
The Architecture of the Lisa TM Personal
Computer

BRUCE DANIELS

Invited Paper

The Lisa personal computer provides a new and better way of
relating to a computer. This paper presents an outline of how such
a complex, modern personal computer system is developed. The
architecture of both the hardware and the software of the Lisa is
examined in detail. Design goals and considerations are also dis­
cussed.

BACKGROUND

In 1979 there was a desire within Apple Computer Inc. to
develop a new kind of personal computer product. Personal
computers like the Apple II made computing affordable
enough to meet the needs of a single person. For just a few
thousand dollars, one could purchase a real computer to do
word processing, accounting, spreadsheet calculations, and
other applications. However, there is a critical limitation
with such personal computers, as well as with the older
minicomputers and mainframe computers. Al I these com­
puters are difficult to learn to use. They require the under­
standing of a whole world of new computer concepts and
jargon such as programs, data files, file di rectories, com­
mand languages, etc. Because these computers operate in
ways that are not even self-consistent, they present a for­
midable barrier to their use [19].

It has been observed by the Training Department of
Apple Computer Inc. that it takes about 20 to 30 h of
instruction and practice before a person can learn enough
to begin using a traditional computer. This represents a real
obstacle to the widespread use of computers to help solve
people's problems. Most people are not willing or able to
spend the time required to learn to use a traditional com­
puter. Such computers are unfortunately ii mited to those
people who are computer proficient or are willing to be­
come proficient.

The Lisa Charter

The Lisa charter was to build a revolutionary computer
that was truly easy to use and thereby to mitigate the
limitation of existing computers. A computer which is revo­
lutionary may not be compatible with existing products or
even with various industry standards and practice. Naturally

Manuscript received November 10, 1983; revised December 8,
1983.

The author is with Systems Software1 Apple Computer Inc.,
Cupertino, CA 95014, USA.

™Lisa is a Registered Trademark of Apple Computer Inc.

the Lisa would not be incompatible just for the sake of
being different but to be better. Developing a computer
which is an order of magnitude easier to use than tradi­
tional computers requires major departures.

Design Goals

The first design goal for the Lisa was to be intuitive. This
implied departing from traditional computer usage which
employs textual communication through a formal com­
mand language and with an alien vocabulary. Only by
building on what the user already knows and working the
way the user expects could the Lisa fulfi I its charter.

The second goal was that the Lisa be consistent. If a
capability works a certain way in one part of the system,
then it must work the same way throughout the system.
This means that once the user learns to use a standard
feature in one place, then he automatically knows how to
use it everywhere. More complex capabilities are built on
the principles that the user has already learned. Therefc:>re,
complex tasks are possible with only a little more effort.

The third goal was an integrated system conforming to
the ways in which people actually work. Day-to-day work
consists of a variety of diverse activities that are in progress
at the same time. People should not be required to terminate
one activity before starting another. Instead people should
be allowed to easily switch back and forth from one to
another. These activities may be related so that information
from one activity should be transferable to another with
minimum effort.

The fourth goal was to get enough performance to do the
job and do it in a way that minimizes its cost and complex­
ity. High system performance is necessary to satisfy the
heavy demands of the unique Lisa software, particularly its
graphics capabilities. However, high performance is not
inexpensive. It increases the complexity, the speed, and
therefore the cost of the processor, the hardware bus,
memory, etc.

The fifth goal was to provide an open architecture to
facilitate the addition of new software, hardware, and pe­
ripherals by not only Apple Computer Inc. but also other
developers. The Lisa system was announced with a rather
extensive selection of hardware and software. However, the
Lisa must be expandable to be able to continue to meet all
the needs of its diverse community of users.

The sixth goal was reliability. The Lisa must operate day
after day in a correct and accurate fashion. When a rare

0018-9219/84/0300-0331 $01.00 ©1984 IEEE

PROCEEDINGS OF THE IEEE, VOL. 72, NO. 3, MARCH 1964 331

fai I ure occurs, the problem should be quickly detected,
isolated, and fixed. After such a failure when the system is

. restarted, the user's data must be in a state just as they were
before the fai I ure.

The Lisa's final goal was to be pleasing and fit naturally
into the everyday work environment. It should no~ consist
of units interconnected with a maze of cables or be a
massive and noisy cabinet sitting beside the desk.

THE LISA HARDWARE

The Lisa hardware [3] consists of a compact, desktop unit
that contains the screen, removable power supply, hard­
ware boards,· and the floppy disk unit. In addition, a de­
tachable keyboard, mouse, hard disk drives, printers, and
other peripherals plug into the main unit as illustrated in
Fig. 1. The hardware modules inside the unit are accessed

Fig. 1. The Lisa machine with its mouse.

by removing the· front and back panels which causes the
Lisa to be turned off by the panel safety interlocks. The
entire unit can be easily disassembled for service in less
than a minute without any tools.

The Lisa hardware consists of four main logic boards: a
processor board, an 1/0 board, and two memory boards.
The mother board provides the buses that interconnect
these main l_ogic boards. A smal I video board generates
analog signals that actually drive the monitor. Three expan­
sion slots on the mother board accommodate additional
logic boards.

The Lisa Processor

Initially, the possibnity of using a special Apple Computer
Inc. designed processor was investigated. This processor
would have provided a special instruction set tailored for
the efficient execution of Pascal code. It was to be con­
structed out of standard 2901 bit-slice mi.crocode circuits.
However, designing a new instruction set and its processor
for the Lisa could not be justified on economic or en­
gineering grounds. The cost of a standard, off-the-shelf
processor drops significantly with mass manufacturing. .

Existing 8-bit processors did not· offer the levels of high
performance that was necessary. The 16-bit processors
offered better performance but suffered from a limited

332

architecture. The Motorola MC68COJ, which had just be­
come available, was chosen as. it had a rich architecture
with a 32-bit internal data path, multiple addressing modes,
and an addressing range of 16 Mbytes [18]. The powerful set
of instructions and their fast execution offered high perfor­
mance. The broad repertoire of instructions could compile
high-level languages efficiently. In particular, since the
majority of the Lisa software was to be written in Pascal, it
was important to mini·mize the code size.

The Memory Management Unit

The MC68COJ processor generates 24-bit logical addresses
to access data and instructions. Therefore, it provides a
logical address space of 16 Mbytes. In the Lisa this 16-Mbyte
logical address space is divided into 128 segments. Each
segment consists of up to 128 kbytes in blocks of 512 bytes.
The upper 7 bits of a 24-bit logical address is the segment
number and the remaining 17 bits is the offset within that
segment. The offset consists of 8 upper bits which is the
logical block number and 9 bits of the displacement within
the block. This can be seen in Fig. 2. To access actual
locations in the Lisa hardware, logical addresses are trans­
lated into physical addresses by a section of logic on the
processor board known . as the Memory Management Unit
(MMU) [24]. The MMU hardware permits the operating
system to control the entire relocation process. The MMU
prevents a particular process from accessing areas of mem­
ory outside of the portion assigned to it.

Logical Adcbess (24 bits)

ottset

23 17 16 9 8

segnl!I It lOglcal DlOck

1Z7

20 9 8
priysical block

log1cal
alsplacemet It

9

D

pnyslc:al ' 0

atsplEement

Physical Adcbess (21 bits)
Ag. 2. MMU address transformation.

The Lisa's RAM memory occupies 2 Mbytes of physical
address space. This would imply that only 16 segments,
each of size 128 kbytes, cpuld be meaningfully used. How­
ever, each segment does not necessarily occupy the full 128
kbytes allotted to it in logical address space. Each segment
can be mapped into as little as one 512-byte block. There­
fore, more than 16 logical segments can map into 2-Mbyte
physical memory. Areas larger than 128 kbytes . can be
accommodated by treating multiple logically contiguous
segments as one segment. The translation of a logi_cal

PROCEEDINGS OF THE IEEE, VOL. 72, NO. 3, MARCH 1964

address to a physical address by the MMU is performed on
a segment-by-segment basis. Associated with each segment
in the MMU is its origin which is the 12-bit block number
in the physical address space where the corresponding
segment begins. The logical block number from bits 9-16 of
the logical address is added to the segment's origin value to
produce the physical block number to be accessed. The
nine displacement bits from the logical address translate
directly into the physical displacement. This translation
process is i 11 ustrated in Fig. 2.

The MMU also performs access checks to verify that the
requested access is al lowed. The MMU checks each access
to ensure that it does not exceed the bounds of the speci­
fied segment. In addition, an attempt to access a segment
which is not mapped or an attempt to write into a read-only
segment wil I generate an access violation. These access
violations trap to the operating system for handling.

Within the MMU there are four distinct sets of translation
registers, each representing a different mapping from logi­
cal addresses into physical addresses. Each set is called a
context. Only one context is current at any given time.
Context 0 is reserved for use by the operating system.
Contexts 1, 2, and 3 are used for client processes supported
by the operating system. However, more than three
processes are possible by using the three MMU contexts as
a "cache" of the three most recently used processes. By
simply switching contexts, rapid switching among processes
and the operating system is accomplishe'd. The Lisa auto­
matically selects context 0 whenever an access is made in
Supervisor mode. Thus a TRAP instruction can be used to
generate a call from a user process to the operating system.
Normally the context is changed while executing in the
operating system in Supervisor mode. Execution in the new
context begins ·when user mode is entered.

The Lisa Display

Traditional personal computers employ a text-only dis­
play that restricts the output to a limited set of characters at
fixed positions on the screen. The Lisa uses a h igh-resol u­
tion bit-mapped display which allows virtually unlimited
graphics and the use of multiple sizes and styles of text
fonts, including proportionally spaced fonts. Considerable
time and effort went into the selection of the dimensions,
resolution, composition, and refresh rate of the Lisa's dis­
play.

When the refresh rate of the screen is too slow, it
produces a maddening flicker of the screen. A high refresh
rate demands a higher memory access bandwidth which
requires either fast and expensive RAM's or it significantly
degrades system performance. On the other hand, a slowPr
refresh rate can be employed if one uses a slow phosphor
in the CRT. However, a slow phosphor causes objects
removed from the display to slowly fade away on the
screen and moving objects to smear. It was found after
much experimentation that a responsive yet sol id display
required a moderately fast phosphor and a noninterlaced
refresh rate of 60 Hz [22), [23].

Another important property of a display is its dimensions.
When the development of the Lisa began, some research
computers, for example see [281' provided a full page bit­
mapped display that allowed a complete 8 1 /2- by 11-in
sheet of paper, or up to 66 lines by 102 characters to be

DANIELS: APPLE LISA™ PERSONAL COMPUTER

shown at once. However, the CRT tube for such a large
display is rather expensive. In addition, a full page display
places great demands on the memory access bandwidth.
For example, a full page display requires a bit map ap­
proximately 768 pixels wide by 1024 high, which corre­
sponds to 96 kbytes of memory. With a screen refresh rate
of 60 Hz, a memory bandwidth of 5.76 Mbytes per second
would be required for just the video alone!

Although a ful I page display is convenient, the Lisa's half
page display provides most of the benefits but at a consid­
erably reduced cost and complexity. A half page display stil I
shows the full 81/2-in width of a page but only about 5 or
6 in of the height. Such a smaller display reduces the video
bandwidth requirements by half. Another way that the Lisa
reduces the video bandwidth is to employ different resolu­
tions for the horizontal and vertical dimensions. The most
demanding use of the video resolution is for the display of
text. However, the display of sharp and accurate text re­
quires a higher resolution in the horizontal dimension than
it does in the vertical dimension. Therefore, on the Lisa
display there are 3 pixels in the horizontal dimension for
every 2 pixels in the vertical. These different resolutions do
comp I icate, slightly, the design of the Lisa graphics soft­
ware. For example, the software must remember that a
graphical object 150 by 100 appears as a square, however
100 by 100 is a rectangle. Because of its half page size and
different resolutions, the bit map for the display (720 pixels
wide by 364 pixels high) requires only 32 kbytes corre­
sponding to a memory bandwidth of 1.92 Mbytes per sec­
ond, which is only one third that of a full page display.

There is one other subtle aspect of the Lisa display that is
worth mentioning. Ordinary computers display white char­
acters on a black background. The bit map display hardware
for such a computer is implemented with 1 bit per pixel, a
black pixel as a Zero and white as a One. To display a
character, the computer software sets the appropriate bits
to binary One or white. In contrast, the Lisa display shows
black characters on a white background to mimic the way
text actually appears on a real printed page. Ergonomic
studies [23] have shown that when looking back and forth
from the screen to a real piece of paper, it is actually easier
on the eyes if the screen is the same black on white as the
paper. Display of black characters on a white background
can be accomplished in software by resetting the ap­
propriate screen bits to binary Zero (black). However, it is
much faster and easier with the MC68CXXJ and most other
processors to set selected bits to One, using the OR instruc­
tion, than it is to reset selected bits to Zero, which requires
a NOT-OR-NOT instruction sequence. As a result, the Lisa
bit map display can operate faster by representing a black
pixel as a One and white as a Zero.

The Lisa Operating System

To support the kind of advanced, integrated software that
was planned for the Lisa, a powerful multitasking operating
system is required. This requirement eliminated all the
popular personal computers operating systems such as
CP /M, MS-DOS, the UCSD System, and Apple DOS. Their
primary design constraint is that they work in just a smal I
portion of the restricted memory space of existing PC's.

The UNIX operating system [21], [29], seems to be more
suitable. It does provide multitasking, good memory

333

management, and a powerful device and file system. How­
ever UNIX is a relatively large operating system with several
features such as a multiuser timesharing capability, user
accounting, and protection which would be wasted in a
personal computer such as the Lisa. Since the Lisa would be
used by people who were not computer experts, the system
must be very robust. However, the UNIX file system is
fragite and unreliable [10), [14]. If the power is interrupted
or a system crash occurs the UNIX file system can easily be
damaged. Unless a systems programmer is present to repair
the damage, a user can easily lose all his data. In addition,
UNIX does not provide the general inter-task communica­
tion facility that the_ Lisa requires. UNIX memory manage­
ment does not offer sophisticated sharing of code and data
between tasks. Finally, UNIX and al I other operating sys­
tems do not provide the support for graphics·, multiple
windows, the mouse, integration, etc., which are essential
to the Lisa. Such capabilities cannot be built on top of an
operating system but must be built in to work correctly and
efficiently. An attempt to modify UNIX to overcome all of
these deficiencies would have taken longer than designing
a new operating system with all of the needed capabilities.

The Lisa Operating System (the Lisa OS) performs four
main functions: file management, process management,
memory manageme~t, and event and exception handling.
The file system provides for a uniform naming mechanism
for objects (peripheral devices, disk volumes, files, etc.) as
in Multics [8] and UNIX (21]. Before a device or disk volume
can be accessed, it must be mounted by using the MOUNT
system catt. Mounting an object logically connects it into
the name space of the system. In addition, mounting a disk
volume makes the files on the volume accessible. The file
system provides device-independent 1/0 to objects which
means that 1/0 is performed the same way, whether the
ultimate destination or source is a disk, a printer, or some­
thing else. The file system treats 1/0 as an uninterpreted
stream of bytes. Special device-control functions are avail­
able to perform any device specific functions needed, such
as setting the baud rate of a serial device.
. Some operations apply only to disk objects. New disk
files are created, removed, and renamed by changing en­
tries in the disk's catalog. In addition to the data in a disk
file, the file itself has certain system attributes, such as its
size and creation date. Programs can define their own
attributes in a special label associated with each file. System
calls are available to access these file attributes. When
writing to a disk file, space is al located as needed. Since this
space need not be contiguous, such automatic al location
could result in a severely fragmented file. The resulting
performance degradation can be avoided by using system
calls to pre-allocate contiguous space for a file. This also
ensures that space on the disk will not be exhausted while
writing.

To reduce the impact of a system crash, the file system
maintains distributed, redundant information about the files
on disk storage [17], [20]. Duplicate copies of critical info.r­
mation are stored in different forms and in different places
on the media. For example, the information in the central
disk catalog about a file is also stored in a special disk block
at the head of that file. Also each block on the disk
specifies the part of the file to which it belongs. Since all
the files and blocks are able to identify and describe them­
selves, there are several ways to recover lost information. A

334

utility called the scavenger is able to reconstruct damaged
catalogs from the redundant information stored about each
f i I e.

The Lisa does not have a color display. The hardware
necessary for really good color is not available. For a low
resolution color display, a CRT tube from a standard color
television is suitable. However, a color CRT tube suitable
for the Lisa must have sufficiently high resolution to display
sharp text so that one can do word processing on the
machine all day long without getting fatigued. Such a
high-resolution color CRT tube and the associated video
electronics would add thousands of dollars to the price of
the Lisa. In addition, color on the video screen is rather
futile unless one can also produce color on the printed
page. High-resolution color printers and office copier ma­
chines are even more expensive and difficult to obtain.
Many of the Lisa applications, such as word processing and
spreadsheet calculatio.n, do not have any important use for
color. There are certainly some applications, such as graphs
and drawings, where color would be convenient. But even
with these applications, the Lisa's use of multiple shades,
-stripes, cross-hatchs, and patterns eliminates the necessity
to have color in order to distinguish and emphasize various
graphical objects.

The Lisa Hardware Bus

The hardware bus of the Lisa provides access to the
physical memory. This physical memory consists of three
separat~ address spaces. The main memory space contains
up to 2 Mbytes of RAM memory for storage of programs
and data. Pari'ty checking of this RAM memory is supported
~to ensure reliable operation. The 1/0 space provides access
to status and control registers of various peripheral devices,
both built-in and external. A special 1/0 space provides
access to the bootstrap ROM and special system registers.

Both the MC68CXX> processor and the video display con­
tend with each other for access to memory. To simplify this
contention problem, the Lisa has adopted the same tech­
nique used in the Apple-II bus, [2], [31]. Video access to
memory alternates regularly with the processor access to
memory. This interleaved memory access guarantees the
video display the regular, dependable access to memory
that it needs for a flicker-free display. To give the video
sufficient memory bandwidth, the principal bus timing is an
&XJ-ns cycle consisting of one 400-ns video access to mem­
ory followed by one 400-ns processor access. The timing
considerations of the Lisa bus lead to a 5-MHz 68CXX) clock
with a clock period of 200 ns. Si nee either a read or write
cycle of the MC68CXXJ processor requires four clock periods,
then such a read or write will require 800 ns. This is the
same as the Lisa 800-ns bus cycle: While the video access is
being performed, the MC68CXX) is preparing its 24-bit logical
address and presenting it to the Lisa's MMU for mapping
i,nto a physical memory address. If one of the Lisa's three
expansion slots requires Direct Memory Access (DMA),
then its request wi 11 take priority over and delay the .
processor's memory access.

The architecture of the Lisa hardware bus allows for a
simple and low-cost implementation while still providing
some powerful capabilities such as OMA and memory

management. This is the primary reason why the Lisa did
not adopt some other bus standard such as MultiBus. In

PROCEEDINGS OF THE IEEE, VOL. 72, NO. 3, MARCH 1964

addition, the Lisa's hardware boards must be specially de­
signed and shaped anyway to fit into the Lisa's compact
cabinet.

THE LISA 5oFTWARE

Never before has software been such a large part of the
development of a personal computer or been so crucial to
its total system architecture. The Lisa Operating System [4]
provides virtual memory, multiple processes, and a reliable,
device independent file system. The Lisa user interface
defines how the software appears and interacts with the
user. The software library provides a rich set of primitives
for graphics, windows, printing, etc. The Lisa Desktop
Manager functions as a system executive in performing
fi Ii ng operations and running application programs. There
are seven specific application programs developed by Apple
Computer Inc.: LisaCalc-spreadsheet, LisaGraph-busi­
ness graphs, LisaWrite-word processing, Lisalist-per­
son al database, LisaDraw-graphics editing, Lisa­
Project-project management, and LisaTerminal-data
communications, see [30] and (11]. The Workshop software
development system includes compilers, editors, I inkers,
etc., and is available for the programming languages: Pascal,
BASIC, COBOL, and C. QuickPort and the Toolkit are
software packages that aid the software developer in pro­
ducing software applications for the Lisa. In this exposition
of the Lisa Software architecture we concentrate on the
Operating System, the Lisa user interface, the software
I ibrary, and Lisa Desktop Manager. The additional software
components are not mentioned here, not because they are
uninteresting or unimportant, but because they are not
central to the exposition of the fundamental Lisa software
architecture.

A .Lisa OS process is an instance of an executing program,
its s·tack, and associated data. When the OS is booted, it
creates a "shell" process which can then create other
processes for the user. Since every process is created by
another process, the resultant structure is a tree of processes.
Each newly created process has the same standard system
capabilities which can then be changed by system calls. A
process can suspend, activate, kill, or otherwise control any
other process. When a process terminates, all of its descen­
dant processes are also terminated. The CPU is multiplexed
among the runnable processes by using a priority based,
non preemptive scheduling algorithm. This nonpreemptive
scheduling policy guarantees correct access to shared re­
sources, such as the bit-mapped display, by interactive
processes without the performance penalty of having to
explicitly lock and unlock these resources for each access.
The memory accesses of an executing process are restricted
to its own logical address space. Processes can share their
code and data, but each has its own stack. Processes can
communicate with other processes by using shared files,
shared data segments, and events.

The Lisa OS memory manager provides a segmented
virtual memory capability. It is concerned with memory
segments and their location in physical memory or on the
disk. Memory segments are of two basic types: code seg­
ments and data segments. Each process has a data segment
that the OS automatically creates for it to use as· a stack.
This stack segment is automatically enlarged by the OS as
more space is needed by the process. Up to sixteen addi-

DANIELS: APPLE LISA™ PERSONAL COMPUTER

tional data segments can be acquired by the process for
uses such as heaps and interprocess communication. These
data segments can be either private, accessed only by the
creating process, or shared, accessible by any process that
opens those segments. The maximum size of a shared data
segment is 128 kbytes. The OS allows a private data seg­
ment to be as large as the physical size of the system (2
Mbytes) by employing multiple sequential MMU registers.

Code segments allow a program to be constructed as
multiple, independently swappable parts. The division of
a program into these named code segments is dictated by
the programmer through commands to the Compiler and
Linker. The MMU allows up to 106 code segments. A given
program consists of both intrinsic and regular code seg­
ments. Intrinsic code segments, such as the units in the Lisa
software Library, are shared by al I processes. Regular code
segments are shared by just those processes executing the
same program. The maximum size of a code segment is 128
kbytes.

Code segments are automatically swapped into physical
memory as they are needed. Since they are write protected,
code segments do not have to be swapped out. Although
instructions in the MC68CX)() processor are not generally
restartable, we have empirically determined that the four
instructions that access code segments, JMP, JSR, RTS, and
RTE, are restartable. When one of these four instrudions
attempts to reference a code segment that is not currently
present, it causes a bus error which traps to the OS. The OS
memory manager can then load th~ missing segment and
restart the instruction without the client process having to
be aware of what has happened. This mechanism allows
the Lisa to support full swapping of code without the
expense of a second processor to handle swapping. Because
the instructions that reference data are not all restartable,
the syste·m does not do automatic swapping of data seg­
ments. The memory manager must swap in all data seg­
ments needed by a process before that process is al lowed
to execute. However, the OS gives programs the ability to
unbind data segments that are not needed in the memory
while a particular part of the program is executing. Since an
executing process requires only its current code segment
and its bound data segments to be in physical memory, the
total amount of logical memory used by a single process
may actually exceed the physical RAM of the Lisa.

When the memory becomes full, the system uses a clock
algorithm [7] to determine which segments to swap out or
to replace. There is a Segment Descriptor Block (SOB) in the
memory manager for each code or data segment currently
in use. These SD B's are chained together in a circular I ist
which constitutes the "clock face" of the clock algorithm.
The memory manager has a pointer to a current SOB which
constitutes the "hands of the clock." A segment will be in
one of three states: on disk (not in memory), an overlay
candidate (in memory but not mapped), or not an overlay
candidate (in memory and mapped). ff the memory manager
needs to swap in a segment and there is insufficient free
physical memory available, then the clock hand is advanced
to the next SOB and this segment is examined. If the
segment is not an overlay candidate, then it is made an
overlay candidate and the clock hand is advanced again. If
the segment is an overlay candidate then it is swapped out
(written to the disk if it is a data segment) and its space is
added to the free pool. The clock hand continues to ad-

335

vance around the circular. list until enough free space is
accumulated to satisfy the current request. Since a code
segment which is an overlay candidate is not mapped, any
attempt to reference it will generate a bus error just as if it
were not in memory. The memory manager handles such a
bus error by changing the code segment to not-an-overlay
candidate, remapping the segment, and restarting the code
reference. A segment is changed to an overlay candidate
whenever the clock hand passes by; but, if referenced
frequently, is changed back before the hand has gone
around again. However, a segment which is used infre­
quently will remain an overlay candidate and will be
swapped out. Therefore, the memory manager uses its bus
error mechanism both to hand I~ a reference. to a missing
code segment and also to determine which segments in
memory have not been used recently.

An OS exception is an unexpected condition in the
execution of a process (an interrupt). System exceptions are
generated by various sorts of errors such as divide by zero,
range check out of bounds, illegal instruction, and ii legal
address. Default exception handlers are supplied that
terminate the process. However, a process can supply its
own exception handlers if it wants to recover from the
error. The exception handler is passed information about
the. interrupted environment: register contents, condition
flags, and program state which it can examine and modify.
User exceptions can be declared and exception handlers
supplied to process them. A program can then use these
new exception handling mechanisms.

An event is a message from one process to another sent
through an event channel. The event is a fixed-size data
block consisting of a header and some text. The header
contains control information, the identity of the sending
process, and the type of event. The header is written by the
system, not the sender, and is readable by the receiving
process. The event text is written by the sender; its meaning
is defined by the sending and receiving processes. The
name of an event channel is cataloged by the file system
and can be accessed by any process. An event channel with
no name is used by a process to receive system-generated
events pertaining to its descendant processes. A process
that expects a message can wait for an event on a channel.
If the receiving process is not ready to receive the event,
then the event channel queues the event. In addition, an
event channel can be made to generate a user exception
whenever a message arrives.

The Lisa User Interface

Traditional user interfaces are textual with input coming
from characters typed at a keyboard and output being
printed text. Many of these user interfaces do not even
make use of the random access and editing properties of
CRT terminals. Such interfaces work equally well with
hardcopy terminals. The command language form of user
interface has been in existence since the very start of
computing itsel-f. It is based on the same sort of formal
syntactic structure as the various programming languages.
In fact, some of the programming techniques that are used
to parse programming languages can be used to parse
command languages. A command language user interface is

336

a very precise, rigid form of interaction and the language
itself seems very artificial to a new user. If the correct
command is· ERA then it does no good to type REMOVE,
DELETE, KILL, or even ERASE. The precise order of argu­
ments to a command is critical. Even the details of punctua­
tion may be important, such as a comma, semicolon,· slash,
or whatever. A menu-based user interface frees the user
from remembering the exact names and spelling of com­
mands, [1], [25]. However, because a menu displays a set of
choices and then forces the user to pick one, it imposes a
rigid structure of its own. Multiple menus are usually
required, since the number of choices that can be displayed
in a single menu is limited. This produces a hierarchical
menu structure with menu choices from the root menu
serving to bring up additional submenus. Choices from
such submenus may bring up further subsubmenus and so
on. To return from the lower level menus back up to the
root menu requires some sort of QUIT menu item. To
invoke a particular command, the user is required to navi­
gate around this maze of menus to find the proper menu in
which the command appears.

The user interface ideas of the Smalltalk system, as devel­
oped at Xerox PARC, [13], [32], [27], provide alternatives to
the traditional user interfaces, and form the conceptual
basis for the Lisa User Interface. Smal !talk is a heavily
graphics oriented user interface presenting an image of
multiple, overlapping pieces of paper on a grey electronic
desktop. Each piece of paper, or window, can be a separate
activity which can proceed independently of the . others.
Smalltalk makes use of the "mouse," [6], [12]. For example,
a window is indicated not by typing its name but by simply
pointing at it with the mouse. The most important use of
the mouse is as a single, uniform method for selecting data
objects. Using the mouse to operate a scrolling mechanism
brings the desired data into view on the window. One then
selects the data by pointing at them, irrespective of whether
the data are textual, numeric, graphical, spreadsheet, or of
any other kind. If you can see the data then you can select
them with the mouse. Another use of the mouse is to
invoke commands from menus. Two of the three buttons
on the mouse cause menus to "pop-up" on the screen.
The mouse is used to select the desired command. These
Smalltalk concepts were refined, augmented, and made
more efficient and practical to form the user interface of

· the Lisa (see Figs. 3 and 4).
Early user tests demonstrated that a single button mouse

was much easier for new users to learn. With a multibutton
mouse the user would stop and look at the mouse and try
to remember which button did what. With a single butt~n
mouse, the Smalltalk concept of using the extra buttons to
pop-up menus was not possible; However, these pop-up
menus were too limited in number for the sophisticated
applications that were desired for the Lisa. The Lisa solution

I

was to place a special menu bar along the top of the screen.
This menu bar contains the titles of up to twelve menus
that are simultaneously available. Clicking on one of these
menu titles causes the corresponding menu to "pull-down"
from the menu bar for selection of the desired command.
Si nee each menu can contain twenty or more entries, there
are literally hundreds of commands that are available. For
the sophisticated user, frequent commands can be invoked
directly from the keyboard. -

PROCEEDINGS OF THE IEEE, VOL 72, NO. 3, MARCH 1964

Menu Bar

File/Print • View Disk

Unllo Last Change

cut
Cqly

Paste

Select All Icons

(3
~

Pref er enc es
0
Clod<

0 . . .
Cllculator

Icons
Fig. 3. The Lisa user interface.

Menu

D
Clipl>o&rd

I- -

Deskt®-Profile

Multiple Overlapping Windows

F1le1Pr1nt Edit \ltew DISk

Calculator ·

Fig. 4. More of the Lisa interface.

DANIELS: APPLE LISATM PERSONAL COMPUTER

tv1emo to

GJ
c::::J

Preferences

The Active
Window

Profile

Scroll Bars

337

The Lisa user interface employs its mouse and graphics to
provide a more intuitive and consistent way for people to
interact with a computer. The Lisa display shows graphic
images of familiar objects on an electronic desktop. The
user controls the machine by simply manipulating these
images,. cal led icons, [26] rather than by typing command
sequences. Using the mouse, one selects the desired object
by pointing at it, and then chooses the desired command to
operate on the selected object. Al I the conventional "filing"
operations are performed by pointing with the mouse. for
example, to delete a document one points at the document
icon with the mouse and then drags it over on top of the
Wastebasket icon. Just as something thrown into a real
wastebasket can be retrieved, the last object placed in the
Lisa Wastebasket can be retrieved. To create a new docu­
ment one points at a stationery pad icon and then clicks the
mouse button twice to tear off the new document. To copy

/

an existing document one duplicates the document icon,
then points at the location where the copy should be
placed. A document can be renamed by simply pointing at
the icon and typing its new name. Deletion of a document,
or file, is accomplished on the Lisa in the same fundamental
way as on UNIX and other systems (remove its entry from
the catalog and return its disk blocks to the free pool). The
difference is that the Lisa provides a more intuitive and
visual means to express this and other operations.

An icon can be selected and then opened into a window
on the desktop in order to get access to its contents. The

icon for a Profile™ Winchester hard disk drive or floppy
diskette can be opened to show, as a window containing
icons, what is on the disk. A folder icon, which can be used
to group related objects on a disk, can be opened to show
its contents. By placing folders inside of folders, which in
turn are inside other folders, and so on., the user can
arrange information exactly as is possible on a conventional
hierarchical file system. A Preferences icon can be opened
to allow the user to adjust system parameters such as screen
brightness or to configure peripherals or disks. Document
icons indicate visually not only that the object is a docu­
ment, but also the type of document: spreadsheet, business
chart, drawing, list, text, etc. Opening a document icon
shows the information so the user can work on it. The user
does not have to run programs, called tools in the Lisa.
Opening a document automatically causes the appropriate
application program to be run which then wifl interpret~
display, and allow the user to manipulate its data. Opening
a text document "ALPHA" on the Lisa accomplishes the
same fundamental operation as a command like "Edit
ALPHA" on a conventional system (i.e., run the Edit pro­
gram on the ALPHA file), but, again, in a more intuitive and
visual way that shields the user from unimportant details.

The Lisa Software Library

An integral part of the Lisa system is a vast library of
software units (see Fig. 5). These units establish protocols to

Li.sa Apsilicati.ons

I
l.re.xt Editor .. L ___ " .. ;

.,

' 1"' -. " " . " -. " ' " ' :11\
{ : Quickl>faw ,: c•:·H.·-~.-_.l·:-~·t.·~~· .. f•. a•c•e.')

' ' '.''' ... '.

I
.. . - . I

: : >·/Font_ .tt9~. < >::

.......
:- -- ::: oat"a ease · .. : r
. - •• - - _-. - . -_-.:...ii

I .. · ', .: : .· :-.-:·_·: ' ' _·."·.: :·:·. ·. · .. ,
-::::pasL1D a D.S. :.:
.. · ' ' . ·. ·, .. ·. ,' . ·.·_·,·.·.· .· ,',' ,' ,·, .•

Fig. S. Structure of the Lisa software library.

338 PROCEEDINGS OF THE IEEE, VOL. 72, NO. 3, MARCH 1964

be followed across all the applications to implement coop­
eratively a consistent Lisa user interface. The library consists
of over half a megabyte of code with 40CX) callable routines.

The capabilities for the management of the graphics
screen are provided through the close cooperation of vari -
ous library units, the Lisa OS, and the actual application
programs themselves. The QuickDraw unit is the Lisa's
high-speed bitmap graphics unit. It is significantly more
powerful than the BITBLT capability of previous bitmap
graphics routines [15], [16]. QuickDraw automatically clips
all of its output to nonrectangular regions to support a
multiple, overlapping window environment. QuickDraw, in
conjunction with the Font Manager unit, draws text to any
starting pixel from a variety of fonts which are automatically
swapped into memory as needed. It supports proportional
widths, multiple drawing modes (OR, XOR, and BIC), and
display styles such as bold, italic, underlined, and shadowed.
Both fonts and QuickDraw bitmaps can be automatically
stretched or shrunk to fit into a destination, giving multiple
sizes of these objects. QujckDraw supports the primitive
graphical shapes: Ii nes, rectangles, ovals, arcs, and rounded
corner rectangles. These shapes can all be drawn with
specified pen width, height, and texture pattern and with a
variety of drawing modes (OR, XOR, BIC, etc.). The same
QuickDraw region mechanism that is used for clipping can
also be used to define, manipulate, and display new shapes.
A QuickDraw picture object represents an arbitrary piece of
graphics through a compact transcript of the drawing calls.
These pictures are used as the universal medium of ex­
change of graphical information between applications.
While providing all these unique, powerful capabilities,
QuickDraw is still able to offer high performance such as
displaying 4CXX) characters per second, 800 lines per second,
and 160 large solid rectangles per second.

The Window Manager unit is responsible for keeping
track of the number of open windows, the location of each
window on the screen, the size of each window, and which
windows are in front of or behind the other windows. The
Window Manager knows the process which "owns" the
window and is responsible for its actions. For each window
that is covered by other windows and therefore partially
obscured, the Window Manager calculates the region of the
window that is currently visible (see Fig. 6). QuickDraw
automatically restricts or clips any output to that window to

Window Mal&ger calculates

visible region of each window
. ~

-------.. · .. ·:' ·.··_J
~,;;.,;.·" ·,.

'. - _i 00 -00
00 -
00 --

·~ ~ .~ ' .

Fig. 6. Visible region of a window.

the portion of the display that is visible. An application
process can safely draw into its window at any time without
r.avi ng to know about the windows in front of it. When
Ni ndows are moved, resized, or otherwise changed, the
Window Manager makes sure that the portions of windows

DANIELS: APPLE LISA™ PERSONAL COMPUTER

that have been uncovered are redisplayed. This is accom­
plished by the Window Manager keeping a QuickDraw
picture for each window which is drawn, but can also be
accomplished by asking the application to redisplay the
missing content. As a result, the application designer does
not need to be aware of where on the screen the window is
located or what portion of it is currently visible.

Support for the mouse and the keyboard are provided by
two Library units in conjunction with the Lisa OS. The
Hardware Interface unit responds to interrupts from input
devices such as the mouse or keyboard. It queues informa­
tion about these input events so that they are not lost even
if the system is busy. Since the keyboard and mouse are
shared by all the windows for their input, the Window
Manager defines one window as the active window with
which the user is currently interacting. The Window
Manager classifies input events and routes them to the
process of the active window for handling. The processes of
other windows which request input are blocked until they
become active. Additional shared resources such as the
menu bar and the alert box for messages are owned by the
active window. To switch context and make a different
window active, the user simply points at it with the mouse.
The Window Manager sends a deactivate event to the
process of the currently active window and then an activate
event to the process of the new window. The Window
Manager keeps the priority of the active window process
higher than those of other windows or any background
processes so that this interactive process is guaranteed the
best performance from the OS.

The guiding philosophy behind the Lisa's advanced print­
ing technology is: "What you see on the screen is just what
you will get on the printed page." In the past this had been
accomplished by restricting output to very high resolution,
and very expensive, laser printers. The Lisa Print Manager
represents the first time that this philosophy has been
accomplished with a much cheaper device, such as the less
than $700 Apple Dot Matrix Printer, and with even a non­
raster device, such as the Apple Daisy Wheel Printer. The
Print Manager matches fonts to the specified print device
and uses Quick.Draw's ability to automatically stretch and
shrink objects in order to print to the resolution of its
output device. It is capable of printing good qua I ity graph­
ics as well as the usual text on the Daisy Wheel Printer. The
Print Manager supports background printing so the user can
continue working while printing is in progress. This is
accomplished by recording on the disk a QuickDraw pic­
ture of each page to be printed.

The Menu Manager unit is used to display and select
commands from pull-down menus. Another unit allows
different portions of a document to be viewed using scroll­
ing. The Alert Manager unit displays messages informing
the user of errors. There are other software units to enter
and edit simple Ii nes of text, to perform floating-point
computations, to access database information, and for other
specialized applications. Just a few of the one hundred
available units have been described. The Lisa software library
provides an unusually rich and complete set of capabilities
and, therefore, establishes a firm foundation for the appl ica­
tions.

The Lisa Desktop Manager and Applications

The Lisa Desktop Manager serves the same basic func­
tions as the Shell or command interpreter in conventional

339

systems. It provides a mechanism for the user to create and
manage documents or files (copy, move, rename, delete,
etc.), to run tools or programs, and, in general, to control
the system. The desktop image, implemented through the
Window Manager, is treated as a special window that is
always open to the full width and height of the screen, is
always behind any other open windows, and has a grey
background pattern rather than the usual white. The Desk­
top Manager displays the icons that are out on top of the
desktop and the icons in. any open windows associated
with disk, diskette, or folder icons. The Desktop Manager
recognizes the user's manipulations of any of these icons
and responds interactively with the appropriate visual
feedback. The Desktop Manager also performs any filing
operations such as file deletion or copying implied by such
manipulations, invoking the necessary OS file system calls,
and then displaying the resultant visual image. When a user
"opens" any document icons, the Desktop Manager first
determines the exact type of document which the user
desires to open. Associated with each document type is a
Lisa tool, or application program. The Desktop Manager
then creates an OS process running the desired tool. Next
the Desktop Manager calls the Window Manager to estab­
lish a window with the same size and position on the
screen as the document had when it was last opened. The
Desktop Manager sends a DocOpen event to the new
process passing both the window to be used and the
identity of the document to be opened. When the applica­
tion process receives the event, it opens the document files
and displays the document in its window. Finally, the
Desktop Manager makes the new window be the active
window so that the user can proceed to manipulate and
edit its contents.

The Clipboard is a desktop icon that serves as the medium
of information exchange, or integration, in the Lisa. When
the user selects some information and performs a cut or
copy operation, data are placed on the Clipboard that
allows this information to be put into another location with
the paste operation. The architecture of the Clipboard sup­
ports the transfer of information within a single document,
between documents of the same type, and also between
documents of different types. In fact, the architecture sup­
ports transfer between documents of not only the existing
applications but also of future applications. The Clipboard
is implemented as a common shared data segment that is
accessed by all application processes. Data structures that
define the information to be moved are placed into this
data segment. No single data structure will suffice for all
information transfers. Such a single data structure would
tend to lose information even for transfer between docu­
ments of the same type. For example, spreadsheet data
must include not only the visible cell value but also the
formula to compute the value, the column width, the
numeric format, etc. The Clipboard data structures are self­
describing so that it is possible to distinguish spreadsheet
data from any other kind of data. This description allows
new kinds of data, for example voice data, to be defined
and added in the future. Applications can accept only those
kinds of data that they can recognize and handle and can
reject unknown kinds of data. However, the Clipboard
architecture also allows two application programs, which
do not recognize and accept each others data, to transfer
information between themselves. To accomplish this, infor-

340

mation is placed into the Clipboard in more than one data
format. These multiple data formats are arranged in a se­
quence of increasing generality. The least general format is
11 application specific data," such as the spreadsheet data
that have already been described. If an application does not
understand this application specific data, then it can at­
tempt to use a so-called "universal text" form of the same
information. This consists of just text characters and format­
ting commands such as tab and carriage return. For exam­
ple, a word processor would not be expected to recognize
and accept the application specific form of spreadsheet
data, but would accept the universal text form which would
be cell values represented as text and separated by tabs and
carriage returns. The most general form of information is
called "universal graphics" and consists of a QuickDraw
picture which can be used to generate an image of the
information. For example, a word processor could accept
this form of information in order to paste a picture of a bar
chart, a project schedule, a drawing, or anything else into
the middle of a written report.

SUMMARY

The hardware and software of the Lisa establishes a new
standard of innovative architecture among personal com­
puters. The contrast with the primitive architectures of the
personal computers available even a few years ago is im­
mense. In fact, the hardware and software architecture of
the Lisa can be reasonably compared with those of the
newer minicomputers. For the first time, a personal com­
puter like the Lisa with the performance, capacity, and
architecture offered by a super minicomputer can now be

. placed on an individual's desk for less than $3500. Software
applications which were just not possible or affordable
with previous personal computers or time-shared mini­
computers have now become possible. By building upon
the architecture of the Lisa, these programs are able to
more than fulfill the original charter of the Lisa project to
build a computer that is ten times easier to learn than
traditional computers.

REFERENCES

[1) R. B. Allen, "Cognitive factors in human interadion with
computers," in Directions in Human/Computer Interaction,
A. Badre and B. Shneiderman, Eds. Norwood, NJ: Ablex
Publishing Corp., 1982, ch. 1, pp. 1-26.

[2] Apple Computer Inc., Apple II Reference Manual, Cupertino,
CA., 1979.

[3) Apple Computer Inc., Lisa Hardware Reference Guide,
·Cupertino, CA, 1983.

[4] Apple Computer Inc., "Operating system reference manual
for the Lisa," in Lisa Pascal Manual Set, Cupertino, CA, 1983.

[5] Apple Computer Inc., "QuickDraw reference manual," in Lisa
Pascal Manual Set, Cupertino, CA, 1963.

[6] S. Card, W. English, and B. Burr, "Evaluation of mouse, rate­
controlled isometric joystick, step keys, and text keys for text
selection on a CRT," Ergonomics, vol. 21, no. 8, pp. 601-613,
1978.

[7] R. Carr and J. Hennessy, "WSCLOCK-. A simple and effective
algorithm for virtual memory management," in Proc. 8th
Symp. on Operating Systems Principles (ACM), vot. 15, no. 5,
pp. 87-95, Dec. 1961.

[8] F. J. Corbato and V. A. Vyssotsky, "An introduction and
overview of the Multics system," in Proc. AFIPS Fall Joint
Computer Conf.1 pp. 667-668, Oct. 1971.

[9] B. Daniels 1 "Lisa's alternative operating system," Comput.
Des., vol. 22, no. 9, pp. 159-166, Aug. 1983.

PROCEEDINGS OF THE IEEE, VOL. 72, NO. 3, MARCH 1964

[10] H. M. Deitel, "Case study: UNIX," in An Introduction to
Operating Systems. Reading MA: Addison-Wesley, 1983. ch.
18, pp. 479-504.

[11] J. L. Ehardt, "Apple's Lisa: A personal office system," The
Seybold Rep. Office Syst., vol. 6, no. 2, pp. 1-26, Jan. 24, 1983.

[12] W. English, D. Engelhart, and M. L. Berman, "Display-selec­
tion techniques for text manipulation," IEEE Trans. Human
Factors Electron., vol. HFE-8, no. 1, pp. 21-31, 1967.

[13) A. Goldberg and D. Robson, Smalltalk.-80 The Language and
its Implementation. Reading MA: Addison-Wesley, 1983.

[14] R. B. Greenberg, "The UN IX operating system and the XENIX
standard operating environment/' BYTE1 vol. 6, no. 6, pp.
248-264, June 1981.

[15] D. H. Ingalls, "The Smalltalk-76 programming system: Design
and implementation," in Proc. Principles of Programming
Languages Symp., pp. 9-16, Jan. 1978.

[16) , "The Smalltalk graphics kernal," BYTE, vol. 6, no. 8,
pp. 168-194, Aug. 1981.

[17] B. W. Lampson and R. F. Sproull, /1 An open operating system
for a single user machine," in Proc. 7th Symp. on Operating
Systems Principles, pp. 98-105, 1979.

[18] Motorola Inc., MC68COO 16-Bit Microprocessor User's Manual,
3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[19] D. A. Norman 1 "The trouble with UNIX," Datamation, vol. 27 1

no. 11, pp. 139-153, Nov. 1981.
[20) D. D. Redell et al., "Pilot: An operating system for a personal

computer," Commun. ACM, vol. 23, no. 2, pp. 81-91, Feb.
1900.

[21] D. M. Ritchie and K. Thompson, "The UNIX time-sharing

DANIELS: APPLE LISATM PERSONAL COMPUTER

system," Bell Syst. Tech. }., vol. 57, no. 6, pt. 2, pp. 1905-1930,
July-Aug. 1978.

[22] B. E. Rogowitz, /1 The human visual system: A guide for the
display technologist,'' Proc. Soc. lnformat. Display, vol. 24,
no. 3, pp. 235-252, July 1983.

[23) B. A. Rupp, "Visual display standards: A review of issues,"
Proc. Soc. lnformat. Display, vol. 22, no. 1, pp. 63-72, Jan.
1981.

(24) S. Schmitt, "Virtual memory for microcomputers," BYTE, vol.
8, no. 4, pp. 210-238, Apr. 1983.

(25] H. Simpson, "A human-factors style guide for program design,"
BYTE, vol. 7, no. 4, pp. 108-132, Apr. 1982.

[26) D. C. Smith 1 C. Irby, R. Kimball, and E. Harslem, "The Star user
interface," in AFIPS Proc. Nat. Comput. Conf., vol. 51, pp.
515-528, 1982.

[27] L. Tesler, "The Smalltalk environment," BYTE, vol. 6, no. 81 pp.
90-147, Aug. 1981.

[28) C. P. Thacker, E. M. Mc(reight, B. W. Lampson, R. F. Sproull,
and D. R. Boggs, 0 Alto: A personal computer/' in Computer
Structures: Principles and Examples, D. Siewiorek, C. G. Bel I,
and A. Newell, Eds. New York: McGraw·Hill, 1982.

[29] K. Thompson, 1'UNIX implementation," Bell Syst. Tech.]., vol.
57, no. 6, pt. 2, pp. 1931-1946, July-Aug. 1978.

[30] G. Williams, "The Lisa computer system," BYTE, vol. 8, no. 2,
pp. 33-50, Feb. 1983.

[31] S. Wozniak, "System description: The Apple II," BYTE, vol. 2,
no. 5, May 1977.

[32] Xerox Learning Research Group, "The Sm al ltalk-80 system,"
BYTE, vol. 6, no. 8, pp. 36-48, Aug. 1981.

341

