
Software Protocol for Directly Connected Disks
7 -for-8 version

1.0 Introduction

Karl B. Young, Michael Hanlon
Version1.1, March 28, 1985

This document will attempt to define the software protocol for devices (usually disks)
connected directly over the external drive port of the Macintosh. Other aspects of such a connection
have been discussed in two other documents: "DB 19/IWM to Rigid Disk Interface Specification"
dated 2/13, and "Notes on IWM Rigid Disk Interface Meeting" dated 2/27. In all probability, this
document and those two should be combined into one great specification as soon as possible.

We will address what appears as sections n and ill in the other two documents.

2.0 Handshake and Data 'Transmission

The biggest item in this section is that data transmission has been changed to be what we call
7-for-8 transmission, i.e., we get seven bytes of data for every eight bytes transmitted. A more
detailed discussion of this must exist somewhere, but I don't know the reference. I will try to dig it
up. Most significantly, the devices no longer need to worry about the HaBit being sent across the
HDSELline.

In order to support HOLDOFF under 7-for-8 transmission, the currently sending device
(either Mac or the drive) will resume transmission (when HOLDOFF is de asserted) with the group
that was interrupted. In this way, an SCC interrupt can be detected at the beginning of a group and
serviced without worrying about fmishing the group.

The actual handshakes for the drive will remain virtually the same. The one exception is that
all transmissions to the drive under the new protocol will now receive a "Fast-ACK", whose timing
is shown in the illustration entitled "Data Transmission from Mac to Drive" at the end of this
document. The other direction for the handshake is illustrated in "Data Transmission from Drive to
Mac".

3.0 Command, Status and Data Formats

I provide here the formats for Status, MultiBlock Read, and MultiBlock Write. The
synchronizing bytes ("sync-bytes") are shown in bold-face before the data (NOTE: since the
sync-bytes are not encoded in any 7-for-8 group, they will always have the hi-bit set). Items to
notice are that all communications from the Macintosh are answered by the so-called "Fast-ACK"
which notifies of correct transmission. A "Fast-NAK," (negative acknowledge) is always has the
value $D5, while the "Fast-~" (positive acknowledge) has the same value as the sync-byte
which was on the group just sent. A "Fast-ACK" or "Fast-NAK" is a type of sync-byte.

Status

From Mac:
From Drive (fast ACK):
From Drive:

<$AA><$03> <pad> <pad> <pad> <pad> <pad> <pad> <CHK>
<$AA>
<$AA><$83> <pad> <stat> <Identity Block> <pad> <pad> <CHK>

The identity block is 36 bytes long), and therefore a total of 42 bytes, or 6 groups, are sent.
Assuming a truly "packed" structure, the ID block can be defmed as follows:

ID_Block = packed record
NameString:
Device_Type:
Firmware Rev:

packed array [1..13] of char;
O .• $FFFFFF;
integer;

{ Name of device }
{ Device code = $000110 }
{ Revision # of fmnware }

Capacity:
Bytes.J)er _block:
Num _cylinders:
NumJ~ads:
Sectors.J)er _track:
Possible_spares:
Num _spares:
Num bad:
end;

MultjBlock Read

O .. SFFFFFF;
Integer;
integer;
byte;
byte;
O .. SFFFFFF;
O .. SFFFFFF;
O .. SFFFFFF;

{ # of blocks on device }
{ ... 532 forRe~}
{ ... 610 for Rene}
{=2forR~ }
{= 32 for Rene }
{= 76 for Rene } .
{ Number of spared blocks }
{ Number of bad blocks }

From Mac: <$AA> <$00> <count> <block# (3 bytes» <pad> <CHK>
From Drive (fast ACK): <$AA>
note: the following occurs "count" times

From Drive: <$AA> <$80> <seq #> <stat> <532 bytes of data> <pad> <CHK>

Note that the command includes only one byte for the block count. The (possibly multiple)
reponses will increment the sequence #, starting at O. For example, if the Macintosh requests 10
blocks, the sequence numbers will go from 0 to 9.

MultjBlock Write

From Mac: <$96> <$01> <count> <block# (3 bytes» <532 bytes of data> <pad> <CHK>
Fast Ack: <$96>
note: the following occurs "count-lit times

From Mac: <$96> <$01> <seq #> <3 byte pad> <532 bytes of data> <pad> <CHK>
Fast Ack: <$96>

In this case, when the block count is greater than 1, the sequence numbers start at $01 and continue
up to one less than block count; this is because the flISt block (sequence number 0) is included with
the command. The ftrst block of data is sent with the command in order to optimize one-block
writes, of which there seem to be a lot in the Macintosh.

Note that there are three bytes of padding between the sequence number and the write data when
sending more than one block. This is so that the data will line up the same during each
write-transmission, which should make it easier for coding.

MultiBlock Write-verify

From Mac: <$96> <$02> <count> <block# (3 bytes» <532 bytes of data> <pad> <CHK>
Fast Ack: <$96>
note: the following occurs "count-I" times

From Mac: <$96> <$02> <seq #> <3 byte pad> <532 bytes of data> <pad> <CHK>
Fast Ack: <$96>

The reads and writes are illustrated at the end of this document on the page entitled
"ReadlWrite Protocol".

In order to facilitate testing, we reserve one other command (called "Diagnostic") which has
the following format:

Djaenostjc

From Mac:
From Drive (fast ACK):

<$AA> <$04> <5-byte pad> <CHK>
<$AA>

Commands that follow the diagnostic opcode to the drive will follow a special diagnostic
protocol.

Data Transmission From Mac to Drive

Mac

Holdoff ___________ _

Rene

Data -------------~ ~ta) .. -------~ ~ta

t2 I t3 I t4 I t5 I t6 I

to -Rene will wait forever for Mac to respond to handshake.

t1 - Rene will send sync within 33us.

t7

)~---

I t8 I

t2 - Mac may assert holdoff anywhere in a group. That group will be ignored and will not be included in the checksum.

t3 - Rene will acknowledge the holdoff immediately after the last byte of the group is sent

t4 - Rene will wait forever fro holdoff to de-assert.

t5 - Rene will respond to de-assertion of holdoff within 18us.

t6 - Transmission starts with group that was interrupted by holdoff within 34us.

t7 - Data transmission time is dependent on the number of groups sent (8 bytes * byte time * number of groups).

t8 - Rene signals end of transmission within 3us of last byte loaded into IWM. Mac will received it one byte time later.

Data Transmission From Mac to Drive

Mac

Holdoff ___________ _

Rene

Data -------~ data)~------------~ data

t2 I t3 I t4 I t5 I 16 t7

to - Rene normally responds to Mac in 14us, but may take as long as 2 seconds if doing self test.
tl - Renewi11 wait forever for a valid sync byte.

)@»)--

I t8 I t9 I

t2 - Mac may assert holdoff anywhere in a group. That group will be ignored and will not be included in the checksum.

t3 - Rene will acknowledge the holdoff immediately after the last byte of the group is received.

t4 - Rene will wait forever fro holdoff to de-assert.

t5 - Rene will respond to de-assertion of holdoff within 14us.

t6 - Same as tl. Transmission starts with group that was interrupted by holdoff.

t7 - Data transmission time is dependent on the number of groups sent (8 bytes * byte time * number of groups).

t8 - Rene acknowledges end of transmission within 3us of last byte received.

t9 - Rene will send ACKINAK 35-4Ous after handshake. Mac will receive it one byte time later.

ReadIWrite Protocol

Multi-Block Read Command:

Mac I AA I 00 l#b1ksl' block (h,m,l) I pad I chk I
Rene I AAlD5 I Fast ACKINAK

Rene I AA I 80 I 0 I stat I data I (pad) I chk I

Rene I AA I 80 I 0 I stat I data I (pad) I chk I
•
•
•

Rene I AA I 80 I #-1 I stat I data I (pad) I chk I

MuHi-Block Write-WriteNerify Command:

Mac I 96 I 01 I#blksl block (h,m,l) data I (pad) I chk I
Rene 96/05 I Fast ACKINAK

Mac I 96 I 01 I 1 I pad I pad I pad I data I (pad) I chk I
Rene 96/05 I Fast ACKINAK

Mac I 96 I 01 I 2 I pad I pad I pad I data I (pad) I chk I
Rene 96/05 I Fast ACKINAK

•
•
•

Mac 96 01 I #-1 Ipadlpadlpadl data I (pad) I chk I

Rene 96/05 I Fast ACKINAK

