b)ivéer Cwrnocetrn

B ock b/)ts RAM

focr JOretrnes

|

75 /o THER BoARD

Ve " 7::/ st e
b2 4 M o LA
M/‘k 247’6, /zlé’m
Sewic-| | e 2k 8k
DéSéouc gg AAm £ Prom

28

S TWTE s $EUr (o TRO cL R
49 Comrv7er : Kpm fom, Sxo, CTC

b) 7//)///3 773‘7—}

Z riscover Y
4) DEFEerS — S'mmu (A

V) NisE

Q) Sémvo Freons
a() nra Cornec v

o
a

t Q!
42.382 100 SHEEIS 5 SQUAR|
12-30? 200 SHEEIS 5 SQUAR

NATION AL Hetn m G @

OrATE AU HlE

L SYWeHnovj2ATHY Fo DSSA |
C. FEnforms fieno, LRiTE Fonmar fio ferier
2 CRC/ECC Geutn priw

a) Ernon Verecron

o Lomas / Sron£s Qr,}g/m; 2pra 7%624:.. Dick
(4") rocwer Ok

Q) Dereers wnbd sy f5 b ey
| Rod/é &

A_.\cS.\ ‘

ow . . RIORNBYAL R

lomdiad/ -

WISy wdq,ﬁmanﬁ\ F TOaNg]

)

ISP/ [“ O AT/ Wntyo

:&\S\d% : W) 0 JAMIIDy - 1 oty snapry: T UM
Bl ol 10N Pl - JIMON Yy 18031 Ob) NdEY (Y 7Y
. .\.\.\S!.I,/ .\\.\
) o~/ A -/
RUZRELE S P S / D1 B e Yy
o ey P k PA AL)& 1A <h ¥ AEMUE W ST R 1Myang vA AL <L Lwvis/
RN ;NI INDNE . >
R — \.\«.\ ;z\/— *srs ,/.I/ﬁ. 4\\\ ////l
NAHAN 2 TR T d U
Vi) ¢ ri\isu Loz Iniigy
MY bayole:
| \lﬂ EREE s
oty § APL A ks il ORI EMIY |
o // ..\\
. .
, 0 [zl
AOHAL Dgy fcrp: [Indve 15313 ‘ot/ 0 =10 b
%QE\ Uray ‘o 1bay ‘otz/ : oY Y2y vs
- - N4
e /// \\\
kz..d._,,_.,a\m I 8 o _/\A! i [112)k Ik N/
AN L =k w\,\\ /&\, X 2l S AnoaNg s» IR L £A L ST SO AN -
S NAALS fedtrrs
Vv, oy . |lvtr2ud 17/C)

WELS

| . ! TR e

Narronac

ED

28 Olteariw ¢ Pesn [Tean (o senér)

Bes _
MIECL = FARSE] MSEcP = Tl { Mem —> 23}
Cono “BurFFer w i HEAoel

w < ¥WB D = - Theck Brre
< Mwe> = lo- Tpmk ByTE
< #043)_ L= :

<Hi- Mok Dz NeRD Sccecr
<Up - N €D = SEiroe Momver
<¥og > = zwveeT(<Eog>)

< 2505 = ok (< #ocd)
<E£/0> = goverr (< ¥ond>)
<HE [> - #M

Py

Ser-v/r Srtre HRHAIE

NSEC L = TRl ; MSEL: = BISE { Meny <> >/5k)

dm = Yorpir foar = &L

Qrwe = fasE [2Lk REaD| ; FMENL = FaLSE iMo fonmar]

TA A2nmpc. MEL) OfIELA TV :
THES ROMIRH = FRLSE
ELolE Roport = Tk { DovT cane AboT KHeAser'l

Toec ok Secror macie | foar3, 3.4 7

Poee ok Mr(Secroe MK)

STRRTL 1= vral { Tued sTmre MAckwsE o |

WARF foe SEcror JodE o TimEoer
T gin £ oo THELS Excesrraw’
LA~ SEcrom DolE
THES
RERO STireE MRcsn STmrUS
ZA STHTE P THES HERIEC K/ nres / Bar Yo7 Bl
F Srare AR =
THEL
Disk DATA A Tw Aon (¥19 - E22)
CRE. A7 fhm Ao (# 22p - F22.)
Ecc #r o Hr(F o2l - T234)
IF CC EXNOR. THEL Exc /7o

ELSE
Vktioe) STRTE EXCEFT ol
S7ARTL ! Z FdesE { RESEy STAFE HMACHIE

MTE! ZE THE uas A READ HEMER SfeLATini THES THE
BETEs 0 flan APON K& fplE IS GERE REsACED BY
THE BITHS 4 THE HELOUL SPAE o) THE sk, L
y -

TSI T COETE S, WS S

AR 9) ARE.

/ /af f,dr&c/ﬂa(fRorvcoc
q) PesFiel, Dpciosr,s , lyers@eock.

2. Conrroes Srare AHINE, S.euo
<) Basie Disk fuverrods

‘) Pd::/r/od/,a(.
3. Tecoverny

< PERFOAMAYCE.

|

QZ:(//;'/.»?-C./.&AT/;J/

A Boor STrAP A Few 28 neg/iriars
2. TESr AU 38 nké/sTERS

2 Srack, Cpee, Arruew 7Es7

z:’//;wi(/é-é' %/‘ Globat VARS

& TAm TZsr

6. Efrtom TEs7T

7. oron SPELD rz:r{ Revénse Zrz.wr}
& Séere GCuvr

?. SéEnwo YEsT™

/9. ﬁ’m//&hﬁg T&sr

N oo Spane Trsce

/2. Scad

255 l 238
Seace | 256
256 . 189

L soms — | .smu/ 256 Blocks
20 mE =3 | starg/S/2 Blocks
O M& =5 | st/ 02d P locks

2. A Block cs SPraxko iFF:
a) Vaco DATH s Avaiascs
b) 7He Block s 4 fano Dereer

3. 76 Toral Blocks AVALLAME o SARWL
() SPANE TABE /¢ lochATko o 2
by 74 <efr Fon User Dars

A A T 0 O P S

| |

ZTERCEANIE
/A AR lyiockTs fonmATTED Z:24

2. CHPRLICITY Eisr 7o LoGromcs
LA TERLERYE)0 ~D b Sedrs : 1

3. OFfser Secron ¢
) Ur » /€ Secrvnas
b) Aeno &, Hewo 4 wsercvoeyr

Crerwoer ffeno f Secro ? |

“Su—

Cedeon Arasy
4/ Jt’ Sc.ﬁ: éd ['4

-

_ and
Theory of Operation

Revision 7.0-9

June 8, 1981

¥

idget Tirmware Specification

o

rlnlmmmﬂm

®1l.Seript Widget Firmware Soecifidation _ Page 3

e'Profile“Interface:

oo - I
A more complete description of the Apple/Profile interface wav be found in
document "EXTERNAL REFERENCE SPECIFICATTION (E~R.S),PIPPIN'WARDWARE" bv
Woolley and Wol fgang Nirks, dated April 16, 1981,
. |
2 4re 5 coatrol liges to/from the Apple Interface ard:
Lo Papizy i
This line is | bit of odd paritv (even paritv across the cable VY, The
Interface Card 1is responsible Ffor monitoring t4hig signal: the
controller calculates paritv onlv when it sends a word across the YHus;
the controller does not check parity when a word ig sent from the nost,
instead the parityv bit is is. generated once more ion the controller sidea
of the bus and then routed back to the host.
A o I Command/Attention: Asserted hv Yost, Active high)
This siznal is one of two Randshake signals acrogs the inter®ace Yus.
Keep in mind that aven though the- host and contraller ars rwo
1tonomous machines, the host 1is alwavs'considerEd the master and the
-oatroller the slave (in this configuration), When the host wishes
Lo initiate 4 transfer to the controller it must F{rse check {¢ 33v ¢
discussed bdelow) 1s active. IFf 8SY is active then the Yost must waic (.
hopefu@[y it will set g DeadMan timer and catch a "sick" contrallar)
until 8SY is ngo longer active,
3. 8SY (Busy: Asserted by Controller, Active High)
T™is signal is the dual of CMD, 1in other words this is the signal with
which the contrdller can hold off the “host Ffor an indefinate neriod of
time while it 1ig "BUSY" performing some- task. s
4. STRB (Strobe: Asserted “v the Host, Active Yigh)

Strobe is used Lo signal to the controller/hast palr that data {s valid
on the hus.

5. R/W ¢ Read /Write: asserted bv the Host, Writa is Ac:ivg;pr A _
"his signal g used by the Host Lo indicdte to the coantrolisr . which
direction data is to pe 30ing during a transmission. Read is used r»
direct data out of the controller iato the host and the ooposi:za

condition is true for Write, t
; .

2 4Ar2 two modasg of data transmissian on the interface Yus, singla=hors and
Q2irace ‘lemorv Access: mul tisle Svta transfar, the wumMber 3F Serag
ST ed 1s up to the host)+ 30th modes ara tavisihle to the contrallar:
12 Mvra transmission !s used L9 communicate 4ifectlv,witﬁ the aantrallar ¢
» Tead statug or lown load commands Y, whila My §s used to transfar qjarg
383/ Sram the controller’s Sufsr gpace. In-eitver sasa r-p cantrallar
LY when i sees Tp becﬁné-acfi?e and Holﬁs IO oacnive qmnit ie g

#*l.Seript Widget Firmware Specification oo ' Page 5

Profile'Communicationﬂ?rotocol:

S R AT '
The following is an explanation of the protaeol that is used to orovide
communication between the host and the contreller: -

Some exnlanation of the svmbols that T am using is probablv called for at
this noint.) ' ‘

TS mand

hraciket swvbols meana that the information faclosed wit“in thenm
AN

QO g

-

Fote

[Y

». * The squars bracket swvmbols mean that F“e informatinn faclased i3
Ttinnal,

’

'~ The vertical bar svmbols is used to indicate an alternative or "OR"
)ndition. %or example, AIB can be thought of as "Zither A NR 3",

==t This symbhols is used to indicate a defiﬁicion or aquivalence.

B : "
, * Curlv brackets are used to denote comments.
* ¢ The plus sizn is as an addition svmbol.

ULL" : This kev word Indicates the emp(y Set,lor in some cases, the Fact
nat the function whose value is YULL can he ignored. An example is:

Argle-Barglg praQULLY

- e ‘

ssentially vou can forzet that ArglefBarglelexists for this context.

bd

“l.Seript Widgef Firmware Specification> . ' Page 7

-

THEN Instruction"Byte trm ' '
Read"1p | :
Read”ControllerﬂStatus I
Read™Servo¥Statys |
Send™ServoCommand |
Send®Seek | '
Send™Restore |
Set"Recovarw
Soft'Reser |
Send"Park |
Diag®Read |
JiagMReadYeader 1
Diag®Write |
Set*Buffer’Ptr_l
Read¥SpareTable !
Write®SpareTable I
Tormat¥Track |
Initialize®SpareTable]

‘Read"™Abort¥Stat - |
Reset¥Servo |
Scan >

ruction'?arameter'String tt= { This string is instrucetion dependent, and
be formally specified at the same timg¢ as the individual instructions. 3

¥Byte ::= ({ This byte 1s the ones-complement of the sum, in MOD-256
metic, of all the bytes including the Command®Ryte }e

2 E
R

N . : | .
1l .8cript Widget Firmware Specification , Page 9

TID ::= < 340 >

ruction’Parameter"String'::=<§ULﬁ>, o
diagnostic command requires Widget to deliver to the host some device
ific information. The structural 1avouq}of the data returned {s:

“hils identitv Siock is dafined nv the data structures contained wirhin
vou will note, fowever, rhat 4 comment Is eiven exnlaining the tvobe of
SLUT2 o0 4 ziven elsment and rinze oF Hyeag [§f the entire structure is
Mt of 45 4 linear Arrdv of hetas 1 -har include the structure. 4in example

f

ameString { Zirst element to be defined. helow } which is a 13-charactar
1 string, and is Located in bvtes $O thry SC of the returned block.

/

Widzer=13 T4 Bveas/sdn:sac; Ascit String '»

ameSiring

DeviceTvpe ::= (Device.Widget+widgec,Size*widget.Type ['1 Bytes/spD:sar >
Device.Widzet ::= <30001 { 2 Bvtes/sl1P:s11 }> :
Widget.Size ::= <(Sized]7 I S1zeM20 | Sized4g { 1 Nibble, Rvte $12/bits 7:4 D

Sizedld ::= <5p0> '
Size%2) 5L
SizeM™a@ ::= <¢329> ‘ :

Widget.Tvpe ::= <Svstem | Giagnosﬁac { 1 Vibble, Byte $12/bits 3:9 1>
Svstem ::= <SP0>; This refers to the type of firmware that is imbedded in
Widget., 7 : °
Svstem firmware will net allow the hpst to Format, WYrite®SparaTahle, ot
Initializ&"SnareTable;,Uiaqnostig firmware will.

~

Diagnostic ::= <3@1>
Firmware®Revision ::= <{ 2 Bvtes/sld:sil }>

capacity ::i= (CapP1d | Capd20 | CapHug 1 3 Ivees/S17:814 'S
Car®1d ::= <5004C20> ' E
Cap®29 ::= <SPMIRADS ’ . B -
CapM4d ::= <3013900> ‘ ' ‘ ‘

vtesMPerdBlock :i= < SA214 { 2 Syres/sIS:lA 1>

umber0f¥Cyl inders 1= ¢ Cl¥#1y SYLN2D 1 Col¥4d f 2 3vgas/3[TiiIR S
ColM1D ii= 24700 , '
CTle2) = (30200 o .

Cylead 1= <5pLpL>

mbar¥0ivYeyds r:m 2392 ¢ Il 3vre/s1o 2>
umMberYOiWSactors iim < Serp®1p SCLr¥lD v Scur¥4d L1 Fdraiila S
CSesrYlY i= 2l Co

T S s
I o W A NP SN

m

AN RS N ;

“«

Read%Controller®Status ::= <s01> L ,{

Zverv time 4n operation completaes ! either successfullv or exceontionallv }
Widget will return what T refer to as Standard¥Status, thus allowing the Host
'svstem an onportunity to change {t‘s flow of execution hased on state of the
Stdatus. ‘lo¥mally, this Standar4"Status is all thdt s necessarv to ensure
continunus nperation. In the exceptional case, or when the Yost svstem 1is
emulating the controller’s functions, additional information concerning the
¢ te of Widget is mandatorv: without it the Host simplv could not make an
Opcimum choice in deciding a course of action. '

' Controller'Sta;us is then a means for the;Hosc svstem to tnterrogate_widqet
further, Zach Status { with the excaption of Abort¥Status, which {s a severate
command and is discussed later {n this docyment } belongs to a homogeneous
data structure: namely a four byte quantity containing a hit map representing
the various exceptional conditions {. active high } that 1is available as the
first four bytes read from the controller ~upon completion of the current
command . ‘ o |

There are seven status’ available to the Host svstem, The Host requests a

specific status by setting Inscruction‘?arameter‘string to the wvalue
corresponding to the status needed.

[F (Instruction®Byte = ReadNController™Status)
THEN Inscruction'?arameter'Scring HEE B

Standard®Stacns ¢
Last¥Logical®3lack !
Currenc*Seek'Address:l
Current®Cvlinder |
Internal¥Status |
StateMRegisters |
Zxceotion®Registers >

The “our Hvta fasnonge Lo each of the ahave status racyests

Result ::= < 3vted 3veel Avee? 3veel >

—

. | .
Firm¥2,Script Widget Firmware Specifica;ion : Page 13

Last¥Logical®Block ::= < 3p1 >

Byvted < sp9 >

Bytel ::= < { Most Significant Byte ofqugical‘Rloék"Number } o>

Bvte2 ::= < { Middle Byte of Logical¥Block®Numher } >
3vee? ti= < ! Least Significant 3vee n?lﬁogitiIWQank“Wnﬂker SN

Currant4Seek¥address ::= ¢ 3542 >

Bvted ::= < Most Significdant Cvlinder Address > ,

3vtel = < Least Sizniicant Owlinder Address >
Bvte?2 = { Head Address >
Bvte3 = < Sector Addrass >

/-

Current*CyLinder = <593 >

{ The Current¥Cvlinder differs from the Current?Seek™Address in that it is
perfectly reasonable for the Serve to have placed the heads on another track
undet certain circumstances; f&; example; the drive may have been Humped)}

3vted ::= < Most Significant Cvlinder address > »
Bytel ::® < Least Significant Cylinder address >
Ivtel 1:= < 300 >

3vte 3 :1:= < 3P0 >

——
1 O S

Firmd2.Script .'Widget Firmware Specification = ' Page 13

Bitl: Ram®Space®*® enabled , :
Bit@: IF active THEN controller LED should e 0N

{ The RamWSpaces mentioned above are 5 2k address spaces overlaved on top ot
one another to provide the controller with Fhe ability to %eep several di

Slocks temporarilv resident in ram. At the time of this writing, however, onlv
Ram*Space®? is heing used. } ; : '

3vred i:i= < ! Registar: oﬂ“*v‘lﬁ'*CPchs“Do ki
Bit7: CrcError { active lLow }
{ this %ir {3z wvalid OVLY when the contrallar state
7nachine {5 “OT ia reset, which should He every ti-me
trat this bit is read Yy the host. Therefore, iF t" 3
s

i
status bic indicates a CrcError, then something ha
croaked., The normal way for the host to check 1f a
Cre or ®cec error has occured 1is Lo examine Status:
mreentionRegistars which are ficussed helaw. * '

Bith: YWrite®NotWalid ! active low 1 o
[as {n Crefrror, this Bhit is valid onlv when the
.state machine 1s NOT in reset. The iaformation
expressed by this bir {s converted into a tvme of
ServeError, vhich is . found ia Stagus:
ZxceptiondRegisters. }

: Bit5: ServoReady . .
Bit4: ServoError k
o { the servo s:a:ua bits lis:ed above ara further
q;plaingd ia Appuudix . Al . . Serve Processor
"Docuaentation. Fssennially the two bits combine to
form four possible servo snates, the normal condition
. ls ServoReady AMD (NOT ServiT.oi.. .)
:d Current controller stAte~macH1ne state.
as in Crefrror and ‘VriEA’Vot’Valid these =ta.us
hits are wvalid onlv when the state ~ag=>i~e i=e NINT in
reset, and , should Lead 399 any other time. .l .

On the surface it appears chat this bvne {s” or lxmited use for non redl- time
situations. It 1is, however, {invaluable in trv{ng to decide 1if the <ervn
Processor is ‘tealthy, wealthv, and wise. It also ormvides a ~eans “or
diagnosing a sick state machine. . - ’

N O AV T O 0 O T O 5 5 W0 OO O 2

Firm¥2,Script .- Widget Firmware Specification

Read®Servo®Status ::= < 892 > | ; :
T < 36,2482

Instruction”?arameter’String = K3 L2003 L4 15 1 A0 7 0 as

, o Lo
This status command 1is used to interrogate the Serve Processor ia much the
same way that Read™Controller9¥Status 1s used. Tn fact, the form of the result
is the same four Yvte hi:z=manped quantity., :
This tommand L3 oaf ~articular value ta 2, diagnogtisian that {: iataras
in “oicking-ibout’ with tha S8rvo processor without Zismantili=z iiset 4

i 3
subsvstem. Refer to Apoendix A: Servo Processor Documentatinn far 4 complere
description of the wvarious status’ available and t-air resulting hit
iescriptions.

Send®ServotCommand : := < s$93 >

Instruction“?arameter"String t1= { Bvted Byrel B8wta? Ryeal S
Y mally, the Yost will allow the controller Lo manisnlate the servn sracessor
1. order to perform useful { or mavhe not so usafuli! \ weri, ?or'examole,
let’s suppose that the Host svstem wishes 0 move the disk 4drive heads “rom
one track to another. Under normal overating conditions the orefarred wav to
perform this task 1is to useé the Send"Seek command ! explained helow 1,
However, the Host has the capabilitv to bvpass the controller and direct the
Servo processor. Indeed, the Host can {ssue the servo command to positioh the
heads { via the Send"ServoMCommand } so that the seek 1ig completly transpmarent
to the controllar. The implication of this command' {$ that the Host can gain
gven more control of the. system 1f it so chooses. - ‘
A more complete description of the Serve Commands can he reads in Appendix

A Servo Processor Documentation,

- ;

Bvted ::= < S¥Command + SMDirection + Hi#Magnitude >
- S¥Command ::m= ¢ .

Iffset =

Aiagnostic ' e -

NDataRecal

ForfhratRecal

Access .

Access¥Nffgat .

: Tome
N€fset 1= ¢ 312 > - v L v

The Offset command allows the Host ts microsten the meads ia aisver
a4 nositive or negative 1itection from the centar sf the tracl., The
vidget Ti{rmwars ioes not make -1se 5F this fagtara! T have {astaad
~2ft tmis ts a2 more snecific TAta tacovery arszram thar iz pan he
the Jost., The ralie and iiracoisn. 9% the micrsstan irs fanc -a -ua
SAron 2racasgsar in Ypran, ' B

.

Firm‘Z.Script

\ ‘ i .
Widget Firmware Specification Page 10

S¥Direction ::= ¢ Positive | Negative }

< $p4 | move the heads toward the outside diameter P

= < $00 { move the heads toward the inside diameter } >

Positive ::=
Negative ::

SiMMaonmitiy

Iricks o>

o2 P VD move the Meads 4 Multinla 55 263

.
o
i
N
w
—
~

dvtel :i:= < LowMagnitude ::= 2..255 >

1i™Maginitude + Low#Maginitude, and S¥IDirection establish

the relative
distance the heads must move to arrive at the target track.

Bvte2 ::= ¢ Offset™Diractinn + Auto'Ostet‘S?itch + OfFSEQ*VaznitHde >

-

©--5 command bvte, when wused with the ffset command, establishes the Aegrae
and direction of microstenning. :

< Positive | Negative > - _

= < S83 [offset towards outside diameter } > "
= < 300 { offset towards inside Aiameter } >

1

OffsetfDirection ::=
Positive ::
Negative ::

-

Auto®Offger¥Switch ::= NN | OFF S

ON,::= < 840 { cturn dutomatic track,centering on without an
access command } > OFF 2i% < 390 { do not auroe track center on
this command } > .. :

>
-«

OffsetMMaginitude ::a ¢ 3..32 >

r v -
Syte3 ::= < Baud¥Race +‘?ower'0n§3e52c‘>

n

3aud®Rate ::= < 19,5k¥8au4 I 37 AxM330ud >

The serve ‘comes “up’ at 1903k saud hecaude. 2° -te

tas:
equipment used 5n i1t 9efore It {s integrated iatn 4 svstam, |
Once 1t is running with a eoncrollar, ‘“owever, it is TN
continuosly at 37.%k baud. This odaramersr is alsn 4 ~ie
Misleadiag in that snce the serwn tas “aen 1314 s z4 w4 3T iy
stowill Yoraver aofs {andra this DAL EMEL2r: lm yther worigs -
is imvossiyle 'to 2m “ram i“e;lﬁizﬁer Mdud rate Ty tha T ayen

vithout rasetiag the servo nrocessar,

R Y PO PO USRS 0 S0 £ AN SO —

Q

cenddSaek i3 ¢

ira?z.Seript “idget Firmware Specification Page 22

Bs >

oy

InstructionHParameterﬁScring ti= < HiCyl LoCyl Head Sector >

Widget’s SendWSeek command allows the qost system to place the heads ove
any track on the disk. The value of the seek address sant 1in t!
farameter string is used read/write a block of data using the diagnosti-
commands for those functions. Tor example, for the Yost to read Cvlinder
l, Head 2, Sector 18 a Seek¥Command would be issued For thar Pﬁmhlﬁ-lt’f"'l
orf "Vl"'dP" head, and sectnar ! 32441 @ |9 I 31'-9‘ Mvoa N aa%ta
explained 3elow }.

or
[{1] '1

S A O A s
el

RO S A R OO S

4 O W SO RS A

TirmA3.Scriot Widget Firmware Specification Page 74

Set®Recovery ::i= < 306 >

a}

Instruction“?arameter”Stringv::t < ON | OFF >

ON ::= ¢ $01 > - | N

OFF ::= < 309 > ' -

: :

To the hest of my ability T have attempted to make the exception handling
Sharacteristics of Widget a binary set: either Vidzet handles avervthiag,
5r the Host svstam does. The command Set¥Recoverv is the Yost’s linx wizh
this all or nothing world in that it {s through this instructisn that the
Host can gain control of the media. When Widget comes up after Yeing
r2set it assumes contrnal and sets Recoverv to he AN, The Host s7stam mus:t
overtlv change this state { via Set¥Recoverv } if it wishes to emulate a
different exception handling criteria. Once Racoverv is IF7, the
controller will alwavs fuil in an operation if an exception occurs: the
dost svstem MUST assume responsibilitv for ALL erroar handling.

-

|

lrm¥3.Script Vidget Tirmware Specification Page 24

SerdfPark ::= ¢ 593 >
InstructionParameter¥String ::= < NULL >

. : : |
When the Host issues ‘a Send®Park command to the controller the results
are that that the heads are moved off the data surface and held verv near
the inside d4iameter crash stop. The difference. ‘hatween this command and
the Send"Servo“Command' Home is that Home 1is performed ‘open-loop’ with
the crach stop as it’s reference point, while Send¥Park 1is an access
command t> 3 specific trac<. The net result {s a fairlv heftv saving nrf

time: the access command can be an order of magnitude quicker taan
Home /Racal.

“irnM3 ,Script -Widget Firmware Specificac}ioh Page 2%
Svac :i:= < 39120 >
/
»
-«
14 . -
) N
*

O T L L e OO -

1y

. - . | .
irm#3 , 3crioe -Widget Firmware Specificarion Page 10

by

Setd3ufrfarAnr = ¢

9C >

L7

Instruction”?arameter"String trw (< HiAdr > ¢ LowAdr >)

diadr ::= < Most significant hvte of buffer address >
LowAdr ::= < Least significant byte of buffer address >

The Set"Buffer?Ptr command {s externally [1in the Yost’s point of
7eds 1V {dentical ta a Read commanﬁ: The Yost/fontral!ar hands-ake
TDSE8Y 3 faw times with the Approoriate responses and rhe Yog:
reads froam the controller’s buffet ared to receive data. In this
instruction sequence, however, the host does not raad a block orf
data from the 4isk, Sut rather an arbitrary aumher 5f “vras Sram an
arbitrary location {n the contrnller’s ram space. The 9ost also has
the ability to write to this ram space - in effect trashing all of
the controller’s brains if it SO d@sires. The intent of this command
Is to allow the Host to perform diagnostics or read variablas tnat
Ar2 atherwise not available,

"1 .
:

|
#3.3erine Widget FTirmware Specification Page 32

though 5f as a linear arrav of bvtes, the 4 2:r {3 us o
index into that arrav }, To arrive at the actual ind X
value within the Heap, the Ptr must first he multiplied hv
o - . .

sour. : v

-t

D

M ¢

When a disk is formatted and Ffresh data is being written to it, each
logical block is asigned the first available phvsical “lock on the 4isk.
Therefore wvou would expect that Logical3lock(2 Y would occupv
PhysicalBlock(@), L(1) ==> P(1), etec. There are instances, howevar,
whan 1 block of data aust “e raelscatad ts another snacs a1 the A3k <har
ioes not follow the original progression ! far example, the orizinal
Space was cdafective ;. 1In order to "find’ these relocated hlocks in the
fitnra 4 record must be kept as to whera all these relocatad “locks have
been put. This record takes the form of 128 linked lists haviang the Zorn
HeadPtr(n) =--> LinkedList(n), where a := B..127. The algnrithm for
deciding whether or not a LogicalBlock has been relocated is to extract
bits 15:10 from the LogicalBlockNumher and use it as an index into the
A2adPer¥arrav, I1f the HeadPtr associated with this index wvalue {s il
tien LogicalBlock has ndt been relocated else use YeadPtr.Ptr to searah
the linked list corresponding to this-HeadPtr value. Vow to decide if che
LogicalBlock has been relocated a test must he made as the linked list is
traversad v comparing the Logical3lockNumber’s bits 9:2 to the currant

List element’s token value. 1Lf thev match then LogicalZlock hXas bSeen
realccated and it’s new position {s a multiple of the list element’s
pesition in the Heap. o / o)

SpareCount ::= < $@Q..S4C 51
BadBlockCount ::= < 30@..%54C 5

B3itMap ::= < ARRAY[#..54B"] of 3its:> ‘
The bit map iLs used to_ keep a record of which spare. hlocks are
occupied, and their locations on the disk. »

Heap ::=%< ARRAY(9..$4B | of ListSlement >

ListElement ::= (: :
< Nil+l'sed+Tseable+Spr*TvpetNata¥Tvoe >
< Token > r . | t ’
< Prtr >) - ‘ -

Nil ::= < 380 { IF Nil THEN Znd¥06¥Chain L
Used ii= < $40 O o .
Useable :i:=m < 3520 > ‘

Sorlvoe ::= < Spare ! 3adBlock >
Spara ::m < 319D, :
3ad3lock i:= < 390 >

DatafTvpe ::= < Data ' SparaTahla >

v Data f:= < 302 > :
SoarzTable it 7 3R

L) S 0 T O s e

|

Vidget Firmware Specification Sage 34

"y

P
'S
~

)

21

[

(6]

rr

GrilteMSoaraiTabls t:s ¢ Sf0)

5]

>
L | e
Instructionl?arameter"String ti= (K SFR > < 578 > <'83C > < SIE >)

This command allows “the Host to 'EoyCe' '@ new spare table on the
controller, and is executed just like any. of the. other write commands {
the data in this case " MUST conform to the structure opresented 1in

Read¥SpareTable }, The data sent to the controller is written to the two
SPars table locations on the 1{isk. ' ‘ ‘ :

< T D 0 0 S o o

-

IasthuctLonﬂbardnecnr‘Strlng tim (

-
ENDS

Tirads,Seriot Widget Tlraware Snecification Page A

{ .

-

.
PRI e . ’
lalizad¥SparaTasla ::= < N

gt
> 3

~
M

< ~ormat"0ffset >
< ~ornat’tnterLeave >
< PassWord 5 '

TormatMTatarlagvae 1= 2 300235 1 {ntarleava fietor K

Passlord ::= (< 3F3 > < 878 > < s3c > <SR >)

This command faorm the Yost finstrucss the contraller to ‘wine the slate
clean” as ‘far as the Dpdt“&dhle is concerned. “he initialized tahle 1is
written to disk. ‘

] T U 000 000 O 515
. ‘
A -~ —

1

vidzet Firmware 3pecifi{szacisn “Paze 13

,..
-3
=~
uy
O
(8]
P
g
T

Reset¥Servo ::= ¢ 312 > -
Instruction”?arameter"Strinq ttm NULL D>

Reset¥Servo allows the host to iniciaitze the servo orocessor without
having to power the devicea down. The controller will automaticallv reset
the Servo, check for valid initial condit}ons,and,met?orm a Nata®™Recal,

< . e 4

Zwus TG 700 _ /’%v_;,mf,ra, f;mu?/g, s <WuS

TEROS EIERY L26/AC 3luch cu i

\/ ; y_—
"’/‘S:'<- - o~

~
A SAN 2 , -i - - ‘ :
A3 2+ TO S Redo TG 4enes m e SIReE 7AsLe
:’/"‘""»’g —n e 5"‘ ,. . o : . B
S /€ A :f&ﬂi‘ (LF ‘Mé:; .’.«A:."/F‘ CAY BE Degis4p Eim
D= =

)

SAE SE Cf?'d././ oyl

-

THEPTSY gt e A o \
TICL PR ok HERIAT 0 e SPARILEG.

SAD Bcack. Fieg

N

Tirm¥4.Seript Widget Firmwars Specification -%3ga 40

Svs®Read ::= < $p9 >

Instruction’?arameter'Scring ti= (< BlockMCount > ¢ Logical3lock >)

3lockHCount ::= < $0@..$A8 > _ I :
This parameter is the number of blocks to he read that follow
sequentially from LogicalBlock. Tt 1is assumed that one %“lock
LogicalBlock } will he read, making the 3lock®Count the numher of

blocks following the First one that is to he read, also.

Logical3lock ::= < L¥IPMB 1 L¥24wg | LYLAME >
L¥IDMB t:= < 3000907, .300L37F
LI20MB ::= < SARAABO. .$B097FF >
LAGPMB 1:= < 3000000, .50125FF >

HANDSHAKE PROTACOL

B3oth Widget and ProFile share the same Host interface scheme, and therafara
a lot in common when it comes to trving to communicate with the HYost svstam,
Profile’s protocol is documented in ‘ProFile Communication Praotocol”’ for those
of who wish to read it. -

The actual sequence of events can he portaved as “ollows:

Protocol¥Sequence ::= (o "
< Initial"HandShake >
< Command"DownLoad >
< Response¥HandShake >
[Data®Received®HandShake !
< Final™HandShake 7)

Initial¥HandShake ::= ;
l. Host asserts CMD, sets data direction to read
2. Controller asynchronously responds bHv:

d. Writing 391 ton the Hosc:
b. Asserting BSY -

»

3. If the Host recognizes the controller response, it will resnond
by: - : . : :‘ .

a. Writing a 355 to the controller

b. Ntherwise it will write a SAA

c. In either case the HYost will de-assert ™D,

_ , ‘ : .

4. The controller will respond to-the Host bHv:

d. In either case { whether the Host resvonded with a $55 or

SAA or anvthing elge }- the contraller will aventuallv end un

waiting for the next instance of oM, .

5. If the response. was a 3§55 then the contrallar will Se a

‘captive’ aud ience, anxisuslv awaiting [astructisns “ram s

TJost is o what to 10" next. b ' .

c. Otherwise, the contraller 'will Abort, and leave Standar-

Status saving so {n 1:’s Huffar whera' the “0st 2un read iz, The
state of ‘the command sequance . for the contraller :“en %ecomes
ZnitialﬂqandShake;?(and_-:he Host, should cread do 175 mesr ot

5. The controller then-.-asserts B3SY

5. Assuming the Host accepts the response from the controller, it
will respond by writing $55 back to ‘the controller and then
de~asserting CMD. .- ' e '

7. The controller will then continue exacuting the command.

Final¥Hand Shake ::=
. “hen rthe controller finiqhés ittt the aveanqnian 4 F 0 sun

instruction, ‘ L
it will put the latest Standard¥Status ta a lacatisn ‘1 it’s
buffar ‘

where it will he accessi®le to the Yost ' ae well 13 anrv d3ta
that ' i ,

might be a result of the command execution !.

2. The controller then de-asserts 3SY

Firm¥5.Seriot widget Firmware Soectfication “ page 2

COMMAND SUMMARY
?roFileMCommands:

ProFile#Read ::= (<3p¢> {-B/bytes‘LogiﬁalBlocki>.)_
ProFiledWrite ::= (<$P1> < 3 byeres Logical3lock >)
ProFiledWrVerify ::= (<8025 ¢ 3 bvtes LogicalBloek S)

Diagnostic'Commands:

Read¥InN ::= (312> <3AP> CSEDS Y ‘ o
Read¥Controller¥Status ::= (<S13> <$A1> < Status > < Check3vte >)
Read¥ServoMStatus ::= (<511> <392 < Status > < CheckBvta >)
Send¥Servo¥Command ::= (<§515> ¢$83> ¢ 4 command hvtes > ¢ fheeklvis >)
Send¥Seek ::= (<318> <S@4> ¢ 4 bvtes cvl/head/sector > < TheckBvee > V.
Send¥Restore ::= (<$13> <3$@35> < Data/Format Recal > < CheckBvte >)
Set¥Recovery ::= (<S13> <508> ¢ On/0Ef > ¢ CheckBvte >)
Soft¥Raset ::= (<312> <8A7> <KSES>))
Send¥Park ::= (<S12> <3M8> <3E3>)
Diag¥Read ::= (<312> <3P9> <5ELS) ‘ :
Diag#ReadHeader ::= (<313> <¢SBA> ¢ Sector » < Check3vte >)
Diag¥Write ::= (<S12> <SPB> <SE2>) ' 3 -

2LYBufferPrr ::= (<8514> <SQC> < 2 hvtes huffer addrass > ¢ Thecklvte >)
“ead¥SpareTable ::= (<§12> <3OD> <SEA> Y e d . .
Write®SpareTabile ::= (A<SIZ5 <SWE>€<5%?;) < fasiud :i______g p%55~Um997
Format¥Track ::= (<SUMS <SPF> < Off;e& > < InterLeave >Vv¢ CheckBvee >)
Initialtze"SpfreTable Pl o e £, 095 Waw0 P

(<S1&> <S10> < Offset S ¢ Interleave>V¥< CheckBvte >)

Read¥Abort¥Stat ::= (<812> <$11> <spey)
ResetFServo ::= (<312> <§12> <$DBS)
Scan r:=m (<812> <S13> <SDA>) '

System Commands: ‘ >

Sys¥Read ::=* e A |
(1 <826> <s08> < BlkCnt > < 3 bytes Logical3lock > < Check3vee >)

SvsIWrite ::= o v } o . N
(<826> <3p1> < BlkCnt > ¢ 3 byvtes Logical3lock > < "heckivee >)

SYsUNrVerify :i= (<8255 <$02> < 3 hvtes LogicalBlock S ¢ fheckivee 5)

S
- -~ N — -) -
< fASS WoRD S i = ¢ 3FS P

ny

s 3¢ d1E>

4

»

"Firmeh . Seriot Widget Firmware Specification - Paze 17

READ/WRITE EZXCEPTIONS

N

There are occasions when the a spot on the disk surface hecomes unuseabls,
or for some reason causes the data stored in that area to change. To handle
this type of exceptionAWidget,is equiped with 2 ercor detecting devices and l
8rror correcting device { although Ece "1s both error detecting and error
correcting }. Widget uses a sixteen=bit crc polvanomial { CRC=1A } to detect
all single=burst errors less than sixteen. bits in. length, almost ai?
single-burst errors of sixteen bits, and most single=hurst errors areatar than
sixteen bits in length, A 48=bit ece polynomial is also used that has errsr
detecting °rooerties similar to that of the rarc ool vaomial,
fandles Hurst of up to 48 bits. Tt can also corraet singla=error hursts us rn
twelve bits in length, ‘

2¥cans thas e

“hen a block read, i{f the first read is successful ! no errors ' than =ha
data 1is Lransfered to the Host, thus completing; it’s command. Suoopnse,
Nowever, that the block 1s not raead successfully the first time, The causes
of this excention are 4:

1 .
l. Servo Trror: this execotion ig handlad hv lagving the read rauti-e gnd
getting ia touch with the Serve Processor to see 1f things can he
straightened out. Nuce the controller ig convinced that the Servn i3 well
and that the heads are positioned where thve should be, it retries the
read. : A ' ' ’

2. The state machine indicates that {t ts in the wrong ending state. Thig
1s considered a catastrophie excébtion an the controller will abort.

3. The state machine Indicates that a matching header was not found .
Before making this decision the state machine 'searches the track twice
for a match ~header. To handle thisg exception - the controller reads a
header from the track that. the head's are currently 'positioned over and
tries to determine if the heads are positioned correctlv., Jf thev are,
then it i{s assumed that target block’s K header ts faultvy and the track
will be Spared. If no header ean be read from the track it can be
determined {f the heads are positioned correctly or if all headers on the
track are shot. Tn this case the contrsller will issue 3 data recal and
seek back to the target location and retrv. If a header still =an 2ot e
found the hlock will he spared, : - " ‘

*. The state machine indicates that a crc or ‘ecc error has occured. Th
controller will automaticallv retry 9 times ! a total of 17 reads v, 1f
successful read is encountered during thWis rerry session the =2sntra
“ill save the valid data. At the end of-all the ratries, 1% the aymne
bad r2ads was 2 or lass then the hlock {5 transfared = the “nst, T<
aumber {s hetween 2 apnd 12 then the data {35 still raturnes 2 the Yasr,
Sut the controller goes dack ‘to the, targzet Slock and dserforas g
WriteVerifv with the valid data; {f the hloek Fa{ls the veriv then {+ ig
spared. 1f the Aumher of bhad f2ads is 1% then the ece sorrace:an
1lzorithm {s aoplied to: the result 9f the lige TALrT. TF zha 4.y i

b

LIUES TV B¢]

1
T

5 ou o

D

r

U

T

T1j

B qutlrtrmware Soe¢ificatinnm ‘Page 40

w
O
81
g
[@]
cr

+ MISCELLAMEOUS
Parking:

To guard against any mishaps when power is shut of f{ to Widget, there is a
mechanism in the firmware that takes the heads off the data area of the
disk after a period of idleness. This mechanism 1is known as ‘paring’.
Infortunately, it 1is possible for parking to svachronize with periodic
uses of the drive bv the Host, causing a mild form of thrashing hrought
2bout b othe eonstant seeking needed ts -move the heuds wetwean the aarv
cosition and e target position, Tt was determined empirically =n
?roFile that a zonod compromise delav time to park is 3 seconds and rhat
time hold for Widger.

Arm?Sween:

To protect the head=-arm bearings from too many sﬁortlseeks { this causes
4 possible mizration of lubricatinn awav from the sur‘ices that Aare -eant
to be lubricated } the arm 1is swent the comolete width of the A{sk Jara
surface everv 2748 seeks. . '

v

Sal FaTast :

“hen the controller comes un from being reset it verforms the Follawing
selftest functions: ‘

l. Register Test o / | ‘ ‘ : :

. Write and verify one’sAand zZero’z to all registers; ha}t if
failure ‘

2. Stack, Test » ‘ K i

Check push/pop, call/return capabilities; “alt {f failure

3. Ram Test - R | o
A 4 Arite ones and zeros to all ram locations; don’t dllow ProFile
¢@J\ ot System commands 1if failure.,

hXY 4. Eprom Test , - i : S
.¥VW pr\ . Check external eprom banks 3 and | for check bvte; don’t alliow

X 2 ’roFile or Svstem commands if Failnura,
%00 4 \Y} - ' .)
V&Q. . Motor Speed ~ | ' L - o
Cﬁw“ﬁ Check time from inddx Lo index; don’t allow 2roFila or Svscan

commands 1if failure. . -

5. Track ZJount ' S :

»

.

Seek to track A and read 2 header, {¢ a0 heeader “ound Then

\

format racal And - 2ount iracks) fon’t allow PraTi's sp Regean

commands (¢ Failara,
7. Spara Table

T . st Ry Ly et o 3. . L - T A
TLTC toth soar: i tahlas and writa reritr themy. fan’r 2t ey

Il

-wLDGET SERVQ FUNCTICONAL OBJECTIVE

8aSIC SERVO FUNCTIONS

Widget servo control func"ions are hahdled'by a 28 microprocessor. The
Z8 handles all 1/0 opera: lons, timing operations and communication with a
host controller. Control functions to che 8 Servo Concroller are made
through the serial I/0.

The following commands for tne widget servo ara:

A. dOME - aoc aecented, heads off data zones located ic the ianer stop.

3. RECAL - dectented at one of two positidns.

l. FORMAT RECAL: 32, =0, +3 ctracks ftom HOME use only duridg daca
formatziag., . o '

12

- RECAL: 72, =9, +3 tracks from dOME use to initialize Aome J0si-
tion after power on or following an access or any other arror.

C. GSEEK = coarse track. posxtlonlng ot data nead to any desired track
locacion.

J. TRACK FOLLOWING - heads are detented on a specific track ;ocatlon and

the device is ready for another command. ~
&. OFFSET -~ controlled mlcroscepplng of fine position syscen duf}ng
TRACK FOLLOWING (two modes).

l. COMMAND OFFSET = direction’and amount of offset is specified to
the servo. S S '
»
<. ,aAUTO OFFSET - command allows tne servo to automactically move off
crack by the amount indicated by the embedded servo signal on the
data surface (dis&).

ti)

TUS - command :an'reag S@rvo 3CaCus.

7. DIAGNOSTIC - not implémenced.
- - . - ' L) .
>ee Table i for the actual command description. wizh zh
Jand scruczure 3 SZEK COMMAND zan ae.augmeqcac wisn am :
-oon conmplecion of a seex, the offsec command Sic is zas
<7 an ofiser ~1ll odccur following a ieex . 2izner aucy or

sent Iom~
SOrAND.

2 _ECEL‘T..LZ‘.Q

e
z

O e i i
T T s s v O IO

[II.

?art of the communication function Taquires a specific protocol becween
the servo I3 processor and the external contzsller.
o ! i Avs s .
Servo control and communicacion ara described in CHART I. This chart
lustraces che basic sequencing and control operations. Charc I does

T illustrate cthe servo error handling or command,nrococol handling
nctions. Zrror handling is described in Section IV and illuscraced by
I) . k

Z8 SERVO PROTOCOL

“ne protocol detween the 238 SERVO mic#ocompucer_aﬂd the CONTROLLZIR is
cased on five I1/0 lines. Two of =he 1/0 lines aras serial inpuc ‘ro 23
servo Irsm cgncroller) serial oucput (from L3 servo 5 controiizr). ~aza
3tream bDetween the Z35 servo and concrélle: is 3 bic ACSIL wich no paricyv
bit (the fifth bvte of the command string contains cneck sum bvie use for
error checking). There are ctnree addicional JUuCpul Llines between :tne 23
servo used as control lines zo the concroller. Combining the two serial
L/0 lines and cthe three unidirectional port lines gzenmerates the bases of
the protocol between the 28 serwo and controller., The importanc opera-
tions bSetween the Z8 servo and controller are:

l. Send comdands to 23 servo.

2. Read Z3 servo status.

J. Check yalidity of ‘all four command bycés.

4. L/0 timing signals becween khe 28 servo and controller.

J. I8 servo reset. ? : .

. Sequencing the 28 servo contfblle:qisvan.impcftant'process following a

Power Up (Power On Reset).or if the controller should issue a Z8 Servo
Reset at any time. aAfter a Z8 Servo Reset is.innibited the 28 I/0 ports
and internal register are initialized. This takes approximacely 73 asac
after the Z8 Servo Reset is inhibited. -The protocol baud rate is auco-
matically set to 19.2XB and then the system 1is parxed at AOME position
and SI10 READY is set activa. *** IMPORTANT***, [-ne desired daud race
deeds o oe increased to 37.3K3; **3f:§r 1 28 Servo Resec s zme LuLT
time <nls can Je done®™**, Jpce ser $0.37.9K3 zne ¢oamunicacion racs ca-
mains at 37.0K8 until a 28 Servo Reset occurs. Setzing 37.0K3 is zcnievesa
as follows: ‘ - - i '

i. 23 Servo '"Power Jdn ar Joncroiler" Xesat

“

-« wait Ior 310 Ready

* \

' ! - Sy : i
J. 3end a REZAD 3TAIUS COMMAND as foliows:

20

BN oo N |
S\ . . !

LA BVl
L I
LI P ¥V)

H
(]

. . B
e\]

. - e) L o
< by . |

During Seek mode (VEIOCLCV con:*o; oniv)
func:ion .exceeds 150 msec then an access

Buring Setctling model(following al%ecal

{3 crossxngs) indicacting excessive head
aotion a2 Serctling error check will

excessive On Track pulses

access cime=-ouc.

If a2 Sesk
time=out occurs.
Seek, or Offsec): there is

During a command transmissicn if a communicat;on error occurs (check

Ssum error).

. i B : ‘ : ‘
During a command tansmission if a invalid command is sent.

=1 O 0 00 s s o SO i

- o N R . . ‘ . :
. <2 ZERVD CIMMeMD SYTES face |
- T'ELE 1 : : -
BYTE 1: COMMAND BYTE (DIFENMTHSY
-—-——h--_———u-n-—--—-—-._- ——————————————————————
v B? 84 BS 84 | FUNCTIONS
-— 189 8 access only
BT ¢l 8 3 1 1 access with cffzat
cmmand ! Zs 91T A L normal recal oto tex T2
Ltz ez O S O Lo format ra2ca! To tmk 3Z
P T B 8 a L afdzstetau it wing
-—- b1 1o 3 CohIme=zsmc To 1D zteg
-— P33l 3 i d1agneztic command
183 =<= rot yead P8 8 ¥ 3 i read stavu:z cemmand
TzssSsz TEZ ~aczssz dipract) aS30M e e e e o e oo
ts Bl o-ni FiFEZ (S1D
(88 =n1 dif+El (2880
203 Zicection = | (FORWARD: toward the epindlad
= 9 (REVERSE: away fram the spinal ey
FoaiFE2 (512D = { . (812 trackz to go)
=43 ‘not set)
NdiFEl (IS8 = 1 (258 tracks to mo»
= Q (not st ~
BYTE Z2: DIFF BYTE (DIFCNTL) ‘
command BYTE 2 contaifs the LDW ORDER DIFFEREMCE COUNT for & seek
[p— ‘ . . ' k4
1B7 -bit7= 128 tracks
' B& -bité= 44 tracks
' BS -omitE= 32 tracks
' 34 =0 kd= 14 trackal
B3 -pira= 3 tracks , X .
182 ~bi 2= 4 tracks
81 ~biti= 2 tracks .
188 =bta= | track

— ——

BYTE 5: CHECKSUM BYTE (GKS

o The ZERUD 3TATUS
tollowing =ondit
<8 SERVQO CMD HEX
access(only) 8X
ACCessS(ot+set) PX
recalidata) 48
ecal(format) 79
arkK - C3
frset(detent) 1@
tatue 39
liagnostic ped

-

X= either 9,1

nei';:sw ROY,

| ss‘uo'imﬁ.‘aﬁ EPRORY muzs mzus *me
ns :;lﬂrger to =

end the | st:-z- 23 CaMer0s

(} -

- e e me e me e we

Widget Firmware Specification
and
Theory of Operation

Revision | .8-9
October 16,1783

Written by Rodger Mohme
Me-28D x487¢9

Firm_1.Script- Widget Firmware Specification

wo A"

1 e

Widget is Apple‘’s in—house name
Winchester hard disks. This current
MB of storage (formatted).

Widget has been designed as
intelligent subsystem. The purpose of
detail how this subsystem behaves
environment,

for f%e latest in

Page 1

a line of

version is available with (8.1

a complete,
this document

within

the _complete

self-contained
is to explain in

system

F Firm_l.Script Widget Firmware Specification Page 2

Apple_Profile_Interface:

A more complete description of the Apple/Profile interface may
be found in the document "EXTERNAL REFERENCE SPECIFICATION (E.R.S)
PIPPIN HARDWARE" by Dick Woolley and Wolfgang Dirks, dated April 14,
1981,

There are 3 control lines to/from the Apple ProFile Interface Card:
1. Parity

This line is 1 bit of odd parity (even parity across the
cable). The Interface Card is responsible +for monitoring
this signal: the controller calculates parity only when it
sends a word across the bus; the controller does not check
parity when a word is sent from the host, instead the parity
bit is is generated once more on the controller side of the
bus and then routed back to the host.

2, CMD ¢ Command/Attention: Asserted by Host, Active high)
This signal is one of two handshake signals across the
interface bus. Keep in mind that even though the host and
controller are two autonomous machines, the host is always
considered the master and the controller the slave (in this
configuration). When the host wishes to initiate a transfer
to the controller it must first check if BSY (discussed
below > is active. If BSY is active then the Host must wait ¢
hopefully it will set a DeadMan timer and catch a "sick®"
controller) until BSY is no longer active.

3. BSY (Busy: Asserted by Controller, Active High)
This signal is the dual of CMD, in other words this is the
signal with which the controller can hold off the host for an
indefinate period of time while it is "BUSY" performing some
task,

4. STRB (Strobe: Asserted by the Host, Active High
Strobe is used to signal to the controller/host pair that
data is valid on the bus. '

5. Rs/W ¢ Read/Write: asserted by the Host, Write is Active Low
) ‘ .
Thie =signal is used by the Host to indicate to the controller
which direction data is to be going during a transmission.
Read is used ta direct data out of the controller into the
host and the opposite.condition is true for Write. ‘

Firm_1.Script - Widget Firmware Speciiicatidn : Page 3

Profile Communication Protocgl:

The following is an explanation of the protocol that is used
to provide communication between the host and the controller:

(Some explanation of the symbols that I am using is probably
called for at this point.)

“€4>° 1 The bracket symbols mean that the information inclosed
within them are mandi tory.

‘Lyl7 1+ The square bracket symbols mean that the information
inclosed is optional.

‘17 ¢ The vertical bar symbols is used to indicate an alternative
or "OR" condition. For example, AIB can be thought of as "Either
A OR B".

L}

=/ : This symbols is used to indicate a definition or
ivalence,

equ
‘€437 1 Curly brackets are used to denote comments.

‘+7 1 The plus sign is as an addition symbol.

‘NULL” : This Key word indicates the empty set, or in some cases,
the fact that the function whose value is NULL can be ignored. An
example is:

Argle-Bargle :1:= < NULL >

Essentially vyou can forget that Argle_Bargle exists for this
context.

Firm_l.8cript Widget Firmware Specification ' Page 4

' PROFILE_COMMANDS

These commands are currently by the S0S driver. Widget is
designed to be backwards compatible with the current ProFile driver,
and "to that end there exists the three ProFile system commands:
Read, Write, and Write Verify.

Profile Commands:

Opcode Definition

68 Read Logical Block

$d1 Write Logical Block

62 Write/Verify Logical Block

The three Profile commands behave in exactly the same fashion as
do the corresponding instructions on ProFile, with one semall
exception: the Read Logical block command does not include
information concerning Retry count or Sparing threshold ¢ however,
because of a side effect in the way that the Host/Controller
interface was designed, the Host may write as many command bytes to
the controller as it chooses. The controller will only decode the
first 4. }. The form of each command is:

<$d4 | $81 | 82> < 3 Brtes of Logical Block Address >

There are two “‘special’ logical addrecses defined in the ProFile
protocol, namely fFHFFFF { -1 > and $FFFFFE { -2 . Logical address
{ =1 > returns as it’s value Device_ID <{ as explained under the
Widget Diagnostic commands }> and Logical address ¢ -2 > returns as
it’s value Widget’s spare table Structuge in it’'s raw form. It
should be noted that if at any time Widget can not pass it‘s self
test that it will refuse to communicate via logical commands { both
ProFile and System type commands }. Widget will respond to
Diagnostic commands at all times, however,

The rest of the commands available on Widget are a complete
departure from the ProFile way of doing things. The new form of
command is:

¢ < Command_Byte >

< Instruction_Byte >

{ Instruction_Parameter_String 3
{ CheckByte > >

Command_Brte ::= (CommandType_Nibble + CommandlLength_Nibkle >

CommandType_Nibble { Diagnostic_Command | System_Command >

Diagnoetic_Command ::= < %13 »

Firm_1.Script Widget Firmware Specification Page 3

VWb 26 _ 1\/‘/9i§vak\

3

Syetem_Command ::= £ $268 >

CommandlLength_Nibble ::= Count of all bytes in the command string
NOT including the first one. This 1length is used only to calculate
the checkbyte, and not to parse the command, therefore there is a
large variety of commands that perform exactly the same function but
differ in format in that their lengths are not the same.

IF System_Command
THEN Instruction_Byte ::= {Sys_Read | Syes_Write |
Sys_Wrler>

IF Diagnostic_Command
THEN Instruction_Byte 1:= <

Read_ID |
Read_Controller_Status |
Read_Servo_Status |
Send_Servo_Command |
Send_Seek |
Send_Restore |
Set_Recovery |
Soft_Reset |
Send_Park |
Diag_Read |
Diag_ReadHeader |
Diag_Write |
Store_Map |
Read_SpareTable |
Write_SpareTable |
Format_Track |
Initialize_SpareTable |
Read_pAbor t_Stat |
Reset_Servo |

Scan >
Instruction_Parameter_String ::= (This string is instruction
-dependent, and will be formally specified at the same time as the
individual instructions. 3 : :
CheckByrte :1:= (This bryte is the ones—-complement of the sum, in

MOD-25¢ arithmetic, of all the bytes including the Command_Byte 3.

rs

i

Firm_1.Script Widget Firmware Specification Page &

DIAGNOSTIC_COMMANDS

, Widget’s "personality", or the manner in which it behaves, can be
thought of as having two distinct parts: 1) that portion that is
dictated by the hardware and 2) that portion that is controlled by
the firmware. As trite as that last statement may seem on the
surface, the fact remains that the part of Widget that .is the
hardware is not easily molded to adapt to different environments.
The same is true, but not quite in the same manner, for the firmware
- the code is locked in a ROM of some sort and costs a lot to
change. How then can Widget’s "personality" be changed { on-the-fly
¥ to "adapt" to a new environment? The answer in this case to
architect the firmware in a lavered fashion: build the intelligence
required to run Widget in it‘s normal operating mode from a pool of
discrete, primitive functions; these primitive functions in most
cases have only one particular task that they are capable of
completing. The implication of this architecture is that with wvery
little effort these same primitive functions are availble tao the
host system, and thus makKe Widget a little “Schizoid". Such luxuries
do not come without their hidden costs, howewer. For one thing, the
Widget controller is slightly more expensive to manufacture { a cost
that 1 believe pales in the sight of the added test/diagnostic
capabilities } because of the additional code space required for all
the bells and whistles, and another is that someone must now develop
Host software to emulate the controller firmware design of choice.

The purpose of the rest of this section on Diagnostic Commands is
to aquaint the casual/not-so-casual designer of Host software as to
how to make the best use of Widget‘s multiple personality
capabilities.

Firm_1.Script Widget Firmware Specification Page 7

Read_ID ::= < %88 >

Instruction_Parameter_String ::= NULL

This dvagnostlc command requires Widget to dellver to the host some
device specific information. The structural layout of the data
returned is: :

STRUCTURE Identitiy_Block

{ this identity block is defined by the data structures contained
within ity you will note, however, that a comment is given
explaining the type of structure for a given element and range of
brtes { if the entire structure is thought of as a linear array of
brtes > that include the structure. An example is NameString (first
element to be defined below } which is a 13~-character ascii string,
and is located in bytes $8 thru $C of the returned block.

NameString :1:= <

18MB_Name |
20MB_Name |
48MB_Name (13 Bytes/#0@:%4C; Ascii String >
18MB_Name :1:= <(‘Widget-1g4 ‘Y
28MB_Name ::= < ‘Widget-24 7D
4FMB_Name ::= < ‘Widget-44 D
DeviceTrpe ::= (Device.Widget+Widget.Size+Widget.Type { 3 Bytes/ 3l
($EF 3>
Device.Widget ::= <38481 (2 Bytes/$8D:$8E >
Widget.Size ::= (Size_18 | Size_2080 | Size_48 { | Nibble, Brte $8F/
its 7:14 >
Size_18 :1:1= <($88>
Size_28 :1:1= (s$18>
Size_48 :1:1= (28>
Widget.Trpe :t:= <(System | Diagnostic { | Nibble, Byte 28F/bits Z:4
3 :
Srestem ::= (EP@F>; This reters to the type of firmware that is
imbedded in
Widget.

Syetem firmware will not allow the host to Format, or
Initialize_SpareTable; Diagnostic firmware will.

Diagnostic :1:1= (%81’

Firmware_Revision ::= <{‘2 Brtes/®18:$11 3>

Capacity 11= <(Cap_18 | Cap_28 | Cap_4¥ { 3 Brtes/312:%14 1>
Cap_18 :1:1= <{3994CHE>
Cap_20 :1:= (309804
Cap_48 ::= <(3313008>

¢ $8214 (2 Bytes/$15:14 3>

Brtes_Per_Block
TR A S .

Firm_1.Script Widget Firmware Specification PageAS

Cy1_18 ::= <$8292)
Cy1_28 ::= {$@282>
Cr1_48 :1:= ($8484>

Number_0f_Heads ::= <($82 { | Byte/$19 3>
Number_0f_Sectors ::= < Sctr_18 | Sctr_20 | Sctr_48 {(1| Bytes/s1A 3>
Sctr_18 :1:= <{$13>
Sctr_20 ::= <{($26>
Sctr_48 ::= <{$24>
Number_Of_Possible_Spare_Locations ::= <($88BF4C (3 Bytes/¢1B:$1D 3>
Number Of_Spared_Blocks :i= <{ 3 Brtes/$1E:$28; range #..%$4B >

Number_Of_Bad_Blocks :1:= <{ 3 Bytes/$21:$23; range H..$%4B 3>

Firm_2.Script Widget Firmware Specification Page ¢

Read_Controller_Status :1:1= <($d1>

Every time an operation completes <{(either successfully or

exceptionally 2 Widget will return what I refer to as
Standard_Status, thus allowing the Host system an opportunity to
change it’s flow of execution based on state of the Status.
Normally, this Standard_Status is all that is necessary to ensure
continuous operation. In the exceptional case, or when the Host
system is emulating the controller’s functions, additional

information concerning the state of Widget is mandatory: without it
the Host simply could not make an optimum choice in deciding a
course of action.

Controller_Status is then a means for the Host system to
interrogate Widget further. Each Status (with the exception of
Abort_Status, which is a seperate command and is discussed later in
this document } belongs to a homogeneous data structure: namely a
four byte quantity containing a bit map representing the various
exceptional conditions { active high Y that is available as the
first four byrtes read from the controller upon completion of the
current command. '

There are eight status’ available to the Host system. The Host
requests a specific status by setting Instruction_Parameter_String
to the value corresponding to the status needed.

IF ¢ Instruction_Byte = Read_Controller_Status »
THEN Instruction_Parameter_String ::=

Standard_Status |
Last_Logical_Block |
Current_Seek_Address |
Current_Cylinder |
Internal_Status |
State_Registers |
Exception_Registers |
Last_SeeK_pddress >

<

The four byte response to each of the above status requests is of
the form:

Result :1:= ¢ Byted Bytel Brte2 Bytel >

¥ .
Firm_2.5cript Widget Firmware Specification Page 10

Standard_Status ::= <{%88>

Brted ::= (i
Bit?: Other than $355 response from Host
Bité: Write Buffer QuerFlow ' ‘
BitS: {(not used > '
Bitd4: ¢ not used 3}
Bit3: Read error
Bit2: No matching header found
Biti: Unrecoverable servo error
Bit@d: Operation Failed >

= {
- Bit?: { not used 2 _
Bité: Spare Table OverFlow
BitS: 5 or less spare blocks available
Bit4: { not used ?
Bit3: Controller SelfTest failure
Bit2: SpareTable has been updated
Biti: Seek to wrong track occured
Bitd: Controller aborted last operation »

Brtel

= <

ByteZ2

Bit?: First status response since power-on reset
Bité: Last Logical_Block_Number was out of range
bitS:8¥ (not used ¥ >

- Byte3 1:= < : .

Bit?: Read Error detected by ECC circuitry

Bité: Read Error detected by CRC circuitry

BitS: Header Timeout on last read

Bit4: { not used 7 '

Bit3:8 : number of unsuccessful retries { out of 18 > for last
read

Firm_2.Script Widget Firmware $peéification Page 11

Last_Logical_Block :1:= < $81 >

Byrted :1:= { %88 >

Brtel ::= < { Most Significant B}te of Logical_Block_Number } »
Byte2 :i:= ¢ { Middle Byte of Logical_Block_Number-} >

?ytes t3= {({ Least Significant Byte of Logical_Block_Number 7

Current_SeekK_Address ::= { %82 >

Byted :1:= < Most Significant Cylinder Address >
Brtel i1:= (Least Significant Cylinder Address >
Brte2 ::= < Head Address »

Brte3d :1:= (Sector Address >

Current_Cylinder ::= < $43 >

{ The Current_Crlinder differs from the Current_Seek_aAddress in
that it is perfectly reasonable for "the Servo to have placed the
heads on ancother track under certajn circumstances; for example, the
drive may have been bumped 7

Byted :1:= { Most Significant Cylinder address >
Brtel :1:= < Least Significant Cylinder address >
Byte2 :1:= < Most Significant Cylinder of current seek address >

Byte3 1:1:= ¢ Least Significant Cyrlinder of current seek address

AN
lb

T e s o L Bt L

§

Firm_2.Script

Internal_Status

Brtefd

Bytel

Byte2

Byte3

Widget Firmware Specification Page {2

ti= { %44 >

1= ({ Register: Excpt_Status 2

Bit?: Recovery { active high --> Recovery ON 2
Bité: Spare almost full

BitS: Buffer structure is contaminated

Bitd4: Power reset has just occured

Bit3: Current Standard Status is non-zero
Bit2:1 : { not used := 8 3}

Bitg: Set if controller LED is 1it >

{ Register: DiskStatus 3

Bit7: On_Track <{ heads are position where they
should be 3

Bité: Read a Header after Recal

BitS: current operation is a WRITE operation

Bitd4: Heads are parked

Bit3: Do sequential search of Logical Block
look-ahead structure

Bit2: Last commad was a multiblock command

Bitl: Seek_complete

Bitd: Servo offset {(auto } is on >

{ { Register: BlkStatus 3

This brte of status is wvalid ONLY after a ProFiles/System
command. If the byrte is read after a Diagnostic command it

wi

(R

contain information concerning the last

non-Diagnostic command.

Bit7: SeekNeeded { a seekK was needed to arrive at
the current block 2%

Bité: Head_Change_Needed <(1like BRit7, but Head
change instead of seek 7

BitS:2 388 (not used

Bitl: Current Block is a Bad Block

Bit#: Current Block is a Spare Block »

@8 { not used 2 >

Firm_2.S5cript Widget Firmware Specification Page 13

State_Reqgisters :1:= < $85 >

Byted :: { ¢844 { not used 3 >

¢ { Register: SelfTst_Result 2
Bit7: Ram_Failure
Bité: Eprom_Failure
BitS: Disk_Speed_Failure
Bit4: Servo_Failure
i Bit3: Sector_Count_Failure
Bit2: State_Machine_Failure
Bitl: Read_Write_Failure
Bit#d: No_Spare_Table_Found >

Bytel ::

Byte2 ::

i
~

{ Register: Port2

Bit7: Disk Read/Write direction set to Read

Bité: Servo is able to accept a command { SioRdy 2
BitS: MSell { MSeld and | determine the memory
source and destination 2

Bitd4: Mseld

Bit3: BSY

Bit2: CMD

Biti: Ecc Error

Bitd: State machine is running >

Bytel3 :1:= < (Register: Controller_Status_Port 3
Bit?: CrcError { active low 3} .
{ this ©bit is walid OMLY when the
controller state machine is NOT in reset,
which should be every time that this bit is
.read by the host. Therefore, if this status
“bit indicates a CrcError, then scmething
has croakecd. The normal way for the host to
check if a Crc or Ecc error hae occured is
to examine Status: Exception_Registers
which are dicussed below. 2

Bité: Write_MNot_WValid {(active low ?
{ a& in CrcError, this bit is valid only
when the state machine is NOT in reset. The
information expressed by this bit is
converted into a type of ServoError, which
is found in Status: Exception_Registers.,

.~ Bit3: ServoReady
BYt4: ServeocError

{ the servo ctatus bitse listed above are
further explained in Appendix A: Servo
Processor Documentation. E<ssentially the

two bits combine to form four possible

Firm_2.Script Widget Firmware Specification Page 14

servo states; the "-normal condition 1is
ServoReady AND ¢ NOT ServoError). 2

Bit3:8 Current controller state-machine state.
{ as in CrcError and Write_Not_Valid, these
status bits are valid only when the state
machine ie NOT in reset, and should read
$48 any other time. 2 .

On the surface it appears that this byte is of limited use for non
real—- time situations. It is, however, invaluable in trying to
decide if the Servo Processor is healthy, wealthy, and wise. It also
provides a means for diagnosing a sick state machine.

Firm_2.Script Widget Firmware Specification Page 15

- Exception_Registers ::1= < $g4 >

Byted ::= < { Register: RdStat
Bit?: Read error occured on last read attempt
Bité: Servo Error while reading
BitS: At least one successful read in last read
attempt (this means that valid data is residing in
Buffer2 3 .
Bitd4: No matching header was found during last read
attempt
Bit3: CrcError OR EccError occured during last read
attempt '
Bit2:4 €88 { not used 3} >

{ a read attempt is defined as being the sequence of events normally
associated with reading a single block of data. In the case where
the first read of a block was invalid for some reason, AND Recovery
is active, then the controller will automatically retry ¢ times: 18
tries total. For example, if the first read was invalid because of a
CrcError, but the second thru tenth reads are all correct them the
status bits that will be active are BitS, and Bit3. Correct and
valid data will be both in the normal Read buffer and in Buffer2. 2

Eytel :1:= (
Bit?7: Error detected by ECC circuitry
Bité: Error detected by CRC circuitry
BitS: Header timeout
Bitd4: { noy used 1= 4 3

Bit3:8 : Number of bad retries during last read
attempt >
{ For the above example, this status byte will contain the value $Ci

Byte2 :1:1= { { Register: WrStat
Bit7: Write error cccured on last write attempt
Bité: Servo Error while writing
BitS: At least one successful write during last
write attempt
Bitd4: No matching header found during last write
attempt -
Bit3:4-38F (not used 3

Y A write attempt is much the same as a read attempt in that there
are ceveral events that can Keep the controller from writing a block
succesesfully - and can be detected at the time of the attempted
write. If Recovery is active then the controller will first copy
the write buffer to Buffer2 and then retry 3

Bryte3d ::= < Number of bad retriec during last write attempt >

Firm_2.Script Widget Firmware Specification Page 14

Read_Servo_Status :1:= (%82 >
Instruction_Parameter_String ::= < #..8 >

This status command is used to interrogate the Servo Processor in
much the same way that Read_Controller_Status is used. In fact, the
form of the result is the same four byte bit-mapped quantity.

This command is of particular value to a diagnostician that is
interested in “picking—about’ with the servo processor without
dismantling Widget as a subsystem. Refer to Appendix A: Servo
Processor Documentation for a complete description of the wvarious
status’ available and their resulting bit descriptions.

Send_Servo_Command ::= < %83 >
Instruction_Parameter_String :1:= { Byted Bytel Byte2 Byte3 >

Normally, the Host will allow the controller to manipulate the servo
processor in order to perform useful { or maybe not so useful!
work. For example, let’s suppose that the Host system wishes to
move the disk drive heads from one track to another. Under normal
operating conditions the preferred way to perform this task is to
use the Send_Seek command { explained below . However, the Host has
the capability to bypass the controller and direct the servo
processor. Indeed, the Host can issue the servo command to position
the heads {(wvia the Send_Servo_Command * so that the seek is
completly transparent to the controller. The implication of this
command is that the Host can gain even more control of the system if
it so chooses.

A more complete description of the Servo Commands can be read in
Appendix A: Servo Processor Documentation.

< 8_Command + S_Direction + Hi_Magnitude >
8_Command ::= <

Offset

Diagnostic

DatxRecal

FormatRecal

Access

Access_Offset

Home

Offset 1:1= (%14 >
The Offset command allows the Host to microstep the heads
in either a positive or negative direction from the center
of the track. The Widget Firmware dces not make use of
this feature! I have instead left this to a more specific
data recovery program that is run by the Host. The value

Firm_2.5cript Widget Firmware Specification Page 17

and direction of the microstep are sent to the Servo
Processor in ByteZ2.

Diagnostic :1:= { %28 (this command is not implemented in the
Servo } >

DataRecal ::= ({ %48 >
DataRecal { and also FormatRecal 3 is ueed as a “Get the
servo in a Known state’ command, and is usually sent by

the controller during initialization time or whenever the
servo is not “Ready’. This command places the heads over
the first data track closest to the inside diameter of the
disk, within a tolerance of 3 tracks. The accepted method
for making certain that the heads are over a Known track
following a DataRecal is to read a header and use the
track information located in the header to establish the
location.

FormatRecal :1:= < %78 >

This command is identical to the DataRecal command except
for the track that the heads end up over upon completion:
about 36 tracks closer to the inside diameter of the disk.
Unlike the DataRecal command, however, the disk surface in
this area is not liKely correctly store information
written there. This command then is used to supply an
absolute reference point when formating the drive.

Access 1= < €84 >
I use the term ‘access’ and “seek’ interchangeably within
the context of this document, The servo Access command is
used to position the heads a relative distance from their
current position. The Servo Processor has no Knowledge

concerning absolute position and it is up to the
controller { real or emulated } to supply the relative
distance. This information is passed along in Byted and
Byrtel.

Adeccess_Offset 1= ($9€ >
The difference between an Access and an Access_UOffset is
that the assumption is made that heads will position
themselves within a “tolerable’ distance of the center of
the track with an Access command, while no such assumption

ie made with an Access_0Offset command. There is <scome
information written on each track of the disk “under’ the
index markK. This infarmation is used by the serva

processor to ‘calculate’ the center of the track { data
center 3 and position the heads accordingly. Because the
servo must wait for the index to arrive under the heads
before it can read this informaticon there is an implied
latency of about ! revolution { currently 19.4 msec 7

mmmmmmmm

Firm_2.Script

Widget Firmware Specification Page 18
attached to each Access_0Offset. Normally, the Widget
controller will use the Access command for all reads, and

the Access_Offset command for all writes.

Home ::= <{ $CZ >

When the heads are ‘Homed’ they

are -sent completely off

the data surface and held in position very near the inside

diameter crash stop.

S_Direction ::= { Positive | Negative

FPositive :1:= ¢ %84 {(move the
diameter 3}
Negative

diameter 32

> .
= K 3848 { move the
>

1= ¢ B..3 { move the

Hi_Magni tude
tracks ¥ >

{ Low_Magnitude ::= #.,255 >
Hi _Maginitude + Low_Maginitude,
relative
track.

Bytel

Thie command byte, when used with
the degree and direction of microstepping.

and S_Direction establish
distance the heads must move

t= < Offcet_Direction + Auto_Offset_

the Offset command,

>

heads toward the outside
heads toward the inside
heads a multiple of 25&

the
to arrive at the target

Switch + Offset_Magnitude

establishes

Offget_Direction ::= < Positive | Negative »
Positive 1= ($88 { offset towards outside diameter
Y
Negative :1:= { 8@ {(offset towarde inside diameter
>

Auto_Offset_Switch 1= < ON | OFF »
ON ::= < %48 <{ turn automatic track centering on
without an zccess command > > OFF 1:= < 38 { do not

auto track center on this command > >

Firm_2.Script

Widget Firmware Specification Page 19

Offset_Maginitude ::= ¢ g§..32 >

Byte3 :1:= < Baud_Rate + Power_0On_Reset »

Baud_Rate :1:= (19.5Sk_Baud | 57.4Kk_Baud >

The servo ‘comes wup’ at 19.5K baud because of the

test equipment used on it before it is integrated
into a system. Once it is running with a controller,
however, it is run continuosly at 57.4K baud. This

parameter is also a bit misleading in that once the
servo has been told to go to S5S7.46K it will forewver
more ignore this parameter: in other words it is
impossible to go <from the higher baud rate to the
lower without reseting the servo processor.

19 .5k_Baud :
397 .6_Baud ::

Power_0On_Reset ::= < %44 >

This is one of three way to reset the servo
processor { such wvariety'! }. The other two are:
1) Power switch, and 2) have the contraller pull
on the servo reset 1line. Out of all three
me thods, choice two is the most preferable in
that the controller will completely initialize
all the drive parameters related to the servo as
well &8s automatically go to the higher baud
rate.

Firm_2.8Script Widget Firmware Specification Page 20

Send_Seek :1:1= { $g4 >
Instruction_Parameter_String ::= < HiCy! LoCyl Head Sector >

Widget’s Send_Seek command allows the Host system to place the
heads over any track on the disk. The value of the seek address
sent in the parameter string is used read/write a block of data
using the diagnostic commands for those functions. For example,
for the Host to read Cyrlinder 1, Head 8, Secfor 18 a
Seek_Command would be issued for that combination of cylinder,
head, and sector { $8881 @68 12 > Followed by a Diag_Read {
explained below 2. ’

Firm_3.5cript Widget Firmware Specification Page 21

Send_Restore ::= < $@5 >

Restore_Data

1= (%48 >
Restore_Format : <

The Send_Restore command is used by the host to initialize the
servo processor and to put the heads in a Known location. This
command is the same as performing a Datas/Format Recal except
that the controller updates it‘s internal state to account for
the new servo position (as opposed to using the
Send_Servo_Command, which is transparent to the controller 3J.

T N T T O Y

Firm_3.Script Widget Firmware Specification Page 22

Set_Recovery :1:1= { %84 >

Instruction_Parameter_String :1:= < ON | QOFF >

To the best of my ability I 'have attempted to make the
exception handling characteristics of Widget a binary set:
either Widget handles everything, or the Host system does. The
command Set_Recovery is the Host’s link with this all or
nothing world in that it is through this instruction that the
Host can gain control of the media. When Widget comes up after
being reset it assumes control and sets Recovery to be ON. The
Host system must overtly change this state { via Set_Recovery 3}
if it wishes to emulate a different exception handling
criteria. Once Recovery is OFF, the controller will always fail
in an operation if an exception cccurs: the Host system MUST
assume responsibility for ALL error handling.

Firm_3.Script widget'Firmware Specification

Page 23
Soft_Reset :1:= < 287 >
Instruction_Parameter_String ::= < NULL >
This commands instructs the Widget firmware to restart it’s
flow of execution at it‘s initialization point. The results
should be the same { from a software point—-of-view } as a
power-reset.

Y P S O 000 0 00 0 o 0 -

Firm_3.Script Widget Firmware Specification Page 24

Send_Park :1:1= < %88 >

Instruction_Parameter_String ::= < NULL >

When the Host issues a Send_Park command to the controller the
results are that that the heads are moved off the data surface
and held wvery near the inside diameter crash stop. The
difference between this command and the Send_Servo_Command:
Home is that Home is performed ‘open—-loop’ with the crach stop
as it’s reference point, while Send_Park is an access command
to a specific track. The net result is a fairly hefty saving of

time: the access command can be an order of magnitude quicker
than Home/Recal.

Firm_3.Script Widget Firmware Specification Page 25

Diag_Read ::= ¢ $89% >
Instruction_Parameter_String ::= < NULL >

The Diag_Read command is used to read the block on the disk
pointed to by the last seek address. This instruction is valid
for states that the controller might be in: it is advised that
a Send_SeeKk command precede the Read. The form of the returned
data is exactly the same as that of ProFile_Read or a Sys_Read
in that 4 bytes of Standard_Status precede the block of data.

Diag_ReadHeader ::= < %8A >
Instruction_Parameter_String ::= < Sector { $4..%12 ¥ >

When the heads are positioned over an unknown location, or when
it is suspected that a block’s header is shot, it is time to
use the Diag_ReadHeader command. This instruction allows the
host to “suck-up’ both whatever information is residing in the
block’s header field as well as the data from that block. The
form of the result is: :
Result ::= (

' { Standard_Status/$46:443 >
{ Header/$d4:%4% >
{ Gap/%8A:%8F >
{ Sync/$%18:¢11 >
{ Datas/¢12.. >)

Standard_Status ::= < { as defined above 3}
Header :1:= < HiCyl LoCy! HdSct -HiCyl -LoCyl! -HdSct >

HiCyl :1:= < | Byte, Most significant crlinder address
>

LoCy1 1= < 1 Byte, Least significant cylinder
address >

HdSct :1:i= < | Brte, bits?:4 are head address, bits3:d
are sector address > ’

=HiCy! ::= { Ones-complement of HiCyl >
-LoCr1 ::= < Ones-complement of LoC»r1 >

-HdSct i1:= < Ones-complement of hdSct >

OO R N 1 OIS R UL 0 U TR A e s 8 RSO I

Firm_3.Script Widget Firmware Specification Page 2&

Gap 1:= < 5 bytes of %98 >
Sync 1:= { 4184 >

Firm_3.Script Widget Firmware Specification Page 27

Diag_Write :1:= < %8B >
Instruction_Parameter_String 1= < NULL >

This instruction allows the host to write a block of data to
the Jlocation on disk pointecd to by the last seek address.
Diag_Write is valid for all states that the controller may wind
up in, but it ie recommended that a Send_Seek command precede
the write command to ensure that th? correct block will be

written.

o
Ed

¢

Firm_3.5cript Widget Firmware Specification Page 28

Store_Map i1:= <{ $4C >

Ihstruction_Parameter_Strihg 1:= < NULL >

The Store_Map command is to be used by the Host to 1logically
re—interleave Widget., Widget will be used on a number of target
hosts, each of which would l1ike to optimize the performance <
sequential } of the disk drive. This optomization can occur in
one of two ways: 1) either seperate lines are set up in
manufacturing to initialize Widgets specifically for each
target host or 2) we can manufacture a single Widget unit and
have the Host initialize the drive for it‘s specific
requirements.

Included in the SpareTable structure is a data structure called

the InterLeave_Map. This map is used as another level of
logical addressing during the calculation of a cylinder, head,
and sector address +from a given logical block address.

Specifically stated, once a sector address has been determinied
it is used as an index into the InterLeave_Map and a new sector
address is generated { the InterlLeave_Map is an array with the
same number of entries as there are sectors, and each entry
must be unique and valued within the range of legal sector
values 3.

It is extremely important that the host system proceed with
caution when changing the Map. A remapping of the elements
within the SpareTable is REQUIRED with every change to the Map
{ this is because as the sectors are logically remapped the
defects that stay with a physical address move around relative
to a logical block’s number }. For this reason I suggest that
all changes to the map be done using the Write_SpareTable
command in conjunction with a remapping of all the spare/bad
blocks.

This command is externally executed { by the host 2 az a write
command. The first Number_0Of_Sectors worth of data in the
buffer are assumed to be the new map. o

Firm_3.Script Widget Firmware Specification Page 2%

Read_SpareTable :1:= ¢ $8D »

Instruction_Parameter_String ::='< NULL >

Reading {(and writing > Widget’s spare table is an absolute must for

diagnostic purposes, and if the Host wishes to emulate

controller. The result of this instruction is identical

performing a ProFile_Read from block $FFFFFE and has the form:
Result :1:= (

< Standard_Status/$8@:$83 { as defined above 3 >

{ Fence/$84:%$87 >

¢ RunNumber/$48:$4B >

{ Format_Offset/¢$8C >

{ Format_InterLeave/$8D >

{ HeadPtr_Array/$0E:$8D >

{ SpareCount/$8E >

{ BadBlockCount/$8F >

{ BitMap/$8Aa:$93 >

{ Heap/%94:%1C3 >

 InterLeave_Map/$1C4:$1D7 >

< CheckSum/$1D8:%1D% »

{ Fence/#%1DA:$1DD > »

Fence :1:= (< %FF > < $78 > < $3C » < $1E » >

RuniNumber :1:= < 32-bit interger > i
The RunNumber is incremented each time the spare table

the
to

is

writen to the disk. Because two «copies are Kept on the

disk, the RunNumber is wused to decide which is the

more

recent of the two should both <copies of the table not be

updated.

Format_QOffset ::= < $80..Number(OfSectors »
Format_Offset is the number of physical sectors there
from index mark until logical sector 4.

Format_InterlLeave ::1= { $00..$68 >
i

s the interleave factor for this disk and

are

This number is
used in calculating where each of the logical sectors are
in terms of actual physical sectors.
HeadPtr_Array :1:= < ARRAY[§..127 1 of HeadPtr >
HeadPtr :1:= < Nil + Ptr > -
Nil 1= (88 | $88 >
g I+ a HeadPtr is Nil, then there is no
linked-list structure in the heap corresponding

te the current logical block number.
Ptr 1:= < $05..%7F >

Firm_3.,Script Widget Firmware Specification Page 30

A Ptr is a seven bit data structure that
‘points’ to a specific location within the Heap
{ if the Heap can be though of as a linear array

" of bytes, the a Ptr is wused to index into that
array . To arrive at the actual index wvalue
within the Heap, the Ptr must first be
muitiplied by four.

When a disk is formatted and fresh data is being written to it,
each logical block is asigned the first available physical
block on the disk, Therefore you would expect that
LogicalBlock¢ & » would occupy PhysicalBlock¢ & >, L(1) ==>
P(1>, etc, There are instances, however, when a block of data
must be relocated to another space on the disk that does not
follow the original progression { for example, the original
space was defective 2. In order to “find’ these relocated
blocks in the future a record must be Kkept as to where all
these relocated blocks have been put. This record takes the
form of 128 linked 1lists having the form HeadPtr(n) -->
LinkedList(n), where n := @8..127. The algorithm for deciding
whether or not a LogicalBlock has been relocated is to extract
bits 16:18 from the LogicalBlockNumber and use it as an index
into the HeadPtr_éArray. [If the HeadPtr associated with this
index value is Nil then LogicalBlock has not been relocated
else use HeadPir.Ptr to search the linKed list corresponding to
this HeadPtr value. Now to decide if the LogicalBlock has been
relocated a test must be made as the linked list is traversed
by comparing the LogicalBlockNumber’s bits 9:8 to the current
list element’s token value. If they match then LogicalBlock has
been relocated and it’s new position is a multiple of the 1list
element’s position in the Heap.

SpareCount ::= < €44..%4C >
BadBlockCount :1:= < $H@A..%4C >

BitMap ::= < ARRAY[#..$4B 1 of Bits >
The bit map is used to Keep a record of which zpare blacks
‘are occupied, and their locations on the disk.

Heap :1i1= { ARRAY[H..%$4B] of ListElement >

ListElement ::= (¢
{ Nil+Used+Useable+Spr_Type+Data_Type >

{ Token >
< Pte >)
Nil 1:= < $8F { IF Nil THEN End_0Of_Chain > >
Used 1:= < 344 >
Useable 1:= < %28 >
SprType 1:= ¢ Spare | BRadBlock »

e ———

Firm_3.Script Widget Firmware Specification Page 31

Spare 1:= ($18 >
BadBlock ::= < $g@ >
Data_Trpe ::= < Data | SpareTable >
Data ::= < %82 >
SpareTable :1:= ¢(%88
Token ::= < B

its?:8 of the LogicalBlockNumber >
InterLeave_Map ::= < ARRAY [#..NbrSctrsl OF #..NbrSctrs >

CheckSum ::= ¢ the sum of all brtes in the spare table from the
first fence to the end of the heap, in MOD-45534 arithmetic >

Firm_4;8cript Widget Firmware Specification Page 32

i

Write_Spare_Table :1:= < $6E >

Instruction_Parameter_String 1= C < $FF > < $78 > < $3C > < $1E >)
This command allows the Host to ‘force’ a new spare table on
the controller, and is executed just liKe any of the other
write commands { the data . in this case MUST conform to the
structure presented in Read_SpareTable }. The data sent to the

controller is written to the two spare table locations on the
disk.

O 0 0 000 0 TSSO

Firm_4.Script Widget Firmware Specification Page 33

Format_Track ::= { $8F >

Instruction_Parameter_String 1:= (,
{ Format_Offset >
< Format_InterLeave >
{ PassWord >

Format_Offset ::= < $84..Number_0Of_Sectors >
This parameter dictates which sector { beginning with
sectord - the first physical sector after index mark
will be logical sector 4 for that track.

Format_InterLeave ::= ($80..$86 { interleave factor > >
PassiWord :1:= ({ $FF > < %78 > < $3C > < $1E >)
The format command is used to:

1. Operate on the track that is currently beneath the
heads ~ this implies that the Host had best perform a
Send_Seek command prior to formatting a track.
2. AC erase the entire track - this implies that all
data stored on this track has acheived Nirvana and
are living happlily ever after in the great bit

bucket in the =sky.

3. New hezders will be layed down on EVERY sector of
the track.

o ———

Firm_4.Script Widget Firmware Specification , Page 34

Initialize_SpareTable ::

Instruction_Parameter_String

< &18 >

¢

¢ Format_Offset >
< Format_InterLeave >
{ PassWord >

Format_Offset ::= < $@8..Number_0Of_Sectors >

Format_InterlLeave ::= < %88..$84 { interleave factor ¥ »

Passiord 1:= (¢ $F8 > { %78
Host

as
initialized table is written

This command form the
the slate clean”’ as far

> £ $3C > < #1E > >
instructs the controller to ‘wipe

the SpareTable is concerned. The
to disk.

<4 O 0 O 0 00000000 0 0 R

Firm_4.Script Widget Firmware Specification : Page 35

Read_Abort_Status :1:1= < $11 >
Instruction_Parameter_String ::= ¢ NULL >

Read_pbort_Status will return wvalid data only AFTER the
controller has aborted { identified by
Standard_Status.Bytel.Bitd . The form of the result is a
sixteen brte string, and the contents are the contents of the
controller’s registers at the time of the abort - with the
exception of bytes $HE and $6F, which constitute the return
address of the procedure that called the Abort routine. Because
all of the information that can be derived from this request
from is extremely firmware dependent an appendix { Appendix C:
Abort_Status WVariables } has been created that hopefully will
be updated with each firmware release. :

Firm_4.8cript/ Widget Firmware Specification Page 34

Reget_Servo :1:= { %12 >
Instfuction_PaPameteP_String $1= < NULL >

Reset_Servo allowe the host to initialize the servo processor
without having to power the cdevice down. The controller will
automatically reset the Servo, check for walid initial
conditions and perform a Data_Recal.

1 O PG 00 00 o0 S o oy .

2y

Firm_4.Script widget Firmware Specification ’ ‘ Page 37

Scan

1
1

ti= ($13 >

Instruction_Parameter_String ::= < NULL >

The Scan command causes the Widget to read all blocks that are
with the range of blocks set aside for user data blocks. If any
of these blocks are bad then the block will either be relocated
{ if the data can be recovered } or marked as bad and relocated
on the next write to that block. The SpareTable can be examined
before and after a Scan command find the locations of all bad
blocks.

Firm_4.Script Widget Firmware Specification i Page 38

SYSTEM_COMMANDS
System_Commands have been implemented for essentially two reasons:

1. 1 felt that it was important for Widget to add one more check on
the CMD/BSY handshake: namely the addition of a checkbrte <following
the command string.

2. In order to increase the performance of the system without
modifying the hardware it was critical to introduce another level of
parallelism into the Host/Controller interface. Most (&8 . or
greater } of the reads for a specific block on the disk are followed
by & read for the logically sequential block. 1In fact, in the
extreme case of Lisa, this percentage is almost 1884, Therefore I
have suppressed the command decoding for all but the first block
read { over a small range . The implementation, then, for this
added parallelism is to send an additional parameter with the (
first } LogicalBlock indicating the number of blocks to be read.

This implementation holds for Reads and Writes, .but not for
WriteVerifies. I have taken the 1liberty of assuming { hopefully
correctly 3 that WriteVerifies do not exhibit the same
characteristic behaviour as the other two types of commands, and
that they are fairly long commands to begin with. The trade-cf+f then
was one of saving code space { a Sys_WrVer is the same routine as a
Pro_WrVer, but with command checkbyting * wvs. adding a third
multiblock function with 1imited performance increases.

The protocol for System commands is slightly different then that of
Profile commands. In the case of a Read command, each block of data
is transtfered to the host when it received by the controller: there
is NO buffering of disk blocks on Widget at this time. The transfer
looks just like other read-style transfers in that Standard_Status
is sent with the data block and the data block is the same length ¢{
932 brtes . Instead, however, of responding with the basic
‘Controller is ready for command’ response when the Host sets CMD (
after storing the data block + the controller will respond with &
‘Controller ready to get next block’ response.

i Firm_é.Script

Widget Firmware Specification Page 3¢

Sys_Read ::= { $d4 >

)

Block_Count

follow

Instruction_Parameter_String ::= ¢ ¢ Block_Count > <‘Logica\810ck >

1= $41..$13 > .
This parameter is the number of blocks to be read that

sequentially from LogicalBlock. It is assumed that

one block { LogicalBlock ¥ will be read, making the
Block_Count the number of blocks following the first one
that is to be read, also.

LogicalBlock

L_18MB
L_28MB
L_48MB

¢ L_18MB | L_26MB | L_46MB >
< $PPPPRH . .$884BFF >
{ $@BPOBY. . $BFP7FF >
{ $8F060F . .$812FFF >

Firm_4.Script Widget Firmware Specification Page 40

Srys_Write 1:= < $41 >

Instruction_Parameter_String ::= f { Block_Count > < LogicalBlock >
)

Block_Count : ¢ $81..%13 >

LogicalBlock < L_18MB | L_26MB | L_48MB >

L_1BMB ::1= < $PQ@AQH..$6H4BFF >
L_20MB ::= < $8008008..$00%7FF >
L_48MB ::= < $PgOGRE. . .$812FFF >

Sys_lWrler 1:1= < $82 >

Ingtruction_Parameter_String ::= < LogicalBlock »

LogicalBlock s:= < L_18MB | L_28MB | L_48MB >
| L_18MB ::= < $@@8P00H..$0H48FF >

L_206MB ::= { $@00P08..$0897FF >

L_48MB ::= < $@QP#8L..$H12FFF >

Y S IS N O 0 0 OO0 OO eSO

Firm_S.Script Widget Firmware Specification Page 41

HANDSHAKE PROTOCOL

Both Widget and ProFile share the same Host interface scheme, and
therefore a lot in common when it comes to trying to communicate
with the Host system. ProFile’s protocol is documented in “ProFile
Communication Protocol’, and a follow-up document titled ‘The
Extended ProFile Protocol’ written by Karl Young is available for
more detail.

The actual sequence of events can be portayed as follows:

Protocol_Sequence :1:= ¢
< Imitial_HandShake >
< Command_DownlLoad >
{ Response_HandShake >
[Data_Received_HandShake 1
< Final HandShaKe >)

Initial_HandShake ::=
1. Host asserts CMD, sets data direction to read
2. Controller asynchronously responds by:
a. Writing $81 to the Host
b. Asserting BSY

3. If the Host recognizes the controller response, it will
respond by:

a. Writing a 55 to the controller

b. Otherwise it will write a $AA

C. In either case the Host will de-assert CMD.

4. The controller will respond to the Host by:
a. In either cacse { whether the Host responded with a
$35 or A or anything else ¥ the controller will
eventually end up waiting for the next instance of
.CMD.
b. If the response was a %55 then the controller will
be a . ’‘captive’ audience, anxiously awaiting
;nctructlons from the Host as to what to do next.
c. Otherwise, the controller will Abort, and leave
Standard Status saying so in it’s buffer where the
host can:read it. The state of the command sequence
- for the ‘controller them becomes Initial_HandShake,

and the Host should read do it‘s best to read the
Standard Status as soon as it noticee that the
handshake sequence has been changed. The execption to
this “QOtherwise’ is when the responsze from the Ho=+

is a FreeProcess response { explained below .

Command_Download ::=

Firm_S.Script " Widget Firmware Specification Page 42

1. The Host writes a wvariable length string of hex bytes
to the controller. The address of where these bytes are
sent is set up by the controller in the Initial_HandShake
phase. The length of the hex string is up to the Host, but
is intended to be the -length of a command string { indeed,
the string of brtes is supposed to be & command string! 2.
The controller Knows to increment it“s address counter (
remember, it is responsible for loading the string into
it’s memory } by a falling edge of ©STROBE +from the
interface card. :

Response_HandShake ::=
{. The Host asserts CMD

2. The controller responds asynchronously by first reading
it’s buffer in the locations that it set aside for the
Host to perform it‘s command download, doing what is
necescsary to decode the command {(i.e., validating the
checkbyte, makKing certain that the command was of the
right type, and decoding the command }. It then writes a
response byte to the Host which has the wvalue of ¢
Instruction_Byrte + 2).

3. The controller asserts BSY

4, { look at 3. for Initial_HandShake I
S. If the controller receives a $55 then it will continue
executing the command, ctherwise it will Abort and return to

Initial_HandShake.

Data_Received_HandShake ::=

1. If the controller is expecting data { as is the case
for 2 write command 2} then in the Response_HandShake it
will de—assert BSY and wait for the next occurance ot CMD.

2. When the Host “sees’ BSY become de-asserted it will
then write as much data as it pleases (likKe the command
download, the controller dictates the address of the data
while the Host dictates the length .

3. The Hoet the asserts CMD

4, The controller responds asynchronously to the Host by
writing a $84 to the Host,

5. The controller then asserts BSY

5 O 00 0 0 O £

Firm_S.Script w}déef Firmware Specification Page 43

4., Assuming the Host accepts the response from the
controller, it will respond by writing $55 back to the
controller and then de-—asserting CMD.

7. The controller ~will then continue executing the
command.

Final_HandShake ::=

1. When the controller finishes with the execution of the
instruction, . '

it will put the latest Standard_Status in a location in
it’s buffer

where it will be accessible to the Host { as well as
any data that .

might be a result of the command execution 2.

2. The controller then de-—asserts BSY

3. The Host detects that BSY has been de-asserted and then
reads from the controller as many bytes as it wishes (in
much the same fashion as it does when writing a command
string to the controller: the controller points to the
data and the Host moves it 2.

There is { at least } one implication to this protocol: the Host is
capable of tying up 1884 of the controller’s resources if it so
chooses. This is because the controller has no way of knowing when
the Host has finished reading/writing from/to it’s data buffer.
There needs, therefore, to be a mechanism for the Host to let the
controller Know that it has freed up the controller‘s resources.
This mechanism { for lack of & better name 3 is called the
FreePracess. The Host communicates the FreeProcess to the controlle
in either of two warys: 1) the ProFile way, and 2) the Widget way.

ProFile_FreeProcess :1:=

1. The Hast downloads a commands of < 3F8 > te the
controller.

2. The controller decodes the command and enters
FreeProcess.

Widget_FreeProcess ::=

1. During the Initial_HandShake { when the controller iz
attempting to let the Host Know that it is ready for a new

Firm_S.Script Widget Firmware Specification Page 44

command } the Host responds to the $81 with a $49.

2. The controller responds to the reception of a $&%9
instead of $55 by entering FreeProcess. All further
handshaking is terminated. "

L Firm_S.Script Widget Firmware Specification Page 45

COMMAND SUMMARY
ProFile_Commands:

ProFile_Read :
ProFile_Write

= ((%8> < 3 brtes LogicalBlock >
ProFile_WrVerify :

<$81> < 3 bytes LogicalBlock > >
= (<382> < 3 brtes LogicalBlock >)

f
ne N

Diagnostic_Commands:

Read_ID 1:= ((312> <$88> <{$ED> >
Read_Controller_Status :1:= (<($13> <($81> ¢ Status > { CheckByte >
) .

Read_Servo_Status :1:= (($13> <($82> < Status > ¢ CheckByte >)
Send_Servo_Command ::= (<($14> <($83> <¢ 4 command bytes > ¢«
CheckByte > O _

Send_Seek 1= (<$14> <$84> < 4 bytes cy¥l/head/sector > ¢
CheckByte > >

Send_Restore ::1= (<$13> <($85> < Data/Format Recal > ¢ CheckByte >
b

Set_Recovery i1i1= (<($13> <($84> < On/0Fff > < CheckByte >)
Soft_Reset ::= (<($12> <($87> <($E&>)

Send_Park :1:= ((212> <$48> <{$ES> »

Diag_Read ::= (<{$12> (409> <$BE4>)

Diag_ReadHeader ::= ((#$13> <($8A> < Sector > ¢ CheckByte >)
Diag_Write :1:= ((312> ($HB> <($BEZ>)

Store_Map 1:1= (<$12> ($8C> < 3EL >
Read_SpareTable ::= (<$12> <$8D> <3EH>
Write_SpareTable :1:= (<($16> <BHE> ¢ PassWord > < CheckByte > >
Format_Track 1= ¢ {$18> ($8F>
(Offset><InterLeave><{PassWord><{CheckByte>)
Initialize_SpareTable ::

(<$14> (14>

. EheckByte >

Read_mbort_Stat ::= (<#$12> <$11> <$DC>
Reset_Servao :1:= (12> <$12> <HDB>
Scan 1= (<$12> (13> <3DA>)

&
< Offset > { InterLeavey ¢ PasshWord > <

System Commands:

Sre_Read :1:= -
¢ <$286> <$BH> (BlKkCnt > & 3 bytes LogicalBlock > <
CheckByte > > -

Sye_Write 11=
¢ ($24> <BPFL1> < BlKkCnt > ¢ 3 bytes LeogicalBlock > <
CheckByte >)

Sre_WrlMerify 1= ((325> <$H2> < 3 brtes LogicalBlock > <«
CheckByte >)

Firm_S.Script Widget Firmware Specification Page 44

Passilord ::= <{ $FF $78 $3C $1E »

Firm_é.Script Widget Firmwaré'Specification Page 47

Exception Handling:

Widget has been designed to run fault free for most of it’s
operating time. This means that almost every single time that a
request is made of the controller it will be performed flawlessly.
Howewver, there are some exceptional cases - most fall into the
category of extreme errors- where the controller must attempt to
correct a problem. The most likely to occur is either when the drive
is externally ‘bumped’ and the heads are forced off track, or flaky
block is read { crc/ecc error 3. ‘

SERVO EXCEPTIONS

It is possible for the Servo Processor to detect that the heads
have gone off track. When this occurs the Servo will attempt to put
the heads back on track transparently to the controller. There are
three outcomes to this exception:

1. The Servo will put the heads bacK on the correct track and
all will be well with the worid.

2. The Servo will mistakenly put the heads on a track that is
close to the target track., In this case the controller will
detect a header mismatch the next time it reads a block on the
disk and will issue a seek to correct the position errar.

3. The Servo will raise ServoError {(a gross misalignment
detected } and drop ServoReady in which case the controller
will have no choice but to issue a DataRecal to clear the

ServoError, then issue a seek to get back to the target track.

Firm_&.Script Widget Firmware Specification Page 48

READ/WRITE EXCEPTIONS

There are occasions when the a spot on the disk surface becomes
unuseable, or for some reason causes the data stored in that area to
change. To handle this type of exception Widget is equiped with 2
error detecting devices and | error correcting device { although Ecc
is both error detecting and error correcting }. Widget uses a
sixteen-bit crc polynomial (CRC-16 Y to detect all single-burst
errors less than sixteen bits in length, alimost all single-burst
errors of sixteen bits, and most single-burst errors greater than
sixteen bits in length. A 48-bit ecc polynomial is also used that
has error detecting properties similar to that of the crc
polynomial, except that it handles burst of up to 48 bits. It can
also correct single-error bursts up to twelve bits in length.

When a block read, if the first read is successful { no errors ?
then the data is transfered to the Host, thus completing it’s
command. Suppose, however, that the block is not read successfully
the first time. The causes of this exception are 4:

1. Servo Error: this execption is handled by leaving the read
routine and getting in touch with the Servo Processor to see if
things can be straightened out. Once the controller is

convinced that the Servo is well and that the heads are
positioned where thye should be, it retries the resad.

2. The state machine indicafeé‘that it is in the wrong ending
state. This s considered a catastrophic exception an the
controller will abort.

3. The state machine indicates that a matching header was not
found. Before making this decision the state machine searches
the track twice for a match header. To handle this exception
the controller reads a header from the track that the heads are
currently positioned over and tries to determine if the heads
are positioned correctly. If they are, then it is assumed that
target block’e header is faulty and the track will be spared.
If no header can be read from the ftrack it can be determined i+
the heade are positioned correctly or if all headers on the
track are shot. In this case the controller will issue a data
recal’ and seek back to the target location and retry. If &
header still can not be found the block will be spared.

4, The state machine indicates that a c¢crc or ecc error has
occured. The controller will automatically retry 2 times { a
total of 1§ reade . If & successful read is encountered during
this retry session the controiler will save the valid data. @&t
the end of all the retriec, if the number of bad reads wase 2 or
less then the block is transfered to the Host. I+ the number is
between 2 and 1& then the data is still returned to the Host,

T O T S U U U S PP

Firm_é.Script Widget Firmware Specification Page 4%

but the controller goes back to the target block and performs a
WriteVerify with the valid data; if the block fails the wverify
then it is spared. If the number of bad reads is 18 then the
ecc correction algorithm is applied to the result of the last
retry. If the data is correctable then it is returned to the
Host; the target block is then write wverified with the wvalid
data and if it fails it is spared. I+ the data is
uncorrectable, then undefined data is returned to the Host ¢ if
it chooses to read it 3 and Standard_Status indicates that the

operation failed. The target block is then declared a BadBlock
{ a form of spare .

BadBlocks have the property that when they are read the

controller will attempt to extract the data from the target
block and performing exactly the same steps as in a normal read
in an attempt to recover the data. When they are written to,
the controller performs a write verify to the target block. If
the block passes the verifyu then it is no longer a BadBlock,
otherwise it is spared.

SpareBlocks have the property that they are “‘relocated”’

logicalblocks. 1In other words, SpareBlocks are blocks on the
disk that are transparent to the Host and were set aside for
the explicit purpose of relocating faulty blocks. There are 74
such SpareBlocks on each Widget, spaced 254 blocks apart on a
18MB drive, S12 blocks apart on a ZBMB drive, and 18924 blocks
apart on the 48MB drive. When I decided upon this sparing
algorithm I chose a trade-off between overall performance and
data security. ‘

When a block is spared, it is relocated to the nearect auailablé

spare block so that the time to get to it is minimized. This
works only as long as cspared blocks are more or less uniform
over the entire disk surface. On? the other hand, i+f the ideal
case were to be implemented { the controller Keeping track of
which blocks on the disk were unused and relocating to the
nearest one } the space needed to contain the data structure
that kept track of the algporithm would be enormous. The
decision ta Keep the structure contained inside of one data
block {(512 bytes > 1led to the ‘checker—-board’ algorithm that
has been implemented on Widget.

Firm_é.Script Widget Firmware Specification ‘ Page SO

MISCELLANEOUS
Parking:

To guard against any mishaps when power is shut off to Widget,
there is a mechanism in the firmware that takes the heads off
the data area of the disk after a period of idleness. This
mechanism is Known as ‘parking’. Unfortunately, it is possible
for parking to synchronize with periocdic uses of the drive by
the Host, causing a mild form of thrashing brought about by the
constant seeking needed to move the heads between the park
position and the target position. It was determined
empirically on ProFile that a good compromicse delay time to
park is 3 seconds and that time hold for Widget.

Arm_Sweep:

To protect the head—arm bearings from too many short seeks ¢
this causes a possible migration of lubrication away from the
surfaces that are meant to be lubricated > the arm is swept the
complete width of the disk data surface every 2848 seeks.

Self_Test:

When the controller comes up from being reset it performs the
foallowing selftest functions:

1. Register Test
Write and verify one’s and zero’z to all registers;
halt if failure

2. Stack Test
Check push/pop, call/return capabilities; halt if
failure

3. Ram Test
Write ones and zeroe to &all ram laocations; don’t
allow ProFile or System commands if failure.

4. Eprom Test
Check external eprom bankKks # and | for check byrte;
don‘t allow ProFile ocr System commands if failure.

S. Motor Speed
Check time from index to index; don‘t allcw ProFile
or System commands if failure,

&. Track Count
Seek from the format recal positicon to track B. This
test fails if the servo is wunable to complete this

ﬁask.

7. Spare Table

351 N TR U o o 0 0 O £

Firm_&.Script Widget Firmware Specification Page Si

Find both spare tables and write verify them; don’t
allow ProFile or System commands if failure.

8. Read/Write Test

Widget performs a read/write test on a track not used
for data. If a failure occurs on all blocks of that
track then the controller assumes that either the
disk or the read/write channel is unusable.

Firm_7.Script Widget Firmware Specification X Page 32

APPENDIX C: Abort_Status_Variables

There are occasions when the Widget controller will detect that
something is radically wrong with the Widget subsystem, i.e., the
ram on—-board the controller goes on vacation, or the state machine
gives up the ghost, etc. In one of these cases the controller will
“abort’ it’e current instruction 4&nd return control to the Host,
hopefully with enough information that the Host can make an
intelligent decision concerning the state of the Widget.

The Host can read in some information concerning the abort that the
controller took by read Last_Abort_Status. This command returns a
result that is 20 bytes long: 4 bytes of Standard_Status followed by
146 bytes of abort status. The contents of the 14 byte result s
dependent upon the abort taken, and is determined by examining the
contents of the 1S5Sth and 1éth bytes which are a pointer intoc the
firmware where the abort occured.

In the following list the contents of bytes 15 and 14 are indicated
{ as a hexadecimal 1é-bit integer, just as you would read them <from
the buffer: byte 135 most significant... ¥, with a brief description
of th ereason why the abort was taken as well as any comments
concerning other bytes of immediate interest included within the
Abort_Status structure.

$82EA: lllegal interface response, or Host Nak

Brtef%: Response Byte received from Host -
$H3RB8: Illegal Ram_Bank select

Brteg@: Bank number of attempted select
£4487: Format Error: Illegal State_Machine State

BrtedA: State of State_Machine at time of failure
$@4CB: [1legal Bank_Switch: Either call or return

BytegB: Bank number of attempted bank select
$8513: Illegal Interrupt or Dead_Man_Timecut

BrtedA:8B : Address of routine at time of timeout
#1141: Format Error: Error while writing sector

<~ ByteB?: Error Status from FormatBlock

$11EA: Command CheckByte Error)
$1283: ProFile or System command attempted while SelfTest error
$1217: Illeqgal Interface instruction
$1318: Unrecoverable Servo Error while reading i
$13E8: Sparing attempted on non-existent spared block
$1313: Sparing attempted while spare table full
$158D: Deletion attempted of non—-existent bad block
$15B4: Illeqgal exception instruction
#171%: Unrecoverable Servo Error while wriding

Firm_7.Script Widget Firmware Specification Page 53

$1BA1l: Servo Status request sent as Servo Command
$1BS4é: Restore Error: Non-Recal parameter
Bytefd: Il1legal parameter sent
$1BAB: Storé_Map Error: Parameter larger then the number of sectors
BrtefA: 1lleqgal parameter sent
$1BD2: Illegal password sent for Write_Spare_Table command
$1C15: Illegal password sent for Format command
$1C24: Illegal format parameters
Bytef?: Offset parameter
Byte#A: interleave paramter
#1C781 Illegal password sent for Initialize_Spare_Table command
$1CFF: Zero block count sent for MultiBlock transfer
#1Ed4A: Write Error: Illegal State_Machine state
BrtedA: State_Machine state at time of error
$1F2F: Read Error: lllegal State_Machine state
. BrtedA: State_Machine state at time of error
$2821: ReadHeader Error: Illegal State_Machine state
BrtefdA: State_Machine state at time of error
$21F7: Request for illegal logical block
BrtefC: High byte of requested logical block
Br¥tedC: Middle byte of requested logical block
BrtedC: Low brte of requested logical block
$2370: Search for SpareTable failed
$24%3: No SpareTable structure found in SpareTable
$24B3: UpDate of SpareTable failed
$2522: Illegal SpareCount instruction
Bytef?: Value of illegal inmnstruction
$243E: Unrecoverable Servo Error while performing overlapped seek
$26B8: Unrecoverable Seruo Error while seekKing
$2PEH: Servo Error after Servo Reset »
Brteda: Value of controller status port at time of error
$2A1P8: Servo Communication error after Servo Reset
#2D13: Scan attempted without SpareTable

. AHED x #

| WIDGET SERVO FUNCTIONAL OBJECTIVE

I. BASIC SERVO FUNCTIONS

Widget servo control functions are handled by a 28 microprocessor. The
Z8 handles all 1/0 operations, timing operations and communication with a
host controller. Control functions to the Z8 Servo Controller are made
through the serial I/0.

The following commands for the Widget servo are:
A. HOME - not detented, heads off data zones located at the inner stop.
B. RECAL - detented at one of two positions.

l. FORMAT RECAL: 32, -0, +3 tracks from HOME use only during data
formatting.

2. RECAL: 72, -0, +3 tracks from HOME use to initialize home posi-
tion after power on or following an access or any other error.

C. SEEK = coarse track positioning of data head to any desired track
location.

D. TRACK FOLLOWING - heads are detented on a specific track location and
the device is ready for another command.

E. OFFSET - controlled microstepping of fine position system during
TRACK FOLLOWING (two modes).

l. COMMAND OFFSET - direction and amount of offset is specified to
the servo.

2. AUTO OFFSET - command allows the servo to automatically move off
track by the amount indicated by the embedded servo signal on the
data surface (disk).

F. STATUS - command can read servo status.

G. DIAGNOSTIC - not implemented.

See Table 1 for the actual command description. With the present com-
mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.
Upon completion of a seek, the offset command bit is tested to determine
if an offset will occur following a seek (either auto or command offset).

III

When a SERVO ERROR occurs the Z8 SERVO will attempt to do a short RECAL
(ERROR RECAL). Two attempts are made by the system to do the ERROR RECAL
function. If either of the two RECAL operations terminate successfully
the protocol status will be SERVO READY, SIO READY and SERVO ERROR.
Should the ERROR RECAL fail then the system will complete the error
recovery by a HOME function.

The two OFFSET commands will be deScribed. First COMMAND OFFSET is a pre-
determined amount of microstepping of the fine position servo. Included
in the OFESET BYTE (STATREG) bit B6=0 is a COMMAND OFFSET. Bit B7=l is a
forwdrd offset step (toward the spindle); B7=0 is a reverse step. In the
case bit B6=1 the OFFSET command is AUTO OFFSET.

AUTO OFFSET command normally occurs'during a write operation. When the
HDA was initially formated at the factory special encoded servo data was
written on each track '"near" the index zone. The reason for this follows:

Normal coarse and fine position information for the position servos is
derived from an optical gignal relative to the actual data head-track
location. Over a period of time the relative position (optical signal)
will not be aligned to the absolute head-track position by some unknown
amount (less than 100 uln). This small change is important for reliabil-
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded servo signal is avail-
able to the fine position servo and will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head only at index time. The correction signal
can be held indefinitely or updated (if desired at each index time) or
until a new OFFSET command or move command (SEEK or RECAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo Z8 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set-
ting after a recal, seek, offset, read servo status or set servo diag-
nostic. A special communication state exists after a servo error has
occurred. If + SIO READY is not active no communication can exist between
the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re-
fer to Table 1 parts I through V as the total communication string. First
byte is the command byte (i.e. seek, read status, recal, etc.). Second
byte is the low order difference for a seek (i.e. Byte 2 = SOA is a ten
track seek). Third byte is the offset byte (AUTO or COMMAND OFFSET and
the magnitude/direction for command offset). Fourth byte is the status
and diagnostic byte (use for reading intermal servo status or setting
diagnostic commands). Byte five is the check sum byte used to check ver-
ify that the first four bytes were correctly transmitted (communication
error checking).

III.

Part of the communication function requires a specific protocol between
the servo Z8 processor and the external controller.

Servo control and communication are described in CHART I. This chart
illustrates the basic sequencing and control operations. Chart I does
not illustrate the servo error handling or command/protocol handling
functions. Error handling is described in Section IV and illustrated by
CHART II.

Z8 SERVO PROTOCOL

The protocol between the Z8 SERVO microcomputer and the CONTROLLER is
based on five 1/0 lines. Two of the I/0 lines are serial input (to Z8 .
servo from controller) serial output (from Z8 servo to controller). Data
stream between the Z8 servo and controller is 8 bit ACSII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additional output lines between the Z8
servo used as control lines to the controller. Combining the two serial
I1/0 lines and the three unidirectional port lines generates the bases of
the protocol between the Z8 servo and controller. The important opera-
tions between the Z8 servo and controller are:

l. Send commands to Z8 servo.
2. Read 28 servo status.

3. Check validity of all four command bytes.

4. 1I/0 timing signals between the Z8 servo and controller.

5. Z8 servo reset.

Sequencing the Z8 servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a Z8 Servo
Reset at any time. After a Z8 Servo Reset is inhibited the 28 I1/0 ports
and internal register are initialized. This takes approximately 75 msec
after the Z8 Servo Reset is inhibited. The protocol baud rate is auto-
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. ***IMPORTANT***, If the desired baud rate
needs to be increased to 57.6KB; **after a Z8 Servo Reset is the ONLY
time this can be done***, Once set to 57.6KB the communication rate re-
mains at 57.6KB until a Z8 Servo Reset occurs. Setting 57.6KB is achieved
as follows:

l. Z8 Servo "Power On or Controller'" Reset

2. Wait for SIO Ready

3. Send a READ STATUS COMMAND as follows:
BYTE 1L = § 00
BYTE 2 = s 00
BYTE 3 = s 00
BYTE 4 = § 87

mlmnmmnmm

Iv.

After the completion of transmitting the bytes, the Z8 Servo Controller

chanzges to 537.6KB and will be waiting for the next transmitted command
at 57.6KB. ’

Before the controller transmits the command byte the controller must pole
the SIO READY line from the Z8 servo to determine if it is active (+5
volts). If the line is active then a command can be transmitted to the
28 servo. The program in the Z8 servo will determine what to do with the
command bytes (depending upon the current status of the 28 servo). After
the command (five bytes long) has been transmitted to the Z8 servo, the
program in the Z8 servo will determine if the command bytes (first four
bytes) are in error by evaluating the check sum byte (fifth byte trans-
mitted). See table Chart III and IV for the error handling. After the
controller has transmitted the last serial string it must wait 250 usec
then test for SERVO ERROR active (+5 volts). If SERVO ERROR is active the
command was rejected (check sum error or invalid command). If the SERVO
ERROR is zet active 6004sec after the command is sent (and not 250 sec),
this was a command reject. The SERVO ERROR must be cleared by READ
STATUS COMMAND or RECAL COMMAND before transmitting another command.

See CHART 1 for time diagram of the command sequence and 1/0 protocol.

As long as SIO READY is active the controller can communicate with the Z8
Servo Controller. If SERVO READY is not active the only command that will
cause the Widget Servo to set SERVO READY active is a RECAL COMMAND (NOR-
MAL or FORMAT). Read Status will only clear SERVO ERROR. And all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

l. Any READ STATUS COMMAND.
2. Any RECAL COMMAND.
3. Any other commands will be rejected and maintain SERVO ERROR.

If a SEEK COMMAND is transmitted with both SERVO READY and SERVO ERROR
active the command will be rejected.

It i5 important to check the status of all three status lines from the
Z8 Servo. It is best to avoid sending a SEEK COMMAND with SERVO READY
and SERVC ERROR active.

Chart V parts A-I illustrate some of the serial communication commands
and error conditions that can occur between the controller and Z8 SERVO.
ERROR HANDLING

SERVO ERROR will be generated during the following conditions:

l. During Recal mode (velocity control only) access time—out.ILf a Recal
function exceeds 150 msec then an access timeout occurs.

s ’ 2. During Seek mode (velocity control only) access time=out. If a Seek
’ function .exceeds 150 msec then an access time=-out occurs.

} 3. During Settling mode (following a Recal, Seek, or Offset) if there is
> - - excessive On Track pulses (3 crossings) indicating excessive head
motion a Settling error check will occur.

4. During a command transmission if a communication error occurs (check
- Sum error). .’

5. During a command tansmission if a invalid command is sent.

f‘ APPENDIX A: 3

II.

The purpose of the FINE POSITION SERVO is to maintain detent or lock on

a given data track. Any misregistrations of the head/arm due to windage,
mechanical observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I illustrates a block diagram of the Widget FINE PUSI~
TION SERVO. The amount of misregistration at the data track sensed after
a AUTO OFFSET command are summed into the servo and the servo is automat-
ically repositioned over the data track.

The COARSE POSITION SERVO (SEEK) has the function of moving the data
head arbitarily from a current track to any other arbitrary track loca-
tion within the totall number of track locations between the inner to
outer crash stops. When a command is transmitted to the Z8 Servo con-
troller, the Z8 decodes and interprets the command into a servo function.
If a SEEK command is sent to the Z8 Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data

 head and the FINE POSITION SERVO to come to rest immediately following a

SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliabil-
ity of the data channel is assured with high margins. Figure I illustrates
a block diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the Z8 Servo Controller. The two servos share for
the most part the same set of electronics. The Z8 Servo Controller and
analog multiplexers switch between the signal paths. In general there
are some circuits that are not shared because of their unlqueness for a
particular servo.

28 SERVO COMM&IND BYTES page |
TaBLE 1
)
I. BYTE 1: COMMAND BYTE <DIFCNTHD
i BY Bs BS B4 | FUNCTIONS
—— i1 8 9 a '\ accesz only
1 B7 1 e 8 o ! acceses with offzet .
command | Bé a8 t B 9 i normal recal (to trk 720
bits 1BS " B | 1 1 ! format recal <to trk 320
1 B4 i 8 8 a8 1 | offset-trk follaowing
—-—= i1 1 8 &8 | home-send to ID stop
- : 8 @ 1 @ | diagnostic command
B3 =-X- not used i 8 86 98 @ ! read status command
access 1B2 ~access direction —meecemcmmmmmddrnnrce e -
bits tBl ~hi diff2 (512)
1B -hi dif+l (258)

access direction

B

hi

IT. BYTE 2:

diff2 (S12)

diffl (258)°

DIFF BYTE

command BYTE 2

ODUDO o
[NN Y I NN

P

-bit7= 128
-bité= &4
-bi tS= 32
-pitd= 14
~bit3= g
~bit2= 4
-biti= 2
-bi to= 1

—

nu
s+

i u
=

: 1

i
o

(DIFCNTL>

contains the LOW QRDER DIFFERENCE COUNT for =x

tracks
tracks
tracks
tracks
tracks
tracks
tracks
track

(FORWARD ¢
(REVERSE:

toward the spindle)
away from the spindley

1 (912 tracks
(not set)

to go)

(256 tracks to Qo)
(not set)

seel

pye

I.

A WIDGET SERVO FUNCTIONAL OBJECTIVE

BASIC SERVO FUNCTIONS

Widget servo control functions are handled by a Z8 microprocessor. The
Z8 handles all 1/0 operations, timing operations and communication with a
host controller. Control functions to the Z8 Servo Controller are made
through the serial I/0.

The following commands for the Widget servo are:
A. HOME - not detented, heads off data zones located at the inner stop.
B. BRECAL - detented at one of two positions.

1. FORMAT RECAL: 32, -0, +3 tracks from HOME use only during data
formatting.

2. RECAL: 72, -0, +3 tracks from HOME use to initialize home posi-
tion after power on or following an access or any other error.

C. SEEK - coarse track positioning of data head to any desired track
location.

D. TRACK FOLLOWING ~ heads are detented on a specific track location and
the device is ready for another command.

E. OFFSET - controlled microstepping of fine position system during
TRACK FOLLOWING (two modes).

1. COMMAND OFFSET - direction and amount of offset is specified to
the servo.

2. AUTO OFFSET - command allows the servo to automatically move off
track by the amount indicated by the embedded servo signal on the
data surface (disk).

F, STATUS - command can read servo status.
G. DIAGNOSTIC - not implemented.

See Table 1 for the actual command description. With the present com—
mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.
Upon completion of a seek, the offset command bit is tested to determine
if an offset will occur following a seek (either auto or command offset).

II.

When a SERVO ERROR occurs the Z8 SERVO will attempt to do a short RECAL
(ERROR RECAL). Two attempts are made by the system to do the ERROR RECAL
function. If either of the two RECAL operations terminate successfully
the protocol status will be SERVO READY, SIO READY and SERVO ERROR.
Should the ERROR RECAL fail then the system will complete the error
recovery by a HOME function.

The two OFFSET commands will be described. First COMMAND OFFSET is a pre-
determined amount of microstepping of the fine position servo. Included
in the OFFSET BYTE (STATREG) bit Bb6=0 is a COMMAND OFFSET. Bit B7=] is a
forward offset step (toward the spindle); B7=0 is a reverse step. In the
case bit B6=1 the OFFSET command is AUTO OFFSET.

AUTO OFFSET command normally occurs during a write operation. When the
HDA was initially formated at the factory special encoded servo data was
written on each track "near" the index zone. The reason for this follows:

Normal coarse and fine position information for the position servos is
derived from an optical signal relative to the actual data head-track
location. Over a period of time the relative position (optical signal)
will not be aligned to the absolute head-track position by some unknowm
amount (less than 100 uln). This small change is important for reliabil-
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded servo signal is avail-
able to the fine position servo and will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head only at index time. The correction signal
can be held indefinitely or updated (if desired at each index time) or
until a new OFFSET command or move command (SEEK or RECAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo Z8 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set-
ting after a recal, seek, offset, read servo status or set servo diag-
nostic. A special communication state exists after a servo error has
occurred. If + SIO READY is not active no communication can exist between
the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re-
fer to Table 1 parts I through V as the total communication string. First
byte is the command byte (i.e. seek, read status, recal, etc.). Second
byte is the low order difference for a seek (i.e. Byte 2 = $0A is a ten
track seek). Third byte is the offset byte (AUTO or COMMAND OFFSET and
the magnitude/direction for command offset). Fourth byte is the status
and diagnostic byte (use for reading internal servo status or setting
diagnostic commands). Byte five is the check sum byte used to check ver-
ify that the first four bytes were correctly transmitted (communication
error checking).

»

1II.

Part of the communication function requires a specific protocol between
the servo Z8 processor and the external controller.

Servo control and communication are described in CHART I. This chart
illustrates the basic sequencing and control operations. Chart I does
not illustrate the servo error handling or command/protocol handling
functions. Error handling is described in Section IV and illustrated by
CHART 1I.

Z8 SERVO PROTOCOL

The protocol between the Z8 SERVO microcomputer and the CONTROLLER is
based on five I/0 lines. Two of the I/0 lines are serial input (to Z8
servo from controller) serial output (from Z8 servo to controller). Data
stream between the Z8 servo and controller is 8 bit ACSII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additional output lines between the Z8
servo used as control lines to the controller. Combining the two serial
1/0 lines and the three unidirectional port lines generates the bases of
the protocol between the Z8 servo and controller. The important opera-—
tions between the Z8 servo and controller are:

l. Send commands to Z8 servo.

2. Read Z8 servo status.

3. Check validity of all four command bytes.

4. 1/0 timing signals between the Z8 servo and controller.
5. Z8 servo reset.

Sequencing the Z8 servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a Z8 Servo
Reset at any time. After a Z8 Servo Reset is inhibited the Z8 I/0 ports
and internal register are initialized. This takes approximately 75 msec
after the Z8 Servo Reset is inhibited. The protocol baud rate is auto-
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. #***IMPORTANT*#**, If the desired baud rate
needs to be increased to 57.6KB; **after a Z8 Servo Reset is the ONLY
time this can be done***., Once set to 57.6KB the communication rate re-
mains at 57.6KB until a Z8 Servo Reset occurs. Setting 57.6KB is achieved
as follows:

l. 28 Servo "Power On or Controller" Reset
2. Wait for SIO Ready
3. Send a READ STATUS COMMAND as follows:
BYTE 1 = § 00
BYTE 2 = § 00

BYTE 3 = § 00
BYTE 4 = § 87

Iv.

After the completion of transmitting the bytes, the Z8 Servo Controller
chanzges to 57.6KB and will be waiting for the next tramsmitted command
at 57.6KB. .

Before the controller transmits the command byte the controller must pole
the SIO READY line from the Z8 servo to determine if it is active (+5
volts). If the line is active then a command can be transmitted to the
28 servo. The program in the Z8 servo will determine what to do with the
command bytes (depending upon the current status of the Z8 servo). After
the command (five bytes long) has been transmitted to the Z8 servo, the
program in the Z8 servo will determine if the command bytes (first four
bytes) are in error by evaluating the check sum byte (fifth byte trans-
mitted). See table Chart III and IV for the error handling. After the
controller has transmitted the last serial string it must wait 250 usec
then test for SERVO ERROR active (+5 volts). If SERVO ERROR is active the
command was rejected (check sum error or invalid command). If the SERVO
ERROR is set active 6004sec after the command is sent (and not 250 sec),
this was a command reject. The SERVO ERROR nust be cleared by READ
STATUS COMMAND or RECAL COMMAND before transmitting another command.

See CHART 1 for time diagram of the command sequence and 1/0 protocol.

As long as SIO READY is active the controller can communicate with the Z8
Servo Controller. If SERVO READY 1is not active the only command that will
cause the Widget Servo to set SERVO BEADY active 1s a RECAL COMMAND (NOR-
MAL or FORMAT). Read Status will o nlx clear SERVO ERROR. And all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

1. Any READ STATUS COMMAND.
2. Any RECAL COMMAND.
3. Any other commands will be rejected and maintain SERVO ERROR.

If a SEEK COMMAND is transmitted with both SERVO READY and SERVO ERROR
active the command will be rejected.

It is important to check the status of all three status lines from the
28 Servo. It is best to avold sending a SEEK COMMAND with SERVO READY
and SERVO ERROR active.

Chart V parts A-I illustrate some of the serial communication commands
and error conditions that can occur between the controller and Z8 SERVO.

ERROR HANDLING
SERVO ERROR will be generated during the following conditions:

l. During Recal mode (velocity control only) access time-out.If a Recal
function exceeds 150 msec then an access timeout occurs.

O U O 0 O £ 0 0 O -

2.

5.

During Seek mode (velocity control omnly) access time-out. If a Seek
function exceeds 150 msec then an access time~out occurs.

During Settling mode (following a Recal, Seek, or Offget) if there is
excessive On Track pulses (3 crossings) indicating excessive head
motion a Settling error check will occur.

During a command transmission if a communication error occurs (check
BUm error).

During a command tansmission if a invalid command is sent.

APPENDIX A:

I.

II.

The purpose of the FINE POSITION SERVO is to maintain detent or lock on

a given data track. Any misregistrations of the head/arm due to windage,
mechanical observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I illustrates a block diagram of the Widget FINE POSI-
TION SERVO. The amount of misregistration at the data track sensed after
a AUTO OFFSET command are summed into the servo and the servo is automat-
ically repositioned over the data track.

The COARSE POSITION SERVO (SEEK) has the function of moving the data

head arbitarily from a current track to any other arbitrary track loca-
tion within the total number of track locations between the inner to
outer crash stops. When a command is transmitted to the Z8 Servo con-
troller, the Z8 decodes and interprets the command into a servo function.
If a SEEK command is sent to the Z8 Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data
head and the FINE POSITION SERVO to come to rest immediately following a
SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliabil-
ity of the data channel is assured with high margins. Figure I illustrates
a block diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the Z8 Servo Controller. The two servos share for
the most part the same set of electronics. The Z8 Servo Controller and
analog multiplexers switch between the signal paths. In general there
are some circuits that are not shared because of their uniqueness for a
particular servo.

g T T T O O O P O o O e £

APPENDIX B:

An important part of the Widget Servo System is the optics signal. The optics
signal provides the necessary signals for the five position servo position the
data head accurately over the data track and to provide the system velocity
signal during seek mode. The alignment of the optics signal is described in
the following section on "WIDGET OPTICS ALIGNMENT PROCEDURE."

N O 0 0D 0 U0 0 0 o £ e

WIDGET SERVO

VARIOUS KEY WAVEFORMS

Page
Page
Page
Page
Page
Page
Page
Page
Page

WOoOoO~NOWME WD -

CONTENTS

Optics Adjustment

Current Sense and Position A

Current Sense and Position A (Forward and Rev Seeks)
Velocity and Position A

Velocity and Position A (Forward and Rev Seeks)

DAC Output and Position A

DAC Output and Position A (Forward and Rev Seeks)
Curve Shift Function and Position A (1 track seek)
Curve Shift Function and Position A (60 track seek)

bl il

WAYEFORM: Optics Adjustment

Scope Adjustments:

Channel Probe Tip Test Point Notes
Chan 1 Position A TP9 2V/div
Chan 2 Position B TP8 2V/div

Trig In Not used

Horiz : X-Y Mode

Servo:

Alternate Seeks, 512 tracks

Press Z; 82, 0, 0, 0
8, 0, 0, O

-

N . . H i
R an e S SRR T S A U SN G S
0 . + . 1l

PAGE 1

WAVEFORI:

Current Sense and Position A

Scope Adjustments:

., Servo:

Channel Probe Tip

Chan 1 Current Sense
Chan 2 Position A

Trig In Access Mode
Horiz: Sms/Div Calibrated

Test Point

P19
TP9
TP27

Alternate Seeks, 96 tracks (Hex $60)

Press Z;

80, 60, 0, O
84, 60, 0, O

PAGE 2

Notes

5V/div
5V/div
Positive trig, Ext/10

L 0 O O

WAVEFORIM: Current Sense and Position A :
‘ (Forward and Reverse Seeks)

Scope Adjustments:

Channel Probe Tip Test Point tlotes

Chan 1 Current Sense TP19 5V/div

Chan 2 Position A TP9 5V/div

Trig In Access tlode TP27 Positive trig, Ext/10

Horiz: 2ms/Viv Uncalibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

PAGE 3

O SO 2=
T R O S T A R

L

TR P AR D

WAVEFORM: Velocity and Position A

Scope Adjustments:

Servo:

Channel Probe Tip

Chan 1 Velocity
Chan 2 Position A
Trig In Access Mode

Horiz: 5S5ms/Div Calibrated

Test Point Notes

TP7 2V/div

TPY S5V/div

TP27 Positive trig, Ext/10

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

PAGE 4

(TR UM T— _— -

< N O SO 1 00D U o

WAVEFORIl: Velocity and Position A

(Forward and Rev Seeks)

Scope Adjustments:

Servo:

Channel Probe Tip
Chan 1 Velocity
Chan 2 Position A
Trig In Access Mode
"Horiz:

Test Point

Notes
TP7 S5V/div
TPY S5v/div
TP27 Positive trig, Ext/10

2ms/Div Uncalibrated

Alternate Seeks, 96 tracks (Hex $60)

Press Z;

80, 60, 0, O
84, 60, 0, O

PAGE 5

WAVEFORM: DAC Output and Position A

Scope Ad justments:

Channel Probe Tip Test Point Notes

Chan 1 DAC Output P13 2V/div

Chan 2 Position A TP9 5V/div

Trig In Access Mode TP27 Positive trig, Ext/10

Horiz: 5Sms/Div Calibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

PAGE 6

£ 0 04000 U0 00 0 0 0 0 U OO

WAVEFORM: DAC Output and Position A

(Forward and Rev Seeks)

Scope Adjustments:

Servo:

Channel Probe Tip
Chan 1 DAC Output
Chan 2 Position A

Trig In Access Mode

Horiz: 2ms/Div Uncalibrated

Alternate Seeks, 96 tracks (
Press Z; 80, 60, 0, O
84, 60, 0, O

Test Point Notes

TP13 2V/div

TP9 5V/div

TP27 Positive trig, Ext/10

Hex $60)

[RS8

+
i
bl N
+
+
+
i

PAGE 7

T —

WAVEFORM: Curve Shift Function and Position A
(Forward and Rev Seeks: 1 track)

Scope Adjustuments:

Channel Probe Tip Test Point Notes

Chan 1 Curve Shift Func. TP12 2V/div

Chan 2 Position A TP9 5V/div

Trig In Access Mode TP27 Positive trig, Ext/10

Horiz: 2ms/Div Uncalibrated

Servo:
Alternate Seeks, 1 track

Press Z; 80, 01, 0, O
84, 01, 0, O

PAGE &

WAVEFOR!{: Curve Shift Function and Position A
(60 track seek)

Scope Adjustments:

Channel Probe Tip Test Point Notes

Chan 1 Curve 5Shift Func. TP12 2V/div

Chan 2 Position A TP9 5V/div

Trig- In Access Mode TP27 Positive trig, Ext/10

Horiz: 5Sms/Div Calibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

Pack Y

28 SERVO COMMAND BYTES
TABLE 1

page 1

FUNCTIONS

access only

access with offset
normal recal (to trk 72)
format recal (to trk 32)
offset—trk following
home—send to ID stop
diagnostic command

read status command

I. BYTE 11 COMMAND BYTE (DIFCNTH)
! B7? Bé BS B4 |
-— $i11 @8 0 @ !
{87 211 @ 8 § |
command (Bé 41 86 1 8 0 |
bits {BS Fi166 1 t 1
1B4 ‘'t 8 & 8 1 i
- Ceg! 1t & 8 0 !
- a1 e @ 1 6 |
{iB3 =X~ not used ol 8 8 6 6 i
access (B2 ~access direction
bits Bl ~hi diff2 (512)
i1B9 ~hi diffl (286>
access direction = |1 (FORWARD: toward the
= @ (REVERSE: away from t
hi diff2 (512 = 1 (512 tracks to Qo)
= @ (not set)
hi diffl (258) = | (256 tracks to go)
= @ (not set)
Il. BYTE 2: DIFF BYTE (DIFCNTL>

command BYTE 2 contains the

{B7 -bit7= 128 tracks
1Bé —~bité= &4 tracks
IBS -bitS= 32 tracks
1B4 -bitd= 14 tracks
iBS -bit3= 8 tracks
i1B2 ~bit2= 4 tracks
1Bl -biti= 2 tracks
-bitoe= 1 track

spindle>
he spindle>

LOW ORDER DIFFERENCE COUNT for a seek

I111. BYTE 3

Z8 SERVO COMMAND BYTES page2
TABLE 1

¢+ OFFSET BYTE (STATREG)>

command BYTE 3 contains the INSTRUCTION for an OFFSET COMMAND (seek
or during track following)

o e

O
X

1.

~offset direction

-auto offset function

~read offset value
-offset bit4 =14
-offset bit3 =8
-offset bit2 =4
-offset bit] =2
-offset bito =i

Cafter auto or manual)

if offset command from BYTE | is followed by bité set (auto offset)
offset direction (bit?) read offset (bit5S) and bits 4-8 are ignored
but should be set to 8 if not used.

2, OFFSET DIRECTION =i
=@

3. AUTO OFFSET =i
- =3

4. READ OFFSET -y
=0

(FORWARD OFFSET:toward the spindle)
(REVERSE OFFSET:away from the spindle)

(normally used preceeding a write operation)
(manual offset:MUST send direction and magni tud
of offset)

(read offset value from DACji.e. after auto
offset)
(no action)

#* READ OFFSET COMMAND desired after AUTO OFFSET MUST be sent as two

eperate commands

IV. BYTE 4: STATUS BYTE (CNTREG)

iB?
iBé
iBS
1B
{83
1B2
iB1
‘B8

-communication rate

—power on reset

-not used

-not used

-status or diagnostic bits
- H

- V)

B7=8; Communication Rate is 19.2 KBAUD
=13 Communication Rate is 57.6 KBAUD

Bé=8; Power On Reset bit is no active
=13 Power On Reset bit is active

28 SERVO COMMAND BYTES

TABLE 1

V. BYTE S5: CHECKSUM BYTE (CKSUM)

[(B7? Bé BS B4 B3 B2 Bl B8]

results of the transmitted CHECKSUM BYTE are derived as:

(BYTE 1 + BYTE 2 + BYTE 3 + BYTE 4> = CHECKSUM BYTE

(+) is defined as the addition of each BYTE

(BYTE) is defined as the compl!iment of the BYTE (1-4)

V1. The SERVO STATUS lTines (SIO RDY,SERVDO RDY,SERVO ERROR) must have

following conditions in order to send the listed 28 COMMANDS:

28 SERVO CMD

accessi(only)
access(offgset)
recal(data>
recal(format)
park
offset(detent)
status
diagnostic

X= e¢fther 0,1

HEX

ax
?X
40
70
Ce
1e
ee
20

SERVO STATUS

S] S
I R R
o v v
R R E
D D R
Y Y R
' !
i 1 i
it 1 !
i1 X Xi
I X xi
B | X Xi
i1 1 8!
i1 X X1
]]

not

implimented

page3

the

«8 CEAVD SEQUTNCER
CHART T

SYSTE 14
RESET

SYSTEM 1001 T 1ALIZATION

f——— CLEAR PoRT'3 AND TWNEN ©,1,2
l——— CLEAR RECS 127 f ¥

p—-— SRV ITACL RO/NTTR

WO COMMOLICANOY SET UP

f—— 3&T Sro 70 M.6 K8

SELAL CORMAUNIEATION

Phes

RECAL STATE

e PARIC. AND W AIT tOOP
il LOAD TIMEZS

——— SET Pomrs

2K OLRVD SEQUENCE R PAGE
CHaer T

ETRRT” RECAL 440770 N

- START T1rELS

——— S&T ZRG MASK (T1)

() —rtz0 Cumorves REQUIRED TRACK CENETH)

sTATE RECAL E/NAL APPSOACH

*/

SEr TAQ rmsx

scr PoxT g

/7"5‘“ (ITDP VELeC1TY
° COMDITIO NS N ToAC KR

SETTUNG ConrTEel

——— SET Por7S FOR SErTLING
[STA-RT WEBAD SETTULING TIMER

——— LoAD TRACK CMoST/NG Covrrma (7L)

- STRer 71
e TEST FOR ORFIET BIT

W SET /NTEGRATOR GA

e 8reve SEQUBwCER

MNOT 18PLI M ETED

ACCESS Srar= (SeEsxs)

e G T SEEKk DiRECT/ON

o ST PORTS

g LOAD AWND START T¢) T TimEes

t———— SET SE&EKx CURVE

OPLOACH

e SET™ PORYTS

[UPPATE Fos/TiON S/eNAL KFOR SETTre/NG

TERL
G)‘—— Coudipron) |6 TRAQ Fok TEEM cowbiTioN

A T A IO O D 5 O T O O . 0 S O SO SO S I 1

SERVe ELreor.
. CraerT IL

SE7r SErvO EREOM

e W /LC TRY- Tion RETR/IES

nm- oy

AFTER
RETRIES

Cormmows) CATION ERpprALS
- CHART IIT

STATE 1,7

“®——— SLO LEADY

=T Ssevs | 13
ErROA N o
Y
Coupr
&Yo

—— OE S&LmeT Sro READY

CoO a1 A D Eeloks
CrARTIL

RO STAT

A COMmumAvDd PRETJECr

LSAD Cu)
Hda cocHr

O O O O O 0 R

CHRAET ¥V A- Bce op

r o — mrinatd L, som

25 v pccer N7/

ste oy vy 7

SEou ROY VA % ' ;
Seepo Eeen W)

€z0 'srave Yy

STo ' Conrreccere /1111y

B- AF7ER MweEn UP - CorEr Siy ,éua/&—: -

XO BDy

ERve LDy

Elve Epfop

= x J) cSEpve

Lo ConTee Q@ @@ ¢S

C—~ Ar7ee BDosEL 0P —/INUALID CAMD

| Se————

T Py —_— "‘— Ousee.
ERve. By

Emve Estopn ‘ :"_ x —=

SLe r SERVe

Xo « ConTéL | Xao X 9?@5{2 c.:x

IR TTRATS A AOR N SR IR0 5 SN AT TR
S———
TN IR I

Crake/l K L= XKEH0 STR7yv & o iuunyb
P l ‘?"—x—"i:
; \
10 epy - = ! mseeo
Seve LoDy

Rve Leror

[]
H I

o . SEPve

RO,

o . Cowrec 'ﬂﬁ\(

E ~72p0e rFottge rng SERYO ErPOR - INVRCID COMmBL)
ro 22y il x >
=eve &y
“eve ELpon
‘0. SERvo
. coume Yo Yo o) e)

F=~TeAck Foccouwsinls sEeve ézmz — B£AO STATYS

—) k—_—mseg

re eby X"i !‘*"u“'
vy By
ZRve ZFPlor .
o aave X5 X 2Y =Y avX oY
©. CoTec. X B X 2 maX aekes X o

< SO S O D 00 e A 0 0 o U oSO -

CHART K G=TRACK FOLLOW /WG VALID Command (Hove)

]

‘ T X ((

ST po v =]
SERyO RDYy S,L
ERve FEEo2 _{ J’
_(C

J)

ro » s2pue

Al
))

re . Gwrex XBiYm2)ea¥neYes Y

H—7eack rougw' s (iiovE emd) Lotcowld BY Soeve Cerer

To =Dy S (i
cevo A2y sV
=eve Feeae -

O «SELve

e 1 COnNTEL XNXBZYNXWXEX

L — Teack FocLevs ime (WO caum-wb) SERv9 ZesoR

STO epy T
eove 2oy 7T 7777777

Eeve Fefak

ZO .§&fLvea

Fo.onTRL

R T S D 0 N O O O OO R AU s

VoAl TR

atp sM -w‘_&*w

* b A

SRl

POt

3

e i g R
WA T

R L -
I e P
s o]
:«murﬁwi,;e‘.} A o A
. PO A L L R
s BTN

4w

< T R Y O T e 0 urs o o 000 5

