
, . 

RC 8384 (#36518) 7/ 30/80 
Computer Science 39 pages 

Research Report 
PICTUREWORLD: A Concept for Future Office Systems 

l·J . sch i l d 
L • R • Po ~-1 e r 
M. K<irnaugh 

IBM Thom~s J. Watson Research Center 
Yorktown Heights, N.Y. 10598 

~~ Research Division 
San Jose · York town . Zurich 



Copies may be requested from: 
IBM Thomas J. Watson Research Center 
Distribution Services 36-068 
Post Office Box 218 
Yorktown Heights, New York 10598 

1 



RC 8384 (#36518) 7/30/80 
Computer Science 39 pages 

PICTUREWORLD: A Concept for Future Offlce Systems 

IL Sch j 1 d * 
L. R. Pol•er 
M. Karnaugh 

IBM Thomas J. Watson Research Center 
Yorktown Helghts, N.Y. 10598 

ABSTRACT: After a characterlzatlon of the work of offlce 
prlnclpals and a statement of some qualltatlve requlrements, 
the system concept called "Plctureworld" ls descrlbed. 
Plctureworld provldes the user with an understandable, 
self-promptjng lnterface whlch cilsplays lconlc 
r2presentatlons of famlllar offlce objects. It ls easy to 
learn and to remember how to command the system. Functions 
for an entry level system are deflned. A software 
organlzatlon ln terms of Plctureworld objects wlll 
facilitate maintenance and expansion of tl1e system. In view 
of large areas of lgnorance concernlng the acceptablllty and 
value of prlnclpal support systems, Plctureworld ls proposed 
011ly as one con1po11ent of a larger progrant of research. 

* W. Schlld was formerly with IBM Israel. 





.. 

' . 

l· Introduction 

The anticipated widespread use of electronic systems to 
support the work of office principals will bring a very 
large group of non-programmers into frequent close 
interaction with information processing systems. 

Because the users will not be highly motivated to develop 
their programming skills, the design of principal support 
systems poses some special problems. Either the services 
offered must be stereotyped, narrow, and inflexible or else 
the user interface and the system software must provide much 
more competence in modeling the users' task environment and 
needs than has previously been attempted, 

The office environment already provides support devices that 
aid principals in stereotyped, narrow, inflexible and also 
non-integrated ways. These include the telephone, the file 
cabinet, and the hand calculator. The challenge faced by 
the information systems designer is to bring into being a 
class of systems that come much closer to meeting the 
principals' needs. This is not merely a question of good 
implementation; the functional requirements and 
cost-effectiveness tradeoffs are not yet well understood. 

This report includes a discussion of the principal and his 
work (Section 2), some of the qualitative functional 
requirements for effective principal support (Section 3), 
and in later sections, an approach to the designs of the 
user interface and the system software for a proposed 
experimental system. This approach will be called 
"Pictureworld." 

We have not implemented a Pictureworld system and we make no 
claims for it as a p~tential product. We do believe that 
its implementation and test would offer useful new knowledge 
about such products. This is not a vacuous claim. It is 
entirely possible to build and test systems without adding 
much to our prior knowledge, for example, that system X is 
much too limited or that system Y is much too complicated. 
A test system must charm a representative group of test 
subjects into using it intensively if we are to learn really 
interesting things about its potential and its 
deficiencies. 



2 

~. The Principal and His Work 

The term "principal" will denote a person who works in an 
office and whose productivity is, or could be, substantially 
enhanced by secretarial support. Principals' roles include 
manager, administrator, and professional; and they are 
found in all major industries, in government, and in 
education, law, and medicine. We specifically exclude 
office workers who perform highly structured, repetitive 
tasks such as bank tellers, reservations clerks, and word 
processors. Non-principals may, however, have access to 
principal support systems in supporting roles. 

We believe that the most i~portant goal of a principal 
support system is to increase the principals' productivity 
and to improve the quality of their work. The displacement 
of supporting personnel, such as secretaries,· clerks, and 
typists, is regarded as an interesting side effect. Anoth~r 
possible side effect is to upgrade the skills of supporting 
personnel. Because of these factors, it is more difficult 
to measure the value of principal support systems than, for 
example, systems that improve secretarial productivity. The 
productivity of many principals is difficult to measure. We 
shall not deal explicitly with this problem. 

Principals are distributed across all industries and in a 
variety of roles. In order to lend substance to the concept 
of principal support system, it is necessary for us to 
identify a common group of tasks and needs. This will also 
provide the basis for a tentative, qualitative specification 
of system requirements. 

Our understanding of principals and their needs can be aided 
by considering the supporting role of the secretary. 
Secretarial services commonly cover three broad areas: 
communications (e.g., typing, copying, and distributing 
documents, taking telephone messages~ mail handling), filing 
and retrjevai (of documents or data), and scheduling (e.g., 
calendar maintenance, making appointments, scheduling and 
issuing reminders). Some services cross these boundaries. 
For example, keeping distribution lists is a filing function 
that aids in communications. We are more interested in 
seeing what is typical than in rigorously partitioning the 
class of services. 

A few more generalities will aid us in understanding the 
work of principals. We have already noted that it is 
relatively unstructured, which is to say, varied. Their 
tasks may require decision making and negotiation; and they 
may be of long duration. Because of the needs for 
intermittent communication and fact finding, principals' 
work is frequently interrupted. Also many tasks may be 
simultaneously pending. These observations also point to 
common and pervasive needs for aids to communication, 



information retrieval, 
work. 

3 

scheduling, and the organization of 

A principal may be expected to take pride in his dealings 
with other principals, in his expertise in some special 
field, or in macroscopic evidence of the results of his 
work, such as sales volume, cases successfully handled, 
etc. He is less likely to be motivated by the development 
of supporting skills, such a learning the intricacies of his 
firm's computing system. This may be contrasted with the 
pride a secretary might take in such skills as typing, 
shorthand, or filing. Furthermore, a principal will devote 
less time to the exercise of such skills. 

Despite these generalities, we wish to avoid certain 
commonplaces about principals which may turn qut to depend 
strongly upon support system implementation and office 
sociology, neither of which is immutable. Questions 
concerning principals' willingness to accept automation, 
display terminals, keyboards, writing tablets, or changing 
modes of communication are not properly answered by means of 
introspective judgments, nor will attitude sampling 
suffice. The results will bn valid, at best, only in the 
existing office envir0nment. rven trials of new systems can 
be misleading unless the subjects are properly motivated, 
the system being tried is well implemented, the scope of 
services offered is adequate, and the experimenters are very 
scrupulous in the experimental design, the data gathering, 
and interpretation of the results. 



4 

}.. Some Qualitative Requirements 

Having surveyed the general characteristics of 
principals' work and categorized the secretarial services 
commonly received by principals, we are able to assert that 
an integrated principal support system should aid the 
principal in the following ways: 

*making communications quicker, easier, more reliable, 
*giving the principal quicker and easier access to 

documents and data, 
*aiding the principal in organizing and scheduling his 

work, 
* providing reminders, status summaries, and 
* providing guidance for relatively standard tasks, 

In addition, because of the variety of principals' roles and 
industries, the system should be expansible to permit the 
addition of specialized applications or to provide access 
through the system to pre-existing software services. Also, 
user requirements for data sharing, data privacy, and data 
security must be satisfied. 

Finally, we .come to the all important question of the 
user-machine interface. This includes the function and 
appearance of the terminal I/O equipment, system protocols, 
the control language, system responses, etc. It also may be 
considered to include self-teaching and help facilities of 
the system. Prior to experiment, we can offer only some 
generalities on these questions. These are aimed at making 
the system initially acceptable to principals. Af~ter some 
experience with the system, users may be ready to accept 
greater complexity and further cnange; but such details are 
even more speculative. 

We wish to minimize the user's entry cost to the system 
(i.e, the effort required to learn to use it). In 
addition, since the system will be used intermittently 
rather than continuously, the system commands should be 
simple, natural, and easy to ren.ember. One way to achieve 
these things is to make the system interface resemble the 
normal office environment. An interface which prompts the 
user in natural and understandable ways is also desirable. 

Another desirable feature of the interface is to interfere 
as little as possible with the cognitive processes of the 
user, so as to maintain high productivity, It is worth 
keeping in mind that, when a user is working at a terminal, 
he is timesharing two cognitive activities. One of these is 
the task he is attempting to perform. At a principal 
support terminal, this will typically be the reading, 
composition, retrieval, or disposition of some document or 
data. The second activity is to interact with the system in 
order to obtain the desired services. These two activities 



. .. .::·. 

clearly interfere with 
user's attention. 

5 

one another by competing for the 

If a user is forced to contemplate the cleverness of the 
system's designers each time he tries to recall the rigid 
protocols of his next supplication to the system, his 
productive work is delayed. If delayed for more than a few 
seconds, the current state of his work will have vanished 
from short term memory and will need to be restored before 
he can continue. 

Even when the control language is familiar to the user, some 
cognitive interference will take place. Activities which 
require the same cognitive faculties usually exhibit more 
mutual interference than more divergent activities. This is 
common experience. For example, it is difficult to carry on 
two conversations simultaneously. On the other hand, 
excepting emergency maneuvers, one can easily drive a car 
and converse with a passenger. That is, the visual and 
motor activities used in driving interfere very little with 
generating or hearing spoken utterances. There is a body of 
work relevant to such interference in the field of cognitive 
psychology CKintschl. Paivio has proposed a "dual coding 
theory" of memory in which memory of images and verbal 
memory are separately encoded. Brooks has shown that 
reading interferes more with the simultaneous representation 
of spatial relationships, while listening interferes more 
with verbal memory. Atwood has shown that visual 'tasks 
interfere more with recall of imaginal phrases such as 
"nudist devouring a bird" whereas auditory tasks interfere 
more with recall of abstract phrases such as "the intellect 
of Einstein was a miracle" . 

In using iconic representations of familiar office objects 
Con its display) as a control interface, the Pictureworld 
concept achieves familiarity, naturalness, self-prompting, 
and (plausibly) minimal cognitive interference with the 
pri1nary task. That is, the primary task is typically verb~l 
while the control task will be primarily imaginal (i.e., 
the recognition of icons) and motor Ci .e., touching the 
display panel). The character of this interface is more 
fully explained in the next section. 

The Pictureworld cont·ept, as described here, deals with a 
circumscribed set of "core" functions for principal 
support. Dur emphasis is on those aspects of the interface 
which will make it natural and acceptable to the general 
user, and on a software organization which will be 
maintainable and easily expansible. We wish to give the 
principal direct control of an office envJronment which 
functions according to his own understanding of it, and 
which can be augmented according to his special needs. 



6 

~. The Interface: Pictureworld 

We suppose the principal to have access to a high 
performance graphics display device. The display ideally 
would have a touch sensitive panel overlaying it (though 
this is not essential) and a writing tablet or keyboard for 
input. The screen of the display device will exhibit all 
user and system actions both potential and actual. The 
primary source of communication is a set of graphic icons of 
office objects and related symbols. Figure 1 shows a 
representative set for purposes of illustration a 
complete set is given below. As items are selected (e.g., 
by touching), they are highlighted. Touching a second time 
turns the highlighting off thereby deselecting the object. 
These and similar conventions are used to establish 
protocols that insure user and system understand each 
other. The result of any selection is a cbmmand to the 
system which, when executed, causes a change in the screen's 
appearance as, for example, a blow up with full details of 
the calendar page for a given day. A command may cause a 
change internally in the system as well. 

All actions by the user are performed by manipulation of one 
or more objects or their parts. Entry of text data cannot, 
however, be accomplish this way and will be performed either 
through a keyboard or via tablet. The result of specific 
actions may cause certain changes in the object's 
appearance. In addition an object will expand or contract 
on the screen as it becomes or ceases to be the focus of 
attention. Options are indicated on the screen in picture 
form where possible, thus for example the source and 
destination of a document will be indicated by an arrow. 
Editing of text via tablet can be done by mimicking 
(roughly) paper and pencil proofreading conventions where 
the symbols used represent well known pencil marks. Certain 
(function) "buttons" may be defined to allow greater 
flexibility, since icons for thes• would not enhance the 
interface and thus serve no useful purpose. Examples of 
these include ''do''• "undo'', and ''clear''• 

An important aspect of this Pictu~eworld approach is that 
one can easily distinguish between commands and data without 
needing to be conscious of it. We thus overcome a 
traditional stumbling block of most interfaces. 
Furthermore, suspending a particular activity (e.g. looking 
at one's mail) requires no special user action and no formal 
protocol to return. Where the screen size limitations 
require a certain amount of housekeeping, we provide 
techniques to achieve this with minimum perturbation. We 
maintain a single level of interaction with a global context 
Cthe "office") constantly in view, thereby minimizing 
backtracking. 



7 

2· Sample Scenario 

In order to illustrate the approach we present a sample 
scenario. We assume the existence of a host operating 
system with communication and storage management 
facilities. Specifically, we hypothesize basic file support 
and electronic mail facilities like those available under 
VM/CMS. 

A principal, having logged on to the system, is shown a 
basic view of his office as in Figure 1. A glance at his 
IN-OUT box shows the existence of incoming mail (depicted by 
a small envelope in the IN portion,) He decides to scan his 
mail and selects the IN portion (by a touch or cursor 
movement followed by "do"), The screen appears as in Figure 
2 showing the various letters with dates and sources. The 
first letter of interest is from A.B.C. Corp. and this one 
is selected and placed on the desk by touching the arrow 
pointing to the desk. Other arrows shown reflect options in 
case of other destinations. (In fact, we envisage having 
various kinds of arrows e.g., move, copy), 

The letter now appears on the desk as in Figure 3. The IN 
'box retains a picture of an envelope since there is 
additional correspondence to be dealt with. In keeping with 
the spirit of using real world analogues, we make use of the 
concept of physical pages to be manipulated. Thus, rather 
than scrolling, the principal turns pages forward. or 
backward. In Figure 3 for example a selection of the lower 
right corner of page 2 would indicate a desire to view the 
next page. Actions that involve real world analogues 

;~'(moving documents, viewing them, addressing mail) are 
executed "on" the desk. The significance of this will be 
discussed below. 

We continue with the sample scenario. Having read the 
letter, the principal notes that it requests information and 
a document Can invoice). He therefore selects the file 
cabinet indicating to the system that something is to be 
retrieved. The next screen appears !Figure· 4) with a 
"prompting" file folder for appropriate search parameters. 
These are entered as desired. CWe discuss data base and 
retrieval considerations later.) With the template file 
folder completed, the user indicates he wants to execute the 
search by pressing the "do" button. The result is as shown 
in Figure 5. Notice that the desk has receded but an icon 
on it reminds the user that a document is still on it. The 
result of the search yields a number of matches as depicted 
on the screen in the page marked "INDEX''• 

The creation of this index by 
adjust the electronic medium 
in a manner not unlike what a 
to say, as a consequence 

the system illustrates how we 
to accomplish a useful result 
secretary might do. That is 
of the search, the system 



8 

constructs a document listing the possible entries meeting 
the search request. This document may be referenced like 
any other (e.g., filed, mailed) in addition to acting as a 
reference prompt for selecting the item of interest. 
Suppose the user now selects item 2 to be placed on his 
desk. The screen then appears as in Figure 6. Because the 
desk previously had the original letter on it and space 
limitations precluded a full display of both documents, the 
solution taken shows the letter moved (by the system) to the 
upper right corner in a "pending" box. This sort of 
automatic housekeeping is felt to be acceptable since the 
results are visually presented. We note that one of the 
goals of the interface is to have all actions and reactions 
explicitly represented on the screen. At present, we 
concei~e of the pending box to be a lifo stack which can be 
"pushed" or "popped" either by the system or by the user. 
Alternatively it could be modeled as a "temporary" file 
cabinet and searched in a similar fashion. 

H~ving verified that the document is the one desired, the 
principal now wishes to transmit it and- therefore selects 
the envelope on the left margin of the screen. The 
resultant screen is depicted in Figure 7. The envelope 
appears on the desk !where all mail-related activities take 
place) and the cursor points at the addressee for entry of 
the appropriate information. A "smart" system might fill in 
the address once the name was given, or better yet, surmise 
that the recipient might be the same as the source of the 
last letter scanned. The figure also shows that greater 
flexibility can be achieved if one allows different sizes of 
the same object depending on context. In this way more than 
one object can, for example, occupy the desktop (albeit with 
reduced information content) and the system achieves greater 
expressive power in the manipulation of documents. 

The invoice is placed inside the envelope by selecting the 
arrow joining the two and then the memo pad on the right 
margin is selected so as to initiate memo creation. Figure 
8 shows the result of these two actions. We now have a form 
to be filled in by the user with appropriate text. Note 
that the envelope now reflects previous actions and, since 
it now contains a document, the destination option, as 
indicated by the arrow to the OUT box, is shown. When the 
memo has been completed, it too is inserted in the envelope 
with the result shown in Figure 9. At this point the letter 
in the pending box could have returned to its previous 
position in the center of the desk automatically. For 
purposes of exposition we show the alternative in which the 
user would manipulate the contents of the pending box. 

The letter is now transmitted by selecting the arrow to the 
OUT box with the result shown in Figure 10 (note the OUT 
portion reflects this fact). If the recipient were also on 
the system, transmission would be effected electronically; 



9 

otherwise the appropriate documents could be generated in 
hard copy. The scenario concludes with the original letter 
being filed away by source and date and ·with an option (not 
shownl for the user to include his own indices. 

We have briefly illustrated the primary requirements of the 
system. It is based on an i,1i:uitive real world model, with 
the actions obvious to the user. Essential aspects are 
constant feedback, the maintenance of a global context which 
allows reminding of unfinished work, minimal cognitive 
interference between command entry and text manipulation, 
and the minimization of keying. The approach lends itself 
to extensibility and to a perso~alized implementation. All 
these suggest the system would be easy to learn and to 
remember. 



10 

Figure l Initi~l d- l g lSP ay 



m m .·' G 

11 

FiEure 2 Scarning mail 



12 

' 
g 

m 
~ 

Cl _[ 
0 

A.B.C. Corporation 
100 Main Street 

l New York, New York 

G 
Mar. 14, 1979 = 

rrr 
rrr 
rrr 

Dear sirs, 

In response to your lc1icr of Feb. 23 we would be ph::ucd 
if you would supply us with additional informa1ion conccr· 

~ '--18• 

[00 
11irig the producls tlcscribcd in your cat;iloguc number A2. 

- ~! We arc taking lhis opportunity to rcm:w our previous 
on.kr for lhc X'!'Z2. 

Mr. B. Jones of our Chicago offii;c will be in New York on 
T T 

March 25 and woult.I be very intcrcs1cU in talking with you. 
You may contact him at our branch office. At the same time 
he shall be able to furnish you with the information you 

CJ 
n:qucs1cll in our last telephone conversation. Please be 
advised that we no longer require the SWI form in our 
dcaln8S wilh di~tributors on the west coasL. 

"""' D In reviewing our correspomlcm;e for the pa.~t few monlh.'i 
we nole a numher or changes in the ~hipmcnl schedule. 
Ph!ase advise ur nthcr delays you c~pect tu encounter 

'· and send us :ill required invokes at your earliest cunven- ' f---J 

fj 

Figure 3 Reading letter 



. . 
Figure 4 Searching file 

rrr 
rrr rrr 

13 



mr------m -----------, --' ---...... -----
',, 

~ ,, 
l_-=._J ................ 

INDEX 

1. A.B.C. HNOtCES MARO-I 
2 · A.B.C. It.VOICES FEB 
3. /1.8,C. cx::RREg> ' 
~. A.B.C. MISCEL.' 

-------·-

Figu\-e s Results of file search 

14 



m 
ml 

2. A.B.C. 1NV01CES FEB. 

Figure 6 Reviewing retrieved document 

ffil r 
r 

CJ 

15 



2.. ...... I>OCICB .... ffi] r 
r 

D~ 

~-----_J 
CJ 

Figure 7 !nit' t" •a ing mall 

16 



m m MEMO 

FROM: T. SMITH 
TO: 

A.B.C. C(ff>. 
1()0 W.IN ST. 
1£11 YCff(, H. Y 

D 

A.B.C:. ltl.OIO:S F<B. 

Figure 8 Preparing cover letter 

17 



mi m 

Figure 9 

D 
A.B.C. o::PP. 
100 W.IN ST. 
!'EWY~. N,Y, 

A.B.C. INVOICES FEB. 
t910 TO R. Jet£S 

Mailing documents 

rrr 
rrr 
rrr 

18 



_[ 
A.9.C. c:i::ff'CRllTICH 
100 HAIN SntET 
l'£ij YCR<, t£l( Y(R( 

tEJ.R SIRS. 

............................................ 

....................... ·-····-············· 

Figure 10 Filing letter 

rrr 
rrr 
rrr 

19 



20 

.f!., Basic Obiects and their Attr i b~:tes 

The system is both conceptually and functionally built 
around the notion of office obiects. Each such object is 
defined in terms of its external icon and user interface, 
and internally as an abstract entity with associated 
structure. Each object has its own set of allowed 
operations and data structure as well as a means of 
communicating with other objects. An object can contain 
other objects as, for example, the desk object which 
contains the pending box. In this section, we focus on the 
system's functional capabilities by outlining the objects in 
the basic system and their associated actions. 

The basic set was selected because it meets the essential 
needs of most principals as we have characterized them, and 
because the objects tend to be interconnected in daily 
routine. For each object, we present a set of core 
functions defining the most primitive actions which it 
supports and a set of extensions which could offer a richer 
context for implementation. 

Objects can fall into a number of classes. The calendar is 
typical of .one that is itself stored, updated and 
retrieved. Other objects play more passive roles. Thus the 
envelope object is used to specify the start of a particular 
activity, namely addressing a piece of mail, and nothing 
else. (Similarly for the memo pad object.) A third category 
is represented by the desk object whose prime function is 
organizational and whose description is based primarily on 
the fact that it contains other objects -- a pending box, 
documents, etc. 

Calendar: This object will be used to maintain a daily 
record of activities. The display is of a single day with 
half-hourly slots. The basic actions supported are: 
retrieval of a given day by entering it over the current day 
displayed, leafing through one day at a time by selecting 
subsequent or previous pag~s, and updating (entry or 
modification) of spe~ific ti1ie slots. A day is selected 
simply by changing the day on the calendar and executing the 
"do" function. 

The calendar presents a useful object for expanded 
function. Two automatic ones that could be implemented are 
reminders and special cases. Ren.inders would be implemented 
by having the calendar call attention to itself through 
highlighting or blinking when the time corresponding to an 
entry is near. In the scenario presented, we alluded to 
this by showing the calendar with an asterisk next to the 
9:30 entry. If the principal were, for instance, scanning 
his mail around 9:15, this entry would light up. If the 
calendar were then selected, the full page would be shown 
with the required detailed entry highlighted. 



21 

A further extension is envisioned in which the user asks to 
be reminded. For this case we suppose the calendar to have 
a reminder option at the top of each page, When this option 
is chosen followed by the selection of a specific time slot, 
a reminder similar to ~he one just mentioned would take 
effect. Another extension involves retrieval of a given day 
based on some context. Thus, along with a reminder, the 
calendar would have a search prompt permitting the user to 
enter an argument. Finally, the processing of special cases 
could be built in so that holidays and vacations would be 
part of the calendar's definition, thereby providing checks 
when entries were made. 

I/O Box: This object serves as the vehicle to handle 
incoming correspondence and transmission of outgoing items. 
Both these functions in their primitive form behave much as 
in the illustration in the sample scenario. Three 
extensions could improve the usefulness of this object. 
First we imagine a "prompting envelope" akin to the file 
folder shown in the scenario which would allow the principal 
to apply selection criteria to the incoming mail being 
scanned. A variation of this is to allow priority 
designation of the incoming mail so that an order of 
presentation .is defined. 

The second, and probably most valuable, extension is a means 
for establishing a distribution on output. One way of 
implementing this is to have the I/O object recognize a 
specific document (distribution list) when it is attached to 
another document for transmission or, alternatively, to scan 
the document itself for a "cc" list. Another possibility is 
to define a "distribution" procedure -- this is discussed 
below. One final extension would be to allow a reminder 
based on a document's source (or topic) to be set. In this 
case the I/O box would signal when an incoming mail item 
satisfying the criterion actually arrived. 

File: The filing cabinet object represents our limited 
response to document storage and retrieval requirements. 
The system is intended primarily to support personalized 
files rather than access to large corporate type data 
base~. Hence the approach has been to devise a facility 
which permits ready access and storage to a small file store 
containing recent personal correspondence and related 
documents. The more extensive file structures involving 
complex input checks and retrieval searches are not 
supported directly with this object. For the case of 
perhaps a few thousand items a classification scheme based 
on subject, author, and datn, should prove adequate. A 
natural extension wo.1ld alloh the user to specify his own 
indices for storage and retrieval. 

The file 
"physicaltt 

cabinet could 
unit allowing 

be extended to 
classifications 

more 
of user 

than one 
"files" 



22 

thus achieving further personalization of the system. A 
different icon would then represent each such unit, normally 
too small to be resolved, and a selection of the file 
cabinet would cause a prompt among several cabinets, 
appropriately labeled, to be generated. 

When an item is removed from the file cabinet 
would leave an indicator on the appropriate item, 
it had been removed. 

the system 
indicating 

Reference Shelf: This object, not previously referred to, is 
shown in Figure 11 and illustrates the extendability of the 
interface as well as its ability to solve special cases. 
The basic issue is this. Many principals in their daily 
routine need to refer to certain documents frequently. 
These may be reference documents, forms, lis~s, or simply 
recent incoming items. To retrieve these items quickly one 
normally keeps them in a handy place rather than a file. 
The reference shelf object is a separate object containing 
such items. Retrieval is not done by search arguments, 
rather selection of the shelf will cause a blow up of its 
contents, with appropriate labels so that a selection can be 
made directly resulting in the item being displayed on the 
desk. As items can be put on or taken off the shelf 
temporarily or permanently, this object acts as a storage 
medium (just as the file cabinet). The reference shelf 
provides a natural repository for directories and, by 
extension, for directory lookups. Furthermore the use of 
personal aids such as a spelling checker could be 
implemented without the use of a separate icon by inclusion 
within a reference book. 

Desk: As indicated earlier the purpose of this object is to 
serve as a locus of activity involving document 
manipulation. This is a direct consequence of the design 
constraint which views the office system as a set of 
interrelated objects. Specifically, the internal structure 
forces every object, except the office object, to belong to 
some other object. This sort of conceptual integrity of the 
object world is carried all the way through, as will be seen 
in the office object. The desk is used to display and 
manipulate documents and associated objects, such as 
envelopes. A document can be placed on the desk, where it 
may be scanned (pages leafed through), edited, placed in the 
pending box, and combined with other documents. To combine 
two documents we suppose the two to be on the desk Cin 
perhaps reduced form) with a plus sign between them to 
indicate this option, just as the arrow icon served in the 
scenario to relate two objects. Moving one document onto 
another could indicate that they are to be combined and 
might be reinforced with the visual feedback of the two 
"clipped" together (see Figure lll. Combining parts of 
documents is discussed below under editing. 



' . 

23 

Depending on screen limitations, it may be possible to 
operate on the desk with two different documents in full 
size. In any case, by suitable manipulation of the contents 
of the desk in and out' of the pending box, the user should 
be able to perform most of the document activities he 
normally requires. The desk object can also function as a 
kind of scratchpad in order to serve as a repository for 
informal notes. These notes (actually documents) would not 
be stored away but be kept in stack fashion on the desk and 
scanned directly as desired. 

Document: This object is the basic source of information. 
We have already noted the kinds of manipulations supported 
on individual pages and entire documents. In addition, 
basic editing and annotation is defined for this object 
class. In designing the editing function, we .explicitly shy 
away from the standard features common to text editors and 
incur the loss of generality and power. Our assumption is 
that the principal will not be inclined to learn conventions 
that seem unnatural. The solution proposed restricts 
editing to five notions namely insert, delete, move, copy, 
and block, which should serve to satisfy the majority of a 
principal's needs. For deleting, moving, and copying, a 
block is identified by "encircling" it using the "Cl" button 
for the start and finish. The appropriate text would be 
shown with a box drawn around it. The next button selected 
would indicate the function performed (delete, move, or 
copy) and this would be followed by a destination selection 
in the case of move or copy. (Note that buttons could be 
physical buttons on the keyboard, or touch points on a 
display overlay or tablet. If a tablet device were 
available, the actual symbols for delete could be drawn by 
the user and recognized by the system.) For insertion the 
text would be entered and followed by indicating a 
destination. The system would then indicate the resultant 
editing on the screen as shown in F.igure 12. 

All revisions of the document remain indicated until the 
user requests them to take effect. We can see that an 
extension of this approach allows indenting to be specified 
as well as moving blocks of text to other pages. Such moves 
need not be confined to a single document. We can easily 
perform a selective combination of documents by movement of 
blocks of text from one document to another. 

If a tablet device were available a further extension that 
could prove useful would be the addition of an annotation 
capability. A document will be annotated by entering the 
text somewhere within the borders of the page. The text 
need not be recognized and will be stored as is. Should the 
system include recognition algorithms this could be used to 
reformat the annotation and present it more cleanly. CThe 
use of a cursive script-like font would be appropriate in 
identifying annotated material.) All documents would have 



24 

default formats. Documents that required more complex 
formatting would have to be handled by an auxiliary system. 

The following objl,cts Cir1cluded for 
completeness) represent no complex user 
described briefly. 

the sake 
actions and 

of 
are 

Memo: Initiates 
and destination 
Envelope: Used 
for enclosures. 
Folder: Object 
items. 

memo creation with suitable form for source 
prompts. Date is automatically appended. 
to initiate transmission. Serves as object 
Built in prompt for destination. 

used for filing and indexing one or more 

Waste Basket: Used to indicate document purges from the 
system. This object could be implemented as a finite or 
infinite stack, thereby allowing retrieval. 
Arrow: This object serves to indicate source and destination 
of document movement. We envisage at least two 
instantiations of the arrow, specifically, a move type and a 
copy type. 

Office: All objects are contained within the office object 
thereby enforcing a conceptual unity to the object world. 
The function of this object is to represent the global 
context and to exchange screen management information with 
the objects it contains. 



•. 
Figure 11 d icons Extende 

25 



August 8, 1979 

Editor·in·chie( 
ACM 
1133 Avenue or the Americas 
New York, NY 10036 

Dear Sir: 

I am submininr: the enclosed paper for our consideration for 
ublication. It re resents both a si11: icant improvement to, 

and an intcrcstin cneraliz:nion of a number of existing 
algorithms. 

The form of the algorithm is somewhat unusual in that it is ;a 

prototype: for a class of algorithms based on similar techniques, 
Consequently, a number of details arc not explicitly shown and 
must be provided from other sources. 

Sincerely, 
P/e.ue cal/ ;f;y"' ft .. .,~ 

. ctl\ uesii"Jl.5 .. 

Leigh Power 

c=:J 
<@t 

/ 

Figure 12 Text modification 

26 

__......... 
.Sl<E 

~ 
NE.CT 

BACk 

/ IJ.NDO 



27 

L· Extensions 

The extensions described below range from straightforward 
additions to the.basic set of objects, to augmenting the 
system with AI techniques that simulate Intelligent task 
support. At some point along the way between these two 
extremes the system ceases to be a passive tool and begins 
to require more sophistication on the part of the user in 
terms of participation in procedures and understanding the 
lnteractlon. 

The extensions, so far as objects are concerned, Involve 
primarily expanded facilities for the use of documents. We 
noted earlier that documents in the basic system had no 
special classification. In an expanded system we propose 
that the basic document object be instantiated in various 
ways, Thus we introduce a document type called a list which 
the user can create or modify. As a particular instance of 
this class we define a distribution list which has special 
properties such as being applicable to another document. In 
a different extension, a document might be classified by 
applying a label to it. As an example suppose a rubber 
stamp icon (such as in Figure lll to be applied to a 
document thereby classifying it as "confidential", "paid", 
"original", ''on order'', etc. In fact, document classes are 
actually a subset of the more general concept of forms, 
about which more will be said. 

When documents are scanned it is often convenient to be able 
to "mark" pages. Typically a principal will employ some 
physical device to do this, bending the sheet, applying a 
paper clip, etc. In our analogue we suppose a marker icon 
to be available for placemen~ at any point in a stack of 
documents. The marke~ will be visible whenever the document 
is in full display mode and by referring to It the 
appropriate page will be selected. 

Though most communication in the system is done via 
documents (memos, letters), it is possible that some 
principals will find the need for more informal means to 
transmit audio or written messages, particularly short 
ones. An obvious model here is the intercom or telephone. 
A facility to communicate such messages could be a useful 
extension. Its chief merit would be that it required little 
formality, and it would be executed Immediately. As an 
example the principal might point to an intercom icon and 
then simply enter a name followed by a short message. 
Should there be a few fixed targets of such communications 
one could define a suitable icon Ce,g, Intercom with labeled 
"switches") and thereby further simplify the interface. The 
possibilities for disseminating information can take many 
forms. In Figure 11 we show a bulletin board accessible to 
all users, on which notices could be "placed". 



28 

An interactive system is greatly enhanced if the user can 
undo particular actions. In many cases this feature becomes 
a double edged sword since the results are sometimes 
unpredictable and, even worse, not explicitly shown. The 
interface described here can overcome these barriers with a 
suitably implemented "undo" feature. Besides showing 
pictorially the results after the undo button is pressed one 
could build in an "undo anticipated" function. When chosen, 
with a particular object and action, this feature would 
first exhibit the assumed result of the undo, analogous to 
rolling back a frame of film. The user could then decide 
whether to have the undo take effect or not. See Figure 
13. 

As a general rule, the system is meant to be used in 
standalone mode. However, for the principal who has other 
application software that he might use in the course of his 
work, it is easy to provide a smooth transition. Thus the 
global office could contain an icon representing a QBE 
terminal which, when selected, would cause the user's 
terminal to change appropriately. See Figure 11. What 
should emerge from this discussion is that our particular 
approach lends itself to significant expansion without 
impacting the user's learning curve or his ability to 
function efficiently with the system. 

Procedures: While the present design does give a good deal 
of support for principals, it falls short in providing a 
means of expressing complex actions, particularly repetitive 
ones that involve variables -- i.e. procedures. We should 
like a protocol that permits the principal to both define 
and invoke a procedure in a natural way. These requirements 
are difficult to satisfy. All we can do is sketch out, very 
tentatively, the possible outlines of a solution, yet one 
that is in keeping with the style and flavor of our 
approach. 

A procedure will be thought of as a scenario of user 
interactions with the system as depicted by a sequence of 
individual screens. The sequence of screens by itself can 
serve to identify the basic flow of processing and the 
components (objects) that parti~ipate. Thus we envisage a 
user defining a proceiure by ~~scribing it through a sort of 
stepping through process. In adciition, certain elements 
will have to be specified explicitly such as parameters, 
repeating actions, and decision points. In order to 
minimize a user specification language we suggest that the 
system be programmed to infer from the sequence the 
processing desired. This might be achieved by considering 
carefully the individual screens and their incremental 
changes so as to deduce the procedure's intent. A 
generalized icon representing any procedure can be defined 
so that a procedure could refer to Ci .e call) other 
procedures. 



. ' 

29 

In Figure J4 we hint at the way this feature might look. 
The frames are meant to show the user how the procedure is 
understood by the system (prior to accepting the 
definition.) The example illustrates a procedure for 
processing new PhD applicants for employment. The sequence 
entails verifying that the incoming mail item meets the 
input test for the procedure. If so, the first page 
(containing the resume) is copied and placed in the pending 
box. Following this a particular form is selected from the 
shelf and combined with the entire application which is then 
circulated to a group specified in a "cc" list. The 
distribution itself is another procedure (Figure 15) called 
by choosing the procedure icon and giving its name. <Every 
procedure icon represents input, process, and output.) 

The execution of the procedure by the system would not 
necessarily entail exhibiting each frame that defined the 
procldure. Only frames where a prompt for parametric values 
was required would generally result in an appropriate 
display. Indeed one can well imagine an extension in which 
the procedure is invoked and all required variables are 
specified at once. This leads us to mention one specific 
instantiation of procedures which has great application -­
the use of forms. 

In describing the document object earlier we noted that the 
much more general concept of a. form could be implemented to 
encompass a wide range of .practical applications. To see 
the significance of this we need only remark that the 
analogy of the principal performing individual office 
activities is to be found in numerous application areas 

~ where a set of individual tasks can often be represented as 
a sequence of "filling in of forms". Thus a suitably 
defined form could have much of the expressive power of a 
procedure. It could provide a natural and effective means 
of extending the interface. Clearly much needs to be done 
in design of this aspect of the system, but the prospects 
seem to warrant a determined effort. 

Artificial Intelligence Augmentatjon: Artificial 
intelligence techniques are software techniques by means of 
which a system can mimic the flexibility of behavior which 
is allegedly characteristic of natural human intelligence. 
In addition, artificial intelligence systems can exceed 
human capabilities in those areas in which computers have 
certain advantages over humans: processing speed, reliable 
retrieval of data, larger amounts of working memory, 
indefatigability, etc. 

While the state of the art limits present applications of AI 
to rather narrow domains of knowledge, there are some 
possible benefits to be reall~ed from the application of AI 
techniques to PicturAworld. ·7hese would permit the system 
to aid the user 1n managing semi-routine tasks, to 



30 

anticipate some of his needs for document retrieval, and to 
explain to the user why it has done what it has done 
whenever he chooses to ask. AI augmentation Is discussed at 
length in a companion report CKolodner). 



31 

.;------------'--'-----...;._--------.;;··-~· 

1--------------, 
I 1.er.i 
I Fi«J.I· l. $-!J'!H 

l ro· ------

1 ------------1 

I 
I _________ . _____ _. 

Figure 13 

_,,.. 

A.8.C. INVOICES Fm, 
1'EH:J TO R. JCf.ES 

"Undo" anticipation 



30 

anticipate some of his needs for document retrieval, and to 
explain to the user why it has done what it has done 
whenever he chooses to ask. AI augmentation is discussed at 
length in a companion report CKolodner). 



- 31 

~-.....;.--------'-"---'------...;._--------.;;;.-··-~--

,--------------, 
I ter.:i I 
I F~· 1. s-IJ"!H II 
I ro· ------
1 I 
I I I ------------ I 
I I I ------------- I 
I I I ------------ I 
I I 
I -----------· I 

__________ -::::_~ 
// 

I I 
I I 
I ----------- I 
I I I ·----------- I 
,_ _________ . _____ J 

/ 

D \-------, 
A.8.C. CCW. I----, 
100 WIIN ST, t­
tEW YCR<, N.Y. 

A.B.C. Jt-NOICES FEB. 
l.£1-0 TO R. JatS 

Figure 13 "Undo" anticipation 



32 

. 
i ~ z g 

en - ~ p 

t I 
-I I " I 

r*1 
"' I I I 
~ I I I I I I 

I 
LL ! I ! 

I I 'I 
I ! I J 1 1 

+ .. •. 
1 I 

8 . 
ri\111\1_. 

1 llllllD 

1\11111 

Figure 14 Procedure icons 



33 

''D!Sffi!ElJTE'' 

j=~=I 
, -.. 

/ ,, , ,, ,, ...... , . ' ,, ......... 
/ ' , ,, 

,,' ...... 
, ' ,,.," ............ 

/ ' 
/ ' ,'' ... 

Figure 15 Distribution subprocedure 



34 

.fl. Implementation .Q.f. Pictureworld Objects 

In this section we outline a software architecture for 
implementing a Pictureworld system. The design strategy is 
to simulate a set of abstract office objects. In doing 
this, some use is made of the notions of data abstraction. 

Pictureworld objects are visual and conceptual entities that 
a user manipulates on the display screen. They are the 
objects discussed in previous the sections. The user never 
has to deal with any other notions. The term interface 
obiect refers to the internal implementation of a 
Pictureworld object. All functions available to the user 
are associated with one or more of these objects, and he is 
unaware of support functions on which they are built. The 
implementation of a particular interface object (e.g., file 
cabinet) will normally make use of various system support 
facilities such as "disk file manager" and "storage 
manager." These implementation objects will never be 
manifested to the user directly. Thus we recognize two 
classes of data abstractions, interface objects and 
implementation objects. The general form of interface 
objects is presented here in some detail. Implementation 
objects provide the typical sort of general purpose s.upport, 
found in all operating systems, for file and storage 
management, communications, a:·,d program execution. They are 
not discussed here. 

Interface Objects: 

Each interface object has five primary components: 

* interactive input controller, 
* display generator, 
* operation set and message handler, 
* encapsulated data, and 
* contained objects. 

Interactive input controller: Some user interactions require 
immediate, reflex-like visual feedback. Touching an object 
on the screen causes the object to brighten to confirm its 
selection; or, pressing a key causes the cursor to jump to 
the next "input field." Such responses are relatively 
simple (e.g., they require no file management), and make 
only minor modifications to the display (e.g., 
highligl1ting, cursor movement, echoing of keyed input). 
These functions are normally handled by a keyboard/display 
controller. Such controllers may be programmable to the 
extent that display fields have function attributes like 
"writable", "highlighted", "lightpen detectable," but two 
problems arise: (a) We wish to support a richer variety 
functions (e.g., highlighting when touched or when cursor 
passes over some boundary); Cb) We want to be able to have 
many different objects displayed on the screen 



. . 

35 

simultaneously and have each tailored to respond, visually, 
in its own way. Modular design requires that each object 
defines its own interactive input controller. An 
interactive input controller is, therefore, a small program 
associated with a portion of the display screen and possibly 
with other I/O gear (e.g., keyboard, touch panel). The 
portion of the display occupied by an interface object will 
become a virtual display for that object. When the virtual 
display is referenced (e.g., by cursor, touch), the 
corresponding interactive input control program will get 
control. In principle, these programs should be able to be 
down-loaded on-the-fly from a host processor into the real 
I/O controller where they will be ready to execute when 
needed. In addition to handling immediate display feedback, 
they function as drivers for their more complex counterparts 
in the host processor. They communicate with the host via a 
message protocol. For example, the file cabinet search 
query may be completely formulated on the screen under 
prompting control of the file cabinet interactive input 
controller. When the query is completed it is sent to the 
host in the form of a message where it is ultimately 
processed by a file manager. The message protocol gives us 
a high degree of flexibility, For example, this protocol 
makes it easy to allow the user to interact with the 
calendar while a file cabinet search is being processed. 

There are two kinds of statuses associated with any 
interface object -- functional status and visual status. 
Functional status refers to the logical and informational 
state of an object and its intrinsic data -- for example: 
whether or not the desk currently has a letter on it; or 
whether or not the file cabinet is currently being searched, 
and if so for what? Visual status refers to how the object 
currently appears on the display screen. We envisage that 
each object may have as many as three visual forms, each 
displaying different amounti of detail about the current 
functional status of the object. The two statuses are 
maintained independently. The detailed functional status of 
an object is not lost when it is being displayed in a 
reduced, summary form. 

Display generator: Each object has a display generator 
component. It is a program which resides in the host 
processor and has two functions. Depending on the current 
visual and functional statuses of the object, it composes 
the actual display image Cin an appropriate graphic 
representation) for the object. It also constructs the 
interactive input control program associated with that 
display image. The display images and their interactive 
input control programs are collected together and loaded 
into the real I/O controller. It is anticipated that the 
output of the display generator programs will be mostly 
tables which will be interpreted by a program in the I/O 
controller. 



36 

Together, the display generator and the interactive input 
control programs for each interface object manage the 
display and ass6ciated workstation I/O gear. This 
architecture, along with the message protocol, is designed 
to allow the workstation to be programmed to display and 
manipulate different objects in an interleaved fashion with 
a minimum of inter-object software dependencies. Those 
objects that have more than one visual status will be 
required to support operations that accomplish status 
changes. For example, the file cabinet will support an 
"enlarge" operation that will make it the focus of attention 
on the screen. It will be implemented by having its 
interactive input control program recognize a reference to 
the small file cabinet (e.g., touch panel or cursor select) 
and have it send a "enlarge file cabinet" message to the 
host. This message will be filtered through the office 
object which will pass it along to the file cabinet object 
after sending a "shrink" message to the object that is 
currently "enlarged," if any, More on this process below. 

Operation set: We see there are two classes of operations, 
those that affect only visual status (as discussed above), 
and those that affect functional (as well as visual) 
status. It is this later class that represents the set of 
functions available to the user. Functional operations 
normally affect the data associated with an object (e.g., a 
file search creates a search response document), or they can 
merely send messages to other objects (e.g., move a piece 
of mail from the in-box to the desk), 

Encapsulated data: Each data item (e.g., calendar entry, 
document) is encapsulated within a particular object. It 
can be accessed only through that object, and only be means 
of the operations defined for that object. As discussed 
below, objects often contain other objects. For example, 
the in-box can contain envelopes. Containing objects 
normally restrict the set of operati6ns currently allowed on 
their contained objects (e.g., you can view envelopes when 
they are in the in-box, but to view their contents they must 
be moved to the desk object.) Whereas data encapsulation is 
fixed, object containment is mutable and often transient. 

Message handler: Objects always communicate via a message 
protocol. This protocol supports communications between 
separate processors (e.g., betNeen the I/O controller and 
host), and also allows a hi~h degree of multi-programming 
among individual ubjects. In fact, the proposed 
architecture models each object as an autonomous process 
containing its associated data; the process exists as long 
as the object exists. When the object receives a message, 
it wakes up and performs the requested operation. When one 
object communicates with anot~er object it sends it a 
message; a message can be examined by one object and passed 
to another unmodified or with changes. Those objects that 



37 

are primarily concerned with communicating between other 
objects Ce.g., the arrow) implement most of their operation 
sat through a message handler. 

Contained obiects: Finally, objects are organized into a 
containment tree. The office object contains all the major 
interface objects (e.g., in-out box, desk, file cabinet). 
Each of these in turn contains other objects Ce.g,, 
envelopes, documents), and so forth down to the smallest 
objects in the system. Although in some cases it would be 
desirable to address words, or even characters, as objects, 
this level of granularity may be too small to be practical. 

Given that each interface object has the five components 
outlined above, we can now describe the sequence of events 
surrounding a single user interaction with the system. A 
message to the host processor is first routed to the office 
object. The office object keeps track of the visual status 
of each object with respect to its current size and 
position. It insures that there is no overlapping of 
virtual displays, and in effect keeps track of the current 
focus of attention. The office object then passes the 
message to the appropriate interface object where the 
specified operation is executed. In general, both the 
functional and visual status of an object may change as a 
result of applying one of its operations. The office object 
is notified when the visual status of an object changes, and 
this initiates a new display generation sequence. The 
display generator for each object that has changed is 
called, and they may in turn call the display generators of 
included objects. When a display generator is called, the 
size and position of the icon is specified by the containing 
object. Each display generator decides which version of its 
icon to draw, based partly on the specified size. The newly 
created display generator outputs are collected by the 
office object and down-loaded into the I/O controller, ready 
for the next sequence of user interactions. 



38 

2. Conclusion 

Several important gaps in our present knowledge suggest 
the need for careful research in systems for the support of 
office principals. Areas of ignorance include: the effects 
of system design parameters on user acceptance, effects on 
productivity gains, effects on office sociology, methods for 
evaluating and justifying systems, and numerous 
cost-effectiveness tradeoffs, 

While we cannot yet define and implement cost-effective 
systems, enough is known to design, implement, and test some 
e~perimental systems. We have described a system concept, 
Pictureworld, which has many of the properties which we 
believe to be important to principal support, as a candidate 
system for inclusion in a comprehensive program of research 
in this field. 

In particular, the iconic, natural. self-prompting user 
interface of Pictureworld gives the user very low entry 
cost. In addition, we believe that it minimizes cognitive 
interference between the secondary task of commanding the 
system and the user's primary task, which the syste1n is 
supporting. The functions we have defined are believed to 
be sufficient for an entry level system. The organization 
of the software into Pictureworld objects is expected to 
facilitate expansion and maintenance of the system. 

While the high quality display needed for Pictureworld may 
pose a cast problem, it seems premature ta dwell on that 
point. We are presently in need of establishing value, 



. . 
' . 

1.Q.. References 

Ki n ts ch , Wa 1 t er ( 197 7 ) , Me m D.J:.Y. and £.Q.g_n i ·t i on , 
John Wiley and Sons, (pp 239-244). 

39 

New York, 

Kolodner, Janet, 
Research Report 
Center. 

Desicin for an Intellioent Office System. 
RC8385. IBM Thomas J. Watson Research 





• 



0 

I •'. 


