic assertions in test systems.2

,5,6,8,9 The aim of this paper 
is not to analyze and compare these approaches with each 
other or with our proposal, but rather to convey the advan
tages of a simple, user-friendly system based on dynamic as
sertions. 

There are several important benefits in using dynamic as
sertions: 

1. The assertions should be invented at program design 
time, because it means that the programmer is encour
aged to think in detail about what assertion is valid at a 
particular time in the execution of a program as well as 
about what invariants are valid throughout the execution 
of the program. This in itself will catch a substantial 
amount of errors that would otherwise turn up much 

later in the software life cycle, with corresponding higher 
costs for error detection and correction. 3 

2. A program in a conventional programming language is a 
procedural description of how to achieve some state of 
affairs. If it is possible to describe this state of affairs in 
a declarative way, which is a complementary way of 
looking at the problem, then many algorithmic errors 
may be detected not only at run time but also at design 
time, since the programmer will think about the problem 
in two complementary ways. Of course there is a proba
bility of introducing errors when making the assertions; 
but at least this does not introduce errors into the pro
gram proper (and of course it is hoped that these errors 
will be discovered). Since the procedural and the declar
ative descriptions are very different, I believe it unlikely 
that the same errors would be made in both descrip
tions-that a program error would be undetected be
cause of a corresponding assertion error. Moreover, if 
an error is made in an assertion, it may well reflect the 
fact that the problem is not well understood. A discrep
ancy between the declarative and procedural represen
tations should be thought of as if the error were equally 
likely to be in either of the representations. 

3. If appropriate dynamic assertions are inserted in a pro
gram in strategic places, debugging is greatly facilitated, 
and errors can be pinpointed more quickly. However, it 
requires that software for assertion facilities either be 
integrated with the compiler or be structured into a pre
processor and a postprocessor. The reason for this is the 
need to transform the regular error messages from the 
compiler and run-time system into messages regarding 
the true source program-i.e., the source code, includ
ing the assertions. In a more sophisticated system, inte
gration is carried further, so that other items of software 
(e.g., screen editors and debuggers) are given intelli
gence in terms of the assertion subsystem. An assertion 
subsystem can be made rather independently of a com
piler in a good programming environment and fits in 
nicely with a good interactive system. 

4. One of the most important activities in most program 
testing methods is the construction of test case results: 
For every test case-sets of input data to the program-a 
set of output conditions must be described, and must be 
described in advance, so that at least a manual check of 
a test case can be made.7 It is well known that program
mers frequently resent and fail to describe test case re
sult construction. I believe that one reason for this is that 
the test case result descriptions are not part of the final 
product (the production program) but only a tedious 
component of the "destructive,,7 testing process. In this 
context we advocate the use of assertions as a natural 



408 National Computer Conference, 1984 

programming activity done at program design time, 
since including assertions on output conditions is an- . 
other (but positive) way of making test case result de
scriptions. What is more important is that the checking 
of test results is done automatically. 

5. Since the dynamic assertion technique requires that (1) 
declarative logical assertions be made in strategic places 
in programs and that (2) there be a support system for 
managing dynamic assertions, it is tempting to try to 
apply other techniques. At this stage there are several 
types of static program test methods that can be included 
in a preprocessor of the kind intended for assertion man
agement-e.g., data and control flow techniques and 
some simple proof techniques. As formal proof tech
niques develop, the preprocessor can be enhanced to 
include such techniques in order to advance the quality 
of software further. 

6. Normally, after the initial test period and perhaps a trial 
production period, the assertions in a program would be 
deactivated because of performance reasons. However, 
as program use changes over time, assertions can once in 
a while be activated to discover inconsistencies between 
the original specifications of the programs and actual 
usage. We believe that this change in use of programs is 
a very common cause of software failure. 

7. It is common that regression testing, i.e., testing a piece 
of software after modification, is done poorly, and often 
not at all. If dynamic assertions are present in a program, 
chances are better that the modification itself will be 
correct, and furthermore that regression testing will be 
better done, because the amount of tedious programmer 
work is reduced. For efficiency, it is important that it be 
easy to switch the assertion monitoring on and off. 

8. Using dynamic assertions is one of the few ways of catch
ing time-dependent (nonreproducible) errors. 

A SIMPLE SYSTEM FOR DYNAMIC ASSERTIONS 

I will now outline an assertion system that I believe is simple 
enough to be accepted and used by programmers and yet 
powerful enough to achieve the advantages mentioned above. 
For presentation purposes' the examples will be in PASCAL. 
The environment in which we place an assertion system is a 
Berkeley UnixiC system, an environment that highly facili
tates implementation of such systems. It is assumed that there 
exists a symbolic debug system that can be interfaced to the 
assertion system. 

Constraints 

Since it is very important to keep the number of concepts 
low, only two are used here: constraints and assertions. A 
constraint expression is a Boolean expression (it can be eval
uated to True or False) in the regular programming language 
style. It may contain Boolean function cans, which in turn may 
contain other function or procedure calls. This, of course, 
allows complex evaluations to be made. No assumption may 
be made with regard to the order of evaluation of the con
straint expression. This means that if any assignments are 

made to program variables due to function or procedure calls 
executed when evaluating a constraint expression, care must 
be taken to ensure that the constraint expression evaluation 
order is insignificant. The reason for allowing assignment 
operations at all in constraint expressions (indirectly) is that it 
may be necessary to set up some conditions before performing 
the evaluation. An example of this occurs when a constraint 
is concerned with the consistency between an external data
base and program variables. 

A constraint has the following structure: 

E:C:V with the types boolexp1:boolexp2:statement; 
boolexpl and boolexp2 are Boolean expressions, and state-

ment is any legal statement in the host programming language. 
E denotes Enforcement condition 
C denotes Constraint expression 
V denotes Violation action 
The constraint semantics are as follows: If E is evaluated to 

True, then C (the actual constraint condition) is evaluated. If 
C is evaluated to False-i.e., the constraint condition is 
violated-then the statement V, which of course can be a 
compound statement, is executed. The assertion system addi
tionally reports the violation and, when appropriate, passes 
control to the debug system. The condition E is used for 
controlling the individual evaluation of a constraint expres
sion. A constraint does not have to have all these three com
ponents. The other valid combinations are as follows: 

C-this is probably the most common variation. It means 
that only a constraint condition is specified, and if it is found 
to be False, the violation is reported and the execution 
aborted. 

E:C-this means: If E evaluate C. If C is False, report 
violation and abort. 

C:V-this means: Always evaluate C. If C is False, execute 
V, report violation, and abort conditionally. 

A constraint declaration has the form: 

CONSTRAINTS E1:C1:V1; 
E2:C2:V2; 

En:Cn:Vn; 
ENDCONSTRAINTS; 

A CONSTRAINTS declaration can be placed anywhere in 
the program where a variable declaration is legal and where 
the scope of the constraint evaluation is the same as the scope 
of variables declared in that block or other entity. Further
more, the enforcement of constraints will be in effect on that 
block level as well as on inner block levels. 

The constraints in a CONSTRAINTS declaration are mon
itored; i.e., the variables referred to in a constraint expression 
are checked after each explicit or implicit assignment opera
tion. Note that, since functions and procedures can be used in' 
constraint expressions, it is not permitted to have side effects 
in functions/procedures on any level in a constraint expres
sion-i.e., assignments to variables on the same level as, or 
global to, the CONSTRAINTS declaration. The reason for 
this is, of course, that when such a variable is updated and 
checked, the side effect will cause successive checks and con-



Simple Dynamic Assertions for Interactive Program Validation 409 

sequently result in infinite recursion. This restriction, how
ever, is not very limiting, since virtually all checking pro
cedures will only read global variables, if any. Again, as in 
many cases in programming, side effects and global variables 
turn out to be harmful. 

A CONSTRAINTS declaration is intended to represent 
conditions that are relatively independent of the individual 
statements in the program. The system therefore monitors 
every assignment operation where a variable involved in a 
constraint expression is changed. In many cases the program 
variables will be in an inconsistent state for a short while over 
several assignment operations--e.g., while transferring 
money between two bank accounts. There is then a need for 
a primitive to define transactions within which checking of the 
constraints is not meaningful. 

Furthermore, since the monitoring of many assignment 
operations is very demanding from a performance point of 
view, it should be possible to turn off constraint checking in 
certain parts of the program. There is also a need for trans
forming a program with constraints into an efficient version 
without any constraint system overhead at all. There are two 
pairs of primitives for turning the assignment monitoring off 
and on. The first pair is concerned with excluding certain parts 
of the program from dynamic assignment checking, the sec
ond with eliminating constraints completely from the object 
program. 

The first primitive is NOCONSTRAIN, which, when exe
cuted in the program, turns off all constraint checking until a 
CONSTRAIN primitive is encountered. The executing pro
gram is either in the NOCONSTRAIN mode or the CON
STRAIN mode. The default is the CONSTRAIN mode. 
Transactions are formed between NOCONSTRAIN-CON
STRAIN pairs. The third primitive is #NOCONSTRAIN, a 
preprocessor command, which statically turns off the prepro
cessor generation of constraint-checking code. #CON
STRAIN turns it on again. The #-commands are performed 
as the preprocessor scans the source program lexically from 
start to end. 

Assertions 

As seen, constraints are suitable for monitoring updates of 
variables throughout a program. If particular conditions must 
hold at a particular point in the execution of the program, it 
is useful to have another type of primitive to assert that these 
conditions hold. Typical conditions of this are (1) entry/exit 
conditions in procedures and functions and (2) assertions 
about a database state or loop invariants. The primitive for 
this purpose is the ASSERTION statement. An ASSER
TION statement has the following structure: 

ASSERTE1:C1:V1; 
E2:C2:V2; 
E3:C3:V3; 

ENDASSERT; 

Each Ei:Ci:Vi (i = 1, 2, 3, ... ) is a constraint with the 
same semantics as before, but evaluation is performed only 

when the ASSERT statement is executed. As with CON
STRAINTS, there are primitives for disabling assertion 
statements and removing assertion statements. They are: 
NOASSERT, ASSERT, #NOASSERT, and #ASSERT. 

Transition Constraints 

In database literature it is commonly considered desirable 
to be able to describe a type of constraint called transition 
constraints.4 A transition constraint is a constraint involving 
the values of a variable, before and after an update; e.g., a 
salary must not be increased by more than 10%. 

From an assertion system point of view, there are two ways 
of achieving this. The first way is simple to program the 
recording of the preconditions manually, e.g., 

VAR x:INTEGER; 
FUNCTION rec_precond:INTEGER; ................... ; 
FUNCTION dYILcheck (i:INTEGER) :BOOLEAN; ..... , 

BEGIN 

x: = rec_precond; 
S1; 
S2; 
S3; 

dYILcheck (x) 
END; 

where S1,S2, and S3 are PASCAL statements. 
Another way of handling transition· constraints is by the use 

of a system-defined function OLD(x). The difference is here 
that the system takes care of the administration of the prior 
value of a variable. The resulting type of OLD (x) is the same 
as that of x. The value of OLD (x) is the next latest value 
assigned to x. Using OLD(x), however, may be very costly, 
since code will be generated for saving the previous value of 
the variable and distributed all over the program. 

An example: Assume that x may not increase by more than 
10%: 

PROGRAM maxten; 
VAR x,y,z:INTEGER; 

b:BOOLEAN; 

BEGIN 

IF b THEN x: = x + y ELSE x: = x + z 

ASSERT x < OLD(x)*1.1; 

END. 



410 National Computer Conference, 1984 

The manual method is more appropriate for complex tran
sition constraints, whereas the OLD(x) function is possible 
only in simple cases. 

SOME IMPLEMENTATION ASPECTS 

An assertion system like the one proposed must consist of a 
preprocessor and a postprocessor. The main function of the 
postprocessor is to be a bridge between the high-level source 
program (the source program with assertions and constraints) 
and the conventional source program (the program generated 
by the preprocessor). The main problem, of course, is that 
when the compiler, the run-time system, and the operating 
system detect error conditions or exceptions, they return in
formation about the generated program, not about the high
level source program. This means that it should be possible to 
trap run-time errors-e.g., divide by zero-so that the pre
processor can generate code for interrupt routines and com
municate to the postprocessor. Further, when an error is de
tected, the high-level source code should be loaded into an 
editor that pinpoints the error, if possible. 

If the restriction that no global variables may be used indi
rectly within constraint expressions is enforced, it enables a 
much less complicated preprocessor to be implemented (with 
a corresponding reduction in preprocessing costs). At the 
same time, the required run-time resources can be reduced. 
However, since I want to encourage usage of dynamic asser
tions, I feel that this restriction is too limiting. 

SUMMARY AND CONCLUSIONS 

This paper has attempted to point out some benefits of using 
a simple dynamic assertion system for typical industrial pro
gram production. I strongly believe that an approach like the 
one suggested has a high potential for cutting software devel
opment and maintenance costs. However, a study of the ef
fects of using such a system in a commercial environment is 
necessary for assessing the approach in a quantitative way. 

A drawback of dynamic checking techniques is that the 
run-time cost (in terms of time and space) of a program is 
increased, sometimes to an unacceptable degree. An advan
tage in this approach is that you can, to a large extent, control 
the amount of run-time checking and not pay for more run
time checking than you want. 

It is advisable to have different levels of run-time checking 
in different phases of a program's life cycle. During the initial 

program testing you would preferably have maximum con
straint and assertion checking. In preliminary production runs 
perhaps some of the checking would be reduced, and in heavy 
production runs probably only the main assertions would be 
activated. In time/space critical applications perhaps the run
time checking would be eliminated altogether. After program 
modification it is advantageous to tum on all checking again. 

As mentioned, it is easy to incorporate new and advanced 
static program analysis methods like program control flow 
analysis and formal proof methods. Increased use of such 
methods should of course be matched by a corresponding 
reduction in run-time checking. 

If the target language is not strongly typed, a pre- and 
postprocessor system for dynamic assertions can help achieve 
the reliability that characterizes strongly typed languages. Of 
course, using an assertion system well results in reliability far 
beyond type checking, but at the expense of more run-time 
checking. 

Finally, I believe that an assertion system must be very 
simple to be used at all by industrial programmers. This paper 
has attempted to show what a simple system with controllable 
overhead can look like and to point out some of its properties. 

REFERENCES 

1. Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky. "Val
idation, Verification, and Testing of Computer Software." ACM Computing 
Surveys, 14 (1982), pp. 159-192. 

2. Andrews, Dorothy M., and Jeoffrey P. Benson. "An Automated Program 
Testing Methodology and its Implementation." In Proceedings of the 5th 
International Conference on Software Engineering, March 9-12, 1981, San 
Diego. 

3. Boehm, B. W. "Seven Basic Principles of Software Engineering." In Soft
ware Engineering Techniques, Infotech State of the Art Report. L London: 
Infotech, 1977. 

4. Date, C. J. An Introduction to Database Systems (Vol. II), Reading, Mass.: 
Addison-Wesley, 1983. 

5. Gannon, John, Paul McMullin, and Richard Hamlet. "Data-Abstraction 
Implementation, Specification, and Testing. ACM Transactions on Pro
gramming Languages and Systems, 3 (1981), pp. 211-223. 

6. McMullin, Paul R., John D. Gannon, and Mark D. Weiser. "Implementing 
a Compiler-Based Test Tool." In Software-Practice and Experience, 12 
(1982), pp. 971-979. 

7. Myers, Glenford J. The Art of Software Testing, New York: Wiley
Interscience, 1979. 

8. Osterweil, L. J. "A Strategy for Effective Implementation of Verification 
and Testing Techniques." Technical Report CU-CS-181-80, Computer Sci
ence Department, University of Colorado, Boulder, Colorado, 1980. 

9. Stucki, Leon G. "New Directions in Automated Tools for Improving Soft
ware Quality." in Yeh [ed.], Current Trends in Programming Methodology 
(Vol. 11). Englewood Cliffs, N.J.: Prentice-Hall, 1977. 



A tool-based approach for software testing and validation 

by J.C. HUANG, PETER VALDES, and RAYMOND T. YEH 
International Software Systems, Inc. 
College Park, Maryland 

ABSTRACT 

This paper describes a methodology for software testing and validation. By recog
nizing that there are several major error types, this methodology uses different test 
strategies to expose a particular type of error. To facilitate these strategies, specific 
tools are needed. This paper not only identifies the desired tools, but also discusses 
the design concepts behind various tools as they have been built at International 
Software Systems, Inc. (ISSI). 

411 





A Tool-Based Approach for Software Testing and Validation 413 

INTRODUCTION 

A number of software tool systems (e.g., RXVP802
, 

TOOLPACK\ and MApS) have been developed recently; 
however, none provides an effective testing methodology that 
facilitates exposure of software errors during testing and 
maintenance. These tool systems implicitly assume that tradi
tional methods for software testing (e.g., coverage-based test
ing,1,7,10 functional testing,1,8 boundary value testing,14 muta
tion testing,3 and domain testing18) are used in the actual 
process of exposing errors in programs. It is well recognized 
that none of these traditional testing strategies is powerful 
enough to expose all the possible errors in a program. 1,6 The 
best that can be hoped for is to use a specific test strategy to 
expose a specific error. 

We have recognized the limitations of existing test strate
gies and testing tools and have attempted to address these 
problems in our SEQUEL (Software Quality Evaluation Lab
oratory) tool system. SEQUEL is a testing tool system whose 
basic objective is to increase the quality of software and pro
ductivity of software engineers during the software develop
ment process by providing a methodology for software testing 
plus the tools to support the said methodology. We are cur
rently implementing SEQUEL to accept ISO (International 
Standards Organization) PASCAL under V AXlVMS. 

The testing methodology of SEQUEL will be discussed in 
the next section. In the remaining sections, design concepts 
behind various tools will be discussed and their use illustrated 
with examples. 

TESTING METHODOLOGY IN SEQUEL 

The main purpose of testing in the software development life 
cycle is to verify conformance of the software with respect to 
its intended requirements. The intended requirements include 
the following: 

1. System requirements developed prior to software de
sign. 

2. Functional requirements developed during software de
sign. This category may very well include error condition 
requirements as well as boundary condition require
ments. 

3. Programming requirements developed after software de
sign. This include syntax, semantic, compiler, and hard
ware restriction requirements. 

Even if the policy is to always do things right the first time 
(e.g., the cleanroom idea), testing can never be eliminated 

from the software development life cycle. As long as software 
is developed by human beings, there is always a need to dem
onstrate that the software <:;onforms with its requirements. 

Any nonconformance of a given software with its intended 
requirements is known as a software error. An important pre
requisite, therefore, in exposing software errors is a clear 
statement of software requirements (possible written in a re
quirements specification language). Testing to verify con
formance with software requirements is really equivalent to 
testing a hypothesis that a given software error does/does not, 
in fact, exist in the software. A testing methodology that 
hypothesizes and tests on all possible errors in a software 
addresses the original objective of software testing. 

Selecting an appropriate testing strategy for a given soft
ware error is still an art. Researchers have yet to collect data 
on software errors that frequently occur in a given environ
ment and map these errors with the appropriate test strate
gies. However, it has been well recognized in the field that 
implementation of a testing strategy is greatly facilitated if it 
is supported by software tools. A very good example is the 
compiler, which is effective in exposing syntax errors and 
sometimes a few semantic errors. Another example is a de
bugger, which facilitates detection of software faults. The use 
of software tools not only enhances the error detecting capa
bility of a testing strategy, but it can also be cost effective. The 
savings in using tools is due to (1) reducing the amount oftime 
(and therefore cost) to expose any embedded software error 
and (2) reducing the amount of time needed to find the cause 
of the exposed error. SEQUEL addresses the need for a 
tool-based testing methodology. 

Methodology 

The methodology can be formulated in the following way: 

Let 

[SRI,SR2 , ••• , SRj, ... , SRN]: Set of software require
ments collected at vari
ous phases of the soft
ware development life 
cycle. 

e[SR j ]: Error associated with 
software that does not 
conform to SRj • 

E: Set of all errors (ini
tially unknown) that ac
tually exist in the soft
ware. E = UNe(SR;) 

j=l 



414 National Computer Conference, 1984 

Basic Method 

Test of Error Hypothesis (for each SRj) 
Null Hypothesis HO: e[SRj] in E 
Alternative Hypothesis is HI: e[SRj] Not in E 

In software testing, we hypothesize the existence of specific 
software errors (nonconformance with requirements) em
bedded in the software. The error hypothesis is then tested by 
a strategy appropriate for the given error. The test result may 
lead to acceptance of HO and rejection of HI or vice versa. 
Not all testing strategies can be recommended for a given 
e[SRj]. Some are imperfect relative to e[SRj] (for example, 
using path testing to expose boundary errors); others are 
nearly perfect with respect to e[SRJ It is imperative, there
fore, that an appropriate testing strategy be properly selected 
to minimize the error of rejecting HO when, in fact, it is true. 

Nonconformance with software requirements can take 
many forms. The following are the more frequently occurring 
errors: 

1. Nonconformance with compiler rules/restrictions 
= syntax/semantic errors 

2. Nonconformance with intended functions 
= logic/computation errors 

3. Nonconformance with erroneous input 
= error handling errors 

4. Nonconformance with proper program boundaries 
= boundary condition errors 

5. Nonconformance with proper data flow 
= data flow anomalies 

An important assumption of the methodology is that the 
software requirements are clearly stated. 

An obvious example using this hypothesize-and-test ap
proach is the detection of syntax and some semantic errors in 
programs. 

Error Hypothesis 

HO: Syntax or semantic error in E 
HI: Syntax or semantic error not in E 

Strategy 

1. Compile and check for syntax/semantic error. Quit if 
none. Tool: Compiler 

2. Fix compiler-detected errors. Goto 1. 

The creative energy of a programmer should not be wasted 
in manually exposing syntax/semantic errors (as, for example, 
in a code walkthrough). Compilers are very good at this, and 
they should do the job. 

The more interesting types of software errors that one 
would like to expose are those that remain after successful 
compilation. Following the basic methodology discussed 
above, we hypothesize on the existence of each of these error 
types in a program (being tested) and specify a specific strat
egy to test each hypothesis. SEQUEL specifies (in its current 
form) test strategies for logic/computation, data flow and 

boundary/error condition errors. These strategies (see the 
next two sections) are supported by the following basic tools: 

1. Program Attribute Generator 
2. Static Reports Generator 
3. Program Instrumenter 
4. Branch Coverage Counter 
5. Symbolic Trace Generator 
6. Symbolic Trace Data Flow Analyzer 
7. Symbolic Trace Slicer 
8. Symbolic Trace Analyzer 

It is not claimed that these are the only tools one would 
need to fully support any testing strategy. There are certainly 
a lot more tools one would desire to have (especially for 
integration testing and concurrent program testing). Some of 
these tools, it is hoped, will be included in future versions of 
SEQUEL. The role of SEQUEL tools should be emphasized: 

1. These tools only support the overall testing methodol
ogy. They indirectly aid the programmer in detecting 
and removing software errors. 

2. These tools should complement other existing tools
e.g., compilers and debuggers-and should not compete 
with them. 

Test Strategy for Logic/Computation Errors 

A computation error occurs when the set of computational 
statements (usually assignment statements) directly affecting 
a program output variable does not conform to requirements. 
On the other hand, a logic error occurs when the set of control 
statements and all other statements affecting the control state
ments cause traversal of an incorrect path in the program. 

Error Hypothesis 

HO: Logic/computation error in E 
HI: Logic/computation error not in E 

Strategy I 

1. Generate a test case to exercise the intended software 
subfunctional requirement. A subfunctional require
ment maps to a single program path. A set of subfunc
tional requirements may be contained in a specified 
functional requirement; hence, a corresponding set of 
test cases should be generated: 
a. Get the input conditions that invoke the functional 

requirement. This should be found from the speci
fied software requirements. 

b. Pick an interior element that satisfies the intended 
function's input conditions. 

c. Check untraversed branches as (possible) guides in 
generating the next test case. 

Tool: Branch coverage counter 
2. Produce a compile dean program (if program has pre

viously been changed). 
Tool: Compiler 



A Tool-Based Approach for Software Testing and Validation 415 

3. Generate the program's attributes and sequenced pro
gram listing. 

Tool: Static Analyzer 
4. Instrument the sequenced program. 

Tool: Program Instrumenter tool of Dynamic Ana
lyzer 

5. Generate a symbolic trace of the path traversed by 
running the test case generated in Step 1. 

Tool: Symbolic Trace Generator of Dynamic Ana
lyzer 

6. Check for data flow anomalies on the generated sym-
bolic trace (if desired) , 

Tool: Data Flow Analyzer of Dynamic Analyzer 
Data Flow Anomaly = [Referencing an un

defined variable; Not referencing a de
fined variable; Defining a currently de
fined variable] 

Note: This step can be done separately if the sole in
tention is to find symbolic trace data flow errors. 

7. Conditional on the complexity of the symbolic trace, 
slice the trace to focus attention of the sublogic/ 
subcomputational part corresponding to a suspected 
erroneous variable in the trace. 

Tool: Symbolic Trace Slicer 
8. (Optional depending on specific situation) 

Generate the backward-substituted predicates of the 
slice/trace . 

Tool: Symbolic Trace Analyzer 
There are situations where the set of backward-substi
tuted predicates are easier to compare with the speci
fied functional requirements. A sample situation occurs 
when the symbolic trace is mostly composed of logic 
statements (control statements and other statements 
affecting control). 

9. Compare the slices or the trace with the specified func
tional requirements. The specified functional require
ments may be in mathematical/symbolic form or in 
English-prose form. The programmer/tester detects 
any logical discrepancies in the slice/trace and in the 
specified functional requirements. 

10. Fix any detected logic/computation errors detected in 
Steps 6 and 9. Quit if none. Goto 2. 

11. Proceed to the next software functional requirement. 
Goto 1. 

It should be emphasized that the role of the test cases in 
Step 1 was simply to generate a symbolic trace and not to 
expose a lOgic/computation error directly. Any exposed error 
from the test case is only coincidental. The logic errors are 
detected after comparing the slice/trace with the software 
functional requirement. Exposing logic/computation errors 
directly from test cases can be difficult and time-consuming. 
Exposing logic errors by comparing slice/trace with functional 
requirements minimizes the difficult task of generating a lot of 
test cases and the task of comparing the test results with the 
expected software result. It has to be pointed out that in 
comparing a slice/trace with functional requirements when 
debugging a program, we may need information on certain 
attributes of the program to verify, for example, mixed mode 

computations or calling sequence errors. This information 
may be queried from the program database or by invoking any 
of the following tools of the static analyzer: the Variable/ 
Statement Cross Reference Table Generator, the Sub-Pro
gram Calling Sequence Table Generator, and the Sub-Pro
gram Cross Reference Table Generator. 

Test Strategy for Boundary/Error Condition Errors 

The declared range of input variables in a program plus its 
various predicates to control logic define the boundaries of 
the program. A boundary condition error occurs when an 
input point in the boundary yields results that do not conform 
with intended requirements. An error condition error occurs 
when an input point outside the legal boundary of the pro
gram is not handled properly or causes the program to crash. 

Error Hypothesis 

HO: Boundary/error condition error in E 
HI: Boundary/error condition error not in E 

Strategy II 

1. Start from a previously generated trace/slice. This may 
require doing Steps 1 to 6 of testing strategy recom
mended for logic/computation errors. 

Tools needed: 
a. Compiler 
b. Static Analyzer 
c. Program Instrumenter 
d. Symbolic Trace Generator 
e. Symbolic Trace Slicer 
f. Data Flow Analyzer 

2. Generate equivalence Class conditions for the selected 
trace/slice. Quit ifno more trace/slice. 
The equivalence class conditions are generated by per
forming backward substitution on the predicates of the 
trace/slice. The backward-substituted predicates are ex
pressed purely in terms of constants and input variables. 
The predicates essentially define the boundaries of the 
subfunction being implemented by the trace/slice. 

3. Compare the generated (possibly erroneous) equiva
lence class conditions with the specified boundary/error 
requirements. Any observed discrepancy (due to incor
rect or missing boundary) is a boundary condition error. 

4. An alternative or complementary step is to generate a 
test case to test the boundary/error conditions of the 
selected trace/slice. The equivalence class conditions ex
pressed purely in terms of constants and input variables 
greatly facilitate generating these test cases. The equiv
alence class conditions may be simplified symbolically 
using a text editor. Simplification may be necessary to 
further facilitate test case generation. 
Guideline: 

For each suspected erroneous boundary, generate test 
cases near the predicate's boundary. Test cases should 
be immediately inside and outside the boundary. Test 
inputs immediately outside the boundary should be 



416 National Computer Conference, 1984 

properly handled by the program. Test cases in the 
interior of the equivalence class do not really yield 
additional useful information. They only duplicate 
what the previous test case did. In a way, the set of 
backward-substituted predicates serves to filter out 
redundant test cases. 

5. Execute the generated test cases and observe any er~ 
roneous program output. Test cases outside the boun
dary that are also illegal/invalid program inputs should 
not cause the program to crash. They should be properly 
handled by appropriate error condition routines. Test 
cases that are outside the boundary but that are valid 
program inputs should be processed by the appropriate 
program path. Finally, the test output should be com
pared with expected program output. 

6. Remove any detected boundary/error condition errors. 
Go back to 1. 

Notice that executing a test case outside the boundary of a 
predicate (hence, outside the boundaries of the equivalence 
class) traverses a different path in the program. A new path 
implies a new symbolic trace/slice. This new trace/slice can be 
compared with specified requirements for purposes of error 
detection and may serve as the next trace/slice to be analyzed. 
We can, in fact, systematically traverse all the basic paths of 
the program from this process. 

Command Processor in SEQUEL 

The command processor in SEQUEL will integrate all the 
testing strategies described into one overall testing strategy. It 
has the following basic form: 

1. User invokes strategy to remove syntax/semantic errors 
from the program. Correct any detected errors. 

2. Hypothesize an error embedded in the software. Quit if 
no more errors to hypothesize. 

3. CASES 
Logic/Computation Error: Invoke Strategy I 
BoundarylError Condition Error: Invoke Strategy II 

4. Goto 2. 
The basic flow of the testing methodology has the follow
ing features: 
a. It is easy to integrate new test strategies and tools in 

the future. 
b. The user has flexibility to hypothesize the more im

portant errors in the program first. This may be crit
ical when testing time/resources are limited. 

c. The program to be tested may be a single module, a 
set of modules, or the whole program. Testing single 
modules or a set of modules in a bottom-up or top
down fashion may require a driver and a set of stubs. 
Drivers and stubs are necessary to make the module 
separately executable. We thus have a uniform ap
proach for unit, integration, and system testing. 

We recognize that additional features should be integrated 
in the command processor for it to be user-friendly. The fol
lowing features are being implemented: 

1. Menu-driven user interface. 
2. HELP routines to 

a. Guide the user on how to use the package. 
b. Recommend the appropriate tool to use at a given 

point in the testing process. 
3. Ability to invoke system tools (e.g., compiler or text 

editor) inside the processor. 
4. Ability to save and recall input/output files. This can be 

useful, for example, in these situations: 
a. Ability to save and timestamp test cases run on the 

program being tested. 
b. Ability to recall previous slicesltraces for further 

analysis. 
5. Ability to gather and document error statistics on pro

gram being tested. 

SYMBOLIC TRACE SLICER 

Why a Symbolic Trace Should Be Sliced 

The traditional approach to program slicing is to extract the 
smallest possible independently executable subprogram from 
a given program and slice criterion, which behaves equiva
lently with the given program as far as the variables in the slice 
criterion are concerned. There are, however, difficulties in 
following this traditional approach: 

1. Treatment of array and record elements during the slic
ing process. Current slicing algorithms17 treat the whole 
array or record as a scalar. This assumption would obvi
ously collect more statements in the slice than necessary. 

2. Treatment of functions and procedures (subprograms) in 

We used a different approach for SEQUEL to solve these 
difficulties. The approach is to slice the symbolic trace gener
ated by the Dynamic Analyzer instead of slicing the original 
program. The advantages of the approach are as follows: 

1. There is a need to deal only with a single path (trace) in 
the program. This facilitates treatment of functions and 
procedures. 

2. The specific array or record elements are known as a 
result of dynamically generating a trace from a test in
put. Thus, array and records need no longer be treated 
as scalars. 

This approach does not in any way diminish the error
detecting capability of SEQUEL. SEQUEL's testing method
ology always deals with a trace/slice in exposing program er
rors. Therefore, there is really no difference between slicing 
the program first, and then generating a symbolic trace from 
the slice; and generating a symbolic trace first, and then slicing 
the symbolic trace. 

The main purpose, of course, in extracting a slice is to focus 
attention on the variables (possibly erroneous) in the slice 
criterion. This enhances error detection and facilitates finding 
causes of exposed errors. An example would best illustrate 
our point. 



A Tool-Based Approach for Software Testing and Validation 417 

Example/Results Interpretation 

Given 
PASCAL program which finds the maximum and minimum 

value in an array. (Figure 1 gives a sample program.) 

Test Case #1 

N=5 
Array A: 4,3,1,2,5 

Figure 2 is the symbolic trace generated by Test Case #1. 

Note: Column 1 gives the Symbolic Trace Sequence Numbers 
(ST#); Column 2 gives the Sequenced Program listing 
sequence numbers (SPL#). generated by the Static 
Analyzer. 

Suppose we wish to focus our attention on whether the 
program, in fact, correctly computes the maximum of the 
array given Test Case #1. We have to note that one of the 
properties of Test Case #1 is that the maximum element lies 
at the end of the array. Thus this particular test case is ex-

Code: 

i 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Program xminmax (input, output); 

Var 

Begin 

i, n, min, max: integer; 
a : array[1 .. 10] of integer: 

write1n( 01 no. of elements in the array = '); 
read(n); 
For i: = 1 to n DO 

Begin 

End; 

read (a[i]); 
write (a[i]); 
write1n; 

mi n : = a[l]; 
max : = min; 
i := 2: 
Whi le i < n DO 

Begin 

End 

If a[i] > a[i+l] Then 
Begin 

End 
Else 

Begin 

End; 

If a[i]:> max Then 
max := a[i] ; 

If a[i + 1] < min Then. 
min := a[i + 1] 

If a[i + 1]" max Then 
max := a[i + 1] 

If a[i] < min Then 
min := a[i] 

:= i + 2 

If i = n Then 
If a[n] ~ max Then 

max := a[i + 1] 
Else 

write1n(max,min) 
End 

Figure 1 

If a[n] < min Then 
min := a[n]; 

ploring the correctness of the program in the case when the 
maximum lies at the end of the array with an odd number of 
elements. It does not test the correctness of the program when 
the maximum element is inside or at the beginning of the 
array, or at the end of an array with an even number of 
elements 

Slicing Criterion: 

Symbolic Trace Sequence #: 19 
Variable(s): MAX 

Symbolic Trace Slice (Option 1): 

The 110 statements were excluded to make the example 
short. The STS #'s also started (in this example) after the I/O 
statements. 

STS# 
3 

SPL# 
16 
33 
29 
41 

Statements 
1:=2 

9 1:=1+2 
13 MAX:=A[I+1] 

WRITELN (MAX, MIN) 19 

Remember that Slice Option 1 extracts only computational 
statements directly affecting the variable(s) in the criterion 
(MAX in this case), which contributed to the final value of 
MAX. If the output value of MAX is incorrect, then the cause 
can easily be detected by looking at the statements in the slice. 
The debugging process is thus facilitated. Two major causes 
are possible if MAX is incorrect: 

1. At least one of the statements in the outputted slice is 
erroneous (e.g., wrong arithmetic statement, mixed
mode computation, referencing an undefined variable, 
etc.) 

2. One or more statement in the slice is missing. 

In Figure 3, MAX is correctly computed. 

Symbolic Trace (produced by Dynamic Analyzer) 

(Path traversed by TestCase #1 in the program) 

1 14 min := a[i]; 
Spec ifi c Array E1 ements 

2 15 max := min; 
3 16 I := 2; 
4 17 ( I < N ) 
5 19 ( A[I] > A[I+l] ) ~m' A[3] 6 21 NOT (A[I] > MAX) 
7 23 ( A[I + 1] < MIN) A[3] 
8 24 MIN : = a[ i + 1] ; A[3] 
9 33 I := I + 2; 
10 17 I < N 
11 19 NOT ( A[I] > A[I+1] ) A[4], A[5] 
12 28 ( A[I=l] > MAX) A[S] 
13 29 MAX := A[I+l] A[S] 
14 30 NOT ( A[I] < MIN) A[4] 
15 33 I := I + 2; 
16 17 NOT (I < N) 
l7 35 NOT (I =N) 
18 36 NOT (A[N] > MAX) A[S] 
19 41 WRITElN ( MAX, MIN) 

Figure 2 



418 National Computer Conference, 1984 

Symbolic Trace Slice (Option 2): 

STSI 

1 
2 
3 
4 
5 
6 
9 
10 
11 
12 
13 
15 
16 
17 
18 
19 

SPL# 

14 
15 
16 
17 
19 
21 
33 
17 
19 
28 
29 
33 
17 
35 
36 
41 

Statements 

MIN: =A[l] 
MAX :=MIN 
1:=2 
(I < N) 
(A[I]"> A[I+l] 
NOT(A[I] > MAX) 
1:=1+2 
(1 < N) 
NOT (A[I] > A[I+1]) 
(A[I+l] > MAX) 
MAX: =A[ 1+ 1] 
1 :=1+2 
NOT (I < N) 
NOT (I = N) 
NOT (A[N] > MAX) 
WRITELN (MAX ,MIN) 

Figure 3 

Specific Array Statements 

; A[2], A[3] 
; A[2] 

; A[4], A[5] 
; A[5] 
; A[5] 

; A[5] 

Option 2 generates, in addition to the computational state- . 
ments directly affecting MAX, the logic ingredient that went 
into the traversal of this particular program path. The logic 
tells us that 

1. MAX is initialized to A[l] 
2. A[2] > A[3] 
3. A[2]:5 MAX (its current value which is A[l]) 
4. A[4]:5 A[5] 
5. A[5] > MAX (current value of which is A[I]) 
6. Terminates when I > N 
7. A[5]:5 MAX (current value is A[5]) 

The logic looks reasonable (based on our requirements), 
and we can infer that given an input with the same properties 
of test case #1, the program is logically correct. An incorrect 
logic would easily show in the slice. It may be an incorrect 
predicate, a missing statement, or a statement that should be 
removed. The location of the fault is facilitated by referring to 
the sequence program listing numbers. 

SYMBOLIC TRACE ANALYZER 

Purpose 

The main function of the Symbolic Trace Analyzer tool is to 
perform backward substitution on the predicates of a trace or 
slice. The end result of this process is the same set of predi
cates of the given slice/trace, with the difference that all are 
now expressed purely in terms of input variables and program 
constants. The conjunction of all the predicates defines the 
program logic that caused the path traversal and the equiv
alence class associated with the given program path. A pro
gram input belongs to a given equivalence class if it satisfies 
(evaluates to TRUE) all the predicates in the equivalence 
class. Program inputs belonging to the same equivalence class 
are all treated the same by the program; i.e., all are subjected 
to the same logic and computational statements. This suggests 
that it is sufficient to pick an interior element in an equiv
alence class to generate the logic and computational state
ments that all other inputs in the equivalence class share. The 

generated logic and computational statements are essentially 
the symbolic trace. 

A program input belongs to the boundary of a given equiv
alence class if at least one of the predicates in the equivalence 
class was satisfied at its boundary. For example, the predicate 
(A:5 B) is satisfied at its boundary if the program input caused 
actual value of A to be equal to B. 

A basic problem of software testing is to verify the cor
rectness of a given equivalence class. An equivalence class is 
correct if (1) all its boundaries are correct, and (2) there is no 
missing boundary in the class. A correct equivalence class 
implies correct logic and computation. Testing the correctness 
of an equivalence class (hence, absence of boundary errors) is 
difficult to do (especially for missing boundary errors) if done 
by pure test case generation and execution. In practice, it may 
be very difficult to design test cases that belong to the bound
aries of an equivalence class. We can avoid this difficult tradi
tional approach by simply generating a symbolic form of the 
equivalence class, and then comparing the symbolic form with 
the intended requirements to detect any discrepancies (er
rors). The symbolic trace analyzer tool supports this alterna
tive test approach. In addition, it highlights the boundaries 
(expressed in terms of program inputs and constants) of the 
equivalence class. 

Example 

Let us use the Symbolic Trace Slice (Option 2) given in the 
section entitled "Example/Results Interpretation." 

1. the predicate statements are located in STS #'s 4,5,6, 
11, 12, 16, 17, and 18. 

2. Start Backward substitution with predicate #4, getting 
(2 < N). We then continue with predicate #5 and so on, 
until we finish predicate #18. 

3. Figure 4 shows the generated set of backward-substi
tuted predicates: 

Predicate STSII 

4 

5 

6 

10 

11 

12 
16 

17 

18 

Backward Substituted Predicate 

(2<N) 
(A[2] > A[2+1]) 
NOT (A[2] > A[l]) 
«2+2) < N) 

NOT (A[2+2] > A[2+2+1]) 
(A[2+2+1] > A[l]) 
NOT «(2+2)+2) < N) 
NOT «(2+2)+2) = N) 
NOT (A[N] > A[(2+2)+1]) 

Figure 4 

Predicates 4, 10, 16, and 17 imply that N (an integer) should 
be equal to 5. Any other value of N will violate one or more 
of these predicates, causing a program boundary error. We 
may opt to use a text editor and simplify the predicates in the 
following form: 



A Tool-Based Approach for Software Testing and Validation 419 

4 (2<N) 
5 (A[2] > A[3]) 
6 NOT (A[2] > A[lj) 

10 (4<N) 
11 NOT(A[4] > A[S]) 
12 (A[5] > A[l]) 
16 NOT (6<N) 
17 NOT (6=N) 
18 NOT (A[N] > A[5]) 

Figure 5 

Predicates S, 6, 11, 12, and 18 collectively show the logic 
that caused the extraction of MAX. A total of five compar
isons were used. At this point we can design test cases that 
explore the boundaries of the path. These test cases would 
have one or more of the following properties: 

1. A[2] = A[3] or A[2] < A[3] 
2. A[2] = A[I] or A[2] > A[I] 
3. A[4] = A[S] or A[4] > A[S] 
4. A[S] = A[I] or A[5] < A[I] 
S. A[N] = A[S] or A[N] > A[S] 

This information guides us i.P designating :further test cases 
that we hope will explore more logic and boundary errors in 
the program. 

STATIC ANALYSIS 

The main objective of static analysis (as well as dynamic anal
ysis, discussed in the following section) is to determine that a 
given computer program has certain properties. To determine 
whether the program has a certain property, we need first to 
identify attributes that reflect the quality in question and then 
to devise an effective method for computing the values of the 
attributes. Generally speaking, there are two main types of 
program attributes. The first type consists of those associated 
with components of a program, whereas the second type con
sists of those associated with points in the control flow. To be 
more specific, let us consider the fragment of a flowchart 
depicted in Figure 6. In this figure, s represents a statement or 
a program segment, and i and j identify points in the control 
flow. A[i] and A[j] denote the sets of attributes associated 
with the corresponding points; B[s] denotes the set of attri
butes associated with program component s. In general, the 
value of B[s] (i.e., the attribute of the first type) will not be 
affected by an execution of s. However, an execution of s may 
cause a change in the value of A[j] (i.e., the attribute of the 
second type). Furthermore, a'[j], the new value of A[j] upon 
an execution of s, can be computed on the basis of A[i], B[s], 
and the old value of A[j]. To put it formally, 

A'[j] = f(A[i], B[s], A[jD 

where f is some function. 

t 
i * A[i] 

+--------r--------+ 

° * A[O] J I J 

Figure 6 

8[5] 

For convenience we shall refer to the attributes associated 
with program components as B-attributes and the attributes 
associated with points in control flow as A-attributes. A B
attribute is a local and static attribute whose value can be 
obtained from the associated program component. The value 
of a B-attribute will not be altered by an execution. An A
attribute is a global and dynamic attribute whose value can be 
computed on the basis of local attributes and the attributes 
associated with other points in control flow. The values of 
A-attributes may be altered in an execution. In most cases it 
is the values of A-attributes that reflect on the quality in 
question. 

The above concept clearly suggests a unified approach to 
the problems of program analysis and validation as outlined 
below: 

1. Identify the A-attributes that directly or indirectly re
flect the quality in question and the B-attributes that are 
required in computing the values of the A-attributes. 

2. Identify the relations among the attributes. 
3. Use the result of Step 2 to devise an effective algorithm 

for computing the values of the A-attributes. 

The values of the B-attributes and the initial values of the 
A-attributes are obtained by systematically parsing the pro
gram text. These extracted values are then stored in a pro
gram database. This generated program database forms the 
central part of the system and allows implementation of vari
ous error type specific test strategies in a single software test
ing tool system. Thus, the program database allows the user 
to query program attribute information relevant at any point 
in the testing process and allows building of other SEQUEL 
tools without reparsing the program. 

DYNAMIC ANALYSIS 

SEQUEL performs dynamic analysis on a program through 
instrumentation. 11 Program instrumentation is the process of 
inserting additional code statements at proper locations in the 



420 National Computer Conference, 1984 

program to compute the values of program attributes. The 
objectives of dynamic analysis are as follows: 

1. To generate symbolic trace of the program path tra
versed by the submitted input 

2. To update branch coverage counters (i.e., number of 
times each program branch is traversed) 

3. To detect data flow anomalies in the path traversed 
Detection of data flow anomaly by means of instrumen

tation,1O a unique feature of this tool system, can be briefly 
explained as follows. 

It is observed that, in program execution, a statement may 
act on a variable (datum) in three different ways: define, 
reference, and undefine. A variable is defined in a statement 
if an execution of the statement assigns a value to the variable. 
A variable is referenced in a statement if an execution of the 
statement requires that the value of that variable be obtained 
from memory. Thus in the assignment statement 

x:= x+y-z 

y and z are referenced, while x is first referenced and then 
defined. A variable may become undefined in many circum
stances. For example, in a FORTRAN program, the index 
variable of a DO statement becomes undefined when the 
RETURN statement is executed. Also, if a program is written 
in a language that allows block structure, the local variables of 
a block may become undefined when control exits from the 
block. 

A sequence of actions may be taken on a variable in a 
program being executed. A reference to a variable constitutes 
a programming error unless the value of the variable is de
fined previously. Furthermore, there is no need to define a 
variable unless it is to be referenced (i.e., its value to be used) 
later. Therefore, if we find that a variable in a program is (1) 
undefined and then referenced, (2) defined and then un
defined (not referenced), or (3) defined and then defined 
again, then we may reasonably conclude that a programming 
error might have been committed. This idea has been used by 
Fosdick and Osterweifo to detect programming errors. 

The three types of data flow anomalies mentioned above 
can be detected by means of static analysis, as suggested by 
Fosdick and Osterweil. 20 However, the method has some in
herent limitations. 12 

The following presents a new method for detecting data 
flow anomalies by means of program instrumentation. For this 
purpose, it is useful to regard a variable as being in one of the 
four possible states during program execution. The four possi
ble states are state U: undefined, state D: defined but not 
referenced, state R: defined and referenced, and state A: 
abnormal state. For error detection purposes it is proper to 
assume that a variable is in the state of being undefined when 
it is declared implicitly or explicitly. Now if the action taken 
on this variable is "define," then it will enter the state of being 
defined but not referenced. Then, depending on the next 
action taken on this variable, it will assume a different state, 
as shown in the state transition table (Figure 7). 

Note that in Figure 7 d, r, and u stand for "define," "refer
ence," and "undefine," respectively. The three types of data 
flow anomalies mentioned previously can thus be denoted by 
ur, du, and dd in this shorthand notation. It is easy to verify 

[
---~~:::~~-----r-----------~::~-:~:~:-------------i 

+-----------+-----------+----------+ 

----~::::------1-:::~~~:~--!-:::~~~:~--1-:::~~~:~-! 
U 0 A U 

OAR A 

R 

A 

o 
A 

R 

A 

U 

A 

+---------------+-----------+----------- ----------+ 
Figure 7 

that, if a sequence of actions taken on the variable contains 
either ur, du, or dd as a subsequence, the variable will enter 
state A, which indicated the presence of a data flow anomaly 
in the execution path. We let the variable remain in state A 
once that state is entered. Its implication and possible alterna
tives will be discussed later. 

It is obvious from the above discussion that there is no need 
to compute the sequence of actions taken on a variable along 
the entire execution path. Instead, we need only to know if the 
sequence will contain ur, du, or dd as a subsequence. Since 
such a subsequence will invariably cause the variable to enter 
state A, all we need to do is to monitor the states assumed by 
the variable during execution. This can be readily accom
plished by means of program instrumentation. 

To see how this can be done, let us consider a fragment of 
a flowchart, shown in Figure 8. Suppose we wish to detect data 
flow anomalies with respect to variable, say, x. If s is in state 
q before statement S is executed, and if a is the sequence of 
actions that will be taken on x by S, then an execution of S win 
cause x to enter state q' as depicted above. Given q and a, q' 
can be determined on the basis of the state table given pre
viously. However, for the discussions that follow, it is con
venient to write 

q' = f(q, a) 

where f is called the state transition function and is completely 
defined by the state table given above. Thus, for example, 
f(U, d) = D, f(D, u) = A. For the cases where a is a sequence 

I q 

+----------------------------+ 

s a 

+----------------------------+ 
I 
I ql 

Figure 8 



A Tool-Based Approach for Software Testing and Validation 421 

or more than one action, the definition of f can be naturally 
extended. For example, feU, dur) = f (f(U, d), ur) = feD, 
ur) = f(f)D, u), r) = f(A, r) = A. 

Note that in this case a is the B-attribute associated with S, 
and q and q' are the A-attributes associated with the re
spective control points. 

Next, we observe that the computation specified by q' = 
f(q, a) can be carried out by using a program statement of the 
form: 

q :=f(q, a). 

Now if we insert the above statement next to statement S as 
shown below, then the new state assumed by x will be auto
matically computed upon an execution. The augmented 
program 

I +-------------------------+ 

S; q .- f(q, a) 

+-----------{-------------+ 

Figure 9 

depicted here is said to have been instrumented with the state
ment q := f(q, a). This statement should be constructed in 
such a way that there will be no interference between this 
inserted statement and the original program. A simple way to 
accomplish this is to use variables other than those appearing 
in the program to construct the inserted statement. 

In practice, it is more appropriate to instrument the pro
gram with procedure calls instead of assignment statements. 
The use of a procedure allows us to save the identification of 
an instrument as well as the state assumed by the variable in 
question. Thus the programmer will be able to tell the exact 
location as well as the type of data flow anomaly detected. 
This greatly facilitates anomaly analysis. 

CONCLUSION 

A tool-based approach for testing and validating software has 
been described in this paper. The approach specifies error
specific test strategies for path logic/computation and boun
dary errors. These are the two major error types that remain 
after the successful compilation of a program. For the applica
tion of the approach to be cost effective, the specified test 
strategies are supported by software tools. This paper also 
describes the concepts behind the design of these software 
tools. 

The testing methodology and supporting software tools pro
vide a number of unique features: 

1. The methodology allows the user to focus attention on 
exposing software errors in a specific program path be
longing to a specific error type. 

2. The user can further focus on the sublogic of a generated 
symbolic path through program path slicing. Slicing is a 
powerful approach for testing and validating the cor
rectness of a program with respect to logic/computation 
errors. 

3. The user can generate the boundary conditions of a giv
en path through predicate backward substitution. This 
facilitates design of boundary value test cases for expos
ing path boundary errors. 

4. Path data flow analysis is done through program instru
mentation. 

ISSI has implemented this approach in its SEQUEL project 
for testing and validating ISO PASCAL programs. 

REFERENCES 

1. Adrion, w. R, M. A. Brandstad, and J. C. Cherniavsky. "Validation, 
Verification, and Testing of Computer Software." ACM Computing Sur
veys, 14, (1982), pp. 159-192. 

2. Andrews, C. L., and W. R DeHaan. "RXVP80, The Verification and 
Validation System for FORTRAN and COBOL." Proc. SOFTFAIR, Silver 
Spring, Md.: IEEE CS Press, 1983, pp. 38-47. 

3. Budd, T., R. A. DeMilio, R. A. Lipton, and F. G. Sayward. "The Design 
of a Prototype Mutation System for Program Testing." AFIPS, Proceedings 
of the National Computer Conference, (Vol. 47), 1978, pp. 623-627. 

4. Coweil, W. R, and L. J. Osterweil. "The ToolpackJIST Programming 
Environment. Proc. SOFTFAIR, Silver Spring, Md.: IEEE CS Press, 1983, 
pp. 326-333. 

5. Elmendorf, W. R. "Cause-Effect Graphs in Functional Testing." TR-
00.2487, mM Systems Development Division, Poughkeepsie, N.Y., 1973. 

6. Goodenough, J. B., and S. L. Gerhart. "Toward a Theory of Test Data 
Selection." IEEE Transactions on Software Engineering, SE-l (1975), pp. 
156-173. 

7. Howden, W. E. "Reliability of the Path Analysis Testing Strategy." IEEE 
Transactions on Software Engineering, SE-2 (1976), pp. 208-215. 

8. Howden, W. E. "Functional Program Testing." IEEE Transactions on 
Software Engineering, SE-7 (1980), pp. 162-169. 

9. Howden, W. E. "Validation of Scientific Programs." ACM Computing 
Surveys, 14 (1982), pp. 193-228. 

10. Huang, J. C. "An Approach to Program Testing." ACM Computing Sur
veys, 7 (1975), pp. 46-58. 

11. Huang, J. C. "Program Instrumentation and Software Testing. Computer, 
11 (1978), pp. 25-32. 

12. Huang, J. C. "Detection of Data Flow Anomaly through Program Instru
mentation." IEEE Transactions on Software Engineering, SE-5 (1979), pp. 
226-236. 

13. Huang, J. C. "Instrumenting Programs for Symbolic-Trace Generation." 
Computer, 13 (1980), pp. ?? 

14. Myers, G. J., The Art of Software Testing. New York: Wiley-Interscience, 
1979. 

15. Tischler, R, R. Schaufler, and C. Payne. "Static Analysis of Programs as 
an Aid to Debugging." ACM Software Engineering Notes, 8 (1983), pp. 
155-158. 

16. Waters, R C. "A Method for Analyzing Loop Programs." IEEE Trans
actions on Software Engineering, SE-5 (1979), pp. 237-247. 

17. Weiser, M. "Program Slicing." Proceedings of the 5th International Confer
ence on Software Engineering, March 1981, pp. 439-449. 

18. White, L. J., and E. 1. Cohen. "A Domain Strategy for Computer Program 
Testing." IEEE Transactions on Software Engineering, SE-6 (1980), pp. 
247-257. 

19. Yeh, R. T. (ed.). Current Trends in Programming Methodology. Vol. II: 
Program Validation. Englewood Cliffs, N.J.: Prentice-Hall, 1977, pp. 
16-43. 

20. Fosdick, L. D., and L. J. Osterweil. "Data Floor Analysis in Software 
Reliability." ACM Computing Surveys, 8 (1976), pp. 305-330. 





Guidance for test selection based on the cost of errors 

by DAVID A. GUSTAFSON 
Kansas State University 
Manhattan, Kansas 

ABSTRACT 

A continual problem in the area of software testing is deciding if and where in a 
program additional testing should be done. Recent work by Cheung has indicated 
that the relative reliability of the individual nodes in a software flow graph, or 
modules in a software structure, can be used to guide the testing. 1 This paper 
attempts to aid this process by suggesting a method for assigning a cost factor to the 
individual nodes in the software flow graph. This cost can be used to guide selection 
of additional tests. 

423 





Guidance for Test Selection Based on the Cost of Errors 425 

INTRODUCTION 

A problem in software testing is deciding how much testing is 
to be done and what tests should be used. Approaches to 
software testing are many and varied.2

,3 Work in the area of 
reliability is giving guidance on how many tests should be 
done.4 Test coverage measures give guidance on both how 
many tests to run and on what to test. 5 Functional testing 
proposes that test cases are to be selected for each function in 
the software specification. 6

-
8 Some methodologies combine 

all of these approaches. 9 However, these approaches are all 
based on the idea that for the chosen criterion, all the in
stances should be tested equally, whether the criterion is the 
testing of statements, decisions, branches, paths, functions, 
and so forth. That is, these approaches consider all errors, 
decisions, functions, etc. to be equally serious and important. 

This equality is not always a reasonable assumption. Some 
errors are more probable than others because the necessary 
input conditions are more likely to occur. Some errors are 
more serious because their effects are more serious. The test
ing effort should concentrate on the more serious and more 
common errors. 

As an example, consider a system designed to train people' 
in recognizing equilateral triangles from triangles that are 
close to being equilateral. A set of triangles could be 
presented on a visual display, the trainee could be instructed 
to pick which one is equilateral, and the system could respond 
with the type of triangle that was picked. Part of the software 
could be a simple routine to determine the type of the triangle 
that was picked. The critical errors for this routine are (1) the 
triangle being incorrectly classified as equilateral and (2) the 
triangle being incorrectly classified as not equilateral. The 
most frequent data will probably be equilateral triangles. 
Those cases that are not triangles may be very rare or non
existent. Intuitively, more emphasis should be placed on veri
fying that triangles are classified correctly than on whether 
they are equilateral or not. 

Work by Cheung has indicated that some nodes in the flow 
graph are more critical than others to correct behavior of the 
program. 1 His analysis is based on the user profile of transi
tions between the nodes or modules. Using this empirically 
derived profile and a Markov model of the transitions be
tween the nodes, he identifies which nodes are more critical. 
However, he does not include any parameters for the crit
icality of the possible errors. 

There are many times that certain errors (e.g., incorrectly 
identifying a triangle as equilateral) are much more serious 
than other errors (e.g., incorrectly identifying a scalene trian
gle as isosceles). The model proposed in this article is based 
on the estimated criticality of possible errors and the esti
mated frequency of occurrence of cases. An estimate is calcu-

lated for the criticality of the decisions and computations 
made at each node in the flow graph. 

ASSIGNING COSTS 

The errors that occur in programs can be classified as domain 
errors or computational errors.7 Domain errors are those 
where an incorrect decision causes a particular datapoint to be ' 
treated as a different type. That is, the inputs are considered 
to be from the wrong domain. The other type of error is called 
a computational error. That is, the computation in a particular 
domain is incorrect. For example, the square root may be 
incorrectly calculated. 

All errors can be considered as one of these two types. For 
any datapoint (i.e., a point in the domain) a certain path 
through the program is executed and computations unrelated 
to control decisions may be done. A datapoint either follows 
the correct execution path or it does not (a domain error may 
occur). The noncontrol computations done on the actual exe
cution path are either correct or incorrect (a computation 
error may occur). Although these two error categories are 
large, they seem to be inclusive. Other error classification 
schemes are valuable for other uses, but these two categories 
are of interest for this model. Therefore, we will consider 
them to be either domain or computational errors. 

A number of complex situations can arise. First, both types 
of errors can occur for one datapoint. Second, an incorrect 
computation may seem to be correct (e.g., x + 2 instead of2*x 
for the value x = 2). Finally, a datapoint may execute an incor
rect path but later rejoin the correct execution path. All of 
these situations are considered errors and the differences are 
not significant in the estimations done in this paper. 

Expected costs can be assigned to these two kinds of errors. 
The expected cost of a potential domain error is the cost of a 
domain error multiplied by the probability of that input case 
occurring. The expected cost of a potential computation error 
is the cost of a computation error multiplied by the probability 
of that computation being done. 

In the triangle example, we may be able to estimate the 
costs of actual errors. Let us assume that two of the errors 
have costs associated with them. These costs may be based on 
the estimate of the amount of additional training necessary for 
the trainee to develop the necessary skill level after being 
misled by an incorrect answer. Assume that incorrect identi
fication of a nonequilateral triangle as equilateral might re
quire $200 of additional training and an incorrect typing of an 
equilateral triangle as nonequilateral might cost $100. 

If we also knew the probability of actual errors occurring, 
we could calculate the expected cost of the errors. In our 
example, if we knew an actual frequency of these two errors 



426 National Computer Conference, 1984 

(e.g., one!day and two!week), we could calculate the actual 
costs of these errors ($1000!week and $200!week, respec
tively). However, without knowledge of the actual error fre
quency, we can only calculate the relative expected costs of 
potential errors and the criticality of individual nodes. 

The relative expected cost of a potential error is the esti
mated cost of that particular error multiplied by the relative 
frequency of datapoints in which that error is possible. A 
potential error in a commonly occurring type of data would 
have a higher expected cost than an error in a rarely occurring 
type of data. The relative expected cost is the estimated cost 
of a particular type of error times the relative frequency of 
occurrence of that type of data. In our example, the trainees 
might select equilateral triangles 80% of the time and other 
triangles 18% of the time (2% might be nontriangles). Thus, 
the relative expected costs would be $36 for the nonequilateral 
and $80 for the equilateral. These costs are relative since the 
frequencies are relative. 

We will assume that the user can assign costs such as these 
to the domain errors. That is, the user must give a cost for an 
outcome of type i when the correct outcome is type j. Denote 
these costs by Cij. Cij represents the cost of an incorrect 
answer of type i when the correct answer was type j. For 
our example, Cqe = Cqi = Cqr = Cqa = Cqo = $200, and 
Ceq = Ciq = Crq = Caq = Coq = $100, and every other Cij is 
zero. Note that q stands for equilateral, i for isosceles, r for 
right scalene, 0 for obtuse scalene, a for acute scalene, and e 
for error (nontriangle). 

The user also must estimate the cost of computation errors. 
That is, the cost of an incorrect calculation must be specified. 
Cii will denote the computation error for type i. In the triangle 
example, there are no nondecision computations and so 
Caa = Cqq = Crr = Cee = Cii = Coo = O. 

In addition, the user must be able to assIgn the relatIve 
frequencies of the datapoints. In the triangle example, 80% 
were equilateral (i.e., fq = .8), 18% were nonequilateral (as
sume fi = fa = fo =fr = .045), and 2% were not triangles (i.e., 
fe = .02). 

These values will be used to analyze the criticality of the 
parts of the program. The analysis will be done on the stan
dard flow graph of the program. In the flow graph, nodes 
stand for branch-free sections of code. The arcs stand for 
possible execution paths between these branch-free sections 
of code. Each type can be assigned to at least one node in the 
flow-graph. This node is where the datapoint is identified as 
belonging to that type. In the triangle example, each terminal 
node is associated with a particular type of triangle. In these 
nodes, the name of the particular type of triangle is returned 
to the calling program. Additionally, any node that does non
decision computations has particular types of datapoints asso
ciated with that node. 

Fundamental Rule: The criticality of errors in a node is 
related to the sum of the expected cost of potential errors 
in the computations done in that node plus the increase in 
successor nodes of the expected cost of potential domain 
errors due to decisions in that node. 

The fundamental rule states the criticality of a node or the 
potential cost of errors in a node is related to two types of 

errors: errors in the computations done in that node and 
errors in the decisions made in that node. The expected cost 
of potential computation errors is directly related to the activ
ities of a node. The expected cost of potential domain errors 
in a node is the result of decisions made in predecessor nodes. 
Thus, the increase in this expected cost is related to the crit
icality of the node. The fundamental rule, besides being intu
itively correct, allows for the consistent and logical propaga
tion of the relative expected costs throughout the flow graph. 

ASSIGNING DOMAIN COSTS TO NODES 

The relative expected cost of the potential domain errors can 
be assigned to the nodes in the flow graph. This cost is inter
preted as the expected cost of incorrectly executing that node. 

Rule 1: The expected cost of potential domain errors in a 
tenninal node is the expected cost of incorrectly being in 
that node. 

The expected cost of incorrectly being in a terminal node that 
has type i datapoints assigned to it is the summation for all j 
of Cij*fj (i <> j). Thus, these Cij*fj will be put in the cost set 
of that node. The expected cost is the sum of the terms in the 
cost set. Thus, every terminal node in the flow graph can be 
given an expected cost of potential domain error. 

Rule 2: The expected cost of potential domain errors in a 
nontenninal node is the sum of the expected costs of poten
tial domain errors of the successor nodes minus the tenns 
related to the decisions made in the node. 

The cost of a nonterminal node can be calculated as follows: 

1. Add the cost set of each successor node 
2. Subtract any pairs of terms Cij*fj and Cji*fi where both 

are in the cost set 

Note that the criticality of errors is related to the increase in 
the expected cost of domain errors. 

Rule 2a: The expected cost of the potential domain errors 
of the nodes in a cycle is the sum of the expected costs of 
potential domain error of the successor nodes for all nodes 
in the cycle minus the tenns related to all decisions made in 
the cycle. 

This rule means that all nodes in a cycle (loop) have the 
same expected cost of potential domain error. This expected 
cost is the same because all nodes in the loop are potentially 
executed on each iteration. The criticality of the nodes in a 
loop may not be the same because of the expected costs of the 
successor nodes of each node in the loop. 

The cost of a nonterminal node in a cycle can be calculated 
as follows: 

1. Add all terms Cij*fj from the cost sets of the successor 
nodes of nodes in the cycle. 

2. Subtract all pairs of terms Cij*fj where both are in the 
cost set 



Guidance for Test Selection Based on the Cost of Errors 427 

ASSIGNING COSTS OF COMPUTATION ERRORS 

The expected cost of a computation error in a terminal node 
is the product Cii*fi for types i assigned to the node. The 
expected cost of a potential computation error in a non
terminal node that is involved in computations is the product 
of Cii and fi for all types i that are related to that node. 

ASSIGNING CRITICALITY TO NODES 

The criticality of a node is the sum of the increase in the 
expected cost of domain errors and the expected cost of 
computation error for all computations done in the node. 

AN EXAMPLE 

Figure 1 is the flow graph of the triangle problem. The task is 
to identify the type of triangle given the lengths of the three 
sides. The nodes are labeled by number to the left of each 
node. There are no computations involved in this problem. 
The only possible errors are domain errors. Table I gives the 

A )= B 
1. and 

B )= C 

2. 

8. 

Figure I-The triangle example 

expressions for the expected costs of potential domain errors 
~or each of the nodes. The cases are referred to by letter 
Instead of by number. For example, Coe is the cost of identi
fying the triangle as obtuse when it should have been an error 
case. The frequency of occurrence of the cases is denoted by 
fi. For example, fa is the expected frequency of acute trian
gles. Table I shows the values of the criticality if all of the Cij 
are 1 and all frequencies are equal. Also indicated are the 
values of the expected costs and criticalities if the Cij and 
frequencies had the values from the example. Using the sam
ple expected costs and relative frequencies gives a different 
ranking for the criticality of the nodes. Although nodes 3 and 
1 are still ranked number one and two, node 4 is now ranked 
three and at almost the same ranking as node 1. This would 
indicate that much more extensive testing should be done on 
nodes 3, 1, and 4. 

Looking at the original flow graph, this recommendation 
can be converted to a description of the important types of test 
data. The most critical node is node 3, which involves a deci
sion about whether two of the lengths are equal. Thus, the 
most important type of test case involves two of the lengths 
being equal or close to equal. 

The second most critical node is node 1. This node tests 
whether or not the three lengths are properly ordered. Thus 
the second most important type of test case involves three 
sides being improperly ordered. Finally, the third most critical 
node involves a decision about whether all three of the sides 
are equal or close to equal. 

Table I-The triangle example 

Expected Costs of Potential Domain Errors 

Node 10 : Coe1fe + Coilfi + Coqlfq + Corlfr + Coalfa 

Node 11 : Cae1fe + Cailfi + Caqlfq + Carlfr + Caolfo 

Node 9 : (Coe + Cae)lfe + (Cai + Coi)lfi +(coq + Caq)lfq 
+ (Cor + Car)lfr 

Node 8 : Crelfe + Crilfi + Crqlfq + Crolfo + Cralfa 

Node 7 : (Coe + Cae + Cre)lfe + (Cai + Coi + Cri)lfi 
+ (coq + Caq + Crq)lfq 

Node 6 : Cqe1fe + Cqilfi + Cqrlfr + Cqolfo + Cqalfa 

Node 5 : Cielfe + Ciq Ifq + Cirlfr + CiOlfo + Cialfa 

Node 4 : (Cqe + Cie)lfe + (Cqr + Cir)lfr + (Cqo +CiO)lfo 
+ (Cqa+Cia)lfa 

Node 3 : (Cqe + Cie + Coe + Cae + Cre)lfe 

Node 2 : Ceolfo + Ceilfi + Ceqlfq + Cer1fr + Cealfa 

Node 1 : none 

all Cij = 1 Cij different 

Node Expected Cri ticali ty Expected C ri ti cali ty 

1 0 10 0 89 
2 5 0 80 0 
3 5 12 9 267 
4 8 2 36 84 
5 5 0 80 0 
6 5 0 40 0 
7 9 4 240 0 
8 5 0 80 0 
9 8 2 160 0 

10 5 0 80 0 
11 5 0 80 0 



428 National Computer Conference, 1984 

A possible testing approach would be to select cases of 
these three critical types in proportion to the criticality of 
those nodes, for example, three times as many cases of type 
one (two sides equal or almost equal) as of type two (sides 
ordered wrong) or type three (all sides equal or almost equal). 
Additional tests would be used to achieve C1 coverage of the 
program.5 This approach would emphasize testing for the er
rors that would be more costly. 

ANOTHER EXAMPLE 

Figure 1 has the flow graph of a program with a loop. The 
terminal nodes contain a letter that represents the proper case 
for that node. The terminal nodes also have potential com
putation errors. The cost of a potential computation error is 
represented by Cii for case i. The expressions for expected 
cost of potential domain errors are shown in Table II. Note 
that the expressions for the three nodes in the cycle are the 
same. The second part of Table II shows the numeric values 
for the expected cost of potential domain errors, the expected 
cost of potential computation errors, and the potential cost for 
each node. These were calculated with the Cij all equal to 
one. Note that the potential cost of the three nodes (2, 4, and 
6) in the cycle is not identical. 

IMPLEMENTATION 

An implementation of this algorithm was written in PASCAL. 
The implementation is approximately 300 lines long. A two-

11 1 e 112 I f I «'U< 'LJ 
Figure 2-Example with looping 

Table II-Example with looping 

Expected Costs of Potential Domain Errors 

Node 11 : Cea-fa + Ceb-fb + Cec-fc + Ced-fd + Cef-ff 

Node 12 : Cfa-fa + Cfb-fo + Cfc-fc + Cfd-fd + Cfe-fe 

Node 10 : (Cea+Cfa)-fa + (Ceb+Cfb)-fb + (CeC+Cfc)-fc 
+ (Ced+Cfd)-fd 

Node 8 : Cca-fa + Ccb-fb + Ccd-fd + Cce-fe + Ccf-ff 

Node 9 : Cda-fa + Cdb-fb + Cdc-fc + Cde-fe + Cdt-ff 

Node 7 : Cba-fa + Cbc-fc + Cbd-fd + Cbe-fe + Cbf-ff 

Node 5 : (Cca+Cda)-fa + (Ccb+Cdb)-fb + (Cce+Cde)-fe 
+ (Ccf+Cdf)-ff 

Node 6 " Node 4 = Node 2 : (Cba + Cca + Cda + Cea + Cfa)-fa 

Node 3 : Cab-fb + Cac-fc + Cad-fd + Cae-fe + Cef-ff 

Node 1 : none 

Values when all the Cij are equal to one 

Nodes Expected Expected Criticality 
Domain Computa tion 

1 0 0 10 
2 5 0 14 
3 5 1 1 
4 11 0 5 
5 8 0 
6 11 0 
7 5 1 
8 5 1 
9 5 1 

10 8 0 
11 5 
12 5 

dimensional array is used to represent the expression for the 
expected cost ~t a node. The combining and reduction oper
ations involve logical and transform operations on the arrays. 
Documentation on the implementation is available from the 
author. 

CONCLUSION 

This model shows that the individual nodes in a flow graph 
can be analyzed for criticality using estimated costs of errors 
and estimated distribution of input cases. This analysis will 
be useful in deciding which nodes should be tested more 
thoroughly. 

Once the criticality of each of the nodes in a flow graph is 
established, the testing effort can be distributed in proportion 
to the criticality of each node. For each node, the activities 
and decisions in that node will suggest what tests should be 
done for that node. The resulting sets of tests should evaluate 
the program in relation to the criticality of the possible errors. 

This model also allows the evaluation of different software 
structures based on how the criticality of the nodes is spread 
throughout the flow graph. A flow graph in which the poten
tial cost of individual nodes is minimized would seem to be 
preferable. Any node that has a very high potential cost 
should be suspect and a structure that causes a few nodes to 
have a high potential cost should be avoided. 

This model is an initial attempt at approaching the problem 



Guidance for Test Selection Based on the Cost of Errors 429 

of associating input distributions and knowledge of differ
ences in the seriousness of errors with the criticality of nodes 
and the evaluation of software structures. Future research will 
attempt to refine this model. 

REFERENCES 

1. Cheung, R. C. "A User-Oriented Software Reliability Model." IEEE Trans
actions on Software Engineering, 6 (1980), pp. 118-125. 

2. Adrion, W. R., M. A. Branstad, and J. C. Cherniavsky. "Validation, 
Verification, and Testing of Computer Software." Computing Surveys, 14 
(1982), pp. 159-192. 

3. Schindler, M. "Software Testing-A Scarce Art Struggles to Become a 
Science." Electronic Design, 30 (1982), pp. 85-102. 

4. Thompson, W. E., and ,Po O. Chelson. "Software Reliability Testing for 
Embedded Computer Systems." Workshop on Quantitative Software Models 
(1979). New York: IEEE, 1979, pp. 201-208. 

5. Software Research Associates. Summary of Software Testing Measures, 
Technical Note TN-843/2, May 1981. San Francisco: Software Research As
sociates, 1981. 

6. Goodenough, J. B., and S. L. Gerhart. "Toward a Theory of Test Data 
Selections." IEEE Transactions on Software Engineering, 2 (1976), 
pp. 156-173. 

7. Howden, W. E. "Reliability of the Path Analysis Strategy." IEEE Trans
actions on Software Engineering, 2 (1976), pp. 38-45. 

8. Howden, W. E. "Functional Testing and Design Abstractions." Journal of 
Systems and Software, 1 (1980), pp. 307-313. 

9. Geiger, W., L. Gmeiner, H. Trauboth, and U. Voges. "Program Testing 
Techniques for Nuclear Reactor Protection Systems." Computer, 12 (1979). 
pp.10-18. 





Computer graphics-Coming of age 

Alan Paller, Track Chair 

During 1983 and 1984, computer graphics emerged from the 
shadows and became omnipresent. More than 80% of the 
personal computers being purchased in 1984 include some 
form of graphics capability. A similar percentage of the infor
mation centers at large corporations are installing new graph
ics software tools. Hardly any office automation system with
out a graphics component is being announced. Thousands of 
graphics designers are switching from manual to automated 
methods. Engineers in ever larger numbers are using com
puter graphics work stations for design and drafting. Even 
word processors are gaining computer graphics capability. 

On the entertainment front, computer animation is playing 
an increasingly large role in successes such as the film 
"Star Wars." Simultaneously, video games have brought 
entertainment -oriented computer graphics into more than 
three million homes in America. Two of the Nee sessions 
cover state-of-the-art technology and applications in the very 
visible entertainment and animation areas. The remainder of 
the Nee '84 graphics track focuses on the fastest-growing 
segment and the one that directly affects the most computer 
users: management and business graphics. It offers a state-of
the-art overview of the hardware and software and looks 
ahead at the coming year. 

Four major classes of graphics products are covered in the 
sessions: displays, work stations, hard copy output devices, 
and software. The computer graphics display of 1984 can best 
be thought of as a traditional alphanumeric display in which 
every dot (or pixel) on the screen is addressable. Pictures with 
high levels of detail require much more memory than do pic
tures with less. Until 1982, terminals that could display more 
than 1 million pixels (1000-by-l000 resolution) cost more than 
$25,000. However, by 1984, those terminals had dropped in 
price !o under $10,000; and for slightly more a buyer could 

have a terminal with extraordinary local intelligence for pan
ning and zooming. Simultaneously, graphics terminals with 
lower resolutions-e.g., those with 300-by-400 addressable 
pixels-were dropping radically in price. Today it is common 
to find black-and-white graphics terminals at less than $1,000, 
and color graphics terminals at less than $3,000. During this 
year, even higher resolution terminals (up to 2000 by 2000) 
will begin to appear, first in black and white and later in color. 

The session entitled "Graphics on Microcomputers" dis
cusses the stand-alone graphics work stations that are a new 
phenomenon created by the low-cost microprocessor. These 
work stations come in two varieties: the personal computer 
variety and the high-performance professional work stations. 
Graphics on personal computers are generally low resolution. 
They appear to be better than they are when the screens are 
very small. The professional work stations, on the other hand, 
have higher resolution and more computer power than the 
pes and are used in high-payoff applications, such as slide 
production and scientific data analysis. Today there is a larger 
price premium on the professional work stations, but during 
this year more powerful personal computers will begin to 
erode the difference between professional work stations and 
personal computer graphics systems. 

The session entitled "Experts Look at the Future" is con
cerned in part with new developments in hard-copy paper 
charts, overhead transparencies, and 35-mm slides. New tech
nology is revolutionizing all three. The digital plotter has been 
the workhorse of today's management graphics systems; but it 
is being challenged by inkjet printers, which provide more 
color more quickly on both paper and transparency. At the 
same time, new laser printers are cutting production time for 
charts from 10 minutes to 10 seconds. On personal computers, 
low-cost plotters and inkjet printers are adding color output, 



while higher-resolution matrix printers (200 dots per inch) are 
making black-and-white output more presentable. 

The 35-mm slide production market is a fast-growing appli
cation of computer graphics because computers cut the cost of 
slides from $35 to $7 each. New digital film recorders have 
brought the price of high-quality slidemaking equipment to 
$25,000. Later this year, even newer systems promise price 
reductions to $10,000 with quality similar to the output of 
equipment that cost $200,000 only two years ago. The same 
type of price erosion is occurring in laser printers: prices are 
expected to be in the $5,000-to-$1O,000 range by 1985. 

Nearly every session will have a software component, be
cause no computer graphics can be produced without it. The 
graphics software industry has blossomed into a $100 million 
business, primarily for mainframes and minicomputers. Per
sonal computer graphics software is also becoming important, 
but the vast majority is imbedded in integrated systems. 

The largest vendors of graphics software have made major 
advances in the past year, including the following: 

-New software for integrating text and graphics to produce 
technical documentation. 

-A new standard for user friendliness. 
-New database linkages. 
-Predesigned chartbooks. 
-Layout intelligence that automatically designs the best-

looking chart for the target audience. 

Application graphics software is another growth area, with 
both project management graphics and executive chart book 
systems gaining broad acceptance. 

Graphics software standards have finally arrived after seven 
years of effort. One session, entitled "Emerging Standards," 
will focus on these new developments. 

During the coming year, personal computer graphics pack
ages will continue to evolve into more powerful tools. And at 

the same time, the much larger development budgets of the 
mainframe graphics vendors will increase the distance be
tween personal computer graphics amd mainframe graphics 
software capabilities. Late in the year, however, the gulf be
tween mainframes and micros will close as new desktop com
puters are announced that will run the software that works 
only on mainframes today. 

New management techniques for computer graphics in 
large corporations will be the focus of the session called 
"Graphics in the Information Center." The principal keys to 
effective management that pioneering users of computer 
graphics have found are as follows: 

1. Give all computer users access to computer graphics 
through shared plotters, laser printers, and film record
ers. 

2. Provide links to databases and to old application pro-
grams. 

3. Offer chartbooks as the principal user interface. 
4. Offfer project management software. 
5. Offer both microcomputer graphics and mainframe· 

graphics. 
6. Provide software that offers user friendliness, extreme 

quality and flexibility, and device independence. 
7. Start with high-payoff applications for senior manage

ment. 

The explosive growth being experienced by the computer 
graphics industry can be attributed in part to the price 
performance improvements of hardware and software. But 
equally important to this growth is the new realization that 
graphics work, that they are cost effective, and that the people 
who bring computer graphics into organizations are making 
computers more useful to management and therefore more 
valuable to the organization as a whole. 



Personal computers 

Jean Yates, Track Chair 

More than three million personal computers will be sold in 
1984 to an increasingly segmented market. There are hand
held, laptop, desktop, stand-alone, networked, and super
rricro personal computers. You can buy personal computers 
for office workers, lab technicians, data processing managers, 
financial planners, and people with myriad other job descrip
tions. Applications software for personal computers runs the 
gamut of agricultural to zoological. The Personal Computing 
track attempts to cover this multifaceted market, its key is
sues, and new product innovations. 

1984 may go down as a year of the multiuser computer, with 
AT&T introducing computers from micro to mainframe; but 
the greatest interest is still at the personal computer level. 
UNIX has not achieved much acceptance on personal com
puters in the past, but AT&T's involvement may change 
things. UNIX provides a vital micro-to-mainframe link for 
companies connecting their personal computers to corporate 
mainframe equipment. The session entitled "Multi-User and 
Networked Personal Computers" explores this subject in 
depth. 

The portable market has fragmented into several submar
kets, including the laptop, the handheld, and the original 
portable: the "luggable." Apple and IBM's announcements 
of portables may be reducing "luggable" to an industry re
quirement for personal computers, not an option. More truly 
portable products like the Tandy 100 are gaining from new 
software developed for their special markets. The session 
"Portable Computers and their Software" reviews the latest in 
portables and the software being developed especially for 
them. 

"Frontiers in Personal Computing: The User Interface" 
focuses on a number of recent innovations in user interfaces. 
The user interface continues to be a major industry issue as 
frustrated users try to master the intricacies of operating sys
tems and applications, all of which use different commands. 
Along with menus and multiple windows, innovative devices 

for easing the user interface problem include the "mouse," 
touch-sensitive screens, softkeys, voice, and touch pads. 

What will the next generation of personal computers look 
like? Networking and friendly user interfaces are a part of the 
picture. IBM's rumored "Popcorn" is said to use a 286 micro
processor. Apple's MAC is certainly a pioneer in the 32-bit, 
easy-to-use personal computer sweepstakes. AT&T's entry is 
sure to stir interest. Voice/data can't be far behind AT&T's 
current computer offerings. "Next Generation PCs" reviews 
the latest developments and presents the views of industry 
experts on what's coming next. 

Software distribution and marketing continue to evolve, but 
constrained distribution channels have limited the mass ap
peal of some software products. New approaches to software 
distribution and design are described in various sessions of the 
Personal Computing track, with various iconoclasts describing 
their ideas. A particularly important issue is the prospect of a 
universal standard, a topic to which a session by this name has 
been devoted. 

Integrated operating environments are packages in which 
all applications use the same data formats and are designed to 
work with each other. This is one of the most exciting trends 
in the standardization arena. The session "Data Management 
in Integrated Operating Environments" explores the key is
sues here and presents the reactions of those with experience 
in using these environments. 

As the market becomes more complicated, forecast data 
and industry analysis become more important for those who 
want to stay well informed. Key industry analysts share their 
sometimes controversial, always interesting ideas in "The Per
sonal Computer Industry: The Experts Forecast the Future." 

The Personal Computing track gives computer users, data 
processing professionals, computer industry members, and 
educators an overview of the state of the personal computer 
and in-depth analyses of areas of special interest. 





Will notebook computers revolutionize computer usage? 

by DAVID H. AHL 
Creative Computing Magazine 
Morris Plains, New Jersey 

ABSTRACT 

Will notebook computers change patterns of computer usage? Depending on your 
point of view, you might give an answer of yes, no, or maybe. Some have concluded 
that most executives won't compute, now or ever, and for some good reasons. On 
the other hand, current users and manufacturers of computers are firmly convinced 
that every business person in the world will use a computer eventually. 

The notebook computer, a natural development in the continual downsizing of 
computers, is more than just the next step in the evolutionary chain. For the first 
time, a computer is available that can truly be used anywhere. Hence, the effect of 
the notebook computer or the way people use computers is likely to be great. 

435 





Will Notebook Computers Revolutionize Computer Usage? 437 

Will notebook computers revolutionize computer usage? 
Depending on your point of view, you might give an answer 
of yes, no, or maybe. In an article in Fortune titled, "Why 
Executives Don't Compute," Walter Kiechel concludes that 
most executives won't compute, now or ever, and for some 
good reasons. On the other hand, many computer manufac
turers, and many users too, are firmly convinced that every 
business person in the world will eventually use a computer. 

The notebook computer, a natural development in the con
tinual downsizing of computers, is more than just the next step 
in the evolutionary chain. Why? Because, for the first time, a 
computer is available that can truly be used anywhere. It is no 
more obtrusive than a pad of paper or a portable dictation 
unit. Hence, the effect of the notebook computer on the way 
people use computers is likely to be much greater than was 
originally expected. 

Before looking at the likely effect of notebook computers, 
it is important to understand the notebook computer itself and 
existing patterns of computer usage among business users. 

NOTEBOOK COMPUTERS 

In a sense there are three, or possibly four, categories of 
portable computer. There is the group that first took the name 
portable-the Osborne, Kaypro, or Compaq type of machine. 
These sewing-machine-sized machines are perhaps more aptly 
termed transportables because they are not truly portable. 
Most weigh more than 20 pounds and you would not want one 
resting on your lap for an extended period of time. Their 
appeal for most users is something other than portability. 

At the other end of the spectrum are pocket computers such 
as the Sharp PC-1500, Casio FX-700P, and Radio Shack PC-I, 
2, and 3. These are capable little units for computational 
applications, but are rather limited for general-purpose com
puting. 

Between these two extremes lie the notebook computers. 
Most of them have a keyboard that is full size, or nearly so. 
Their displays range from 1 to 16 lines, and are usually LCD. 
They are truly portable and are powered by batteries. 

THE SAME AND DIFFERENT 

All of the notebook computers available as of this writing-19 
in total-are similar in some ways, but quite different in oth
ers. All are portable, although 1 V2 pounds (HP 75C) are a 
great deal more portable than 11 pounds (Sharp PC-5000). 
The majority of the machines weigh between 3 and 6 pounds 
and are about the size of a thick three-ring binder. In general, 
size and weight are proportional to capability and features, 
but this is not universally true. 

All but one notebook computer use a liquid crystal display 

(LCD), and several have the ability to drive a CRT monitor as 
well. The size of the displays ranges from one line of 31 
characters (impossible for text editing) to 16 lines of 80 char
acters (nearly as many characters as a typical monitor). Some 
have limited graphics capabilities as well. 

Most notebook computers use an 8-bit mpu and have per
formance on a par with their 8-bit desktop counterparts. The 
16-bit machines are the speed demons, with computational 
speeds about six times faster than the 8-bit ones. 

The majority of notebook computers come with 16K or 
more of memory, and two come with 128K. The experience of 
early users indicates that extra memory, both internal and 
external, is a good investment. External memory takes many 
forms. A tape cassette is most common and least versatile. 
External memory cartridges (CMOS or bubble) are much 
handier and faster. Other approaches, each used by one man
ufacturer, are a 3" micro floppy, external wafertape, and mag
netic card. 

Most notebook computers use a proprietary operating sys
tem, although in most cases it is not an operating system at all 
but just a traffic cop for directing information flow. Several of 
the full-function systems use a standard operating system such 
as CP/M or MS-DOS. All but one of the machines speak 
Basic, mostly Microsoft; many have communications capabil
ities; and several have word-processing and spreadsheet pack
ages available. 

On the machines with standard operating systems, some 
off-the-shelf software packages can often be loaded through 
the RS-232 port and will run with minor modifications. Many 
of the manufacturers are encouraging development of soft
ware by third-party vendors, while others, taking a rather 
shortsighted view, are not. Nevertheless, it appears that the 
big three (Basic, word processing, and communications) will 
be available for most machines, with spreadsheets and data
base packages not far behind. 

As with any kind of computer, manufacturers make many 
different tradeoffs. Size versus extra features is an obvious 
tradeoff-one just can't fit a large display, modem, and 
printer in a package the size of a paperback novel. Price is a 
tradeoff against nearly everything-speed, memory capacity, 
features, and technical sophistication. 

So, that is the hardware. Now let us take a look at computer 
usage before the notebook computer era. 

WHY EXECUTIVES DON'T COMPUTE 

Who are the users of personal computers in the business 
world? They are certainly not the cadre of data processing 
professionals, most of whom have their hands full tending 
their data-gobbling mainframes. The typical user is a middle 
manager in a job requiring a great deal of calculating (finance, 



438 National Computer Conference, 1984 

engineering, research). Although the computer is a marvelous 
word-processing tool, the typical manager still leaves that 
function to a secretary. Except among professional writers, 
word processing is vastly underutilized. 

In the ranks of top management, the use of computers is 
even less widespread. A few trendy executives have purchased 
their own machines, but for the most part, computers are 
rarely found in executive suites. Those executives who use 
them have motivation similar to many middle-management 
users: their jobs require a great deal of calculating and analyz
ing. Some other executives, in the words of Prof. John Kotter 
of the Harvard Business School, "get off on technology." And 
a third group are into the quantitative school of management 
and want to keep their hands on the numbers, both at the 
office and at home. 

For the most part, companies are enthusiastic about the use 
of personal computers. John Bennett, director of data pro
cessing at United Technologies, says of executives who use 
computers at home, "I think we're getting an extra hour from 
them at night after dinner." 

Despite this enthusiasm, the use of the computer, particu
larly at the top ranks, is very low. The reasons for this are 
many. First is simply the fear of technology-the fear of typ
ing, the fear of loading a disk wrong, the fear of losing some
thing, the fear of not being able to get something out when 
you need it, and the fear of not being able to understand the 
machine. 

There are other related fears-the fear of not being able to 
use effectively the information produced by the computer, 
and conversely, the fear that the computer will somehow di
minish the need for the skills of the executive. 

Although Walter Kiechel thinks these fears are overblown, 
he nevertheless admits to their existence. Kiechel says, "The 
most important factor keeping the computer out of most exec
utive offices is the realization, sometimes barely conscious, on 
the part of managers that this technological wonder has, as 
yet, little to offer them. The nature of their work-in a word, 
unstructured-is such that it's not particularly susceptible to 
computerization. " 

Kotter's observations seem to confirm this view: "Much of 
the information that executives deal with is a form of power. 
Executives know that it is written down somewhere, they can't 
restrict access to it." 

The amount of training time needed to use a computer 
effectively is discouraging to some. Estimates in excess of 100 
hours are not uncommon; the typical executive frequently 
judges, rightly so, that he just doesn't have a block of time 
available to devote to something of possibly marginal benefit. 

It is easy to become awed by the enormous sales gains 
posted by the personal computer industry and to believe that 
every business person in the world must have one. Today, this 
situation is far from reality, but there is good reason to believe 
that the situation will change dramatically in the next few 
years. 

.A. REVOLUTION IN THE MAKING 

The reasons that executives are not using computers are cer
tainly valid-at least if we consider a desktop personal com-

puter or terminal hooked into the company mainframe. But 
let us weigh the use of a notebook computer against these 
same objections. 

Since the computer is small enough to take home easily, it 
is much easier to devote the hours of learning necessary to 
make effective use of it. And as learning takes place, con
fidence builds and technophobia evaporates. The user can 
prove to himself that the fears-of typing, of doing things 
wrong, of not being able to get needed data out, of privacy
are groundless once he is familiar with the machine. 

Moreover, the likelihood is high that the notebook com
puter user will discover for himself what has propelled the 
computer into such a position of importance today: that com
puter applications are limited only by the imagination of the 
user. The importance of this cannot be overstressed. 

Frequently, the computer is likened to a tool such as a 
hammer or a lathe. If you wish to make the point that a 
computer is a tool and not an end in itself, the hammer anal
ogy is a good one-but it doesn't go far enough. Alan Kay, 
originator of the Smalltalk language, goes one step further by 
saying that the computer is the medium and the software 
makes it into a tool-any tool, with the proper software. That 
is a better analogy, but it still does not convey the most im
portant idea of all-that the computer is a mind-extending 
tool, the first that man has ever had. 

The jobs that the computer has been called upon to do are 
related to who was doing the calling. The first computers were 
developed for the army to calculate projectile trajectories. 
This was expanded to other mathematically related applica
tions. Later, as they were merged with tab card machines, 
computers started to perform tab card functions--census 
counting and low-level financial calculations. 

Word processing didn't come until much later. Indeed the 
first widespread word-processing package on a microcom
puter, Electric Pencil, was written by a Hollywood screen 
editor because he needed it. Likewise, the first spreadsheet, 
VisiCalc, was written by a Harvard Business School student 
because he needed it. 

Perhaps today the compter has little to offer an executive, 
but after a few thousand are in the hands of executives, it 
seems likely that some of these executives are going to "need" 
something and find the computer can provide it. 

Beyond being able to go home with an executive, notebook 
computers have many other unique advantages. They can 
truly go anywhere-to the library with a student, to the client 
with a salesman, or to the story with a reporter. A notebook 
computer is more useful than a notebook or pocket tape 
recorder because it not only encourages one to jot down ideas, 
but allows ideas to be immediately integrated with previous 
ones, i.e., filed in the right place. There is no delay while a 
note is typed by a secretary and the appropriate file dug out. 

Notebook computers are full-function machines with 
enough memory to work on real-world problems and with 
enough external storage to enable many programs to be car
ried around simultaneously. The internal memory is nonvola
tile so it is difficult to make a fatal error. Notebook computers 
communicate easily-some have built-in modems-with other 
personal computers, with company mainframes, and with 
public data bases. 



Will Notebook Computers Revolutionize Computer Usage? 439 

Certainly the continuing avalanche of technological inno
vations will increase the use of computers in all parts of soci
ety. Networks will make communication with others much 
easier, and the use of artificial intelligence techniques will 
make communication with the machine itself easier. Voice 
recognition and speech synthesis are on the way. But im
portant as these developments are, it was the notebook com-

. puter itself that bridged the gap of widespread accessibility. 
The stories of the effects of notebook computers verge on 

folk legends. Newsday, a Long Island newspaper, ordered a 

small number of machines for some of its reporters. Within a 
few weeks the clamoring of the others became a roar, and the 
paper had to equip every reporter and editor with one. An 
article about notebook computers in the January 1984 issue of 
Creative Computing tied up the incoming phone lines at one 
manufacturer so that they had to put extra people on to han-· 
dIe the calls. These are not isolated incidents. In fact, they 
seem more the rule than the exception. 

Do you have a notebook computer yet? You should: 





Educational and societal issues 

Alfred Riccomi, Track Chair 

The headline reads "Do we realize that all the elements for an 
Orwellian Society are in place?" and we know it is 1984.6 But 
except for this being "the" year, little has changed. Tech
nology in general has often been accused of dehumanizing 
society.1 We should not expect computing to be an exception. 
As many of us know, computers can in fact free us to spend 
more time with each other, 1 to be more human. In any case, 
all of us are involved in and affected by computing, and the 
young among us will very probably use computers much as 
previous generations used pencils; they will be eveywhere and 
be used by all. 1 Not that everyone will solve partial differential 
equations and create payroll programs with these computers, 
but then again not everyone wrote great poetry with pencils. 5 

But today it is not clear to all how this can come to be. What 
are the issues, and are there any answers? 

The computer takes on different perspectives when viewed 
by people from different backgrounds: 

-To the computer manufacturer the computer is a divine 
gift, a source of (potentially) increasing profits. 

-To the user it is all too often a source of trouble. 
-The general public views the computer as a thing of magic 

which can do it all, but at the same time that public views 
it as the source of credit card and bank billing errors
and as a machine that invades their privacy. 

-To many social scientists it is a device dedicated to the 
invasion of privacy; and they know (or at least fear) that 
sooner or later is sure to be used to bnng about an 
Orwellian society. 

-Some educators see computers as a major opportunity to 
improve the quality of education, but others see them as 
another imposition on their already overloaded sched
ules; some even see computers as a threat to their ca
reers. 

-The courts understand neither computers nor the prob
lems surrounding them; therefore the resulting cases are 
often simply thrown out of court. 

-Then there is the thief who sees the computer as an 
electronic safe just waiting to be cracked for valuable 
information, for money, or just for fun. 

-The entrepreneur and the venture capitalist view it as a 
golden opportunity to get rich. 

All of these viewpoints are at least in some ways correct, 
and all are in other ways incorrect. There is not, and perhaps 
cannot be, one common understanding of what the computer 
is. 

Erik Sandberg-Diment of the New York Times leads a 
panel discussion titled "Media Micro Mania," which provides 
one or more of these views. On this panel, representatives 
from the news media enlighten us about how the computer 
industry looks to them. Are we seen as saviors of the human 
race, or only as hucksters promoting a shell game? Will our 
children really return from college as dejected dropouts? Is 
$49 finally the right price to pay for a home computer? Or 
should we deem no price too high for the gift of knowledge? 
Of one thing we can be certain-we will learn of these non
computing-industry views in no uncertain terms. 

The next session presents an enlightening view of a few new 
ways that technology can free us to spend more time doing 
what we want to do. Thomas Cross chairs a panel, "Tele/ 
Conferencing: the Future of Business Meetings." If all goes as 
planned, this session will in fact be conducted by tele/ 
conferencing, with some of the participants being spared the 
need to travel to beautiful downtown Las Vegas in July in 
order to participate. Is this in fact the introduction of profes
sional conferencing without travel? 

Next is a session chaired by Glenn Rifkin, titled "Working 



Remotely," which addresses the question: Where will the 
office of the future be? We experience a taste of how business 
meetings can be conducted without the need for traveling to 
distant sites; but is it even necessary to leave home in order to 
work? History tells us that before the Industrial Revolution, 
working in or near one's home was the norm. Now many 
believe it cannot be done: people cannot be trusted to work 
alone, and people need the socializing that goes with working 
together; it is just not natural to work remotely. Or will mass 
commuting between home and central work sites be just a 
short (two-century) aberration from the norm when viewed 
over the millennia by future historians? 

The educational application of computers has often been 
viewed as a world in itself. However, here we choose to see 
education as just another part of the world. The impact of 
technology in general and computing in particular should have 
no more and no less impact on education than on anything 
else. We tend to ignore the rather significant impact upon 
education brought about by the electric light, central heating, 
and air conditioning. The printing press must have led to fears 
that children taught to read printed text would not learn to 
read or write handwritten script (and don't we all know that 
to a great extent those fears have proved valid!). At an earlier 
date the pencil and writing in general must have been viewed 
as a crutch used to avoid developing the memory. 

Next, LaRuth Morrow brings together a panel of experts 
from the computer industry in a session titled "Enchancing 
Creativity in Education." They give us a different view of the 
possible roles that can be played by computers and other 
technologies in education. Although the fears and concerns of 
people involved daily with the problems confronting our 
schools should not and cannot be ignored, we know that ma
jor changes in the way we educate people have always taken 
place. There is no reason to believe that the future will not 
continue this pattern. Is it not reasonable to expect that TV 
screens and home computers (TV screens that this generation 
can program the way they want it to be) will change educa
tion? Some believe it already has. This panel tries to shed 
some light upon this future. If meeting and working remotely 
may be the future way of doing business, why not studying and 
learning remotely?4 

All this speculation is fine. But what about the very real 
problem of distributing this month's Top Ten Video Game hits 
to the many millions of people with video game players at 
home? Retail store distribution channels cannot get the hits to 
the players fast enough. For that matter, what about distribu
tion of software in general to the millions, soon to be tens of 
millions, of personal computer owners? Marvin Talbot has 
gathered a panel of experts on the topic "Tele-Software Deliv
ery." They explore how the existing telephone industry and 
emerging videotex industry can solve problems of distributing 
specialty software to the masses (that's us). If the distribution 
problem is solved, however, what can easily be viewed as new 
problems can arise. Think about "mailing" lists containing 
information in machine-readable form identifying all the 
software/video games you have acquired, the databases you 
have accessed, the telesoftware advertising to which you will 
have been exposed, and that which you cut off; plus dates 
when all these events t?ok place. Invasion of privacy can take 
on a new meamng. 

Next, Henry Dreifus gathers a panel to discuss a tech
nological development already making rapid inroads into peo
ple's lives without their knowing nor caring. "Smart Cards
the Ultimate Consumer Computer" first made inroads into 
the consumer world in Europe, but they are quickly finding 
their way into the U.S. What exactly is a "smart credit card," 
and do I want such a thing? There was a time most of us can 
easily remember when we were not sure what ordinary credit 
cards were, and many of us absolutely did not want anything 
to do with them. How many people can say they do not want 
credit cards today? Tomorrow, will they feel the same about 
smart cards? Will smart cards help eliminate all those credit 
card billing errors? If they do, then will everyone want them, 
even if such cards increase the invasion of privacy? 

So the technology is here, if not already at work, either to 
free us or to enslave us. We have legal protections against the 
latter-don't we? Yes, but it is more complex than that. 
Richard Stern brings us a gathering of experts to address a 
topic that affects us all: "Legal Roadblocks to Exploitation of 
Technology." We know patents, copyrights, trade secrets, 
contract law were intended to protect us, not hinder us. What 
has gone wrong? Are software pirates just a fine example of 
free enterprise? The prospects for consistent interpretation 
and for changes of U.S. laws will be addressed, along with the 
issues listed. This is the opportunity to learn what we can do, 
what we can't do, and what we may soon be free to do. 

So the promised age is upon us. We will use computers to 
work and study remotely. Others tell us that computers will 
diagnose our illnesses. They already manage our bank ac
counts, process our paychecks, defend our shores from with
out, and schedule our flights and hotels. Absolutely nothing 
can go wrong.nothing can go wrong. nothing can go wrong. 
But if it does who is responsible-who pays? Steven Brower 
brings a panel of legal experts to discuss something none of us 
wants to hear, something we have pretended would never 
come up: "Programmer Malpractice." Pretending that this 
issue will go unvoiced will not make it go away. Others will 
think of it, if they have not done so already. It is best that we 
address the issue; forewarned is forearmed. Furthermore, the 
computing industry is not alone in facing this issue. How have 
other industries fared? Have they all experienced the same 
fate as the medical profession? What can we learn from oth
ers' experience? Now is the time to study, learn, and act on 
this issue. 

Where is all of this leading? What will the technology be 
like when we get there (if the law allows us to get there)? "The 
Fifth Generation-What, Why, and So What" presents four 
papers addressing this "hot" topic on the significance of the 
newest technology to our society. Professor Shaw has some 
interesting views of the fifth generation as the next stage of a 
new medium. "Reading" an author's work will take on a new 
meaning both when first acquired and for all time. Professor 
Gaines' paper addresses the topic of the framework for the 
fifth generation-how it will fit into our society. Doctor 
Rahimi's paper is on the computer and the future of human 
creativity. And the final paper, by Dr. Matley, studies how 
the federal government can create a national computer policy, 
just as it has created transportation and other policies to aid 
technologies important to the nation's future. 

t'maliy, all gooa tnmgs must come to an ena. All thlS study 



of educational and societal issues must give way to a more 
immediate need: making a living. How about making a better 
living, and making it from computing? There is still time for 
the would-be entrepreneur to make a go of it. No, it is prob
ably too late to invent the apple; twice in one eternity is 
probably it. But there are other ways. Mary Sommerset has 
organized a panel to discuss "An Operational Approach to 
Penetrating Vertical Markets." Society is full of small seg
ments with special needs that have yet to be served; many 
segments are larger than the half-million potential computer 
hackers served by the early personal computer vendors. These 
segments can be served successfully with easily defended mar
ket boundaries. But how do you identify, define, and reach 
these vertical markets? What distribution channels should you 
seek; or can you create new channels yourself? And finally, is 
serving these markets truly useful to society? Would doing so 
be in the spirit of saving the human race, or would it be 
nothing more than huckstering? 

Have we come full circle? Probably! We started with an 

outside view of ourselves, and in so doing we have gained (we 
hope) a better understanding of what is important and what is 
not. We should not take ourselves nor our critics too seriously. 
But it is good to take time occasionally to get a glimpse of the 
forest surrounding us. Now it is time to get back to cutting 
down those trees. Perhaps if we clear out enough trees we'll 
see more of the forest next year at NCC '85. 

REFERENCES 

1. ACM notes on 35mm slide set on computers, author unknown. 
2. Frates, Jeffrey, and William Moldrup. Introduction to the Computer: An 

Integrated Approach. Englewood Cliffs, N.J.: Prentice-Hall, 1980. 
3. Gelfand, M. Howard. "Dealing With Computer Hard-Sell." The Wall Street 

Journal, January 24, 1984. 
4. Mitgang, Lee. " 'University' lets students attend class via computer", The 

Dallas Morning News, March 11, 1984. 
5. Papert, Seymour. Mindstorms-Children, Computers, and Powerful Ideas, 

New York: Basic Books, 1980. 
6. Smith, Robert Ellis. "Do We Realize That All the Elements for an Orwellian 

Society Are in Place?" Datamation. (Date unknown, but 1983 or early 1984.) 





Fifth-generation computing as the next stage of a new 
medium 

by MILDRED L. G. SHAW 
York University 
Toronto, Ontario, Canada 

and 
BRIAN R. GAINES 
University of Toronto 
Toronto, Ontario, Canada 

ABSTRACT 

Computer systems provide a new technology that is very significant to human 
society and culture. However, computer science operates primarily within the tech
nology and does not aid an understanding of the sociocultural impact of the com
puter as a mind-tool. This paper proposes to regard computers as providing a new 
medium for communication that can encode expertise and reproduce it through 
conversation. This model may be used to analyse the potential long-term effects of 
computer systems by analogy with the effects of past media developments on our 
sociocultural system. In particular, the Japanese fifth-generation computer devel
opment program may be seen as completing just those aspects of computer tech
nology necessary to enable it to compete with other media. 

445 





Fifth-Generation Computing as the Next Stage of a New Medium 447 

INTRODUCfION 

It has become common to speak of conversational interaction 
with a personal computer since the term was first used in the 
early days of interactive systems. 1 In recent years computing 
has been regarded as being part of a range of electronic 
media. 2 However, the analogy between people-people 
conversation and computer-people conversation has not been 
systematically developed. The analogy has not been explored 
between the use of computers to present information and 
experience and the use of other media such as books and 
television. 

This paper presents a discussion of computing as providing 
a new medium.3 The conversational and media analogies are 
shown to have formal foundations. Computing is identified as 
providing a two-way interactive medium for providing experi
ence of worlds through simulation. This simulation can in
clude that of other people and hence provide access to their 
encoded expertise. 

What is particularly significant about this viewpoint is the 
light it throws on the objectives of current fifth-generation 
computer developments.4 Computing provides a new medium 
with the unique property of being two-way and interactive with 
an encoded message, but the technology is currently limited. 
The logic behind the fifth generation may be seen as that of 
overcoming precisely those limitations of computers through 
which they lag behind other media. 

CONVERSATION IN OUR SOCIETY AND CULTURE 

From an early age people speak to one another. Conversation 
is a natural activity in every person's daily life. What is it? Not 
just communication because that may be in one direction 
only. Conversation is interactive communication that is two
way or many-way. In this sense all animals have some form of 
conversation. Some, such as territorial and courtship rites, 
can be very elaborate. However, the human species has devel
oped the art of conversation to its highest level, employing a 
range of symbols and forms of expression to pass feelings, 
information, knowledge, and skills between people. Many 
tools and technology have been developed solely to enhance . 
the capabilities to carry on conversations. 

Human beings are already remarkable for their immense 
capability to learn from experience. They are able to adapt to 
a range of climates, environments, and societies as no other 
animal species can. However, the advantages of the human 
species' learning capabilities are amplified immensely by their 
ability to receive and impart information through conversa
tion. The child in the jungle need not feel the injury of being 
mauled by a tiger in order to learn to fear the animal. Instead 
he can be told that the animal is dangerous and he should take 

care to avoid it. He can also be told how to look out for the 
signs of new dangers. 

This capability of learning indirectly from conversations 
rather than direct experience, and of learning how to learn by 
discussing learning itself, has been crucial in the development 
of civilization. To take advantage of it, mechanisms have been 
developed that enable us to communicate over time and over 
distance, such as the letter, the newspaper, the book, the 
radio, the telephone, the television, the record, the tape. The 
remarkable nature of books can be seen from their ability to 
allow those long dead to impart their feelings and knowledge 
to those alive now and in the future. The remarkable nature 
of television can be seen from its ability to bring those far away 
into personal contact with events as they happen. Videotapes 
extend that ability across time as well as space. Transcending 
time and space adds new dimensions to the already dramatic 
powers of the human capability of learning from experience 
and from conversation. New media provide new extensions to 
everyone and radically affect our and our societies' modes of 
existence. 5,6,7 

PROGRAMS ARE TWO-WAY CONVERSATIONS 

Books and television are one-way media. They are not able to 
support two-way conversations. They do not allow an inter
action with the author of the book or with the events being 
portrayed. Correspondence through letters may be regarded 
as being a conversational form of a book. Discussion on a 
telephone or videophone may be regarded as being a con
versational form of radio or television. Some computers have 
been added to this range of mechanisms for extending human 
conversations. They are remarkable in enabling the inter
action with a program similar to the interaction with a person. 

Computer programs are a way to extend interaction 
through time and space. When listening to a gramophone 
record one can imagine being at a live concert hearing the 
artist perform. When reading a book one can imagine the 
words spoken by the original author. If the book is a narrative, 
one can imagine the author playing the part of the character 
telling the story. Similarly, in a dialog with a computer pro
gram one can imagine interaction with the programmer who 
wrote it. Unlike the performer or the author, the programmer 
is able to provide responses to interventions, in some way to 
interact although he or she may be far distant or dead. 

Computers enable the recording and dissemination of not 
only passive information but active processes with which the 
recipient can interact. For example, a model can be pro
grammed of a chemical system so that persons without access 
to the materials and equipment required to create it can still 
experiment with that system. They are not told about it 
through a description of the experience, but rather it is made 



448 National Computer Conference, 1984 

available to them in such a way that they can generate their 
own experience. They make their own decisions about what to 
do with the equipment and materials, and the model repli
cates what would have happened had they done this with the 
actual process. 

Whether simulation is adequate to replace actual experi
ence is not an absolute question but depends on the quality of 
the simulation and the function of the experience. Whether 
the interaction with a computer program is a realistic experi
ence of interaction with another person or a simulated world 
depends on the technology and our capability to use it. Both 
of these are subject to continuing improvement. 

ADVENTURE GAMES 

Simulation of an interesting and exciting real-world or fantasy 
environment is the basis of many of the games now played on 
computer systems in the home. The player is a fighter pilot in 
a world of enemy aircraft who must fight aerial battles using 
skill in control of craft and weapons. The player has free 
access to an elaborate pinball machine with a wide range of 
exotic features of varying difficulty. The player is an athlete 
attempting various feats of skill and endurance. The player is 
a coach for a football team who must define its strategy; if the 
same winning strategy is used too long then the opponents will. 
acquire a defense against it. The player is a businessman set
ting up a company in a world with certain raw materials, 
manufacturing processes and a population with defined, but 

. unknown, consumption patterns. 
During recent years such games have become increasingly 

elaborate, involving whole worlds of activity on land, sea, and 
air. They have also made more and more use of the rapidly 
improving color graphics and sound effects now available on 
low-cost computers. Some later games take into account 
moral concepts such as good people becoming less cooper
ative if bad actions are undertaken. This could be significant 
to the teaching impact of the games since the early ones incor
porated a simple model of life in which everything in sight was 
taken or killed and most other entities in the game were 
enemies. This is similar in its morality to the western film 
genre that has been a natural foundation for the early popular 
games. 

There are less apparent social consequences of playing with 
computers. It has been found that children learn to play games 
more readily with computers than with other children, prob
ably because of the lack of significant social consequences. In 
an ordinary game if I win then you lose. You may not like 
losing so much that I suffer in consequence. Most computer 
games do not have such overtones, and this makes them easier 
to learn and to play. However, they also do not teach children 
how to cope with social interaction as does the game playing 
experience of real life. There is much to be learned about the 
social consequences of computer systems as a new medium. 

THE INTERACTIVE NOVEL 

On the basis of such games we can envision a novel of the 
future in which the author has precisely portrayed a group of 

characters and a situation but in which the way the situation 
is played out is affected by the behavior of the reader. For 
example, the reader may adopt the role of one of the charac
ters and interact with the others as part of the plot. What then 
happens is not determined in advance but varies according to 
the reader's actions and the other characters' reactions to 
them. This interaction with the plot is not normally found 
even in the theatre but has been the subject of a number of 
unconventional experimental productions encouraging audi
ence participation. 

Much of the writer's task is the same for the book, the play, 
and the computer program, and he or she may well be able to 
generate a script that can cope with varying behavior on the 
part of some or all of the characters. However, the complex
ities possible with an interactive novel are clearly very much 
greater than those with a static book. The problems of the 
novelist with a participant reader are not as severe as those of 
the chemist programming the simulation of a chemical system 
for there is no absolute reality against which to judge the 
results. The participant reader may find that even his or her 
most outlandish behavior is somehow absorbed and accepted 
by the others without a marked deviation from the plot, or 
that the character played meets his or her demise through an 
unfortunate accident! 

If the personalities and behavior of characters in a novel are 
simulated then we can also think of simulating ourselves, mak
ing access to us available through a computer program. The 
active process that the computer simulates may be not just a 
physical system but instead yourself in some guise, as teacher, 
friend, game player, or expert on some subject. When I write 
a book I present knowledge, opinions, or skills and some of 
the background material, experience, arguments, and results 
supporting them. However, I cannot possibly put together in 
the linear sequence of a book all the answers to the questions 
the reader may ask, all the alternative ways of presenting the 
material, all the forms of additional development that might 
occur if we were talking together. With an active model of at 
least part of me recorded in a computer program, I can pro
vide some of these variations to be generated through a later 
conversation between the user and my computer model. 

EXPERT SYSTEMS 

The simulation of people in the roles of experts on some topic 
as a computer program has become an important application 
of computers. It has generated a new industry based on cre
ating expert systems8 to make the practical working knowl
edge of a human expert in a specific subject area such as 
medicine or geology widely available to those without direct 
access to the original expert. Programs now exist that have 
made practical achievements in medical diagnosis, interpreta
tion of mass spectrometry results, analysis of geological sur
vey data, and other problems where one would normally go to 
a human expert for advice. 

MYCIN; 9 one of the best known expert systems; was de
signed to make a diagnosis and suggest therapy for patients 
with microbial infections. The expertise embedded in MYCIN 
is encoded as a set of rules of this form: 



Fifth-Generation Computing as the Next Stage of a New Medium 449 

RULE 50 
If 1. the infection is primary-bacteremia, and 

2. the site of the culture is one of the sterile sites, and 
3. the suspected portal of entry of the organism is the 

gastro-intestinal tract, 
Then there is suggestive evidence (.7) that the identity of the 
organism is bacteroides. 

Such rules involving fuzzy reasoning are obtained from spe
cialists in microbial infections, and their application to partic
ular data is fairly simple data processing. The rules are vali
dated through their application to many cases and revised 
when they fail to give the correct diagnosis. A very interesting 
later development is TElRESIAS, 10 a system designed to help 
clinicians develop MYCIN's rules. This uses metalevel reason
ing about the operation of MYCIN and the likelihood of rule 
structures to guide the clinician. 

The ultimate metalev~l expert system currently is AM,1O a 
program that searches for interesting conjectures in mathe
matics using rules of this form: 

19. 
If concept C possesses some very interesting property 
lacked by one of its specializations S, 
Then both C and S become slightly more interesting. 

38. 
If there are no known examples for the interesting concept 
X, 
Then consider spending some time looking for such exam
ples. 

AM seems to embody the highest level of scientific cre
ation, looking for the patterns underlying knowledge. What is 
remarkable about AM is the very notion of what it is doing. 
The concept of something being interesting seems peculiarly 
human and certainly too vague to form the basis of a computer 
program. However, AM is able to exhibit not only meaningful 
conjectures in mathematics but also meaningful ways of ar
riving at them. AM uses a few hundred such rules most of 
which are sufficiently general to apply to other situations. 
Rule 19, for example, indicates that a committee with 
decision-making powers that do not apply to its subcommit
tees below a certain size has an interesting property, that of 
requiring a quorum. Its subcommittees also have an inter
esting property, that of being quorate. AM's rules form a 
good code of curiosity that might form the basis of a religion; 
perhaps it already exists, called science. 

What is remarkable about developments such as MYCIN 
and AM is that they are concerned with recording what had 
previously been regarded as very high level human expertise, 
difficult to explain to another person, let alone program for a 
computer. However, from our previous discussion it seems 
reasonable to regard such programs only as one further ad
vance in recording human expertise and simulating the human 
expert at work. An accountancy program for a business that 
keeps track of purchases and sales and prepares invoices, 
purchase and sales ledgers, and so on may be seen as the 
recording of the expertise of an accountant for use by an 

EXPERT 

DEEP 

KNOWLEDGE 

USER 

KNOWLEDGE OF 

PART I CULAR 

UNDERLY I NG C I RCU~ISTANCES 

SK I LL 

PROGRAMMER 

SOF TWARE 

ENG I NEER I NG TECHN I QUES 

Figure I-Relations between expert, programmer and user. 

ordinary businessman. An auditor evaluating such a program 
may expect to be able to ask it exactly the questions he or she 
would ask the accountant; for example, from what original 
information did you calculate this figure? If the program does 
not have built into it audit trail facilities that enable it to 
answer such questions, then it is inadequate in exactly the 
same wayan accountant would be who could not answer that 
question; it is a simulation of a poor accountant. 

EXPERT, PROGRAMMER, AND USER 

One of the peculiarities of computer systems is the role of the 
programmer. We can now see his/her task as being that of 
encoding expertise in such a way that it is accessible to another 
person through a computer. The diagram of Figure 1 shows 
how the interaction between expert, programmer, and user in 
using the computer to carry expertise divides into various 
areas of overlap. First consider the three areas where there is 
no overlap. These are where the individuals involved do not 
need shared knowledge to carry out their tasks. The expert, 
for example a lawyer, will have deep knowledge of the prin
ciples underlying his skill, on which it is based, but which is 
irrelevant to its application. The programmer does not need 
access to this knowledge to encode the skill, and neither does 
the user in replicating the skill. Similarly the programmer will 
have deep knowledge of software engineering techniques that 
are necessary to his task but irrelevant to either expert or user. 
The user also will have knowledge of the particular circum
stances in which he or she is using the program that will 
modulate the use of it but will be unknown to either expert or 
programmer. 

The overlap between expert and programmer is necessary 
to enable the programmer to obtain from the expert a 



450 National Computer Conference, 1984 

specification of his skill. This is a form of system analysis, 
often treated as an exercise separate from actual pro
gramming. The user need not understand the skill at this level 
of detail in order to make use of the program. The overlap 
between user and programmer enables the user to carry out 
interaction with the program. It is where the programming of 
dialogue, independent of subject matter, can be considered. 
The programmer may well be setting up the computer to do 
something that the expert himself cannot do--communicate 
his skill so that it can be applied by another. 

Finally, there is an area of overlap between expert and user 
that need not concern the programmer. It is one of common 
background knowledge in the profession, whereby the user is 
applying the expertise in the program not blindly but in a 
sensible way. It is this need for skill in the application of a tool 
that makes some professions reluctant to release their re
corded skills for general use. A medical, legal, or accounting 
textbook in the hands of a lay person may suggest courses of 
action that are inappropriate because of more general consid
erations. The results of a psychological test that can be carried 
out by anyone using a computer may be misinterpreted with
out training in interpretation. However, encoding more and 
more of this background knowledge is the major challenge in 
developing a next generation of widely applicable computer 
systems. 

GRAMOPHONE RECORDS 

PERFORMER PRODUCER 

~ECORDING 
ENGINEER 

Y 
MAS TER 

TAPE 

DISC 
cun I NG 

~ 
DISTRIBUTOR 

! 
DEALER 

! 
CUSTOMER 

GRAMOPHONE 

COMPUTER PROGRAMS 

EXPERT SYSTEM Y ANALYST 

,PROGRAMMER 

.., 
MAS TER 
PROGRAM 

! 
DISC 

COPYING 

1 
DISTRIBUTOR 

! 
DEALER 

1 
CUSTO~IER 

! 
COMPUTER 

1 ! 
LISTENER USER 

~~ 
REPRODUCTION OF EXPERT PERFORMANCE 

Figure 2-The recording chains for gramophone records and computer 
programs. 

Figure 2 shows how the close analogy between computing 
and another medium, the gramophone, appears when this 
discussion is extended to include the remaining processes 
whereby programs for personal computers reach their users. 
The recording chain for computer programs and that for 
gramophone records are in one to one correspondence. This 
analogy underlies the growth of the personal computing in
dustry, in which specialist software stores mimic record stores 
and in which computers and programs have taken their place 
alongside record players and disks in department stores. New 
media are marketed by analogy with the old. 

CURRENT LIMITATIONS ON COMPUTER MEDIA 

The computer as a new medium for conversation is still very 
much in its infancy. Today's personal computers have neither 
the picture and sound generation capabilities nor the data 
storage to emulate the presentation possible with television. 
However, the personal computer today has greater speed, 
processing power, and storage than the vast research ma
chines of ten years ago and has become small enough, cheap 
enough, and reliable enough to take its place in the home. The 
giant computer technologies of today are at the heart of the 
movie industry, producing sounds and images that are as real
istic as those of everyday life. It is not unreasonable to sup
pose that those capabilities will become available in personal 
computers during the next ten years. 

A more severe limitation on the use of the computer to 
record models of active processes is our lack of understanding 
of them. I may know enough about a chemical system to write 
a program that faithfully reproduces all of its behavior that I 
have observed. However, will my program produce behavior 
that I have never observed when interaction is made in ways 
that I have never contemplated? 

All new media have had initial limitations and gone through 
phases of improvement and development. The wax cylinder 
gramophone could not sustain the record industry of today, 
and neither could Baird's spinning disk support television as 
it is now known. The personal computers of today already 
provide an impressive new conversational medium for enter
tainment, education, and business. However, they cannot yet 
compete with television in their audio and video facilities. We 
mainly converse with them by typing at keyboards, not 
through speech. They can give access to vast stores of informa
tion, but they are not able to process it as knowledge. These 
limitations severely restrict the scope of the new medium as it 
is now, and it is precisely these limitations that the Japanese 
fifth-generation computer development program addresses. 3 

Fifth-generation computers, if the objectives of the program 
are met, may be characterized as providing a two-way, inter
active medium with the audiovisual facilities and knowledge 
processing to replicate all capabilities of the most advanced 
current one-way media. 

CONCLUSIONS 

The media of communication for mankind are at the heart of 
our culture. Each new medium is assimilated into society and 



Fifth-Generation Computing as the Next Stage of a New Medium 451 

used for some of the applications of previous media. It also 
provides different facilities that allow for new applications 
that change the fabric of society itself. Unless there is an 
awareness of these two processes going on as computers enter 
this culture, there will be no understanding of what is happen
ing to individuals and to society. Computers provide a new 
medium for communication that will be used in part to mimic 
those already existing but will also change profoundly our 
society and modes of thinking in ways that we are not able to 
predict. 

The emphasis of the computing industry has tended to be, 
not unnaturally, upon computers themselves. There is talk of 
computer science without noticing how curious this is; if the 
computer is a tool analogous to other tools, this is like talking 
of pencil science or typewriter science. In recent years the . 
emphasis has begun to swing from the computer itself to its 
programs, software engineering, and data manipulation
information science. In fact there has been an uncertainty 
about how to regard computer technology; this is not sur
prising, since the use and understanding of it are still at an 
early stage. Everyone is a computer primitive. The develop
ment of expert systems and the realization that this is what we 
have all along been attempting to achieve, and achieving, 
points to one possible resolution of our dilemma. We can now 
see the computer as a new medium for carrying encoded ex-

pertise and ~aking it available through conversation. Fifth
generation developments will enhance the facilities of that 
medium to equal and then exceed those of our previous 
media. 

REFERENCES 

1. Orr, w. D. (ed.). Conversational Computers. New York: Wiley, 1968. 
2. Schwartz, B. N. (ed.). Human Connection and the New Media. Englewood 

Ollis, N.J.: Prentice-Hall, 1973. 
3. Moto-Oka, T. (ed.). Fifth Generation Computer Systems. Amsterdam: 

North-Holland, 1982. 
4. Gaines, B. R., and M. L. G. Shaw. The Art of Computer Conversation. 

Englewood Giffs, N.J.: Prentice-Hall, 1984. 
5. Innis, H. A. Empire and Communications. Toronto, University of Toronto 

Press, 1971. 
6. Hahn, M. E., and E. C. Simmel, Communicative Behavior and Evolution. 

New York: Academic Press, 1976. 
7. Ong, W. J. "The history and the future of verbal media." In Silverstein, A. 

(ed.). Human Communication: Theoretical Explorations. New York: John 
Wiley, 1974. 

8. Michie, D. (ed.). Expert Systems in the Micro Electronic Age. Edinburgh: 
Edinburgh University Press, 1979. 

9. Shortliffe, E. H. Computer-Based Medical Consultations: MYCIN. New 
York: Elsevier, 1976. 

10. Davis, R., and D. B. Lenat. Knowledge-Based Systems in Artificial Intel
ligence. New York: McGraw-Hill, 1982. 





A framework for the fifth generation 

by BRIAN R. GAINES 
University of Toronto 
Toronto, Ontario, Canada 

ABSTRACT 

The Japanese initiative in scheduling a development program for a fifth generation 
of computers has shocked a drowsy West into realizing that computer technology 
has reached a new maturity. We are ready to take a step forward and integrate into 
systems the advances in very-large-scale integration, artificial intelligence, database 
management systems, and the human-computer interface of the last decade. Sud
denly, work on the fringes of the computer industry, particularly that in artificial 
intelligence, is perceived as central and of commercial and military strategic impor
tance. This paper examines the economic, historic, social, and technical logic be
hind the fifth-generation program from several perspectives. It gives a basis for 
evaluating the program, responses to it, and its effect on our industry and society. 

453 





INTRODUCTION 

The Japanese initiative in scheduling a development program 
for a fifth generation of computers1

,2 has shocked a drowsy 
West into realizing that computer technology has reached a 
new maturity. We are ready to take a step forward and inte
grate into systems the advances in very-large-scale integration 
(VLSI) , artificial intelligence (AI), database management 
systems (DBMS), and the human-computer interface (HCI) 
of the last decade. Suddenly, work on the fringes of the com
puter industry, particularly that in AI, is perceived as central 
and of commercial and military strategic importance. 

This recognition, and the accompanying prestige and fund
ing, is clearly welcome to many, and Western research has 
been quickly redirected to match the Japanese program. 3,4 

Wry remarks may be made that prophets have no honor in 
their own country. However, it is accepted that the Japanese 
track record of competition in the auto and semiconductor 
industries5

,6 does give this nation the right to credibility for its 
high-technology planning. This credibility is now gratefully 
accepted as legitimizing much related research in the West. 

The activity triggered by the Japanese initiative is not a 
good environment in which to examine the current status of 
computing technology and our long-range objectives. The ob
jectives have been set. The paradigm has become accepted, 
and a new value system has been widely adopted. Such shifts 
are common in science and technology7 and the very fact that 
one has occurred will soon be forgotten. 

However, there are many reasons why it is appropriate to 
look now at some of the deeper factors underlying the fifth
generation programs. AI was oversold in the 1960s and there 
was a backlash in the 1970s. Is fifth generation being oversold 
now and, if so, what might be the consequences? The Ja
panese program looks like system integration of every frontier 
technology in computer science. What will we have at the end 
and why should we want it? The program has been justified in 
terms of economics, market requirements, and leadership in 
technology. Are there other rationales for it? In the computer 
industry there has always been an interplay between technol
ogy-led and market-led developments. What are the tech
nology and market forces on fifth-generation developments? 
The pioneers of computing technology raised questions about 
its long-term impact on the structure of our society. What are 
the implications of achieving the fifth-generation program 
goals? 

These are not just broad questions of general interest. They 
also have key relevance to the planning of the fifth generation 
and responses to it. In establishing such activities we are en
gaged in both predictive and normative technological fore
casting. Past forecasts for the comput~r industry have proved 

A Framework for the Fifth Generation 455 

notoriously wrong: Some promising technologies have not 
matured; some have advanced much more rapidly than ex
pected. In addition, new and unexpected technologies have 
emerged. In general, overall trends have occurred well before 
their predicted arrival dates. Can we learn any lessons from 
this history in planning current programs? If we cannot pre
dict, how do we manage the change, the unexpected failures, 
and the unexpected opportunities? Will spinoffs outside the 
program be more important than the goals achieved within it? 

This paper provides a framework for discussing these ques
tions by examining fifth-generation computing from several 
perspectives: historical, social, economic, and technical. It 
suggests that we are in a time of fundamental change in the 
effect of computing on society, and society on computing, and 
that unusual perspectives from outside the industry can help 
us to focus on the key issues within it. 

SURPLUS CHIPS AND THE PULL OF THE 
CONSUMER MARKET 

Much of the publicity attending the Japanese proposals has 
emphasized the massive computing power envisioned for 
next-generation machines. It is true that MIPS abound and 
that MLIPS have been introduced 1 (one LIP is one logical 
inference per second), but this does not mean that the overall 
focus is on giant machines. The dominant objective of the 
fifth-generation proposals is ease of use of computers by peo
ple, and it is possible to see this as having come out of the 
inexorable logic of VLSI chip manufacturing. We are moving 
toward a surplus of chips that can be absorbed only by the 
worldwide consumer market. 

Many of those attempting to buy certain processor and 
memory chips today will find the concept of a surplus ludi
crous. However, scarcity of the latest devices is brought about 
by the current extreme price competition in small computer 
systems. Simplistically, all micros have much the same hard
ware and are differentiated primarily by cost. Sixty-four kilo
byte rams and processors with inbuilt dma and communica
tions make a big difference in board size and manufacturing 
cost. The newest devices will always be in great demand and 
short supply. For the previous generation of devices history 
suggests there will always be a price war between suppliers 
because of oversupply. 

This oversupply problem will worsen with the increasing 
power of the coming generation of chips. The increasing num
ber of gates in modern VLSI is achieved through decreasing 
element size that increases speed. Increases in complexity and 
in speed are positively correlated rather than subject to trade
off. Hence the potential power of modern ic's has already 



456 National Computer Conference, 1984 

become extremely high. The problem is to know what to do 
with this power. Processor, memory, and support chips ac
count for the bulk of high-volume demand, with communica
tions and graphics forming a second tier.s The $12 billion 
turnover of the semiconductor industry corresponds to some 
25 chips a year for every person in the world-about 1 million 
transistor equivalents a person a year! 

We are manufacturing more and more of a product whose 
power is already great and increasing. The professional mar
kets absorb much of this capacity now, but only the consumer 
markets can support it in the long term. However, computer 
technology plays as yet only a major role in these markets
one limited by the technical skills required of computer users. 
The key thrust of the fifth-generation program is to overcome 
this limitation and make computers accessible to all by moving 
from information processing to knowledge processing, from a 
machine-like interface with the user to a human-like interface 
through speech, writing, and vision. 

Figure 1 shows the economic logic behind the fifth gener
ation and shows the way this leads to the specified technical 
program. The chip surplus problem is resolved by aiming for 
consumer markets, and this requires that anyone be able to 
use a computer and have the motivation to do so in a domestic 

THE PROflLEt'i AND 
THE OPPORTUN I TY 

THE [lAS I S FOR 
A SOLUTION 

A NEIl STRATEGY 

THE NEIl TACT I CS 

TOO r.MY CH I PS 

THERE WILL 8E A WORLD SURPLUS 
OF r·1ANUFACTUldNG CAPACITY 

FOf< VERY LARGE SCALE 
II;TEGRATED C I RCU I TS 

(VLS I) 

CONSIJ.ER MARKETS 

THE ONL Y ~lARKE TS LARGE EtWUGH 
ErWUGH TO ABSORB THE LONG-TERr.1 

SURPLUS CAPAC I TY ARE II', 
COI~sur.'IER PRODUCTS 

TARGET CONSIJt'ERS 

NEV~ CQI,IPUTER TECHNOLOG I ES ARE 
I~EEDED THAT ARE ATTRACTIVE 

AND EASY TO USE 

PERSON-COf.iPUTER 
SI~1ULATE 

REAL AND FANTASY 
WORLDS 

Et,CODE EXPERT I ZE 
FOR USE 

INTERFACE BY OTHERS 

Figure I-The logic behind the development of 
fifth-generation computer systems 

context. This in turn requires improvements to the human
computer interface, realistic simulation of real and fantasy 
worlds, and the capability to encode expertise for use by oth
ers. These requirements then lead to projects for speech rec
ognition, high-resolution graphics, languages for knowledge
processing, and so on. The customizing of computers is an 
important capability that must not be lost and yet the volumes 
involved are too large for professional programming. Hence 
automatic programming in some form or another is also nec
essary. Thus the logic of the marketplace leads to the projects 
that form the fifth-generation program. 

This is not to say that a new generation of giant machines 
will not also come out of the program. They are probably 
necessary in any event as design tools for the advanced tech
nologies underlying the consumer market machines. Yester
day we needed the large machines to help us in designing 
chips. Tomorrow we will need them to help us in designing 
knowledge structures. However, the dramatic swing of com
puter technology into the consumer market through the ad
vent of the personal computer10 will go much further as the 
fifth-generation objectives are achieved. 

THE CHANGING GOALS OF AI RESEARCH 

Perhaps the greatest element of surprise in Japanese program 
was its dependence on advances in AI research. This has 
always been an important part of frontier research in com
puter science but has not had major commercial significance. 
However, the argument of the previous section leads to a basic 
requirement for computing technologies that are part of AI, 
notably knowledge processing, natural language communica
tion, and speech recognition. The commercial requirement 
ihai AI be rouiinely available marks [he beginning of a new 
era for this field of research. The cycle of AI research shown 
in Figure 2, from overoptimism in the 1960s through dis
enchantment in the 1970s to commercial success in the 1980s, 
is a significant historic framework for fifth-generation devel
opments. 

The accepted starting period for Era 1 of research on AI is 
the late 1950s, with work by Newell and Simons on the Gen
eral Problem Solver; McCarthy on programs with common 
sense; Selfridge on Pandemonium; Rosenblatt on the Percep
tron; Widrow on Adalines; Solomonoff on mechanized in
duction; and McCulloch, Farley, von Foerster, Greene, and 
others on neural nets. Minsky's 1961 surveyll (citing all these 
researchers) gives a fairly comprehensive feeling for this era 
worldwide. The logic behind much of the work is that new 
computer forms, organized as aggregates of simple, self
organizing elements, could be induced to perform a task by 
means of learning mechanisms, such as mimicking, reward, 
and punishment, similar to those of animal learning. 

These objectives and this type of work characterized the 
worldwide goals and approaches at that time. They should be 
placed in the context of the early development of digital com
puters, where slow, expensive, unreliable machines with mer
cury-delay line memories were still in use, programmed in 
various forms of assembler or autocode. The JOSS, Culler 
Fried, PLATO, and Project MAC experiments on time-



ERA 1 - GENERALITY AND SIMPLICITY - THE OVER-SELL 

1955-1965 GPS. PANDEMONIUM. PERCEPTRON. ADALINE. 
NEURAL NETS. 

ERA 2 - PERFORMANCE BY ANY MEANS - THE REACTION 

1965-1975 NOT BRAIN-LIKE MACHINES. 
EMULATE HUMAN PERFORMANCE ON GENERAL-

PURPOSE CC~PUTERS 

- DISENCHANTMENT - THE OVER-REACTION 

DREYFUS. BAR-HILLEL. LIGHTHILL. WEIZENBAUM 

ERA 3 - ENCODED EXPERTIZE- ACHIEVEMENT AND EXTENSION 

1975-1985 DEMONSTRATIONS OF EXPERT SYSTEMS. 
MORE OPEN FORUM - SIMULATION OF PERSON. 

ACQUISITION OF KNOWLEDGE. NEW 
ARCHITECTURES FOR AI. 

ERA 4 - THE FIFTH GENERATION - COMMERCIALIZATION 

1985-1995 A NATIONAL PRIORITY - COMMERCIAL AND MILITARY. 
CONVERSATIONAL INTERACTION THROUGH SPEECH 

AND WRITING WITH AN INTELLIGENT 
KNOWLEDGE-BASED SYSTEM. 

Figure 2-Changing goals in the different eras of AI research 

sharing were part of the same era. 12 The atmosphere was one 
of immense excitement over the potential for computer sys
tems to lead to the "augmentation of human reasoning" and 
"man-machine symbiosis," to use the terms of books and 
papers of that era. 13 

The excitement and the funding died down in the 1960s as 
a result of two main factors. First, the work did not fulfill the 
promises made on its behalf: neural nets did not self-organize 
into brains; learning machines did not learn; perceptron-like 
elements did not recognize patterns. Second, the conventional 
digital computer became more reliable, smaller, faster, and 
cheaper, and the advantages of its sheer generality became 
widely realized. Effort switched from designing brain-like ma
chines to emulating human-like activities on general-purpose 
computers. The focus of attention also became human per
formance, not human learning or human simulation. The ini
tial rationale for this shift was that if we could not program a 
computer to perform a task then it was unlikely that we could 
program it to learn to perform that task; and if we could not 
program it somehow then we certainly could not in a way that 
simulated a person. This became the aim of legitimate arti
ficial intelligence research in the late 1960s and early 1970s: 
the performance of tasks that required intelligence when per
formed by people. 

While the AI community regrouped around the revised 
goals in Era 2, many outside took the opportunity to express 
disenchantment with the whole endeavor. Dreyfus in his 1972 
book,14 What Computers Can't Do, detailed many of the over
optimistic claims for AI research and the ensuing under-

A Framework for the Fifth Generation 457 

achievement. He pointed to weaknesses in the philosophical 
and methodological foundations of work in Era 1. His 1979 
revised edition reported some of the intervening debate re
sulting from his book and the changing priorities in AI re
search. It was a well-balanced report that can be criticized 
primarily because it was out of date by the time it was pub
lished. Those in the AI community felt they had already 
learned the lessons of Era 1 and changed their strategy. 

Lighthill's negative report15 in 1973 on behalf of the SRC on 
the status of AI research and the appropriate level of its 
funding ih the U.K. reflected the disenchantment at the end 
of Era 1 with its oversell and lack of achievement. However, 
there was another motive behind the commissioning of that 
report, which was the fear of some of those responsible for 
developing computer science departments in the U.K. that AI 
research would be funded most strongly outside those de
partments. At a mundane level the misgivings came from the 
realization that the expensive and powerful computers then 
necessary for AI research might not be used to improve the 
research facilities of recently formed computer science de
partments. More fundamentally it was sensed that develop
ments in AI might prove a major part of the future founda
tions of computer science. Whatever the motivation, the out
come of the report was very negative for AI research in the 
U.K.16 during Era 2. 

Weizenbaum's 1976 book,17 Computer Power and Human 
Reason, was a far more personal statement than Dreyfus's by 
someone who had been responsible for one of the early 
achievements of AI research. His ELIZA program was widely 
acclaimed in the late 1960s as the first successful attempt at 
passing the Turing test for AI. It could carry out "cocktail 
party" conversation with a person at a terminal that was re
markably human-like. However, the acclaim became em
barrassment when it was realized the simple mechanisms of 
ELIZA illustrated the weakness of the Turing test rather than 
a major advance in AI. People were all too ready to discern 
intelligence in machines and men, and commonsense human 
judgment in the matter was not an adequate criterion. The AI 
community was forced to reconsider what was meant by "in
telligence. " 

AI work in Era 2 shifted from requirements for power and 
generality, consideration of computer architecture, and the 
simulation of human operation. Instead, it emphasized re
quirements to encode human expert knowledge and perfor
mance, by whatever means, for emulation by the computer. 
These targets resulted in practical achievements in the devel
opment of systems that could perform diagnostic inference 
tasks just as well as human experts, and the late 1970s and 
early 1980s became the era of expert system research. 18 

The strength of this paradigm shift cannot be overem
phasized. It defined the boundaries of an AI community that 
established parameters for funding and publication. Focusing 
efforts on performance led to achievements recognized out
side this community and hence established the legitimacy of 
AI research. In recent years the community has become 
strong enough to begin to reabsorb some of the earlier objec
tives and concepts. Human simulation rather than just emu
lation is an objective of cognitive science. Certain aspects of 
knowledge acquisition processes subsumed under learning are 



458 National Computer Conference, 1984 

HARD~IARE SOFTWARE EFFECTS 

I 1953 GEE VACUU~1 NONE TECHNICIANS 
-58 WHIZ TUBES & & FEARS OF 

! DELAY AUTOMATION 
LINES 

I 1958 PAPER TRANSISTORS COMPILERS PROLIFERATION 
I -66 PUSHERS & MAGNETIC & 110 OF EDP GROUPS 

CORES CONTROL & RIGIDITY 

I 1966 COIi.MUN- LARGE-SCALE OPERATING CENTRALIZATION 
I -74 ICATORS INTEGRATED SYSTEMS & OF EDP AS NEW 
I CIRCUITS & COMMUN- FUNCTION 

INTERACTIVE ICATIONS 
TERMINALS 

I 1974 INFORM- VERY LARGE VIRTUAL REDISTRIBUTION 
V -82 ATION FILE STORES MACHINES OF MANAGEMENT 

CUSTOD- & SATELLITE FUNCTIONS 
IANS COt~PUTERS 

V 1982 ACTION ~lAGNETIC INTERACTIVE SaIl-AUTOMATIC 
- AIDS BUBBLE, & LANGUAGES & OPERATING 

LASER HOLO- CONVENIENT DECISIONS 
GRAPHIC & SIMULATION 
D I STR I BUTED 

Figure 3--Characteristics of the five generations as seen in 1974 

proving significant. The first steps are being taken toward new 
computer architectures aimed at AI requirements. 

It would be foolish to pretend that the academic debates 
and funding struggles of the 1970s culminated in a clear real
ization of the significance of the three eras described. The 
oversell of Era 1 remained in many people's minds. Regroup
ing under siege and bitter struggle was the perception of Era 
2 for many others. A nation of the East drew the attention of 
the West to the achievements of its AI research in Era 3 and 
the significance of this for the world economy. 

We are now in Era 4, with the understanding and develop
ment of fifth-generation computers being treated as a national 
priority by many countries. The defense and commercial im
plications of achieving even some of the Japanese objectives 
are a more compelling argument than any the AI community 
have been able to muster. The sociocultural implications 
might also be overwhelming. The AI community of Eras 2 and 
3 no longer exists. The financial pull of industry has frag
mented effort, and it will be some time before new patterns of 
activity are clarified. 

THE PREVIOUS GENERATIONS 

In analyzing and forecasting the effects of fifth-generation 
developments it is useful to look at past definitions and pro
jections. Some 10 years ago Withington 19 analyzed the 30 
years of computer history to 1974 in terms of three gener
ations of machines and projected these forward to two further 
generations. Figure 3 presents his main arguments in tabular 
form. 

Withington's retrospective of the first three generations 
shows that they may be distinguished by hardware, software, 
or use, since all three are correlated. His description of the 
fourth generation then coming into use emphasizes large file 
stores and satellite computers, which came about as database 
and distributed systems technology. Virtual machine software 
also came about but did not have as much effect as expected. 
Other articles of the mid-1970s emphasize "universal emu
lators" and the need for each generation of hardware to be 
able to run the software of all previous generations. Many 
manufacturers experimented with such emulation of competi
tors' machines but it has not become widely adopted, possibly 
because of software copyright and licensing problems. This 
was also the era of hardware/software unbundling. 

Withington's projections of the fifth generation, like all at 
that time, fell far short of target. Magnetic bubble technology 
lost out to advances in semiconductors. Interactive languages 
and convenient simulation were a major part of the fourth 
generation thrust. We can now see that VLSI goes into the 
hardware column and AI into the software column for the 
fifth generation. What we cannot see is what the sixth-genera
tion extension of this table should be! It seems likely, how
ever, that the often-quoted results will be continued, that each 
generation of about six years leads to a 10 times increase in 
speed, 20 times increase in memory, 10 times in reliability, 
and 1/10 in component cost. 20 

Withington's titles for each generation are evocative. The 
1950s were an era of "gee whiz computers can do anything." 
This was necessary to support the belief of their users that one 
day they might become cost-effective. It took at least one 
more generation for this to happen. His name for the fifth 
generation is surprisingly apt; expert systems are certainly 
"action aids." However, it is a matter of faith today that they, 
and other developments coming out of AI, will become cost
effective in a wide range of applications. At least one more 
generation will be required, but the Japanese have already 
triggered this faith. We are at the beginning of a new cycle of 
events. 

CONCLUSIONS 

The Japanese fifth-generation program may have come as a 
surprise but it can be seen in retrospect as the logical culmina
tion of developments in VLSI and AI technologies. The avail
ability of VLSI in power and in quantity provides a technology 
that requires the consumer markets to be fully exploited. The 
availability of AI technology is a prerequisite for the human
like characteristics necessary in systems that can be interacted 
with easily by users untrained in computing. 

That VLSI and AI can be developed over the next six years 
to provide cost-effective products is a dream. However, it 
requires no greater faith than that which set off this industry 
in the 1950s when the first generation of computers promoted 
the "gee whiz" reaction. During the intervening period the 
economic basis of our society has changed, and we can now 

.'II. .... ?o,... . ... see me Knowleoge economy· rormmg a new enVIronment ror 
the development of mankind. The fifth generation of comput
ers is a natural product of the ecology21 of the knowledge 
environment. Bv analogy with past predictions of computer 



development the fifth generation will be with us sooner than 
anyone might reasonably expect. 

REFERENCES 

1. Moto-Oka, T. (ed.) Fifth Generation Computer Systems. Amsterdam: 
North-Holland, 1982. 

2. Simons, G. L. Towards Fifth-Generation Computers. Manchester: National 
Computing Centre, 1983. 

3. Steier, R. "Cooperation is the Key: An Interview with B. R. Inman." 
Communications of the ACM, 26 (1983), pp. 642-645. 

4. A Programme for Advanced 'Information Technology: The Report of the 
Alvey Committee. London: HMSO, 1982. 

5. Kahn, H., and Pepper, T. The Japanese Challenge. New York: William 
Morrow, 1980. 

6. Servan-Schreiber, J.-J. The World Challenge. New York: Simon & 
Schuster, 1980. 

7. Kuhn, T. S. The Structure of Scientific Revolutions. University of Chicago 
Press, 1962. 

8. "Technology update." Electronics, 56 (1983), pp. 122-235. 
9. Gaines, B. R., and Shaw, M. L. G. The Art of Computer Conversation. 

New Jersey: Prentice Hall, 1984. 
10. Weil, U. Information Systems in the 80's. New Jersey: Prentice Hall, 1982. 

A Framework for the Fifth Generation 459 

11. Minsky, M. "A Selected Descriptor-Indexed Bibliography to the Literature 
on Artificial Intelligence." IRE Transactions on Human Factors in Electron
ics, 2 (1961), pp. 39-55. 

12. Orr, W. D. (ed.) Conversational Computers. New York: Wiley, 1968. 
13. Sass, M. A., and Wilkinson, W. D. (eds.) Computer Augmentation of 

Human Reasoning. Washington: Spartan Books, 1965. 
14. Dreyfus, H. L. What Computers Can't Do: The Limits of Artificial InteL

ligence. New York: Harper, 1972. 
15. Lighthill, J. "Artificial Intelligence: A General Survey." In Artificial InteL

ligence: a Paper Symposium. London: Science Research Council, 1973. 
16. Heck, J. "Development and Establishment in Artificial Intelligence." In 

Elias, N., Martins, H., and Whitley, R. (eds.) Scientific Establishments and 
Hierarchies, Holland: Reidel, 1982, pp. 169-217. 

17. Weizenbaum, J. Computer Power and Human Reason. San Francisco: Free
man, 1976. 

18. Michie, D. (ed.) Expert Systems in the Micro Electronic Age. Edinburgh 
University Press, 1979. 

19. Withington, F. G. "Five Generations of Computers." Harvard Business 
Review, July-August (1974), pp. 99-108. 

20. Tum, R. Computers in the 198Os. New York: Columbia University Press, 
1974. 

21. Machlup, F. Knowledge and Knowledge Production. Princeton University 
Press, 1980. 

22. Wojciechowski, J. "The Impact of Knowledge on Man: The Ecology of 
Knowledge." In Hommage a Francois Meyer. Marseille: Laffitte, 1983, pp. 
161-175. 





Computers and the future of human creativity 

by MICHAEL CONRAD and M. A. RAHIMI 
Wayne State University 
Detroit, Michigan 

ABSTRACT 

The effects of computer science on human society can be usefully viewed within the 
framework of scale change. A number of examples of scale change are considered: 
in design, mathematics, social organization, medicine, and most especially, in the 
modeling and perception of the complex biological and social world in which we 
live. The common feature in these examples is the computer's ability to allow 
humans to return to modes of thought that are crucial to both the psychological and 
historical origins of scientific and engineering activities, but that were deemphasized 
in the classical scientific paradigm because of limitations on information processing. 
The explicit appreciation of the scale-changing power of the computer has impor
tant implications for computer science education and for its role in fully releasing 
the creative possibilities in the human-computer relationship. 

461 





INTRODUCTION 

How can computer science education be organized so that 
human beings can most creatively use the power the computer 
makes available to them? This question is continually being 
addressed by educators and administrators in universities and 
other institutions responsible for supporting and benefiting 
from computer science activities. 

Such a complex question could hardly be expected to have 
a simple answer. The immense computational power of mod
ern computers has a social power that bears on this issue in a 
way that is insufficiently appreciated; the power to create 
changes in scale in areas as diverse as scientific investigation, 
artistic expression, and social interaction. By scale change, we 
mean sufficient change in the relative amount of effort ex
pended on the different components of an activity to funda
mentally alter its character or its relation to other human 
activities. While it is not difficult to recognize that changes in 
scale created by the computer produce dramatic transforma
tions in many features of human society, it is difficult to appre
ciate the changes that must occur in human beings in order for 
them to adapt to and benefit from the new world of possi
bilities offered them by computers. 

These scale changes are forcing paradigm changes on hu
man beings. By paradigm change, we mean a change in a 
scheme or framework used as a reference point for evaluating 
experience. The framework may be determined by a set of 
examples shared by the community. This definition is one of 
several used by the historian Kuhn in his studies of scientific 
revolutions such as the Copernican revolution or the change 
from the Newtonian conception of space and time to the rela
tivistic one. 1 

There has always been a natural human tendency to resist 
changes of a fundamental nature, whether they involve the 
developments considered by historians of science or the devel
opment currently being instituted by the computer. Since this 
resistance may lead to the neglect of those uses of the com
puter that have the greatest potential value to human beings, 
it is necessary to carefully examine the nature of the paradigm 
changes that are occurring, taking appropriate steps to ensure 
that our educational practices facilitate rather than resist 
them. 

The phrase "paradigm change" is in one respect mis
leading. The computer creates an indefinitely large and varied 
number of new ways of perceiving both the world and our
selves. While instituting many new paradigms, it is destroying 
the traditional methodological paradigms with which scholars, 
scientists, engineers, and artists have worked for hundreds of 
years, but which inhibit the creative use of the computer. 

Computers and the Future of Human Creativity 463 

The best way to examine the phenomenon of scale change 
is through examples. We consider several: in design, mathe
matics, social organization, medicine, and most especially, in 
the modeling and perception of the complex world in which 
we live. We shall argue that scale changes created by the 
computer enable man to return to modes of thinking that in 
both a psychological and historical sense are "primitive," but 
which have been discarded, in some cases thousands of years 
ago, because of scale changes in human activities that could 
not at the time be matched by scale changes in information 
processing. 

FOUR EXAMPLES OF SCALE CHANGE 

The Process of Design 

For several hundred years, man has relied on lines when 
designing structures and devices he wished to build. Archi
tects make line drawings of the buildings they wish to build, 
machine designers make two-dimensional blueprints, as do 
carpenters, gardeners, and city planners. If one desires to 
work with three-dimensional models and the problem in
volves the design of a small building or an uncomplicated 
device, it is possible to model it with clay, experimenting with 
different versions of it in three dimensions. If, however, the 
design involves a complicated machine, such as an automobile 
engine, or a large building, like a hospital, it is basically im
possible to experiment in three dimensions. Although possi
ble to build a model, it is necessary to design it with lines, 
using illusory devices such as perspective to explore its three
dimensional structure. In order to experiment with it, one has 
to expend too much effort demolishing and rebuilding it. 

With the advent of computers, it has become possible to 
return to a more primitive and intuitive mode of thinking. 
Using the computer, it is possible to model solid objects with 
combinations of a few primitive solids (such as cubes, spheres, 
cylinders, and cones), then to experiment with different con
figurations and proportions of the models. 2 Such real-space 
design techniques are now used in architecture and in the 
design of machinery. 

Thousands of years ago, advances in technology separated 
man from a direct use of space in design, inaugurating an age 
of designing with abstraction. Today, a further advance of 
technology enables man to separate himself from the use of 
abstraction for design, reinaugurating an age of design 
through experiment with perceived three-dimensional 
models. 



464 National Computer Conference, 1984 

The Practice of Mathematics 

For a thousand years, the major mathematical activities of 
human beings have been routine. Although history recounts 
the work of great creative mathematicians such as Archi
medes, Newton, Gauss, and Alkhwarizmi (for whom the word 
algorithm is named), most of the effort expended on mathe
matical activities has involved routine computations. Even 
Gauss expended years of labor calculating the motions of the 
planets. The possibilities for experimenting with mathe
matical structures have been limited to those that could be 
done by hand. 

The most obvious capability of the computer is its ability to 
perform routine computations, leaving the mathematical 
practitioner free to concentrate on understanding the mathe
matical process rather than the execution of its technique. 
More important, by sharpening the border between the cre
ative and routine components of mathematics, the computer 
is redefining what can be considered bona fide mathematical 
work. What was previously considered work for mathema
ticians--for example, difficult integrations or simplifications 
of complex algebraic expressions-is now work for computer 
programs. Writing the programs is creative; executing them is 
routine. 

The paradigm change in mathematics is, however, much 
greater. The great mathematician Poincare thought that in
duction was the basis of mathematics, and one can reasonably 
assume that he meant experimentation with cases. The earli
est mathematicians discovered the basic features of geometry 
and arithmetic through experimentation. Problems then be
came too difficult for experiment. With Euclid began the axi
omatic method that eventually became the guiding paradigm. 

As in the case of design, the computer plays the role of the 
great scale changer. The possibility of experimenting on math
ematical structures with computers has opened problems for 
investigation previously uncontemplated from an axiomatic 
point of view, thereby fundamentally altering the balance of 
power between investigation through experiment and investi
gation through formal analysis and proof. Yet the computer 
program used for such experimental exploration of the ab
stract world is the ultimate of formal prescription and con
structive proof. 

It is worth illustrating this point with another historical 
example. Leibniz, coinventor of the calculus, was perhaps the 
earliest writer to conceive of a symbolic language that could 
be used as a deductive calculus. 3 At the same time, he dis
tinguished the process of generating the elements of a set from 
the process of determining whether an element is a member 
of that set. In modern parlance, this distinction corresponds to 
the distinction between recursive enumerability and recursive
ness. Leibniz had the quaint idea that it would take about five 
years to solve all problems by deductive means using his log
ical symbolism. Although he had recognized the importance 
of questions that could only be answered through a generative 
process, he understandably failed to recognize that the power 
of computing as a means of exploring mathematical structures 
is greater than its power to prove theorems about these 
structures. 

We now know that even problems th~t are unsolvable in 

principle may be answered with a degree of confidence, de
pending on the amount of computation invested in them.4 It 
is clear that the idea of proof confidence radically alters the 
concept of mathematical truth, eroding the traditionally sharp 
distinction between deductive and inductive methodologies. 
These concepts and distinctions are even more radically al
tered when the enumerative power of the computer as a 
means of mathematical experimentation is recognized. This 
previous lack of computational power had forced Leibniz and 
other mathematicians to discard the experimental conception 
of mathematics in favor of a completely axiomatic and de
ductive one. The scale-changing power of the computer again 
returns us to a historically more primitive conception that was 
dominant in the time of Babylon and old Egypt and that is 
radically different from our present ideas. Leibniz's process of 
enumeration has been so amplified by the computer that it has 
fundamentally undermined the deductive paradigm it was 
originally conceived of as supporting. 

The Size of Society 

Human beings originally lived in small societies in which all 
members of a group had personal awareness of one another. 
As time passed and the population increased, the potential 
decreased for knowing all members of one's social group or 
even for knowing all individuals with whom one had im
portant interactions. For some writers and social scientists, 
the alienation of individuals from those on whom they depend 
and from those who depend on them is the most pronounced 
feature of human society. 

The usual view is that the computer increases human aliena
tion. Although computers can increase the specialization of 
societY1 invade the privacy of the individual at will, and erect 
barriers between individual and institution, they need not. 
Properly understood, the computer can be used to decrease 
the effective size of society by increasing the number and 
value of interpersonal contacts. If properly used, it can allow 
individuals a greater awareness of each other's needs and a 
greater access to available resources. For example, an in
structor in a large, diverse institution can recognize and re
spond to the needs of his individual students. As a researcher, 
he can use the computer to identify other individuals with 
relevant interests or skills. Computers can make large libraries 
essentially smaller with the use of more effective searching 
techniques. Computers can provide selective and effective 
channels of communication among individuals with common 
interests. In short, properly used the computer can change the 
scale of social interaction, recapturing some of the personal 
features valued in simpler societies, while avoiding the con
straints and parochialisms that undoubtedly gave many the 
impetus, or at least the desire, to escape from these societies. 

The Practice of Medicine 

Prior to this century, there were no life support systems to 
maintain catastrophically injured and critically impaired indi
viduals. With the development of industrial society, the num
ber of catastrophic injuries from which an individual could 



survive, albeit in an impaired state, has increased. In effect, 
the first consequence of scientific medicine and technology 
has been an increase in the number of handicapped individu
als in society. 

With the development of intelligent microprocessor-based 
prosthetic devices, it is now possible and even economical for 
a paralyzed individual to use myoelectric sig~als to control 
effector devices or voice synthesizers to manipulate objects or 
create artificial speech. 5 The scale-changing power of the 
computer is reversing the by-products of scientific medicine 
and technology, returning us to a more primitive situation 
in which all members of society were capaple of full 
participation. 

There was previously a sharp distinction between man and 
the machine he created. As machines became more intel
ligent, this distinction became less clear. Perhaps this scale 
change allows a return to a time when man'viewed himself as 
a part of nature and adapted to it. 

MODELING THE EXTERNAL WORLD AND 
EXPERIMENTING WITH INTUITIONS 

Very early in human history, thinking about the world in 
which we live was informal. Formal tools such as classical 
mathematics had not been developed. Only natural, human 
languages such as Greek, Hebrew, or Persian were available. 
Scholars and scientists used these powerful but informal lan
guages as tools to describe the natural universe and social 
world and to explore the mental images they had created. 

As time passed, scholars created certain specialized instru
ments of analysis, such as geometry, algebra, and calculus. 
Not everything that can be described or contemplated with 
natural language can be contemplated conveniently with these 
formal tools. What can be described may be explored by 
precise means that go well beyond our intuitive, informal 
capability. As a consequence, premathematical thinking 
about the world with the powerful tool of natural language 
gave rise to mathematical thinking about models of the world 
that could be formulated in tractable mathematical frame
works. Although intuition did not cease being" the source of 
these models, scientists attempted to the greatest possible 
extent to couple intuition and abstraction. The ability of the 
human being to perform many types of computations is so 
weak that an enormous amount of abstraction is necessary if 
one is to arrive at a humanly computable model. 

Not all sciences went in this direction. In some cases, no
tably the historical disciplines, the required degree of abstrac
tion simplified the reality too much to be useful. In those 
cases, the advantages of the ability to compute were out
weighed by the losses inherent in the initial abstractions. As 
a consequence, science has split into two parts. One part has 
practitioners who recognize only those phenomena that can 
be formulated in mathematical frameworks. The second part 
deals with different phenomena, and still is formulated in 
natural language. There are of course disciplines that use both 
descriptions. One example is economics, a part of which is 
mathematical and rigorously deductive, but unable to de
scribe economic phenomena adequately. The very description 

Computers and the Future of Human Creativity 465 

of these refractory phenomena requires informal modes of 
thinking that rely on ordinary language. 

The computer can again create a profound change of scale, 
altering ~he balance of power between intuitive and formal 
thought and introducing a potentially greater unity into the 
bifurcated structure of science. By enormously amplifying 
man's power to compute, the computer has reduced the de
gree to which he must abstract the world around him in order 
to compute. Our symbiosis with the computer has so en
hanced our formal capabilities that we are now free to use our 
natural powers of problem formulation more fully. The math
ematically oriented sciences can enlarge the sphere of prob
lems they treat and the sphere of phenomena they are willing, 
to contemplate. They can experiment with ideas previously 
rejected on the grounds of incompatibility with formal anal
ysis. The nonmathematical, natural-language-based sciences 
can use the medium of formal computer languages to express 
and compute with models previously outside the range of 
formal investigation. 

In fact, computers are not being used as creatively as they" 
could be for this purpose. Although all natural and social 
sciences now use computers, in nearly all cases it is as a pros
thetic to traditional precomputer methodology. Many exam
ples could be given. One is from ecosystem biology: Over fifty 
years ago, the mathematician Volterra formulated a simple 
differential equations model to describe the interaction of 
predator and prey in an ecosystem.6 Today the computer is 
used by many investigators to find numerical solutions to 
these equations. The studies use the computer as a prosthetic 
to a traditional model formulated to be analyzable, at least to 
some extent, without the computer. Although a legitimate use 
of the computer, it is not a powerful one. We can formulate 
our understanding of the complex interactions in an eco
system more completely and accurately by direct use of the 
formal instrument of a computer language. That is, instead of 
mapping the reality into the formalisms of traditional mathe
matics, then using the computer to compute this map, we can 
map the reality directly, using the language instruments of 
computer science.7 

Contemplate for a moment the immense complexity of the 
genetic and physiological processes within organisms, the spa
tial and temporal dynamics of the environment, the inter
actions among organisms and between each organism and the 
environment, and the flow of mass between organisms and 
environment. Contemplate the statistical process of variation, 
the problem-solving behavior of organisms and the selective 
action of the environment. The investigator who refuses to 
admit the validity of computer languages as primary instru
ments of analysis foregoes any possibility of giving a holistic 
but formal description of such a system, or, more precisely, of 
formally expressing a holistic theory of it. Accepting such 
instruments of language, we can use them to give formal ex
pression to theories about reality that previously could be 
formulated only by using the instrument of natural language. 
We can use the computer to calculate these rigorously formu
lated theories as easily and automatically as we use natural 
language to describe them. The problem reduces to one of 
translating from the. natural language description to the com
puter language description. 



466 National Computer Conference, 1984 

The difference between these computer models and pre
computer mathematical models is not that one is mathemati
cal and the other is not. The difference is that the computer 
has redefined the term "tractable." Traditionally, a tractable 
model is an analytically solvable one. Significant simplifying 
assumptions are necessary about the complex interactions in 
the real world in order to make models that are analytically 
manageable. For dynamic models, the indispensable assump
tion is that they are analytic, that is, that their local behavior 
can be used to derive all relevant information about their 
global behavior. One cannot reasonably call a model mathe
matical unless it is solvable-otherwise it is just symbology. 
The crucial point is that our scientific thinking need no longer 
be guided by the precomputer criteria of tractability. What 
was previously symbology is now bona fide mathematics. As 
in the examples of design, mathematics as such, and social 
organization, the computer has introduced a change in scale 
that returns' us to modes of thought that played important 
roles in the early stages of human history, but that were 
quenched by the advance of technology; in this case, by the 
advance of the analytical technology of classical mathematics. 

In modeling the world, we argue that the most valuable role 
of the computer is as a prosthetic to the human thought pro
cess itself, not as a prosthetic to precomputer methodologies. 
Yet most natural and social science modeling is guided by 
precomputer criteria. Some of it, especially in the biological 
and social sciences, is completely conceptual and informal. 
The reason, we believe, is that there are two ways of judging 
models and theories. One is aesthetic, the other is practical. 

For the computer scientist, computer models may be aes
thetically pleasing even if they have no utility. Exploring such 
models experimentally, using methods usually associated with 
experimental science, seems like a legitimate activity. For the 
precomputer scientist, models formulated directly in terms of 
computer languages and the experimental models used to 
study them may seem aesthetically unpleasing and dubious 
even if they have enormous utility. The question involves the 
criteria to which we have become habituated over hundreds of 
years. The criteria that had to be fulfilled by a model to make 
it useful in the precomputer stage of science have, after hun
dreds of years, become transformed into aesthetic criteria. 
These have been useful in guiding scientists in the direction of 
utilitarian models and theories. Now new classes of models 
are possible that are unaesthetic according to traditional per
ception, but clearly are useful. With these models, we can 
investigate the consistency and implications of informal 
theories that guide our intuitions about ecological systems, 
business firms, whole economies, and the thought process 
itself. It is the change in aesthetic criteria that is the painful 
but fruitful methodological paradigm shift that the computer 
is introducing into natural and social science. 

Man's new power to formulate algorithmic models in the 
languages of the computer and to use the computer to explore 
these models has an interesting epistemological implication. 
Our knowledge and procedure bases are limited by biological 
evolution. There is a tendency, in some cases even an urge, to 
perceive and analyze the world in terms of one, two, or three 
categories. Thus, there are monistic philosophies-which 
view all observable phenomena as a manifestation of a single 

underlying reality; dualistic philosophies-such as Zoroastri
anism-which attempt to perceive the world in terms of two 
competing forces; and triadic philosophies, such as Hegel's 
dialectic. The computer is not inherently subject to these 
limitations. We can program it to perceive and analyze in 
terms of many more categories than any human being could. 
It is possible that with the computer we will reach a point of 
communicating useful models without understanding how 
these models work. It is conceivable that man's biologically 
and historically developed tastes are completely arbitrary as 
far as his understanding of the world is concerned. Alterna
tively, it is conceivable that there is a fortuitous and marvelous 
match between the structure of reality and the structure of his 
thought processes. More likely, there is a good match for 
some aspects of reality, a poor one for others. One new pos
sibility created by the computer is that of obtaining a deeper 
appreciation of the relationship between the human mind and 
the external world; a problem of immense philosophical inter
est that until now could never have been the object of serious 
experimentation. 

EDUCATION OF THE COMPUTER SCIENTIST 

How do the possibilities created by the computer bear on the 
education of the computer scientist and, equally important, 
on the computer-education of the public at large? The chief 
problem with the computer remains communication with it. 
At first, communication involved the arduous formulation of 
algorithms in primitive codes that could be used to control the 
state of the machine. As time passed, higher-level languages 
were developed in which the ideas of the programmer could 
be expressed more easily. The problems of compiling these 
languages into machine code become promment. As more 
people began to use the computer, the problem of program 
management--essentially of operating systems-became 
prominent. As programs became more complex and compu
tation less costly, the problem of writing readable, modifiable 
programs and of establishing the correctness of programs as
sumed greater importance. A great deal of emphasis in com
puter science education is rightfully placed on these and re
lated issues; that is, on the issues involving the structure and 
use of formal languages to abstract reality for the machine. 

The view we have suggested of the computer as a scale 
changer points to another issue that should enter computer 
science education more conspicuously than it does. The devel
opment of the computer has shifted the balance of effort 
involved in the formulation and solution of problems. The 
computer is a formal instrument, and our symbiosis with it has 
extended the formal side of our linguistic capabilities. We 
argue that by so doing it should free our intuitive, creative 
capabilities, not only because it reduces routine work, but also 
because it opens new possibilities for the creative formaliza
tion and exploration of intuition. For classical scientists, the 
problem of calculating a solution was enormously time con
suming, so formulation had to be very careful. Only the very 
best scientists could successfully concern themselves with 
problem formulation. With the advent of modern computer 
systems, the problem of solving formulated problems has be-



come much easier. Once a problem is posed in a computer 
language, the computer automatically solves it, and the prob
lem of modeling is reduced to one of problem formulation. 
The computer as a scale changer has effected a major shift in 
the faculties of thought that a scientist can most fruitfully 
cultivate. As computer languages and computer systems have 
developed to become more powerful and usable, they have 
shifted the return on the investment of scientific effort from 
the problem-solving faculty to the faculty of problem 
formulation. 

There is an interesting analogy to the structure of the brain 
itself. It is now believed that the right and left hemispheres of 
the brain specialize for different functions, just as left and 
right hands do. Evidence indicates that one hemisphere is 
specialized for linguistic and analytical tasks; the other for 
intuitive, geometric, and Gestalt thinking. These specializa
tions are not sharp, just as the different tasks performed by 
the left and right hands are not sharply delineated into two 
classes of functions. It appears that the brain of a single indi
vidual is a symbiosis of two kinds of computing. The develop
ment of traditional mathematical techniques placed con
straints on the intuitive modes of thinking that were the source 
of this technology. The development of computers provided 
such an enormous amplification of power of the linguistic
analytical side of the brain that it has created previously un
known opportunities for the intuitive-creative side. 

One problem in computer education is to train the linguistic 
side in the proper use of formal computer languages, a diffi
cult task even for individuals gifted in analytical capabilities. 
The mastery of formal skills is necessary for communication 
with the computer even though it seems counterproductive to 
concentrate solely on their cultivation when the computer is 
so much more effective than any human in executing formal 
processes. Once mastered, the formal skills should be used 
creatively; that is, the student's intuitive, ideational capabili
ties to communicate useful things to the computer should be 
cultivated. Arriving at an algorithm or proof idea and formu
lating it in a computer program involve different, though in
teracting modes of thought. In our teaching of computer sci
ence, we have emphasized the linguistic side. Now, as we step 
into the age of the new possibilities opened by the computer, 
it is time to emphasize the use of the formal tools to express 
ideas and formulate problems. 

This educational goal should be consciously incorporated 
into our computer science curricula at the earliest levels. It is, 
of course, already implicitly present. For example, the field of 
artificial intelligence has as its main problem the communica
tion of a world-conception to the computer. Nevertheless, in 
all but the most advanced areas of our computer science edu-

Computers and the Future of Human Creativity 467 

cation, we place so much emphasis on the formal, linguistic 
side that the intuitive capabilities that guide program con
struction atrophy in many students before they reach the point 
where they can recultivate them. This situation can be altered. 
The two modes of thinking required to work effectively with 
the computer can be cultivated simultaneously, just as learn
ing an artistic technique can be pursued simultaneously with 
the cultivation of artistic ideation by the student of creative 
arts. In this respect, the computer is a new medium, and 
computer science has an aspect of the creative arts that should 
be explicitly recognized at the beginning of our educational 
practice. 

Viewed as a device forcing the programmer into inhumanly 
formal modes of thinking, the computer is alien, and provokes 
hostility in those forced to deal with it. Viewed as a new 
medium of expression and as a way of harnessing our most 
personal human potential, it should evoke pleasure in those 
dealing with it. Viewed merely as a prosthetic to classical 
scientific methodology, the use of the computer will always be 
seen as an admission of failure to be sufficiently clever to 
preclude its need. Viewed as a prosthetic to the human 
thought process itself, the computer can be viewed as one of 
the most effective means of thought. Accepted as a paradigm 
changer, the computer can serve to reveal new views of the 
world as meaningful for the evolution of human thought as 
those that arose during any period of scientific revolution. 

ACKNOWLEDGMENT 

M. Conrad acknowledges support from the National Science 
Foundation (Grant MCS-82-05423). 

REFERENCES 

1. Kuhn, Thomas S. The Structure of Scientific Revolutions (2nd ed.). Chicago: 
University of Chicago Press, 1970. 

2. Boyse, John W. Data Structures for a Solid Modeller. G. M. Laboratories, 
GMR-2933, 1979. 

3. Leibniz, G. W. Leibniz Selections P. Weiner (ed.). New York: Charles 
Scribner's Sons, 1951. 

4. Rabin, M. O. "Probabilistic Algorithms." In J. F. Traub (ed.), Algorithms 
and Complexity: New Directions and Recent Results. New York: Academic 
Press, 1976. 

5. Rahimi, M. A. and C. B. Friedlander. "Linguistic Significance of Myo
electric Activities of Lip Musculature." IEEE 1980 Frontiers of Engineering 
in HeaLth Care (1980). 

6. Volterra, V. Lecons sur La Theorie Mathematique de La Lutte pour la Vie. 
Paris: Gauthier-Villars, 1931. 

7. Conrad, M. "Algorithmic Specification as a Technique for Computing with 
Informal Biological Models." BioSystems, 13 (1981), pp. 303-320. 





A national computer policy: forging the final synergy of 
computers and society 

by BEN G. MATLEY 
Ventura College 
Ventura, California 

West Coast University 
Los Angeles, California 

ABSTRACT 

National computer policies (NCPs) developed by certain nations have established 
those nations in such strong competitive positions in computer technology that they 
now challenge the U.S., which once held a near monopoly position. Japan's na
tional computer policy, published in 1972, called for a $65 billion investment in eight 
computer developments between 1972 and 1985 and set the stage for development 
of a domestic chip industry. Thus, a national computer policy can be dramatically 
effective. Other nations have developed national computer policies as well. 

Many of the challenges and problems facing the U.S. computer industry might be 
resolved if a national computer policy study were begun immediately. Such a study 
could help us to understand the manner in which the computer industry has changed 
from dominance by actions of entrepreneurships to direction by actions of sov
ereignties. The AFIPS member societies are called upon to provide the forum from 
which a national computer policy study may begin. 

469 





INTRODUCnON 

Our conference theme: the synergy of technology and society. 
Nowhere do technology and society come closer together than 
through government technology policies. That was true of 
steam-boiler technology in the nineteenth century. 1 It became 
true of communications, transportation, and certain other se
lect technologies in the twentieth century when each became 
recognized as crucially important to the society at large. Coin
cident with that recognition came the acknowledgement with
in each expanding technical industry that certain challenges 
and problems were beyond the ability of single firms to solve 
individually. At that point, the small technical community, 
which had nurtured each new technical industry, arrived at a 
willingness to share with the greater society some key deci
sions about the future direction of the industry. In turn, the 
greater society participated by setting some national tech
nology policies for each industry. It also complemented pri
vate investments with public funding of selected projects. The 
net effect of those national technology policies and those pub
lic investments was to propel each of those young industries 
onto a new growth curve based upon broad societal par
ticipation. 

Aviation may be used as one example of a new technolog
ical industry that progressed through the maturation process 
described above. That industry reached a point at which cer
tain challenges and problems could no longer be resolved by 
single firms working alone. Single firms could not build air
ports and navigation aids, nor could single firms set traffic 
routes and flight rules. The small technical community that 
had nurtured the budding aviation industry was ready to share 
control of the industry's future with the greater society. The 
society then set some policies for the industry and invested 
public funds in the industry (e.g., airports and traffic control 
systems) because it was acknowledged as being crucially im
portant to the society at large. With broad societal participa
tion, the industry was propelled onto a new and rapidly rising 
growth curve. I hasten to note here that national technology 
policies are not to be confused with regulation of day-to-day 
operations. As illustrated in the case of aviation, the industry 
can be deregulated, but its importance remains. Airports, 
traffic control systems, navigation aids, are all maintained as 
ongoing public investments in a technological industry of cru
cial importance to the society at large. 

The computer industry is now the most recent of those 
select technical industries to elicit a national technology 
policy-specifically, a national computer policy (NCP). 

THE COMPUTER IN TURN 

Certainly there is no doubt that the computer industry is 
crucially important to the society at large. Neither is there a· 

A National Computer Policy 471 

doubt that the U.S. computer industry faces some challenges 
and problems that cannot be resolved by single firms working 
alone. For instance, some industry leaders have already ac
knowledged that computer R&D has become too expensive to 
be wastefully replicated by single firms competing individu
ally.2 Modification of antitrust laws is called for so that firms 
may pool their R&D efforts and the results may then be made 
available to all. Still others suggest a nationally coordinated 
effort to develop the next round of supercomputers, such 
effort said to be "crucial to economic and national security.,,3 
We can also acknowledge that American commercial com
puter supremacy, a near monopoly just 20 years ago, is under 
effective challenge for leadership in the 1980s. We cannot 
expect that each single firm will overcome that challenge indi
vidually. Nor can individual firms solve the problem of indus
trial espionage. On the level of international trade in comput
ers, we sometimes find American firms competing with sov
ereign nations. The close industry-government partnerships in 
the computer industries of some nations is well known. Addi
tional national computer policies of those nations set Ameri
can competitors at a further disadvantage. In one case, an 
American computer firm under investigation overseas sought 
the help of the U.S. government in resolving the matter.4 

Other firms operating overseas complain that there is no one 
organization in the U.S. government to which a firm may 
appeal in trying to resolve matters of duties and tariffs on the 
companies' business data and programs.5 The manner in 
which American computer firms are beset with such chal
lenges and problems is worthy of study. That becomes a study 
of national computer policies-those of other nations, not of 
the U.S. As examples, there are two national computer poli
cies of particular note illustrating that national computer pol
icies can be dramatically effective in a very short time. 

SELECTED NCP STUDIES 

In 1972, the Japan Computer Usage Development Institute 
(JCUDI) presented to that nation the results of a national 
computer policy study, titled "The Plan for an Information 
Society-A National Goal Toward the Year 2000."6 The 
JCUDI Plan called for an initial national investment of $65 
billion in computer developments to be made between 1972 
and 1985. Eight computer developments were specified, three 
of which were as follows: a Computopolis model city to serve 
as a living laboratory of an information society; a national 
think-tank center to provide computer databases with simu
lation and modeling facilities available to both private and 
government researchers; a Computer Peace Corps to transfer 
computer technology to Third World trading partners. Given 
such bold national computer policy plans it is understandable 
that an early $250 million investment in chip technology was 



472 National Computer Conference, 1984 

justified in support of those policies. Similarly, an ongoing 
priority effort in fifth generation R&D would support ongoing 
efforts in all eight areas of computer development during the 
1980s. 

By 1980, Japan had reported significant progress in seven of 
her eight areas for computer development. Japan's national 
computer policy had helped her achieve a leadership position 
in computers in a very few years. 

In 1978, France followed Japan's lead and published a na
tional computer policy study of her own. 7 The French study 
equated sovereign control of computers and communica
tions-that is, telematics networks-with sovereign sUrVival. 
The study stated that it was imperative that France develop a 
domestic computer industry free of foreign ownership. Given 
such national computer policies, we can better understand 
why that government moved into Honeywell-Bull. We can 
also better understand why France felt it necessary to impose 
non-IBM communications protocol standards nationwide, 
and why France sought Common Market acceptance of simi
lar protocol standards. France, like Japan, then promoted 
international trade in computers and communications for its 
domestic firms while protecting those same firms from foreign 
competition. Both nations also saw the need to begin immedi
ately the reeducation of the people in preparation for the 
twenty-first century information society-a society of syner
gism rather than individualism, with an economy based on 
information rather than energy or consumable goods. All of 
these actions came in support of a national computer policy 
methodically developed. 

OTHER BENEFITS OF NCP STUDIES 

Now the mere fact that two or more nations have imple
mented national computer policies with notable success does 
not mandate that the U.S. do likewise. Neither does it follow 
that the computer policies adopted by those nations are the 
preferred ones. But the two examples cited above do help us 
to understand, in part, why the U.S. computer industry has 
found itself so quickly in a state of challenges and problems 
that are beyond resolution by single firms working alone. It is 
not that U.S. computer firms can no longer compete-they 
can. It is that recently the nature of competition is changing 
from actions solely by entrepreneurships to actions and poli
cies of sovereign nations. Such changes deserve study on their 
own merit. Still, there is another reason for performing a 
national computer policy study at this time: National comput
er policy studies sometimes lead to uniquely different percep
tions of the future for computerized societies. For example, 
the Japanese national computer policy plan led to a percep
tion that in the twenty-first century information society there 
would occur what was termed a "Copernican turn in privacy," 
meaning that personal-data privacy as we know it today would 
cease to exist. The French study arrived at a similar percep
tion, referring to "the new privacy of openness" and a "new 
right to access" to national and persona! data through nation
wide telematics networks. Yet another perception was ex
pressed in a Swedish report, likening the impact of telecom
munications to that of transportation: 

a different kind of transport philosophy could have led from the 
beginning to the introduction of a technique that did not segre
gate .... There could have been no need for us to get into the 
present-day situation if the transport system had been regarded 
right from the beginning as a system, and not merely as the sum 
of the choices of individual households through private pur
chases.s 

Again, we do not suggest that these perceptions-certainly 
different than our own-are the preferred ones, nor policies 
the ideal ones. We do suggest that a national computer policy 
study by the U.S. might well lead us to some additional in
sights and understandings-maybe even a different national 
view-about our relative position in computer technology, as 
well as our desired future directions. As an added dividend, 
we might discover that certain present-day computer uses 
could eventually mitigate against other, previously established 
national policies. 

COMPUTER POLICIES AFFECT OTHER POLICIES 

The earlier quotation from the Swedish report, for example, 
provokes thought. A present-day transport system was said to 
promote segregation. Given the future for telecommunica
tions networks, there will surely be considerable in-home 
work and in-home study. 9 Would not a nationwide network of 
teleconference schools and cable colleges mitigate against our 
previously established national policy of physical integration 
in the schools? Might a national computer policy study con
clude that in-home schooling be restricted, (say, for argu
ment, to the upper grades) so that our prior national policy of 
school integration may proceed? 

There are other examples of computer usage in potential 
conflict with our stated national policies. Massive micro
processor automation efforts work against our prior policy for 
full employment as represented in legislation. Our experience 
in the auto industry from 1978 to 1982 is said to demonstrate 
that Norbert Wiener's concerns of the 1950s were correct in 
their nature, if not in their extent. 10 It has been estimated that 
some 200,000 of those auto workers laid off during the 
1978-1982 changeover period would never be rehired even 
with increased production. 11 Reports from the Bureau of La
bor Statistics, Office of Technology Assessment, and other 
agencies refer to millions of jobs lost to automation in fabri
cation, packaging, and production during the 1980s and the 
1990s. Even so, the call has already been sounded for in
creased participation by government in encouraging auto
mation in manufacturing. 12 Might a national computer policy 
study conclude that a certain number of those jobs not be 
automated in order to ease structural unemployment and to 
provide at least some entry level jobs for inexperienced work
ers? Alternatively, a national computer policy study might 
redirect our thoughts toward the input/output economy, 
wherein older, "sunset" industries are aided into orderly de
cline rather than being subsidized continually by taxes on the 
younger, "sllnrise" industries. Japan has done much the same 
thing with her textile industry and certain other declining 
industries. 13 

Finally, a national computer policy study could address the 



manner in which certain present-day uses of computers in 
government offer to alter the relationships between branches 
and agencies of government-maybe to alter the very nature 
of our government. 14 In 1979, for instance, Congress defeated 
a bill that would have modified the 1974 Privacy Act so that 
the passive draft registration system could be implemented. 15 

This system would have linked the computers of Social Secu
rity, Internal Revenue, motor vehicle registration, and stu
dent loan applications to compile lists of potential draftees by 
age group. (A byproduct would have been a means to mobi
lize critical labor occupations in the event of a national 
emergency.) Certainly all of the data needed for draft regis
tration are in those computers; "compliance" would have far 
exceeded the reported 80 percent for the 1980 registration 
period, and the selectees would not have been oothered with 
completing forms. Immediately following the defeat of that 
1979 bill, in 1980, data were shared on magnetic tape by 
Internal Revenue and Selective Service, thus achieving about 
the same effect. The fact that data sharing was done rather 
inefficiently by sending tapes does not make moot the matter 
of data sharing between dissimilar agencies and the use of 
personal data for secondary purposes. Since that time, we 
have seen data sharing with Internal Revenue for the purpose 
of collecting debts on behalf of other agencies which had 
nothing to do with tax collection. Now, does the 1974 Privacy 
Act present a desired national policy, or not? If so, then do 
present-day practices of interagency data sharing work against 
established policies on privacy and so alter the relationships 
between government agencies? Otherwise, might a national 
computer policy study lead us to a different perception of 
personal data privacy than now represented in legislation-a 
perception more in keeping with that of the Japanese and the 
French, who perceive an end to personal data privacy in the 
computerized societies of the twenty-first century? Yet a na
tional computer policy study might reinforce our own view of 
the need for personal data privacy, and so might recommend 
passage of a uniform code of data rights and responsibilities 
in order to thwart the Copernican turn in privacy that was 
prophesied. 

To this discussion of domestic computer policy concerns we 
could add some foreign policy concerns. 16 One is the matter 
of an on-again, off-again embargo of computer trade by the 
U.S., in contrast with the methodical transfer of computer 
technology overseas by Japan and France through newly es
tablished ministries. 17 These and other crucially important 
questions need to be addressed by a national computer policy 
study in the U.S. at this time. 

FORUM FOR AN NCP STUDY 

I propose that the AFIPS member societies take the lead in 
providing a forum from which a national computer policy 
study for the U.S. may begin. The member societies certainly 
have a store of knowledge and expertise equal to the task; 
they provide a number of publications for the exchange of 
ideas; and in some cases the member societies have the natu
ral organizations in the form of special interest groups (SIGs) 
on computers and society. 

A National Computer Policy 473 

SUMMARY 

The time for a national computer policy study by the United 
States is now. All the ingredients are present. The computer 
industry is recognized as crucially important to the society at 
large. Certain challenges and problems are beyond resolution 
by single firms working alone. Many in the technical commu
nity are ready to share decisions about the industry'S future 
with the greater society. In that process of shared decision
making, the greater society may find it advantageous to estab
lish some sort of national computer policy agency, as industry 
advocate and public partner, to coordinate R&D efforts, to 
fund certain research of importance to society at large, and to 
aid in the solution of problems that are beyond the industry 
itself to solve because sovereign nations are involved. We can 
expect that the combined effects of public and private invest
ments would propel the industry onto anew, faster-rising 
growth curve. Finally, we might find that certain present-day 
uses of computers work against other, prior national policies 
we may wish to preserve. A national computer policy study 
could thereby help us to better understand ourselves and to 
better understand our preferred future directions as a comput
erized society. 

REFERENCES 

1. Burke, John G. "Bursting Boilers and the Federal Power." In M. Kranz
berg and W. H. Davenport (ed.), Technology and Culture. New York: 
Meridian Books, 1975. 

2. Bartimo, J. "Q & A With CDC's Founder a...d Chairman." Computer
world, April 19, 1982, pp. 5. 

3. Palmer, E. J. "National Supercomputer Effort Needed." Compufax, 10 
(1983), p. 1. 

4. Malik, R. "IBM Enlists Washington in European Fight." Computerworld, 
June 7, 1982, pp. 130-131. 

5. "Data Could Spark a Trade War." Business Week, November 29,1982, p. 
100. 

6. Masuda, Y. The Information Society (1st ed.). Tokyo: Institute for the 
Information Society, 1980. 

7. Nora, S. and A. Minc. The Computerization of Society (1st ed.). Cam
bridge: The MIT Press, 1980. 

8. ERU Expert Board for Regional Development. "Telecommunications and 
Regional Development in Sweden-A Progress Report." The National 
Swedish Board for Technical Development Report LFI ALLF 222 77 004, 
April 1977. 

9. Nova University. "Doctor of Arts in Information Science," Announce
ment, Fall 1983. Fort Lauderdale, F1a. (This announces an in-home curric
ulum via teleconferencing and interactive computing.) 

10. Weiner, N. The Human Use of Human Beings (1st ed.). Boston: Houghton 
Mifflin, 1950. 

11. UAW President Frazier, "60 Minutes" television interview, October 19, 
1980. 

12. General Accounting Office. "Federal Efforts Regarding Automated Manu
facturing Need Stronger Leadership." Department of Commerce, GAOl 
AFMD-83-68, May 26, 1983. 

13. General Accounting Office. "Industrial Policy: Japan's F1exible Ap
proach." Department of Commerce, GAOIID-82-83, June 23, 1982. 

14. Unpublished correspondence. William V. Roth, Jr., chairman (R-Del.), 
U.S. Senate Committee on Governmental Affairs, to Dr. John H. Gibbons, 
director, Office of Technology Assessment. August 8, 1983. (Request for 
study of certain uses of computers in the federal government.) 

15. Kirchner, J. "File Match May Aid Draft," Computerworld, May 7, 1979, 
p.l. 

16. Goodman, S. E. "U.S. Computer Export Control Policies: Value Conflicts 
and Policy Choices." Communications of the ACM, 9, (1982), pp. 613-624. 

17. Shaffer, R. A. "Computer Center Seeks to Aid Poor, Jobless and Third 
World," The Wall Street Journal, July 15, 1983, p.21. 





Information processing management 

Eugene Smith, Track Chair 

As the title indicates, this group of eight sessions focuses on 
issues that will primarily concern the information processing 
manager. Over the years, data processing management has 
lost some of its mystique; however, the information pro
cessing manager is beginning to move into the mainstream of 
corporate management. Thi~ trend adds legitimacy and stat
ure to the entire profession. 

In a conference of this size and scope there are, of course, 
many other sessions of interest to managers in the field. The 
sessions described here include human issues, productivity 
issues, technology issues, planning issues, and two sessions on 
managerial perspectives. This group of sessions presents an 
opportunity to hear top-level managers discuss their experi
ences in areas of concern to all information processing manag
ers. Those who attend these sessions can obtain a wealth of 
information to use back in their own work environments. 

In addition to significant technological changes taking 
place, the role of information management is undergoing im
portant changes. The session entitled "Information Manage
ment in the '80s: A Managerial Perspective" provides a broad 
look at the issues in information management from the sys
tems manager perspective. Our systems managers must con
tinually deal with change and cope with new issues as new 
technology is introduced into the workplace. 

This session focuses on issues such as the changing role of 
systems, the nature of continued support and education, of
fice automation and its role, the changing life cycle, and the 
end user environment. The intent is to identify how systems 
management is changing. An issue-oriented panel discussion 
is presented; following the discussion, the audience has an 
opportunity to question the panelists, who are high-level man
agers, about issues raised during the session. 

Managers must continually be involved in the planning pro-

cess. Any information systems plan has to be based on the 
plans of the parent corporation. The information systems plan 
must support and complement the corporate mission and 
goals. There is, however, an opportunity for the information 
system professional to affect changes in he plans 'of a business 
by showing how new information technology can allow a cor
poration to expand into new markets or'improve the profit
ability of its products. 

In the session "Business Planning and Information Sys
tems," one panelist discusses the process and critical factors 
involved in the development of an information systems plan. 
Another focuses on the need for the information processing 
plan to conform with the business and how best to achieve this 
goal. 

As a new technology is introduced, the relative cost of 
human resources continues to increase as the relative cost of 
hardware decreases. The problems of appropriate compensa
tion for work accomplished, techniques for getting a task com
pleted, and productivity are high on a manager's list of prior
ities. The "Information Systems and Productivity" session will 
focus on issues of productivity and people in information 
systems. 

A key to improved productivity is awareness and appropri
ate control of personnel issues. The need for managing tech
nology updates as they are introduced into the organization, 
as well as the managing of human resources, is addressed. 

Managers are confronted with a diverse set of problems in 
providing computing service for end users in the business 
environment. "Planning For and Supporting End-User Busi
ness Computing" presents actual experiences related to plan
ning for and supporting end users. This is a practical, how-to 
series of presentations, and the audience should obtain many 
ideas that they can use in their own organizations. 



One panelist focuses on how best to educate and train first
time users. Another discusses the art of "Virtual Staffing," 
including how you can best leverage your end-user support 
staff. The last panelist discusses how to align plans for busi
ness systems and information systems by highlighting the steps 
his company used to successfully support and link 10,000 per
sonal computers. 

A major function of most information systems managers 
and technical systems developers is the distribution of infor
mation. It is also a critical responsibility of effective manage
ment in any field. Recent advances in microcomputer tech
nology and telecommunications have resulted in innovative 
solutions to the problem of time information flow. In "Dis
tributing Information-A Management Perspective," the 
panelists discuss their experiences with these technologies. 
The emphasis is on the business function of distributing infor
mation to meet the needs of local and corporate management. 
The discussions deal with diverse business environments as 
well as the applicability of various tools, including the micro
computer and network applications. 

As microcomputers are increasingly applied to routine busi
ness problems, information systems managers are often faced 
with a major choice: acquire multiuser microcomputers or use 
a network of individual personal computers. Criteria for mak
ing such a decision depend on the particular needs and oper
ating environment in a given situation. Significant factors af
fecting such an analysis include a requirement to access or 
share a common local database, the types of local networks 
available, and the costs of networking individual personal 
computers. In "Multiuser Micros Vs. Networked PCs," one 

panelist whose analysis resulted in the acquisition of multiuser 
microcomputers shares his rationale for this selection, where
as another panelist discusses why he chose to install a system 
of networked personal computers. 

"Structured Methodologies and Automating the Systems 
Development Process" deals with the use of structured tools 
and how they can be used to generate usable code. Papers are 
presented about various automatic diagnostic techniques used 
in one or more of the structured methodologies. Experiences 
relating to the generation of design documentation and pro
gram code are discussed. Presentations include various auto
matic design techniques developed in support of a new analyst 
workbench, experiences in the development of an automatic 
code generator for large applications, and the development of 
computer-aided design (CAD )/computer-aided programming 
(CAP) work stations. 

Decision support systems, of necessity, are moving into a 
new environment that involves distributed systems. The trend 
has begun and will greatly expand in this decade. "Decision 
Support Systems and Distributed Processing" provides an op
portunity to hear leaders in the field present their thoughts on 
decision support system design methodologies in a distributed 
environment. 

In this panel session the topic of decision support systems 
focuses on providing information for decision making by 
managers. Applications include resource allocation, problem 
diagnosis, scheduling, and assignment. The application of 
decision support systems in a distributed environment will 
increase significantly both the popularity and complexity of 
such systems. 



Decision support in a distributed environment 

by DANIEL T. LEE 
University of Hartford 
West Hartford, Connecticut 

ABSTRACT 

Traditional means of data processing, management information systems, and deci
sion support systems cannot meet a new demand ushered in with the evolution of 
mini-micro computers. A modern computer end-user, especially a modern decision 
maker, needs a single pool of information that may be geographically dispersed. 
Therefore, a new combination of technologies is needed for coping with this new 
demand. The purpose of this paper is to develop a unified methodology for 
distributed-system design with distributed databases. The distributed systems de
signed under this unified methodology can satisfy geographical data independence 
in addition to logical and physical data independence in the traditional sense. 

477 





PREFACE 

The increasing popularity of mini-micro computers has ush
ered in a new era of distributed systems. The end-users and 
knowledge personnel are increasingly using mini-micro com
puters in their daily data processing and decision making. 
They not only need transaction data but analytical informa
tion in an integrated fashion. This new demand requires a new 
combination of technologies for combining the distributed 
systems and distributed databases into a unified whole. This 
new combination of technologies will no doubt have a tremen
dous impact on the job performance of many people. 

In the past four decades, computers have evolved through 
the eras .of electronic data processing (EDP), management 
information systems (MIS), au.d the decision support system 
(DSS) eras. During the EDP era, computers made great 
contributions tQward the automation of paper work and labor 
saving. Computer programs, however, are segmented, there
fore redundancy and inconsistency are inevitable. MIS was 
conceived to integrate them for producing decision-making 
information. Unfortunately, it largely produces standard re
ports, which are either irrelevant or only indirectly relevant to 
the decision-maker's needs. In order to fill this gap, DSS was 
brought forward with the main emphasis on supporting 
decision-making. 

Currently, DSS development basically follows the same tra
ditional, yet inadequate means, which are only fit for static 
and structured tasks. The problems faced by a modern deci
sion maker, however, are usually unstructured or semi
structured. In addition, traditional database technologies are 
usually conceived under centralized usage. Now the emerging 
mini-micro computers add another dimension of complexity: 
Data and processing might be geographically dispersed. This 
dimension introduces a new challenge to system design and 
database development. 

The purpose of this paper is to integrate distributed system 
development with database design into a unified methodology 
for decision support, because data management is crucial for 
distributed systems in a dynamic environment, as Donovan 
indicates: "the database systems lie at the heart of decision 
support system tools. ,,18 

BASIC CONCEPTS 

Definition 

DSS was first defined by Norton as an interactive computer
based system that can help decision makers use data and 
models to solve unstructured problems.47 It was criticized as 
being too restrictive; few actual systems can fit it satisfactorily. 

Decision Support in a Distributed Environment 479 

Sprague and Carlson52 indicate that distributed data systems 
comprise a class of information system that draws on trans
action processing systems and interacts with other parts of the 
overall information system to support the decision-making 
activities of managers and other knowledge workers in the 
organization. The DSS aims at less-structured tasks and un
specified problems. This approach combines the use of analyt
ical techniques and database technologies with main emphasis 
placed upon the ease of use, flexibility, and adaptability in 
order to accommodate changes in the environment. The char
acteristics of the DSS have been fully exemplified in Refer
ences 1, 2, 9-11, and 31-33. 

Geographical Data Independence 

As indicated earlier, the DSS is facing a new challenge-the 
distributed environment. The analytical techniques and data
base technologies applied to DSS development in the tradi
tional sense are inadequate. For example, traditional data
base technologies emphasize logical data independence and 
physical data independence. The former insulates the changes 
made in the external end-user's programs from the global 
conceptual schema, whereas the latter severs the changes 
made in the internal physical storage with the global concep
tual schema. By satisfying these two data independences, the 
end-user and database designer can enjoy all the freedom in 
modifying the database without the constraints imposed by 
anyone of the three schemas (external, conceptual, or inter
nal). Traditionally, the databases satisfying these data
independence requirements are regarded as being very close 
to ideal, but under the new distributed environment, it would 
be necessary to satisfy one more requirement-geographical 
data independence. The end-users can obtain the data for 
their programs without having to know where it is really 
located. This capability requirement is very critical for an 
efficient and effective DSS, working in a distributed 
environment. 

Generally, there are three basic capability requirements for 
a genuine DSS: data, model, and dialogue. Data means data 
management capability. It basically indicates database man
agement systems (DBMS) necessary to satisfy the information 
needs of the end-users and decision-makers. Model means 
model management capability, because a modern decision 
maker needs not only transactional data but also analytical 
information. Dialogue means friendly query languages that 
end-users or decision-makers can use for interfacing with the 
computers. Now these three capabilities must be built upon 
a geographical transparency. The end-users and decision
makers can interact with models and data without having to 
know where they are located. 



480 National Computer Conference, 1984 

Dialogue Software 

Figure 1-Components of decision support systems 

Traditionally, there are usually three components in DSS, 
as shown in Figure 1. In order to meet geographical data 
independence, Figure 1 should be extended to more than one 
DBMS or independent files that are interlinked through com
munication networks, similar to Figure 2. 

Three Approaches 

According to Lee there are currently two approaches .in 
DSS design methodologies, the application-specific approach 
(ASA) and the integrated MIS approach (IMA).36,37 The 
ASA is under the notion that the knowledge personnel will trj 
to improve their job performance by exploiting the new tech
nologies in their speCific applications. They feel that the 
institutionalization of DSS is very difficult, if not impossible, 
in terms of existing knowledge and cost-benefit justification, 
and that the MIS personnel are too busy producing standard 
reports and have no time or expertise to build up DSS for the 
knowledge personnel. Here the knowledge personnel are de
fined as the decision makers and their intermediaries, e.g., 
management science and OR personnel. 

Unfortunately, the ASA is not general; neither is it efficient 
or economical. It never takes advantage of the existing 
information-producing mechanisms in the organization. The 
IMA was conceived under the notion of total system concept. 
The IMA tries to integrate everything in the system. It sounds 
great, but nobody knows "how." 

Lee developed a unified approach in accordance with the 
contingent model. It steps down a level of abstraction by 
grasping the things we can manage, without losing sight of the 
whole. It focuses on the information flows and groups them 
into subsystems. The things we can clearly define are first 
organized into the major operational databases, and spaces 
are provided for data, the contents of which are not known at 
the present, but whose relative positions (with respect to the 

Site with NDBMS 

Notes: (1) NDBMS stands for network database management system. (2) The 
three types of site can be many in a network decision support system. For 
simplicity, only one of each type is shown. (3) Communication network is a 

network system for data communication. 

Figure 2-Network decision support system diagram 

whole construct) are clear. When the time comes that the data 
do become clear, we may add them to the system. Detailed 
discussion of the unified approach (TVA) applied to the DSS 
development is presented in References 35 and 38-40. 

The basics of TVA also can be applied to the design of a 
DSS in a distributed environment. This approach should be 
extended to accommodate the geographical data indepen
dence in four transaction transparencies-location, concur
rency, replication, and failure. Discussion of these topics 
follows in the next three sections. 

DISTRIBUTED SYSTEM DESIGN 

The Characteristics of DS 

A distributed system (DS) is defined as one in which 
application programs and/or data reside in separate inter
linked sites and are designed in an integrated and tightly con
trolled fashion. This definition is somewhat biased toward an 
integrated approach. It should be modulated by the contin
gent modee6 and the unified approach for designing the 
DSS35,37,38-40 that was discussed previously. After this modu
lation, it then can be applied to the development of a DS with 
DDB in a realistic and practical manner. Decision makers can 
then be allowed to access the data freely in an integrated 
fashion without being bogged down by complicated mech
anisms. 



The Characteristics of D D B 

A distributed database is defined by Date17 as a database 
that is not stored in its entirety at a single physical location, 
but rather is spread across a network of locations that are 
geographically dispersed and connected by communication 
links. It may best be described as the union of a set of individ
ually centralized databases, because a distributed system is 
considered to be a partnership among a set of independent but 
cooperating centralized systems rather than some kind of 
monolithic and indivisible object. 

The Basic Functions of DS 

The centralization of strategic management and the 
decentralization of functional operations should be one of the 
most important objectives. The maximization of the auton
omy of the individual units and the minimization of de
pendence among them also are vital to an effective distributed 
system. Each processing unit should be self-contained, but 
can be connected through database management systems and 
communication network protocols. In this way, foreign entan
glements can be reduced to a minimum, if not completely 
stamped out. The DS designed under these guidelines will 
have autonomy of individual units and integration of the 
whole system. This DS design is quite complex but can be 
done if the design methodologies are used properly. This is 
the topic of the next three sections. 

Design Strategies of DS 

There are usually two approaches-top-down and bottom
up. In designing a decent DS, both approaches are needed. 
The top-down is used for macro-system design. It tries to lay 
down the design strategies for databases, files, and distributed 
data; to establish standards for database design and re
sponsibilities of development; and finally to decide data struc
ture, subject databases and their locations. 

At the end of this process, it will become clear which data 
structure should reside in a given location; their subject data
bases, application databases, independent files, and sub
schema files. Production systems vs. information systems also 
are clearly delineated. 

Design Strategies of D D B 

As indicated, the above process establishes the basic strate
gies and guidelines for DS development. It is a macro-system 
design, from which we concurrently proceed to micro-system 
design--either during the construction of or after the com
pletion of macro-system design. The following design guide
lines follow the bottom-up approach and aim at a detailed DS 
design with major emphasis on DDB development. The meth
odologies for DDB design may use the traditional systems 
analysis and design methodologies. The major difference is 
that the complexity for DS with DDB development is much 

Decision Support in a Distributed Environment 481 

higher than that of traditional system design because the DS 
with DDB will have to satisfy geographical data indepen
dence. The four transaction transparencies-location, concur
rency, replication, and failure-are the major concerns for an 
efficient and effective DS. These topics are discussed in the 
next two sections. 

In summary, the top-down approach establishes an overall 
framework and a general architecture into which the end-user 
modules can fit into the overall architecture. The former is 
mainly concerned with the upper structure of the system, 
whereas the later is used to establish the basic modules, es
pecially the DDB, which is the major component of DS.46 

Design Procedures of DS 

The practical steps in distributed-system development may 
be divided into two large phases: a subsystem delineation 
phase and a DDB development phase. In the subsystem 
delineation phase, there are five steps. First is establishing 
end-user sites in accordance with the processing and data 
requirements, such as a head office in Chicago, a warehouse 
in Atlanta, a warehouse in Miami, etc. Second is identifying 
the applications required in each end-user site for performing 
the functions of that site, such as credit-checking, shipping, 
accounts receivable, etc. Third is grouping these end-user 
sites with their applications into subsystems (e.g., in a manu
facturing firm, there might be one head office, one or more 
factories, one or more branch offices, one or more laborato
ries). Fourth is tracing the internal and external transfers of 
data between internal subsystems or with the outside world, 
because some applications in each subsystem might share the 
same data or processing result. These applications should be 
grouped into the same subsystem, and their processing and 
data requirements should be closely coordinated and delin
eated. Fifth, separate computers for each subsystem should be 
identified. The interface between subsystems should also be 
clearly defined. 

After the fifth step, a general picture of the distributed 
system is clearly shown, but it is still primitive and only a 
rough structure. A refinement is needed for its implementa
tion. This will have to be done in the second phase. 

In the DDB development phase, there are another six 
steps: First is establishing subject data bases and files by fol
lowing the semantic data model (SDM),z6,34 or Chen's entity
relationship model (E/R),t4 because the SDM can be turned 
easily into an E/R model which, in turn, can be transformed 
straight into other database models, such as a relational data 
model (RDM) , a network data model (NDM) , or a hier
archical data model (HDM). 

The subject databases are constructed in accordance with 
the business subjects rather than applications, such as cus
tomers, parts, vendors, accounts, etc., rather than order en
try, credit checking, inventory control, accounts payable, etc. 

These business subjects are selected from narrative state
ments. The statements are recorded from the interview of the 
end-users, decision makers, and application programmers, or 
from checking the documents of the firm, and from the per
sonal observation of the production process along with the 



482 National Computer Conference, 1984 

information flows of decision-making process. For detailed 
information on structured system analysis and design, please 
refer to References 24, 34, 54, and 55. Second is delineating 
the end-user sites and their applications-the same as in the 
first and second steps in the subsystem delineation phase. The 
third step is building a diagram of logical end-users, applica
tions, and subject databases. This will clearly show that sub
ject databases are shared by the applications, of which the 
applications are needed by the end-user sites. Fourth, deter
mining the application programs needed for processing each 
application and the subject databases required for each 
application program. Fifth, classifying each application into 
four classes: SS, DS, SD, and DD. The classification is based 
on two factors: processing site and subject database. The SS 
class is determined in accordance with the application pro
cessed at the same location and the data required for pro
cessing is also located at the same location. The DS is decided 
by its being processed at different location, but the data re
quired is located at the same location. The SD is in the reverse 
of DS. The DD is in the reverse of SS (Figure 3). The SS class 
is the most desirable. The DS is common with centralized 
systems. The DD class should be avoided. The transactions 
not in class SS must be handled by use of data replication, by 
data transmission, or both, to make the transaction class SS. 

The sixth step is determining the traffic between end-user 
site and data location, showing whether the traffic is batch or 
on-line, and determining the volume as well as the frequency 
of traffic. The data distribution diagram (Figure 4) clearly 
shows these seven steps. Actually, the data distribution dia
gram could be drawn step-by-step. 

The seventh step is determining the data distribution in 
accordance with the following factors: transaction volume, 
data size, frequency of data transfer, frequency of update, 
compiexity of upoate, complexity of data replication, cost of 
transmission, and cost of data storage. For example, if the 
transaction volume is high, the data size is low, the data are 
updated infrequently, the updates are simple, and the data 
replication structure is simple, then the data should be repli
cated. In Figure 4, it is clearly shown that the products subject 
data base are highly shared on-line by many end-user sites. 
Data transmission is too expensive. It should be replicated. 
Following the above distribution factors, we may proceed one
by-one to the subject database to determine whether it should 
be replicated, partitioned, or centralized. Detailed discussion 
on design of distributed systems is presented in References 22 
and 46. 

The above eight distribution factors do not exhaust the list; 
there are many more other factors that should also be consid
ered, including concurrency control, failure recovery, pro-

Application Processing Subj ect Data Base 

class site location 

SS Same 

DS Different Sat:le 

SD Same 

DD Different Different 

Figure 3-Application classes 

Processing Sites & 
Their Applications 

Application 
Programs 

Subject 
Databases 

ChiC:;~C~~~~: ~!!~~~~tratiOnl-__ (1,3~Documents 
Long-range Planning 
Budgeting 
Forecasting 
Payrol1_----~ 

Cost Accounting 
Purchasing-----..,,.----~..-----..>,;:_-

New York (Factory) 

~~~:~~~~~i~~14}..-------~--i:~~ 
Receiving
Cost Accounting
Accounts Payable_.!.!lOnl::.-.I..l.-~Wll..-------'
Factory Control
Inventory

Branch Office (Hart ford)
Order Entry· __lIll::.L.l.lllLJU4.C!l.!lL.. __ -,l-~

Accounts Receivable --421, 23·}.----...I
Sales Inquiries
Billing
Special Order Processing----{5,6,lO'}..____-------

R&D Laboratory

Accounts

}-----/--_Vendors

Parts

)--~-...,.Customers

Personnel

New Product Development.---~(16 ,20)l--------Engineering
Engineering Design Description
Quality Conrol

Note: In order to reduce complexity, the factory, branch office, and R&D
Laboratory are listed only once. In actuality there can be many of each. In a
larger firm a tabular form can be used instead of maps. The connection links
among the processing sites, application programs, and databases are used for

illustrative purposes only. They do not exhaust the possible connections.

Figure 4--Data description map

cessing requirement, software development. Because a
detailed discussion of these topics is beyond this paper, they
will be briefly treated in the next two sections.

TRANSACfION PROCESSING

A complete distributed system is supposed to be able to pro
cess any transaction at any site and to obtain data from any
location. Unfortunately, so far there is no such complete sys
tem. Rather, a task that operates at several sites must be
planned and programmed to be sensitive to data location and
network communication. A comprehensive discussion of com
munication systems and their protocols is beyond the scope of
this paper. It has been fully treated and documented in many
other sources.8 ,17,22,25,41,44,45,49,50 This section is a discussion of
transaction processing with four transparencies, and how to
develop a distributed system with appropriate transparencies
for decision support. Practical examples will be surveyed in
the next section.

Transaction Concepts

A transaction is a unit of work. It consists of the execution
of a sequence of operations. Traiger proposes a model of
transactions in a distributed system with the highest levels of
transparencies in location, replication, concurrency, and fail
ure. 53 The system may consist of a geographically dispersed
collection of computers, called sites, which are connected by
a communication network. The system supports a set of enti
ties that are represented by one or more segments. These
segments are identified by < name, site> pairs, where name
is the entity name~ and site is the place in which the segment
is located. At any time, a value is associated with each seg
ment. A segment may represent an entity or a part of an

entity. Several segments at a site might represent the same
entity or they might represent the same entity at different
sites.

If an entity is represented by multiple segments, then the
entity is said to be replicated. An entity named E that is
replicated at sites St, ... ,Sn is represented by the segments
< E, S1 > , ... , < E,Sn > . A system without replicas is called
partitioned because each entity is at exactly one site. If all
segments reside at the same site, the system is called
centralized.

A particular application may need one or more transac
tions. Each transaction may associate a meaning with each
entity; e.g., entity E1 represents products, entity E2 represents
accounts, and so on. The collection of entities and their rela
tionships is called subject databases. Their representation de
pends on the database models used.

The Execution of Transactions

A transaction issues requests to manipulate entities. These
requests are translated by the system into one or more com
mands on the entity. Each site provides a group of commands
that manipulate entities or segments at that site. The trans
lator at the site keeps an entity-site directory, which gives the
site addresses of segments. The format for reading a record
(an entity or a segment) by transaction T of segment <E,S>
which has value Val is represented by

[T,READ (E,S), Val]

The READ is one of the commands. If the command is
WRITE, it alters the value, Val, to a new one. If the command
is COMMIT, it means that the transaction is successfully
executed.

Each command operates on one segment only and hence at
one site only. There may be concurrency of execution in the
network, but the commands at a site appear to happen in
some order. All commands on segments are performed at the
site of the segment. Whenever a site participates in a trans
action execution, the site allocates an agent for that trans
action. The agent keeps track of the local traction state and
performs the commands for that transaction at that site.
Whenever a transaction requests nonlocal action, the re
questing site issues requests to the requested site (or the own
ing site) for action. The requested site follows the same
procedure of execution. Thus, the transaction is executed
synchronously, completing one action (request) before issuing
the next, and finally issuing a COMMIT action to each site
visited. Actually, transaction execution control may migrate
from site to site. The control protocol of the network must be
more complicated.

Data Distribution Architecture

Lo proposes a three-level distributed-database design con
sisting of source level, user level, and control level. 42 In the
source level, the design consists of a complete set of subject

Decision Support in a Distributed Environment 483

(global) databases. Data in this level are fully replicated and
synchronized. The user level consists of a subset of the subject
databases that is derived from the source level and becomes
the application databases used by the various control pro
cessing functions.

The control level consists of four components: the trans
action processor, data dictionary, subject database map, and
communication software. The transaction processor coordi
nates the data flow in the system. The data dictionary docu
ments all facts, including update information. The subject
database map is more efficient than the data dictionary in
locating subject databases. The communication software han
dles the actual data communication in the system.

Data are globally synchronized at the control level. The
distributed-database concept discussed here is applicable to
the wide applications of multinational corporations. Each di
vision of the corporation resembles the regional operation
centers. The data at the branch office can be updated locally
and broadcasted to the other sites for updating. The database
system design proposed here allows currently available data
base management systems to be used in the source and user
levels, but it needs to develop the communication protocols
required in the control level.

User Transparencies

Friendly interface with end-users with distributed systems is
highly desirable in the execution of transactions. Location
transparency, replication transparency, concurrency trans
parency, and failure transparency are vital for a successful
distribution system. With these four transparencies, an end
user can concentrate on what he wants and does not have to
worry about the location of data and the question concerning
whether the data are replicated, partitioned, or centralized.
During the execution, he will be assured that the data will be
delivered accurately and that the results of data manipulation
will be consistent. Detailed discussion is presented in Refer
ences 4-7,12,17, 19,23,30,43,46,50, and 53. The mecha
nisms of these transaction transparencies will be briefly exam
ined during our discussion of the prototypes of distributed
systems in the next section.

THE PRESENT STATE OF THE ART

Examining the prototypes of distributed systems is one of the
most efficient methods of understanding the underlying
theory of distributed systems. It will demonstrate the architec
ture, design methodology, distribution application, distrib
uted database, transaction transparency, and especially it will
unveil the state of the art in distributed-system development.

Six distributed systems are selected for analysis: IMSIMSC,
CICS/ISC, Distributed INGRES, R* (R Star), Tandem's En
compass Systems, and SDD-l.Most of these are experimental
systems. Some are installed successfully but their software
protocols in network control and database management sys
tems still need much improvement.

484 National Computer Conference, 1984

IMSIMSC

IMS's Multiple System Coupling (MSC) allows two or more
IMS systems to be connected. End-users or programs can
invoke one program on another. The input message from a
user, or the IMS DC call from a program, will be placed on
the input queue. IMS will then examine a local catalogue to
see whether the program to be executed for this calling pro
gram resites at which remote site. When this is accomplished,
the input message will be transmitted to that site for pro
cessing. The result will be transmitted back to the original site.
The transaction invocation can propagate from one remote
site to another with the result being transmitted back to the
original invoking site. One must remember, however, that the
MSC of IMS does not really support distributed-transaction
processing as in the System R or CICS. Each invoking site
must complete the execution before the next one in the se
quence can start. There is no parallelism among them or
return of control from an invoked program to its invoking
program. The system supports only transaction routing, not
transaction processing. The term "transaction" is used in IMS
to mean an input message rather than the execution of a
program.

The end-user does not have to know where the data or
programs reside, and can invoke a transaction from any site.
Programs, however, can access only local data. They do need
to know the precise location of remote data and this data
distribution knowledge is built into the application logic. In a
general sense, IMS does provide location transparency, but
only in a limited form.

MSC is an IMS-only feature. IMS is also capable of par
ticipating in a different distribution scheme known as ISC
(Inter Systems Communication), which is a set of protocols
used tor communicating with other systems, such as CICS.

Basically, the IMS/MSC provides location transparency for
message handling among multiple sites. It also provides the
transaction notion and failure transparency. The program iso
lation feature of IMS is similar to that of providing concur
rency transparency for transactions within a single site. IMS
has no notion of replicated or partitioned data and does not
provide replication or location transparencies in a strict sense.

CICSIISC

ISC (Inter-System Communication) is a set of protocols by
which any systems conforming to those protocols can commu
nicate with one another. Most of the ISCs are supported by
Customer Information Control Systems (CICS).22,56 CICSI
ISC allows two or more CICS systems to be connected in such
a way that one application program can invoke another at a
different site without ceasing execution itself, or can issue a
DL/1 call against a database at another site.

In the first case, in the CICS sense of the term, this is called
distributed transaction processing, which allows the total
application to be divided into a distributed set of programs.
The end-user will initiate the transaction by invoking the first
of these programs. As it executes, that program--or agent
can invoke agents at another site. The set of all agents is
considered as a unit for recovery. Therefore, it does support

the transaction notion. CICS does not maintain a catalogue
giving the location of each program; instead, an agent A that
wishes to invoke another agent B must specify the site at
which the program for B resides. The data distribution knowl
edge is built into the application logic. Location transparency
is not provided under the first case.

In the second case, it is called data request shipping. It does
support location transparency at the application level. The
programs can issue DLl1 database calls against a remote data
base and CICS/ISC will intercept the call and ship it to the
appropriate remote site, using a catalogue that gives the loca
tion of each database. An agent will be assigned by that re
mote site to perform the necessary processing or to issue calls
on behalf of the original program and to return the result to
the original program. Again, all agents are considered as a
unit for recovery.

In a general sense, CICS does provide the transaction no
tion, location transparency, and failure transparency, but not
concurrency transparency because there is no lock manager.
Responsibility for concurrency control is delegated to the in
dividual subsystems, such as DLl1, TOTAL, System 2,000,
etc. Similarly, CICS has no notion of replicated data.

Distributed INGRES

The distributed version of INGRES does not provide a
notion of transaction, but does provide location and replica
tion transparency. In INGRES, a single QUEL statement is
a transaction. This implies that it does not have either failure
or concurrency transparencies for transactions that are groups
of QUEL statements. 17,20,21,27,51,53

R*

R * (R Star) is a distributed version of System R currently
under development at the IBM San Jose Research Labora
tory. The basic difference between SD D-1 and R * is that
SDD-1 starts by choosing a workable strategy and then tries
to improve on it, whereas the R * attempts to generate a whole
set of workable strategies and then selects the cheapest one.
The SDD-1 is characterized as somewhat "greedy," as Data
puts it,17 in that it always looks for immediate improvements;
it will find a solution that is locally optimal, but not necessarily
the one that is globally optimal. 3,56

Tandem's Encompass Systems

The distributed EMP ACT is an application of DS with
DDB for business organizations. The design of distributed
EMPACT illustrates the techniques used in DDB develop
ment, and the actual implementation of distributed systems.

The elements of the database are divided into two major
categories, global data and local data. Private data do not
enter the picture because they are used only by the individual
site and are not visible to the other sites. Global data are
shared by all sites, such as the list of parts that determine the
TANDEM parts catalog (item master file). The local data

consist of information that is uniquely important to the indi
vidual site using it but accessible by all sites, such as stock
status and work-in-process data. Global data are necessarily
replicated at all sites, whereas local data are single-site resi
dent. There may be, however, a fourth kind of data called
partial replication data, which permit requests by one site for
material from another to be placed and processed. But these
data are only known and resident at both sites, and not
necessarily to the third party. Such data may be classified as
semi-global.

The database consistency solution must satisfy two im
portant objectives: continuous availability and site autonomy.
Since global data are replicated at every site, query access to
the database is guaranteed regardless of the status of other
sites in the networ-k. The problem is to find a way to maintain
all copies in the network updated and consistent at all times.

One way is to broadcast the updates to all the sites in the
network as a single transaction, but keep in mind that global
files can be updated only when all sites are available. It usually
requires a long wait and sacrifices site autonomy.

The solution chosen was to sacrifice the absolute consis
tency of the replicated files in exchange for site autonomy and
short terminal response by using a suspense mechanism to
maintain database consistency. Instead of immediately broad
casting the updates to all sites in the network, the server at th~
site where an update is initiated first updates that copy of the
global data and then posts the update message to a suspense,
or queue, file. A suspense monitor asynchronously polls the
suspense file for transactions and, on an as-soon-as-possible
basis, sends the transaction message to appropriate servers at
remote sites, one at a time, as a separate transaction for
updating.

The requirement of site autonomy is satisfied because up
dates to the global files can be initiated regardless of the status
of other sites in the network. The propagation of the update
to remote sites is performed asychronously by the suspense
monitor.

Because the suspense mechanism introduces a delay in the
propagation of updates to remote sites, the possibility of con
flicting adds and updates among the sites becomes a problem.
To prevent conflicting updates from occurring when two or
more sites update their copies of the same data simultane
ously, ownership (by site) is assigned to global records and the
initiation of updates is restricted to the owning site only.

Another problem introduced by the suspense mechanism is
stale data. The data are out of date because an update to the
file has been posted at a remote site but has not yet been
propagated to the local site. However, because the propaga
tion time for suspense updates is considered less than the time
the user community takes to act on the update, temporary
staleness is not a problem. Besides, a two-step protocol of
check and update is used for updating transactions. Serializa
tion of executing transactions is maintained by a counter at
the site initiating global updates. The suspense file is key
sequenced, and the value obtained by incrementing the coun
ter determines the relative position of the record in the sus
pense file.

This is an example of distributed system with DDB applica
tion. The organization of the database and software closely

Decision Support in a Distributed Environment 485

parallel the structure and organization of the business envi
ronment. Generally, Tandem's Encompass Systems do sup
port location, concurrency, and failure transparencies, but
not replication transparency. Detailed discussion of the Tan
dem's Encompass Systems is presented in References 12 and
48.

SDD-J

SDD-1 (a system for distributed databases by Computer
Corporation of America) is the first working DDB designed
for naval command and control applications. It is also appro
priate for general applications that require an integrated data
base and geographically distributed data. Multiple users need
to access a single pool of information that is geographically
distributed. It is highly desirable to have a system that can
exercise decentralized processing and centralized control. The
D D B poses a new technical challenge because its inherent
requirements are for data communication and parallel pro
cessing. Overall architecture and basic techniques of SDD-1
will be briefly discussed. Detailed discussions are presented in
References 5-7, 16, 25, 46, and 50.

SDD-1 supports a relational model. 15 Users interact with
SDD-1 through a higher level language called DATACOM
PUTER.16 A single data-language command is called a trans
action; this is the basic unit of interaction between SDD-1 and
the users. This concept of transaction is similar to that of
INGRESz7 and System R. 3

,17

An SDD-1 database consists of logical relations, which are
partitioned into subrelations called logical fragments. These
fragments are the units of data distribution. They are defined
by horizontally and vertically subsetting relations. The assign
ment of fragments to sites is made when the database is de
signed. The end-users are unaware of data distribution or
replication. They reference only relations, not fragments. The
SDD-1 will translate from relations to fragments, and then
select the stored fragments.

SDD-1 consists of three virtual machines: Transaction Mod
ules (TMs), Data Modules (DMs) , . and a Reliable Network
(ReINet). All data are stored in DMs under the supervision of
TMs. DMs respond to four types of command: read, move,
manipulate, and write to perform fragmentation, concurrency
control, access planning, and distributed-query processing.
The RelNet connects DMs and TMs and provides four ser
vices: guaranteed delivery, transaction control, site monitor
ing, and network clock.

Concurrency control

When multiple users access a shared database, two conflicts
can occur. First, if Tl is reading a database while Tz is up
dating it, Tl might read inconsistent data. Second, if both Tl
and Tz are updating the database, race conditions can produce
erroneous results. Traditionally, this is solved by database
locking, but this solution might cause long delay and affect site
autonomy.

SDD-1 adopts serializability for concurrency correctness
because serial execution maintains consistency. SDD-1 uses

486 National Computer Conference, 1984

two synchronization mechanisms that are different from lock
ing. The first is called conflict analysis for detecting potential
conflicts. Two transactions are in conflict if the read-set or
write-set of one intersects the write-set of the other. The
read-set of a transaction is defined as the portion of the data
base the transaction reads, and the write-set of a transaction
is the portion of the database the transaction updates. The
database administrator defines transaction classes, which are
named groups of commonly executed transactions. Each class
is defined by its name, a read-set, a write-set, and the TM at
which it runs. A transaction is a member of a class if the
transaction's read-set and write-set are contained in the class's
read-set and write-set, respectively. Conflict analysis is per
formed on these transaction classes, but not on individual
transactions, because transactions from different classes can
conflict only if their classes conflict. The output of the analysis
is a table that indicates for each class which other classes it
conflicts with, and for each such conflict, what protocols are
needed to ensure serializability.

Each TM might only be allowed to supervise transactions
from one class. When a transaction issues a request, the sys
tem determines which TM should be sent in accordance with
the transaction class to which it belongs. The TM synchronizes
all transactions by global timestamping and pipeline rule.

The second synchronization mechanism is the global time
stamp and the pipeline rule. In traditional locking, the execu
tion order is determined by the order in which the transactions
request locks. In SDD-1, the order is determined by a total
ordering of transactions induced by timestamps. Each trans
action submitted to SDD-1 is assigned a globally unique time
stamp by its TM and is sent to the DMs. When a DM receives
a READ command, it defers the command until it has pro
cessed all earlier WRITE commands. The pipeline rule re
quires that each 1 M send its WRITE commands to DMs in
timestamp order.

The access planning minimizes intersite communication.
Two-phase commit guarantees delivery. SDD-1 treats direc
tories of data as ordinary user data, but the data directories
also can be fragmented, distributed, and updated. A copy of
the directory locator is stored at every DM. SDD-1 maintains
directories that contain relation, fragment definitions, frag
ment locations, and usage statistics. TMs will use them for
every transaction manipulation.

SDD-1 is the first working DDB and employs ARPANET's
communication network and able to use the world's X.25
packet-switching networks. The work was supported by the
Defense Advanced Research Project Agency. SDD-1 was de
signed for Naval command and control applications. The tech
niques can be used for DS with DDB in general. The develop
ment team analyzed the problems of directory, conflict, and
efficiency of the system, which was implemented successfully.

In summary, the SDD-1 does provide both location and
replication transparencies, allowing the user to think in terms
of entities (files) rather than segments. It does not support the
notion of transaction; so, strictly speaking, it does not provide
failure or concurrency transparencies. In SDD-1, a single
data-ianguage starement is a rransaction. An application usu
ally requires several data-language statements to perform an
operation.

Summary Notes on Prototypes

We have surveyed some, but by no means all, of the major
DDB prototypes. Most of them surveyed are experimental
systems. Some are implemented successfully, such as SDD-1
and Tandem's Encompass Systems. The IMS/MSC, CICSI
ISC, and distributed version of INGRES also have been used
as the basis for much of the discussion. In Figure 5, five
prototypes of distributed systems with DDB are listed for
comparison in terms of four transparencies and the notion of
transaction. This is used only to show the general character of
each prototype.

SDD-1 is atypical prototype distributed system designed
and implemented in an integrated fashion to provide the user
with a single, consistent view of a complete database. The
system also is designed to support databases that can be phys
ically distributed with arbitrary redundancy over a network of
potential worldwide distribution. The control is completely
distributed. The system will continue to function even if any
one of the sites fails. New sites can be added freely. This will
increase the survivability of the system. Furthermore, these
distribution features can be applied to business applications.
It will naturally lead the EDP, MIS, and especially the DSS
into a new era of distributed systems.

CONCLUSIONS

The fundamentals of DSS have been discussed; basic char
acteristics ofDSS, current design methodologies, and capabil
ity requirements of DSS have been covered briefly. Distrib
uted system development and distributed database design
have been discussed intensively. A step-by-step method has
been used for i1lustra6ng the desjgn pro~ess of DS and DDB.
A three-level distribution architecture of DS has been shown.
The notion of transaction and the four transaction trans
parencies are important concepts in DS and have been briefly
treated.

Typical prototypes of DS with DDB have been closely scru
tinized to peep into the mysteries of DS. Six types of current
DS have been used for investigation. Some are installed suc
cessfully and are commercially available, such as SDD-1, but

I I I
Prototypes i Notice of

i
i of DS I Location Replication Concurrency j Failure Transaction
I

I I I
I SDD-l * * I i

1 I

I

I

Tandem's I

* * *
I

Encompass

J

I * * I I
INGRES

IMS/MSC

C!CS/!SC

Figure 5-Survey of prototypes

I

most of them are experimental in nature. This prototype in
vestigation may provide valuable information for DS de
signers in the selection process; when the situation arises, they
may use this information as a guideline to DS development or
for choosing the appropriate DS.

Currently, there are no perfect distribution systems on the
market; the major bottlenecks are in the software develop
ment of communication systems and network database man
agement protocols. Technology is progressing at a rapid pace,
but it will gradually ease off in the near future. We can predict
that the next decade will be the era of distributed systems,
especially since the use of mini-microcomputers has become
widespread. Distributed systems with distributed databases
will become the major carrier for data management in the
decade to come.

REFERENCES

1. Alter, S. "A Taxonomy of Decision Support Systems." Sloan Management
Review, 19 (1977).

2. Alter, Steven L. Decision Support Systems: Current Practice and Continu
ing Changes. Reading, Mass.: Addison-Wesley, 1980.

3. Astrahan, M. M. et al. "System R: Relational Approach to Database Man
agement." ACM TODS, 1 (1976).

4. Bernstein, P. A. and Goodman, N. "Multivision Concurrency Control
Theory and Algorithms," ACM Transactions on Database Systems, Vol. 8,
No.4, December 1983.

5. Bernstein, P.A., and D. W. Shipman. "The Correctness of Concurrency
Control Mechanisms in a System for Distributed Database (SDD-l)."
ACM TODS, 5 (1980).

6. Bernstein, P. A, D. W. Shipman, and J. B. Rothnie, Jr. "Concurrency
Control in a System for Distributed Databases (SDD-I)." ACM TODS, 5
(1980).

7. Bernstein, P. A., N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie,
Jr. "Query Processing in a System for Distributed Databases (SDD-l)."
ACM TODS, 6 (1981).

8. Bernstein, P. A, and N. Goodman. "Concurrency Control in Distributed
Database Systems," ACM Compo Surv., 13 (1981).

9. Bonczek, Robert H. et al. "Aiding Decision Makers with a Generalized
Data Base Management System: An Application to Inventory Manage
ment," Decision Sciences, 9 (1978).

10. Bonczek, R. H., C. W. Holsapple, and A. B. Whinston. Foundation of
Decision Support Systems. New York; Academic Press, 1981.

11. Bonczek, R. H., C. W. Holsapple, and A B. Whinston. "The Evolving
Roles of Models in Decision Support Systems," Decision Sciences, 11
(1980).

12. Boor, A "Transaction Monitoring in Encompass-Reliable Distributed
Transaction Processing." In Proceedings of the 7th International Conference
on Very Large Databases, New York: IEEE, 1981.

13. Ceri, S. and Pelagatti, G. "Correctness of Query Execution Strategies in
Distributed Databases," ACM Transaction on Database Systems, Vol. 8,
No.4, December 1983.

14. Chen, P. "The Entity-Relationship Model: Toward a Unified View of
Data," ACM Transactions on Database Systems, 1 (1976).

15. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, 13 (1970).

16. Computer Corporation of America, "Datacomputer Version 5 User Man
ual," Cambridge, Mass., July 1978.

17. Date, C. J. An Introduction to Database Systems, Vol. II, Reading, Mass.:
Addison-Wesley, 1983.

18. Donovan, J. J. "Database ApprOach to Management Decision Support."
ACM Transactions on Database Systems, 1 (1976).

19. Eager, D. L. and Sevick, K. C. "Achieving Robustness in Distributed
Database Systems," ACM Transactions on Database Systems, Vol. 8, No.
3, September 1983.

20. Epstein, R., and M. R. Stonebraker, "Distributed Query Processing in a
Relational Data Base System." In Proceedings of the 1978 ACM SIGMOD
International Conference on Management of Data, June 1978.

21. Stonebraker, M. R., "Analysis of Distributed Data Base Processing Strate-

Decision Support in a Distributed Environment 487

gies." In Proceedings of the 6th International Conference on Very Large
Data Bases, October 1980.

22. Fitzgerald, J. Business Data Communications, John Wiley & Sons, New
Jersey, 1984.

23. Garcia-Molina, H. "Using Semantic Knowledge for Transaction Processing
in a Distributed Database System," ACM Transactions on Database Sys
tems, Vol. 8, No.2, June 1983.

24. Gane, C., and T. Sarson. Structured System Analysis: Tools and Tech
niques. John Wiley and Sons, 1973.

25. Hammer, M., and D. Shipman. "Reliability Mechanisms for SDD-l: A
System for Distributed Databases." ACM TODS, 5 (1980).

26. Hammer, M., and D. McLeod. "Database Description with SDM: A Se
mantic Database Model." ACM Transactions on Database Systems, 6
(1981).

27. Held, G., M. Stonebraker, and E. Wong. "INGRES: A Relational Data
Base System." AFlPS, Proceedings of the National Computer Conference
(Vol 44), 1975.

28. IBM Corporation, CICSNS System/Application Design Guide, IBM Form
No. SC33-0068.

29. Kamilo, F. Digital Communications, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

30. Katz, R. H. and Wong, E. "Resolving Conflicts in Global Storage Through
Replication," ACM Transactions on Database Systems, Vol. 8, No.1,
March i983.

31. Keen, Peter G. W., and M. S.S. Mortton. Decision Support Systems: An
Organizational Perspective. Reading, Mass.: Addison-Wesley, 1978.

32. Keen, P. G. W. et al. "Building a Decision Support System: The Mythical
Man-Month Revisited." In J. F. Bennett (ed.), Building Decision Support
Systems. Addison-Wesley Series on Decision Support. Reading, Mass.:
Addison-Wesley, 1980.

33. Keen, P. G. W. "Decision Support Systems: Translating Analytic Tech
niques in Useful Tools." Sloan Management Review, 21 (1980).

34. Kroenke, D. "Database Processing" (2nd ed.). SRA, 1983.
35. Lee, Daniel T. "Unified Database for Decision Support." International

Journal of Policy Analysis and Information Systems, 6 (1982).
36. Lee, D. T. "The Contingent Model of Decision Support Systems." In Pro

ceedings of Wesern AIDS, 1982.
37. Lee, D. T. "The Unified Approach for Designing Decision Support Sys

tems." DSS-82 Transactions, 1982.
38. Lee, D. T. "Decision Support Systems and Distributed Data Processing,"

Proceedings of TlMSIORSA, 1983.
39. Lee, D. T. "Database-Oriented Decision Support Systems." AFlPS, Pro

ceedings of the National Computer Conference (Vol. 52), 1983.
40. Lee, D. T. "Data Base Design for Decision Support Systems," In Manage

ment and Office Information Systems Vol. 1. Plenum, 1983.
41. Lindsay, B. G., P. G. Selinger. "Site Autonomy Issues in R*: A Distrib

uted Database Management System." IBM Research Report RJ2927, Sep
tember 1980.

42. Lo, S. C., S. L. Kota, and M. H. Aronson. "A Distributed Database De
sign for a Communication Network Control System." AFlPS, Proceedings
of the National Computer Conference (Vol. 52), 1983.

43. Lynch, N. A. "Multilevel Atomicity-A New Correctness for Database
Concurrency Control," ACM Transactions on Database Systems, Vol. 8,
No.4, December 1983.

44. Martin, J. Communication Satellite Systems. Englewood Cliffs, N.J.:
Prentice-Hall, 1978.

45. Martin, J. Computer Networks and Distributed Processing. Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

46. Martin, J. Design and Strategy for Distributed Data Processing. Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

47. Morton, S. M. S. "Management Decision Systems: Computer Based Sup
port for Decision Making." Division of Research, Harvard University,
Cambridge, Mass., 1971.

48. Norman, A., and M. Anderton. "EMPACT: A Distributed Database
Application." AFIPS, Proceedings of the National Computer Conference
(Vol. 52), 1983.

49. Puzman, J. and Porizek, R. Communication Control in Computer Net
works, John Wiley & Sons, New York, 1980.

50. Rothnie Jr., J. B., Bernstein, P. A., Fox, S., Goodman, N., Hammer, M.,
Landers, T. A, Reeve, C., Shipman, D. W., and Wong, E. "Introduction
to a System for Distributed Databases (SDD-I)," ACM TODS, Vol. 5, No.
1, March 1980.

488 National Computer Conference, 1984

51. Stonebraker, M. R., and E. J. Neuhold. "A Distributed Data Base Version
of INGRES," In Proceedings of the Second Berkeley Conference on Distrib
uted Data Management and Computer Networks. Berkeley, Calif.:
Lawrence Berkeley Laboratory, May 1977.

52. Sprague, R. H., Jr., and R. D. Carlson, Building Effective Decision Support
Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1982.

53. Traiger, I. L., J. Gray, C. A. Galtieri, and B. G. Lindsay. "Transactions

and Consistency in Distributed Database Systems." ACM rODS, 7 (1982).
54. Tsichntzis, D. c., and F. H. Lochovsky. Data Model. Englewood Cliffs,

N.J.: Prentice-Hall, 1982.
55. Vetter, M., and R. N. Maddison. Database Design Methodology. Engle

wood Cliffs, N.J.: Prentice-Hall, 1981.
56. Williams, R. et al. "R *: An Overview of the Architecture," IBM Research

Report RJ 3225, December 1981.

Issues in the design of expert systems for management

by ROBERT W. BLANNING
Vanderbilt University
Nashville, Tennessee

ABSTRACT

The development during the past twenty years of knowledge-based systems for
recognized specialists and professionals has given rise to suggestions that systems of
this type might be useful to managers as well. This paper examines (1) what man
agers do, (2) how they differ from the other professionals for whom expert systems
have been designed, and (3) the implication of these findings for the design and
implementation of expert systems for management.

489

INTRODUCTION

The development during the past twenty years of expert sys
tems for recognized specialists and professionals (such as phy
sicians diagnosing and treating infectious diseases, geologists
prospecting for mineral deposits, and so forth1,2) has given
rise to the suggestion that systems of this type might be useful
to managers as well.3-5 The purpose of expert systems for
managers (ESMs) would be similar to that of existing expert
systems: They would contain certain judgmental assumptions
and rules that a knowledgeable and experienced manager uses
in arriving at a recommendation or decision and would ana
lyze this information in a way that would be useful to a prac
ticing manager. For example, ESMs might interrogate a man
ager about changes in market demand or inventory levels and
offer advice about possible causes and appropriate responses,
or they might be given information about proposed financial
or operating decisions (e.g., capital investments or production
schedules) and make recommendations.

There are three types of managerial tasks for which ESMs
have already been developed and for which future ESMs
might be designed. They are:

1. Resource allocation. ESMs have been developed for
portfolio management6 and capital budgeting,7 and they
might also be developed for R&D budgeting, the prepa
ration of government budgets, and the like.

2. Problem diagnosis. There are ESMs for analyzing fi
nancial statements8 and auditing accounts receivable. 9

Other possible tasks include the analysis of periodic con
trol reports, such as budget variance reports (reports
that compare budgeted and actual revenues and ex
penses), to identify potential problems.

3. Scheduling and assignment. ESMs have been developed
for office scheduling1o

,1l and personnel assignment. 12

Other scheduling and assignment problems that require
more complex analyses than are found in operations
research models might be analyzed with an ESM.

Although there are many ESMs that might be useful, it is
not clear that the variety of judgmental tasks performed by
managers can be made explicit and rendered into programma
ble form. Fortunately, there is a substantial body of docu
mented research on managerial and organizational behavior,
and it should be possible for the designers of ESMs to draw on
this research and possibly contribute to it. In order to under
stand more fully the potential viability of ESMs as a field of
research and practice, we will examine the following three
issues:

Design of Expert Systems for Management 491

1. What is a manager? What do managers do? How do they
spend their time and what functions do they perform?

2. Can a manager reasonably be considered an expert? If
so, how do managers differ from the other professionals
for whom expert systems have been developed? What
are the implications for ESMs?

3. What are the most important research and implementa
tion issues, such as knowledge acquisition and tech
nology transfer, that are likely to arise in the develop
ment of ESMs? How might these issues be addressed?

WHAT DO MANAGERS DO?

We attempt in this section to answer two questions: (1) What
is a manager-that is, who is to be included in this category
and who is to be excluded? (2) What do the included people
do?

What Is a Manager?

The term "manager" 'denotes a person in an organization
who is responsible for the well-being of the organization or of
some part of it. This includes senior managers, such as presi
dents of companies or directors of government agencies; mid
dle managers, such as branch managers in consumer products
companies or project managers in government; and first-line
supervisors, such as shop foreman or police sergeants. We
also include staff analysts, such as financial analysts and cost
accountants, who may not supervise people but who perform
analyses and prepare recommendations for decisions to be
made by line managers or by management committees.

We exclude members of established professions and schol
arly traditions, except when they assume responsibility for the
performance of other such people. Thus, we include vice
presidents for research and development and directors of en
gineering design, but exclude research scientists and design
engineers. Finally, we note that the people we have described
make long-term commitments (including capital investment)
or allocate scarce resources (such as money, people, labora
tory equipment, or warehouse space), which affects the per
formance of their organization; or they provide staff support
to those who make such commitments or allocations.

What Do Managers Do?

There are two general conclusions that can be drawn about
what managers do and a third about the environment in which
they do it. These conclusions are based on general observa
tions by managers and academics,13-15 "diary studies" in

492 National Computer Conference, 1984

which managers record how they spend their time,16-18 and
detailed direct observations not unlike the "time and motion"
studies that have been performed with industrial factory work
ers. 19

,20 Although the authors of these studies are not in
complete agreement (e.g., with regard to the amount of dis
cretion managers have in their jobs), a reasonably consistent
picture of managerial behavior emerges from these and simi
lar studies.

The first conclusion is that managers perform certain iden
tifiable tasks, primarily decision making (making, or at least
approving or influencing, commitments and allocations of the
type described above), implementing and controlling (check
ing to see that the decisions are being implemented, making
or approving changes as necessary, and reacting to oppor
tunities and crises), and organizing and communicating
(supervising and motivating subordinates and acquiring and
disseminating information-both inside and outside their
organizations or suborganizations). Higher-level managers
devote more time to planning and less to supervising subordi
nates than do lower-level managers, but higher-level manag
ers spend a substantial amount of their time dealing with
people other than subordinates.

The second conclusion is that managers seldom accomplish
these tasks directly, but rather work through a network of
people, including subordinates, superiors, other managers in
their organizations, and a variety of outsiders. They seldom
appear to give direct orders, but rather exchange information
and attempt to influence what others do. As a result, few
managers spend much time alone, and most have an aversion
to written communication (they don't like to read their mail,
much less formal reports or computer printouts). They work
long hours, most of them in the company of others or on the
telephone.

The third conclusion concerns the work environment of
managers: They work for long hours at a rapid pace on frag
mented and often unpredictable activities, dealing with a vari
ety of unstructured situations for brief periods of time. These
situations seldom involve abstract long-term problems, but
rather immediate problems, many of which, even in the case
of high-level managers, appear to contribute only marginally
to the long-term well-being of their organizations. This type of
behavior, which is sometimes described as "putting out fires"
or "crisis management," has given rise to speculation con
cerning: (1) the degree to which the allocation of a manager's
time is controllable by the manager or is determined by events
beyond his control, (2) whether managers focus on immediate
problems because they enjoy it or because they feel that it is
their proper responsibility, or both, (3) whether it is possible
to infer what managers do by observing this type of behavior
and whether diaries maintained by a manager are more or less
revealing than direct observation by an independent re
searcher, and (4) the extent to which any type of computer
based system can be of assistance to people who work in such
an environment.

THE MANAGER AS EXPERT

Managers clearly are experts in the sense that they have an
acquired ability to perform certain tasks requiring specialized

knowledge and judgment. Knowledge and judgment are
needed to schedule production, price products, evaluate in
vestment proposals, respond to cost overruns, and so on. The
question is whether enough of their knowledge and judgment
can be programmed to provide useful support for decision
making. The research that has been done during the past forty
years on managerial and organizational behavior has un
covered four characteristics of managerial decision making
that are not prominent in the existing literature on expert
systems, and these characteristics may affect the design of
ESMs. These four characteristics and a fifth one, concerning
the application of computer science and management science
to decision making, are examined below.

Open-ended and Ill-defined Problems

This means that in many cases the parameters of the prob
lem (the environment of the decision and the available alter
natives) are not completely known or that it is not possible to
state in advance the critieria for an acceptable solution (e.g.,
a "good" allocation of a research and development budget to
projects). On the other hand, limited empirical research sug
gests that to some extent decision processes of this type can be
made explicit. For example, a detailed study of 25 manage
ment decisions-including investment decisions (acquiring a
subsidiary, building a plant, purchasing equipment), person
nel decisions (changing a retirement policy, firing an employ
ee), and new product and service development decisions (a
new deodorant, a new brand of beer, a new treatment in a
hospital)-showed that these decisions can be flow-charted,
and that there are many similarities among the flow-charts. 21

Bou~di?d Ratio~alUy a~d (hi? Allomtion of Atti?ntion

Because of the open-ended nature of managerial problems
and the hectic pace of managerial activities, managers find
that they cannot always make economically rational decisions
but must allocate their time and attention to solving problems
as best they can.22

,23 This is true of all professionals, but the
research on managerial decision making and organization be
havior places a major emphasis on cognitive limits to eco
nomically rational behavior and the attendant need for man
agers to recognize that they are often forced to satisfice (that
is, to make satisfactory decisions that meet a psychologically
determined level of aspiration), rather than to optimize (to
make decisions that best accomplish their objectives).

This suggests that an important purpose of an ESM may be
to reduce the time needed to perform certain tasks and possi
bly to help managers allocate their time more effectively.
Limited experience with the use of computer-based decision
models by high-level managers suggests that the reduction in
time needed to evaluate alternatives24 and to coordinate inter
divisional efforts25 is considered a major benefit of these mod
els. This may be true of ESMs as well.

\7aried St}'les and Individual Differences

A substantial part of the research on the use of information
systems by managers suggests that an important consideration

in the design of these systems is the psychological character
istics of the people who use them. Two such characteristics
have been identified: The first concerns imperfections in the
way in which people process information to arrive at subjec
tive judgments. 26 For example, people often combine multiple
cues in a far less sophisticated way than is warranted by the
complexity of the problems they face. In addition, people
frequently do a poor job of making subjective probability
estimates, often egregiously violating the laws of probability
theory.

The second characteristic concerns individual personality
differences. 27 One such difference is in cognitive style, which
describes the way in which people acquire and process infor
mation. Laboratory studies suggest that cognitive style may
affect the usefulness of computer-based decision aids. 28 Since
different managers have quite different cognitive styles,29 one
might conclude that such decision aids should be adapted to
the cognitive style-or other personality characteristics, such
as risk aversion or ambiguity tolerance-of their users, al-

, though arguments have been made against this suggestion. 30

Teamwork and Networks

Managers interact closely with other managers and profes
sionals both in formal groups, such as committees and task
forces, and informally through networks of people in various
organizations who exchange information on an ad-hoc basis.
Because of this, some of the literature on information systems
suggests that these systems may be more productive if they are
used by groups of people both to provide information to them
and to facilitate communication between them. 31 The purpose
of the communication is to encourage more active participa
tion by all group members (e.g., by anonymous electronic
voting) and thus, to prevent a few high-status or aggressive
members from dominating the group.

Limited real world experience suggests that this purpose is
realized by properly designed multiuser systems/2 and labora
tory experiments are being conducted to examine this phe
nomenon in more detail. 33 In both cases users have access to
computer-based decision models with which they can evaluate
scenarios (e.g., proposed corporate debt structures). They
can also communicate their results and suggestions to others
through the system. It is possible that some ESMs will be
similarly designed.

The Availability of Computer-based Decision Aids

The work environment of managers--especially staff ana
lysts, such as financial analysts and market research analysts
has changed substantially during the past thirty years. These
managers have available to them a variety of computer-based
decision aids that allow them to retrieve and analyze data
(e.g., to perform statistical analyses of sales data) and to
execute decision models (such as models of production or
distrubution systems or of the financial structures of a firm) in
order to perform "what if' analyses of proposed decisions and
of possible changes in the environment (e.g., the economic
environment) of their organizations. These decision aids have

Design of Expert Systems for Management 493

been given several names, the most recent of which is decision
support systems (DSSs). 34-39

There are four areas of DSS research relevant to the design
of ESMs. The first is the development of planning lan
guages.40 These are programming languages based on existing
scientific languages, usually FORTRAN, augmented to in
clude user interface procedures, the principal ones being sen
sitivity analysis commands and report writers. The second is
the research being done on model management systems,
which insulate their users from the physical details of model
bank organization and processing, just as database manage
ment systems insulate their users from the physical details of
database organization and processing.41-44 The third is the
application of artificial intelligence (AI) techniques to the
integration of models when more than one model.is used to
respond to a specific user query. A description of the model
bank is viewed as a set of premises from which a conclusion
(the responses to the query) is to be deduced, and the tech
niques suggested for this purpose are AND/OR graphs,45 res
olution programming,46 semantic nets,47 connection graphs,48
and frames. 49 The fourth is the development of natural lan
guage query processors for model management systems,50,51
similar to those that have been developed for database man
agement systems. 52

The relevance of this research to ESM design stems from
the fact that many ESMs probably will not be stand-alone
systems but will be integrated with conventional databases
and with causal models of an organization and its environ
ment. In addition, AI languages and inference engines may
have to be modified, for example, with sensitivity analysis
procedures and report writers, so that they assume some of
the character of a DSS.53 The issues in this area have not yet
been resolved, but it is clear that the designers of ESMs will
have to take into account not only the research conducted
during the past few decades on managerial and organizational
behavior, but also the research, past and current, on DSSs.

ISSUES IN ESM DESIGN AND IMPLEMENTATION

In the previous section we examined five characteristics that
may affect the design and implementation of ESMs: (1) many
management problems are open-ended, (2) management time
and attention are limited resources, (3) different managers
have different problem-solving styles, (4) managers often
work in groups, and (5) most managers now have access to a
variety of computer-based decision aids. We now briefly ex
amine seven issues in ESM design and implementation from
these perspectives.

1. Knowledge acquisition. Acquiring expert knowledge
from managers may be quite difficult, because many
management problems are open-ended and managers
employ a variety of strategies in solving them. A reason
able approach is to begin with partially structured but
interesting problems (such as budget variance analyses)
and move to less structured problems (e.g., those related
to corporate strategy) as experience accumulates.

2. Technology transfer between management domains. It is

494 National Computer Conference, 1984

likely that ESMs performing the three functions identi
fied in the introduction (resource allocation, problem
diagnosis, and scheduling and assignment) will differ
substantially, as will those implemented in different
types of organizations (e.g., heavy industry, consumer
products, service, defense and nondefense government)
and those used at different levels of an organization
(strategic, tactical, operational). It is likely that transfer
of ESM technology will first take place within these
groups and then will be expanded where similarities
exist.

3. Use of existing AI software. Designers of ESMs will be
able to draw on a large body of experience gained by the
designers of other types of expert systems. Tangible
forms of this experience are the programming languages
(both list-processing and logic-programming), inference
engines, and knowledge acquisition software that have
been developed during the past thirty years. However, as
suggested in the previous section, some of this software
may have to be enhanced to incorporate certain DSS
features, including sensitivity analysis commands and
report writers.

4. Possible codification of management knowledge. The
successful implementation of ESMs may contribute not
only to the practice of management and to the ongoing
AI subdiscipline of expert systems, but also to the sub
stantial literature on managerial and organizational
behavior. It is important for ESM designers to recognize
that business schools and other academic depart
ments concerned with managerial issues (e.g., some
sociology and political science departments) contain
people who have studied in detail human behavior in
organizations, and ESM designers have an unusual
opportunity to draw on and contribute to this body of
research and experience.

5. Explanations offered by ESMs. Managers, like other
professionals, are reluctant to implement policies whose
rationales they do not understand. Therefore, ESMs,
like many other expert systems, will have to justify-on
demand-their findings, recommendations, and re
quests for input.

There are two issues here: First, the types of expla
nations that managers consider acceptable may depend
on certain personality characteristics or problem-solving
styles. Second, most DSSs do not offer explanations of
their outputs. Since DSSs may interact with or be a part
of an ESM, an important issue in the design of ESMs
may be the degree to which they should "tap into" DSSs
in order to retrieve the outcomes of intermediate calcu
lations to prepare their explanations.

6. Validation of ESMs. The principal validation method for
ESMs will probably be the one used for other types of
expert systems. This is the "modified Turing test," in
which managers are shown two solutions to a problem
one of them the result of human judgement and the
other the result of an ESM (without knowing which is
which)--and are asked to compare them. There are two
problems with this approach. The first is that the open-

endedness of many management problems may make it
difficult to describe them to an independent evaluator.
Many case studies of complex management problems
have been written for business school pedagogy, and
even experienced managers disagree on the proper inter
pretation of and solutions to these cases. Second, ESMs
used by teams of managers will have to be evaluated by
teams of managers and hence may be more difficult to
evaluate. On the other hand, the fact that an ESM might
be useful if it reduces only the time needed to perform
existing tasks with no reduction in quality may provide a
good starting point for ESM evaluation.

7. Metaknowledge. Metaknowledge is understanding the
type of information available and how it should be used.
As stated in the previous section, an important type of
metaknowledge is that of available DSSs, and certain AI
techniques might be useful in deciding how to integrate
them in order to perform a specific task. Viewing an
ESM as an integrated system of modules (some of them
DSSs) may also facilitate ESM development; the devel
opment could proceed incrementally, with new modules
being developed and integrated as queries are formed
for which their existence would be useful.

The acceptance of ESMs by managers will depend not only
on how these and other currently unanticipated issues are
resolved, but also on how well the solutions are communi
cated to the designers and users of ESMs. Limited empirical
research on the managerial acceptance of DSS suggests that
managers decide to initiate the development of a DSS or to
use a DSS previously developed not by performing a cost
benefit analysis of the type appropriate to the evaluation of
commercial data processing systems, but by observing (or
hearing about) the successful implementation of a DSS in a
similar organization and then attempting to determine how
useful such a system might be in their own organizations. 54

This will probably be the case with ESMs. Therefore, it is
important that the development of individual ESMs be com
municated as widely as possible so as to foster a climate of
acceptability for ESMs among the people who will design and
use them.

CONCLUSION

The past forty years have witnessed an explosion in the sci
entific investigation of management problems. Economists,
mathematicians, behavioral scientists, management scientists,
and computer scientists have been offered an unprecedented
opportunity to identify and solve interesting problems, and
this has resulted in the widespread implementation of data
processing systems, management information systems, deci
sion models, and decision support systems, along with several
new academic disciplines. The potential application of AI to
management suggests that we are on the threshold of yet
another revolution, and the development of ESMs will be an
important part of this revolution.

. ACKNOWLEDGMENT

This work was supported by the Dean's Fund for Faculty
Research of the Owen Graduate School of Management at
Vanderbilt University.

REFERENCES

1. Barr, A., and E. A. Feigenbaum (eds.). The Handbook of Artificial Intel
ligence. Los Altos, Calif.: William Kaufman, 1982 (Applications Oriented
AI Research, Vol. 2, pp. 77-294).

2. Hayes-Roth, F., D. A. Waterman, and D. B. Lenat (eds.). Building Expert
Systems. Reading, Mass.: Addison-Wesley, 1983.

3. Fox, M. S. "The Intelligent Management System: An Overview." In H. G.
Sol (ed.), Processes and Tools for Decision Support. Amsterdam: North
Holland, 1983, pp. 125-130.

4. Gorry, G. A., and R. B. Krumland. "Artificial Intelligence in Decision
Support Systems." In J. L. Barnett (ed.), Building Decision Support Sys
tems. Reading, Mass.: Addison-Wesley, 1983, pp. 205-219.

5. Reitman, W. "Applying Artificial Intelligence to Decision Support: Where
Do Good Alternatives Come From?" In M. J. Ginsberg, W. Reitman, and
E. A. Stohr (eds.), Decision Support Systems. Amsterdam: North-Holland,
1982, pp. 155-174.

6. Clarkson, G. P. E. "A Model of the Trust Investment Process." In E. A.
Feigenbaum and H. Feldman (eds.), Computers and Thought. New York:
McGraw-Hill, 1963, pp. 347-371.

7. Bohanek, M., I. Bratko, and V. Rajkovic. "An Expert System for Decision
Making." In H. G. Sol (ed.), Processes and Tools for Decision Support.
Amsterdam: North-Holland, 1983, pp. 235-248.

8. Bouwman, M. J. "Human Diagnostic Reasoning by Computer: An
Illustration from Financial Analysis." Management Science, 29 (1983),
pp.653-674.

9. Dungan, C. W. "A Model of Audit Judgement in the Form of an Expert
System." Ph.D. Dissertation, University of Illinois, 1983.

10. Fikes, R. E. "Odyssey: A Knowledge-Based Assistant." Artificial Intel
ligence, 16 (1981), pp. 331-361.

11. Goldstein, I. P., and B. Roberts. "Using Frames in Scheduling." In P. H.
Whinston and R. H. Brown (eds.), Artificial Intelligence: An MIT Perspec
tive. Cambridge, Mass.: The MIT Press, 1982, pp. 253-284.

12. Barber, G. "Supporting Organizational Problem Solving with a Work
Station." ACM Transactions on Office Information Systems, 1 (1983)
pp.45-67.

13. Barnard, c.1. The Functions of the Executive. Cambridge, Mass.: Harvard
University Press, 1938.

14. Drucker, P. The Effective Executive. New York: Harper & Row, 1966.
15. Simon, H. A. Administrative Behavior (2nd ed.). New York: Macmillan,

1957.
16. Carlson, S. Executive Behavior. Stockholm: c.A. Stromberg Aktieborg,

1951.
17. Mahoney, T. A., T. H. Jerdee, and S. J. Carroll. "The Job(s) of Manage

ment." Industrial Relations, 4 (1965), pp. 97-110.
18. Stewart, R. Managers and Their Jobs. London: Pan, 1967.
19. Kotter, J. P. "What Effective General Managers Really Do." Harvard

Business Review, 60 (1982), pp. 156-167.
20. Mintzberg, H. The Nature of Managerial Work. New York: Harper & Row,

1973.
21. Mintzberg, H. D. Raisinghani, and A. Theoret. "The Structure of 'Un

structured' Decision Processes." Administrative Science Quarterly, 21
(1970), pp. 246-275.

22. Simon, H. A. "Theories of Bounded Rationality." In C. B. McGuire and
R. Radner (eds.), Decision and Organization. Amsterdam: North-Holland,
1972, pp. 161-176.

23. Taylor, R. N. "Psychological Determination of Bounded Rationality: Im
plications for Decision-Making Strategies." Decision Sciences 6 (1975),
pp. 409-429.

24. Naylor, T. H., and H. Schauland. "A Survey of Users of Corporate Plan
ning Models." Management Science, 22 (1976), pp. 927-937.

25. Scott Morton, M. S. Management Decision Systems: Computer-Based Sup
port for Organizational Decision Making. Boston: Harvard University,
Graduate School of Business Administration, Division of Research, 1971.

Design of Expert Systems for Management 495

26. Bensabat, I., and R. N. Taylor. "Behavioral Aspects of Information Pro
cessing for the Design of Management Information Systems." IEEE Trans
actions on Systems, Man, and Cybernetics, SMC-12 (1982), pp. 439-450.

27. Zmud, R. W. "Individual Differences and MIS Success: A Review of the
Empirical Literature." Management Science, 25 (1979), pp. 966-979.

28. Benbasat, I., and A. S. Dexter. "Individual Differences in the Use of
Decision Support Aids." Journal of Accounting Research, 20 (1982),
pp. 1-11.

29. McKenney, J. L., and P. G. W. Keen. "How Managers' Minds Work."
Harvard Business Review, 52 (1974), pp. 77-90.

30. Huber, G. P. "Cognitive Style as a Basis for MIS and DSS Designs: Much
Ado About Nothing?" Management Science, 29 (1983), pp. 567-579.

31. Huber, G. P. "Group Decision Support Systems as Aids in the Use of
Structured Group Management Techniques." DSS-82 Transactions, 1982,
pp.96-108.

32. Wagner, G. R. "DSS: Dealing with Executive Assumptions in the Office of
the Future." DSS-81 Transactions, 1981, pp. 113-121.

33. Gray, P., N. W. Berry, J. S. Aronofsky, O. Helmer, G. R. Kane, and T.
E. Perkins. "The SMU Decision Room Project." DSS-81 Transactions,
1981, pp. 122-129.

34. Keen, P. G. W., and M. Scott Morton. Decision Support Systems: An
Organizational Perspective. Reading, Mass.: Addison-Wesley, 1978.

35. Blanning, R. W. "The Functions of a Decision Support System." Informa
tion and Management, 2 (1979), pp. 87-93.

36. Keen, P. G., and G. R. Wagner. "DSS; An Executive Mind-Support Sys
tem." Datamation, 25 (1979), pp. 117-122.

37. Alter, S. Decision Support Systems: Current Practice and Continuing Chal
lenges. Reading, Mass.: Addison-Wesley, 1980.

38. Blanning, R. W. "Model Structure and User Interface in Decision Support
Systems." DSS-81 Transactions, 1981, pp. 1-7.

39. Sprague, R. H., Jr., and E. D. Carlson. Building Effective Decision Support
Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1982.

40. Naylor, T. H., and M. Mann. Computer Based Planning Systems. Oxford:
Planning Executives Institute, 1982.

41. Will, H. J. "Model Ma."1agement Systems." In E. Grochla and N. Szyperski
(eds.), Information Systems and Organization Structure. Berlin: Walter de
Gruyter, 1975, pp. 468-482.

42. Blanning, R. W. "A Relational Framework for Model Management in
Decision Support Systems." DSS-82 Transactions, 1982, pp. 16-28.

43. Blanning, R. W. "Issues in the Decision of Relational Model Management
Systems." AFIPS, Proceedings of the National Computer Conference, (Vol.
52), 1983, pp. 395-401.

44. Konsynski, B. R. "Model Management in Decision Support Systems." In
C. W. Holsapple and A. B. Whinston (eds.), Data Base Management:
Theory and Applications. Dordrecht: D. Reidel, 1983, pp. 131-154.

45. Bonczek, R. A., C. W. Holsapple, and A. B. Whinston. Foundations of
Decision Support Systems. New York: Academic Press, 1981.

46. Schell, G. P. "Knowledge Representation and Knowledge Manipulation in
Decision Support Systems." Ph.D. Thesis, Purdue University, 1983.

47. Elam, J. J., J. C. Henderson, and L. W. Miller. "Model Management
Systems: An Approach to Decision Support in Complex Organizations."
Proceedings of the First International Conference on Information Systems,
1980,pp.98-110. .

48. Chen, M. c., J. E. Fedorowicz, and L. J. Henschen. "Deductive Processes
in Databases and Decision Support Systems." Proceedings of the North
Central ACM 82 Conference, 1982, pp. 81-100.

49. Dolk, D. R., and B. R. Konsynski. "Knowledge Representation for Model
Management Systems." Available from Naval Postgraduate School, Mon-
terey, Calif., 1982. "

50. Heidorn, G. E. "Simulation Programming through Natural Language
Dialogue." In M. A. Geisler (ed.), Logistics. Amsterdam: North-Holland,
1975, pp. 71-83.

51. Blanning, R. W. "Natural Language Query Processing for Model Manage
ment." To appear in Proceedings of the Fourth Annual Conference on
Information Systems, 1983.

52. Tennant, H. Natural Language Processing. New York: Petrocelli, 1981.
53. Blanning, R. W. "Management Applications of Logic Programming."

Available from author, Owen Graduate School of Management, Vanderbilt
University, Nashville, Tenn., 1983.

54. Blanning, R. W. "How Managers Decide to Use Planning Models." Long
Range Planning, 13 (1980), pp. 32-35.

An investigation of task team structure and its impact on
productivity

by KATHY BRITIAIN WHITE
University of North Carolina
Greensboro, North Carolina

ABSTRACT

Productivity in the information age is widely perceived to be a major problem facing
many organizations. One strategy to enhance organizational productivity has been
the use of task teams. Assignment to task teams usually reflects individual technical
expertise, individual availability, and/or positional politics rather than a focus on the
effectiveness of the team members in the specific organizational situation. This
paper investigates characteristics of team members and then examines the effect on
team effectiveness of these characteristics and of the requirements of the organiza
tional activity.

Two organizational situations were investigated. The first was a true unstructured
organizational situation. A field study was used to investigate two project teams in
this situation. The second organizational situation was structured and administered
in a controlled setting; members of a programming class constituted the participants
in the second situation. The Myers-Briggs Type Indicator was used to determine the
perceptual characteristics of team members and thus determine the heterogeneity
or the homogeneity of the teams.

The findings indicate that the situational structure determines the overall effec
tiveness of the team composition. They also offer evidence that heterogeneity in
group composition is best for solving complex problems, whereas homogeneity is
best for solving structured, less complex problems. It also suggests that one team
might not be appropriate for all stages of a project. As the nature of the tasks
involved in the project change, it could be that the optimum team composition
would also change. Much further research must be aimed at strategically assembling
the most productive team for any number of organizational situations.

497

INTRODUCTION

Productivity in the information age is widely perceived to be
a major problem facing many organizations. In fact, strategies
to enhance human productivity have been the focus of many
research studies.2,5,6,9,24,28,29 An idea resulting from current
studies aimed at increasing organizational productivity and
dealing with complex, multidimensional information systems
has been that of task teams. These teams are used in such
diverse organizational activities as systems development and
implementation, strategic planning, and office automation.
Such teams are formed and interact for the primary purpose
of vitalizing decision making, innovative thinking, and pro
ductivity.4,14,20,30,31,34,35-37 Assignment to task teams usually
reflects individual technical expertise, individual availability,
and/or positional politics rather than a focus on the effec
tiveness of the team members in the specific organizational
situation.

Evidence is mounting that an optimum team composition in
one situation, regardless of technical skills, is not necessarily
the optimum team composition in another. 1,8,10,36 In fact, a
major effect on the productivity and effectiveness of the team
seems to be situational. 1,36 Little work has been done to deter
mine the situational components that determine team effec
tiveness. This paper investigates characteristics of team mem
bers and then examines (1) the effects of these characteristics
and (2) the requirements of the organizational activity on
team effectiveness.

CHARACTERISTICS OF TEAM MEMBERS

Behavioral research theories have added credibility to the
process of explaining individual perceptual differences. One
of the primary contributors to such theories has been the Swiss
pyschologist Carl Jung.13 The merit of Jung's theory is that it
accounts for many human differences which other theoretical
frameworks leave to random variation; yet the theory has the
merit of unusual simplicity. Briefly, Jung's theory is based on
the assumption that much apparently random variation in
human behavior is actually quite orderly and consistent, di
rected at the differences with which individuals prefer to
gather and evaluate information in their environment. Jung
combines these differences into four basic types that are sum
marized as follows:

1. The Intuition-Thinking (NT) type is the one who ob
serves and inputs data from a holistic or system type of
framework. He/she sees things perhaps not as they are
but as they can be-as possibilities. The Output or eval
uation of these possibilities is judged in accordance with

Task Team Structure: Impact on Productivity 499

some formal rules, and the NT type tends to be imper
sonal in judgment.

2. The Intuition-Feeling (NF) type will observe input data
in the same way as the NT; but the information will be
judged in a personal or value-laden manner, such as
good or bad, pleasant or unpleasant. This personality
does not follow formal rules of logic.

3. The Sensation-Thinking (ST) type is one who sees infor
mation as concrete facts. He/she will then tum the spe
cific facts into a formal solution according to some well
defined set of rules. The ST type is desirous of working
on specific, clear problems and will probably be charac
terized by a low tolerance for ambiguity.

4. The Sensation-Feeling (SF) type also prefers to observe
concrete facts apart from their totality, but is less formal
in his evaluation of the data. The SF type does not apply
the facts to a formal solution or model but instead uses
a subjective, value-laden assessment.12 Jung's typology
emphasizes only each type's major strengths and
weaknesses without considering anyone better than
another. 17

Mason and Mitroff21 relate the Jungian scales specifically to
information systems and discuss the heterogeneity of each
type:

Each of these types has a different concept of information and
this is important for MIS design. If one is a pure thinking type,
information will be entirely symbolic, e.g., some abstract system,
model, or string of symbols devoid of almost any theoretical
content. Thus, Sensation types speak of "raw data," "hard
facts," and "numbers." For Intuition types, information will be
in the form of sketches of future possibilities. Information for
feeling types emphasizes a strong moral component. What is
information for one type is definitely not information for
another. [po 476]

TEAM COMPOSITION

Each individual team member has a perceptual style that in
fluences the information perceived and the behavior exhibited
in problem solving and task completion. Research has shown
that the more similar the perceptual styles of individuals, the
more harmonious the group relationships.8 Since much of any
team's early activities are devoted to establishing group re
lationships, it would indicate that the more homogeneous the
individual group members, the less time this early effort
would require. Research has also indicated that homogeneous
groups are characterized by cohesiveness and freedom from
conflict.3 Although these studies indicate that harmonious
relationships are a byproduct of homogeneous teams, other

500 National Computer Conference, 1984

researchers have important reservations about the central
theme of homogeneity. Mitroff and Kilmann22 discuss the
impact of team homogeneity on task solutions:

If the extreme homogeneity of each group is a blessing in that it
reinforces the natural strengths and similar tendencies of each
individual in the group, then the extreme homogeneity is also a
danger in that it magnifies the weaknesses (i.e. the one
sidedness) of perceptions of the individuals. [po 19]

Myers25 also discusses the composition of teams and indicates
that homogeneity can deter productivity. She states,

If the group is composed of very different types, agreement will
be harder to reach than if the group was homogeneous but the
decision will be more broadly based and thoroughly considered,
and thus in less danger of turning out badly for some unperceived
reason. [po 17]

Such findings indicate that homogeneous teams are charac
terized by freedom from conflict but that heterogeneous
teams may be more productive. Another body of research
examines the nature of the organizational problems faced by
such teams.

ORGANIZATIONAL PROBLEMS

An organization faces a tremendous variety of problems,
which vary considerably in degree of complexity. A frame
work identifying the differing complexities is that used by
decision theorists, in which they refer to a problem as struc
tured or unstructured. 23 Briefly, a structured problem is one
that can be well defined in the sense that the key variables,
such as the various states of nature. possible actions. possible
outcomes, and utility of outcomes are known. The unstruc
tured, or wicked, problem is one that cannot be clearly de
fined. 16

.
33 That is, one or more of the variables discussed

either is unknown or cannot be determined with any degree of
confidence. So decision making in organizations must deal
with problems that run the gamut from the simple to the
complex and beyond that to the ambiguous. 17 Specifically, it
is expected that for problems characterized by a high degree
of structure, the information will be processed by the team in
a logical sequence. This notion is supported by a number of
research studies. 7

,11,27 For tasks characterized by a low degree
of structure, it is exceedingly difficult for the group to evaluate
information. 17 In these tasks the team structure must be able
to manage not only this complexity but also large volumes of
information. Very little research has been directed at deter
mining how these variances in problem requirements affect
team composition. This study investigates the effect of team
composition (heterogeneous or homogeneous) on the struc
tured and unstructured organizational problem.

RESEARCH

Setting and Method

Two organizational situations were investigated. The first
was an unstructured organizational situation. A field study

TABLE I-Perceptual styles of Project Team 1 and Project Team 2

Perceptual Project Project
Styles Team 1a Team 2a

ST 7 (70)b 4 (40)
NT 3 (30) 2 (20)
SF 0(0) 2 (20)
NF 0(0) 2 (20)

a 10 individuals included on Project Teams 1 and 2.
bThe numbers in parentheses indicate the percentage of the project team
with the perceptual style.

was used to investigate two project teams in a true unstruc
tured organizational situation. Kilmann says that, assuming
that a researcher can obtain access to such organizations, field
studies can monitor the dynamics of the design process, and
external validity will be moderately high. He also writes that
such studies can suggest characteristics and outcomes that are
otherwise unavailable. 17 The second organizational situation
was structured and administered in a controlled setting. Mem
bers of a programming class constituted the participants in the
second situation.

The Myers-Briggs Type Indicator (MBTI) was used to de
termine the perceptual characteristics of team members and
thus determine heterogeneity or homogeneity. The Myers
Briggs Type Indicator has been used repeatedly to measure
lung's typology and has established reliability. 26 Although the
MBTI is not the only instrument available to determine
perceptual differences, it was chosen in this study because
of the number of business studies utilizing this instru
ment. 14,15,19,21-23,35-37

Unstructured Situation

The two project teams that were observed had ten team
members each and were charged with systems development
activities. Members of the two project teams were already
assigned at the time of the investigation, and thus team com
position was not manipulated by this researcher. The team
compositions, as identified by the MBTI, are shown in Table
1. The results of the interviews with key users, team members,
and MIS management are summarized as follows:

Project Team 1

A. Failed system
B. A technical orientation

C. Inadequate
documentation

D. Rated as unsuccessful

Project Team 2

A. Successful system
B. Technical and people

orientation
C. Comprehensive

documentation
D. Rated as highly successful

An in-depth account of the interview information has pre
viously been written. 37 Project Team 1, with a void of Feeler
types (SF or NF), was classified as homogeneous. Project
Team 2, with all four MBTI types represented, was classified
as heterogeneous. It would seem that in such an unstructured
situation as the systems development activities assigned these .

two project teams, it is exceedingly difficult to have all rele
vant information evaluated. When the group is homogeneous
in its information-evaluation orientation (as in the case of
Project Team 1), performance suffers. Project Team 1 exemp
lified a narrower perceptual viewpoint, as indicated by team
members interviewed; this is attributed to their one-sided per
ceptual nature. Project Team 2 exemplified a broad organiza
tional perspective, from interviews of team members; this is
attributed to their diverse perceptual orientations. These
findings also support research conducted by Kaiser and
Bostrom that a project team with all four MBTI types repre
sented was successful while a project team void of feelers was
unsuccessful. 14

Although many factors cannot be controlled in a field study
such as the one conducted, evidence is offered that indicates
that heterogeneous teams are more successful than homoge
neous teams in unstructured organizational situations. Specif
ically, the conclusion is that the heterogeneity achieved by
combining all four perceptual types on a project team is opti
mum in an unstructured organization situation. This conclu
sion is pictorially illustrated in Figure 1.

Structured Situation

To further clarify the situational variables that affect team
performance, both heterogeneous and homogeneous teams
were examined in a structured situation. Members of a pro
gramming class were assigned to either homogeneous or het
erogeneous team combinations. A timed programming task
that met the definition of a structured problem was assigned.
The problem was composed of materials that had been pre
viously taught, and all students had successfully solved similar
problems. The time factor made it essential that problem
definition be determined quickly to enable a team to complete
the task. Solutions were considered on two dimensions: com
pleteness and correctness. Three heterogeneous and three
homogeneous teams were structured as shown in Table II. No
attention was given to individual personalities; rather, groups
were assembled solely on the basis of MBTI types. All
MBTI types were included in heterogeneous teams. The
information-gathering orientation (Sensing) was the same for

ST (Sensing/Thinking) (Sensing/Feeling) SF

NT (Intuitive/Thinking) (Intuitive/Feeling)NF

Figure 1-Unstructured decision environment

Task Team Structure: Impact on Productivity 501

TABLE II-Perceptual styles of heterogeneous and homogeneous
teams

Heterogeneous
Perceptual Teams

Team 1: NT, NF, ST, SF
Team 2: NT, NT, SF, ST
Team 3: ST, ST, NT, NF

Homogeneous
Perceptual Teams

Team 4: ST, SF, ST, SF
Team 5: ST, ST, ST, SF
Team 6: ST, ST, SF, SF

..
homogeneous teams. The results of the task by team are as
follows.

Heterogeneous Teams

Team 1. Did not complete

Team 2: Did not complete

Team 3: Did not complete

Homogeneous Teams

Team 4: Completed,
successfully

Team 5: Completed,
successfully

Team 6: Completed,
unsuccessfully

The surprising results were that the heterogeneous teams
were unable to complete the task within the given time, al
though individual team members had previously completed
similar tasks in the given time successfully. The group evalu
ations completed by each team member upon completion of
the experiment were particularly enlightening. Individuals on
heterogeneous teams said that a consensus between team
members about the problem definition was not reached in
time to complete the assigned task. The group evaluations
completed for the homogeneous groups indicated that con
sensus was reached quickly and work finished quickly. In
regard to group composition, the homogeneous groups had
the information-gathering orientation (Sensing) in common;
the heterogeneous teams did not. In this structured task, the
heterogeneity of information-gathering styles seemed to hin
der group process and undermine the overall effectiveness of
the team. Further evidence of these findings is offered in
unpublished research conducted by Aamodt and Kim
brough.38 They found that heterogeneous teams were not as

ST (Sensing/Thinking) (Sensing/Feeling) SF
-' ,- ,

NT (Intuitive/Thinking) (Intuitive/Feeling)NF

Figure 2-Structured decision environment

502 National Computer Conference, 1984

successful as homogeneous teams in completing a structured
debugging task. In such structured situations, it could be that
homogeneous groups are able to work together to complete
the task quickly. Heterogeneous groups, however, may have
to deal with the tension created by their diverse group com
position and be unable to overcome the tension in time to
complete the task.

The finding that heterogeneous groups were unable to com
plete the task was serendipitous; therefore many controls
were not used that wou4ll have made these findings more
conclusive. However, this study, together with the study by
Aamodt and Kimbrough, lends evidence that in an organiza
tional situation where the information is finite and limited,
homogeneous team compositions may be the most produc
tive. This conclusion is pictorially illustrated in Figure 2.

DISCUSSION

This study offers preliminary evidence that the situational
structure determines the overall effectiveness of the team
composition. It also offers evidence that heterogeneity of
group composition is best for solving complex problems,
whereas homogeneity is best for solving structured, less com
plex problems. This research points to the need for critical
delineation of the nature of the problem to be solved when
assembling teams. It also suggests that one team might not be
appropriate for all stages of a project. As the nature of the
tasks involved in the project changes, it could be that the
optimum team composition would also change. The optimum
team composition in the initial stages of problem definition
could be counterproductive in stages of the project that were
action-oriented and required quick concurrence among team
members to proceed. It aiso suggests the need to define these
stages of the project and possibly form subunits of the project
team to complete various aspects of the project. It offers an
explanation of the failure of many task teams. A team that
worked well and productively in one stage of a project can
dissolve into conflict, dissent, and inertia at another stage
simply because the team composition is not compatible with
the current situational variables.

Although these findings are preliminary, they do present
evidence that optimum team compositions vary and depend
on situational variables. Only a narrow scope of situational
variables were investigated in this study. Much further re
search must be aimed at strategically assembling the right
team for any number of organizational situations. Produc
tivity in the information age may well hinge on task team
experimentation as a method of tapping one of the crucial
resources available to the organization-the human resource.

REFERENCES

1. Aamodt, M.G. and Kimbrough, W.W. "Effect of Group Heterogeneity on
Quality of Task Solutions," Psychological Reports, 1982, Vol. 50,
pp. 171-174.

2. Bariff, M.L. and Lusk, E.J. "Cognitive and Personality Tests for the De
sign of Management Information Systems," Management Science, Volume
23, Number 8, April 1977, pp. 820-829.

3. Bass, B.M. and Ryterband, E.C. Organizational Psychology, Boston:
Allyn and Bacon, 1979.

4. Beckhard, L. "Optimizing Team-Building Efforts," Journal of Contem
porary Business, Summer 1972, pp. 23-32.

5. Biggs, S.F. "Group Participation in MIS Project Team? Let's Look at the
Contingencies First!" MIS Quarterly, March 1978, pp. 19-26.

6. Carroll, A.B. "Behavioral Aspects of Developing Computer-Based Infor
mation Systems, Business Horizons, Volume 25, Number 1, January
February 1982, pp. 42-52:

7. Collins, B.E. and Guetztew, H.S. 1964--A Social Psychology of Group
Processes for Decision Making, New York: Wiley, 1964.

8. Heider, F. "Attitudes and Cognitive Organization" Journal of Psychology,
1946, Vol. 21, pp. 107-112.

9. Hellriegel, D. and Slocum, J.W., Jr. "Preferred Organizational Designs
and Problem-Solving Styles: Interesting Companions," Human Systems
Management, Volume 2, Number 2, September 1980, pp. 24-35.

10. Hoffman, RL. and Maier, N.F. "Quality and Acceptance of Problem
Solutions by Members of Homogeneous and Heterogeneous Groups" in
Vinacke, W.E., Wilson, W. and Mereidty, G., Dimensions of Social Psy
chology, 1961, pp. 425-431.

11. Julian, J.W. and Pevey, E.A. "Cooperation Contrasted with Intra-Group
and Inter-Group Competition," Sociometry, 1967, Vol. 30, pp. 79-90.

12. Jung, C.G. The Structure and Dynamics of the Psyche, New York: Pan
theon, 1960.

13. Jung, C.D. Psychological Types, New York: Pantheon Books, 1923.
14. Kaiser, K.M. and Bostrom, R.P. "Personality Characteristics of MIS

Project Teams: An Empirical Study and Action-Research Design," MIS
Quarterly, Volume 6, Number 4, December 1982, pp. 43-60.

15. Keen, P.G.W. and Bronseman, G. "Cognitive Style Research: A Perspec
tive for Integration," Center for Information Systems Research, Massachu
setts Institute of Technology, Report CISR-82, 1981.

16. Keen, P.G. and Morton, M. Decision Support Systems: An Organizational
Perspective, Reading, MA: Addison-Wesley, 1978.

17. Kilmann, R.H. Social Systems Design: Normative Theory and the Maps
Design Technology, New York: North-Holland, 1977, pp. 36.

18. Kilmann, RH., Pendy, L.R. and Slevin, D.P. The Management of Or
ganization Design: Volume I and II, New York: Elseview North-Holland,
1976.

19. Kroenke, D.M. "Currency Forum Corner," Interface, Volume 2, Number
6, Summer 1980, p.3.

20. Locander, W.B., Napier, B.A. and Seameii, R.W. "A Team Approach to
Managing the Development of a Decision Support System," MIS Quar
terly, Volume 3, Number 1, March 1970, p. 53.

21. Mason, RO. and Mitroff, 1.1. "A Program for Research on
Management Information Systems," Management Science, Volume 19,
1973, pp. 475-487.

22. Mitroff, 1.1. and Kilmann, RH. "Qualitative versus Quantitative Analysis
for Management Science: Different Forms for Different Psychological
Types," Intefaces, Volume 6, Number 2, February 1976, pp. 17-27.

23. Mitroff, I.I. and Sagasti, F. "Existemology as General Systems Theory: An
Approach to the Design of Complex Decision-Making Experiments," Phi
losophy of Social Science, Volume 3, 1973, pp. 117-134.

24. Moosbruker, J.M. and Loflin, R.D. "Organizational Development Meth
ods in the Management of the Information Systems Function," MIS Quar
terly, Volume 6, Number 3, September 1982, pp. 15-20.

25. Myers, LB. Introduction to Type, Palo Alto, California: Consulting Psycho
logical Press, 1976.

26. Myers, LB. The Myer-Briggs Type Indicator, Palo Alto, California: Con
sulting Psychological Press, 1962.

27. Raven, G.H. and Eachus, H.T. "Cooperation and Competition in Means
Interdependent Trials," Journal of Abnormal and Social Psyhology, Vol
ume 67, 1963, pp. 307-316.

28. Robey, D. and Taggart, W. "Measuring Manager's Minds: The Assessment
of Style in Human Information Processing," Academy of Management Re
view, Volume 6, Number 3, July 1981, pp. 375-383.

29. Robey, D. and Taggart, W. "Human Information Processing in Informa
tion and Decision Support Systems," MIS Quarterly, Volume 6, Number 2,
June 1982, p. 61.

30. Rogers, L.A. "Guideiines for Project Management Teams," industrial En
gineering, Volume 6, Number 12, 1973, pp. 12-19.

31. Seamell, R. and Baugh, E. "Team Approach to Systems Management,"
Journal of Systems Management, April 1975, pp. 32-35.

32. Shaw, M.E. Group Dynamics: The Pscyhology of Small Group Behavior,
New York: McGraw-Hill, 1976.

33. Simon, H.A. The New Science of Management Decision: Models of Man,
New York: Wiley, 1960, pp. 241-246.

34. Slaughter, G. "TAP: Team Approach to Productivity," Computerworld,
Volume 16, Number 28, July 1982, p. 47.

35. White, K.B. "MIS Project Teams: A Training Program," Data Manage
ment, publication forthcoming, January, 1984.

36. White, K.B. "Decision Support Teams: A Model for Structuring the Hu
man Component," Working Paper #DE 830801, School of Business and

Task Team Structure: Impact on Productivity 503

Economics, University of North Carolina, Greensboro, North Carolina,
1983.

37. White, K.B. "MIS Project Teams: A Theoretical Model Based on Empir
ical Research," Proceedings of IFIP WG 8.2 Working Conference on Be
yond Productivity: Information Systems Development for Organizational
Effectiveness, North-Holland Publishing Company, 1983.

38. Aamodt, M.G., and W.W. Kimbrough. "Effect of Group Heterogeneity
on Group Ability to Debug Computer Programs." Journal of Data Edu
cation, 24 (Winter 1983-84), pp. 29-30.

Incentive compensation for information systems departments

by HOWARD A. RUBIN
Hunter College, City University of New York
New York, New York

and

D. L. VON KLEECK
Equitable Life Assurance Society*
New York, New York

ABSTRACT

.. ~

The search for productivity improvement has reached new levels in the inforIIl:ation
systems world. Organizations are stockpiling tools such as application generators,
program analyzers, test data generators, and workbenches in the frenzied quest for
productivity. Many organizations that have taken this tool acquisition route are
beginning to realize that tools alone are not enough. What is needed is an approach
that motivates the use of productivity technology. In this vein, incentive compen
sation strategies can be applied to the information systems world in a way that
focuses on productivity improvement and couples it with quality considerations.
From a management viewpoint, this forces more precise definition of productivity
metrics and quality quantification.

* Currently at Management and Computer Services, Great Valley Corporate Center, Valley Forge, Pennsylvania 19482.

505

Incentive Compensation for Information Systems Departments 507

The Senior Officer had declared war!

The arsenal was filled with some of the most fearsome
weapons known to mankind, and they were now trained on
the enemy position.

The molecular program degenerator was aimed at the
Source Library.

The program analyzer algorithm was ready to decode the
innermost secrets of the Maintenance Conspiracy.

Automated workbenches and regenerators were poised to
rebuild the ruins.

A negotiations committee fluent in a new user-friendly lan
guage was prepared to discuss peace with Userland.

The Senior Officer called for the attack.

Nothing happened!

The troops had vanished!

An investigation revealed that some of the troops had been
lured away by a tribe of headhunters, while others were simply
out to lunch.

This story, though an exaggeration, typifies what many in
formation systems organizations are experiencing today. An
attack is being mounted on traditional development and main
tenance techniques to increase productivity. The chosen
weapons are tools that accelerate the powers of the individual
to perform critical tasks. The organization arsenals are filling
up fast, but the projected benefits are far from being realized.

Why?

THE PRODUCTIVITY IMPROVEMENT TRAP

A common thread of reasoning pervades most attempts to
improve information systems department productivity. The
typical attack plan is formulated as follows:

The first step is to know the enemy. In the realm of informa
tion systems, this translates into understanding the nature of
systems and the resources necessary to carry them from con
ception to implementation to maintenance to obsolescence.
From such an analysis, areas of greatest potential productivity
improvements can be identified.

Life cycle modeling is the cornerstone of this process and
results in a view of a system's life that looks like the following:

Life Cycle Phase Percentage of Effort

Development

Plans & requirements 2.0
Design 6.0
Detail design 9.0
Code & unit test 8.0
Testing 15.0

Maintenance

Fixes
Adaptation
Enhancements
Redocumentation
Efficiency recoding

13.0
14.0
27.0
4.0
2.0

Sorting this chart by percentage of effort lays the ground
work for developing attack priorities. The areas with the
greatest potential payoff become evident.

Rank Area Percent

1. Enhancement 27
2. Testing 15
3. Adaptation 14
4. Fixes 13
5. Detail design 9
6. Code 8
7. Conceptual design 6
8. Redocumentation 4
9. Plans and requirements 2

10. Efficiency recoding 2

Assuming that all areas can reap the same potential produc
tivity improvement by use of the appropriate tools, this view
suggests working on selected maintenance aspects and testing
first.

(As a brief disgression, it must be noted that there are
numerous linkages between the various areas. A testing
improvement-use of a test data generator, for example
should decrease the repair or Fixes effort required in mainte
nance. Likewise, uniform coding practices via a program gen
erator might decrease the maintenance burden by minimizing
the effort required to understand an existing system. In fact,
productivity improvement in one area can be amplified across
others. This implies that the long-range focus should be on the
development side of the process.)

The next step in planning the attack involves the assessment
of organizational strengths and weaknesses to adjust the pre
viously determined priorities. Coupled with the knowledge of
which areas might yield the highest benefits, a plan can be
formulated.

At this point, a scouting team is usually sent in to survey the
terrain, select and test weapons, and make a final choice.

508 National Computer Conference, 1984

The final step is to train the troops and mount the attack
this is the TRAP.

First, tools alone are not enough! The information systems
staff must be motivated to learn to use them effectively and
efficently.

Second, the greatest area of potential productivity im
provement in the information systems environment lies with
the staff itself and not with the technology they use. Barry
Boehm has characterized the cost drivers associated with sys
tems projects. Whereas tools (or the lack of them) may drive
costs up by a factor of 250%, staff capability may account for
cost swings up to 400% ..

The message is clear: Information systems organizations
must create an environment that contains the proper tools
AND the motivation to apply them. In addition, a mechanism
to monitor the success of the whole operation must be in
place.

Many organizations believe that they are in the process of
creating this total environment. They have been lulled into a
false sense of security because tools acquisition is relatively
easy when compared with implementing organizational and
work habit change. In many instances motivational aspects
have not been ignored but are being addressed by productivity
measures that are fed back to the staff. Again, this is not
enough. Measurement by itself does not supply the motiva
tion for productivity improvement. (By analogy, an over
weight person may weigh himself/herself every day, but not
take any action).

In this vein, there have been a number of significant cor
porate examples in which information system development
productivity measures have been implemented and later aban
doned. The prime reason is that they were being applied in a
vacuum-they imposed an additional administrative burden,
and they had no perceived value directed toward the staff
being monitored by the measurements.

Herein lies the productivity trap. Tools and measurement
do not constitute the total productive environment. The way
out of the trap is to add and integrate a single missing piece:
incentive.

Additionally, the view of information systems organizations
as solely development/maintenance shops is not robust
enough. With the advent of the information center concept,
personal computing, office automation, and data-base admin
istration, a broader view of productivity improvement is need
ed.

AN INCENTIVE COMPENSATION (IC) PLAN FOR
INFORMATION SYSTEMS ORGANIZATIONS

A traditional industrial method for staff motivation (behavior
modification) is incentive compensation with the underlying
philosophy of rewarding on-the-job performance. Let's see
how this can be applied in the system's world.

The philosophy of the program is that meeting customer
based performance standards while increasing productivity
will be rewarded. In addition, the program itself must meet
certain design criteria: auditability, clear cause and effect,
minimal overhead, and meaningfulness.

Assume for the moment that a method can be devised to
measure the productivity of the many activities of an informa
tion systems organization. If the goal of the IC program is
improved performance, it seems that staff bonuses should be
based on productivity increases. Unfortunately, such a reward
scheme is not broad enough to satisfy both the needs of the
information systems organization and the business require
ment of its customers.

Productivity measurement allows management to answer
only the single, but important, question "Are we improving?"
with regard to some unit measure of department output. It
does not directly address quality and potentially can be gamed
so that productivity improves while overall quality goes down.
It therefore seems to make more sense to make the per
formance of the department the focus of our improvement
efforts. By performance we mean customer accountability in
cost, time, and quality.

To be of true business value the IC program must address
the customer's concerns: Are my products being delivered on
time, on cost, and at an acceptable quality level? Obviously
productivity measures alone do not address any of these crit
ical success factors. Therefore, the IC program must reward
behavior that yields improvement on all fronts. It is on this
basis that we must confront the key IC issues: funding, struc
ture, and metrics.

FUNDING

Where does the money come from?
One alternative is to have the staff contribute a percentage

of their salaries to an escrow pool and have it matched by the
organization. The bonus, if achieved, allows them to retrieve
their contribution plus addItIonal funds trom the poo1. ThIS
approach probably would not readily gain acceptance in to
day's inflationary world.

A second more palatable alternative is possible. Funding
can be based on savings to the organization based on produc
tivity improvements. To size the pool, the organization has to
answer the question "How much more money would this
year's work cost us at last year's level of productivity?" (ad
justed for inflation of course). This funding scheme has the
advantage that the pool materializes only if productivity has
improved and real dollars have been saved. This pool is then
allocated to both the staff and the organization itself-they
both share in the benefits.

In summary: Funding from direct dollar savings generated
by productivity improvement savings will be shared between
the company and the department.

STRUCTURE

As pointed out before, productivity alone is not enough to
satisfy all the criteria for rating the information systems
organization. The basic structural components of the program
are performance (which includes accountability and quality)
and productivity. They are defined as follows (see Figures 1
and 2):

Incentive Compensation for Information Systems Departments 509

Figure 1

Performance is oriented toward getting deliverables to the
customer on time, on cost, and with acceptable quality.

Productivity is oriented toward lowering the unit cost of
producing products and services while maintaining quality at
an acceptable level.

While the primary focus is on performance level, productiv
ity improvement is required as well. The following equation,
used for departmentwide calculation, summarizes the nature
of the program:

Bonus percent = performance rating x productivity improvement
(external view) (internal view)

The performance rating can range between 0 and 1. This
implies that performance is only rewarded if the customer
criteria are satisfied too.

As noted, this equation is applied on a departmentwide
basis. Rewards are not based on what any individual does, but
the behavior of the group. Later we will see exactly how this
works.

An interesting aspect of this equation is the one to one
nature of bonus percent and productivity improvement. Ba
sically, what this means is that a one percent productivity
improvement can be rewarded by up to a one percent salary
bonus. Operationally it may be wise to impose a ceiling (such

Jl .Cl.J....I. 2..J"t.

..u..n....LL
ca.o.!

Figure 2

as 10%). This approach gives us a clear cause and effect
relationship--one of the design criteria.

We will now take a top-down view of the program. Each of
the structural components will first be examined in concept
and then in detail.

PRODUCTIVITY

The basic productivity improvement computation is sum
marized below:

last year'2
P d

.. . umt cost 1
ro UCtIVlty Improvement = thO ,-IS. year s

umt cost
*in today's dollars

Notice the focus of the productivity measure is "unit cost."
what we are comparing is the cost of production (be it a system
or a service) this year and last. If after adjusting for inflation,
our unit cost has gone down, we are improving and in fact
have saved the organization money. Productivity in this model
is viewed based on the previous year-we always want to be
improving.

PERFORMANCE

Performance is based on three components: cost, time, and
quality, scored by percentage of projects falling within + or -
10% of standards.

For all three we apply the 90/10 rule: 90% of products and
services should be delivered within 10% of the established
estimate (for time and cost) or acceptance standard (quality).
The equation computes the percentage of products and ser
vices so delivered.

The cost, time, and quality results are matched against a set
of success criteria, discussed later, to arrive at the score, which
can range from 0 to 1. The meaning of this is simple. To reap
the full productivity bonus, these criteria must be met too.

The Computation Algorithm:
STEP 1. Compute performance.
STEP 2. Compute productivity increase.
STEP 3. Compute total organization savings.
STEP 4. Compute bonus percentage.
STEP 5. Multiply bonus percentage by salary base for total

bonus.
STEP 6. Subtract total bonus from saving to get organiza

tion share.
STEP 7. Distribute bonus to each employee.

THE METRICS

The measures needed to support the IC program constitute a
set of management metrics for information systems organiza
tions. If properly chosen, they should be meaningful, easy to
obtain, auditable, and evolutionary.

To understand the application of the metrics it is first neces
sary to look at an operational model of a contemporary infor
mation systems organization.

510 National Computer Conference, 1984

For purposes of this analysis we will characterize four basic
functional groups of products and/or services applied:

A staff (STF) function, which is the management and ad
ministration of the organization as a whole. It does not
deliver products or services to the customer community.
An advanced technology support (ATS) function, which
supplies personal computing, office automtion, information
center, and. database products and consulting support.
A business application products (BAPS) function, which
houses the traditional development and maintenance shop.
A system development services (SDS) organization, which
supplies interactive computing services, staffing, and train
ing to the information systems areas.

Although these groups may not fit your organization ex
actly, in total they represent a wide range of potential prod
ucts and services (with the exception of the raw-data
processing plant itself).

Metrics in our two structural areas are applied to the organi
zation as shown in Figure 3.

The interpretation of this figure is as follows:

1. Performance measures will be uniform for the areas of
ATS, BAPS, and SDS. The STF group has been pur
posely omitted because it does not supply external prod
ucts or services.

2. Productivity measurement will be uniqu'e for each func
tional area. As we go deeper into the model, we will find
that this is applied on a lower level function basis. The
uniqueness of the measures for each function is neces
sary to ensure that the criteria of clear cause and effect
and meaningfulness are met.

3. The STF budget will be allocated across the department
for computational purposes.

ATS PRODUCTIVITY

The following table describes the general types of measures
used within ATS to measure the productivity of personal com
puting (PC), office automation (OA), data base (DB), and
information center specialists (ICS).

< --- u.. -i'!·. i oF" c::. m ---->

UHIQU~ FOR EAel AREA

Figure 3

PC' measurement
. penetration/$

OA: penetration/$
DB: service/$
ICS: service/$
The productivity measures are of two major types: penetra

tion/$ and service/$. They clearly need explanation as both
concepts are new.

First consider penetration. Suppose for the moment that
the corporate mission of services such as PC and OA is to
penetrate the organization with the appropriate technologies.
Peak pnetration will be reached when all staff performing all
applicable business functions will be using the technology for
all applicable work. The job of a PC or OA group then is to
fill up this penetration space in the most effective and efficient
way. The space and the penetration can be visualized as shown
in Figure 4.

A simplistic measure for the penetration productivity of a
PC might be

PC delivered x # packages delivered x # users
Real cost

This measure supplies the unit cost or volume delivered per
dollar.

It does seem that this can be "gamed" by perhaps just
installing a lot of underused PCs. However, such manipu
lation can be counteracted in two ways. First, the equation can
be changed so that the numerator is the sum of the products
of packages and users for each PC delivered. Second, on the
quality side, the customer's view of the business utility of the
delivered system can be rated. A "useless" or "not used"
systed would score a O. Productivity would be pushed
downward.

The scheme could be made more sophisticated if, for exam
ple, the PC group mission were to penetrate first with specific
equipment types and particular packages. A multiplying
weight could be applied in the equation. For example, if large
VISICALC usage were desired by management while word
processing on personal computers were not, a weight of 2
might be used to multiply each VISICALC installation; a
word processing acquisition would rate a 0 or some small
number.

TIn
./

S
y
S
T
E
n
S

USERS

Figure 4

Incentive Compensation for Information Systems Departments 511

A similar structure for productivity measurement is also
applied to OA. Again there is a potential use space; and each
work station-user-package combination represents penetra
tion into the space. Weighting could be applied to move the
organization in the direction of encouraging electronic mail
versus spread sheet work on the OA equipment.

In both DB and ICS, SERVICE/$ is the chosen metric for
productivity. When we use this metric, we are looking at the
output of each of the groups in business terms.

For example, the ICS group functions to supply reports to
the business community and also builds the spinoff databases
to derive them. Simply counting the reports produced and
databases built, and perhaps weighting them by desired types
or complexity, allows measurement of total output. Dividing
this by dollars spent again yields the unit cost. The same
technique can be extended to the DB group.

The quality aspect of performance measurement for ATS
may seem elusive. The prime concern is that quality remain at
an acceptable level or exceed it. As a management practice,
delivery of a product or service to a customer should include
a postdelivery review. In the outside world, even buying a
toaster supplies the customer with a feedback form-why not
the same in the information systems world? The key questions
involve rating the quality level and business utility of the prod
uct or service provided. Remember that performance is a
function of both productivity and is only rewarded if quality is
there.

The productivity-quality linkage is critical. However, most
organizations seem to believe that it will always remain an
intangible. Quality measurement, in the context of the IC
program, gives new meaning and strength to the quality assur
ance function, and atrophying arm of most information sys
tems organizations.

BAPS PRODUCTIVITY

Productivity measurement in the development/maintenance
environment has been the subject of almost frantic activity in
the past three years. A number of measures have been dis
cussed in recent conferences and publications: function
pointsllabor period, lines of codellabor period, % of charge
able expenses, and $ benefit/$cost.

BAPS by our definition is the developer and maintainer of
information systems. If BAPS is viewed as a production plant,
its inputs are customer requirements or repair requests, and
its outputs are new systems, modified systems, or repaired
systems. Parsing out the repair aspect of BAPS, we are left
with measuring the output of a plant producing or recycling
information systems.

Contemporary trends indicate the end of the monolingual
shop. Hence lines of code measures decrease in meaningful
ness. Some argue that the advent of program generators and
fourth-generation languages, conversions can be applied to
generate equivalent lines of code measures. Unfortunately,
this technique has not been accepted as credible by most
system developers. What is needed is a productivity metric
that in some way reflects the content of an information system
in a manner independent of implementation language and

technique. Both Albrecht's function points and Halstead's
software science measures seem to meet this requirement.
Function points are a score of the inputs, outputs, files, inter
faces, and inquiry options offered by an information system;
they are weighted by their complexities. This score is consid
ered a raw score, which is further adjusted up or down by
some operational design factors.

The software science measure of program volume attempts
to quantify the contents of an information system on the basis
of the total number of bits it would take to represent all the
operators and operands required to implement the system.
Although this concept seems abstract, it has been demon
strated to have greater power as a predictor of both develop
ment and repair effort than does function points. In fact,
software science allows the computation of an ideal program
volume, which can be used as a base for measuring the quality
of a program.

With these two alternatives in mind, a method can be for
mulated for productivity measurement. Function points and
software science are related in· that they both use the basic
parameters of information systems in their scoring schemes
inputs, outputs, files, etc. Although both treat these parame
ters differently and consider other aspects of the information
system, their common base offers a good starting point on
which to build. At the simplest level, an information system
content unit (ISCU) can be defined as a score of the basic
features of a system-inputs, outputs, files, inquiry types,
interfaces, and number of business functions being realized.
In this way the ISCU count for any new system can be com
puted as follows:

Inputs *3
,+# Outputs *5

ISCU= +# Inquiry *4
+# Function *10
+# Interface *8
+# Databases *9

The weights have been chosen on the basis of the relative
complexity of each entity class being considered instead of the
complexity of a specific one. For maintenance ISCU computa
tion, an additional weight is needed as a multiplier to prorate
the percentage of the entity being modified or reused in some
form.

This scheme is evolutionary in that it is expandable in either
the function point or software science direction as they be
come more refined. It also overco~es many of the subjective
features of the function point approach, as well as aspects of
this approach that negate its utility as a basis for estimation
and projection.

The productivity of BAPS can be looked at as follows:

new development
maintenance

*Information system content units

ISCU*
-$-

ISCUs per dollar are used to score both new development
and maintenance (with the exception of corrective mainte
nance).

512 National Computer Conference, 1984

Again, renewed emphasis is placed on the quality assurance
group, whose job it is to monitor the measures and audit
scores.

SDS PRODUCTIVITY

The measures used here follow the mold of the ATS group.
Interactive computing services (ICS) are defined as being the
support services for the development staff. Penetration is
again the key. Customer satisfaction and system availability
offer a clear base for assessing quality. Two additional func
tions have been included to demonstrate the completeness of
the suggested approach, recruiting (REC) and in-house train
ing (TRN). Both can be viewed on a unit cost basis with
regard to productivity.

The equation is as follows:

MEASUREMENT
ICS: PENETRATION/$
REC: HIRES/$
TRN: STUDENT HRS/$

PERFORMANCE

Performance scoring is based on a set of standards derived
from 90/10 rule:

Score
Rating

Base
75%
o

STD.
85%

.5

Excp.
95%
1.0

The interpretation of this equation is that if only 75% of
products and services are delivered within the 10% bandwidth
a score of 0 is applied, at the 85% level .5, and at the excep
tionallevel of getting 95% of the products and services within
the bandwidth 1.0. Any value in between these is prorated.
The baseline for establishing the bandwidth for a given prod
uct or service will be specified as part of the project or service
initiation request process. All products and/or service sup
plied to a customer will be estimated at this time. In addition,
acceptability criteria relating to quality will also be specified.
It will be the function of the quality assurance group to set
both long-term overall quality criteria relating to such things
as future rate, time to repair, expected cost of operation ver
sus actual cost, etc., and specific requirements for a given
product or service.

LOOPHOLES?

At first review some questions arise:
What happens if a planned project is canceled?
What happens if an unplanned project is initiated?
What happens if there is a hiring freeze?
How can work not completed within a calendar year be
treated?

The first three situations are handled in a similar manner. The

IC plan is designed to be flexible. Corrections to targets are
possible at any time, although they must be audited. The
situation of multiyear projects can be managed by either pro-

-- rating completed work by the life cycle phase percentages or
scoring projects only at their completion.

Gaming in the face of the IC plan is natural. But again,
revitalizing the quality assurance (QA) group and supplying
upper management support should furnish the needed con
trols.

INSTALLING THE Ie PLAN

The following tasks need to be carried out prior to installa
tion:

1. Form quality assurance group.
2. Develop performance tracking procedures.
3. Define/refine measures: productivity measure defini

tion, integration, and data flow, and quality baselines.
4. Develop standards for integration and data flow.
5. Sell to management and to department.

The scope of these tasks should not be underestimated.
Changes in internal reporting of all facets of the organization
may be required. However, if the changes implied by the plan
are implemented, a stronger organization should result,
driven by a set of management metrics that are both meaning
ful and complete.

A possible scenario for the first year is as follows: End of
first quarter, form QA group. End of second quarter, QA
implements measures on data collection. End of fourth quar
ter, QA publishes baseline findings. The goal for the first year
is to install the plan. With this in mind, incentive compen
sation should be awarded at the end of this period simply for
getting the IC plan itself defined and in place. Full operation
. should begin in the second year.

CONCLUSION

A recent Harvard Business Review article reached the conclu
sion that most managers rate the current flurry of productivity
improvement programs as ineffective. The emphasis has been
on the quick fix. Nowhere has this been more evident than in
information systems departments, who by now should have
learned the lesson that tools and technology are not a sole
solution to business problems. Capital investment in facilities,
equipment, and tools are the simplest aspect of productivity
improvement. A number of more crucial elements exist:

1. Management commitment, support, and involvement
2. Employee relations, support, and participation
3. Effective training

The proposed IC plan offers a comprehensive structure for
addressing all of these within the information systems envi
ronment and orovides a coherent framework for managing
and motivating this critical business resource. ~ -

Gaining competitive advantage, or how to succeed as the
vice-president of information systems

by M. VICTOR JANULAITIS
Positive Support Review, Inc.
Los Angeles, California

ABSTRACT

Most vice-presidents of informations systems do not succeed or fail because of
technical factors. Rather, their careers rise or fall according to how they meet the
organization's overall business objectives.

This paper discusses in detail a methodology that can be applied to any business
and/or industry. The approach has helped organizations, and their information
executives in particular, to focus on the factors that must go right for information
systems to be a critical component of the overall business strategies.

The paper discusses competitive strategies. and the five forces that give them
impetus: the relative bargaining power of buyers/consumers, the relative bargaining
power of suppliers, the rivalry among existing firms, the threat of new entrants, and
the threat of substitute products and/or services. The challenge of the information
systems executive is to apply technology to help the organization gain a competitive
advantage in these areas.

The methodology goes through five steps, including assessment of the industry's
information systems technology component, how to measure and plot the risk!
change relationship for the organization, how to develop a probability-of-success
factor for the organization, how to measure the organization's specific risks, and
last, how to develop organizational action steps.

Copyright © 1983, Positive Support Review, Inc.

513

BACKGROUND

An executive of a large western bank described his dilemma
to us recently: "Every time I turn around our Vice-President
of Information Systems is coming into my office with another
proposal-a million dollars for some new word processing and
computer equipment, $85,000 for an updated software pack
age, or as I have sitting on my desk now, a multi-million-dollar
proposal for installing an advanced worldwide telecommuni
cations network. I am inclined to look favorably on these
proposals, since our past ventures into information services
have generally been successful. Interestingly, however, virtu
ally every department in the bank also has some complaint
about our current systems. What bothers me is that my intu
ition is not as sharp in computers and communications as it is
in lending, borrowing, site location, and other traditional
banking areas.

"Today electronics is a necessary part of our business. The
fine line between products and services has disappeared as our
bank has become more computer based. In this age of dereg
ulation and advancing technology, I can not imagine running
our bank without office automation, computers, and commu
nication networks. In addition, we must continue to advance
in these areas if we want to stay even with or get ahead of our
competitors. It is dammed if you do-dammed if you don't."

RECENT HISTORY

Integrating information services technology involves risk.
Many managers today feel that risk is something to be
avoided. They are satisfied with the low rates of return they
receive because they assume minimal risk. The questions the
business executive wants answered are: (I)-Why should our
organization take the risks associated with integrating infor
mation services? and (2)-What is an acceptable level of risk?
The answer is that you do it to gain a competitive advantage
consistent with the level of risk you can successfully manage.
The challenge, then, is to develop a strategic plan for achiev
ing this objective. Competitive strategy rests on five forces:

1. The relative bargaining power of buyers/customers
2. The relative bargaining power of suppliers
3. The rivalry among existing firms
4. The threat of new entrants
5. The threat of substitute products or services

Information services technology has helped some organiza
tions to gain competitive advantage in each of these five di
mensions. The Wizard System, for example, helped Avis
improve the product and service they delivered to their cus-

Gaining Competitive Advantage 515

tomer; and it provided them with knowledge about the loca
tion, cost, and performance of its fleet. This helped Avis to
bargain more effectively with its suppliers by giving them an
advantage over Hertz, National, and the other car rental
firms. The national network and the service levels it estab
lished upped the ante for getting into the business and served
as a barrier to entry. Additionally, the Wizard improved the
cost/performance ratios and forestalled the development of
substitutes. On the other hand, AM International failed by
several of these criteria-especially the inability to forestall
substitution.

To expand on this topic, there are several distinct categories
of information services organizations, which can be grouped
into three generic sets. Each organization typically has some
characteristics of each set, but for the most part it favors only
one. They are:

1. Strategic technology directed-Information services are
an integral part of the organization's unique strategy.
This type of organization has an experience base allow
ing it to be involved with most leading-edge technology
and spend significantly more than its non-strategic
technology-directed competitors on data processing.
One of its interesting characteristics is the long tenure of
the senior management team, including the information
services organization. Some industries are technology
directed (airlines in the 1960's, national hotel and car
rental industries in the 1970's, and the retail and finan
cial services industries in the 1980's).

2. Business directed-Information services are used to pro
vide the necessary information support for its key strate
gic business units. This type of organization has an ex
perience base that will allow it to be involved with one
new technology (such as Database) at a time. The senior
management team does not push its information services
group to be first in the application of technology.
Rather, they want to be sure the organization can do
anything their competition can do within a reasonable
period of time. This organization typically goes through
the standard sets of confrontations within its structure in
establishing priorities. In addition, multiple centers of
power and expertise compete for authority in establish
ing, implementing, and controlling technological direc
tion in the organization.

3. Manager Directed-Information services are used to
provide information for basic management functions
such as production, accounting, finance, and marketing.
This type of organization has a very limited experience
base and only takes on new technology when it is forced
to. Typically there is one key decision maker who is not

516 National Computer Conference, 1984

in favor of computer or communication technology. In
this type of organization, if a manager can justify an
application of computer technology, he is the one who
goes to bat for it. The typical application portfolio of this
type focuses on operational control and moves towards
the implementation of management control applica
tions. We estimate that between 15% to 20% of corpora
tions fall into this category.

METHODOLOGY

How can an organization gain a competitive advantage
through information services? The following five steps help:

1. Assess the technological absorption rate and status of
the industry

2. Measure and plot the risk/change relationship for the
organization

3. Develop the organizational probability of success ratio
(PSR) profile factors and measurements

4. Measure and plot the organizational risk/probability of
success ratio

5. Develop the organizational risk management action
steps

Assess the Technological Absorption Rate and Status of the
Industry

One of the factors that many information system managers
tend to overlook is the current level of and dependence on
information services technology in their industry. This indus
try absorptIOn rate dIctates the overail nsk the orgamzatIOn
faces from changes caused by information services tech
nology. The absorption rate is based on two factors: (1)
dependence-the depth to which technology is an essential
component of the industry, and (2) maturity-the extent and
sophistication with which the industry has adopted the
technology .

The combined effect of these two factors reveals the breath
and depth of technology absorption in the industry. A high
absorption rate generally implies that the information services
in the industry are strategic technology directed (see Figure
1).

The steps to develop such a chart are (1) identify the indus
try's major information and communication functions, (2)
rate them on maturity and dependence, (3) plot the organiza
tion's position relative to the industry. Then pose the follow
ing questions:

1. What are the applications of computers and communica
tion in the industry today and in the future?

2. What is the combined absorption rate for the industry?
3. What is the direction, pace, and momentum of techno

logical change within the industry and the organization?
4. Is the organization behind or ahead of the industry in its

application of technology?
5. Are there opportunities to gain a meaningful competi-

tive advantage by leading the industry in information
services applications? and

6. Can we employ the technology to support a unique stra
tegic thrust of the organization?

The result is a list of potential technological directions which
will provide the organization a leadership position or enable
it to gain parity within the industry. Either of these results will
entail changes in the organization and increase its exposure to
risk. To assist in managing this process the next action step is
executed.

Measure and Plot the Risk/Change Ratio for the
Organization

A successful strategy must achieve a proper balance be
tween growth, control, and technological innovation. Execu
tives need to know: "What is the potential bottom line impact
of the application of information services technology?" The
following questions are useful in this regard:

1. What is the current strategy for information services?
2. Have the technologies we are using paid off?
3. Do they support the business or drain its resources?
4. How do we compare with our competition?
5. Are we spending the right amount (too much or too

little)?

Many factors effect the answers to these questions. In
cluded are the technological dependence and maturity (ab
sorption rate) of the industry and the organization; the focus
of the organization's application systems-operational con
trol, management control, strategic planning, or decision
support systems; the organizational maturity of the com
puter, communications, user, and management team; the
internal performance measurement systems of the organiza
tion; and the existing direction, pace, and momentum of
implementation.

Figure 2 shows the plot of a Fortune 500 company at the
point when a new information systems (IS) management team
was put in place (time x) and the same organization 24 months
later (time y). In that twenty four month period the organiza
tion went through significant change. The Vice President of
information systems started to implement a new communica
tions systems within his company's field operations, converted
from an early 1970's based computer operation to a 1980's
approach, revised the major business and information report
ing systems, and developed a new charter and role direction
for the information services groups within the organization.

Develop the Organizational PSR Profile Factors and
Measures

An initial analysis, utilizing the Critical Success Factors
approach, can identify four to eight items which have to go
right for the organization to be successful. Let us review a
case.

Gaining Competitive Advantage 517

CONTROL SYSTEMS

COMPETITIVE ANALYSIS-SELECTED CHAINS
MIS application areas Type

Company POS DOP DBMS OFFICE SAlPGM computer MISS %Aevenue

Bob's Big Boy No I No No No 5 Sys34 $100.000

Burger Chef Yes No

i
IMS No 370/138 0.54%

4331

Church's
I

Yes

1
Yes) S2000 No 4341 0.45%

Sys34

Commonwealth Holiday Inns

i
Yes I No

j
No Yes 370 0.75%

i 115

Denny's ! Yes I No I IMS Yes 3031 0.45%

1 i 370/148

Dunkin Donuts Yes 1 No No Yes Wang 2000 1.00%

Greyhound Food Mgt. ! No i No No No 3033 0.5%

Hardee's Food Systems i Yes Yes No No 3031 0.26%

Howard Johnsons Yes 5 yrs I Yes 11 1 Total No 35 to 60 370/158 $3.5 mil

i
!

4341
I

I
11-GA

i i Series 1

IHOP i No I No No No 6 Univ90/30 $600.000

Jerrico Yes Yes Yes ! Yes 370

KFC I Yes 1 Yes 1 No Yes 3031

Krystal No No No No 370/138

Mannings ! No Yes
I

No No 4331

McDonald's Yes ! Yes I Yes Yes 40 370

Pizza Hut Yes Yes Yes Yes 370/168
-- _.-

Ponderosa ; Yes Yes IMS Yes 19 370/3031

Poppin' Fresh Pies Yes No No No H6080 ._-
Shoney Yes Yes No Yes 4 i NCR

LEGEND: MIS Application areas-areas of focus of the MIS organization. PO&-Point of Sale. DDP-Distributed Data Processing.

SA/PGM
DBM&-Data Base Management Systems. OFFICE-Office of the future and personal computers.

-Number of systems analysts and programmers doing development work for new MIS applications.
Type computer
MISS
% Revenue

-Type of Computer.
-MIS budget in absolute dollars.
-MIS budget as a percentage of Iota I revenue.

Figure I-Absorption rate of 3 industries

A billion-dollar organization had undergone a number of
significant organization changes. A new chief executive offi
cer was installed and several new strategic decisions were
made. Among these was the decision to utilize information
services technology to provide the corporation with a mean
ingful competitive advantage. The successful IS executive im
mediately started to change the way the organization related
to the information services group and the MIS budget in
creased by over 45 %. However new concerns were identified
by the IS executive, including:

• Senior management did not understand nor support the
MIS plans for computer hardware, operating systems,
data bases, communications network and facilities

HIGH

LOW

R

v
e

R
i
s
k

0.40%

0.58%

0.70%

$2.7 mil

1.80%

1$450.000 1

Relative Change

- Technological
- Application
- Organizational

1

Comments
MIS plays minor
role in company

Major development
eHort under way

Going to major
implementation
of POS over next
5 years

Expanding role

:Upper Bound
:Risk

Risk:
1982 :

• The status of four major development projects, which
accounted for over 35 % of the salaries in the current
budget, was not known

LOW --------------------~~~ HIGH

Figure 2-Risklchange relationship

518 National Computer Conference, 1984

MEASUREMENT OF MIS

Figure 3--Summary organizational PSR profile

• The decision to utilize outside contractors, to modify
existing software, resulted in a substantial expense during
the prior four months

• Several key weaknesses of the MIS organization and key
user organizations were revealed. The main concern was
the high turn-over rate of key specialists

With this information the IS executive was able to identify
six profile factors. They were (1), a strong information ser
vices management and delivery team, (2), a high indepen
dence from external contractors, (3), a measured growth of
MIS technology, (4), a successful modification of the user
organizations operational characteristics, (5)~ a well imple
mented system development, implementation, and opera
tional methodology, and (6), a new capital prioritization, bud
geting, and monitoring system.

Figure 3 demonstrates where his efforts had to be placed in
order to minimize risk and to increase the probability of suc
cess. For example, the information services team, though ex
perienced, had not been with the organization long enough to
absorb its culture fully. This resulted in an overall rating that
was negative. The need for independence from the outside
was the greatest problem. On the other hand, technological
growth was normal and the rate of change was within the

HIGH

LOW

PROBABILITY OF
SUCCESS CHART

R

i
v
l!

R
i
5
k

Probability of Success

LOW ----------~ .. ~ HIGH

Figure 4--Probability of success

overall optimal band (see Measure and Plot the Risk/Change
Relationship discussion). Overall change management was
low risk for the organization because a number of positive
action steps had been taken. The development methodology
was at a normal level of risk, as was the capital budgeting
because of the control systems which had been put in place by
the rrew IS Executive. These factors v"ere therr measured
across all of the activities involved with the organization .

Measure and Plot the Organizational Risk/Probability of
Success Ratio

The IS executive can develop a probability of success profile
for his organization. Looking at the risk curve in Figure 4 for
time x (manager directed) the relative risk (horizonalline) at
point A is the same as the risk a point B (business directed)
and point C (strategic technology directed). The area of dif
ference is the probability of success. For the same level of risk
the probability of success is greater for the strategic directed
organization than for the manager directed one.

In Figure 4 the organization was initially manager directed.
You can see the direction that this organization took. With its
previous management team (manager directed), the informa
tion services group did not acquire the experience base
needed to accomplish the company's objectives. For example,
they had three failures in two years trying to implement a
relatively simple distribution inventory control system. They
improved their position by adopting a business directed strat
egy to help them relate inventory control problems more
closely to strategic business units. The difficulty they currently
face is that their corporate objectives require them to become
a strategic technology directed organization and to use infor-

mation technology to gain customer service advantage over
their competitors. This shift in organization strategy should
also improve their probability of success.

Develop the Organizational Risk Management Action Steps

With all these factors considered, it is a reasonable task for
an IS executive to define the set of action steps required to
gain competitive advantage for his organization. First, the IS
executive needs to look at the absorption rate and review the
systems that are the focus of the "future leading competitors" .
This data can identify the new services that a financial services
organization is going to provide, or the new products that an
office automation company is going to implement, or the new
directions that a manufacturing or distribution organization
can take to improve productivity. From these new services, a
plan for the information services function can be created.
Second, the IS executive can identify his organization's Risk/
Change function and identify the direction, pace and momen
tum necessary to achieve its plan. Third, by reviewing the
individual activities of the information services function, the
IS executive can identify specific action steps required to
change its PSR profile and to meet its objectives.

CONCLUSION

Vice Presidents of Information Systems can succeed and help
their organizations achieve a meaningful competitive advan
tage by developing a business strategy that is based on infor
mation services technology. This advantage can be translated
into new market opportunities as well as the traditional cost
reduction systems. For example, any IS executive who looks
only at a "simple" application of office automation and does
not see potential new ways for linking this to the business
strategy or his basic business units functions, may be missing
an opportunity. Companies that have prospered in these diffi-

Gaining Competitive Advantage 519

cult times, for the most part, have been innovators. Many of
them have innovated a competitive advantage in the informa
tion services area.

The process presented here is straight-forward. The ideas
are little more than a new application of good management
practices. If you are to succeed in the next decade, you will
need to manage risk, reward, and probability of success more
carefully. Five steps to accomplish this are; (1) assess the
technological absorption rate and status of the industry, (2)
measure and plot the risk/change relationship for the organi
zation, (3) develop the organizational probability of success
ratio (PSR) profiles, (4) measure and plot the organizational
risk/probability of success ratio, and (5) develop the organiza
tional risk management action steps.

REFERENCES

1. Bullen, C. V., and J. F., Rockart. "A Primer On Critical Success Factors."
Cambridge, Mass.: CISR No 69 Sloan WP NO 1220-81, Massachusetts
Institute of Technology, 1981.

2. Janulaitis, M. Victor, and Richard O. Mason. "Gaining Competitive
Advantage-A CEO's Perspective." Positive Support Review, Inc., Malibu,
California, September 1982.

3. Janulaitis M. Victor. "The Best of Both Worlds." Production and Inventory
Management Journal, Third Quarter 1978, p. 1.

Nolan, Richard L., and Cyrus F. Gibson "Managing The Four Stages Of
EDP Growth." Harvard Bus. Rev. (January-February 1974). p. 76.

4. Keen, Peter, and Michael Scott-Morton. Dicision Support Systems: An
Organizational Perspective. Reading, Mass.: Addison-Wesley, 1978.

5. McFarhm F. Warren. "Portfolio Approach To Information Systems." Har
vard Bus. Rev. (September-October 1981). p. 142.

6. McKenney, James L., and F. Warren McFarlan. "The Information
Archipelago-Maps and Bridges." Harvard Bus. Rev. (September-October
1982).
p.109.

7. McLean, Ephraim R., and John V. Soden. Strategic Planning/or MIS. New
York: John Wiley & Sons, 1977.

8. Porter, Michael. Competitive Strategy. New York: Free Press, 1980.
9. Rockart, John F. "Chief Executives Define Their Own Data Needs." Har

vard Bus. Rev. (March-April 1979). p. 81.

Database management

Darrell Ward, Track Chair

The database track is exciting and timely for the 1984 NCC.
We are pleased to present database panels and papers that are
current and practical as well as indicative of new develop
ments in the database area.

Two sessions are devoted to relational databases, which are
fast becoming the standard in modern database technology.
"Current Status of the Relational Database Model" develops
the current status of the relational database approach and
should prove invaluable for those who use a relational data
base or contemplate its use. The session entitled "SQL Data
base Language" inspects this important language and evalu
ates its impact on the end user community. Additionally, the
session addresses the notation of a standard language for the
relational model.

For the microcomputer enthusiast, "Fourth-Generation
Languages (4 GL) and Personal Computers" is devoted to
these application tools and their use in the ever expanding
area of personal computer applications. This session provides
valuable insight into future databases and application devel-

opment systems for the microcomputer environment.
The "Entity Relationship Approach to Database Design"

session focuses on the initial modeling of the database envi
ronment and the database design process. The need for guide
lines and specifications for database design and implementa
tion is quite apparent to experts who are required to develop
such database applications. This session is clearly timely and
pertinent for database developers.

Finally, the track features two refereed paper sessions. One
of these, "Database Workstations," will address the general
area of database environments, including the database work
bench and the end user interface. The other paper session,
"Database Applications and Interfaces," is intended for spe
cialists who are interested in detailed technical aspects of
current database systems.

We feel that the sessions in the database track provide a
stimulating environment for continued productivity in the
database world.

An interface for novice and infrequent database management
system users

by JAMES A. LARSON and JENNIFER B. WALLICK
Honeywell, Inc.
Bloomington, Minnesota

ABSTRACT

Special interfaces are needed for novice and infrequent users of database manage
ment systems. Such interfaces must remind users of the structure and names of
database objects as they guide users in formulating syntactically valid database
commands. A prototype system developed at the Honeywell Corporate Technology
Center provides such an interface by integrating schema displays depicting the
contents and structure of the database and syntax diagrams representing the valid
syntactic options of a database query ianguage. By traversing these graphs, novice
and infrequent database management system users can easily formulate syn
tactically valid database management system commands while learning the formal
syntax of the database management system command language.

523

INTRODUCTION

The database management system (DBMS) presents formid
able problems to users. New users of a DBMS must be trained
to formulate commands acceptable to the DBMS. New users
must also learn the structure of the database, the names and
relationships of database objects, and which commands to use
to access the various objects. Infrequent DBMS users may
need to refresh their memories about both what data are in
the database and how to formulate commands to access those
data objects. An interface to the DBMS is needed for these
users that will aid them in learning and relearning how to use
the DBMS.

At the Honeywell Corporate Computer Sciences Center we
have been investigating approaches to make DBMSs more
friendly to novice users. The remainder of this paper describes
one such interface under investigation. We first describe the
requirements of an interface for novice and infrequent DBMS
users and then give an overview of our system.

INTERFACE REQUIREMENTS FOR NOVICE AND
INFREQUENT DBMS USERS

Novice and infrequent DBMS users need an interface to a
DBMS that guides them in formulating database requests.
Requirements of such an interface include the following:

1. Display valid options. When formulating database re
quests, users should not be required to know or remem
ber the contents of the database, the structure of the
database, or the formal syntax of a query language. A
system for novice and infrequent users should be de
signed so that users formulate requests by choosing from
a set of syntactically and semantically valid options.

2. Break the problem into subproblems. Novice and infre
quent users need assistance in knowing how in tell the .
computer what information they want from the data
base. A system for these users should allow piecemeal
formulation of database requests so that a user may con
centrate on one subproblem at a time.

3. Display current status. Novice and infrequent users
should be reminded of what they have accomplished.
The system should display what portions of a database
request the user has formulated so that the user can
decide what options to choose next.

4. Allow users to change their minds. Users should be able
to back up to any previous state of command formu
lation and resume entering options from the state to
which they backed up.

Interface for Novice and Infrequent DBMS Users 525

5. Permit only syntactically valid commands. A system
should be designed so that it minimizes command input
errors and permits the user to enter only syntactically
valid commands.

6. Provide online help facilities. The system should aid
users with additional instructions when users are not
sure about a particular option of the system. These in
structions should be designed to communicate the mean
ing of an option with respect to what users have pre
viously accomplished, thereby aiding them in deciding
what option to choose next.

7. Move novice users to more advanced interfaces. A sys
tem for novice users should provide mechanisms to move
users to more advanced and expedient interfaces. In
particular, the system should help users learn the syntax
of a database language as well as the contents and struc
ture of the database.

8. Control access to a database. Database interfaces should
have a mechanism whereby the database administrator
can prohibit classes of users from performing various
types of operations on selected database objects.

Forms and menus are two database interfaces often used for
novice and infrequent users. Unlike forms and menus, the
interface developed at Honeywell is an easy-to-use graphical
facility for building database commands that trains users to
learn the linear keyword form of the language.

SYSTEM OVERVIEW

Syntax diagrams have been used successfully in programming
language manuals to illustrate visually the structure of pro
gramming languages. A syntax diagram (Figure 1) is a di
rected graph representing the syntactic structure of a formal
language. Any path from the start node to a finish node con
stitutes a valid statement in the language. Our system uses
syntax diagrams to guide users through DBMS commands as
well as to teach the more frequent user the syntax of the
DBMS language.

A syntax diagram of a query language is a directed graph
that contains six types of nodes: (1) start nodes, (2) literal
nodes, (3) value nodes, (4) database item nodes, (5) subgraph
nodes, and (6) finish nodes.

For implementation purposes these nodes can be distin
guished by color and shape; but novice users need not visually
distinguish the nodes, because they will be prompted with
appropriate instructions and information as each node is se
lected. Visual distinction of the nodes might be useful for
helping users learn the command language.

526 National Computer Conference, 1984

Boolean Expression

Arithmetic Expression

c==J = A new syntax diagram
will appear

~ = A menu or database
~ graph will appear

~ = Choice will be copied to
command window

Figure I-Syntax diagrams

Start Nodes

Beginning with this node, the user seiects nodes, one at a
time, along a path in the graph. A complete path specifies a
valid request.

Literal Nodes

The names of these nodes correspond to the keywords of
the query language. Each time the user selects a literal node,
its name is appended to the request being formulated.

Value Nodes

When the user selects a value node, the user is prompted to
enter an integer or character string from the keyboard. Value '
nodes in a query language are used for specifying conditions
on attributes of records to be retrieved. The value specified is
appended to the request being formulated.

Database Item Nodes

When the user selects a database item node from the syntax
graph, the database schema is displayed and the user is asked
to select a database object name from the schema. The se-

Database Graph

Figure 2-E-R graph representation of a database schema

lected database object name is appended to the request being
formulated.

Subgraph Nodes

When the user selects this node, the current syntax graph is
placed on a stack, and a syntax graph corresponding to the
name of the subgraph node is displayed. This is useful for
languages with complex syntax graphs, because it allows
syntax graphs to be broken down into a series of subgiaph
displays.

Finish Nodes

This node indicates that the user has completely specified a
path through the currently displayed graph. If the graph is a
subgraph, then the parent graph is redisplayed and the user
may continue to select nodes from that graph. If the graph was
the original starting graph, then the command has been com
pletely specified and is passed to a DBMS for processing.

When a database item node is selected from the syntax
graph, a schema describing the classes of objects in the data
base is displayed on the screen. The schema objects may be
displayed as a menu or alternatively as a graph of data objects
such as that illustrated in Figure 2. The rectangles in the graph
represent classes of entities, and the diamonds represent
classes of relationships between entity classes. The ovals rep
resent attributes of entity or relationship classes. This is a
graphical representation of Peter Chen's Entity Relationship
(ER) data model, l a popular style for modeling data to be
maintained by a DBMS. The user selects a class of objects
from the database schema by positioning the cursor in the
appropriate position on the screen or by typing in the name of
the desired object at the keyboard.

As the user selects nodes from the syntax diagrams, a
linear-keyword-oriented version of the command is con
structed in a command window at the bottom of the screen.
The user is able to view partially constructed commands as
they are being formulated. The user may append keywords,
database objects, or values to partially constructed commands
either by typing in the keyword, database object name, or
value at the keyboard or by positioning the cursor to the
desired node on the syntax diagram or database schema dis
play. It is expected that some users will prefer using the cursor
and others will prefer entering options at the keyboard. More
advanced users will eventually abandon this interface in favor
of the more traditional keyboard-only interface.

Novice and infrequent users can be expected to make mis
takes. At any point the user may position the cursor to a

Boolean Expression

Get student where fa

Figure 3-Terminal screen showing a partially formulated command; the user
is about to formulate a Boolean expression

previously selected node in the syntax diagram (or backspace
to a database object name, keyword, or value in the partially
formulated command in the command window) and all data
base object names, keywords, or values following it will be
erased from the command window. Thus a user can undo
decisions and back up to any previous state, including the start
state. The user may then continue formulating the command,
possibly choosing options different from the ones previously
entered.

If the user does not understand the meaning of any node or
cannot decide which path to take on the graph, the user may
move the cursor to the node or edge and press the HELP
button. Additional information and messages to help the user
will be displayed on the screen.

Interface for Novice and Infrequent DBMS Users 527

Arithmetic Expression

Boolean Expression

Get student where I

Figure 4-User selects "arithmetic expression" option, and the arithmetic
expression syntax diagram is displayed

EXAMPLE

Suppose that the user wishes to formulate the database com
mand "GET STUDENT WHERE SECTION .NUMBER
1 = 2 's 3 AND COURSE.Number 1 = 2 's 177". Further
suppose that the user has already formulated the first part of
the request, "GET STUDENT WHERE." The syntax dia
grams of Figure 1 and the ER graph of Figure 2 are used to
aid the user to complete the query formulation. This is illus
trated in Figures 3-11. The user may move the cursor only in
the "top" (most recently displayed) syntax diagram or data
base schema. Alternatively, the user may move the cursor in
the command window and enter database object names, key
words, and values via the keyboard.

Arithmetic Expression

Boolean Expression

Get student where m
Figure 5-User selects "name" option, and the E-R graph is displayed

528 National Computer Conference, 1984

Arithmetic Expression

Boolean Expression

Database Graph

r---- -~ ; BOOLEAN)
! EXPRESSION . ,

-------.1

Get student where section . number ftj

Figure 6-User selects "section. number" option from database graph

Arithmetic Expression

Boolean Expression

Get student where section . number m
Figure 7-User selects no more options from arithmetic expression syntax
diagram

Boolean Expression

Get student where section. number = m

Figure 8--User selects" = " option

Boolean Expression

Get student where section. number = 3 m
Figure ~User selects "value" option and types "3"

Boolean Expression

Get student where section. number = 3 and m
Figure lO-User selects "and" option

Boolean Expression

~-I--m
AN OR

Get student where section. number = 3 and course. number = 177 m
Figure 11-After repeating steps similar to those of Figures 3 through 10, user
selects no more options

IMPLEMENTATION

A prototype of this system has been implemented at the
Honeywell Corporate Computer Sciences Center in FOR
TRAN on a Honeywell Level 6 minicomputer interfaced with
a Megatek Graphics Terminal. The system supports an inter
active mode for building and storing arbitrary syntax diagrams
as well as a mode for traversing syntax diagrams with a joy
stick to construct commands. Nodes can be varying sizes, with
a separate color for each type of node.

FURTHER RESEARCH

In this section we investigate ways this system could be used
to control access, issues in displaying ER graphs of database
schemas, and the automatic creation of syntax diagrams.

Controlling Access

This system could be used to control access to a database by
(1) displaying only the part of the schema that describes data
the user is allowed to access and (2) modifying the syntax
diagrams so that the user is prohibited from executing certain
operations (such as delete or modify). We have not investi
gated a dynamic syntax graph, which would prohibit users

Interface for Novice and Infrequent DBMS Users 529

from specifying certain selected operations on one part of the
schema and other selected operations on another part of the
schema.

Displaying ER Graphs

Scrolling both up-down and left-right can partially solve the
problem of displaying a schema with a large number of entities
in the form of an ER graph. Several other approaches to
displaying portions of an ER graph should be evaluated:

1. Optionally turning off the visibility of attributes so that
the entity sets and relationships sets can be displayed
more densely.

2. Positioning the ER graph nodes so that the graph can be
displayed in little space while minimizing the number of
arcs that cross each other. 2

3. Partitioning the ER graph into subgraphs such that the
objects in each sub graph are related. This clustering can
be based on semantics3 or on statistical clustering
methods.

Automatic Creation of Syntax Diagrams

The syntax diagrams and the Bachus-Naur form (BNF) of
the command language are closely related. We feel that it is
possible to build software that would convert BNF into equiv
alent syntax diagrams. However, we feel that such software
needs human guidance so that (1) the resulting syntax dia
grams are not too large to fit on a screen and not as small as
a three-choice menu, (2) each syntax diagram corresponds to
a single language concept, and (3) the nodes of the syntax
diagram are positioned in an aesthetically pleasing layout.

REFERENCES

1. Chen, P. "The Entity Relationship Model: Toward a Unified View of Data."
ACM Transactions on Data Base Systems, 1 (1976), pp. 9-36.

2. Tamissia, R., C. Batini, and M. Talamo. "An Algorithm for Automatic
Layout of Entity Relationship Diagrams." In C. Davis, S. Jajodia, P. Ng,
and R. Yeh (eds.), Entity-Relationship Approach to Software Engineering.
Amsterdam: Elsevier Science Publishers B.V., pp. 421-439.

3. Vermier, Dirk. "Semantic" Hierarchies and Abstractions in Conceptual
Schema." Information Systems, 8 (1983), pp. 117-124.

REQUEST: A testbed relational database management
system for instructional and research purposes

by BOGDAN CZEJDO and MAREK RUSINKIEWICZ
University of Houston
Houston, Texas

ABSTRACT

A database management system designed for instructional use should offer facilities
usually not required in a commercial environment. In particular, it should support
a wide range of user interfaces, access methods, and internal organizations in a
modular and flexible way, so that the effect on the system performance of choosing
one of them may be illustrated.

REQUEST is a relational database management system that, in addition to the
usual data definition and data manipulation functions, offers facilities for use in an
instructional environment. Various nonprocedural query languages are supported
within a single system, using unified database dictionaries. Cross-translation be
tween various query languages is allowed. The results of every important phase of
the query transformation during its execution are available to the user.

Preliminary experience with the system has shown that it can significantly facili
tate teaching important concepts of the database system organization. At the same
time the system has been used as a testbed in many research and development
projects.

531

INTRODUCTION

With the changing emphasis in data processing from algo
rithms to data, courses in database management are assuming
a central position in undergraduate and graduate computer
science curricula. When teaching a database-related course,
the instructor usually faces the following alternatives1

: either
to use a commercial type DBMS (if available) or to let the
students design and implement procedures functionally equiv
alent to some parts of the DBMS. Both approaches have
significant drawbacks.

Commercial DBMSs are (very expensive) software prod
ucts for the business or scientific, production-type environ
ment. They are, naturally, concerned with problems of re
liability, high performance, backup and recovery, data
integrity, etc. Such systems are not suitable for use on usually
limited and overloaded campus computer installations. The
more serious disadvantage of their use for teaching purposes
is that, however sophisticated they may be, they are usually
used as "black boxes." Not only are the users not allowed to
modify the source programs but they cannot even read and
analyze them (even if the source code is available the details
of performance and security obscure and distract from the
basic concepts that support the instructional standpoint). As
a result, students get limited experience in writing simple
application programs in a database environment and are
never exposed to the internal organization of the DBMS. This
situation is, of course, highly undesirable.

Letting the students design and implement their own rou
tines to perform some DBMS-flavored data definition and
data-manipulation. functions seems to be preferred. The great
danger of this solution is that the necessary scope limitations
and simplifications as well as the small size of such "data
bases" tend to underemphasize the fundamental differences
(at least within current technology) between accessing objects
in main memory and secondary storage. As a result, students
accustomed to Pascal programming and algorithm complexity
analysis tend to develop intuitions that are pathetically inap
propriate in a database environment, particularly as far as the
suitability of data structures and search algorithms are con
cerned.

A Relational Query System (REQUEST) was designed at
the University of Houston to alleviate the above problems. To
facilitate its use in an instructional environment the following
general design objectives were adopted.

1. The system should support a wide variety of user inter
faces, access methods, internal data organizations,
query optimization, and concurrency control techniques
in a modular and flexible way, so that the effect of choos-

REQUEST: A Testbed Relational DBMS 533

ing one of them on the user's interactions and system
performance can be illustrated.

2. To facilitate the learning of nonprocedural query lan
guages it should allow the student to analyze expressions
based on the relational algebra or the relational calculus
(queries, integrity constraints, and predicate locks),
translate them, and investigate their equivalence or in
tersections.

3. As a learning tool the system should support an inter
active mode in which a user may trace the execution of
a query.

4. The reliability and peformance aspects should be as
signed secondary importance. Rather, assuming the
large number of relatively small databases, we should"
concentrate on keeping the size of the system manage
able so it may be used in an instructional environment
with minimal effect on the computer installation.

REQUEST SYSTEM STRUCTURE

The general structure of the system with its main modules and
the interactions between them is illustrated in Figure 1. As can
be seen from the schema the system supports the usual range
of functions expected in a relational DBMS, including
parsing, optimization, and interpretation of query language
expressions. However, in addition to the above the system
includes a number of facilities for instructional use that are not
available in commercial DBMSs.

1. Various nonprocedural query languages including user
defined languages are supported within a single system.
They are decomposed into a standardized parse tree
based on the unified database dictionary system.

2. Cross-translation between various query languages is al
lowed.

3. A facility to convert query trees back into query expres
sions in supported languages is provided.

4. The results of every important phase of the query trans
formation during its execution are available to the user.
A facility is provided to examine a query, its equivalent
algebraic structure, corresponding parse tree before and
after optimization, the access paths selected by a low
level optimizer, and the intermediate pseudocode used
by the interpreter.

5 . ..tA,1S a query in interpreted, not only the final resulting
relation but also the created temporary relations are
available to the user; that is, single step tracing is sup
ported.

REQUEST was designed as a relational DBMS running un
der VAXlVMS. It is intended to support many users concur-

534 National Computer Conference, 1984

L2RANSLATION [

DATABASE

Figure 1-The general structure of the system

rently in both interactive and batch modes. The main modules
of the system are discussed briefly below.

Data Definition

The main functions of the DEFINE module are to describe
the intension of a databasse and to create and update an
integrated data dictionary system. The dictionary is a col
lection of related files containing the information about data
base objects stored under the control of the DBMS. The
dictionaries are not, however, stored as relations accessible
through the system's query facility (as, for example, in SQLI
DMS).2 The reasons for this design decision are pedagogical:
it was found that, for beginners, introducing a clear distinction
between dictionary relations and data relations is desirable.
This enables users to intuitively identify the dictionaries as
containing "meta-information" about the data structure. The
data dictionaries describe the following:

1. Database relations, both "real" (base tables) and "vir
tual" (views).

2. Attributes of every relation. For each attribute the cor
responding domain together with the "null" value and
attribute's location are recorded.

3. Primary and secondary keys for every relation.
4. Integrity constraints.
5. Security constraints such as security clearance required

for every type of operation, passwords, etc.
6. Authorized system users with the information about

passwords, access grants received, user's security clear
ances, etc.

The data definition operations can be performed on line,
dynamically, in a multiuser environment. Proper synchroni
zation is enforced, if necessary, by the concurrency control
module. Relations can be added or dropped; attributes can be
added, dropped, modified, or designated as indexes at any
time.

Data Update

The update operations (INSERT, DELETE, MODIFY)
are performed a record at a time. This was found to be an
acceptable solution, because the volume of volatile data ma
nipulated under REQUEST's control is usually small. In addi
tion it allows the concurrency control to be much simplified
and a higher degree of concurrency between conflicting trans
actions to be achieved.

The updates are performed in a user's working space and
installed in the database in accordance with the "two-phase
commit" policy. 9 An automatic roll back is performed in case
of system malfunction.

Query Decomposition

REQUESTis intended to support a multilanguage environ
ment: a database described by a uniform dictionary system
can be queried by any of the query modules corresponding to
the different languages. Queries specified directly as se
quences of operations of relational algebra and relational cal
culus or expressed in a user-defined language are also sup
ported. Query decomposition is performed by a parser whose
functions include validating relations and attributes names,
checking the domains of attributes and constants used in com
parisons, and generating an (un optimized) parse tree.

Query Optimization

While constructing a parse tree the parser does not consider
the efficiency of evaluating the tree. The problem of query
tree optimization has been substantially researched. 3

,10,11 The
query optimizer uses several heuristic rules to convert the tree
into an equivalent one that could be evaluated faster. Some of
these are as follows 12:

1. selections should be performed as early as possible; that
is, select operators should be pushed toward the leaves
of the expression tree,

2. selections and projections involving one file should be
combined, when possible, so that only one scan of the
file is required.

3. joins should be combined with the following projections,
4. if the query involves a common subexpression such as a

view it is often beneficial to evaluate it once and then use
the resulting relation in subsequent computations.

The optimization rules used here are based on commutative
and associative algebraic laws for projections, selections,

joins, and Cartesian products and allow one to convert an
expression into an equivalent one. These rules can be applied
independently of the information about the internal organiza
tion of files used to store the relations.

Path Selection and Query Interpretation

Before a join or a selection is performed, the file(s) should
be preprocessed; in particular we should take advantage of
existing secondary indices and ordering of the files (if applica
ble to the operation).4 For every basic operation a decision is
made on how it should be implemented, taking into account
the cardinality of the relation, the number of distinct values
occurring in each attribute's domain, the expected reduction
of a table as a result of select operation, the existing secondary
indices, etc. If a temporary table has to be created and used
as an input argument for a subsequent join or selection oper
ation, the relevant secondary indices should be created while
constructing the table.

Access Method

REQUEST uses its own access method implemented on top
of the VAXlVMS Record Management Services (RMS). Ac
cess method routines that could be invoked from a high-level
programming language perform basic file and record manipu
lation functions. The decision to provide an interface to the
RMS rather than implement a totally independent file system
was made to achieve an acceptable speed of operation. The
file organizations include index sequential, hashing, and ex
tendible hashing. 13

REQUEST Batch

Both data definition and data manipulation facilities dis
cussed so far are available to the user in an interactive mode
from a terminal. In many applications an access to a database
from a general-purpose host programming language is re
quired. In REQUEST, access to a database can be achieved
in the embedded mode through one of the two available inter
faces:

1. a Pascal preprocessor for SQL that produces relatively
small executable modules by performing the syntax er
ror checking, name validation, and access path selection
at the preprocessing stage so that only selected relevant
modules of the DBMS need to be linked with the host
language program

2. a general call facility that allows the DML statements to
be executed from any programming language obeying
VMS calling and parameter-passing conventions

Concurrency Control

To support a multiuser environment it is necessary to sched
ule conflicting transactions using some concurrency control
mechanism. The well-known concept of serializability is em
ployed to assure that both read-write and write-write conflicts
are scheduled according to some serialization order. 9 A wide

REQUEST: A Testbed Relational DBMS 535

variety of concurrency control algorithms proposed in the
literature can be classified into three main groups:

1. locking-based methods (exclusive and shared locks,
predicate locks, intent locks)

2. timestamp-ordering-based methods (basic T/O, conser
vative T/O, multiversion T/O)

3. circulating-permit-based algorithms

A transaction scheduler is a program module that performs
the following functions: it keeps track of the status of each
data item in the database; it receives transaction's requests to
access a data item; it either allows the transaction to proceed
(updating the status indicators) or rejects it if the requested
operation is in conflict with other transactions in progress.
Depending on the concurrency control algorithm used, the
rejected transaction will be queued, or under some algorithms
it will be rolled back and restarted. Communication between
transactions and the scheduler is implemented through mail
boxes and event flags.

It was found that an intent locking scheme capable of sup
porting different granularities of locks seems to be particularly
appropriate in a system that like REQUEST, supports both
record-at-a-time and set-at-a-time operations. 8

Query Translation

Translation of queries is an important facility that enables
the user of an instructionai system to see the equivalence of
expressions specified in different languages. 7 Some transfor
mations such as reduction of relational algebra to tuple-rela
tional calculus are well described in the literature. 12 Others,
such as the direct transformation from SQL to QUEL need to
be investigated. The approach adopted in REQUEST is based
on formulating translation rules and employing them to per
form symbol and tree manipulation.5

,6

Query Construction

Query construction is a unique feature of the instructional
DBMS. This module accepts the parse tree based on rela
tional algebra as an input. It produces as an output query
expressions in any of the supported languages including a
user-defined language. This feature is not necessary in com
mercial DBMSs but very useful for student training. In addi
tion, this facility provides an alternate way of translating que
ries, by first decomposing a query into a parse tree and then
constructing a query expression in a different language.

CONCLUSIONS

The development of the system started in 1980 as a research
project of the authors at the Department of Computer Science
of the University of Houston. The first version, which consti
tutes a functional subset of the system, was completed in 1981.
Since then it has been used successfully both as a teaching tool
in database courses and as a testbed system for research.
Currently available modules include, among others, inte
grated data dictionary system, parsers, optimizers and an in-

536 National Computer Conference, 1984

terpreter for SQL, locking and TIO based transaction sched
ulers, etc. An important implemented part of the system is a
friendly query interface that guides an inexperienced user
through the database definition process and allows him to
formulate queries based on the relational algebra in a menu
driven mode. Other parts of the system including the query
translation and query construction modules are currently be
ing designed and developed.

The preliminary experiences with the system have shown
that it can significantly facilitate teaching of the important
concepts related to the database system organization. At the
same time, REQUEST has been used in many research and
development projects including the design of an integrated
text and graphics database system. 14 Although the initial re
sults are quite satisfactory, a number of important research
issues will have to be resolved before the system can achieve
its full functional scope.

REFERENCES

1. Bradley, J. File and Data Base Techniques. Holt, Rinehart and Winston,
1981.

2. Astrahan, M. M., et al. "System R: Relational Approach to Database
Management." ACM TODS, 1 (1976).

3. Smith, J. M., and Yang, Y. T. "Optimizing the Performance of a Relational
Algebra Database Interface." Comm. ACM, 18 (1975), pp.

4. Grifiths, P. P., et al. "Access Path Selection in a Relational Database
Management System." R. J. 2479, IBM San Jose, 1970.

5. Czejdo, B. "Transformation of Universal Algebraic Expressions in PAS
CAL," ACM Computer Science Conference, Kansas City, February 12-14,
1980.

6. Czejdo, B. "ALGEBRA-Language for Automatic Transformation of
Universal Algebraic Expressions," ACM Computer Science Conference,
St. Louis, February 24-26, 1981.

7. Czejdo, B., and M. Rusinkiewicz. "Query Transformation in an Institu
tional Database System." ACM SIGCSE Bulletin, 1 (1984), pp. 217-223.

8. Gray, J. N., et al. "Granularity of Locks in a Large Shared Database."
Proc. 1st Int. Conf. on VLDB, September 1975.

9. Bernstein, P. A., and Goodman, N. "Concurrency Control in Distributed
Database Systems." Computing Surveys, 13 (1981), pp.

10. Yao, S. B. "Optimization of Query Evaluation Algorithms," ACM TODS,
4 (1979), pp.

11. Aho, A. V., et al. "Equivalence of Relational Expressions." SIAM 1.
Computing, 8 (1979), pp.

12. Ullman, J. D. Principles of Database Systems. Computer Science Press,
1983.

13. Fagin, R., et al. "Extendable Hashing-A Fast Access Method for Dy
namic Files", ACM TODS, 4 (1979), pp. 315-344.

14. Rusinkiewicz, M., and Li, Y. Y. "Textual and Graphics Database for SAL
Geophysical Models." University of Houston, SAL Review, 10 (1982), pp.
417-423.

Sibyl: A relational database system with
remote-access capabilities

by MANFRED RUSCHITZKA, \
ANDREW CHOI,
and JOHN L. CLEVENGER
University of California
Davis, California

ABSTRACT

The proliferation of inexpensive microprocessor systems and communications
equipment has provided the general public with the ability to access remote data
base systems. It also makes off-loading of some of the query-processing load of such
remote systems to microprocessor systems an attractive possibility, but problems
concerning data portability and adequate software support need to be resolved. To
demonstrate the feasibility of such a loose coupling of a microprocessor system with
different brands of remote database systems, a relational database system capable
of exchanging data with heterogeneous remote systems was designed and imple
mented. We describe the functionality of this operational system as well as the
design and implementation of its major components.

537

Sibyl: A Relational Database System with Remote-Access Capability 539

INTRODUCTION

The maturing of database technology manifests itself in in
creasing numbers of very large databases that specialize
often nationwide-in specific areas of knowledge. The hold
ings of major libraries, weather data, news services, corporate
information, and stock market reports represent examples of
such domains. At the same time, the proliferation of inexpen
sive microprocessor systems and communications equipment
increasingly provides the general public with the means to
query such remote, specialized database systems. While some
of these systems are capable of handling several thousand
queries per minute (for example, high-performance airline
reservation systems), such a rate cannot readily be exceeded
with today's technology. Thus, increased access by the general
public may severely saturate such remote databases. There
are two approaches being taken to resolve this saturation
problem: increasing the computational power and reducing
the load of these systems. The former approach focuses on
novel architectures for data storage devices, improved pro
cessing algorithms, and increased speed of devices. The latter
approach deals with a spectrum of off-loading techniques
ranging from tightly coupled distribution of the database func
tions over several systems to the delegation of individual sub
tasks to other systems.

Our approach at the Computer Systems Research Labora
tory at the University of California at Davis is of the off-load
ing type. Specifically, we were interested in demonstrating
that a microprocessor system that functions as a remote termi
nal of an interactive database system can itself be employed to
handle a part of the generated load. Since microprocessors
typically run in standalone mode and consequently tend to be
lightly loaded, off-loading remote databases to them appears
particularly attractive in terms of cost-effectiveness.

Over the past several years, a number of organizations have
placed several thousand communicating microprocessor sys
tems in the homes of employees. These systems provide addi
tional computing power without requiring additional capacity
from the central corporate facilities, but there is no unanimity
yet on the effectiveness or desirability of such arrangements.
Part of the reason is that contemporary microprocessor sys
tems lack the sophisticated processing capabilities of the cen
tral facilities; data can be shipped, but processing is limited by
the capabilities and the compatibility of the available soft
ware. In providing these software functions, however, special
care must be taken to ensure the continuing uniformity, reli
ability, and integrity of the data.

To demonstrate the feasibility of our approach, we designed
and implemented a self-contained, microprocessor-based re
lational database system, called Sibyl. An essential compo-

nent of Sibyl is its transformer module, which allows it to
exchange data with remote database systems of different
brands. We describe the system's functional capabilities and
characteristics in the next section and discuss design and im
plementation issues of its major components in the remainder
of this article.

OVERVIEW OF SIBYL

Sibyl is a relational database system. The database consists of
a collection of names relations (or tables) each of which con
sists of an arbitrary number of tuples (or rowS).1 A tuple
consists of an arbitrary number of attributes of varying types.
The corresponding attributes in the rows of a table form a
column. With this in mind, a user may specify operations on
the data in the database in a tuple-relational calculus lan
guage. This query language is a subset of QUEL, the query
language of INGRES.2 (Its syntax, which will be discussed
later, is summarized in Figure 4.) In this language, selection,
projection, and joining are provided for without any imple
mentation restrictions. In Codd's terminology, 3 Sibyl thus
qualifies as a relationally complete system.

Sibyl is the product of continuing research effort, and its
design and implementation are subject to constant change and
enhancement. With minor exceptions, this article describes
Version 1.0 as it existed in January 1983. This version runs on
an IBM Personal Computer4 with 192 Kbytes of primary
memory and uses the DOS operating sytem. 5 An RS232 port,
connected to a dial-up modem, serves as the communications
link to remote database systems. The configuration also con
tains 320 Kbytes of diskette storage, and a 10-Mbyte Win
chester disk. This capacity limits the size of the database that
can be operated on at anyone time. While DOS was enhanced
by an interrupt-driven RS232 package6 written in assembly
language, all other modules are written in Pascal. 7 Sibyl con
sists of about 5000 lines of source code and its load module
occupies 100 Kbytes of primary memory. Version 1.0 sup
ported communications with only one brand of remote data
base system, INGRES, and an installation at the University of
California at Berkeley was used for testing and demonstra
tions. The development effort amounted to one person-year.

The overall structure of Sibyl is shown in Figure 1. The
command intepreter is invoked from the DOS command pro
cessor. It distinguishes between two types of commands:
query and communications commands. A query command is
passed to the query parser, which translates it into an inter
mediate representation, a query tree, which is then passed to
the query processor. The processor executes the query, rely
ing on the relation manager for the maintenance and accesses

540 National Computer Conference, 1984

COMMAND INTERPRETER

QUERY PARSER

TRANSFORMER

QUERY PROCESSOR

RELATION MANAGER

STORAGE MANAGER

ENHANCED DOS

I I
1200 Baud Modem Disk Storage

Figure 1-The structure of the components of Sibyl

to relations. The relation manager, in turn, depends on the
storage manager for the physical representation of relations
and their accesses. The storage manager makes use of DOS
files. There are three communications commands: terminal
emulation, transfer from INGRES, and transfer to INGRES.
For each of these, the command interpreter invokes the trans
former. Terminal emulation turns the IBM Personal Com
puter into a terminal, and can be used to connect to a remote
INGRES installation via the RS232 port. If invoked for a
transfer, the transformer transfers a relation to or from
INGRES, transforming the relation to the format of the des
tination system in the process.

A Sibyl user typically will operate in local mode and occa
sionally ship a few relations to or from the remote INGRES
system. In local mode, the query language provides the user
with complete relational processing capabilities. In remote
mode, up-to-date copies of relations at the remote system may
be acquired and updated or new relations may be shipped
back. The control over the remote database remains with its
database manager; the Sibyl user has the same privileges as
the interactive user has regarding the remote system.

STORAGE MANAGER

The storage managerS is responsible for the allocation and
deallocation of the physical storage of all relations. Between
sessions, all relations are stored in DOS files. When being
accessed, however, a relation may be stored in its entirety in
primary memory or it may be stored in a DOS file. In the
latter case, the relation is accessed through the buffer that the
DOS file system maintains for that file. When a relation is
accessed, an attempt is made to move the entire relation to
primary memory to speed up the most typical accessing task,
query processing. Users of the storage manager are not aware

of the physical storage medium of a relation; the storage
manager moves relations internally between primary and sec
ondary storage to optimize performance, and selects the ap
propriate routines when it is invoked for an operation.

The allocation unit both in primary (or "core") memory
and on secondary (or disk) storage is a page of 512 bytes. The
ordered sequence of pages of a single relation is called a heap.
The storage manager maintains its own buffer pool for the
allocation of core heaps, but relies on the DOS file system for
the allocation of disk heaps. A heap control block (RCB)
serves to locate a heap. For core heaps the RCB contains a
sequence of pointers into the buffer pool. Since a disk heap it
implemented as a DOS file the DOS file control block is used
as the corresponding RCB. In either case, RCBs are referred
to by a heap name and initialized when the named heap is
activated.

A relation is encoded as a sequence of tuples. The physical
counterpart of a tuple is a record, and the heap of a relation
may be viewed as a sequence of records identified by number.
Since records are stored contiguously, individual records may
cross page boundaries. Given a record number, the ReB,
which contains the size of its records, can be used to deter
mine the page (or pages) containing the specified record, and
locate its offset within that page for an access.

The interface of the storage manager, which includes the
following six routines, summarizes its externally invocable
functions.

• initialization and termination of the storage manager
• activation and deactivation of a heap
• reading and writing of a record

Note that the storage manager does not support accesses to
the physical representation of attributes. The notion of attri
butes is provided by the relation manager, which stores them
as fields within records and relies on the storage manager for
accessing the latter.

RELATION MANAGER

The relation manager maintains and operates on relations,
their tuples, and their attributes. It depends on the storage
manager for allocating and accessing the physical representa
tions of relations (heaps) and their tuples (records).

The basic building block of a relation is an attribute. It is
characterized by a type (integer, string [length], etc.). A type
machine[k] is also provided as a type escape mechanism: It
denotes a raw block of k bytes. Note that the type implicitly
specifies the size of an attribute in bytes. When an attribute is
part of a relation, it is stored in some tuple and the offset
within this tuple must be known in order to access the attri
bute. An attribute index, which consists of both the type and
the tuple offset (in bytes) of an attribute, has been provided
for this purpose; it is a characteristic of a column of a relation.

A tuple is a collection of attributes of possibly different
types. The physical representation of a tuple is a record, and
the type of the latter is machine[s] where s is the sum of the
attribute sizes. Records are read and written by routines in the
storage manager. A tuple identifier (TID) serves for referenc-

Sibyl: A Relational Database System with Remote-Access Capability 541

ing a specific tuple within a relation. It may be thought of as
an imaginary attribute (column) of every relation. The TIDs
of a given relation are unique.

A relation is a set of tuples. A user views it as a table where
the rows correspond to tuples and the columns represent the
attributes of the relation. Sibyl maintains a system catalogue
of its relations. This catalogue is contained in two files: one for
the relation descriptors and one for the mapping of relation
names into indices of the relation descriptor file. The left half
of Figure 2, to be discussed later, shows the contents of a
relation descriptor. Its function is analogous to that of any file
directory entry in a contemporary file system. Most of its
entries are self-explanatory, but the validity map requires ex
planation. For reasons of efficiency, the deletion of a tuple
from a relation does not result in the deletion of the corre
sponding record. Instead, a valid-bit can be reset for the same
effect. There is one valid-bit per record in the relation, and
the sequence of valid-bits is called the validity map. Since the
size of the validity map is proportional to the number of
records (which may be quite large), the map is actually con
tained in a separate map-catalogue file.

When a relation is opened, the relation manager initializes
a relation control block (RCB) for accessing it. The RCB
format is illustrated in Figure 2. Its relation descriptor part has
been described above, but the validity map field now contains
a pointer to a data structure that has been initialized from the
map-catalogue file. The RCB also contains an access control
block for information that is relevant only while the relation

+----------------------+-----------------------+
< =-t·· > prey; ous RCB I Next RCB < .. t·· >

+======================+=======================+
I relation name 1 active 1

+----------------------+-----------------------+
I tuple size [bytes] 1 modified 1

+----------------------+-----------------------+

l--~~~~~~_~~_~~~ ______ l ~~~~~~~;;~ple I
I number of columns +-----------------------+
+----------------------
I number of records
+----------------------

current tuple
buffer

format descriptor +-----------------------+
(name and attribute I
index of each heap name
attribute) I

+----------------------+-----------------------+
validity map 1 master /

+-----------------------+
+1---------------+/ I heap control block I

1 1 1 0 1 ••• pointer
+---------------+ I I

+----------------------+-----------------------+
<-relation descriptor-> <-access control block->

Figure 2-A relation control block consists of a relation descriptor
and an access control block

is open. Heap name and HCB pointer refer to the heap that
contains the relation. The current tuple identifier provides for
random and sequential accessing of tuples, and the current
tuple buffer contains the current (or most recent) tuple ac
cessed. The master flag will be discussed below (see subrela
tions). When a relation is closed, its RCB is not automatically
discarded. Instead, the RCBs active-flag is reset. This design
permits the reopening of a relation without the overhead of
accessing the system catalogue. At the end of a session, the
status of all remaining inactive relations is updated in the
catalogue and the modified-flag determines whether the rela
tion must be written out. Sibyl also supports auxiliary re
lations, which never enter the system catalogue; they are cre
ated and opened like any other relation, but are destroyed
prior to the termination of a session.

The high frequency of selection operations during query
processing demands high performance of their executions
(c.f. the marking operation in ZETAfTORUS9

). For this rea
son, Sibyl supports objects of the subrelation type. A sub
relation consists of a subset of the tuples of another relation
(the master relation) and requires no additional physical rep
resentation. A subrelation is defined by an RCB and thus has
all of the characteristics of a relation. Its heap, however, is
that of the master relation, and its validity map identifies its
tuples as a subset of the master relation. The result of a
selection can therefore be represented by a subrelation, thus
avoiding the storage and copying costs otherwise affiliated
with the creation of a new relation for the selected tuples.
Figure 3 depicts the linkage of twO subrelations to the heap of
their master relation. (Version 1.0 supports only auxiliary
subrelations.)

The storage manager can be invoked for a variety of oper
ations on relations, tuples, and attributes after it is initialized.
The termination procedure saves all inactive relations in the
system catalogue. Relations are referred to by name. Opera
tions on relations include creation and destruction in the sys
tem catalogue, opening and closing (including subrelations),
and printing and displaying. For reasons of integrity, tuples
are operated on in the current tuple buffers of the RCBs; they
can be referenced by matching or sequential accessing, but
cannot be passed in their entirety to and from the relation
manager. Instead, attributes are the units of exchange to and

RCB(M) RCB(SI) RCB(S2)
+-----------------------+ +-----------------------+ +-----------------------+

I ____________ • _______ J ____________ '-______ J I-----------.------J
validity I maste~ I validity I sub-. I! validity I sub-. I
map relatlon map relatlon map relatlOn

+----------+ +----------+ +----------+

I 11101 ••• I HC~ I I 10101 ••• I HC~ I I 11000 ••• I HC~ I
POl nter I POl nter I POl nter

.------------------ t::::;:;;;;::1----------j ----. ;:::::::::::::::J ----.
+---- - - --- --- -- --- - - -- -- - - ---+

I I
+---- - -- - - -- - - - - - -- -- - - - - -- --+

Figure 3--Linkage of subrelations Sl and S2 to the heap of
their master relation M

542 National Computer Conference, 1984

from current tuple buffers. Attributes are referred to by attri
bute indices; they can be inserted, extracted, compared, oper
ated on, inspected (for types and sizes), and displayed. A
complete specification of the interface of the relation manager
is contained in Reference 8.

QUERY LANGUAGE AND PARSER

Sibyl's query language is a subset of QUEL,2 the query lan
guage of INGRES. It is complete in the sense that its expres
sive power is equivalent to that of relational algebra. Figure 4
describes the syntax of Sibyl's query language. The "help"
command lists all Sibyl relations or, if a relation is named, the
names, types, and sizes of its attributes. The "range" com
mand is a declarative command; it associates a relation vari
able with a named relation. The "create" command creates an
empty, named relation whose attributes are specified by the
format list. "Destroy" destroys the named relation and
"print" displays the named relation on the console.

The remaining four commands take as input all relations
named in the qualification part and in the target to produce
one output relation, the target relation. The qualification part
specifies a conjunctive list of clauses, which define the set of
tuples in the target relation. Version 1.0 lacks union and com
plementing of clauses, but since the supported comparison
operators include their individual complements, this repre
sents a loss in convenience, but not in the scope of represent
able queries. The name of a target relation is specified by a
relation name or a relation variable (if it is omitted in a re-

<COMMAND> ::= help <REL-NAME> I
help I
range of <REL-VAR> is <REL-NAME> I
create <REL-NAME> (<FORMAT -LIST>) I
destroy <REL-NAME> I
pri nt <REL-NAME> I
append <REL-NAME> (<TARGET -LIST>) <QUAL-PART> I
append to <REL-NAME> (<TARGET -LIST>) <QUAL-PART> I
retri eve (<TARGET -LIST>) <QUAL-PART> I
retrieve <REL-NAME> (<TARGET -LIST>) <QUAL-PART> I
retri eve into <REL-NAME> (<TARGET -LIST>) <QUAL-PART> I
delete <REL-VAR> <QUAL-PART> I
replace <REL-VAR> (<TARGET-LIST>) <QUAL-PART>

<TARGET -LIST> ::= <TARGET -ITEM> I <TARGET -ITEM> • <TARGET-LIST>

<TARGET-ITEM> ::= <DOMAIN> = <EXPR> I <ATTRIB>

<QUAL-PART> :: = where <QUAL> I {null }

<QUAL> ::= <CLAUSE> I <CLAUSE> AND <QUAL>

<CLAUSE> ::= <EXPR> <COHPARE-OP> <EXPR>

<COHPARE-OP> :: = < I <= I > I >= I = I ! = I <>

<EXPR> ::=

<TERM> ::=

<FACTOR> ::=

<ATTRIB> ::=

<DooIN> ::=

<REL-VAR> ::=

<TERM> + <EXPR> I <TERM> - <EXPR> I <TERM>

<FACTOR> * <TERM> I <FACTOR> / <TERM> I <FACTOR>

abs <FACTOR> I - <FACTOR> I (<EXPR>) I <ATTRIB> I <CaNST>

<REL-VAR> • <DooIN>

Pascal identifier of at most 12 characters

Pascal identifier of at most 12 characters

<REL-NAME> ::= Pascal identifier of at most 8 characters

<CaNST> ::= valid integer or string

<FORMAT-LIST> ::= <FORMAT-ITEM> I <FORMAT-ITEM> • <FORMAT-LIST>

<FORMAT-ITEM> ::= <DOMAIN> = <FORMAT>

<FORMAT> :: = ; 2 I c<.ALPHA_LEtoI>

<ALPHA-LEN> ::= 1 I 2 I ••• I 255

Figure 4--The syntax of the query language

trieve command, the target relation is displayed on the con
sole), and its attributes are specified by the target list. The
"append" and "retrieve" commands append all qualifying
tuples to an existing and new target relation, respectively. The
"delete" command deletes all qualifying tuples in the target
relation and the "replace" command replaces them \\ith attri
butes specified in the target list.

The query parserlO receives a lexicographical query from
the command buffer, checks its syntactical correctness, and
translates it into an intermediate form, a query tree, to be
interpreted by the query processor. The parsing technique is
essentially one of recursive descent, but operator precedence
is used for arithmetic expressions. Different types of linked
tree nodes are used for commands, target list items, clauses,
and arithmetic expressions. Clauses are characterized by the
number of relation variables they contain: zero-variable clau
ses (OVCs), one-variable clauses (lVCs), and multiple
variable clauses (MVCs). Owing to the importance of this
distinction to query processing, the query tree contains three
separate lists for them.

For illustration purposes, consider the sample query

append to match (NNR = nut.NUM, BCD = bolt.CODE)
where

5 < 4+2 and
bolt. WT < 4 and
bolt. COLOR = nut. COLOR and

which searches through the two relations nut(NUM, WT,
COLOR) and bolt(CODE, WT, COLOR) and adds to the
relation match (NNR, BCD) those pairs of nut numbers and
bolt codes that satisfy the four clauses. Assume that the type
of the attributes NUM, WT, CODE, NNR, and BCD was
specified ::IS jnteger and the type of COLOR was specified as
string[8] when their respective relations were created. The
query tree of this sample query is illustrated in Figure 5. The
command node contains the command, the target relation
name, and four lists: the target list and one list each for OVCs,
1 VCs, and MVCs. To improve query-processing performance,
the query tree also contains several enhancements 11 that are
not shown in Figure 5.

THE QUERY PROCESSOR

The query processor interprets query commands that are
passed to it in the form of query trees by the query parser. The
utility commands "help," "create," "destroy," and "print"
are interpreted by invoking the corresponding procedures in
the relation manager. The commands "append," "retrieve,"
"delete," and "replace" constitute the actual query-process
ing commands; each scans all relations referenced in its qual
ification part and target list, and compiles a result relation.
This common task is implemented by one shared procedure,
the query processing nucleus.

The nucleus is a generalized framework for query-pro
cessing primitives whose invocation sequences may be altered
to effect alternate heuristic strategies. Invoked with a query
tree, the nucleus operates on it, and generates tuples in a
result-relation whose format corresponds to the target list in

Sibyl: A Relational Database System with Remote-Access Capability 543

SAMPLE QUERY: append to match (NNR=nut.NUM, BCD=bolt.CODE) where
5 < 4+2 and
bolt.WT < 4 and
bo 1 t. COLOR = nut. COLOR

Query COl1J11and append

Target relation match

Target 1 ist

OVC list

lVC list

MVC list

NIL denotes the end of a 1 ist.

Figure 5--The query tree of the sample query

the query tree. It may invoke itself recursively with a modified
query tree, but the result-relation does not change (i.e., every
invocation appends tuples to the same result-relation). The
initial Sibyl nucleus makes use of four primitives for evalu
ating avcs, selection, subtree generation for dissection,12 and
result generation, respectively. Before discussing the nucleus
in more detail, we briefly describe these four primitives:

• function evaLOVC(aVC): boolean; evaLOVC evaluates the
passed avc and returns its value (true or false)

• procedure select (1 VC, subrelation); select is being passed
a 1 VC and the name of an empty subrelation of the
relation referenced in the 1 VC; it selects, from the re
lation referenced in the 1 VC, the tuples satisfying the
1 VC and returns them in into the subrelation

• function treegen (relation, tuple); query tree; treegen re
turns a newly created query tree, which is a copy of the
query tree of the current invocation of the nucleus, ex
cept that all references to attributes of the passed relation
are replaced by the corresponding attribute values of the
passed tuple

• procedure resgen; resgen appends tuples to the result
relation as specified by the target list in the query tree.
When resgen is invoked, any attribute in the target list
either references a relation in which all tuples qualify (this
may have been assured by a prior selection and relation
name substitution) or represents a value that has been
substituted in a preceding dissection. In general, resgen
appends the target list projection of the cross product of

the relations referenced in target list attributes. If all
target list attributes have been substituted by their val
ues, the cross product projection degenerates into a sin
gle tuple consisting of these target list values.

The nucleus framework lends itself to experimentation with
different query-processing heuristics and their performance
evaluation. A skeleton version that is structured according to
clause types is shown in Figure 6. Its algorithm is similar to
INGRES's decomposition,13 but reduction is not imple
mented. The nucleus is invoked with a query tree and gener
ates a result relation which is global to all recursive invoca
tions. It first evaluates all avcs; if anyone is false, it implies
that the result relation should be empty, and the nucleus
returns. (On recursive invocations, this step will always be
skipped, since all avcs have been dealt with.) If the query
tree contains 1 VCs, the appropriate selections are performed,
the affected relations are substituted in the query tree by their
respective subrelations, and the 1VCs are discarded from the
query tree. A selection resulting in an empty subrelation indi
cates that no tuples qualify at this level, and the nucleus re
turns in such a case.

When MVCs are present, anyone referenced relation may
be chosen for dissection. The Version 1.0 strategy chooses the
smallest. For every tuple of the chosed relation, the dissection
step calls the nucleus recursively with a modified query tree
returned by treegen. Thereafter, it returns; the final step,
generating result tuples, cannot be performed until all MVCs
in the query tree (if there are any) have been reduced to 1 ves
and these 1 VCs have been processed. Then, qualifying tuples

procedure nucleus(query tree);

{eva 1 uate DVe 's}

for each DVe yarD in the query tree:

if not evalDVe(varD) then return,

otherwi se, remove the cl ause yarD from the query tree;

{eva 1 uate 1 ve 's}

for each lVe varl in the query tree:

select(varl, subl);

if sub 1 is empty, return,

otherwise, SUbstitute in the query tree subl for the relation

referenced in varl and remove the 1 ve varl from the query

tree;

{eva 1 uate Mve 's}

if the query tree contai ns any Mve IS:

choose a re 1 at i on va rR that is referenced in any of the MVe' s ;

for each tupl evarT of varR:

nucleus(treegen(varR, varT));

return;

{append to result re 1 at ion}

resgen;

return;

end {nucl eus};

Figure 6--Skeleton version of the query-processing nucleus

544 National Computer Conference, 1984

are appended to the result relation. It follows that the final
step is only executed when the nucleus operates on a deepest
recursive level; that is, when the MVC step, which calls the
nucleus recursively and returns, is skipped.

The commands "append," "retrieve," "delete," and "re
place" are implemented using the query processing nucleus.
The "append" command is implemented by invoking the nu
cleus directly with the query tree and the command's target
relation as the result relation. For the "retrieve" command,
the query processor first creates the specified target relation
and then passes it to the nucleus as its result relation. For the
"delete" command, the nucleus is invoked with an auxiliary
result-relation with only one attribute, TID, and a corre
sponding target list in the query tree. Upon return, the result
relation contains the TIDs of the tuples to be deleted in the
target relation, and the query processor uses it to perform the
actual deletions. For the "replace" command, the nucleus is
invoked to generate an auxiliary result-relation of replace
ment tuples concatenated with the TIDs of the tuples to be
replaced in the target relation. The query processor sub
sequently uses the TIDs to locate and replace the correspond
ing tuples in the target relation.

THE TRANSFORMER

The transformer14 provides for Sibyl's capability of transfer
ring relations to and from remote database systems of a differ
ent brand, INGRES. It makes use of a communications pack
age that includes interrupt-driven input-outout routines for
the RS232 port and interactive dial-up and remote-command
procedures for invoking INGRES with a specific database at
the remote system. To the remote system Sibyl appears to be
a terminal; the tr:msformer sends and receives the same type
of information and interactive user of the remote INGRES
system would type and have displayed.

The transformer can be invoked for three functions: termi
nal emulation, relation transfer from INGRES to Sibyl, and
relation transfer from Sibyl to INGRES. The terminal emu
lator turns the IBM Personal Computer into a terminal, and
can be used to dial-up and log into a remote INGRES system.
(It is also used to log out.) After being connected, the user
may invoke either of the two transfer functions. The trans
former then prompts the Sibyl user for the names of the Sibyl
and the INGRES relations. When it terminates, a trans
formed copy of the source relation has been created at the
destination system. The transformation is reversible if the
attribute types of the attributes of the shipped relation are
supported by the destination system. (In Sibyl Version 1.0,
shipments were therefore restricted to integer and string attri
butes.

The transformer's function may be viewed as a generalized
transformation or translation of data from a source to a desti
nation format. 15 For such a translation, the description of
these formats (the source and destination schemata) must be
available; it may be built into the translation algorithm or it
may be specified independently (e,g" in schema files). The
generalization of the transformer in Sibyl stems from the fact
that the schema of a remote relation must be acquired from
the remote system. To do so, it requires a description of the

format (the meta-schema) of requesting the schema of the
remote relation (e.g., a certain command with specific param
eters). In Sibyl, the schema of a relation R(A1,A2, ... An)
consists of the names, types, and lengths of its attributes
A1,A2, ... An. It is readily available in the system catalogue.
INGRES, on the other hand, maintains this information in a
relation named attribute on the remote system, and the trans
former must send an appropriate query command to obtain it.

The transformer operates in two phases: the schema phase
and the data phase. On a transfer from INGRES to Sibyl, the
transformer is given the name of the requested INGRES re
lation, but not the names, types, or lengths of its attributes.
The latter are obtained during the schema phase, and the data
phase peforms the relation transfer. Figure 7 illustrates the
major operations. During the schema phase, the transformer
sends to INGRES the commands

range of a is attribute
retrieve (a.attname, a.attfrmt, a.attfrml) where

a.attrelid =" < requested relation name>"

which searches the relation attribute for the names, the types,
and the lengths of all attributes of the requested relation, and
sends this schema information in tabular form. The trans
former receives it, transforms it into Sibyl objects, stores them
for subsequent use, and creates a compatible Sibyl relation by
calling the storage manager. During the subsequent data
phase, the transformer sends INGRES commands for display
ing the requested relation. Upon its arrival in tabular form, it
is first copied into a DOS file. After the complete transfer of
the requested relation, each of its tuples is read back from this
file, transformed into Sibyl attributes by making use of the
previously stored schema information, and appended to the
destination relation by calling the storage manager. '\lhe~ the
last tuple has been processed, the Sibyl copy of the remote

VAX/UNIX system
running INGRES
at UC Berkeley

DATABASE

INGRES cOl1'lT1ands

schema

I NGRES cOl1111a nds

rel ation
WANTED

IBM PC/DOS system
running Sibyl
at UC Davis

TRANSFORMER

I RELATION
I MANAGER

I STORAGE
I MANAGER

DOS FILE SYSTEM

Figure 7-Transformer operations during a transfer from INGRES to Sibyl

Sibyl: A Relational Database System with Remote-Access Capability 545

relation is complete, and the transformer invocation termi
nates.

Relation transfers from Sibyl to INGRES are handled by
the transformer in a similar fashion. The schema information
is now obtained from the relation manager, transformed, and
sent to INGRES as part of a "create" command. Subse
quently, individual tuples are processed by obtaining their
individual attributes from the relation manager, transforming
them into ASCII representation, and embedding them into
"append" commands that are shipped to INGRES.

CONCLUSION

To demonstrate the feasibility of loosely coupling a micro
processor system with heterogeneous remote database sys
tems, a relational database system, called Sibyl, was designed
and implemented at the Computer Systems Research Labora
tory at the University of California at Davis. This relationally
complete system runs on an IBM Personal Computer with a
lO-Mbyte Winchester disk. In addition to its function as a
self-contained database system with its own interactive query
language, Sibyl provides the capability of transforming re
lations to and from the data format of a remote system and
transmitting the transformed data over a dial-up line. In this
paper, we described Version 1.0 of Sibyl essentially as it ex
isted in January 1983. An ING RES system running on a VAX!
UNIX configuration at the Berkeley campus served as the
remote database system for this version.

The paper provides an overview of the major Sibyl com
ponents: the storage manager, the relation manager, the
query parser, the query processor, and the transformer. We
emphasized those features that have a substantial effect on the
performance or capabilities of the system. The concept of
subrelations, as provided by the relation manager, permits
drastic cuts both in memory requirement and execution time
for nontrivial queries. The nucleus of the query-processing
algorithm permits experimentation with different heuristics.
The loose coupling with the remote INGRES system is a
consequence of the data transformation capability of the
transformer. Control over the INGRES database remains
with its manager; Sibyl has no more privileges than an inter
active INGRES user.

Sibyl is the product of continuing research effort and thus
is subject to continuous enhancement. We have added
FRAMIS 16 to the repertoire of supported remote database
systems; connected our IBM Personal Computers with an
Ethernet cable, which we use to access relations; and modi
fied the DOS file system to support Sibyl more efficiently. As
for current and future research, we are addressing the design
of a unified, syntax-driven transformer to deal with an open
ended set of remote systems. (Currently, two separate trans
formers are used for INGRES and FRAMIS interactions.)
Using data translation techniques,15 the syntax-driven trans
former will make use of one syntax file for each remote sys
tem. This file contains the syntactic description of the remote
data format as well as the syntax for connection commands
and relation accesses. A second area concerns measurements

of the performance of different query-processing heuristics.
In particular, we are investigating the use of selectivity factors
in the heuristics. We are focusing on verifying the conjecture
that selectivity factors of relations measured during recently
executed queries are a good indicator of the selectivity factors
that will result from future queries involving those relations.

In any event, the operational first version of Sibyl demon
strates that microprocessors can be used cost effectively to
provide a complete relational processing capability that per
mits the acquisition of data from and the integration of results
in a remote, large-scale database system without qualitatively
introducing additional problems regarding the integrity, the
reliability, and the uniformity of its data.

ACKNOWLEDGMENT

Research sponsored by IBM Corporation and by Program
MICRO of the State of California.

REFERENCES

1. Date, C. J. An Introduction to Database Systems, Reading, Mass.:
Addison-Wesley, 1975.

2. Stonebraker, M., E. Wong, and P. Kreps. "The Design and Implemen
tation of INGRES." ACM Transactions on Database Systems, 1,3 (1976),
pp. 189-222.

3. Codd, E. F. "Relational Database: A Practical Foundation for Produc
tivity." Communications of the ACM, 25,2 (l983), pp. 109-117.

4. Technical Reference, IBM Personal Computer, Hardware Reference Li
brary, (1st ed.), Boca Raton, Fla.: IBM Corp., 1981.

5. Disk Operating System, Version 1.10, IBM Personal Computer, Computer
Language Series, (2nd ed.), Boca Raton, Fla.: IBM Corp., 1982.

6. Oevenger, J. L. "A Pascal-Compatible Communications Package and Ter
minal Emulator for the 1MB Personal Computer." Technical Report
CSRL-83-2, University of California at Davis, Department of Electrical and
Computer Engineering, 1983.

7. Pascal Compiler, IBM Personal Computer, Computer Language Series,
(1st ed.), Boca Raton, Fla.: IBM Corp., 1981.

8. Choi, A. "The Storage and Relation Managers in Sibyl." Technical Report
CSRL-83-5, University of California at Davis, Department of Electrical and
Computer Engineering, 1983.

9. Mylopoulos, J., S. Schuster, and D. Tsichritzis. "A Multilevel Relational
System." AFlPS, Proceedings of the National Computer Conference (Vol.
44), 1975, pp. 403-408.

10. Femandez-Baca, D., and A. Choi. "The Query Parser in Sibyl." Technical
Report CSRL-83-7, University of California at Davis, Department of Elec
trical and Computer Engineering, 1983.

11. Choi, A .. "Documentation of the Query Processor in Sibyl," Technical
Report CSRL-83-6, University of California at Davis, Department of Elec
trical and Computer Engineering, 1983.

12. Ullman, J. D. Principles of Database Systems. Rockville, Md.: Computer
Sciene Press, 1980.

13. Wong, E. and K. Youseffi. "Decomposition - A Strategy for Query Pro
cessing." ACM Transactions on Database Systems, 1,3 (1976), pp. 223-241.

14. Clevenger, J. L. "A Transformer for Remote INGRES Relations." Tech
nical Report CSRL-83-3, University of California at Davis, Department of
Electrical and Computer Engineering, 1983.

15. Fry, J. P. et al. "An Assessment of the Technology for Data- and Program
Related Conversion." AFlPS, Proceedings of the National Computer Con
ference (Vol. 47), 1978, pp. 887-907.

16. Jones, S. E., D. R. Ries, L. Lyles, A. L. Dittli, and K. W. Johnson.
"FRAMIS Reference Manual." Livermore Computing Systems Document
LCSD-554, University of California, Lawrence Livermore National Labo
ratory, 1981. .

Functions of the database workbench

by YAHIKO KAMBAYASHI*

Kyushu University
Fukuoka,Japan

ABSTRACT

A powerful database system can be developed by a combination of a central rela
tional database system and intelligent terminals. In such an organization a typical
function of a terminal is to offer high-level user interfaces. In this paper the concept
of the database workbench is introduced and shown to be suitable for development
by such terminals. As design problems usually require a large amount of inter
action, typical functions of the workbench are (1) the design of database schemas,
(2) the design of conversion procedures between real-world data and data in the
system, and (3) the design of queries. For the first function we focus on the re
lational database design under the assumption that set values are permitted. Prob
lems of set values, especially conversion problems of dependencies, are discussed.
Various facilities for design conversion procedures and the design of queries are also
discussed.

*This paper was written when the author was at Kyoto University.

547

INTRODUCTION

As a result of the recent availability of large-scale commercial
relational database systems and powerful microprocessor
based systems, a user-oriented database system can be
economically created by a combination of a central large
relational database system and an intelligent microprocessor
based terminal (Figure 1). High-level user interfaces are pro
vided at the terminal, including graphics, very-high-Ievellan
guages, and so on. In this paper the concept of a database
workbench is introduced and shown to be very suitable for
development by such terminals. The major functions of the
. workbench are the design of database schemas, the design of
the conversion procedure between real-world data and data in
the system, and the design of queries. Since such design pro
cesses involve a large amount of person-machine communica
tion, to realize these functions at terminals saves communica
tion cost as well as shortening response time. Although the
motivation of the database workbench is similar to the pro
grammer's workbench concepts ,1 functions are completely
different because of the difference between programs and
databases. Since some problems appearing in these processes
have already been published by various authors, we will em
phasize new problems in this paper.

Among other topics, facilities for database schema design
will be discussed. Instead of reviewing high-level models for
design, we will focus on problems of schema design for the
relational model. As set values are very often used in the real
world, we permit set values for database design.2 When we
permit set values, we need to distinguish ordered sets from
unordered sets and one-to-one correspondence of sets from
direct products of sets. Another problem is the conversion of
values to attribute names.

As checking of constraints satisfied by a schema is very

Central
Relational
Database
System

Terminals realizing
(1) high-level user interfaces
(2) database workbench functions

Figure l-Organization of a database system

Functions of the Database Workbench 549

important in database schema design, a procedure for schema
checking will be discussed also. A database schema is defined
by (1) a set of relation schemas, each of which corresponds to
an attribute set; (2) constraints on attributes; and (3) con
straints on sets of attributes. Each attribute is defined accord
ing to whether it corresponds to atomic values, unordered set
values, ordered set values, or relation names. Attributes that
will be used by selection and join operations should be dis
tinguished. An example of constraints defined on a set of
attributes is a dependency. One interesting problem discussed
is the relationship among dependencies defined on attributes
corresponding to atomic values as well as set values. An effi
cient procedure to check the existence of a join dependency
is also given.

Next facilities for query design are discussed, including (1)
query design using sample data; (2) query analysis facilities;
and (3) a query database. We will show a practical method for
obtaining a proper set of sample data as an alternative to the
Armstrong relation approach,3 which usually produces re
lations with too many tuples. There are two approaches for
query analysis: syntactic analysis and run-time analysis. Using
a query database, a user can compose a query by a Boolean
combination of retrieved queries as well as a user-specified
query.

We have been developing a database workbench on a Z-80-
based microprocessor system.

DATABASE SCHEMA DESIGN FACILITIES

The design of a database schema suitable for data to be stored
is very important. The problem can be handled by the follow
ing steps: (1) By analyzing the real-world data, obtain a pre
liminary design for the database schema. (2) Using the pre
liminary design, convert the real-world data to relations in
unnormalized form. (3) Find functional and join depen
dencies in the relations. (4) Design database schemas that are
a collection of relation schemas. In the design, new attributes
can be added, a set of values can be combined, data value can
be converted to attribute names, and so on. (5) Find a suitable
database schema among candidates designed in Step 4. (6)
Design a procedure to convert real-world data to data repre
sented by the database schema designed in Step 5. In Step 1
we need to find the correspondences between attributes and
their values. For example, if we have the following data,

H. C. Lai and S. Muroga, "Logic Networks of Carry-Save Ad
ders", IEEE Transaction on Computers, Sept. 1982,
Carry-save adder, multiplier

we can determine the correspondences between subsequences
in the above text and attribute AUTHOR, TITLE, PUBLI-

550 National Computer Conference, 1984

AUTHOR TITLE PUBLICATION DATE KEYWORD

Lai, H.C./ Logic Networks of IEEE Trans. 8209 carry-save adder /
Muroga, S. Carry-Save Adders Computers multiplier

(a)

AUTHOR AFFILIATION KEYWORD

Lai, H.C. STC Computer carry-save adder
Research

Muroga, S. University oflllinois multiplier

(b)

AUTHOR AUTHOR-O TITLE

Lai, B.C. 1 Logic Networks of Carry-Save Adders

Muroga, S. 2 Logic Networks of Carry-Save Adders

(c)

Figure 2-Relations

CATION, DATE, and KEYWORD. In step 2 the data can be
expressed by a relation shown in Figure 2(a).

For example, we can assume that TITLE represents the
entity; i.e., TITLE is the key for the relation. In Step 3 de
pendencies are examined. If there are papers with the same
title (published as reports and also as journals), then we have
to change the key as a combination of TITLE and PUBLICA
TION. For sets we have to distinguish direct product and
one-to-one correspondence. In Figure 2(b), there exists a one
to-one correspondence between elements in AUTHOR and
AFFILIATION, and there exists a direct product property
between elements in AUTHOR and KEYWORD. Whether
there exist values with direct product property or not can be
checked by the existence of join dependencies.

In Step 4, various schemas can be designed with dependen
cies and property-of-set values. Dependencies are used to
determine how to decompose relations. We will define two
typical properties of sets as follows: (4-a) unordered set and
ordered set; and (4-b) Set to be decomposed into values.

In our example, AUTHOR is an ordered set, but KEY
WORD is not. To normalize the relation we need to introduce
a new attribute, AUTHOR-O, which shows the ordering.
Figure 2(c) shows a normalized form for the AUTHOR, TI
TLE part of Figure 2(a).

There are two elementary cases in which attribute corre
sponds to sets. First is (4-b-1), a set of values corresponding
to the same attribute. AUTHOR and KEYWORD in FIG
URE 2(a) are examples of this case. Second is (4-b-2), a set
that consists of values of more than one attribute. DATE in
Figure 2(a) is an example of this case. The value 8209 can be
decomposed into two values, YEAR = 82 and MONTH = 09.

In the case of (4-b-2), we need to introduce new attributes
to decompose the set. Whether or not we have to decompose
a set is determined by the usage of values. There are cases in
which both (4-b-1) and (4-b-2) are mixed.

Another problem of designing a database schema is that we
have to determine whether a value should be an attribute
value, an attribute name, or a relation name. Figure 3 shows
a timetable represented by three views. In Figure 3(a) MON-

TIME TABLE

DAY OF THE PERIOD CLASS WEEK

MONDAY 1 MATH

MONDAY 2 ENGLISH

MONDAY 3 HISTORY

...

...

(a)

TIME TABLE

PERIOD COURSES ON COURSES ON
MONDAY TUESDAY

1 MATH ART
2 ENGLISH PHYSICS
3 HISTORY ENGLISH

(b)

COURSES ON MONDAY COURSES ON TUESDAY

PERIOD CLASS PERIOD CLASS

1 MATH 1 ART

2 ENGLISH 2 PHYSICS

3 HISTORY 3 ENGLISH

(c)

Figure }-Three views of the same relation

DAY is an attribute value, and in Figure 3(b) it is regarded as
attribute name, COURSES ON MONDAY. It also can be a
relation name, as shown in Figure 3(c).

In Step 6, a procedure must be designed that will convert
the real-world data to the data for the database schema we
have designed. The procedure must handle the following
problems: First (6-a), is a format conversion. In Figure l(a)
the following conversions are required:

H. C. Lai ~ Lai, H. c., Sept. 1982 ~ 8209, etc.

Second is (6-b), error checking. Typing errors and simple
logical errors must be checked. For example, pp. i-j satisfies
j > i. Next is (6-c), value addition. If keywords are not sup
plied in the data and users must add keywords, we need to
design a system for such data addition. Finally (6-d) is schema
conversion. A schema conversion procedure from the real
world data to data in the target database schema must be
created.

We need the following programs to realize such database
design facilities: (1) A powerful partial matching program is
required to analyze the real-world data efficiently. (2) A for
mat conversion program is required by Problem (6-a). A pow
erful schema conversion program is required in Steps 4 and 6.
(4) A schema-check program is needed in Step 4 after we
design a new schema, we need to check whether it is suitable.
The program can produce sample outputs and statistical data

such as number of tuples. (5) A dependency check program is
needed at Step 3 to check whether a functional dependency or
a join dependency is satisfied. (6) An error-checking pro
gram. By preparing a domain-value dictionary for each attri
bute, error checking as well as word control is realized. For
example, to put keywords to papers, control of words to be
used is required. Finally, (7) a flexible data preparation pro
gram is required in Step 6 for the purpose of solving Problem
(6-c).

Since procedures for some programs are obvious or dis
cussed elsewhere, we will discuss Programs 4 and 5 in the next
section. For Programs 6 and 7, see the reference by Kam
bayashi and others.4

SCHEMA-CHECKING PROCEDURE

A database schema is defined by a set of relation schemas, a
set of constraints on attributes, and a set of constraints defined
on attribute sets. The schema-checking procedure consists of
a syntactic check and a check by examining data.

A relation schema is given by a set of attributes. There are
the following constraints on attributes: (1) Attributes corre
sponding to atomic values (atomic-value attribute for short)
and attributes corresponding to sets and relations must be
distinguished. (2) Attributes corresponding to set values (set
value attributes, for short) are characterized as ordered or
unordered, as sets corresponding to values of the same attri
bute, or as sets corresponding to more than one attribute. (3)
Attributes that are not used in selection, join, and division are
distinguished, since such attributes can have set and relation
values.

We can use attributes corresponding to set and relation
values if atomic values of each set and relation value are not
required to be handled separately by database operations. For
example, if the relation in Figure 2 has the attribute COM
MENT, we can permit sets for its values, since we are not
interested in retrieving papers by specifying COMMENT
values or by joining an attribute COMMENT. Values of
COMMENT are only used in the result of queries.

Constraints defined on attribute sets are as follows: (1) For
set-value attributes, one-to-one correspondence and direct
product correspondence must be distinguished. (2) De
pendencies such as functional and join dependencies exist. (3)
Existence constraints are constraints such that if a value of
Attribute A is not null, then a value of Attribute B is not null
in every tuple. (4) Value-dependent dependencies. When a
relation can be regarded as a union of subrelations and each
subrelation is identified by values of some attribute set, we
can permit different constraints on each subrelation. (5)
There must be a set of attributes that is not handled separately
by database operations.

A functional dependency X ~ Y is said to be satisfied if a
set of values corresponding to attribute set X uniquely deter
mines a set of values corresponding to attribute set Y. A join
dependency *[Xt,X2 , ••• , Xn] is said to be satisfied in relation
R if R is always expressed by a join of R[X1] , R[X2] , ••• ,

R[Xn]. Existence constraints can be expressed by a set of
objects such that for any tuple there exists an object that is an
attribute set corresponding to non-null values of the tuple. 5

Functions of the Database Workbench 551

If MONTH and YEAR are not separately handled, we can
use a combined attribute, DATE, to replace them. If YEAR
and the combination of MONTHNEAR are required but
MONTH is not handled separately, we can use YEAR and
DATE, although this representation is redundant.

The syntactic check compares sets of constraints satisfied by
two given database schemas. There are the following major
cases: First, if sets of attributes and constraints on the attri
butes are the same in both schemas, we can use dependency
theory to check the equivalence.6

,7 Next, if sets of attributes
in both schemas are the same and there are attributes that
correspond to sets in one schema and atomic values in the
other schema, we need to develop a procedure to compare
constraints satisfied by both schemas. Finally, when the sets of
attributes are different, comparison of constraints can be real
ized by dividing into basic steps.

The following theorem can be used for the second case.

Theorem 1: If each subrelation of R obtained by setting values
in attribute set X be constant, satisfies JD*[YJ,Y2 , ••• , Yn], and
R satisfies JD * [XYJ,XY2, ••• , XYn], where XYj means the
union of X and Yj •

This theorem is obvious, but we have the following useful
corollary, which establishes the correspondence of dependen
cies on attributes defined on atomic values and on set values.

Corollary 1: If the relation has attributes XY where each attri
bute in X is an atomic-value attribute and each attribute A j in Y
is a set-value attribute (i = 1, ... , n), then the equivalent relation
on XY, where all atomic-value attributes satisfy the following
join dependency is as follows: *[XAJ, XA2 , ••• , XAn]

Theorem 2: If X is a set of atomic-value attributes, A is a set
value attribute and there is functional dependency X ~ A, then
the equivalent relation defined on the same attribute set except
that A is an atomic-value attribute satisfies the following join
dependency (multivalued dependenct), where U is the set of
attributes of the relation schema: *[XA, U - A]

Since functional dependency X ~ A1,A2 , ••• , An can be de
composed as X ~ At, X ~ A2 , X ~ An, the above theorem
can be applied to the case X ~ Y.

In Case 2, we can apply Corollary 1 and Theorem 2 to both
schemas and compare the dependency set on the schema de
fined on the same set of attributes where all attributes corre
spond to atomic values.

Case 3 can be handled by the following cases:

(3-1) Conversion of attribute sets.
(3-2) Conversion among attribute values, attribute names,

and relation names.
(3-3) Conversion of case 2.

For (3-1) we have the following cases:

(3-1-a) A new attribute is introduced that corresponds to a
set of attributes.

(3-1-b) An attribute is decomposed into a set of attributes.
(3-1-c) A new attribute is introduced for an ordered set in

order to store the order explicitly (see Figure 2(c)).

552 National Computer Conference, 1984

(3-1-d) A new attribute is introduced as a set identifier.
(3-1-e) A new attribute is introduced to handle the prob

lem caused by the dependency set.

For Cases (3-1-a), (3-1-b), and (3-1-c), we can handle the
dependency conversion very easily. An example of Case
(3-1-d) is as follows: If: (i) A is an attribute corresponding to
a set, (ii) we need to change A to be an attribute correspond
ing to atomic values, and (iii) there is a requirement that we
need to .see the original set, then we can add a new attribute
B, which is a set identifier. An example is shown is Figure 4.

This kind of conversion is required when we need to intro
duce an attribute corresponding to an entity or we need to
keep the structure of attribute values-for example, a set of
set values. 9

Corollary 2: The attributes A and B satisfy the following de
pendency, where A is originally a set-value attribute and B is
introduced as a set identifier in order to make A be an atomic
value attribute: *[AB, U - A]

It is obvious from Theorem 2, since in the original relation
B~A is satisfied.

Some ·conditions for conversion of attribute values and at
tribute names (3-2) are shown in Reference 10.

Checking by examining data is also important. There are
the following problems: (1) Checking of a functional depen
dency, and, if it is not satisfied, finding a set of data that
violate it. (2) Checking of a join dependency, and, if it is not
satisfied, finding a set of data that violate it. (3) For finding
constraints we need a facility to handle small sets of example
data. (4) To evaluate a database schema we need to get statis
tical data such as the number of tuples satisfying the given
ccnditicrl.

Checking of a functional dependency X ~ Y can be done
by sorting tuples by values of X. The following theorem can
be used for efficient checking of a join dependency.

Theorem 3: 10 When JD *[Xb X2 , ••• , Xn] is satisfied in R, then
each subrelation of R obtained by setting values in attribute set
X as a constant satisfies JD *[XI - X, X2 - X, ... , Xn - X].

A

A B

al 1

a2 2

a2 1

a3 2

Figure 4---Set identifiers

For checking of the existence of JD * [Xl ,X2, ... , Xn] we select
X as a set of attributes contained in at least two components
of the JD: (1) Sort the tuples by the values of X. (2) For each
subrelation having the same values for X, examine whether
the JD *[XI - X, X2 - X, ... , Xn - X] is satisfied.

Since XI. X2, ... are disjoint, we can easily check the exis
tence of the JD as follows:

(2-1) Let p be the number of tuples in the subrelation.
(2-2) Let ql, q2, ... , qn be the number of different tuples in

R[XI - X], R[X2 - X], ... , R[Xn - X], respectively.
(2-3) If P=qIXq2X ... xqn, then the JD is satisfied at this

subrelation. Tuples violating the join dependencies
can be checked at each subrelation.

For (3) we need a schema conversion program. For the
schema evaluation, one possible method is to evaluate it by
the number of data contained in the schema under various
conditions. We select a database schema that requires less
space.

QUERY DESIGN FACILITIES

There are the following facilities for query design: (1) Query
design using sample data, (2) query analysis facility, and (3)
query database.

For (1) we need a procedure to design a proper set of
sample data. There are two kinds of query analysis facilities,
(2-a), syntactic analysis; and (2-b), run-time analysis. Query
database can be used to design a query using queries already
used.

In Reference 3, Armstrong relations are used for sample
data. An Armstrong relation for a set of dependencies is
defined as a relation satisfying exactly the dependency set, in
which any dependency not derivable from the set is not satis
fied by the relation. The problems with Armstrong relations
are that the number of tuples in a relation tends to be very
large and an actual snapshot of the relation usually satisfies
dependencies not derivable from the set. We propose a prac
tical method for selecting sample data using Theorem 3. We
assume that the dependency set satisfies the following condi
tion, since it is regarded as a practical assumption. 11

We assume that the dependency set is equivalent to a set
consisting of at most one join dependency and functional
dependencies, where the left-side set of each functional de
pendency is contained in at least one component of the join
dependency.

Let *[Xb ... , Xn] be the join dependency and F be the set
of functional dependencies. Sample relations are designed as
follows.

(I-a) Modification of the join dependency, so that every
functional dependency is contained in one component of the
resulting join dependency. If there exists a functional de
pendency Y ~ A such that Y is contained in Xi and A is not,
replace Xi by XiA. This conversion corresponds to a join
without loss of information by Y ~ A.

(l-b) Let Y be the set of attributes each of which is con
tained in at least two components of the join dependency. Let
X be the set obtained by adding all possible A to Y such that

Y ~ A is satisfied. As shown in Theorem 3, in each sub
relation defined by one combination of values of X, the join
dependency *[Xl - X, ... , Xn - X] is satisfied and has the
direct product property. Using this property, sample relations
are designed as follows:

(I-c) In the following, values for each attribute are selected
randomly from its domain (the set of values actually appear
ing in relations). For the given attribute set Y and a set F of
functional dependencies satisfied in Y, we will design a sam
ple relation on Y satisfying F as follows. For each functional
dependency X ~ Y such that X is minimal, there are at least
two tuples whose XY values are identical and others are
different.

(I-d) Let F be the set of functional dependencies satisfied
in X. Design a relation on X satisfying F under the condition
of (l-c).

(I-e) For each tuple ofthe relation designed in (I-d), we can
design n relations R1 , ••• , ~, where R is defined on the set
Xi - X. The tuple is selected from the relation on X.

(I-f) Repeat (I-e) for every tuple of the relation designed at
(I-d); the union of the tuples forms the set of sample data. For
a different tuple at (I-e) we should try to design different Rb
although we can use the same R's for all tuples.

The method for creating a set of sample data is much sim
pler than preparing Armstrong relations. For the purpose of
checking queries by sample data, our method seems to be
adequate.

There are the following facilities for query analysis:
(2-a) Syntactic query analysis. As relational language offers

wide freedom to users, sometimes semantically incorrect
queries cannot be detected by conventional syntactic analysis.
A proper warning message is printed in the following three
cases: (1) The given query consists of two or more separated
queries. (2) there exists a join of attributes that seems to be
unnatural. For example, SALARY = YEAR is permitted in
relational expressions, but usually queries containing such a
join are wrong. For this purpose we can prepare a matrix
showing the properness of joining two attributes for all possi
ble combinations. (3) There may be an error in the value of
the attribute used for a selection operation; it can be detected
by checking the domain of the attribute.

(2-b) Run-time query analysis. Sometimes a user wants to
get information during the execution of a query in order to
improve the query. For example, if a query gives a null result,
a user wants to know the number of tuples at each step of
query processing. As the optimization process of the database
system usually does not keep the order of the execution, the
given query must be divided into subqueries corresponding to
each step at the workbench and then transmitted to the main
database system for stepwise execution.

The query database contains the following: (3-a) Meaning
of the query. (3-b) Statistical data (number of uses, cost of

Functions of the Database Workbench 553

. processing, number of the result, etc.). (3-c) Information for
optimization, to avoid recalculation of access path selection.

A query is identified by specifying a set of relations to be
used in the query. A user can design a query by a Boolean
combination of retrieved queries as well as a user-defined
query. Conversion of such a query into a simpler form should
be done at the database workbench.

ACKNOWLEDGMENT

The author is grateful to Professor Shuzo Yajima of Kyoto
University for helpful discussions.

REFERENCES

1. Dolotta, T. A, and J. R. Moshey. "An Introduction to the Programmers
Workbench." Proceedings of the 2nd International Conference on Software
Engineering. October 1976, pp. 164-168.

2. Makinouchi, A "A Consideration on Normalized Form of Not
Necessarily-Normalized Relation in the Relational Data Model." Pro
ceedings of the 3rd International Conference on Very Large Data Bases.
October 1977, pp. 447-453.

3. Silva, A M., and M. A. Melkanoff. "A Method for Helping Discover the
Dependencies." In Advances in Database Theory (Vol. 1), 1981,
pp. 115-133.

4. Kambayashi, Y., C. Le Viet, S. Tokuda, and S. Yajima. "A Database
Preparation System." IEEE Computer Society, 5th International Computer
Software and Applications Conference. November 1981, pp. 335-350.

5. Goldstein, B. S. "Constraints on Null Values in Relational Databases."
Proceedings of the 6th International Conference on Very Large Data Bases.
September 1981, pp. 101-110.

6. Maier, D., A. O. Mendelzon, and U. Sagiv. "Testing Implications of Data
Dependencies." ACM TODS, 4 (1979), pp. 455-469.

7. Sadri, F., and J. D. Ullman. "The Interaction between Functional De
pendencies and Template Dependencies." ACM SIGMOD, May (1980),
pp.45-51.

8. Fagin, R. "Multivalued Dependencies and a New Normal Form for Re
lational Databases." ACM TODS 2, September (1977), pp. 262-278.

9. Kambayashi, Y., K. Tanaka, and S. Yajima. "A Relational Data Language
with Simplified Binary Relation Handling Capacity." Proceedings 3rd Inter
national Conference on Very Large Data Bases, October 1977, pp. 338-350.

10. Kambayashi, Y., K. Tanaka, K. Takeda, and S. Yajima. "Representation
of Relations for Database Output Utilizing Data Dependencies." Pro
ceedings of the 15th Hawaii International Conference on System Science,
January 1982, pp. 69-78.

11. Beeri, c., R. Fagin, D. Maier, A Mendelzon, J. Ullman, and M. Yan
nakakis. "Properties of Acyclic Database Schemas." ACM SIGACT Sym
posium on Theory of Computing. May 1981, pp. 355-362.

12. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks."
Comm. ACM, 13 (1970), pp. 377-387.

13. Kambayashi, Y., K., Tanaka, and S. Yajima. "Semantic Aspects of Data
Dependencies and Their Application to Relational Database Design."
COMPSAC, November 1979, pp. 398-403.

14. Yajima, S., Y. Kambayashi, O. Konishi, K. Tanaka, C. Le Viet, and T.
Kato. "Bibliographic Information Processing Facilities for Relational Data
base System ARIS." Proceeding of the 13th Hawaii International Confer
ence on System Science. (Vol. 2), January 1980, pp. 198-207.

Fourth-generation languages (4GLs) and personal computers

by BOULTON B. MILLER
Southern Illinois University
Edwardsville, illinois

ABSTRACT

This paper describes how fourth generation languages (4GLs) evolved from en
hanced query languages and report generators into applications development tools.
Pioneers, such as MAPPER, NOMAD, RAMIS, SQL, and FOCUS are example
nonprocedural4GLs with excellent records. Another area that offers the promise
of 4GLs in the next generation of development are the relational databases designed
for microcomputers. The third origin of 4GLs is in languages like PRO-IV,
SALVO, and REVELATION, which were developed originally as application de
velopment tools.

The increases in numbers and capabilities of personal computers demonstrate the
need for greater understanding of 4GLs since most of them fit on these small
machines. Of special note is the upgrade of the IBM Personal Computer XT to an
IBM XT/370 and the software becoming available to use on this equipment. This is
but one of the many examples where less expensive hardware is changing the entire
concept of corporate computing and applications development by users.

555

INTRODUCTION

One of the primary reasons why corporations, government
agencies, and other organizations have so readily accepted
personal computers has been their use in generating electronic
spreadsheets. Even so, many did not realize the increasing use
of personal computers until Portia Isaacson's panel discus
sions at NCC 1983. 1 Even her forecast was exceeded by Inter
national Data Corporation's statement that the "U.S. per
sonal computer market will surpass mainframes by 1984."2

J ames Martin has enabled the computer industry to recog
nize the benefits of fourth-generation languages (4GLs)
through his seminars and his book Applications Development
Without Programmers. 3 I have used this text in four graduate
courses that are part of an M.S. degree in management infor
mation systems (MIS). Each time I point out to my students
that the title can be misleading because a large volume of
programming is necessary, although most of it is transparent
to users. For example, the software for a database package
with its own 4GL for my IBM Personal Computer XT requires
nine double-sided, double-density floppy diskettes to hold the
two million bytes of the PCIFOCUS package.

DEVELOPMENT OF 4GLs

As yet there are no standards for 4GLs. Martin and McClure4

point out that these languages were created to enable non
programmers to obtain results from computers and to greatly
speed up programming. Most 4GLs link into a database,
either one created by the user using the 4GL or one created
by other software like IMS, IDMS, or ADABAS. Higher
level third-generation languages like ALGOL, FORTRAN,
COBOL, PL/1, and now Ada are procedural languages. 4GLs
are described as nonprocedural because they specify what is to
be accomplished but not how it is to be done. Many profes
sional programmers do not consider the use of 4GLs to be
programming. However, a user can obtain fast results from a
computer by using some brief 4GL statements that would take
many lines of third-generation language code to duplicate. On
the other hand, these 4GLs are not yet intended to be used for
all computer applications, and it may be a long time before
theyare. 4

We use the term user-friendly to describe the language we
know. However, this term is used by almost all 4GL sales
personnel, whether or not it is applicable. Martin applies the
two-day training course to test user-friendliness. If a user can
learn to become comfortable with a 4GL product and carry
out useful work with it in two days without the need to return
to class after a break of a week or two, the term user-friendly
can be applied. 5

4GLs and Personal Computers 557

Professor Daniel Teichroew has been recognized for a num
ber of years as a leading pioneer in systems analysis auto
mation with his Information System Design and Optimization
(ISDOS) Project at the University of Michigan.6 Professor
Teichroew's project was extended (under the direction of Pro
fessors Benn R. Konsynski and Jay F. Nunamaker at the
University of Arizona) and PLEXSYS, designed as an ana
lyst'S and user's workbench to facilitate the development of
information systems.7 These projects have provided much
background, from which 4GLs have emerged.

About a decade ago the information center concept origi
nated at IBM Canada.8 The objective was to encourage com
puter users to learn to help themselves rather than relying
entirely on computer professionals, systems analysts, and pro
grammers to develop all their applications. Forms of the infor
mation center concept have been used by many organizations
for many objectives. Special groups have been assigned to
help users learn to use report generators, screen generators,
query languages, statistical packages, graphics, spreadsheets,
and decision support system applications. Some organizations
use the information center to give users advice on which mi
croprocessor to buy and the best software for their use. Mar
tin, however, began stressing the use of 4GLs in the informa
tion center environment. Even though many organizations
have been using a form of the information center concept to
help users help themselves in a number of ways, it took IBM
to formalize the concept and to educate us in its acceptance.

A 30-month backlog in applications design seemed to be
agreeable to most discussants at the ACM (Association for
Computing Machinery) 1982 conference in Dallas. This
backlog did not begin to include the invisible backlog, identi
fied by Martin as the requests users do not submit because
they know the new requests will merely be added to the exist
ing backlog.9

Instead of information centers' reducing applications devel
opment backlogs, they began to be used to "rob Peter to pay
Paul," as pointed out in a very sobering Computerworld edi
torial. 10 As users become more familiar with what computers
can do, they request more and more computer support. Al
though this situation can defeat the initial primary purpose, in
the long run the information center staff will be accomplishing
what should have been done for many years-getting users
involved in helping themselves by greatly reducing their re
liance on computer professionals. The concept has been im
plemented in the St. Louis area, where more than three dozen
organizations belong to SLICE, the St. Louis Information
Center Exchange.

MAPPER, accepted for many years as an application devel
opment tool, is now commonly referred to as a 4GL. For
example, MAPPER was being used by the Santa Fe Railway

558 National Computer Conference, 1984

to develop major applications in 1976. Similar examples,
some even earlier, can be given for APL, NOMAD, RAMIS,
and FOCUS. However, it took James Martin to identify these
as fourth-generation languages. Care must be used when de
scribing 4GLs, since the term is accepted for MAPPER,
NOMAD, RAMIS, and FOCUS; however, in the case of
ADABAS, the 4GL is NATURAL. On the other hand, Ap
plied Data Research calls its DATACOM/DB a fourth
generation database and its ADRIIDEAL an application de
velopment system rather than a 4GL.

STATE OF THE ART

Organizations that use database management systems like
IBM's IMS or Cullinet's IDMS also use a software package
such as FOCUS to organize extracts of the database, making
this separate database available to users. When a personal
computer is used in an IBM 3270 environment (it looks like a
3270 to the mainframe), the user has all the benefits of the
FOCUS package, including the use of the 4GL to manipuiate
the data with few instructions. This 3270 environment reduces
costs of telecommunications and the cost of the computing
load on the mainframe. Of course there are some problems of
data redundancy, data updates, recovery, and security (to
name a few); but in most cases the advantages outweigh the
problems by merely requiring that users not eliminate, up
date, or add to the main corporate database. On the other
hand, the data organized as a FOCUS database can be manip
ulated in any manner desired by the user without damage to
the corporate data.

FOCUS was the first software package of its type with its
own 4GL to make a personal computer version, PCIFOCUS,
for use in a standalone environment. My first release arrived
in the summer oi 1983. This is the package reterred to pre
viously that amounted to two million bytes. This package
provides most of the capabilities of the package designed for
mainframes and should not be considered a subset of the older
package. The obvious limitation is in the amount of data that
can be handled on the smaller computer.

During the summer of 1983 numerous articles and adver
tisements began comparing database management systems for
micro/personal computers. One such article by Robert
Bowerman in Datamation analyzed 24 relational database sys
tems. It seemed that the relational packages with the least to
offer had the biggest promotion budgets. Bowerman did not
describe one of these packages as having a 4GL. ll On the
other hand, Professional Information Systems, Ltd., de
scribes a number of packages as fourth-generation software
packages that operate on personal computers: dBase II, Data
flex, Pearl, Quick & Easi, Condor, Knowledge Man (for Man
agement), and Data Fax. 12 However, none of these appear to
have a 4GL as defined in the context of this article. MDBS III
is a similar software package that earned special mention be
cause it is a network/hierarchical database management sys
tem that can be described as IBM's IMS on a Pc. Spread
sheet, database, and graphic functions are combined in Lotus
1-2-3 in an early attempt to integrate software packages; but
a 4GL is not yet available. No doubt the next generation of
these micro/personal computer software packages will contain

4GLs. They will be suitable for inclusion in a similar discus
sion at NCC 1985! What really eliminates a more detailed.
discussion of them now is that the user interface takes more
time to design and program than could ever be tolerated with
a 4GL.

Brown University's NSF-sponsored Instructional Com
puting Laboratory is organized around professional work sta
tions in a network concept using Apollo hardware and its
Apollo Domain System. This concept introduces students to
the desirability and viability of personal computing on power
ful work stations connected in a high-speed resource-sharing
network rather than on standalone hobby microcomputers. 13

At Brown the language PROLOG is considered to be a 4GL
rather than the 4GLs identified by this discussion.

PRO-IV is an example of a 4GL designed from the start as
a development tool for use by both users and computer pro
fessionals. My personal observations of its development be
gan in 1981 when the software was undergoing testing for
implementation on microcomputers from four different ven
dors. By NCe 1982 many peopie saw the PRO-IV display at
the CIE Systems booth. By NCC 1983 PRO-IV was being
demonstrated on Microdata equipment under the trade name
ALL and was announced for use on DEC equipment and the
IBM Personal Computer XT. 14 Two competitors with similar
products are SALVO from Software Automation and REVE
LATION by COSMOS, Inc.

As this is being written, the computer industry is beginning
to realize the impact of IBM's announcement of October 18,
1983, that its IBM Personal Computer XTcan be upgraded to
the XT/370 status, or the upgrade purchased as a separate
unit. 15 I have made the comparison that my own XT looks like
an IBM systeml360 Model 40 or 50 sitting on the desk. Now
it can be said that when it is upgraded to the XT/370 the PC
will resemble an IBM Systeml370 mainframe. As pointed out
by Wendy B. Rauch-Hindin during the SIGBDP breakfast at
the ACM 1983 conference in New York, this means that the
software and programs written to run under the VM/CMS and
other 370 operating systems will run on the XT/370. Of major
importance to organizations with large mainframes is their
interface with micros. 16

Numerous FOCUS competitors are announcing their soft
ware for use, like PCIFOCUS, directly on personal comput
ers. These announcements, such as those about NOMAD 2
from D & B Computing Services (formerly NCSS), System W
from COMSHARE, IDMS/R from Cullinet Software, Inc.,
and ADR's IDEAL, demonstrate that the vendors are taking
advantage of the IBM Personal Computer XT and the en
hanced XT/370. Others have made similar announcements or
are sure to make them, including IBM for its Data Base 2.
These systems will find many users in plants, sales offices,
divisions, branches, subsidiaries, and small organizations.

In summary, 4GLs suitable for users as well as computer
professionals are emerging from three primary sources: (1)
database management systems designed for mainframes that
include a language (a 4GL) capable of doing joins, for report
generation, for query, and for prototyping administrative and
business computer applications; (2) relational database man
agement packages designed initially for personal computers
with integrated spreadsheets and other functions, including a

4GL, for an applications development tool; and (3) 4GLs
designed originally as applications development tools.

With the emergence of 4GLs there are some new problems.
One concern is for the expense involved when large numbers
of personal computers are purchased. Of major concern is the
protection of organizational data. IDMS/R from Cullinet
Software, Inc., provides for a separate but interconnected
information database for data extracted from the production
database for downloading to the IBM Personal Computer
XTS.17

According to Harold Uhrbach, over 800 organizations have
written software in anticipation of their corporate and or
ganizational database protection problems. This software is in
the form of database input/output (I/O) controllers, or data
I/O controllers where there are multiple databases. 18

Organizations using software with 4GLs need to provide
data administrators with the capability of involving users in
modeling database structures. Users can be taught how to
work with database administrators to obtain inputs from the
administrators' vast knowledge of user experience. On the
other hand, database administrators must be expected to real
ize the importance of data normalization and teach users to
understand the concept. 19

All current software packages with 4GLs have limitations
and are not capable of generating all applications desired.
These software packages are not all designed with an escape
feature that permits modules written in a procedural language
to be added to increase their use.20 In other cases it is neces
sary to make the proper choice among the software items
available. For instance, if there is a heavy requirement for use
of mathematical techniques for optimization--common in
DSS applications-the choice could be either EXPRESS or
COMSHARE'S System W. Information center managers
need to realize these capabilities and limitations and encour
age their superiors to provide their centers with more than one
software tool when the requirements so indicate.

4GLs and Personal Computers 559

REFERENCES

1. Isaacson, Portia, and Benjamin M. Rosen. "Personal Computing Industry:
The Experts Forecast the Future." Paper presented at National Computer
Conference 1983, May 16, 1983, Anaheim, California.

2. EDP Industry Report. The International Data Corporation, July 8, 1983,
p. 1. .

3. Martin, James. Applications Development Without Programmers. Engle
wood Cliffs, N.J.: Prentice-Hall, 1982.

4. Martin, James, and Carma McOure. Software Maintenance. Englewood
Cliffs, N.J.: Prentice-Hall, 1983, pp. 238-241.

5. Martin, James. Applications Development Without Programmers. Engle
wood Cliffs, N.J.: Prentice-Hall, 1982, p. 108.

6. Teichroew, Daniel, and Hasan Sayani. "Automation of Systems Building."
Datamation, August 15, 1971, pp. 25-30.

7. Konsynski, Benn R., and Jay F. Nunamaker. "PLEXSYS: A System De
velopment System." Advanced System Development/Feasibility Techniques,
May 1982, pp. 399-423.

8. Hammond, L. W. "Management Considerations for an Information Cen
ter." IBM Systems Journal 21 (1982), pp. 131-161.

9. Martin, James. Applications Development Without Programmers. Engle
wood Cliffs, N.J.: Prentice-Hall, 1982, p. 4.

10. Computerworld, April 18, 1983, p. 36.
11. Bowerman, Robert. "Relational Database Systems for Micros." Datama

tion, July 1983, pp. 128-134.
12. Technology Transfer News, 1 (1983), pp. S4-SS.
13. Brown, Marc, Norman Meyrowitz, and Andries van Dam. "Personal Com

puter Networks and Graphical Animation: Rationale and Practice for Edu
cation." AEDS Monitor, May/June 1983, pp. 15-24.

14. Miller, Boulton B. Computers and Data Processing. Edwardsville, IL:
Bainbridge, 1982, p. 224.

15. Wall Street Journal, Midwest Edition, 19 October 1983, p. 3.
16. Rauch-Hindin, Wendy B. "Mainframes and Micros." Systems and Soft

ware, June 1983, pp. 68-89.
17. IDMSIR Seminar conducted by Cullinet Software, Inc., September 6, 1983,

St. Louis.
18. Uhrbach, Harold. "Trends in Distributed Data Architecture. "Presenta

tion at SIGBDP Breakfast Meeting, ACM 1983, October 25, 1983, New
York.

19. Martin, James, and Carma McOure. Software Maintenance. Englewood
Cliffs, N.J.: Prentice-Hall, 1983, p. 166.

20. Martin, James. Applications Development Without Programmers. En
glewood Cliffs, N.J.: Prentice-Hall, 1982, p. 18.

SALVO-a fourth-generation language for personal
computers

by MARVIN ELDER
Software Automation, Inc.
Dallas, Texas

ABSTRACT

Personal computer users are generally nontechnical people. Fourth-generation
products can be of great assistance to these users, especially to those who have no
access to database administrators or other computer professionals.

SALVO is a fourth-generation language for personal computers. This product
was developed over a three-year period. Since the first working prototype (August
1982), this product has evolved into areas of artificial intelligence (AI), particularly
natural-language processing and expert systems. The addition of AI functions to a
fourth-generation language represents a departure from most fourth-generation
products written for mainframe computers (except INTELLECT).

The synergism of this new area of AI research, coupled with relational database
management, has proved to be extremely beneficial in assisting end users: they can
extract information and generate applications in a much more nonprocedural man
ner than with more conventional fourth-generation approaches.

561

INTRODUCTION

SALVO is a fourth-generation language that runs on a wide
variety of personal computers, both in a standalone mode and
in an office automation environment.

The product combines several advanced software technol
ogies, most notably relational database management and arti
ficial intelligence. Its principal target is the end user who
wants to manage and retrieve information without attending
to the underlying technical details of data processing. At the
same time, it will appeal to professional programmers who
want to improve their productivity. Contrary to many
"friendly" packages, SALVO's ease of use has not been pur
chased at the expense of power and functionality.

To achieve its intended purpose, SALVO's developers have
automated most of the how-to functions, allowing the end
user to concentrate on what information is required. This
design philosophy has resulted in a product that differs in
many respects from fourth-generation products designed for
the mainframe environment, where database administrators
and other data processing professionals can provide technical
support for corporate end users.

The technical features of SALVO are arranged and de
scribed in the following categories:

1. Relational database management features
2. Application generator features
3. Artificial intelligence features

a. Natural language processing
b. Expert systems

4. Graphic automated information management

Before each set of features is described in detail, an overall
perspective of SALVO will be presented by briefly stating the
designers' working notion concerning the difference between
information and data.

Information is entered into a computer in discrete pieces of
datum elements. These data are best stored and managed by
a relational database management system (for reasons ex
plained below). Processing these pieces of data requires a
"procedural language" (even fourth-generation languages
must have procedural capabilities). Retrieving information
from a system, on the other hand, is possible through a non
procedural language.

Most end users who want to get information from a com
puter do not want to perform any detailed data processing
functions. A system that automates all of the details of data
processing would understand natural language at the level of
a human being. Of course, there are some jobs that even
human beings have to perform in a procedural, algorithmic
fashion (e.g., compute the payroll).

SALVO-A Fourth-Generation Language 563

A major hypothesis according to which SALVO is designed
is this: If data are organized and managed by a relational
database management system-one that is truly relational,
according to Codd's definition I-then an expert system (hav
ing the expertise of a database administrator and pro
grammer) can automate many of the detailed how-to func
tions involved in data processing and can retrieve and manage
information for the user. SALVO's designers call this "soft
ware automation."

This approach of combining relational database theory and
artificial intelligence theory actually surpasses the notion of
fourth-generation languages and approaches the fifth
generation ideas now being formulated and researched in
some areas.

The first two categories of features in SALVO discussed
below-relational database management and application
generation--concern themselves with the data management
and data processing functions (i.e., the procedural aspects)
required of a fourth-generation product.

The third and fourth categories, artificial intelligence and
user interface features, are concerned with the nonprocedural
information management functions-of particular importance
to personal computer users.

RELATIONAL DATABASE MANAGEMENT
FEATURES

There are many so-called relational database management
software packages that run on personal computers. Most of
these are not true relational systems. According to E. F.
Codd's definition, a true relational system has the following
components:

1. A relational data structure (i.e., flat files, relations,
tables)

2. A collection of relational algebraic functions, or rules of
inference

3. A collection of relational integrity rules

In light of the criteria stated above, the majority of "re
lational" software packages for personal computers can be
broadly characterized by noting that many of them do keep
data in relations (although normalization is usually not en
forced); some of them provide most of the relational algebraic
operators; and few (perhaps none) of them enforce the re
lational integrity rules.

An important objective of the relational data model, ac
cording to Codd, was to make the model structurally simple so
that users and programmers could communicate with one an-

564 National Computer Conference, 1984

other about the database (Codd calls this the "commu
nicability objective").

Without going into detailed discussion about the merits
(and drawbacks) of the relational model, the most important
reasons for using it in SALVO are the following:

1. If data are kept in normalized relational form, with their
integrity enforced by the relational integrity checks,
then a set of inference rules (the relational algebra func
tions) can be installed as an expert system that can find
and manipulate related pieces of data in the database.

2. Therefore users can more easily understand the struc
ture and relationship of their database and can formulate
requests for information that may be accurately inferred
by SALVO'S expert system and processed through its
concept of software automation.

Despite the many advantages of the relational model over
other database models, critics often point out that relational
database systems are inherently slow in execution. SALVO
has three aspects of relational database management designed
to overcome certain inherent disadvantages of the relational
data model.

Virtual Join

The relational algebraic operation called join compares the
values of a data field common to two tables (files) and pro
duces a third result table, which may be much larger than
either of the two tables being joined. In some cases a result
table may be too large to fit on a floppy disk on a personal
computer. To avoid this common problem, SALVO employs
a Virtual Join, in which the result of a join is not a physical
tahle hut the output device itself (CRT screen or printer).

In conventional systems, join operations over several tables
or files must be performed sequentially. SALVO's virtual join
operation can simultaneously join up to 16 tables in a single
pass, resulting in dramatic timesaving compared with other
systems.

Automatic ISAM Indexing

Before attempting a virtual join operation, SALVO auto
matically builds ISAM indexes (if they are not already built)
that speed up the execution of the join operation.

Automatic Normalization

In a large company using a mainframe relational system, a
highly paid database administrator usually sets up and main
tains the database structure. This individual uses and enforces
an integral part of database design called normalization. Re
lational databases should be maintained in third normal form
(or higher) to avoid storage anomalies that can result in lost
or redundant data in conventional, unnormalized databases.

SALVO employs a sophisticated automatic normalization
concept, since the average user of a personal computer does
not have a database administrator to consult. This unique
feature hides the complexities of normalization from the user;

in fact, the user is not even aware of this operation at all.
To summarize its relational database features, SALVO is

thought to be one of the first true relational database manage
ment systems running on personal computers. This rigid en
forcement of the relational model provides a basis for
SALVO's automatic navigation, expert system, and other ad
vanced information management concepts. SALVO also em
ploys sophisticated database methods not generally found on
mainframe computers, much less on personal computers with
only 64 Kbytes of memory!

Application Generator Features

A fourth-generation language that is entirely nonpro
cedural will allow users to retrieve information without de
tailed programming but will be limited to queries only. To
develop applications that involve any logical decisions and/or
the processing of data (e.g., storing, adding), a language must
have procedural aspects. Since personal computer users want
to be able to do many of their own computer applications
without the assistance of professional programmers, a simple
but effective procedural capability is a requirement of a
fourth-generation language.

The difference between a procedural fourth-generation lan
guage and the third-generation languages (such as COBOL
and BASIC) is the number of procedural instructions neces
sary to write an application.

James Martin, in his book Application Development With
out Programmers,2 defined a fourth-generation procedural
language as one that requires fewer than one-tenth as many
instructions as present-generation languages.

SALVO does much better than Martin's minimum require
mt::nts. Many benchmark programs have been written that
compare SALVO with other languages. For the type of appli
cations needed for personal computers, SALVO has been
often found to be 30 to 40 times more powerful than BASIC
or COBOL. Even when compared with "database languages"
that run on personal computers, SALVO is often found to be
3 to 10 times as powerful.

Much of SALVO's power as an application generator is
derived from its automatic navigation feature. Whereas other
languages require many lines of instruction just to open a file,
read a record, and test some data element to match up related
records with a "foreign" file, SALVO does this type of job
automatically. Especially when several files are to be related
in a report, SALVO's automatic navigation (combined with its
virtual join feature) can save hundreds of lines of code com
pared with other languages.

Professional programmers are of course interested in
fourth-generation procedural languages for the same
reason-fewer lines of code do the same job. On a personal
computer, a fairly simple application written in COBOL (say
a payroll) could easily cost more to program than the com
puter itself! SALVO has very powerful commands for the
professional programmer. Many users will never use some of
these advanced features. Other reasons than simply fewer
lines of code are also important to software developers: no
need for specification documents and less need for documen
tation, for example.

ARTIFICIAL INTELLIGENCE FEATURES

The field of artificial intelligence (AI) comprises many diverse
areas. Two particular areas of AI are important to the devel
opment of user languages: natural language processing and
expert systems.

SALVO contains elements of both of these AI concepts;
however, SALVO does not purport to be a sophisticated AI
product. In fact, AI concepts are used in SALVO only to the
extent that the user interface portions of the package are
made simpler, as will be explained below.

Natural Language Processing

Computer programming languages are notoriously insistent
upon a rigid syntax: The commands in the language have to be
stated in a precise order of words. Human language is much
richer and diverse in the way that an idea may be expressed.

SALVO has a Request facility, which allows users to ask for
information (i.e., make a query) in natural language. This
facility is not intended to allow purely "conversational"
queries-as if one were talking to another human being. The
major benefit of the Request facility is to state a query in a
straightforward way, using declarative natural language com
mands, without having to obey the syntax rules of a computer
language.

Using Request, a user can state a query that can be run
immediately and never see the underlying procedural lan
guage, which is actually translated from the natural language
request. Alternatively, the user can view (and then modify)
the SALVO procedural template program, which the natural
language processor built from his or her request.

SALVO's natural language processor employs a frame-and
slot approach to decompose the user's request into a format
appropriate for an internal expert system (explained in the
next section).

This AI method allows the user a considerable amount of
freedom in the way his or her request is stated. As an exam
ple, ifthe user does not include a verb in a command, a default
verb (list) is supplied automatically. In SALVO the following
three requests are identical: "List the accounts for salesman
Smith," "For salesman Smith, list his accounts," and "Sales
man Smith accounts." These examples illustrate the degree of
syntactical freedom allowed in SALVO's natural language
processor.

Expert Systems

An expert system emulates the decision making and the
knowledge of a human expert in a particular field. Two major
components of an expert system are (1) a means of making
inferences based on a set of rules (formal andlor intuitive) that
the expert uses to make decisions and (2) a knowledge base
that models the knowledge accumulated by the expert per
taining to his or her field of expertise.

SALVO contains an expert system with the following com
ponents:

SALVO-A Fourth-Generation Language 565

1. A set of inference rules that a database administrator
would use

2. A knowledge base consisting of the data dictionary of
the user's particular database

SALVO's expert system is utilized in three different areas
of the software:

1. Translating a user request from natural language to a
SALVO procedural template program

2. Assisting a user or programmer in setting up his or her
database (i.e., automatic normalization)

3. Compiling a SALVO procedural program into exe
cutable form-specifically, deciding internally how to
handle most of the details of conventional programming.

GRAPHIC "AUTOMATIC INFORMATION
MANAGEMENT"

The research and development of SALVO, over a three-year
period, evolved in ways that were unanticipated at the outset.
One discovery that evolved out of the project is a new working
model of information processing, not previously published (to
our knowledge) in the literature.

This new working model of information processing is
roughly stated as follows: Given a relational database, given
a perspective of looking at that database from a particular
user's viewpoint, and given an expert system that "knows" the
rules of relational database navigation, it is possible to deter
mine what information can be derived for just this particular
view.

SALVO's developers have named this new approach "auto
matic information management" and have provided a graph
ics user interface to implement this approach.

This facility in SALVO is accessed through a function called
"view." First the user selects a particular file that serves as the
focus point of his or her intended request for information. A
graphic representation of the user's view of the primary file
and its related files is then displayed. A natural language
request is started for the user, first of all to simply list the
primary file selected. The user can then include information
from other related files in the request by simply selecting from
the graphic display of the files.

As each related file is selected, the user's request is built
automatically in natural language, just as if the user had typed
the query through the request function.

The view function of SALVO allows people with no pro
gramming experience, and with no desire to see or manipulate
even a fourth-generation language, to request and generate
information from their personal computers.

OPERATING ENVIRONMENTS

SALVO incorporates several state-of-the-art features into a
software package that runs in a 64-Kbyte environment on a
personal computer. Written in FORTH, this new fourth
generation language is transportable to many popular types of
microcomputers andlor operating systems.

566 National Computer Conference, 1984

The first version of SALVO is designed for a single user
personal computer system. SALVO-II, a version available in
the first quarter of 1984, has features desirable in distributed
database processing environments (i.e., the office automation
environment) .

SUMMARY

Personal computers need a particular type of fourth
generation language--one that end users can use without any
help from programmers, database administrators, or other
computer professionals.

The combination of two a~vanced software technologies,

relational database management and artificial intelligence,
provides a synergistic approach to information management
that is perhaps more powerful than either of these tech
nologies by itself has been able to achieve. SALVO may be the
first of this type of fourth-generation product to run on a
personal computer.

REFERENCES

1. Codd, E. F. "Relational Database: A Practical Foundation for Productiv
ity." Communications of the ACM, 25 (1982), p. 111.

2. Martin, J. Application Development Without Programmers. Englewood
Cliffs, N.J.: Prentice-Hall, 1982.

Uniform organization of inverted files

by DALIA MOTZKIN and KENNETH WILLIAMS
Western Michigan University
Kalamazoo, Michigan

and
KARL CHANG
University of Nebraska
Omaha, Nebraska

ABSTRACT

A range attribute is defined as an attribute that may assume a range of values.
Examples might be Age = (1-10, 11-14, 15-16, ...) or Salary = «(}-1000, 1001-
1500, ...). This paper is concerned with the selection of ranges that will produce
reasonably uniform numbers of records in each range. A set of algorithms has been
developed to enable the file designer to obtain a set of ranges such that records are
distributed uniformly between the ranges. Although in a given case perfect uni
formity may not be achievable, the algorithms can find ranges such that for a set of
X records in a range, bounds a and b may be given so that a :5 X :5 b for all ranges.
The algorithms have been tested with a PASCAL program.

567

INTRODUCTION

Applications such as database management systems have
made widespread use of inverted file directories for many
years. General descriptions of inverted files can be found in
Knuth,10 Horowitz and Sahni,5 and others. This wide usage of
inverted files stems from their suitability for retrieval of data
associated with dense attributes. As Knuth10 points out, they
are extremely efficient in the processing of Boolean queries.
Efficient use of inverted files in query optimization has been
shown by Liell and Putkanen.14,15

Many recent publications have described systems using in
verted files. Harding and Willee show how inverted files
provide an efficient tool for automatic document classifica
tion. Schultheisz et al. 18 use inverted files in a chemical dictio
nary. Schultheisz19 uses inverted files to retrieve data from
TOXLINE, a bibliographic database on toxicology composed
of 11 different files from different sources. He found inverted
files to be an efficient tool in handling data from differently
structured files, with many replications of bibliographic
records. Conrad et al. 2 used inverted files in a statistical pack
age with a cancer database at Boston University hospital. This
includes only a small sample of the uses of inverted files.

A number of improvements and modifications for inverted
files have been developed. Such modifications address some
of the drawbacks of large inverted files, such as excessive
space requirements or long access times. Compression tech
niques that improve the use of space in inverted files have
been developed by Schuegraf,17 Jakobsson,6,8 and Jakobsson
and Nevalainen.7 Combinations of clustering of records to
gether with compression techniques have been suggested by
Nevalainen, Jakobsson, and Berg.13 This technique improves
space utilization and at the same time reduces access time.
Motzkin12 incorporated inverted files into normal multiplica
tion table directories. In normal multiplication tables the attri
bute values as well as the address lists are organized in clus
ters. Several attributes can be stored in the same "Table."
This technique provides for very rapid access to single as well
as multiple attributes, while it is economical in space utiliza
tion. Hoffer4 concentrates on the process of selecting the attri
butes to be inverted and makes some recommendations.
Cardenas1 provides ways to measure the performance of in
verted files and suggests that the attribute values may be kept
in a separate, hierarchical structure with pointers to the ad
dress lists. Johnson and Webster9 propose an efficient way to
update an inverted file. Additional references, especially re
garding earlier development, can be found in the extensive
bibliography compiled by Schkolnick.16

Uniform Organization of Inverted Files 569

In most cases, designers of inverted file directories use
ranges of values for attributes that are selected in an arbitrary
manner. The problem of optimization of the lengths of ad
dress lists has not been adequately addressed. Arbitrary selec
tions may produce ranges with widely disparate numbers of
records within each range. This paper provides some algo
rithms that may be used to produce ranges with more uniform
numbers of associated records. The algorithms are in a form
excerpted from the original PASCAL program.

To illustrate these concepts we start with a master file con
sisting of a set of records numbered 1-N. Each record will
contain certain attributes. From the master file, one may con
struct an Initial Directory involving one of the attribute fields
of each record. For this discussion we are interested in an
attribute field whose values may assume a large number (pos
sibly infinite) of values. This Initial Directory will consist of a
set of ordered pairs containing (attribute value, record num
ber). We also may refer to record numbers as addresses or
keys. As an example, suppose N = 6, the record numbers are
integers 1-6, and the attribute of interest is Monthly Salary.
The Initial Directory might then contain the following:

Monthly Salary
600

1100
800
700
600

1000

Record Number
1
2
3
4
5
6

One then sorts the initial directory on attribute value (this
is necessary in order to use the algorithms developed here),
which, for this example, would produce the following:

600
600
700
800

1000
1100

1
5
4
3
6
2

Although this small example does not completely illustrate
the problem, it· is easy to see that if arbitrary ranges for
monthly salary, such 0-500,501-1000,1001-1500,1501-2000,
2001-100,000, are chosen for the construction of an inverted
file, the number of records in each range may exhibit no
uniformity of size. If the above ranges are selected, for this
example, the following Master Directory will be produced:

570 National Computer Conference, 1984

0-500
No entries

501-H)00
1,5,4, 3, 6

1001-1500
2

1501-2000
No entries

2001-100,000
No entries

Note that the Master Directory consists of two parts, the
attribute ranges and the associated file addresses.

The algorithms presented here rely on first producing the
Sorted Directory. This is a normal step in the production of
most inverted file directories. The next step is to determine a
desirable number of records per interval as appropriate ranges
for the Master Directory are considered. This number should
be chosen in such a way that when the user requests all records
in a range, not too many records for the application are re
turned. The ranges, however, should not be chosen too small,
or a very large number of such ranges may be required, which
will cause a correspondingly large amount of time to be de
voted to searching for the proper range entries in the Master
Directory. In this case the Master Directory will occupy a
great deal of space, and Master File updates will often involve
updating the Master Directory.

Consider a file consisting of 1,000,000 records with a
Monthly Salary range from $15.00 (for some part-time em
ployee) to $700,000.00 (for the company president). If only a
few ranges are chosen, the number of records in each range is
very large. Or! the other hand; if salary nm.ges of $100.00 are
chosen, say 0-99, 100-199, etc., the Master Directory will
consist of 7,000 range entries.

OPTIMIZATION OPTIONS

The algorithms presented here provide the designer of the
inverted file structure with four options to optimize with dif
ferent criteria. We assume the master file contains N records.

Option 1

The user specifies the range for each interval.
This represents the typical nonoptimized approach. The

algorithm simply finds pointers to the records within each
interval as it constructs the Master Directory. This is done by
a single sequential pass through the Sorted Directory.

This option may also be used to obtain uniform distribu
tions manually. After the file designer requests a given range,
the algorithm informs the designer how many records the
range will contain and allows for a possible redefinition of the
range.

A range can also be completely omitted from the inverted
file. This may be desirable when a specific attribute value
corresponds to a large number of the records in the file. For
example, the salary of $1,000 in a file of 1,000,000 records
might occur 100,000 times.

Option 2

The file designer specifies the total number of interval
ranges.

If M ranges are specified, the program then finds the proper
ranges so that fNlMl items will be placed in each range. This
is done by constructing appropriate range sizes as it makes a
single sequential pass through records in the Sorted Direc
tory. No backtracking is necessary. The same range may be
included in more than one interval; e.g., if we have 60 records
per interval and if there are 180 records with the value 1000,
then we will have at least 3 intervals corresponding to the
value 1000.

The advantage of Option 2 is that fixed-size address lists are
provided. One may choose the size to exactly fill one physical
block.

Option 3

The file designer specifies the desired number of records
per interval.

If K records per interval are specified, the program will
construct approximately NIK. ranges. The designer may speci
fy a lower bound, a, and an upper bound, b, on the permis
sible number of records per range. Otherwise, the algorithm
will use a = .5K and b = 2K. In this option the algorithm does
not allow a specific attribute value to belong to more than one
range. This organization requires a certain amount of latitude
in the number of records per interval. Consider a sorted file
as follows:

500,4
600,2
600,3
600,1
700,6

1400,5
1800, 7

Ranges cannot be chosen to provide exactly three records
per range without having the value 600 belong to two
intervals.

The (a, b) range will not be violated without specific per
mission from the designer; but if permission is not granted,
some ranges may be omitted from the Master Directory. It
may be desirable to omit ranges. For example, if an attribute
value occurs in 1/5 of the records, then it is more efficient
simply to look for records with such an attribute value with a
sequential search of the file. The maintenance and the space
allocation of such a large list of addresses cannot be justified.

A user or an application program requesting records with a
very frequent attribute value that has not been included in the
directory will first be notified as to the number of correspond
ing records; and if the records are still requested, they may be
obtained with a direct search.

If one regards a single pass through the Sorted Directory as
involving a read and write for each entry, Option 3 may in
volve 1.5 passes, since certain entries may be read twice but
only written once.

Option 4

The algorithm selectes the number of ranges, M, and the
desired number of records per range, K.

In this case, with the goal of minimizing future search time,
M = N* * (1/2) and K = N* * (1/2) are chosen. The user may then
specify permissible upper and lower bounds on the number of
records per range. Otherwise, the program will select .5K and
2K, as in Option 3. Also as in Option 3, these will not be
violated without specific directions from the designer. Again,
at most 1.5 passes through the Sorted Directory are required.

ALGORITHM OVERVIEW OF OPTIONS 3 AND 4

We start by trying to allocate the first K entries to the first
range, the second K entries to the second range, etc. Problems
may arise. Suppose the first K-2 records are in the first range
but entries K - 1, K, K + 1, ... , K + W all have equal attri
bute values. In practice such situations may occur frequently.
In an inverted file for the Monthly Salary attribute with
1,000,000 records, one may want 1000 records in each inter
val; but there may be 5000 people earning, say, the exact
salary of $1500.

The general approach to these problems is to allow the
number of records to vary. Lower and upper bounds, a and b,
must be either specified by the user or selected by default by
the program. The algorithm then chooses the value between
a and b that is closest to K. Consider the example in the
sorted-file list with K = 3 and bounds 2 and 4. The ranges
chosen will be 500-600 with 4 records and 700-1,800 with 3
records. If no value between a and b will work, the file de
signer is provided with the choice of violating these size
boundaries or of simply not including the offending attribute
value with many occurences in the final Master Directory.
Consider a military employment file with 50,000 soldiers re
ceiving a salary of $606 per month, thus producing the range
606-606 with 50,000 entries.

When an attribute value of a very high frequency occurs
with more than the allowed number of records, it is either
removed or kept in a separate interval. Then the previous
distribution between the two previous intervals is optimized.
(See procedure COMBINE_O~REDISTRIBUTLTWO_
INTERVALS in Appendix A.) Consider the following:

100,3
200,7
200,4
300,8
400, 2
400,1
400,6
400, 9
400, 5

If we have a Sorted Directory as in the list immediately
above, with K = 3, a = 2, and b = 4, then initially the first

Uniform Organization of Inverted Files 571

range will be 100-200; but after determining that the value 400
cannot be included in the interval, the first range is modified
to be 100-300. In other situations the ranges of the two pre
vious intervals may be reassigned to provide both intervals
with a better distribution of records than a single combined
one.

ADDITIONAL NOTES

No matter how intervals are chosen, it may become necessary
to obtain a set of records for a range not originally specifically
included. Suppose the ranges are 0-999, 100-1499, 1500-
2000, ... , and a system user specifies the range 1200-1600.
The query language program should have a module to find the
union of 100-1499 and 1500-2000, then to check each record
to determine whether it is in the desired range. This is part of
handling general logical queries. The uniform approach devel
oped here will yield more efficient results for this in most
cases, since the union of small intervals normally involves a
desirable smaller number of records.

Note that the algorithms may occasionally find a range hav
ing fewer records than the lower bound specifies. This can
only occur when there are two attribute values with high fre
quency and a very few values between these two. (In practice
this case will probably occur infrequently.)

The concept of inverted files using ranges of values is not
limited to those with numeric attributes. It can also be used
for fields such as names or bibliographic keywords. Alpha
betic ranges may be used. In the case of an attribute such as
a bibliographic keyword a given attribute value may fill a
complete range or (in the case of Option 2) several ranges.

ALGORITHM EFFICIENCY

Most methods of creating a Master Directory for inverted files
will involve an initial sort by attribute value. This O(N log N)
process then may be considered as the initial fixed portion of
the time required. From this point at most 1.5 passes (Options
3 and 4) through the Sorted Directory are required. Options
1 and 2 require only a single pass. The extra time over a single
pass is required in Options 3 and 4 when equal values are
found at what should be interval range boundaries. The worst
case is when the whole file has the same attribute value and it
is kept in the directory. After sorting, all algorithms are of
Order N.

In terms of space for the Master Directory, clearly no addi
tional space (more than other methods) is necessary. In fact,
less space than normal will be required if the file designer
elects to not include certain items whose attribute values have
numerous occurences. Therefore, the space requirement is
less than or equal to that required for arbitrary selection of
ranges.

UPDATING

Updating may be done in a manner similar to that for any
inverted files. There are two basic approaches:

572 National Computer Conference, 1984

1. All deleted addresses are flagged and all additions are
maintained in a separate file. Periodically the whole di
rectory is reorganized. Reorganization will require at
most 2.5 passes, 1 pass to merge the address lists and
obtain a new Sorted Directory and 1.5 passes to recon
struct the new uniform inverted file.

2. Flag the addresses to be deleted. Insert each new ad
dress immediately and remove deleted records at this
time also. After some period of time the bounds
a::;; X::;; b for the size of ranges may no longer hold, and
the whole directory will need to be reorganized.

Further work on efficient updating procedures and work to
develop more optimal organization methods for discrete attri
butes may hold value.

CONCLUDING REMARKS

Methods have been developed to enable a file designer to
produce Master Directories of attribute values with ranges
that provide for uniform numbers of records in each. Algo
rithms have been developed and programmed in PASCAL to
implement these processes. The algorithms are flexible and
efficient. The method may be applied to attributes with non
numeric values by choosing some ordering-e.g., alphabetical
order.

Listings of the algorithms, a sample data file, and the results
of computer runs are included in the appendices.

REFERENCES

1. Cardenas, A.F. "Analysis and Perfonnance of Inverted Database Struc
tUfe5." Cuniiiluiiications of the ACAt, 18 (1975), pp. 253-263.

2. Conrad, L., S. Bloom, C. Cooper, T. Cannon, R.H. Friedman, J. Horo
witz, J. Krikorian, and J. Lopez. "The Cancer Data Management System
Statistics Package," Proceedings of the Fourth Annual Symposium on Com
puter Applications in Medical Care. New York:IEEE, 1980, pp. 1281-1285.

APPENDIX A (The Al,orit~)

3. Hardings, A.F., and P.W. Willet. "Matrices." Journal of the American
Society of Information Science, 31 (1980), pp. 298-300.

4. Hoffer, J .A. "Database Design Practices for Inverted Files." Information
and Management, 3 (1980), pp. 149-161.

5. Horowitz, E., and S. Sahni. Fundamentals of Data Structures. Potomac,
Md.: Computer Science Press, 1976 pp. 531-532.

6. Jakobsson, M. "Reducing Block Accesses in Inverted Files by Partial Clus
tering." Information Systems, 5 (1980), pp. 1-5.

7. Jakobsson, M., and D. Nevalaines. "On the Organization of Hybrid In
dexes." Proceedings of the International Conference on Databases, 1980,
pp. 250-259.

8~ Jakobsson, M. "Evaluation of a Hierarchical Bit Vector Compression Tech
nique." Information Processing Letters, 14 (1982), pp. 147-149.

9. Johnson, J.S., and D.B. Webster. "Updating an Inverted File Index-A
Perfonnance Comparison of Two Techniques." Computer Journal, 25
(1982), pp. 169-175.

10. Knuth, D.E., The Art of Computer Programming, Volume 3. Reading,
Mass.: Addison-Wesley, 1973.

11. Lie, J.W. "Algorithms for Parsing Search Queries in Systems with Inverted
Files." ACM Transactions on Database Systems, 1 (1976), pp. 299-316.

12. Motzkin, D. "The Use of Nonnal Multiplication Tables for Information
Storage and Retrieval." Communications of the ACM, 22, (1979),
pp. 193-207.

13. Nevalainen, 0., M. Jakobsson, :md R. Berg. "Compression of Clustered
Inverted Files." Mathematical Foundations of Computer Science. Ber
lin: Springer-Verlag , 1978, pp. 393-402.

14. Putkanen, A. "On the Selection of Access Paths in Inverted Database
Organization." Information Systems, 4, (1979), pp. 219-225.

15. Putkanen, A. "The Order of Merging Operations for Queries in Inverted
File Systems." International Journal of Computer and Information Sciences,
9 (1980).

16. Schkolnick. "A Survey of Physical Database Design Methodology and
Technique." Proceedings of Fourth International Conference on Very Large
Databases. New York:IEEE, 1978, pp. 474-487.

17. Schuegraf, E.J., D.F. Walker, and K.L. Kahnan. "Design and
Implementation of an On-Line Chemical Dictionary." Journal of the Amer
ican Society of Information Science, 29, (1978), pp. 173-179.

18. Schultheisz, R.J.; D.F. Walker; and K.L. Kanaan. "Design and
Implementation of an On-Line Chemical Dictionary." Journal of the Amer
ican Society of Information Science, 29, (1978), pp. 173-179.

Ei. Schuitheisz, R.i. "l'uxline Evuiuiiun ul i'ui On-Line Iilteractive Bit~;

ographic Database." Journal of the American Society of Information Sci
ence, 32, (1981), pp. 421-429.

<**
* SUBJECT: All OPTIMAL DESIGR or INVERTED FILE *
**************~**)

VAl SORTED~TR_LIST AIlAY[O •• 1000,I •• 2] OF INTEGER;

ORIGII~TR_LIST ARBAY[O •• 1000,1 •• 2] OF INTEGBR;

MASDII I AIlAY[1 •• 50.1 •• 100] OF INTEGER;

TOTAL_ATR_OF_IITVAL
BY
LV
NI
NI

III
MAXJlII
KIN Nil

USEI_O"IOI

AllAY [1 •• 50]
I IRTEGER;
: IIiTEGEI;
: IRTEGER;

IN'I'EGEI;
I IRTEGER;
I IRTEGER;

IN'I'EGElj
IIiTEGEI;

OF INTEGER;

(* Til! TABLE CONTAINS SORTED LIST or BCORD 110. ,. ITS
COUESPORDIIiG ATTIIIUTE VALUE PAIlS *)

(* Til! TABLE CORTAINS ORIGIIIAL LIST or BCOID RO. & ITS
COUESPORDIHG ATTRIBUTE VALUE PAIlS *)

(* Til! MASTER DIBCTOKY OF INVERTED FILl WHICH CORUlNS
NUMBER or INTERVALS, EACH INTERVAL CONTAINS LOW & BlGH
ATTIIBUTE VALUES 6 LIST or IECORDS WBOSEATTIIBOTE VALUE
BETWEElI TBEM *)

(* TOTAL NUMBER OF IECORDS COUESPOHDIHG TO IACH INTEIVAL *)
(* Til! HlGIl!ST ATTIIBUTE VALUE (II BACH INTERVAL *)
(* THE LOWEST ATTIIIUTE VALUE (II EACH INTERVAL *)
(* THE TOTAL NOMBER or INTEIVALS *)
(* Til! TOTAL ROMBEt OF BeORDS IN PILE rILE tIr)
(* Til! DESliED NOMBEI or IECORDS PER INTERVAL *)
(* Til! MAXIMUM NUMBEI OF BCORDS PEl INTERVAL *)
(* Til! MINIMUM NUMBER or BCORDS PEl IIITBRVAL *)
(* Til! CHOICE USEI CAl HAVE IN ORDER TO DETEBHlNE THE

INTERVAL DISTIIIUTION *)

ATI.VAL
DELETED_INTVAL

POS_OF_IST ATI. CUR IIITVAL
POS OF LST ATR LST IIITVAL

- - - -CUICIIITVAL

EXPAND
1iI0_OF _~UAL_ATRVALS

I,J,I,L,M,II
DORE

USER_USPORES

IliITEGEI.;
IliITEGER ;
IIITEGER;
IIiTEGEI.;
IIiTEGEI.;
IIiTEGER;
I IITEGE R;
INTEGER;
BOOLEABj
CHAI.;

Uniform Organization of Inverted Files 573

(* A SPECIFIC ATTRIBUTE VALUE *)
(* AR IllTEI.VAL HAS BEER EXHAUSTED *)
(* POIIIT TO 1ST ATTRIBUTE POSITIOR OF CUI.RINT INTEI.VAL *)
(* POIIIT TO LAST ATTRIBUTE POSITIOR OF PUVlOUS IliITEI.VAL *)
(* THE CURIEIT IIITEI.VAL !lUMBEI. *)
(* COURT HOW MANY ATTRIBUTE VALUES IN A SPECIFIC INTEI.VAL *)
(* COUNT PARTICULAR ~UAL ATTRIBUTE VALUES IN AR IIITEI.VAL *)
(* THE INDICES OF LOOPS *)
(* THE SWITCH STATES TlWE OR FALSE TO CORTROL THE LOOPS *)
(* THE USEI. BESPONES EITHER YES 01. NO *)

(***)

PROCEDURE USEI._CHOOSE_INTEI.VALS; II OPTION 1 II

II THIS PI.OCEDUU IS TO LET USER SELECT THE RARGE OF EACH INTERVAL FOI. MASTER DIUCTORY II

II <- OJ
I <- 0;
J <- 1;

UPEAT
N <- N + 1;
I.EAD(LV, BY) ;

II INITIALIZE COUNTER FOR INTERVAL .lWMBER II
II IIiITIALIZE COUNTEI. FOR NUMBER OF IIiTERVALS II
II INITIALIZE POIIiTER WHICH POIIIT TO A SPECIFIC UCORD IIUMBER & ATTIlBUTE VALUE II

IF (LV <> 0) OR (BY <> 0) THEIl

I <- I + 1;
MASDIR[I,I] <- LV;
MASDII.[I,2] <- BY;
I <- OJ
WHILE (SORTED~TR_LIST[J,2] <- BY) AND (J <- NR)

It <- It + 1;
MASDII.[I,I+2] <-- SORTED~TR_LIST[J,I];
PIlIiT (MASDII.[I.I+2);
J <- J + I.

PIlIiT ('HOMIEI. OF BCOIDS - ' ,1);
TOTAL ATI. or I.TVAL(I] <- I;
~b,v~~~~SPO~/,
l' USER RESPONES a 'H' THEN

TOTAL ATR OF IIITVAL[I] <-- 0;
MASDIR[I.l1 <- 0;
MASDIR[I,2] <-- 0;

UIITIL(LV - 0) AND (HV - 0);
III <- N;

END USER_CHOOSE_IIITERVALS;

11***11

PROCEDURE PROGIWC~UALLY_DISTRIBUTE_lIlTEI.VALS; II OPTIOII 2 II

PRINT('ENTEIl THE TOTAL IlUMBER OF IIITEI.VALS YOU WANT » '); BREAKO; RESETO;

READ(III) ;

1111 <- Nit DIY NI;
IF NR MOD HI <> 0

THEIl Nil <- Nil + 1;
POS_OF_LSTJTR_LST_INTVAL <- 0;

FOlt I <- 1 TO NI-l
TOTAL ATR OF IHTVAL[I] <- HRI;
MASDIR[I,l] <- SORTEDJTR_LIST[POS_OFJ.ST~TR_LST_IHTVAL+I.2];
MASDI R[1,2) <- SORrED~TILLI ST [POS_OF _LST_ATR_LST_INTVAL+NIl, 2) ;
J <- 2;
FOlt It <- POS_OFJ.ST~TR_LST_INTVAL+l TO POS_OFJ.ST_ATRJ.ST_INTVAL+NIl

J <- J + 1;
MASDIR[I,J) <-- SORrED_ATIt_LIST[K,I);

POS_OF_LSTJTR_LSTJIITVAL <- POS_OF_LST_ATR_LST_INTVAL + NRI;

MASDIR[NI.I] <- SORrED_ATR_LIST[POS_OF_LSTJTILLST_INTVAL+I,2);
MASDIIl[III,2) <- SORrED_ATRJ.IST[HR,2);

J <- 2;
FOR K <- POS_OFJ.ST~TILLST_INTVAL+1 TO IIR

J <- J + 1;
MASDIR[I,J] <-- SORrED_ATR_LIST[K,I);

TOTAL_ATIt_OF_IIITVALlIIIl <- J - 2;

END PI.OGRAM_EQUALLY_DI STIlBUTEJNTERVALS;

11***11

574 National Computer Conference, 1984

PIOCEDURE COMBINE_OI_REDISTRIBUTE_TWO_IHTEIVALS;

II THIS PIOCEDURE CHEas PREVIOUS 2 IHTERVALS TO SEE IF THEY CAR COMBINE IREDISTRIBUTE IN ORDER TO BAVE UNrrOBH INTERVALS II

II CHEa IF THERE EXISTS TWO IIITERVALS OR IF TWO IHTERVALS SHOULD COMBINE OR REDISTRIBUTE II

IF (CUI_IHTVAL > 2) ARD (CUR_IHTVAL - 1 <> DELETED_IHTVAL) THEN
FIRST <- CUR_IHTVAL - 2;
SECOND <- CUR_IHTVAL - 1;
SUM <- TOTAL_ATR_OFJNTVAL(FlIST) + TOTAL_ATR_OF_INTVAL[SECOHD].

II CHEa IF THESE TWO INTERVALS CAN COMBINE SO THAT BOTH UlTEIVALS BAVE DNlFOBH FimlUENCIES II

IF (SUM <- HAlJlRI) AND (SUM DlV 2 < HRI)
THEN

HASDIR[FIIST.2] <- HASDII[SECOND.2].
HASDII(SECOHD.l] <- O.
MASDII(SECOHD,2] <- 0;
EXPAMD <- 2 i
FOI II <- TOTALj..TR_OF_INTVAL('IIST]+3 TO SUM+2

UPARD <- EXPAiD + 1.
MASDII(rilST.l) <- MASDII(SECOND.UPARD];

TOTAL~TR_orJ.TVAL[SICOIID) <- 0;

ILSI

Ht,~~_ ... t~QI_mf"tlAi.fF!A.'n <- SvtI\
CUR_IHTVAL <- CUR_IHTVAL - 1 i

II CHEa IF THESI TWO IITIIVALS CAlI REDISTRIBUTI. SO BOTH IITIIYALS CAlI BAVE DlIFOBH rllQUENCIES II

IF TOTAL...,ATI_or_INTVAL[SECOID] <- SUM DlV 2
THEN

IEPEAT
HO_OF_DlUAL...,ATIYALS <- 1;
EXPABD <- TDTAL_ATR_Or_IHTVAL[rIISTJ + 2 i
ATRVAL <- ORICIN...,ATR_LIST(MASDIR[FIIST,IIPARD),2);

NE <- FALSE;
UPABD <- EXPABD - 1;
WHILE (EXPAND > 2) ARD (NE - FALSE)
Ir ORICII...,ATR_LIST[MASDIR[rIIST.EXPAND].2] - ATIYAL

TIlER
10_0l_IQDAL...,ATIYALS <- NO_OF_DlUAL_ATIYALS + 1;
UPAND <- UPAiD - 1;

ELSE I! <- TIDI;

OLD_DIlFER <- TOTAL_ATR_or_INTVALlFlIST] - TotAL...,ATR_OF_IITVAL[SICOlID];
n~.3:;'l'VA!.~:~L,!O!u_.!!1 <- TO'U..!,JTILOF_!!!'!Yu.[!'!!.S'!] - !to OF ~UAL 4TIV.u.S;
SECOND_IHTVALJlIW_TarAL...,ATI <- TotAL...,ATR_OFJIITVAL(SICOlID] + ioJir_I!QUAL_ATRVALS;
lEW_DIFFER <- AlS(llllST_IIITVALJlEW_TotAL...,ATR - SICOlID_IHTVAL.JIIW_TarAL~TR);

IF OLD_DIFFER - IEW_DIFrER > 0
THEN

MASDIR(FIIST ,2] <- ORICU1...,ATR_LIST[MASDIR[FIaST.EXPARD) ,2];
MASDIR[SECORD,l) <- ORICIH_ATR_LIST[MASDIR(rIIST.IXPARD+1),2);

TOTAL_ATR_OF_IIITVAL[FIIST] <- FIIlST_IIITVAL_IEW_TOTAL_ATRj
TOTAL_ATI_OF _IHTVAL[SECOND] <- SECOHD_IITVAL_IEW_TarAL_ATRj

UPARD <- 2j
FOR I <- HO OF ~UAL...,ATRVALS+3 TO SECORD IIITVAL HEW TarAL ATR+2

EXPAND <=- mAND + 1 j - - - -
MASDIR(SECORD.M] <- MASDIR(SECOND.IIPAlD];

EXPAND <- FlIlST_IHTVALJlEW_TarAL_ATI + 2;
FOI H <- 3 TO Ho_or_I!QUAL...,ATIVALS+2

EXPAND <- EXPAND + 1;
MASDII[SECORD,H] <- MASDIR[FlIST,UPABD];

FOR H <- FIIST_IHTVALJ'EW_TOTAL...,ATR+3 TO FlIST_IHTVALJ'EW_TOTAL...,ATR+HO_OF_I!QUAL_ATRVALS+2

MASDIR[FIIST.I) <- OJ
UHTIL oLD_DIrFER - NEW_DIFFER < O.

END COMBINE_OR_REDI STRIBUTE_TWO_INTERVALS;

11***11

PROCEDURE FIT...,ATTRIBUTES_IHTO_CUIlERT_IHTERVALS;

II THIS PROCEDURE IS TO FIT 'PROPER' BOMBER OF ATTRIBUTE VALUES INTO TIlE CUllEN'! liiIEltiAi. Oi MJ,.:;-:::& D!!!C!O!.Y !!

POS_OF_lST...,ATR_CUR_IRTVAL <- POS_OF_LST...,ATR_LST_IHTVAL + 1.
POS_OF_LSTJ.TR_CUR_INTVAL <- POS_OF_LSTJ.TILLST_IHTVAL + EXPAND;

IF POS_OF _LST~TR_CUI_IMTVAL > II
TIlEII pos_or .J.ST.."lTI_CURJITVAL <- II;

MASDI I[CUR_IMTVAL,l J <- SOB1'ID..).TR_Ll ST (POS_OF _1 ST..).T CU IITVAL. 2) ;
MASDI R[CUI_IHTVAL, 2] <- SOlrlD.."lTIJaIST[POS_OF _LST.."lT CUI_IITVAL. 2 J ;
M <- 2.
rOI L <- POS_OP_lST.."lTI_CU IITVAL TO POS_O'_LST.."lT CUI_IITVAL

II <- II + 1.

~:,z;a.LCv~t~T'lAi.., ~- ,)·Cp:rI;1i_AjA_L.t,"ti./~';
TOTAL ATR OF INTVAL[CUR INTVAL] <- lot - 2;
CUR IHTVAt <=- CUR INTVAr. + 1;

END FIT~TTRIBUTES_INTO_CURENT_INTERVALS;

Uniform Organization of Inverted Files 575

//***.* ••••• ~.** * •• * •• * •• *~ •••••••••••• //

PROCEDURE SPLIT~TTRIBUTES_INTO_TWOJNTERVALS;

// THIS PROCEDURE IS' TO CHECK HOW MARY ATTRIBUTE VALUES CAB PUT IB CUUERT IITIRYAL,
LEAVE REST EXlUAL VALUES AT BEGINNIBG OF NEXT INTERVAL *)

DONE <- FALSE;
EXPAND <- EXPAND - 1;
TOTAL_ATlLOF_IBTVAL[CUlLIBTVAL] <- TOTAL_ATR_OF_IBTVAL[CUlLIBTVALJ - 1;
NO_OF_EXlUAL~TRVALS <- 1;

WHILE (SORTED~TlLLIST[POS_OF _LST~TR_LST_IBTVAL+EXPAlD, 2J • SORTID..).TI_LlST[POS_OF_LST..J.T LST_IITVAL+UPAlID+ 1,2])
AND (DONE c FALSE)

NO OF_EXlUAL_ATRVALS <- NO_OF_~UAL~TRVALS + 1;
TOTAL_ATR_OF_IBTVALlCUR_INTVALJ <- TOTAL~TlLOF_IRTVAL[CUR_IBTVALJ - 1;
EXPAND <- EXPAND - 1;
IF EXPAND .. 0

THEN DONE <- TRUE; // CURRENT INTERVAL BAS TOO HAIY ATTIIBDTE VALUES
IF USER DOESN'T WANT PUT IB DIRECTORY, IT WILL IE ZIBlUSTED /1

IF DONE - FALSE
THEN CALL FIT~TTRIBUTESJBTO_CURERT_IBTERVAL;

CALL COMBINE_OR_REDISTRIBUTE_TWOJNTERVALS;

IF NO_OF_EXlUAL~TRVALS > MAX_BRI THEN
PRINTLN('THE ATTRIBUTE VALUE' ,BV:5,' OCCURS ' ,BO_OF_~UAL~TRVALS:3.' nos');
PRINT(' YOU WANT THIS VALUE INCLUDED IN THE DIRECTORY (EllTER Y OR B) ? '); IRlMO; DSITO;
READ(USER RESPONES);
IF USElLRESPONES - 'Y'

THEN
EXPAND <- BO_OF_~UAL_ATRVALS;
CALL FIT_ATTRIBUTES_IBTO_CUREBT_IBTERVAL;

ELSE
POS_OF_LST ATlLLST_IBTVAL <- BO_OF_~UAL_ATRVALS + POs O'_I.ST_AT LST IITVAL;
DELETED INTVAL <- CUR INTVAL;

END SPLIT~TTRIBUTES_INTO_CURRENT_ntTERVAL;

//**.****'**********************"'*~*'**"""'*"'**'II

PROCEDURE PROGRAM_MAKES_UNlFORM_INTERVALS; // OPTIONS 3 ABD 4 II

II THIS PROCEDURE MAKES THE lBTERVAL UNIFORM II

/1 INTERACT WITH USER PROCESS, EITHER USER ENTER AVERAGE, MIBIMUM OR MAXIMUM RUIIIEI or DCOIDS PEl IIITEIVAL
OR PROGRAM GENERATE THESE VALUES // .

PRINT ('ENTER THE AVERAGE RUMlER OF RECORDS PER IRTERVAL 7');
READ(NRI) ;
IF BRI <> 0

THEN NI <- RR DIV BRI
ELSE

NI <- ROUND(SQRT(BR»;
NRI <- NI;

PRINT ('ENTER THE MINIMUM BUMBER OF RECORDS PER INTERVAL 7');
READ (MIN_NRI) ;
IF MIN NRI c 0 THEN

MIN_Nil <- NRI DIV 2;
PRINTLN('THE PROGRAM GENERATES MINIMUM NUMBER OF RECORDS PEl INTERVAL IS ' .MII III :4);

PRINT('ENTER THE- MAXIMUM NUMBER OF RECORDS PER INTERVAL 7'); .
READ{MAXJlRI) ;
IF (MAX NRI - 0) OR (MAX NRI < 2 * MIB RII) TBEB

IF MAx NRI - 0 - -
THEN-MAX Nil <- 2 * BII
ELSE MAXJII <-- 2 * MIBJlII;

576 National Computer Conference, 1984

PRINTLN('TBE PROGRAM GENERATES MAXIMUM NUMBER OF RECORDS PER INTERVAL IS ' .MAJeNRI :4);

// INITIALIZE THE DESIRED NUMBER OF ATTRIBUTE VALUES PER INTERVAL //

FOR I <-- 1 TO NI
TOTALJ.TR_OF_INTVAL1I] <- NRI;

// INITIALIZE THE POSITION OF LAST ATTRIBUTE VALUE OF PREVIOUS INTERVAL TO ZERO TO START WITH 1/

POS_OFJ.STJ.TRJ.ST_INTVAL <- 0;
CURJNTVAL <-- 1;

// THE PROCESS TO COMBINE THE ATTRIBUTE VALUES INTO INTERVALS WITH UNIFORM F~UENCIES //

WHILE POS OF LST ATR LST INTVAL < NR
EXPAND <=- Nil; - -

// CHECK IF THE LAST ATTRIBUTE VALUE OF CURRENT INTERVAL I S ~UAL TO THE FIRST ATTRIBUTE VALUE OF NEXT INTERVAL //

IF (SOIrfEDJ.TR_LIST[POS_OFJ.ST_ATRJ.ST_INTVAL+EXPAND.2] <> SOIrfEDJ.TR_LIST[POS_OFJ.STJ.TR_LST_INTVAL+EXPAND+1.2])
OR (POS OF LST ATR LST INTVAL + EXPAND > NR)
THEN CALL FIT.J:TTRlBUTES_INTO_CURENT_INTERVAL
ELSE .

// COUNT HOW MANY ~UAL ATTIBUTE VALUES AT END OF CURRENT INTERVAL TOGETHER WITH BEGIN OF NEXT INTERVAL //

WHILE SOR!ED-:~TR_LIST[POS_OFJ.ST_ATR_LST_INTVAL~EXPAND.2] - SORIED_ATR_LIST[POS_OF~ST_AT~LST_INTVAL+EXPAND+1.2]
EXPAND <- EXPAND + 1;
TOTALJ.TR_OFJNTVAL[CUR_INTVAL] <- TOTAL_ATR_OF_INTVAL[CUR_INTVAL] + 1;

END WHILE LOOP
BV <- SORIED_ATRJ.IST[POS_OFJ.ST_ATR_LST_INTVAL+EXPAND.2];

// CHECK IF THE DESIRED NUMBER OF ATTRIBUTE VALUES PLUS THESE ~UAL VALUES CAN FIT IN THE CURRENT INTERVAL //

IF TOTAL ATR OF INTVAL[CUR INTVAL] < .. MAX NRI
THEN cALL FIT=ATTRIBUTES=INTO_CURENT_INTERVAL
ELSE CALL SPLIT~TTRIBUTESJNTO_TWO_INTERVALS;

END WHILE LOOP

// CHECK IF THE LAST INTERVAL NEEDS TO BE COMBINED OR REDISTRIBUTED WITH THE PREVIOUS INTERVAL //

CALL COMBINE_O~REDISTRIBUTE_TWOJNTERVALS;

END PROGRAM_MAKES_UNIFORM_INTERVALS

//************ •• *** MATN PROGRAM ***//

PROGRAM OPTlMAL_INVERIED_FILE;

CALL GET_INPUT]R<lCPILE; /I GET INITIAL DIRECTORY /I

CALL SORIJ.TTRIBUTE_VALUE; 1/ SORI INITIAL DIRECTORY /I

// THE PROCESS TO SELECT THE INTERVALS OF MASTER DIRECTORY FOR INVEIrfED FILE //

WHILE USE~OPTION <> 5

IF (USER_OPTION> 0) AND (USER_OPTION < 5) THEN
CASE USER_OPTION OF

i " elU.£. I.i .. ·~t Clft.;... .. ,;:.,.,r-tf,."4L..) ..
2 : CALL PROGiA}L~UALLY-PISTRIBUTE_INTERVALS;
3 : CALL PROGRAM_MAKES_UNIFORM_INTERVALS;
4 ,: CALL PROGRAM_MAKES_UNIFORM_INTERVALS;

END CASE

CALL PRINT_MASTEBJ>I RECTORY_TABLE;
END WHILE LOOP

END OPTlMAL_INVERIED_FILE.

APPENDIX B

SORTED INITIAL FILE

Attribute

100

200

300

400

410

430

450

500

700

900

1000

1200

1400

1500

1600

1700

1800

1900

2000

2100

2400

2700

2800

2900

3600

3700

3800

3900

Uniform Organization of Inverted Files 577

Record(s) Number of Occurrences

204, 223, 325, 448, 457, 505

50, 202, 233, 358

131, 339, 360, 491, 583

47, 61

54, 69

157

442, 561

70, 159, 198, 234, 266, 371, 418, 558

10

41, 113

4, 13, 15, 17, 40, 52, 53, 57, 71, 82, 87, 98, 119,
130, 141, 147; 152, 155, 165, 177, 180, 184, 189, 195,
210, 218, 228, 240, 257, 263, 268~ 272, 282,288, 314,
328, 333, 335, 361, 391, 397, 430, 431, 466, 471, 476,
521, 524, 527, 531, 535, 550, 559, 565, 567, 591

43, 60, 64, 75, 83, 89, 185, 213, 269, 277, 286, 332,
345, 363, 383, 386, 409, 436, 462, 465, 467, 526 j 537,
598, 599

85, 410, 489, 563, 594

169, 190, 246, 316, 367, 486, 584

9, 27, 56, 68, 136, 256, 271, 299,

162, 273, 308, 445, 447, 452, 556

44, 395, 480, 500

8, 32, 133, 137, 247, 279, 439, 483

511, 597

166, 377

529

1, 29, 37, 42, 48, 51, 149, 158, 200, 248, 280, 283,
305, 311, 318, 366, 385, 388, 390, 449, 470, 473, 485,
503, 520, 533, 571, 582

49, 146, 167, 217, 243, 276, 354, 424, 463, 546, 579,
592

58, 203, 216, 502, 509

3, 26, 65, 66, 81, 84, 91, 97, 116, 118, 123, 124,
140, 153, 173, 175, 258, 262, 275, 285, 289, 292, 293,
324, 344, 370, 380, 405, 429, 443, 446, 469, 479, 490,
493, 499, 501, 514, 515, 539, 555, 564, 577, 586, 590

156, 249, 284, 290, 421, 435, 478, 487, 566

73, 411, 516, 568

115, 239, 310, 474, 519, 532, 585

106, 201, 456, 562

6

4

5

2

2

1

2

8

1

2

56

25

5

7

9

7

4

8

2

2

28

12

5

45

9

4

7

4

578 National Computer Conference, 1984

Attribute Record(s) Number of Occurrences

4000 5, 23, 36, 55, 72, 100, 103, 120, 121, 139, 148, 163,
168, 183, 187, 188, 191, 205, 207, 208, 209, 211,214,
220, 224, 229, 244, 250, 261, 287, 301, 302, 312, 326,
330, 341, 350, 353, 374, 376, 378, 382, 387, 392, 406,
408, 413, 420, 423, 426, 428, 441, 453, 458, 475, 518,
525, 554, 569, 572 60

4100 77, 227, 313, 315, 425, 507, 574 7

5000 35, 172, 178, 327, 337, 477, 570 7

5100 129, 151, 225, 232, 253, 551 6

5300 33, 76, 144, 221, 274, 359, 384, 536, 557 9

5500 86, 320, 407, 444, 450, 488, 549 7

5700 59, 296, 396, 495, 508, 512 6

5800 2, 18, 22, 24, 25, 63, 79, 88, 90, 92, 93, 99, 109,
114, 132, 142, 145, 150, 154, 160, 170, 186, 199, 245,
254, 260, 264, 267, 303, 306, 338, 348, 355, 356, 362,
369, 379, 381, 398, 401, 414, 419, 461, 468, 472, 484,
494, 506, 517, 575, 578, 589 52

6200 19, 28, 181, 193, 226, 304, 347, 399, 497, 553 10

6300 112, 194, 196, 230, 307, 547, 552 7

6500 12, 94, 111, 143, 176, 237, 281, 322, 329, 342, 389 11

6800 39, 122, 126, 174, 192, 206, 241, 278, 298, 346, 394,
417, 437 13

7100 30, 297, 403, 438, 451, 454, 455, 498 8

7400 20, 108, 127, 134, 219, 251, 522 7
,C;('\('\ '1Q ~') 164, '1('\0 '1'1~ C:,)'1 C:Ql 600 8 IJVv JV, v ... , -,V"" """JV, .",", JV..L.,

7700 6, 161, 197, 492, 542 5

8400 45, 125, 135, 179, 182, 291, 295, 368, 400, 415, 432,
510, 543 13

8500 78, 265, 294, 340, 352, 530, 534, 548, 573 9

8600 7, 11, 14, 16, 46, 67, 80, 96, 102, 104, 105, 110,
128, 138, 171, 212, 215, 236, 238, 242, 252, 259, 300,
317, 319, 321, 331, 334, 343, 349, 364, 372, 393, 402,
404, 412, 427, 433, 434, 460, 482, 496, 504, 538, 540,
545, 560, 580, 587, 595 50

8700 34, 95, 107, 235, 373, 416, 440, 464, 596 9

8800 31, 117, 231, 357, 422, 459, 481 7

8900 21, 74, 222, 375, 513, 544, 588, 593 8

9600 101, 255, 270, 323, 351, 365, 528, 541, 576 9

APPENDIX C SAMPLE RDN USING OPTION 1

INVEBIED FILE --- INTERVAL SELECTION PROCESS

ENTER 1 --- YOU SPECIFY TRE BANGE FOR EACH INTERVAL
ENTER 2 --- YOU SPECIFY THE TOTAL NUMBER OF FllUAL INTERVAL RANGES
ENTER 3 --- YOU SPECIFY THE DESI RED NUMBER OF RECORDS PER INTERVAL
ENTER 4 --- PROGBAH SELECT INTERVALS
ENTER 5 --- EXIT THE PROGBAH

ENTER OPTION HERE >>> 1

USER CHOOSE INTERVALS PROCESS :
#1###1###1#####################

INTERVAL NO.

ENTER THE LOW ATTRIBUTE VALUE FOR THIS INTERVAL » 100

ENTER THE HIGH ATTRIBUTE VALUE FOR THIS INTERVAL » 1000

INTERVAL VALUES
LOW HIGH

100 1000

POINTERS TO PILE FILE

204 223 325 448
442 561 70 159

57 71 82 87
240 257 263 268
524 527 531 535

457 505 50
198 234 266
98 119 130

272 282 288
550 559 565

202 233
371 418
141 147
314 328
567 591

358
558
152
333

Uniform Organization of Inverted Files 579

OF RECORDS

131 339 360 491 583 47 61 54 69 157
10 41 113 4 13 15 17 40 52 53

155 165 177 180 184 189 195 210 218 228
335 361 391 397 430 431 466 471 476 521

89
====s==c.=~==c========a========C=_C====================cc===~=====c_===a=======K_CC ___ SSDDC._=cs._m_== __ m_D_=DDaK _____ CC=_=~ _____ ._
DO YOU WAHT TO KEEP THIS INTERVAL IN MASTER DIRECTORY(ENTER Y OR N) ? Y

USER CHOOSE INTERVALS PROCESS :
-#1###111#111#1##111111111#111#1

INTERVAL NO. 2

ENTER THE LOW ATTRIBUTE VALUE FOR THIS INTERVAL » 1100

ENTER THE HIGH ATTRIBUTE VALUE FOR THIS INTERVAL » 2000

INTERVAL VALUES
LOW HIGH POINTERS TO PILE FILE

1100 2000
43 60 64 75

467 526 537 598
68 136 256 271

137 247 279 439

USER CHOOSE INTERVALS PROCESS :

INTERVAL NO. 3

83 89 185
599 85 410
299 529 162
483 511 597

ENTER THE LOW ATTRIBUTE VALUE FOR THIS INTERVAL » 2100

ENTER THE HIGH ATTRIBUTE VALUE FOR THIS INTERVAL » 3500

INTERVAL VALUES
LOW HIGH

2100 3500

POINTERS TO PILE FILE

166 377 1 29
390 449 470 473
579 592 58 203
153 173 175 258
490 493 499 501

37 42 48
485 503 520
216 502 509
262 275 285
514 515 539

213 269 277
489 563 594
273 308 445

51 149 158
533 571 582

3 26 65
289 292 293
555 564 577

DO YOU WANT TO KEEP THIS INTERVAL IN MASTER DlRECTORY(ENTER Y OR N) ? Y

OF RECORDS

286 332 .345 363 383 386 409 436 462 465
169 190 246 316 367 486 584 9 27 56
447 452 556 44 395 480 500 8 32 133

67

I OF RECORDS

200 248 280 283 305 311 318 366 385 388
49 146 167 217 243 276 354 424 463 546
66 81 84 91 97 116 118 123 124 140

324 344 370 380 405 429 443 446 469 479
586 590

92

580 National Computer Conference, 1984

USER CHOOSE INTERVALS PROCESS :
#1#1######1###11####1###1####1#

INTERVAL NO. 4

ENTER THE LOW ATTRIBUTE VALUE FOR THIS INTERVAL » 3600

ENTER THE HIGR ATTRIBUTE VALUE FOR THIS INTERVAL » 5000

INTERVAL VALUES
LOW RIGR

3600 5000

POINTERS TO PILE FILE

156 249 284 290
106 201 456 562
191 205 207 208
350 353 374 376
525 554 569 572

421 435 478
5 23 36

209 211 214
378 382 387

77 227 313

487 566
55 72

220 224
392 406
315 425

, # OF RECORDS

73 411 516 568 115 239 310 474 519 532 585
100 103 120 121 139 148 163 168 183 187 188
229 244 250 261 287 301 302 312 326 330 341
408 413 420 423. 426 428 441 453 458 475 518
507 574 35 172 178 327 337 477 570

98
cc=ac==cc==cc=c==c=====cc==c====a====~~=.c====CCCCCC.D===.cca===~C~CEC==============CC=C============CC=========~====c=============a=

DO YOU WART TO KEEP THIS INTERVAL IN MASTER DlRECTORY(ENTER Y OR N)

USER CHOOSE INTERVALS PROCESS :
#1#########111#########11111111

INTERVAL NO. 5

ENTER THE LOW ATTRIBUTE VALUE FOR THIS INTERVAL » 5100

ENTER THE HIGR ATTRIBUTE VALUE FOR THIS INTERVAL » 6000

INTERVAL VALUES
LOW HIGR POINTERS TO PILE FILE

? Y

I OF RECORDS
am_=~=.c==.z==========_C=C~_=C=D=_=============-===================_=====c=_=_==c=======-======================cuc===_=======_=====c

5100 6000
129 151
488 549
109 114
355 356

USER CHOOSE INTERVALS PROCESS :
##1111111##11##1111111#1##1#1##

INTERVAL NO. 6

225
59

132
362

232 253 551 33
296 396 495 508
142 145 150 154
369 379 381 398

ENTER THE LOW ATTRIBUTE VALUE FOR THIS INTERVAL » 0

ENTER THE HIGH ATTRIBUTE VALUE lOR THIS INTERVAL » 0

76 144
512 2
160 170
401 414

2U 274 359 384 536 557 86 320 407 444 4~~ 22 24 25 63 79 88 90 92 93

186 199 245 254 260 264 267 303 306 338 348
419 461 468 472 484 494 506 517 575 578 589

80

Uniform Organization of Inverted Files 581

APPENDIX D Sample run using Option 2

INVEln'ED FILE --- INTERVAL SELECTION PROCESS

ENTER 1 -- YOU SPECIFY THE RANGE FOR EACH INTERVAL
ENTER 2 --- YOU SPECIFY THE TOTAL HUMBER OF BlUAL INTERVAL RANGES
ENTER 3 --- YOU SPECIFY THE DESIRED NUMBER OF RECORDS PER INTERVAL
ENTER 4 --- PROGRAM SELECT INTERVALS
ENTER 5 --- EXIT THE PROGRAM

ENTER OPTION HERE »> 2

PROGRAM BlUALLY DISTRIBUTE INTERVALS PROCESS :
1###########################1#################

ENTER THE TOTAL HUMBER OF INTERVALS YOU WANT » 10

INTERVAL VALUES
LOW HIGH

100 1000

POINTERS TO PILE FILE

**
* INVEln'ED FILE --- MASTER DIRECTORY *
**

204 223 325 448 457 5Q5 50 202 233 358 131 339 360 491 583 47 61 54 69 157
442 561 70 159 198 234 266 371 418 558 10 41 113 4 1~ 15 17 40 52 53

57 71 82 87 98 119 130 141 147 152 155 165 177 180 184' 189 195 210 218 228

1000 1500
240 257 263 268 272 282 288 314 328 333 335 361 391 397 430 431 466 471 476 521
524 527 531 535 550 559 565 567 591 43 60 64 75 83 89 185 213 269 277 286
332 345 363 383 386 409 436 462 465 467 526 537 598 599 85 410 489 563 594 169

OF RECORDS

60

60
--
1500 2400

190 246 316 367 486 584 9 27 56 68 136 256 271 299 529 162 273 308 445 447
452 556 44 395 480 500 8 32 133 137 247 279 439 483 511 597 166 377 1 29
37 42 48 51 149 158 200 248 280 283 305 311 318 366 385 388 390 449 470 473

60
--

2400 2900
485 503 520 533 571 582 49 146 167 217 243 276 354 424 463 546 579 592 58 203
216 502 509 3 26 65 66 81 84 91 97 116 118 123 124 140 153 173 175 258
262 275 285 289 292 293 324 344 370 380 405 429 443 446 469 479 490 493 499 501

60
--

2900 4000
514 515 539 555 564 577 586 590 156 249 284 290 421 43S 478 487 566 73 411 516
568 115 239 310 474 519 532 585 106 201 456 562 5 23 36 55 72 100 103 120
121 139 148 163 168 183 187 188 191 205 207 208 209 211 214 220 224 229 244 250

60
--
4000 5300

261 287 301 302 312 326 330 341 350 353 374 376 378 382 387 392 406 408 413 420
423 426 428 441 453 458 475 518 525 554 569 572 77 227 313 315 425 507 574 35
172 178 327 337 477 570 129 151 225 232 253 551 33 76 144 221 274 359 384 536

60
--

)300 JtiUU
557 86 320 407 444 450 488 549 59 296 396 495 508 512 2 18 22 24 25 63
79 88 90 92 93 99 109 114 132 142 145 150 154 160 170 186 199 245 254 260

264 267 303 306 338 348 355 356 362 369 379 381 398 401 414 419 461 468 472 484
60

--
5800 7400

494 506 517 575 578 589 19 28 181 193 226 304 347 399 497 553 112 194 196 230
307 547 552 12 94 111 143 176 237 281 322 329 342 389 39 122 126 174 192 206
241 278 298 346 394 417 437 30 297 403 438 451 454 455 498 20 108 127 134 219

60
--

7400 8600
251 522 38 62 164 309 336 523 581 600 6 161 197 492 ·542 45 125 135 179 182
291 295 368 400 415 432 510 543 78 265 294 340 352 530 534 548 573 7 11 14
16 46 67 80 96 102 104 105 110 128 138 171 212 215 236 238 242 252 259 300

60
--
8600 9600

317 319 321 331 334 343 349 364 372 393 402 404 412 427 433 434 460 482 496 504
538 540 545 560 580 587 595 34 95 107 235 373 416 440 464 596 31 117 231 357
422 459 481 21 74 222 375 513 544 588 593 101 255 270 323 351 365 528 541 576

60

582 National Computer Conference, 1984

APPENDIX E Sample run using Option 3

INVERTED FILE --- INTERVAL SELECTION PROCESS

ENTER 1 --- YOU SPECIFY THE RANGE FOR EACH INTERVAL
ENTER 2 --- YOU SPECIFY THE TOTAL HUMBER OF ~UAL INTERVAL RANGES
ENTER 3 --- YOU SPECIFY THE DESIRED NUMBER OF RECORDS PER INTERVAL
ENTER 4 --- PROGRAM SELECT INTERVALS
ENTER 5 --- EXIT THE PROGRAM

ENTER OPTION HERE >>> 3

PROGRAM MAKES UNIFORM INTERVALS PROCESS :
#############################111111111111

ENTER THE AVERAGE NUMBER OF RECORDS PER INTERVAL ?ENTER 0, PROGRAM WILL USE THE SQUARE ROOT OF TOTAL NUMBER OF RECORDS AS ITS VALUE

ENTER VALUE HERE >>> 20

ENTER THE MINIMUM HUMBER OF RECORDS PER INTERVAL ?ENTER 0, PROGRAM WILL USE (0.5 * AVERAGE INTERVAL SIZE) THAT IS » 10 AS ITS VALUE

ENTER VALUE HERE »> 0

THE PROGRAM GENERATES MINIMUM NUMBER OF RECORDS PER INTERVAL IS 10

ENTER THE MAXIMUM NUMBER OF RECORDS PER INTERVAL ?ENTER 0, PROGRAM WILL USE 2 * AVERAGE INTERVAL SIZE) THAT IS » 40 AS ITS VALUE
ENTER VALUE NO LESS THAN (2 * MINIMUM INTERVAL SIZE). ELSE PROGRAM WILL USE 2 * MINIMUM INTERVAL SIZE) THAT IS » 20 AS ITS VALUE

ENTER VALUE HERE >>> 0

THE PROGRAM GENERATES MAXIMUM NUMBER OF RECORDS PER INTERVAL IS 40

THE ATTRIBUTE VALUE 1000 OCCURS 56 TIMES
DO YOO WART THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? N

THE ATTRIBUTE VALUE 2900 OCCURS 45 TIMES
DO YOU WART THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? Y

THE ATTRIBUTE VALUE 4000 OCCURS 60 TIMES
DO YOO WANT THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? If

THE ATTRIBUTE VALUE 5800 OCCURS 52 TIMES
DO YOU WANT THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? Y

THE ATTRIBUTE VALUE 8600 OCCURS 50 TIMES
DO YOU WANT THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR !1) ? Y

**
* INVERTED FILE --- MASTER DIRECTORY *
**

INTERVAL VALUES
LOW HIGH POINTERS TO PILE FILE # OF RECORDS

100 900

1200 1200

1400 1600

1700 2000

2100 2400

204 223 325 448 457 505 50 202 233 358 131 339 360 491 583 47 61 54 69 157
6..6..? '\1\1 70 l'\Q lQR ?~6.. ,1\1\ ~71 6..1R 'i'iR 10 41 113

43 60 64 75 83 89 185 213 269 277 286 332 345 363 383 386 409 436 462 465
467 526 537 598 S99

85 410 489 563 594 169 190 246 316 367 486 584
529

9 27 56 68 136 256 271 299

162 273 308 445 447 452 556 44 395 480 500
597

8 32 133 137 247 279 439 483 511

166 377 1 29 37 42 48 51 149 158 200 248 280 283 305 311 318 366 385 388
390 449 470 473 485 503 520 533 571 582

33

25

21

21

30

Uniform Organization of Inverted Files 583

2700 2800
49 146 167 217 243 276 354 424 463 546 579 592 58 203 216 502 509

17

-----------~~--
2900 2900

3600 3900

4100 5100

5300 5700

5800 5800

6200 6500

6800 7100

7400 i700

b.:;UU ,L>UU

3 26 65 66 81 84 91 97 116 118 123 124 140 153 173 175 258 262 275 285
289 292 293 324 344 370 380 405 429 443 446 469 479 490 493 499 501 514 515 539
555 564 577 586 590

156 249 284 290 421 435 478 487 566 73 411 516 568 115 239 310 474 519 532 585
106 201 456 562

77 227 313 315 425 507 574 35 172 178 327 337 477 570 129 151 225 232 253 551

33 76 144 221 274 359 384 536 557 86 320 407 444 450 .488 549 59 296 396 495
508 512

2 18 22 24 25 63 79 88 90 92 93 99 109 114 132 142 145 150 154 160
170 186 199 245 254 260 264 267 303 306 338 348 355 356 362 369 379 381 398 401
414 419 461 468 472 484 494 506 517 575 578 589

19 28 181 193 226 304 347 399 497 553 112 194 196 230 307 547 552 12 94 111
143 176 237 281 322 329 342 389

39 122 126 174 192 206 241 278 298 346 394 417 437 30 297 403 438 451 454 455
498

20 108 127 134 219 251 522 38 62 164 309 336 523 581 600 6 161 197 492 542

45 125 135 179 182 291 295 368 400 415 432 510 543 78 265 294 340 352 530 534
548 573

45

24

20

22

52

28

21

20

22
--~--
8600 8600

8700 9600

7 11 14 16 46 67 80 96 102 104 105 110 128 138 171 212 215 236 238 242
252 259 300 317 319 321 331 334 343 349 364 372 393 402 404 412 427 433 434 460
482 496 504 538 540 545 560 580 587 595

34 95 107 235 °373 416 440 464 596 31 117 231 357 .422 459 481 21 74 222 375
513 544 588 593 101 255 270 323 351 365 528 541 576

50

33

584 National Computer Conference, 1984

APPENDIX F Sample run using Option 4

INVERtED FILE --- INTERVAL SELECTION PROCESS :

ENTER 1 --- YOU SPECIFY THE RANGE FOR EACH INTERVAL
ENTER 2 -- YOU SPECIFY THE TOTAL NUMBER OF ~UAL INTERVAL RANGES
ENTER 3 --- YOU SPECIFY THE DESIRED NUMBER OF RECORDS PER INTERVAL
ENTER 4 --- PROGRAM SELECT INTERVALS
ENTER 5 -- EXIT THE PROGRAM

ENTER OPTION HERE >>> 4

PROGRAM MAKES UNIFORM INTERVALS PROCESS :
,#,###########",#,#,##,##,#####,#,##""

ENTER THE AVERAGE NUMBER. OF RECORDS PER. INTERVAL tENTER O. PROGRAM WILL USE THE ~UAU ROOT OF TOTAL NUMBER OF RECORDS AS ITS VALUE

ENTER VALUE HERE >>> 0

THE PROGRAM GENERATES AVERAGE NUMBER OF RECORDS PER INTERVAL IS 24

ENTER THE MINIMUM NUMBER OF RECORDS PER INTERVAL tENTER 0, PROGRAM WILL USE <0.5 * AVERAGE INTERVAL SIZE) THAT IS » 12 AS ITS VALUE

ENTER VALUE HERE »> 0

THE PROGRAM GENERATES MINIMUM NUMBER OF RECORDS PER INTERVAL IS 12

ENTER THE MAXIMUM NUMBER OF RECORDS PER INTERVAL tENTER 0 J PROGRAM WILL US,E 2 * AVERAGE INTERVAL SIZE) THAT IS » 48 AS ITS VALUE
ENTER VALUE NO LESS THAN (2 * MINIMUM INTERVAL SIZE), ELSE PROGRAM WILL USE 2 * MINIMUM INTERVAL SIZE) THAT IS » 24 AS ITS VALUE

ENTER VALUE HERE »> 0

THE PROGRAM GENERATES MAnMUM NUMBER OF RECORDS PER INTERVAL IS 48

THE ATTRIBUTE VALUE 1000 OCCURS 56 TIMES
DO YOU WANT THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? Y

THE ATTRIBUTE VALUE 4000 OCCURS 60 TIMES
DO YOU WANT THIS VALUE INCLUDED IN THE DIUCTORY (ENTER Y OR N) t N

THE ATTRIBUTE VALUE 5800 OCCURS 52 TIMES
DO YOU WANT THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? Y

THE ATTRIBUTE VALUE 8600 OCCURS 50 TIMES
DO YOU WANT THIS VALUE INCLUDED IN THE DIRECTORY (ENTER Y OR N) ? Y

**
* INVERtED FILE --- MASTER DIRECTORY *
**

INTERVAL VALUES
LOW HIGH POINTERS TO PILE FILE , OF RECORDS

100 900

1000 1000

1200 1200

1400 1700

Ieee 2400

'04 2" "~ 44R 4~1 50~ ~O 202 233 358 131 339 360 491 '583 47 61 54 69 157
441 561 70 159 lYb 134 2b6 3/1 41b)Jb lU 41 IIJ

4 13 15 17 40 52 53 57 71 82 87 98 119 130 141 147 152 155 165 177
180 184 189 195 210 218 228 240 257 263 268 272 282 288 314 328 333 335 361 391
397 430 431 466 471 476 521 524 527 531 535 550 559 565 567 591

43 60 64 75 83 89 185 213 269 277 286 332 345 363 383 386 409 436 462 465
467 526 537 598 599

85 410 489 563 594 169 190 246 316 367 486 584
529 162 273 308 445 447 452 556

9 27 56 68 136 256 271 299

44 395 480 500 8 32 133 137 247 279 439 483 511 597 166 377 1 29 37 42
48 51 149 158 200 248 280 283 305 311 318 366 385 388 390 449 470 473 485 503

520 533 571 582

33

56

25

28

44

2700 2800

2900 2900

3600 3900

4100 5700

5800 5800

6200 6500

6800 7400

7500 8500

8600 8600

8700 9600

Uniform Organization of Inverted Files 585

49 146 167 217 243 276 354 424 463 546 579 592 58 203 216 502 509

3 26 65 66 81 84 91 97 116 118 123 124 140 153 173 175 258 262 275 285
289 292 293 324 344 370 380 405 429 443 446 469 479 490 493 499 SOl 514 515 539
555 564 577 586 590

156 249 284 290 421 435 478 487 566 73 411 516 568 115 239 310 474 519 532 585
106 201 456 562

77 227 313 315 425 507 574 35 172 178 327 337 477 570 129 151 225 232 253 551
33 76 144 221 274 359 384 536 557 86 320 407 444 450 488 549 59 296 396 495

508 512

2 18 22 24 25 63 79 88 90 92 93 99 109 114 132 142 145 150 154 160
170 186 199 245 254 260 264 267 303 306 338 348 355 356 362 369 379 381 398 401
414 419 461 468 472 484 494 506 517 575 578 589

19 28 181 193 226 304 341 399 497 553 112 194 196 23P 307 547 552 12 94 III
143 176 237 281 322 329 342 389

39 122 126 174 192 206 241 278 298 346 394 417 437 30 297 403 438 451 454 455
498 20 108 127 134 219 251 522

38 62 164 309 336 523 581 600 6 161 197 492 542 45 125 135 179 182 291 295
368 400 415 432 510 543 78 265 294 340 352 530 534 548 573

17

45

24

42

52

28

28

35
•••• - ~._ o· ______ .. , •. p ••• ,." __ .. __ 0"" _ _ ... ___ •. __ .. __ .. __ _ .. __ • ______

7 11 14 16 46 67 80 96 102 104 105 110 128 138 171 212 215 236 238 242
252 259 300 317 319 321 331 334 343 349 364 372 393 402 404 412 427 433 434 460
482 496 504 538 540 545 560 580 587 595

34 95 107 235 373 416 440 464 596 31 117 231 357 422 459 481 21 74 222 375
513 544 588 593 101 255 270 323 351 365 528 541 576

50

33

A generalized method for maintaining views

by KATHRYN C. KINSLEY
Datawise, Inc.
Orlando, Florida

and
JAMES R. DRISCOLL
University of Central Florida
Orlando, Florida

ABSTRACT

A generalized method for maintaining views, which takes into account each view's
pattern of usage, is described. This method involves storing views in both actual and
potential forms. When views exist in actual form (concrete views), updates are
deferred until the view is queried. Differential files are formed from tuples inserted
and deleted from the defining relations. These differential files are then used in
conjunction with specified update schemes to update the view. Views alternate
between actual and potential form based on their usage and the storage replacement
algorithm.

587

INTRODUCTION

In 1971 the CODASYL Data Base Task Group defined de
rived data as data derived procedurally from related data
items instead of being explicitly stored and directly retrieved. 1

The relational model, introduced by Codd,2 extended this
concept by introducing views. A view is defined from existing
relations and reflects updates made to its defining relations. In
other words, it is a "dynamic window" of the database in that
when an update is made to anyone of its defining relations,
the derived relation is automatically updated in accordance
with its definition. Views have been used to support users'
views, integrity constraints,3-5 and access control. 6

There are two basic approaches to the support of views
the potential-form and the actual-form methods. Implemen
tation using potential form involves describing the view so that
it can be generated when needed. This description could use
access paths or a formula of the view. The view is constructed
each time it is involved in a query. Implementation using the
actual-form approach involves physically storing each view.
Therefore, the relation "actually" exists. Any updates made
to the defining relation must be explicitly reflected in the
view. Such views are called concrete views.

Although Kim 7 states that the potential method supporting
views is better for most applications, performance analysis of
both methods using an analytical model has shown that nei
ther method is consistently superior. Instead, performance is
highly dependent on patterns of usage. 8 It was found that the
potential method is particularly vulnerable when the view is
accessed often and if the calculation involves a large number
of tuples. The actual-form method performed poorly when it
was expected to maintain in actual form a large number of
views that were seldom accessed.

The purpose of this paper is to describe a generalized
method for supporting views. This method involves storing
views in both actual and potential form according to patterns
of usage. Specific update schemes are presented for maintain
ing views in their concrete state. This method controls use of
storage by maintaining only those views accessed often in
actual form. We will discuss the algorithm for maintaining
views in actual form, and a generalized implementation tech
nique, which supports views in both actual and potential form.
Finally, we will examine some advantages of the implementa
tion technique.

SUPPORTING VIEWS IN ACTUAL FORM

An implementation technique using actual results has been
presented that makes use of set operations in developing up
date schemes.9

,lo These schemes are shown in Figure 1 and

A Generalized Method for Maintaining Views 589

indicate that, in all but one case, relational operations can be
used to update a concrete view whenever a defining relation
is updated. The exception to this is reflecting a deletion up
date to a defining relation into a concrete view formed by a
projection. It is implicit that checkpoints within each scheme
abort the update process if the update to the defining relation
will not affect the concrete view. The principle upon which
these update schemes were developed is as follows.

The procedure for inserting a tuple into a relation involves
one relation and one tuple; however, inserting a tuple into a
relation can be represented as the union of the relation to be
updated and the relation formed from the tuple to be in
serted. ll For instance, if relation B were to be updated by
inserting a tuple contained in relation I, the update could be
represented as BUI, where the relation formed by BUI would
be the updated B and would replace the "old" B.

Now assume X is a view formed by An B. If relation B
were updated by the insertion tuple that forms relation I, then
X can be updated implicitly by creating A n (BUI) , where
BUI is the updated B, and An (BUI) is the updated X.
However, the expression A n (BUI) is equivalent to
(A n B)U(A n I). Therefore, XU(A n I) is the updated X.
Using this approach, a scheme has been developed for in
sertion of a tuple into a view under each operation. These

Definition of X Operation

1. AUB union
2. AnB intersection
3. B-A difference
4. A-B difference
5. B(list) projection
6. B(qual) selection
7. A*B join

(a) Insertion Updates for Views

Definition of X Operation

1. AUB union
2. AnB intersection
3. B-A difference
4. A-B difference
5. B(list) projection
6. B(qual) selection
7. A*B join

(b) Deletion Updates for Views

Insertion Update

XUI
XU(AnI)
XU (I-A)
X-I
XUI(list)
XUI(qual)
XU(A*I)

Deletion Update

X-(D-A)
X-D
X-D
XU(AnD)
X = (B-D) (list)
X-D
X-(A*D)

Figure 1-Updates schemes for views using actual results method. View X is
defined by relation B (and, if needed, A). Relation B has been updated. Re
lation I holds the tuple inserted in relation B. Relation D holds the tuple deleted
from relation B. Join refers to natural join on a key.

590 National Computer Conference, 1984

insertion schemes are shown in Figure 1a. Each scheme takes
advantage of the fact that X physically exists in its actual form.

The operation of deleting a tuple from a relation can be
represented as the relative complement of the relation to be
updated and a relation formed from the tuple to be deleted.
For instance, if relation B were to be updated by deleting the
tuple contained in relation D, the update could be repre
sented as B - D, where the relation formed by B - D would
be the updated B.

Now assume X is a view formed by AU B. If relation B
were updated by the deletion tuple that forms relation D, then
X can be updated by creating A U (B - D) where B - D is the
updated B and A U (B - D) is the updated X. However, the
expression AU (B - D) is equivalent to (A U B) - (D - A).
Therefore, X - (D - A) is the updated X. Using this ap
proach, a scheme has been developed for deletion of a tuple
from a view under every operation, except projection. As
before, each deletion scheme takes advantage of the fact that
X physically exists in its actual form.

Modifying an existing tuple can be implemented as a dele
tion followed by an insertion. Therefore, all tuple update
operations-insertion, deletion, and modification-can be
represented by using the insertion and deletion update meth
ods just mentioned. An insertion update table (I) and a dele
tion update table (D) must exist for each relation used to
define a view.

The algorithm presented in Figure 2 defers updates until the
specific view is queried. Updates are collected in differential

INPUT. A concrete view

OUTPUT. A concrete view in updated form

METHOD. This procedure updates the view whenever the view is
retrieved. Until that time, update tuples are collected in a differential
file. A check is made if the tuple has been previously entered into the
defining relation's update tables. If it has, and the transaction types
are the same (Le., insertion or deletion), no action occurs. If the
transaction types do not match, the tuple is deleted from that update
table and inserted into the update table that matches its transaction
type. If the type is not in the defining relation's update tables, it is
inserted into the corresponding update table. When all tuples have
been checked, the update schemes of Figure 1 are invoked, using the
I and D tables.

PROCEDURE MAINTAIN-ACTUAL (concrete view)
BEGIN

FOR all tuples used to update the defining relation DO
IF tuple already a member of defining relation's update file

THEN
IF update file type is same as tuple type THEN no action
ELSE

BEGIN
delete tuple from update file;
insert tuple into update file with its type

END
ELSE (*TUPLE IS NOT IN UPDATE FILES*)

insert tuple fnto update file with its type
END; (* END OF BUILDING I AND D TABLES *)
apply update schemes of Figure 1 to concrete view
END; (*MAINTAIN-ACTUAL *)

Figure 2-Algorithm for maintaining views in actual form

files 12 according to the algorithm and the update schemes of
Figure 1 are used to update the view. In this case, differential
files I and D may hold more than one tuple. Also, the algo
rithm may reduce the total number of tuples involved in the
actual update due to a culling process, which is carried out
when update tuples are added to the differential files. The
same tuple used in more than one update is reduced to only
the last update before the database is accessed. Proof of the
algorithm can be found in a more detailed document.

A summary of the procedure is as follows: As updates occur
to defining relations, those updates are placed in the relations'
differential files with an indication as to the update type.
When a concrete view is queried, the following occurs:

1. One of the defining relations' differential files is refer
enced.

2. Consecutive tuples of the same update type are pulled
off the differential file in the order they were placed on
it, put into the corresponding update table I or D, and
the appropriate update scheme of Figure 1 is invoked for
each group.

3. When the end of the differential file is reached, the
pointer to this differential file is changed to reference the
end of the file. The next defining relation's differential
file is then referenced and the process is repeated. If no
other defining relation is used to define the view, the
concrete view is now in updated form and the query can
be answered.

As an example, suppose that X is defined as AUB and appears
as below.

A B X
NO LT NO LT NO LT
1 a 2 b 1 a
2 b 3 c 2 b
3 c 5 e 3 c
4 d 6 f 4 d

5 e
6

Now assume that entries have been made into the database
transaction file as shown in Figure 3. Note that the two entries

: TUPLE RELATION UPDATE TYPE TIME USER

<2 b> A deleted 1000 1111
<3 c> A deleted 1001 1111
<:3 h> A inserted 1001 1111

<3 c> B inserted 1005 1112

<5 e> A inserted 1010 1111

<5 e> B deleted 1015 1112

<1 a> B deleted 1020 1111
.... _, L./ B deleted it)2i Ill!
<6 f) B deleted 1022 1111

Figure 3--An example transaction file for relations A and B

A Generalized Method for Maintaining Views 591

IA DA DB A B X

: NO LT: : NO LT

3 h I 2 b I

I 5 e I 3 c I I

---------- ----------

: NO' LT

5 e
1 a -~ c
6 f

: NO LT

1 a
3 h
4 d
5 e

NO LT

2 b

: NO LT

1
2
3
4
5

a
b
h
d
e

Figure 4-Relations A and B, their associated differential files, and the updated X, resulting from applying the Actual Update Algorithm of Figure 2

at time 1001 constitute a tuple modification. A tuple modifi
cation is implemented by a deletion followed by an insertion.
The reader should note that tuple < 3 c> is inserted into B
at time 1005; however, < 3 c > already exists in relation B. In
actual situations, this can occur and thus is handled with this
method. The resulting deletion and insertion tables are shown
in Figure 4.

GENERALIZED METHOD

The use of differential files as discussed in the previous section
supports concrete views. In the introduction, it was pointed
out that both potential results and actual results have advan-

NO

Figure 5--General flow for maintaining use of storage

tageous features. This section describes a generalized imple
mentation method that uses both potential and actual results.

In this method, each defining relation has a differential file,
into which go all tuples inserted and deleted. When a view is
first defined, it exists in potential form; i.e., the formula is
stored, but the relation itself is not. The view exists in poten
tial form until it is first queried. Until that time, updates to its
defining relations need no other action involving the view.
These updates will be automatically reflected when the view
is calculated.

When a query is issued concerning a view in potential form,
the relation is formed according to its formula, presented to
the user, and actually stored--if storage space permits. Its
status is then changed to actual. If no storage space exists, a
replacement algorithm is invoked. If the replacement algo
rithm does not store the newly constructed relation, the rela
tion remains in potential form and its construction is lost. If
the replacement algorithm stores the newly constructed rela
tion, the relation is now in actual form and the view it replaced
returns to potential form. Both of these status changes must
be recorded.

When· a view is stored, a reference to each of its defining I

relations~ differential files must be stored. This reference
points to the end of the differential file. This is because update
tuples entered prior to the creation of the concrete view were
already reflected into the relation when it was created. The
general flow of this storage maintenance is illustrated in Fig
ure 5. Once a view actually exists, all tuples inserted or de
leted from the defining relation must be explicitly reflected
into the concrete view. It is maintained according to the algo
rithm in Figure 2 and the update schemes of Figure 1.

To illustrate, we will trace a view through the technique. Let
X be a view formed by AUB. When the definition of X is
entered, the formula AUB is stored and X has a status of
"potential form." As long as X remains in potential form,
updates to A or B need not be reflected into X. This will be
done automatically when X is constructed. As updates occur
to A or B, the tuples and their update types are entered into
the respective relation's differential file. This is done to sup
port other concrete views defined by A or B.

Now assume X is queried. Because it currently exists in
potential form, it is constructed from its formula. The query
is completed and storage space is checked. We will assume
that storage space exists and X is stored. The status of relation

592 National Computer Conference, 1984

DEFINITION OF
DYNAMIC

DERIVED RELATI
r-------"---,

RECORD
DEFINITION &

FORM

INSERT TUPLE WITH
UPDATE TYPE INTO

I DEFINING RELATION'S
DIFFERENTIAL FILE

Fi):!;ure 6-Flowchart of the generalized method

X is changed to actual and references are set to the end of each
of X's defining relations' differential files.

When X is again queried, because it currently exists in
actual form, all updates made to relations A and B after X was
constructed must be reflected into X. This is done by the
algorithm presented in Figure 2. As long as X exists in actual
form, this method must be repeated whenever X is queried.

View X may return to potential form if it is deleted by the
replacement algorithm. When this occurs, the status of X is
changed to potential and X again is defined only in terms of
its formula. A flowchart of this generalized method is shown
in Figure 6.

CONCLUSION

A generalized method for implementing views has been de
scribed. This method involves storing dynamic derived rela
tions in both actual and potential form. A view exists in poten
tial form when it is defined and until it is queried. Once a
query involving a view is issued by the user, it is constructed
and actually stored if room exists in storage. When a view
exists in actual form, updates to its defining relations are
reflected immediately using the update schemes in Figure 1.
The view may, at any time, return to its potential form ac-

cording to storage needs, thus system requirements are
accommodated.

The major advantages of this technique are as follows:

1. Storage usage is controlled. By not forming a view until
it is needed, and by returning a chosen view to potential
form when memory is full, storage use is controlled.

2. Because views in actual form are explicitly updated only
if they are· queried, the system will not have to update a
view that is not used.

3. The number of times the update schemes are invoked
can be decreased using the algorithm in Figure 2; dupli
cate tuples are reduced before accessing the database.

4. The use of differential files introduces all the advantages
of such files; they reduce back-up costs, speed the pro
cess of database recovery, and minimize the possibility
of serious data loss.

5. By choosing a replacement algorithm that fits the way in
which the database is used, the system can be fine-tuned.

REFERENCES

1. CODASYL. Data Base Task Group Report, ACM, April 1971.
2. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM, 13 (1970), pp. 377-387.

3. Stonebraker, M. "Implementation of Integrity Constraints and Views
Query Modification." Proceedings of 1975 SIGMOD Conference. New
York: ACM, 1975, pp. 65-78.

4. Bernstein, P. A., and B. T. Blaustein. "A Simplification Algorithm for
Integrity Assertions and Concrete Views." Proceedings of 5th Computer
Software and Applications Conference. New York: ACM, 1981, pp. 90-99.

5. Bernstein, P. A., and B. T. Blaustein. "Fast Methods for Testing Quan
tified Relational Calculus Assertions." Proceedings, International Confer
ence on Management of Data. New York: ACM, 1982, pp. 39-50.

6. Eswaran, K. P., and D. D. Chamberlin. "Functional Specification of a
Subsystem for Database Integrity." Proceedings, Very Large Data Bases.
New York: ACM, 1975, pp. 624-633.

7. Kim, W. "Relational Database Systems." ACM Computing Surveys, 11
(1979), pp. 185-210.

A Generalized Method for Maintaining Views 593

8. Kinsley, K. Ph.D. dissertation, University of Central Florida, Orlando,
Fla., 1983.

9. Kinsley, K., and J. Driscoll. "Dynamic Derived Relations Within the
RAQUEL II DBMS." Proceedings of ACM '79. New York: ACM, 1979,
pp.69-80.

10. Kinsley, K. and J. Driscoll. "Efficiently Maintaining Dynamic Derived
Relations in Actual Form." Technical Report CS-TR-48, Department of
Computer Science, University of Central Florida, Orlando, Fla., 1980.

11. Date, C. J. An Introduction to Database Systems, (3rd ed.). Reading,
Mass.: Addison-Wesley, 1979.

12. Severance, D. G. "Differential Files: Their Application to the Maintenance
of Large Databases." ACM Transactions on Database Systems 1 (1976),
pp. 256-267.

The representation of debate as a basis for information
storage and retrieval

by DAVID LOWE
Stanford University
Stanford, California

ABSTRACT

Interactive computer networks offer the potential for creating a body of information
on any given topic that combines the best available contributions from a large
number of users. This paper describes a system for cooperatively structuring and
evaluating information through well-specified interactions by many users with a
common database. At the heart of the system is a structured representation for
debate, in which conclusions are explicitly justified or negated by individual items
of evidence. Through debates on the accuracy of information and on aspects of the
structures themselves, a large number of users can rank cooperatively all available
items of information in terms of significance and relevance to each topic. Individual
users can then choose the depth to which they wish to examine these structures for
the purposes at hand. The function of the debate is not to arrive at specific conclu
sions, but rather to collect and order the best available evidence on each topic. This
use of an interactive system for structuring information offers many further oppor
tunities for improving the accuracy, currency, and accessibility of information.

595

INTRODUCTION

There are currently more than 60,000 scientific journals being
published regularly, as well as numerous conference proceed
ings, books, and technical reports. Frequently cited problems
with these current methods of distribution include literature
scatter, publication delays, rising costs, and inaccessibility. It
would probably even now be economically advantageous to
replace this paper-based distribution of scientific literature
with electronic distribution through computer networks, 1,2

and the economic advantage will continue to improve with
rapidly falling computer and telecommunications costs. Elec
tronic distribution also would provide important advantages
in speed, flexibility, and retrieval capabilities.3

-
5 In particular,

this paper will present new methods for structuring and re
trieving information in interactive computer networks that
could not be implemented within a paper-based medium.

Except for narrow specialties, within which a research can
continuously monitor all the relevant journals and confer
ences, the sheer volume of the literature makes it very difficult
to locate the most useful references on a given topic. There
are a number of large bibliographic retrieval systems in opera
tion that allow a user to search for references with combina
tions of subject keywords,6,7 but there are inadequacies in the
use of keywords that make these systems unreliable or diffi
cult to use. For example, many English words have ambiguous
or multiple meanings and therefore may not precisely specify
a subject topic. In addition, these systems make no attempt to
evaluate documents on the basis of accuracy, clarity, or other
subjective criteria, although these criteria are of major im
portance in selecting documents for use. The use of keywords
to index documents is historically an outgrowth of the use of
subject headings in library card catalogues, but there have
been a number of more recent attempts to design new index
ing facilities that make greater use of the computer's capabil
ities. In particular, there has been considerable interest in
generalized methods for linking and referring to sections of
text, as in the Xanadu system.8 However, the basis for these
linked-text systems is still the individually authored document
-a restriction that the system described in this paper attempts
to overcome.

Computers offer capabilities that would be almost impos
sible to provide through the traditional use of the printing
press and the distribution of paper documents. Computers
allow large numbers of people to interactively examine and
modify a common body of information, and they allow infor
mation to be structured far more flexibly than is possible
within the linear order imposed by paper. These capabilities
will be exploited in this paper to describe the design of a form
of scientific communication very different from those cur
rently available. Rather than creating independent, individu-

The Representation of Debate 597

ally authored documents which are then indexed and filed by
editors and librarians, this new information resource would be
created and rearranged interactively by the users themselves
and would allow their many contributions and opinions to be
examined as one unified structure.

At a first level, a goal of this new medium is to allow many
users to create a structured description for each field of study,
within which documents can be referenced and evaluated ac
cording to the roles they play in that field. In this way the
system would act as an up-to-date, extremely detailed text
book or survey article, evaluating and ranking documents ac
cording to their relationship to each topic within a field of
study. However, another more radical goal of this medium is
to combine the content of many contributions on any given
topic into a single structure. Each item of information would
be broken down into individual concepts, and a well-specified
set of user interactions with the system would select the best
ordering and relationships between these concepts. By re
moving the redundancy of many individual contributions and
representing each concept only once, the sheer quantity of
information can be greatly reduced. By alloWing many re
searchers to examine and suggest modifications to each struc
ture, the accuracy, currency, and clarity of each presentation
is likely to be much better than is possible with documents
written by single authors.

The key development allowing many individuals to combine
their thoughts and opinions on a topic is a representation for
debate and for the multiple viewpoints that can arise about
any issue. The representation for debate described below re
quires each person to indicate explicit reasons for a given
opinion, so that argument over a conclusion is transferred as
much as possible to argument over the various sources of
evidence. The purpose of debate is not to choose one answer
to the exclusion of others, but rather to collect and order the
presentation of evidence and summarize concisely the range
of opinion. Although a voting procedure is used to select the
best candidates for initial presentation on any given topic, all
contributions are retained and can be accessed if a topic is
examined in sufficient depth. The explicit representation of
debate allows many subjective matters-such as the signifi
cance of a topic or contribution-to be addressed, whereas it
might not be politically acceptable to make these judgements
in an information system created by a few individuals.

THE SYSTEM IN OPERATION

A version of this proposed information system has been im
plemented as a computer program and used for a number of
experiments. The system has been named SYNVIEW to indi
cate its goal of combining multiple viewpoints into a single

598 National Computer Conference, 1984

{A} Overview: Information retrieval methods for access to document
collections

Keyword-based methods {B}
{c} Use of Boolean combinations of keywords for retrieval

specification

[3,3]

[3.1]

{D}

{E}

Evaluation of keyword-based retrieval systems currently
in operation

[2.2]

Keyword-based systems require a controlled vocabulary
for accurate recall

[1.2]

{F}
{G}

Automatic generation of subject keywords from documents
Methods based on structural descriptions of document

contents

[1,1]
[2,4]

{H}
{I}
{J}
{K}

Synstructuring of subject areas [6.4]
[3.2]

[1.3]
[5.1]

Hierarchical representations of subject areas
Methods based on natural language understanding

Current capabilities of natural language understanding
systems

{L} Research on the use of natural language understanding
for information retrieval

[2.2]

{M} Predictions of future natural language capabilities of [2.1]
computers

{N} More ... [1,1]
{O} Alternates [2.1]; {p} Search index; {Q} Back up; {R} Modify

Figure 1-The above display is shown to the user after a request for infonnation on a specific topic such as "information retrieval." It presents an overview of the
wpic in famiiiar outiine form. By typing ihe ietlers shown in oraces (e.g., {B}), a user can examine any pan of tne structure in more detaii or suggest modliIcatlons.
For example, typing the letter "E" results in the display shown in Figure 2

structure. Several examples of its use will be presented to give
the reader a feel for the representation before we embark on
more theoretical issues.

Figure 1 gives an example of the first display shown when
a user asks for information on "information retrieval" (we will
describe later how this request is made). This display presents
an overview of the topic in familiar outline form-the sub
topics and sub-subtopics correspond roughly to what might be
chapter and section headings in a textbook on the lead topic.
However, the topics are ranked strictly in order of decreasing
"importance," in the sense of which topics are the most im
portant to know for a general understanding of the lead topic,
rather than by any of the other criteria that are often used in
writing. The first number in brackets to the right of each
subtopic gives its rated importance with respect to the next
highest level, and the second number is an indication of the
range of disagreement in assigning the first number. The let
ters in braces at the begining of each line (e.g., {An are
menu-selection terms-by typing a given letter the user can
descend in the hierarchy of topics to examine any subtopic in
more detail. SYNVIEW does not display ali topics at one level
before displaying any topics at the next level; rather, the
display is balanced so that the cutoff in importance is at a

constant value with respect to the head topic. In order to see
more of the top-level topics, the user can select the line la
beled "More ... "

The creation and modification of these information struc
tures is based on the input of many individuals. Given the
display shown in Figure 1, a user can suggest modifications or
additions along any of a number of dimensions. At the sim
plest level, a user can give an opinion on the importance of a
subtopic; all votes will be averaged in determining the order
ing of the subtopics. If the user disagrees with the wording
used for some topic, a different wording may be suggested.
The choice between alternative wordings then becomes a
topic for debate (as described below), with different users
entering and voting on reasons as to why one wording is
superior to another. Any user can also add new SUbtopics
below any topic, although they may be ranked far down on the
list if others judge them to be unimportant or irrelevant.
When suggesting a new wording for a topic, it is possible to
create an entirely new set of subtopics and thereby completely
redesign the organization of a presentation. The choke be
tween these alternative organizations also becomes a topic for
debate.

The overview shown in Figure 1 is useful for listing all the

The Representation of Debate 599

{A} Keyword-based information retrieval systems require a
controlled vocabulary for accurate retrieval

[5.3]

{B} Most English words have imprecise or multiple [6.2] i [4.2]
meanings

{C} A controlled vocabulary is needed for precoordination
of index terms

[6.4] i [4.3]

{D} There are usually many approximately synonymous words
for any given topic

[8.2] i [1.2]

{E}

{F}

{G}

However: Within small specialized technical domains
the natural vocabulary may have adequate precision

All large commercial bibliographic retrieval systems
have chosen to use a controlled vocabulary

[2.2] i [-1.2]

[4.1] i [1.1]

Can accurate retrieval be achieved through
statistical operations on ambiguous keywords?

[-1.4] i [4.3]

{H} More ... [0.1]
{I} Alternates [3.2]; {J} Search index; {K} Back up; {L} Modify

Figure 2-This display is an example of the top-level structure of debate. The line labeled {A} is the assertion or question for which the following lines are items of
evidence in decreasing order of importance. Each item of evidence can be individually selected to examine its own support or to debate the relationship between the
evidence and the assertion. For example, selecting {B} produces the display shown in Figure 5. Selecting the top line (i.e., {A}) produces introductory information
on the topic as shown in Figure 6

relevant subtopics for some field of study. However, a type of
structure much more centrai to this medium of communica- .
tion is the representation of debate. Most of the items shown
in Figure 1 are noun phrases naming general topics of dis
cussion. However, the line labeled {E} is a declarative sen
tence, signaling the start of a structured debate. In such a
debate, all subtopics are further statements giving specific
items of evidence in support of or against the topic of the
debate. Figure 2 shows the display that is presented when the
user selects the item {E}. Each item of evidence can be ques
tioned in two different ways: The evidene itself may be judged
true or false to varying degrees, and the implication of the
original assertion mayor may not follow from the truth of the
evidence (the two sets of numbers to the right of each line of
evidence refer respectively to these judgements). Of course,
each item of evidence is itself an assertion that can be exam
ined in the same way as the original one. In addition to repre
senting much of the material of any scientific discipline, these
debate structures are used within SYNVIEW to resolve vari
ous areas of disagreement during the creation of structures.
The next section of this paper will examine the representation
and use of debate in greater detail.

THE REPRESENTATION OF DEBATE

The explicit representation of the evidence and reasoning in
volved in reaching conclusions is the most important require
ment for the development of this system. Without a represen
tation of the reasons for reaching a conclusion, many aspects
of the structure would amount to little more than opinion polls
on the accuracy of some statement. By representing the evi-

dence and forcing users to specify which evidence they are
using for their conclusions-and their reasons for discounting
contrary evidence-the user will be able to compare his or her
own judgements on individual items of evidence to those of
the other users of the system. It should be emphasized again
that the purpose of representing debate is not to reach abso
lute conclusions, but rather to collect and order the best avail
able sources of evidence for each significant issue.

Fortunately, there has already been an extensive amount of
research into the representation of human reasoning. Philos
ophers, for example, have debated the structure of reasoning
and inference since the time of Aristotle. Unfortunately, the
model of deductive inference studied by most philosophers
treats highly idealized cases ("all men are mortal") and fails
to capture the form of most human debates, which are not
subject to absolute proof. However, there has been some
more practical work, in particular the work of the philosopher
Stephen Toulmin on the layout of arguments. In his book, The
Uses of Argument, 9 Toulmin questions the usefulness of tradi
tional work on logic and deductive inference, and proposes a
practical form of structuring argument as shown in Figures 3
and 4. Figure 3 shows an argument resembling the traditional
Aristotelian syllogism, which is used in most work on deduc
tive inference. However, very few human arguments can be
fully cast within this framework because of the indefinite num
ber of exceptions and counterclaims that typically can be
brought to bear on any argument. For this reason Toulmin
introduced a number of other components to the layout of an
argument, including the qualifier, rebuttal, and backing, as
shown in Figure 4.

The representation of arguments in SYNVIEW follows
Toulmin's general structure and terminology, but also makes

600 National Computer Conference, 1984

a) Evidence

i
> Conclusion

Warrant

b) Harry was born > So, Harry is a
in Bermuda 1 British subject

Since, a person born in Bermuda
will be a British subject

Figure 3-This example from Toulmin shows the most basic form of argument,
in which evidence is presented for a conclusion based on an (often unstated)
warrant. This is similar to the syllogistic form of argument typically studied by
logicians. The diagram in (a) is the general form, and (b) shows a specific
example

a number of simplifications. In Figure 2 we saw how an argu
ment is represented at the first level by a ranked list of items
of evidence for and against a particular conclusion. However,
that list contained no explicit consideration of the warrant
linking each item of evidence to the conclusion. When one of
the items of evidence is selected from a display, such as that
in Figure 2, a new type of display is created, as shown in
Figure 5, in which the original conclusion is introduced with
the word "Context" and the warrant is shown explicitly and
justified with its own evidence. In this way, the warrant be
comes just another conclusion for which items of evidence can
be presented. These items of evidence for and against the
warrant combine Toulmin's backing and rebuttal categories,
and the use of numbers for evaluation correspond to his qual
ifier. The example in Figure 5 has been made somewhat more
complicated than the typical case for the purposes of demon
stration. It is usually more straightforward to reason with
steps that place most of the debate under the conclusions
rather than the warrant, since it can be tedious to debate the
strength of an implication rather than the truth of a more
concrete assertion. Toulmin himself said that in normal de
bate evidence usually is appealed to explicitly; warrants
implicitly.

THE ASSIGNMENT OF VALUES

Given an understanding of warrants, it is possible to explain
in more detail the function of the bracketed numbers at the
end of each line. Within each pair (e.g., [3,2]) the first number
is the average of the votes cast on the degree of truth or
correctness of some statement, and the second number is an
indication of the divergence of opinion in calculating the first
number (currently the spread at two standard deviations).
The votes on truth are given on a scale ranging from -10 (for
false with no possible doubt), through 0 (for no idea whether
true or false), to 10 (for true with no possible doubt). At the
moment, the intermediate point of five has been pegged as the

a)

b)

Evidence ---~): Qualifier, Conclusion

i i
Warrant Rebuttal

t
Backing

Harry was born ---~) So, presumably, Harry is a

in Bermuda i I British subject

Since, a person born U niess, both his parents
in Bermuda will be were aliens/ he has become
a British subject

t
On account of the
foIIowing legal statutes:

a naturalized American/ ...

Figure 4-Human reasoning is seldom based on absolute proof, and there are
typically an indefinite number of exceptions to any rule. Toulmin introduced the
concepts of a qualifier (which indicates the universality of an argument), a
rebuttal (which gives conditions of exception to the warrant), and backing
(which gives evidence for the warrant). Once again, (a) is the general form and
(b) is an example

point at which there is only a one-percent chance that the
statement is false. In order to assure the maximum agreement
and repeatability among different users, a full scale should be
prepared to give more accurate guidelines for assigning these
numbers. The first pair of numbers following any assertion
refers to the truth of that item. The second pair of numbers
following an item of evidence is preceded by an upward arrow
(e g; t [3,2]) and refers to the truth of the warrant linking
that item of evidence to the stated conclusion. In other words,
if the evidence was definitely true then this is the strength with
which it would imply the truth of the conclusion. For an item
of evidence to be significant, both its own strength and the
strength of its warrant must be high. Therefore, items of evi
dence are automatically ranked in decreasing order of the
minimum of these two values.

INTERFACE WITH TUTORIAL MATERIAL
AND DOCUMENTS

A basic function of information retrieval is to not only answer
specific questions but also to teach the user what he or she
must know in order to understand material in some subject
area. As mentioned earlier, the outline form of presentation
seems less useful for tutorial purposes than for those who
already have some understanding of the material. For this
reason, a standard interface is provided between the outline
structures and the best available introductory material on any
given topic. When the first line (the {A}) of a display such as
those in Figures 1 or 2 is selected, the system has already
displayed the SUbtopics for that line and therefore switches to
an "Introduction" display as shown in Figure 6. This display
contains definitions for any words or ideas not dealt with in
higher-level displays and gives references to the most useful

The Representation of Debate 601

{A} Context: Keyword-based information retrieval systems
require a controlled vocabulary for accurate retrieval

{B} Most English words have imprecise or multiple [6,2]
meanings

{C} From 60 to 80% of English words have more than [6,3] j[7,2]
one currently used meaning

{o} At least 10% of English word definitions vary [4,2] j[3,l]
substantially according to subject area,
geographical region, or educational level

{E} Experiments show large individual differences in [6,1] j[l,l]
the categorization of some objects according
to common nouns

{F}

{G}

jWarrant: The ambiguity of English words implies that [4,2]
the choice of keywords must be controlled

If a keyword has meanings other than the intended [7,2] j[5,4]
one, it could result in the incorrect retrieval
of items specified by the other meanings

{H} However: Technical words and compound words are [7,2] j[-2,l]
less ambiguous than English words in general

{I} However: The retrieval system could engage in a [3,2] j [-2.4]
dialogue with the user to select the appropriate

~ meaning for an ambiguous keyword
. {J} Alternates [3,2]; {K} Search index; {L} Back up; {M} Modify

Figure 5-This display examines in greater detail the reasoning from an item of evidence to a conclusion. The conclusion is given with the heading "Context" in line
{A}, the evidence is given in line {B}, and a paraphrase of the warrant linking the evidence to the conclusion is given in line {F}. The evidence and warrant are then
justified by their own items in evidence in the remaining lines

tutorial documents on the topic (evaluated according to their
tutorial value). This section could be expanded in numerous
ways: there could be interfaces to computer-aided instruction
programs, lists of examples or problems to solve, names of
experts in the field who would be willing to answer questions,
access to courses on the topic, and so on.

Of course, references to individually authored documents
can appear in many parts of the information structure other
than just the tutorial sections. The evidence for any conclu
sion can consist of experiments, statements, or eyewitness
testimony reported in traditional documents. The documents
and the claims they make would become further topics for
overview and debate structures. In this way, documents can be
integrated and indexed in a natural way. Ideally, the docu
ments would be available on-line for immediate access. In
addition to textual documents, there would be considerable
value in similarly integrating graphics, tables, pictures, and
multimedia material as the technology allows.

INDEX FOR INITIAL ACCESS

The examples above illustrate how retrieval is accomplished
by traversing the structures describing the relevant area of

knowledge. As the user becomes familiar with the represent
ation of the subject area, it should become continuously easier
to find some desired item of information. However, this still
leaves the question of how a search is initiated at the most
relevant starting point in a potentially very large base of
knowledge. There would probably be some use in having a
hierarchical description of the entire knowledge base for the
purpose of browsing to see what is available, but there also
must be much more direct methods for accessing any particu
lar structure.

SYNVIEW's indexing method uses keywords and modify
ing phrases as illustrated in Figure 7. The display is much like
that typically used for a book index, but with a few differ
ences. One difference is that the modifying phrases under any
indexing phrase are not in alphabetical order. In general,
there is never a need to put things in alphabetical order in a
computer, since the purpose of alphabetical order is to allow
easy searching for a specific item, which is a task that the
computer can perform directly. More important the computer
can keep track of how often the various modifying phrases are
selected and rank them in decreasing order by frequency of
selection. This minimizes the average distance that a person
must search to find the phrase of interest, and allows the list

602 National Computer Conference, 1984

{A} Introduction: Keyword-based information retrieval systems

{B}
I {C}

require a controlled vocabulary for accurate retrieval
Definitions

A controlled vocabulary is a list of allowable
words with a single definition specified for
each word

[4,3]

{D} Recall is considered accurate if all relevant
items and only relevant items are recalled by
a knowledgeable request

[3,3]

Introductory references {E}
{F} [Controlled vocabularies for information

retrieval (350 words)] {G}
[6,2]

{H}
{I}
{J}

[Salton and McGill, 1983, Chapter 4 (4000 words)]
[Lancaster, 1976: Chapter 2 (2000 words)]

[1,1]
[1,2]

Search index; {K} Back up; {L} Modify

Figure 6-This display provides tutorial material to introduce a user to an unfamiliar topic. Short definitions of new words or concepts are given, and a number of
introductory references are suggested. The first reference is written expressly for use in this retrieval system, and is available on-line by selecting {G}. Of course, further
information and discussion on any definition or reference can be obtained by selecting the line on which it appears

to be of indefinite length without increasing the average
search time.

As with all other aspects of the system, the index is con
structed interactively by all the users of the system. Not only
can users suggest indexing terms when they create a specific
structur~, but they can suggest new terms whenever they use
the index and find that some necessary term is not present. If
there is disagreement as to which structure is the most rele
vant for some index term, this too can become a topic for
debate.

SOCIAL CONSIDERATIONS

It is probably inevitable that the results of voting on the cor
rectness and importance of statements will carry more signifi
cance for the user than just ordering evidence for personal
evaluation. In many cases a user is likely to base his or her
decisions on what is presumably the carefully considered ex
pert opinion of people who have examined and voted earlier
on the strength of statements and implications. This brings up
the difficult question of whether only "experts" in some field
should be allowed to contribute opinions or whether every
user should be given equal status. Rather than trying to come
up with a single answer to this question, it would be more
useful to keep track of the results of a number of voting groups
for each topic and allow the user to choose and compare
among them. In order to maintain the credibility of the sys
tem, it is important that any certification process for assigning
users to voting groups should be based on degree of knowl
edge rather than viewpoint-based criteria. An important ben
efit of this type of information system is that it can com-

Information retrieval {A}
{B} Computer access to documents {C}
{D} Computer access to databases {E}
{F} Traditional library methods for {G}
fH1 Future of {r}
{J} Economic justification of {K}
{L} Current systems for {M}
{N} Keyword-based methods for {a}
{p} Computer use of natural language for {Q}
{R} History of {S}
{T} More ...

Figure 7-This section of the index is displayed when the user enters an index
request for "information retrieval." The menu items on the left search the index
to a greater depth, while those on the right move to the appropriate location in
the information structure dealing with that topic. Items are ranked by de
creasing frequency of access

fortably incorporate a wider range of viewpoints than do the
current methods of information distribution.

A related issue is whether the identities of users and their
votes on specific topics should be accessible. This is the case
with most current distribution methods, since almost all cur
rent academic writing is publicly identified with a particular
author. Having identities available allows people to examine
and comment on important issues, such as conflict of interest,
which may influence voting behavior. On the other hand,
there are some opinions that people would avoid expressing if
their names were attached publicly. Once again, the best an
swer is probably to allow users to choose anonymity in those
cases in which they consider it useful. Of course, the system

itself must still maintain some sort of record of identities in
order to prevent double voting. Given a record of this infor
mation, other capabilities such as tracing the areas of agree
ment and disagreement leading to a conflict in opinion and
examining correlations in opinions usually can be done with
out revealing the identities of individual contributors.

One case in which users definitely want their names to be
public is when they seek credit as the originator of some idea.
In fact, a major function of current academic literature is to
establish claims and credit for research results. The system
can of course maintain a record of the original contributor of
each idea, and this record can be debated by other users as to
which contributions were the most important for the devel
opment of some new result.

One of the potentially most significant social effects of a
system like SYNVIEW is also one of the most difficult to
measure. This is the potential for aiding in conflict resolution.
Many strong conflicts in opinion can be traced to a reliance on
different sources of information which are themselves written
from the viewpoints of their readers. There is therefore some
reason to believe that conflict would be lessened by exposing
users to all available evidence and by making the user justify
his or her evaluations of a conclusion in terms of each item of
evidence. The use of a range of values provides ample middle
ground for consensus where evidence is lacking or contra
dictory. Only extended experience with a working system will
tell how strong these effects are.

SUMMARY

There have been previous attempts to collect information
from many contributors into a common resource (e.g., col
lections of papers, peer commentary, 10 electronic bulletin
boards), but these have been limited in scope and usefulness
by the amount of time that it takes readers to wade through
the accumulation of material. In contrast, this paper has out
lined methods for synthesis and selection that can operate on
indefinitely large quantities of information and yet present
them in manageable structures that can be examined to what
ever depth the user desires. These methods operate by struc
turing and ranking information so that each structure starts
with the most important and reliable items of information on
that topic. Perhaps of even greater importance, these methods
leave an explicit trail of the collective reasoning that went into
arriving at each conclusion. This feature allows any new user
to compare his or her use of the available evidence with that
of those who have provided previous input to the system. The
use of these facilities could result in a major improvement in
the availability of accurate, clear, concise, clear, and up-to
date information.

The Representation of Debate 603

A working version of SYNVIEW produced the various ex
amples shown in this paper. Experience with the working
system was a major factor in many design decisions, and no
doubt more extensive use would suggest further modification.
This paper has not gone into detail about some aspects of the
interaction between multiple users, and there are planned
modifications to the current system that would improve this
interaction. For example, the current system does an inade
quate job of displaying conflicts in the choice of wording: The
examples in this paper displayed only the single highest
ranked wording for each concept, whereas the system should
do a better job of alerting the reader to the cases in which
there is strong disagreement regarding the presentation of
some topic. However, even direct use of the current system
should provide most of the potential benefits.

Of course, use of an information system of this type need
not be confined to the sciences or even to academic discus
sion. Examples of other applications include providing con
sumer information in which products or services are evalu
ated, evaluating and predicting the effects of legislative or
other proposals before they are implemented, and distributing
updates on current events as a component of the news media.

Possibly more significant than the actual system which has
been described is the idea of having many people cooper
atively build a common structure containing the best of their
many contributions. If nothing else, I hope this paper is per
suasive of the importance and potential of this topic.

REFERENCES

1. Lancaster, F. W. Toward Paperless Information Systems, New York: Aca
demic Press, 1978.

2. Senders, J. "The Scientific Journal of the Future." The American Sociolo
gist, 11 (1976), pp. 160-164.

3. Englebart, D. C. "NLS Teleconferencing Features: The Journal, and
Shared-screen Telephoning." Proc. IEEE Compcon, (1975), pp. 173-176.

4. Shackel, B. "Plans and Initial Progress with BLEND-An Electronic Net
work Communication Experiment." International Journal Man-Machine
Studies, 17 (1982), pp. 225-233.

5. Turoff, M., and S. Hiltz. "The Electronic Journal: A Progress Report."
Journal of the American Society for Information Science, (1982), pp.
195-202.

6. McCarn, D. B. "MEDLINE: An introduction to on-line searching." Jour
nal of the American Society for Information Science, (1980), pp. 181-192.

7. Salton, G., and M. J. McGill. Introduction to Modern Information Re
trieval, New York: McGraw-Hill, 1983.

8. Nelson, T. H. Literary Machines. (1983, Available from Ted Nelson, Box
128, Swarthmore, Pa. 19081).

9. Toulmin, S. E. The Uses of Argument. London: Cambridge University
Press, 1958.

10. Harnad, S. (ed.). "Peer Commentary on Peer Review." The Behavioral
and Brain Sciences, 5 (1982), pp. 185-255,

11. Cox, J. R., and C. A. Willard (eds.). Advances in Argumentation Theory
and Research. Southern Illinois University Press, 1982.

KSAM: A B + -tree-based keyed sequential-access method

by KEMAL KOYMEN

University of Petroleum and Minerals
Dhahran, Saudi Arabia

'ABSTRACT

This paper reports research undertaken to design and implement a B + -tree-based
keyed sequential-access method (KSAM). KSAM provides primary and secondary
access, which can be based on direct or sequential processing. Primary access to a
data file requires three levels of indexes: super, master, and priinary indexes.
Secondary access requires an additional index level: secondary indexes. The super
index and master indexes are transparent to the user and are used solely by the
system.

The primary index is organized as a B + -tree containing proper linkages to the
respective data files. In the implementation of secondary indexes a file is used to
store accession lists of the secondary indexes, and each secondary index is in turn
organized as a B + -tree containing proper linkages to accession list files. Thus,
linkage from the B + -tree ofa secondary index to the respective data files is provided
via the accession list file. Finally, another file is used to represent all the B + -trees
associated with a data file. Thus, three files suffice for the implementation of a
KSAM data file and its associated indexes. The implementation schema organizes
each of the three files as a direct-access file. Thus the high popularity of direct
access files makes the implementation possible in almost any programming lan
guage.

605

KSAM: A B+ -Tree-Based Keyed Sequential-Access Method 607

INTRODUCTION

Run-time performance of a database (or file) system is dras
tically influenced by the types of techniques used by the soft
ware to organize and subsequently access the requested data.
This is a significant factor that should be considered when
selecting a software package for an environment where time
liness of information is highly critical. Examples are found in
airline reservation systems, military applications, banking sys
tems, and other inventory types of applications. A design or
processing requirement for such a system is that it give suit
ably fast responses to inquiry and update requests originating
at terminals. How fast the response should be depends on the
nature of the access request and the application. Many inter
active systems need a response time of about 3 seconds-not
much longer than the response time required in human con
versation. 1 The response time includes delays introduced by
both database and teleprocessing systems.

An access request involves (1) the specification of data
records of interest via logical conditions containing primary or
secondary keys and (2) the specification of operations to be
performed on those records. Fast-access methods can gen
erally be designed2 when all logical conditions are expressed
in terms of primary keys alone-that is, all access requests are
to single records via their primary keys. It is much more
difficult to design fast-access methods when logical conditions
contain secondary keys-that is, ~hen access requests are to
sets of records. The design of an access method is influenced
not only by the types of access requests but also by the type
of data environment. Two types of data environment can be
distinguished: static and volatile. In a volatile data environ
ment, new records are inserted, and possibly the old ones are
deleted, at a high rate (e.g., an airline environment). In a
static data environment, the rate of insertion and deletion is
very low (e.g., a banking environment).

A comprehensive discussion of access methods that tend to
be faster is provided in two references;2,3 one of these access
methods is the so-called inverted file organization. In this
technique a secondary index is maintained for each non
primary key field used as a secondary key in specifying access

Accession lists
of pointers

to: ".

data file:

Accession lists
.. of pointers

_ _ _ I ".-··,1 \ -_ - -

I

\ I
Figure 1-Inverted file organization

requests to data records. A secondary index is defined in
relation to a secondary key (say, SKi) specified over a single
or composite field in a data file, and this index relates each SKi
value to a set of data records. Figure 1 depicts an inverted file
organization, where each of the m secondary indexes is repre
sented as a logical file of variable-length records. The records
in a secondary index contain lists of pointers used in accessing
the data records; hence the term accession list is applied to
such a list. The pointers can be absolute or symbolic pointers.
The use of symbolic pointers allows the data file to be reor
ganized, if required, without the need to update the secondary
indexes. Since primary key values uniquely identify the data
records, they are used as symbolic pointers in accession lists;
of course, this requires the existence of a primary index for the
data file. The primary index is defined in relation to the pri
mary key (say, PK) for the data file and relates each PK value
to a single data record. Figure 2 depicts the inverted file
organization using primary and secondary indexes.

The objective of the research, partly reported here, is to
develop a fast keyed sequential-access method (KSAM).
KSAM is based on B + -trees3

,7 and provides both primary and
secondary direct as well as sequential access. Access via a
primary key is termed a primary access, whereas access via a
secondary key is termed a secondary access. Primary and
secondary keys are allowed to be of varying length. Access
methods based other types of data structures have been de
scribed elsewhere.4,5,6

This paper describes data structures (in levels of abstrac
tion) used by KSAM. The appendix contains a partial descrip
tion of the KSAM user interface. A comprehensive descrip
tion of KSAM interfaces will be reported in a future paper. 8

Implementation of a KSAM data file (of variable-length
records) and its associated primary and secondary indexes is
achieved by using three direct-access files. One of the files is

Accession lists of
PK-values ,

Secondary l .
Indexes: •• • I

SKm-val i

lli
Kl-val •••

\~t~

Data
File

Primary
Index ED + ... t

I

Figure 2-Inverted file organization using primary and secondary indexes

I

608 National Computer Conference, 1984

OATA FILES L...I _____ -.J

Figure 3-Logical organization of KSAM files and indexes

used to represent the data file, and the other two are used to
.. o""o.C".on+ f-'ho,...;"n""al'll't'""lr .,n~ C'~:u"'£'\.nr1'.:l~7 1nrl~v~~ T TlC.p of nlTPl't_
.l\..rpJ.,",~,"".l.l'" ".1..1."" P.l.J.J.J..lU.lJ U.1.1. "' "''-'.J..I. '''''.I.]L.I. ""Llro."'"'U'. '""~ _ _ .L _.&.& __ '"

access files makes the implementation of KSAM possible in
any high-level language supporting direct access files (e.g.,
FORTRAN, PL/I).

KSAM FILE AND INDEX STRUCTURE

Figure 3 illustrates the logical organization of KSAM files and
indexes. KSAM provides access to a data file via indexes
organized in four levels. Primary access requires three levels
of indexes-super, master, and primary indexes--whereas
secondary access requires indexing at all levels.

A KSAM (data) file is viewed as an unordered (i.e., ran
dom) file of variable-length records, where maximum record
length and other parameters defining the logical record struc
ture are specified by the user at file definition time (see create
KSAM-file statement in Section 4). Figure 4 depicts the log
ical stI uctUIe for a KSAM file record.

The master index contains a record for each secondary key
and the primary key defined for data file and is ordered by key
names. Figure 5 describes the logical record structure. The
first field contains an internal code for the key name specified
by the user. Internal codes are used to enhance the run-time
performance of the system. The second and third fields are
used to save two pointers to the index file comprising the
primary and secondary indexes (see Section 3). KSAM uses
the first and second pointers in managing direct and se
quential access to the data file, respectively. The last field
contains a flag and indicates whether the (secondary) key is a
candidate (primary) key. 9

The primary index contains a record for each value of the
PK (primary key) defined in the data file and is ordered by PK
values. As indicated in Figure 6, each PK value is associated
with the indirect address of the respective record in the data
file. Indirect addressing is used to get around the index main
tenance task that would otherwise be required as a result of
block reorganization during update operations. More infor
mation on indirect record addressing is given in Section 4.

Figure 4--KSAM file record structure

Internal code
for

Address of root block address of sequence block
(first in lexicographical
order) in index fil e Key Name in index file

Figure 5--Master index record structure

Indirect Record Address
E 21: llalne 't . .

Length data file directory

I of Value entry
value block number number

Figure 6-Primary index record structure

Figure 7-Secondary index (variable-length) record structure

A secondary index contains a record for each distinct value
of the respective secondary key (SK) and is ordered by SK
values. As Figure 7 indicates, a secondary-index record is
actually a variable-length record, and the varying portion of
information is termed an accession list. The accession list
associated with an SK value consists of a set of PK values,
each denoting a data file record with the given SK value.

The superindex contains a record for each data file defined
by the user and also contains a record for itself. The super
index is ordered by file names. Figure 8 shows the logical
record structure for a superindex.

IMPLEMENTATION

This section describes implementation of data files as well as
primary and secondary indexes. Super- and master index
implementation will be discussed elsewhere.8

Figure 9 illustrates implementation of a KSAM file and its

! attribute

J name

attribute definition

PK defini bon

relatlve position
of the field definition
for the first SK

Figure 8-Superindex record structure

KSAM: A B+ -Tree-Based Keyed Sequential-:-Access Method 609

Logical

Physical :
(Direct Access

Files)

Figure 9--Implementation of a KSAM file and its associated indexes

Insertion of Records Block Directory
(

Insertion of Directory Entries

Note: FBL: free block link; FSP: free space pointer; RFS: reserved free space;
DR: ith record in the block (see Figure 2); FS: free space; RAi: relative address
of the ith record in the block; NR: number of records in the block.

Figure 10---Block structure for data file

associated indexes in terms of data structures in levels of
abstraction. Data files are implemented by means of direct
access files with blocked records. Figure 10 shows the block
structure for the direct-access data file. The right portion of
the block is used as a directory to the records in the block.

Directory growth is from right to left. Space is allocated to
the directory from FS as new records are stored in the block.
The FBL field is used to maintain a list of free blocks (as well
as partially filled blocks) for dynamic (space) management of
blocks. Initially, all blocks of the file are placed on the list by
initializing the FBL fields accordingly. Furthermore, the list
header is set to the first block of the list and saved in the
superindex. A freed block is always added to the beginning of
the list. Block allocation process always starts from the begin
ning of the list and traverses the list until a block with enough
free space is encountered.

The user-specified parameter, RFS, indicates how much
free space will be reserved in the block to satisfy the require
ments of future update operations. The second parameter,
FSP, initially points to the area following the reserved free
space. A new KSAM data record (DR;) is always written at
the location pointed to by FSP, and the relative address (RA;)
of the record is saved in the ith entry of the directory. Thus,
the record address defined by two parameters (block number
and directory entry number) functions as an indirect address.
Indirect addressing greatly reduces index maintenance over
head due to update operations on data records. More specif
ically, if an update operation causes the record to be moved
to a different location in the block, the address of the record
is updated only in the directory, not in the indexes.

As Figure 9 indicates, the primary index is logically or
ganized as a B + -tree. 3,7 The sequence nodes, that is, nodes in
the sequence set of the tree, contain primary index records,
which have been described in the preceding section (see Fig
ure 6). On the other hand, the index nodes, that is, nodes in
the index set of the tree, contain records that have the same
structure as primary-index records but carry diffet;ent infor-

I f::;Nll BTYPE I FSP I IRll .. · I I~ ~~I .. · I RAI I NR J
(Block Directory

. ~ ~(----------~
Insertion of records Insertion of directory

entries,

Note: FBL: free block link; NSBN: number of sequence block next (in order);
BTYPE: block type; FSP: free space pointer; IRi : ith index record; FS: free
space; RAi: relative address of IR;; NR: number of records in the block.

Figure ll-Block structure for index file

mation. In the latter case, the last field (directory entry num
ber) is defined to be null, and the third field contains the
(node) number of the (child) node pointed to by the record in
the node. The first two fields are used in the same way. Fur
thermore, the first record in each index node contains a null
value as its key; that is, it contains the quadruple: (0,1\, node
number, 1\).

Since secondary-index records contain accession lists of
varying length (see Figure 7), the lists are brought together
into a direct-access file (called an accession list file), and each
secondary index is in turn logically organized into a B + -tree.
The records in the index nodes have the same structure and
information as those of the B+ -tree for the primary index.
However, although the sequence node records have the same
structure, they carry different information: namely, the third
field in the record contains the (block) number of the block in
the accession list file, containing the first element of the acces
sion list associated with the SK value in the record. Naturally,
in this case, the value in the first field is interpreted as a SK
value.

B + -trees associated with the primary and secondary indexes
for a KSAM (data) file are represented in a direct access file,
referred to as the index file. Tree representations in the index
file are independent of each other. In the representation of a
B+ -tree, nodes are implemented by different blocks in the
file. Figure 11 describes the block structure for the index file.

The first field (FBL) in a block is used to maintain a list of
free blocks for dynamic (space) management of blocks. Ini
tially, all blocks of the file are placed on the list by initializing
the FBL fields accordingly. Moreover, the list header is also
set to the first block of the list and saved in the superindex.
Subsequently, block allocation from the list or addition of a
freed block to the list takes place at the beginning of the list.
Once a block is allocated to the running process, the same
field is used for a different purpose if it happens to be a
sequence block: It is used to store the (block) number of the
sequence block next in lexicographical order. If the block is of
index type, the field is not used any longer. The second field,
BTYPE, indicates the type of the block (node): index or
sequence. Figure 12 describes the structure of index records
(IR) in a block. Index records contain different information,
based on the type of index for which they stand (primary or
secondary) and on the type of block (node) in which they are
contained (index or sequence). Table I shows possible types of
information that may be contained in index records. Other

Address-l Address-2

Figure 12-Logical structure of an index record (IR)

610 National Computer Conference, 1984

TABLE I-Interpretation of information
stored in an index record (IR)

IR and Node Address-l Address-2 Value

Primary IR
Index node Index file 1\

block no.
Sequence node Data file Directory entry PK

block no. no. in a data file
block

Secondary IR
Index node Index file 1\

block no.
Sequence node Accesion 1\ SK

list file
block no.

fields in the block are interpreted as those which have been
described in the context of data file block structure (see Figure
10).

Each B + -tree in the index file is identified by its root block
(node), and the root block numbers are stored in the master
index. As mentioned in the preceding section, a master index
exists for each KSAM data file, and there is an entry in the
master index for each secondary key and the primary key
defined for the data file. Part of the information in the master
index entry, for some keys, consists of two pointers to the
Index file. One of the pointers is the address of the respective
root block in the index file. The other is the address of the
respective sequence block, first in lexicographical order, in
the index file. Thus, given a key, KSAM can easily locate the
corresponding B + -tree in the index file for subsequent direct
-_ ,.-_"' '!""l>:,...,1 ,..,... n"..11""

VI ~~'iu'-'Hual a,-,,-,,-,~~.

Figure 13 shows the block structure for an accession list file.
An accession list is implemented by linking as many blocks as
required through the accession list link (ALL) fields. The
total number of PKs (i.e., ALSIZE) in an accession list is
stored in the first block of the list. The current number of PKs
in a block is also indicated in a field (NPK) of the block. The
FBL field is used to maintain a list of free blocks for dynamic
(space) management of blocks. Initially, all blocks of the file
are placed on the list by initializing the FBL fields accordingly.
Moreover, the list header is also set to the first block of the list
and saved in the superindex. Subsequently, block allocation
from the list or addition of a freed block to the list takes place
at the beginning of the list.

The PK entries in a block can be organized in different ways
to enhance run-time performance of KSAM. Table II shows
three types of organization, which are compared on the basis
of macro-operations that can be performed on PKs. Each
table entry indicates the micro-operations required to imple
ment the respective macro-operations within the respective

I FBL. I ALL I ALSIZE I NPK I PK I
Note: FBL: free block link; ALL: accession list link; ALSIZE: accession !ist
size; NPK: Number of PKs in the block.

Figure l~Block structure for accession list file

TABLE II-Three different organizations for PKs in a block

Type of
Type of Organization

Macro Binary
Operation Random Search Tree Sorted Array

INSERTION Write Search (to Search
of an entry determine Shift (required if
into acces- the father located entry
sion list node) is not logically

Write deleted)
Write

RETRIEVAL Read Read (in Read (sequen-
of accession (sequen- symmetric tially)
list (in lexi- tially) order)b
cographical Sort
.n.rrl~r\a
'""&-'-''''1

DELETION Search (logi- Search Search (logical
of an entry cal dele- Shift (if 10- deletion)
from acces- tion) cated entry
sion list is not a

leaf node)
(Physical

deletion)

a Retrieval in lexicographical order is necessary for the sake of effective second
ary access.
bIn case of threaded repro symmetric-order traversal is more efficient.

organization. The decision about which type of organization
is best depends on the type of application and the nature of
data (i.e., static or volatile).

CONCLUSION

Data structures used by KSAM have been described in levels
of abstraction. A KSAM data file, with a primary index and
any number of secondary indexes, has been implemented by
using three direct-access files. The high popularity of direct
access files makes the implementation task feasible in almost
any programming language. Implementation details of

. KSAM will be reported in a future paper. 8

ACKNOWLEDGMENTS

The author would like to express his thanks to the University
of Petroleum and Minerals for its support for the research
reported here.

APPENDIX: USER INTERFACE

Figure Al describes interfaces for a KSAM user that can be
an application program or an end user. A variety of KSAM
utility and maintenance routines are provided to the user via
user interface. Algorithms used in these routines for index
maintenance are based on original B-tree index maintenance
algorithms by Bayer. 6 This appendix lists the routines pro
vided by the user interface and provides brief descriptions of
functions performed by these routines.

KSAM: A B+ -Tree-Based Keyed Sequential-Access Method 611

USE R

L----'""Ir----.;.::! _ _ User Interface

KSAM Interface

DAM
(Direct Access Method)

DAM Interface

Figure AI-Interfaces for a KSAM user

Detailed description of these routines and other interfaces
will be provided elsewhere. 8

1. CREATE-SUPER-INDEX
This routine is invoked only once by the system admin
istrator to create and initialize a superindex.

2. CREATE-KSAM-FILE
This routine creates a KSAM data file. In addition, it
also creates a KSAM master index and a KSAM index
file. The index file is created for representation of ~
primary index and possible future secondary indexes.
The routine performs suitable initialization in super
and master indexes, as well as in index and data files
based on user-specified parameters, such as data file
name, number of attributes in a data file record, defini
tion and order of attributes within a record, PK defini
tion, block lengths for index and data files.

3. CREATE-SECONDARY-INDEX
This routine is invoked to create one or more secondary
indexes for an existing KSAM file. Upon the first
invocation, it creates and initializes a KSAM accession
list file. On each invocation it enters a new entry in the
master index and updates the respective entry in the
superindex.

4. DELETE-KSAM-FILE
This routine deletes the specified KSAM data file. In
addition, it deletes the respective master index file and
accession-list file (if it exists). It also deletes the re
spective entry from the superindex.

5. DELETE-SECONDARY-INDEX
This routine is used to delete a secondary index. The
routine frees the blocks of the index file allocated to the
secondary index and links them to the free list on index
file. It in turn deletes the respective entry from the
master index. It also frees the respective blocks from
the accession list file and places them on the free list in
the accession list file.

6. OPEN-KSAM-FILE
This routine is invoked to activate a KSAM file in
dynamic-access node (i.e., sequential and/or direct)
and to inform the system about the type of I/O to be
performed on file (i.e., input, output, or input-output).
The routine establishes an access path9 for each index,

and the system sequence9 and all access paths are ini
tially positioned at the first entries in the respective file
or index. As a result of activation, an entry is created
in the AFT (active file table) for the data file, and an
entry is created in the AIT (active index table) for each
index. The AFT and AIT are initialized from informa
tion in the super- and master indexes and are main
tained by KSAM. Finally, the routine might also read
the root block for primary index into a buffer for subse
quent references.

7. CLOSE-KSAM-FILE
This routine is used to deactivate an opened KSAM
file. It updates the super- and master indexes and de
letes the respective entries from AFT and AlT.

8. READ-RECORD-BY-PK
The routine reads the record specified by its PK from
the KSAM data file into a user-specified buffer.

9. READ-RECORD-BY-SK
This routine reads the record specified by three param
eters (SK name, SK value, and occurrence number)
from the KSAM data file into a user-specified buffer.
An occurrence number, associated with each SK value,
indicates the position of the PK of the desired record in
the accession list for the SK value.

10. READ-RECORD-BY-SS
The routine reads the record specified by its indirect
address (block number, directory entry number) from
the KSAM data file into a user-specified buffer.

11. POSITION-ACCESS-PATH
This routine is used to position an access path in accord
ance with parameters specified by the user. The param
eters indicate the access path (i.e., primary, secondary,
or system sequence) as well as the new current position.
The new current position is reflected in the AlT.

12. READ-CURRENT-INDEX-ENTRY
The routine is used to read the index entry defined by
the current position of the specified (index) access
path. The routine updates the respective entry in the
AIT to reflect the new current position. A primary
index entry consists of PK value, whereas a secondary
index entry consists of SK value and ALSIZE for the
respective accession list.

13. READ-CURRENT-RECORD
This routine reads the record defined by the current
position of the specified access path from the KSAM
file into a user-specified buffer. The new current posi
tion is reflected in the AlT.

14. WRITE-RECORD
This routine is used to write a record from a specified
buffer into the KSAM data file. The indexes are up
dated accordingly. The current positions on access
paths remain unchanged.

15. The following deletion operations are similar to corre
sponding READ operations. However, in this case,
indexes are also updated accordingly.

a. DELETE-RECORD-BY-PK
Same as (8), but deletion is performed.

b. DELETE-RECORD-BY-SK
Same as (9), but deletion is performed.

612 National Computer Conference, 1984

c. DELETE-RECORD-BY-SS
Same as (10), but deletion is performed.

d. DELETE-CURRENT-RECORD
Same as (13), but deletion is performed.

16. REWRITE-RECORD
This routine is used to rewrite the (updated) record

from a specified buffer into the KSAM file. Indexes are up
dated accordingly.

REFERENCES

1. Martin, J. Design of Man-Computer Dialogues. Englewood Cliffs, N.J.:
Prentice-Hall, 1977, Chapter 18.

2. Martin, J. Computer Data-Base Organization. Englewood Cliffs, N.J.:
J>rentice-Hall, 1977, Chapter 35.

3. Teorey, T. J., and J. P. Fry. Design of Database Structures. Englewood
Cliffs, N.J.: Prentice-Hall, 1982.

4. Nicklas, B. M. and G. Schlayeter. "Index Structuring in Inverted Data bases
by Tries," The Computer Journal, 20 (1977), pp. 321-324.

5. Cardenas, A. F. "Analysis and Performance of Inverted Database Struc
tures," Communications of the ACM, 5 (1975), pp. 253-263.

6. Bayer, R. B., and E. McCreight. "Organization and Maintenance of Large
Ordered Indexes." Acta Informatica, 1 (1972), pp. 173-189.

7. Knuth, D. E. The Art of Computer Programming (Vol. 3), Reading, Mass.:
Addison-Wesley, 1972, pp. 473-489.

8. Koymen, K. "KSAM Interfaces." In preparation: Technical Report
AR05143.

9. Date, C. J. An Introduction to Database Systems." Reading, Mass.:
Addison-Wesley, 1981.

A database machine based on the data distribution approach

byYAHIKO KAMBAYASHI
Kyushu University*
Fukuoka, Japan

ABSTRACT

Various VLSI circuits, each of which realizes a specific database operation, have
been studied; and a VLSI database machine can be created by a collection of these
circuits. Such a method is called the function distribution approach. The problems
of this approach are that (1) the data transmission cost is very high and (2) some
circuits become very slow when the data size exceeds the maximum size handled by
the circuits. Since database systems handle a large number of data, we need to
develop another approach that costs less for data transmission and has expandabil.,
ity. Because most database operations can be divided into operations on su~sets of
data, this paper proposes the data distribution approach. In this approach a subset
of data is stored in a functional storage circuit, and each circuit can realize most
database operations. The whole system can be viewed as a file system having
functions for database operations. Compared with conventional file systems, the
system has the following advantages: (1) frequent rebalancing is not required, and
(2) parallel processing of database operations is realized. Three methods to realize
functional storage circuits are described. Selection is made by cost, performance,
and available VLSI technology. An organization of such circuits with efficient
database processing is discussed in detail; it will be realized by technology in the
near future.

*This paper was written when the author was at Kyoto University.

613

A Database Machine Based on the Data Distribution Approach 615

MOTIVATION FOR THE RESEARCH

Pipeline processing is very effective in computers as well as
factories (A).

PROCESSORS

Pipeline Processing

(A)

In order to handle a large amount of data, it is economical
to move processors instead of data (B).

Moving processors require less cost than moving very
large data

2 X X X X----+ c:-- Very Large Data ~

(B)

Instead of moving processors, (B) can be equivalently real
ized by changing the functions of processors. This method
seems to be suitable for databases, since basic operations are
rather simple (C).

Changing functions at each processor so that both
processors and data are not required to move

22222 c=:::: Very Large Data ~

Data Distribution Approach

(C)

BACKGROUND

As a result of the recent development of VLSI technology,
hardware realization of various functions has been studied by
many authors. Such research is especially important in the
areas of databases, picture processing, inference systems, and
similar areas, where current computer systems do not offer
enough efficiency. A typical system organization is as follows:
A system consists of a number of hardware components, each
of which can perform one or more specific operations effi
ciently. To perform an operation on data, the data are trans
mitted to the component that can perform the required oper
ation. This method will be termed the function distribution
approach. In this approach, the computation time is deter
mined mainly by the communication cost. This paper will
introduce the concept of the data distribution approach,
which is especially suitable for database systems. Organiza
tion of the system in this approach is also discussed.

Database machines using associative disk devices and bub
ble devices have been studied by many authors. 1,11,12,18,22 In
the near future there will be a VLSI-based database machine.
For this purpose various circuits for database operations, such
as sort, search, select, and join are separately discussed. A
VLSI database machine can be created through a collection of
these circuits by taking the function distribution approach.
The approach has the following problems.

To realize a required operation, data must be transmitted to
the circuit that can perform the operation, and the result has
to be transmitted to some circuit or storage. If the operation
is binary, usually three units of data transmission (two for
input and one for output) are required. Because the number
of pins of each VLSI chip is limited, the cost of data trans
mission is O(n) for transmitting n data. The problem can be
summarized as follows: (1) the data transmission cost is very
high, and (2) there is a control problem in data transmission.
There are two possible approaches to handle (1): (a) oper
ations can be performed during the data transmission so that
the effective time for the transmission is reduced; (b) a suit
able approach can be found at less communication cost. There
are many circuits taking the first approach, such as the up
down sorterlO and the parallel enumeration sorter, 25 which
produce serial sorted data immediately after the end of the
serial input operation. The data distribution approach is an
example of (b).

In the data distribution approach, the data are partitioned
into small sets, each of which can be handled by one circuit.
Each circuit can perform most of required operations as well
as the storage function. Data transmission among components
can be reduced. Such an approach is suitable for operations
having the following two properties: (1) each operation can be
divided into a set of operations each of which requires a subset
of the whole data, and (2) each operation is simple.

616 National Computer Conference, 1984

Database operations satisfy the above properties. Restric
tion and projection operations can be realized by collecting
the result of these operations to the subsets of data. For sort
ing and searching, the bucket sort can be used. For each
bucket the upper and lower bounds of data to be sorted are
determined (usually the intervals for buckets are disjoint),
and buckets are numbered in increasing order. Then sort and
search of the whole data can be realized by sort and search for
each bucket that corresponds to one component circuit.

The next section compares the function distribution ap
proach with the data distribution approach introduced in this
paper for realizing database machines. In the following sec
tion, definitions of relational operations are given. The next
section discusses the organization of component circuits for
database machines designed under the data distribution ap
proach. The final section discusses one possible circuit config
uration for realizing component circuits by using VLSI chips.
A good database machine should be realized by a proper
combination of the function distribution approach and the
data distribution approach.

APPROACHES TO REALIZING DATABASE
MACHINES

First we will summarize the approaches and the problems for
database machine realization. In the function distribution ap
proach,

1. Each component is designed to perform one function or
a set of related functions

2. The system consists of a storage and component circuits
discussed above.

3. Data usually reside in the storage. When a specific oper- .
ation is required, the data to be processed are trans
mitted to the component circuit that can perform the
operation. The result and the data are transmitted to the
storage or to other components for further processing.

In the data distribution approach,

1. Each component circuit can store data, and it realizes
most required operations.

2. All data are divided into each component circuit so that
there is a simple procedure for realizing an operation on
all the data by performing corresponding operations at
each component circuit separately. Figure 1 shows the
organization of systems by these two approaches.

The properties of database operations are as follows:

1. Each operation is rather simple.
2. Each operation can be realized by operations applied to

subsets of data.
3. The number of data to be handled by each operation

varies from very small to very large.
4. Even if the volume of data is very large, usually, a query

or a modification operation needs only a portion of the
data, selected by some specified criteria.

I-----+----i CONTROLLER
'--__ -1

I OTHERS t------'----ll STORAGE I
(a) The function distribution approach (b) The data distribution

approach

Figure I-Approaches to developing database machines

5. There are operations like join, sort, and search, which
are time-consuming.

If the data distribution approach is taken most operations
can be realized at a reduced transmission cost. As shown
above, database operations are suitable for this approach.
Previously known approaches are as follows: (1) a system
consisting of components each of which can store at least one
relation and in each of which database operations are per
formed; (2) the function distribution approach.

The first approach is usually used by intelligent disk-based
systems. The data distribution approach can handle cases in
which the number of data is large or component size is small,
which occurs when VLSI circuits are used to realize each
component.

Requirements for each component circuits are as follows:

1. Since the hardware approach is better than the software
approach for a large number, n, of data, a circuit must
h", ...1.,.('~n ",...1 t1...,t "., 1...,11.,. .,(' 0:>"" ...1"t" ,,., ""(',,;1..1.,. i\ ..., ""'..,.I.f:, "'&_"" _IL4.1..&t.IL4.&.& "'" _tJI & ~.I. ... J _ .. __ ~ y,......tJltJI.&'-" ... ""' • .tl.:..

circuit requiring an area of O(nP)(p>2) does not seem to
be practical for replacing software.

2. The computation time should be determined by the vol
ume of data, not by the circuit size.

3. A proper and efficient method must exist for handling a
set of data whose number exceeds the maximum limit of
the circuit capability.

There are hardware methods whose computation time is
determined by the maximum number of data processed by the
circuit. For example, the time required by a high-speed 64-bit
multiplier is usually almost fixed, even if the inputs are 5-bit
numbers. For arithmetic operations this problem is not seri
ous, since the ratio of the most frequently used data volume
to the maximum volume handled by the circuit is usually not
high. As in database systems, when the volum.e of data varies
very widely, the problem is serious. When the processing time
is Oem) or more (m is the maximum number of data handled
by the circuit), the circuit is very inefficient if the data size n
is much smaller than m. The problem is not so serious for
circuits requiring O(1og n) or O(VIi) processing time.

For example, the joint circuit realized by the systolic
approach9 always requires time determined by the circuit size,
even if the data size is very small. For joining large relations
a large circuit is needed, since if the relation size exceeds the
bound determined by the hardware size, efficiency decreases

A Database Machine Based on the Data Distribution Approach 617

very much. If we use a large circuit, however, we need a fixed
amount of time to process relations, even if it is a small
amount. Pipeline processing is very important in order to
improve efficiency when the same operations are used repeat
edly. The approach, however, increases the complexity of the
data transmission control. In this approach an attempt will be
made to increase efficiency by simultaneous processing of
each component circuit, i.e., parallel processing.

BASIC OPERATIONS OF RELATIONAL DATABASES

A relation R is defined as a finite set of tuples, each of which
is a combination of domain values for the attribute set R,
called a database schema. Figure 2(a) shows a relation
STUDENT. NAME and DEPT are attributes, and STU
DENT = {NAME , DEPT}. There are three tuples in STU
DENT. The first tuple (Anderson, Computer Science) shows
that Anderson studies at the computer science department.

For a tuple t in R, t[X] denotes the part oft containing only
values of attributes in X(X ~ R). The following notations are
used for basic relational operations.

STUDENT

NAME DEPT

Anderson Computer Science

Baker Physics

Clark Electronics

(a)

LOCATION

DEPT BUILDING

Chemistry B

Computer Science A

Electronics A

(b)

NAME DEPT BUILDING

Anderson Computer Science A

Clark Electronics A

(c)

DEPT BUILDING

Computer Science A

Electronics A

(d)

Figure 2-Examples of relations

Projection: R[X] = {t[X] I t E R}
Restriction: R[XeC]={t I t[X]eC, fER}
8-Join: Rl [XleX2]R2 = {tl f2 I tl [Xl]et2[X2],

tl ERb t2ER2}

Here, X ~ R, Xl ~ RI, X2 ~ R2, C is a vector of constants
and e is a comparison operator (= , < , > , etc.).

Projection of R on X is obtained by removing all attributes
not in X. R2 in Figure 2(d) is obtained by a projection from Rl
in Figure 2(c).

R2=Rl [DEPT, BLDG]

The restriction R [XeC] shows the subrelation of R con
sisting of tuples satisfying xec. LOCATION and R2 in Fig
ures 2(b) and 2(d) have the following relationship:

R2 = LOCATION [BLDG = A]

Rl in Figure 2(c) is obtained by joining the two relations
STUDENT and LOCATION in Figures 2(a) and 2(b).

Rl = STUDENT[DEPT = DEPT] LOCATION

Since the result of the join contains two identical columns,
one of them is omitted. Such a join is called a natural join.

For two relations Rl and R2 defined on the same attribute
set (Rl = R2), set operations can be defined. Rl U R2 is a re
lation consisting of all tuples in Rl and R2. Rl n R2 and Rl - R2
are also defined similarly.

Division is also known as a relational operator, which can
be expressed by a combination of other operations.

There are aggregate functions, such as count, sum, and ave
(average). The result of count is the number of different
values. For example, COUNT(LOCATION[BUILDINGD =
COUNT({B, AD = 2. Sum takes the summation of values,
and ave calculates average values.

Since contents in a relation can change, update operations,
such as add, delete, and modify, are needed. In these oper
ations, tuples are added, deleted, and modified (i.e., a part of
a tuple is changed).

For efficient processing of some of the above operations,
operations such as sort and search are needed. These oper
ations are summarized in Figure 3, which includes operations
not discussed above. This paper will discuss VLSI circuits to
perform these operations effectively.

Basic relational operations
Projection, Selection, Join, Division

Set operations
Union, Intersection, Difference, Direct product

Aggregate functions
Count, Sum, Average

Update operations
Add, Delete, Modify

Sort and search
Sort, Direct search, Sequential search

Figure 3-Major operations of databases

618 National Computer Conference, 1984

DESIGN OF A DATABASE MACHINE BY THE DATA
DISTRIBUTION APPROACH

This section will discuss the organization of database ma
chines based on the data distribution approach. Since the
system will be realized by VLSI circuits, we assume that there
are relations that cannot be contained in one component.
Such a relation is divided into sets of tuples, so that each set
can be stored in one component circuit called a functional
storage circuit.

Before the organization of each functional storage circuit is
discussed, methods to realize database operations will be dis
cussed. They are classified as follows:

1. Operations that can be realized by local processing only:
projection, selection, search, update.

2. Operations that can be realized by local processing and
simple global processing: count, sum, average.

3. Operations that require data transmission among func
tional storage circuits: join, intersection, difference.

4. Operations that require reloading of the whole data:
sort, division.

It is obvious that the projection, selection, search, and up
date operations can be realized at functional storage circuits.
For aggregate functions, simple arithmetic operations on the
results obtained by functional storage circuits are needed. To
perform a join (or intersection, difference) operation on two
relations stored in two sets of component circuits, joins must
be realized on all possible combinations of the contents of two
functional storage circuits (one from each relation). For
sorted data the number of possible combinations will be re
duced. To reduce the cost of operations in 3 and 4 above~ we
will use the bucket sort.

For each functional storage circuit the upper and lower
bounds of sort key values are determined. For example, the
first functional storage circuit stores tuples whose key values
are contained in the intervals [A,B], and the second func
tional storage circuit stores tuples in the interval [C,D]. In this
case the tuple whose key value starts from D should be stored
in the second functional storage circuit. We assume that a
unique order number and a key interval are assigned to each
functional storage circuit. These values are stored in the index
circuit as shown in Figure 4. The following condition is satis
fied by order o(s) and interval i(s) for functional storage cir
cuit s.

For any functional storages sand t,

j :s k if o(s) < o(t), j E i(s), k E i(t).

Since tuples are sorted in each functional storage circuit, all
the tuples in the relation are sorted by retrieving functional
storage circuits according to the ascending order of o(s).

Sorting of n data can be realized by O(n) steps by the above
system. As shown below, overflow of a bucket will usu~lly not
increase the number of steps. Division can also be realIzed by
sorting. For example, R(A,B) -7- S(B) can be realized by
sorting by A.

13,17

4,12

-i1--_70 -----'~
Figure 4-An index circuit

The system consisting of the index circuits and component
circuits is called a hardware file system.

Compared with conventional file systems, a hardware file
system has the following advantages: (1) frequent rebalancing
operations are not required, (2) parallel processing is possi
ble, and (3) various operations can be realized. The next
subsections discuss these advantages.

Balancing

In B trees dynamic balancing of a tree is required. Since the
index is realized by hardware, balancing of the tree is not
important. wben in ere are two functionai storage circuits
with the consecutive o(s) values and the contents of the two
can be fitted into one functional storage circuit, they can be
merged by the merging operation. If one functional storage
circuit becomes full, we need only to prepare another func
tional storage circuit with the same o(s) and i(s) values. New
tuples can be added to either one having empty cell space. If
a sorted output of the two functional storage circuits is re
quired, we can use the merging hardware, to be discussed
below (see Figure 5). Thus we can use more than one func
tional storage circuit with identical o(s) and i(s) values. If the
number of functional storages with identical o(s) exceeds
some predetermined threshold value, we actually need to split
these functional storage circuits into storages with consecutive

Inl

~ MERGER c= 124 24 4 4 4

.............

346 346 346 46 6 6
In2 I
Out

11
2 3

14 I 4
6

TIME

Figure 5---Merger

A Database Machine Based on the Data Distribution Approach 619

o(s) and i(s) values. Reorganization of the contents of the
index circuit is not required as frequently as conventional file
systems, since overflow tuples can usually be handled without
reorganization (as discussed above).

Parallel processing

The index circuit can be duplicated in order to increase
efficiency. If there are k indices, the expected sorting time
becomes at most k times faster than one index case. Versions
of such parallel bucket sorts are discussed by several au
thors. 13

,14,17,24 Most of the other operations can also be done
at each functional storage circuit in parallel. For example,
searching tuples satisfying some condition determined by
values of each tuple can be realized at each functional storage
circuit independently.

Operations

Various functions discussed in the previous section can be
realized. In some cases a combination of operations can be
realized by the maximum processing time required by each of
these operations.

A merger is used to generate one sorted sequence from a set
of sorted subsequences. When these subsequences are given
in ascending order, the merger always takes the tuple with the
smallest key value among tuples at the top of subsequences.
Figure 5 shows an example of the merging of two subse
quences. One application of the merger is discussed above.
Another application is to sort by values different from the key.
When such sorting is required, sort is first performed at each
functional storage circuit, and then merging of these results is
performed.

Join of two relations sorted in functional storages can be
realized by the method discussed by Merrett et al. 16

For functional storage circuits, the structure shown in Fig
ure 7 will be used. It consists of a tree part and a linear part,
for the following reasons:

1. To store n data, we need 2n memory cells, since the
original data in the functional storage circuit should be
kept during an operation and an intermediate result
must be also stored.

(a)

I PROCESSOR! H STORAGE! I
I I PROCESSOR2 H STORAGE 2 I
I I PROCESSOR3 H STORAGE3

I PROCESSORn H STORAGEn

(b) (e)

Figure &-Three methods of realizing index circuits and function storage
circuits: (a), microprocessor system; (b), a tree realized by assigning one

processor to each level; (c), storage cells integrated with processors

2. Since we need 2n memory cells, we will use a tree con
sisting of n cells and a linear arrangement of n cells,
since most operations are suitable for one of the two
structures.

This structure is also suitable to realize index circuits.
The following methods realize index circuits and function

storage circuits (Figure 6): (a) use of a microprocessor system,
(b) use of a tree realized by assigning one processor to each
level, and (c) use of storage cells integrated with processors.

Methods (a) and (b) can be realized by current technology.
To realize a tree having n nodes, Method (a) requires only one
processor, Method (b) requires O(1og n) processors, and
Method (c) requires O(n) processing elements. Realization of
a tree by log n processors is used for sorting circuits. 19

,20 The
Method (a) is the most economical, and Method (c) realizes
the fastest operations. The selection is determined by cost,
performance, and available technology.

Method (a), shown in Figure 6(a), is simple; but the amount
of communication between the processor and memory is
large, which reduces the speed. In sorting of data, only one of
the cells in each level is active at a time. Method (b) uses one
processor to each level, which improves performance remark
ably compared with method (a). Method (b), however, has
the following problems:

1. Each processor has a different number of memory cells.
This fact makes the embedding on the VLSI chip diffi
cult. The processing time required for a processor with
a larger number of memory cells is longer because of the
address decoding time. It may cause a problem to syn
chronize all the processors.

2. There are still data communications between a processor
and its memory, and it will make the system not so fast
as Method (c).

Figure 7 shows the organization by the Method (c), where
each rectangle corresponds to a storage with some processing
capability.

Although by current technology Method (b) is the best
choice, we will discuss the organization of the circuits by
Method (c) in the next section. The author believes that such
circuits can be realized in the near future.

1 lIO(T)

~-------diD i C/;\O
++0-0-0-0-0-0-0

lIO(S)
(a)

(b)

Figure 7-Functional storage for n = 7 and n = 15

620 National Computer Conference, 1984

ORGANIZATION OF A VLSI FUNCTIONAL
STORAGE CIRCUITS

In this section the VLSI functional storage organized by
Method (c) of the previous section is called a functional stor
age for short.

Fig. 7(a) shows a basic organization for a functional storage
proposed in this paper for data size n = 7. We assume that
each cell can store one tuple. If the given relation has more
than n tuples, it is distributed to more than one functional
storage. It consists of a tree part and a shift register part. To
handle n tuples there are 2n storage cells and O(n) connec
tions; thus the circuit consists of O(n) elements. Since the
height of the tree is O(log n), the area required for the circuit
is O(nlog n), although the coefficient part can be minimized
by a proper embedding of the circuit (see Figure 7(b)).

We will show how database operations are realized by a

E1357B9

(a)

D
D D

D D o o
-[U-~-[]-[]-lliJ-~-ITI
E

(b)

functional storage using very simple examples (n = 7). In the
following, T and S stand for a tree and a shift register, respec
tively, which show the part mainly used by the operation.
There are two input/output terminals for the circuit. The ter
minal for the shift register part is denoted by I/O(S), and the
terminal for the tree part is denoted by I/O(T). To use the tree
part for fast access of data, data should be arranged in as
cending or descending order. In the following examples, the
ascending order is used for simplicity.

Initial data loading (S): A sequence of data is supplied from
I/O(S). The sequence starts from L (loading) and ends at E
(end of data). The data sequence can contain B (blank). Fig
ure 8 shows an example when 9B7531 is supplied. The first L
sets the operation of each shift register cell so that only shift
operation is realized. After six steps we have the situation
shown in Fig. 8(b). Here E is supplied from the input termi
nal. In this case, instead of the data's being shifted, the con-

[U [] lliJ 0
-[u-~-[]-[]-lliJ-~-O

(c)

!

~
[] ~ 1 ~

[U j~ i lliJ 0
I ~ I
I I I

-[U-[[J-[]-[?J-lliJ-~-O
(d)

[U [] lliJ 0
--0-0-0-0-0-0-0

(e)

Figure 8-Initial loading and retrieval

A Database Machine Based on the Data Distribution Approach 621

tents of the shift register part are copied by corresponding tree
nodes and L is replaced by B. The result is shown in Figure
8(c). If the data size is 7, L is shifted out; and if the data size
is over 7, a proper warning signal is created. The initial load
ing can be used instead of the sort in the following cases:

1. Put blanks in the sequence of data in order to handle the
increase of data easily.

2. The data are required not to be sorted. For unsorted
data we cannot usually use the tree part for an efficient
search. It can be used when the data are clustered by
related key values, etc.

Single tuple retrieval (T): If we want to retrieve the data
whose key value is 5 in Figure 8(c), we put 5 from I10(T). This
value is compared with the contents of the node. Since 5 is
smaller than 7, the left son, the node containing 3, is exam
ined; 5 is larger than 3, and the right son is examined, which
contains a tuple whose key value is 5. The tuple is retrieved by

~
~ .4 [D

\
[] [D ~ D

-[]-~-[U-[i]-~-[D-D

(a)

[] [D ~ D
~

-. D-[]-~-[U-[i]-~-[D
(b)

traversing the path in the opposite direction (see Figure 8(d)).
The changed data on the path are recovered by copying data
from the corresponding shift register cells.

Multiple data retrieval (S): If all the tuples are required, the
output terminal for the shift register is used. After shifting out
(Figure 8(e)), all shift register cells become empty. The data
are recovered by copying values contained in the tree nodes.

Replacement of blanks (T,S): If a blank node is a parent of
a nonblank node in the tree part, the search mechanism of the
tree will not work. Such a tree is called improper. An im
proper tree may be produced by addition or deletion of a
tuple. In a proper tree every subtree must satisfy the condition
that every node of the subtree is blank if the root of the
subtree is blank. There are two methods of handling the
problem:

1. Exchange of blank and nonblank values at the tree part:
By a proper exchange of values, an improper tree is
converted into a proper tree. Figure 9(c) shows an exam-

[J

~ J,J
[] [D [J iTu

I : I

-D-[]-~-[]-[]-~-[t]
(c)

[D
-[]-~-[D-[U-~-[i]-[D

(d)

[] [D ~ [D
~

-[]-~-[D-[U-[i]-[D-D
(e)

Figure 9--Addition of one tuple and handling of blanks

622 National Computer Conference, 1984

pIe of an improper tree. In this case exchange of data
between the blank node and one of its sons generates a
proper tree (Figure 9(d)).

2. Blank suppression (S): The shift register part can be
used to remove all blanks contained in the sequence by
spifting nonblank values to fill blank values. For the
circuit shown in Figure 9(a), the situation shown in Fig.
9(e) is obtained. By copying values in shift register cells,
blanks in the trees are erased except blanks at the right
side end.

Addition of one tuple (T,S): When a tuple whose key is 8
must be inserted in the circuit in Figure 8(c), just apply the
same operation as single-tuple retrieval; since the left son of
9 is B, the tuple is stored here. When there is no blank cell,
we must use the shift register part, as shown in Figure 9(a),
(b), (c), and (d).

Deletion of a tuple (S): Deletion of a tuple is very easy,
since we need only replace it by blank symbol B, then remove
B by using the shift register cells.

Sort (S,T): Sorting is realized by a hardware version of the
bubble sort. Tuples are given from the I10(S) , and larger
values are shifted to the right. In order to perform sort, the
sequence starts from S (Sort). When S passes in the cell, cell
operation becomes as shown in Figure 10. If the key value
sorted in a shift register cell is a and the corresponding tree
node stores b, the new values for the tree node and the shift
register cell to the right are c and d, respectively, where

c=min (a,b)
d = max (a,b)

for descending order.
S is considered to be larger thaii bIaiik, aiid blaiik is cOiisid

ered to be larger thab any value.
Figure 11 shows an example when 63714 is an input. Shift

register cells are initialized by S, which contains (1) the defini
tion of the key and (2) the definition of the ordering, as
cending or descending. In Figure l1(g), S is shifted out. In
Figure l1(k) all the tuples are sorted at the tree part. In Figure

o o

L...-----IH d

(a) (b)

Figure 10-A basic step for sorting

11(1) values in tree nodes are duplicated, and the whole result
can be sequentially retrieved from I10(S). Other operations
can be also applied to the result.

The circuit can simulate the operation of the up-down coun
ter developed by Lee et al. 10 and Kikuno et al. The advantage
of the counter is that after the input is finished we can start to
get the sorted result, although the result does not remain in
the circuit. Any time after Figure l1(f) we can start to get the
output. Figure 12 shows the case in which the retrieval oper
ation starts from Figure l1(g). First, values in tree cells and
shift register cells are exchanged. Figure 13 shows a basic
operation, where c and d satisfy the same condition as Figure
10. Details of the operation are omitted here.

Addition of tuples, merge (S,T): By using the sorting func
tion, a set of tuples can be added very easily. This operation
is the merge operation for sorted tuples.

Deletion of tuples, set subtraction (S): A sequence of tuples
to be deleted is given from I10(S). The top of the sequence is
D (delete) in order to set the cell operation, and the last
symbol is E. These tuples are shifted to the right, and the
sequence is examined to determine whether the values at a
shift register cell and the corresponding tree cell are equiv
alent. If they are, the value in the tree node is replaced by B
(blank). The blank removal operation is applied after the
deletion.

Intersection (S): Intersection is almost the same as deletion,
except that tuples replaced by Bs are the results of intersec
tion. Each storage cell contains a tuple and a binary value to
indicate the result. The binary values of all cells are initially O.
Let Sl be the set stored in the functional storage and S2 be the
set given from the outside. The input is given from I10(S).
The sequence of tuples in S2 starts from I (intersection) and
ends at E. I contains the information on which part of the
tuple:". i:". to be compared. Tuplt;~ in S2 i:ilt:: ~hifteJ iu iht:: light;
and at each step, values at each tree cell and the correspond
ing shift register cells are examined. If these are equivalent,
the binary values at both cells are set to 1. After E passes the
cell corresponding to the rightmost tree cell containing a tu
ple, the results is obtained as binary values. The binary value
for a tuple in Sl n S2 is 1. By the above method we require that
n> IS}I + IS21. Another method requiring n;:::: max{ISII,IS21} is
as follows. After all values in S2 are given to the functional
storage, tree cell values and shift register cell values are ex
changed. Then values in shift registers are shifted to the left.
At the terminal I10(S) the binary values are examined, and
tuples whose binary values are 0 are erased. In this case the
result is shifted out from I10(S). This method can be also used
for deletion. In this case tuples in S2 that are not in S} n S2 can
be detected.

Join (S): It is known that any query can be converted into
tree queries. 6 For a tree query there is an efficient procedure
for joins using semijoins. The basic operation of a semijoin is
intersection of two sets contained in the join attributes. Thus
the above intersection procedure can be used for semijoin. We
assume that SI and S2 are stored in two different functional
storages and the intersection is performed by the functional
:'itoragt:: containing SI' The result mU:'it be transmitted to the
functional storage containing S2. Since S2 is stored in the
functional storage, we need only transmit the binary values for

A Database Machine Based on the Data Distribution Approach 623

o
000

o 000 0 0

41736 (a)

0
0

I
I

@] 10 0
I

I I
I I

(d)

0
@]

I
I
I

[D I

CO 0 I
I
I
I I
I I

(g)

[]

@]

[D [D 0
I
I

(j)

0
0

0
0

0
0

I
I

[D

[D

[]

0

@]

[]
I
I

@]

[D

o

(b)

0

(e)

0
I
I
I
I
I
I
I
I
I

o
o 0

D
0 0

0
10 0
I
I

(h)

[]

0
~ 0

(k)

Figure II-An example of sorting

o
o 0

[] 0 0 0
I
I

[J
I
I

[D

[J
I
I

[]
I
I

10
I I
I I

@]

[D

@]
I
I
I
I [J I
I
I
I I
I I

(c)

0
D

0 0

(f)

CO
0

0 0

(i)

[J
I
I
I

0 I
I
I
I
I
I
I

~ 0 I
I
I
I I
I I

(1)

624 National Computer Conference, 1984

D D

D D

o D D D D D D

1
(a) (b)

D
D D

D o D D

3
(c)

Figure 12-Simulation of the up-down sorter

S2 that indicate the result. In this way the cost of data trans
mission can be reduced.

Pseudo-operations and composite operations (T,S): By
using binary values we can indicate tuples satisfying some
conditions. More than one condition can be indicated by per
mitting more than one binary value for each cell. Operations
that do not change tuples are called pseudo-operations. Bi
nary values can be used to realize more than one operation.
For example, sorting and intersection can be realized by mod
ifying the sorting operation.

There are two modes in the functional storage. The first
mode keeps tuples with the same key values, and the second
mode erases duplicated keys. We can also specify the first key,
second key, etc., for sorting tuples.

In Section 2 we discussed the facts that (1) if the computa
tion time is O(1og n), it is not serious, even if n is the circuit
size; and (2) if the computation time is O(n), n should be the
data volume and not the circuit size. Functional storage satis
fies these conditions. For operations using the tree part, the
computation is O(1og m) where m is the circuit size. For
operations using the shift register part, the computation time
is O(n) where n is the data size. Functional storage can be also
used as an index circuit, as discussed in the previous section.

We can further generalize functional storage in order to
improve efficiency by adding (1) a bus line for the shift register
part, (2) a calculation capability to the tree part (aggregate
functions can be realized) and (3) fast internal sort capability.

o
o o

(a)

Figure 13--A basic step for the up-down sorter

A Database Machine Based on the Data Distribution Approach 625

ACKNOWLEDGMENT

The author is grateful to Professor Shuzo Yajima, Mr. Hiroto
Yasuura, and Mr. Naofumi Takagi for their discussion. The
work is supported in part by a grant from the Ministry of
Education of Japan.

REFERENCES

1. Babb, E. "Implementing a Relational Database by Means of Specialized
Hardware." ACM Transactions on Database Systems, 4 (1979), pp. 1-29.

2. Dobosiewicz, W. "Sorting by Distributive Partitioning." Information Pro
cessing Letters 7 (1978), pp. 1-6.

3. Estein, R., and P. Hawthorn. "Design Decision for the Intelligent Data
base Machine." AFIPS, Proceedings of the National Computer Conferen,ce
(Vol. 49), 1980, pp. 237-241.

4. Goodman, N., and O. Schmueli. "Transforming Cyclic Schemes into
Trees." Proceedings of the ACM PODS, 1982, pp. 49-54.

5. B. Hsiao, D.K. "Data Base Computers." In Advances in Computers, Vol.
19. New York: Academic Press, 1980.

6. Kambayashi, Y., M. Yoshikawa, and S. Yajima. "Query Processing for
Distributed Databases Using Generalized Semi-Joins." Proceedings of
ACM SIGMOD, (1982), pp. 151-160.

7. Kim, W., D.J. Kuck, and D. Gajski. "A Bit Serialffuple-Parallel Re
lational Query Processor." Report, 1981.

8. Kung. H.T. "Why Systolic Architecture?" IEEE Transactions on Com
puters, 15, (1982), pp. 37-46.

9. Kung, H.T., and P.L. Lehman. "Systolic (VLSI) Arrays for Relational
Database Operations." Proceedings of the ACM SIGMOD, (1980),
pp. 105-116.

10. Lee, D.T., H. Chang, and C.K. Wong. "An On-Chip Compare/Steer Bub
ble Sorter." IEEE Transactions on Computers, C-30, (1981), pp. 398-405.

11. Lin, C.S., D. Smith, and J. Smith. "The Design of a Rotating Associative
Memory for Relational Database Applications." ACM Transactions on
Database Systems, 1 (1976), pp. 53-65.

12. Lipovski, G.J. "Architectural Features of CASSM: A Context Addressed
Segment Sequential Memory." Proceedings of the Annual Symposium on
Computer Architecture, (1978), pp. 31-38.

13. Maekawa, M. "Quick Parallel Join and Sorting Algorithms." Proceedings
of the 14th IBM Japan Computer Science Symposium, 133, (1979), pp. .

14. Maekawa, M. "Parallel Sort and Join for High Speed Database Machine
Operations." Proceedings of the National Computer Conference, (Vol. 50),
1981, pp. 515-520.

15. Merrett, T.H. "Practical Hardware for Linear Execution of Relational
Database Operations," Technical Report SOCS-81-30, School of Computer
Science, McGill University, September 1981.

16. Merrett, T.H., Y. Kambayashi, and H. Yasuura. "Scheduling of Page
Fetches in Join Operations," Proceedings on Very Large Data Bases,
(1981), pp. 488-498.

17. Orenstein, J.A., and T.H. Merrett. "Linear Sorting Methods Using Log n
Processors," Technical Report SOCS-81-24, School of Computer Science,
McGill University, October 1981.

18. Ozkarahan, E.A., S.A. Schuster, and K.C. Sevcik. "Performance Evalua
. tion of a Relational Associative Processor." ACM Transactions on Database

Systems, 2, (1977), pp. 175-1~5.
19. Tanaka, Y., Y. Nozaka, and A. Masuyama. "Pipeline Searching and

Sorting Modules as Components of a Data Flow Database Computer,"
Proceedings of IFIP so, (1980), pp.

20. Todd, S. "Algorithm and Hardware for a Merge Sort Using Multiple Pro
cessors," IBM Journal of Research and Development, 22 (1978).

21. Tong, F., and S.B. Yao. "Performance Analysis of Database Join Pro
cessors." AFIPS, Proceedings of the National Computer Conference. (Vol.
51), 1982, pp. 627-637.

22. Uemura, T., T. Yuba, A. Kokubu, R. Ooomote and Y. Sugawara.
"Implementation of a Magnetic Bubble Database Machine." Proceedings
of IFIP 80, (1980), pp. 433-438.

23. Wah, B. W., and S.B. Yao. "DIALOG-A Distributed Processor Organi
zation for Database Machines." AFIPS Proceedings of the National Com
puter Conference (Vol. 49), 1980, pp. 243-253.

24. Winslow, L.E., and Y.c. Chow. "Parallel Sorting Machines: Their Speed
and Efficiency," AFIPS, Proceedings of the National 'computer Conference
(Vol. 50), 1981, pp. 163-165.

25. Yasuura, H., N. Takagi, and S. Yajima. "The Parallel Enumeration Sorting
Scheme for VLSI." IEEE Transactions on Computers, (1982).

Artificial intelligence

James R. Miller, Track Chair

The 1980s have seen artificial intelligence (AI) moving out of
the laboratory and into the marketplace. This movement has
been especially clear in 1984: Practical systems are in use daily
on a wide range of hardware and in such diverse domains as
database retrieval, VLSI chip design, geological exploration,
and computer system configuration. At the same time, the
topics under exploration in research laboratories are building
a better understanding of what would be required to build
increasingly powerful and intelligent computer systems. The
six sessions in this track bring a survey of all these areas to
NCe.

AI and the computer industry-The purpose of two sessions
in this track is to consider how AI is changing the computer
industry itself. Part of this focus is addressed in the session
"Expert Systems in the Computing Industry," which exam
ines how expert system technology-the development of com
puter systems that capture some significant part of human
expertise in a complex technical domain-is being applied to
problems central to the computer science community. To pro
vide a balanced perspective on this topic, the presentations in
this session discuss these systems from the perspective of both
the system builder and the end user.

The last few years have also seen the growth of companies
developing tools for building AI systems. The session on
"Tools for Commercial AI Systems" describes tools under
development in two areas: computers and programming envi
ronments that are especially well-suited for AI system devel
opment; and high-level software tools designed to relieve sys
tem developers from much of the effort of building the basic
architecture of the AI system, allowing them to focus on the
problem at hand. As in the previous session, the presentations
will discuss these tools from the perspectives of system build
ers as well as users.

AI application areas-Two sessions have been designed to
take a careful look at application areas that have been studied

increasingly by the AI community. These sessions are in
tended to show how artificial intelligence workers approach a
problem, what aspects of problems are easy and hard, and
what results might be expected in the short term and in the
long term. One of these, "Knowledge-Based Training Sys
tems," examines a number of systems that are applying AI
techniques to problems in training and education-what a
system must know about the domain being taught, about the
educational process, and about the student in order to truly
help the student acquire a body of knowledge. The second,
"AI Techniques for Signal Interpretation," considers how AI
techniques are being applied to problems that have tradi
tionally been attacked by complex numerical methods, such as
seismic exploration and speech signals. This approach re
quires transforming the basic signals under analysis to a sym
bolic representation of the phenomena responsible for those
signals. While constructing this representation is not a simple
task, its richness allows much more powerful analyses to take
place and provides a depth of analysis not possible before.

AI and natural language-A final pair of sessions focuses
on one of the oldest dreams of human-computer interaction
being able to communicate with a computer in natural lan
guage. While most natural-language understanding systems to
date have been designed to provide a convenient interface to
a structured database system, the presentations in the session
"Natural-Language Interfaces to Software Systems" consider
the use of natural language for a wide range of purposes. The
second session, "Intelligent Aids to Document Preparation,"
discusses the use of computer systems in one of the most
time-consuming parts of any job-the generation of docu
ments. Both general-purpose and domain-specific systems are
being developed to this end, and the presentations focus on
the underlying structure of these systems, how they are used,
and what they can achieve.

Menu-based natural language understanding

by HARRY TENNANT
Texas Instruments
Dallas, Texas

ABSTRACT

Menu-Based Natural Language Understanding is a new approach to building natu
ral language interfaces. It retains the main goals of natural language systems:
flexibility, expressive power, learnability and mnemonicity. However, it solves most
of the problems inherent to conventional natural language systems. All queries are
understood by the system, interface generation is much simpler, and less computing
power is required. Many interfaces have been built using the menu-based natural
language technology.

629

INTRODUCTION

We at Texas Instruments have developed a new approach to
building natural language interfaces. We call it Menu-Based
Natural Language Understanding (NLMenu).

NLMenu grew out of research on building conventional
natural language interfaces-the kind where users are invited
to ask whatever questions they have and the natural language
understanding system will do its best to decipher what the user
means. We were attempting to build a natural language inter
face to a help system. We had run simulations of the help
system where users were to perform an editing task. When
they ran into difficulties, they were to type questions, in En
glish, into the help system. But instead of a help system, we
routed the questions to a person. He would then send answers
back to the user. The glich was that users had great problems
expressing their difficulties. If they were having difficulties
with the editing task, they seemed to have even more difficulty
expressing the problems, in English, to the simulated help
system. Now, add to this the problems that we knew the users
would have in making a natural language system (instead of a
person) understand what they were trying to express. We
reluctantly concluded that the users would have more trouble
trying to use a help system with a natural language front-end
than they were likely to have with the original application for
which they required help.

From this experiment, coupled with other problems of nat
ural language interfaces, it was concluded that a new approach
was needed. We wanted to keep the advantages of natural
language: It is highly expressive, requires no learning time,
and it will not be forgotten over a period of disuse. However,
we wanted to eliminate some of the many problems of con
ventional natural language systems. The result was NLMenu.
It retains the advantages of conventional natural language
systems, but it solves most of their problems. It also provides
some new opportunities that are not possible with conven
tional natural language systems.

We have accumulated a considerable amount of experience
with NLMenu systems. A number of prototype interfaces
have been built on LISP machines (approximately 15 such
interfaces have been built by our research team). A large
natural language system incorporating graphic input and out
put has been prototyped and is being implemented as part of
a large defense contract. The technology also has been ap
plied to the Texas Instruments Professional Computer (TIPC)
and there are natural language interface products on the mar
ket today, including NaturalLink. NLMenu interfaces on the
TI-PC also have been interfaced to speech recognition tech
nology.

Menu-Based Natural Language Understanding 631

PROBLEMS WITH CONVENTIONAL NATURAL
LANGUAGE SYSTEMS

Research has been conducted on natural language systems as
interactive user interfaces for more than 20 years.! Although
progress has been made, there are some problems inherent to
the technology and the existing implementations. I will
cover these for background in discussing the advantages of
NLMenu. For the sake of brevity, I will restrict my comments
to natural language interfaces to database systems, the most
common application for natural language systems.

A conventional natural language system is one in which the
user is presented with a blinking cursor and the opportunity to
type in whatever question he has. It is then the natural lan
guage system's problem to understand what the user wants
and return data to him. A number of problems with this have
been described, and the discussion below is based primarily
on the work on evaluation of natural language interfaces.2 In
this study, users were given problems to solve (data that they
were to extract from a database). Their protocols were re
corded and analyzed.

First, there were mechanical problems. Most of the users
did not know how to type, or at least they could not type well.
They all managed to peck out their queries with greater or less
facility, but for some, typing was a major obstacle in itself.
Users also had considerable difficulties with spelling. The
natural language system under test had a spelling corrector,
but misspellings still got by, which caused difficulty. Finally,
users had a lot of trouble getting started. They seemed to find
it difficult to articulate what they wanted to say, in spite of the
fact that they had very explicit problems to solve.

Next, there were problems with understanding language
itself. It was not uncommon to ask a question in a way that the
system could not understand. If properly rephrased, these
questions could be understood, but in their present form, they
were not. This is called exceeding the linguistic coverage of
the system.3 With lots of hard work, system developers can
anticipate every possible synonym, paraphrase, or point of
view and prepare the natural language system for them all. So,
with enough hard work, the problem of linguistic coverage
could be effectively eliminated. Notice, however, that this
could be difficult-imagine providing all possible synonyms
for all the database values and keeping them current with a
dynamically changing database.

A problem related to exceeding the linguistic coverage is
exceeding the conceptual coverage of the system. If I were to
ask "How many trucks did we ship in January?" I might be
told that the system did not understand my query. I would
assume that I had exceeded the linguistic coverage and re-

632 National Computer Conference, 1984

phrase, "How many January truck shipments did we have?"
I might again be told to rephrase, and this could go on until
I ran out of patience. The problem could be that the system
does not know about truck shipments. If so, my questions
have exceeded the conceptual coverage of the system.

The limits of coverage, both linguistic and conceptual, are
difficult for users to infer. They tend not to learn quickly what
is acceptable and what is not. Part of the problem is that
natural language systems fail in very different ways from hu
man understanding. If I ask you a question that you do not
understand, one likely strategy is to ask again in simpler
terms. This tends to have disastrous effects on natural lan
guage systems: They tend to be able to accept jargon but not
simplified paraphrases.

We find that users tend to retreat to asking simple ques
tions. They tend to use sentence templates that have been
found to work through trial and error ("You want to ask for
averages? You have to ask it this way ... "). They also tend not
to learn or use the full capabilities that the system has to offer.
If they don't happen to stumbie on a capabiiity (such as mak
ing graphs of data), they may just assume that no such capabil
ity exists. Of course, they could read the documentation and
find the limits of conceptual coverage and what all the capabil
ities are, but the whole motivation of natural language sys
tems is to provide an interface to inexperienced users who will
not need or have time for reading documentation.

The last major set of problems relates to the implementa
tion of natural language systems. Conventional natural lan
guage systems tend to be quite large. Indeed, they must antic
ipate every likely synonym and paraphrase of questions from
users. If they interface to large databases, they must at least

I
I

I
I

Find Oektte
.;-tr'"lhu,r"

weigl"
quantity

city
color
Mme
part'

supplier.
sntus

Re-start
Refresh.

I:,,<~,~Y u'ndow

;uppiiOi'O -shipments
<spcc:lficouppllcrs'

<speclllc: ,
<specillc:llhipments'

(a new supplier>
<a new part>

(a new shipment)

between
grcuer tbut

_thou
gr'Htcr than or equal to

less tbonorequol to
-,to

Rubout
Save Q

£Q!l!ll!'
the number of of

UJd or
(l

the avcr.ge the total

whose pur city is
whose~1s

wbo:oo part nl.Plc Is
whose p4rt put .. is

whose svppGor city is
whos"e.lllpp6t:r nunc is

_ wpplicr ...,.,.,.." is

whoseshipmmt is
whoseshipmmt","",*",""is

whose supp:icr sta~ Is
who:ie part wcl9l1t is

whasI: shipment qu~ntity Is
which arc sh:pn.cllts of
which were shipped by

who ship
who""I'PfY

which U"C supp:icd by

Retrieve Q Delete Q
Exit system

PlayQ

Figure I-Building an NL menu query

be large enough to accept the database values and synonyms
for those values. Generally, the dictionaries, grammars, and
meaning translations are largely hand-coded. The range of
likely synonyms and paraphrases must be determined, at least
in part, empirically by observing how users express them
selves. The large natural language systems require computers
with large memories. Simple systems can be developed very
quickly, but for significant applications that make the proba
bility of entering an unacceptable question very small, consid
erable hand-tuning is generally required.

MENU-BASED NATURAL LANGUAGE INTERFACES

NLMenu solves the problems with conventional natural lan
guage systems outlined in the last section. In this section.
NLMenu will be illustrated. In the next section, the solutions
to the various problems of natural language systems will be
covered, and then additional advantages of NLMenu will be
discussed.

An example will illustrate the operation of menu-based
natural language understanding. The user constructs a natural
language query (in this case in English) in window number 1
(see Figure 1) from constituents that he selects from the active
menus above. In these figures, the menus with heavy borders
are active. The other menus are temporarily inactive.

Choices can be made from the active menus in a variety of
ways. These examples come from an implementation on LISP
machines and choices are made with a mouse. On the TI-PC,
selections are made through the keyboard using arrow keys
for positioning; alternatively, selections can be made in sev-

I
I
I

cit)' .-.
Mme
p~M'

'::~: ..
wcigbt

qu&ntity

::;v;trn gp"",ond,

Re-start
Refresh

Find

greater tb&n
less than

greater than or equal to
.... than ... equoI to

equ&1 to

Rubout
SaveQ

(spOClflC pi.rt ctys)
<opeclf"",""'"

(specific paM nunes)
<spccif'"tC part pal"t's)

<specIfic supplier cltyS)
<specific supplier)

<specific """"ficr oupplor#s'
<specific shipment pert")

(specific shipment ""I'f'hr#s,
<spccI1Ic:)

be number of tho ... ~cr ... ge
the tot.... the minimum

the m&X:imwn

"'pdl fie"':=:
WhOse pArt city is'

wt10se COlor is
whose part nante Is
wflose put pt.rtl'1s

W!Jose city is
whose """".or Is

_""",Iior""",&cr .. .
whose shipment b

...... stnpmcnt AWicr# Is
whose supplier st ... tus is

whose wcItIht is
whose sllipment qumtity Is

vlhich arc sh!pmcmts of
wtlich were shlppud by

who ship
wt .. supply

wI1Ich....,~1oy

Retrieve Q Delete Q
Exit system

PlayQ

I

~~Y'n=do=w======================================~
Figure 2-Building an NL menu query

eral other ways, such as dynamic text searching or selection
with a mouse or other pointing device.

The user selects "Find" from the active menu in Figure l.
"Find" appears in the query window in Figure 2. He then
selects "color," "and," "name," "of," "parts," and "whose
color is" from a succession of active menus (Figures 2,3, and
4, some selections are not illustrated). He then selects
"(specific colors)" to specify actual database values. A special
window pops up (Figure 5) with specific colors in it. The user
selects "green" and "blue."

These special windows, called experts, are for specific data
base values. There are several ways to deal with these, de
pending on the application. One may select from a menu, type
in a database value, or use another means. One application
that we have implemented pops up a map. The user can input
latitude and longitude values by pointing at the area of inter
est on the map.

The sentence now reads "Find color and name of parts
whose color is green or blue." This is a complete sentence,
understandable to the system, so the system presents the "Ex
ecute" option in the window just above the query window.
The user may execute the query as it stands or continue to
qualify it. He elects to execute it and the result is shown in
Figure 6.

This system will understand any query that the user com
poses. As the user selects constituents to build his sentence,
the system parses the sentence fragment. It then looks ahead
in the grammar and presents the user with only those options
that make sense given the current context. For example, in
Figure 3, the user selected the noun "parts." The modifiers
menu has become active. Phrases that did not make sense,

Find Delete

weight
quantity

city
color
nome
putl

5Upplicr#
StAtus

!W5tR~ sg;;?:
Refresl)

nguns
SiIIiJi'Ors

puts
shipmenu

<specific~>
<specific parts>

<specific shipmonts>
<.J. new suppliel"')

< .. new JNrt)
<& new shipment>

between
greater tIM.n

less tho.
greol.ter than or equal U;

lesstbonoroqualto
oquaI to

Rubout
Save Q

~::"cm:.~)
<specific part nunes)
<specific part pu-tls)

<Specific ouppIier citys>
<spedfle supplier names>

(spodfic supplier supplierh>
<specific shipment put">

<specIfic shipment suppier#.
<spodtic number>

Show query
Retrieve Q

Execute
Dlt. Q's

Find co I or and nane of part 5

J i S~ I ay 10.1 i ndo~

Figure 3-Building an NL menu query

whose part City ts
whose color is

whose put nune is
whose part p.artl is

Whose part weight is
which are supplied by

Exit system
Play Q

Menu-Based Natural Language Understanding 633

such as "who supply" have been eliminated from the modifi
ers menu. Once "parts" is selected and the modifiers menu
becomes active, it is limited to only those constituents that
make sense; "who supply" and several others do not appear
as options for the user. In this way, the user is prevented from
saying anything that will not be understood. However, since
the system is built on the same technology as conventional
natural language systems (context-free parser, lambda
composition semantics) ,5,6 it has the same expressive power as
conventional natural language understanding systems.

THE PERFORMANCE OF NLMenu

NLMenu interfaces provide the same expressive power as
conventional natural language systems, but the problems of
conventional systems are largely eliminated. First, the me
chanical problems: typing, spelling, and articulating ques
tions. With an NLMenu interface, there is no typing. Our
version on LISP runs completely from mouse selection (a
mouse is a pointing device with buttons for selection). The
TI-PC version works from positioning the cursor with cursor
keys. In either case, the problems of typing and spelling are
eliminated.

With conventional natural language systems, users often
find it difficult to phrase queries, or to know how to start.
With conventional systems they are confronted with nothing
more than a blinking cursor, so they must compose their que
ries entirely by themselves. With an NLMenu interface, on
the other hand; the user is presented with words and phrases
from which he sees what sorts of questions can be asked.

Find Delete
Insert

attrl butrc:;
weight

quantity
dt)'

color

port'
suppIier#
stuus

,v'k~e:Q;t~}di

Refresll

suppliers
parts

shipments
<specific suppliers>

<specific po >
<specw", shipments>

<.t. new supplier)
<.t. new part>

<.t. new shipment>

between
gruter than

10 ... tbon
greater than or equt.I to

less than or equ.t.1 to
oquaIto

Rubout
SaveQ

e n ~

tho number of
one! or

()

whose p.&rt city IS

whose color is
whose part name is
whose IMrt p .. rtl is

whose supplier city is
_supplier 1s

whoso supplier supplier# Is
whose shipment po ... Is

whose shipment supp&er' is
whose supplier stAtus is

whose put weight is
whose shipment qua.ntity is:

which are shipments of
which were shipped by

who ship
who supply

which ore supplied by

the AverAge the total

Retrieve Q
Edit Item
Dlt. Q's

Exit system
Play Q

Find co I or- and nal'lle of parts whose colol'" Is

Figure 4--Building an NL menu query

634 National Computer Conference, 1984

I I
Dotet.

w.ight
-tit)'

city
color'
p t.
~,.

Re-start
Refresh.

betWINIIII -_ __ 0.

.... thUlor to
_Ito

Rubout
SaveQ

Abort
Do It

red
green
blue

lhe runber or of
..... or

()

r! ~
.port CIty ... - ..

whose part name It

- port port' .. _ suppler city .. ---......... - ouppIior ouppicr' .. _ tportl ..

whose stllpmen •,,&or, ..
• whose suppler status is

....... port weight ..
_ IhIpmcnt quontity II

which oro shlpmento of
Whlchwenolhlppodby

whootOp
who supply

WhIch.,..ouppIiedby

the ever.. the total

Edit Item Exit system·
Retrieve Q Dlt. Q's Play Q

Find color"' and na',,! of parts whost!' color Is

Figure 5-Building an NL menu query

Instead of composing a question, one can think of it as recog
nizing his question-an easier task-one phrase at a time.

The most dramatic advantage of the NLMenu interface is
with language understanding itself. As was noted at the end of
the last section. all queries input through the NLMenu inter
face are accepted-the user gets no opportunity to compose a
question that would not be accepted. As a result, the problem
of linguistic coverage disappears. Similarly, one cannot ex
ceed the conceptual coverage of the system-that problem
disappears as well. Notice that the problems of exceeding
linguistic and conceptual coverage have disappeared not be
cause of the massive work of finding all possible paraphrases,
but from eliminating the need for paraphrases.

Another problem that is solved by NLMenu is that of re
vealing the coverage to the user. In one of the interfaces we
built in the lab, the user had the option to have objects dis
played on a map-an alternative to having coordinate posi
tions output in tabular form. He also had the option of dis
playing the map with latitude and longitude grid lines. In a
conventional natural language system, it is quite possible that
a user could query the system for some time, and never hap
pen to discover the graphing option or the grid line option. It
might never occur to him. However, with an NLMenu inter
face, the graphing option and grid option appear in active
menus when the context is appropriate for them. In this way,
users have a better chance of making full use of the capabili
ties of the system.

NLMenu interfaces require less memory and processing
than do conventional natural language systems. They do not
need to sift through large grammars and dictionaries to anal
yze sentences. We also have found ways of expressing data-

Find

t!!Ittri butC':i
weight

quantity

:!:r
... mo •
part ...

~:'

Re-start
Refresh

ouppIien
porn

","-to
<spoc:ificsuppliers)

<spoc:if'ocpAm)
<specIroc ohipments)

<. new surpIier>
CI. new part>

U new shipmont)

between
greater thuI __ or to

Ie_ thAn or equal to
..... to

Rubout
Save Q

.....
or

Show query
Retrieve Q

"Qdi f jpr-,
whose part CIt)' ,

whose coIaris
whose put rN.me is
whose p.1l"'t ,.rtl is

whose supplier city Is
-""'I'ier _ suppIor ouppier' Is

whose shipment p.art I is

- ouppIior, ..
Wbose supplier SUtor Is

whose part weight is
whose shipment quantity ..

which are shipments of
whichworootOppodby

whootOp
who supply

which oro ouppIied by

Dlt. Q's
Exit system

Play Q
Find color and na"e of parts whose color 15 green or blue

[Type <!Il!!> to nush additional output at •• *t1ORE*u: pror'lptJ

Execut Ing •••

DB:RELATION PART-I--(cerdl""llty 3)

I COLOR I NAME I ----------------------- .
:blue Ic~f"I
I bl ue 15cre",
I green I bol t

:::xecut i on COP'lP I eted.

Dr s-pl o!i!-, wi ndow

Figure 6-Building an NL menu query

I

I

base queries in such a way that the interfaces can largely be
generated automatically from a description of the database. In
fact, the interface for the sample dialogue was generated from
a description of the database. 6 The generation process re
quires a description of the names of the relations (in this case
a relational database was used), their attributes, and the char
acteristics of the values of the attributes (whether they are
numeric, alphabetic, etc.). From this information, an inter
face is generated.

NLMenu has another advantage that goes beyond con
ventional natural language technology: It allows for more
flexible specification of database values.7 In a conventional
natural language system, input is essentially limited to natural
language. This is partly due to the fact that it is not clear how
to mix input modes in typewritten natural language. In an
NLMenu interface, on the other hand, it is easy to allow the
user to input database values in whatever form is most con
venient. In one system we built, the user needed to specify the
location (latitude and longitude) of airports. The user was
given an option: He could either enter the latitude and longi
tude textually, or he could ask for a map. A map would appear
and the user would draw a box around the area of interest.
The map would then disappear and coordinates of the box
would be inserted textually into the query.

NLMenu has the flexibility to allow the user to specify
values in whatever form is most appropriate: graphics, form
filling, menu selection, typed input, or any other mode. This
seems to allow the user to express himself more "naturally"
than limiting him to typed natural language. It also presents
the opportunity to input values in appropriate ways that would
tend to reduce gross input errors.

CONCLUSIONS

As we have discussed above, NLMenu has many advantages
over conventional natural language systems. 8

-
1O It has the

same expressive power as conventional systems, but solves the
biggest problems that natural language systems have.

One question that is frequently asked is whether NLMenu
understands language. I think there are two answers.

If conventional natural language systems understand lan
guage, then NLMenu must also. It uses the same technology
as they do, represents and translates questions in the same
way that they do. Behind the menus, one cannot tell the
difference between these systems. Assuming that one says
that conventional systems understand language, the answer is
"yes."

The other answer to the question is "Who cares?" This is a
technology, and the appropriate forum for evaluating tech
nology is in solving problems. If it provides a flexible, mne
monic, and powerful interface, what difference does it make
if we declare that it does or does not understand language?

REFERENCES

1. Tennant, H. R. Natural Language Processing, An Introduction to An
Emerging Technology. Princeton, N.J.: Petrocelli Books, 1981.

Menu-Based Natural Language Understanding 635

2. Tennant, H. R Ph.D. Dissertation, Department of Computer Science,
University of Illinois, 1980.

3. Tennant, H. R. "Experience with the Evaluation of Natural Language
Question Answerers." In Proceedings of the 6th International Joint Confer
ence on Artificial Intelligence, Tokyo, 1979, pp. 874-876.

4. Tennant, H. R et al. "Menu-based Natural Language Understanding." In
Proceedings of the Conference of the Association for Computational Lin
guistics, Cambridge, Mass., 1983, pp. 151-158.

5. Tennant, H. R, K. M. Ross, and C. W. Thompson. "Usable Natural Lan
guage Interfaces through Menu-based Natural Language Understanding."
In Proceedings of the Conference on Human Factors in Computing Systems,
Cambridge, Mass., 1983.

6. Thompson, C. W. et al. "Building Usable Menu-based Natural Language
Interfaces to Databases." In Proceedings of the 9th International Conference
on Very Large Databases, Florence, Italy, 1983, pp. 43-45.

7. Thompson, C. W. Ph.D. Dissertation, Department of Computer Science,
University of Texas at Austin, 1984.

8. Grosz, B. et al. "TEAM: A Transportable Natural Language System."
Technical Note 263, Menlo Park, Calif.: SRI International, April, 1982.

9. Harris, L. "Experience with ROBOT in 12 Commercial Natural Language
Database Query Applications." In Proceedings of the 6th International Joint
Conference on Artificial Intelligence, Tokyo, 1979, pp. 365-368.

10. Hendrix, G. and W. Lewis. "Transportable Natural Language Interfaces to
Databases." In Proceedings of the 19th Annual Meeting of the ACL, Stan
ford, Calif., 1981, 159-166.

An analysis of scripts generated in writing between users
and computer consultants

by DAVID CHIN
University of California at Berkeley
Berkeley, California

ABSTRACT

The scripts generated in written interactive communications between users and a
computer consultant program were investigated in a controlled experiment. The
program was a simulation of UC, the UNIX Consultant, which users believed to be
the actual program. An analysis of the scripts generated while solving a predefined
set of problems showed the heavy use of context in forms such as ellipsis, anaphora,
indirect speech acts, and grammatically incomplete sentences in over one-quarter of
input clauses. Also present were grammatically ill-formed constructions and spell
ing errors. A comparison with a control group of users solving the same problem
set with human consultants showed that the control group relied on context about
twice as much as the simulation group. This suggests that people naturally use
context in language and that the simulation group tried to rely less on context
because they believed that they were speaking to a computer. Even so, contextual
information is essential to understanding a large part of the simulation group's
input.

637

Analysis of Scripts between Users and Computer Consultants 639

INTRODUCTION

UC, the UNIX Consultant, is a large natural language inter
face under development at the University of California, Ber
keley. The main goal of UC is to provide a natural help facility
for naive users of the UNIX operating system. The user can
converse with UC in English in the domain of UNIX and
obtain advice on problems much as one would with a human
consultant. The UC system is described at length in Wilensky,
Arens, and Chin, l and a brief overview can be found in
Wilensky.2 Other aspects of UC are described in Arens/
Chin,4 Jacobs,s and Faletti.6

During the development of UC, it was decided that it was
necessary to test UC in a real setting to obtain actual perfor
mance requirements data for a system like Uc. Although
transcripts of user interactions with human consultants had
been collected and used as models for UC, there was still a
question of whether or not users would behave differently
with a computer consultant. As with many large software
projects, UC was not yet at the stage where field testing was
possible, mostly because UC did not have sufficient knowl
edge to ensure a high enough hit ratio when users queried UC.
Therefore, the usual solution of running a simulation of UC
was tried, in this case, with actual human consultants who
simulated UC in a controlled experiment.

In order to keep the scope of the experiment manageable,
it was decided to focus on a single topic of interest, although
the general procedure described in this paper is applicable to
other areas. This experiment was designed mainly to evaluate
how much users relied on contextual information in inter
active written communications with a computer consultant.
Currently UC is capable of handling a simple question/answer
dialogue in the domain of the UNIX operating system. UC
has some capabilities for handling contextual references, in
cluding anaphora, some elliptical constructs, and simple
speech act analysis. There is a large effort underway to expand
the capabilities of UC in these areas, with the ultimate aim of
creating a version that will be able to carry on a coherent
conversation with the user. Before embarking on such a large
project, it was deemed advisable to determine if such addi
tional capabilities would be useful.

THE EXPERIMENT

This experiment was designed to test for differences in lan
guage usage when users communicate with a computer consul
tant program and when users communicate with human con
sultants. Because only the actual communications were of
interest, only transcripts of experiment sessions were col
lected. However, similar procedures can be used to collect

mental protocols, as defined by Lindsay and Norman/ per
haps by having the subjects think aloud and using videotaping
equipment as Lewis and Mack did.s Also neglected in this
experiment were timing information, task level analyses, and
other human factors issues. A general introduction to such
issues can be found in Card, Moran, and Newell. 9

Volunteer students from an introductory data structures
course were enlisted to participate in an evaluation of Uc. Six
students were put through simulated UC sessions following a
predefined problem set. Six additional students provided a
control group and were told that they were writing to actual
people. The instructions were in a written format to ensure
uniformity and to avoid unplanned verbal biases. A sample of
the instructions and problem set can be found in the Appen
dix.

The Simulation Group

In order to distract attention from the true aims of the
experiment, participants were told when they were enlisted
that they were there to test and evaluate the performance of
the actual UC program. This perception was further corrobo
rated by the instructions and the problem set, which asks for
evaluations of ease of use for each problem and for an overall
evaluation at the end of the session.

The Problem Set

The participants were expected to be at about an inter
mediate experience level in UNIX; therefore, the problems
selected were for an intermediate to expert level. The aim was
to design problems that most of the students had never en
countered or that were obscure enough that the participants
would be unsure of the solutions. Because the influence the
problem types and degree of difficulty might have on the
scripts was unknown, the problems were designed to be new
to the students so that they would not tailor their questions to
what they considered the proper answers. In addition, the
problems were worded in a format using the least possible
information. This was done in order to approximate actual
problems that users might encounter and to avoid biasing the
scripts that the participants might use to communicate with
UC. Finally, the problem set was designed to be a series of
interrelated problems; it was felt that a cohesive set would be
more typical of an actual session than a set of unrelated prob
lems (there is no evidence for this "neglected" conjecture)
and, more important that such a cohesive set would provide
opportunities for participants to use conversational context in
their dialogue with Uc.

640 National Computer Conference, 1984

Running the Simulation

The simulators were the expert implementors of UC. In
order better to simulate UC, which sends the entire response
at one time and which provides a prompt, a small program was
written to simulate the interface. This program utilizes an
emacs editor buffer to allow the simulators to edit the entire
response before transmission. The actual transmission was
done by the UNIX write utility. Simulators were also provided
with a small number of frequent UC responses, including
UC's query about misspelled or unknown words, UC's re
sponse to undecipherable input, and UC's typical response to
questions about what UC knows. These responses were auto
mated and bound to function keys for convenience and speed
and to ensure uniformity of response within a session. The
send key also automatically added UC's "#" prompt to the
end of the transmission.

The Control Group

The second half of the experiment was a control. Six addi
tional students were told that they were writing to actual
people and that they were a part of the control for the pre
vious experiment. These students were also given the same
problem set as the simulation group and proceeded in much
the same fashion as the simulation group. The only difference
was that the control group were told that they were communi
cating with people. In several cases~ the consultants to whom
they were writing were in the same room.

Running the Control

The control group was run using the UNIX write command,
which allows line at a time communications between two ter
minals. Using write, a line is not sent to the receiving terminal
until the return is hit. This allows users to correct mistakes on
the same line before transmission. The sessions were recorded
using the UNIX script command, which keeps a file copy of
input/output for a terminal.

RESULTS

Of the six simulation participants, four considered themselves
intermediates in UNIX experience, one was a beginner, and
another was an advanced intermediate. The control group
included four intermediates, one beginner, and two experts;
however, the beginner and one of the experts combined to run
one control session due to a shortage of terminals and time.

In the evaluations, the users consistently rated UC as a
program they would use in learning UNIX and would recom
mend to friends who were starting out on UNIX. How much
of this was biased by the participants' relationship to the ex
perimenters or by the fact that these students volunteered is
uncertain; however, it is encouraging to see the very positive
reception to UC as a possible utility for UNIX. A consistent
complaint was that UC as simulated by humans was much too

Table I-Comparison of context usage.

Simulation Control

Construction counts per 100 clauses

ellipsis 8 21
anaphora 13 22
conversational 4 9
ill-formed 3 7

total clauses 91 85
total words 668 615

slow. This means that UC will have to be much faster than its
human equivalent to be acceptable.

Perusal of the transcripts from the simulation group shows
about 7 cases of elliptical con!>tructs used by the students, 12
cases of anaphora, 4 cases of words or sentences used only to
maintain conversational coherence, 3 cases of grammatically
ill-formed input, and 6 misspellings.

One of the control students did not believe that he was
writing to a human, so that session was dropped from the
statistical analysis. The other 5 sessions showed 18 cases of
ellipsis, 19 cases of anaphoric references, 8 cases of conversa
tional coherence constructs, 6 cases of grammatically ill
formed input, and 3 misspellings.

Normalizing the statistics from the simulation and the con
trol groups to counts per 100 clauses (or counts per 1000
words) shows that the control group used context about twice
as often as the simulation group. A summary of the results is
presented in [Table 1.]

CONCLUSIONS

The doubled frequency of usage of contextual information
when participants believed themselves to be talking to actual
human beings rather than a computer program seems to indi
cate that the simulation group was consciously or uncon
sciously trying to rely less on context than the control group
did. This was most likely because of preconceived notions
about what computers can and cannot understand. One stu
dent remarked with surprise in his evaluation that "UC" was
able to remember the previous query and use that to under
stand the next question.

Although the students may have tried to avoid dependence
on contextual information in their queries, the data shows that
the attempts were certainly not very successful. More than
one-fourth of all clauses used by the simulation group still
required some knowledge of the context for a program like
UC to be able to understand the clause. This means that any
natural language program like UC would need to have such
capabilities in order to be acceptable to the general public.
Moreover, as the control group shows, "natural" conversation
would require contextual understanding in over half the
clauses.

Analysis of Scripts between Users and Computer Consultants 641

APPENDIX

Evaluation Form and Problem Set

1. Introduction

UC is an experimental AI project that is supposed to be
have like an expert UNIX Consultant. The idea is that since
UNIX (and other operating systems) are very cryptic to the
beginning user, it would be useful to have a computer utility
that could take the place of a human consultant. This program
like its human counterpart should be able to answer questions
and provide advice about Unix in English. The UC system is
at a point in development where we (the implementors
about 8 grad students in the Berkeley Artificial Intelligence
Research group) desperately need experience with real use of
the system and evaluations of its utility. This is where you
come in.

2. Your Background

Just a few questions to help us establish your background.

How many years/months have you used Unix? __ years and
-Illonths.

How would you describe yourself as a Unix user? (circle one)
beginner intermediate expert

Please describe in words how often you have used Unix: For
example: Only for courses cs153 and cs3. Worked for one
summer as a C programmer. Have written various game pro
grams and done extensive hacking.

3. Instructions

This is your session with Uc. Do not look at what your
neighbor is doing. If you have used/played with UC before,
please let us know so that we can take that into account in
analyzing your session. Pretend that you are a beginning Unix
user. You have encountered the following problems and
would like to get the answers from UC:

(a) You have an account on ucbcory and you have just gotten
a new account on another machine (ucbkim) on the ethe
met (a high speed interconnection among different ma
chines much like the old berknet). You would like to move
some of your files from ucbcory to your new account on
ucbkim. A friend has told you that there is a very easy way
to do this, but you can't remember what the command(s)
were. Since it is late at night and no one else is around, you
decide to ask Uc.
ease of use (circle one): 1 2 3 4 5
(1 is very hard, 5 is very easy)
(space for notes on your interaction)

(b) Now that you have the solution for the above problem,
you realize that what you really want to do is to copy whole

directories over to your new account and maybe there is an
easy way to do this.
ease of use (circle one): 1 2 3 4 5
(1 is very hard, 5 is very easy)

(c) One of the things you tried to do was to make a link to one
of your friend's files. However, new machine, ucbkim
gave you the error message "/na/friend/foo: Cross-device
link." Pretend that you have never seen that error before
and ask UC about this problem.
ease of use (circle one): 1 2 3 4 5
(1 is very hard, 5 is very easy)

(d) You now go off to another terminal and try the command
suggested by UC for copying files from one machine to
another via the ethernet, but find out that it doesn't work.
You get the error message "Login incorrect." So now you
come back to this terminal and want to know why it didn't
work.
ease of use (circle one): 1 2 3 4 5
(1 is very hard, 5 is very easy)

(e) This space is left for you to be creative and ask your own
questions.
ease of use (circle one): 1 2 3 4 5
(1 is very hard, 5 is very easy)

4. Evaluation

If you were a new Unix user, would you use UC?

yes no

If UC were available, would you recommend it to your friends
who are getting started on Unix?

yes no

If you had a home computer and a similar system were avail
able for the operating system of your micro, would you buy it,
and what price (in % of the computer system price) would you
be willing to pay? (Note that this does not mean that UC-like
systems are even close to commercial availability, for one
thing, UC is much too big to fit on almost any home
computer-this question is just to estimate the value of such
a facility).

yes no if yes, then price __ %.

This space is left for you to make general comments/sugges
tions/criticisms. All your comments will be seriously consid
ered and are very much appreciated.

REFERENCES

1. Wilensky, R., Y. Arens, and D. N. Chin. "Talking to UNIX in English: An
Overview ofUC." To appear in the Communications of the ACM, June 1984.

2. Wilensky, R. "Talking to UNIX in English: An Overview of Uc." In the
Proceedings of the National Conference on Artificial Intelligence. 1982.

642 National Computer Conference, 1984

3. Arens, Y. "The Context Model: Language Understanding in Context." In
the Proceedings of the Fourth Annual Conference of the Cognitive Science
Society. 1982.

4. Chin, D. N. "Knowledge Structures in UC, the UNIX Consultant." In the
Proceedings of the 21st Annual Meeting of the Association for Computational
Linguistics. 1983.

5. Jacobs, P. "Generation in a Natural Language Interface." In the Pro
ceedings of the Eighth International Joint Conference on Artificial Intel
ligence. 1983.

6. Faletti, J. "PANDORA-A Program for Doing Commonsense Planning in

Complex Situations." In the Proceedings of the Second Annual National
. Artificial Intelligence Conference. 1982.

7. Lindsay, P., and D. Norman. Human Information Processing: An Intro
duction to Psychology. New York: Academic Press, 1972.

8. Lewis, c., and R. Mack. "Learning to Use a Text Processing System: Evi
dence from 'Thinking Aloud' Protocols." In the Proceedings of the Human
Factors in Computer Systems Conference. 1982.

9. Card, S. K., T. P. Moran, and A. Newell. The Psychology of Human
Computer Interaction (1st ed.). Hillsdale, N. J.: Lawrence Erlbaum Associ
ates, Publishers, 1983.

Transportable English-language processing
for office environments

by BRUCE W. BALLARD, JOHN C. LUSTH, and NANCY L. TINKHAM
Duke University
Durham, North Carolina

ABSTRACT

This article describes the Layered Domain Class system (LDC), a state-of-the-art
natural language processor whose major goals are (1) to provide English-language
retrieval capabilities for medium-sized office domains that have been stored on the
computer as text-edited files, rather than more restrictive database structures and
(2) to eliminate the need to call in the system designer when extensions into new
domains are desired, without sacrificing the depth or reliability of the interface.
Early developments in the design of portions of LDC were presented at NCC-83,
and the entire system became operational in July 1983. The article gives an overview
of the construction of the system, gives examples of the English structures provided
for, briefly describes the most recently completed portions of the system, and
mentions current directions the project is taking.

643

INTRODUCTION

During the 1970s, a number of experimental systems provid
ing limited natural language processing capabilities were de
veloped to permit computer access by casual or untrained
users. The most frequent application was for database query,
and other application areas have included automatic program
ming, computer-aided instruction, office automation, and
medical information retrieval. Several prototype systems have
been tested with prospective users, and at least one system
(INTELLECT) has been used in several dozen commercial
database environments and is currently being marketed by
IBM.

Our interest is in adapting and extending techniques devel
oped for previous natural language (NL) systems, especially
those used in database query systems and in our own natural
language programming system NLC1

,2,3 for use in office envi
ronments. This article gives a brief overview of the Layered
Domain Class system (LDC), a state-of-the-art natural lan
guage processor whose primary goals are (1) to provide
English-language retrieval capabilities for medium-sized of
fice domains that have been stored on the computer as text
files, that is, files produced with a standard text editor, rather
than more restrictive database structures, and (2) to eliminate
the need to call in the system designer when extensions into
new domains are desired, without sacrificing the depth or
reliability of the inteface. Depth of an English-language pro
cessor refers to the degree to which the system supports the
natural syntax and semantics of the language. That is, we
distinguish a natural language system from English-like lan
guages that make use of English vocabulary in what otherwise
operates as a formal language interface.

SUPERUSER USERS USERS

t t t
1 Preprocessor 1 English- Text

1
language Editor

I processor

I dictionary •
compatibility file

macro file. -I Retrieval 1 +-- raw d,a,ta cta,tadicticm.ary

!
USERS

Figure l-Overview of the LDC environment

Transportable English-Language Processing 645

In designing LDC, we have sought to identify a broad class
of domains that have similar structure but contain entirely
different sorts of data. For the prototype LDC system, we
have chosen to consider domains with semantics similar to
those of our previous NLC matrix-domain system. Some of
the more abstract properties we have incorporated are hierar
chical decomposition, uniform breakdown of entities, and im
plicit orderings of domain elements. Thus, LDC provides ca
pabilities to learn about domains where decomposition serves.
as the primary structuring relation. We refer to these as lay
ered domains. Previous papers discuss some of the mathe
matical and psychological properties of these domains4 and
give partial descriptions of pre-prototype system components.s

A discussion of the internal processing that takes place during
the processing of inputs by LDC can also be found elsewhere. 6

OVERVIEW OF LDC

An overview of the environment in which LDC operates is
suggested in Figure 1. As shown in Figure 1, our system is
designed to take as input preexisting data files that will have
been created using a standard text editor, and LDC is com
posed of three major modules. The first of these is the prepro
cessor, through which an experienced user, or "super-user,"
customizes the system to operate in a new domain. As a
result of preprocessing, various files are created that provide

. domain-specific information for later processing. The next
module is the English-language processor, which receives
English inputs, currently in typed mode, and by a series of
steps to be described later produces an appropriate formal
query for the third module of LDC, the retrieval module. As
shown in Figure 1, our retrieval module has been designed to
be usable in stand-alone mode, independent of the English
processing portion of LDC, somewhat like a conventional
database retrieval module. We will occasionally refer to the
English-language processor and retrieval module collectively
as the User-Phase processor.

KNOWLEDGE ACQUISITION

The initial interaction between a user and LDC, which in
volves telling the system about a new domain, consists of a
dialogue with the preprocessor, which we call "Prep." Prep
operates by acquiring information about the names of each
type of entity of the domain; the nature of the relationships
among them; the English words that will be used as nouns,
verbs, and modifiers; morphological and semantic properties
of these new words; and the relation between the conceptual
domain structure and the physical objects of the raw data file.

646 National Computer Conference, 1984

For example, in describing a data file that contains informa
tion about building locations, the user might say the following:

1. A "room" is an independent domain object.
2. A given room is found on exactly one "floor."
3. An "office" and a "conference room" are types of

rooms, and rooms may be spoken of as "large," "va
cant," and "small."

4. A floor is said to be "restricted" if it contains one or
more offices.

5. Information about the location of a room is found in the
Loc column of some particular text file.

In addition to its primary role of asking for information,
Prep also allows the user to probe its knowledge and make
corrections or updates as desired.

THE ENGLISH-LANGUAGE PROCESSOR

In this section, we seek to convey a feeling for the types of
English inputs LDC is able to process. Our initial interest in
developing LDC was to study the specification by users of
complex semantics; therefore, we chose for our system to
expect noun phrases rather than full question forms. We note
that the power of the system is only minimally reduced by
restricting users to noun phrases because there is a corre
sponding equivalent noun phrase for most questions. For ex
ample, the answer to the question

What grade did Mary get from Biermann?

is precisely the referent of the noun phrase

the grade that Mary got from Biermann

We first discuss accepted forms, then give examples of pres
ently unaccepted forms.

English Structures Processed by LDC

Noun phrases in LDC consist of two types: (1) proper-noun
phrases, such as "Jack," "CPS201," and "a B + ," and (2)
descriptive phrases, such as "the best student Ballard taught
in CPS201." Because the syntax of proper-noun phrases is
trivial, the following presentation deals with descriptive
phrases. It is important to note that the presence of preposi
tional phrases, comparative phrases, and relative clauses leads
to nesting of one or more noun phrases within another.

Descriptive noun phrases are composed of a head noun
preceded by zero or more premodifiers, usually single words,
and followed by zero or more postmodifiers, usually multiple
word phrases. Permissible premodifiers in the current LDC
grammar are the articles the, a, and an; ordinal numbers;
superlatives; adjectives; noun modifiers; and single-word pos
sessives. Some examples are:

article: the offices

ordinal: the third floor

superlative: the largest room

adjective: the vacant offices

noun modifier: the conference rooms

possessive: Biermann's lab

Cardinal numbers may occur in a noun phrase if they ap
pear together with ordinals or superlatives:

the first two floors

Premodifiers may be used freely in combination with one
another:

the largest vacant office

However, there are restrictions in English regarding the usage
of premodifiers with one another, the ordering of pre
modifiers, and the choice of modifiers for nouns. These re
strictions are upheld in the LDC grammar so that construc
tions such as the following are disallowed:

the smallest last room

largest Ballard's office

the lastly person

It is important that such spurious constructions be disallowed
in order to help reduce potential ambiguities of nested struc
tures, problems caused by typing errors, or problems of the
noise present in spoken input.

The simplest form of postmodifier provided for in LDC is
the predicative specification of an ordiilal:

section 3 of CPS51

The simplest multiple-word postmodifier is the prepositional
phrase, which consists of a preposition followed by an arbi
trarily complex noun pharase:

the undergraduates in the course Joe failed

the student with the lowest grade in EE291

LDC also provides a variety of relative clause structures.
For example, the system accepts all of the following noun
phrases derived from the sentence "Ballard gave a B to
Nancy."

the professor who gave a B to Nancy

the professor who gave Nancy a B

the professor by whom Nancy was given a B

the professor whom Nancy was given a B by

the grade that Ballard gave to Nancy

the grade Ballard gave to Nancy

the grade that Ballard gave Nancy

the grade Ballard gave Nancy

the grade which was given to Nancy by Ballard

the grade which was given Nancy by Ballard

the grade given to Nancy by Ballard

the grade given Nancy by Ballard

the student to whom Ballard gave a B

the student Ballard gave a B to

the student who was given a B by Ballard

the student given a B by Ballard

For simplicity we have shown these 16 forms with only proper
noun embedded phrases, but in general arbitrary noun
phrases may occur, as in

instructors who gave an F to a student who made
a passing grade in a course taught by Ballard

The words which and that may be substituted for each other
in the sentences shown. A relative clause will occasionally
contain a verb with a particle, such as add up or give up, and
the LDC grammar allows the particle to occur either before or
after the object of the verb:

the students who made up a graduate course

the students who made EE157 up

Finally, LDC accepts certain comparative structures. One
such type of construction is a relative clause containing the
comparative form of an adjective and optionally containing a
form of the verb to be:

the courses that were smaller than CPS152 (was)

the grades lower than B

the courses smaller than Ballard's smallest course

A second type of comparative construction in LDC is some
what different in that it functions as a noun phrase. This
particular form also extends to superlatives:

the larger of CPS200 and CPS51

the largest of CPS200, CPS51, CPS224, and EE157

the largest of CPS215, Carroll's courses, and EE209

the largest of the courses Anne took

Eng/ish Forms Not Presently Accepted

To give an idea of the limits of LDC, we will list some of the
constructions that cannot be processed at this time. First,

Transportable English-Language Processing 647

LDC does not allow the use of cardinal numbers without an
ordinal or superlative, as in

the professor who failed six students

Second, LDC is not able to derive the meaning of a participial
adjective (for example, passing) automatically from the mean
ing of the verb that is its root (for example, pass); at present,
"-ing" forms of verbs must be included separately in the dic
tionary and labeled as adjectives. This is a limitation of the
parser and is transparent to the user. Third, LDC is not yet
able to parse "discontinuous constituents," constructions such
as

add the positive entries up in row 3

a higher grade than John made

in which components of a single phrase or clause have been
separated by another sentence element. Fourth, LDC does
not currently allow arbitrary nouns to be used as modifiers, as
in "the B students," due to the difficulty in determining the
intended meaning. Fifth, for similar reasons, the system does
not yet handle possessive phrases such as "the best EE157
student's instructor," consisting of a possessive noun with
premodifiers that function as premodifiers for another noun.
Finally, LDC is not yet able to handle pronoun references
personal pronouns, demonstrative pronouns and determiners,
and words such as each and all when used as pronouns
because it is not yet able to use context to determine the
referents of pronouns.

THE RETRIEVAL MODULE

The retrieval module of LDC has been designed to meet
several criteria:

1. To be able to access loosely structured text files of the
kind typically maintained in office environments rather
more formal database structures

2. To provide a rich repertoire of primitive operations
3. To provide a macro facility for user customizations so

that frequent compositions of primitives can be made in
abbreviated form

4. To be able to deal with many user domains without
intervention on the part of the system designers

5. To render query syntax independent of the specific phys
ical structure of the data file being accessed

In addition to these criteria, the retrieval component is ex
pected to be useful both in stand-alone mode and as a con
venient retrieval component for LDC.

The query language supported by our retrieval module is
very much like formal query languages for database query,
but there are some important differences. For example, our
provision for macros has no counterpart in most conventional
systems. Furthermore, like many modern programming lan
guages, our query structures make no distinction among levels
of operations, and any sequence of commands can occur as an

648 National Computer Conference, 1984

embedded query inside any of the others, wherever a single
primitive value is required. We also provide an ordinal re
trieval function and a percentage informational function that
are nonstandard.

DATA FILES PROVIDED FOR

It is convenient to regard LDC as viewing its text-edited input
file as a sequentially accessed file in which each line corre
sponds to a separate record. As a familiar example, which we
will use for much of the remainder of the article, consider a
final grades domain, with text lines such as:

CPS51.2

CPS241.1

CPS241.1

Ballard

Starmer

Starmer

Young, Charles

Smith, John

Taylor, Sue

A-

B+

A-

Although a certain degree of time and space overhead may
result from some of the text-edited files LDC allows, most of
the domains for which our interface has been designed are on
the order of hundreds of records, not hundreds of thousands
of records, so time and space concerns are less critical than for
large conventional databases. Finally, we no~e that LDC
makes a clear distinction between the conceptual and the
physical organization of its data file, thereby allowing text
edited files to be more loosely structured than most formal
database structures.

FUTURE WORK

We have described a fully operational NL processor that
reached the prototype stage in May 1983. Some of the features
currently being worked on are negation, limited conjunction,
more elaborate verb forms, and capabilities for multiple files.
Several additional capabilities we would like to provide for
were mentioned earlier, and several of these are also being
worked on. In the case of pronouns, we expect to adapt the
domain-independent strategies developed for NLC based on
a "focus list" concept similar to that being used in the related
NL efforts at Duke. 7 We are also engaged in restructuring
Prep, the knowledge acquisition component of LDC, to per
mit more English-like, as opposed to formal, specifications.
Another important direction we are considering is the incor
poration of the voice processing techniques being used in
Biermann's VNLC and VIPS systems.7

,8

The implementation of negation is virtually complete;
therefore, we shall briefly mention how it is being handled.
First of all, postnominal modifiers may be negated by using
the word "not," as in:

students not in CPS241

CPS215 students who made a grade not higher than a B

courses that Steve did not take

instructors who did not give an F to Bill

It is instructive to note the inherent ambiguity of English
phrases such as "students not failed by Ballard," which might
or might not be intended to include students not taught by
Ballard. Our system in fact returns this broader interpreta
tion, as the user can obtain the narrower meaning by asking
for "Ballard's students not failed by Ballard." Certain pre
nominal modifiers may also be negated by using "non," as in:

a non passing grade

the non graduate students in Starmer's course

Clearly, these facilities for negation are somewhat awkward
when compared to the rest of the English structures of LDC,
but the feature is a semantically important one. When the
intended generality of negative semantics has been achieved,
attention will be given to making the feature more natural.

RELATED WORK

The experimental LDC system is closest in its present form to
database interface systems, because of its question-answering
behavior. However, our overall research program involves the
development of methods whereby complex semantics may be
specified by users of an office system, regardless of whether
the application of the system is for answering questions, carry
ing out commands (as in our previous NLC system), or per
forming some other task. It is therefore appropriate that we
mention related efforts to customize NL systems.

The first serious attention to large-scale customizations by
users was made by the REL system.9 Recent work by these
researchers at Caltech is represented by the ASKlO and POL II

systems. which seek to provide users with access to various
software services in addition to providing simple question
answering facilities. Their emphasis is on providing for broad
kinds of capabilities, whereas our effort has been to allow very
complex specifications for a restricted class of domains.

,A major effort seeking to allow for transportability at the
database-administrator level is the TEAM project at SRI. 12

,I3

The TEAM approach is to carry out an interactive dialogue
with database administators; the system asks questions that
enable it to acquire a lexicon relating to the language to be
used, a conceptual schema telling about the conceptual re
lations among objects, and a database schema telling about
the underlying database format. A system similar to TEAM,
also being developed at SRI but more loosely related to con
ventional database systems than TEAM, is KLAUS. 14

Other current work in transportable NL system design in
cludes a system being designed at Bell Labs,15 the IRUS
system16 at BBN, and the CONSUL system 17,18 at lSI. The last
of these has special potential value for office environments
because it is directed toward software services at personal
workstations.

ACKNOWLEDGMENTS

The authors wish to thank Alan Biermann, Martha Evens,
Gary Hendrix, George Heidorn, Martha Palmer, Frank Star-

mer, Sharon Salveter, and Bozena and Fred Thompson for
valuable discussions on our work.

This research has been supported in part by the National
Science Foundation, Grant Numbers MCS-81-16607 and IST-
83-01994, and in part by the National Library of Medicine,
Grant Number LM-07003.

REFERENCES

1. Ballard, B., and A. Biermann. "Programming in Natural Language: NLC
As a Prototype." Proceedings of the 1979 National Conference. Detroit,
Michigan: ACM, 1979, pp. 228-237.

2. Biermann, A., and B. Ballard, "Toward Natural Language Computation."
American Journal of Computational Linguistics, 6 (1980), pp. 71-86.

3. Biermann, A., B. Ballard, and A. Sigmon, "An Experimental Study of
Natural Language Programming." International Journal of Man-Machine
Studies, 18 (1983), pp. 71-87.

4. Ballard, B. "A Domain Class Approach to Transportable Natural Lan
guage Processing." Cognition and Brain Theory,S (1982), pp. 269-287.

5. Ballard, B., and J. Lusth, "An English-Language Processing System That
'Learns' about New Domains." AFIPS, Proceedings of the National Com
puter Conference (Vol. 52), 1983, pp. 39-46.

6. Ballard, B., J. Lusth, and N. Tinkham, "LDC-1: A Transportable,
Knowledge-Based Natural Language Processor for Office Domains," Tech
nical Report CS-1983-15, Dept. of Computer Science, Duke University,
August 1983.

7. Biermann, A. "A Natural Language Processor for Office Automation."
Proceedings of the 1982 Office Automation Conference, 1982, San Fran
cisco.

8. Biermann, A., R. Rodman, B. Ballard, T. Betancourt, G. Bilbro, H. Deas,
L. Fineman, P. Fink, K. Gilbert, and F. Heidlage, "Interactive Natural

Transportable English-Language Processing 649

Language Processing: a Pragmatic Approach." Conference on Applied Nat
ural Language Processing. Santa Monica, Ca.: Association for Computa
tional Linguistics, 1983, pp. 180-191.

9. Thompson, F., and B. Thompson, "Practical Natural Language Processing:
The REL System as Prototype." In M. Rubinoff and M. Yovits (eds.),
Advances in Computers, Vol. 3. New York: Academic Press, 1975.

10. Thompson, B., and F. Thompson, "Introducing ASK, a Simple Knowl
edgeable System," Conference on Applied Natural Language Processing.
Santa Monica, Ca.: Association for Computational Linguistics, 1983, pp.
17-24.

11. Thompson, F., and B. Thomspon, "Shifting to a Higher Gear in a Natural
Language System." AFIPS, Proceedings of the National Computer Confer
ence (Vol. 50), 1981, pp. 657-662.

12. Grosz, B. "TEAM: a Transportable Natural Language Interface System."
Conference on Applied Natural Language Processing. Santa Monica, Ca.:
Association for Computational Linguistics, 1983, pp. 39-45.

13. Hendrix, G., and W. Lewis, "Transportable Natural-Language Interfaces
to Databases." Proceedings of the Ninteenth Annual Meeting of the ACL.
Palo Alto, Ca.: Association for Computational Linguistics, 1981, pp. 159-
165.

14. Haas, N., and G. Hendrix, "An Approach to Acquiring and Applying
Knowledge." First National Conference on Artificial Intelligence. Palo Alto,
Ca.: American Association for Artificial Intelligence, 1980, pp. 235-239.

15. Ginsparg, J. "A Robust Portable Natural Language Data Base Interface."
Conference on Applied Natural Language Processing. Santa Monica, Ca.:
Association for Computational Linguistics, 1983, pp. 25-30.

16. Bates, M., and R. Bobrow, "A Transportable Natural Language Interface
for Information Retrieval." Working paper, Bolt, Beranek and Newman,
Cambridge, Mass., 1983.

17. Mark, W. "Representation and Inference in the Consul System." Inter
national Joint Conference on Artificial Intelligence, 1981.

18. Wilczynski, D. "Knowledge Acquisition in the Consul System." Inter
national Joint Conference on Artificial Intelligence, 1981.

Really arguing with your computer in natural language

by MARGOT FLOWERS and MICHAEL G. DYER

University of California at Los Angeles
Los Angeles, California

ABSTRACT

Recently, the computer science community has been hearing a lot about "fifth
generation" computers and the Japanese large-scale project to build intelligent
software that can "think," "reason," and "understand human languages."l It is in
the field of artificial intelligence (AI) where such intelligence machines and pro
grams are being designed and created. How far along is the field of AI? How close
are AI programs to being able to "reason" or "understand" as humans do? This
paper is intended to give scientists outside the field of AI some insight about
the problems, issues, and current status of computational models of human
argumentation.

651

INTRODUCTION

As researchers in one subarea of artificial intelligence (AI),
called cognitive modeling, we are particularly interested in
building models of human cognitive abilities. This paper is
intended to give scientists outside of the field of AI some
insight about the problems, issues, and current status of one
specific area of AI research. In this paper we examine briefly
what issues are involved in building a computer capable of
engaging in an argument, and then review some past and

. recent computer programs that have addressed these issues.

MOTIVATION

Before embarking on such an effort, we might first ask why
anyone would want to argue with one's own (or anyone else's)
computer. First of all, people are always arguing. People ar
gue, for instance, over the U.S. role in Central America,
whether the U.S. should restrict Japanese imports, whether
God exists, about the impOitance of the Equal Rights Amend
ment, and about numerous other topics concerning sex, re
ligion, law, and politics. If we are ever going to have truly
intelligent machines, they should, at minimum, be able to
understand what's going on in an argument and participate in
an argument by defending or justifying a given viewpoint.

Second, as expert systems2 become more sophisticated, it
becomes essential that such systems be able to explain their
decision-making processes. 3 In medical expert systems,4 for
example, this involves printing a trace of the rules the system
used for arriving at diagnoses. There are many complex do
mains, however, where the rules are not so clear, and where
argumentation and debate are essential to understanding and
formulating plans and strategies. Consider a military general,
for example: Who would trust the decisions of a general who
can not defend his views in the give and take of a debate?

Finally, understanding or engaging in arguments requires
both fundamental reasoning and language comprehension
skills. Argumentation turns out to be an ideal task domain for
scientifically exploring these basic human capabilities.

A TYPICAL ARGUMENT

Before we can design and implement computational arguers,
we must know what problems typically arise in everyday argu
ments. Consider the following argument fragment, based on
the recent destruction by a Soviet military jet of a Korean
airliner that strayed into Soviet air space.

[a] Korean: The USSR should be punished for downing the Ko
rean jet.

[b]
[c]
[d]

[e]

[f]
[g]

Really Arguing with Your Computer 653

Soviet:
Korean:
Soviet:

Korean:

Soviet:
Korean:

It was a spy plane.
With 269 people on board?
They were being used as a cover to protect the U. S.
spies hidden on board.
The U.S. has no need to use a commercial jetliner.
Their satellite system is more than adequate.
Well, the USSR has a right to protect its borders.
That may be true, but the USSR has no right to use
force against nonmilitary aircraft. Other countries
do not shoot down Soviet commercial jets when they
stray across national borders .

There is nothing exceptional about this argument fragment.
After the Korean jetliner incident, numerous debates arose,
many of them similar to this one. We can begin to appreciate
the inferential capabilities involved in processing the argu
ment fragment above simply by replacing the 'obvious' re
sponses above with alternative responses:

[a] Korean: The USSR should be punished for downing the Ko
rean jet.

[b] Soviet: It was a spy plane.

Alternative responses to [a]:

[btl Soviet: Why thank you.
[b2] Soviet: It was a white plane.
[b3] Soviet: It was a big plane.

Why is [b] reasonable and not [bl-3]? To avoid generating
[b 1] for instance, the Soviet must realize that [a] is not a
compliment, but an attack. In addition, both the Soviet and
Korean must understand the world of international espio
nage, national borders, and justifications for military force in
order to both generate and appreciate the significance of the
word "spy" in [b].

[b] Soviet: It was a spy plane.
[c] Korean: With 269 people on board?

Alternative responses to [b]:

[c1] Korean: With 300 windows on board?
[c2] Korean: With 4 bathrooms on board?

[c] is phrased on the surface as a question. However, both
argument participants know that [c] does not expect a "yes"
or "no" answer. In fact, the Korean is actually saying: "I
disagree that it was a spy plane, since 269 spies on board a
single plane would be ridiculous. It was therefore a passenger
plane; not a spy plane."

654 National Computer Conference, 1984

[f] Soviet: The USSR has a right to protect its borders.
[g] Korean: ... Other countries do not shoot down Soviet com

mercial jets when they stray across national borders.

Alternative responses to [f]:

[gl] Korean: ... Other countries do not shoot down Soviet sea
gulls when they stray across national borders.

[g2] Korean: ... Other countries do not shoot down American
planes when they stray across national borders.

[g1] is perfectly correct, but a totally unreasonable statement.
Why? [g2] is also a perfectly true statement, but totally irrel
evant to the argument at hand. But how do we know this?
Clearly, the Korean is reasoning by analogy in [g] to rebut his
opponent's justification. But how is the correct analogy
found?

For a computer to hold up its end in an argument, it must
first understand what's been said. Most arguments are in a
natural language; in this case, English. It is doubtful that
anyone wiil find arguments stated in a formal language, such
as a mathematical notation or programming language. One
can argue about whether a mathematical proof or computer
program is correct, but the argument itself most assuredly will
be in a natural language.

In addition to understanding the meaning of each natural
language statement, the computer must also be able to com
prehend the intentionS or significance of what is being said, as
it relates to the argument at hand. For instance, under
standing the significance of "with 269 people on board" re
quires not only understanding the meanings of the words "on
board" (refers to people inside a plane, and not on top of a flat
wooden object) but also that the Korean has just given evi
dence to refute the claim that it was a spy plane.

Clearly, an argument involves claims or beliefs about facts
or appropriate behavior. These claims often have a moral
element: that some6ne was wrong to do something or respon
sible for a wrongful deed. Our argument starts out with just
such a claim, that is, that the Soviets were wrong to shoot
down the Korean airliner.

Even if the computer understands that the opponent has
attacked it, it must still figure out what kind of attack it is, and
then decide how to defend itself against such an attack.

Simply recognizing an attack as being a member of a given
class of attacks is nontrivial. "It was a spy plane" is a justifi
cation for shooting down the Korean plane. But why? Here
we see that comprehension requires specific world knowl
edge. This is a truism in AI. It is hard to argue without arguing
about something. That something, in this case, involves know
ing how spying relates to defense of borders through the use
of military force. The computer must already know which
situations allow military force and which do not. Without this
knowledge comprehension of the significance of an attack or
a rebuttal becomes impossible.

ISSUES IN ARGUMENTATION

To build such a computational arguer, we must address the
following problems:

1. How do we represent the meaning of each participant's
statements?

2. How do we encode the world knowledge to which our
arguer's statements are implicitly referring?

3. How do we access these meanings and apply world
knowledge in order to go from sentences in the language
to these representations of meaning?

4. How do we organize this knowledge so that only the
relevant knowledge is applied and the "right" inferences
are made at the right time?

5. How do we keep track of the argument as it unfolds, and
how do we represent and apply the argument-so-far as a
context for statements yet to follow?

6. How do we represent the beliefs of the argument par
ticipants?

7. What are the strategies used by argument participants,
and how do we represent them?

8. What does the resulting memory of an argument look
like?

9. How do factors, such as world knowledge, reasoning
ability, memory search, knowledge of language, and ar
gument strategies interact?

There is not enough space here to go into all of these issues
in detail, but we will address several of them briefly.

Understanding Language

In the past decade a good deal of progress has been made
in text comprehension. Much of this work in natural language
understanding has concentrated on the memory structures,
inference mechanisms, knowledge representations, and pars
ing scheme'S for handling narrative texts. For eX2!r.p!e, the
SAM program6 used the notion of scripts7 to read stories
concerning stereotypic action sequences, such as going to a
restaurant. PAM8 read stories that dealt with goal and plan
relationships between narrative characters. OPUS9 answered
questions about stories involving the use of physical objects.
These earlier language-understanding programs were limited
to the extent that each dealt only with the application of a
single knowledge construct. The next research step involved
exploring the adequacy and limitations of these knowledge
constructs in the context of more complicated narratives. An
important part of this research also involved exploring the way
in which multiple sources of knowledge interact during nar
rative comprehension.

One result of this research effort was a story-understanding
program named BORIS. 10 Below is a story fragment read by
BORIS:

Divorce-l

Richard hadn't heard from his college roommate Paul for
years When a letter finally arrived from San Francisco,
Richard was anxious to find out how Paul was.

Unfortunately, the news was not good. Paul's wife Sarah
wanted a divorce. She also wanted the car, the house, the
children, and alimony. Paul. .. didn't want to see Sarah walk

off with everything he had. His salary from the state school
system was very small. Not knowing who to turn to, he was
hoping for a favor from the only lawyer he knew

Richard eagerly picked up the phone and dialed. After a
brief conversation, Paul agreed to have lunch with him the
next day. He sounded extremely relieved and grateful.

The next day, as Richard was driving to the restaurant he
barely avoided hitting an old man on the street. He felt ex
tremely upset by the incident, and had three drinks at the
restaurant. When Paul arrived Richard was fairly drunk. Af
ter the food came, Richard spilled a cup of coffee on Paul.
Paul seemed very annoyed by this so Richard offered to drive
him home for a change of clothes.

When Paul walked into the bedroom and found Sarah with
another man he nearly had a heart attack. Then he realized
what a blessing it was. With Richard there as a witness, Sa
rah's divorce case was shot

To understand this story, BORIS must have access to mul
tiple sources of knowledge, including those listed in Figure 1.
BORIS coordinates and applies these different knowledge
constructs to build an episodic memory of causally connected
actions, motivations, settings, interpersonal relationships,
and so on. The program then demonstrates its understanding
through answering questions. ll Below are some of the ver
batim questions presented to BORIS and the verbatim an
swers generated:

What happened to Richard at home?
Richard got a letter from Paul.

Why was Paul upset about the divorce?
Paul and Sarah were fighting over the family possessions.

What did Paul do for a living?
Paul was a teacher.

Why did Paul write to Richard?
Paul wanted Richard to be his lawyer.

What happened to Richard on the way to the restaurant?
Richard almost ran over an old man.

Why did Richard spill the coffee?
Richard was drunk.

How did Paul feel?
Paul was mad at Richard.

What happened to Paul at home?
Paul caught Sarah committing adultery.

Knowledge

scr i pts
plans
goa Is
relationships
soc i a I ro I es
sett i ngs
phys i ca I objects
physical actions
emotions
empathy
abstract scri pts
themes

Examp I es

restaurant. phoning. driving
deciding to go home. deciding to meet for lunch
wanting to win the case. wanting help from a friend
friend. roommate. wife
lawyer. waitress. teacher
home. restaurant. road. bedroom
phone. I iquor. money. food. letter
eating. talking. walking
gratitude. anger. surprise. worry
congratu lat ions
favors. service contracts
adulterous spouse caught cheating

Figure I-Multiple sources of knowledge used in BORIS

Really Arguing with Your Computer 655

In BORIS, all processes of language analysis, knowledge ap
plication, and knowledge interactions are implemented as de
mons. Demons fall within the class of production systems. 12

,13

Demons implement a form of delayed processing and wait
until their test conditions are satisfied, at which point they fire
and execute their actions. Each live (active) demon is in
charge of its own life cycle, deciding how long to stay alive and
when to die.

BORIS reads each narrative sentence in a left-to-right or
der. Entries in the lexicon may be words, phr(lses, roots, or
suffixes. Associated with each lexical item are' conceptualiza
tions and attached demons. When a lexical item is recognized,
the associated conceptualization is placed into a working
memory and its attached demons are spawned.

When demons "fire," they bind together conceptual struc
tures in working memory and instantiate long-term concep
tual structures in episodic memory. These conceptual struc
tures are then accessed by other demons. Thus, both episodic
and working memory serve as contexts for parsing. Consider
the phrase "picked up the phone and dialed" in "Divorce-
1." In the lexicon, "pick up" is defined in terms ofthe concep
tual dependency14 conceptualization of GRASP. Associated
with this conceptualization are demons that fill in cases asso
ciated with GRASP, as in Figure 2. Associated with each
unambiguous lexical entry is a single conceptualization. Each
unfilled role is followed by an asterisk (*), which acts as a
place-holder for a binding. Demons whose task it is to fill
these roles appear after the arrow (¢:). Each arrow indicates
where to bind the return values of the demons. Demons that
take parameters are enclosed within parentheses, followed by
the arguments passed to them.

When BORIS reads "picked up," the GRASP conceptuali
zation is placed in working memory and the associated de
mons are spawned. Immediately one of the demons fires and
binds George as the ACTOR of the GRASP. When "phone"
is encountered, another instantiation of the same EXPECT

Lex i ca I Entry

pick up

phone

(GRASP ACTOR * <==(EXPECT 'HUMAN 'BEFORE)
OBJECT * <==(EXPECT 'PHYS-OBJ 'AFTER)
INSTAN * <==(APPLY-KS»

(PHYS-OBJ TYPE (PHONE»

Associated demons:

EXPECT [Pattern. Direction]
Search Working Memory for Pattern in the Direction
specified When found. bind to role

APPL Y-KS [ACT]
If a primitive CD ACT is encountered
Then examine the OBJECT of the ACT

and If the OBJECT has an associated script or MOP
Then apply that script of MOP to the ACT

If MOP found which is uninstantiated.
Then create an instance in episodic memory

Figure 2-Demons associated with "GRASP"

656 National Computer Conference, 1984

demon fires and binds PHONE as the OBJECT of the
GRASP. At this point, APPLY-KS fires. It is the task of this
demon to reinterpret the GRASP in terms of a larger knowl
edge structure . APPLY -KS contains several heuristics. One
heuristic is to search BORIS's object-primitive knowledge of
whatever is bound in the OBJECT slot. Through the physical
object of PHONE, BORIS accesses the knowledge structure
M-PHONE, which holds information about how to answer
and make calls. APPLY-KS then applies M-PHONE to the
GRASP conceptualization. Since GRASP(phone) is an act in
M-PHONE, the match succeeds. Since this is the first instance
of a phone call with Richard as the caller, BORIS creates an
instantiation of this event in episodic memory with Richard as
CALLER. When "dialed" is read, the demon associated with
dialing will immediately find M-PHONE instantiated in
working memory with a pointer to a corresponding event in
episodic memory. As a result, the dialing action will simply
update this instance of M-PHONE. Meanwhile, demons asso
ciated with M-PHONE have been spawned. These demons
look for the recipient of the call, the message being conveyed,
and whatever goal Richard plans to achieve by making this
call.

Thus, the process of comprehension may be abstractly char
acterized as a cycle of processes that build new knowledge
structures, where both demons and knowledge structures
arise from lexical input.

The research described here is based on the premise that
natural language comprehension is a process of intelligent
inference, memory access, and knowledge application. Com
prehension requires a great deal of prior world knowledge.
The key to understanding lies in computational insight about
human knowledge and memory constructs: their representa
tion, application, instantiation, interaction, control, coordi
naiiun, inut:xing, acct:ss, st:an..:h, and retrievaL For each class
of knowledge there are associated different processes of
memory search, inference, and language analysis. Knowledge
constructs also interact with one another in different ways. For
example, knowledge of emotions 15 will interact with goal and
plan situations, for example, the failure of a plan or goal may
cause frustration or anger.

The knowledge constructs used by current story
understanding and question-answering systems serve as a nec
essary but insufficient foundation for dealing with arguments.
Although argument participation requires knowledge of
goals, plans, scripts, themes, and so on, additional knowledge
and processing constructs are required.

Representing Beliefs About the World

In an argument, the arguer defends his own beliefs while
attacking those of his opponents. Understanding the concep
tual content of an argument, therefore, requires the computer
to possess a representation of opposing ideologies.

Two researchers who have worked on computational mod
els of political beliefs are Abelson16 and Carbonell. 17 Abelson
developed a model of conservative political ideology called
the "Cold Warrior," which was intended to capture Sen.
Barry Goldwater's belief system. The most important notion

Fuzzy
I iberal thinking

I
I Use of
I Free World power

Commun ist
schemes

I
I
I

Our cal I -------+-------------------------+------ Free World
to action

v
Free World
paralysis

v
Communist

victory

victory

(Abelson 1973. p. 291)

Figure >-Conservative Cold War ideology

in Abelson's work was the master script, which modeled
relationships among various themes in a conservative Cold
War ideology, as depicted in Figure 3. Sequences of inter
actions and conflicts among themes were organized by answer
frames. For example, one ideologically conservative answer
frame contained the sequence given in Figure 4.

The master script notion was very useful for capturing the
relationships among several of Goldwater's beliefs. Using this
master script, Abelson's "Cold Warrior" could express its
conservative point of view. Carbonell has pointed out that the
Cold Warrior lacked a knowledge of mundane reality. 17 In
addition, while capable of expressing a point of view, the Cold
Warrior model was incapable of defending it. In contrast, the
real senator can support his own beliefs and can refute the
attacks and criticisms of his opponents, using counterexam
ples and various forms of reasoning and argumentation.

In his program, POLITICS, Carbonell modeled political
ideologies in terms of goal trees. Goal trees both organized a
set of goals according to subgoal relatioD.ships and raD.ked
them in terms of their relative importance. For example, the
goal tree fragments in Figure 5 represent a portion of a U.S.
conservative ideology in Carbonell's model. In addition to
their own set of goals, the liberal and conservative each main
tain goal trees representing perceived Soviet ideologies. For
example, the conservative believes that the Soviet's most im
portant goal is Western domination, while the liberal does
not.

Carbonell used goal trees combined with ccunterplanning
strategies in POLITICS to model subjective understanding of
political events. The POLITICS program could predict events
and answer questions by accessing the goals and counterplans
ofthe characters involved. For example, if asked the question:
"Should character X do act Y?" POLITICS then checked the
consequences of the act to see if it might achieve one of the
character's goals. If asked a question of the form: "What
sho'uld character1 do if character2 does act X?" the program

when:
then:
unless:
in which case:

Communist Schemes,
Communist Victory,
Use of Free World Power,
Free ~orld Victory.

Figure 4-Conservative answer frame

Commun ist

conta i nment

I \

Communist

conta i nment

I \
I \ I \

Strong
mi I itary

I \
I \

Prevent
internal

subvers i on

Reduce
government

spend i ng

Ma i nta i n
peace
a b roa d

Build neil Keep any Relative Importance of Goals

ilea pons country
f rea from
Communism

Subgoal Relationships

Figure 5--Conservative's goal tree fragments

checked whether the act blocked character1's goals, and if so,
it accessed an appropriate counterplan to formulate an answer
to the question. Below is a fragment of POLITICS' question
answering behavior after being told a single political fact:

INPUT STORY: The U.S. Congress is expected to ap
prove the Panama Canal treaty.
(INTERPRET U.S.-CONSERVATIVE)

Q: Should the U.S. approve the treaty?
A: No, the treaty is bad for the United States.
Q: Why is the treaty bad for the U.S.?
A: The United States would lose the canal to Panama

and the United States will be weaker.
Q: Why should the U.S. worry about Russia taking over

the canal?
A: Because Russia wants to control the world.

(INTERPRET U.S.-LIBERAL)
Q: Should the U.S. approve the treaty?
A: Yes. The Panama Canal Treaty is good for the

United States.
Q: What if Russia tries to take over the Canal?
A: Russia does not want conflict with the U.S

Applying Argument Strategies

Recently, research has been done in building process mod
els of argumentation. One computer program, ABDULI
ILANA18

,19,2o can model either side of an argument between
an Arab (ABDUL) and Israeli (ILANA) over who was re
sponsible for the 1967 Arab-Israeli war. This argument di
alogue appears below:

[a] Arab: Who started the 1967 War?
[b] Israeli: The Arabs did, by blockading the Straits of

Tiran.
[c] Arab: But Israel attacked first.
[d] Israeli: According to international law, blockades are

acts of war.
[e] Arab: Were we supposed to let you import American

arms through the Straits?
[f] Israeli: Israel was not importing arms through the

Straits. The reason for the blockade was to keep
Israel from importing oil from Iran.

Really Arguing with Your Computer 657

[g] Arab: But Israel was importing arms, and that's be
cause Israel is trying to take over the Middle
East.

[h] Israeli: If Israel were trying to take over the Middle
East, then why didn't Israel take Cairo in 1973?

Major issues addressed in ABDULlILANA were (1) How
does X even recognize that X's opponent Y has attacked a
belief of X, or has supported one of Y's beliefs? (2) Given an
attack by Y, how does X choose a defense? and (3) How is an
argument represented in memory? We will briefly discuss
these issues using the argument dialogue above.

We can see that each participant here is accusing the other
participant's nation of starting a war. To recognize that [b] is
an accusation, ABDUL must know that wars are "bad," that
parties responsible for causing bad events to occur are also
bad, that accusations involve attributing responsibility for a
morally reprehensible event, that any accusation should re
ceive a rebuttal if possible. To counter the accusation in [b],
ABDUL searches its memory of historical events and notices
that Israel fired first. This fact forms a useful rebuttal, but
why? There are other events in historical memory, such as
resolutions before the United Nations, results of Israeli elec
tions, and so on, yet none of these constitute a useful rebuttal.
ABDUL must know general facts, such as: (1) a war contains
a sequence of events and (2) the initiator of the first event in
certain sequences of events can be viewed as responsible for
the entire sequence.

In l e J, the Arab asked the Israeli a question that ostensibly
requires an answer of "yes" or "no." However, ILANA must
realize that neither answer is appropriate; that the question is
actually rhetorical, and that it contains an indirect accusation.
In [f], the Israeli directly denies the accusation made in [e] and
counters with another accusation. Notice that in [f] and [g] the
argument revolves around whether oil or arms were being
imported into Israel. As readers we realize that this distinc
tion is highly relevant, but how? To recognize the relevance of
this distinction, ABDULlILANA must possess knowledge
about the world of foreign trade and of armaments. Further
more, ABDULlILANA also must possess more abstract
knowledge of how goals and plans interact with argument
strategies. This knowledge includes rules, such as:

IF X believes that Y is executing action A to enable X to
violate a goal G of Y
THEN Y may block A and use the fact of X's intention as
a justification for Y's action

In [g], the Arab accuses the Israeli of "trying to take over
the Middle East." The Israeli's rebuttal in [h] is very effective,
but how did ILANA come up with this, especially since the
event of taking Cairo never happened? Clearly, there are an
infinite number of nonevents, so storing them all in memory
is simply impossible. In this case, ABDULlILANA contains
a theory of expectation failures,21 which organize memory
around predicted and unpredicted events. Since the take-over
of Cairo was predicted but unfulfilled, it is stored explicitly in
memory as an expectation failure. Such failures are then used
in arguments as one source of counterexamples. 22

658 National Computer Conference, 1984

a
Israel responsible <----------> Egypt responsible
for '67 war for '67 war

t t

I I
I s attacks are I s blockades are
I acts of war I acts of war
I I

Israel fired on Egypt Egypt blockaded Israe I

Figure 6-A-graph fragment

As the argument progresses, ABDULlILANA builds up a
conceptual, language-independent representation of the argu
ment, called an argument graph (or a-graph). 18,23 The a-graph
is composed of beliefs connected by relationships of attack (a)
and support (s). Figure 6 is a simplified fragment of the a
graph for part of the argument over the Six-Day War. When
ever ABDUL/ILANA received an opponent's input, it
searched the argument graph to determine what belief was
being supported or attacked. For example, a belief could be
attacked by a direct contradiction, such as:

Israeli: The Arabs are responsible for the war.
Arab: No. The Israelis are responsible for the war.

However, direct attacks are not very effective. Furthermore,
use of direct contradiction by both opponents leads to the
"Did!" "Didn't!" "Did!" "Didn't!" argument "loop" that
children's arguments often exhibit. A more effective approach
is to attack one's opponent by finding support for a claim that
contradicts a claim of the opponent. By using this strategy,
ABDUL determines that the following response is more
suitable:

Israeli: The Arabs are responsible for the war.
Abdul: But Israel fired first.

Reasoning During Argumentation

People support their beliefs with chains of reasoning. The
HARRY program24 explores the role of reasoning during ar
guing. A fundamental notion in HARRY is that human rea
soning frequently makes use of previous examples, prior
chains of reasoning formed from previous arguments, and
adaptations of situations related to the current problem. Hu
man reasoning rarely relies on the application of general
purpose rules. Thus, reasoning in HARRY is viewed as a
memory-based process. In general, turning what was a rule
based task into a memory-based task makes the process of
comprehension easier.

HARRY has been used to model various forms of reason
ing in economic and political domains. Consider the following
transcript, taken from an interview with the economist, Sey
mour Melman, on the "MacNeil/Lehrer Report":

"Economist: The increased funding of DOD [the Depart
ment of Defense] has lead to today's higher rate of inflation
in the U.S."

Machinery producers customers of the government
I

Cost maximizing became a part of machinery producers
I

Costs of production and administration increased
I

Prices of new machinery rose
I

New machinery purchase no longer des i rab I e
I

New machinery purchases no longer made
I

Productivity growth rate falls

Inflation increases

Figure 7-Melman's reasoning

"Interviewer: Why do you believe that?"
"Economist: Well, DOD is publicly funded. As a result,

they tend to cost maximize. That is, they do not carefully
monitor their costs. Starting in the fifties, DOD became a
major customer of machinery-producing industries. Thus, the
heavy machinery industry began to cost maximize as well,
causing the prices for new heavy machinery to increase. As
the purchase of heavy machinery decreased, the mech
anization per worker decreased, causing the productivity
growth rate to decrease as well. As a result, inflation has
increased. "

The reasoning chain produced by Melman is rather compli
cated and includes the components depicted in Figure 7. How
might Melman have produced this chain of reasoning? Pro
ducing this particular chain through the application of very
general rules is possible but would be very costly. Clearly,
Melman had already produced identical, or at least related,
chains of reasoning before appearing on "MacNeil/Lehrer."
Instead of applying general reasoning rules, experts such as
Melman more likely retain previous reasoning chains in
memory. These chains are generalized, chunked, indexed in
various ways in memory, and then subsequently retrieved,
adapted, and applied.

The first time HARRY produced the above chain of rea
soning, it was done laboriously through the application of
general rules. The resulting chain was then abstracted to form
reasoning scripts (e.g., $R-GOV-SPEN~INFLATION).
These reasoning scripts are then applied to similar reasoning
problems. Thus, HARRY's reasoning becomes more
memory-based and less rule-based as HARRY goes through
successive reasoning experiences.

CONCLUSIONS

Traditionally. reasoning has been characterized as a process of
logic. This is not surprising since some of the first people to
address reasoning were logicians. Also, a common tactic in
arguments and editorials is to accuse one's opponent of being

"illogical." However, protocols indicate that people do not
reason by syllogism, nor do they employ carefully constructed
proof-style chains of deductive reasoning.

Whether an arguing system is implemented in a logic
programming language, such as PROLOG/s or a functional
programming language, such as LISP/6 the choice made is
actually neutral toward the problems raised in modeling hu
man argumentation. The most interesting issues that arise
during everyday arguments are not logical as such, but rather
involve problems in representing, organizing, and applying
human knowledge constructs. The limitations of our programs
reflect our limited theoretical understanding in these areas.
Meanwhile, it will be some time before our home computers
start arguing with us or requiring us to possess Socratic de
bating skills just to talk them into executing our home income
tax programs.

ACKNOWLEDGMENTS

At UCLA, the work of both authors has been supported in
part by the National Science Foundation. Part of the work
described here was performed while the authors were at Yale
University, supported in part by the Office of Naval Research,
in conjunction with Larry Birnbaum, Pete Johnson, Rod
McGuire, and Tom Wolf.

REFERENCES

1. Feigenbaum, E., and P. McCorduck. The Fifth Generation: Artificial Intel
ligence and Japan's Computer Challenge to the World. Menlo Park, Calif.:
Addison-Wesley, 1983.

2. Davis, R, and D. Lenat. Knowledge-Based Systems in Artificial Intel
ligence. New York: McGraw-Hill, 1980.

3. Hayes-Roth, F., D. A. Waterman, and D. B. Lenat (eds.). Building Expert
Systems, Reading, Mass.: Addison-Wesley, 1983.

4. Shortliffe, E. Computer-Based Medical Consultations: MYCIN. New York:
American Elsevier, 1976.

5. Allen, J., and C. Perrault. "Analyzing Intention in Utterances." Artificial
Intelligence, 15 (1980), pp. 143-178.

6. Cullingford, R. C. "Script Application: Computer Understanding of News-

Really Arguing with Your Computer 659

paper Stories." Technical Report 116, Yale University Department of Com
puter Science, 1978.

7. Schank, R. c., and R. Abelson. Scripts, Plans, Goals, and Understanding.
Hillsdale, N.J.: Lawrence Erlbaum Associates, 1977.

8. Wilensky, R. "Understanding Goal-Based Stories." Technical Report 140,
Yale University Department of Computer Science, 1978.

9. Lehnert, W. G. "Representing Physical Objects in Memory." Technical
Report 131, Yale University Department of Computer Science, 1978.

10. Dyer, M. G. Understanding: A Computer Model of Integrated Processing
for Narrative Comprehension. Cambridge, Mass.: MIT Press, 1983.

11. Lehnert, W. G. The Process of Question Answering. Hillsdale, N.J.: Law
rence Erlbaum, 1978.

12. Davis, R., and J. King. "An Overview of Production Systems." In Machine
Intelligence, 1977.

13. Newell, A. "Production Systems: Models of Control Structures." In P.
Winston (ed.), Visual Information Processing. New York: Academic Press,
1973.

14. Schank, R c., and K. Colby (eds.). Computer Models of Thought and
Language. San Francisco: W. H. Freeman, 1973.

15. Dyer, M. G. "The Role of Affect in Narratives." Cognitive Science, 3
(1983).

16. Abelson, R. P. "The Structure of Belief Systems." In R C. Schank and K.
Colby (eds.), Computer Models of Thought and Language. San Francisco:
W. H. Freeman, 1973.

17. Carbonell, J. Subjective Understanding: Computer Models of Belief Sys
tems. Ann Arbor, Mich.: UMI Research Press, 1981.

18. Howers, M., R McGuire, and L. Birnbaum. "Adversary Arguments and
the Logic of Personal Attacks." In W. G. Lehnert and Ringle (eds.),
Strategies for Natural Language Processing. Hillsdale, N. J.: Lawrence
Erlbaum Associates, 1982.

19. Birnbaum, L., M. Howers, and R. McGuire. "Toward an AI Model of
Argumentation." Proceedings of the First Annual National Conference on
Artificial Intelligence. The American Association for Artificial Intelligence,
August 1980.

20. McGuire, R., L. Birnbaum, and M. Flowers. "Opportunistic Processing in
Arguments." Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, IlCAI, Vancouver, British Columbia, August 1981.

21. Schank, R C. Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge: Cambridge University Press, 1982.

22. Howers, M. "On Being Contradictory," Proceedings of the Second Na
tional Conference on Artrificial Intelligence. The American Association for
Artificial Intelligence, Pittsburgh, Pa., August 1982.

23. Birnbaum, L. Ph.D. Dissertation, Yale University, forthcoming.
24. Howers, M. Memory-Based Reasoning: A Computer Model of Human

Reasoning. Ph.D. Dissertation, Yale University, forthcoming.
25. Clocksin, W., and C. Mellish. Programming in Prolog. New York:

Springer-Verlag, 1981.
26. Winston, P., and B. Horn. LISP. Menlo Park, Calif.: Addison-Wesley,

1980.

Introducing VIPS: A voice-interactive processing system for
document management

by ALAN W. BIERMANN, KERMIT C. GILBERT, and LINDA S. FINEMAN
Duke University
Durham, North Carolina

ABSTRACT

The voice-interactive processing system enables a user to display office-related data
on a screen and manipulate it through a combination of voice and touch commands.
The system responds immediately to each request, updating the screen so that the
correctness of each action can be verified. If an undesired result is achieved, the user
may back up and restate the command in more exacting language.

The processor is a general system interface designed to handle various domains
including text manipulation, file handling, calendar management, message passing,
and desk calculation. Examples of its behavior in the text manipulation domain are
given.

661

BACKGROUND

The voice-interactive processing system (VIPS) is a voice
driven natural-language processor designed to perform in
several areas of application within the general framework of
office automation. VIPS is aimed at the naive or casual com
puter user, such as an upper level manager, and its major goal
is to improve the accessibility of office automation systems for
such individuals.

The architecture of VIPS embodies our second thoughts on
natural-language processing. It benefits from our earlier ex
perience in building a natural language system for matrix
calculations. 1

,2 A major design goal has been to concentrate
the domain-dependent aspects of the system as much as possi
ble, so that transitions from one application area to the next
will not necessitate major changes to the code. The agenda for
bringing office systems tasks within the scope of VIPS begins
with text manipulation, continues to file management, and
may eventually cover calendar management, message passing, '
and desk calculation. The text manipulation function is oper
ative and is being tested currently. The modifications neces
sary to refit that system for managing a tree-structured file
system are understood. Calendar management seems to pose
no new problems, but that application and the remaining ones
have not yet been examined closely.

SYSTEM FEATURES

In the text domain, VIPS allows the user to retrieve from a file
a preexisting document, to enter a new document from a
keyboard, to edit the document, and to store all or any part
of it in a file. Commands take the form of English imperative
sentences, optionally augmented by typed input or by touch
input to a display screen. Spoken input is recognized by a
commercial connected or discrete speech recognition ma
chine. Recently we have obtained the most reliable perfor
mance from a Votan V-5000 discrete recognizer. Touch input
is captured by a Carroll Touch Technology touch screen
mounted on a large-screen color monitor.

Commands are uttered as a sequence of discrete words,
using a vocabulary of about 100 words. The speech recognizer
produces best and second best guesses for each word spoken
and these are passed to the error-correcting parser, which
attempts to identify an acceptable command utterance. Audio
feedback indicates to the user those occasions when the recog
nizer is unable to make any guesses about the input. An
utterance ends with the token, "over," as in "delete this word
over." Other control words in the vocabulary are "correc
tion," which indicates that the user wants to alter the current

Introducing VIPS 663

unfinished command, and' "goodbye," which is the graceful
way out of VIPS.

The touch input capability permits the use of very succin'ct
commands, such as 'tput this sentence after that sentence,"
where "this" and "that" are instantiated by temporally appro
priate touches to the display.

Keyboard input is used to instantiate string variables men
tioned in a spoken command. These string variables allow the
user to identify to the system proper names, such as names of
files or segments of the document, which could not otherwise
pe referenced with the limited voice vocabulary. For example,
the command, "insert xl after each x2 in paragraph two,"
would require typed input for xl and x2, where xl is a string
to be inserted and x2 is a string to be searched for in paragraph
two. The user is prompted for this input.

The user brings a document into VIPS by issuing the com
mand, "retrieve xl" and typing the name of the file (i.e.,
instantiating xl) containing the text of interest. Alternatively,
a user may say, "enter xl" and respond to the prompt by
typing a document directly to VIPS. A document is written
back to a given file by the command, "store the document in
xl," where xl is the name of some (possibly new) file. Se
lected parts of a document can be written to a file. For exam
ple, "store the title of each, section in xl" could be used to
create a table of contents.

When a file is retrieved, a screenful of formatted text is
displayed, starting at the beginning of the document. Each
subsequent command that alters the document causes the
updating of the display. To step through the document, the
user says "goto paragraph two" or "goto the first subsection,"
etc.

Editing commands insert or delete text, move it from one
place to another, or cause one string to replace another string.
The system can be focused on a text object or a class of objects
by the "consider" command. If VIPS fails to execute the
user's intent, that fact becomes apparent when the display is
updated. The previous state of the text, in that case, can be
restored by issuing the "backup" command.

SYSTEM COMPONENTS

VIPS consists of four PASCAL modules and is designed to
run on an IBM Personal Computer interfacing with an IBM
5520 office automation system. The four modules are com
posed of an ATN-style parser, which time-stamps and merges
touch and voice input, prompts for and captures typed input
(if necessary), and produces a parse tree that identifies all the
constituents of the command utterance. Second is a transla
tor, which accepts a parse tree, an array of touch coordinates

664 National Computer Conference, 1984

(if any), and a package of typed input (if any). It produces a
"bubble structure," described in detail later , which guides the
execution of the semantics module. Next is the semantics
module, which receives the bubble structure and any typed
input, maintains the text-data world and the context of the
user-VIPS dialogue, and effects the user's command by inter
preting the bubble structure. The fourth module is the format
ter, which receives the text-data world (or a portion of it) and
formats it for display and printing after the execution of each
command utterance, then returns to the semantics module a
map of the updated display for the purpose of resolving sub
sequent touch inputs.

DESIGN CONSIDERATIONS

Text-Data World

The objects of discourse in our text domain form a logical
containment hierarchy of characters, words, sentences, para
graphs, subsections, sections, and documents. Titles and
other such entities are defined. A left- and right-bracket char
acter pair is defined for each object class in the domain. When
a document is first brought into the VIPS text-data world, a
transducer identifies the objects in it according to a few, sim
ple rules. This identification is preserved by enclosing the
object in the appropriate left and right brackets and entering
this marked-up object into a linear array. Single text charac
ters are not bracketed as a matter of course, to conserve
memory, but can be under certain circumstances.

In the text domain it is necessary to transduce a document
once to establish the containment hierarchy. Violations of the
hjerarchy are possible and can handled by the system. For
example, it might be reasonable to put a paragraph, perhaps
some quoted material, inside a sentence. VIPS allows this, but

_ it is the user's responsibility to decide whether or not such an
act makes sense. Our goal has been to exclude knowledge
about text from VIPS as much as possible, relying on the
user's knowledge, the immediate updating of the display, and
the back-up capability to keep the text-data world well
formed.

Context Mechanism

The context for interpreting commands in VIPS is developed
and preserved by a stack of "focus" lists. Each list consists of
a set of pointers to a set of objects of some class, for example,
pointers to some words or paragraphs. All the objects pointed
to by a given list are actually contained by the objects pointed
to by the list immediately below in the stack. The focus stack
determines the order in which objects are searched for in the
text-data world during the execution of a command.

An example will clarify the context mechanism. The com
mand "retrieve xl," wi!! cause a pointer to the retrieved doc
ument to be pushed onto the stack. A subsequent command
to "consider the last two sentences" will cause the search for
sentences within the object pointed to by the focus list at the
top of the stack. In this case, the system looks for the "last two
sentences" in the document. If two or more sentences are

found, a pointer to each of the last two of them will be entered
into a list and the list will be pushed onto the focus stack. The
stack would then become as shown.

2. sent(last-l), sent (last)
1. document

If acceptable objects are not found, the focus stack is removed
(or popped) and another search for appropriate objects en
sues based on the list now at the top of the stack. In this
example, after being popped once, the stack would be empty,
and, thus, the search would terminate unsuccessfully.

Assuming that "the last two sentences" were found, if the
next command is "capitalize the first character in those sen
tences," then a search of the focus stack will be made for a list
of pointers to sentences. In this case, a list referencing two
sentences will be found at the top of the stack and the first
character of each of the sentences will be capitalized. Pointers
to those two characters will then be added to the stack to yield

3. char, char
2. sen(last-l), sent (last)
1. document

If a command is given referencing objects not found on the
top of the stack, the stack is popped until appropriate objects
are found.

If touch inputs have been associated with the command
utterance, then "those sentences" will be searched for in that
part of the text-data world described by the display map gen
erated at the end of the execution of the previous command.
This is equivalent to searching the display itself. This type of
search takes precedence over any use of the focus stack. When
a successful search of this type is completed, the focus stack
will have at its top a list of pointers to the touched sentences.
Directly below that list will be a list pointing to objects that
actually contain the sentences that were touched. The list
below the touched sentences list frequently would point only
to the document. However, if the touched sentences were in
a paragraph, say, that was represented by a list already on the
stack, then the pointer to that paragraph would remain on the
stack immediately below the list pointing to "those sen
tences." Thus, touch processing wipes out only as much pre
existing focus as necessary to maintain the principle that an
actual (narrowing) containment hierarchy is represented by
the focus stack.

Before leaving this topic, it should be noted that no effort
is made to develop a complete path of narrowing containment
relationships on the focus stack. Only an actual path is de
sired. A stack with a pointer to single character at the top and
a pointer to the entire document just below is often a suffi
cient representation of context in our scheme.

EXECUTION OF A COMMAND

Semantics execution will be illustrated for the utterance "print
the title of each subsection in section two." The parse of the
sentence will indicate that the verb, "print," has one operand,
"title," and that the operand has one postnominal modifier,

"of each subsection," and that the modifier is postnominally
modified by "in section two." The roles of the quantifier,
"each," and the ordinal, "two" (i.e. "the second"), are also
identified in the parse. The parse is translated into a network
of nodes we have named the "bubble structure." By inter
preting this structure, the semantics module achieves the in
tended result of the user's spoken command.

In the case of the example utterance, the following bubble
structure guides semantic processing:

VERB (print)
CONTAINEROF(section)
TYPEGEN(section)
APPLY (second)
APPLY(the)
TYPEGEN (subsection)
APPLY (each)
TYPEGEN (title)
APPLY(the)
COLLECT

EXECUTE

The initial command notes the imperative verb, "print," and
sets it aside for later execution. The indented sequence of
instructions (CONTAINEROF to COLLECT) finds the set of
objects referenced by the noun phrase, "the title of each
subsection in section two." A list of pointers to this set of
objects is handed to the imperative verb for dereferencing in
the final EXECUTE bubble. Noun group resolution involves
finding, passing, testing, and collecting objects from the text
data world. In fact, it is always the pointer to an object that
moves through the bubble process, not the object itself. For
brevity, object pointers will be referred to below as objects.

The interpretation of the indented sequence of bubbles
follows a data-driven control flow with objects precipitating
down through the bubbles and collecting at the final COL
LECT instruction. Two of the instructions, CONTAINEROF
and TYPEGEN, are object generators. The APPLY instruc
tions are filters that either delete objects or pass them along
as they arrive.

The task of "CONTAINEROF(x)" is to find some object
that has recently been mentioned in the dialogue (possibly
implicitly) and which can contain an x. For example, a person
might say "consider the title of the paper," and then say,
"capitalize each word." In interpreting the second utterance
CONTAINEROF(word) appears in the bubble structure. The
CONTAINEROF function uses the focus stack, described
previously, to help find the meaning of "word." Since the title
has just been mentioned, and is on the focus stack, and since
it does, in fact, contain words, we have (conceptually):

CONTAINEROF(word) = title of the paper.

The command, then, results in only the words in the title
being capitalized even though there may be many other words
in the environment.

Continuing with the earlier example, the bubble, CON
TAINEROF(section), will find an object that does contain at
least one section, say, the document. This object, the docu-

Introducing VIPS 665

ment, is passed to the second bubble, TYPEGEN(section).
This bubble has the task of generating all possible objects of
the type, section, from the object it received, that is, from the
document. The first section is passed down through the lower
bubbles in the structure, then the second section, and so forth.
This continues until either all sections in the container have
been generated or until the TYPEGEN bubble is turned off.

The APPLY bubbles filter objects passed to them. AP
PLY(second) will absorb the first object that arrives and pass
the second one, and then turn off the generator above it.
APPLY(the) is largely a clear passage for all objects except
that it does check that the correct number are passed; exactly
one for a singular definite noun group, for example.

When a section arrives at the TYPEGEN(subsection) bub
ble, processing similar to that described above, finds subsec
tions and passes them down to the APPLY(each) bubble,
which in turn, passes each one down to the TYPEGEN(title)
bubble. Here titles within subsections are generated and
passed through the APPLY(the) bubble to the COLLECT
bubble where the set of titles is accumulated. Finally, the
EXECUTE bubble is handed the imperative, "print," and the
set of titles and prints the items in the set.

This model of semantics is broadly applicable to office auto
mation domains such as file manipUlation, calendar manage
ment, and desk calculations that have hierarchical organiza
tion similar to the text example given here. For example, in
the calendar domain, the sentence "list the first appointment
in each day of the second week" would be processed identi
cally to the preceding example.

HUMAN FACTORS

At the time of writing, the VIPS system is not ready for
human-factors testing, but we expect it to outperform its pre
decessor, VNLC/ on most dimensions. In problem-solving
sessions, users speak to VNLC at the rate of about one word
per second, and they utter several sentences per minute. Error
rates from the speech equipment have been high-on the
order of 10%-but system error correction has reduced this
rate significantly. The VNLC system executes about 75% of
user commands immediately and correctly with most errors
caused by voice misrecognition.

RELATED WORK

A number of projects have developed natural language data
base interfaces ,4-16 but few have built task-oriented processors
of the kind we describe here. There also have been many
projects over the past two decades in speech technology,
where the goal has been to learn how to build voice recogni
tion equipment. 17-21 Our project seeks not to develop a voice
recognizer but to use existing recognizers efficiently with a
well-designed error-correcting natural-language processor.

ACKNOWLEDGMENT

This work has been supported by the IBM Corporation GSD
Agreement No. 260880.

666 National Computer Conference, 1984

REFERENCES

1. Biermann, A. H., and B. W. Ballard. "Towards Natural Language Com
putation." American Journal of Computational Linguistics, 6 (1980),
pp.71-86.

2. Biermann, A. W., B. W. Ballard, and A. H. Sigmon. "An Experimental
Study of Natural Language Programming." International Journal of
Man"'" Machine Studies, 18 (1983), pp. 71-87.

3. Biermann, A. W., R. Rodman, B. Ballard, T. Betancourt, G. Bilbro, H.
Deas, L. Finemann, P. Fink, K. Gilbert, D. Gregory, and F. Heidlage.
"Interactive Natural Language Problem Solving: A Pragmatic Approach."
Proceedings of Conference on Applied Natural Language Processing, Santa
Monica, Calif., February 1983, pp. 180-191.

4. Bronnenberg, W., S. Landsbergen, R. Scha, and W. Schoenmaker.
"PHLIQA-l, A Question-Answering System for Data-Base Consultation
in Natural English." Philips Technology Review, 38 (1978; 1979),
pp.229-239;269-284.

5. Damerau, F. J. "Operating Statistics for the Transformational Question
Answering System." American Journal of Computational Linguistics, 7
(1981), pp. 30-42.

6. Egly, D., and K. Westcourt. "Cognitive Style, Categorizations, and Voca
tional Effects on Performance of REL Database Users." Paper presented
at Joint Conference on Easier and More Productive Use of Computing
Systems. Ann Arbor, Mich., May 1981.

7. Haas, N., and G. Hendrix. "An Approach to Acquiring and Applying
Knowledge." Paper presented at First National Conference on Artificial
Intelligence, Stanford, Calif., August 1980.

8. Harris, L. "User Oriented Data Base Query with the ROBOT Natural
Language Query System." International Journal of Man-Machine Studies.
September 1977, pp. 697-713.

9. Hendrix, G. G., E. D. Sacerdoti, D. Sagalowicz, and J. Slocum. "Develop
ing a Natural Language Interface to Complex Data." ACM Transaction on
Database Systems. 3 (1978), pp. 105-147.

10. Hendrix, G. G. "Human Engineering for Applied Natural Language Pro
cessing." Proceedings of the Fifth International Conference on Artificial
Intelligence, Cambridge, Mass., August 22-25, 1977, pp. 183-191.

11. Mylopoulos, J., A. Bourgida, P. Cohen, N. Roussopoulos, J. Tsotsos, and
H. Wong. "TORUS-A Natural Language Understanding System for Data
Management." Proceedings of the Fourth International Conference on Arti
/icialIntelligence, Tbilisi, Georgia, USSR, September 3-8, 1975.

12. Petrick, S. R. "On Natural Language Based Computer Systems." IBM
Journal of Research and Development. 20 (1976), pp. 314-325.

13. Plath, W. J. "REQUEST: A Natural Language Question Answering Sys
tem." IBM Journal of Research and Development. 20 (1976), pp. 326-335.

14. Thompson, F. B., and B. H. Thompson. "Practical Natural Language
Processing: The REL System as Prototype." In M. Rubinoff and M. C.
Yovits (eds.), Advances in Computers, (Vol. 13), New York: Academic
Press, 1975.

15. Waltz, D. L. "An English Language Question Answering System for a
Large Relational Database." Communications of the ACM. 21 (1978),
pp. 526-539.

16. Woods, W. A., R. M. Kaplan, and B. Nash-Webber. "The Lunar Sciences
Natural Language Information System: Final Report." Report 2378. Cam
bridge, Mass.: Bolt, Beranek, and Newman, 1972

17. Haton, J. P., and J. M. Pierrel. "Data Structures and Organization of the
MYRTILLE II System." Fourth T.l.C.P.R., Kyoto, Japan, 1978.

18. Lea, W. A. (ed.), Trends in Speech Recognition. Englewood Gifts, N.J.:
Prentice-Hall, 1982.

19. Reddy, D. R. "Speech Recognition by Machine: A Review." Proceedings
of the IEEE. 64 (1976), pp. 501-531.

20. Walker, D. E. (ed.), Understanding Spoken Language. New York: Elsevier
North-Holland, 1978.

21. Woods, W. A. "Motivation and Overview of SPEECHLIS: An Experi
mental Prototype for Speech Understanding Research." IEEE Trans
actions on Acoustics, Speech, and Signal Processing. ASSP-23 (1976),
pp.2-1O.

An expert system for drafting legal documents

by JAMES SPROWL

lIT/Chicago Kent College of Law
Chicago, Illinois

and

PERIYASAMY BALASUBRAMANIAN, TAIZOON CHINWALLA, MARTHA
EVENS, and HENRIETTE KLAWANS

Illinois Institute of Technology
Chicago, Illinois

ABSTRACT

ABF is an expert system that assists attorneys in designing legal documents. The
system starts by extracting from a library of legal forms a skeleton template that has
embedded within it programming constructs such as conditionals and loops, refer
ences to other texts, and variables, which are later replaced by client-specific infor
mation in the course of a legal interview. Alternative passages are included or
excluded dynamically as the interpreter encounters loops and conditionals. As the
system analyzes the document, when it discovers that information is missing, it first
looks in the client data file, then it tries to compute it, calling a subprogram if
necessary. If all else fails, it generates an English question asking the user for the
missing data. The user can stop the interpreter at any time, edit the draft, and
reinitiate processing at any point. ABF has been implemented in PASCAL and runs
on an IBM PC.

667

INTRODUCTION

For the past nine years, the American Bar Foundation (ABF)
has been conducting research into automating some of the
more routine aspects of practicing law, such as client inter
viewing and automated document assembly. The goal of this
research has been the development of a computer sytem that
can be set up by an attorney expert to assist other attorneys
and their assistants in will, trust, and complaint drafting, tax
return preparation, and other such tasks. A prototype system,
called the ABF system, was developed on a large CDC com
puter at Northwestern University and was tested in the law
student practice clinic at Illinois Institute of Technology's
Chicago-Kent College of Law. The clinic staff attorneys devel
oped a number of useful document libraries for generating
wills, trusts, divorce petitions and decrees, guardianship peti
tions, and real estate closing agreements. The will and trust
libraries developed by Robert Seibel (now at the University of
Maine Law School) were the most successful. More than 500
wills were generated by the clinic for senior citizens living in
Chicago. Later, the ABF system prototype was converted to
an all-FORTRAN system by Professor Charles Saxon at
Eastern Michigan University and was installed on an Amdahl
computer at the University of Michigan, where it is used by
students of law professor Layman Allen. The FORTRAN
ABF system was also installed at the Newcastle (upon Tyne)
Polytechnic School of Law, where it is used by students of law
professor Michael Heather.

The recent emergence of powerful microcomputers has now
made it possible to make this prototype system available to
many law schools and law offices. After due consideration, we
have decided to reimplement the prototype in PASCAL,
using the UCSD P-System because of its well-known porta
bility and widespread current availability in law schools and
law offices. IBM and SAGE microcomputers have been used
for the development work.

The microcomputer ABF prototype will be the first fully
integrated prototype. It will include its own document library
system and full-screen text editor and will be entirely self
sufficient.

In this paper we describe the new prototype and the ABF
programming language it implements.

THE ABF LANGUAGE

Since attorneys are accustomed to working with form legal
documents and statutes, the ABF system is designed to accept
document descriptions that resemble closely the documents
that can be found in an attorney's book of legal forms. The
computational procedures that control document assembly

An Expert System for Drafting Legal Documents 669

are drafted in a language that causes these procedures to
resemble statutes. The attorney is thus given the feeling that
he or she is feeding form documents and statutes into a com
puter, which then writes its own client interviews and docu
ment drafts. But in reality the document and procedure draft
ing languages are simply subsets of a new general-purpose
programming language, which we have named the ABF
language.

Drafting Documents

In a typical legal document, variable information must be
inserted in the text at many different points. For example, a
typical divorce document might begin: "This matter was
heard upon the verified petition of ... " followed by the name
of the petitioner, which naturally varies from client to client.
When such a document is drafted in the ABF language, vari
able names are enclosed in square brackets and inserted at
such points. Accordingly, an ABF model divorce document
might begin as follows:

This matter was heard upon the verified petition of [the
name of the petitioner] for dissolution of marriage

When assembling this document for a specific client, the ABF
system later scans the model document, finds this bracketed
variable, and transforms the variable name into a question by
putting "What is" in front of it and "?" after it. So the system
(unless it already knows the name of the petitioner) will gen
erate the question:

What is the name of the petitioner?

The name supplied by the user is then inserted into the docu
ment in place of the variable name enclosed in square brackets
wherever that variable name appears. It is also placed in a
client data file. In this manner a unique client data file is
created for each client and may be used to control the assem
bly of other documents without having to ask the same ques
tions over again.

The name of the petitioner appears in a number of different
places within the divorce library. To save typing, the author of
the document may define a short abbreviation for the variable
name and use the abbreviation instead of the full variable
name. If the document designer chooses the abbreviation
"petname" for "the name of the petitioner," that fact can be
communicated to the system by simply slipping it into the
document like this:

This matter was heard upon the verified petition of [pet
name: the name of the petitioner] for

670 National Computer Conference, 1984

Thereafter, the short form [petname] may be used. The sys
tem expands all such short names into full variable names
automatically.

For logical (true-false) variables, the "What is" question is
inappropriate. If the user capitalizes a helper verb in such a
variable's name, the system forms a question beginning with
that helper verb. Thus, the variable name "stp fld: a stipu
lation HAS been filed" is converted into the question: "Has
a stipulation been filed?"

Sometimes the document designer wishes to insert not just
the value of a simple variable but an entire document. A
document name is actually a variable name; the value associ
ated with this new kind of variable name is the text of the
document itself. To insert the text of one document into the
middle of another document, the author simply inserts the
name of the one document, enclosed in square brackets, into
the other document.

The insertion of optional passages is controlled using an
IF ... END IF construction, and the insertion of repetitive
passages is controned using a REPEAT ... END REPEAT
construction. Both of these constructions are explained
below.

Optional and Alternative Passages

The ABF language includes a full IF statement that permits
optional and alternative passages to be selected. The full IF
statement has the form

IF Boolean expression INSERT
document 1

OTHERWISE
document 2

END IF

The Boolean expression is a logical proposition or expression
that the processor evaluates to get a value of TRUE or
FALSE. The following are examples of such propositions and
expressions:

the client's income IS GREATER THAN $10,000
the testator IS NOT married

If the proposition or expression is true, then Document 1 is
processed and Document 2 is skipped. If it is false, then
Document 1 is skipped. If the optional "OTHERWISE Doc
ument 2" part of the IF statement is omitted, Document 1 is
processed if the Boolean expression is true and is skipped if
the Boolean expression is false.

There is also an expanded IF statement that may be used to
select one of several alternatives based upon the evaluation of
several conditions:

IF Boolean expression 1 INSERT
document 1

OR IF Boolean expression 2 INSERT
document 2

OR IF Boolean expression 3 INSERT
document 3

END IF

A Boolean expression is made up of simple conditions con
nected by ANDs and ORs. The NOT operation is used within
one or more of the simple conditions. There are two kinds of
simple conditions: logical expressions and propositions. A
logical expression is similar to the logical or relational expres
sions found in many well-known programming languages: two
algebraic expressions of the same type separated by a rela
tional operator such as GREATER THAN, EQUAL, or IS
NOT GREATER THAN. The proposition is a construction
not usually found in programming languages, so it requires
more explanation. A proposition, like a logical expression,
has a value of TRUE or FALSE, but its value is determined
directly from a user response rather than from a calculation.
For example, the proposition "the color of the sky IS blue" is
evaluated by asking the question, "Is the color of the sky
blue?" to which the user must respond either "yes" or "no."
A proposition may also be stated negatively, e.g., "the color
of the sky IS NOT blue." In this case, the system also asks "Is
the color of the sky blue?" but now the value of the proposi
tion is set TRUE for the "no" response rather than the "yes"
response.

The proposition "the color of the sky IS blue" could be
replaced by the logical expression "the color of the sky
EQUALS <blue>." This expression is evaluated by com
paring the value of the variable "the color of the sky" to the
string constant "blue." If the variable is undefined, the system
asks "What is the color of the sky?" to which the user may
respond "blue" or "red" or any other legal value.

Repetitive passages-that is, passages that are to be dupli
cated and inserted into a document repeatedly-are brack
eted by the commands REPEAT and END REPEAT. Within
such passages, array variables are simply marked by a
number-sign prefix to distinguish them from non-array vari
ables, and the indexing of array variabies is automatic. An
embedded WHILE ... , UNTIL. .. , or EXIT statement con
trols termination of the repetitive insertion process, as in most
standard programming languages. For example:

This contract covers the following states:

REPEAT

[the name of a state]
UNTIL that IS the last state

END REPEAT

This simple example, when processed, causes the questions

What is the name of a state?
Is that the last state?

to be asked repeatedly until the latter question is answered
"no." In this manner any number of state names may be
added to the list.

Much more complicated examples are possible, since RE
PEAT ... END REPEAT passages may be nested to any de
sired depth.

Drafting Computational Procedures

There are times when it is possible to calculate the value of
a variable from the values of other variables. The document
designer may then decide to write an ABF procedure to per
form this calculation. In our divorce example, the system can
calculate the personal pronoun he or she for the respondent
once the user has supplied the personal pronoun he or she for
the petitioner, since the petitioner and respondent are of the
opposite sex. The procedure to calculate the value of respron:
the personal pronoun of the respondent might look like this:

IF petpron: the personal pronoun of the petitioner
EQUALS <she>

LET respron: the personal pronoun of the respondent
= <he>

OTHERWISE
LET respron = <she>

The syntax for procedures was deliberately chosen to make
it possible to write procedures that resemble statutes very
closely.

INTERNAL OPERATIONS OF THE ABF SYSTEM

:0 simplify the task of building a complex information-gather
mg and document assembly system, the ABF system permits
one to begin by simply drafting form documents that define
the system output. By extracting variable names from these
doc~ments and converting them into questions, the ABF sys
tem IS able to ask for the data it needs to assemble the docu
ments. Whenever the system asks for data, the system de
signer may alter the way the question is asked or supply the
system with a procedure containing instructions on how the
data are to be computed from other data values. In this man
ner, the system is actually redesigned from the top down while
it is running.

The articulation of the main components of the ABF system
necessary to give the user this freedom can be seen in Figure
1. The user of the ABF system starts out looking at the com
mand screen provided by the command screen manager. The
command screen is split three ways. The top of the screen
contains a list of the commands available in the current con
text. A window of text may appear next. Below the text is a
snapshot of the top of a historical command list containing the
names of the most recently executed commands. Prompts for
new commands and questions formulated by the system ap
pear at the bottom of the screen, where the user types in new
commands and the answers to questions.

When the user is ready for a client interview, he/she signals
the system by a command such as "PROCESS draft will OF
John Smith." In response, the Librarian (the ABF file
handler) locates the model document called "will"; and if
necessary, the Compressor is called to put the document into
compressed internal form. When the Compressor finds a new
variable name, it inserts this name into the Variable Name
Table and the System Identifier Table and replaces it in the
docu~~nt by a number indicating its offset in the System
IdentIfier Table. Much of the document is just straight text-

An Expert System for Drafting Legal Documents 671

Figure l-Components of The ABF system.

boilerplate text, as lawyers call it. This text is inserted in string
form into the Boilerplate Table and is represented in the
compressed document by a pair of integers indicating the
table offsets of the first and the last characters. Operators are
replaced by the special operator tokens encoding operator
type and precedence. The compressed version of the docu
ment is typically much shorter than the raw version. It con
tains only operator tokens, system identifier table offsets and
boilerplate offsets. This compressed document serves as input
to the Interpreter.

When the Interpreter processes a document, it must exe
cute the operators in turn; but before it can execute an oper
ator, it needs to know the values of the arguments. It calls the
Seeker to find these values, as will be explained below.

Once the Interpreter has finished with a document, it calls
the Decompressor to reassemble it into text form. If the De
compressor finds that some part of the document could not be
finished because of missing data, it calls upon a Decompiler to
pick up the pieces and put them together.

When the draft document is in satisfactory shape, the user
calls the Formatter to put it into final form. The user can then
display or print this final form or even edit it further.

The user can also edit an existing document or create a new
one. The system sets up the document for editing on the full
screen and calls the Screen Editor. This same Screen Editor
is also used on a partial screen whenever the user enters input,
whether it is a command or the answer to a question.

The ABF System recognizes four elementary data types:
numbers, dollar amounts, text strings, and logical values.
Array variables are also permitted. The system also recog
nizes three complex data structures: documents, procedures,
and replacement questions.

Finding Values for Variables

When the Seeker is asked by the Interpreter to find the
value of a variable, it first checks to see if the variable has
already been defined. If so, the value of the variable is re
trieved from the client data file. If the variable has not been

672 National Computer Conference, 1984

defined, the Seeker checks to see whether a procedure exists
that can be executed to compute the value of the variable. If
such a procedure is found, the Seeker calls the Interpreter
recursively to execute the procedure. If no procedure is
found, the Seeker next looks for a replacement question de
fined by the document designer. If it finds one, it calls upon
the Interpreter to assemble the replacement question and
then prompts the user with that question. Otherwise, the
Seeker must build-form a default question by appending
"What is" or "Is it true that" to the variable's name (or by
shifting a capitalized helper verb to the start of the variable's
name) and then prompt the user with the question so formed.

The user has three different options at this point:

1. Answer the question.
2. Refuse to answer the question by typing "!"
3. Replace the question with a new replacement question.
4. Replace the question with a new procedure that com-

putes the variable.

If the user answers the question, the system accepts the an
swer and replaces all occurrences of that variable with the
value supplied as long as the data type is correct. The ABF
system decides the type of a variable, not from a formal dec
laration, but by remembering the type of the value associated
with a variable the first time a document is processed.

If the user refuses to answer a question, the Seeker marks
the variable as never-to-be-defined. This causes the system to
leave the bracketed variable name in the document and to
refrain from bothering the user with questions about it again
during the processing of the draft.

The user may also supply a Replacement Question to the
system. The Replacement Question is stored in the system
library, and any subsequent reference to this same variable
when it is undefined involves the Replacement QuestIOn. Re
placement Questions may contain bracketed variables and
optional passages.

If the user feels that the necessary information can be com
puted from facts already known to the system, then he or she
may decide to supply the system with a procedure to compute
its value. (The code given above to calculate the personal
pronoun for the respondent is a trivial example of such a
procedure.) Unlike procedures in conventional programming
languages, an ABF procedure is not given a name. Instead, it
is referenced by the names of the variables it computes.

From the user's point of view, there is no program. The user
sees only a library containing a collection of documents, pro
cedures, replacement questions, and client data files arranged
by the system in neat document form to suit the user's con
venience. The statute-like procedures appear to govern the
automated assembly of the legal documents.

DESIGNING A SYSTEM TO OPERATE WITHOUT
CRUCIAL ITEMS OF DATA

One cannot design an automated law office system to antici
pate all possible client circumstances. Not only is the range of
possible client circumstances entirely open-ended, hut a sys
tem that even attempts to anticipate all possible circumstances
produces an unbearably long interview. Such a system will
frequently ask questions that are irrelevant or inappropriate

to the needs of any particular client. Sometimes questions
cannot be answered because answers are simply not available.
It is essential that legal practice systems be capable of gener
ating usable documents, even when data are not supplied to
the system (either because the data are not available or be
cause the questions asked are irrelevant or inappropriate).

After much thought and discussion, we decided to design
the system so that an exclamation mark typed in answer to any
question signals to the system that the user does not wish to
answer the question. In response, the system sets the corre
sponding variable into a special never-to-be-defined state.
The system then proceeds to execute procedures and assem
ble documents as best it can without the values of the variables
the user has elected not to supply.

The system proceeds as follows: If the variable is one that
is simply inserted into the text of the document at various
points, the system leaves the bracketed name of the variable
in the document text and does not replace it with a value. The
finished document is thus partly finished-it still contains
bracketed variables corresponding to the unanswered ques
tions. These may be edited out manually, or the document
may be reprocessed at a later time.

If the variable is one that appears in the preamble of an
IF ... END IF optional passage, the system normally cannot
determine whether to insert or exclude the passage. Accord
ingly, the optional passage is simply left in the document
preceded by the IF command and followed by the END IF
command. Insofar as values of variables are available, they
are plugged into the optional passage; but no questions are
generated from the text of the optional passage. Repetitive
passages may also have to be left in a document if the user
refuses to answer a question essential to determining how
many copies of such a passage are to be inserted into a
document.

From the viewpoint of the computer scientist, the system
effectively decompiles all passages that cannot be processed
because the user refuses to supply the necessary answers to
questions. The. decompiled versions of documents and pro
cedures may be simplified in comparison to the originals to the
extent that data were available to enable mathematical and
logical expressions to be partially evaluated and simplified.
For example, by supplying some answers and withholding
others, one can cause the system to simplify a complex set of
tax code provisions into a much simpler set of provisions that
illustrate what legal effect the answers withheld will have upon
a particular client. Thus, the expression

LET txblinc: the taxable income = ginc: the gross income
- adj: the adjustments to gross income - ded: the de

ductions from gross income

Might produce the interview

What is the gross income?
$10,000

What is the adjustments to gross income?
$3,750

What is the deductions from gross income?
!

Since the user did not answer the final question, the expres
sion could not be fully evaluated but was simplified to:

LET txblinc: the taxable income = $6,250 - ded: the de
ductions from gross income

Some very interesting and not fully explored problems arise
when one attempts to execute programs with less than a com
plete set of data in this manner. Of particular interest is the
case where a passage in a document that could not be fully
processed contains a command to alter a variable that has
already been assigned a value. For example, consider the
following document:

(text)
[the name of the contractor]
(more text)

IF a second contract with a different contractor is desired
INSERT

(text)
LET the name of the contractor the new contractor's

name
(text)
[the name of the contractor]
(more text)

END IF

When this document is processed, the following interview
might be generated:

What is the name of the contractor?
George L. Burroughs

Is a second contract with a different contractor desired?

Here, the user does not yet know whether a second contract
is desired, so the user refuses to answer the question. Accord
ingly, the language IF ... INSERT ... END IF is left in the
document. But the system must scan this text and discover
that a new value will be assigned to the variable "the name of
the contractor" if this optional passage is ever selected. The
system must therefore set the variable "the name of the con
tractor" into an undefined state and refrain from inserting its
value into the remainder of the document.

The above example illustrates why the system must scan all
document portions, procedures, and new questions that can
not be fully processed because the user has refused to answer
one or more questions. The scanning must cover every possi
ble algorithmic path. For example, if an IF ... INSERT ...
OTHERWISE INSERT ... END IF clause cannot be pro
cessed, the system must scan both the IF part and the OTH-

An Expert System for Drafting Legal Documents 673

ERWISE part, searching for commands that redefine vari
ables. Had the same clause been processed fully, the system
would have processed only one of these two parts, discarding
the other. Any defined variable that is redefined must be set
into a never-to-be-defined state to avoid the possibility of the
wrong value being inserted into a document or used in a
computation.

This whole field of processing without a complete set of
data, decompiling, and scanning unprocessed portions for
commands that redefine variables is a field that needs to be
much more fully explored by the computer science community
to ensure that this kind of processing is given a sound the
oretical basis.

SUMMARY

The conversion of the ABF System to run in PASCAL in the
UCSD P-System on an IBM Personal Computer has involved
redesign of the language to take advantage of full-screen edit
ing and recursion. The result integrates word processing and
artificial-intelligence techniques to provide a novel system for
writing legal documents. ABF forms English questions when
it cannot find values for variables. It provides a rich collection
of conditional operators to control the insertion of alternative
passages in the text, and it enables repetitive passages to be
created without explicit subscripts for the variables. The ABF
System is unique in its ability to function without crucial items
of data, decompiling expressions where they cannot be fully
processed. It is also unique in its ability to generate a client
data file that may be used to control the assembly of other
documents. The System encourages both top-down and
bottom-up design by causing any portion of a system to be
fully operative without dummy subroutines and by permitting
new procedures and questions to be defined at run time. And
by generating questions directly from variable names, the sys
tem gives the programmer positive incentives to provide long,
meaningful variable names.

REFERENCES

1. Sprowl, James A. "Automating the Legal Reasoning Process: A Computer
That Uses Regulations and Statutes to Draft Legal Documents." American
Bar Foundation Research Journal, Vol. 1979, pp. 1-8.

2. Sprowl, James A, and Ronald W. Staudt. "Computerizing Client Services
In The Law School Teaching Clinic: An Experiment In Law Office Automa
tion." American Bar Foundation Research Journal, Vol. 1981, pp. 699-75l.

3. Cook, Sandra, Carole D. Hafner, L. Thome McCarty, Jeffrey A Meldman,
Mark Peterson, James A Sprowl, N. S. Sridharan, and D. A. Waterman.
"The Applications of Artificial Intelligence to Law: A Survey of Six Current
Projects." AFIPS, Proceedings of the National Computer Conference (Vol.
50), 1981, pp. 689-696.

4. Saxon, Charles S. "Computer-aided Drafting of Legal Documents." Amer
ican Bar Foundation Research Journal, Vol. 1982, pp. 685-754.

Computer communications

Neal Laurance, Track Chair

The Computer Communications track, NCC '84, is composed
of six sessions covering a range of communications issues from
satellite links to downloading programmable controllers in
manufacturing plants. In addition to the sessions specifically
on communications, the track includes a session on the use of
computers in manufacturing. Besides this track, one can find
elements of computer communications developments in the
tracks entitled The Automated Office, Information Pro
cessing Management, Personal Computers, Educational and
Societal Issues, Software, and Database Management. In
deed, as distributed processing becomes the norm, the prob
lems and promises of computer communication systems be
come an issue that pervades the whole field of computing
today.

The past year has been one of enormous advances. In the
area of local area networks, the IEEE 802 committee has
completed work on two standards, and it now seems possible
to connect many different vendors' products to the same local
area network. But at the same time the divestiture of AT&T
from the regional Bell Operating Companies has opened up
whole new areas of communications possibilities. The ques
tion now is whether the advent of digital telephones and com
puter communication technology wil make local area net
works obsolete before they really get started.

The two "Multi-Vendor Networks" sessions on Tuesday
morning deal with the results of some pilot programs on an
implementation of the draft ISO protocols for Levels 3 and 4
of the OSI reference model. During the past year the National
Bureau of Standards (NBS) has been conducting workshops
on this implementation with participants from both the com
puter industry and communications users. The workshops
have resulted in two pilot implementations, each involving
several computer vendors. The first pilot program, carried out
at the NBS in Gaithersburg, uses for its communication me-

dium an IEEE 802.3 CSMAlCD coaxial cable. It has the
office environment as a general background assumption. The
second pilot program was led by General Motors Corporation
as part of their Manufacturing Automation Project (MAP). It
uses the same ISO transport layer for its demonstration, but
it is based on the IEEE 802.4 token bus system. It assumes a
manufacturing plant floor as an environment and includes as
one of its elements communications to and from program
mable controllers. Each pilot program has about six active
computer equipment vendors as participants, and NBS and
GM are demonstrating the multivendor method in the confer
ence exhibit area. The two sessions consist of panel discus
sions by participants in each pilot, outlining the progress in
this area to date and anticipating the future developements in
an ISO communication network.

The session titled "Videotex" brings together a panel of
experts to discuss the latest developments in this very inter
esting technology. Last year we heard reports of highly suc
cessful field trials of videotex and teletext in limited geograph
ical areas. This was to be the year of the first commercial
offerings in what promises to be the next mass communication
market. What have been the experiences in this area? Is vid
eotex on track with its promise of two-way video communica
tion in the nation's homes, or have the effects of the recent
economic recession del~yed the timetable?

Despite the successful efforts of IEEE 802 committee to
bring a degree of standardization to the local area network
arena, the number of different offerings in the local area
network field continues to grow. In part this growth is fueled
by the ubiquitous personal computer and its need to com
municate at a cost commensurate with the low cost of the
computer itself. The session entitled "Update on Local Area
Networks" will bring together a panel to discuss the latest
developments in this area and help chart a path to the future.

Of special interest will be the outlook for the yet-to-be
announced IBM entry into the local area network field. And
how will AT&T's participation in this market change the
course of future developments?

Of special interest these days is the linking of manufac
turing plant floor information to the corporate data structure.
Traditionally, manufacturing plants used computers for their
operations independently from the computer systems used in
corporate reporting and analysis. That situation is slowly
changing, with the result that office-level systems are finding
their way into manufacturing environments. The "Computer
Integrated Automation" session focuses on several examples
of the use of personal computers in manufacturing plants and
explores the effect of automation and computer systems on
manufacturing productivity.

"Computer Systems and Devices" brings together four pa
pers on communication. One paper explores the concept of a
work station tied to remote computer facilities via satellite
links, as might be used in the travel industry. A second dis
cusses a very low-cost implementation of a shared medium
network, using only RS 232 hardware and twisted pair. The
fundamental problem of relating the design of a telecommuni
cations system to a corporate business strategy is discussed in
the third. The last treats a different kind of communication:
conveying to the driver of an automobile information about

the route to be followed to his/her destination.
The next session in this track assembles a panel to discuss

one of the fascinating events of the past year, the divestiture
of AT&T. Far from being a smooth transition, the repercus
sions of the breakup are still being felt. Understandably, news
accounts have focused on effects on the general public. The
effects on business communications have been at least as sig
nificant, and the biggest effect of all rpay prove to be the
changes in data communication. Certainly, at this point, the
communications market does not look the way the experts
predicted as recently as 12 months ago. What are the con
tinued long-term effects likely to be? Will the imposition of
usage fees signal a large scale move to digital PBXs? What
effect will that have on the development of local area net
works? This session will attempt to answer these and other
questions.

The final session of this track, "Integrated Networks," as
sembles a panel of experts to discuss the issues and potential
benefits of tying diverse networks together. Communications
gateways no\v make possible the connection of local area
networks, wide area networks, and data processing networks
into an integrated communications system. These gateways
offer exciting possibilities for information processing and
transmission.

LCNET: Ethernet concepts + ubiquitous RS232C ports = Low
Cost NETwork
by JAY B. JORDAN
and VICTOR P. HOLMES
New Mexico State University
Las Cruces, New Mexico

ABSTRACT

The LCNET is a very low cost local-area network consisting of single-board micro
computers. The network hardware adapts standard RS232C input-output ports to
drive a common contention bus. The network software supports an Ethernet-like
protocol that has been tailored to experimental distributed operating systems. A
unique variable-length-packet management scheme provides efficient handling of
large data objects throughout the network.

677

INTRODUCTION

There is a proliferation of small, very low cost, single-board
computers on the market today. Many of these units have a
substantial amount of computing power. Thus, it would seem
that a network of these computers, together with general
purpose network software, would make an excellent test bed
for studying loosely coupled networks and for running distrib
uted operating system experiments.

When an attempt is made to assemble a number of different
single board computers (SBCs) into a usable network, several
problems immediately arise. First, it is often tedious and dif
ficult to download programs from a software development
system unless the SBC and the software development system
are manufactured by the same company. Even when SBCs
and development systems are from the same manufacturer,
there seldom is provision for a network of any sort, and cer
tainly no provision for downloading via that network. Second,
the cost of purchasing and interfacing an Ethernet controller
or Cambridge Ring controller is usually more than twice the
cost of the SBC with which it is to be used. This destroys the
whole idea of a low-cost network (LCNET). The desire to
develop a network of SBCs with minimal financial commit
ment and the desire to download substantial programs into
the computer in the network quickly and conveniently have
motivated the development of the LCNET presented here.
Low cost is the fundamental consideration in this system.
System performance is, of course, a consideration, but it is not
the primary one.

The garden variety SBC has at least one and usually two
RS232C serial communications input-output ports. One for
connection to a standard CRT or TTY terminal and one,
supposedly, for downloading and uploading programs. The
typical SBC also has a timer circuit that can provide interrupts
at programmable intervals. These items, standard equipment
on most SBCs, are the only hardware required for an SBC to
be usable in the LCNET.

The LCNET is composed of simple hardware and software
subsystems and is based on some of the fundamental concepts
of Ethernet. 1 The hardware subsystem adapts standard
RS232C channels to drive a common contention bus. Low
cost circuits provide protection and buffering so that two or
more stations can attempt to access the bus at the same time
without physical damage to their RS232C drivers. Simultane
ous access of the bus results in nothing more than a harmless
"collision," which is detectable by each station. The software
subsystem is a collection of device driver routines and other
primitives, which control message passing and bus arbitration.
Utilities also are included for downloading programs from a
software development system into the network processors.
This report is an overview of the LCNET -both hardware and

LCNET: Low Cost NETwork 679

software-as it is currently implemented, we also give com
ments on related experiments and plans for the future.

LCNET HARDWARE

The hardware portion of the LCNET, as presently imple
mented, consists of a Hewlett-Packard Model 64000 Micro
processor Software Development System and four Motorola
MC68000 Single Board Design Modules connected with a
single modified RS232C-type asynchronous serial bus (Fig
ure 1). Each unit has the capability of detecting bus conflicts
and sensing when the bus is in use.

LCNET Physical Layer

The physical layer of the network is a twisted pair wire bus and
processor interfacing circuits. It is very similar to an RS232C
serial communications system in that the voltage levels are
compatible with standard RS232C line receivers (such as Na
tional Semiconductor DS1489). The voltage range of -3 to
-25 volts is defined as a "mark," logical "1," or "line idle and
connected" state. The voltage range from + 3 to +25 volts is
the "space," logical "0," or "line open" (break) state. The
transition region between the logical states is - 3 to + 3v. The
output from each line driver in this system is buffered with an
open collector driver transistor so that simultaneous access by
two or more line drivers is not harmful. The line driver buffer
also serves to lower the driving impedance of the bus, allowing
the twisted pair cable to be terminated in its characteristic
impedance (about 200 ohms). With the terminated bus and
the low impedance drivers, a lOOO-foot-long system operating
at 9600 baud can typically accommodate more than 50 sta
tions. Figure 2 shows the transition from standard RS232C to
the LNCET bus. Note that the modifications to the RS232C
ports are external to each unit and are implemented as part of
the bus cable and connectors. The bus bias voltages (+ 12v and
-12v) are provided by a small power supply located at one of

Termination

LCNET Bus

Figure I-Present LCNET configuration

680 National Computer Conference, 1984

I

r - Si;n;';-rd-RS232c - - - - - -1-,
I 1/0 Port ':" I

I DS 1489 I
I Line Receiver I

Figure 2-RS232C to LCNET adapter

the terminating ends. The bias voltages are supplied to the
adapters and terminators by a second twisted pair cable. From
Figure 2 it is also seen that each unit receives its own trans
missions. This is the fundamental mechanism by which a unit
detects that a bus conflict or collision has occurred.

LCNET Data Link Layer

The data link layer is RS232C 9600 baud, asynchronous with
eight data bits, one stop bit, and odd parity. The data are
transferred asynchronously, one byte at a time. The data link
protocol is handled by serial hardware communications de
vices. (Motorola MC6850 Asynchronous Communications
Adapters [ACIAs] for the MC68000 SBCs and an Intel 8251
Programmable Universal Asynchronous Receiver Transmitter
[UART] for the HP 64000 system.) This protocol is a widely
used standard and is compatible with many other commer
.:iaHy available:: ut:vil.:t:s. Tnt: remaining higher ieveis of net
work protocol are handled by the LCNET software.

LCNETSOFTWARE

The software portion of the LCNET consists of five modules
residing in read only memory in each of the SBCs in the
network. These modules define the network layer protocof
and provide utilities and functions specifically aimed at sup
porting experimental distributed operating systems, particu
larly COSMOS,3 a distributed operating system for a personal
work station. The LCNET software modules are:

1. System initialization program
2. Communications device interrupt handler
3. Timer device interrupt handler
4. Download utility
5. Debugging monitor

The first three modules are referred to as network operations
modules. The initialization program provides the initial net
work state, sets up the interrupt and trap entry points, and
establishes the environment for operating systems programs
written in higher level languages. A major part of the network
control algorithm resides in the two interrupt handlers. These
three modules provide a well-defined interface to user-devel-

oped programs. The hardware and network control details are
effectively handled at this level, leaving the operating system
designer free to concentrate on operating systems research
rather than troubleshooting interrupt service routines. The
remaining utilities-the download module and the debugging
monitor-are provided to load the operating system nucleus

. and to develop network software.

LCNET Operations Software Implementation

The basic network control philosophy is that each unit in the
LCNET receives its own transmissions and determines
whether or not the bytes sent have been corrupted. The send
ing unit compares each received byte with the one sent; if they
do not match or if there is a parity error, the network control
routine assumes a collision has occurred and releases the bus
by ceasing to transmit. The routine then waits a short but
random amount of time before attempting to resend. The
randomness in the waiting time before trying to reaccess the
bus ensures that any repeated colljsion deadlock betwen two
senders will be broken eventually.

Most Ethernet-like systems have a hardware "carrier
sense" circuit, which indicates whether or not the bus is in use.
Carrier sense circuits are not used in this system. Instead, the
determination of an idle channel is based on the time between
characters transmitted. The interrupt service routine and the
message-passing philosophy are designed to operate the bus at
its maximum possible speed. This ensures that once a trans
mission is in progress, the time between characters will be a
fixed constant. The network control routine in each unit ei
ther loads or reloads a communications timer as each charac
ter is received. The timer is loaded with the time required to
transmit tVlC characters. Consequently, the ti~er never times
out until a transmission is either complete or aborted. Each
unit reloads its timer on receipt of a character even if it is not
the sender or the addressee of the current message. By ob
serving whether or not the timer is active, each unit "knows"
the status of the bus at all times. When a unit with traffic to
send detects an idle bus, it does not immediately attempt to
send, but rather waits a short, random amount of time. This
prevents initial access collisions when the network is heavily
loaded. This scheme has proven to be very reliable and effec
tive. It has the further advantage that no additional carrier
sense hardware is required. The LCNET communications
receive-interrupt device is the highest priority in the system to
guarantee the operation of this mechanism. From this over
view, it can be seen that the timer and communications device
interrupt service routines are very closely coupled. Part of the
network control algorithm must necessarily be contained in
each routine.

LCNET Network Layer

The network layer protocol is common to all units in the
network. It is a hardware independent, packet-based proto
col. In this system there are two basic kinds of packets: control
and data. Every packet consists of an eight-byte header termi
nated in a checksum. A data packet includes, in addition to

the header, a variable-length data segment terminated in a
checksum. The structure of the header is shown in Figure 3.
The "destination" and "source" fields identify the units in
volved. The "sequence number" is raised by increments of
one each time a new message is sent from a processor. The
"applies to" field is used if the message is being sent in re
sponse to another message. This field is particularly important
for coordinating the high-speed transmission and reception of
large data packets. The "type" field indicates the message
type. At the network layer level only the most significant bit
of the "type" byte is noted. If set, this bit indicates that a
variable-length data segment is attached to the header and
that the "applies to" and the following byte "count" fields are
to be used by software at this level to position the data cor
rectly in memory without the use of any intermediate buffer
ing. For control packets, the "count/optional" and "optional"
fields are used by the upper levels of the network to pass
further information related to the "type" of control message.

Allowing variable-length messages to be sent over a net
work usually presents several problems. One of the most
severe of these is allocation and management of buffer space
in the message receiver. Many solutions to this problem have
evolved, the two most common of which are segmentating the
message into several fixed-length packets as in X.25,2 and
allowing variable-length packets, but placing a relatively small
maximum length restriction on the packet size, as in Ether
net. 4 Each of these solutions keeps the size of the receiver
buffer manageable. In the first, the buffer is a multiple of the
packet size. Packets with little information require the same
transmission time and occupy the same amount of buffer
space as full packets. This is particularly wasteful for short
control messages. The second approach, using variable-length
packets, is much more efficient for handling control traffic,
but requires a potentially larger receiver buffer and a much
more complex buffer management scheme.

The LCNET protocol taks a slightly different approach to
handling variable-length traffic. Since the LNCET evolved
out of a message-based operating systems research project,

DESTINATION

SOURCE

SEQUENCE NUMBER

APPLIES TO

DATA 1 BIT TYPE

Optional

COUNTi MSB or Optional

COUNTilSB or Optional

Figure 3--LCNET to message header structure

LCNET: Low Cost NETwork 681

the message-passing philosophy has been tailored to support
such distributed operating systems. In the early phases of the
project, both of the message-handling schemes described
above were implemented. Both schemes exhibited the same
deficiency: The data portion of a message always had to be
moved from a buffer area to its final intended destination.
This process always proved inefficient, not only because of
internal data movement, but also because upper-level oper
ating systems policy decisions had to be made to determine
whether or not the data could be accepted and where they
should go. The problem was finally resolved when it was
determined that, at the operating system level, there need
never be an unsolicited data message. Once this observation
was made, the present scheme was implemented and it proved
to be far superior to either of the two solutions described
above. Each varible-Iength data message is always preceded
by a short (header only) control message. This establishes the
length and memory destination for the data. When the data
message is finally sent, it is expected by the receiver and is
stored in its final position as it is received. This is handled
rapidly at the network layer level by the LCNET operations
software. No operating system buffer is required and a data
object can be as large as desired within the limits of user
memory.

The detailed operation of this scheme is best shown by an
example. Suppose a file is to be transferred from a file server
to another unit over the network. The requester initiates ac
tivity by sending a control message of the type "request file
service." This message consists of only a header with a count
value in the "count" fields, indicating the size of a variable
length data portion (a file name), which will follow in another
message. The file server now knows the requester of file ser
vice and the length of the associated file name. Several policy
decisions can now be made to determine whether or not to
grant the file request and whether or not there is a place to
store the file name.

Assuming that there is a place for the file name and that the
server desires to grant file service, a "file service granted"
control message is assembled. The "applies to" field of this
message is loaded with the sequence number of the original
message. This "applies to" response is needed because in
general a requester will have several outstanding requests for
other services. The sequence number for this reply message is
created and is actually an index into a transaction table con
taining the memory address for positioning the file name
when it arrives. The requester, upon receipt of "file service
granted," responds with an "open file" message, with the file
name contained in a variable-length data segment. The "ap
plies to" field of this data message contains the sequence
number of the "file service granted" message. When the data
message arrives, it is expected and the data portion is posi
tioned directly at its proper memory location via the trans
action table entry. The file server then makes several more
policy decisions determining the availability of the file and
whether or not to open it. Assuming that file opening is al
lowed, a "file opened" control message is returned to the
requester. The "file opened" message contains (1) the length
of the file in the header count field, (2) an "applies to" corre
sponding to the "open file" message, and (3) a short integer

682 National Computer Conference, 1984

file descriptor. The requester now knows the length of the file
and has a file descriptor for future references.

A policy decision can then be made as to whether or not
there is room for all or only part of the file and where it is to
be placed. After these decisions have been made, a pointer to
the desired starting location of the file is placed in the re
quester's transaction table at the first available position. This
index will be used on later requests. A control message to use
the file, say a "read file" message, is later issued from the
requester. This "read file" message includes (1) the number
of bytes desired specified in the count field, (2) the index of
the local transaction table entry in the "applies to" field, and
(3) the file descriptor assigned by the file server in the count/
optional fields. The file server replies with a "data" message,
with all or part of the requested amount contained in a vari
able-length data segment. The size of this segment also is
contained in the count field. As the file is received, it is posi
tioned correctly and a checksum is accumulated during the
process. If the data segment is received intact, the message
header associated with the data is enqueued for the upper
levels. The fact that a "data" header is in the received-header
queue is the indication that the data associated with it have
already been received, checked, and stored in the desired
position. The final data transfer takes place at maximum bus
speed and the data segment is placed directly into its desired
position in memory.

At first, it may appear that the several short messages used
to coordinate the transfer of the file add unnecessary over
head to the activity, but when the communication is studied at
the operating system level, each step in the transaction se
quence is normally required. When a process requires a file,
a file must be requested. The server must verify the privileges
of the requester and the state of the file (it may already be in
use). The requester must then get some idea of the size of the
file in order to determine whether all of part of it can be
accepted. Also, the requester, at some point, must make a
decision about where to put the file. From the operating sys
tem's point of view, therefore, unsolicited data messages are
neither needed nor desired.

From this example, it is also seen that messages are not
acknowledged explicitly; rather, the operation requested,
when performed by the remote station, is itself an implicit
acknowledgment of both the message and the action re
quested. This important concept follows directly from the
work of Spector. 5 Policy decisions concerning how long to
wait for a response, whether or not to make a repeat request,
and how to detect and process duplicate messages are not
made at the network level but are handled at the operating
system level and above. This philosophy, similar to that used
in some datagram systems,2 not only makes the network more
efficient, but also makes it more versatile for operating sys
tems research.

LCNET -User Interface

The user interface consists of two queues of headers. There
are 16 headers (maximum) in each queue. One queue is the
receive-queue, containing headers of messages received from
other stations. The other is the send-queue, which contains

headers of messages to be sent to other units in the network.
The queues are in a globally accessible data area established
by the LCNET initialization software module. Each queue is
managed by two pointers, one indicating the next empty pos
ition and one indicating the oldest entry in the queue. These
pointers are also located in the global data area. The queue is
considered full when the pointers are exactly one queue pos
ition apart and empty when they point to the same position.
Headers are only enqueued whenever all aspects of the asso
ciated message, including checksums and data if any, are re
ceived correctly. The network user level discovers waiting
packets by checking header queue pointers.

There is another data structure associated with the "applies
to" or "transaction number" previously mentioned. This data
structure, called the transaction table, is used to control the
positioning and transmission of data segments from one pro
cessor to another. As presently implemented, the transaction
table holds up to 16 data transaction addresses. Each data
transaction address indicates the area in memory from which
data are to be taken for a send, or the area in which data are
to be placed for a receive. A data transaction address of zero
indicates that there is no data segment associated with the
transaction number. These are the only data structures con
cerned with the sending and receiving of messages.

The LCNET send routine, driven by a timer interrupt,
checks the send-queue periodically to determine whether or
not the user level program has enqueued a message (or mes
sages) to be sent. Headers and their associated data segments,
if any, are sent whenever the network becomes idle. The
send-queue pointer is updated only after an entire message is
sent without collision.

All receiving stations in the network examine the first byte
(destination byte) of each message. Whenever this byte con
tains a statIon;s address, that statIOn starts accumulatmg the
remainder of the header and verifies the checksum. The data
portion, if any, is received and positioned starting at the ad
dress found in the transaction table. The received header of a
message containing a data segment is enqueued only when
there is a valid transaction address and the data have been
completely received with the checksum verified. The presence
of a header in the queue indicates that a message is complete
and ready for processing by the user level. If the receive
queue is full because the user level has failed to remove en
queued headers, the header is not enqueued. Although re
ceived activity continues even with a full queue, all further
messages are lost because they cannot be enqueued. The
operation of the network level software is not affected by a full
receive-queue, nor are flow control policy decisions made at
this level.

RELATED EXPERIMENTS AND PLANS

The LCNET is operated asynchronously at 9600 baud to pro
vide compatibility with many of the single-board computers
on the market. The basic hardware, however, is not restricted
to this operating speed. Recent experiments conducted with
Zilog Z80 serial input-output (SIO) devices have demon
strated asynchronous network rates of 62K baud. With an
additional LCNET bus configured as a clock contention bus,

synchronous data rates in excess of 250K baud have been
demonstrated using a modified network control program. In
this experiment, the SIO device is used in the synchronous
data link control (SDLC) protocol mode and provides some of
the network management functions. Network data rate is lim
ited by the central processing unit and not by the SIO device.
These experiments suggest that low-cost front-end communi
cations processors can greatly improve network performance.
This appears to be a promising area for future investigations.
Present efforts, however, involve extending the existing net
work to other single-board computers and developing distrib
uted operating systems concepts. Specifically, a parallel con
tention bus based on the LCNET concepts presented here has
been proposed to support the COSMOS system.3

SUMMARY

The LCNET allows a designer to connect low-cost, yet power
ful single-board microcomputers with a common contention
bus to from a network. The bus medium is twisted pair wire
and is interfaced to the SBCs through modified RS232C
adapters. The network supports a modified Ethernet-like pro
tocol with listening capability and collision detection. The
network software is small (less than 8K bytes) and may reside

LCNET: Low Cost NETwork 683

in EPROM on the SBC. The system is tailored to message
passing and provides a unique mechanism for passing vari
able-length data packets. The system has proven very useful in
building and studying experimental distributed operating sys
tems and loosely coupled networks, in general.

ACKNOWLEDGEMENT

This research was funded in part by the Army Research Office
under grant DAAG29-79-C-OIOO.

REFERENCES

1. Metcalfe, M. M. and D. R. Boggs, "Ethernet: Distributed Packet Switching
for Local Computer Networks." Communications of the ACM, 19 (1976),
pp. 395-404.

2. Tanenbaum, A. S. Computer Networks, Englewood Cliffs, N. J.: pp.
288-320; pp. 187-196.

3. Holmes, V. P., J. B. Jordan, and T. H. Little, "Mercury: A Message-Based
Nucleus for Distributed System." Proceedings of the 17th Hawaii Inter
national Conference for System Services, 1984, in press.

4. The Ethernet, A Local Area Network: Data Link Layer and Physical Layer
Specifications, Version 1.0, published by Digital Equipment Corporation,
Intel, and Xerox, Stamford, Conn., 1980.

5. Spector, A. Z. "Performing Remote Operations Efficiently on a Local Com
puter Network." Communications of the ACM, 25 (1982), pp. 246-259.

Direct work station to remote computer communications via
satellite

by MICHAEL H. ARONSON
Ford Aerospace & Communications Corporation
Palo Alto, California

ABSTRACT

This paper addresses communications between office CRT/keyboard intelligent
work stations and a remote computer installation using a satellite. The travel indus
try is used as an example of an industry that could employ direct satellite commu
nications. The office will have a small, inexpensive earth terminal on the premises
to support several work stations at that location. A commercial communications
satellite with high-gain antenna beams supports the small office terminals. Per
formance of several channel-sharing protocols is described, and an optimum proto
col for this application is discussed. For the example studied, a reservation assign
ment protocol with slotted Aloha orderwire was selected for its high efficiency. This
protocol will support 130 office earth terminals (approximately 390 work stations)
in a single satellite channel. The system provides highly responsive service time (11
seconds average). The cost of digital communications via satellite channels and
terrestrial links is compared, and the advantages of satellite communications are
discussed.

685

Direct Work Station to Remote Computer via Satellite 687

INTRODUCTION

Advances in communications technology will soon permit
business offices to communicate from point to point through
satellite links instead of terrestrial telephone connections.
The office of the future will not only employ computers and
word processing systems but will also have a small earth termi
nal on the customer premises to support the office's business
communications requirements (see Figure 1). Typically, the
need exists for interactive work stations (CRT/keyboards) in
the office to interface with a large computer at another lo
cation. An exchange of messages will occur frequently be
tween an employee at the work station and the database in the
remote computer. For businesses such as a travel agency, a
customer is usually in the office or on the telephone waiting
for a response from the computer. Thus the response time of
the system, including the communications delay, must be very
short. Rapid response time usually implies high-rate, high
cost communications capacity. Approaches to minimizing
this cost by using satellite communications resources are
discussed.

BUSINESS ENVIRONMENT

Many businessess require an interactive dialogue between a
user at a work station and a central computer system. Exam
ples of such businesses are the travel industry, for airline and
hotel reservations, and the banking industry, for checking and
savings transactions. Frequently a large number of interactive
work stations will be concentrated in a few major metro
politan areas and an additional large number of work stations
will be dispersed over a much wider geographic region (such
as the areas of a state outside the large cities). Larger business
offices may have 7 to 10 work stations all performing similar
functions and, therefore, communicating with the same re
mote computer or computers. Such offices will be served by a
larger earth terminal on the premises supporting all of the
terminals. Medium size offices (four to six terminals) and
small offices (one to three terminals) would be served by a
smaller earth terminal; the medium-size offices would use
more powerful transmitters.

The terminals are used on a low- to medium-duty cycle,
where a series of message transmissions and receptions occurs
for each transaction initiated by the operator. In the travel
industry a client may ask about choices of flights to a particu
lar location, then have a reservation placed on a particular
flight. In addition, a hotel and rental car reservation may be
made. Certain clients with extensive itineraries will have mul
tiple reservations placed. Thus, a complete business trans
action consists of an exchange of relatively short messages.

For purposes of this discussion, it is assumed that the typical
reservation transaction involves transmissions to the com
puter and transmissions to the office, as shown in Table I. The
exchange consists of relatively short messages (approximately
65 characters each), with equal traffic in both directions. The

Figure I-Small earth terminals support office communications

688 National Computer Conference, 1984

TABLE I-Typical transaction for flight reservation

Size ... Size ...

Message From To Characters Bits From To Characters Bits

Flight Inquiry Office Remote
Computer

Inquiry Response

Flight Reservation Office Remote
Computer

Flight Confirmation

Rental Car Reservation Office Remote
Computer

Rental Car Confirmation

per-terminal reservation (transaction) rate will vary from 4
transactions per hour to as many as 10 per hour during the
peak business hour at larger offices serving major corporate
customers.

COMMUNICATIONS CONSIDERATIONS

Figure 2 shows the approximate distribution of travel agencies
within California. The major metropolitan areas of Los An
geles, San Diego, and San Francisco have such high densities
of agencies that high-gain, spot beam service from the com
munications satellite would be feasible to support the traffic
from these offices. The rest of the state could be served by a
broader spot beam with lower gain. The remote computer
installation will operate in the state beam.

In the communications satellites of the near future, leasing
a spot beam will still be relatively expensive compared to use
of the general-service antennas (such as the earth coverage
antenna or the statewide spot beam). Therefore, consortiums
of users, perhaps organized by an industrywide organization
such as the American Society of Travel Agents, will share the
expenses in proportion to the call rate of each office. The
organization of users will also lease a number of satellite
channels to support the offered traffic. The number of chan
nels required depends on the number of earth terminals in the
beam, the amount of traffic (messages) to and from the office
terminals, the traffic transmission rate, and the technique
employed to share a given channel among as many terminals
as possible. To minimize the communication costs billed to an
office, the fixed expenses (i.e., the satellite channel capacity
and antenna beam rental charges) must be spread across as
large a number of terminals as possible without causing exces
sive delays in receiving responses. Each of these factors is
discussed below. Since Los Angeles has the densest popu
lation of travel agencies, it will be used as a specific example.

60

65

60

-185

480

520

480

--1480

r-
I
/
I
I
I ,
\
\
\
\
\
\
\

\
\.

I
Remote Office

Computer

Remote Office
Computer

Remote Office
Computer

-----,

I

\.
"-

LOS ANGELES
550

"
SAN DIEGO

200

60 480

65 520

70 560

- --
195 1560

\
\

\
'\
\
\

(>1
/ I

I
.................. I -- . -----J

Figure 2-Travel agencies are distributed in major metropolitan areas and
throughout California

Direct Work Station to Remote Computer via Satellite 689

Number of Terminals

Figure 2 (shown previously) indicated the number of travel
agencies that will be served by spot beams and by the state
wide spacecraft beam for this application of future commu
nications satellites. We will assume an average of three work
stations per office; therefore, the total number of work sta
tions that participate in reservation message generation and
reception is 3 x 550 = 1650 in the Los Angeles spot beam,
assuming all offices participate (a worst-case assumption).

Amount of Traffic

The reservation rate per work station will vary with the size
and clientele of the office. Assuming 4 reservations (trans
actions) per hour per work station, and 3 work stations per
office, the number of transactions in the Los Angeles area
during the peak hour is estimated to be 3 work stations/office
x 550 offices x 4 transactions/hour = 6,600 transactions/
hour. As shown previously in Table I, each transaction in
volves an exchange of 3 message transmissions and 3 message
receptions, each of which contains approximately 65 charac
ters (520 bits). At this point, we state the above information
in terms of a traffic model.

The total traffic transmitted in the spot beam by the travel
agency terminals is measured in erlangs, a dimensionless
quantity. erlangs (E) are defined as

where:

E=(NA'lm)
3600r

(1)

N = Number of work stations offering traffic (dimension-
less)

~ = average work station call rate, transactions/hour
J = average message length, bits
m = transaction component rate, messages/transaction
r = traffic transmission rate, bits/second

The following values are assumed:

Number of work stations (N): 1650 in Los Angeles
Call rate per work station (A'): 4 transactions/hour
Transaction component rate (m): 3 messages/transaction

each direction
Average message length (I): 65 characters (520 bits)

Therefore, the total traffic load during the peak hour that
must be supported is:

E = (1650 x 4 x 520 x 3) = 2860
3600r r (2)

The rate of traffic transmission, r, will be discussed next.

Transmission Rate

The transmission rate to and from the office depends on the
capabilities of the office's small earth terminal. The terminal
must have enough effective radiated power to transmit mes
sages to the satellite (and then on to the reservation com
puter) with a minimum of errors. Effective radiated power is
a combination of transmitter power and gain from the termi
nal antenna. The higher the message transmission rate, the
greater the power required to maintain a low error rate. To
keep the size of the terminal antenna small, a data transmis
sion rate of 9600 bits/s will be assumed. Such a rate wold be
relatively expensive to lease using terrestrial communication
facilities. With r = 9600 bits/, the traffic load = 2860/9600 = .
0.3 erlangs from the offices to the remote reservation
compute:.

Channel-Sharing Protocols

A number of papers have been written on channel-sharing
protocols. The protocols have been analyzed with queueing
models to determine comparative performance. 1,2,3 The mod
els use the assumptions of exponentially distributed message
lengths and message interarrival rates. The key factors in
assessing the performance of a channel-sharing protocol are

1. Wait time: The time between reception at the earth ter
minal of a message from the user work station to the
completion of transmission of the message over the
channel.

2. Efficiency: The ratio of information bits transmitted per
second to the channel transmission rate (bitls).

A number of different protocols are available. These are
classified as fixed assigned access to the traffic channel, ran
dom access, or on-demand access based on a "reservation."
The reservation is a message that indicates that the terminal
has traffic available for transmission and is waiting for access
to the traffic channel. Thus, only the terminals with traffic are
considered for access to the traffic channel. This method
avoids the inefficiency of fixed-assignment protocols where
stations without traffic (and there may be many at any given
time) are offered the channel whether or not they need it. The
reservations mentioned above may be offered in the traffic
channel itself or may use a separate frequency (channel)
called an orderwire, which operates in parallel with the traffic
channel. The orderwire is usually operated at a lower trans
mission rate than is the traffic channel. It permits one terminal
to be transmitting traffic while, in parallel, other terminals are
sending reservation messages.

In order to share a satellite communications channel effec
tively, the access protocol must be automated and must use a
microprocessor in the earth terminal. This microprocessor has
the following functions:

1. Generate orderwire messages (if used by the access
sharing protocol) and output them to the terminal
transmi tter.

690 National Computer Conference, 1984

2. Receive and decode messages to the terminal from the
orderwire channel.

3. Make possible the flow of traffic from the user's work
station (which contains the traffic message) to the termi
nal when the terminal has been given the use of the
traffic channel.

4. Disable the terminal transmitter when the user work
station completes sending its traffic message to the
terminal.

5. Enable/disable transmission in synchronization with spe
cific time markers required by certain channel-sharing
protocols.

With this background, the operation of several important
channel-sharing protocols is discussed. They are grouped into
the following categories:

1. Fixed-assignment protocols
a. Polled
b. Time division multiple access (TDMA)

2. Random-assignment protocols
a. Slotted Aloha traffic channel

3. Reservation assignment protocols
a. Time division multiple access (TDMA) orderwire
b. Slotted Aloha orderwire
The following discussion provides an overview of each
protocol.

1a. Polled
In the polled protocol, one terminal is given the duty of

acting as controller for the traffic channel. An orderwire chan
nel is used to coordinate the transmissions in the traffic chan
neL As mentioned above. the orderwire may be on a separate
frequency and can operate in parallel with transmissions in the
traffic channel. However, it is possible to timeshare the traffic
channel between traffic transmissions and orderwire trans
missions. If the transmission rate is high enough, the order
wire appears to achieve parallel operation.

In the polled protocol, a list of terminals that are potential
users of the traffic channel is entered into the control termi
nal's database. This terminal (the channel access controller)
mediates the use of the traffic channel by sending an order
wire message to the first terminal in the list: "You Have the
Traffic Channel." The terminal receives the message and, if it .
happens to have a user message available, outputs the entire
message over the traffic channel. The terminal then sends an
orderwire message back to the controller terminal: "I'm Fin
ished with the Traffic Channel." The controller terminal then
sends the "You Have the Traffic Channel" orderwire message
to the next terminal on the list. After all terminals in the
polling list have been offered an opportunity to use the traffic
channel, the cycle repeats, polling the first station in the list
again. Thus a fixed-access sequence is implemented, and all
terminals are offered a chance to transmit. The polled proto
col can be optimized by polling high-calI-rate stations more
than once in the polling sequence.

The polled protocol has several disadvantages. Terminals
that have no traffic at their user work stations are polled.
During the polling process, an orderwire message is sent to

the terminal ("You Have the Traffic Channel") and the termi
nal sends back an orderwire message ("I'm Finished with the
Traffic Channel"). This exchange takes a small, but finite,
amount of time (two round-trip propagation delays plus com
puter processing time at each terminal). During this time the
traffic channel is unused, and an inefficiency is introduced.
For a round-trip signal propagation time of 0.265 seconds to
a synchronous satellite, the dead time due to each poll is 2 x
0.265 + terminal computer processing time = 0.6 seconds
(typical). When many terminals are in the polling list, a large
number of unnecessary polls occurs if the call rate of individ
ual terminals is low (as is the case here). Since the traffic
channel is idle during the exchange of orderwire polling mes
sages, the traffic channel efficiency suffers.

Another disadvantage of the polled protocol is that a termi
nal with traffic must wait until all other terminals ahead of it
are polled and, if they have traffic, complete their traffic
transmissions. To keep the average wait time short, fewer
terminals are permitted to share the channel. This implies a
higher per-terminal (i.e., per-office) share of the satellite
communications service costs. Another disadvantage is that
control of access to the traffic channel is centralized at the
control terminal. A backup control terminal must be provided
to protect against failure of the control terminal. Further, if
terminals are added to or deleted from the polling sequence,
the control terminal must always be notified.

lb. Time division multiple access (TDMA)
In a TDMA protocol, the traffic channel is sliced into dis

crete, prespecified time slots (see Figure 3). Each terminal is
assigned one or more time slots; and when the beginning of
the appropriate slot occurs, the terminal transmits traffic in
the slot: After all slots assigned to terminals have occurred (1'
seconds), the pattern of slots repeats in a fixed sequence. The
period between repetitions of a specific slot (every l' seconds)
is called the frame duration.

TDMA is suitable for message communications systems
where the message lengths are relatively short or where the
message can be segmented into packets. A packet is a fixed
length piece of the message than can be independently trans
mitted in one slot transmission time (the receiving terminal
collects the message packets on the basis of an address field
and reassembles the entire message). If the terminal call rate

------------------------------------~.t+T

t+T----------------------------------~~.t+2T

• • •
...41--------- T SECOND FRAME DURATION -------l~.

Figure 3-Time division multiple access sharing of the traffic channel

Direct Work Station to Remote Computer via Satellite 691

is high, then the terminal will almost always have a message to
transmit when its slot occurs, and the traffic channel will
experience a high efficiency. The advantage of TDMA is that
no orderwire is used for control of access to the traffic chan
nel; i.e., the responsibility for access control is fully distrib
uted among all member terminals. Each is responsible for
keeping track of time in order to count slots and begin trans
mission at the proper time. Note that the time we are talking
about is the time at which the satellite receives the message for
retransmission. All terminal transmissions must be syn
chronized to cause the timesharing of the channel (as shown
in Figure 3) to occur at the satellite communications transpon
der input. This means that each terminal must know how long
it takes for its signals to reach the satellite, since the distance
from terminal to satellite varies slightly, depending on termi
nallocation. To avoid overlapping traffic transmissions, some
dead time in each slot must be included, since each individual
terminal does not know time exactly, nor does it know its
exact propagation delay to the satellite exactly.

In the application described in this paper, TDMA has sev
eral disadvantages:

1. The terminal call rate is low. As a result, many terminals
have no traffic to offer when their time slot occurs. Dur
ing these slot times, the traffic channel is unused.

2. The messages exchanged between terminal and remote
computer in the example of this paper are too small to
packetize. In addition, they have variable lengths. As a
result, it is possible for a specific message to be too long
to transmit in one time slot. When this occurs, a very
long delay occurs in receiving the entire message (i.e.,
all of the pieces).

3. It is difficult to add or delete terminals. If traffic time
slots are left vacant to accommodate future added termi
nals, time on the traffic channel is wasted. If an addi
tional terminal must be accommodated and no spare
slots are available, all participating terminals must be
notified administratively of an extension in the frame
duration (there is no orderwire to permit dissemination
of frame change information). Likewise, if a large num
ber of terminals drop out of the network and give up
their traffic time slots, then the traffic channel has un
necessary dead time.

2a. Slotted Aloha traffic channel
The slotted Aloha random-assignment protocol has been

studied by Roberts. 4 In this protocol, the traffic channel is
divided into discrete time slots as in TDMA (see Figure 4).
Also, like TDMA, the duration of a time slot is chosen to
accommodate an optimum amount of information in a pack
etized system. Unlike TDMA, any terminal may transmit in

• • •

,:It ..
Figure 4---Slotted Aloha sharing of the traffic channel

the current traffic channel time slot; the only restriction is that
the transmission must start at the beginning of the slot.
Whereas TDMA is most efficient when the terminal call rate
is high, slotted Aloha sharing of the traffic channel is efficient
when the terminal call rate is low. This is due to the small
likelihood of a "collision" (two terminals transmitting simul
taneously) at lower call rates. Note that every terminal trans
mitting traffic must listen to the satellite transmissions to de
termine whether a collision has occurred. If it detects an error
in the just-transmitted message (or packet), it must retransmit
the message after a random number of slots have gone by.
Since the random delay (typically uniformly distributed be
tween 1 and 15 slots) occurs at both terminals that need to
transmit traffic, usually the retransmission attempt occurs in
different time slots and there is no repeated collision.

Control of access to the traffic channel is distributed among
the terminals using the communications channel; thus an or
derwire is not required (this is also the case with TDMA).
However, in slotted Aloha, any terminal may transmit traffic
in the current traffic channel time slot. This decreases the·
average message delay relative to TDMA. Since time slot
assignments are not fixed, terminals can be added to (or de
leted) from the network without affecting the control of access
to the traffic channel. The disadvantages of slotted Aloha in
the traffic channel are that when terminal call rates are high,
collisions are frequent. Retransmissions cause further colli
sions, and the effective throughput (successful message trans
missions per second) becomes limited. Stated another way,
the wait time to transmit the message approaches infinity. It
has been found that the maximum efficiency possible with a
slotted Aloha traffic channel is less than lie = 0.368.

3a. Reservation assignment with TDMA orderwire
In this protocol a time-division orderwire is provided for

terminals to request use of the traffic channel (i.e., place a
reservation). The reservation is a short message that includes
the requesting terminals' identification number and in some
systems also includes a message priority. The orderwire is
sliced into assigned slots (siInilar to Figure 3, shown
previously) for a TDMA traffic channel. Each terminal is
assigned one or more orderwire time slots (depending on the
call rate). In the example described in this paper, very large
travel agencies with large numbers of work stations would be
assigned several orderwire slots spread through the orderwire
frame. Small offices with only a few work stations would be
assigned one slot per frame for reservation requests.

All terminals monitor the orderwire and keep track of the
reservation requests. Reservations are accepted on a first
come, first-served basis. When a reservation is honored, the
terminal obtains exclusive use of the traffic channel to trans
mit its message. When a terminal finishes transmission on the
traffic channel, it examines its copy of the reservation queue
list and sends an orderwire message to the terminal at the
head of the queue: "You Have the Traffic Channel." Since all
terminals monitor the orderwire, they update their reserva
tion queue list by deleting the reservation (now honored) from
the new user of the traffic channel.

The use of reservations for the traffic channel permits the
channel to be used fully (up to 100% efficiency). Since any

692 National Computer Conference, 1984

terminal can receive the channel as needed, message delays
are shorter than with TDMA. The control of access to the
traffic channel is decentralized in that· all terminals maintain
a copy of the reservation queue list and issue reservations as
a message is received from the work station. The current user
of the traffic channel hands the channel directly to the next
terminal that will use the channel. Adding to or deleting ter
minals from the network requires management of orderwire
time slot assignments, the same as in the TDMA traffic chan
nel protocol. The orderwire itself, however, can be used to
disseminate the slot assignments.

3b. Reservation assignment with Slotted Aloha orderwire
This protocol also uses an orderwire for the placement of

reservation requests for the traffic channel. The orderwire is
partitioned into time slices. As in the slotted Aloha traffic
channel protocol (Figure 4), any terminal may use the current
time slot to issue a reservation request. The terminal monitors
its satellite orderwire transmission to determine whether the
message has collided with a reservation request from another
terminal. If it has, the terminal waits a random number of
time slots and then retries to place the reservation. As in
Reservation Assignment with a TDMA orderwire, when the
current user passes the traffic channel to the terminal with the
reservation at the head of the queue, the next terminal uses
the traffic channel on an exclusive basis until message trans
mission is complete.

The advantage of a slotted Aloha orderwire is that access
control of the traffic channel is completely distributed. Order
wire slot assignments do not have to be managed, since any
terminal can use the current orderwire time slot to place a
reservation. Terminals may join or drop out of the network
(due to new offices' receiving earth terminals or maintenance
of hardware at existing earth terminals) without changing the
orderwire operation. An additional restriction exists with this
protocol, however. In all the previous protocols, the number
of terminals that may share a traffic channel is based on not
exceeding the specified average message transmission wait
time. Further, the orderwire channel (if used by that protocol)
can have a throughput of no more than 100%. With a slotted
Aloha orderwire, an additional constraint is that the through
put of the orderwire is limited to 36.8%. Therefore this proto
col is most useful when the terminal call rate is low.

COMPARISON OF PROTOCOLS

The selection of the best channel-sharing protocol for a partic
ular system depends on several parameters. The key parame
ters are as follows:

1. Product of the number of terminals in the network and
the terminal call rate (NA'): When NA' is large, fixed
assignment protocols such as TDMA are suitable. When
NA' is small, the polled and slotted Aloha protocols are
useful.

2. Average message length (l): The longer the message
length, the longer a terminal must use the traffic channel
each time it transmits a message. Fewer terminals are
able to share a given channel.

3. Data transmission rate (r): The higher the traffic trans
mission rate, the shorter the time that a given terminal
uses the traffic channel for transmission of a message.
This increases the number of terminals that may share
the channel.

Figures 5 and 6 show the performance of the system for the
protocols and traffic load discussed previously. The figures
were calculated with a traffic transmission rate of 9600 bls and

en
Cl
Z
o
~ 5.0
C/)

w
~ 4.0
I-
l?
Z
~
<X:
~
w
l?
<X:
a:
w
>
<X:

3.0

2.0

1.0

0 10

RESERVATION ASSIGNMENT
W/TDMA ORDERWIRE (OW)

20 30

SLOTTED
ALOHA

row
A'

40 50

9600 b/s
300 b/s

0.01 calls/s

60 70

EFFICIENCY (PERCENT)

80

Figure 5--Efficiency of channel sharing protocols at low call rate

en 5.0
Cl
z
0
u

4.0 w
~
w
~
~ 3.0
l?
Z
I-« 2.0 ~
w
l?
<X:
a: 1.0 w
>
<X:

100

RESERVATION ASSIGNMENT
W/TDMA ORDERWIRE (OW)

RESERVATION ASSIGNMENT
WI SLOTTED ALOHA -I
ORQERWIRE -1

~ r = 9600 b/s
row = 300 b/s

200 300 400 500 600

NUMBER OF TERMINALS PER CHANNEL

Figure 6-Terminals per channel at low call rate

Direct Work Station to Remote Computer via Satellite 693

an orderwire transmission rate (when used) of 300 b/s. An
acceptable average wait time of 1.5 s has been assumed. The
per-terminal call is rate 0.01 callsls (3 work stations per office,
4 transactions per hour, 3 messages per transaction).

Figure 5 shows that for the type of small-business applica
tion discussed here-with large numbers of terminals, low call
rates, relatively short message lengths, and small permitted
wait times-the slotted Aloha or reservation assignment with
slotted Aloha orderwire protocols are both suitable at 1.5 s
average wait times. The advantage of the reservation assign
ment protocol is that the traffic does not have to be pack
etized. Once an orderwire reservation is honored, that earth
terminal is given exclusive use of the satellite channel and
transmits the entire traffic message.

Figure 6 shows the number of terminals that can be accom
modated in each leased traffic channel. The reservation as
signment protocol with slotted Aloha orderwire will support
130 office earth terminals per satellite channel. Therefore,
five channels and one city spot beam will accommodate all of
the communications requirements of the travel agencies in the
Los Angeles area.

Figure 7 compares the channel efficiency versus wait time
when the per-terminal call rate is increased by a factor of 100.
For such applications where the call rate is high, other proto
cols (such as TDMA) become quite efficient.

CONCLUSIONS

Kleinrock has projected digital data transmission cost for sat
ellite communications versus land line communications. 1 Fig
ure 8 is based on his projections. Although the slope of the
land line costs may change with the breakup of the AT&T
system, the relative cost advantage of satellite communica-

en
a
z
0 u
w
~
w
::2:
i=
(!)
z
i= «
~
w
(!)
«
0:
w
> «

5.0

4.0

3.0

2.0

1.0

o 10

RESERVATION ASSIGNMENT
W!TDMA ORDERWIRE (OW)

I
RESERVATION ASSIGNMENT
WI SLOTTED ALOHA ORDERWIRE

POLLED

20 30 40 50 60 70

EFFICIENCY (PERCENT)

Figure 7-Efficiency of channel sharing protocols at high call rate

80

U)
L-

Z
w
U
Z

e./)

l-
e./)

0
u

0.5

0.1

0.05

0.01

0.005

REGIONAL LAND LINE
COMMUNICATION
COST TREND

SATELLITE
COMMUN ICATION
COST TREND

76 77 78 79 80 81 82 83 84 85 86 87 88

YEAR OF SERVICE

Figure 8---Incremental cost for sending 1 megabit through nationwide
network

tions is expected to continue. The costs are minimized by
sharing a channel among terminals as needed, maintaining the
channel continuously to minimize access time. Several proto
cols for channel sharing are available. For applications such as
the travel agency industry, the reservation assignment proto
col with slotted Aloha orderwire is suitable. This protocol
premits a large number of earth terminals to share a channel
while maintaining small transmission wait times. Work sta
tions in the business offices will be connected to low-cost earth
terminals on the customer premises, providing direct satellite
communications to the central reservation computer. Com
mercial communications satellites will in the near future pro
vide high-gain spot beams to permit the customer premises
terminals to use small antennas (2-ft diameter) and low-power
solid-state transmitters (under 20 watts).

ACKNOWLEDGMENTS

The author would like to thank several associates at Ford
Aerospace for assisting in the preparation of this paper.
Thanks are due to Chaw-Chi Yu and Art Reisman for pro
gramming the protocol-queueing equations, Cindy Whyte for
preparing the performance curves, Vijaya Korwar for calcu
lating the communications link parameters, and Shaaron
Wright for preparing the pictorial artwork.

694 National Computer Conference, 1984

REFERENCES

1. Kleinrock, L. Queueing Systems (Vol. II). New York: John Wiley & Sons,
1975.

2. Capetanakis, J. "Capacity Allocation Techniques in a Multi-User Satellite
System." MIT Lincoln Laboratory Technical Note 34, Massachusetts Insti
tute of Technology, Cambridge, July 18, 1979.

3. Collins Corporation "Demand Assignment Techniques Study for Military
Satellite Communication Applications." Technical Report 523-076775-
00221M, June 25, 1977.

4. Roberts, L. G. "Extensions of Packet Communication Technology to a

Hand-Held Terminal." AFIPS, Proceedings of the Spring Joint Computer
Conference (Vol. 44), 1972, pp. 295-298.

5. Chu, W., and Konheim, A. "On the Analysis and Modeling of a Class of
Computer Communications Systems." IEEE Transactions on Communica
tions COM-20, No.3, June 1972.

6. Abramson, N., and Kuo, F. Computer-Communication Networks. En
glewood Cliffs, N. J.: Prentice-Hall, 1973.

7. Binder, R., N. Abramson, F. Kuo, A. Okinaka, and D. WaJ{. "ALOHA
Packet Broadcasting-A Retrospect." AFIPS, Proceedings of the National
Computer Conference (Vol. 44), 1975, pp. 203-215.

8. Abramson, N. "Packet Switching with Satellites." AFIPS, Proceedings of
the National Computer Conference (Vol. 42), 1973, pp. 695-702.

CARGuide--on-board computer for automobile
route guidance

by M. SUGIE,* o. MENZILCIOGLU, and H. T. KUNG
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

This paper describes the Computer for Automobile Route Guidance (CARGuide),
a prototype system designed and built at Carnegie-Mellon University. CARGuide
is a portable, microcomputer-based system to aid drivers in route finding and
navigation in city streets. Given starting and destination intersections, CARGuide
calculates an optimum route to the destination, displays portions of the street map
containing the route, and highlights the streets on the route by flashing them on a
display. It provides automatic or manual zooming into the map picture and speaks
driving directions along the route. Both hardware and software design is explained
in the paper. The hardware consists of a 68000 processor on a Multibus, bubble
memories for secondary storage, a 128 x 128 dot matrix fluorescent display, a
speech synthesizer, RAM, control and interface logic for the components, and a
keyboard. A total of six circuit boards are used, four of them designed at CMU. A
compact street map database is constructed from a regular street map and is stored
in CARGuide's half megabyte secondary storage. An efficient optimum route
finding scheme was implemented, which uses a divide and conquer method and
precomputed routes to improve the performance of a shortest-path algorithm. For
optimum route calculations, streets are given weights estimating the travel time, and
penalties are introduced for turns and crossing intersections. CARGuide has been
tested by implementing a portion of the Pittsburgh street map.

*M. Sugie was a visiting researcher at eMU on leave from Hitachi Ltd. when this paper was written.

695

INTRODUCTION

Route finding in street maps is a practical problem, especially
for those driving in an unfamiliar city and for vehicles that
must find the route with the shortest driving time between two
points--emergency vehicles, utility service vehicles, and taxis.
Given starting and destination locations, the first part of the
prob~em is to find these locations on the street map. This
usually involves an exhaustive search over a region and read
ing some fine print. The second part of the problem is to
determine an optimum route between the source and the des
tination. A study on human subjects1 shows that humans ap
proach this problem by using heuristics. In general, people
first identify the important roads going roughly in the direc
tion of the destination and then try to connect the source and
the destination to the important roads using a local depth first
search. The study also shows that, when asked to find a route
between two given points on a map, people vary significantly
in the routes they find and the time they take to find a route.
In most cases, the routes people find are not the shortest
possible.

A street map can be considered a graph, in which streets are
the edges and intersections are the vertices. In graph theory,
the route-finding problem is known as the shortest-path prob
lem. It is covered substantially in the literature and a number
of shortest-path algorithms are known.2,3,4,5,6,7,8 A representa-
tive of the complexities of single-source shortest-path algo
rithms is O(n2), where n is the number of vertices. 9 The
average city street map has on the order of 104 intersections,
therefore, the complexity of the algorithm that will be used for
route finding is important. (Within Pittsburgh city limits, ap
proximately a 60-square mile area, there are 8400 vertices and
11300 edges. These numbers would more than double for the
Pittsburgh metropolitan area (140 square miles). See refer
ence 1 for some other cities.) Since shortest-path algorithms
deal with graphs in general (i.e., graphs with no geometrical
properties) direct application of these algorithms for route
finding in street maps is not efficient. For more efficient solu
tions, algorithms taking advantage of the planarity and direc
tionality of the street map, divide and conquer methods, pre
computed routes, heuristics, or a combination ofthese may be
used. Another problem is that the optimum route is not nec
essarily the one with the shortest distance. People consider
several factors in addition to the distance: number of turns,
size of the road, number of traffic lights, etc.lO Somehow,
these factors must also be incorporated into the algorithm.

Navigation along a chosen route may be a more difficult
problem for the driver than finding the route on the map. The
driver has to know where the vehicle is at the time and know
which road or direction to take next. To find out which way to

CARGuide-On-Board Computer for Automobiles 697

go next, one need only look at the map. However, this may be
a problem while driving. This problem can be helped if a
device that can speak out the directions and show the route is
installed in the vehicle. Knowing where the vehicle is, whether
it is off course or not, is a more demanding problem. Besides
looking at the map, one has to look for street names or road
signs. This is difficult, especially at night. A navigation device
that can point the position of the vehicle on a map display
would solve this problem. Several navigational systems have
been proposed to determine the position of land vehicles. The
proposed methods include using inputs from the vehicle's
steering system and speedometer, 11 using inertial devices (gy
roS),12,13 or using signals broadcasted from three or more fixed
stations (this method is more suitable for non urban areas). 14
However, building the navigation device to pinpoint the posi
tion of the vehicle is much different than building the rest of
the route guidance system. This paper deals with the comput
er systems aspect of the problem and not with a position-fixing
navigation system.

Using computers for route guidance is a promising idea.
However, implementing a practical and cost-effective system
remains a problem. Two directions can be taken toward the
implementation of a route guidance system, centralized or
independent. In the centralized approach, there is a central
system where people can call and ask for directions. If the
vehicle is equipped with a transceiver, communication with
the central facility can be kept during travel. The central
system can also be used to guide the vehicles depending on
traffic conditions. 15

The problems with this approach are the lack of real-time
navigational help and limitations brought by the transmission
bandwidth of the central facility-response time and avail
ability. (A centralized route guidance system would be feasi
ble for emergency vehicles, which can be incorporated into a
computerized dispatching facility. 16) The other approach is to
have a small system installed in the vehicle. This has the
advantages of being self-contained and providing fast real
time interaction. The on-board system can also be used to
provide navigational aid. This paper describes a prototype
route guidance system based on this idea that has been built
at CMU. Several commercial devices have also been an
nounced with different implementation approaches. 12,17

The problems involved in implementing an on-board mapl
route guidance system are the following. The hardware must
be compact and insensitive to mechanical disturbance. The
map and route data must be stored in a permanent storage
medium that is interchangeable or writable in order to allow
changing maps or making updates. Both visual and voice out
puts are necessary assuming that the person is driving alone.
The map database must be detailed and accurate enough to

698 National Computer Conference, 1984

Figure l--CARGuide

avoid misinterpretation but should be compact to fit in a por
table storage. An efficient route finding algorithm must be
used to provide quick response using a microcomputer. In the
following sections, the Computer for Automobile Route
Guidance, CARGuide, is described and the solutions used for
the above problems are explained.

The next section describes the overview and operation of
CARGuide from the user's point of view. The hardware sec
tion explains CARGuide's hardware configuration, com
ponents, and interesting aspects of operation. In the database
section, the organization of the street map database is shown
and manipulation of the database is explained. The last sec
tion explains the route-finding method used by CARGuide.

OVERVIEW AND OPERATION

On the outside, CARGuide consists of four pieces of equip
ment: a card cage containing circuit boards, a speech syn
thesizer box with a speaker, a keyboard, and a 128 x 128 bit
map fluorescent display (Figure 1). Being a prototype for
research, the system has been kept modular and an effort was
not made to compact it into a single unit. CARGuide can also
be connected to a host, in this case a VAX, for the develop
ment of software. At the time of this writing, the functionality
of the system had been tested by implementing a portion of
the Pittsburgh street map, but it has not been installed in an
automobile.

The operation of CARGuide is as follows. The user com
municates with CARGuide using the keyboard, and CAR
Guide responds using speech and display. The user inputs
have been kept to a minimum, and inputs can be entered using
as few key strokes as possible. CARGuide speaks messages in
full sentences and displays them in writing at the same time,
but with fewer words. The idea is to require as little use of the
driver's hands and eyes as possible. From the user's point of
view, CARGuide can be in three modes: entry mode, view
mode, and trip mode. After start-up, CARGuide is in entry
mode when the user enters the starting and destination loca
tions interactively. CARGuide is in view mode any time a map
picture is displayed. In this mode, the user can manipulate the
picture by zooming into parts of it with the use of a cursor.

(b)

(c) (d)

Figure 2-Street map display

When the vehicle starts traveling along the route determined
by CARGuide, it enters the trip mode. In trip mode, as inter
sections are approached, CARGuide displays the names of
the street being traveled on and the street to be crossed next,
shows them on the map, and speaks which way to go at the
intersection.

In entry mode, CARGuide first asks for a starting location.
The starting and destination locations are to be entered as
intersections-using two street names to enter an intersection.
After the first street name is entered, CARGuide repeats the
name in speech and writing, and if it is correct, asks for the
second street name. If the street name is spelled wrong or if
the street does not exist in the map database, the user is
notified by an error message and is asked to enter again.
Entering only the name of the street is sufficient in most
cases-i.e., without specifying whether it is an AVE., ST.,
DR., etc.-unless it is a numbered street, in which case the
appropriate abbreviation must be used. In any case, if there is
an ambiguity caused by more than one street having the same
name, it can be resolved by the user entering the full name of
the street or by entering the second street name, which almost
always defines a unique intersection. (A few exceptions to this
rule exist in Pittsburgh where the same streets intersect each
other more than once. In that case, one of the intersections is
chosen and a caution message is output to the user.) After two
street names have been entered, if their intersection can not
be found, the user is notified and asked to enter again.

After an intersection has been entered, CARGuide finds
the intersection in the map and displays the block of the street
map containing the intersection (Figure 2(a)). The map is
divided into square blocks. A block corresponds to an area 0.7
mile on each side and it is displayed as a 100 x 100 dot matrix

image. The intersection point is highlighted by flashing it on
and off. In general, after displaying a picture, CARGuide
enters the view mode. In view mode, if the image resolution
is not satisfactory, the user can zoom in a part of the image,
using a square cursor (Figure 2(c)(d». The size and position
of the cursor can be manipulated incrementally using single
key strokes (corresponding to Center, Up, Down, Left,
Right, Smaller, Larger, Fullview). The magnification ratio
can be increased with successive zoomings, and different parts
of the image can be inspected by zooming in and out of the
picture and by moving the cursor.

The optimum route between the starting and the destina
tion intersections is computed after the user indicates that he
is finished viewing the destination picture. The computed
route is highlighted in the map picture by flashing it period
ically. If starting and destination intersections are in the same
block, the route is flashed in its entirety. If they are in differ
ent blocks, the route is displayed in portions, one block at a
time. In either case, CARGuide enters the view mode after a
block is displayed so that the user may inspect the route.

CARGuide enters the trip mode when the user indicates
that he is ready to travel. In trip mode, the route to be fol
lowed is shown incrementally as the car travels through inter
sections. Before the trip, CARGuide asks which view mode
option will be used during the trip. The user has two options
for the view mode: manual zoom or auto zoom. In the manual
zoom mode, the block is displayed in full scale. The user may
zoom in to a part of the picture using the adjustable cursor
described earlier. However, since manual zooming requires
driver time and attention, an auto zoom mode is provided that
requires no user inputs. In this mode, a constant magnifica
tion ratio of 4 x (over the full scale view) is used and a fixed
section of the block through which the car is traveling is dis
played. The block is divided into five sections, as shown in
Figure 3. A full-scale view gives a better perspective of the
distance traveled and requires fewer picture changes, while a
zoomed picture gives better resolution.

SPEAKER

I
SPEECH

KEYBOARD
SYNTHESIZER

l I

CARGuide-On-Board Computer for Automobiles 699

1 2

5

3 4

Figure 3--Block sections for autozoom

During the trip, CARGuide flashes the portion of the route
between the intersection the car has just passed and the next
two intersections it should be going through. The name of the
street currently being traveled on is displayed at the lower left
of the display, and the street to be crossed next is displayed at
the lower right (Figure 2(b)). If the car should be taking the
crossing street at the next intersection, the street's name is
flashed. Before each intersection, CARGuide speaks which
direction to go-straight, left, or right-and the name of the
street to take. Currently, CARGuide does not have the ability
to actually track the motion of the vehicle. (The position of
the vehicle can be pinpointed in the map and flashed continu
ously as a moving point in the display, assuming accurate
inputs of the vehicle's speed and direction exist. However,
implementing the navigational device to provide those inputs
was beyond the scope of this project.) It is assumed that the
driver never gets off course. In the current scheme, the driver
has to hit a key after passing each intersection so as to invoke
CARGuide for information about the next portion of the
route.

HARDWARE

Figure 4 shows a block diagram of CARGuide's hardware
organization. The hardware consists of six boards-680001

DISPLAY

I
DISPLAY

INTERFACE
68000/

Multibus Serial I/O I MULTIBUS

I I I INTERFACE
BUBBLE

HOST RAM MEMORY

INTERFACE

I
BUBBLE

MEMORY

BOARD

Figure 4-CARGuide hardware organization

700 National Computer Conference, 1984

Multibus Interface, RAM, Bubble Memory, Bubble Memory
Interface, Display Interface, Display (the display device is
also mounted on a PC board), Speech Synthesizer with a
speaker, and a keyboard. The heart of the system is a 68000
Multibus Interface Board built at CMU. The board contains
a Motorola 68000 microprocessor and interfaces it to the Intel
Multibus. The board also houses 8 Kbytes of ROM and 4
Kbytes of RAM and has two independent serial 110 lines. A
resident monitor program is stored in ROM, which starts
executing after a power up. It initializes the system and en
ables communications with the outside. The resident monitor
provides functions to download programs and data from a
host, which were used during software development, and to
run programs. CARGuide software requires less than 50
Kbytes of RAM to execute; therefore, a 64 Kbyte RAM is
sufficient. However, a 500 Kbyte RAM board was used as the
main memory because of its availability.

Bubble Memory Board contains four 1 Mbit bubble memo
ries by Hitachi (a total of 500 Kbytes), and a bubble memory
controller. Bubble memories \\1ere chosen for secondary stor
age for the following reasons. They provide a writable mass
storage that allows changing map databases or making up
dates. The bubble memory chips being used on the board are
stationary; however, plug-in type cassettes are also available.
Compared with other magnetic storage devices-tape cas
settes or floppies-bubble memories are more suitable for use
in an automobile because of their nonvolatility, compactness,
and nonmechanical operation. The average access time is 15
msec and transfer rate is 100 Kbits/second. Bubble Memory
Interface Board, which was designed and built at CMU, inter
faces the bubble memory controller to Multibus. It contains a

nTI"Tllnr A
r.ll.luru:. M

SOLID IMAGE

BUFFER

FLASH IMAGE

BUFFER

FLASH IMAGE

BUFFER

SOLID IMAGE

BUFFER

PICTURE B

DMA Controller and other control logic for bubble memory
110. The 110 can be done in DMA mode or Processor 110
(PIO) mode, which uses a busy-wait scheme. DMA mode is
used for transferring entire files and saves processor time
especially when the processor is busy generating map pictures.
PIO mode is used when bubble memory is accessed in a
RAM-like fashion where only a single page of a file is accessed
as in a directory or table look up. Since bubble memories
provide fast access and small page size (32 Bytes/page), this
kind of operation is feasible and helps to save RAM space by
not having to keep the entire file in RAM for quick access.

The Display Board houses a 128 x 128 dot matrix fluo
rescent display device (by Noritake), and driver circuitry, and
was designed at CMU. The Display Interface Board, also
designed at CMU, contains four 16 Kbit static RAM display
buffers, control logic, and the interface to Multibus. Figure 5
shows a simple logic diagram of display control. In general,
the processor generates 128 x 128 bit map images (16 Kbitsl
image) and writes them into one of the display buffers. At one
time, the Display Interface can store two pictures, shown as
PICTURE A and PICTURE B in Figure 5. A picture consists
of two images-a solid image and a flash image-as will be
explained later. Although only one picture is displayed at a
time, the reason for storing two pictures is the following. It
takes 15 msec to display an image already stored in a display
buffer, whereas it takes a few seconds, depending on the
number of splines in the image, to generate it. Hence, in
changing pictures, the new picture is written into the unused
buffer ,while the other buffer is being displayed. When the

, generation of the new picture is finished, the buffer select
signal is switched and the change is sudden. Also, a full-scale

Select A

MUX DISPLAY

Select B

Figure 5-Display control

picture of a block is kept in one buffer while the other is used
for a zoomed part during a zooming process. Since the full
scale picture has to be restored frequently to zoom into differ
ent parts of it, time is saved by not having to regenerate it
every time.

The flashing effect is realized by using two images per pic
ture, and by periodically taking the exclusive OR of the flash
image and the solid image buffers. The flashing period is 1
second, 0.5 second each for on and off. The approach consid
ered first was to store the image in two buffers, where one
image would be complete and the parts to be flashed would be
missing in the other. The flashing could be achieved by peri
odically switching between the two buffers. However, since
the parts to be flashed are much smaller than the parts that
stay solid, it would save processor time if only the parts to be
flashed are written into the flash image buffer instead of the
parts that stay solid. In this case, flashing is achieved by taking
the exclusive OR of the two buffers periodically.

For speech generation, a TSI PROSE 2000 speech synthe
sizer is used, which converts text to speech algorithmicly. The
Speech Synthesizer Board is mounted in a box together with
a speaker that is separate from the rest of the system. For
connection, one of the serial lines from 68000 is used. The
same serial line is also connected to the keyboard; however,
this does not constitute a problem since they do not operate
in parallel. (The speech board can also be activated and deac
tivated by using control characters.) The other serial line is

CARGuide-On-Board Computer for Automobiles 701

used for connection to a host for downloading data to change
or update the database when needed. In an actual
implementation the host can be a remote databank. The same
serial line can also be used for receiving inputs from a naviga
tion device when installed in a car.

STREET MAP DATABASE

Organization

The street map is divided into square blocks, each corre
sponding to one grid in Figure 6, covering a 0.5 square mile
area. The block organization is reflected in the majority of the
database. The street map database contains three types of
information: identification information relating street names
to intersections, graph and route information about connec
tions between the intersections, and pictorial information for
picture generation. Figure 7 shows a sequence of block dia
grams representing the manipulation of the database and the
use of each information type. Steps 1 and 2 represent the
identification operations; where an intersection (given street
names) or street names (given an intersection) are deter
mined. Steps 3, 4, and 5 represent the operations on pictorial
data. Given a block, step 3 determines the list of splines
constituting the block picture. Step 4 is the incremental pic
ture generation step, where a spline expression is converted to

Figure 6-Portion of Pittsburgh street map

702 National Computer Conference, 1984

1) Street Name ~ Search r-. Street #
Name

Street # 1 Block #
2)

Street # 2 Intersection #

BIOCk#-1
Find ~ Spline# list 3)

Splines

Block #
Generate

4) Spline #

View
Spline

Bit map segment

Intersection #
5)

Block#
Flash point

6) ~
Block#list

Block # 1.lntersection # 1 Find
Intersection # list

Block # :?Intersection # 2 Route
I r Spline:: list

Figure 7-Database manipulation

a segment of the bit map picture~epending on the current
view boundaries and magnification of the picture, which vary
during zooming. Step 5 is used to flash an intersection point
in the picture. Step 6 represents the route-finding process
where graph and route information is used. Given two inter
sections, an optimum route is found and a list of blocks con
taining the route, a sequence of intersections to be visited in
each block, and a list of splines representing the street seg
ments forming the route are determined.

Identification Information

Street names are organized as an n -ary tree, called the
name tree, where n is equal to five. Each node of the tree is
stored in one page of the bubble memory. During a search of
the tree, bubble memory is accessed in a RAM-like mode, one

Street -Intersection
Directory
.----
f---
~

Street# ... ----::-

t
\

------==:::;

-
-
--
-

--
Block

Directory

Street-Intersection Table

Street II

-.....,
Intersection-Street

Directory

BlocK II Intersectinn II

I-------l+- Intersection It

Figure 8--Street intersection data

node (page) per access. Therefore, larger n means fewer ac
cesses and a shorter search time since access time is the dom
inating factor. Each node of the tree contains four street
names. A street name consists of 10 characters for the name
and an encoded type affix for ST., AVE., RD., HWY., etc.
Although 8 characters are enough to identify a street name, 10
characters were used in order to fully generate the names for
speech. Four street names are packed into a 32 byte page
using the following scheme. The alphabet is restricted to cap
italletters and numerals; hence, a 6 bit ASCII code is used for
each character. For each name, 4 bits are used to encode the
type affix, requiring a total of 8 bytes per street name. There
is a mapping between the nodes of the tree and the corre
sponding page addresses of the bubble memory, which min
imizes the average access time to a node during a search. 3000
names can be searched in 5 accesses (logs3000) in 20 msec.

Figure 8 shows the portion of the database containing the
information about intersections. Each street is given a number
(street#) corresponding to the index of the street name in the
alphabetical ordering. Given the level, node, and box a street
name occupies in the name tree, the street# can be computed
directly if the total number of streets in the name tree is
known. Similarly, given a street#, the location of the street
name in the name tree is directly computed. Two street#s
define a unique intersection. Given two street#s, Sl and Sz, Sl
is used to index a pointer array called the street-intersection
directory. The pointer points to the beginning of the list of
intersections on Sl which are stored in the street-intersection
table (the end of the list is determined by the next pointer). A
search over the list for S2 determines the intersection of Sl and
S2' An intersection is represented by a block# and an
intersection# within that block. The block# specifies the geo
metrical block containing the intersection. At the block
boundaries, virtuai intersections are defined with imaginary
streets called BTOP, BBOTTOM, BLEFT, and BRIGHT.
Also, in order to include dead-end streets, an imaginary street
DEADEND was defined whose intersection with a dead-end
street gives the street's end point. Going from intersections to
street names uses the following path. A block directory is used
to point to a portion of the intersection-street directory corre
sponding to a block (Figure 8). Given an intersection# Ix, Ix
is used as an index to get the street#, Sl, for one of the streets
forming Ix. The street# for the other street, S2, is obtained by
consulting the street-intersection directory for Sl and searching
for Ix in the street-intersection table to get S2. Then Sl and Sz
are used to compute the location of the corresponding street
names in the name tree.

The average street map block contains about 80 real inter
sections and 30 imaginary ones. In the implemented portion
of the map, central Pittsburgh, the average number of inter
sectionslblock is 145. There are approximately 60 street
names per block, and 2.5 intersections per street. The
identification data-street name tree and street-intersection
data-require a total of 2.2 Kbytes per block on the average.

Graph and Route Information

The information on the connectivity of the intersections in
a block is stored using the data structure shown in Figure 9. A

Block
Directory

Adjacency
Directory

Block # -+�__---=-::--1"""-------.. -------.1-----1

CARGuide-On-Board Computer for Automobiles 703

Adjacency Table

IntBfsection # Direction Weiaht Soline #

I------~~ ~I---~-'-I ~--------------4_----------r_------~------_; • I~ f-----------+-----+------+------1
r'

I--------------~-----------+------~I------~

Figure 9-Intersection adjacency data

block directory is used to identify the portion of data be
longing to each block. Given an intersection# ~, ~ is used to
index an adjacency directory that points to the beginning of
the list of intersections adjacent to Is. The list is a part of the
adjacency table that also stores information about the con
necting edges from Is to the adjacent intersections. The term
edge is used to indicate the graph nature of the street map. A
street segment connecting two intersections may have differ
ent weights for each direction (as in one-way streets). There
fore, edge implies a directed street segment. For each inter
section in the list, direction indicates whether the adjacent
intersection lies to the north, south, etc. of Is. Eight directions
can be encoded, including intermediate ones. Each edge is
given a weight which is a measure of the time to travel that edge.
The weighting scheme is the foundation of the optimum
route-finding operation. Currently, the weights are deter
mined by dividing the physical distance of the road segment by
the maximum allowable speed in that road, and normalizing
to a 12-bit integer. A more accurate measure would be to use
the average speed instead of the allowable speed, but such
figures were not available. A spline # is assigned to each edge,
which is used to access spline data in the pictorial database to
construct the shape of the edge. In general, two edges based
on the same street segment have the same spline#. A spline#
consists of a one-bit type tag that indicates whether the seg
ment has linear or nonlinear shape, and an index to a segment
table in the pictorial database. There are 350 edgeslblock (2.4
edges/intersection), and the adjacency data require a total of
1. 7 Kbytes/block on the average.

Connectivity among blocks is represented using two types
of information: a list of intersections connecting the graphs of

9 10 6 89 10 11
5

8 5 7
Block1 t Block2 4

4 6
7 3

1 2 3 1 2

8 9 10 8 9
7 5

4 7
6 Block3 Block4

4
5 3 6

1 2 1 2 3

Figure 10-Adjacent block boundaries

two adjacent blocks, and a sequence of blocks connecting two
nonadjacent blocks. Between two adjacent blocks, virtual in
tersections at the shared boundary constitute the list of inter
sections connecting the two blocks. Since those intersections
may have different intersection#s in each block, correspon
dence between intersection#s at the two sides of the boundary
must be established. Using the numbering scheme shown in
Figure 10, the correspondence can be established by storing
minimal information. Within each block, intersections at a
boundary are numbered sequentially and a convention is used
to increase the numbers along a boundary in the same direc
tion for all blocks (left to right and bottom to top in Figure
10). The correspondence on intersection numbers between
two adjacent blocks (Block 1 and 2 in the figure) is established
by storing the range of intersection numbers at the shared
boundary in one block (4-6 in Block 1), and an offset from
one block to the other (+ 2 from Block 1 to Block 2).

Between nonadjacent blocks, connectivity can be deter
mined based on the connectivities between adjacent blocks.
However, to avoid a long search in route-finding operations,
block sequences based on predetermined routes are used to
connect nonadjacent blocks. The block sequence represents
the blocks to be traveled through, going from one block to the
other. Figure 11 shows the data structures used to store that
information. Given source and destination blocks Bs and Bd,
the pointer matrix called the Interblock Route Directory is
used to point to a list of blocks connecting Bs to Bd. For each
block in the list, an entry and an exit point are stored, which
are virtual intersections on the block boundary and are used
to determine the actual route in the block. Since interblock
routes mostly correspond to major routes in the map, usually
more than one Bs-Bd pair share the same route. Thus, those
block pairs point to different parts of the same interblock
route in the Interblock Route Table. For a 100-block area, the
interblock route data would require 1.8 Kbyteslblock.

Destination Block #

+ Interblock Route Table

BlQck II Entrv II Exit II

Source Block # ---.

--........

Inter block Route
Directory

Figure ll-Interblock connectivity data

704 National Computer Conference, 1984

Block

~O'k#~
RC

Linear Segment Table

-'" ' :SJart eta Plr

'-

(a)

Coefficient
List

A B

~

I

Block

BIO'k#~
Non-linear Segment Table

!:ltart 'I:'lf X,'Y eta A B

RC - '------I

..
(b)

Figure 12-Picture database: (a) linear segments; (b) nonlinear segments

Pictorial Information

The pictorial data were obtained digitizing a regular street
map and using an image-processing system to extract the line
data representing the streets. Since the picture consists of only
lineal features, the data was organized in vector format rather
than in raster format. If the purpose were only to generate a
street map picture on the display, 100 x 100 bit map represen
tation for each block would be more efficient. It would require
10Kbitslblock (somewhat wasteful of storage since the aver
~ge hlock picture consists of 1200 bits) and no computation,
compared with 7.4 Kbits/block and 1.8 seclblock computation
time of the current vector scheme. However, it was necessary
to associate each street segment with a geometric entity in
order to flash selected routes against a solid picture. Further
more, vector representation is more convenient for the zoom
ing process. Figure 12 shows the structure of the picture data
base. The database is based on the geometric entity called
segment, which represents the shape of a street segment con
necting two intersections. The database consists of two parts:
a linear segment part (Figure 12(a)), and a nonlinear segment
part (Figure 12(b)). A tag bit in the spline# is used to deter
mine which part to access.

The linear segments represent street segments that have
either a straight line shape or can be closely approximated by
one, 85% of the segments fall into this category. Using coordi
nates in the range 0-100, a linear segment is constructed using
the straightforward algorithm

for x = start to start + delta{
y=Ax+B;
display (x,y);
x = x + 1;

where x and yare interchangeable. The entry XIY in the linear
segme?t table indicates whether x or y is the independent

variable. To construct the line smoothly, without any missing
dots, A has to be smaller than or equal to one. Thus, in
constructing the database, the independent coordinate in the
line equation is chosen depending on the slope of the line
segment. Since, on the average, two to three linear segments
are part of the same street, they use the same coefficients.
Hence, some storage is saved by having a separate coefficient
table which the segments point to.

Nonlinear segments constitute approximately 15% of the
segments and were initially planned to be represented by
cubic splines. However, an initial testing was done to compare
the effectiveness of cubic splines with piecewise linear approx
imation. It was discovered that the extra effort used in fitting
the cubic splines and the computation overhead in construc
tion did not bring an appreciable improvement in the final
picture over a piecewise linear approximation. If the picture
size were greater than 100 x 100, the result would probably
have been different. Figure 12(b) shows the data structure
used for representing nonlinear segments. On the average, 2.2
iine segments were used to construct a nonlinear segment.

ROUTE FINDING

For route finding, a divide and conquer method (dividing the
map into blocks), precomputed routes (interblock routes),
and a shortest-path algorithm (Dijkstra's algorithm6) are
used. Directly using a general shortest-path algorithm is not
efficient for street maps. Since street maps have Euclidian
properties, short streets between distant intersections do not
exist. Therefore, it is reasonable to partition the graph into
local sub graphs , using a divide and conquer method. It is
assumed that sub graphs do not overlap but that two subgraphs
are connected along a boundary. If two vertices belong to the
same subgraph, it is assumed that the shortest path between
the two vertices is contained within the subgraph. The block
partitioning of the street map is based on this divide and
conquer idea. For now, it can be assumed that each block
consists of one connected subgraph; exceptions will be
explained later. The term "shortest route" must be inter
preted as the route with shortest estimated driving time. With
in a block, the shortest route is determined using the shortest
path algorithm. From one block to an adjacent block, the
shortest-path algorithm is used successively for each block
with connections across the boundary. From one block to a
nonadjacent block, the problem is more difficult. One method
could start with the source block and carry a directed search
through adjacent blocks toward the destination block, using
the directionality in the street map. Another method might be
to store predetermined routes from each block to all other
blocks. The second method requires much less computation
than does the first one. However, if the predetermined routes
are stored as sequences of intersections, much storage will be
needed. A compromise was made by storing only the se
quence of blocks containing the route and storing an entry and
an exit point on the boundaries for each block in the sequence
(see Figure 13). The route between the entry and exit points
within each block is computed using the shortest-path algo
rithm. If there are b blocks in the map, b 2 routes need to be

Figure 13-An interblock route

stored. By using pointers to eliminate duplicate storage of
shared routes, for 100 blocks approximately 200 Kbytes is
required in secondary storage.

Given source and destination intersections Is and Id, three
different schemes may be used to determine the optimum
route from Is to Id depending on the relationship of blocks
containing Is and Id. If Is and Id are in the same block, the
route is determined using Dijkstra's algorithm. Starting with
Is, the set of intersections closest to Is is expanded until Id is
included in the set. In general, the algorithm requires 0 (n 2)
computations where n is the number of intersecti\>ns. One
block has 145 intersections on the average, but usUally the
destination is reached in less than 10K computations. To de
termine a realistic optimum route, the edges between
intersections are given weights that correspond to the time to
travel that edge rather than to the edge's physical length. To
include some of the human factors in determining an optimum
route, right turns are given a one-point (equivalent to one
minute) penalty, while left turns are given a two-point penal
ty. Also, each intersection crossed along the route adds a
half-point penalty. The weights estimating the travel time and
the penalties can be made more realistic in an actual
implementation if statistical data are available.

If Is and Id are in adjacent blocks, the route calculation is
carried as follows. Figure 14 shows eight blocks that are con
sidered to be adjacent to Block 0, Blocks 1-4 are strictly
adjacent, and Blocks 5-8 are semiadjacent. If Is is in Block 0
and Id is in Block 3, first, shortest routes from Is to inter
sections 1 and 2 on the Block 0-3 boundary are calculated

5 1 6

4 0 2
1 2

7 8

8 3 7

Figure I4-Routes to adjacent blocks

CARGuide-On-Board Computer for Automobiles 705

using Dijkstra's algorithm. Using the total travel times to 1
and 2 as base values for the equivalent intersections 7 and 8 in
Block 3, Dijkstra's algorithm is repeated for Block 3 until Id
is reached. If Id is in Block 8, one route is found by going from
Block 0 to Block 3 to Block 8, another route is found by going
from Block 0 to Block 4 to Block 8. Comparison of the two
routes determines the shorter one. Using this scheme, the
route to a strictly adjacent block (Block 3) is determined in 2N
computations, where N is the number of computations to
execute Dijkstra's algorithm in one block. The shortest route
to a semiadjacent block (Block 8) is determined in 4N
computations. If the same graph area were not divided into 9
blocks, the calculations would take 92 N computations since N
is O(n 2

).

If Is and Id are in distant blocks, the route is found using the
scheme of carrying the optimum route calculation from one
block to a strictly adjacent block (Figure 13) along a prede
termined block sequence, as explained earlier in the section.
If the route passes through m blocks, mN computations are
required.

So far, it has been assumed that each block consisted of one
connected sub graph and thus that every intersection can be
reached from another intersection within the block. However,
in a strictly square grid partitioning of the map, a block may
have intersections that are disjoint from the rest of the inter
sections in the block. Usually those intersections are near the
boundaries, on extensions of streets from a neighboring block
(fortunately, such intersections account for less than 5% of
the intersections). Another case is when the block is phys
ically divided into two sections with no connections in be
tween (as a block with a river passing through). If Is and Id are
in the same block; but after executing Dijkstra's algorithm, it
is found that Id cannot be reached, then Is and Id are not
connected within the block (Figure 15). In that case, connec
tions from Is and Id to the block boundaries are determined (to
boundaries 1, 2, 3, 4 from Is, and to boundaries 3 and 4 from
Id in Figure 15). Identifying a block boundary that can be
reached from both Is and Id (boundaries 3 and 4), the route
finding algorithm is carried to the block adjacent to that
boundary. If there is more than one boundary that can be
reached from Is and Id, the one with the shortest total travel
time to Is and Id is given priority (boundary 4).

The divide and conquer method and using predetermined
routes bring considerable improvement in performance over a
direct application of a shortest-path algorithm in route find-

1

4 2

3
Figure IS-Disjoint intersection in a block

706 National Computer Conference, 1984

ing. By partitioning the map into blocks, the route-finding
problem is restricted to local subgraphs around the source, the
destination, and along the predetermined routes. However,
the storage required for the predetermined routes increases
squarely with the number of blocks. For a large number of
blocks, a higher-level partitioning of the map can be made
where blocks are grouped into regions. A hierarchical par
titioning of the street map seems a viable approach for route
finding in street maps.

CONCLUSION

The basic objective for this project was to demonstrate the
feasibility of building a sophisticated on-board route guidance
system using current technology. There were two other mo
tivations for this work. In building customized systems, it is
conceivable that all levels of the system be well integrated and
tailored for the application. Hence, one motivation was to
build a complete system for a specific application to evaluate
the idea. Designing CARGuide invoived an integrated effort
at all levels of the system-from secondary storage up to the
user interface-with the purpose of building an on-board
route guidance system. It was observed that CARGuide is
especially efficient because the hardware and software were
designed hand in hand. The other motivation was to test the
feasibility of actually building customized systems in a re
search environment so as to assess capabilities for building
larger systems. It took less than a year to design and imple
ment CARGuide. The CAD tools, and software and hard
ware development facilities at CMU were instrumental in
realization of the project.

As a route guidance system, CARGuide demonstrates that
an on-board computer for route guidance is realizable using
current technology. An on-board computer is a practical alter
native to centralized route guidance because an on-board sys
tem is self contained and not affected by transmission limita
tions. CARGuide provides sufficient functionality and ease of
use to be an effective system. Two major components of
CARGuide-the secondary storage and the display device
determine the capacity and sophistication of the system. More
than 1 Mbyte of secondary storage is needed to implement the
entire Pittsburgh street map. Bubble memories are a good
candidate for secondary storage because they provide high
density, nonvolatile, and compact storage. The current 500
Kbyte capacity of CARGuide can be upgraded to 2 Mbyte by
using 4 Mbit bubble memory chips. Extra secondary storage
can be used to enhance the functionality of the system by
storing an information database such as on points of interest
in the city. The quality of the display device determines the
type of map pictures that can be constructed. A dot matrix
display is suitable for route guidance purposes. A portable

CRT is needed to construct detailed map pictures similar to
regular maps.

ACKNOWLEDGMENT

We would like to thank Chang Hsin Chang for his major
contribution to this project in preparing the pictorial data for
the Pittsburgh street map. We also would like to thank Andy
Gruss of CS Engineering Lab, and CMU Speech Group for
providing us hardware support, and Dave McKeown for the
use of CMU image-processing facilities. This research was
supported in part by Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 3597, monitored by the
Air Force Avionics Laboratory under Contract F33615-
81-K-1539.

REFERENCES

1. Elliott, R. J. and Lesk M. E. "Route Finding in Street Maps by Computers
and People." Proc. MAl, 1(1982), pp. 258-26l.

2. Pierce, A. R. "Bibliography on Algorithms for Shortest Path, Shortest
Spanning Tree, and Related Circuit Routing Problems." Networks (6).
1975.

3. Floyd, R. W. "Algorithm 97: Shortest Path," Commun. ACM (5),1962, p.
345.

4. Dial, R. B. "Algorithm 360: Shortest-Path Forest With Topological Order
ing," Commun. ACM (12), 1969, pp. 632-633.

5. Pape, U. "Implementation and Efficiency of Moore Algorithms for the
Shortest-Path Problem." Math. Progr. (7), 1974, pp. 212-222.

6. Dijkstra, E. W. "Note on Two Problems in Connection With Graphs."
Numer. Math, 1(1959), pp. 269-271.

7. Caldwell, T. "On Finding Minimum Routes in a Network with Turn Penal
ties." Commun. ACM (4),1961, pp. 107-108.

8. Tarjan, R. E. "Fast Algorithms for Solving Path Problems." J. Assoc.
Compo Mach. (28), 1981, pp. 594-614.

9. Aho, A. V., Hopcroft, E. J., and Ullman J. D. The Design and Analysis
oj Compucer Aigorichms. Addison-wesiey, i974.

10. Vaziri, M., and Lam, T. N. "Perceived Factors Affecting Driver Route
Decisions." J. Transp. Eng., 109, (1983), pp. 297-311.

11. Tsumura, T., Fujiwara, N., Shirakawa, T., and Hashimoto. M. "Automatic
Vehicle Guidance-Commanded Map Routing." Proc. IEEE Vehicular
Technology Conf., IEEE, 1982., pp. 49-54.

12. Tagami, K., Takahashi, K., and Takahashi, F. "Electronic "Gyro-Cator"
New Inertial Navigation System for Us~;n Automobiles." Proc. Int. Symp.
on Automotive Technology and Automation (Vol. 2), ISATA, 1982, pp.
145-161.

13. Feng, P. D., and Hung, J. C. "Gyrocompassing on a Moving Land Vehi
cle." Proc. 15th Southeastern Symp. on System Theory. Reading, Mass.:
Addison-Wesley, 1983, pp. 254-257.

14. Carter, D. A. "Using Loran-C for Automatic Vehicle Monitoring" Naviga
tion (29), 1982, pp.43-46.

15. Nakamura, 0., Tsuzawa, M. and Hiraoka, S. "On Automobile Traffic
Information and Control System." lEE Int. Conf. Road Traffic Signaling.
lEE, 1982, pp. 165-167.

16. "Mobile Graphics-State of the Art in Phoenix," Mobile Radio Tech
nology, No.1, Jan. 1983, pp. 18-22.

17. Goodman, D. "Automotive Navigation Systems." Radio-Electronics, No.
54, July 1983, pp. 43-46.

Telecommunications and business strategy:
Basic variables for design

by ERIC K. CLEMONS
University of Pennsylvania
Philadelphia, Pennsylvania

and
PETER G. W. KEEN

Nolan, Norton & Company
Lexington, Massachusetts

and
STEVEN O. KIMBROUGH
University of Pennsylvania
Philadelphia, Pennsylvania

ABSTRACT

The problems of telecommunications planning and management are rapidly be
coming more complex and more pressing: Significant advances in technology have
greatly increased the capabilities of communications networks, costs are declining,
and simultaneously deregulation and the AT&T divestiture have introduced a con
fusing array of new options. And yet the strategic opportunities for application of
telecommunications-the opportunities to use telecommunications and information
systems to alter in some fundamental way a firm, its position in its marketplace, or
its relationships with customers and competitors-have never been greater.

This paper presents a preliminary framework for TC systems planning. It is not
concerned with detailed network design, either local or long-haul. Rather, it
progresses from determinati()n of the network's purpose and essential functionality,
through general policy, financial considerations, and analysis of uncontrollable
factors, to conclude with determination of design targets that must then be met by
the detailed network design.

This paper was written while Steven O. Kimbrough was at the Massachusetts Institute of Technology, Cambridge,
Massachusetts.

707

INTRODUCTION

It is commonly accepted that communications systems have
strategic importance. 1,2 This is not only true for a large num
ber of firms (and other organizations), but it is particularly
significant for firms representing a large percentage of the
world's economic activity. Knowledge, at more than a super
ficiallevel, of how and why communications are strategically
important is only beginning to emerge. There is some litera
ture and there is some oral tradition. 3

-
5 What we call the

strategic network design problem-understanding how strate
gic opportunities, presented or augmented by communica
tions technology, can be recognized and translated into tactics
and operations-lies almost entirely within the oral tradition
and is not well developed. The purpose of this paper is to
contribute to, if not initiate, the literature on the problem of
strategic network design (SND). This problem covers both
design of new networks and design of changes to existing
networks.

Our approach to the SND problem is to begin with a frame
work. The framework-which is the main subject of dis
cussion in this paper-is essentially a structured list of what
needs to be considered in solving (or merely handling intel
ligently) the strategic network design problem. Our aim in
developing the framework has been to be complete, clear, and
concise. Moreover, we hope the various elements in the list
are "conceptually orthogonal," that is, pretty much entirely
distinct.

The name of our framework is the Communications Net
work Design Template (or merely "the template"). Implicit in
the template are two assumptions. The first is that a top-down
and decomposition approach is appropriate and will prove
useful. For problems as difficult and complex as the SND
problem, we can hardly imagine a plausible alternative to this
assumption. The second assumption is that the common tri
partite framework (distinguishing strategic, tactical, and oper
ational decisions in the firm) is roughly applicable in the
present case. Table I illustrates how we interpret the frame
work in terms of the strategic network design problem.

TABLE I-Framework in terms of strategic network design

Level of Decision
Making

Strategic

Tactical

Operational or
Implementation

Example Problems for Design of
Communications Networks

Where and how can we use communications for
business advantage:

What should our network do? How much should
we invest in it?

How reliable should a given network service
be?

Telecommunications and Business Strategy 709

Our aim is to provide a method that can be used linking the
strategic business objectives of the firm with the choices
among options presented by communications technology. The
framework is, in part, a communication device, meant to
serve various parts of an organization (e.g., strategic plan
ning, telecommunications, data processing, user groups, etc.)
involved in the SND problem. Also, we intend the framework
to facilitate and clarify the many tradeoffs that are made,
explicitly or implicitly, when firms handle the strategic net
work design problem.

Work on the Communications Network Design Template is
hardly complete. While we believe from direct and indirect
experience that the framework has significant face validity, we
assume that considerable effort needs to be made in validating
(and amending) the template. In addition, there is enormous
room for extending the framework and for investigating the
nature of interactions among the elements in the template.
Our hope is that the response to this paper will further this
work of validating and extending the template.

THE FRAMEWORK: A COMMUNICATIONS
NETWORK DESIGN TEMPLATE

Our SND framework is a tree, expressing decomposition as it
branches downward. At the most general level, the frame
work is a list of strategic communications factors, which we
divide into five kinds: application opportunities, general pol
icy, uncontrollable factors, pricing and costing, and network
design variables (NDVs). Figure 1 displays the beginning of
the template.

Each of the Level 1 factors can be broken down and ana
lyzed. This decomposition is the subject of the next five sec
tions of this paper. In this section we confine ourselves mainly
to discussion of Levell.

We mean Level 1 to be read left to right. Our suggestion is
that in dealing with the strategic network design problem, one
begins by taking a look at application opportunities. If these
seem favorable, one then develops some general policies for
the system, examines uncontrollable factors, and so on. Of
course, we intend this as only an approximation to a good

Level 0

[

Strategic Communications
Factors

Levell application general uncontrollable pricing network
opportunities policy factors and design

costing variables

Figure l-SND template

710 National Computer Conference, 1984

procedure. Even if one proceeds left to right, there will in
evitably be much thinking ahead, thinking behind, and
integrating.

By "application opportunities" we mean that the first step,
in the process of dealing with the strategic network design
problem, is to take a good, high-level look at what an invest
ment in communications might do for the firm. Even beyond
that, initially ignoring the costs of this investment, we seek to
determine where enhanced communication capability would
be of significant benefit.

General policies, the second Level 1 entry in Figure 1, are
general, high-level rules that serve to determine what will and
will not be considered when designing a network or a network
improvement. The purpose of general policies is to delimit the
decision space for the strategic network design problem by
ignoring alternatives that the organization will not accept for
other than straightforward telecommunications (TC) reasons,
and thereby to save time and money when attempting to solve
the TC design problem. By their nature, general policies are
basic assumptions that can be made early on and probably will
not have to be challenged later. Risk is an example of an area
in which it may be advisable to make general policy. There are
different sorts of risks associated with network design and
operation. We believe that general guidelines on acceptable
levels of risk, informed by an awareness of the application
opportunities, will usually be valuable to those making tech
nical design decisions relating to the handling of errors and
system failures, for example.

Uncontrollable factors are things that may affect the value
of a proposed network improvement, or that may limit the
options and opportunities available to the TC designer, with
out at the same time being under the control of the decision
maker or firm in question. For example, statutes and govern
ment feg-ulatioiis arc (u.sually, at least "y"C,,rithin the time hcrizc!1
of the network design effort) beyond the control of the firm.
On the other hand, reliability is not an uncontrollable factor
because it is possible to make design decisions that influence
reliability.

"Pricing and costing" refers to the financial aspects of a
proposed network improvement. Although the cost of net
work components is largely determined outside the firm and
cannot be controlled, the level of investment can be controlled
and it can be traded off against other aspects of a network,
such as performance. Thus, network costs are major design
variables. Pricing refers to the various methods and schemes
for recovering the cost of a network, and must be addressed
both within and outside of the firm.

Network design variables are those factors that acutally
determine the design and the functionality of a network. Of
course, they also carry or influence the value and the cost of
a network largely under the control of the firm when it designs
and implements the network. Reliability, mentioned above, is
a network design variable, as are performance, flexibility, and
other factors. Our basic idea for handling the strategic net
work design problem is to trade off network design variables
and pricing and costing options among each other, but to do
so in light of clearly understood application opportunities and
constraints imposed by uncontrollable factors. General poli
cies are heuristics for making the problem a bit easier.

We shall now discuss each of these Levell factors in greater
detail.

APPLICATION OPPORTUNITIES

Identifying application opportunities-identifying those areas
where developing or enhancing communication capabilities
can fundamentally change the nature of a business or a firm's
competitive position-is certainly the most difficult part of
communications systems design. Likewise, it is certainly the
most important. Before building a network, or before having
the technical design people begin work on a network, it is
necessary to determine its purpose. What precisely do we
want to do with it? Purpose and use imply functionality, which
then provides an essential starting point for detailed design.
But this does not convey the essentially ad hoc nature of
sensing a business opportunity and the communications strat
egy needed for it to succeed. On occasion, sensing the oppor
tunity, through insight, vision, or chance, offers a brilliant
corporate strategy. While it is not accurate to say that every
thing that follows is merely engineering, it is fair to say that if
technology or engineering are to produce enormous strategic
influence, they must be applied in support of significant cor
porate goals.

Unfortunately, we don't really know how to characterize
the process of identifying these rewarding areas that represent
opportunities for application of telecommunications. This is
not surprising. It will never be possible to provide simple
guidelines or a checklist for providing brilliant strategic in
sights about this or any other area. Moreover, we don't know
how to characterize the vision, creativity, and foresight to see
an opportunity and then design the organizational, communi
cations, and software systems to exploit it.

We have, however, examined a number of communications
based business innovations and can, therefore, begin to char
acterize innovations that were creative, well-matched to sig
nificant opportunities, and very successful. We draw on work
by Peter G. W. Keen on network "exemplars." We study
these examplars as surrogates for studying principles and
guidelines for finding opportunities; thus, we seek to improve
our foresight by improving our hindsight.

Beginning a Classification: Strategic Applications of
Communications

The following classification is based on our analyses of suc
cessful strategic application of telecommunications. This clas
sification is preliminary and incomplete, but we believe that
even in its current form it is useful. We classify, as follows,

1. By function, to trade bandwidth for some other scarce or
more expensive resource.

2. By desired result, adding value, creating a product or
service, decreasing or transferring costs.

3. By innovation, to create a connection, add another con
nection, or extend a connection.

Strategic applications, by function

This, in essence, involves trading bandwidth for another
scarce or more expensive resource. Moving corporate data
processing out of Midtown Manhattan is an example of trad
ing bandwidth for rent. Sending briefings to sales force via
videotext, or using full video teleconferencing in place of
monthly meetings are examples of moving bits in place of
people, or trading bandwidth for travel. And gaining tighter
control over a manufacturing process, reducing extra machine
stations and work in process inventory, can be viewed as trad
ing bandwidth for slack.

Strategic applications, by result

The previous paragraph dealt with the function of the tele
communications project-what direct, observable process
was being supported or replaced by moving bits. Here we treat
intent-why we are moving bits-and what result we hope to
achieve. We suggest the following three-way classification:
cost-avoidance; value-added, internal; and value-added,
external.

Cost avoidance occurs whenever telecommunications offers
a less expensive way of running the business in much the same
way as at present, such as the previous example of trading
bandwidth for rent. Internal value-added applications gen
erally involve running the business better, but usually are not
directly visible to clients and customers. An example of this
might be using videotext to keep a field sales force in close
contact with the head office.

It is the external value-added applications-the applications
directly visible to clients and customers-that offer most of
the opportunities for new products, new services, improved
market position, and generally strategic potential. Airlines
have long recognized that an airline seat on a particular flight
is a perishable good, in the sense that it has no value if it is not
sold at takeoff. Tour operators in the U.S. and the U.K. are
just recently coming to realize that the same is true of a
vacation, and that a customer who cannot get through the
phone queue, or is placed too long on hold, will turn to
another tour operator; at least one major operator is using
videotext to permit the customer to book directly, even if no
agent is available.

Opportunities for preemptive strike are particularly attrac
tive. Although the Merrill Lynch Cash Management Account
appeared only a few months before Shearsonl American Ex
press responded, and although years have passed, Merrill
Lynch still has six times Shearson's CMA customer base. Par
ticularly attractive targets for preemptive strikes are those
opportunities where the customer is unlikely to accept a sec
ond terminal; whoever gets the first terminal in will probably
have exclusive occupancy for a considerable period.

Of course, we look for opportunities to piggyback on exist
ing strengths. Sears Financial Services piggybacks on its exist
ing client or customer base, while Merrill Lynch exploits its
existing financial and investment experience and Shearson
exploits American Express's network. Sometimes the ex
ploited resource is TC- or technology-driven, as is the case

Telecommunications and Business Strategy 711

with the new and extremely successful Reuters financial data
services, which of course depends entirely on the network
developed initially for Reuters wire service.

Strategic application, by communications innovation

Sometimes the ability to exploit telecommunications will
require seeing the opportunity to eliminate a manual data
hand-off and place a new application, and a customer, directly
on our information system network. An example of this might
entail replacing a funds transfer operation, initiated by cus
tomer financial representative telephoning his contact bank
officer, with an operation where the customer at his own
terminal or work station directly enters the transfer request
into the bank's network. There are many advantages, not least
of which are the customer's feeling of speed, control, and
accuracy, and the bank's off-loading responsibility to the cus
tomer for keying errors and resulting delay of funds transfer.
This kind of innovation requires running a new wire. We offer
the following four-part classification of communications net
work innovation:

1. Run a new wire---e.g., customer-initiated funds transfer.
2. Run a longer wire---e.g., move the computing center.
3. Run a better wire-e.g., upgrade the network.
4. Run the first wire (like running a new wire, but relies on

exclusive occupancy)-e.g., put in a terminal that allows
the customer to order directly from your warehouse, and
to rely on you to manage his inventory.

Concluding Remarks on Application Opportunities

We believe that developing classification based on the three
axes introduced above will be useful in a first effort at produc
ing a theory of telecommunications for business advantage. It
requires a general understanding of many factors, of which
technology is the last:

1. What is happening in our business?
2. What business are we really in, and what opportunities

are we missing? (e.g., are we a news service? or any
information wire service?)

3. Who is, and who will be, our real competition? (e.g.,
another brokerage house? Citibank? Shearson/Ameri
can Express? Sears?)

4. Where can we run the business better?
5. How can we get, or who can get us, from the business

strategy to the technological solution?

GENERAL POLICY

General policy reflects decisions made before the TC design
commences, which reflect decisions more general in scope
than TC design, and which frequently are outside the scope or
charter of the TC design. These include questions about
whether there must be a backup network, whether a system
must remain IBM-compatible, or whether one should take

712 National Computer Conference, 1984

any box with less than a three-digit serial number. The deter
mination of what is a general policy consideration, rather than
a network design variable, is extremely context-specific and
will change not only with advances in TC technology, but with
changes in the firm, its management, and its environment. It
is probably not possible to offer general policy guidelines;
instead, we offer several areas that should be of interest when
considering policy for strategic network design. The template
for general policy variables is shown in Figure 2.

VENDORS

Multiplicity of Vendors

A variety of possible policies exist, including single vendors
(or a single vendor as much as possible); multiple vendors
with the architecture and protocols of a single vendor (e.g.,
they comply with IBM's SNA, but use plug-compatible equip
ment or incompatible equipment with protocol conversion);
multiple vendors and multiple architectures (e.g., because
you need to protect an installed base). At the opposite ex
treme of the last-mentioned policy is the single-vendor-we
are-an-IBM-(or whatever)-shop policy. It is worth noting that
a policy on vendor multiplicity will likely interact strongly with
system integration, a network design variable.

Quality of Vendors

It may be useful to set a standard or cut-off level (distin
guished from an aspiration level) for vendor quality. This may
be especially germane for hardware selection. There are many
ways of specifying acceptable vendors: listing them, listing a
reference group of vendors by quality (excellent, ok, poor), or
specifying a measure of vendor quality (e.g., price-to-earnings
ratio of stock, quality of reports by market analysts). All of
this can he done on any or all of several dimensions, including
management quality, financial stability of the firm, extent and
quality of servicing arrangements, and so forth.

I
Extent of

Change
Contemplated

Genpral Po licy

I
Vendors Services

and and Planning
Suppliers Functionality Securi ty Horizon

· Multiplel . Type of
Single Service

· Quality . Type of
Network

· Company . Level of
Strength Integration

· Vendor,
PTT,
VAN

• IBMI
everyone
else

Figure 2-Template for general policy variables

Risk

Services and Functionality

Without prejudicing detailed tradeoffs to be made later, it
may often be possible to promote general policies on what
functionality should be made available. We distinguish four
broad categories: voice (analog, digital, voice messaging,
etc.), data (transactions, inquiries, updates, file transfers,
etc.), image ("still pictures," mainly fax), and video (moving
images, including full-motion, full-color television, slow scan,
freeze-frame, etc.).6.7 We would put videotext under data.

Security

This is almost certainly an area in which general, high-level
policies need to be considered. There may be, of course,
circumstances in which security is not an issue, but we think
it likely that nearly always it will be worthwhile to consider
whether and how security matters. At the level of general
policy, it is common to distinguish three sorts of security
problems:

1. Leakage. Can the system be passively monitored and
information captured? Can this be detected?

2. Intrusion. Can, for example, an intruder change trans
actions or even initiate them? Can this be detected?

3. Destruction. Is the system safe from vandalism? from
malicious destruction of data or hardware?

A possible general policy on security would be a statement of
absolute requirements for security levels for various aspects of
the network and the services provided by it.

Planning Horizon

This is an important subject for general policy, if only be
cause the assumed planning horizon affects the level of uncer
tainty to be accommodated (the further the horizon, the
greater the uncertainty) and because it serves to limit the use
of advanced technologies (the nearer the horizon, the less that
anticipated technological, regulatory, or other developments
can be brought into the planning process).

Risk

Once more, this is a factor that should almost always be the
subject of a general policy. The question is what level of risk
should be undertaken. The issue of risk interacts with the
security issue, but involves much more. We divide risk into
four kinds:

1. Technical. Possible policy: Do not use equipment or
software that has not been on the market for at least one
year.

2. Financial. Possible policy: Design a network in which
costs are fairly insensitive to traffic levels, or design a
network in which cost trends are quickly monitored and
brought to the attention of management.

3. Operational. Possible policy: Invest heavily to get state
of-the-art functionality in network management and
fault diagnosis.

4. Management. Possible policy: Stick with hardware and
software familiar to present employees.

There are other areas that have potential for general poli
cies. In fact, any of the factors falling under the other Level
1 headings might be the subject for general policies. Much
work remains to be done by way of finding and clarifying the
subjects of general policy in the SND problem.

UNCONTROLLABLE FACTORS

These are the things that one can do little or nothing about,
but that may significantly affect the value of an implemented
(or attempted) communications system. The uncontrollable
factors may on occasion be the subject of general policies;
they will more often be the result of someone else's policies or
of the policies of some other organization. The phone compa
nies in the U.S., post, telephone, and telegraph (PTTs)
abroad, and industrial or trade organizations are all bodies
whose policies may result in our uncontrollable factors. Like
policy factors, they also limit the decision space in and of
themselves, and they may affect the tradeoffs made among the
network design variables.

As in the case of general policies, context often will deter
mine what the uncontrollable factors are and which are im
portant. So, following the strategy outlined in the section on
general policy, we have identified several types and sources of
uncontrollable factors. The template for uncontrollable fac
tors is shown in Figure 3.

Laws and Regulations

From the point of view of a firm using telecommunications
(rather than acting as a primary supplier of communications),
laws and regulations may perhaps be more significant factors
for operations outside the U.S. than for operations within the
country. This is the inevitable effect of regulation. Neverthe
less, the move towards deregulation of long-distance com
munications in the U.S. still has significant regulatory
consequences (especially at the local level) and, by greatly

Laws and
Regulations

stability

regulation and
deregulation

Uncontrollable Factors

Industry
Practice

standards

. codes, protocols,
practices

. cooperation

Organizational
Capability

· ability to deliver TC

· ability to design TC

· ability to manage TC

• ability to maintain TC

· ability to control TC

Figure 3-Template for variables corresponding to uncontrollable factors

Telecommunications and Business Strategy 713

affecting the telecommunications industry, deregulation will
importantly affect the options, and the economics of the op
tions, presented to users.

Industry Practices

There are numerous industry standards, emerging trends,
industry practices, and so on, that merit attention. Some ex
amples include IEEE standards; ISO OSI developments, such
as file transfer protocols and virtual terminal protocols; large
vendor standards, e.g., Ethernet, SNA, and other local area
network standards; and special practices, such as SWIFT and
CHIPS in U.S. banking.

Organizational Capability

Communications systems need to be developed and deliv
ered, then maintained. This requires management, coordi
nation, and control of people and other resources. The capa
bilities of one's organization in this regard often may have to
be taken more as given than as determined by management's
decisions. In any case, the extent to which organizational
capability in communications may be changed by education,
training, hiring, or other practices is something to be discov
ered and taken as an uncontrollable factor.

There are other categories of uncontrollable factors that
need to be identified and examined. What the critical uncon
trollable factors are, and in what circumstances they appear,
is largely unknown.

FINANCIAL CONSIDERATIONS

Financial considerations in TC planning can be divided into
components of cost and pricing mechanisms. These are sum
marized in Figure 4, which shows the template for financial
variables. Cost considerations are as in any other large
project. Components of costs are similar to those in a data
processing project.

Pricing mechanisms are similar to those employed in pricing
any other service. We may use incentive pricing-Iess-than
full-recovery pricing-to encourage use, particularly when we
want communications system use to displace current use of

Costs

Design

Implementation

Testing

Installation

Operation

Maintenance

Financial Considerations

I
I

Pricing Mechanisms

Strategies
incentive pricing
recovery pricing
profit center

Internal/External

Variability

Captive/Free Market
for Internal Users

Figure 4---Financial considerations

714 National Computer Conference, 1984

other resources. This will be especially important when we
want users to get over initial resistance and the effort required
to learn the new system. The most extreme form of incentive
pricing is to make communications a free resource, as most
users view their local telephone calls; when learning and suf
ficient user acceptance are accomplished, a less extreme form
of incentive pricing will usually be offered. As usage begins to
approach capacity, recovery pricing often ensues. Finally, in
a mature environment, the communications service may be
come a profit center, much as often happens with corporate
data processing.

This relatively simple state of affairs may be made more
complex by making distinctions between internal corporate
and outside users, or even among users by division, function,
or reason for system use. Rates may be guaranteed or vari
able, fixed, or sensitive to traffic, usage, and time of day.
Internal users may be captive customers or free to use com
peting outside services.

NETWORK DESIGN VARIABLES

Introduction to the Network Design Variables

Earlier sections of this paper deal with major strategic con
siderations, general policy, external or uncontrollable factors,
and financial and economic factors that influence or constrain
communications system design. Generally, these factors im
pose design restrictions that must be observed, and thus place
restrictions on designs that must be evaluated. This serves to
delimit the solution space that must be examined.

In this section we address those aspects of TC service-per
formance, flexibility, functionality, and quality of service-
.... 1-..0" n 1-..;.0,... ___ + ,,1 h .. ,. +hr... _____ _;,... ; __ .("1 __ + u _l
L1J"'" (LJ.\,,;' ,",UUJ"",\"tL LV ,""VI..I\,"'VI. U] L.U\..I \..rV.lJ.lJ.J..lUJ..IU U .. J.VI.J.3 il\..rLYVVJ.A

designer. That is, we consider here what might be called the
controllable or discretionary network design decisions. We do
not consider long-term optimization through algorithms for
backbone network design, or local premises optimization
through local-area networks; in fact, in this paper we do not
even discuss the processes by which these designs might be
developed. Rather, we discuss setting objectives-targets and
ranges-within which the design can operate. We also treat,
at least implicitly, tradeoffs: performance vs. cost, quality of
service vs. complexity of maintenance, etc. Subsequent pa
pers will cover these tradeoffs more explicitly and apply them
to the network design process. Network design variables are
summarized in Figure 5.

Nature of Service

Performance is the first factor to be considered in the tem
plate for NDVs. As shown in Figure 6, this can be further
subdivided into three categories:

Network Design Variables

I I
Nature of Service Flexibility Quality of Service

Figure 5-0verview of network design variables

I
func tionali ty

type of service
voice
data
facsimile
video

single or bi
di rectional

Nature of Service

functional
integration

. work flows

. handoffs

process

access points

I
throughput

and response
time

peak. average,
worst case

. present? time frame

Figure 6--Performance variable template

1. Functionality. What types or classes of communication
service are provided?

2. Functional integration. Are system-to-system hand-offs
and application-to-application hand-offs automated? Or
does the word processing operator type out the message,
tear it off, and hand it to the telex operator for rekeying?

3. Throughput, delay, and response time. How long to get
a line? to get a message out? to get acknowledgment of
receipt?

Functional integration is particularly important. To the extent
that we can avoid the rekeying of information on system-to
system or application-to-application handoffs, we can begin to
receive the full benefits of our applications and communica
tions systems.

Throughput and response time are treated more fully in the
section on quality of service. Below certain levels, however,
they represent changes not just in degree but in kind. Five
minute response time, for example, precludes interactive
l:umpuiing.

Flexibility

Of course, the only network that will not be outgrown is one
that is not used. Networks, like all other data processing sys
tems, will require extension, modification, and repair. We
are, of course, concerned with the ability to make needed
changes. We are especially interested in the sensitivity of net
work cost to changes in traffic: If traffic increases by 15% can
we add capacity? Or will we find that our switches block, in
which case we can only add capacity by replacing components.
Figure 7 shows the flexibility template.

Quality of Service

We divide quality of service into two coarse categories:
performance and robustness. These are then further divided
into seven quality-of-service design variables, as shown in Fig
ure 8.

Reliability of service

We list some of the standard measures for system reliability:
mean time between failure; mean time to repair; percentage
of time operational; failure mode-degradation of service

I
Ease of Change

Cost

Disruption of Service

Is incremental expansion
possible?

Time frame

Type of Change

Expansion

Reconfiguration

New functionality

New applications
and services

Temporary Outages

Figure 7-Flexibility variable template

(fail-soft) or hard crash; and undetected error rate. We also
note that the significance of reliability measures is extremely
dependent on the nature of applications being supported. A
single bit error in video conferencing produces snow; in pro
cess control it's an outlying reading corrected in a fraction of
a second; and in funds transfer it may be quite expensive.
Depending on the needs of applications, the organization may
take defensive action, including redundant arcs and extra
switches to prevent loss of a portion of the network.

Acces~ibility

Accessibility is related to reliability. It asks not whether the
network is up, but whether can we get on it now. Can we get
on it from here? Likewise, this is related to response time.
Not, whether our message is in queue for transmission, but
whether we are still waiting for log-on.

Security

Some form of security, of course, is essential. We can make
a first, crude distinction between unauthorized receipt of mes-

Telecommunications and Business Strategy 715

sages directed at another party and unauthorized initiation of
transactions. Log-on procedures with authentication are a
necessary first step at restricting unauthorized initiation of
transactions. Physical security, to protect lines, premises, and
passwords also is important. Public key encryption and data
encryption standard (DES) offer some protection against
eavesdropping. Threat monitoring and risk and threat anal
yses are certainly advisable.

Response time

Response time is the first of our four NDVs related to
performance. Significance of response time depends very
heavily on the nature of the application. When exploiting a
momentary imbalance in foreign exchange rates-which
exists only for several seconds-response must be virtually
immediate. The designer should seek to identify targets or
acceptable ranges for response time, and should seek to make
clear costs and application tradeoffs implied by different
targets.

Throughput

We first need to identify our measures. What are our traffic
volumes and how will they be measured?

1. Telex messages per day
2. CCS/handset (hundred call seconds per telephone)
3. Conversations per day
4. Inquiries per salesman per day

We need to know the accuracy of these volume estimates
(e.g., ± 20%) and we need to know how they will change over
time. We need to know where our key bottlenecks are, e.g.,
availability of telex operators; when London market is still
open, availability of (outside) trunk lines.

Quality of Service

I
Robustness

Reliability Accessibility

Standard where
measures

when
applica-

with
tion what
specific
measures with

what
protective

delay
position

certifica-
tion

Security

mandatory

application-
specific

type

risk!
threat
analysis

Response Time

. targets

Figure 8--Quality of service

perforlance

Throughput

measures

bottle
necks

I
Utilization

peak

. average

time
frame

I
Required

Bandwidth

system
bandwidth

usable
bandwidth

user
bandwidth

716 National Computer Conference, 1984

Network use

Unfortunately, high network use, which appears good, is
incompatible with low queueing delay, which also would be
good. Phrased another way, a network in which expensive TC
systems are seldom idle is also one that often will be con
gested, with lengthy queueing delays and other expensive sys
tems or personnel idle instead. How should capacity, use, and
queueing delay be traded off? Do we build for average, peak,
or irreducible minimum demands?

Some very crude guidelines are possible. When building a
local network, communications are cheap and we may wish
them to be perceived as essentially free. If the network is to
displace physically transporting a memo or physically re
trieving a colleague's diskette, queueing delay must be low
and limited network use may be acceptable. In a long-haul
environment, the network is more expensive, physically walk
ing the memo from Philadelphia to Boston or using the U.S.
mail for same-day delivery is not an option, and we may be
willing to design for greater use rather than for greater speed.

Required bandwidth

Bandwidth is a rough measure of communications channel
capacity. Bandwidth in a communications network is not
really a decision variable; it is determined as a by-product of
evaluating functionality, traffic, delay time, availability, arid
reliability. It still seems useful to make some distinctions
among different terms:

1. Bandwidth is the full frequency range that can be carried
by the medium.

2. EffectIve bandWIdth IS that portion of the bandwidth
available after network control. In CSMNCD, for ex
ample, effective bandwidth may be reduced by about
two thirds.

3. User bandwidth is the portion of effective bandwidth
actually used for user data rather than error control and
retransmission.

Required bandwidth is some multiple of the minimum user
bandwidth required for message volume. Required bandwidth
by application probably varies with time of day. More voice
capacity is needed during business hours; more data may be
moved at night.

REMAINING WORK

Our discussion of the strategic network design template is, for
the present, completed. Clearly, much remains to be done,
both on the SND problem and the template. We divide this
work into three types:

1. Validating and refining the template.
2. Deepening the discussion and analysis within the frame

work.
3. Extending the framework.

Our purpose in this concluding section is to discuss briefly
each of these three ways of extending the work reported upon
here.

Validating and Refining the Template

To move beyond face validity, the framework needs valida
tion by more rigorous empirical methods. We see two ways to
do this: The first is ~o use interviews, surveys, and small group
discussions to gain information about the validity of the SND
template. This is a legitimate and entirely conventional way to
proceed. The main disadvantage of this first way is the great
effort required in terms of time and expense. The second way
of gaining empirical validation of the framework is to perform
a series of content analysis studies on pertinent literature. 8-12

These include published telecommunications literature, re
quests for proposals (RFPs), requests for bids (RFBs), cor
porate annual reports, government budget documentation,
trade journais, reports and other documents produced by con
sulting firms in communications, and so on. We believe that
both the first way (person-directed) and the second way
(document-directed) can lead to important findings for vali
dating the template, and that the two ways complement each
other. We plan to pursue both.

Deepening the Discussion al1d Analysis within the
Framework

Our template is intended to be descriptively valid, not in the
sense that it lists what people always do consider when de
signing a network in light of the firm's strategic goals, but in
the sense that it lists the tplnCJ~ lntp1l1CJpnt !'Inti lnfnrmpti m!'ln-
agers would like to consid~~-had-~h~;~h~ ~i~;-~;d-~~s~~;~~s
to do so. To this end, our discussion of the items in the frame
work can be greatly deepened in every instance. Not only
should more detail be given, but attention should be directed
to the interactions among the various items in the framework
and to ways of measuring and scaling the items. Again, all this
will be the subject of future work.

Extending the Framework

Finally, the tree that is our framework needs to grow down
ward. That is, we believe that further decomposition would be
most useful. This requires additional field study, and is not
entirely divorced from efforts to validate material already
developed.

ACKNOWLEDGMENTS

This paper is an extension of work that was done with support
from Nolan, Norton & Company, in Lexington, Mass. It was
presented to the clients of Nolan, Norton in June 1983. Addi
tionally, Prof. William Maxwell contributed to the develop
ment of our classification for application opportunities.

REFERENCES

1. "Telecommunications: The Global Battle." Business Week, No. 2183, Oct.
24, 1983, pp. 126-148.

2. Jonscher, C. "Information Resources and Economic Productivity." Infor
mation Economics and Policy, 1 (1983), pp. 13-35.

3. Cypser, R. J. Communications Architecture for Distributed Systems. Read
ing, Mass.: Addison-Wesley, 1968.

4. Doll, D. R. Data Communications. New York: John Wiley & Sons, 1978.
5. Martin, J. Computer Networks and Distributed Processing. Englewood

Cliffs, N. J.: Prentice-Hall, 1981.
6. Johansen, R. Electronic Meetings. Reading, Mass.: Addison-Wesley, 1982.

Telecommunications and Business Strategy 717

7. Rossner, R. D. Distributed Telecommunications Networks. Belmont,
Calif.: Lifetime Learning Publications, 1982, p. 167.

8. Bowman, E. H. "Risk Seeking by Troubled Firms." Sloan Management
Review, 23 (1982), pp. 33-42.

9. Holsti, O. R. Content Analysis for the Social Sciences and Humanities.
Reading, Mass.: Addison-Wesley, 1969.

10. Holsti, O. R. "Content Analysis." In G. Lindzey, and E. Aronson, (eds.),
The Handbook of Social Psychology (2nd ed.), Vol 2. Reading, Mass.:
Addison-Wesley, 1968, pp. 596--692.

11. Krippendorff, K. Content Analysis. Beverly Hills, Calif.: Sage Publications,
1980.

12. Pool, I. de Sola (ed.). Trends in Content Analysis. Urbana, Ill.: University
of Illinois Press, 1959.

Chairman
Dennis J. Frailey
Texas Instruments
Austin, TX

Members

Michael R. Alsup
Arthur Andersen & Co.
Houston, TX

Faye A. Briggs
Rice University
Houston, TX

A. Winsor Brown
Volition Systems
Del Mar, CA

General Chairman
Russell K. Brown
The Benchmark Group
Houston, TX

Vice-Chairman
William J. Carlisle
AT&T/CSO
Piscataway, NJ

Program Chairman
Dennis J. Frailey
Texas Instruments
Austin, TX

Professional Development
Seminars Chairman
Lowry McKee
Singer-Link Flight Simulation
Houston, TX

1984 NATIONAL COMPUTER
CONFERENCE COMMITTEES

PROGRAM COMMITTEE

Harry Kepner
Electronic Data Systems
Richardson, TX

Neal Laurance
Ford Motor Company
Dearborn, MI

James R. Miller
Computer* Thought Corporation
Plano, TX

Alan Paller
AUI Data Graphics/ISSCO
Washington, DC

Alfred Riccomi
Texas Instruments
Lewisville, TX

CONFERENCE STEERING COMMITTEE

Film Forum Chairman
Joe Van Hook
Occidental Petroleum Services
Houston, TX

Operations Chairman
Mary Rich
PFS, Inc.
EI Segundo, CA

Pioneer Day Chairman
Sidney Fernbach
Consultant
Alamo, CA

Protocol Chairman
Albert K. Hawkes
Sargent & Lundy Engineers
Chicago,IL

Special Activities Chairman
Stephen Gill
City of Las Vegas MIS Department
Las Vegas, NV

719

Eugene B. Smith
Texas A&M University
College Station, TX

Darrell L. Ward
HyperGraphics Corporation
Denton, TX

Jean Yates
Yates Ventures
Los Altos, CA

Special Consultant

Robert Stirling
IBM Corporation
Hartford, cr

Promotions Chairman
Herbert B. Safford
GTE Data Services, Inc.
Marina del Rey, CA

NCC Liaison
William H. Sitter
Tenneco, Inc.
Houston, TX

AFIPS Representative
John Gilbert
AFIPS
Reston, VA

Secretary
Jan Brown
Brown & Associates
Houston, TX

Chairman
Joe Van Hook
Ford Aerospace & Communications,

Inc.
Colorado Springs, CO

Chair

Mary L. Rich
PFS, Inc.
EI Segundo, CA

Members

Joanne Barringer
American Express
Phoenix, AZ

Virginia S. Lashley
Glendale Community College
Glendale, CA

Don A. Carlos
Claremont Computing Center
Claremont, CA

Steve Groves
Personnel Resource Corp.
Phoenix, AZ

Don B. Medley
California State Polytechnic Univ.
Pomona, CA

Patricia Wade
Total Information Systems
Phoenix, AZ

FILM FORUM COMMITTEE

Members

Sandra Carkin
Occidental Petroleum Services, Inc.
Houston, TX

Linda Nash
Tenneco Systems Center
Houston, TX

OPERATIONS COMMITTEE

Jerry Wagner
California State Polytechnic Univ.
Pomona, CA

Larry Doyle
U.S. Public Health Service
Rockville, MD

Barbara McNurlin
Canning Publications
Torrance, CA

Roberta Phin
Garrett Turbine Engine Co.
Phoenix, AZ

Charles Sherbow
Business Pro
Phoenix, AZ

Gilbert R. Hedger
Laventhol & Horwath
Phoenix, AZ

Robert L. Tellef
Salt River Project
Phoenix, AZ

Doug Caddell
Ernst & Whinney
Phoenix, AZ

Terry S. Dorsett
Central Arizona College
Coolidge, AZ

720

Eddie Truncellito
Schlumberger Well Services, Inc.
Houston, TX

Vickie Van Hook
Spring Branch ISD Televised

Instruction
Houston, TX

Evelyn Teed
Specialized Professionals
Phoenix, AZ

Ann Goodine
Electronic Conventions
Los Angeles, CA

Miriam K. Weimer
MKW Associates
Phoenix, AZ

Robert L. White
Office of the Director
Bureau of the Census

Rex Farley
Phoenix, AZ

Steve Herold
Ford Aerospace
Newport Beach, CA

Robert Hopson
North American College
Mesa, AZ

Richard B. Blue, Jr.
City of Las Vegas
Las Vegas, NV

Chairman
Sidney Fernbach
Consultant
Alamo, CA

Members

Terry Contreras
Lawrence Livermore National

Laboratory
Livermore, CA

Barbara Costello
Lawrence Livermore National

Laboratory
Livermore, CA

John Fletcher
Lawrence Livermore National

Laboratory
Livermore, CA

PIONEER DAY COMMITIEE

Carl Hammer
Consultant
Washington, DC

Raymond Jaeger
Lawrence Livermore National

Laboratory
Livermore, CA

Tadashi Kishi
Lawrence Livermore National

Laboratory
Livermore, CA

Sam Mendicino
Lawrence Livermore National

Laboratory
Livermore, CA

Alice Pitts
Lawrence Livermore National

Laboratory
Livermore, CA

Marcey Skinnell
Lawrence Livermore National

Laboratory
Livermore, CA

Henry Tropp
Humboldt State University
Arcata, CA

Edward LaFranchi
Lawrence Livermore National

Laboratory
Livermore, CA

PROFESSIONAL DEVELOPMENT SEMINARS COMMITIEE

Chairman
Lowry McKee
Singer-Link Flight Simulation

Division
Houston, TX

Members

Joe Campisi
Aetna Life & Casualty
Hartford, CT

Chairman Emeritus

Ted E. Lorber
Printronix
Cypress, CA

Mary J 0 Hernandez
Singer-Link Flight Simulation

Division
Houston, TX

Charles McKay
University of Houston-Clear Lake
Houston, TX

PROMOTIONS COMMITIEE

Chairman

Herbert B. Safford
GTE Data Services, Inc.
Marina del Rey, CA

721

Richard Rosborough
University of Nevada-Las Vegas
Las Vegas, NY

Pete Sivillo
Singer-Link Flight Simulation Division
Houston, TX

Chairman
Albert K. Hawkes
Sargent & Lundy Engineers
Chicago,IL

Members

Mary Ch:ules Blakeborough
IBM Data Systems Division
Poughkeepsie, NY

Chairman
Stephen D. Gill
City of Las Vegas
Las Vegas, NY

Subcommittees

Guest Services Committee
Bonnie Milliken
Instructor
Las Vegas, NY

PROTOCOL COMMITTEE

Ocie M. Gamble
Sun Gas Company
Dallas, TX

JoAnne Lockett
Xerox Corporation
EI Segundo, CA

Alfred Ritchie
Bell Communications Research
Piscataway, NJ

SPECIAL ACTIVITIES COMMITTEE

Disabied Persons Committee
Beverly A. Ewing
Dimension Cable Television
Las Vegas, NV

International Visitors Committee
Dave Thornton
Nevada Power Company
Las Vegas, NY

722

Susan Rosenbaum
AT&T Information Systems
Parsippany, NJ

David K. Oppenheim
Abacus Programming Corporation
Van Nuys, CA

\tIPs & Entertainment Committee
Katy Bryan
City of Las Vegas
Las Vegas, NY

Nee '84 SESSION LEADERS

Dave Ackmann
Monsanto Company
St. Louis, MO

Dharma P. Agrawal
North Carolina State University
Raleigh, NC

Gary Arlen
Arlen Communications, Inc.
Bethesda, MD

Michael Azzara
Computer Systems News
San Jose, CA

Bruce W. Ballard
Duke University
Durham, NC

Robert Blanc
National Bureau of Standards
Washington, DC

Mike Blasgen
IBM Research
Yorktown Heights, NY

Dick Bonzagni
Management Decision Systems
Waltham, MA

Bob Brazile
North Texas State University
Denton, TX

Faye A. Briggs
Rice University
Department of Electrical Engineering
Houston, TX

David Brodwin
Arthur D. Little, Inc.
San Francisco, CA

Steven Brower
Wood, Lucksinger & Epstein
Los Angeles, CA

William S. Brown
North American Consultancy
Corrales, NM

Peter Chen
Louisiana State University
Baton Rouge, LA

George F. Colony
Forrester Research Inc.
Cambridge, MA

Denis Connor
Ontario Worker's Compensation
Toronto, Ontario, Canada

Thomas B. Cross
Cross Information Company
Boulder, CO

Byron Davies
Texas Instruments Incorporated
Dallas, TX

Richard DeMillo
Georgia Institute of Technology
Atlanta, GA

Shaun Devlin
Ford Motor Company
Dearborn, MI

Henry Dreifus
Corpra Research, Inc.
Rosemont, PA

Martha Evens
Illinois Institute of Technology
Chicago,IL

David J. Farber
University of Delaware
Newark, DE

Sidney Fernbach
Consultant
Alamo, CA

Michael Flitterman
Digital Equipment Corporation
Burlington, MA

George C. Fowler
Texas A&M University
College Station, TX

Peter Freeman
University of California at Irvine
Irvine, CA

Peter Friedland
Stanford University
Palo Alto, CA

723

Jerome Garfunkel
Jerome Garfunkel Associates, Inc.
Litchfield, CT

Philip J. Gill
Tech Valley Publishing, Inc.
UNIXIWorld Magazine
Los Altos, CA

Stacy Goff
Hudson Henry and Associates, Inc.
Portland, OR

Michael Hammer
Hammer & Co., Inc.
Cambridge, MA

Deborah Hastings
dilithium Press
Beaverton, OR

Paul Heckel
Quick View Systems
Los Altos, CA

Gordon -CO Howell
Georgia State University
Atlanta, GA

Kai Hwang
Purdue University
West Lafayette, IN

Portia Isaacson
Future Computing Incorporated
Richardson, TX

J. R. Jump
Rice University
Houston, TX

Michael A. Kaminski
General Motors Corporation APMES
Warren, MI

Thomas P. Kehler
IntelliCorp
Palo Alto, CA

Franklin F. Kuo
SRI International
Menlo Park, CA

Dale Kutnick
The Yankee Group
Boston, MA

Edward Lafranchi
Lawrence Livermore National
Laboratory
Livermore, CA

Daniel T. Lee
University of Hartford
West Hartford, CT

Heinz Lycklama
INTERACTIVE Systems Corporation
Santa Monica, CA

Robert J. Lydon
Personal Computing and Personal
Software Magazines
Cupertino, CA

Rita Gail MacAuslan
Sanders Associates, Inc.
Nashua, NH

Mel Mandell
Computer Decisions Magazine
Hasbrouck Heights, NJ

Jody Martin
Pacific Institute

Richard Mateosian
National Semiconductor
Berkeley, CA

Addie Mattox
The Mattox Group
South Laguna, CA

Joel McCormack
Volition Systems
Del Mar, CA

Ned McDaniel
InfoSci, Inc.
Menlo Park, CA

Janet Millenson
Sperry Corporation
Blue Bell, PA

Boulton B. Miller
Southern Illinois University
Edwardsville, IL

Phillip S. Mittelman
MAGI -Syntha Vision
Elmsford, NY

Howard Morgan
Advanced Office Concepts
Bala Cynwyd, PA

LaRuth Morrow
Stellar Solutions
Richardson, TX

Richard Morrow
HyperGraphics Corporation
Denton, TX

Mike Murray
Apple Computer
Cupertino, CA

Ken Orr
Ken Orr and Associates
Topeka, KS

Alan Paller
AUI Data Graphics/ISSCO
Washington, DC

Maria Penedo
TRW-DSG
Redondo Beach, CA

Alfred Riccomi
Texas Instruments Inc.
Lewisville, TX

Glenn Rifkin
CW Communications
Computerworld OA
Framington, MA

John Riganati
National Bureau of Standards
Washington, DC

Arnold Romberg
Romberg and Romberg
Dallas, TX

Jean Sammet
IBM Federal Systems Division
Bethesda, MD

Erik Sandberg-Diment
The New York Times
Hampton, CT

724

Omri Serlin
ITOM International Company
Los Altos, CA

Patricia B. Seybold
The Seybold Report
Boston, MA

Lynne C. Shaw
Warner Communications Inc.
New York, NY

Allen N. Smith
Atlantic Richfield Co.
Los Angeles, CA

Elliot Soloway
Yale University
New Haven, CT

Mary Sommerset
Symposia Marketing Corporation
San Mateo, CA

John Squilla
Eastman Kodak Company
Rochester, NY

Einar Stefferud
Network Management Associates, Inc.
Huntington Beach, CA

Richard H _ Stern
Law Office of Richard H. Stern
Washington, DC

Marvin Talbott
Texas Instruments Inc.
Dallas, TX

Walter Ulrich
Walter E. Ulrich Consulting
Houston, TX

Mark Ursino
Technology Services Corporation
Bellevue, WA

Benjamin W. Wah
Purdue University
West Lafayette, IN

Joe Wetherington
Independent Consultant
Green Village, NJ

Andrew Whinston
Purdue University
West Lafayette, IN

Turner Whitted
Numerical Design Ltd.
University of North Carolina
Chapel Hill, NC

Evelyn S. Wilk
Arthur Andersen & Co.
Chicago,IL

Ron Willis
Hughes Aircraft
Fullerton, CA

Amy Wohl
Advanced Office Concepts
Bala Cynwyd, PA

Tom Wright
ISSCO Graphics
San Diego, CA

Jean Yates
Yates Ventures
Los Altos, CA

725

Raymond Yeh
University of Maryland
College Park, MD

William Zachmann
International Data Corporation
Framingham, MA

Nicholas Zvegintzov
Independent Consultant
Staten Island, NY

Ackerman, Frank A.
Ackmann, David A.
Agrawal, Dharma P.
Alden, John
Alexander, Winser E.
Archibald, Julius A., Jr.
Arendt, M. L.
Aurbach, Richard L.
Awad, Elias M.
Azzara, Michael

Ballew, Lowell N.
Barnard, H. Jack
Barnes, Ben B.
Barr, John R.
Bates, Jane
Bauman, Ben M.
Beidler, John
Belford, Geneva
Bhavsar, V. C.
Black, John B.
Blue, Richard
Bocast, Alexander K.
Borko, Harold
Bowen, John B.
Bretz, Robert W.
Brunner, Richard
Buckley, Gael N.
Bui, Tung
Burke, Ed
Byrne, Wes

Chapin, Ned
Charp, Sylvia
Chen, Chi H.
Chen, Pin-Yee
Choy, Steven J.
Claybrook, Billy G.
Cohen, Shimon
Colucci, Michael
Cormier, Robert W.
Cross, Thomas B.
Cross, F.

Dalphin, John F.
Damodaran, Meledath
Dankel, Douglas D., II
Davidson, Edward
Davis, James
De, Prabuddha
DeKock, Arlan R.
Denbaum, Carol
Deogun, Jitender S.
Dordick, H. S.
Dreifus, Henry N.
Dubenezic, Charles
Dyment, Doug

NCC '84 REFEREES
Edrington, Jimmie
Eliot, Lance B.
Elmaghraby, Adel S.
Ernst, Dennis
Esbin, Jack
Evens, Martha
Evert, Carl F.

Fendrich, John
Field, George
Fischer, Herman
Fleisch, Brett D.
Flynn, William G.
Foster, Mark J.
Frederick, Terry J.
Friedman, Frank

Gabrieli, H.
Gabrielsen, Larry L.
Gajski, Daniel D.
Gessford, John F.
Gildersleeve, James L.
Gill, Philip J.
Gintz, Christopher J.
Glaseman, Steven
Goel, Amrit L.
Goldberg, Marty
Goodwin, David L.
Gorsline, G. W.
Graham, Marshall A.
Graham, Marc H.
Gray, Robert

Hac, Anna
Hamilton, William E., Jr.
Harris, Michael C.
Hawthorne, G. B., Jr.
Heafner, John
Hedges, Harry G.
Heimbigner, Dennis
Henry, Hudson H.
Higginbotham, T. F.
Hill, Thomas L.
Hill, Gregory P.
Hirst, Graeme
Hofkin, Bob
Holmes, William M., Jr.
Hooten, Anthony D.
Horch, John W.
Horvath, Edward E.
Hussau, K. M.

Jackson, Durward P.
Jacobs, Steven M.
Jagannathan, V.
Jain, Hemant K.
Jakobson, Gabriel E.

726

James, Philip N.
Jehn, Lawrence A.
Johnson, James Lee
Jones, Douglas W.
Juell, Paul

Kamel, Khaled
Kearns, Phil
Kenett, Ron
Kocher, Bryan
Kolstad, Rob
Koory, Jerry
Kuklin, Scott A.
Kundu, S.
Kuzdas, Adrian C.

LaFrance, Jacques
Lake, Robin B.
Lakshmi, Seetha
Larson, Arvid G.
Lawrence, Robert
Lee, K. P.
Lee, Daniel T.
Leinius, Ronald P.
Lewis, Paul J.
Lillevik, Sigurd L.
Lissner, L. Scott
Little, Rainey
Liu, Hsun K.
Lively, Mac
Loach, K. W.
Look, Harry W.
Loomis, Mary E.
Love, Hubert H., Jr.
Luke, Tim

MacAuslan, Joel
MacAuslan, Rita Gail
Marriott, Philip C.
Mateosian, Richard
McClure, Carma
McCullough, Tim
McFarland, Clay
Meads, Jon
Medley, Don B.
Metzner, John R.
Miller, Raymond E.
Miller, Thomas K., III
Milutinovic, Velco
Mitchell, Don B.
Mok, Al K.
Molloy, Michael K.
Motzkin, Dalia
Mucchetti, Stephen A.
Mullens, David G.
Murray, Dale N.

Naifeh, Kim L.
Navathe, Sham
Neblock, Charles E.
Nelles, Alan
Norton, Sue

Olavesen, Ole Bernt
Oursler, Gerald W.
Overgaard, Mark

Partridge, Derek
Penedo, M. H.
Perkins, Sharon
Perkins, Michael T.
Peterson, Emery G.
Peterson, Robert W.
Phillips, Jim
Potter, Marshall R.
Pyron, Howard D.

Rabinowitz, Irving N.
Ramakrishna, K.
Ransom, M. N.
Reed, Daniel A.
Riccardi, Gregory A.
Ridgley, Jay
Riganati, John P.
Rine, David C.
Roberts, Philip
Rocchetti, Bob
Rollwitz, Bill
Romanowsky, Helen E.
Rosen, Robert
Rosenthal, Paul H.
Rosinski, Richard R.
Rubin, Howard A.
Ruchinskas, John E.
Ruh, Lawrence A.
Ruschitzka, Manfred

Safford, Herbert B.
Sagues, Paul
Sander, Bernard T., Jr.
Savage, T. R.
Schell, Roger R.
Scheuermann, L. E.
Schiebe, Lowell H.
Schlesinger, Richard
Schmookler, Martin
Schneider, Edward A.
Schneidewind, N. F.
Schroeder, Charles
Schutzer, Daniel
Sellers, A. Martin.
Serlin,Omri
Shaffron, Nancy
Sheaffer, Marilyn
Shetler, Toni
Shoquist, Marc
Siefert, David M.
Siep, Thomas M.
Simmons, Dick B.
Simon, Horst D.
Smartt, Melissa
Smith, Lyle B.
Smith, J. W.
Smoliar, Stephen W.
Soffa, Mary Lou
Soloway, Elliot
Souder, H. Ray
Spaniol, Roland
Stafford, Ronald E.
Stavely, Allan M.
Stearns, Daniel J.
Stehling, Al
Stern, Richard H.
Stevens, Dave
Stockman, George

727

Sutter, Gordon F.
Swigger, Kathleen M.
Talbott, Marvin
Tanik, Murat M.
Tanniru, Mohan R.
Taylor, Javin M.
Taylor, Linda T.
Thakkar, S. S.
Thebaut, S. M.
Tucker, Allen
Tulk, Jon

Uckan, Yuksel
Ulicny, Susan W.
Ulrich, Walter E.
Umbaugh, L. David

VanTil bury , R. L.

Wallace, Dolores R.
Wang, R. S.
Ware, Joel
Wexelblat, R. L.
Whinston, Andrew B.
Whitesell, James T.
Willard, Leigh B.
Williams, Donald S.
Williams, Kenneth
Wolf, Thomas E.
Woodfill, Marvin C.
Wortz, Charles

Yost, Robert

Zachmann, William F.
Zells, Lois
Zunde, Pranas

NCC '84 SPEAKERS AND PANELISTS
Abbott, Bob Connor, Denis Gordon, Gil E.
Abrahams, Paul Cook, Charles C. Greenfeld, Norton
Ahl, David H. Cooper, Wilson Greystoke, Keith R.
Angus, Robert Cross, Thomas B. Grouse, Phil
Anselmo, Don Crume, Larry Gustafson, David
Arlen, Gary Csuri, Charles
Aronson, Michael Cugini, John Haack, Marr T.
Avizienis, Algirdas Cullem, Ron Hammer, Michael
Azzara, Michael Hardy, Norm

Davies, Byron Harkness, Richard
Bass, Charles DeMillo, Richard Haruki, Kazuhito
Bassett, Paul Dement, Ralph Hazelton, Leslie R.
Belady, Les A. Diehr, George Heckel, Paul
Bell, Stuart Dimancesco, Dimitri Heidorn, George
Bell, Florence J. Dietz, Larry Henderson, Lofton
Bennett, James S. Drexler, Jerome Henry, Hudson
Berkman, Samuel Dubrall, Mike Ho, S. Frank
Bernstein, Phil Dunn, Connie Hoerner, Charles C.
Beshara, Gary J. Dyson, Esther Holland, Joe
Bice, Ken Holsapple, Clyde W.
Biermann, Alan W. Ehlers, Bryan Hopkins, Greg
Billadeau, Thomas R. Elder, Marvin Hoxie, Gib
Binkowski, John Elliott, David J. Hughes, Kevin G.
Birss, Edward W. Ellis, Ron Hughes, Christine
Black, John Elmer-DeWitt, Philip Hulten, Christer
Blackmarr, Brian Epstein, Robert Hurd, Cuthbert
Blanc, Robert
Blank, Steve Fairbanks, Robert Inselberg, Armond
Blanning, Robert W. Farber, David J. Irvine, C. A.
Blauman. Sheldon Fernbach, Sidney Isaacson, Portia
Boehm, Barry Ferreira, Joe
Boer, Garrett Fletcher, John Janca, Peter C.
Bolton, Tony Flies, William Janulaitis, M. Victor
Boney, Joel Flitterman, Michael Johnson, Melody
Brady, Joseph Flowers, Margot Jordan, Jay B.
Bramson, Robert S. Floyd, Ronald Joy, Bill
Brandin, David H. Fly, Bill Jump, J. R.
Brice, Linda Fong, Wendy
Brodwin, David Foss, Dick Kahn, Robert E.
Broome, Ken Fredriksson, Einar Kambayashi, Yahiko
Brown, Kathie Friedland, Peter Kaplan, Henry A.
Brown, A. Winsor Fuchi, Kazuhiro Kapor, Mitchell
Browne, James C. Kavianpour, A.
Bruijnes, Hans Gaffner, Haines Kehler, Thomas P.
Budlong, Faye Gagle, Michael Kelly, John E.
Burton, Robert Gaines, B. R. Kenrich, Chester

Garfunkel, Jerome Kevorkian, Douglas
Catmull, Edwin Gehring, Bo Kilty, Lawrence
Chang, S. K. Georg, Denny Kimbrough, Kerry
Chiang, T. C. Giardina, E. Ric Kinsley, Kathryn C.
Chin, David N. Gilberg, Dick Kirchner, Michael
Chu, Chuan Glazer, Sam Kleinman, Neil
Clancey, William Gobel, Collin Klimek, Tom
Claytor, C. Royce Goff, Stacy A. Kline, Paul
Clemons, Eric K. Goldberg, Aaron Konsynski, Benn R.
Colony, George F. Golden, Jack Koymen, Kemal
Connell, John Goodrich, Curtiss Kuehler, Jack

728

Kuklin, Scott Miller, Boulton B. Schuster, Stewart
Kunz, John C. Miller, James R. Scott, Ed
Kurtz, Tom Miller, Mark Scullion, Joseph F.
Kutnick, Dale Miller, Mer! Seelinger, William

Mittelman, Phillip S. Sekino, Akira
Lafranchi, E. Miura, Kenichi Selinger, Patricia
Lages, Elwin Mockapetris, Paul V. Sellers, Martin
Larson, James A. Morgan, Howard Serlin, Omri
Lauck, Anthony G. Mothersole, David Sewell, Duane
Lee, Daniel Muller, Roger Seybold, Patricia B.
Lee, Edwin Murray, Michael Shaw, Lynne C.
Lee, Randall M. Myers, Daniel A. Shaw, M. L. G.
Leith, Chuck Shiel, Beau
Lelevier, Robert Narrow, Bernard Shoch, John
Levin, K. Dan Neff, Mary Shoemaker, Harry
Levy, Steven Nelson, Donald F. Shrobe, Howie
Liddle, David E. Neves, Kenneth W. Shuey, David
Lillevik, Sigurd L. Nikora, Leo Simon, Art
Livingston, John Nofrey, Louis C. Smith, Allen N.
Loesh, Robert E. Norton, James S. Smith, Barry
Lombardi, Bart J. Smith, Jeffrey W.
Lomuto, Nico Oakley, Brian W. Soloway, Elliot
Look, Harry W. Orr, Ken Southworth, Glen
Lowe, David Osborne, Adam Sprowl, James
Lu, Priscilla Squilla, John
Ludlow, Michael Paller, Alan Stahlman, Mark
Lusth, John C. Parker, Reginal O. Stan sky , Eileen M.
Lycklama, Heinz Patel, Anil Stefferud, Einar
Lydon, Robert J. Pechner, Robert M. Stensrud, Bill
Lynn, Kurt Pehrson, Dave Stern, Richard H.

Phelps, Nelson Stiffler, Jack
MacAuslan, Rita Gail Pehrson, Dave Strigel, Wolfgang B.
Mackie, Peter Pinkston, John Su, Stephen Y. H.
Manyion, Jim Puette, Robert Svigals, Jerome
Martin, Jody
Martin, Larry Quigley, James J. Tennant, Harry
Martin, Ray Terrell, Paul
Mateosian, Richard Rahimi, M. A. Terzopoulos, Demetri
Mather, Don Ranelletti, John Thorndyke, Lloyd M.
Mathis, Robert F. Rawlings, Terry L. Thornton, James
Matlack, Richard Reinhard, Ronald G. Tiede, Ken
Matley, Ben G. Richardson, Gary L. Tinnirello, Paul
Mattox, Addie Riley, Mike Tom, Janet R.
Maysonave, Steve Rivera, Romel Traiger, lrv
McCloskey, James P. Roberts, Roger Treleaven, Phillip C.
McConnell, Peter R. H. Rochkind, Allen B. Trocchoi, Robert
McDaniel, Ned Rosenberg, Steven
McDowell, Bob Rubin, Howard A. Upham, Dave
McDowell, Jerry Ruschitzka, Manfred Ursino, Mark
McKee, James R. Rusinkiewicz, Marek
McPhee, William S. Rusznak, George Valdes, Peter
Melnikoff, Richard Rutkowski, Chris Valentine, Dennis
Mendocino, Sam Ryan, Hugh Von Meister, William
Menzilcioglu, Onat
Mertes, Louis H. Sabil, John Wade, Larry
Metcalfe, Robert Sakoman, Steve Wah, Benjamin W.
Michael, George Sammet, Jean Wallace, Bob
Mikami, Yukihiro Sandberg-Diment, Erik Walter, Skip
Millenson, Janet Sarna, David Wasserman, Anthony I.

729

Watson, Dick
Weber, Herbert
Weiss, Chuck
Wetherington, Joe
Whinston, Andrew
White, Kathy Brittain
Whitted, Turner
Wiegler, Barry

Wilk, Evelyn S.
Williams, Kenneth
Wilson, Charles
Winner, Roger L.
Witkin, Andy
Wittie, Larry
Wong, Carla M.
Wood, Michael R.

730

Wright, Tom
Wu, Chuan-Lin
Wyman, Robert

Yates, Jean
Young, John W., Jr.

Zells, Lois

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES, INC. (AFIPS)

President
Sylvia Charp
The School District of Philadelphia
Philadelphia, PA

AFIPS Immediate Past President
J. Ralph Leatherman
Hughes Tool Company
Houston, TX

American Society for Information
Science (ASIS)

James N. Cretsos
Merrell Dow Pharmaceuticals, Inc.
Cincinnati, OH

American Statistical Association (ASA)
Jack Moshman
Moshman Associates, Inc.
Bethesda, MD

Association for Computational
Linguistics (ACL)

Norman K. Sondheimer
USC Information Sciences Institute
Marina del Rey, CA

Association for Computing Machinery
(ACM)

David Brandin
SRI International
Menlo Park, CA

Michael A. Harrison
University of California
Berkeley, CA

OFFICERS

Vice President
Stephen S. Yau
Northwestern University
Evanston, IL

Treasurer
Walter A. Johnson
Consolidated Papers, Inc.
Wisconsin Rapids, WI

BOARD OF DIRECTORS

David Kniefel
Deloitte, Haskins & Sells
New York, NY

Association for Educational Data
Systems (AEDS)

John Hamblen
National Bureau of Standards
Washington, DC

Data Processing Management
Association (DPMA)

Jerry Knierim
Pioneer Corporation
Amarillo, TX

Carroll L. Lewis
Commercial Data Corporation
Memphis, TN

Donald E. Price
Sierra College
Rocklin, CA

IEEE Computer Society
Rolland B. Arndt
Sperry Univac
Saint Paul, MN

731

Secretary
Arthur C. Lumb
Procter & Gamble Co.
Cincinnati, OH

Executive Director
Paul J. Raisig
AFIPS
Arlington, VA

Tse-yun Feng
Ohio State University
Columbus, OH

Martha Sloan
Michigan Technological University
Houghton, MI

Instrument Society of America
Chun H. Cho
Fisher Controls International, Inc.
Marshalltown, IA

Society for Computer Simulation (SCS)
Per Holst
The Foxboro Company
Foxboro, MA

Society for Industrial and Applied
Mathematics (SIAM)

Shmuel Winograd
IBM Research Center
Yorktown Heights, NY

Society for Information Display
Howard L. Funk
IBM Corporation
White Plains, NY

NATIONAL COMPUTER CONFERENCE BOARD MEMBERS

Chairman and lEEE-CS Representative
Stanley Winkler
IBM Corporation
Armonk, NY

Vice Chairman and AFlPS
Representative

Chun H. Cho
Fisher Controls International, Inc.
Marshalltown,IA

Treasurer and AFlPS Representative
Walter A. Johnson
Consolidated Papers, Inc.
Wisconsin Rapids, WI

Secretary and ACM Representative
Seymour Wolfson
Wayne State University
Detroit, MI

AFlPS Representative
Sylvia Charp
The School District of Philadelphia
Philadelphia, P A

Stephen S. Yau
Northwestern University
Evanston,IL

ACM Representative
Seymour Wolfson
Wayne State University
Detroit, MI

DPMA Representative
George Eggert
Defense Contract Administration
Chicago,IL

SCS Representative
Carl Malstrom
North Carolina State University
Raleigh, NC

ACM President-Ex Officio
David Brandin
SRI International
Menlo Park, CA

DPMA President-Ex Officio
Carroll L. Lewis
Commercial Data Corporation
Memphis, TN

lEEE-CS President-Ex Officio
Martha Sloan
Michigan Technological University
Houghton, MI

SCS President-Ex Officio
Walter J. Karplus
University of California, Los Angeles
Los Angeles, CA

NCCC Chairman-Ex Officio
Robert C. Spieker
AT&T Company
New Brunswick, NJ

lAP Chairman-Ex Officio
S. A. Lanzarotta
Xerox Corporation
El Segundo, CA

AFlPS Executive Director-Ex Officio
Paul J. Raisig
AFIPS
Arlington, VA

NATIONAL COMPUTER CONFERENCE COMMITTEE OF THE NCC BOARD

Chairman
Robert C. Spieker
AT&T Company
New Brunswick, NJ

Secretary
Arnold P. Smith
IBM Corporation
White Plains, NY

Members
Morton M. Astrahan
IBM Corporation
San Jose, CA

Harvey L. Garner
Moore School of Electrical

Engineering
University of Pennsylvania
Philadelphia, PA

Floyd O. Harris
Life of Georgia
Atlanta, GA

Albert K. Hawkes
Sargent & Lundy Engineering
Chicago,IL

Jerry L. Koory
The Rand Corporation
Santa Monica, CA

Hans D. Puehse
Fireman's Fund Insurance Companies
San Rafael, CA

William H. Sitter
Tenneco, Inc.
Houston, TX

732

NCC '84 Chairman
Don B. Medley
California State Polytechnic University
Pomona, CA

NCC '83 Chairman
Russell K. Brown
The Benchmark Group
Houston, TX

OAC '85 Chairman
James F. Foley, Jr.
Life Office Management Association
Atlanta, GA

OAC '84 Chairman
Steven M. Abraham
Price Waterhouse
Los Angeles, CA

OFFICE OF EXECUTIVE
DIRECTOR

Executive Director
Paul J. Raisig

Executive Secretary
Joan Tackett

CONFERENCE DEPARTMENT

Director of Conferences
John Gilbert

Administrative Assistant
Cathy Isaacs

Budget Coordinator
John Balderson

Operations Manager
Sam Lippman

Conference Operations
Coordinator

Margaret Dyer

Exhibit Operations Coordinator
Jill Newman

Conference Operations Support
Sally Gorham

Registration Manager
Dennis Smoot

Registration Support
Terry DiMurro

AFIPS HEADQUARTERS STAFF

Exhibit Sales Manager
Richard Dobson

Exhibit Sales Coordinator
Katherine Stormont

Exhibit Sales Support
Molly Finney

Marketing Manager
Ann-Marie Bartels

Senior Marketing Coordinator
Marty Byrne

Marketing Coordinator
Trudi Riley

Marketing Secretary
Helen Mugnier

COMMUNICATIONS
DEPARTMENT

Director of Communications
Dianne Edgar

Communications Coordinator
Alice-Lynne Ryssman

Editor (Acting)
Kaylee Jennings

Administrative Assistant
Mary Ford

Receptionist
Felicity White

733

FINANCE DEPARTMENT

Director of Finance
William R. Grubb, Jr.

Administrative Assistant/Secretary
Vacant

Accounting Manager
Hope Reynolds

Bookkeeper
Carrol Reid

Accounting Clerks
Ethel Baltimore
Reem Qubain

AFIPS PRESS

Director of AFIPS Press
Christopher N. Hoelzel

Fulfillment Administrator
Olive Shill and

Administrative Assistant
Sharon Lee Conway

NCC Proceedings Production
Editor

Elizabeth G. Emanuel

AFIPS OFFICE ADMINISTRATION

Office Manager
Debra Guazzo

Office Assistant
Chris Powers

Ahl, David H., 435
Alsup, Michael, 1
Aronson, Michael H., 685
Avizienis, Algirdas, 163

Balasubramanian,
Periyasamy, 667

Ballard, Bruce W., 643
Bassett, Paul, 357
Biermann, Alan W., 661
Bell, Florence J., 229
Bell, Stuart, 3
Birss, Edward W., 319
Blanning, Robert W., 489
Boney, Joel, 107
Brice, Linda, 209, 243
Briggs, Faye, 11
Brown, A. Winsor, 183
Brown, Russell K., iii
Budlong, Faye C., 389

Chang, Karl, 567
Chin, David, 637
Chinwalla, Taizoon, 667
Choi, Andrew, 537
Clemons, Eric K., 707
Clevenger, John L., 537
Connell, John, 209, 243
Connor, Denis A., 303
Conrad, Michael, 461
Cugini, ju1:ui, 223
Czejdo, Bogdan, 531

Donato, Nola, 367
Driscoll, James R., 587
Dyer, Michael G., 651

Easterday, John L., 51
Elder, Marvin, 561
Elliott, David J., 131
English, David, 69
Evens, Martha, 667

Fineman, Linda S., 661
Fiorello, Marco, 223
Flowers, Margot, 651
Foti, Lewis, 69
Frailey, Dennis J., v
Frank, Ariel J., 283
Frank, Steve, 41
Friedman, A. D., 173

Gaines, Brian R., 445, 453
Garfunkel, Jerome, 217
Gilbert, Kermit C., 661
Golden, Jack, 3
Goto, Kazuo, 59

AUTHOR INDEX
Greystoke, Keith, 337
Grouse, Phil J., 329
Gustafson, David A., 423

Harper, D. T., III, 93
Ho, S. F., 23
Hodil, Earl D., 203
Holmes, Victor P., 677
Holsapple, Clyde W., 311
Hopkins, Richard P., 69
Huang, J. C., 411
Hulten, Christer, 405

Inselberg, Armond, 41

Jacobs, Steven M., 267
lanulaitis; M. Victor; 513
Jordan, Jay B., 677
Juang, Jie-yong, 13
Jump, J. R., 93

Kambayashi, Yahiko, 31, 547,
613

Kavianpour, A., 173
Keen, Peter G. W., 707
Kelly, John, 235
Kimbrough, Steven 0., 707
Kinniment, David J., 69
Kinsley, Kathryn C., 587
Klawans, Henriette, 667
Kondoh, Sci-ichi, 31
Konstam, Aaron H., 349
Koymen, Kemal, 605
Kung, H. T., 695

Lages, Elwin E., 381
Larson, James A., 523
Laurance, Neal, 675
Lee, Daniel T., 477
Lillevik, Sigurd L., 51
Loesh, Robert E., 267
Look, Harry W., 101
Lowe, David, 595
Lusth, John C., 643

Masai, Teruaki, 59
Mateosian, Richard, 77
Mather, Don, 395
Matley, Ben G., 469
McConnell, Peter R. H., 273
McKee, James R., 187
~..1enzi1cioglu, 0., 695
Miller, Boulton B., 555
Miller, James R., 627
Moritani, Keizo, 59
Motzkin, Dalia, 567

734

Narrow, Bernard, 235

Paller, Alan, 431
Patel, Anil, 83

Rahimi, M. A., 461
Reifer, Donald J., 267
Reinhard, Ronald G., 349
Riccomi, Alfred, 441
Richardson, C. J., 23
Richardson, Gary, 203
Rocchetti, Robert, 367
Rubin, Howard A., 505
Ruschitzka, Manfred, 537
Rusinkiewicz, Marek, 531

Sekino, Akira, 59
Sellers, A. Martin, 195
Serlin, Omri, 123
Shaw, Mildred L. G., 445
Smith, Eugene, 475
Smith, Jeffrey W., 115
Sprowl, James, 667
Strigel, Wolfgang B., 273
Su, Stephen Y. H., 143
Sugie, M., 695
Swanson, Gary, 375
Schwartz, W. C., 23

Tasaki, Toshiaki, 59
'1'",,"n'l"t Uo;>rr~' h")O

..1.1".1...1.1., .A.), v_-"

Ting, Kuang-cheng, 151
Tinkham, Nancy L., 643
Tinnirello, Paul C., 251
Tom, Janet, 367
Treleaven, Philip C., 69

Valdes, Peter, 411
Von Kleeck, D. L., 505

Wagstaff, Samuel S., Jr., 115
Wah, Benjamin W., 13
Wallick, Jennifer B., 523
Wang, Wang Long, 69
Ward, Darrell, 521
Wasserman, Anthony I., 259
Whinston, Andrew B., 311
White, Kathy Brittain, 497
Williams, Kenneth, 567
Wise, J. D., 93
Wittie, Larry D., 283
Wood, Michael R., 343
Wu, Chuan-lin, 151

Yates, Jean, 433
Yeh, Raymond T., 411

ZeUs, Lois, 293

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734

