SOFTWARE MANUAL
AlphaBASIC
USER’S MANUAL

DWM-00100-01

REV. BOO

DWM-00100-01
REV. BO1

SOFTWARE MANUAL
AlphaBASIC
USER’S MANUAL

5 o
%MM}@ swwww%m&

~ alpha

lar.mlcr'o

s s
S

ALPHA BASIC USER'S MANUAL Page ii

NOTE: This printing of the manual contains the contents
of Change Page Packet #1 for the "AlphaBASIC User's
Manual”, (bSS-10000-04), which may be ordered
separately from Alpha Micro.

First Printing: 1977
Second Printing: October 1980
Third Printing: 30 October 1980

'Alpha Micro', 'AMOS', 'AM-100',
'AlphaBASIC', 'AlphaPASCAL', and 'AlphaLISP’

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This book reflects AMOS Versions 4.4 and later

©1980 = ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS ~ .. =~ » .~ .
17881 Sky Park North - ¢ .
Irvine, CA 92714

ALPHA BASIC USER'S MANUAL

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

Tahle of Contents

INTRODUCTION TO ALPHABASIC
INTERACTIVE AND COMPILER MODES

2.1 INTERACTIVE MODE ..ceececaces cessnss ceenancans
2.1.1 Loading, Creating, and Saving BASIC

Programs ...ceeecaceensscesass cesessses

2.1.2 Direct Statements ceasssascssasees

2.1.3 Compiling and Running a Program

2.1.3.17 Compiler OptionNS ceeeeeeccencs

2.1.4 Debugging Features casceascscsanas

2.2 COMPILER MODE ...cenees esescevanssssssaannnaas
2.2.17 Creating a Program .eececececessccescasas
2.2.1.1 Program FOMM c.eececasenceccas

2.2.2 Compiling a Program .eeeceees ceustesncena
2.2.2.1 Compiler OptioNs ..c.cccececeaes

2.2.3 Running a Program ..eceeecessse cesasanas .

GENERAL INFORMATION

MULTIPLE STATEMENT LINES cuucvececceccccacnnnns
CONTINUATION LINES sesascancss cesnsas
LINE NUMBERS ...cecenccccacan cesesscencssanans
COMMENTS (REM AND "!') cesessmssssescssns
INTERACTIVE MODE DIRECT STATEMENTS .ccc.aveee.
PROGRAM LABELS ... ceeeeenccananacconcnanaanas
MEMORY ALLOCATION .cceeveens cectscecsssaannnas
EXPAND AND NOEXPAND MODES .cccecccecacs ceseaas
LOWER CASE CHARACTERS .ucceevceancancccnnncacces
0 LIBRARY SEARCHING c.cceeccscecacccaaccaananans

s 5 s s s s 8 8 @
2 00NN WN -

NWAWNNNNNWWNW

ALPHABASIC VARIABLES

4.1 VARIABLE NAMES cisccnsne cessssscssssaseas
4.2 NUMERIC VARIABLES cescuas csssanas csseccee
4.3 STRING VARIABLES cesresecaassnas caseecea
4.4 ARRAY VARIABLES ..cceeeccecnnnannnae cecasssccaa

ALPHABASIC EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONScccccecaccans casaaas
5.2 OPERATOR PRECEDENCE sessssscsssccsanne
5.3 MODE INDEPENDENCE .uuveecceecensaccacnnnansansn

DATA FORMATS

6.1 FLOATING POINT FORMATc... csessscsssascns
6.2 STRING FORMAT - % &880 esssass " 0 8 e 58S 8e0 e 8sSsSssean

NNNNNX}JNNNNN
O OVOONODIPOINNT B WN

[}
VISP PWANNN =

UJWlNWWL{JMWWW

4-1
4-2
4=-2
4-3

ALPHA BASIC USER'S MANUAL

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

6-3 BINARY FORMAT " % 8 5 99 S 0" 0SS SO EE S SEeP e a8 E " aee R
6.4 INTEGER FORMAT ..cvceececccaccnnnnns ancscas cee
6.5 UNFORMATTED ..cecececenccscanccancncncanancnns

SUBSTRING MODIFIERS
7.1 SUBSTRING MODIFIER FORMATS AND FEATURES
MEMORY MAPPING SYSTEM

OCATING VARIABLE STORAGE ...cvececcascancas
STATEMENT FORMAT .ccvcecacenaea ccensasssss
MAP Level civecencncncnccannnans ceenaes
Variable Name ..ceeceeecencescecanascnes
Type COUE vevcencosunscacaasanncsnnnnnns
8.2.3.1 Unformatted Data .ececescacscee
2.3.2 String Data ..ceeccencccacasas
.2.3.3 Floating Point Data .cceacences
2.3.4 Binary Data .ceeeecnccencsas -

S128 cecnanee cnessesnsssssecscnsasanans

8.
8

1 AL
.2 MA

A
M
8.
8.
8.

NNNTJI'—
\NN—\

0 00 00
. .

2.
2.
2.

Value tessssssesssscssassaenasansannnes

00@00
0~U‘|#\

o0 0 00
.
SN
c
(%2
—
=2
(9]
-
pm o4
m
=
>
0
n
-
>
-
m
=
m
=
puer
e
[]
.
.
.
[]
.
.
[]
.
.
L]
-
.
L]
.
.
.
[]
]
L]
.

LOCATING VARIABLES DURING DEBUGGINGcccu.e
8.5.1 ExampleS ciavececances cesssesascsasssacs

INTERACTIVE COMMAND SUMMARY

BREAK tcicecencecncnnnncacaacccnsccsncnnannnns

BYE cuvvceecceccsecanncnccacnsncscnnanan cascane
COMPILE .cuveceeccncnccnvencancannnnnnnannnnnns
CONT tieneivcecceccecsnacnccaacenscannssnannss
CONTROL-C .uveveenncannn ceeacasansnanss [
DELETE ..vveceeeecncncnccnnccasananannacnnanns
LIST weecacccnnn cdssescccanascaacaa ceassaua ces
LOAD .eneeecrecnncnnceans ceseencansasans cessees

NEW couceceeenrececcccancacncncaaanannsannnnne

RUN covcennannns ceceessssentsasanasaanssaansns

= A A0 NOVT NN

N -0

SAVE .uccesecccnsenccnccanccennacnnasnaansnasns

SINGLE-STEP (LINEFEED) .succeucecececncncccncans

0 0 00 0VOVVO VOO

PROGRAM STATEMENTS

10.1 ALLOCATE .evevecunenenenae cresesenennsanasaue
1002 CHAIN tiuceceeccnncanaccaacsacasanasnnnnannes
10.3 CLOSE seceeveccscacncncassasacccanacacansnanss
10.4 DIM .iiiiceceaccacncennnsancesansncsnsannnans
10.5 END eteeveccennccennccncacanacnanas cemsesensan
10.6 FILEBASE v.vveeceecccccccenncancannss caseneaa
10.7 FOR, NEXT AND STEP .cccveeccccncans cecsavecas
10.8 GOSUB (OR CALL) AND RETURN .eiececcnccccnncns
10.9 GOTO cecvuccennccnccnccnacanccacanssanncannee

Page iv

6-2
6-3
z

i [
R e < I e e Yo YRV, IV, IRV, IV, B - SN \§ Y

9-2
9-2

9-3
9-4
9-4
9-5
9-6
9-6
9-7
9-7
9-8

10-1
10-1
10-2
10-2
10-3
10-3
10-4
10-5
10-8

ALPHA BASIC USER'S MANUAL

CHAPTER 11

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28

BASIC

1.1

IF, THEN AND ELSE ..ccevacn... csssessssssnsss
INPUT " % 0 & " S0 S E S S NS ae eSS aREe - e e s e wseese
INPUT LINE - e 8 %8660 eSS sEaeees ® ®» 88" & ewe 00 ssEen

KILL cecencecccnnccnnas cenans ccsscsescnnnnana
LOOKUP cscsssvassssans cesecsscnccssanaa
LET cscecsssacessasncceusneannncannsenen

ON =~ GOSUB (CALL) .eveenececencecacancanncnns .
ON = GOTO ceveenen. cesana cecesasssssessssenna

OPEN ..veieeecnccacenacacsaasnnassscacsananns

PRINT eSS CeaEessEcRveEscAaEr SRR eE SRS SERRSEREREEESsS

PRINT USING “ecsccensssaseasassscanas
RANDOMIZE ...cueecensceccncanasaccnncns cvecan
READ, RESTORE, AND DATA ...ceeececcaccccncanns
SCALE ceueueeaecenaccanneccnscccccncnnnnnncns
SIGNIFICANCE ...ccueccenncuncannacnnccacnnas .
STOP teucuceccnnceccsnncncnnnne cessesssencacnn
STRSIZ weecercnacan “eacasassscena cecncsccanes
WRITE ceccieccacenne sasase heeseacsacasscnanas

XCALL ceaveaen ceeeascesucssesaveannenssancans

FUNCTIONS

NUMERIC FUNCTIONS wuueceeenens Ceeeteeeeneenane
110121 ABS(X) wuveenvencecnncncnncccanannnans
112122 ASCCA) tuueeevecesnacesnnnnsannnnnnnn
110123 EXPUX) teeencennnencnnnnee ceeeen ceeen
11.1eb FACTCX) eeveecenesencanccsacacannnnns
112125 FIXCX) ceevecsenaccsncsnaceancsannnann
11.126 INTCX) euueeeeenccannecnsnnnnonnnanen
110127 LOGCX) wuuueeenancennacancacceannanee
11.1.8 LOGID weveenenen Ceeessenseseeeeeanan
110129 RNDCX) weeeeecenncencenncannncanns ves
1121210 SGNCX) eveennecnsaceccancncsnannnans
1121211 SAR(X) weevennncnnaes Ceeceecencanenas
1121212 VALCA) eeeeeesnncsnnncsannnnsennnanes
TRIGONOMETRIC FUNCTIONS wvuvceeenneeans ceeean
CONTROL FUNCTIONS wueecenecceenancacans ceaaen
11.3.17 EOF(X) veueeenn. Ceeeeenecenenenncenns
112322 ERFUX) tueucevennessnnasencascananannn
112323 ERR(X) ueeuuecenncennscacesnacaananns
11.3.4 OTHER CONTROL FUNCTIONS ceeeean
STRING FUNCTIONS sevueecceeccncennnnas ceeeneae
1106217 ASCEX) wuueeneeeccenncesnanncnsannnne
11.4.2 CHR$CX) OR CHR(X) .eeveceenncenns ceee
11.4.3 INSTR(X,A$,B$) weceucevencncaceancann
11ebeb LCSCAS) weeeeenacencannnen Ceeeneeeaas
11.4.5 LEFTC(A$,X) or LEFTS(AS,X) weveevanenn
11406 LENCAS) ueeveeecennnnns teeeenanaean
11.4.7 MIDCAS,X,Y) or MIDSCAS,X,Y) ceneecnen
11.4.8 RIGHT(A$,X) or RIGHTS(A$,X) seeeeeen.
11.4.9 SPACE(X) OF SPACES(X) weeeeecencencen
11.4.10 STRCX) OF STRE(X) eveeeceneceecacsns
1124211 UCSCAS) eeeveecseennncnanassnnanenen

Page v

10-9
10-10
10-12
10-13
10-13
10-14
10-14
10-14
10-15
10-15
10-17
10-17
10-18
10-19
10-19
10-20
10-20
10-21
10-21

ALPHA BASIC USER'S MANUAL Page vi

CHAPTER 12 SYSTEM FUNCTIONS
12-1 BYTE(X) AND WORD(X) mssmcsesesncesccsscnccanss 12"'1
12.2 DATE .iienuuaaa ceeccsssscssenssssssnansnanans 12-2
12.3 10(X) P -
12.4 MEM(X) cieeuenecencncancnsnnnnsanns cuceseanaes 12-2
12.5 TIME civceecccncananaanes hemsmassescsascenss . 12-3
CHAPTER 13 FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS)

13.1 THE USING MODIFTER ..eenvencccsoncancccnannas 13-1
13.2 FORMATTING CHARACTERS cvceecncsacccencnsnanes 13-2
13.2.1 The \ Symbol (String Fields) 13-3
13.2.2 The ! Symbol
(One-character String Field) ...c.... 13-4

CHAPTER 14

CHAPTER 15

(Floating Dollar SignN) cececececccnns

(Trail
13.2.10 The °°

(Exponential Format)
13.3 FORMATTING EXAMPLES AND HINTS .cecceanncacaes

The Z Symbol (Leading Zeros) ...
The Minus Symbol

6 The Comma Symbol (Floating Commas) ..
7 The ** Symbol (Asterisk Fill)
8
9

ing Minus Sign) cecsanans

"~ Symbol

13.4 EXPANDED TAB FUNCTIONS .cveececacns caens

SCALED ARITHMETIC

16,1 SCALE coieeeeenececcanans cescssssssssssecsnns

ALPHABASIC FILE I/0 SYSTEM

15.1 SEQUENTIAL ASCIT FILES weveceecenccccacananns

15.2 RANDOM FILES .evcee. esecssacsscasenssansnanas
15.2.1 Logical Records eeeeceecancccasccasnns

15.2.2 Blocking Factor and Record Size
15.3 FILE I/0 STATEMENTS ..ccceccoaacccacscans

15.3.1 OPEN .
15.3.2 CLOSE

15.3.3 KILL ecun.. cesesensesesnseracunn
15.3.4 LOOKUP c.ueeeeccecncccnnnns casas
15.3.5 ALLOCATE cueceecccnnnnsaccaannes
15.3.6 FILEBASE Cecsscccecssanana
15.3.7 INPUT ceveencencccnancnncanannes
15.3.8 INPUT LINE ccvveevecccannncannas
15.3.9 PRINT ceceececcccnances cescassne

15.3.10 READ .
15.3.11 WRITE
15.4 SAMPLE PROGRAM

13.2.3 The # Symbol (Numeric Fields) 13-4
13.2.4 The Period Symbol (Decimal Point) ... 13-5
13.2.5 The $% Symbol

14-2

_—) D D D
TITOOTTINIY
O N0 D000 NN P WWWWN

P e N)

-—

15-10

ALPHA BASIC USER'S MANUAL Page vii

CHAPTER 16 CHAINING TO BASIC AND SYSTEM PROGRAMS
16.1 CHAINING TO ANOTHER ALPHABASIC PROGRAM 16-1
16.2 CHAINING TO SYSTEM FUNCTIONS .cace. ccessnnnaa 162
CHAPTER 17 ERROR TRAPPING
17.1 ON ERROR GOTO STATEMENT c..eeeccaceccaccnananas 17-1
17.2 ERR(X) FUNCTION ...eceeececaccsaccancanannssae 172
17.2.1 Error Codes Returned by ERR c.eeecene 17-2
17.3 RESUME STATEMENT .cecceceacccacccacaannccnsnnee . 173
17.4 CONTROL-C TRAPPING .evcececes msecssssensnssaa 17-3
17.5 SAMPLE PROGRAMS ..cccceceacancansnccncacanans 17-4
CHAPTER 18 CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES
18.1 REGISTER PARAMETERS .vceccevanssecaas esascss .. 18-2
18.2 ARGUMENT LIST FORMAT .eececaccaccscccacansseas 18=3
18.3 FREE MEMORY USAGE cvevenceccnes sessasss ceeees 18-3
18.4 AUTOMATIC SUBROUTINE LOADING .eevcecececncacs . 18-4
CHAPTER 19 USING ISAM FROM WITHIN BASIC
19.1 FILE STRUCTURE .vceccccncccnceee cesssesennes . 19-1
19.2 SYMBOLIC AND RELATIVE KEYS wceeenvecncanananas 19-2
19.3 THE ISAM STATEMENT .eecececcccnscsnnassnncean 19-3
19.3.1 The ISAM Statement CodeS ...caeeaceaas 19-3
19.4 OPENING AN INDEXED FILE ceeceess cecnccsncnnaa 19-5
19.5 READ AND WRITE STATEMENTS cemcescanasas . 19-6
19.6 CLOSING AN INDEXED FILE ceveecacee ceecsanssns 19-6
19.7 INDEXED'EXCLUSTIVE MODE ec.vaececcncccnccncnacas 19-6
19.8 ERROR PROCESSING cuccececccnnsacaasn ceessassea 19-7
19.8.1 SOft Errors c.ceecececscecacacsaaassasas 19-8
19.9 USING INDEXED SEQUENTIAL FILES .sccuenecens eeaes 19-8
19.9.1 Creating an Indexed File eccecevnveneas 199

19.9.2 Adding Data to an Indexed File au.e.. 19-9
19.9.3 Reading Data Records in
Symbolic Key Order .c.ceceescccsnceeaa 19-10
19.9.4 Reading Data Records
Randomly by Symbolic Key .ceceeaaaaaa. 19-11
19.9.5 Updating Data RecOrds ..ceececceceseass 19-11
19.9.6 Deleting a Data Record ceceeeeccacaes 19-12
19.10 SAMPLE ISAM PROGRAMcccecccccanascannasa 19-13

APPENDIX A SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS

MOS MONITOR COMMANDS ..eveeeccccnnas Y 4
BASIC .c.vceecncennens Y 4
COMPIL 8 % P eSS0 NS e S e AN SaR TS A‘?-

1
2
3 Control=C ..eceecccacncasaanscnacs ceaas A-3
4 A-2

A.1 AMO
A.1.
A.1.
A.1.
A.1.

RUN cssvesmeccscesuscsancaancena

ALPHA BASIC USER'S MANUAL Page viii

A.2 ALPHABASIC COMMANDS s.vcceccecasacasanccanaaas A-3
BREAK cesesscvssasasas D
BYE cevecacecncananacacnncnccannas ceeas A4
COMPILE .cueee.. casesasssanacsanna ceees A-4
CONT wececcnnccncans cesascsscenssnans .. A-4
CONTROL=C weeeeevnnascacacacacaccnnnannn A-4
] =
LIST ceccacncnannoncevasncaaaccnna ceeass A-4
LOAD cucecccucccvnccscansanunnnnannns .. A-5
NEW seveceinaccncannnnns cecccaasnacncas A=5

O RUN teeceeeneccnnanncanccnnas B

1 SAVE ceueeenncn.. sececsessasccanasnnsess A=5

2 SINGLE-STEP (LINEFFED)o A-5

BASIC STATEMENTS cccceeececccccasccnansana A=5
ALLOCATE secescvacuassecanna cneeee A=6

™~ « &

>>>
L]
J-\"UVJ’.NUILN\N’\NWUI\N.ALNLN\N.NNWJW&NW\NW'\N&NW&NMWM‘UN\)NNNNNNNNNN

A.3

s I s s 8 @

—*>\NNNN’\JNNNNNN—‘—‘—-\—-\—\—-\—\-S—‘—‘\O@\IQU\J-\'.NN—éb—i—-\—\\oOO\IO~U'|~I-\WN—‘

.3. CLOSE c..... cecascsscasnsanes cecencnaes A=6
3. DATA ceecsscasescsanssnnnnnnnse .. A-6
.3 1
<3 END cceevcecnanncancsanscnacnsnsancnna .. A-7

FILEBASE " ® @6 866" "sseee eSS EeEeEDesRee - e A-
FOR, TO, STEP and NEXTce.... casenae
GOSUB or CALL and RETURNeecenceaas

GOTO " e 9 e SEE 9S00 0 ES R e e SE e SE S eEeEees

IF, THEN and ELSE .ciececanncenacecnnes
INPUT tcceevecccanccncncacccsaacnnnanns ..
INPUT LINE c.oceeuceececnannncncanaaanns
KILL eeveees ceececssscssceasscncnsasanns

LET teuieeceecnuacccnnnanenananncnnnnns

0

1

.12

3

4

5

6 LOOKUP cesssscscctesanncanananns .o

7 ON ERROR GOTO and RESUME cssssnscccacss

8 ON-GOSUB Or CALL cu.cecceacecacecanneas A=10
Q9 ON-GOTO .cevernnans ceencccnssncesaansas A=10
D OPEN .eiveeectennccaccannannannncnaasaa A-10
1 PRINT cvnunnnn.. ceeesnsccnssnsansacsaas A=10
2
3
4
5
26
7
8
9
30
B

?>>>>Jl>>>>>
O 0 0 0 0 200000 NN N

PRINT USING cveecececccanscncasnnnnaaas A=11
RANDOMIZE .veececnceceacnancasacsannsns A-11
READ and RESTORE .ueveceeccccancennaass A=11
SCALE teeeecerececnncncnsaansanansaneas A-12
SIGNIFICANCE cecevevcccccnccanancanansas A=1?
STOP ceveeecennnnnccanncnnns Y L
STRSIZ .ueccecancccnannncans esecsssanss A-12
WRITE cuececceacecacccaaccnnnans ceeeeeasas A-12
XCALL P L
ASIC FUNCTION STATEMENTS .cccveccveceeas A-13
NUMERIC FUNCTIONS cicceceeccnccncnne vee A-13
A.bi1.1 ABS(X) teveeieenncacnaccacasas A-14
CHR(X) ceeeeeenecnccsancenanas A-14

b i }

A.4

A.4.1.2

Ab.1.3 EXPUX) ceeeecncscecnannnnneess A-14
Acb1.b FACT(X) ceeeeenecenncncannness A=14
A.bo1.5 FIXC(X) wevenee. Y o L
A.bo1.6 INT(X) ceeeeennvececannnncaaes A-14
Acb1.7 LOG(X) cveeeecenceccannnccanas A-14

ALPHA BASIC USER'S MANUAL

.8 LOG10 ..
.9 RND(X) .
.10 SGN(X) .
.11 SQR(X) .
.12 STR(X) o
OMETRIC FUN
FUNCTIONS

o=
Sae

bbbb-‘-\bbbbz.ﬂwﬂﬂﬂ.ﬂ.NLN:UO—‘-‘—‘—""‘

N
0

BYTE and
EOF(X) .
ERF(X) .
ERR(X) .
MEM(X) .
SPACE(X)
FUNCTIONS
ASC(AS)

L
1
2
.3
A
.5
6
7
8

—
[L]

- n
J-\-L\-L\J-\«L\J-\J-\-l-\&\;obb-l-\-L\-L\-PJ-\-L\ZH-L\‘\J-\#J-‘

A.b.b

.
OOO\IO\U’!#\‘VJN—\

LCS(A%)

LENCAS)
MID(AS$,X,
RIGHT (AS,
UCS (A%
VAL (AS)

>>>>>>>>>m>>>>>>>>n—|>>>>>
2 8

L

.

APPENDIX B MESSAGES OUTPUT BY ALPHABASIC
APPENDIX C RESERVED WORDS

APPENDIX D THE ASCII CHARACTER SET
APPENDIX E

P 3 .
PR T CRE A

INDEX

INSTR(X,A$,B$) ..

LEFT(A$,X) or LEFTS,AS, X)

r STR%(X)
CTIONS

WORD

or SPACES$(X)

Y) or MID$(AS$,X, Y) ..
X) or RIGHT$(AS$,X) ..

SAMPLE PROGRAM - NUMERIC CONVERSION FOR BASES 2 - 16.

ALPHA BASIC USER'S MANUAL Page xi

PREFACE

AlphaBASIC dis a particularly powerful version of BASIC that has heen
expanded in several important areas. The following chapters describe the
AlphaBASIC features and operations.

We assume that you are already familiar with the BASIC programming language,
and that you are interested in getting to know AlphaBASIC. Therefore, this
book emphasizes features of AlphaBASIC that differ from those of
conventional BASICs, without going 1into much detail on standard BASIC
statements and commands.

This book is not a BASIC tutorial, but is a technical manual intended for
the experienced BASIC programmer. We encourage you to contact your local
Alpha Micro dealer for help in answering specific questions you may have
about AlphaBASIC.

BIBLIOGRAPHY

If you are not familiar with BASIC, you may be interested in taking a Llook
at one or more of the books listed below. We have found these books to be
helpful to the beginning BASIC programmer.

Albrecht, R. L., et al.
BASIC, 2nd Edition
John Wiley & Sons, 1978

Brown, J. R.
Instant BASIC
Dilithium Press, 1977

Cassel, D.
BASIC Made Easy: A Guide to Programming Microcomputers
and Minicomputers
Reston Publishing Co., 1980

Dwyer, T. and Critchfield, M.
A Bit of BASIC
Addison-Wesley, 1980

(Changed 30 October 1980)

ALPHA BASIC USER'S MANUAL

Dwyer, T. and Critchfield, M.
BASIC and the Personal Computer
Addison-Wesley, 1978

Hirsch, S. C.
RASIC Programming: Self Taught
Reston Publishing Co., 1980

Kemeny, J. G. and Kurtz, T. E.
BASIC Programming, 3rd Edition
John Wiley & Sons, 1980

CONVENTIONS USED IN THIS MANUAL:

To make our examples concise and easy to understand, we've adopted a number
of graphics conventions throughout our manuals:

A8

Optional elements of a BASIC statement or command. When
these symbols appear in a sample statement or command,
they designate elements that you may omit.

Underlined characters indicate those characters that
AMOS prints on your terminal display. For example,
throughout this document you see an underlined dot, .,
which indicates the prompt symbol that the operating
system prints on your terminal when you are at AMOS

command Llevel.

RET Carriage return symbol. The symbol marks the
in your keyboard entry to type a RETURN (i.e., hit the

key Llabeled RETURN). For example:
tells you "After an AMOS prompt,
RETURN."

".BASIC "
type BASIC and a

A Indicates a Control-character. If you type a
in the compiler mode of AlphaBASIC, for instance, you
see a "C on your terminal display. (Refer to
User's Guide, (DWM-00100-35), for more information on

Control-characters.)

(Changed 30 October 1980)

Control=-C

CHAPTER 1

INTRODUCTION TO ALPHABASIC

The acronym BASIC stands for Beginners' All-purpose Symbolic Instruction
Code. BASIC 1is a higher-lLevel programming Llanguage created to be a
versatile tool for learning computer programming, and also to provide a
relatively simple Llanguage for a wide variety of applications. But today,
BASIC is more than a learning tool or a beginner's tool for higher-Level
programming. It can be said that most programming on small, interactive
systems is done in BASIC. This 1is 1in part because of the 1inherent
similarity of BASIC to the English language.

Over the years since its inception, BASIC has been added to and modified as
new concepts of programming have emerged. Some implementations of BASIC are
more extensive than others; the use of these extended versions allows the
programmer a wider range of applications, greater ease in programming, or
greater efficiency and speed.

AlphaBASIC is just such an extension of the BASIC Llanguage, with several
features not found 1in other 1implementations. These features not only
enhance the performance of traditional uses of the language but also make
business applications easier to program. For 1instance, programmers familiar
with COBOL's powerful hierarchial data structures will appreciate AlphaBASIC
features which make data manipulation and assembly language subroutine
Linking similarly convenient. Floating point hardware in the processor is
fully supported, greatly increasing the speed of mathematical computations.

AlphaBASIC runs in one of two modes: interactive or compiler mode.
Interactive mode operates much Like a traditional interactive interpreter;
that 1is, you create, alter and test your program which resides totally in
memory. This mode is convenient for the <creation and debugging of new
programs or the dynamic alteration of existing programs. Compiler mode is
more useful for programs which are to be put into production use, or for
testing programs which are too large to fit in memory in the interactive
mode. In compiler mode, you compile the program at monitor level and store
the compiled object code on the disk. During the actual running of the
compiled program, only the object code and a minimal run-time execution
package need to be in memory, thereby conserving space. The compiler and
the run-time package are both written as re-entrant programs. This means
that in a timesharing environment, any or all users who are running or

INTRODUCTION TO ALPHABASIC Page 1-2

debugging programs may optionally share one copy in system memory of the
compiler and the run-time package. Once created by the compiler, the object
programs (also known as compiled programs) are also totally re-entrant and
sharable, thereby further reducing memory requirements if several wusers
desire to run the same application program.

AlphaBASIC supports floating point, string, binary and unformatted data
formats. ALl data formats may be simple variables or array structures. In
addition, the unique memory mapping system allows you to specify the
ordering of variables 1in prearranged groupings for more efficient
processing. This system is similar to the data formatting capabilities of
the COBOL language and lends itself well to business applications where the
manipulation of formatted data structures is of prime concern.

Variable names are not Limited to the single character and single digit
format of many BASICs, but may be any number of alphanumeric characters 1in
length, as Llong as the first character is alphabetic. This is another
feature which makes AlphaBASIC well suited for business applications. Since
the source code is compiled and need not be in memory when the program is
eventually run, the Llength of the variable name 1is not a significant
concern. Label names may also be used to identify points in the program for
GOTO and GOSUB branches. Label names are alphanumeric and help to clarify
the program structure (for example, EXIT'ERROR: or EVALUATE'ANSWER:).

CHAPTER 2

INTERACTIVE AND COMPILER MODES

The major purpose of this chapter is to explore the differences between the
two modes in which you can use BASIC. We will also discuss how to create,
compile, and run your programs.

The AlphaBASIC system consists of three programs: RUN.PRG (the monitor Level
BASIC run-time package), COMPIL.PRG (the monitor level disk-based BASIC
compiler), and BASIC.PRG (which combines an interactive compiler and
run-time package to simulate a BASIC interpreter). You use RUN and COMPIL
from AMOS command level to run and compile AlphaBASIC programs outside of
BASIC. You use the BASIC.PRG program when you want to use AlphaBASIC as an
interactive interpreter.

Your choice of interactive or compiler mode depends on several factors: your
personal preference, the amount of memory you have in your partition, the
stage of development your program is 1in, and the physical form of your
program.

Interactive mode simulates a BASIC interpreter by allowing you to deal
directly with BASIC. This is the mode that most BASIC users are probably
familiar with. Interactive mode permits direct editing of the source
program in memory and immediate feedback as each program line is edited. 1In
this mode you are '"in" BASIC, and can use AlphaBASIC's unique program
debugging features. To execute a program in this mode, you must first Lload
in or create in memory vyour uncompiled source program. After you have
finished compiling and executing the program, you are still 1in BASIC, and
are not returned to monitor level until you use the BASIC command BYE.

Compiler mode allows you to compile programs from the monitor Llevel without
ever entering BASIC. You first create the source program (a .BAS file)
using one of the system text editors. Then, from the AMOS monitor level you
compile the program. The compiler automatically saves this compiled version
of your source program (called the "object program") on the disk as a .RUN
file; the file is available for execution then or later using the AlphaBASIC
run-time package, RUN.PRG. After you execute the object program from the
monitor level, the run-time package returns you to monitor level.

INTERACTIVE AND COMPILER MODES Page 2-2

Whether you use interactive or compiler mode, the resulting object program
is re-entrant, and may be loaded into system memory for wuse by multiple
users.

2.1 INTERACTIVE MODE

Perhaps the major advantage of interactive mode is that it allows you to
"talk to" BASIC while you are creating or editing your program. You are
free to enter entire programs which will be executed when you use the RUN
command, or you can enter single statements outside of a program for direct
execution. You can interrupt a program and, since you are still in BASIC,
can display and change variable values and then resume program operation.
You will probably be most interested in wusing interactive mode if the
interactive nature of the compiler is of particular use to you (for example,
if you are new to AlphaBASIC and want to try out various statements and
small programs, or if a program is in an early development stage and you
want to make use of interactive mode's debugging features).

One disadvantage 1in wusing interactive mode has to do with memory
requirements. Your source program, your object program, and BASIC.PRG all
reside in memory at the same time. 1In addition, BASIC loads into memory the
BASIC run—-time package, RUN.PRG. The BASIC.PRG file itself is fairly large,
since it contains a compiler as well as the code that allows it to simulate
an 1interactive interpreter. This all means that using BASIC in interactive
mode uses up more memory than compiling and executing a program outside of
BASIC.

Because BASIC.PRG 1is re-entrant, you may place it in system memory to save

room in user partitions. (If you do so, you may also want to place RUN.PRG

in system memory.) However, since BASIC 1is a fairly large program, you

probably will only want to put it in system memory if most of the wusers on

your system do a great deal of BASIC program development.

To use interactive mode, at monitor level type BASIC followed by a RETURN:
.BASIC

When BASIC is ready to communicate with you, you see the prompt:

READY

You are now inside BASIC.

2.1.1 Loading, Creating, and Saving BASIC Programs
To load a source program into memory, use the LOAD command. For example:

LOAD NEWPRGL23,4]

INTERACTIVE AND COMPILER MODES Page 2-3

BASIC will Lload in the specified .BAS file. (This program file could have
been created using one of the system text editors, or might have been saved
from a previous interactive mode session.) Or, instead of loading in an
existing program, you can start creating a new source program by simply
typing 1in the program. Editing the program takes place in the conventional
manner, by typing each Line with its line number first. BASIC keeps Llines
in sequence automatically, so you may enter them in any numeric order. To
edit a program line, you must re-type the entire line. As you enter program
lines, BASIC scans that Lline looking for syntax errors. If you enter a line
incorrectly, BASIC will tell you so. For example:

READY

10 HELP WHAT AM I DOING?
syntax error

If you want to save a source program, use the SAVE command. For example:
SAVE NEWPRG

The command ahove saves the source program NEWPRG.BAS as a disk file in the
account you are Llogged into. You can save the compiled version of that
program by specifying the .RUN extension:

SAVE NEWPRG.RUN

If you have not previously compiled the source program, or 1if you have
changed the program since the last time you compiled it, BASIC automatically
compiles it for you when you save a .RUN file to ensure that you are saving
the most current version.

If you try to save a .RUN file when there is no source program 1in memory,
BASIC reports:

No source program in text buffer

Since there 1is no way to convert an object file back to a source program
file, you will want to save both the .BAS and .RUN versions of your program.
(For information on the SAVE and LOAD commands, see Sections 9.8 and 9.11.)

2.1.2 Direct Statements

Program statements that do not begin with a Lline number are considered
direct statements, and BASIC executes them immediately. For example:

READY

A=5

PRINT A+
9

INTERACTIVE AND COMPILER MODES Page 2-4

Although it Llooks as if it 1is being interpreted, a direct statement is
actually compiled, then it is applied against the current set of defined
variables. You can define variables and change variable values using direct
statements.

Certain statements are meaningless as direct statements, and so are not
allowed (for example, RESUME, GOSUB, etc.).

BASIC allows multi-statement Llines as direct statements. (Multi-statement
lines are Llines which contain more than one statement; the statements are
separated by colons.) As you enter direct statements, BASIC checks them to
see that they are in proper form and that they are legal for use as direct
statements. You see an error message if you enter a statement incorrectly,
or if it is not a legal direct statement.

2.1.3 Compiling and Running a Program

Although interactive mode simulates an interactive interpreter, in operation
BASIC.PRG is a full compiler. As you enter a direct statement, BASIC
compiles it and gives you 1immediate feedback. Whenever you change the
source program in memory, BASIC sets a switch that indicates that the
program must be re-compiled before it is executable again.

The source program that you have loaded in from the disk or created while in
BASIC resides in memory. Before you can execute that program, it must be
compiled. Running in interactive mode always involves the compilation and
running of a source program which is in memory, and never includes running a
saved disk object program directly. Also, in dinteractive mode, you may
compile only the program currently in memory. NOTE: To erase anything in
memory in preparation for loading in a new program or creating a new
program, use the NEW command. 1If you do not erase the program in memory,
BASIC will merge the new program into whatever is in memory. If any Lline
numbers from the new program duplicate Line numbers of an old program in
memory, the new Lines will replace the old Lines in memory.

To execute the proaram, use the RUN command. NOTE: If you try to use any
of the execution commmands (e.g., RUN or CONT), and if the program has been
changed since the last time it was compiled, BASIC automatically re-compiles
it for you before executing the program. Therefore, if you need to compile
the source program and then run it, you may simply use the RUN command, and
BASIC will compile and execute the program for you. For example:

INTERACTIVE AND COMPILER MODES Page 2-5

READY

10 REM This is a small program (ReT)

20 FOR I = 1 TO 5 EED

30 PRINT "Little tasks make large return."”
40 NEXT I (ReD)

RUN

COMPILE

Compile time was 0.13 seconds
Little tasks make Large return.
Little tasks make large return.
Little tasks make large return.
Little tasks make large return.
Little tasks make large return.
Runtime was 0.40 seconds

READY

To just compile the program, but not run it, use the COMPILE command. For
example:

COMPILE
Compile time was 0.13 seconds

Once the program is compiled, the object code resides in memory along with
the source program. You can write it out to disk as a .RUN file by using
the SAVE command and specifying the .RUN extension.

2.1.3.1 Compiler Options - You may specify the /0 compiler option to the
interactive compiler. The /0 option tells BASIC to strip out any references
to line numbers in your compiled object code. It does not change your

source program. By removing Lline number references from your object
program, you ensure that your compiled program will be smaller and will run
faster. However, if an error occurs while executing the program, the

resulting error message will not show the number of the Line where the error
occurred.

INTERACTIVE AND COMPILER MODES Page 2-6

2.1.4 Debugging Features

A unique feature which 1is very useful for debugging programs 1is the
single-step command. Every time you type a Line-feed alone on a Lline, BASIC
lists and executes the next program statement. At that point you can
inspect variables or alter their values before you continue program
execution (via the CONT command or typing another Line-feed). Note that any
change 1in the source program results in BASIC re-compiling the program
before the next single-step command is actually carried out. See Chapter 9,
"Interactive Command Summary," for more information on single~-stepping
programs, and on setting and clearing breakpoints.

2.2 COMPILER MODE

Compiler mode consists of wusing the disk-based compiler, COMPIL, and the
run—-time package, RUN, at monitor level to compile and execute programs
without entering BASIC.

Although you do not have the interactive features of AlphaBASIC available to
you in compiler mode, you do have the advantages of being able to compile
saurce programs that are too lLarge to fit into memory, and of reducing the
amount of memory you need to compile and execute programs. Remember that
interactive mode keeps the BASIC interactive compiler, the run-time package,
and your source program all in memory at the same time. When you compile a
program in interactive mode, the object code also resides in memory.

On the other hand, in compiler mode, only COMPIL and RUN need reside in
memory. Your source program is read in a line at a time from the disk and
the statements, except comments, are compiled into object code. When you
execute a program from the monitor, only the run-time package and your
object file need be in memory.

2.2.1 Creating a Program

There are two ways to create a source program for use in compiler mode: you
can either use AlphaBASIC in interactive mode to type in the program, save
that program on disk, and then exit BASIC; or, you can use one of the system
text editors, EDIT or VUE. The usual way to create a program that is going
to be compiled with COMPIL is to use VUE to create the .BAS file. VUE is a
screen-oriented text editor that allows you to see your program on the
terminal screen as you type it in. You can move the cursor around on the
screen and change or delete text at the current cursor position.

INTERACTIVE AND COMPILER MODES Page 2-7

2.2.1.1 Program Form - The form your program may take differs somewhat
between compiler mode and interactive mode. If you create and save your
source program in interactive mode, that program must, of course, contain
Line numbers. (Otherwise, BASIC would interpret each statement as a direct
statement when you tried to type the program in.)

COMPIL, however, does not require that a program contain Line numbers. 1In
fact, COMPIL ignores any line numbers. That means that if you create your
program using VUE, you do not need to include lLine numbers in that program.
In addition, you may indent your program Llines in any fashion you desire.
By omitting Lline numbers, 1including Line Llabels, and using indentation
judiciously, you can give your source program a much more structured Look
than 1is usually possible with BASIC programs. (A "label" is a special name
defined by you that identifies a location within a program.)

COMPIL also allows the use of continuation lines within a source program.
Specify a continuation Line by making an ampersand (&) the last character on
that Lline. For example:

IF Answer = RIGHT'NUMBER THEN &
PRINT "Very Good!' %
ELSE &
PRINT "Try again.'

If you use LOAD in interactive mode to load a program that uses continuation
Llines, BASIC concatenates contiguous continuation Lines into one line. (The
maximum Line Llength, including any continuation lines, tabs, or blanks, is
500 characters.) Then, if you save that program back out to the disk, any
continuation Llines are gone.

Below is a small example of a valid program that uses continuation lines,
indentation, and labels, and has no line numbers:

! Program to print name in reverse.
INIT: STRSIZ 20

STATT: INPUT LINE "Enter your name: " ,NAME$
IF LEN(NAMES$) = 0O THEN &
GOTO START

LOOP: COUNTER = LEN(NAMES$)
FOR I = 1 TO COUNTER
PRINT NAME$[COUNTER;1]
COUNTER = COUNTER - 1
NEXT
INPUT "Do you want instant replay? (Y or N)",QUERY$
IF (QUERY$ = "Y") OR (QUERY$ = "y") THEN &
GOTO LOOP &
ELSE &
PRINT "ALL done."
END

INTERACTIVE AND COMPILER MODES Page 2-8

NOTE: Since COMPIL ignores Lline numbers, it does no checking for duplicate
line numbers or Llines out of numeric sequence. If your program contains
these kinds of errors, it will compile using COMPIL. However, if you use
interactive mode and Lload the program 1in, BASIC (which requires Lline
numbers) will be unable to handle the program correctly, and errors will
result. (For example, 1in the case of duplicate Line numbers, BASIC will
merely take the last line in the file bearing the duplicate number.)

2.2.2 Compiling a Program

To compile a program in compiler mode, at AMOS command Level enter COMPIL
followed by the specification of the file you want to compile. You may
supply a full file specification, including account and device
specifications. (The default extension is .BAS. The default account and
device are the ones you are Llogged into.) After you enter the file
specification, type a RETURN. For example:

COMPIL REVRSE

Now you see a number of statistics on your terminal as COMPIL compiles your
program. A typical display might Look something Like this:

.COMPIL ACMSLS
Phase 1 - Initial work memory is 2310 bytes
Phase 2 - Adjust object file and process errors
Illegal MAP level - 350 MAP FILL S,16
Syntax error - 980 SLSMTD = SLSMTD;SSLAMT
Memory usage:
Total work space - 4712 bytes
Label symbol tree - 322 bytes
Variable symbol tree - 1186 bytes
Data statement pool - 0 bytes
Variable indexing area - 274 bytes
Compiler work stack - 140 bytes
Excess available memory - 11918 bytes

Note that COMPIL tells you if any error exists within the source program
when it processes your file (lines 4 and 5 of the display above). The
"Excess available memory" message is useful for letting you know how close
you are to running out of memory. If you do run out of memory during a
compilation, you see the message: (Out of memory - compilation aborted),
and COMPIL returns your terminal to AMOS command level.

When COMPIL has finished processing your file, it returns you to monitor
level and writes the object program to the disk as a file bearing the name
of your source program and a .RUN extension.

INTERACTIVE AND COMPILER MODES Page 2-9

2.2.2.1 Compiler Options - Two compiler options are available for use
with COMPIL: /0 and /T. To choose an option, include the symbol "/'" at the
end of the file specification that you supply to COMPIL, followed by the
appropriate option request code. For example:

.COMPIL NEWFIX.BAS/0

The compiler mode /0 option is the same as the /0 option for the interactive
mode (see Section 2.1.3.1, above). The /0 option code tells COMPIL to strip
out any line number references in your compiled object code file. This
makes your object code file smaller and makes the program run faster, but if
an error message occurs, the message will not contain the number of the Lline
at which the error occurred.

The compiler mode /T option is primarily for debugging purposes. It tells
COMPIL to display each Line of your source program as it scans that Lline.
If a problem occurs during compilation, you can use the /T option to
determine the line in which the problem occurs. You can also use /T to
gauge the speed with which certain statements compile.

2.2.3 Running a Program

To run a program in compiler mode, at AMOS command level enter RUN followed
by the name of the .RUN program you want to execute. Then type a RETURN.
For example:

.RUN LOOP

You may supply a full file specification, including device and account
specifications. The monitor looks for the run-time package, RUN.PRG, 1in
memory; if it dis not found in system or user memory, AMOS lLoads RUN into
memory from the disk. RUN initializes memory and then Looks for your
program 1in memory; if it is not there, RUN Loads the specified .RUN file
from the disk. Now RUN executes your program. When RUN finishes executing
the program, or if you type a Control-C to interrupt the program, RUN
returns you to AMOS command level.

Note that the RUN command serves two different functions, depending on
whether you are in compiler or interactive mode. 1In compiler mode, RUN is a
monitor command used to execute a compiled BASIC program that has previously
been saved on the disk or loaded into memory. The command:

<RUN PAYROL GED

will run PAYROL.RUN and then exit back to AMOS command level without ever
entering BASIC. In interactive mode, the RUN command 1is a BASIC command
that compiles and executes the current source program that you are editing
and testing; when it finishes, you are still in BASIC.

NOTE: Be careful that you do not try to use the monitor command RUN on a
file with a .BAS extension.

CHAPTER 3

GENERAL INFORMATION

This chapter gives general information about the form that your AlphaBASIC
program may take. For example, we discuss multiple statement Lines,
EXPAND and NOEXPAND modes, program labels, and line numbers.

3.1 MULTIPLE STATEMENT LINES

The system supports multiple statement lines by using colons to separate the
statements. For example:

10 FOR I=1 TO 10 : PRINT "THIS IS A LOOP" : NEXT I

The normal rules apply; for instance, a DATA statement cannot contain other
statements on the same Line and no other statements may follow a 'comment”
(designated by the REM or ! keywords). Direct statements may also be
multiple statement Llines.

You should always use spaces around the colons since BASIC will otherwise
try to treat two commands (e.g., PRINT:PRINT) as a label and a single
command. (The one situation where you do not have to use spaces around the
colon that separates two statements is when you are in NOEXPAND mode. See
Section 3.8 for information on EXPAND and NOEXPAND modes.)

3.2 CONTINUATION LINES

COMPIL allows the use of continuation Llines within the source program. That
is, statements may be continued on the next Line by using the ampersand (&)
symbol as the last character on the Line. Since any statement line may be
indented as you please in the compiler mode, considered use of continuation
lines and indentation, plus optionally eliminating Lline numbers (as
discussed in the next section) enables you to give your source program a
much more structured Llook than allowed by more conventional BASICs or
AlphaBASIC in the interactive mode. For example:

GENERAL INFORMATION Page 3-2

IF (TIME/60/60/CLKFRQ)*10000 > 120000 &
AND (TIME/60/60/CLKFRQ)*10000 < 130000 &
THEN &
PRINT "IT IS LUNCHTIME" &
ELSE &
PRINT "GO BACK TO WORK"
PRINT (TIME/60/60/CLKFRQ)*10000

The maximum size of any line, including blanks, tabs and any continuation
lines, is 500 characters.

3.3 LINE NUMBERS

Program Line numbers range from 1 to 65534. Programs used in interactive
mode must contain Lline numbers. Programs to be compiled in compiler mode do
not need to have Lline numbers, because COMPIL dignores Lline numbers.
Therefore, if you create your program using VUE and are going to use COMPIL,
you may omit the Lline numbers from the program. Unnumbered lines may
enhance the structured look of your source program as shown in Section 3.2.
NOTE: If you include line numbers, that does mean that if an error occurs,
BASIC will be able to tell you which Line the error occurred in.

3.4 COMMENTS (REM AND "!')

AlphaBASIC supports the ability to insert comments into the source program
using two methods. The keyword "REM" may appear alone on a line followed by
the comment, or may be inserted on the same line as a statement, to comment
on the purpose of the statement. You may follow the REM <(or 'remarks')
keyword with anything you want. For example:

70 REM ANYTHING YOU WISH TO SAY
100 PRINT A : REM VARIABLE A MEANS ''ALLOWANCE"

Note that Line 100 above 1is a Llegal multi-statement Lline:; however, no
statement may follow a REM statement on a Line. When the program is
compiled, everything in the line following the REM statement is ignored.

The comment symbol "!" is an abbreviation of the REM statement, and is used
the same way. Like the REM statement, anything following the ! symbol on
the line is ignored. For instance:

40 PRINT "TRY ANOTHER TIME" !TF THEY MISS BETWEEN
50 GOTO AGAIN 'ONE AND THREE TIMES.

GENERAL INFORMATION Page 3-3

3.5 INTERACTIVE MODE DIRECT STATEMENTS

AlphaBASIC immediately executes any Line you enter if that line does not
start with a line number. Such lines may he of two types: BASIC system
commands and direct statements. A BASIC system command performs a system
function (for example, the LIST command tells AlphaBASIC to display the
program currently in memory). BASIC system commands may never be part of a
program line. Direct statements, on the other hand, are normal program
statements that may also appear within a program line. (For example, the
PRINT statement tells AlphaBASIC to display a specified numeric or string
value and may appear either as a direct statement or as part of a program).
Some statements are not allowed as direct statements (for example, the GOSUB
statement).

3.6 PROGRAM LABELS

AlphaBASIC allows the use of program Llabels to identify Llocations 1in a
program. A program label is composed of one or more alphanumeric characters
which are not separated by a space or other delimiter. The first character
must be an upper case alphabetic character A-Z or a2 lower case alphabetic
character a-z. Apostrophes may be used within labels in place of spaces for
clarity, since apostrophes are not recognized as delimiters. A label, when
used, must be the first item on a Lline and must be terminated by a colon
(:). It is important to remember that you may not place a space between the
label and 1its colon; to do so will cause BASIC to think that you have
entered a multi-statement Lline rather than a labeled Line. A Label may be
followed by a program statement on the same line, or it may be the only item
on the Lline. The use of labels is similar to the use of Lline numbers with
GOTO and GOSUB statements, and makes the program easier to document. Here
are some examples of labels (using apostrophes):

10 START'PROGRAM: INPUT "Enter two numbers to get sum: " ,A,B

2n PRINT A; "+"; B; "=" A+B

30 IF A+B <>) GOTO SUM'NOT'ZERO
40 PRINT "Sum is zero"

50 GOTO START'PROGRAM

60 SUM'NOT'ZERO:

70 PRINT "Sum is not zero"

80 GOTO START'PROGRAM

90 END

where Start'Program: and Sum'Not'Zero: are labels. Note that a reference to
a label, as seen in Llines 30, S0 and 80, is neither the first item on a line
nor is it terminated by a colon. The reference must be identical to the
actual label 1in its case (upper and/or Llower) and 1in the placement of
apostrophes.

GENERAL INFORMATION Page 3-4

3.7 MEMORY ALLOCATION

The compiler system allocates memory dynamically as you edit your program,
and also during its compilation and execution. Checks are made to tell you
if you have run out of memory. If you do, you get an error message. If you
run out of memory while COMPIL is compiling your program, compilation is
aborted and you are returned to AMOS command Llevel.

3.8 EXPAND AND NOEXPAND MODES

AlphaBASIC normally scans the source text of the program in EXPAND mode,
which dictates that reserved words (verbs, functions, commands, etc.) be
terminated by a space or a character that 1is illegal 1in variable names.
This allows Llabels and variables to begin with reserved words. 1In other
words, the variable name PRINTMASTER is not interpreted as PRINT MASTER in
expanded mode. In the EXPAND mode, the statement FOR A=1 TO 10 cannot be
written as FORA=1T010. These are the two commands which you may apply to
switch back and forth between the normal EXPAND mode and the NOEXPAND mode:

EXPAND sets syntax scanner to expanded mode
NOEXPAND sets syntax scanner to non-expanded mode

The default mode 1dis EXPAND mode. Note that the object code which is
generated as a result of a compilation is not affected in size, execution
speed or anything else by the mode in which it is compiled.

NOEXPAND s usually used only when running programs written on other
systems.

3.9 LOWER CASE CHARACTERS

AlphaBASIC supports lower case letters (a-z) and upper case letters (A-Z) in
both the 1input source program and in the run-time execution of programs.
The Lline editor built into the interactive system accepts and stores source
input text in lower case or wupper case characters. Lower case Lletters,
when used within variable names and labels, are unique and separate from the

corresponding upper case Lletters. In other words, the variable "a" is
separate from the variable "A" and the variable "Tom" is separate from the
variables "TOM" and '"tom". Lower case letters may be used as the first

character of a variable name or program label just as upper case letters may
be.

Reserved words are treated somewhat differently from the above system. When
a reserved word is expected, the syntax parser temporarily translates all
lower case letters to upper case and then checks for a reserved word match.
If the word is not a reserved word, the translation is not retained and the
lower case Lletters are used for variable name matches. The following
statements are all considered to be identical:

GENERAL INFORMATION Page 3-5

FOR A =1 TO 100 STEP 2
For A =1 To 100 Step 2
For A = 1 to 100 step 2
for A =1 to 100 step 2

The entire string processing system supports lower case characters. That
is, Llower case Lletters used within string literals (inside quotes) are
retained and printed as lower case. Lower case letters which are entered
into string variables by means of the INPUT statement are also retained as
lower case letters.

Note that all lower case characters are considered greater than any upper
case character due to their position in the ASCII collating sequence. To
assist in processing and comparing input which contains lower case Lletters,
the UCS(X) function has been implemented. This function returns a string
which 1is identical to the argument string (X), with all characters
translated to upper case. The inverse function LCS(X) returns a string with
all characters translated to lower case.

3.10 LIBRARY SEARCHING

Whenever a program (called via RUN or CHAIN) or a subroutine (called via
XCALL) is requested, BASIC follows a specific pattern 1in Llooking for the
requested module. I1f you specify an account, then BASIC uses the current
default device and the specified account. If you do not specify an account,
the search sequence 1is as follows (where CP,pnl designates the
Project-programmer number that specifies your account):

System memory

User memory

Default disk:[User P,pn]
Default disk:[CuUser P01
DSK0:[7,61

Note that earlier versions of BASIC (pre-4.2) wused a different search
algorithm that was the reverse of the one outlined above.

CHAPTER 4

ALPHABASIC VARIABLES

4.1 VARIABLE NAMES

An AlphaBASIC variable name may contain any number of alphanumeric
characters, and 1is not Limited to a single letter or to a letter and a
digit, as in most BASIC implementations. The first character of the name
must be alphabetic (from A to Z and a to z), and the variable name may begin
with any reserved word unless NOEXPAND mode is set (see Section 3.8, '"EXPAND
and NOEXPAND Modes'"). (For a Llist of AlphaBASIC reserved words, see
Appendix C, "Reserved Words.'") Apostrophes may also be used in variable
names to improve clarity. You may use both upper and lower case characters
in your variable names. Note that although AlphaBASIC folds reserved words
to upper case, it does not translate variable names (e.g., the variable name
REC'SIZE is considered unique and separate from the variable name Rec'Size).
(See Section 3.9 for a discussion of how AlphaBASIC handles upper and Llower
case characters.)

Normal (unmapped) variables are considered floating point variables unless
their names are terminated by a dollar sign, 1in which case they are
considered string variables. Variables defined via a MAP statement <(called
mapped variables) are defined by an explicit type code and therefore do not
follow the standard convention of using a dollar sign for string variables;
they may take on any kind of data format, regardless of the name terminator.
(Mapped variables are a special form of AlphaBASIC variable that enable you
to perform sophisticated data 1/0. For information on mapped variables, see
Chapter 8, '"Memory Mapping System.')

Integer variables are specified by appending a percent sign to the variable
name. (NOTE: The integer variable was added for compatibility reasons.
However, AlphaBASIC does not perform integer arithmetic. Following a
variable name with a % symbol is equivalent to using the integer function on
that variable. For example, COUNTER% is the same as INT(COUNTER).)

ALPHABASIC VARIABLES Page 4-2

Subscripting of array variables follows the standard conventions of other
BASICs by enclosing the subscripts within parentheses.

The following are examples of legal variables:

A

AS

NUMBER

STRINGS

MASTER' INVENTORY ' RECORD
HEADER]

MOM' ALWAYS'LIKED'YOU'BEST
11234567

NEW'ARRAY(3,3)

4.2 NUMERIC VARIABLES

The normal mode of processing numeric variables (as opposed to string
variables) is in 11-digit accuracy, which might be termed
"single-and-one-hal f" precision compared to normally accepted standards.
This is due to the hardware floating point 1instructions which are
implemented in the Alpha Micro computer. Integer and binary variables are
also considered numeric variables, but are always converted to floating
point format prior to performing mathematical operations on them. ALL
printing of numeric wvariables is done under normal BASIC format, with the
significance being variable under user control from 1 to 11 digits. The
SIGNIFICANCE statement is wused to set up this value. (See Section 10.24,
"SIGNIFICANCE.")

4.3 STRING VARIABLES

AlphaBASIC supports string variables in both single and array form. The
memory that is allocated for each string variable is the number of bytes
representing the maximum size that the string is allowed to expand to. Each
string is variable in size within this maximum Llimit and a null byte is
stored at the end of each string to indicate its current actual size if the
string is shorter than the maximum. At the start of each compilation, the
default size to be used for strings is 10 characters maximum. The STRSIZ
statement may be used within the program to alter the value to be used for
all new string variables which follow.

String variables may be concatenated by use of the plus sign between two
strings. String variables may be assigned values by enclosing string
literals 1in quotes. String functions such as LEFT$, RIGHT$, MID$, etc. are
implemented to assist in manipulating portions of strings or substrings. 1In
addition, a powerful substring modifying system may be used to operate on
portions of strings within expressions. Chapter 7, "Substring Modifiers,"
is devoted to this unique option of AlphaBASIC.

ALPHABASIC VARIABLES Page 4-3

Unformatted, mapped variables are also considered string variables when they
are used in expressions or printed. (See Chapter 8, '"Memory Mapping
System," for information on mapped, unformatted wvariables.) (NOTE: Of
course, an unformatted variable may contain non-string data. If this the
case, then wusing the PRINT statement to display either that variable or an
expression containing it will result in a very odd display, since the data
is not in a printable form.)

4.4 ARRAY VARIABLES

Arrays may be designated by numeric or string variables and are allocated
dynamically during execution when the DIM statement is encountered 1in the

program. During execution, if no DIM statement has been encountered when
the first reference to the array is made, a default array size of 10
elements for each subscript Llevel is wused. This means that all DIM

statements must be executed in the program prior to any actual references to
the array.

Arrays may be any number of Llevels deep but practicality dictates some
reasonable Llimit of 20 or so. Each level is referenced by a subscript value
starting with element 1 and extending to element N. Once an array has been
dimensioned by a DIM statement, it may not be redimensioned by a subsequent
DIM statement in the same program. At no time may the number of subscripts
vary in any of the references to any element in the array. The number of
subscripts 1in each element reference must also match the number of
subscripts in the corresponding DIM statement which defined the array size.
(See Section 10.4, "DIM," for more information on the DIM statement.)

CHAPTER 5

ALPHABASIC EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS

An expression can contain variables, constant values, operator symbols,
functions, or any combination of the above. For example:

(1+(FIX(TOTAL'RECS*REC'SIZE)/512))

Parentheses are used to designate hierarchy within expression terms; the
normal mathematical hierarchy prevails 1in the absence of parentheses.
AlphaBASIC recognizes the following mathematical operators:

+ unary plus or addition = equal

- unary minus or subtraction < less that

* multiplication > greater that

/ division <> unequal

" raise to power >< unequal
*% raise to power # unequal

" string Literal = Lless than or equal
NOT logical NOT = less than or equal
AND Logical AND = greater than or equal
OR logical OR = greater that or equal
XOR logical XOR USING expression formatting

EQV logical equivalence
MIN minimum value
MAX maximum value

ALPHABASIC EXPRESSIONS : ~ Page 5-2

5.2 OPERATOR PRECEDENCE

The precedence of operators determines the sequence in which mathematical
operations are performed when evaluating an expression that does not have
overriding parentheses to dictate hierarchies. AlphaBASIC uses the

following operator precedence: st éﬁuﬁi&7’47”*"”®’/%lé%

S
exponentiation APt O WESTT g pF IS Yol e
unary plus and minus e i — e wwww”““gmg
multiplication and division X = 79V41591j?q¢/ﬂfi§~ﬂ””
add1t3<‘)n and subtr:actmn . S 799 -Hz’m")(fjj
relational operations (comparisons) JERL 5O T I X = “j e
Log‘ical NOT MW? 77 /9{ ﬁ‘r(/pq-p' ‘ﬂ-fc .
logical AND, OR, XOR, EQV, MIN, MAX 50 foi ey /ou/ew’fézy
USING ,@.W%M &G a For Velve Hipley Thay
[

o s Bn il EL3E X =X |
NOTE: The USING operator allows you to format numeric or string data using

a format string. For information on USING, see Chapter 13, 'Formatting
Output (PRINT USING and Extended Tabs)."

5.3 MODE INDEPENDENCE

Expressions may contain any mixture of variable types and constants in any
arrangement. AlphaBASIC performs automatic string and numeric conversions
as necessary, to ensure that the result 1is in the proper format. For
example, if two strings are multiplied together they are first automatically
converted to numeric format before the multiplication takes place. 1f the
result 1is then to become a string, it is reconverted back to string format
before the assignment is performed. 1n other words, the statement A$ = B$ *
"345" is perfectly legal and will work correctly. This is a powerful
feature which can save much programming effort when used correctly.

There 1is a seemingly ambiguous situation which arises from this mode
independence. The plus symbol (+) is used both as an addition operator for
numeric operations and as a concatenation operator for string operations.
The value of 3445 is equal to 39 but the value of "34"+"5" is equal to the
string "345". The ,operation of the plus symbol is unambiguous in its
operation but may take a little thought to figure out its exact usage 1in a
given situation. A few examples might help.

If the first operand 1is numeric and the second is string, we convert the
second to numeric form and perform addition.

34 + '"S" equals 39

If the first operand is string and the second operand is numeric, we convert
the second to string and perform concatenation.

"34" + 5 equals '"345"

ALPHABASIC EXPRESSIONS Page 5-3

NOTE: The above two examples apply only when we are not '"expecting" a
particular type of variable or term. This generally occurs only in a PRINT
expression such as PRINT "34" + 5. At other times, we are expecting a
specific type of wvariable; the conversion of the first variable is then
performed prior to inspecting the operator (plus sign). The operation of
the .plus sign is implicitly specified by the result of the first variable.
Take the following example:

5 % "34" + 4

The multiplication operator (*) forces us to expect a numeric term to
follow. The '"34" string is therefore immediately converted to numeric 34
and multiplied by the 5. The plus sian then performs numeric addition
instead of concatenation. The result is in numeric format and is converted
to string format if its destination is a string.

The following are a few examples as they would be seen if you were to use
them in an actual program:

10 A =36 +5

20 B = 34 + "5"

30 C = "34" + 5

40 D - ll34ll + "5"
50 A$ = 34 + 5

60 BS = 34 + "5"
70 C$ = "34" + 5
80 D$ - "34" + "5"

90 PRINT A,B,C,D
100 PRINT A$,B$,C$,D$

READY

RUN (ReT)

39 39 39 39
345 345 345 345

You can see that conversion is affected by the type of variable being used.

You might Like to try a few examples of your own on your system to see what
the results are. Remember, any potentially ambiguous expression may always
be forced to one or the other type by use of the STR and VAL functions.

For more examples of mode independence, see the sample programs in Chapter
7, "Substring Modifiers."

CHAPTER 6

DATA FORMATS

This chapter discusses the various forms which your data may take. Note that
if you do not use MAP statements to define your data, your variables may
only take on floating point numeric values or string values. If you use MAP
statements, however, you have a great deal more versatility in the format of
your data, and can define binary and unformatted data as well. MAP
statements also give you a way to define powerful hierarchial data
structures that allow sophisticated data manipulation. (For information on
using MAP statements, see Chapter 8, '""Memory Mapping System.'” That chapter
also discusses how BASIC assigns memory locations to data.)

6.1 FLOATING POINT FORMAT

ALl numeric variables are assigned floating point format unless specified
otherwise in the program. The standard precision in use by the Alpha Micro
system can be called "single~and-one-half," since it lies midway between
what are known as single precision and double precision formats. The reason
for this is that the hardware floating point instructions all work in this
format. Floating point. numbers occupy six byte§~giustgggge and are in the
format dictated by the hardware instructions. Qf the 48 bits in. use for =
eath 6-byte var1ab[e, the high order"b1t 1s the 513 ofthe mant1§§a. “The
“FFYT'B’B?TEﬁFEpresent the s1gned exponent in excess-128 notat1on"%wm?v*hg a
range of approximately 2.9%10°-39 thru 1.7*10°38. The remaining 39 bits
contain the mantissa, which is normalized with an implied high-order bit of
one. This gives an effective 40-bit mantissa which results in an accuracy
of 11 significant digits.

DATA FORMATS Page 6-2

6.2 STRING FORMAT

The string format is used for the storage of alphanumeric text data. String
variables require one byte of storage for each character and may be fixed in
position using the memory mapping system. If a string is shorter than the
maximum Llength, a null byte 1is stored following the last character to
terminate the string.

NOTE: When AlphaBASIC compares a string of spaces and a null (empty)
string, it sees them as equal. This is by design and demonstrates how
AlphaBASIC compares strings. If two strings are of equal length, AlphaBASIC
compares the strings on a character-to-character basis. 1f they are of
different Lengths, AlphaBASIC pads the shorter of the two with spaces until
the strings are of equal length, and the comparison proceeds. For example,
the string "PAST DUE" dis equal to the string "PAST DUE ",

As you can see, using this algorithm causes a null string to be treated as a
string of spaces during comparison. The proper way to check for a null
nn

string is to use the LEN$ function, rather than to see if it is equal to .
(If LEN$(string-variable) returns a zero, the string is null.)

) e b/‘Jf DEs1ws b
6.3 BINARY FORMAT 2-BYrE Brnea = €7

Binary variables are specified via MAP statements, and are similar to
integer variables in other implementations of BASIC. A binary variable may
be from 1 to 5 bytes in length and may be signed when all 5 bytes are
specified. When less than 5 bytes are specified in a MAP statement as the
length, the binary value may be loaded as a negative number, but it is
always returned as a positive number of full magnitude. The upper bit
(preloaded as the sign) takes on its specific _valye 1in the equivalent
positive binary varigble.-- ‘instanceﬂ;g;l;gx;e bin@igﬁmay be loaded with
positive numbers from. 0 thru 255)(decimaly;~6r negativé numbers from -1 thru
=128, but the negatiVé numbers are returned as the positive values of 128
thru 255 respectively. Only S5-byte binary variables return the original
sign and value when loaded with a negative number.

Binary variables may be used in expressions but they are slower than
floating point variables because they are always converted first to floating
point format before any mathematical operations are performed on them.
Binary variables are useful in integer and logical (Boolean) operations or
for storing values in small amounts of memory (floating point numbers always
take 6 bytes of memory regardless of their values). All logical operations
performed within expressions (AND, OR, XOR, NOT etc.) cause the values to be
converted first to signed 5-byte binary format before the logical operation
is performed. The wvalue =1 represents a 40-bit mask of all ones. Any
relational comparison between two expressions or variables returns a -1 if
true, or a 0 if false.

DATA FORMATS Page 6-3

6.4 INTEGER FORMAT

Integer variables and constants are specified by appending a percent sign
(%) to the variable name, which is the standard convention in use by other
BASICs. AlphaBASIC generates floating point variables and performs
automatic integer truncation for all integer wvariables specified in this
manner. Integer constants are generated as their equivalent floating point
values and are included only for compatibility with existing program
structures. Since integer variables are effectively floating point
variables with an additional INT conversion performed, they are actually
slower than regular floating point variables. This is the opposite of most
other BASICs, which usually store integer variables as 2-byte signed values
and perform special integer arithmetic on them. True integer variables may
be defined by using the MAP statement and the "B" binary type code. See
Section 8.3, "Type Code," for a description of the "B" type code.

6.5 UNFORMATTED

An unformatted numeric variable, specified via a MAP statement, defines a
fixed size area of storage used to contain absolute unformatted data which
may be in any of the above formats. This format is normally used in the
mapping system to define contiguous storage which is subdivided into
multiple variables of different formats. No conversion ever takes place
when moving data to and from this format. Unformatted variables are treated
as string variables when used in expressions.

CHAPTER 7

SUBSTRING MODIFIERS

AlphaBASIC supports a unique method of manipulating substrings. A substring
is a portion of an existing string, and may be as small as a single
character or as large as the entire string. Substring modifiers allow the
substring to be defined in terms of character positions within the string,
relative to either the left or right end of the string. The length of the
substring is defined either in terms of its beginning and ending positions
or in terms of 1its beginning position and its length. Substrings are
defined by referencing the desired string followed by the substring
modifier. The substring modifier is two numeric arguments enclosed within
square brackets.

7.1 SUBSTRING MODIFIER FORMATS AND FEATURES
The substring modifier takes on two distinct formats:

[beginning-position,ending-position]
[beginning=-position;substring-Llengthl

The first format defines the substring in terms of its beginning and ending
positions within the string and uses a comma to separate the two arguments.
The second format defines the substring in terms of its beginning position
within the string and its Llength, using a semicolon to separate the
arguments. The second format basically performs the same function as the
MID$ function.

The beginning and ending positions are defined as character positions within
the string relative to either the Lleft or right end. A positive value
represents the character position relative to the left end of the string,
with character position 1 representing the first (lLeftmost) position. A
negative value represents the character position relative to the right end
of the string, with character position =1 representing the last (rightmost)
position. For example, assume the following string has the Lletters ABCDEF
in it. The positions are defined 1in terms of positions 1 through 6
(Left-relative) or positions -1 through -6 (right-relative).

SUBSTRING MODIFIERS Page 7-2

E F (6 characters within main string)
5 6 (Lleft-relative position values)
-2 -1 (right-relative position values)

(o 30 B -
Vi D
NN O
W o

Allowing negative values for right-relative positions provides the ability
to pick out digits within a numeric string without having to calculate the
total size of the string first and then working from the Lleft. (Remember
that the mode independence of AlphaBASIC allows you to apply string
operations to numeric data.)

The substring-length argument used by the second format may also take on
negative values for a more flexible format. Normally the length is a
positive value which represents the number of characters counting the
beginning position and dincrementing the 1index to the right. A negative
length causes the index to move to the left and returns a substring whose
last character 1is the one marked by the beginning-position argument.
Perhaps a few examples may clarify the use of substring modifiers. Assume
the main string is A$ and it contains the above example of ABCDEF. The
following substrings are returned:

AS[2,4] equals BCD
AS[2;4] equals BCDE
A$[3,3] equals C
AS$[3;3] equals CDE
A$[-3,-2] equals DE
AS[3,-21] equals CDE
A$[3;-2] equals BC
AS$[-3,-21] equals CcD
AS$T4;1] equals D
A$C4;-1] equals D

For example, A$[3,-2] tells AlphaBASIC to return the substring that begins
at character position 3 (from the Left) and ends with character position 2
(from the right); that is, to return all characters between C and E,
inclusive. A$[3;-21, however, tells AlphaBASIC to return the substring that
begins with character position 3 (from the left) and extends 2 character
positions (toward the left); that is, to return all characters starting with
C and working backward two positions to B, inclusive.

Any position values or length values which would cause the substring to
overflow out of either end of the main string are truncated at the string
end.

A$[3,101 equals CDEF
A$[-14,34] equals ABCDEF

The main string to which the substring modifier is applied is actually any
expression and does not need to be a defined single string variable. For
example:

Qs
Q%

(A$+B$+C$)[2;10]
(""ABLE"+A$+"'QQ@34") [4,10]

i on

SUBSTRING MODIFIERS Page 7-3

The mode independence feature allows substring modifiers to be applied to
numeric expressions. (See Chapter 5, '"AlphaBASIC expressions,”" for
information on mode independence.) A string 1is returned, but if the
destination 1is a numeric variable, another conversion 1is made on the
substring to return a numeric value.

10 INPUT "Enter number: " ,NUMBER : INPUT "Enter another: " ,NUMBERZ2
20 SUM = NUMBER+NUMBER?2

30 PRINT NUMBER;" + '‘;NUMBERZ2;" ='"3;SUM

! Strip off rightmost digit and test it for divisibility.

40 IF SuMC-1;11] 0 THEN PRINT "Divisible by 5 and 2"

50 IF SUML-1;11 = 5 THEN PRINT "Divisible by 5"

Be sure you understand the concept of mode independence before you begin to
use substring modifiers or you may get answers you don't expect. For
example, lines 30 and 40 1in the small program below return different
answers, even though the subscripting is performed exactly the same in both
cases. This is because the mode independence feature examines the data type
of the destination variable before allowing any operations to be performed.
When it scans Lline 30, BASIC knows that a string result is expected (because
STRING$ 1is a string variable), and so reads the "+" symbol as a string
concatenation operator. In line 40, BASIC knows that a numeric result is
expected (because NUMERIC 1is a numeric variable), and so reads the '"+"
symbol as an addition operator.

10 VALUE1$="123"

20 VALUE2$="456"

30 STRINGS = (VALUE1$ + VALUE2$)[1;3]

40 NUMERIC = (VALUE1$ + VALUE2$)[1;3]

50 PRINT "NUMERIC =";NUMERIC,"STRING$ = ";STRINGS

The program above prints:

NUMERIC = 579 STRINGS = 123

You may apply substring modifiers to subscripted variables or expressions
containing subscripted variables. Be careful not to confuse substring
modifiers with subscripted variables. For example:

A$(2,3) designates a location in array A$

A$[2,3] designates a substring of string A$

A$(2,3)[4,5] designates a substring of the string
in location A$(2,3)

These are valid uses of the substring modifiers:

Q%
Qs

A$(3,4)[2,5]
(A$(1)+B$(3)) [-5,3]

nn

Substring modifiers return a string value. These may be used as part of
string expressions. For example:

Q$ = A$ + B$[2;51 + (AS$[2,2] + C$)[-5;-3]

SUBSTRING MODIFIERS Page 7-4

You may apply substring modifiers to the left side of an assignment in order
to alter a substring within a string variable. Only that portion of the
string defined by the substring modifier is changed. The other characters
in the string are not altered. This may not be applied to numeric variables
(for example, A[3;2] = "23" is not valid).

If A$ contains ABCDEF:
A$[2,4] = "QRS"

causes A$ to contain the string AQRSEF.

CHAPTER 8

MEMORY MAPPING SYSTEM

One of the unique features of AlphaBASIC is that it allows you to specify
the pattern 1in which variables are allocated in memory. The advantage to
such a 'memory mapping'" system is that it gives you a way to define entire
groups of related information (e.g., a logical record that contains fields
of 1information about a customer). Each element of such a group does not
have to be of the same size or data type. You can reference a single
element of the group or the group as a whole. You will probably find memory
mapping to be of most use when you are performing sophisticated disk I/0 or
when you are setting up a group of variables for transferring data between
your program and an assembly language subroutine. (See Chapter 18, '"Calling
External Assembly Language Subroutines," for more information on assembly
language subroutines.) Memory mapping is a powerful tool, somewhat akin to
COBOL data description techniques or Pascal record definitions, that gives
you a flexible and efficient way to transfer data in and out of programs.

This chapter discusses how the compiler wusually allocates variables in
memory, and how you can wuse the memory mapping features (via the MAP
statement) to override the usual storage allocation. We also discuss one of
the AlphaBASIC debugging features-- locating variables in memory while 1in
interactive mode.

8.1 ALLOCATING VARIABLE STORAGE

During compilation, BASIC allocates memory storage for all defined variables
in an area that 1is contiguous and predictable. The compiled program
references all variables through an indexing scheme. Each variable 1in the
working storage area has a representative item in the index area which
contains all the information needed to define and locate that variable. The
working storage area therefore contains only the pure variables themselves
without any associated or intervening descriptive information. The index
area js a separate entity, physically Located before the working storage
area in memory.

MEMORY MAPPING SYSTEM Page 8-2

The allocation of the variable storage area for any program is predictable,
and BASIC normally does it as it encounters each variable during
compilation. Since this scheme is not easily followed by human beings, a
different method must be derived which can override normal allocation
processes if you wish to have the variables allocated in a predetermined
manner. Also, the disk 1/0 system requires that variables wused be in a
specific relationship to each other when used in some of the more
sophisticated programs. The MAP statement has been included in AlphaBASIC
for the purpose of allocating variables 1in a specific manner. MAP
statements are non-executable at run-time, but merely direct the compiler in
the definition ahd allocation of the referenced variables.

Each MAP statement contains a unique variable name to which the statement
applies. When the compiler encounters this statement, it allocates the next
contiguous space 1in working storage as required and assigns it to that
variable. The type of the variable is also specified in this statement and
may be used to override the standard naming conventions of BASIC. ALl
variables not defined in a MAP statement are then automatically assigned
storage in sequence, for total compatibility with existing standards.

The mapping system has another distinct advantage for complex programs in
its allocation of arrays. With the MAP statement, you have the ability to
override the standard array allocation scheme and to force the allocation to
proceed 1in a more flexible manner. Conventional BASIC array elements must
all be of the same data type. AlphaBASIC allows several variables of
different data types to be combined in a single contiguous array which can
provide efficiency in the manipulation of associated data structures.

8.2 MAP STATEMENT FORMAT
The MAP statement has the following form:
MAPn variable-name{(dimensions)} {{{{type}, size}, value}, origin}

where MAPn gives the level of the MAP statement. The rest of the elements
are optional, depending on the kind of variable you are defining. For
example, if you are defining an array variable, you will include the
optional "dimensions" in the MAP statement. '"Type" identifies the data type
of the variable; if omitted, the default is Unformatted. "Size" identifies
the number of bytes the contents of the variable will wuse. If you omit
""Size" the default is zero bytes for unformatted and string data, two bytes
for binary data, and six bytes for floating point variables since such
variables are always six bytes long.) 'Value" is an optional initial value
of the variable; the default is zero for numeric data and null for strings.
"Origin" dis an optional reference to a previously defined variable's
location in memory which permits overlaying of variables in memory.

MEMORY MAPPING SYSTEM Page 8-3

If you "skip"” an element in the MAP statement (for example, you want to
specify the '"value" but don't want to specify the "size'"), you must retain
the comma indicating the missing element. For example:

MAP 1 NEW'VARIABLE,F,,23

the MAP statement above defines the variable NEW'VARIABLE, assigns it the
data type F (for floating point), does not assign it a size, and does
assign it the initial value of 23. (Without the extra comma, BASIC would
think that you were trying to assign a size of 23 bytes to NEW'VARIABLE-- an
illegal operation for floating point variables.)

8.2.1 MAP Level

MAPn represents the Level of the mapped variable. It must be within the
range of MAP1 through MAP16. MAP statements are hierarchial in nature. For
example, a variable mapped with a MAP1 statement may consist of several
sub-variables mapped via a MAP2 statement. Each of those variables may in
turn consist of several variables mapped via a MAP3 statement. And so on,
up to MAP16. MAP16 represents the lowest-level (or innermost) variable;
MAP1 represents the highest level variable. You do not need to map Llevels
in strict numeric sequence-- for example, a MAPS5 statement may follow a MAP3
statement without an intervening MAP4 statement.

You may reference variables at any Llevel of the hierarchy. A graphic
example may help to clarify this idea:

MAP1 Patient'Info
MAP2 Nam/ k‘ress Insurance
MAP3 Lag{// First Stﬁgz:// Num City

The diagram above shows three levels of variables that have been mapped with
MAP1, MAP2, and MAP3 statements. You may reference the Llevel 1 variable
Patient'Info as a whole, or may reference one of the variables on Levels 2
and 3 that represent sub-groups of the variable Patient'Info, such as Name,
Address, or Street. When referencing any variable 1in the group, you
automatically get the 1information 1in any of the variables below that
variable in the hierarchy. For example, when you reference Name you get the
information 1in the wvariables Last and First. As BASIC allocates the
variables Name and Address, it automatically idincludes them (and their
sub-variables) within the variable Patient'Info.

The MAP statements for the variable group above might Look Llike this:

MEMORY MAPPING SYSTEM Page 8-4

MAP1 PATIENT'INFO

MAP2 NAME
MAP3 LAST, S, 15
MAP3 FIRST, S, 13

MAP2 ADDRESS ! Patient address
MAP3 STREET, S, 30
MAP3 NUM, S, 10
MAP3 CITY, S, 30

MAP2 INSURANCE, B, 1 ! Set flag if has insurance

(NOTE: We will® discuss each of the elements of a MAP statement in the
sections below.)

To eliminate potential allocation problems, BASIC forces all MAP1 Llevel
variables to begin on an even memory address. This ensures that certain
binary and floating point variables will begin on word boundaries for
assembly Llanguage subroutine processing. The AM-100 dnstruction set
performs most efficiently when word data is aligned on word boundaries.

8.2.2 Variable Name

The variable name is the name that your program uses to reference the mapped
variable; it must follow the rules for AlphaBASIC variable names. However,
since you may explicitly specify the type, you do not need to follow the
normal conventions for identification such as requiring that a string
variable name be followed by a dollar-sign.

If the variable name is followed by a set of subscripts within parentheses,
the variable is assigned as an array with the dimensions specified by the
subscripts, just as if a DIM statement had been used. For example, the
statement MAP1 A,F assigns a single floating point variable called "A," but
the statement MAP1 A(5,10),F assigns a floating point array with 50 elements
in it (5 X 10), just as if the statement DIM A(5,10) had been executed.
Note that since these mapped arrays are assigned memory at compile time and
not at run-time, the subscripts must be decimal numbers instead of
variables.

8.2.3 Type Code

The type code is a single character code which specifies the type of
variable to be mapped into memory. The following variable types are
implemented in AlphaBASIC:

- unformatted absolute data variable
- string variable

floating point variable

binary unsigned numeric variable

@ »n X

MEMORY MAPPING SYSTEM Page 8-5

If no explicit type code is entered, BASIC assumes unformatted data (type
X).

8.2.3.1 Unformatted Data - Unformatted data 1is absolute in memory. You
usually only define an unformatted variable so that you can reference a
group of other variables as one unit. The contents of unformatted data
variables should only be moved to other unformatted data variables. For all
practical purposes, unformatted data variables are treated Llike string
variables except that they are terminated only by the explicit size of the
variable.

8.2.3.2 String Data - String variables are terminated either hy the
explicit size of the variable or by a null byte (0) if the string is shorter
than the allocated size. Moving a long string to a short one truncates all
characters which do not fit into the new string variable. Moving a short
string to a long one causes the remainder of the long variable to be filled
with null (0) bytes so that the actual data size of the string is preserved
for concatenation and printing purposes.

8.2.3.3 Floating Point Data - Each floating point number always takes up
six bytes. The record number variable in a random mode OPEN statement must
be floating point. The result variable of a LOOKUP statement must also be
floating point.

o2

Q=258 w g ”’i!m B e
OTCF5385 i e Bute e
8.2.3.4 Binary Data - Binary variables may range in size from 1 to 5
bytes, giving from 8 to 39 bits of binary unsigned numeric data or 40 bits
of binary signed data. This is handy for the storage of small integer data
in a single byte, such as flags, or for the storage ¢ of memory references as
word values with a range of up to(45535 in two byte51 Since BASIC converts
all binary variables to floatifg - po1nt “format before performing any
arithmetic calculations, binary arithmetic is actually slower than normal
floating point arithmetic and is used mainly for compacting data into files
and arrays where the floating point size of six bytes is inefficient. When
conversions from floating point to binary are done, any data that does not
fit within the defined size of the target variable is merely Llost with no
error message given. Where required, range checks are your responsibility
as the programmer, before you make a floating point number move to a binary
variable area. The best way to understand this is to play with a few
examples in interactive mode.

Please take note that the use of binary numeric variables is not allowed in
some instances. FOR-NEXT loops may not use a binary variahle as the control
variable, although "they “may be wused in the expressions designating the,
Jnitial and term1nat1ng values of the control var1able, as well as in the
STEP express1on. : =

MEMORY MAPPING SYSTEM Page 8-6

8.2.4 Size

The size parameter in the MAP statement is optional but, if it is used, it
must be a decimal number specifying the number of bytes in the variable. If
it is omitted, it defaults to 0 for unformatted and string types, 6 for
floating point types, and 2 for binary types. The size parameter of
floating point variables must be 6 or omitted.

8.2.5 Value

An initial value may be given to any mapped variable except an array
variable by 1including any valid expression in the value parameter. This
value may be a numeric constant, a string constant or a complete expression
including variables. Remember, however, that the expression is resolved
when the MAP statement is executed at run-time, and the current value of any
variable within the value expression 1is the one wused to calculate the
assignment result. MAP statements may be executed more than once if you
desire to reload the initial values.

Note that if you omit the size parameter (such as for floating point
variables), but you use the value parameter, there must be an extra comma to
indicate the missing size parameter:

MAP1 PI,F,,3.14159265359
MAP1 HOLIDAY,S,9,"CHRISTMAS"

The first example preloads the value 3.14159265359 into the floating point
variable called PI. The second example preloads the letters CHRISTMAS into
the string variable called HOLIDAY.

8.2.6 Origin

In some instances, it may be desirable to redefine records or array areas of
different formats so that they occupy the same memory area. For instance, a
file may contain several different record formats with the first byte of the
record containing a type code for that record format. The origin parameter
allows you to redefine the record area in the different formats to be
expected. When the record is read into the area, the type code in the first
byte can be used to execute the proper routine for the record type. Each
different routine can access the record 1in a different format by the
different variable names in that format. ALl record formats actually occupy
the same area in memory. This feature directly parallels the REDEFINES verb
in the COBOL Llanguage data division. Using the origin parameter can save
Large amounts of memory. For instance, suppose you have three very Llarge
variables of 256 bytes each that define logical records, and that you never
use these variables at the same time. By defining the variables so that
they occupy the same area of memory, your program only uses 256 bytes for
the variables instead of 768 bytes.

MEMORY MAPPING SYSTEM Page 8-7

Normally, a MAP statement causes allocation of memory to begin at the point
where the Llast variable with the same lLevel number Lleft off. The origin
parameter allows this to be modified so that allocation begins back at the
base of some previously defined variable, and therefore overlays the same
memory area. If the new variable is smaller than the previous one (or the
exact same size), it is totally contained within the previous one. If it is
larger than the previous one, it spills over into newly allocated memory or
possibly into another variable area of the same level depending on whether
there were more variables following it. (Play with this one awhile to get
the hang of it).

The origin parameter must be the last parameter on the line. It takes this
form: an @ symbol followed by the name of the previously mapped variable
whose area you wish to overlay. (This variable must be on the same level as
the variable you are presently allocating.) If size and value parameters
are not included in this statement, you may omit them with no dummy commas.
For example:

10 MAP1 CUSTOMER'ID

20 MAP2 NAME, S, 13

30 MAP2 ID'NUM, F

40 MAP2 SEX, B, 1

50 MAP1 PRODUCT'INVENTORY, @CUSTOMER'ID
60 MAP2 BRAND, S, 13

70 MAP2 PARTNO, F

80 MAP2 RESALE, B, 1

The MAP statements above allocate the variable CUSTOMER'ID which takes up a
total of 20 bytes. Then it allocates the variable PRODUCT'INVENTORY (also
taking up 20 bytes), and specifies via the ®@CUSTOMER'ID origin parameter
that PRODUCT'INVENTORY will occupy the same space in memory as CUSTOMER'ID.

The following statements define three areas which all occupy the same
48-byte memory area, but which may be referenced in three different ways:

100 MAP1 ARRAY

110 MAP2 INDEX(8),F

200 MAP1 ADDRESS,@ARRAY

210 MAP2 STREET,S,24

220 MAP2 CITY,S,14

230 MAP2 STATE,S, 4

300 MAP1 DOUBLE'ARRAY,@ARRAY
310 MAP2 UNIT(6)

320 MAP3 CODE,B,2

330 MAP3 RESULT,F

MEMORY MAPPING SYSTEM Page &-8

Statements 100-110 define an array with 8 floating point elements: a total
of 48 bytes in memory. Statements 200-230 define an area with three string
variables in it, for a total of 42 bytes. Normally, this area would follow
the 48-byte ARRAY area in memory, but the origin parameter in statement 200
causes it to overlay the first 42 bytes of the ARRAY area instead.
Statements 300-330 define another array area of a different format with 6
elements, each element being composed of one 2-byte binary variable (CODE)
and one floating point variable (RESULT). The origin parameter in statement
300 also causes this area to overlay the ARRAY area exactly.

Caution: The above scheme allows variables to be referenced in a different
format than when they were entered into memory. 1If you load the 8 elements
INDEX(1) through INDEX(8) with floating point values, and then reference the
variable STREET as a string, you get the first four floating point
variables, INDEX(1) through INDEX(4), which Llook very strange in string
format!

Below is a practical example of the use of the origin parameter. The
program below translates the binary data stored in the system DATE Llocation
into floating point form.

10 ! The system stores the date in binary form; the small program
15 ! below translates the binary date into floating point form. It
20 ! also allows you to set the system date from within BASIC.

25 MAP1 BINDATE,B,4

30 MAP1 FILLDATE,aBINDATE

35 MAP2 MONTH,B,1

40 MAP2 DAY,B,1

45 MAP2 YEAR,B,1

50 BINDATE = DATE

55 PRINT "Month:'";MONTH,'Day:'";DAY,"Year:";YEAR

60 INPUT "Enter Month, Day, Year: " ,MONTH,DAY,YEAR

65 DATE=BINDATE

70 PRINT "Month:'";MONTH,'"Day:";DAY,'"Year:";YEAR

For example, if the system date is set to January 10, 1982, a sample run of
the program above might look like:

Month: 1 Day: 10 Year: 82
Enter Month, Day, Year: 4,21,52
Month: 4 Day: 21 Year: 52

8.3 EXAMPLES
The following two statements produce identical arrays:

100 MAP1 ATC1O) F
110 DIM A1TCIODD

Both statements produce arrays containing ten floating point variables,
referenced as A1(1) thru A1(10). Statement 100, however, defines its

MEMORY MAPPING SYSTEM Page 8-9

placement in memory in relation to other mapped variables. Similarly, the
two statements at 300 and 310 produce the same two-dimensional array as the
statement at 320:

300 MAP1 BX(5)
310 MAP2 B1(20) ,F
320 pIm B1(5,20)

Inspect the following statements:

400 MAPT1 CX(1ODD
410 MAP2 C1,F
420 MAP2 D1,F
430 DIM C1C10)
440 DIM D1C1D)

The statements at 430 and 440 produce two arrays, each with ten variables.
The statements at 400, 410 and 420 produce one array with twenty variables
in it. The variables are still referenced as C1(1) thru C€1¢(10) and D1(1)
thru D1(10), but their placement 1in memory is quite different. The C1
variables are interlaced with the D1 variables, giving C1(1), D1C(1), C1(2),
D1(2), C1(3), D13 C1{10), D1(10). There are also ten unformatted
variables CX(1) thru CX(10), which each contain the respective pairs of
C1-D1 variables in tandem. Referencing one of these CX variables references
a 12-byte, unformatted item composed of the C1-D1 pair of the same
subscript. This type of formatting would be wuseful 1in sophisticated
techniques only.

The following defines a more complex area:

100 MAP1 ARRAY1
110 MAP2 UNITX(5)

120 MAP3 SIZA,B,2
130 MAP3 SIZB,B,2
140 MAP3 NTOT,F

150 MAP3 FLAG(10),B,1
160 MAP3 CNAME,S,20

170 MAP2 TOTAL,F
180 MAP1 THING,F
190 MAP1 WORK1,X,40

The area that is allocated by the above statements requires a total of 252
bytes of contiguous memory storage. Three levels are represented in various
formats. Statement 100 defines a level 1 unformatted area called ARRAY1,
which is subdivided into two level 2 items. Statement 110 defines the first
of these, which is an area called UNITX. The optional dimension indicates
that five of these identical areas exist, which must be referenced in the
program by the subscripted variable names UNITX(1) through UNITX(5). Each
one of these areas is then further subdivided 1into five Llevel 3 items
(statements 120-160). Since the level 2 is subscripted because it occurs 5
times, so must each of the lLevel 3 items be subscripted. There are 5
variables named SIZA(1) thru SIZA(5) occurring once in each of the
respective variables UNITX(1) thru UNITX(5). The same holds true for the

MEMORY MAPPING SYSTEM Page 8-10

variables SIZB, NTOT, and CNAME. Statement 150, however, creates a special
case since it contains a dimension also. Normally this would create an area
of 10 sequential bytes referenced as FLAG(1) thru FLAG(10). In our example,
however, this 10-byte area occurs once in each of the higher level areas of
UNITX(1) thru UNITX(S5). This, then, implicitly defines a double-subscripted
variable ranging from FLAG(1,1) thru FLAG(5,10). Statement 170 causes the
allocation to return to Llevel 2 where one floating point variable is
allocated.

The total storage requirement for the level 1 variable ARRAY1 comes out to
206 bytes as follows: 40 bytes for each of the five areas UNITX(1) thru
UNITX(5), plus 6 bytes for the one variable TOTAL. Notice that since TOTAL
starts a new Level 2, it does not occur S times, as do the Llevel 3 items
which comprise UNITX(1) thru UNITX(5).

Following the above group in memory come two more variables defined in
statements 180 and 190. THING is a normal floating point variable which
occupies 6 bytes, and WORK1 is an unformatted area whose size is 40 bytes.
Note that since WORK1 was not subdivided into one or more level 2 items, a
size clause was required to explicitly define its storage requirements.

Note also that the variable UNITX(1) refers to the 40-byte item comprised of
the variables (in order): SIZA(1); SIzZB(1); NTOT(1); FLAGU1,1) thru
FLAG(1,10); and CNAME(1). Moving the variable UNITX(1) to another area,
such as WORK1, transfers the entire 40-bytes with no conversions of any
data.

You may often use MAP statements to define groups of information that will
be transferred in and out of disk files. For example, take a Look at the
MAP statements below that define a logical record. Our program probably
uses a file that contains a large number of logical records in this format,
each record containing information about a single check. In effect, MAP
statements give us a way to form a template in memory into which we can read
information from the file and transfer information from the program to the
file. This allows us to quickly and efficiently read in an entire group of
information whose elements may be of different types and sizes, and to
access information in that group flexibly and simply. For example:

MEMORY MAPPING SYSTEM Page 8-11

! REM Program to Process Checks.

20

30 MAP1 CHECK'INFO ! pefine logical record.
40 MAP2 CHECK'NUMBER, F

50 MAP2 THE'DATE, S, 6

60 MAP2 AMOUNT, F

70 MAP2 TAX'DEDUCTABLE, B, 1
80 MAP2 PAYEE, S, 20

90 MAP2 CATEGORY, S, 20

100 MAP2 BANK'ACCOUNTS (3)

110 MAP3 SAVINGS, S, 20
120 MAP3 CHECKING, S, 20
130 MAP3 TERM, S, 20

! pefine file that contains info about checking account balance.
140 MAP2 ACCOUNT'"BALANCE, S, 22, "DSK1:BALANC.DATC200,11"

Once these MAP statements have been executed, we can access the group of
variables as a whole by specifying CHECK'INFO, or we can access specific
sub-fields in the record (for example, BANK'ACCOUNT or CHECKING).

8.4 USING THE MAP STATEMENTS

MAP statements may be used as direct statements in interactive mode as a
learning tool to see how the varjables are allocated. They are not designed
to be practical in the interactive mode, however, and are best used by
putting them into a program file and compiling the program. In the
interactive mode, 1if an error occurs in the syntax of the statement, the
. variable will already have been added to the tree 1in memory. The main
advantage to testing MAP statements in interactive mode is that BASIC checks
the MAP statement syntax as you enter the statement, thus giving you
immediate feedback if any errors occur.

MAP statements must come at the beginning of the program, before any
references to the variables being mapped. If a reference is made to the
variable before it is mapped (such as LET A = 5.8), the variable is assigned
by the normal variable allocation routines and the MAP statement then gives
an error, since the variable is already defined. As a convenience, all MAP1
statements force allocation to the next even byte boundary so that binary
word data can be assigned properly.

8.5 LOCATING VARIABLES DURING DEBUGGING

Since the mapping scheme is fairly complex to understand fully, a command
has been implemented which assists you in locating the mapped variables and
in understanding the allocation techniques used by the AlphaBASIC memory
mapping system. It 1is valid only as a BASIC system command and has no

MEMORY MAPPING SYSTEM Page 8-12

meaning if used within a program text. The command has the general format
of an atsign (3) followed by a variable name. The system searches for the
requested variable and prints out all parameters about the variable for you
on the terminal. (This may actually be two definitions, since the variable
"A" may actually be two different variables; one would be a single floating
point number and the other would be a subscripted array.) The information
returned about the variable is: the type of variable (string, binary, etc.);
the dimensions of the array if the variable is indeed an array; the size of
the variable 1in bytes; and the offset to the variable from the base of the
‘memory area which is used to allocate all wvariables. If you enter a
reserved word (such as @PRINT) the system tells you that the name is a
reserved word.

The general format of the definition line which is returned by the system
is:

memory-type variable-type <{dimensions}, size n, Llocation

(For actual examples of the definition line, see Section 8.6.1, "Examples,"
below.) Memory-type means the method of memory allocation used when
defining the wvariable. The memory-type may be MAPn (where n is a number
from 1 to 16), FIXED or DYNAMIC variables. FIXED variables are not defined
by a MAP statement and are allocated automatically when the compiler finds
references to them in the program. (This is the normal method used by other
BASIC versions to allocate variables.) DYNAMIC variable arrays are
allocated by a DIM statement or by a default reference to a subscripted
variable. Variables defined in a MAP statement are MAP1 through MAP16
variables.

Variable-type 1is the type of the variable and may be UNFORMATTED, STRING,
FLOATING POINT, or BINARY.

If the variable is an array, the dimensions are listed after the variable
type code in the format ARRAY (n,n,n), where n,n,n are the values of the
subscripts in use by the array. 1If the array is dynamic and has not been
allocated yet, the subscript values are replaced by the letter "X" to
indicate that they are not known at this point. Remember that any variable
defined 1in a MAP statement which is in a lower level relative to another
variable inherits all subscripts from that higher level variable.

The size of the variables are given in decimal bytes. In the case of
arrays, the size represents the size of each single element within the
array.

The location of the variable is a little tricky to explain, since it is
actually an offset to the base of a storage area that is set aside for the
allocation of user variables. As each new variable or array is allocated,
it dis assigned a Llocation which is relative to the base of this storage
area. The location information given here 1is an example to help you
understand the relative placement of the variables in the mapping system,
and does not represent the actual memory locations which they occupy. There
are two distinct areas in use for variables, and thus the offsets of the
variables are to one of these two areas. ALl FIXED and MAP1 through MAP16

MEMORY MAPPING SYSTEM Page 8-13

variables are allocated in the fixed storage area, while all DYNAMIC arrays
are allocated 1in the dynamic array storage area. As dynamic arrays are
dimensioned, their positions may shift relative to one another and relative
to the dynamic storage area base. Variables in the fixed storage area never
change position relative to each other or to the storage area base.

Array Llocation information that is given is only pertinent to the base of
the array itself, which is the location of the first element within the
array. The actual range of locations used by the array may or may not be
contiguous in memory depending on whether overlapped dimensioning techniques
are being used in the MAP statements. Simple (non-array) variables are
defined as a Llocation range which tells exactly where the entire variable
lies within the storage area.

Keep in mind that this "®" command is to assist you 1in following the
allocation of variables, particularly in more complex mapping schemes. A

few minutes at the terminal with direct MAP statements followed by "3@"
commands will help you see how the mapping scheme works.

8.5.1 Examples

Given the sample MAP statements below:

10 MAP1 CUSTOMER' ID

20 MAP2 NAME

30 MAP3 FIRST, S, 15
40 MAP3 LAST, S, 15

50 MAP2 ADDRESS

60 MAP3 STREET, S, 15
70 MAP3 cITY, S, 10

80 MAP3 STATE, S, 2

90 MAP2 PHONE

100 MAP3 HOME, B, 3

110 MAP3 BUSINESS, B, 3
120 MAP2 TRANSACTIONS(12)
130 MAP3 BALANCE, F

140 MAP3 CREDIT, F

150 MAP3 YTD, F

Here are the results of using the @ command in interactive mode to determine
the locations of several of the variables above:

MEMORY MAPPING SYSTEM Page 8-14

READY

ACUSTOMER'ID
MAP1 Unformatted, size 279, located at 0-278

ATRANSACTIONS
MAP2 Unformatted Array (12), size 18, base located at 63

aCITY
MAP3 String, size 10, located at 45-54

AHOME
MAP3 Binary, size 3, located at 57-59

2CREDIT
MAP3 Floating point Array (12), size 6, base located at 69

We can also use the @ command to locate unmapped variables. For example:

READY

DIM A(2,3,4)
A GED
Dynamic Floating point Array (2,3,4), size 6, base located at 1032

A=15

aA

Fixed Floating point, size 6, lLocated at 72-77

Dynamic Floating point Array (2,3,4), size 6, base located at 1032

Note that we allocated two different variables: a fixed floating point
variable, A, and a dynamic floating point Array variable, A(2,3,4).

CHAPTER 9

INTERACTIVE COMMAND SUMMARY

Whenever AlphaBASIC interactive mode is not either compiling or executing a
program, it 1is in interactive command mode; that means it is waiting for a
command from your terminal to initiate some action. The action taken
depends on the type of 1input you enter, which falls into one of the
following main categories:

1. Statements. Program statements are either contained within a
BASIC program or are used for immediate compilation and execution
at the interactive command level. For immediate compilation and
execution of a statement, enter the statement without a line
number. Statements entered following Lline numbers (any integer
between 1 and 65534, inclusive) are used to build a source program
in memory on a single line basis. BASIC automatically adds the
single Llines to the source program in the numeric order of their
line numbers. Entering a line number alone and then a RETURN
deletes the Line associated with that Line number from the source
program.

2. Interactive system commands. Commands result in controlled
actions by BASIC which can affect the source program in memory,
files on the disk, and the system itself. Commands are never
entered into the program as statements. 1f you attempt to do so,
AlphaBASIC responds with an error message.

Statements are covered 1in detail 1in Chapter 10 of this manual. The
remainder of this chapter details the available interactive commands, the
corresponding actions performed, and shows examples as you would actually
see them. Most of the interactive commands are entered after the prompt
READY. We distinguish the commands you may enter by the symbol, which
means ''type a RETURN."

INTERACTIVE COMMAND SUMMARY Page 9-2

9.1 BREAK

This is a debugging feature not usually found in other versions of BASIC.
It takes the form:

BREAK {{-}{line#1{,{-}line#2,...{-3{line#N}}

BREAK allows you to set breakpoints from the interactive mode on one or more
lines 1in the program in memory, prior to running the program. During
execution, when BASIC encounters a line that has a breakpoint set on it,
BASIC suspends program execution and prints the message "Break at line
nnnn". The system then returns to interactive command mode to allow you to
inspect or change variable values. This suspension of execution occurs
before the Lline that has the breakpoint set on it is executed. There is no
Limit to the number of breakpoints that may be set in one program. There is
no additional overhead paid 1in execution speed when breakpoints are set.
Breakpoints are cleared from within the interactive mode by typing a minus
sign in front of the Lline number, or by recompiling the program (which
always clears all breakpoints). 1If you type BREAK and do not follow it with
a line number, BASIC Lists all current breakpoints on your terminal.

BREAK or BREAK
No breakpoints set 30

The following are various forms of the BREAK command:

BREAK Lists all currently set breakpoints, if any
BREAK 120 Sets a breakpoint at Lline 120

BREAK -120 Clears the breakpoint at Lline 120

BREAK 120,130,40,500 Sets breakpoints at lines 120,130,40, and 500
BREAK -50,60 Clears the breakpoint at 50 and sets one at 60

Once a breakpoint has been reached, you may optionally continue the
execution of the program by either a CONT command or a single-step command.
(For information on the single-step debugging feature, see Section 9.12,
"Single-Step (Linefeed).") You may start the program over again by using
the RUN command; it will once more break at the first breakpoint set. In
any case, the breakpoints remain set after they have been reached until they
are explicitly cleared by a BREAK -nn command, are generally cleared by
compiling the program, or you leave BASIC.

9.2 BYE

BYE says goodbye to the BASIC interactive mode and returns your terminal to
the AMOS command Llevel. You then see the AMOS prompt (.). Remember that
any program left in memory is lost forever, so you may want to save it first
using the SAVE command. This is the format of BYE:

INTERACTIVE COMMAND SUMMARY Page 9-3

BYE (RED)

9.3 COMPILE

When using COMPILE in the interactive mode, do not specify a source program.
BASIC compiles the current source program in memory. The object code is
built wup in another area of memory. The compiled program is not executed;
instead, control is returned to the interactive command mode and you see the
READY prompt. Compilation sets all variables to =zero and deletes all
variables that may have been generated as a result of direct statements.

READY
COMPILE
Compile time was 7.07 seconds

READY

If no program is in memory, you get an error message and a prompt.

READY
TOMPILE (ReD

No source program in text buffer

READY

9.4 CONT

CONT, for '"continue," causes a suspended program to continue execution from
the point at which it was suspended. You may suspend a program by using a
BREAK command previous to program execution or by using a STOP statement
within the program. You may not continue a program after it has finished.
The following is an example of CONT after a STOP statement suspended a
program:

Program stop in line 700

READY

CONT

(The program continues by next executing the
first line numbered higher than Lline 700.)

CONT also continues a program which you have partially executed using the
single-step feature.

INTERACTIVE COMMAND SUMMARY Page 9-4

9.5 CONTROL-C

Pressing the Control and € keys simultaneously interrupts a running program
and returns you to interactive command mode. Depending on the operation
being performed, the Control-C symbol ("C) may be displayed on the terminal
screen. The Lline number of the source program which was interrupted is
displayed via the message "Operator dinterrupt in line nn." The program may
be restarted from the beginning by the RUN command.

LType a Control-C] or [Type a Control-C] "C [displays]
Operator interrupt in Line 700 Operator interrupt in line 700
READY

NOTE: 1In the compiler mode, while running a program, typing a Control-C
causes almost the same message to appear. The difference is that it always
displays the Control-=C (°C) and gives the filename of the program as well.
It then returns you to AMOS command level. For example:

“C
Operator interrupt in line 10 of NUM.RUN

In the interactive mode, you may restart a program from the beginning
following a Control=C by using the RUN command or single-step (linefeed)
command.

9.6 DELETE

The DELETE command is used to delete groups of source Lines from the program
text. It takes the form:

DELETE Line#1{,line#2}

If the command 1is followed by a single Line number, only that Lline is
deleted. If the command is followed by two Line numbers separated by a
comma, all Llines of text which fall between and including the two Lline
numbers are deleted from the program. (NOTE: Although you usually separate
the two line numbers with a comma, you can also use a dash, space, or other
non—-numeric character.) Here is an example Llisting before and after a
DELETE:

INTERACTIVE COMMAND SUMMARY Page 9-5

LIST

10 FORI =1 70 10

20 PRINT TAB(I,5)"ONE"
30 PRINT TAB(I,5)"TW0"
JA}) PRINT TAB(I,5)"SIX"
50 PRINT TAB(I,5) TEN"
60 NEXT I

READY
DELETE 20,40

READY

LIST

10 FOR I =1 T0 10

50 PRINT TAB(I,5)"TEN"
60 NEXT I

READY

Remember, you can say: "DELETE 20 40" or "DELETE 20-40", too.

9.7 LIST
The LIST command takes the form:
LIST {line#1{,line#2})

The source program (if one 1is loaded 1into memory) lines are listed in
numeric sequence on your terminal. If no Lline numbers follow the LIST
command, BASIC Llists the entire program. You may abort the Llisting by
entering Control-C, which returns you to interactive command mode. If one
line number follows the LIST command, only the single line following that
Line number is listed. If the command 1is followed by two Line numbers
separated by a comma, space or other non-numeric character, only the
indicated Lines and the lines between them are listed. Some examples:

READY READY READY
TIST (ReD TIST 10 LisT 10,30

10 X=1 10 X=1 10 x=1

20 ? "POWERS OF TWO:" o 20 7 "POWERS OF TWO:"
30 FOR A=0 TO 10 READY 30 FOR A=0 T0 10

40 ?nz“u;A;uzu;x

50 X=X*2:NEXT A READY

READY

(NOTE: Remember that the "?" symbol 1is an abbreviation for the PRINT
keyword.)

INTERACTIVE COMMAND SUMMARY Page 9-6

9.8 LOAD

The LOAD command copies the specified BASIC program into memory from the
disk so that you can edit or execute it. You must give a valid AMOS file
specification after the LOAD command. I1f you do not supply a file
extension, BASIC uses the default extension of .BAS. If you do not supply
an account and device specification, BASIC assumes the account and device
you are logged into. For example:

READY
LOAD PAYROL

READY

The command above tells BASIC to search for and load into memory the disk
file PAYROL.BAS that exists in the account and device you are logged into.

If BASIC can't find the file you want to load, it displays an error message.
For example, if you try to load in the non-existing file LSTSQR.BASC100,11,
you see:

?Cannot OPEN LSTSQR.BASC100,1]1 - file not found

The LOAD command does not clear the text buffer before it Lloads the
requested file, and therefore may be used to concatenate or merge several
programs or subroutines together to be saved as a single program. The
separate routines must not duplicate Line numbers in the other routines that
they are to be merged with or else the new Line numbers will overlay the old
ones just as if the file had been edited in from your terminal. IMPORTANT
NOTE: You should always use the NEW command prior to any LOAD command if
you desire to ensure that the text buffer is clear.

Two examples of LOAD:

READY READY
LOAD PWRS?2 LOAD DSK2:PWRS2.BAS[50,1]
READY READY

9.9 NEW

This command clears out all current source code, object code, user symbols
and variables. It initializes the compiler to accept new source program
statements or direct statements:

READY
NEW (ReT)

READY

INTERACTIVE COMMAND SUMMARY Page 9-7

If you do not use the NEW command before loading in a new program, any lines
in the new program Wwith the same line numbers as other program Llines already
in memory will overlay and replace the old lines; you will thus merge the
old and new programs.

9.1 RUN

This is the wusual command to use to initiate the execution of the program
which is in memory. BASIC first checks to see 1if the program has been
compiled since the last editing change to the source code. If it has not,
BASIC automatically compiles the source program to ensure that the object
code s up to date. RUN resets all variables to zero (and strings to null)
and it then executes the compiled object code. Execution may bhe interrupted
at any time by typing a Control=C on your terminal.

READY

RUN
(The program currently in memory
begins at the lowest Lline number.}

9.2 SAVE

The SAVE command saves the entire source program on the disk in the
specified account and device. You must enter the name of the program (1-6
characters) following the SAVE command. The program 1is saved in ASCII
format. The default extension is .BAS, and the default account and device
are the device and account you are Llogged into. The program may be
displayed or edited with the normal text editors outside of AlphaBASIC. If
a previous version of the program (same name) already exists on the disk in
the account you are writing the file to, that program is first deleted
before the new program is saved. BASIC does not automatically create a
backup file. The program name may be a full system file specification.

SAVE PAYROLGEED SAVE DSK2:PAYROL.BASL50,1] GED
READY READY

You may also use the SAVE command to save the compiled object program on
disk for later running without recompilation. To save the object program,
enter the program name followed by the explicit extension .RUN. If you have
changed the program since the Llast time it was compiled, BASIC now
automatically compiles the program for you. Then the object program is
saved on the disk:

SAVE PAYROL.RUN
(Saves the object program on the disk as PAYROL.RUN.)

READY

(Changed 30 October 1980)

INTERACTIVE COMMAND SUMMARY Page 9-8

In the interests of security, BASIC will not let you save a program that is
in an account that is not within the same project as the account you are
logged into. For example, if you are logged into DSK2:[100,2] and want to
save a program in DSK2:[340,1]1, you see:

READY
SAVE NEWPRGL340,11GEED

?Cannot OPEN NEWPRG.BAS[340,1] - Protection violation

9.3 SINGLE-STEP (LINEFEED)

The single-step function is a feature not found in many versions of BASIC,

and 1is very useful in debugging programs and in teaching the principles of
BASIC programming to newcomers. To use the single-step command, type a
linefeed. (That s, press the terminal key labeled LF, LINEFEED, or ¢ .)
The single-step function causes the current Lline in the program to be Llisted
on your terminal and then executed. Any output generated by the execution
of a PRINT statement then follows on the next line. After the Line has been
executed, the execution pointer 1is advanced to the next line and control
returns to you in the interactive command mode. Successive single-step
commands may be used to follow the program through its paces. Single-step
is legal at the beginning of the program, after program STOP statements,
breakpoint interrupts, and other functions that suspend program execution.
After partially single-stepping through a program, you may execute the
remainder of it normally by using the CONT command. Also, you may start
over at the beginning and execute it normally by using the RUN command. If
you try to single-step past the end of the program, you see:

**xEnd of Program*x

and the next Llinefeed executes the first program statement again.

If you single-step a statement that asks for input from the terminal, enter

the input followed by a RETURN; then you may proceed to the next statement
by typing another Llinefeed.

Remember that the single-step function is performed by hitting the Llinefeed
key and not by actually entering the words '"single-stepn.”

The following is a demonstration of the single-step process for a small
program as Yyou would see it on your CRT. The symbol * represents the
linefeed key which you press to see the next statement and the results of
it. (You do not actually see an echo of the linefeed key on the CRT.) Note
that Lline 30 1is a multi-statement Lline. When single-stepping, all
statements on a line are executed. BASIC returns control to the interactive
mode at the beginning of each line.

(Changed 30 October 1980)

INTERACTIVE COMMAND SUMMARY Page 9-9

LIST

10 PRINT ""This is a demonstration of single-step"”
20 FORI =1 T0 3

30 PRINT 10*I : PRINT 10*I"I : PRINT 10°IxI
40 NEXT I

READY

!OMPILING

Compile time was 0.20 seconds

10 PRINT "This 1s a demonstration of single-step"”
This 1s a demonstration of single-step

Y
20 FOR 1 =17T03

¥
30 PRINT 10*I : PRINT 10*%I°I : PRINT 107IxI
1

Y Y
(= ko] =

M
40 NEXT 1
Y
3

0 PRINT 10*I : PRINT 10*I"I : PRINT 107 I*1
20

L0

piu

40 NEXT I

!0 PRINT 10*I : PRINT 10*I1°1
20

270

3000

PRINT 10°I*I

¥
40 NEXT I

**% End of Program **x*

CHAPTER 10

PROGRAM STATEMENTS

The source program contains statements which are executed in sequence, one
at a time, as BASIC encounters them. Each of these statements normally
starts with a verb followed by optional variables or statement modifiers.
Many of these statements can also be used in the interactive mode as direct
statements. This chapter Llists all the program statements and gives some
examples for clarity.

10.1 ALLOCATE
The format is:
ALLOCATE filespec,number-of-blocks

This statement allocates a random access file on the disk. It is discussed
in detail in Chapter 15, "AlphaBASIC File I/0 System."

10.2 CHAIN
The format is:
CHAIN filespec
where the filespec may take the forms:

{Devn:}BASIC-program—name{.RUN}{[p,pnl}
{Devn:>AMOS-monitor-command.PRG{L[p,pnl)
{Dbevn:>command-file.CMD{Lp, pnl}
{bevn:}command-file.DO{Lp,pnl}

The CHAIN statement causes control to be passed to the specified BASIC
program, command file, or monitor command program. The program name may be
a full file specification, including device and account specifications. The

PROGRAM STATEMENTS Page 10-2

CHAIN statement causes the current program to be cleared from memory. The
specified file is then located and executed from the beginning. A chained
BASIC program must be a fully compiled program with the extension .RUN in
order to be referenced by the CHAIN command. It may be 1in user memory
(having previously been loaded via the monitor LOAD command) or it may be in
system memory. (The System Operator may place a file in system memory by
modifying the system initialization command file.) If it is not already in
memory, it is Lloaded from the specified disk account into user memory and
then executed. If it cannot be located, you are returned to AMOS command
level with the error message:

?Cannot find program NAME.RUN

Some examples of the CHAIN statement:
70 CHAIN "PAYROL" 70 CHAIN "DSK1:PAYROL.CMD[C100,71"

There s no provision to start the chained file at any point other than the
beginning. You may pass common variables between chained BASIC programs
either by writing them out to a file and then having the chained program
read them back in, or by using the COMMON assembly Llanguage subroutine.
(See COMMON - BASIC Subroutine to Provide Common Variable Storage,
(DWM-00T00-T8) in the "BASIC Programmer's Information” section of the AM-100
documentation package.)

For more information on CHAIN, see Chapter 16, '"Chaining to BASIC and System
Programs."

10.3 CLOSE
The format is:
CLOSE #file-channel

This statement closes an 1/0 file to further processing. It is discussed in
detail in Chapter 15, "AlphaBASIC File I/0 System."

10.4 DIM
The format is:
DIM variablel(expri1{,expr2,...exprN}){,...{,variableN(expri{,expr2,...exprN})}

The dimension statement defines an array which is allocated dynamically at
execution time. Once allocated, an array cannot be redimensioned during the
execution of the program. There is no Limit to the number of subscripts
that may be used to define the individual Levels within the array. The
statement DIM A(20) defines an array with 20 elements, referenced as A(1)

PROGRAM STATEMENTS Page 10-3

through A(20). Multiple arrays may be dimensioned by a single DIM statement
by separating them with commas.

Subscripts are evaluated at execution time and not at compile time, thereby
allowing variables as well as numeric constants to be used as subscripts.
The statement DIM A(B,C) allocates an array whose size depends on the actual
values of B and C at the time the DIM statement is executed.

If a reference to an array 1is made during program execution without a
previous DIM statement to define the array, BASIC assigns a default array
size of 10 elements for each subscript level referred to.

String arrays may be allocated, such as DIM A$(5). The size of the array
depends on the current default string size in effect as specified by the
last STRSIZ command, since each element in the array must be this number of
bytes. For instance, if the current STRSIZ is 10, the statement DIM A$(5)
would allocate 5 elements * 10 bytes per element, or S0 bytes of memory for
the array. Below are some examples of valid DIM statements:

DIM AC10)
DIM C(8,8), C$(10,4)
DIM TEST(A,B*4)

DIM ACB(4))

10.5 END
The format is:

END

This statement causes the program to terminate execution. The END statement
does not terminate compilation of the program nor is it required at the end
of the program. 1If other program statements follow the end of the program
(e.g., subroutines), terminating the program with END prevents your program
from incorrectly entering those statements and trying to execute them.

10.6 FILEBASE
The format is:
FILEBASE n
This statement sets the number used to refer to the first record of a random

file. It is discussed 1in detail 1in Chapter 15, "AlphaBASIC File 1I/0
System."

PROGRAM STATEMENTS Page 10-4

10.7 FOR, NEXT AND STEP
The format is:

FOR control-variable = expression1 TO expression?2 {STEP {-Yexpression3}
{Statements}
NEXT {control-variable)}

These statements initialize and control program Loops. A loop is a
structure in which the same statement or statements can be performed several
times. Whether ‘or not a loop is executed depends upon the value of a
special '"control-variable." AlphaBASIC FOR-NEXT Loops follow the same
format and restrictions as do other forms of BASIC. The control-variable
used may be subscripted, and must be a floating point variable. The
delimiters indicating the number of incrementations or decrementations to be
performed on that variable may be any valid expression. FOR initializes the
variable to the first expression. NEXT increments or decrements the value
of the variable each subsequent loop. The variable name may be omitted in
the NEXT statement, in which case the variable of the previous FOR statement
is the one that is incremented. The control-variable is incremented or
decremented 1in units indicated by the STEP statement. If no STEP modifier
is used, the step value is assumed to be a positive 1. Unlike some other
BASICs, an AlphaBASIC FOR-NEXT loop will always be performed at least once,
even if you specify something Like FOR I = 0 to 0. FOR and NEXT statements
are jllegalt as direct statements except when they are incorportated into the
same multi-statement line. For example:

FOR I =1 T0 10 : PRINT I : NEXT I
Here are examples of some of the different forms FOR-NEXT loops may take:

10 FOR COUNTER = 1 TO 10

20 IF COUNTER/2 = INT(COUNTER/2) THEN PRINT COUNTER "is even.'" &
ELSE PRINT COUNTER;"is odd."

30 NEXT COUNTER

10 INPUT "Enter date of first Sunday in the month: " ,DAY
20 PRINT "The Sundays this month are on these dates:" : PRINT DAY
30 FOR A=DAY+7 TO 31 STEP 7 : PRINT A : NEXT A

10 FOR I = 10 TO 1 STEP -1
20 PRINT I
30 NEXT

Loops within Lloops are Llegal and are called nested lLoops. Loops may be
nested to many levels. Each time the outermost Lloop is incremented (or
decremented) once, the loop nested within it is executed from beginning to
end. During the execution of the second loop, the third loop (if any) is
fully executed each time the second variable is incremented. And so on, for
each nested loop in the series. For example:

10 ' This program prints out a two-dimensional array,
20 ! and demonstrates nested loops.

PROGRAM STATEMENTS Page 10-5

30 DIM MATRIX(5,5)
40 ! The nested loops:
50 FOR I =1 T0 5

60 FOR J =1 T0 5

70 MATRIX(I,J)= I-J
80 PRINT MATRIX(I,J);
90 NEXT J

100 PRINT

110 NEXT I

The program above prints:

0 -1 -2 -3 -4
T 0 -1 =2 =3

3 2 1 0-
4 3 2 1 0

It 1is not good programming practice to branch out of a Loop before its
completion (via GOTOs, ON GOTOs, etc.) unless you give careful consideration
to the BASIC system stack area. The stack area used by the Lloop 1is not
reclaimed if you branch out of the loop, and doing so can cause a stack
overflow error during program execution. A cleaner way of exiting a loop is
simply to set the control-variable to the terminal value specified in the
FOR statement. For example:

10 REM Example of exiting out of a FOR-NEXT Lloop.

20

30 START'LOOP:

40 FOR I=1 TO 100

50 INPUT "Enter number of pennies:'" ,PENNIES

60 IF PENNIES<0 GOTO NEGATIVE'VALUE ! Don't jump out of the Lloop!
70 PRINT "You have'";PENNIES/100;"dollars.”"” : GOTO END'LOOP

80 ! If # <0, print error message and set I to terminal value.

90 NEGATIVE'VALUE:

100 PRINT "You can't have negative pennies!" : I=100

110 ! End of loop, where we increment or decrement I.
120 END'LOOP:

130 NEXT I ''1f I =100, we're all done.
140 PRINT "We're all done."

10.8 GOSUB (OR CALL) AND RETURN
The formats are:

GOSUB Label or Lline number
CALL Label or line number

RETURN

PROGRAM STATEMENTS Page 10-6

Calls a subroutine which starts at the line number or label referenced by
the GOSUB or CALL statements. The subroutine exits via the RETURN
statement, which returns control to the statement following the GOSUB or
CALL statement. Executing a RETURN statement without first executing a
GOSUB statement results 1in an error message. Both GOSUB and RETURN are
illegal as direct statements. Note that the CALL verb 1is merely another way
of specifying GOSUB for those programmers used to this verb from other
Languages.

It 1is often the case that you want to perform the same operation at various
points within your program. A subroutine is a set of program statements
that you may execute more than once simply by including an invocation for
that subroutine (called a "call") within your program at the point where you
would Llike to execute the routine. For example:

10 ! This program contains a subroutine that validates numeric entries
20 ! to make sure that they are greater than 0 and are less than 100.
30 PRINT "We are going to perform several mathematical operations.”
40 PRINT "Your entries must be greater than 0 and Lless than 100."
50 PRINT : INPUT "Enter two numbers to be added: " ,A,B
60 GOSUB VALIDATE ! Check to make sure numbers are valid.
70 PRINT A;"+";B;"=";A+B
80 PRINT : INPUT "Enter two numbers to be subtracted: ",A,B
90 GOSUB VALIDATE ! Check to make sure numbers are valid.
100 PRINT A;"-";B;"=";A-B
110 PRINT : INPUT "Enter two numbers to be divided: ",A,B
120 GOSUB VALIDATE ! Check to make sure numbers are valid.
130 PRINT A;"/";B;"=";A/B
140 PRINT : PRINT "That's all..."
150 END
200 ! Subroutine to validate the data
210 VALIDATE:
220 IF A<= 0 OR B <= 0 THEN &
PRINT "Error - negative or zero number!" : END
230 IF A >= 100 OR B >= 100 THEN &
PRINT "Error - Number too big!" : END
240 RETURN

Remember that & (ampersand) is the symbol for a continuation Lline.

Note that we included an END statement at Lline 150 to separate the main
program from our subroutine; otherwise, BASIC executes the VALIDATE
subroutine after it reaches line 140, and we get a "RETURN without GOSUB"
error.

Also note that the use of GOSUBs helps to modularize your programs, and thus
makes them easier to design and maintain. Even before you completely "flesh
out" your programs, you can insert dummy routines that will Llater contain
complete code. For example:

10 ! This program will be a complete dental package.
20 PRINT "Welcome to the Acme Dental Package."
30 ! Perform initialization of data files

PROGRAM STATEMENTS Page 10-7

40 GOSUB INIT

50 ! Ask user to pick function from main menu.
60 GOSUB MENU

70 ! Do End-of-day Processing

80 GOSUB DAY'END

90 ! Finish up, close files, and exit.

100 GOSUB FINISH'UP

110 END

115 ! The subroutines start here.

200 INIT:

210 PRINT "This section will initialize files."

220 RETURN

300 MENU:

310 PRINT "This section will display the main menu and"
320 PRINT "ask user for selections.”

330 RETURN

400 DAY'END:

410 PRINT "This section will perform day-end processing.”
420 RETURN

500 FINISH'UP:

510 PRINT "This section will close files and clean up final data."
520 RETURN

You can nest subroutines. For example:

10 ! Demonstrating nested subroutines

20 PRINT "Main Program:"

20 GOSUB OUTERMOST ! OUTERMOST calls NEXTMOST and INNERMOST
40 PRINT " Return from Outermost"

50 END

60

100 ! Here are the subroutines:

110 OUTERMOST:

120 PRINT " Outermost subroutine"

130 GOSUB NEXTMOST

140 PRINT " Return from Nextmost"

150 RETURN

160

200 NEXTMOST:

210 PRINT " Nextmost subroutine"

220 GOSUB INNERMOST

230 PRINT " Return from Innermost"
240 RETURN

250

300 INNERMOST:

310 PRINT " Innermost subroutine"
320 RETURN

The program above prints:

PROGRAM STATEMENTS Page 10-8

Main Program:
Outermost subroutine
Nextmost subroutine
Innermost subroutine
Return from Innermost
Return from Nextmost
Return from Outermost

NOTE: You should always exit a subroutine via the RETURN statement for that
subroutine rather than using a GOTO statement. The reason for this is that
subroutine processing places certain information on BASIC's stack area; if
you do not execute a RETURN statement, the stack area used by that
subroutine is not reclaimed. Doing multiple branches out of a subroutine
thus results in a "stack overflow" error message.

10.9 GOTO
The format is:
GOTO Label or Lline number

or:
GO TO Label or Lline number

The GOTO statement transfers execution of the program to a new program line.
This program Line must be identified either by a line number or a

label somewhere in the program. You may use GOTOs to transfer control to a
program Line that is either before or after the program line containing the
GOTO statement itself. For example:

10 ! Program to demonstrate use of GOTOs.
20 PRINT "This program computes your account balance. Enter a"
30 PRINT "Control-C to stop; enter deposits as negative amount."

40 INPUT "Enter old account balance: " ,BALANCE

50 CALCULATE'BALANCE:

60 PRINT : INPUT "Enter debit amount: " ,DEBIT

70 BALANCE = BALANCE - DEBIT

80 PRINT "Debit was:";DEBIT;"-- Current balance is:";BALANCE
90 GOTO CALCULATE'BALANCE

You can see that Lines 50 through 90 constitute an endless loop in which
control is eternally transferred from Line 90 back to (ine 50 until the user
types a Control-C.

If you use GOTOs on a multi-statement Line, remember to place it last on the
line; any statements after the GOTO will never get executed. For example:

10 PRINT GROSS : NET = GROSS - DEDUCTION : GOTO GET'TAX : PRINT DEDUCTION

the last statement, PRINT DEDUCTIONS, can never be executed.

PROGRAM STATEMENTS Page 10-9

10.10 1IF, THEN AND ELSE
The format is:
IF expression {THEN)} {statement)}{label/line#}{ELSE{statement}{label/Lline#}}

The conditional processing features in AlphaBASIC give a wide variety of
formats which duplicate just about all the functions performed by other
versions of BASIC. Some of the format combinations that are acceptable are:

IF expression THEN label/line#

IF expression THEN Label/line#f ELSE Label/line#
IF expression statement

IF expression statement ELSE statement

IF expression THEN statement

IF expression THEN statement ELSE statement

The above formats may be nested to any depth, and rather than go into detail
we suggest that you play around with them to determine the actual
restrictions that exist. Some examples:

IF A=5 THEN GOTO PROGRAM'EXIT

IF A=5 PROGRAM'EXIT

IF A>14 THEN 110 ELSE 220

IF B$="END" PRINT "END OF TEST"

IF TOTAL > 14.5 GOTO START

IF P=5 AND Q=6 IF R=7 PRINT 567 ELSE PRINT 56 ELSE PRINT ''NONE"
IF A=1 PRINT 1 ELSE IF B=2 THEN 335 ELSE 345

IF A AND B THEN PRINT "A and B are nonzero."

Note that the expression evaluated by the IF statement is usually an
expression that contains relative operators (e.g., IF A = B; IF A > 0;
etc.). However, the expression may be any legal expression. For example:

A=20

B =1

IF B THEN PRINT "B is not zero."

IF (B AND A) PRINT "nonzero numbers" ELSE PRINT "at Least one zero number."

When the 1IF statement evaluates the expression, it returns either a zero
(for false) or a =1 number (for true), and conditionally performs the
specified operations in response to that evaluation.

NOTE: A multi-statement Lline may take the place of a s1ngLe statement in an
IF-THEN statement. For example:

IF A = 3 THEN PRINT 4 : PRINT 5 ELSE PRINT "Answer is 0"

If A equals three, the statement above prints:

2
5

PROGRAM STATEMENTS Page 10-10

Otherwise, it prints:

Answer is 0

10.11 INPUT
The format dis:
INPUT {"prompt-string" ,}variable1{,variable2...,variableN}

Allows data to be entered from your terminal and Lloaded 1into specific
variables at run-time. The INPUT statement contains one or more variables
separated by commas. If you omit the optional prompt string, BASIC displays
a question mark on the terminal display to signal a request for data entry.
If you provide the prompt string, BASIC displays it instead of the question
mark to prompt the user of your program for data. (NOTE: If you wish to
suppress a prompt altogether, use a null prompt string; for example: INPUT
" _A$,B$.) Your prompt string must be in the form of a string literal; that
is, it must be enclosed with quotation marks. For example:

INPUT "Enter your account number: " _,ACCOUNT'NUM
Enter your account number:

You may specify both numeric and string variables in the INPUT statement. A
numeric variable requires that the data entered be in one of the acceptable
floating point formats. String variables require that the data be an ASCII
string of characters. Some examples of valid INPUT statements are:

INPUT A

INPUT "Enter account #, name, and age: ", NEW'ACCOUNT,NAMES , AGE
INPUT "",A,B,C

INPUT "Enter positive number:" ,NUMBER

INPUT Q(8)

If you specify multiple variables in the INPUT statement, the user of your
program is expected to enter multiple items of data. If the data being
entered is numeric, the user may separate data items with commas or spaces.
If the data being entered is string, the user must separate data items with
commas. (NOTE: For information on the statement to use if you want to enter
strings that contain commas, quotes, and other special characters, see
Section 10.12, "INPUT LINE.')

If a wuser of your program does not enter as many items of data as are
expected by the variables in the INPUT statement, BASIC displays a double
question mark to ask for more. For example:

INPUT A,B,C
2

PROGRAM STATEMENTS Page 10-11

The direct statement ahbove asks for three items of numeric data. Because we
only entered two values, BASIC responded with a "??" symbol to ask for the
third value.

Be careful to correctly enter the type of data that the variables 1in the
INPUT statement expect. If an error occurs (for example, if you enter a
string for a numeric variable), BASIC sets that variable to zero. For
example:

INPUT A1GEED)

? MERET)

PRINT A1GED
0

Therefore, your programs should make sure that the correct data has been
entered. (Remember that the mode independence of AlphaBASIC permits the

entry of numeric data for string variables; AlphaBASIC automatically
converts such data to string format.)

If a value has not been assigned to a variable, BASIC assumes that the
variable contains a zero (if a numeric variable) or a null (if a string
variable). If you type a RETURN or a Control-C din response to an INPUT
statement request for data, BASIC leaves the variable being inputted set to
a zero or null (if a value has not yet been assigned) or to the value

previously assigned to the variable.

For example:

A=3EED
INPUT AGED
?

PRINT AGED
3

If you type a RETURN or Control-C in response to a data request, and the
INPUT statement contains several variables, BASIC skips over any variables

remaining in the INPUT statement, Lleaving their values unchanged. An
example might help to clarify:

10 INPUT "Enter day, month, year: " ,DAY,MONTH,YEAR

20 PRINT "Day:";DAY,"Month:'";MONTH,"Year:' ;YEAR
30 PRINT : GOTO 10

(Changed 30 October 1980)

PROGRAM STATEMENTS Page 10-12

RUN

Enter day, month, year: 21,4 D
?? (RET)
Day: 21 Month: 4 Year: 0

Enter day, month, year: 8(ED)
22
Day: 8 Month: &4 Year: O

Enter day, month, year: 31,12,1980GED
Day: 31 Month: 12 Year: 1980

Enter day, month, year: °C
Operator interrupt in line 10

You may also use the INPUT statement to read data from sequential files. It
takes the form:

INPUT #file-channel,variable1{,variable2,...variableN}

NOTE: INPUT skips over nulls 1in data, and just waits for the next
character. (This is important to know if you plan to input from devices.)

For more information on this use of the statement, see Chapter 15,
"AlphaBASIC File I/0 System.”

10.1 INPUT LINE
The format is:

INPUT LINE {"prompt-string",}variable

Although you may specify a numeric variable, the real purpose of INPUT LINE

is to allow you to enter string data from your terminal that includes
commas, quotation marks, blanks, and other special characters. You will
usually want to use INPUT (see the section above) for inputting numeric data
or multiple items of string data.

INPUT LINE loads into the specified string variable an entire Lline up to but

not 1including the carriage return and linefeed that end the line. Do not
specify more than one string variable in the INPUT LINE statement.

BASIC never prints a question mark prompt for INPUT LINE as it does for
INPUT, but you may include your own prompt string, which BASIC will display
as a request for data. Such a prompt string must be a string Lliteral
enclosed in quotation marks.

(Changed 30 October 1980)

PROGRAM STATEMENTS Page 10-13

Unlike INPUT, if you type a RETURN in response to a data request, INPUT LINE

sets the variable to zero (if numeric variable) or null (if string
variable). (Remember, in like case, INPUT leaves the value of the variable

unchanged.)

When you wuse INPUT LINE, remember that the default size of unmapped string
variables is ten bytes; if you want to use strings larger than that, use the
STRSIZ statement to reset the default string size. (See Section 10.26 for
information on STRSIZ.)

Some examples of the statement are:

INPUT LINE A$
INPUT LINE "ENTER YOUR FULL NAME, PLEASE: ", NAME

You may also wuse the INPUT LINE statement to read data from a sequential

file. It takes the form: FCin
Fed
INPUT LINE #file-channel,variablel /Q%)jzw' & {
For more information on wusing INPUT LINE and files, see Chapter 15,
"AlphaBASIC File I/0 System." 15~}
10.2 KILL

The format is:

KILL filespec

KILL deletes a file from a disk. It is discussed in detail in Chapter 15,
"AlphaBASIC File I/0 System."

10.3 LOOKUP
The format is:
LOOKUP filespec, result-variable
The result variable must be a floating point nummber.

This statement searches for a file and returns its size. It is discussed in
detail in Chapter 15, "AlphaBASIC File I/0 System."

(Changed 30 October 1980)

PROGRAM STATEMENTS Page 10-14

10.4 LET

The format is:
LET variable = expression

Assigns a calculated value to a specific variable during execution of the

program. You do not have to specify the LET keyword in an assignment
statement.

LET A5 = 12.4
LET SUM(4,5) = A1+SQR(B1)
LET C$ = "JANUARY"

A5 = 12.4
SUM(4,5) = A1+SQR(B1)
C$ = "JANUARY"

10.5 ON - GOSUB (CALL)
The formats are:

ON expression GOSUB Label/line#1{,lLabel/line#2,...label/line#N}
ON expression CALL Llabel/line#1{,lLabel/line#2,...label/line#N}

The expression can be any valid expression which is evaluated and truncated
to a positive idnteger result. The result of the expression evaluation is
then tested. The subroutine at label/line#1 is executed if the result is 1,
the subroutine at label/lLine#2 is executed if it is 2, etc. If the result
is zero, negative or greater than N, the program falls through to the next
statement.

As with the GOSUB statement, the verb CALL may be used in place of the verb

GOSUB, giving an ON CALL statement. Here is an animation program using
ON - GOSUB:

10 I = INT(3*RND(0)+1) 'Random number from 1 to 3.
20 ON I GOSUB UP, DOWN, STRAIGHT !Go to 1 of 3 subroutines.
30 GoTo 10

40 UP: PRINT "/"; TAB(-1,3); : RETURN !Draw symbol, go up 1 row.
50 DOWN: PRINT TAB(-1,4);'"\"; : RETURN !Go down 1 row, draw symbol.

’
60 STRAIGHT: PRINT " "; : RETURN !Draw symbol.

10.6 ON - GOTO
The format is:

ON expression GOTO Label/line#1{,label/line#2,...label/Lline#N}

(Changed 30 October 1980)

PROGRAM STATEMENTS Page 10-15

The ON GOTO statement allows multi-path GOTO branching to one of several
points within the program based on the result of evaluating an expression.

The expression can be any valid expression which is evaluated and truncated
to a positive integer result. The result is then tested to branch to
Label/line#1 if 1, label/line#2 if 2, Label/line#3 if 3, etc. If the result
is zero, negative or greater than N, the program falls through to the next
statement. The following is a portion of a menu-selection program:

10 PRINT TAB(22)'"Select One of the Following Operations:'" : PRINT
20 PRINT TAB(25)"1. 1Insert/Edit NAME Information."

30 PRINT TAB(25)"2. 1Insert/Edit PHONE NUMBER Information."

40 PRINT TAB(25)"3. Quit without insertion or editing."

50 PRINT : INPUT "Your choice (1, 2 or 3)? ",A

60 ON A GOTO NAME, PHONE, QUIT

100 NAME: INPUT "Select a name: "N

CTHE PROGRAM CONTINUES WITH ALL THREE ALTERNATIVES]

10.18 OPEN
The format is:
OPEN #file-channel ,filespec,mode{,recsize,recnum}

Opens an I/0 file for processing. It is discussed in detail in Chapter 15,
"AlphaBASIC File I/0 System."

10.19 PRINT
The format is:
PRINT expression-Llist

The PRINT statement tells BASIC to evaluate and display the expressions that
you specify. For example:

PRINT 3+4;'"HELLO"+" YOU"

returns:
7 HELLO YOU

BASIC prints a carriage return/line-feed after the expression List.
Remember that an expression may consist of a string or numeric variable,
numeric constant, string literal, function with arguments, operator symbols,
or a combination of these elements. For example, the following is one
string expression: "STRING DATA" + NAMES$ + MID$(AS$,1,2).

PROGRAM STATEMENTS Page 10-16

BASIC displays numeric data with a trailing blank. It also prints one
leading blank if the number is positive, or no leading blank if the number
is negative. BASIC displays string data with no leading or trailing blanks.

You may place more than one expression after the PRINT keyword if you
separate them with commas or semicolons. If you separate the expressions by
semicolons, BASIC does not print extra spaces when it prints the evaluations
of those expressions. For example:

PRINT 12+12;-32;8/2
returns:
24 =32 4

There are no blanks between the numbers above except for the normal lLeading
and trailing blanks displayed with numeric data.

If you separate the expressions by commas, BASIC prints the data in '"print
zones." BASIC divides the area in which data is to be displayed into five
zones of 14 spaces each. If an expression in a PRINT statement is followed

by a comma, BASIC prints that expression in the next available print zone.
For example, the statements:

20 PRINT 34,1024,-32,-100.2,20
30 PRINT "AA","BB"," C","DDD","A" ,"B" ’u c"

display:
34 1024 =32 -100.2 20
AA BB C DDD A
B C

When you look at the display above, remember that BASIC prints numeric
data with a leading and trailing blank if the number is positive, but just
a trailing blank if the number 1is negative.

Note that the strings in line 30 were displayed on two different Llines;
that is because when BASIC still has an expression to print after it has
printed something 1in the fifth zone, it starts over again with the first
zone on the next Lline.

If you end the PRINT statement expression list with a semicolon or comma,
BASIC does not output a carriage return/line-feed when it finishes
displaying that expression list. This will make the output resulting from
the next PRINT or INPUT statement to appear on the current display Lline.
The next output will appear in the next print zone if the current PRINT
statement ends with a comma; or, the next output will appear immediately
following the Llast character of the current PRINT statement if the PRINT
statement ends with a semicolon.

PROGRAM STATEMENTS Page 10-17

Here are a few examples of the PRINT statement (for illustrative purposes,
we are assuming that A% is ""HERE" and A equals 7):

PRINT 'Yields a blank Line

PRINT A 'Yields 7

PRINT A$ 'Yields HERE

PRINT 1+2 'Yields 3

PRINT "ANY TEXT" 'Yields ANY TEXT

PRINT "NOTE THE COMMA',A$ 'Yields NOTE THE COMMA HERE
? "YOU ARE NUMBER";A 'Yields YOU ARE NUMBER 7

? "YOU ARE #":A:;"IN CLASS." 'Yijelds YOU ARE # 7 IN CLASS.
PRINT "THERE ARE"; !Semicolon suppresses carriage-
PRINT A;'"DAYS LEFT." 'return/linefeed and yields

!THERE ARE 7 DAYS LEFT.
(Remember that the "?" symbol is an abbreviation for the PRINT keyword.)

You may also use the PRINT statement for writing data to sequential files.
It takes the form:

PRINT #file-channel ,expression-List

For details on this, refer to Chapter 15, "AlphaBASIC File I/0 System."

10.20 PRINT USING

The formats are:
variable=expression USING format-string
PRINT USING format-string, expression-list
PRINT expression USING format-string

PRINT USING is supported for formatting output and is described extensively
in Chapter 13, "Formatting Output (PRINT USING and Extended Tabs)."

10.21 RANDOMIZE
The format is:
RANDOMIZE
Resets the random number generator seed to begin a new random number

sequence starting with the next RND(X) function call. (See Section 11.1.9
for information on the random number generator.)

PROGRAM STATEMENTS Page 10-18

10.22 READ, RESTORE, AND DATA
The formats are:

READ variable1{,variable2,...variableN}
RESTORE
DATA datal{,data2,...dataN}

These calls allow data to be an integral part of the source program with a
method for getting this data into specific variables in an orderly fashion.
DATA statements are followed by one or more Lliteral values separated by
commas. String literals need not be enclosed in quotes unless the Lliteral
data contains a comma. All data statements are placed into a dedicated area
in memory no matter where they appear 1in the source program. READ
statements are followed by one or more variables separated by commas. Each
time a READ statement is executed, the next item of data is retrieved from
the DATA statement pool and loaded 1into the variable named in the READ
statement. If there is no more data left in the data pool, the program can
only continue to read data if a RESTORE statement is executed, which
reinitializes the reading of the data pool from the beginning again.
Otherwise, an error message results and the program is aborted. Here are

some forms that READ and DATA may take. /
DATA 1,2,3,4,5
DATA 2.3,0.555,0NE STRING,"4,4"
READ A,B,C
READ A%

READ C(2,3),B%(4)
The following is a program example using READ, RESTORE, and DATA:

10 !Sample program to illustrate READ, DATA and RESTORE

20 PRINT TAB(10)'"This program gives you an estimate of your automobile's"
30 PRINT TAB(10)"value (due to depreciation) over a period of five years."
40 PRINT : INPUT LINE "How much did you pay for your car? $'",WORTH

50 PRINT ""Based on national averages, your car will depreciate this way:"
60 PRINT : FORI =1 T0 5

70 PRINT "After the "; : READ YEAR$: PRINT YEARS;'" year, your car ';

80 PRINT "will be worth about"; : READ PERCENT

90 WORTH = WORTH * PERCENT

100 PRINT WORTH USING "S$SHHHHH, HH"

110 NEXT I : PRINT

200 DATA first,.?7,second,.78,third,.79,fourth,.81,fifth,.84

300 RESTORE

310 INPUT LINE "Would you like to see another depreciation schedule? " ,L$
320 IF L$C1,13="Y" OR L$Ir1,1]1="y" THEN GOTO 40 ELSE PRINT "Goodbye."

A program run of the above example might read:

PROGRAM STATEMENTS Page 10-19

This program gives you an estimate of your automobile's
value (due to depreciation) over a period of five years.

How much did you pay for your car? $8634.79 GED
Based on national averages, your car will depreciate this way:

After the first year, your car will be worth about $6,648.79
After the second year, your car will be worth about $5,186.05
After the third year, your car will be worth about $4,096.98
After the fourth year, your car will be worth about $3,318.56
After the fifth year, your car will be worth about $?,787.59

Would you Like to see another depreciation schedule? NRe)
Goodbye.

Statement 300 restored the data in the data pool, built from Line 200, in
case the user of this program had elected to continue.

The READ statement is also used for reading data from random access files.
The format is:

READ #file-channel ,variable1{,variable-2,...variableN}

It is discussed in detail in Chapter 15, "AlphaBASIC File I/0 System."

10.23 SCALE
The format is:
SCALE value

SCALE 1s a scaled arithmetic modifier. It is discussed in detail in Chapter
14, "Scaled Arithmetic."”

10.24 SIGNIFICANCE
The format is:

SIGNIFICANCE value

PROGRAM STATEMENTS Page 10-20

The significance statement allows you to dynamically change the default
value of the numeric significance of the system for unformatted printing.
The significance value can be any value from 1 through 11 and represents the
maximum number of digits to be printed in unformatted numbers. Rounding off
to the specific number of digits is not performed until just before the
printing of the result. The statement SIGNIFICANCE 8, for instance, sets
the number of printable digits to 8. The value is interpreted at run-time
and therefore may be any valid numeric expression, including variables. The
current significance of the system is ignored when PRINT USING is in effect.

Note that the SIGNIFICANCE statement only affects the final printed result
of all numeric calculations. The calculations themselves and the storage of
intermediate results are always performed in full 11-digit precision to
minimize the propagation of errors.

The significance of the system is set at 6 digits when the system is first
started. This is equivalent to standard single-precision formats used in
most of the popular versions of BASIC. The significance is not reset by the
RUN command and therefore may be set 1in 1interactive mode in a direct
statement just prior to the actual running of a test program. 0f course,
any SIGNIFICANCE statements encountered during the execution of the program
reset the value.

10.25 STOP
The format is:
STOP

Causes the program to suspend execution and print the message "Program stop
at Lline nnnn." 1If you are in interactive mode, you may then continue to the
next statement 1in sequence by executing a CONT command or a single-step
command.

10.26 STRSIZ
The format is:
STRSIZ value

The string size statement sets the default value for all strings which are
encountered for the first time during the compilation phase. Initially, the
default value of all strings 1in the absence of a STRSIZ statement is 10
bytes. The statement STRSIZ 25, for instance, causes all newly allocated
strings which follow to have a maximum size of 25 bytes instead of 10 bytes.
This 1includes the allocation of string arrays. The size value is evaluated
at compilation time and therefore must be a single positive integer.

PROGRAM STATEMENTS Page 10-21

10.27 WRITE
The format is:
WRITE #file-channel ,expression-list

Writes a record to a random access file. It 1is discussed in detail in
Chapter 15, "AlphaBASIC File I/0 System."

10.28 XCALL
The format is:

XCALL routine{,argumenti{,argument2,...argumentN}}
Executes an external assembly Llanguage subroutine. Assembly Llanguage
subroutines are discussed in detail 1in Chapter 18, '"Calling External
Assembly Language Subroutines."”
For 1information on the assembly language subroutines available for use with

BASIC programs, see the "BASIC Programmer's Information" section of the
AM-100 documentation packet.

CHAPTER 11

BASIC FUNCTIONS

The following 1is a List of the currently implemented AlphaBASIC functions.
Functions compute and return a value and are elements of an expression. The
function either operates on or is controlled by the argument, which is
enclosed in parentheses. There are four main categories of functions.
Numeric and trigonometric functions return numeric values. Control
functions are used to indicate the status of file input and output
operations and system operations. String functions operate on numeric
values or strings of one or more characters in length, and return string
values.

Functions are different from program statements in that they return a value.
In order to see or use that value, you must idinclude the function 1in a
program statement that evaluates the expression that the function call is a
part of. For example:

10 SQR(16)

will not display a value. You must either assign the value returned by the
function to a variable or display the value via a PRINT statement if you
want to use or see the value returned. For example:

20 ROOT

= SQR(16)
30 RESULT =

ROOT * (SQR(NUMBER) + 24)
or:

40 PRINT "Answers are: '"; SQR(16) + 100, SQR(24)

11.1 NUMERIC FUNCTIONS

Numeric functions accept a string or numeric argument, and return a numeric
value. Note that the mode independence feature of the expression processor
performs automatic conversions if a numeric argument is used where a string
argument is expected, and vice versa.

BASIC FUNCTIONS Page 11-2

11.1.1 ABS(X)

Returns the absolute value of the argument X. For example, ABS(-32.4)
returns 32.4, and ABS("17.2") returns 17.2.

11.1.2 ASC(A)

Returns the ASCII decimal value of the first character of argument A. The
argument may be either a string literal or string variable. For example:

ASC("A™)
ASC(AS)

11.1.3 EXP(X)

Returns the constant e (2.7182818285) raised to the power X.

11.1.4 FACT(XO

Returns the factorial of X.

11.1.5 FIX(X)

Returns the integer part of X (fractional part truncated).

11.1.6 INT(XD

Returns the largest integer less than or equal to the argument X. The only
time you will see a difference between using INT and FIX is if you are
working with negative numbers. For example, the largest integer less than
or equal to 23.4 is 23. However, the largest integer less than or equal to
-23.4 is -24. (FIX would have returned -23.)

11.1.7 LOG(X)

Returns the natural (base e) logarithm of the argument X.

BASIC FUNCTIONS Page 11-3

11.1.8 LOG10

Returns the decimal (base 10) logarithm of the argument X.

11.1.9 RND(X)

Returns a random number generated by a pseudo-random number generator. The
number returned is based on a previous value known as the ''seed,” and is
between 0 and 1. The argument X controls the number to be returned. If X
is negative, it is used as the seed to start a new sequence of numbers. If
X 1is zero or positive, the next number in the sequence is returned,
depending on the current value of the seed (this is the normal mode). The
RANDOMIZE statement may be used to create a seed which is truly random and
not based on a fixed beginning value set by the systenm.

NOTE: If you want to generate a random number greater than or equal to
number A and less than number B, you can use the expression:
(B-A)*RND(0)+A. Note that the INT function is used when generating random
integer numbers. For example, to generate a random integer greater than or
equal to 5 and less than 31, use the expression: INT(26%RND(0)+5) where
26=B-A.

11.1.10 SGN((X)

Returns a value of -1, 0 or 1 depending on the sign of the argument X.
Gives -1 if X is negative, 0 if X is 0 and 1 if X is positive.

] / all
11.1.11 SQR(X) o AN

Returns the square root of the argument X. UI?G% o -

oV D
2 ;,,e:(’a/‘/ ’
11.1.12 VAL(A) [D=3

Returns the numeric value of the string variable or string Lliteral A

converted to floating point under normal BASIC format rules. For example,

VAL("123") returns 123. o -
ey, 5727578

>

11.2 TRIGONOMETRIC FUNCTIONS % wi¢s7 [o aAirosg

The following trig functions are implemented in full 11-digit accuracy:
5

SIN(X) Sine of X o ! - ﬂ i . L/_//’ D

COS(X) Cosine of X i @lfems = (0

At = ;w%g»«q

SRS

N oa- BIHITTC 576

BASIC FUNCTIONS , Page 11-4
T i
' N ,,'?%53'}"” 3

i

W ;
¥
TAN(X) Tangent of X Y
ATN(X) Arctangent of X / - (7
ASN(X) Arcsine of X Ractons = (7—?:0)%0?},%5
ACS(X) Arccosine of X
DATN(X,Y) Double arctangent of X,Y

11.3 CONTROL FUNCTIONS

Control function3 indicate the status of file input and output operations,
and provide information on system operations.

11.3.1 EOF(XD

The EOF function returns a value giving the status of a file whose
file-channel number is X. The file is assumed to be open for sequential
input processing. The values returned by the EOF function are:

-1 if the file is not open or the file-channel number X is zero.
(NOTE: A file-channel number of zero indicates that the
terminal is being used as the file.)

0 if the file is not yet at end-of-file during input calls
1 if the file has reached the end-of-file condition

Due to the method used by the AMOS operating system for processing files,
the end-of-file status is not achieved until after an INPUT statement has
been executed which reaches the end-of-file condition. Any INPUT statements
which reach end-of-file return numeric zero or null string values forever
more. This means that the normal sequence for processing sequential input
files would be to INPUT the data into the variables and then test the EOF(X)
status before actually using the data 1in those variables, since if an
end-of-file has been reached that data will bhe no good.

End-of-file should only be tested for sequential input files. Files open
for output or for random processing always return a zero value.

11.3.2 ERF(X)

The ERF function returns an indication of a file soft error condition. Soft
errors during file access operations do not give you any indication unless
you query the file with the ERF function. 1If the returned value of X is not
zero, an error or abnormal condition exists as a result of the preceding
file operation. The only soft errors currently returned concern ISAM file
operations. For more information, see Chapter 19, "Using ISAM From Within
BASIC."

BASIC FUNCTIONS Page 11-5

11.3.3 ERR(X)

Returns a status code which refers to program status during error trapping.
There are 33 separate codes. A complete list of these codes 1is found 1in
Section 17.2.1, "Error Codes Returned by ERR." If X is 0, ERR returns the
specific code of the error detected; if X is 1, ERR returns the number of
the last program Line encountered before the error occurred. If X is 2, ERR
returns the file number of the last file accessed.

11.3.4 OTHER CONTROL FUNCTIONS

See Chapter 12, '"System Functions," for information on the following
functions:

MEM(X) - Returns the number of free bytes in system memory.
BYTE(X) - Enables you to bring in 8 data bits from a memory location.
WORD(X) - Enables you to bring in 16 data bits from a memory location.
DATE - Sets or reads the system date.
10(X) - Enables the 256 1/0 ports to be read from or written to.
TIME - Sets or reads the system time.

11.4 STRING FUNCTIONS ~

The following string functions accept numeric or string arguments, and
return strings. Note that the mode independence feature of the expression
processor performs automatic conversions if a numeric argument is used where
a string argument is expected, and vice versa.

11.4.1 ASC(X)

Returns the ASCII decimal value of the first character in string A$. If the
string A$ reads, for example, "Zjrconium's atomic number is:", the result
of the statement PRINT ASC(A$) is 90, the ASCII value (in base 10) of upper
case Z. For the statement PRINT ASC("A$'"), where the argument is between
quotation marks and is the Lliteral string to be operated upon, at execution
time BASIC returns the ASCII value of A, or 65.

11.4.2 CHR$(X) OR CHR(X)

Returns a single character having the ASCII decimal value of X. Only one
character 1is generated for each CHR function call. For instance, if you

type PRINT CHR$(90) as a direct statement, the wupper case Lletter Z is
returned to you.

BASIC FUNCTIONS Page 11-6

11.4.3 INSTR(X,A$,B$)

Performs a search for the substring B$ within the string A$, beginning at
the Xth character position. It returns a value of zero if B$ is not in AS$,
or the character position if B$ is found within A$. Character position is
measured from the start of the string, with the first character position
represented as one. Some direct statements will illustrate:

A$=""ELEPHANT"

B$="ANT" . ..y A$="CROCODILE"
— g e BT AV E%)
PRINT INSTR(1,A$,B$) ? INSTR(2,A$,'"COD") 2INSTR(8,"MEADOWLARK" ,""LARK')
176 4 0

(Substring B$ starts (The specified string (The specified string '"LARK"
the sixth character begins at the fourth is not found in the string
from the left) character position) "ARK", which 1is the string

starting at the 8th position)

NOTE: Remember the '?'" symbol is an abbreviation for "PRINT."

11.4.4 LCS(AS)

Returns a-string which is similar to the argument string (A$), but with all
characters translated to Llower case. If A$ dis "A is for Alpha", the
function LCS(A$) yields the string "a is for alpha".

11.4.5 LEFT(A$,X) or LEFT$(AS$,X)

LEFT$(A3$,X) Returns the leftmost X characters of the string expression AS$.
If A$ reads "Now is the time'", the function LEFT$(A%$,7) produces the
substring "Now is ', which includes the trailing blank after "is".

11.4.6 LEN(AS)

Returns the Llength 1in characters of the string expression A$. If A$ is
"“Wherefore art thou, Romeo?''", the function LEN(A$) returns the number 28
because there are 28 characters 1in that string, including spaces and
punctuation.

11.4.7 MIDCAS,X,Y) or MIDS(AS,X,Y)

Returns the substring composed of the characters of the string expression A$
starting at the Xth character and extending for Y characters. A null string
is returned if X 1is greater than the Llength of AS. If A% reads
"The quick brown fox jumped over the sleeping dog", then the function

BASIC FUNCTIONS Page 11-7

MID(A$,17,15) returns the substring "fox jumped over'", which begins at the
seventeenth letter of the string and is fifteen characters long.

11.4.8 RIGHT(A$,X) or RIGHT$(AS$,X)

Returns the rightmost X characters of the string expression A$. If A% is "I
THINK, THEREFORE I AM", the function RIGHT(A$,4) produces the substring
"I AM". As another example, RIGHT(1234,2) returns 34. (Remember that you
can use numeric arguments for many string functions.)

11.4.9 SPACE(X) or SPACE$(X)
Returns a string of X spaces in length. The statement
70 PRINT ""COLUMN A"; : PRINT SPACE(10); : PRINT "COLUMN B"
outputs the following:
COLUMN A COLUMN B
where the 10 spaces between the first and second strings are the result of
the SPACE(10) function. SPACE is especially handy for padding strings to a
fixed length. For example:
5 STRSIZ 25
10 !Name must be 25 spaces

20 INPUT '"Name?'',NAME$
30 IF LEN(NAME$)<25 THEN NAMES + SPACE(25-LEN(NAMES))

11.4.10 STR(X) or STR$(X)

Returns a string which is the character representation of the numeric
expression X. No leading space is returned for positive numbers.

11.4.117 UCS(AS)

Returns a string which is similar to the argument string (A$), except that
all characters are translated to upper case. If A$ is "M is for Micro," the
function UCS(A%) yields the string "M IS FOR MICRO."

CHAPTER 12

SYSTEM FUNCTIONS

AlphaBASIC supports a unique group of operators called system functions,
which provide the ability to get to the 1I1/0 ports, physical memory
(sometimes referred to in other BASICs as PEEK and POKE), and various system
parameters. The syntax of a system function parallels that of a standard
function, with the reserved word representing the desired function followed
by optional arguments enclosed within parentheses. The major difference is
that the reserved word of a system function may appear on the left side of
an assignment statement, where it is used as an output or write condition to
the system function. System functions used within expressions on the right
side of an assignment statement perform an input or read operation and
deliver back a result to be used in the expression evaluation.

12.1 BYTE(X) AND WORD(X)

The BYTE and WORD system functions allow you to inspect and alter any memory
locations within the 64K memory addressing range of the machine. These
operations have often been called PEEK and POKE statements in other
implementations of BASIC. The BYTE functions deal with 8 bits of data in
the range of 0-255, and the WORD functions deal with 16 bits of data in the
range of 0-65535, inclusive. Any unused bits are ignored, with no error
message. Note that these commands are not protected; it 1is possible to
cause severe damage to the operating system in memory if you use the
commands improperly.

BYTE(X) = <expr> 'writes the low byte of expr into decimal memory loc
WORD(X) = <expr> 'writes the Low word of expr into decimal memory loc
A = BYTE(X) 'reads decimal memory loc X and places the byte into
A = WORD(X) !reads decimal memory loc X and places the word into

> >» X X

SYSTEM FUNCTIONS Page 12-2

12.2 DATE

The DATE system function is identical to the TIME function except that it
sets and returns the two-word system date.

DATE
A

<expr> !sets system date to expr
DATE returns system date into A

The following program translates the binary data stored in the system DATE
location into floating point form.

10 ! The system stores the date in binary form; the small program
15 ! below translates the binary date into floating point form. It
20 ! also allows you to set the system date from within BASIC.

25 MAP1 BINDATE,B,4

30 MAP1 FILLDATE,?BINDATE

35 MAP2 MONTH,B,1

40 MAP2 DAY,B,1

45 MAP2 YEAR,B,1

50 BINDATE = DATE

55 PRINT "Month:'";MONTH,'"Day:";DAY, " Year:";YEAR

60 INPUT "Enter Month, Day, Year: " ,MONTH,DAY,YEAR

65 DATE=BINDATE

70 PRINT "Month:'";MONTH,"Day:";DAY,"Year:":YEAR

12.3 10(X)

The 10 system function allows the 256 1/0 ports to be selectively read from
or written to. In both cases only one byte is considered, and an output
expression greater than 255 merely ignores the unused bits. The range of
ports available is 0 to 255.

10(X)
A

<expr> l!writes the low byte of expr to decimal port X
I0(X) !reads decimal port X and places the result into A

12.4 MEM(X)

Returns a positive integer value which specifies the decimal number of bytes
currently 1in use for various memory areas used by the compiler system. The
most common use of this is to return the number of free hytes Left in the
user memory partition. This MEM(0) call duplicates the action performed by
the FRE(X) function in other versions of BASIC. Other values of the
argument X return memory allocations which pertain to various areas in use
by the compiler, and may or may not be of wuse to vyou. The byte counts
returned for the various values of X are:

0 - Free memory space remaining in current user partition
1 - Total size of current user partition
2 - Size of source code text area

SYSTEM FUNCTIONS Page 12-3

- Size of user labhel tree

- Size of user symhol tree (variable names and user function names)
- Size of compiled object code area

- Size of data pool resulting from all compiled DATA statements
Size of dummy data termination field (always zero)

- Size of array index area (dynamic Llinks to variable arrays)

- Size of variable storage area (excluding arrays)

Size of file 1/0 linkage and buffer area

- Size of variable array storage area (dynamically allocated

at run-time)

= =2 000NN~
i

-0
i

Some of these values will be meaningless when running the run—-time object
module in compiler mode, such as 2, 3 and 4.

12.5 TIME

The TIME system function requires no argument and is wused to set and
retrieve the time of day as stored in the system monitor communications
area. The time is stored as a two-word integer representing the number of
clock ticks since midnight. You are responsible for conversions to
printable format in those cases where it 1is required. One clock tick
represents one interrupt from the CPU line clock, which is usually 60 hz for
domestic systems and 50 hz for overseas systems. Dividing the time by the
clock rate gives the number of seconds since midnight. Converting this to
current time is then accomplished by successive divisions by 60 to get
minutes, and again by 60 to get hours.

TIME = expression !sets time-of-day in system to expression
A = TIME 'returns time-of-day in clock ticks into A

The small program below converts the value returned by TIME 1into actual
hours, minutes, and seconds.

100 T = TIME ! Get time

120 CLOCK = 60 ! Clock freguency in Hz

130 HOURS = INT(T/(CLOCK"3)) ! Compute hours
140 MINS = INT(T/(CLOCK"2)) = (HOURS * 60) ! Compute minutes
150 ! Compute seconds

160 SECS = INT(T/CLOCK) = ((HOURS * (60°2)) + (MINS * 60))

170 H'MOD: ! Adjust HOURS to 24~hour clock range.

180 IF HOURS > 23 THEN HOURS = HOURS - 24 : GOTO H'MOD

190 PRINT (HOURS USING "#Z'); ":'";(MINS USING "#Z'"); &
":"; (SECS USING "#1'');

There are a couple of things you should note about the program above:

1. The wvalue CLOCK'FREQUENCY will wvary depending on whether your
system operates on 60 Hz or 50 Hz.

2. Since TIME returns the number of clock ticks since 12:00, if your
system has been on for a couple of days this number can easily

SYSTEM FUNCTIONS Page 12-4

cause HOURS to exceed 23; Lline 160 converts the value of HOURS to a
number within the range of a 24-hour clock.

Note the use of the PRINT USING statement in Lline 170 to print
single-digit time values with a leading zero. (The next chapter
contains more information on PRINT USING.)

CHAPTER 13

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS)

Most BASIC business applications programs spend a great deal of effort in
generating reports and printouts in which data must be neatly and clearly
presented. 1In other words, correctly formatting output is usually a major
concern of the BASIC programmer.

AlphaBASIC provides several important features that help you to format data.
This chapter discusses how to employ the USING modifier to format numeric
and string data via format strings. We also discuss the extended tab
functions that allow you to control the output of data on the terminal
screen.

13.1 THE USING MODIFIER

The USING modifier allows you to format numeric or string data using a
format string (sometimes called an '"editing mask") specified by you.
Although you can use the USING modifier to store the formatted data 1in a
string variable, you may also use it in combination with the PRINT statement
to send the formatted data to a terminal display or to a file. (For
information on PRINT, see Section 10.19, "PRINT" and Section 15.3.9,
"PRINT.'")

By '"formatting" data, we mean the process of adjusting the appearance of
data (e.g., by inserting commas or spaces) so that it fits the pattern of a
specific format string. It might help to think of the format string as a
template or pattern with which you are going to control the format of your
data. The USING modifier allows you to apply the format string to your
data.

Using format strings and the USING modifier, you can do such things as: line
columns of numbers up by their decimal points; 1insert dollar signs and
commas into numeric data to represent dollar amounts; line up numeric and
string data within specified fields; generate and print leading =zeros for
numeric data; print asterisks instead of leading spaces; print numeric data
in exponential form, etc.

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-2

The sections below talk about the special formatting’ﬁharacters within the
format string that allow you to perform such adjustments.

The statements 1in which you use the USING modifier take these forms, where
expression is usually a numeric or string constant, or a numeric or string
variable:

variable = expression USING format-string To THARBC) !

- - oy 1130 5]
PRINT expression USING format-string LSE rbe ,ﬁﬁW‘T‘; pries
PRINT USING format-string, expression-list o -

For example, if you want to format the number 2345.678 with the format
string "S$SH##RE_#H#'", you could say:

NUMBER = 2345.678 USING "'SSH#HH . HH"
PRINT 2345.678 USING "SS#H##H HH"
PRINT USING "SSH#HHHH . H##" ,2345.678

(NOTE: The first format may only be used for numeric data; the other two
formats may be used for string or numeric data. Also, remember that USING
has the lowest precedence of all operators. Therefore, all other operations
in expressions surrounding the USING operator are performed Dbefore
formatting- is done. For example, PRINT 23+4 USING "###"+".#" produces
27.0.) The format string may be a string expression (for example,
MID$(A$,4,5), a string constant (for example, "#H##.##"), or a string
variable (for example, MASK$).

If you use the third PRINT USING variant above, you may supply a List of
expressions to be formatted, separating the expressions with commas as with
the regular PRINT statement (e.g., PRINT USING '#####.##" ,A,B,C,D,E). If
you supply more expressions than the format string is meant to handle, BASIC
re-uses the format string until each of the elements in the expression Llist
has been formatted. If you supply fewer expressions than the format string
is meant to handle, BASIC ignores the unused portion of the format string.

NOTE: You may also send formatted data to a file by specifying a file
number after the PRINT keyword (e.g., PRINT #1, USING format-string,
expression=Llist). For information on sending data to files, see Section
15.3.9, "PRINT."”

13.2 FORMATTING CHARACTERS

The sections below discuss the special characters that make up the format
string; these special characters control the output of your data.
Characters other than these special formatting characters which appear in a
format string are output Lliterally as part of your data.

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-3

’ g f '(,7 — 2 /{,"d»; s
13.2.1 The \ Symbol (String Fields) é A0 THD 77*7¢“T’f% i
Although you will most often be interested in formatting numeric data, you
may also specify fields for string data via the backslash symbol (\). Two

backslashes define a string field whose size equals the number of characters
enclosed in the backslashes plus the backslashes themselves.

Although the usual practice is to enclose blanks in the string field (e.g.,
"\ \'"), AlphaBASIC permits the use of any characters. Since these
characters are never printed, but simply define the size of the field by
which a string is to be formatted, non-blank characters serve only as a
comment . However, when using several string fields within a single format
string, it can be useful to visually separate them from the spaces between
the fields by using non-blanks within the backslashes. For example:

"\==-fieldl-——-\ \==—- field2----- \ \-field3-\"

String fields allow you to define the placement and size of string data.
For example, if A$="Now is the time.'", then:

PRINT USING "As he once said, '\ \'""_A$
produces:

As he once said, '"Now is the time.'

If the string to be formatted is larger than the string field, BASIC ignores
the extra characters. If the string to be formatted is smaller than the
string field, BASIC adds trailing blanks to the string to make it the same
size as the field, and thus left justifies it in the field.

You may combine string fields and numeric fields within a single format

string. (See the section below for information on numeric fields.) For
example:

5 STRSIZ 25

10 MAP1 MASK,S,42,"\=-10char=-\ Hitt . H# \===15 char-——-\"

15 €$="(in millions)"
20 PRINT USING MASK,'"YEAR 1979",234.556,C$,"YEAR 1980",5678.456,C$

produces:

YEAR 1979 234 .56 (in millions)
YEAR 1980 5678.46 (in millions)

NOTE: Remember that the default string size is 10 characters, so you will
want to explicitly define any strings over 10 characters via MAP statements
or include a STRSIZ statement in your program to adjust the default string
size.

<

FORMATTING QUTPUT (PRiNT USING AND EXTENDED TABS) Page 13-4

13.2.2 The ! Symbol (One-character String Field)

The exclamation mark identifies a one-character string field. BASIC
replaces the exclamation mark with a corresponding string. (If the string
constant or string variable contains more than one character, BASIC ignores
any characters past the first.) For example:

10 STRSIZ 40
20 MASK$="The temperature is: HHH! = HH"
30 PRINT USING MASK$,50,"Ff",10,"C",68,"F",20,"Cc" ,86,"F",30,"C",104,"F" ,40,"C"

prints:
The temperature is: 50F = 10C
The temperature 1s: 68F = 20C
The temperature is: 86F = 30C
The temperature is: 104F = 40C

If no string is available to be substituted for the ! symbol, BASIC simply
prints the ! symbol 1instead. For example, if we took our sample program
above and removed the first "F" from the PRINT USING expression Llist, the
first Line of our display would look Llike this:

The temperature is: 50! = 10¢C

13.2.3 The # Symbol (Numeric Fields)

The # symbol 1in a format string always indicates that you want to format
numeric data. Each # symbol in a format string represents one numeric
digit. The simplest numeric format string would consist of just # symbols.
For example:

PRINT C USING "###H#"

The statement above tells BASIC to format the numeric variable € into a
field of four digits, with no fractional part. If the format string causes
BASIC to remove the fractional part of a number, BASIC rounds the number to
the next integer, rather than truncating it. For example:

PRINT 2367.88 USING "####" RED
2368

If the numeric field is too small to contain the specified number (for
example, if we had specified the number 650456.56 with the format string
"#HHH"'), BASIC prints the number in standard BASIC format preceded by a %
symbol, indicating overflow. For example:

PRINT 150450 USING "####" (RED
%150450

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-5

If the numeric field is larger than the specified number, BASIC right
justifies the number in the field, inserting leading blanks into the digit
positions not needed. For example:

PRINT USING "#HHH#H" ,23

__.2
(Four blanks precede the number 23.) Note that other formatting characters
discussed below (e.g., the $$ and ** symbols) also define digit positions as
well as perform special formatting functions.

NOTE: You cannot format string data with a numeric field format string. If
you try to do so, BASIC just prints the format string, indicating that it
was unable to format the data. For example:

PRINT USING "#####" ,"Hi there" RED
HHHHH

13.2.4 The Period Symbol (Decimal Point)

You may include one period within a numeric field to specify where a decimal
point is to appear in the formatted number. For example:

PRINT USING "###H#.##" ,2345.502,1100.657,200,3.95
produces:

2345.50
1100.66
200.00
3.95

If the number specified contains more digits to the right of the decimal
point than the format string, BASIC rounds the number so that it contains
the right number of digits in the fractional part. If the format string
contains more digits to the right of the decimal point than the specified
number, BASIC fills in the unused digit positions with zeros (as in the case
of the number 200, above). 1If the format string specifies any digits in
front of the decimal point, BASIC prints at least one digit in front of the
decimal point for each number, even if that digit is a zero.

13.2.5 The $3% Symbol (Floating Dollar Sign)

The $$ symbol at the front of a numeric field format string tells BASIC to
insert a dollar sign at the front of the formatted number. The double
dollar sign symbol defines two digit positions, one of which is taken up by
the dollar sign itself.

For example:

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-6

PRINT USING "'SS#H##H . H##" ,17500.66,100,345.2
produces:

$17500.66

$345.20

Notice the difference between using the double dollar sign to produce a
floating dollar sign, and simply using the single non-formatting character
"$'" in the format string:

PRINT USING "'S##### . ##" ,17500.66,100,345.2
produces:

$ 17500.66

$ 345.20

Because you will use the $3% symbol to format data that represents money
amounts, you may want to use the floating comma symbol in combination with
the $% symbol. (See the paragraph below for information on this formatting
character.)

Remember that you can include non-formatting characters in a format string.
In the case above, a single dollar sign is not a formatting character, and
so BASIC simply prints it as part of the formatted data. As another
example:

PRINT USING "###%" ,23.45,56.78,99.84
produces:

23%
572
100%

In the example above, the "%" symbol dis not a special formatting
character. As another example:

PRINT USING "The telephone number is: (H#H#) H### #HHHH" ,714,555,1212
produces:

The telephone number is: (714) 555 1212

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-7

13.2.6 The Comma Symbol (Floating Commas)

By including a comma in your format string, you tell BASIC to insert a comma
every three digits to the right of the decimal point. For example:

PRINT 6507501.89 USING "'HH#HHHNY, HH"
produces:

6,507,501.89

BASIC treats any comma to the right of the decimal point as a
non-formatting, printable character. FEach comma defines one digit position.

13.2.7 The ** Symbol (Asterisk Fill)

By including a double asterisk symbol at the front of your format string,
you tell BASIC to replace any leading blanks that would normally be output
in front of a number with asterisks. This 1is especially wuseful when
printing checks. The double asterisk defines two digit positions. For
example:

PRINT 231.69 USING '"'xxH###### . #t"
produces:

**kk*%231 .69
NOTE: You will probably use asterisk-fill formatting when printing dollar
amounts; remember that you may include a dollar sign symbol in the format
string. For example:

PRINT 231.69 USING "*xS####HH . #H"
prints:

**xx$231.69

13.2.8 The Z Symbol (Leading Zeros)

To generate leading zeros, include the Z symbol within your format string.
The format string must begin with one # symbol followed by a series of Zs.
The total size of the formatted string is the number of Zs plus the one #
symbol. For example:

PRINT 123 USING "'#22222" P T |23 USiee A
produces: e Jvess ; | 230
L;__/ (=72

ﬂ/f’/ﬂ’”’?‘“ 23 Fsie 27
/),f’ac’?, =2y 0 gi; g

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-8

000123

13.2.9 The Minus Symbol (Trailing Minus Sign)

You may cause the sign of a number to be printed following the number by
ending a numeric field in a format string with a minus sign. If the number
is positive, BASIC prints a blank after the number; if it is negative, BASIC
prints a minus sign after the number. For example:

10 MAP1 MASK,S,26,"\==7==\ SSHHItY HE-"
20 C$=""Credit:" : D$="Debit:"
30 PRINT USING MASK,C$,345.67,D%,-567.89,C%,100.89,D%,-3456.33

produces:
Credit: $345.67
Debit: $567 .89~
Credit: $100.89
Debit: $3456.33-

13.2.10 The """" Symbol (Exponential Format)

You may specify exponential format by following the numeric field in a
format string with four circumflexes (°°"7). These symbols define the
spaces taken up by the "E nn" exponent characters. BASIC left justifies the
significant digits, adjusting the exponent as necessary. (As with other
numeric formats, BASIC allows any decimal point arrangement.) For example:

10 PRINT USING ".#####~"""" ,100,2345.66,5000,.0004
prints:

.09999E+03
-23456E+04
-50000E+04
-39999€-03

13.3 FORMATTING EXAMPLES AND HINTS
ALL of our examples above used the PRINT statement to print formatted data.
Remember that you may also format a value without displaying it by using the
USING modifier without the PRINT statement. For example:

A$ = B USING C$

The statement above formats the number in B using the format string in C$,
and leaves a string result in A$. (NOTE: This format of the USING modifier

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-9

is only for formatting numeric data. Also note that even though we are
formatting numeric data, the result is always a string.) This type of format
allows you to create headings and image lines that you use more than once,
and to inspect and manipulate formatted data before printing it.

You may not use the USING modifier recursively. That is, you may not use a
format string that is itself the result of a USING modifier. (For example,
if you have specified C$ = B USING "##HH.##H'", you may not say: N$ = D USING
c$.)

When using the PRINT USING format, remember that PRINT USING differs from
the regular PRINT statement in that the use of semicolons to separate the
elements of the print list has no effect on the spacing of those formatted
elements.

Below is a sample program that uses the USING modifier to format output into
a small report. It also demonstrates the use of subroutines, MAP
statements, and file-handling.

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-10

5 ! Tiny report generator

10 STRSIZ 100

20 MAP1 HEADING,S,49, " \===10---\ \===10=-==\ \===10===\""
30 MAP1 MASK,S,54, " \=—10---\ SSHHBBHHY , JHE #227227717"

40 ! Main Program

50 GOSUB INSTRUCTIONS

60 OPEN #1,"REPORT.DAT" ,OUTPUT
70 GOSUB GET'HEADER

80 1 =1

90 GOSUB WRITE'REPORT

100 CLOSE #1

Display Instructions.

Open file to hold report.

Get and write header for report.
Initialize Lline counter.

Get and write data to report.
Close out file.

G e tm e b

110 END
200 INSTRUCTIONS: ! Display instructions
210 PRINT " Welcome to the Mini Report Generator' : PRINT

220 PRINT "We will first ask you to enter three titles (max 10 char-"
230 PRINT "acters each). These will form the heading of your report."
240 PRINT "Then we'll ask for each line of the report.'" : PRINT

250 PRINT " Field #1 is a string (maximum of 10 characters.”

260 PRINT " Enter zero to end report.)"

270 PRINT " Field #2 is a number (maximum of 7 characters) to"

280 PRINT " be expressed as a dollar amount. Don't enter commas.)"
290 PRINT " Field #3 1is a number (maximum of 10 characters)"

300 PRINT " that can represent any non-dollar data." : PRINT

310 RETURN

400 GET'HEADER: ! Input and write header to file.

410 INPUT "Enter Title #1: " ,TITLE1S

420 INPUT "Enter Title #2: " ,TITLE2S$

430 INPUT "Enter Title #3: " ,TITLE3$

440 ! Write header to file.

450 PRINT #1, USING HEADING,TITLE1$,TITLE2$,TITLE3S : PRINT #1
460 RETURN

500 WRITE'REPORT: ! Input and write data to file.

510 PRINT : PRINT "Line #";I;'"-=" ! Keep track of number of Llines.
520 INPUT " Enter Field #1: " ,FIELD1S$

530 IF FIELD13$="0" THEN RETURN

540 INPUT " Enter Field #2: " ,FIELD2

550 INPUT " Enter Field #3: " ,FIELD3

560 PRINT #1, USING MASK,FIELD1$,FIELD2,FIELD3

570 I=1I#

580 GOTO WRITE'REPORT

We can use the program to generate very different types of reports. For
example:

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-11

ITEM COST/UNIT PART NO.
Axle, Half $249.67 0000002376
Cntrl Box $45.67 0000002985
K27 Engine $1,289.45 0000005678
Shaft #2 $32.56 0000005645

or:

EMPLOYEE SALARY PAYROLL#
R. Smith $239,234 .33 0000000654
J. Swann $34,123.78 N00N0N0834
L. Knowles ,- -

T. Filbert $1,203 ,456.77 0000000263

13.4 EXPANDED TAB FUNCTIONS

The TAB function in AlLphaBASIC has been expanded beyond the normal usage to
include terminal screen handling, such as cursor control and other special
functions. To be used only in a PRINT statement, the TAB function operates
in the traditional manner when supplied with only a single numeric argument
such as TAB(X). In this case the function causes the carriage to be
positioned over to the "X" column on the current line. When supplied with
two arguments such as TAB(R,(C), however, the TAB function performs special
CRT functions.

If the value of R is positive, the R,C arguments are treated as (row,column)
coordinates for positioning the cursor on the terminal screen. The
specified characters are then printed beginning in that position. As in
other functions, the R and C arguments may be expressions. Terminals are
assumed to begin with row 1 (top of screen) and column 1 (left end of each
row). If you use TAB for cursor positioning, remember to follow the TAB
function with a semicolon (e.g., PRINT TAB(23,5);)~- otherwise, BASIC will
output a carriage return/linefeed after it positions the cursor, thus
destroying your careful positioning.

If the wvalue of R is -1, the function is interpreted as a special terminal
command and the appropriate command code must be specified as the ¢
argument. The codes are transmitted to the terminal driver (TDV file in
DSKQ:[1,61), which does the actual interpretation and performs the special
function for your terminal. The following list gives the standard decimal
codes in use for all the terminal drivers supported by Alpha Micro:

Code Function

Clear screen and set normal intensity

Cursor home (move to 1,1 - upper left corner)
Cursor return (move to column 1 without Line-feed)
Cursor up one row

Cursor down one row

SPUWNV-L0

4

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-12

5 Cursor left one column
P . I Cursor right one column
T L) 7 Lock keyboard
praw-cl 8 Unlock keyboard
mm——e TG Erase to end of line
10 Erase to end of screen
11 Enter background display mode (reduced intensity)
12 Enter foreground display mode (normal intensity)
13 Enable protected fields
14 Disable protected fields
15 . Delete Lline
16 Insert Lline
17 Delete character
18 Insert character
19 Read cursor address
20 Read chracter at current cursor address
21 Start blinking field
o - 22 End blinking field
ifiﬁfg’”? 23 Start Line drawing mode
?g:éﬁiﬁgf 24 End line drawing mode
25 Set horizontal position
26 Set vertical position
27 Set terminal attributes

The actual routines that perform the screen controls are in the specific
terminal drivers and not in AlphaBASIC itself. Not all terminal drivers
have all of the functions above simply because not all terminals are able to
perform all of these functions. 1If your terminal has additional features,
Alpha Micro recommends starting at 64 (decimal) when you assign function
codes in your terminal driver.

CHAPTER 14

SCALED ARITHMETIC

AlphaBASIC uses a floating point format which gives an accuracy of 11
significant digits. Unfortunately, this accuracy is absolute only when
dealing with numbers that are total integers (i.e., there are no numbers to
the right of the decimal point). This fact stems from the conversions that
are required from decimal input to the binary floating point format used in
the hardware. For most business users, the actual range of numbers contains
two digits to the right of the decimal point and nine digits to the left of
the decimal point. When the fractional part of the number 1is converted
between decimal and binary formats, a small but significant error is
sometimes introduced which may propagate into inaccuracies when dealing with
absolute dollars-and-cents values.

As an example of the kinds of inaccuracies that can occur, take a Llook at
the following program: .

10 SIGNIFICANCE 11
20 PRINT .001

Instead of the expected answer of .001, we see the answer:
9.9999999999E -4

This 1is not an error in BASIC, but simply represents the side effects of
converting a decimal fraction to binary representation and back again. Some
decimal fractions cannot be exactly expressed as a binary fraction in a
finite number of digits, and so round-off error occurs.

The error was only visible because our program set the number of significant
digits to 11. (The usual number of significant digits is six.) Such errors
can accumulate and present themselves when you do a Llarge number of
multiplications and divisions using decimal fractions.

AlphaBASIC 1incorporates a scaling feature which helps to alleviate this
problem by storing all floating point numbers with a scale offset. This
offset designates where the 11 absolute accuracy digits are located in
relation to the decimal point. BASIC does this by multiplying every input
number by the scaling factor and then dividing it out again before printing.

SCALED ARITHMETIC Page 14-2

(This is a simplified explanation, and many other checks and conversions are
done internally to scaled numbers.)

The scaling factor represents the number of decimal places that the 11-digit
"window" is effectively shifted to the right in any floating point number.
For example, the most common application is in a business environment where
the scaling factor of 2 would be used to give absolute 11 place accuracy to
numbers which extend 2 places to the right of the decimal point. This means
that the value of 50.12 is multiplied by the scaling factor of 2 digits
(100> and stored as the floating point value of 5012. Since this value is
an integer, it has absolute accuracy. Just before printing, BASIC divides
this number by the scaling factor to reduce it to its intended value of
50.12.

Other conversions have been included into the system to take care of all the
Little subtle effects of storing scaled numbers. For example, when
converting scaled numbers to integer or binary format, BASIC must unscale
the number first before converting it. When BASIC multiplies two scaled
numbers together, the result is a number which must be unscaled once, while
division of two scaled numbers creates exactly the opposite problem.
Dealing with scaled numbers for exponential, logarithmic and trigonometric
functions creates even more exotic problems. ALl these conversions are done
automatically by AlphaBASIC, so you are relieved of the programming task of
keeping track of them.

14.1 SCALE

Scaled arithmetic is normally entered at the start of a program and
continues in effect throughout the program. The statement for setting the
program into scaled mode is:

SCALE n

The scaling factor "n" must be a decimal digit in the range of -30 to +30.
It may not be a variable, since scaling is done at compile time for constant
values as well as at run-time for input and output conversions. Negative
scaling moves the 11-digit window to the left. NOTE: You won't often use a
negative scaling factor, since that takes care of the case where your
numbers are too large, rather than too small. For example:

PRINT 100000000000000000
produces the number:

9.9999999999E16
when SIGNIFICANCE s set to 11 because AlphaBASIC cannot handle a number
that large with eleven significant digits. However, if you wuse SCALE -1,

you get the expected answer of 1E17, since you have adjusted the number to
the range that AlphaBASIC can handle.

SCALED ARITHMETIC Page 14-3

A few words of caution are in order here. Once BASIC detects the SCALE
statement during compilation, BASIC scales all constant values that follow
by the scaling factor so that they are stored properly. In addition, a
run-time command is generated 1in the executable program which causes the
actual scaling to be performed on INPUT and PRINT values when the program is
running. If two or more different SCALE statements are executed in the same
program, some very strange results may come out unless you are totally
familiar with what is happening with compile-time and run-time conversions.
We suggest that you play with this one a bit before delving into it full
steam.

If you are using a positive scaling factor to adjust real numbers, note that
using SCALE does nothing to prevent inaccuracies if the scale factor you use
is not Llarge enough to cause AlphaBASIC to handle your data as integers.
For example, if you want to handle numbers that have three digits to the
right of the decimal point, a scaling factor of 2 will leave one digit to
the right of the decimal point, and scaling error can still occur. So, if
you will be wusing numbers with a fractional part of two digits, use a
scaling factor of 2; if the fractional part will be three digits, use a
scaling factor of 3; and so on.

One other word of caution. Floating point numbers that are stored in files
by the sequential output PRINT statement are unscaled and output 1in ASCII
with no problems. Floating point numbers that are written to random access
files by using the WRITE statement are not unscaled first; any program that
reads this file as input must either be operating in the same scaling mode
in which the data was written, or else must apply the scale factor
explicitly to all wvalues from the file. Binary and string values, of
course, are never modified, regardless of the scaling factor currently in
use.

CHAPTER 15

ALPHABASIC FILE I/0 SYSTEM

This chapter contains information on creating and using disk files from
within your BASIC programs. Since these processes differ somewhat depending
on whether you want to use sequential or random data files, we discuss
sequential and random files generally before getting into the specific
commands you can use to manipulate these files. Note the sample program at
the end of the chapter; it demonstrates defining a logical record, computing
the Llogical record blocking factor for a random file, allocating a random
file, opening and closing a random file, searching for a file, and writing
and reading data to and from a random file.

ALphaBASIC supports both sequential and random access disk files. You may
write data either in ASCII or 1in packed binary formats. Files that
AlphaBASIC programs create are compatible with all other system utility
formats, and BASIC files may be interchanged with files from other
Languages. That 1dis, BASIC data files can be read and manipulated by
programs written in other languages. Conversely, files created by other
languages and system wutilities may be read and manipulated by programs
written in AlphaBASIC.

Files are created and referenced by the general statements OPEN, CLOSE,
INPUT, INPUT LINE, PRINT, READ, and WRITE. ALL file references are done by
a file-channel number, which may be any integer value from 0 to 65535. You
might think of the file-channel number as designating an information
channel. Once a file has been associated with it, the file channel serves
as a pipeline through which data can be transferred between your program and
the file. Once you close that file, the file channel is no longer
associated with it, and you may open another file on that file channel. You
may never have two files open at the same time with the same file channel.
The file channel always follows the verb in any file 1/0 statement and may
be any numeric expression which is preceded by a pound sign (#). File
channel zero is defined as your terminal, and is legal in file statements to
al lLowyou~--te-~write -generatizéd ~prégrams which may selectively output to
either a file or to the terminal at run-time.

P

ALPHARASIC FILE I/0 SYSTEM Page 15-2

There is no absolute Limit to the number of files that may be open at any
given time 1in a program, but since each file requires a certain amount of
memory, there is a practical Llimit to this number hased on memory available
in your partition.

BASIC automatically closes all open files when the program exits or when a
CHAIN statement is executed, if the files have not already been explicitly
closed via a CLOSE statement. BASIC cannot open two files with the same
file-channel number at the same time, but after BASIC closes a file, another
file may be opened using the same file-channel number. ALl file statements
are valid as direct statements, but BASIC closes any open files before it
executes another RUN command. This prevents statements in an executing
program from reading or writing to files which were opened by a direct
statement. Under the current version of AlphaBASIC, each open file requires
about 580 bytes of free memory for buffers and control blocks.

15.1 SEQUENTIAL ASCII FILES

Sequential disk files are the easiest to understand and implement in
AlphaBASIC. BASIC writes data to a sequential file in ASCII format, and
stores numeric data as ASCII string values. A sequential data file wusually
has the extension .DAT unless you explicitly order otherwise.in the OPEN
statement that opens that . ﬁﬁté:’\yOTE Seguential...files mayéyﬂk \conta1gm
non-ASCII data (e.g.,, 6 binary or ftoat?ﬁﬁ“ﬁS?ﬁ?‘EEFSTK Therefore, you may
only use PRINT, INPUT and-INPUT LINE_ for transferring data to and from
sequential files. (Remember that PRINT converts floating point and binary
data to printable (ASCII) form.) The READ and WRITE statements do not
convert data to ASCII form, and so are used for transferring data to and
from random files.

The sequential data files are normal ASCII files in all respects, and vyou
may manipulate them by using the system text editors, the printer spooler,
or any of the other system utilities.

To open a sequential file, use the OPEN statement, specifyina either INPUT
or OUTPUT mode.

Use the PRINT statement (followed by a non-zero file-channel number) to
write data to sequential files. The PRINT statement automatically appends a
carriage return/line-feed to your data in the same manner that it does when
sending data to a terminal display. (See Section 10.19 for information on
using commas and semicolons to format PRINT statement output.)

Use the INPUT or INPUT LINE statements (followed by a non-zero file-channel
number) to read data from a sequential file. Remember that the TNPUT
statement reads one piece of data for each variable specified, while the
INPUT LINE statement (if you specify a string variable) reads into the
specified string variable the entire line of ASCII data up to (but not
including) the carriage return/line-feed at the end of the line. INPUT and
INPUT LINE work exactly the same for files as they do for terminal input
except that you omit a prompt string and must include a file-channel number.

ALPHABASIC FILE I/0 SYSTEM Page 15-3

Sections 15.3.7 and 15.%.8 talk about INPUT and INPUT LINE. (Also, see
Sections 10.11 and 10.12 for more information on TNPUT and INPUT LINE.)

15.2 RANDOM FILES

Random access, or direct access, files are more complex than sequential
files, but offer a much more flexible method for storing and retrieving data
in different formats. Random files are written in "unformatted" or packed
data mode. Random file disk blocks are contiguously allocated on the disk.
The major advantage of random files over seaquential files is the flexibility
with which you may access data in a random file. You may only open a
sequential file for input or output, but you may open a random file for
input and output simultaneously. Accessing data 1in a sequential file
requires that you step through the file record by record. In the case of a
random file, however, you may access any record without referring to any
other record in that file. 1In addition, random files can contain data in
any format supported by AlphaBASIC (unlike sequential files, which may only
contain ASCII data).

15.2.1 Logical Records

ALL program accesses to random files are made via the "logical record"
approach. A logical record 1is defined as a fixed number of bytes whose
format is explicitly under control of the program performing the access.
Physical blocks on the disk are each 512 bytes lLong, and each random file
must be preallocated as some given number of these 512-byte blocks. Logical
records may be any length from 1 byte to 512 bytes. (Logical records can
never overlap physical disk blocks.) The AlphaBASIC I/0 system
automatically computes the number of logical records that fit into one disk
block, and performs the blocking and unblocking functions for you. For
example, if your logical record size is defined as 100 bytes, then each
block on the disk contains 5 Logical records with the last 12 bytes of earh
block being unused. Therefore, the most efficient use of random files comes
when the logical record size is a power of 2; that 1is, it divides evenly
into 512 bytes (32, 64, 128, etc.).

15.2.2 Blocking Factor and Record Size

Random access files are preallocated once, using the ALLOCATE statement,
which gives the number of physical 512-byte blocks to allocate. It is up to
you to calculate the maximum number of Logical records required in the file,
and then to calculate how many disk blocks are required to completely
contain the number of logical records you desire. For instance, assume the
logical record size is 100 and you need a maximum of 252 logical records in
your file. Each disk block is 512 bytes, and therefore contains 5 logical
records. You need 252 logical records, so dividing 252 by 5 gives 50 full
disk blocks plus 2 Llogical records remaining. Since the file must be

ALPHABASIC FILE I/0 SYSTEM Page 15-4

allocated in whole disk blocks, you need 51 blocks, which gives you a
maximum of 253 logical records. These logical records are referenced in
your program as records 0 through 252, since the first record of any random
file 1is record 0, unless you have used FILEBASE. (See Section 10.6,
"FILEBASE.") (NOTE: When your record size does not divide evenly into 512
bytes, it 1is a good idea to consider expanding it so that it does. This is
for two reasons: 1) you will be using the same numher of physical disk
blocks whether or not you expand the record size, so you're not saving
anything by not doing so; and 2) this leaves you room for future expansion
of the data in the record.)

When you are opening a random file, you must specify the logical record size
in the OPEN statement (also specifying RANDOM mode); it is possible to get
things fouled up if you do not have the record size correct. No Llogical
record size is maintained within the file structure itself. This fact does
make it nice in one respect; a file which is accessed by many programs can
have its record size expanded without recompiling all the accessing
programs. Here is how: Assume (as an example) that you have a file which
is considered the parameter descriptor file for all other files in the
entire system. This file gives the record size as 100 bytes for the wvendor
name and address file. ALl programs which reference the vendor file first
read this parameter file to get the size of the vendor file logical record.
The programs then set the size into a variable and use this variable in the
OPEN statement for the record size. Each READ or WRITE statement then
manipulates the 100 bytes of data by reading or writing to or from variables
whose size totals 100 bytes. Let's say you now want to expand the file to
120 bytes and that most of the programs do not have to make use of the extra
20 bytes until some time in the future. You write a program which copies
the 100-byte file dinto a new 120-byte file and then you update the main
parameter file to indicate that the new record size for the vendor file is
120 bytes instead of 100. Each program now opens the file using the new
120-byte record size (since it is read in from the parameter file at
run—-time), but only READs or WRITEs the first 100 bytes of each record due
to the variables used by the READ and WRITE calls.

15.3 FILE I/0 STATEMENTS

Later sections in this chapter show you the general format of each of the
file I/0 statements and give detailed examples of their uses.

Although you will want to read each of those sections carefully, we'd Like
to give a summary here of how to create and use sequential and random files.
Remember that the steps below are only suggestions, and you may want to omit
or add steps.

USING SEQUENTIAL FILES FOR OUTPUT:
1. Use the LOOKUP command to see if the file already exists.

When you output to a sequential file, you are creating a brand new
file. 1f a file of the same name and extension already exists in

ALPHABASIC FILE I/0 SYSTEM Page 15-5

5.

the account you are writing to, BASIC automatically deletes the old
file for you before it opens the new output file. Therefore, if
you don't want BASIC to delete an existing file, be sure to use the
LOOKUP command before you open a file for output to make sure that
such a file does not already exist.

If the file already exists, you can go ahead and open it (if you
want BASIC to delete the existing file for you) or you can choose
another file name and use the LOOKUP command again to see if that
file already exists.

Use the OPEN statement to open the file for OUTPUT.

Begin wusing PRINT statements (specifying the file-channel number
associated with the file by the OPEN statement) to write data to
the file.

When finished, use the CLOSE statement to close the file.

USING SEQUENTIAL FILES FOR INPUT:

5.

Use the LOOKUP command to see if the file already exists. (If it
doesn't exist, you cannot input data from it.)

UUse the OPEN statement to open the file for INPUT.
Begin using INPUT LINF or TNPUT statements to read data from the
file (specifying the file-channel number associated with the file

by the OPEN statement).

Check the EOF function after each input to make sure you haven't
read beyond the end of the file.

When finished, use the CLOSE statement to close the file.

USING RANDOM FILES FOR INPUT/OUTPUT:

1.

2.

Use the LOOKUP command to see if the file already exists. If it
does, you can skip down to step #3.

1f the file doesn't exist, you must create it. First, decide what
size the logical records will be (in decimal bytes). Then compute
the blocking factor as discussed 1in Section 15.2.2, '"Blocking
Factor and Record Size." Use the ALLOCATE command to create the
file with the number of disk blocks needed.

Use the OPEN statement to open the file for RANDOM processing.
Specify the size of the Llogical records 1in the file, and the
record-number variable that will hold the number of the Llogical
record you are currently accessing.

ALPHABASIC FILE I/0 SYSTEM Page 15-6

4. Use READ and WRITE statements (specifying the file-channel number
associated with the file by the OPEN statement) to read and write
data in the file. Remember to change the record-number variable to
the correct record number before performing each read or write
operation so that you access the logical record you want. Make
sure that the record-number variable contains a valid record number
before performing the file 1/0.

5. When you are finished reading and writing the file, use the CLOSE
statement to close the file.

15.3.1 OPEN

You must open a file before you can transfer data to or from the file. The
OPEN statement assigns a wunique file-channel number to a file and also
specifies the name that is either to be aqiven to an output file, or to be
used in locating an input file. The general format is:

OPEN #file-channel, filespec, mode, frecord-size, record#-variable}

file-channel Any numeric expression which evaluates to an integer from
0-65535 (0 is defined as the user terminal and treated as
such).

filespec Any string expression which evaluates to a Llegal file
description. May be a string variable or string Lliteral.
(1f it 1is a string Lliteral, remember to enclose it in
quotation marks.)

mode Specifies the mode for opening the file:

INPUT - Opens an existing sequential file
for input operations.

QUTPUT - Creates a sequential file for output
operations.

RANDOM - Opens an existing random file for
random read/write.

INDEXED - Opens an ISAM data file and primary

index file.
INDEXED'EXCLUSIVE - Opens an ISAM data file and primary
index file for exclusive access.

The remaining two options must be used for RANDOM, INDEXED and
INDEXED'EXCLUSIVE modes only:

Record-size An expression which dynamically specifies at run-time the
logical record size for read/write operations on the file.

ALPHABASIC FILE I/0 SYSTEM Page 15-7

Record#-

variable A non-subscripted numeric variable which must contain the
record number of the desired random access for READ or WRITE
statements when they are executed. It must be a

floating-point variable.

Any attempts your program makes to read or write to a file which has not
been opened result in the error message 10 to unopened file in Lline nnn,
and the program is aborted. The filespec string may be as brief as the name
of the file, in which case it is assumed to have an extension of .DAT and to
reside in your disk account. The filespec string may be a complete file
specification, if you desire, giving the explicit Llocation of the file,
which may be 1in another disk account or even on another disk drive. Some
examples are:

OPEN #1, "DATFIL'", INPUT

OPEN #15, "PAYROL.TMP", OUTPUT

OPEN #A, C$, OUTPUT

OPEN #3, "DSK1:0FILE.ASCL200,20]1", OUTPUT
OPEN #1, "VENDOR.DAT'", RANDOM, 100, RECNUM
OPEN #1+X, MID$(AS$,2,3), OUTPUT

OPEN #25,""MASTER'" ,INDEXED,80,RELKEY

The OPEN statement is one of the only statements which reference the file by
its actual ASCII filespec in the standard operating system format. Most
references 1in the program are made to the file-channel number which is
assigned in the OPEN statement #file-channel.

15.3.2 CLOSE

The CLOSE statement ends the transfer of data to or from a file. Once a
file has been closed, no further references are allowed to that file until
another OPEN statement for that file is executed. Any files that are still
open when the program exits are closed automatically. The format of the
CLOSE statement is:

CLOSE #file-channel
where #file-channel specifies the file-channel number associated with the
file you want to close. For example, if you have previously opened a file
VENDOR.DAT:

OPEN #3, "VENDOR.DATL200,11" ,INPUT

to close that file, use the statement:

CLOSE #3

ALPHABASIC FILE I/0 SYSTEM Page 15-8

15.3.3 KILL
The KILL statement erases one file from the disk. It does not need a
file-=channel number and no OPEN or CLOSE need be performed to KILL a file.
The format for the KILL statement is:

KILL filespec
For example:

KILL ""NEWDAT.DAT"
As in the OPEN statement, the filespec 1is any string expression which
evaluates to a legal file description. KILL assumes an extension of .DAT.

If you try to erase a file that does not exist, you see the error message:

File not found

You may not erase a file that exists in an account outside of the project
you are logged into. For example, if you are logged into account [110,2]
and the program you are running tries to kill a file in account [200,1], you
see a protection violation error message.

15.3.4 LOOKUP

The LOOKUP statement looks for a file on the disk and returns a flag which
tells you if the file was found, and 1if so, how many disk blocks it

contains. The format for the statement is:
LOOKUP filespec, result-variable

As in the OPEN statement, the filespec 1is any string expression which
evaluates to a Llegal file description. The result-variable is any legal
floating point variable which receives the result of the search. The LOOKUP
result-variable may return:

0 File was not found

Positive #n File was found; it is a sequential file, and contains
n disk blocks.

Negative #n File was found; it is a random file, and contains n
disk blocks.

Remember that the number returned by LOOKUP is the number of physical disk
blocks wused by the file. You must multiply this number of 512-byte blocks
by the file's blocking factor to find out how many logical records your file
contains. For example, after we execute:

LOOKUP "CNURT.DAT" ,BLOCKS

ALPHABASIC FILE 1/0 SYSTEM Page 15-9

the variable BLOCKS contains the number of disk blocks in the file
CNURT.DAT, or a 0 if the file does not exist. We must multiply BLOCKS by
the blocking factor of the file to see how many logical records can fit in
the file.

15.3.5 ALLOCATE

The ALLOCATE statement preallocates a random file on the disk, which you may
then open for random processing. An attempt to allocate a file which
already exists results in an error message. A random file need only be
allocated once and may then be opened for random read/write operations as
many times as desired. The statement format is:

ALLOCATE filespec, number-of-blocks

As in the OPEN statement, the filespec s any string expression which
evaluates to a legal file description. The number-of-blocks is a floating
point expression which represents the number of physical 512-byte disk
blocks to be allocated to the file. For example:

ALLOCATE FILES$, BLOCKS
ALLOCATE "NEW.DAT" ,20

15.3.6 FILEBASE

During normal operation, BASIC refers to the first record in a random file
as record number zero (i.e., you set the record number variable to zero to
access the first record 1in the file)d. In some applications you may want
BASIC to refer to this first record by some number other than zero: for
instance, to allow you to use zero to flag some special condition, such as a
deleted record. The FILEBASE command allows you to set the number used to
refer to the first record. For example:

FILEBASE 1

tells BASIC that the first record in the file 1is record number one, not
record number zero. You may use any numeric argument with FILEBASE.

Note that FILEBASE does not associate its value with a file, but only takes
effect when you execute the program it 1is in. If one program uses a
FILEBASE command when referencing a file, all other programs which reference
that file should also use a FILEBASE command with the same value

ALPHABASIC FILE I/0 SYSTEM Page 15-1N

15.3.7 INPUT

Once a sequential file has been opened for input, you may use a special form
of the INPUT statement to read data from the file. The INPUT statement uses
a file-channel number corresponding to the file-channel assigned in the OPEN
statement. The variables 1in the Llist may be either numeric or string
variables, but must follow the format of the data in the file being read.
(Weird results occur if you attempt to read string data into a numeric
variable, or vice-versa.) The general format of the INPUT statement is:

INPUT #file-channel ,variable1{,variable2,...variableN}

During the reading of the input data into the variable Llist, all Lleading
spaces are bypassed unless they are enclosed within quotes, just as in the
normal form of the INPUT statement. Also, all carriage-returns and
Line-feeds are bypassed, allowing the file created by the PRINT statements
to contain formatted line data if desired. Commas, spaces and end-of-line
characters all terminate numeric data strings and then are bypassed. For
more information on INPUT, see Section 10.12. Also, see the section on
INPUT LINE, below.

15.3.8 INPUT LINE

After a sequential file has been opened for input, the data can be read from
the file by a special form of the INPUT LINE statement which uses a
file-channel number corresponding to the file channel assianed in the OPEN
statement. The variables 1in the List may be either numeric or string
variables, but must follow the format of the data in the file being read.
Unpredictable results occur 1if you attempt to read string data into a
numeric variable, or vice-versa. The general format of the INPUT LINE
statement is:

INPUT LINE #file-channel ,variable’

The 1INPUT LINE statement operation 1is iddentical to that of the INPUT
statement with the exception that input into a string variable accepts the
entire Lline wup to but not including the carriage-return and line-feed that
ends the Lline. This allows commas, quotes, blanks and other special
" characters to be input. Also, INPUT LINE accepts blank Llines as input. The
INPUT LINE statement may be used in sequential file processing as well as
the standard terminal INPUT statement. You will wusually use INPUT LINE
specifying one string variable to read in one Lline of the file at 2 time.
See Section 10.13 for more information on INPUT LINE.

ALPHABASIC FILE I/0 SYSTEM Page 15-11

15.3.9 PRINT

Once you have opened a sequential file for output, you will write data to it
with a special form of the PRINT statement using a file-channel number which
corresponds to the file channel assigned in the OPEN statement. ALL the
techniques available to you when you use the normal form of the PRINT
statement (which outputs to the terminal) are also available for sending
data to a file, including PRINT USING for formatted data. PRINT writes data
to the file in the same format as it would appear if you used PRINT to send
the data to a terminal display (i.e., if you Lleft off the file-channel

number). Here is the format and some examples of the PRINT statement. P
DL gk A XSED e LIS 1S om0 S
T AN) I

PRINT #file-channel, expression—[istf o e g File,

PRINT #1; A; B; C PRt et I L
PRINT #4, USING A$, A, SQR(A) PRAT B3 4705 v b, .
PRINT #Q1, USING "###.##", AM10);
PRINT #1, "THIS IS A SINGLE LINE" 0 Do vot 05k THBC) v 11h
PRINT #2, "WRITE TO","PRINT ZONES" 0 U,
e S
For more information on PRINT, see Section 10.19 b Fref? [ywmfzx,}wﬁ‘?ff 2

Thuw NP, j%wmﬁﬂjrth

douss ansiy S
15.3.10 READ O USIEE Sl o

>

The READ statement reads a selected logical record from a random file which
has been opened for random access processing. The logical record which is
transferred by the system I/0 is the one whose record number 1is currently in
the record-number variable mentioned in the OPEN statement. The format of
the READ statement is:

READ #file-channel,variablel{,variable-2...,variableN}

The variables in the list may be any format, but they obviously should match
that of the designated record format. The data is read into the wvariables
as unformatted bytes, without regard to variable type. The data is
transferred into each variable wuntil the wvariable has been completely
filled. Then the next variable in the Llist is filled, and so on. If the
record is longer than the variable list specifies, all excess data in the
record will not be transferred. An attempt to transfer more data than is in
the logical record size results in an error message. The most efficient use
of the random files comes when the variable or variables used are mapped by
the MAP statement to the exact picture of the record format 1in wuse. (See
Chapter 8, '"Memory Mapping System," for information on MAP statements.)
Also see the sample program at the end of this chapter for a demonstration
of creating and reading a random file.)

ALPHABASIC FILE I/0 SYSTEM Page 15-12

15.2.11 WRITE

The WRITE statement is used to write a selected logical record into a random
file which has been opened for random access processing. The logical record
which 1is transferred by the system I/0 is the one whose record number is
currently in the record-number variable mentioned 1in the OPEN statement.
The format of the WRITE statement ds:

WRITE #file-channel ,expression-list

The variables in the List may be any format, but they obviously should match
that of the designated record format. The data is written into the logical
record from the user variables as unformatted bytes, without regard to
variable type. The data 1is transferred from each variable until the
variable has been completely emptied. Then the next variable in the Llist is
used, and so on. If the record is longer than the variable list specifies,
all excess data in the record will not be modified. An attempt to transfer
more data than is in the logical record size results in an error message.
The most efficient use of random files comes when the variable or variables
used are mapped by the MAP statement to the exact picture of the record
format in use.

15.4 SAMPLE PROGRAM

The program below gives a very simple demonstration of Llimited data
manipulation. Notice that you could easily write modules that would expand
its functions to include deleting customer records, changing data in
existing customer records, adding more customer records to a partially
filled file, and so on.

Some of the file-handling commands demonstrated by the program are: LOOKUP,
ALLOCATE, OPEN, CLOSE, READ, and WRITE. Notice that we also use the
extended TAB functions to clear the screen and position the cursor, and use
the MAP statement to define all logical records and variables wused in the
program.

5 SAMPLE PROGRAM TO CREATE AND ACCESS A RANDOM FTILE

10

15 This program simulates a very simple information management system.
20 Notice that we use MAP statements to map all variables used in the

]
]
|
!
25 ! program; although this is not strictly necessary (except for the
|
i
]
|

30 definition of the Control record and Logical record templates), it
35 is handy to have all variables defined at the front of the program.
40

45 Define Control record that contains info about file

50 MAP1 HEADER'RECORD

55 MAP2 TOTAL'RECS,F ! Total number of records in file
60 MAP2 IN'USE,F ! Number of records in use

65 MAP2 FILLER,S,52 ! Filler bytes needed to pad record
70 ! to 64 bytes

75 ! pefine lLogical record (64 decimal bytes)

ALPHABASIC FILE I/O0 SYSTEM Page 15-1%

80
85
90
95
100
105
110
115
120
125
130
135

140

145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340

MA

!

!
MA
MA
MA
MA
MA
MA

MA
i

ST

0
i
C
u
i
\

P1 CUSTOMER'INFO

MAP2 NAME,S,20 ! Name and address
MAP2 STREET,S,10

MAP2 cITy,s, 11

MAP2 STATE,S,2

MAP2 ID'NUM,F ! Customer ID number
MAP?2 CAR'INFO
MAP3 MODEL,S,10 ! Information about car
MAPZ YEAR,S,4
MAP3 INSURANCE,B,1 ! Does owner have insurance?

Miscellaneous variables used by the program

P1 BLOCKS,F ! # of disk blocks used by file

P1 BYTES,F ! # of bytes used by all records

P1 REC'STZE,F,6,64 ! # of bytes in record (64, decimal)
P1 REC'NUM,F ! Contains current record numbe

P1 RESULT,F ! LOOKUP command result variable

P1 QUERY,S,3,"" ! Scratch variable (init to null)

P1 NVAL,F ! Scratch variable for user input

BEGIN MAIN PROGRAM

Use LOOKUP command to see if file already exists. If it does, go to
routine that will read information from the file; otherwise, create
file. First, ask user for total number of records we can write to file.
Then, see how many bytes this requires (64*TOTAL'RECS). We can fit
exactly 8 records per disk block (512=8*64). If can't fit even number
of records per block, allocate one extra block. Now that we know how
many disk blocks to allocate, ALLOCATE and OPEN the file.
ART:

LOOKUP "CUSTMR.DAT", RESULT : IF RESULT <> 0 GOTO READ'FILE

PRINT TAB(-1,0); TAB(10,1); ! Clear screen; position cursor

INPUT "Enter total number of file records: ", TOTAL'RECS

BYTES = TOTAL'RECS * REC'SIZE : BLOCKS = BYTES/512

IF BLOCKS <> INT(BYTES/512) THEN BLOCKS = FIX(BLOCKS) + 1

ALLOCATE '""CUSTMR.DAT'", BLOCKS

OPEN #2, "CUSTMR.DAT'*, RANDOM, REC'SIZE, REC'NUM

! Write initial file header to Record 0 (REC'NUM = 0). File header is

! control record that tells us how many records are in file

! (TOTAL'RECS) and, of those, how many are in use (IN'USE).

REC'NUM = 0 : IN'USE = 0 : WRITE #2, HEADER'RECORD

REC'NUM = 1 ! Get ready to write to next record

! Clear screen and position cursor

PRINT TAB(-1,0); "Entering info..."; TAB(10,1)

PRINT "When you are through, enter a RETURN for Customer Name."

GOSUB GET'INFO ! Get info and write it to file

READ INFORMATION FROM EXISTING FILE
pen file for input. Get control record to see how many records are
n use. Ask user if wants to read from file; if not, exit.
heck to see if existing file is empty; if so, exit. Tell the
ser what customers we have info for; ask which customer user wants
nfo on (1 customer, ALL, or none). Check to make sure user enters
alid customer number. Just a RETURN (=null) means user wants to quit.

ALPHABASIC FILE I/0 SYSTEM Page 15-14

345 ! Display desired info until user enters a RETURN to quit.

350 READ'FILE:

355 OPEN #3, "CUSTMR.DAT'", RANDOM, REC'SIZE, REC'NUM

360 REC'NUM = 0 : READ #3, HEADER'RECORD

365 PRINT : INPUT "Do you want to read file (Y or ND? " ,QUERY
370 QUERY = UCS(QUERY) : IF (QUERY = "N") GOTO READ'EXIT

375 ! Clear screen and position cursor

380 PRINT TAB(-1,0); "Reading file..."; TAB(10,1)

385 IF (IN'USE = 0) THEN PRINT "File is empty" : GOTO READ'EXIT

390 ! Show user what customers we have info on

295 PRINT "Here is a list of the customers for whom we have info:"
400 FOR REC'NUM = 1 TO IN'USE

405 READ #3, CUSTOMER'INFO : PRINT

415 PRINT "CUSTOMER #:''; ID'NUM; SPACE(S); '"CUSTOMER NAME: '"; NAME
420 NEXT REC'NUM

425 !

430 ' Find out what info we should display
435 GET'NUM:

440 QUERY= "'" : PRINT ! Set initial choice to null

445 PRINT "Enter the ID number of the customer whose info you want to"

450 PRINT "see. (Enter just a carriage return to end program; enter 'ALL'"
455 INPUT "to see info for all customers.): ", QUERY

460 IF (QUERY="") GOTO READ'EXIT ! User wants to quit

465 QUERY = USC(QUERY) : IF (QUERY = "ALL") THEN GOTO DISPLAY'ALL

470 ! Check to see that customer number is valid. Convert string to

475 ! numeric so that we do numeric, not string, comparison.

480 NQUERY = VAL (QUERY)
485 IF (NQUERY < 1 OR NQUERY > IN'USE) THEN R
PRINT : PRINT "Invalid number.' : GOTO GET'NUM

490 ! Read desired record (set REC'NUM to customer number).

495 REC'NUM = NQUERY : READ #3, CUSTOMER'TNFO

500 GOSUB DISPLAY'INFO ! display record

505 GOTO GET'NUM ! See jf user wants to see another

510 ! User wants to display all customer records
515 DISPLAY'ALL:
520 FOR REC'NUM = 1 TO IN'USE

525 READ #3, CUSTOMER'INFO ! Get next record
530 GOSUB DISPLAY'INFO ! Display information in record
535 NEXT REC'NUM

540 GOTO GET'NUM ! See if user wants to look again
|

545 ! Time to leave program

550 READ'EXIT:

555 PRINT : PRINT '"Closing display file..."
560 CLOSE #3

565 END

800 ! Subroutine to display information in record

805 !

810 DISPLAY'INFO:

815 PRINT : PRINT "CUSTOMER #:"; ID'NUM; "-- ", NAME

820 PRINT SPACE(5); "Street address:'; SPACE(7); STREET

ALPHABASIC FILE I/0 SYSTEM Page 15-15

825
830
&35
840
845

on0
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
9&0
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085

PRINT SPACE(5); "City: '"; CITY; SPACE(5); '"State: '"; STATE

PRINT SPACE(5); '"Car model: '"; MODEL; " Car year: '"; YEAR

PRINT SPACE(5);

TF (INSURANCE = () PRINT "No insurance." ELSE PRINT "Car is insured."”
RETURN

! Subroutine to get information from user and write it to the file

GET'INFO: PRINT

! Make sure we're not trying to add data to a full file

TF C(IN'USE = TOTAL'RECS) THEN PRINT "File is full..." : GOTO EXIT

! Clear NAME to null so we can test to see if user wants to quit
NAME = "

! Start entering data. Pad it to proper length with spaces

! so that complete logical record comes out to exactly 64 bytes.
INPUT "Customer name: ', NAME : IF NAME = "" GOTO EXIT

NAME = NAME + SPACE(20 - LEN(NAME))

INPUT "Street address: ", STREET

STREET = STREET + SPACE(15 - LEN(STREET))

INPUT "City: ", CITY

CITY = CITY + SPACE(12 - LENCCITY))

INPUT "State: ", STATE

STATE = STATE + SPACE(2 - LENC(STATE))

INPUT "Car model: ", MODEL

MODEL = MODEL + SPACE(10 - LEN(MODEL))

INPUT "Car year: ", YEAR

YEAR = YEAR + SPACE(4 - LEN(YEAR))

INPUT '"Car dinsurance? (Y or N): ", QUERY

QUERY=UCSCQUERY) : IF C(QUERY = "Y') INSURANCE = 1 ELSE INSURANCE = 0
ID'NUM = REC'NUM ! Customer number s just record #
! Write whole record; increment records—in-use counter and bump

! REC'NUM so we are ready to write to next record

WRITE #2, CUSTOMER'INFO : IN'USE = IN'USE + 1 : REC'NUM = REC'NUM + 1
PRINT "Customer ID Number is:'"; ID'NUM

GOTO GET'INFO

We want to stop entering data

EXIT:

PRINT "Now closing output file."

REC'NUM = 0 : WRITE #2, HEADER'RECORD
PRINT "Total number of records in file:'";
PRINT TOTAL'RECS,'"Records in use:'"; IN'USE
CLOSE #2

RETURN

CHAPTER 16

CHAINING TO BASIC AND SYSTEM PROGRAMS

The CHAIN statement terminates execution of the current program and
initiates the execution of a new program or system function. The new
program to be executed must be named in the CHAIN statement itself; that
name may be a full file specification. The file named in the statement may
be another AlphaBASIC program (compiled only), or it may be a system command
or command file. This allows your program to execute a command file and
invoke system commands as well as execute other AlphaBASIC commands.

16.1 CHAINING TO ANOTHER ALPHABASIC PROGRAM

CHATIN assumes a default extension of .RUN, which designates a new AlphaBASIC
program to be executed. If the extension of the evaluated file
specification is dindeed .RUN (either explicitly or by default), the
specified BASIC program is loaded into memory and executed. (If you do not
specify a device and account, BASIC follows the search pattern outlined in
Section 2.10, "Library Searching," in looking for .RUN files. If you do
specify a device and account, BASIC Looks 1in the specified area.) All
variables in the new program are first cleared to zero prior to execution.
Also, all wvariables 1in the current program are set to zero (or null, if
strings). The BASIC program that you specify must be a compiled (.RUN)
file. Some examples of legal CHAIN statements are:

CHAIN "PAYROL"
CHAIN "PAYROL.RUN"
CHAIN "DSK1:PAYROL[C101,131"

Due to the fact that programs are compiled and not interpreted, there is no
way to execute a program at any entry point other than 1its physical
beginning. There is also no internal method for passing parameters between
programs, but you can accomplish this function for yourself by using the
BASIC assembly Language subroutine COMMON to store data in a common memory
area. COMMON allows you to store information either in system memory (where
programs run by all users on the system can access the information) or an
individual user's memory partition (where only programs run by that user can

CHAINING TO BASIC AND SYSTEM PROGRAMS Page 16-2

access the information). For details on using COMMON, see COMMON - BASIC
Subroutine to Provide Common Variable Storage, (DWM-00100-18), in the
""BASIC Programmer's Information" section of the AM-100 documentation packet.
In addition to sharing information, you can use the common area to pass
parameters to the chained program. For example, the current program can
pass a parameter to the new program which it uses in an ON-GOTO statement to
begin execution at some point in the new program based on the value passed
in the parameter.

Another way to make sure that chained programs can share information is the
use of disk files. The current BASIC program can open a data file, write
the variables it wants to share into that file, and then close the file.
When the new file is chained in, it can open the file and read the necessary
information.

16.2 CHAINING TO SYSTEM FUNCTIONS

It dis sometimes desirable to transfer execution to a system function or a
command file from a BASIC program. If the extension of the file 1in the
CHAIN statement is not .RUN, the file is a system command program or system
command file (a .PRG, .DO or .CMD Tfile). In this <case, the AlphaBASIC
run-time package creates a dummy command file at the top of the current user
partition and transfers control to the monitor command processor. The
monitor then interprets this dummy command file as a direct command and
executes it. Note that the dummy command file created by the run-time
package is merely the one-lLine name specified in the CHAIN statement. It is
not the command file itself, which is the target function desired. Some
valid examples are:

CHAIN '"'SYSTAT.PRGL1,41"
CHAIN "TEST1.CMD"

CHAIN ""DSK0O:BCKUP.CMD[2,21"
CHAIN "TRANS.DOL110,03"

Note that if the device and account are not specified, the action taken is
the same as if you had entered the command directly from your keyboard.
That 1ds, if you omit device and account specifications, the monitor command
processor searches for command files or programs in the following order:

1. System memory

2. User memory

3. The account and device you are logged into.
(NOTE: To load a file into your user memory partition, use the monitor Llevel
LOAD command. To load the file into system memory (where it may be accessed

by all users on the system), the System Operator must add the appropriate
SYSTEM command Line to the system initialization command file.)

CHAINING TO BASIC AND SYSTEM PROGRAMS Page 16-3

Note also that when you chain to a monitor command, after the command has
finished executing, it returns you to the monitor level, rather than BASIC.
This means that if you wish to automatically return to some AlphaBASIC
program, you have to execute a command file whose final command is a RUN
command which specifies that original BASIC program.

CHAPTER 17

ERROR TRAPPING

AlphaBASIC allows your program to trap errors that would normally cause the
system to print an error message and abort the program run. When you are in
interactive mode, an error returns you to AlphaBASIC; if you are in compiler
mode, an error returns you to the monitor. Use of the ON ERROR GOTO and
RESUME statements causes immediate action to be taken to recover from errors
detected within the program.

17.1 ON ERROR GOTO STATEMENT

Error trapping is enabled and disabled by using the ON ERROR GOTO statement
in one of two forms. The first form specifies a Lline number (or Llabel)
within the program. When the program encounters this ON ERROR statement, it
stores the Line number and sets a flag enabling error trapping. If an error
occurs any time after this, BASIC transfers control to the routine specified
by the Line number or label. Examples of this form of the statement are:

ON ERROR GOTO 500
ON ERROR GOTO TRAP'ROUTINE

The error routine must then take appropriate action based on the type of
error.

The second form of the statementggisabtesifurther user error trapping by

specifying a Line number of zero or leaving the line number off completely.

ON ERROR GOTO O
ON ERROR GOTO

After executing the above form, if an error occurs, the program prints the
standard error message and aborts the program run.

A special case exists when the above statement is encountered within an
error recovery routine (prior to executing the RESUME statement). 1In this
instance, the user error trapping is disabled and the existing error is
forced to be processed by BASIC's error handling as if no error trapping

ERROR TRAPPING Page 17-2

were ever enabled. 1t is recommended that all error trapping routines
execute the ON ERROR GOTO N statement for all errors which have no special
recovery processing.

NOTE: If an error occurs within the error trapping routine itself, that
error is processed and the error message (?Error 1in error trapping)
occurs. There is nc method to detect errors within the error recovery
routine.

17.2 ERR(X) FUNCTION

The ERR function returns the following data based on conditions at the time
of the error:

ERR(()) = numeric code specifying the type of error detected
ERR(1) = last line number encountered prior to the error
ERR(2) = Llast file number accessed (only relevant for file errors)

17.2.1 Error Codes Returned by ERR

Code Meaning

1 Control-C interrupt
2 System error
3 Out of memory
4 Out of data
5 NEXT without FOR
6 RETURN without GOSUB
7 RESUME without ERROR
8 Subscript out of range
9 Floating point overflow
10 Divide by zero
11 Illegal function value
12 XCALL subroutine not found
13 File already open
14 I0 to unopened file
15 Record size overflow
16 File specification error
17 File not found
18 Device not ready
19 Device full
20 Device error
21 Device in use
22 Illegal user code
23 Protection violation
24 Write protected
25 File type mismatch
26 Device does not exist

27 Bitmap kaput

ERROR TRAPPING Page 17-3

28 Disk not mounted

29 File already exists
30 Redimensioned array
31 TlLlegal record number
32 Invalid filename

33 Stack overflow

For example, if PRINT ERR(D) returns a 10, you know that the program tried
to divide a number by zero.

17.3 RESUME STATEMENT

The RESUME statement 1is used to resume execution of the program after the
error recovery procedure has been performed. It also re-enables Control-C
detection, which 1is turned off while BASIC processes the error trapping
routine. The statement takes on two forms similar to the forms of the ON
ERROR GOTO statement. The first form specifies a line number (or Label)
within the program where the execution is to be resumed:

RESUME 410
RESUME TRY'AGAIN

The second form specifies a line number of zero, or no lLine number at all,
and causes the execution to be resumed_at the statement which caused the
error to occur:

RESUME 0O
RESUME

Both forms cause the error condition to be cleared and error trapping to be
. . S e ——————,
enabled again.

NOTE: You must never use the GOTO statement to exit from an error trapping
routine. You must wuse RESUME. This is because RESUME clears the Error
stack, but GOTO does not, which causes problems for later error handling.

17.4 CONTROL-C TRAPPING

When you type a Control-C on your keyboard during the execution of an
AlphaBASIC program, the program is suspended at the next statement. Action
taken then depends upon the status of the error trapping flag. If no error
trapping 1is enabled, the program is aborted and the appropriate message is
printed on the terminal. 1If error trapping is enabled, the error trapping
routine is entered with the code in ERR(}) being set to 1. This feature
allows you to prevent wusers from idinadvertently exiting programs during
critical times such as file updates.

ERROR TRAPPING Page 17-4

Control-C action 1is suspended during error recovery processing to prevent
accidentally aborting the program during an error routine. The Control-C is
detected immediately upon execution of the RESUME statement.

17.5 SAMPLE PROGRAMS

The simple program below contains an error trapping routine that handles
"divide by zero'" -errors. Note that a successful error trapping routine must
either resolve the error or exit the program. For example, if the program
below had merely printed an error message and then RESUMEd back to the Line
where the error occurred, the "divide by zero" error would still exist,
BASIC would again transfer control to the error trapping routine, and we
would be 1in an eternal loop. Instead, the program resolves the error by
changing the values of the problem variables to 1, and then resuming program
execution; this time around, a divide~by-zero error cannot occur, and
everything is all right.

10 ON ERROR GOTO DIVIDE'BY'ZERO
20 INPUT "Enter two numbers: ", A, B
30 PRINT "A/B ="; A/B

40 END
50 DIVIDE'BY'ZERO:
60 ! If error is not '"divide by zero" exit the program.

70 IF (ERR(D) <> 10) THEN END

80 PRINT " Division by zero undefined!-- setting A and B to 1"

90 A=1:8B=1 ! Reset A and B so that division works.
100 RESUME ! Go back to Line where problem occurred.

Two sample runs of the program Look Like this:

Enter two numbers: 2,3 (ReD
A/B = .666667

Enter two numbers: 3,0 EED
A/B = Division by zero undefined!-- setting A and B to 1

A/B =1

ERROR TRAPPING Page 17-5

The following program shows a small, uncomplicated error trap routine that
handles a Control-C. Notice that we enable the error trapping routine
CATCH'CTRLC: just before the wuser enters input. Directly afterward, we
disable our routine and re-enable the regular BASIC error trapping via the
ON ERROR GOTO 0 statement. This dis to catch any errors other than a
Control-C that might occur in the rest of the program.

10 ! ERROR TRAPPING SAMPLE PROGRAM

20

30 ! pefine error code for Control-C, and various string variables.
40

50 MAP1 CONTROL'C,F, 1

60 MAP1 SCRATCH,S,16," "

70 MAP1 ANSWER,S,16," "

80 MAP1 QUERY,S,1

90

100 ! Begin Main Program

110

120 START: PRINT

130 PRINT "This program converts positive decimal numhers to binary."”
140

150 ! Ask user for decimal number.

160

170 GET'NUMBER:

180 ! Turn on our error trap to catch Control-C on input.

190 ~ ON ERROR GOTO CATCH'CTRLC

200 INPUT "Enter a number between 1 and 65535: " ,NUMBER

210 ! If user typed a Control-C, we've already caught it, so turn off our

220 !ﬁgrnggugzgggigg%and turn regular BASIC error trapping back on in
230 ! case other error occurs.

240 ON ERROR GOTO O
250 IF NUMBER < 0 GOTO GET'NUMBER
260 CURRENT=NUMBER
270
280 ! Now calculate answer.
290
300 CALCULATE:
310 IF (CURRENT/2 = FIX(CURRENT/2)) THEN &
SCRATCH=SCRATCH+"0" ELSE SCRATCH=SCRATCH+"1"
320 IF FIXCCCURRENT/2) = 0) GOTO DISPLAY ! Done.
330 CURRENT=FIX(CURRENT/?2) ! Get rid of remainder.
340 GOTO CALCULATE
350
360 ! Dpisplay routine. Reverses string so that answer is in proper order.
370
380 DISPLAY:
390 FOR I = 1 TO LEN(SCRATCH)
400 ANSWER=ANSWER+SCRATCHI-I;11]
410 NEXT I
420 PRINT " The decimal number' ;NUMBER;"is'" ;ANSWER;"in binary."
430 SCRATCH= " " : ANSWER = " " ! Initialize answer to null.
440 GOTO GET'NUMBER

450

ERROR TRAPPING ~ Page 17-6

460 ! Error trapping routine. Just looks for Control-C. Gives user chance
470 ! to quit or resume.

480

490 CATCH'CTRLC:

500 IF (ERR(0D) <> CONTROL'C) THEN RESUME

510 INPUT "Do you wish to quit? (Y or ND: " ,QUERY

520 QUERY = UCS(QUERY) : IF (QUERY = '"N") THEN RESUME GO'AHEAD
530 PRINT : PRINT "So long..." : PRINT

540 END

550 GO'AHEAD:- ! User wants to resume after °C

560 PRINT : PRINT "Resuming...'" : PRINT

570 GOTO GET'NUMBER

A sample run of the program above looks like this:
.RUN CNVRT

This program converts positive decimal numbers to binary.
Enter a number between 1 and 65535: 24
The decimal number 24 is 11000 in binary.
Enter a number between 1 and 65535: °C [you typed a Control-C]
Do you wish to quit? (Y or N): Y(ReD

So long...

CHAPTER 18

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES

AlphaBASTIC supports the use of external assembly Llanguage subroutine
programs callable from your BASIC programs. There are several good reasons
why you might want to use an assembly language program to carry out a
function rather than wusing another BASIC program. Assembly Llanguage
programs are generally much smaller and faster than equivalent BASIC
programs; when speed and size are important factors, you may want to code
your programs into assembly lLanguage. Yet another reason for using assembly
language programs is simply that some tasks are too awkward (or even
impossible) to do from within a higher-level language. Assembly language
programs are uniquely suitable for applications that require that you work
more closely with the hardware or operating system than is convenient or
possible in BASIC.

This chapter gives information on writing your own assembly Language
subroutines for BASIC, and on calling such routines from within a BASIC
program.

Although you may want to write your own assembly language subroutines, note
that we do provide a set of existing assembly lLanguage subroutines in the
BASIC Library Account, DSKN:[7,6]. (For information on these subroutines,
see the "BASIC Programmer's Information'" section of the AM-100 documentation
packet.) In addition, a set of business-oriented assembly Language
subroutines is available from your dealer.

To call an assembly language subroutine from an AlphaBASIC program, use the
XCALL statement. The syntax for this statement is as follows:

XCALL routine{argument1{,argument2,...argumentN}2}

The routine to be called is an assembly language program which has been
assembled using the MACRO assembler. The resulting .PRG program file must
then be renamed to give it the assumed extension .SBR, indicating that it is
a subroutine and not a runnable program. When the XCALL statement is
executed by the AlphaBASIC run-time system, the named subroutine is Llocated
in memory and then called as a subroutine (see Section 18.4, below, for more
information on automatic subroutine loading.) AlphaBASIC first saves all
registers, then sets certain parameters into those registers for use by the

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18-2

external subroutine. The addresses of the arguments are calculated and
entered into an argument List in memory along with their sizes and type
codes. The base address of this list is then passed to the user routine in
register R3.

The arguments may be one of two basic forms: 1) A variable name may be
used, 1in which case the argument entry in the list references the selected
variable within the user impure area. This variable 1is available to the
called subroutine for both inspection and modification. 2) The argument may
also be an expression (numeric or string), in which case the expression is
evaluated and the result is placed on the arithmetic stack (referenced by
R5). This result, instead of a single variable, is then referenced in the
argument Llist entry. It is only available for inspection, since the stack
is cleared when the subroutine exits.

The wuser routine 1is free to use and modify all six general work registers
(RO-R5), and may use the stack for work space as required. When the
subroutine has completed its execution, a return must be made to the
run-time system by executing the RTN subroutine return instruction.

18.1 REGISTER PARAMETERS

The following registers are set up by the run-time system to he wused as
required by the external subroutine. They may be modified, if desired,
since they have been saved before the subroutine was called:

RO Indexes the user impure variable area. R0 is used throughout the
run-time system to reference all user variables. Details on the
format of this area are not available at this time. RO may be
used as a work register.

R3 Points to the base of the argument List. R3 may be used to scan
the argument Llist for retrieval of the argument parameters.

R& Points to the base of the free memory area that may be used by the
external subroutine as work space. This is actually the address
of the first word following the argument list in memory, and, if
desired, may be used to store a terminator word to stop the
scanning of the argument Llist.

R5 This dis the arithmetic stack index used by the run-time system.
The arithmetic stack is built at the top of the user partition and
grows downward as items are added to it. When the external
subroutine s called, R5 points to the current stack base. Since
the arithmetic stack may contain valid data, the external
subroutine must not use the word indexed by R5 or any words ahove
it.

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18-3

18.2 ARGUMENT LIST FORMAT

The List of arguments specified in the XCALL statement may range from no
arguments at all to a number Llimited only by the space on the command Lline.
To pass these arguments to the external subroutine, an argument List is
built in memory which describes each variable named in the List and tells
where it can be located in the user impure area. The variables themselves
are not actually passed to the subroutine, but rather their absolute
locations in memory.are. In this way, the subroutine may inspect them and
modify them directly in their respective locations. This does not apply to
expressions which are built on the stack as described previously.

R3 points to the first word of the argument Llist, which is a binary count of
how many arguments were contained in the XCALL statement. Following this
count word comes one 3-word descriptor block for each argument specified.
If there are no arguments in the XCALL statement, the argument list consists
only of the single count word containing the value of zero.

The format of each 3-word block describing one argument is as follows:

Word 1 Variable type code. Bits -3 contain the type code for the
specific variable: O=unformated, 2=string, 4=floating point,
6=binary, 7 through 17 are currently unassigned. Bit 4 is set to
indicate the variable 1is subscripted or cleared to indicate the
variable is not subscripted. Other bits in the type code word are

meaningless.

Word 2 Absolute address of variable in user impure area. This address is
the first byte of the variable no matter what its type or size
might be.

Word 3 Size of the variable in bytes.

Note that the above descriptions also apply to the expression arguments,
except that the results are located above the address specified by R5
instead of below it.

The argument List 1dis built 1in free memory directly above the currently
allocated user impure area. R4 points to the word immediately following the
Last word in the argument List. You may scan the argument List and
determine 1its end either by decrementing the count word at the base of the
list or by scanning until the scan index reaches the address in R4.

18.3 FREE MEMORY USAGE

When the subroutine is called, indexes R4 and R5 mark the beginning and end
of the free memory that is currently available for use as workspace. This
area is not preserved by the run-time system, and the subroutine must not
count on its security between XCALL statements.

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18-4

Note that the word at AR4 may be used as the first word, but the word at 2R5
is the base of the arithmetic stack and must not be destroyed. The last
word of actually free memory is at -2(RS).

The run-time system has its own internal memory management system and does
not conform to the AMOS operating system memory management method.
Therefore, the external subroutine must not use the GETMEM monitor calls to
generate a block of work space in memory. Also, if any file calls are to be
done they must be done with internal buffers, since the INIT call sets up a
buffer by using the GETMEM monitor call.

18.4 AUTOMATIC SUBROUTINE LOADING

When a BASIC proaram calls a subroutine via an XCALL statement, BASTC
attempts to locate the subroutine in user or system memory. If it is unable
to do so, it attempts to load the subroutine from the disk, following the
search pattern outlined in Section 3.10, "Library Searching.'" If a BASIC
program fetches a subroutine from disk, BASIC loads it into memory only for
the duration of its execution. Once the subroutine has completed its
execution, it 1is removed from memory if it was loaded via this automatic
procedure. Therefore, if a subroutine is to be called a Large number of
times, it is wise to load it into memory (using the monitor LOAD command) to
avoid the overhead of fetching the subroutine from disk. NOTE: Subroutines
loaded 1into memory via the monitor LOAD command remain in memory until you
reset the system or until you use the monitor command DEL to delete them.)

CHAPTER 19

USING TSAM FROM WITHIN BASIC

This chapter discusses the ISAM information management system and its use
from within BASIC. It is important when reading the following sections that
you be familiar with opening and using random data files. If you are not,
refer first to Chapter 15, "AlphaBASIC File 1/0 System."

The ISAM program is a tool for organizing and retrieving data. The name
stands for "Indexed Sequential Access Method," and refers to the manner in
which the data is organized.

AlphaBASIC has the ability to process indexed sequential files by Linking to
the ISAM assembly language package (which must reside either in system
memory or in individual user memory). ISAM supports multiple index files
via some elementary ISAM statements that allow the direct control of index
file and data file items. This chapter assumes that you are familiar with
the Alpha Micro ISAM system. For more detailed information on ISAM files
and the ISAM assembly Llanguage package, please refer to the ISAM System
User's Guide (DWM-00100-06), and Tmportant Notice for ISAM Users,

(DWM-00100-36), in the AM-100 documentation packet.

19.1 FILE STRUCTURE

An indexed sequential file consists of one data file and one or more index
files which Link to the data file. The data file is structured in the same
way as a normal random access file except that ISAM Links all records which
are not currently active to each other in a chain called the '"free data
record Llist." All data records reside in the data file and the data records
may be any size up to the maximum of 512 bytes. As in the normal random
file, data records are not split across physical 512-byte block boundaries
in the file. 1Index files are arranged in a complex balanced tree structure
and contain one symbolic key for each active data record plus a Link to that
data record in the data file. This link is the relative record number and
is used in the same manner as its counterpart in a normal random access
file. The index file also contains an array of internal Llinks which
comprise the sequential access tree structure.

USING ISAM FROM WITHIN BASIC Page 19-2

Two references wused 1in this manual may be confusing if they are not
understood. When we talk about an "indexed file," we are speaking of the
entire file structure in general, including the data file and one or more
index files. We talk about an "index file" when specifically speaking of
the portion of the structure which contains only the symbolic keys and the
tree links. ISAM stores symbolic keys in an index file in ASCII collating
sequence. Index files may be primary or secondary.

IMPORTANT NOTE: Both INDEXED and INDEXED'EXCLUSIVE modes require that ISAM
be able to write-to the disk containing the index files even if you do not
plan to do anything more than read from the disk:; therefore, make sure that
that disk containing the index files is not write-protected.

ALl indexed sequential files must be created by the ISMBLD program prior to
access by any AlphaBASIC program. There is no method for the creation of a
new indexed file within the AlphaBASIC lanquage since this would require a
prohibitive amount of seldom-used code. You may, however, create indexed
files by using the feature that allows a BASIC program to create and then
execute a command file. This command file could set up parameters and then
call the ISMBLD program to perform the actual creation of the files.

For compatibility with existing structures, the data file must have an
extension of .IDA and all index files must have an extension of .IDX. There
must be at Least one index file which is called the primary index file.
There may also be additional index files called secondary index files which
also Llink to the primary data file. The primary index file must always be
opened in any program in order to gain access to the data file. This s
true even if you only idintend to access the data file through one of the
secondary index files in the current program. For dinformation on file
structures and operating the ISMBLD program, refer to the ISAM System
User's Guide (DWM-00100-06).

19.2 SYMBOLIC AND RELATIVE KEYS

Indexed files are accessed by one of two specific types of keys. The
relative key is already familiar to us since it is the same type of key used
to access normal random files. The relative key is the floating point
record-number variable specified in the OPEN statement for the indexed file.
It contains the number of the logical record to be accessed. A relative key
when used with an indexed file is used only to access a specific record in a
data file.

The symbolic key is new to us and is used only with indexed files. Symbolic
keys are ASCII strings of variable lengths and are used to access the 1index
file (primary or secondary). Symbolic keys are specified in the ISAM
statements when accessing the index file, and are wused to retrieve the
relative key of the associated data record in the data file. The concept of
symbolic versus relative keys and their different uses is an important one,
and misuse of them causes the TSAM system to malfunction in a number of
Ways. Symbolic keys are used with the ISAM statement; relative keys are
used with the OPEN statement so that READ and WRITE statements can be

USING ISAM FROM WITHIN BASIC Page 19-3

successfully performed. In most instances, the use of the relative key is
transparent to you, and is merely a device automatically set up and
referenced by the above calls.

19.3 THE ISAM STATEMENT

You access Indexed files by a special statement in AlphaBASIC called the
ISAM statement. This statement has the general form:

ISAM #file-channel ,code,symbolic~key

ALL ISAM statements follow the above format using a different numeric value
in '"code" to specify the specific function to be performed by the ISAM
package. ALl ISAM statements directly translate into a specific type of
call to the assembly language ISAM program. A symbolic key must always be
specified even for those functions which do not require the use of one.
(This simplifies syntax checking and execution coding.) You may use a dummy
string variable if you desire. Briefly, the following codes are used by the
ISAM statement:

1 - Find a record in the data file by symbolic key (i.e., return
the relative record number in the variable specified by the
OPEN statement that opens the data file/primary index file).

2 - Find the next data record (by the order in which the symbolic
keys appear 1in the index file). Return the relative record
number in the variable specified by the OPEN statement.

3 - Add a symbolic key to an index file.
4 - Delete a symbolic key from an index file.

5 = Locate the next free data record in the data file (returning
the relative record number in the variable specified in the
OPEN statement).

6 - Delete a record from a data file, and return that record to
the free Llist.

An error results if an ISAM statement is executed with the value of '"code"
not equal to one of the above numbers. The '"code" may be any legal numeric
expression which is resolved at run-time.

19.3.1 The ISAM Statement Codes

Below is a fuller explanation of the ISAM codes. Some of these codes
require a relative key as input; others return a relative key to be used
when accessing the data record. This relative key is returned in the
variable specified by the OPEN statement for the index file being accessed

USING ISAM FROM WITHIN BASIC Page 19-4

by the ISAM statement. This then leaves the system properly set up for an
immediate access to the corresponding data record via a READ or WRITE
statement.

Code 1 = ISAM searches in the specified index file for the key which
matches the symbolic key in the ISAM statement. 1If a match is found,
ISAM returns the associated relative key so that your program can
access the data file. If the key is not found, ISAM returns an error
code 33 (see Section 19.8, "Error Processing').

Code 2 - ISAM accesses the specified index file and locates the next
symbolic key. ISAM then returns the corresponding relative key in
preparation for a READ or WRITE to the data file. If this is the
first access to the file following the OPEN statement, JISAM Llocates
the first symbolic key. If this statement follows a previous code 1
statement, ISAM locates the next symbolic key following the code 1
key. If there are no more keys in the index file, TSAM returns an
end-of-index-file error (38), and your program should not access the
data file further until ISAM returns a valid relative key.

Code 3 - 1ISAM adds the specified symbolic key to the index file
along with the relative key. The relative key must be in the
corresponding variable specified in the OPEN statement. TSAM normally
sets up this relative key by a prior code 5 TSAM statement which
delivers the next free data record to be used. This relative key then
becomes the result of any index search which Llocates this specific
associated symbolic key.

Code 4 - 1ISAM locates the specified symbolic key in the index file
and deletes it. ISAM then returns the corresponding data record
relative key so that the data record may be deleted and returned to
the free Llist by using a code 6 ISAM statement. If ISAM cannot locate
the symbolic key in the index file, it gives you a "record not found"
error.

Code 5 - ISAM extracts the next available data record from the free
list and returns the relative key in preparation for a code 3 index
key addition statement. If no more data records are free in the data
file, ISAM returns a "data file full" error. ALl free records in the
data file are kept in a linked List called the "free list." This Llist
is built initially by ISMBLD and contains all the records in the data
file. As code 6 ISAM statements are executed, TSAM again returns the
records to the free list for reuse. TSAM does not modify the index
file and ignores the symbolic key in the statement. This call must be
made only to the primary index file number.

Code 6 - the data record specified by the relative key 1is returned
to the free Llist for reuse by a code 5 call. The index file is not
modified and the symbolic key in the statement is ignored. This call
must be made only to the primary index file number.

USING ISAM FROM WITHIN BASIC Page 19-5

19.4 OPENING AN INDEXED FILE

As with other types of files, an indexed file must be opened with a specific
file-channel number prior to any references to the file by other statements.
The OPEN statement follows the same format as that used by the normal random
files except that you specify INDEXED or INDEXED'EXCLUSIVE mode.

OPEN #file-channel ,filespec,TNDEXED,record-size,relative~key
OPEN #file-channel ,filespec,TNDEXED'EXCLUSIVE,record-size,relative-key

#file-channel Any numeric expression that evaluates to an
integer from 0-65535 (N is defined as the user
terminal).

filespec Any string expression that -evaluates to a
legal AMOS file specification (optionally
including account and device specifications).
Specifies the data file/primary index file or
the secondary index file. (The primary index
file always has the same name as the data
file, but has the .IDX extension; the data
file has the .IDA extension.)

INDEXED Specifies indexed sequential mode.

INDEXFED'EXCLUSIVE Specifies indexed exclusive mode. (See
Section 19.7 for more information.)

record-size Expression that specifies the Llogical record
size for the data file.

relative-key-

variable Floating point wvariable that contains the
record number of the logical record you want
to access.

The filespec must refer to the name given to the index file during the
ISMBLD creation. If this is a call to open a secondary index file, you must
have already previously opened the corresponding primary index file on
another file number so that the data file may be accessed.

As an example, assume that an indexed file structure consists of the primary
index and data files named MASTER.IDX and MASTER.IDA respectively. The
structure also has secondary index files named ADRESS.IDX and PAYROL.IDX
which access the MASTER.IDA file in different sequences. If you desire to
process the file structure via the sequence used by the ADRESS.IDX index
file, the following two statements are required:

OPEN #1, "MASTER", INDEXED, RECSIZ, RELKEY
OPEN #2, '"ADRESS'", INDEXED, RECSIZ, RELKEY

The first statement opens both the data file and the primary index file.
NOTE: Remember that there are now three files opened: 1) the data file,

USING TSAM FROM WITHIN BASIC Page 19-6

MASTER.TDA; 2) the primary index file, MASTER.IDX: and 3) the secondary
index file, ADRESS.IDX.

Note that the record size expression (RECSIZ) and the relative key wvariable
(RELKEY) are identical in both statements. This is important since they
both refer to the same data file (MASTER.TDA). TSAM statements may then be
made referring to either index file (#1 or #2) but all READ and WRITE
statements must be made to the data file (#1) which is associated with the
primary index file. 1In other words, READ and WRITE statements must not be
made to file #2.-

19.5 READ AND WRITE STATEMENTS

The ISAM calls do not access the data records themselves but merely deliver
back the relative key of the associated data record to be used. Normal READ
and WRITE statements are then used to actually retrieve or write into the
data record itself. These READ and WRITE statements follow the same format
used when accessing a normal random access data file in AlphaBASIC. The
relative key associated with the primary file <(as specified in the OPEN
statement) must contain a valid relative key for the operation or an error
results. READ and WRITE statements as mentioned hefore must only be made
using the primary index file-channel number. For example:

10 OPEN #3,""PAYROL" ,INDEXED,67 ,NUM'REC
20 ISAM #3%,1,NAME ! Get record
30 READ #3,LABEL ! Read record

19.6 CLOSING AN INDEXED FILE

In order to ensure that all data records have been rewritten to the data
file and that all links in the index file have been properly updated and
rewritten to the disk, it is imperative that all index files (primary and
secondary) be closed using the normal CLOSE statement, referencing the
correct file-channel number. Failure to do so may result in destroying the
Link structure. NOTE: It makes no difference in which order you close the
ISAM files; however, remember that you cannot access a secondary index file
if you have already closed the primary index.

19.7 INDEXED'EXCLUSIVE MODE

When your program is the only program that needs to access an ISAM indexed
file, you can specify INDEXED'EXCLUSIVE as the mode in which you open the
file. For example:

OPEN #5,"PAYROL'" ,INDEXED'EXCLUSIVE,100,REC'NUM

USING ISAM FROM WITHIN BASIC Page 19-7

The statement above opens the data file PAYROL.IDA and the primary dindex
file PAYROL.TDX in exclusive mode. The main advantage of INDEXED'EXCLUSIVE
mode is a large increase in the speed with which your programs can access
the 1indexed file. It also prevents other users from accessing your indexed
file until you close the file. Otherwise, it works 1in the same way as
INDEXED mode.

In TNDEXED'EXCLUSIVE mode, ISAM knows that no other program is going to
access the indexed file while your program is working with it. Therefore,
ISAM can take full advantage of prior knowledge about the file for every
access and can speed up your access time considerably.

When your program opens an indexed file in the more common INDEXED mode, you
must use file-locking procedures to protect your indexed file if other
programs are going to access it while you are working with the file. (For
information on the file-locking subroutines XLOCK and FLOCK, see the '"BASIC
Programmer's Information" section of the AM=-100 documentation packet.)

When your program opens an indexed file in INDEXED'EXCLUSIVE mode, ISAM will
not allow another user to access the specified indexed file; if they try to
do so, they see a "file not found" error message. This means that you only
have to worry about file-locking at the moment in which you are opening the
indexed file. You may prevent another program from accessing your indexed
file at the moment that you are opening it by securing the file via the
file-locking routines XLOCK or FLOCK, or just by making sure that no other
user 1is running a program that accesses the file.

Remember: The advantage of an indexed file opened in INDEXED'EXCLUSIVE mode
is that no other user can access the file while you are using it. If you
need to have several programs access the file, use the INDEXED mode; in that
case, remember to use file-locking procedures to prevent users from trying
to access the file at the same time.

One feature of the INDEXED'EXCLUSIVE mode is that it temporarily renames the
.IDX file to an .IDY extension to prevent ISAM from letting other programs
access the file. 1f something should go wrong (such as a system crash),
ISAM may not be able to rename the file to its original .IDX extension, and
you will have to do so yourself.

For more information on INDEXED'EXCLUSIVE mode, see Important Notice for
ISAM Users, in the "User's Information'" section of the AM-100 documentation
packet.

19.8 ERROR PROCESSING

Every 1ISAM statement may potentially return some kind of an error. These
errors fall into two categories: hard or soft errors. Hard errors are those
errors returned to ISAM by the monitor; such errors indicate invalid disk
operations (e.g., file not found). Soft errors occur within the ISAM
processor and indicate an error or condition peculiar only to ISAM files.

USING ISAM FROM WITHIN BASIC Page 19-8

Hard errors cause AlphaBASIC to print an error message and abort to the
monitor or (if error trapping is enabled) pass control to your own error
trapping routine. (See Chapter 17, "Error Trapping," especially Section
17.1, '"ON ERROR GOTO Statement," for information on writing your own error
trapping routines.)

19.8.1 Soft Errors

Soft errors never result in an error message or error trap, and BASIC does
not stop program execution when a soft error occurs. 7Tt is therefore up to
your program to test for such errors. You must test for a soft error after
every TSAM statement. Otherwise you have no way of knowing whether or not
the statement was successfully executed. Use the ERF file error function.
ERF is used in much the same way as the EOF function. You must specify the
file number used in the ISAM statement whose success you want to test. 1f
the ERF function returns a zero, the preceding TSAM statement was
successfully executed; if ERF returns a nonzero number, some error was
detected, and your program must take corrective action before accessing the
file again. For example:

ISAM #2, 2, PART'NO
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

The routine ISAM'ERROR might print an error message and then exit. (See
Section 11.3.2, "ERF(X)" for more information on ERF.)

The soft error codes returned by ERF are:

32 - Illegal TSAM statement code

33 - Record not found in index file search

34 - puplicate key found in index file during attempted
key addition

35 - Link structure is smashed and must be re-created

36 - Index file is full

37 - Data file is full (i.e., free List is empty)

38 - End of file during sequential key read

19.9 USING INDEXED SEQUENTIAL FILES

The sections below give step-by-step instructions for using indexed files.
For a complete demonstration of using ISAM from within BASIC, refer to the
sample BASIC program in Section 19.10 at the end of this chapter.

Remember that you must Load the ISAM program into memory before using a
BASIC program that uses ISAM statements. Use the monitor LOAD command:

«LOAD SYS:ISAM.PRG

USING ISAM FROM WITHIN BASIC Page 19-9

(NOTE: The "SYS:" device specification is an ersatz device specification
that specifies the System Library account, DSK0Q:[1,4]1. The command above is
the same as: LOAD DSKO:ISAM.PRG[1,41.)

19.9.1 Creating an Indexed File

Use the ISMBLD program to create a data/index file combination. If you want
a secondary index file, use ISMBLD again to create that file. While using
ISMBLD, you may either load the empty data/index file with information from
an ordinary sequential file, or you may leave the file empty and let your
BASTIC program enter the data. For information on wusing T7TSMBLD, see the
ISAM System User's Guide.

19.9.2 Adding Data to an Indexed File
From within your BASIC program:
1. Open the data/index file with an OPEN statement. For example:
OPEN #1, "PHONES'", INDEXED, RECSIZE, RELKEY

Remember to open any secondary index files that you might want to
use via separate OPEN statements on different file-channel numbers:

OPEN #3, "IDNUM", INDEXED, RECSIZE, RELKEY

2. Use a code 1 ISAM statement to see if the index entry you want to
add already exists. For example:

ISAM #1, 1, NAME
Check to see if an error was returned:
IF ERF(1) = 0 THEN PRINT "Duplicate name'" : GOTO GET'NAME

(1If no error occurred, the index entry already exists, and you
can't add it.)

If you are using secondary index files, also check to see that the
secondary index entries don't already exist.

3. Now, wuse a code 5 ISAM statement to get the next free data record.
For example:

ISAM #1,5,DUMMY

Check to make sure that an error (e.g., 37 - 'data file is full
(free List is empty)'") did not occur. For example:

USING ISAM FROM WITHIN BASIC Page 19-10

IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

If no error occurred, the record number of the next free record is
in the relative key variable defined by the OPEN statement. Now
you can write your data to the data file:

WRITE #1, INFO
Now you must add the symbolic keys for that data record to the
index files, using a code 3 ISAM statement. (Those symbolic keys
will then Llink to that data record.) Be sure to check for an ISAM
error after each addition.

After adding all your information, close the ISAM files.

19.9.3 Reading Data Records in Symbolic Key Order

ISAM stores symbolic keys in the index file in ASCII collating sequence. To
retrieve records in the order in which their keys appear in an index file:

1.

Open the indexed sequential file with an OPEN statement. If you
also want to open one or more secondary index files that
cross-index to the primary index file, use one OPEN statement for
each secondary index file.

Use a code 2 ISAM statement to find the next symbolic key.

Check to make sure that the TSAM statement didn't return an error.
For example:

IF ERF(1) = 38 THEN PRINT "End of the file'" : GOTO PROMPT
IF ERF(1) <> 0 THEN GOTO TSAM'ERROR

The proper relative key is in the relative key variable specified
by the OPEN statement; now use a READ statement to read in the data
record associated with that key. (Remember that the READ statement
is done to the primary data/index file, even though you may have
specified a symbolic key contained in a secondary index file.)

Repeat these procedures to step through the data records 1in the
order of the symbolic keys in the index files. Close all files
when you are done.

USING ISAM FROM WITHIN BASIC Page 19-11

19.9.4 Reading Data Records Randomly by Symbolic Key

1-

Open the data/index file with an OPEN statement. You must also
open any secondary index file you want to use.

Use a code 1 ISAM statement to locate the data record you want to
find. The statement must contain the symbolic key associated with
the data record you want, and must contain the file-channel number
associated with the index file that contains the symbolic key.

Check for a '"record not found" error; this indicates that the
symbolic key was not found in the specified index file.

If the record was found, the proper relative key is now in the
relative key variable defined in the OPEN statement. Use a READ
statement to read 1in the data. (The READ statement includes the
file-channel number associated with the data file/primary index

file even if the symbolic key used belonged to a secondary index
file.)

Repeat steps 2 through 4 for each record you want.

Close all files.

19.9.5 Updating Data Records

You may sometimes want to change the data in a record in the data file. You
may do so by first finding the record you want and then rewriting it:

5.

6.

Open the data/index file with an OPEN statement.

Locate the record you want via one of the methods above (i.e., by
using a code 1 or code 2 1SAM statement).

Check to make sure that the record was found. (Use the ERF
function.)

Now the correct relative key 1dis 1in the relative key variable
defined by the OPEN statement, so use the WRITE statement to

rewrite the data record. (Remember to specify the file-channel
number associated with the data/primary index file.)

Repeat steps 2 through 4 for all records you want to rewrite.

Close the files.

The steps above do not change the index files, so do not change the symbolic
key in the record you rewrite.

USING ISAM FROM WITHIN BASIC Page 19-12

If you need to change the symbolic key(s) in the data record, you must first
delete the key in the correct index file (code 4), and then add the new key
to the index file (code 3). You do not need to delete and re-create the
data record during this operation unless you are entering completely new
data.

19.9.6 Deleting a Data Record

Deleting a data record from an indexed sequential file entails not only
deleting the record itself from the data file but also deleting all symbolic
keys associated with that data record from all index files.

1. Open the data/primary index file and all secondary index files
needed.

2. Locate the data record via one of the symbolic keys (a code 1 ISAM
statement).

3. Check to see that the statement was executed successfully (i.e.,
that ERF returned a zero). For example:

IF ERF(2) = 33 THEN PRINT "Record not found" : GOTO PROMPT
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

4. Read the data record with a READ statement. (The file number must
be the number associated with the data/primary index file.) Extract
each symbolic key from that record.

5. Now you must delete all symbolic keys that are associated with the
deleted record in each index file. Use code 4 ISAM statements to
do so, specifying the symbolic keys you extracted from the data
record in the step above.

6. After you delete each symbolic key, check for errors.

7. Now go ahead and delete the data record by using a code 6 ISAM
statement.

8. Check to see that no error occurred.
9. Close all files.

NOTE: A good check on the file structure would be to store the relative key
in another variable and then compare the relative keys returned by each ISAM
code 4 statement to ensure that the symbolic keys all did indeed Link to the
correct data record. You should also check after each ISAM statement to see
if any error occurred.

USING ISAM FROM WITHIN BASIC Page 19-13

19.10 SAMPLE ISAM PROGRAM

The sample program below will make clearer the use of the commands discussed
above. For more information on using ISAM from within a BASIC program,
consult the ISAM System User's Guide, (DWM-N0100-06).

We first create or enter our program using the text editor VUE. We'll call
it SAMPLE.BAS. After the program has heen entered, we compile it:

.COMPIL SAMPLE

After we compile the program, and before we run it, we first use the program
ISMBLD to build the ISAM files LABELS.IDA (the data file), LABELS.IDX (the
primar, 1index file), and HASH.IDX (the secondary index file). Note that we
build an empty file (i.e., we type a RETURN after the '"Load from file:"
prompt). We use the BASIC program below to place data into the file.

.ISMBLD LABELS

Size of key: 25

Position of key: 1 (RED

Size of data record: 67 RED)

Number of records to allocate: 50 (GED
Entries per index block: 10 RED)

Empty index blocks to allocate: 20 (ReD
Primary Directory: Y ReD)

Data file device:

Load from file:
_:_ISMBLD HASH

Size of key: 10 @EeD

Position of key: 58 RED

Size of data record: 67 (ReT)

Number of records to allocate: 50 (ReD
Entries per index block: 10(RED)

Empty index blocks to allocate: 20 (ReD)
Primary Directory? N (ReT)

Secondary index to file: LABELS (ReD)
End of primary file
No records loaded

Now, before we run our BASIC program, we must Load ISAM into memory:
.LOAD DSKO:ISAM.PRGL1,4]

Then we run our BASIC program:

.RUN SAMPLE

USING ISAM FROM WITHIN BASIC Page 19-14

SAMPLE BASIC ISAM PROGRAM

10 ISAM Sample Program.

20

30 ! This program is a simple example of how to handle ISAM files, both
40 ! primary and secondary. It simulates a very simple-minded mailing

!
!
!
!
50 ! Llist program, with the addresses keyed by both name and user
|
1
I
|

60 ! defined hash code.

70

80 ! Define the Mailing List file record.

90 !

100 MAP1 LABEL

110 MAP2 NAME,S,25

120 MAP2 ADDRESS,S,25

130 MAP2 STATE,S,?2

140 MAP2 Z1P,S,5

150 MAP2 HASH,S,10

160

170 ! bpefine record sizes.

180

190 MAP1 RECSIZE,F,6,67 ! Size of data record.

200

210 ! Open the primary and secondary files.

220 OPEN #1, "LABELS'", INDEXED, RECSIZE, RELKEY1

230 OPEN #2, "HASH", INDEXED, RECSIZE, RELKEY1

240

250 PROMPT:

260 PRINT

270 INPUT "ENTER FUNCTION 8
(1=ADD,2=DELETE,3=INQUIRE ,4=DISPLAY,99=END): '"; FUNCTION

280 ON FUNCTION GOTO ADD'RECORD,DELETE'RECORD,INQUIRE'RECORD,PRINT'LABELS

290 IF FUNCTION=99 THEN GOTO END'IT

3200 GOTO PROMPT

310

320 ADD'RECORD:

330 INPUT "ENTER NAME: ''; NAME

340 INPUT "ENTER ADDRESS: '"; ADDRESS

350 INPUT "ENTER STATE: '; STATE

360 INPUT "ENTER ZIP: '"; ZIP

370 INPUT "ENTER HASH: '"; HASH

380 ! Add Trailing blanks to the keys.

390 NAME = NAME + SPACE(25-LEN(NAME))

400 HASH = HASH + SPACE(10-LEN(HASH))

410 ! Look up name to verify that it is not a duplicate. (If ERF(1)=N, then
415 ! ISAM found the key in the data file.)

420 ISAM #1, 1, NAME

430 IF ERF(1) = 0 THEN PRINT "DUPLICATE NAME" : GOTO ADD'RECORD
440 ! Verify that hash is not a duplicate.

450 ISAM #2, 1, HASH

460 IF ERF(2) = 0 THEN PRINT "DUPLICATE HASH" : GOTO ADD'RECORD
470 ! Get free data record from primary file and write record out.
480 ISAM #1, 5, NAME

490 IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

USING

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010

ISAM FROM WITHIN BASIC Page 19-15

WRITE #1, LABEL
! Add key to primary index file.

ISAM #1, 3, NAME

IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
! Add key to secondary index file.

ISAM #2, 3, HASH

IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

GOTO PROMPT

DELETE'RECORD:
INPUT "ENTER NAME: '"; NAME
NAME = NAME + SPACE(25-LEN(NAME))

! Verify that the key exists.
ISAM #1, 1, NAME
IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
READ #1, LABEL

! Delete the key from the primary index.
ISAM #1, 4, NAME
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

! Delete the key from the secondary index.
ISAM #2, 4, HASH
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

! Delete the data record in data file.
ISAM #1, 6, NAME
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
GOTO PROMPT

INQUIRE'RECORD:
INPUT '""BY NAME (1) OR HASH (2): '"; FUNCTION
IF FUNCTION = 2 THEN GOTO BY'HASH
INPUT '""NAME: '"'; NAME
NAME = NAME + SPACE(25-LEN(NAME))
! Locate the record.
ISAM #1, 1, NAME
IF ERF(1) = 33 THEN PRINT "RECORD NOT FQUND'" : GOTO PROMPT
IF ERF(1) <> 0) THEN GOTO ISAM'ERROR
! Read the record.
READ'RECORD:
READ #1, LABEL
PRINT NAME, HASH
PRINT ADDRESS, STATE, ZIP
GOTO PROMPT
! Locate record by hash code.
BY'HASH:
INPUT "HASH: "; HASH
HASH = HASH + SPACE(10-LEN(HASH))
ISAM #2, 1, HASH
IF ERF(2) = 33 THEN PRINT ""RECORD NOT FOUND" : GOTO PROMPT
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

GOTO READ'RECORD e

USING ISAM FROM WITHIN BASIC Page 19-16

1020 PRINT'LABELS:

1030 ! Read null key to get to front of file.

1040 NAME = SPACE(?5)

1050 ISAM #1, 1, NAME

1060 ! Loop thru file doing sequential reads until we hit the end.
1070 LOOP:

1080 ISAM #1, 2, NAME

1090 IF ERF(1) = 38 THEN GOTO PROMPT ! We hit end-of-file.
1100 IF ERF(1) <> N THEN GOTO ISAM'ERROR

1110 READ #%, LABEL

1120 PRINT

1130 PRINT NAME, HASH

1140 PRINT ADDRESS, STATE, ZIP

1150 GOTO LOOP

1160

1170 END'IT:

1180 ! Be sure and close files before we exit.

1190 CLOSE #1

1200 CLOSE #2

1210 END

1220

1230 ISAM'ERROR: ! ERF(X) returned an 1SAM error
1240 PRINT "?FATAL ISAM ERROR" ! other than RECORD NOT FOUND.

1250 END

APPENDIX A

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS

The following four sections summarize the syntax of the AMOS monitor
commands that dinvoke and control BASIC, and the AlphaBASIC commands,
statements and functions.

Commands are instructions to BASIC that affect the way it handles a program.
For example, the SAVE command tells BASIC to save a copy of a program on the
disk. Commands are not part of the program itself, and may only be used in

interactive mode.

Statements are instructions to BASIC from within the program; you might
think of them as program '"verbs" which tell BASIC how to operate on the
program data. For example, the PRINT statement tells BASIC to display the
specified data. Although most often part of a program, you can also use
some statements directly in interactive mode, outside of a program.

Functions are elements of an expression which compute and return a value.
For example, ABS(X) computes and returns the absolute value of X. You may
also use functions (in combination with program statements) directly in
interactive mode, outside of a program.

The syntax of the commands, statements and functions is illustrated in this
appendix using certain conventions. The curly brackets { and } are used to
enclose options available for certain commands and statements. These may be
nested several deep. Certain commands and statements permit a series of
optional elements. The elements are numbered 1 through N, and the variable
number of elements 1in this available series is pictured using three dots
(..2). For example:

INPUT {"prompt-string' ,}variablel{,variable2...variableN}

indicates that your INPUT statement may request an input of a minimum of one
numeric or string variable. You may also cause it to request two numeric or
string variables, but if you do, the two variables must be separated by
commas. And so forth to variableN, where N is some arbitrary number. You
may also optionally supply a string Literal prompt string.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-2

For the AMOS monitor commands, the underlined dot represents the AMOS prompt
you see at the AMOS command level. The indicates that you should type
a RETURN at the point where you see the symbol, following the text.

When we use the term 'filespec,” we are talking about an AMOS file
specification which contains the name of the file and optionally includes a
device, account, and extension specification. For 1instance:

{Devn:}filenamef.ext}{[Project programer-numberl}

A.1 AMOS MONITOR COMMANDS

These commands are used only from the AMOS command Llevel. They are
illustrated much as you would see them on your terminal.

A.1.1 BASIC
.BASIC

READY

Places you in the interactive mode of AlphaBASIC and gives you the prompt
word READY. From here you may enter certain statements or
statement/function combinations without (ine numbers. BASIC responds to
valid entries with immediate results. Invalid entries cause an error
message to be returned. You may also enter any valid statements, functions,
constant values, variables, arithmetic operators, strings, data or
expressions (meaning any combination of the above) as long as they are
preceded by a Line number from 1 to 65534, These lines combine to form a
BASIC program. Line entries invalid due to syntactical errors or illegal
formats are reported immediately via error messages. Other illegal entries
which cannot be detected immediately are reported during program compilation
or program run.

You exit from BASIC back to the AMOS command level via the BYE command.

A.1.2 COMPIL

-COMPIL filespec

The file specification may simply be the filename of a BASIC program in your
account, or it may be a complete file specification including device name,
filename and extension and account number. The default extension 1is .BAS.
If the file you specify is not found, the system error message

?Cannot OPEN Filespec - file not found

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-3

is returned to you. When the file is found, the system begins to process
the file. At the end of the compilation process, a new file has been
created 1in your account called by the filename and with the extensiom .RUN.
This is the compiled program.

A.1.3 Control-C

[Type a CONTROL and a C simultaneously]
“C
Operator interrupt in line nnnn of FILE.RUN

A Control-C interrupts the execution of the program currently running.
Returns you to AMOS command level.

A.1.4 RUN

=RUN filespec

(The program commences.)

At this command, the monitor loads the AlphaBASIC run—-time package, RUN,
into memory and executes it. RUN in turn loads the fully compiled program
which 1is specified, having the extension .RUN, into memory and executes it.
Your program begins to run from the beginning. Interruptions to the program
may occur if there is an error in programming, if there is a STOP statement
in the program, if you type a Control-C during execution, or if the program
finishes.

A.2 ALPHABASIC COMMANDS

The commands are used in the interactive mode of BASIC to control BASIC
itself.

A.2.1 BREAK
BREAK {{-}line#1{,{-}line#2,...{-2Line#N}}

Lists all breakpoints set if no Line number is specified. Sets a breakpoint
at the specified Line number if the specified number is positive, or clears
a breakpoint at the specified line number if it is negative.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-4

A.2.2 BYE
BYE

Returns you to AMOS command level.

A.2.3 COMPILE
COMPILE

Compiles the program currently in memory.

A.2.4 CONT
CONT

Program execution resumes from the last point of cessation.

A.2.5 CONTROL-C
[Press CONTROL KEY and C KEY simultaneously]
(Terminal rings and you see the message "Operator interrupt in Line nnnn".)

Interrupts a running program and returns you to interactive mode.

A.2.6 DELETE
DELETE Line#1{,Line#2}

Deletes the program Line(s) between and including those specified.

A.2.7 LIST
LIST {line#1{,line#2}}

Lists the entire program in memory, or the Lline(s) between and including
those specified.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-5

A.2.8 LOAD
LOAD filespec

The default file extension is .BAS. Loads the specified program into memory
from the disk.

A.2.9 NEW

NEW

Clears memory of all source code, object code, user symbols and variables.

A.2.10 RUN
RUN
Checks a flag to determine if the program has been compiled. If not, the

program is compiled. RUN then initiates the execution of the program in
memory, starting at the lowest Lline number.

A.2.11 SAVE
SAVE filespec{.RUN}
Saves the program in memory on the disk with the specified name and default

extension of .BAS. If the extension .RUN is specified, the object code is
saved on the disk with the program name and extension .RUN.

A.2.12 SINGLE-STEP (LINEFEED)
(Press linefeed key)

Executes the current program Line and returns you to interactive mode.

A.3 ALPHABASIC STATEMENTS

Statements are used within the source program. Some of them may be used as
direct statements. Note that those statements that accept a file
specification accept it as a string literal (for example: ''DSKQ:INIT.BAS")
enclosed in quotation marks, as a string variable (for example: FSPEC$), or
a string expression (for example: MID$(A%$,1,6) which evaluates to a valid
file specification.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-6

A.3.1 ALLOCATE

ALLOCATE filespec, number-of-blocks

Allocates a random file on the disk with the specified number of disk
blocks. Then you can use the OPEN statement to open the file for random
processing.

A.3.2 CHAIN
CHAIN filespec

Causes the current program to be deleted from memory and the program with
the specified filename, and the optional device name and extension, to be
loaded into memory and executed.

A.3.3 CLOSE

CLOSE #file-channel

Closes the specified file. No further reading to or writing from that file
is allowed until another OPEN statement for that file is processed. ALl
files are automatically closed at program completion.

A.3.4 DATA
DATA datal{,data2,...dataN}

Stores numeric constants or string literals in a dedicated memory area at
program execution. The DATA statement enables data to be an integral part
of the program. Numeric 1items may not contain commas within them.
Individual data strings or constants are separated by commas in the DATA
statements. The data between each pair of commas is drawn consecutively from
the dedicated memory area and assigned to the respective READ statement
variable until either data is exhausted or no further READ statements occur.
If data 1is exhausted, using RESTORE reinitializes the data placed in the
data pool by the DATA statement. Notice the READ and RESTORE commands
below.

A.3.5 DIM
DIM variable1(expr1{,expr2,...exprN}){, variableN(expri{,expr2,...exprN})}

Defines one or more arrays which are allocated at the time of program
execution. String and/or numeric variables are allowed, and any number of

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-7

subscripts may be used to define the separate Llevels of each array.
Subscripts may be any Llegal numeric expression containing variables or
constants.

A.3.6 END
END

Causes the program to terminate execution. It is not required unless other
program lines (e.g., subroutines) follow the program end.

A.3.7 FILEBASE
FILEBASE n

Tells BASIC that the first record in the file is record number n, not record
number zero. You may use any numeric argument with FILEBASE.

FILEBASE does not associate its value with a specific file, but only takes
effect when the program it is in is executed.

A.3.8 FOR, TO, STEP and NEXT
FOR variable = expression TO expression {STEP {-)}value}
(program statements,if any, to be affected by the Loop)
NEXT {variablel}

Initializes a loop during program execution. Variables may be subscripted.
STEP defaults to positive 1 if not specified. If STEP 1is negative, the
values must be specified from Larger to smaller (i.e.,
FOR A=10 TO 1 STEP -1; FOR X=-1 TO -10 STEP -2). The statement NEXT (with
the optional variable specifying the particular loop) continues the Lloop
until the second value (following T0) 1is reached by idincrementation or
decrementation.

A.3.9 GOSUB or CALL and RETURN

GOSUB lLabel or Line# CALL Label or Lline#
specified subroutine specified subroutine
RETURN RETURN

GOSUB and CALL perform identical functions. If a label 1is specified, the

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-8

subroutine must be prefaced by the Label name and a colon: otherwise, the
first line of the subroutine must start with the specified Line#.
Subroutines may be nested. RETURN terminates the subroutine and returns
control to the statement following the GOSUB or CALL statement.

A.3.10 GOTO
GOTO Label or Line#

Unconditional transfer statement transfers control to the lLabel or Lline
number indicated. 1t may also be written GO TO.

A.3.11 IF, THEN and ELSE

IF expression THEN {statement}{line#}{label} {ELSE {statement}{line#}{label}}
IF expression {statement}{line#}{label} {ELSE {statement}{line#}{label}}

The conditional processing statement with many different optional formats.
Other AlphaBASIC statements are Llegal within the statement. Also,

IF-THEN-ELSE statements may be nested to any depth.

A.3.12 INPUT
INPUT {"prompt-string",}variable1{,variable2,...variableN}

Allows data to be entered from your terminal and assigned to the specified
numeric or string variable(s) during program run. Input is prompted with a
question mark unless you supply a text prompt. Commas are the terminators
between data items you input. A carriage return from the terminal without
entering data aborts input and lLeaves all the following variables unchanged.

INPUT #file-channel ,variable1{,variable?,...variableN}

enters data from the file associated with the specified file channel. For
use with sequential files.

A.3.13 INPUT LINE
INPUT LINE {"prompt-string' ,}variable1

Main purpose is to read entire Line of input into string variables. Acts
the same as INPUT for numeric variables. For string variables, allows an
entire Lline of data, except carriage return and linefeed, to be entered
verbatim from your terminal during program execution and assigned to the
specified string variable. No aquotation marks for literal strings are

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-9
required. There is no prompt symbol by default, but you can define the
prompt text in the statement.

INPUT LINE #file-channel ,variable?

enters data from the file associated with the specified file number. For
use with sequential files.

A.3.14 KILL
KILL filespec

Erases the specified file from the disk. A file can be killed without being
opened or closed. Only files in your account or project can be killed.

A.3.15 LET
LET variable = expression

Assigns a value to a variable. Use of the actual word LET dis optional
(i.e., LET A=1 may be written A=1).

A.3.16 LOOKUP

LOOKUP filespec, variable
Looks for the specified file. If found, the specified variable assumes the
number of disk blocks the file contains. If not found, the specified

variable assumes 0. If the file is sequential, variable contains positive
number; if file is random, variable contains negative number.

A.3.17 ON ERROR GOTO and RESUME
ON ERROR GOTO Label/line# ON ERROR GOTO {0}
(Disables further error trapping)
RESUME Label/line# RESUME
(Branch to area of program resumption) (Branch to line causing error)
As a result of a program error, control 1is transferred to the specified-
label or Lline number for processing. 1In the error trapping routine, the

statement RESUME causes the program to resume at the statement causing the
error, or at the label or Line number specified.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS , Page A-10

A.3.18 ON-GOSUB or CALL

ON expression GOSUB Label/Lline#1{,label/Line#2,...Label/line#N}
ON expression CALL label/line#1{, label/line#2,...Llabel/line#N}

Enables multi-path branching to subroutines based on the positive integer
value of the expression (i.e., on expression=1, branch to Label/line#1,
etc.).

A.3.19 ON-GOTO

ON expression GOTO Label/line#1{,label/Lline#2,...label/line#N}

Enables multi-path transfers of program control based on the positive
integer value of the expression (i.e., on expression=1, branch to
Label/line#1, etc.).

A.3.20 OPEN
OPEN #file-channel ,filespec,mode{,record-size,record#-variablel}

Assigns a specific integer file-channel number to the specified file and
also specifies whether the file is being opened for input, output or random
(both 1input and output) operations, or ISAM operations. (Mode may be:
INPUT, OUTPUT, RANDOM, INDEXED, or INDEXED'EXCLUSIVE.) If the mode selected
is RANDOM, record-size 1is an expression that specifies the logical record
size, and record#-variable is a variable that maintains the current logical
record number.

A.3.21 PRINT

PRINT {expression-lList}
or:

? {expression-List)}

Outputs a blank Line, or the expression(s) specified. A semicolon or comma
at the end of the Llist of expressions 1inhibits carriage return/linefeed
after a PRINT output. The expressions to be printed may consist of numeric
or string expressions, string or numeric variables, numeric constants,
string Lliterals, functions, or combinations of the above. String literals
must be placed within quotation marks. The word PRINT may be replaced with
the question mark symbol.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-11

A.3.22 PRINT USING

variable = expression USING format-string
PRINT USING format-string, expression-list
PRINT expression USING format-string

For formatted output where the characters are specifically positioned. The
string contains one or more special formatting characters to control the
printed output, such as character placement, field size, leading asterisks,
floating dollar signs, numeric sign, commas, exponential format and numeric
string size. The list is made of the expression(s) you want printed.

A.3.23 RANDOMIZE
RANDOMIZE

Resets the random number generator seed to begin a new random number
sequence starting with the next RND(X) function call.

A.3.24 READ and RESTORE
READ variable1{,variable2,...variableN}

Assigns next group(s) of data in dedicated memory to variable(s).
RESTORE

Readies data in the dedicated memory area for rereading from the beginning
of the data pool.

READ and RESTORE, along with the DATA statement, enable data to be an
integral part of the program. The data in the data pool 1is drawn
consecutively from the dedicated memory area by READ and assigned to the
respective READ statement variable until either data 1is exhausted or no
further READ statements occur. If data is exhausted, using RESTORE
reinitializes the data pool. See the DATA statement above.

READ has another operation within the file I/0 system which has no relation
to the DATA or RESTORE statements.

READ #file-channel,variablel1{,variable2,...variableN}

This operation of the READ statement reads into the specified variable(s)
data from the random file associated with the specified file channel. It
reads from the Llogical record whose record number is currently in the
record#-variable defined by the OPEN statement for that file.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-12

A.3.25 SCALE
SCALE value

Sets the number of decimal places by which all floating point numbers are
offset when they are calculated, to minimize error propagation.

A.3.26 SIGNIFICANCE
SIGNIFICANCE value

where the value is between 1 and 11. Sets the maximum number of printable
digits in unformatted numbers. Numbers are calculated in full 11-digit
accuracy, then rounded off to the value of significance just prior to
printing. Not in effect when PRINT USING statements are being used.

A.3.27 STOP
STOP

Suspends program execution and returns you to interactive mode or AMOS
monitor level, depending on where you were at program commencement. You see
a message identifying the Line of the program stop. In the compiler mode,
from the AMOS monitor level, the message adds, '"Enter CR to continue:".
From the interactive mode of BASIC, the program may be continued by the CONT
or single-step (lLinefeed) commands.

A.3.28 STRSIZ
STRSIZ value

Assigns the maximum size in bytes of all following strings. STRSIZ must be
assigned a positive integer.

A.3.29 WRITE
WRITE #file-channel ,variable1{,variable?,...variableN}

Writes the data currently assigned to the specified variable(s) into the
random file associated with the specified file channel. It writes into the
logical record whose record number s currently in the record#fi-variable
defined by the OPEN statement for the file.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-13

A.3.30 XCALL
XCALL routine,{argument1{ ,argument?,...argumentN}}

Calls an assembly language program as a BASIC subroutine. The argument may
be a variable or an expression.

A.4 ALPHABASIC FUNCTION STATEMENTS

The following is a list of the AlphaBASIC functions. Functions almost
always require an argument. Depending on the function, the argument may be
a variable, a string or a fixed value. The argument 1is used either to
control the function or as data upon which the function operates.

We have organized the AlphaBASIC functions into two categories: those that
accept numeric arguments and those that accept string arguments. However,
be aware that because of the mode independence of AlphaBASIC, such
distinctions are often hazy. For example, although the square root
function, SQR, 1is a numeric function, you can give it a string argument as
long as the mode independence feature can convert that string to numeric
data. For example:

PRINT SQR(16)

4

PRINT SQR("16'")

4
In the same way, you can use the string function LEFT$ to excerpt characters
from numeric data as if that data were a string:

PRINT LEFT$('123",2)
23

PRINT LEFT$(456,2)
56

A.4.1 NUMERIC FUNCTIONS

These functions require arguments which can be evaluated as numbers. X may
be any expression, but if it contains string variables or Lliterals, they
must represent numeric values. For example: ABS("11"+2) returns 13.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-14

A.4.1.1 ABS(X) - Returns the absolute value of the argument X.

A.4.1.2 CHR(X) - Returns a single character having the ASCII decimal value
of X. Only one character is generated for each CHR function call.

A.4.1.3 EXP(X) - Returns the constant e (2.71828) raised to the power X.

A.b.1.4 FACT(X) - Returns the factorial of X.

A.4.1.5 FIX(X) - Returns the integer part of X (fractional part truncated).

A.b.1.6 INT(X) - Returns the lLargest integer less than or equal to the
argument X.

A.4.1.7 LOG(X) - Returns the natural (base e) logarithm of the argument X.

A.4.1.8 LOG10 - Returns the decimal (base 10) logarithm of the argument X.

A.4.1.9 RND(X) - Returns a random number generated by a pseudo-random
number generator based on the seed. The argument X controls the number to
be returned. If X 1is negative, it is used as the seed to start a new
sequence of numbers. If X is zero or positive, the next number in the
sequence 1is returned, depending on the current value of the seed (this is
the normal mode).

A.4.1.10 SGN(X) - Returns a value of -1, 0 or 1 depending on the sign of
the argument X. Gives =1 1if X is negative, 0 if X is 0 and 1 if X is
positive.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-15

A.4.1.11 SAQR(X) - Returns the square root of the argument X.

A.4.1.12 STR(X) or STR$(X) - Returns a string which is the character
representation of the numeric expression X. No leading space 1is returned
for positive numbers.

A.4.2 TRIGONOMETRIC FUNCTIONS

The following trig functions are implemented in full 11-digit accuracy:

D LA A e BT 1
SINCXD Sine of X
CosS(X) Cosine of X
TAN(X) Tangent of X
ATN(X) Arctangent of X
ASN(X) Arcsine of X
ACS(X) Arccosine of X
DATN(X,Y) Double arctangent of X,Y

A.4.3 CONTROL FUNCTIONS

The following control functions test certain file conditions and control and
return information about certain system operations.

A.4.3.1 DATE - The DATE system function sets and returns the two-word
system date.

DATE
A

expression !sets system date to expr
DATE Ireturns system date into A

A.4.3.2 TIME - The TIME system function requires no argument and is used to
set and retrieve the time of day as stored in the system monitor
communications area. The time is stored as a two-word integer representing
the number of clock ticks since midnight. One clock tick represents one
interrupt from the CPU Line clock (usually 60 or 50 Hz). Dividing the time
by the clock rate gives the number of seconds since midnight. Converting
this to current time is then accomplished by successive divisions by 60 to
get minutes, and again by 60 to get hours.

TIME = exprpression !sets time-of-day in system to expr
A = TIME 'returns time-of-day in clock ticks into A

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-16

A.4.3.3 BYTE and WORD - The BYTE and WORD system functions allow you to
inspect and alter any memory locations within the 64K memory addressing
range of the machine. The BYTE functions deal with & bits of data in the
range of 0-255, and the WORD functions deal with 16 bits of data in the
range of 0-65535, inclusive. Any unused bits are ignored, with no error
message.

BYTE(X) = expr !writes the low byte of expr into decimal memory loc X
WORD(X) = expr 'writes the Llow word of expr into decimal memory loc X
A = BYTE(X) !reads decimal memory loc X and places the byte into A
A = WORD(X) !reads decimal memory loc X and places the word into A

A.4.3.4 EOF(X) - The EOF (end-of-file) function returns a value giving the
status of a sequential file open for input whose file number is X. The
values returned by the EOF function are:

-1 if the file is not open or the file number X is zero
0 if the file is not yet at end-of-file during inputs
1 if the file has reached the end-of-file condition

EOF should only be tested for sequential input files.

A.4.3.5 ERF(X) - Returns a file error-condition code. If the returned
value of X is not zero, an error or abnormal condition exists as a result of
the preceding file operation. (See Chapter 19 for a List of the error codes
returned by ERF.)

A.4.3.6 ERR(X) - Returns a status code for X which refers to program status
during error trapping. (See Chapter 17 for a Llist of the error codes
returned by ERR.)

A.4.3.7 MEM(X) - Returns a positive integer which specifies the number of
bytes currently in use for various memory areas used by the compiler system.

A.4.3.8 SPACE(X) or SPACE$(X) - Returns a string of X spaces in length.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-17

A.4.4 STRING FUNCTIONS

The arguments of these functions are literal strings or string variables.
For example, if A$ is '"Now is the time", the LEN function (which computes
the number of characters in a string) returns 15 in both of these cases:

PRINT LEN("Now is the time'")

PRINT LENCAS)

A4 4.1 ASC(A$) - Returns the ASCII decimal value of the first character in
string A$. The function ASC('"C") returns the ASCII decimal value of the
character C, 67.

A.4.4.2 INSTR(X,A$,B$) - Performs a search for the substring B$ within the
string A$, beginning at the Xth character position. It returns a value of
zero if B$ is not in A$, or the character position if B$ is found within AS.
Character position is measured from the start of the string, with the first
character position represented as one.

A.4.4.3 LCS(A$) - Returns a string which 1is identical to the argument
string (A$), with all characters translated to lower case.

A.4.4.4 LEFT(A$,X) or LEFT$(A$,X) - LEFT$(A$,X) Returns the Leftmost X
characters of the string expression AS$.

A.4.4.5 LEN(A3) - Returns the number of characters in the string expression
AS.

A4 4.6 MID(AS,X,Y) or MID$(AS$,X,Y) - Returns the substring composed of the
characters of the string expression A$ starting at the Xth character and
extending for Y characters. A null string is returned if X > LEN(AS).

A.4.4.7 RIGHT(A$,X) or RIGHT$(A$,X) - Returns the rightmost X characters of
the string expression AS.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-18

A.4.4.8 UCS(A$) - Returns a string which is identical to the argument
string (A$), with all characters translated to upper case.

A.4.4.9 VAL(AS) - Returns the numeric value of the string expression A$
converted under normal BASIC format rules.

APPENDIX B

MESSAGES OUTPUT BY ALPHABASIC

Below is a complete List of all messages output by the AlphaBASIC system
(i.e., BASIC, RUN, and COMPIL), along with a brief explanation of each
message.

Bitmap kaput
Your program attempted a file operation (OPEN, ALLOCATE, etc.) on
a device with a bad bitmap.

Break at line n
The program reached the breakpoint that was set at line n.

COMPILE
BASIC is telling you that it is compiling your program.

Can't continue
You have attempted to continue a proaram which is not stopped at a

breakpoint, or which has reached a point where it can go no
further (e.g., it has reached an END statement).

Cannot find xxxxxxx
The program xxxxxxx was not found.

Compile time was x.x seconds.
BASIC is telling you how long (in elapsed time, not computing
time) it took to compile your program.

DELETE what?
You have specified a DELETE command without specifying what

line(s) are to be deleted.

Device does nof exist
The device you specified in a file operation (OPEN< LOOKUP, etc.)
does not exist.

7Device driver must be loaded into user or system memory
If you are accessing a non-DSK device, the appropriate device
driver must be loaded into user or system memory.

MESSAGES OUTPUT BY ALPHABASIC Page B-2

Device error
An error has occurred on the referenced device.

Device full
The specified device has run out of room during a WRITE, CLOSE, or
ALLOCATE operation. Remember that an ALLOCATE requires contiguous
disk space, so that a Device full error may occur when there are
still a number of non-contiguous blocks available.

Device 1in use
The specified device is currently assigned to another user.

Device not ready
The specified disk is not ready for use.

Disk not mounted
The specified disk has not been mounted. Mount it via the MOUNT

monitor command or via the XMOUNT subroutine.

Divide by zero
Your program attempted to perform a division by zero.

Duplicate Llabel
Your program has defined the same label name more than once.

**% End of Program *x*
You have reached the end of the program during single-stepping.

Enter <CR> to continue:
You have reached a STOP statement 1in your program. You may
continue from the STOP statement via a carriage-return, or may
abort the run via a Control-C.

?Error in Error Trapping
An error occurred while you were in the error trapping routine.

File already exists
Your program tried to create a file which already exists.

File already open
You have attempted to open a file that is already open on the same
file number.

File not found
BASIC was unable to locate the specified file.

Filespec error
The file specification you gave in a file operation (OPEN, LOOKUP,
etc.) is in error. AllL file specifications must conform to the
system standard (i.e., Devn:Filename.Extensionlp,pnl).

MESSAGES OUTPUT BY ALPHABASIC Page B-3

File type mismatch
Your program tried to perform a sequential operation on a random
file or vice-versa.

Floating point overflow
A floating point overflow occurred during a calculation.

I0 to unopened file
Your program tried to perform input or output to a file that was
not open.

Illegal GOTO or GOSUB
The format of the GOTO or GOSUB statement 1is invalid.

Illegal NEXT variable
The variable wused 1in the NEXT statement is not valid (e.g., not
floating point).

Illegal PRINT USING format
The edit format used in a PRINT USING statement is invalid.

Illegal SCALE argument
The argument given in a SCALE statement is invalid (the argument
must range between =30 and +30).

Illegal STRSIZ argument
The argument given in a STRSIZ statement is invalid.

Illegal TAB format
Your program has incorrectly specified a TAB function.

Illegal expression
The specified expression is not valid.

Illegal function value
The specified function value 1is not valid for the particular
function.

Illegal Lline number
The specified Lline number is invalid (e.g., not between 1 and
65534) .

Illegal or undefined variable in overlay
The variable specified in a MAP statement overlay (via @) has not

been previously defined, or is not a mapped variable.

Illegal record number
The relative record number specified in a random file processing
statement (i.e., READ or WRITE) is either less than the current
FILEBASE or outside of the file.

MESSAGES OUTPUT BY ALPHABASIC Page B-4

Illegal size for variable type
The specified variable size 1is not valid for the particular
variable type. Floating point variables must be size 6, and
binary variables must have sizes 1 through 5.

Illegal subroutine name
The name specified as a subroutine is not valid.

Illegal subscript
The subscript expression is not valid.

Illegal type code
The variable type code specified in a MAP statement is not one of
the valid types.

Illegal user code
The specified PPN was not found on the specified device, or is not
in a valid format.

Insufficient memory to load program xxxxxxx
The RUN program did not find enough free memory to be able to load
the specified program.

Invalid filename
The specified filename was not a legal filename.

CiInvalid syntak code]
An internal error has occurred in BASIC. Please notify Alpha
Micro of this error. Provide an example of what caused it.

Line number must be from 1-65534
The Lline number entered was not 1in the range of Llegal Line
numbers.

Line x not found
The specified Lline was not found for a DELETE, LIST, etc.,
operation.

NEXT without FOR
A NEXT statement was encountered without a matching FOR statement.

No breakpoints set
BASIC is telling you that there are currently no breakpoints set
in your program.

No source program in text buffer
You tried to compile when there was no program in memory.

Operator interrupt
You typed a Control-C to interrupt program execution.

MESSAGES OUTPUT BY ALPHABASIC Page B-5

Out of data
A READ statement was encountered after the data in all DATA
statements had been used.

Out of memory
BASIC is telling you that it has run out of memory in which to
execute your program.

Out of memory - Compilation aborted
COMPIL 1is telling you that it does not have enough free memory to
finish compiling your program.

Program name:
You tried to SAVE or LOAD a program without providing a filename.
Enter the filename at this point.

Protection violation

Your program tried to write into another account where you do not
have write privileges.

RESUME without error
A RESUME statement was encountered, but no error has occurred.

RETURN without GOSUB

A return statement was encountered, but not corresponding GOSUB
has been executed.

Record size overflow
Your program tried to read a file rcord into a variable Llarger
than the file record size.

Redimensioned array
You tried to redimension an array.

Runtime was x.x seconds
BASIC is telling you how long it took to run your program.

?Runtime package (RUN.PRG) not found
BASIC or COMPIL was unable to locate the run-time package, or did
not have sufficient memory in which to load it.

Source lLine overflow
A Lline 1in the source program, including continuation Llines,
exceeds 500 characters. ‘

Stack overflow
BASIC's internal stack has overflowed. This is most often caused
by such operations as nesting GOSUBs too deep, or branching out of
FOR-NEXT Lloops.

Subroutine not found
The specified subroutine could not be found.

MESSAGES OUTPUT BY ALPHABASIC Page B-6

Subscript out of range
The specified subscript is outside the range specified in the DIM
or MAP statement for the subscripted variable.

Syntax error
The syntax of the specified Lline is invalid.

System commands are illegal within the source program
BASIC system commands (LOAD, DELETE, LIST, etc.) are not valid
within -a BASIC source program.

System error
A system error has occurred during the execution of the specified
Line. System error is used as a catch-all error message for a

variety of unlikely occurrences.

Temporarily all arrays must be Lless than 32K
The array size you specified is larger than 32K bytes.

Undefined Line number or Label
The Lline number or label specified in a GOTO or GOSUB statement is
not defined within the program.

Write protected
Your program tried to write on a write-protected device

Wrong number of subscripts
The number of subscripts specified is not the same as the number
defined in the DIM or MAP statement for the subscripted variable.

APPENDIX C

RESERVED WORDS

Below is a Llist of the reserved words used by the BASIC compiler. Some of
these reserved words designate routines that have not been implemented at
this time. However, you must not use any of these reserved words as
variable names or labels. NOTE: This restriction applies to string
variables as well as numeric variables. (For instance, END$ and END are
both illegal variable names.)

ABS absolute value

ACS arccosine

ALLOCATE al locate file

AND Llogical AND

ASC ASCII value

ASN arcsine

ATN arctangent

BREAK set breakpoint

BYE exit to monitor
BYTE memory byte

CALL call subroutine
CHAIN chain next program
CHR character value
CHRS$ character value
CLOSE close file

COMPILE compile program
CONT continue execution
cos cosine

DATA data statement
DATE system date

DATN double arctangent
DEF define function
DELETE delete lines

DIM dimension

ELSE else

END end of program

EOF end of file

EQV logical equivalence
ERF file error

ERR error status

RESERVED WORDS

WP

ERROR
EXP
EXPAND
FACT
FILEBASE
FIX
FOR

GO
GOSUB
GOTO
IF
INDEXED
INPUT
INSTR
INT

I0
ISAM
KILL
LCS
LEFT
LEFTS
LEN
LET
LINE
LIST
LOAD
LOG
L0G10
LOOKUP
MAP
MAX .
MEM
MID
MID$

- MIN -

NEW

NEXT
NOEXPAND
NOT

ON

OPEN

OR
OUTPUT
PRINT
RANDOM
RANDOMIZE
READ

REM
RESTORE
RESUME
RETURN
RIGHT
RIGHTS

error
exponentiation
expand mode on
factorial

file base offset
fix

loop initiation
program jump

call subroutine
program jump
conditional test
indexed

input data

search string
integer
input/output

ISAM control

kill file

lower case string
left string

left string

Length string
variable assignment
Line

List text

load program
natural logarithm
base 10 logarithm
lookup file

map variable
maximum value
memory size

mid string

mid string

minimum value

new program

Loop termination
expand mode off
logical complement
on (GOTO, GOSUB, ERROR)
open file

logical OR

output

print on terminal/file
random

randomize RND function
read data

remark Line
restore data
resume after error
subroutine exit
right string

right string

Page C-2

RESERVED WORDS

RND
RUN
SAVE
SCALE
SGN
SIGNIFICANCE
SIN
SPACE
SPACES
SQR
STEP
STOP
STR
STRS
STRSIZ
sus
TAB
TAN
THEN
TIME
TO

ucs
USING
VAL
WORD
WRITE
XCALL
XOR

random number

run program

save program

set scale factor

sign

set significance

sine

spaces

spaces

square root

step

stop program

numeric to string conversion
numeric to string conversion
set string size

sub (GOSUB)

tab

tangent

optional statement verb
system time

to

upper case string

using

string to numeric conversion
memory word

write file

external subroutine call
logical XOR

Page C-3

APPENDIX D

THE ASCII CHARACTER SET

The next few pages contain charts that List the complete ASCII character
set. We provide the octal, decimal and hexadecimal representations of the
ASCII values.

Note that the first 32 characters are non-printing Control-characters.

THE ASCII CHARACTER SET

Page D-2

THE CONTROL CHARACTERS

7¢nR(, J
Un
CHARACTER OCTAL DECIMAL HEX MEANING
NULL 000 0 00 Null (fill character)
SOH 001 1 o Start of Heading
STX 002 2 02 Start of Text
ETX 003 3 03 End of Text
ECT D04 4 04 End of Transmission
ENGQ 005 5 05 Enquiry
ACK 006 6 06 Acknowledge
BEL 007 7 07 Bell code
BS 010 8 08 Back Space
HT 011 9 09 Horizontal Tab
LF 012 10 0A Line Feed
VT 013 11 0B Vertical Tab
FF 014 12~ ac Form Feed
CR 015 13 0o Carriage Return
SO 016 14 0E Shift Out
SI 017 15 0OF Shift In
DLE 020 16 10 Data Link Escape
DC1 021 17 11 Device Control 1
DC2 022 18 12 Device Control 2
DC3 023 19 13 Device Control 3
DC& 024 20 14 Device Control 4
NAK 025 21 15 Negative Acknowledge
SYN 026 22 16 Synchronous Idle
ETB 027 23 17 End of Transmission Blocks
CAN 030 24 18 Cancel -
EM 031 25 19 End of Medium
SS 032 26 1A Special Sequence
ESC 033 27 1B Escape
FS 034 28 1C File Separator
GS 035 29 1D Group Separator
RS 036 30 1E Record Separator
us 037 31 1F Unit Separator

THE ASCII CHARACTER SET Page D-3

PRINTING CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING
SP 040 32 20 Space
! N4 23 21 Exclamation Mark
" 042 34 22 Quotation Mark
043 35 23 Number Sign
$ 044 36 24 Dollar Sign
% 045 27 25 Percent Sign
& 046 38 26 %p.ensg&\
! 047 29) 27 ostrophe
(050 g 28 Oment hesis
) 051 41 29 Closing Parenthesis
* 052 42 2A Asterisk
+ 053 43 2B Plus
, 054 44 2C Comma
- 055 45 2D Hyphen or Minus
. 056 46 2E Period
/ 057 47 2F Slash
0 Né0 48 30 Zero
1 061 49 31 One
2 062 50 32 Two
3 063 51 33 Three
4 064 52 34 Four
5 065 53 35 Five
6 D66 54 26 Six
7 067 55 37 Seven
8 070 56 38 Eight
9 071 57 29 Nine.
: nr2 58 3A Colon
; 073 59 3B Semicolon
< 074 60 3C Less Than
= 075 61 3D Sign
> 076 62 3E Than
? \rarg 63 3F Question Mark
a 100 64 40 Commercial At

THE ASCII CHARACTER SET Page D=4

CHARACTER OCTAL DECIMAL HEX MEANING

A 101 65 41 Upper Case Letter
B 102 66 42 Upper Case Letter
C 103 67 43 Upper Case Letter
D 104 68 INA Upper Case Letter
E 105 69 45 Upper Case Letter
F 106 70 46 Upper Case Letter
G 107 71 47 Upper Case Letter
H 110 72 48 Upper Case Letter
I 111 73 49 Upper Case Letter
J 112 74 4A Upper Case Letter
K 113 75 4B Upper Case Letter
L 114 76 4C Upper Case Letter
M 115 77 4D Upper Case Letter
N 116 78 4LE Upper Case Letter
0 117 79 4F Upper Case Letter
P 120 80 50 Upper Case Letter
Q 121 81 51 Upper Case Letter
R 122 82 52 Upper Case Letter
S 123 &2 53 Upper Case Letter
T 124 84 54 Upper Case Letter
U 125 85 55 Upper Case Letter
v 126 86 56 Upper Case Letter
W 127 87 57 Upper Case Letter
X 130 88 58 Upper Case Letter
Y 131 89 59 Upper Case Letter
Z 132 o0 5A Upper Case Letter
L 133 91 58 Opening Bracket

\ 134 92 5C Back Slash

] 135 93 5D Closing Bracket

. 136 94 SE Circumflex
Ve 137 (g? SF < Underline =

- 140 60 Grave Accent

a 141 97 61 Lower Case Letter
b 142 98 62 Lower Case Letter
c 143 99 63 Lower Case Letter
d 144 100 64 Lower Case Letter
e 145 1M 65 Lower Case Letter
f 146 102 66 Lower Case Letter
g 147 103 67 Lower Case Letter
h 150 104 68 Lower Case Letter
i 151 105 69 Lower Case Letter
j 152 106 6A Lower Case Letter
k 153 107 6B Lower Case Letter
L 154 108 6C Lower Case Letter
m 155 109 6D Lower Case Letter
n 156 110 6E Lower Case Letter
o 157 111 6F Lower Case Letter

THE ASCII CHARACTER SET

Page D-5

CHARACTER OCTAL NDECIMAL HEX MEANING

p 160 112 70 Lower Case Letter
q 161 113 71 Lower Case Letter
r 162 114 72 Lower Case Letter
s 163 115 73 Lower Case Letter
t 164 116 74 Lower Case Letter
u 165 117 75 Lower Case Letter
v 166 118 76 Lower Case Letter
W 167 119 77 Lower Case Letter
X 170 120 78 Lower Case Letter
y 171 121 79 Lower Case Letter
z 172 122 7A Lower Case Letter
{ 173 123 78 Opening Brace

| 174 124 7C Vertical Line

} 175 125 7D Closing Brace

~ 176 126 7E Tilde
DEL 177 127 7F Delete

APPENDIX E

SAMPLE PROGRAM - NUMERIC CONVERSION FOR BASES 2 - 16.

This appendix contains a sample AlphaBASIC program that converts a number
between one number base and another. You may convert numbers from the
binary through hexadecimal (2-16) number bases to another number base in
the same range. For example, you can translate an octal number to its
hexadecimal form, or vice versa. Below is a sample run of the program:

""CONVRT''~-CONVERT BETWEEN NUMBER BASES
Enter positive numbers, any base from 2 to 16
(Enter a zero to FROM BASE? to end the program)

FROM BASE? 10 GED

~ 10 BASE? 2

BASE 10 NUMBER? 364
BASE 2 NUMBER = 101101100

FROM BASE? “C
Operator interrupt in line 2015

The program:

10 ! "CONVRT'" -- PROGRAM TO CONVERT BETWEEN NUMBER BASES
100 MAP1 IN'VARIABLES 'INPUT BASE VARIABLES
105 MAP2 IN'NUMBER,S,S50 'input number string
110 MAP2 IN'BASE,F 'base of input number,
! 2 through 16 valid
200 MAP1 OUT'VARIABLES 'QUTPUT BASE VARIABLES
205 MAP2 OUT'NUMBER,S,S0 'output number string
210 MAP2 OUT'BASE,F 'base of output number,

! 2 through 16 valid

300 MAP1 VALID'DIGIT,S,16,"0123456789ABCDEF" !VALID DIGITS
'base x contains x leftmost
! digits

SAMPLE PROGRAM - NUMERIC CONVERSION FOR BASES 2 - 16. Page E-2

900 MAP1 MISC'VARIABLES IMISCELLANEOUS VARIABLES

905 MAP2 BASE10'NUMBER,F 'input string converted to
! base 10

910 MAP2 ERROR'FLAG,F 'flag set if invalid digit
! found

915 MAP2 LEADING'BLANK,F 'flag reset when first non-
! blank character found

920 MAP2 LOOP'1,F 'FOR-NEXT index #1

925 MAP2 LOOP'2,F IFOR-NEXT index #2

930 MAP2 WORK'1,F 'scratch variable used in
! conversion to output
! base

! START OF PROGRAM

1000 DISPLAY'BANNER:

1005
1010
1015

2000
2005

2010

2015
2020
2025
2030
2035

2200
2205

2210
2215

2220
2225
2230

2400
2405

2410
2415

2420
2425
2430
2435
2440
2445
2450

PRINT CHR$(34);"CONVRT";CHR$(34);"--CONVERT BETWEEN NUMBER BASES"
PRINT TAB(10);"Enter positive numbers, any base from 2 to 16"
PRINT TAB(10);"(Enter a zero to FROM BASE? to end the program.)"
ENTER'IN'BASE: ENTER INPUT BASE
PRINT blank Line between header
! or previous conversion
IN'BASE=0 !set to zero in case of
! carriage return
INPUT "FROM BASE? " ,IN'BASE 'enter input base
IF IN'BASE=0 GOTO END'OF'PROGRAM 'if zero/carriage return, end
IF IN'BASE>=2 AND IN'BASE<=16 GOTO ENTER'OUT'BASE
PRINT CHR$(7);"INVALID BASE!" 'bases 2 to 16 only
GOTO ENTER'IN'BASE 're-enter base
ENTER'OUT "BASE: 1ENTER OUTPUT BASE
OUT'BASE=0 !set to zero in case of
! carriage return
INPUT " TO BASE? " ,OUT'BASE lenter output base
IF OUT'BASE=0 GOTO ENTER'IN'BASE 'if zero/carriage return,
! re-enter input base
IF OUT'BASE>=2 AND OUT'BASE<=16 GOTO ENTER'IN'NUMBER
PRINT CHR$(7);'"INVALID BASE!" 'bases 2 to 16 only
GOTO ENTER'OUT'BASE !re-enter output base
ENTER'IN'NUMBER: TENTER INPUT NUMBER
IN'NUMBER="" !set to null string in case
! of carriage return
PRINT "BASE";IN'BASE;'"NUMBER? "; !'prompt for input number
INPUT LINE "' ,IN'NUMBER lenter input number
VALIDATE'NUMBER: 'CHECK/CONVERT INPUT NUMBER
LEADING'BLANK=1 : ERROR'FLAG=0 'initialize flags
BASE10'NUMBER=0 'initialize base 10 number
FOR LOOP'1=1 TO LENCIN'NUMBER) 'check one character at a time
IF IN'NUMBERLLOOP'1;11<>" " GOTO NON'BLANK Iskip if non-blank
IF LEADING'BLANK=0N LOOP'1=LEN(IN'NUMBER) 'if not leading
GOTO END'LOOP'"1 ! blank, end

! conversion of

SAMPLE PROGRAM -~ NUMERIC CONVERSION FOR BASES 2 - 16. Page E~3

2455
2460

2465
2470
2475
2480
2485
2490
2495

2500
2505

2510
2515

2520
2525
2530

2600 CALCULATE'OUT'NUMBER:

2605

2610 CONTINUE'CALCULATION:
WORK'1=INT (BASE10'NUMBER/OUT 'BASE)

2615

2620

2625
2630

2800
2805

2900
2905

9000
9010

! input number;
! otherwise skip it

NON'BLANK: 'PROCESS NON-BLANK CHARACTERS
LEADING'BLANK=0 'reset leading blank flag,
! non-blank found
ERROR'FLAG=1 lassume invalid character
! until valid one found
FOR LOOP'2=1 TO IN'BASE !CHECK FOR VALID DIGIT using
! valid character Llist
IF IN'NUMBERLLOOP'1;11<>VALID'DIGITLLOOP'2;1] GOTO END'LOOP'2
'invalid character,
! try next
BASE10'NUMBER=BASET0"'NUMBER*IN'BASE+LOOP'2-1 !convert and shift
ERROR'FLAG=0 !reset--valid found
LOOP'2=IN"BASE 'no need to check
! more digits
END'LOOP'2:
NEXT LOOP'2 'next valid or end
IF ERROR'FLAG<>0 LOOP'1=LEN(CIN'NUMBER) 'if bad character
! found, check
! no further
END'LOOP'1:
NEXT LOOP'1 !next character in
! input string
! or end
IF ERROR'FLAG=0 GOTO CALCULATE'OUT'NUMBER
PRINT CHR$(7);'"INVALID BASE";IN'BASE;''NUMBER!" 'bad character
GOTO ENTER'IN'BASE 'found, display

OUT ' NUMBER=""

'message and
!start over

ICONVERT TO OUTPUT BASE
!start with null string

'remainder of number/base is
! base 10 value of next

! digit going from right

! to left

OUT 'NUMBER=VALID'DIGITC1+BASE10"NUMBER-WORK'1*0UT'BASE;1]+0UT 'NUMBER

BASE10'NUMBER=WORK"1

1"1+" to adjust for position
! in valid digits string
'new number is integer part
! of number/base

IF BASE10'NUMBER<>0 GOTO CONTINUE'CALCULATION !'done when new

PRINT'OUT 'NUMBER:

! number = 0
!PRINT OUTPUT NUMBER

PRINT 'BASE";OUT'BASE;''NUMBER = '";O0UT'NUMBER

GET'NEXT:
GOTO ENTER'IN'BASE

END'OF 'PROGRAM:
END

!start over from the top

'END OF PROGRAM
!go through the formalities

ALPHA BASIC USER'S MANUAL - INDEX

AL}
.

?

D .

ABS (XD

Absolute value

Account specification

ACS(X)
ALLOCATE
AlphaBASIC
Alphabetic character
Alphanumeric character
AM-100 dinstruction set
AMOS command Llevel
AMOS monitor level
Ampersand symbol (&)
Apostrophe

Apostrophe symbol (")
Application program .

Argument

String variable .
ASC(X)

ASCII

Argument Llist . . .
Arithmetic stack
Array allocation
Array default size
Array variable
Numeric variable

L] . L] L[] .

ASCII collating sequence

Index

3-2

2-7, 3-1
3-3
10-16
2-4, 3-3
10-16
A-10
8-7, 8-11
11-2, A-14
11-2

2-9

11-4, A-15
15-3, 15-9, A-6, B-1 to B-2

=y
1 1

1
~
‘N
1
-

|
W= NP NN =

-—-‘Ul-l-\Nl\l)Nm—\—‘

i
N

11-1, 11-5 to 11-6
18-3

18-2

8-2

4-3

4-1, 4=3

4-3

4-3

11-2, 11-5, A-17
11-2, 11-5

3-5

Page Index-1

ALPHA BASIC USER'S MANUAL

ASCII format
ASN(X)
Assembly lLanguage . « « «
ATNCX) & 4 e e e e o o e
Atsign (@)

BASIC . v & 4 & ¢ ¢ & o &
BASIC acronym . o« « « o
BASIC compiler
BASIC interpreter
BASIC language
BASIC.PRG . & & v & « « =
Binary data « v« &« « « «
BREAK . & & 2« ¢ ¢ a « « &
Breakpoint
Breakpoint interrupt . .
BYE ¢« v & 4 & o ¢ o « « &
BYTE(X) o o « ¢ ¢ « o o «
CALL . .
Carriage return/linefeed
CHAIN
CHR (XD
CHR(X) or CHR$(X)
Clock tick
CLOSE . . . « .« . &
COBOL language . .
Colon symbol (:) .
Comma separator . .
Comma symbol (,) .
Command file . . .
COMMON & & & &« &
Common variable
COMPIL . . v v & o o« o &
COMPIL display . « « « .
COMPIL.PRG
COMPILE . & & & ¢ « « o« «
Compiled program
Compiler . & o« ¢ o o« « «
Compiler mode o v« « o « &
Compiler option . « . . .

/0 c s e

A
Compiler option>/0 .
Compiling a program . . .
Constant
CONT & & v ¢ o o o o o &
Continuation line
Control function
Control-C & . . .
Control-C trapping . . .
Control-variable
COoS(X)

INDEX

15-1
11-4, A-15
1-1
11-4, A-15
8-7, 8-11, 18-4, B-3

to 2-2, A-2, B-1, C-1

10-5,
10-16
10-1, 15-2,
A-14

11-5

12-3, A-15
15-1, 15-7,
1-1 to 1-2
2-4, 3-3
7-1
10-16
16-2
10-2,
10-2

10-14, A-7

16-1, A-6

19-6, A-6, B-2

16-1

Page Index-2

2-1, 2-6, 2-8, 3-4, A-2, B-1, B=5, C-1

2-8

to 2-6, 9-3, A-4

N N
I\)Nm

-1
-1 to 2-2, 2-6
-9

~

2-8

~

:v\mrvlvivrviv-Afv-Alvcv
i
N-b\O\OU‘Ul—‘—‘NU"-‘

]
~
~

2-6, 9-2 to 9-3, A-4
2-7, 3-1
11-4
2-9,
17-3
10~4
11-4, A-15

9-4, 9-8, 17-3, A-3 to A~

ALPHA BASIC USER'S MANUAL

CPU Line clock . . . « . .

Creating a program

DATA
Data file
Data format . . .
Array structure
Binary variable

Floating point var1abLe
Simple variable
String variable

Unformatted variable

INDEX

Data record v« v v« v o ¢ 4 o o a =
Data structure

Data type

DATE . . & ¢ & v & o « &
DATNC(X,Y) v v ¢ 4 ¢ o o &
Debugging « « ¢ & & &« ¢ ¢ 4 4 .

Debugging features

DELETE . o v ¢ ¢ ¢ o « &

Device specification

DIM . . & v ¢ ¢ ¢ o o o &«

Dimension array .
Direct statement
Disk storage . .
Dummy command file

Duplicate Lline number . .

Editing a program
Editing mask . .
ELSE . . .« « . .
END o« o v &« & « &
End-of-file . . .
EOF(X) . & « o .

ERF(X) . .+ ¢« v o .« . « 4 e s e @
ERR(X)

ERROR
Error propagation

Error trapping . . « . .
Even address

Exclamation mark symbol (!

Exclamation symbol (1) .

Execution mode .
EXP(X) . &« & « &
EXPAND
Expanded mode . .

Expanded TAB funct1on .- .
EXpression . « « o« « «
Function with argument

Numeric constant
Numeric variable

Operator symbol

12-3

3-1, 10-18, A-6, B-5

1-2, 4-1, 6-1

1-2, 8-
1-2, 8
19-1
6-1

7-3
12-2, A-15

11-4, A-15

2-6, 8-11, A-5

2-6

9-4, A-4, B-1, B-4, B=6
2-9

4-3, 8-4, 10-2, A-6, B=6 & FER

4-3, 10-2
2-3, 101
1-1

16-2

2-7, 9-6

10-9, A-8
10-3, A-7, B-1
11-4, A-16

11-4, A-16

11-4, A-16

11-5, 17-2, A-16

10-20, 14-1

11-2, A-14
3-4

3-4

13-11

5-2, 7-%, 10-15, 11-1
10-15

10-15

10-15

10-15

Page Index-3

—

ALPHA BASIC USER'S MANUAL - INDEX Page Index-4

String literal« 10-15

String variable 10-15
Expression Llist « . « « « « « - « 10-15
Expression processor 11-5
Expression term . « . « ¢« « . « o 5-1

Extended TAB & v v ¢ ¢« v o =« = o 131
Extension .BAS 2-1, 2-3%
Extension .BAS t e e e s e e s 23
Extension .DAT e e s = s o « & 15-7

Extension .PRG e
Extension .RUN « e s e e s s s 2-1,72-3,2-9, 9-7, 16-1
Extension .SBR . . ¢ & « ¢ =« « « 18-1

[] l‘ L] L]

FACT(X) v v o« ¢ o o o 2 « « =« =« o 11-2, A-14
FILE 1I/0 statement 15-1, 15-4
ALLOCATE & &¢ & 2« 4« o = = = = =« 15-9
CLOSE & v & ¢« & ¢ o & « & « = & 157
INPUT & & & & & 4 o &« a = = » - 15-10
INPUT LINE . & @ v v &« =« = =« « 15-10
KILL & @ @ ¢ & ¢ ¢« o & = « =« « 15-8
LOOKUP . «v & & o« ¢ = « = « « «» 15-8
OPEN . & & v 4 o o o « o =« = « 15-6
PRINT & & o ¢ ¢ « ¢ = o « « « « 15-11
READ . & & ¢ ¢ 4 v 2 a o o « « 15-11
WRITE . &« ¢ v ¢ o ¢ ¢ &« « =« « = 15-12

File number . . . « & &« &« &« ¢« &« . 11-4

File specification 2-9

File structure . « « « o« « « « « 19-1

FILEBASE . & & ¢« 2 ¢« « =« « « « « 10-3, A-7, B-3
FIXCX) 4 o e e e o o s s o « « « 11-2, A-14
Floating point array . « . . « . 8-4

Floating point data 8-5
Floating point format 14—
Floating point hardware 1-1
Floating point instruction . . . 4=2
Floating point number 6-1
Floating point variable 4-1, 6-3, 8-4
FOR & v 4@ ¢ ¢« ¢ o o o « = « o« =« « 10-4, A-7, B-4 to B-5
Format string « v« v v o « « « « « A=-11
Formatted output 13-
FRECX) v v v v v o e a o n o oo 12=2 5FF af ()
Function . &« v 4 ¢ v o o o =« « « 111
Control & v & & ¢ & v ¢ 4 o« v =« 111
NUMEriC v ¢ v o ¢ ¢ o « a « « « 111
StPiNg v & & o « ¢ o o 2 2 « o 111
Trigonometric v« v« v ¢ ¢ « « « « 111

GETMEM monitor call . . .« 18-4
GOSUB . . & & & « ¢« & « ¢« « « =« « 1-2, 10-5, A-7, B-3%, B-5 to B-6
GOTO . & & & « « o o« « « o« « « « 1-2, 10-8, A-8, B-3, B-6

ALPHA BASIC USER'S MANUAL - INDEX Page Index-5

Hardware floating point 6-1
Higher-level language . « « « « . 1-1

I/0port & & @ & ¢ ¢ o o « « =« « 12-1 to 12-2
I/0 processing .« o o o =« « « =« « 11
I0CX) @ &0 ¢ @ o o o 2 o « « o« « « 12-2

1 « e« « « - 10-9, A-8

Index file .« v ¢ ¢ ¢ ¢ ¢ & & =« =« 1941

INDEXED v v v« ¢ « « o « @ « e o« « 15-6, 19-2, 19-5, A-10

Indexed Sequential File 19-1

INDEXED'EXCLUSIVE . « &« v « « « « 15-6, 19-2, 19-5, A-10

INIT monitor call ¢ « « & &« . . . 18-4

L U e « « « « 3-5,10-10, 11-4, 15-1, 15-6, 15-10, A-8, A-10

Input call . v & ¢ & ¢ v ¢ v &« « 11-4
INPUT LINE . & & & ¢ ¢ ¢ « « « « 10-12, 15-10, A-8

INSTR(X,A$,B$)« 11-6, A-17

INT conversion . .« « « « « « o & 6-3 (X O+
v -~

INT(X) & e e e e e e e & o « o = 11-2, A-14 ‘ /7 %) ;

Integer constant« .
Integer truncation
Integer variable
Interactive command mode
Interactive compiler . . . « « &
Interactive interpreter
Interactive mode . « « « & &« «
Interactive mode direct statement
Interrupting a program . . . « . -

Interrupting programs . « 2-9
ISAM & v ¢ 4 ¢ e o o o o «a o & « 114, 191

ISAM statement . &« ¢« v & ¢« « &« « 19-3

ISMBLD & 4 4 2 o «a « 2 o« « = &« « 19-2, 19-13

, 6-2 to 6-3

, 2-1 to 2-2, 10-1

, 9-7, A-3

PNV -2WWNW

KILL = ® e @ e e & e ° ° s s s e 15-8, A-9

Label = &« « &« « . “ e e s o = « « 3-3
Label name . « ¢« &« ¢ v ¢« & « &« « 1-2
LCS(AS) . & v ¢ & o o & e e e e« 11-6
LCSIX) & 4 4 v e o ¢« o « o « o« « 35, A-17

Leading blank . . + &« &« &« « « . . 10-16

LEFTS & & & & & & ¢ o o« « « « o« « 4=2, 11-6, A-17
Left-relative (+) position . . . 7-1

LENCAS) . & & & & ¢ o o« = = =« = « 11-6, A-17

LET « & & . . e s e m e e « « « 10-14, A-9

Line editing . « & &« &« & & « « « 23

Line label 2-7

Line number &« . . < . . . 2-3, 2-5, 2-7, 3-2 to 3-3
Linefeed . &« ¢ ¢ ¢« ¢ « ¢« « « &« « 9-8, A-5

Linefeed key . . .« « . . . 2-6

LIST & & & o ¢ ¢ o o « « . 9-5, A-4, B-4, B-6

LOAD . & & v ¢ ¢ o « o « . 2-2, 2-7, 9-6, A-5, B=5 to B-6
Loading a program 2-3

LOG(X) & & ¢ @ ¢ o o « « . 1-2, A-14

LOG10 . . & ¢ & v ¢ o« « & . 11-3, A-14

TR A

. NEW

ALPHA BASIC USER'S MANUAL -

Logical (Boolean) operator
Logical record
LOOKUP
Loop

Lower case character . . .

MAP & & ¢ & & o o &
MAP statement
Origin
Size
Type code . .
Value v & & ¢ ¢ 4 ¢ v o &
Variable name
MAP statement format . . .
MAP statement syntax . . .
Mapped variable
Mathematical operator . . .
Mathematical variable
Maximum Lline length
MEM(X) & & ¢ o o o o « o «
Memory allocation
Memory mapping . . . « « .
Memory partition . . « . .
Memory uSe. v« o o « « = & &
MID$ function
Mode independence
Monitor Llevel
MOUNT & & &« o ¢ o « « « o =
Multiple statement Line . .

. ag @«
.
.
.
.
s

Name terminator
NEXT & & o o o o o o « o «
NOEXPAND
Normal (ummapped) variable
Null byte (0) & & &« « &« « &

Null string« e
Numeric argument
Numeric conversion
Numeric function
Numeric significance . . .
Numeric variable
Binary . o o« o« « o « « «
Floating point
Integer « &« v v & v &« o &
SEring v 4 4 4 e e e .

Unformatted « . .
Numeric varible
Unformatted

Object code . . . ¢« ¢« « .« .
Object file v« v v v ¢ o« « &
Object program

INDEX

6-2

15-3
8-5,
10-4
3-4,

15-8, A-9, B-1 to B-2

4-1

8-11, B-3 to B-4, B=6
8-2

[B¢ S¥e
|
N N

i
S AN PPONONN

||
—_

U
N

2-7, 3-2
12-2, A-16

34

1-1 to 1-2

34

2-2

4=2, 71, 11-6, A-17

5-2, 7-2 to 7-3, 11-1, 11-5
1-1, 2-1 to 2-2, 2-8

B-2

2-4, 3-1

4-1

2-4, 9-6, A-5

10-4, A-7, B-3 to B-5

3-4

4-1

8-5

6-2, 10-10, 11-4, 11-7, A-17
11-1

5-2, E-1

11-1

10-19

4=2

4=2, 6-2, 8-4
4-1, 6-1, 8-4
4-2, 6-3

6-2, 8=4

6-3, 8-4

4-3

1-1, 2-5, 9-3
2-3

1-2, 2-1, 2-4

Page Index-6

ALPHA BASIC USER'S MANUAL - INDEX

ON = CALL & & ¢ ¢ o o o « o o @ .
ON - GOSUB . & ¢ o « o« = « « o &«
ON - GOSUB & &« v o & = & « = @ &
ON-GOTO « . « e s e e s
ON ERROR GOTO v « o = « « « = & &
OPEN &+ & & 4 ¢ &« a4 o 2 & 2 « = &«
Operator . . . ¢ ¢ o o & “ e e =
Operator precedence « o « o o « &

OUTPUT

Packed binary format
Parameter descriptor file
Parentheses . &« v & & & o ¢ & & &

PEEK .
Percent
Physica
Physica
POKE .
Pound s

sign (X)) & & & & & 4 . .
L block v & & o v o o o
L memory v v ¢« v & ¢ o o &

ign ()

Precision v v v v o « « « « =« « &

PRINT .

PRINT U

SING v ¢« v v ¢ 4 ¢ o v o

Print ZON€ v v v v v« o « o « « «

Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Prompt

RANDOM
Random
Random
RANDOM
Random
Randem
Random
RANDOMI
Range ¢
Re-entr
READ .

READY .
Record-
Record-

compilation . + . « . . .
debugging « « ¢ 4 4 & & W
execution « & & v & & o @
form . ¢ & & 4 4 0 . . .
indentation « « &« « & «
interruption
label v @ ¢« o ¢ o ¢ « « @
line & o« ¢ & & o« & P
PUN & ¢ o o a « o o « o =
statement

access disk file « ¢« . « .
access file
file type o & &« v ¢ & o .
NUMDEr o o o o o = o & & &«
number generator seed . .
number sequence« .
ZE &+ & v o ¢ o « a & @« & &
heck & v o v o & « & = = &
ant code &« « ¢ . e o . . .

number-variable
S12€ v o o « o o « .« e e

Page Index-7

10-14, A-10

A-10

10-14
10-14, A-10
17-1, A-9

8-5, 15-1, 15-4, 15-6, 15-11 to 15-12,
19-2, 19-5, A-10, B-1 to B-2

5-3

5-2

15-6, A-10

15-1
15-4

5-1

12-1

6-3

15-3

12-1

12-1

15-1

4=2

5-2, 10-15, 13-1, 13-11, 14-3, 15-1,
15-11, A-10

10-17, 10-20, 12-4, 13-1, 15-11,
A-10, B-3

10-16

2-4

2-1, 9-2, 9-8

2-4, 10-2, 10-5, 10-20

2-7

2-7, 3-1

2-2

3-3

2-3

1-2, 10-2

10-1

2-2

15-6, A-10
15-1

15-3, 19-1

15-4

10-17

10-17, 11-3

10-17

10-17, A-11

8-5

1-1

10-18 to 10-19, 15-1, 15-4, 15-7,
15-11, 19-2, 19-6, A-11, B=3, B-5
2-2

15-7

15-6

ot

ALPHA BASIC USER'S MANUAL

INDEX

Relative key .+ v v v ¢« v o o &

REM v v ¢ ¢ « &« « & s & s @ s & @
Reserved word &« v & ¢ o & o « o &
Resident monitor
RESTORE . & & & ¢ ¢ & & « o = &« &«
RESUME . & & & ¢ ¢ ¢ o « =« o @ =
RETURN . . . e % & s s 8 @« @« @

RIGHT®

RIGHTS(AS,X) .+ & v ¢ & o« o « = «
RIGHT (AS, X) . .

Right- reLat1ve () pos1t1on - e .
RND(X) & 4 4 a e 6 e v e e e e .
RTN instruction . ¢ v ¢« ¢ o« o = .
RUN & & & 4 6t e 4 e e o « o s &
Run-time package . . « « v « . .
RUN.PRG & & &4 & ¢ v ¢ o o = « o &«
RUNNING Programs . « o o o o « «

SAVE & ¢ 4 &4 o o 2 2 « « « = = =
Saving a program . . . « o « o @
Saving a source file . . . « « .
Saving an object file « « &« « . .
Scale & & 4 4 4 4 ¢ 4 4t e 4w e
Scale offset
Scaling factor ¢ &« « « &
Seed & 4 i i ket e e e e e .o
Semicolon separator . . . « . . .
Semicolon symbol (;)
Sequential disk f1le « s e
Sequential input processing
SGN(X)
SIGNIFICANCE .
SINKX)
Single-step . .
Soft error . . . 4 4 i 4 4 4 . W
Source code
Source program . « « « « = o« =
SPACES$ (X)
SPACE(X)
SQR(X)
Square brackets
Statement modifi
Statement verb . .
STEP & & 4@ @ ¢ ¢ ¢ ¢ « « = o & =
STOP & & & & i 4 e 2 e o o o o «
STR 4 4 4 4 & 4 4 o e« o « o = o «
STRE(X) & v & 4 4 4 4 e e e o o =
STR(X) & v v & o .
String argument 4
String array
String conversion . . . « . .« <
String data « . . . 4 4 4 4 e . .

m--.

Page Index-8

19-2
3-2

2-4, 8-12, C-1

1-2

10-18, A-11

17-1, 17-3 to 17-4, A-9, B-5
10-5, A-7, B-5

4=2

11-7, A-17

11-7, A-17

7-1

10-17, 11-3, A-14

18-2

2-1 to 2-2, 2-4, 2-6,
A-3, A-5, B-1, B-4
1-1, 2-1, 2-6

2-1 to 2-2, 2-9, A-3, B-5
2-9

10-20, 15-2,

2-3, 9-2, 9-7, A-5, B-5
2-3

2-3

?2-3

14-1 to 14-2, A-12,
14-1

14-2

11-3

7-1

10-16

15-1 to 15-2
11-4

11-3, A-14

4-2, 10-19, A=12
11-4, A-15

2-6, 9-8, A-5
11-4

1-2

2-1 to 2-4, 9-3,
11-7, A-16

11-7, A-16

11-3, A-15

7-1

10-1

10-1

10-4, A-7

9-8, 10-20, A-12, B-2
5-3

11-7, A-15

11-7, A-15

11-1

10-3

5-2

8-5

B-3

10-1

o

‘Unformatted

ALPHA BASIC USER'S MANUAL

String format . . .
String function . .
String literal . .
String nutl
String size
.Default size . .

STRSIZ %. o « & &
é??*ﬁﬁ”?ggaable . .

Array mode . . .

Single mode . . .

(_STRSIZ « » « o o .

Subfield

Subroutine
Subroutine Linking
Subscript « « « . .
Subscripting
Substring « « « o «
Substring modifier
Substring overflow

Substring truncation

Symbolic key
Syntax
Syntax
Syntax
System
System

error
parser
command .
function .

TAB v v v e v v o«
TAN(X)
Terminal «
THEN
TIME . ¢ ¢ ¢ ¢ « &«
Timesharing . . .
0
Trailing bLank .
Tree structure . .
Trigonometric
Type code . .

UCSS(AS) . .
UCsS (A
ucs (x)

data .
Unformatted

User impure area .
USING - - L] L] - L] L]
USING MODIFIER . .

VAL (A)
Variable . . .
Variable Length
Variable name . . .

variable
Upper case character

function

INDEX

i,

4-2

11-5
3-5, 42
6-2

4=-2

42
(4=2

%=1 to 4-2
4-2
4=2

o

-3, 10-2

, 11-6
7-1, 7-3

to 19-2

12- -1, 16=2

13-11, B-3

11-4, A-15

11-4

10-9, A-8

12-2 to 12-3, A-15
1-1 to 1-2

A-7
10-16
19-1
11-3
4-1, 18-2

11-7

A-18

3-5 .
6-3,
4=2

1f

, 11-3, A-18
5-2, 6-1

, 4-1

10- 20 A 12 8-3 T

Page Index-9

)Lt
]

C A e

?~
W

/

s

P

o

e
/f?/?fm”ﬂfﬁ 7, @#z"*ﬁijc#l{’(t

- - }f\v 31
ﬁWWJMJJth@L

4

ALPHA BASIC USER'S MANUAL - INDEX Page Index-10

Variable tree &« &« « . - 8N
VUE @ ¢ ¢ ¢ & ¢« « ¢ o o o« s = s« « 2

Word boundary v v« ¢« ¢ « « « « « - 8-4

WORD(X) v v & & ¢ ¢ 2o & o « o« « « 12-1, A-16

WRITE . & & o« ¢« ¢« o « o « « a &« « 7143, 15-1, 15-4, 15-7, 15-12,
19-2, 19-6, A-12, B-2 to B-3

XCALL ® @ 8 ® ® & e & e e ° o w = 18—1 ’ A—13
XMOUNT . & & &« f o o« ¢ « = = =« o B2
Zone « ® ® @ & @ @ @ ®e e ®» = = @ 10-1 6

