
Exec FUe Pleplo;essor

Exec File Preprocessor
Overview

Page 1

The exec file preprocessor supports a 1.111de variety of features for generating
exec files, inclUding parameterization (with defaults), prorrpting for input
and options, nested exec files, COITITenting, conditionals, general console IIO,

aroong others. These facilities should allol.ll you to create lOOdular.. flexible
exec files which are bOth pOlJlerful and easy to maintain.

Essentially the preprocessor provides a language interpreter for the
generation of IIJorKShop conmands. The basic operation of the exec preprocessor
is as follol.lls. The preprocessor is invoked when the workShop shell recognizes a
cornnand to run an exec file. The preprocessor then reads and processes its input
flle(s) and creates a teflllOrary file 1111 th the output it generates (which
typically consists of WOrkShop directives and conmands to run other programs) .
This output file 1s then passed back to the I#OrKShOp Shell for execution. After
the execution of the conmands 1n the t~orary file haS terminated (either
having run to completion or having raised an error) the terrporary file is
deleted by the shell.

Execflle input consists of tlllO types of lines -- naI1lBl lines with conmands
lIIhiCh will be paSSed through to the workShop and e>eee COOII&1d lines whiCh are
directed to the preprocessor (and lIIhich w111 not get paSSed to the WOrkShop).
Thus, exec files actually are written in t\lO languages -- one directed to the
worKShop and any programs that may be run under the worKShop, and tne other
directed to the exec preprocessor i tsel f . So, I.IIhile the preprocessor has a
·syntlOl1c, KeYWOrd-oriented neta-l~, the underlying worKShop comnand
language 1s the sane as usual, 1.e., .the KeystroKe-oriented, UCSD-style corrmand
interface. That is, the exec file preprocessor provides a high level language
for the generation Of worKShOp CommandS, however, it does not provide an
a1 temati ve to the worKShop' S basic conmand language.

In the rest of this cIOcunent the methOd for constructing and inVOKing exec files
is described. The material is organized 1n the following sections:

Exec File Invocatioo
100 Exec language
E~les
Exec Invocat100 ~t1oos
Exec Programr1.rYJ Tips
Exec Errors

Fred Forsman

- hOIll to run an exec file -page 2
- tne exec file conmand language - page 3
- sarrple exec files - page 11
- options for running exec files - page 15
- exec file progranming hints - page 19
- errors reported by preprocessor - page 20

March 9, 1983

Exec f!le Prepnx:essor !=Iage 2

Exec File Invocation .
An invocation line for the preprocessor has the follollling form:

<exec conmand> <exec file> [«pararreter list» [<exec options>]]

The <exec corrmand> can be either "EXECI'" or "<". The <exec file> is the name of

the exec file you lIIiSh to run. A". TEXT" extension will be assuned if one 1s not
specified; holJlever, you may override the mechanism IJIhiCh supplies the". TEXT"
extension by ending your <exec file> name with a dot; e.g., using "foo. " lIIi11
cause the preprocessor to loOK for the file "foo" rather than "foo. text".

The optional <paraneter list> is enclosed in parentheses. The paraneter list
may oe 9I1llty or it may inclUde up to ten parameters delimited by coamas. For
exarrple, we may have an exec file to run co~iles which takes volUne and source
file parameters, IJIhiChlJle might invoKe IJI1 th "~lle(foo, -lIIOrK-)". Paraneters
may Oe omitted (leaving them as null paramters) oy specifying them lJIith the null
string, as in "~ile(foo,)", lJIhiCh omits the volume from our previous
exarrple. Alternately, paraneters may be left unspec1fied altogether, as in
"c~ile(foo)", 1n wh1~ case they also get null values. One reason for leaving
off paraneters 1s that the exec file may have been set up to supply default
values, as is described belolJl.

The <exec options> whiCh follolJl the closing ..) .. of the paraneter list consist of
s1ngle letter conmands 1JIh1Ch 111111 roodi fy the behavior of the preprocessor; for
e~le, "s" 1s used to indicate that you want to step through the exec file as it
is being processed, conditionally selecting WhiCh conmands will be sent to the
~orkShop shell. The exec options are discussed in detail in the "Exec
Invocation Options" section celOIJl.

The preprocessor' s output is a t~orary file with a " .. TEXT" extension. The
t~rary file is the processed version Of your exec commands, that is, all
preprocessor-or1ented comnands will have been processed and reRDved, leaving
only the WorKShop-related commands. This ~rary file is passed to the
WOrkShop shell executive when the preprocessor is done. The worKShop shell will
then run the te~orary exec file and delete it automatically when ~leted.

Note that the preprocessor is not case-sensitive, but it does preserve the case
of parameters and strings supp11ed by the user.

Fred Forsman March 9, 1983

The Exec Language
Following is a description of the format of exec files and the language
recognized by the preprocessor. Note that the exec language is independent of
the underlying conmand language, that is, the preprocessor recognizes its own
conmands but does not knolll anything about the form of the conmands generated by
the exec file and passed to the system COnmand Shell.

The format of exec files is line oriented. The preprocessor recognizes two
types Of lines -- exec command lines and normal lines -- each of which is
processed differently.

Exec conmand lines are distinguiShed by having a "S" as their first
significant (non-olanK) Character; they contain conmands which control the
operation of the preprocessor on the rest of the exec file.

While exec conmands have a specific syntax (eaCh comnand is discussed belOw),
the conmand may be entered in a "free format", that is, nothing is required to
appear in a fixed position in a line as long as the Order of the syntactic
elements is preserved .. Any nuntler of blanks may preceed or follolll tne "$" of an
exec COnmand line; and any nUlltler of blanKS may appear between the syntactic
elements of a conmand. The case Of Keywrds in the preprocessor language is
not significant; however, 1n this document the keYlllords appear in uppercase so
that they may be IOOre easily recognized.

If an exec comnand line contains an incolllllete conmand, the preprocessor will
automatically go to the next line to continue the conmand. Note that "$"

begins exec conmands, and Should not appear on the continuation line (s) .

Normal Lines

Normal lines contain text Which is neant to pass thrOUgh the preprocessor to
the system, that is, normal lines contain system conmands and commands
directed to programs O8ing run by the exec file.

The only processing that takes place in normal lines is expansion of parameter
references, relOOval of comments, and processing of the 11 teralizing character
(see belolll) .

Beginning and Ending a'l Exec File - $EXEC arO $Et(£XEC

The general form of exec files is they rust begin with a "$EXEC" line and rust
end with a "$EN)EXEC" line. The exceptions 't9 this basic rule (for those

Fred Forsman fvlarch 9, :'983

Exec FUe Pleprocessor Page 4

miscreants ",ho etTtled their exec files in their program sources) are: (1) one
line of text may preceed the "$EXEC" line if the "I" invocation option is used,
and (2) any aroount of text may follolll the "SENOEXEC" 11ne, but it will be
ignored.

{CcIme1ts}

Cooments may appear 1n both exec corrmand lines and normal lines. Corments are
delimited by curly braces. Conments in normal lines are cOlTpletely relOOved
and do not appear 1n the generated exec f11e. COrments may cross line
boundries and, 1n effect, corment out those l1ne boundr1es.

%n Para1eters

Parameters passed to exec f11es are pos1 tional, that 1s, they are referenced
by the index of the1r position in the parameter list. Up to ten parameters are
permi tted, nut'Jt)ered 0 through 9. Paraneter references are of the form "%n"
IJII'lere n is a single digit.

The values of parameters are str1ngs; they are set e1 ther 1n the parameter list
of the exec invocation line or else by one of the preprocessor commands
described below. I f a to%o" parameter reference appears in a normal line its
occurence will be replaced by the string value of that paraneter. If a
parameter reference appears 1n an exec comnancJ line 1 t w111 be recogn1zed as a
symbOlic parameter reference and how it will be treated will depend on the
command.

Parameters references are expanded only at the top level; that 1s, once a
paraneter reference has been replaced by its corresponding string value, no
further expansion will take place in that string (i.e., further parameter
references in the string value "'ill not be expanded) .

One point to note is that typically not all ten parameters are used, and

unusued paraneters may be used as ~rary variables 1nside the exec f11e.
(The use of SUCh variables 1s explained below.)

- the Li teral:Lz1n'J DlaraCter

Tilde (toN,,) may be used as a litera11zaing character 1n normal lines; its
effect is to pass the fo110llJing character through the preprocessor without
processing it. This a110llls you to have a "S" as the first generated Character
of a normal line td thout maKing the line appear to be an exec cormrand line. It
also a110llls you to have a "%" or "{to that td11 not be interpreted to be the start
of a parameter reference or a conment. Tilde itself is represented by N ...

Fred Forsman March 9, 1983

Exec File Plt:plUcessor PageS

The SET and DEFAULT conmands provide a way of changing the value of a paraneter
inside of an exec f11e. The form of these corrmands is;

$ SET <%n> TO <str expr>

and

$ DEFAULT <%n> TO <str expr>
where <%n> 1s a paraneter reference and <str expr> 1s a string expression as
described in the follottling section.

The effect of the SET comnand is to Change the value of the specified parameter
to the value of the given string expression. The effect of the DEFAULT corrmand
is similar to that of the SET cOrrmand, however, the ass1gnnent only takes
place if the value Of the specified paraneter is the null string when the
DEFAULT COnmand is encountered. ThUs, this conmand can be used to supply
default values to parameters that have been left unspecif1ed or efTllty in the
exec invocation line.

String Expressims

A string expression «str expr» may specify a string by a nuaDer of means" as
noted in the following graamar .

<str expr> : : = <parameter reference>
<str constant)
<expanded str constant>
(str function>
<exec function call>

A paraneter reference has the usual "~n" form. A string constant has the
standard form of text delimited by single quotes (.), IlJith a quote inside the
string specified by the double quote rule, as in · That' • s all, folks!'. An
expa Ided str~ ccnstant is similar to a string constant, except that double
quotes (") are used as delimiters and paraneter references are expanded d thin
the string. A string fl.llCtion is a preprocessor function lIIhich returns a
string value (these are described in the follollling section). An e)2C fl.llCtim
call is an invocation of an exec f1le which returns a string value (as
described 1n a follollJing section" "Exec Function Cells"'.

Str~ Fl.I1Ctims -- aN:AT cn:J lFPERCASE

The string functions CONCAT and UPPERCASE may be applied to other string
expressions to produce new string values.

The CONCAT function a1lo\lls several string expressions to be combined to

Fred Forsman March 9, 1983

Page 6

prOCluce a result whiCh is a single string. The CONCAT function has the form:

CONCAT (<str expr> [I <str expr>]*)
That is~ CONCAT takes a list of string expressions~ separated by conmas.

The UPPERCASE function converts any lower case letters in its argument to
upper case. It has the following form:

UPPERCASE (< str expr>)

An exarrple of the use of this function is

$ SET %0 TO UPPERCASE (%0)

which will set paraneter 0 to an uppercase version of its previous value.

ft~ST

The REQUEST conmand provides a way to prorrpt for values from the console. Its
form is:

$ REQUEST <%n> WITH (str expr>

The REQUEST cOlTlTland dll print the g1 ven str1ng express10n to the console and
will read a line from the console ~iCh it w11l ass1gn to the specified
paraneter. Thus the <str expr> 1s the pro~t that you will request with.

$SlB1IT

The SUBMIT command allows nesting of exec flles~ tnat is~ it allows another
exec file to be called from wi thin an exec file. The form of the SUBMIT conmand
is:

$ SUBMIT <exec Conmand>

Where <exec conmand> is an exec conmand of the sane form as you would have
following the "exec/" or H(H at the IJJOrkShop shell conmand level. This exec
conmand may include paraneter and exec options in the usual fashion.

The effect of the SUBMIT corrrnand 1s to process the specified exec file~ putting
any generated exec output text into the current exec t~orary file. Thus,
while a single exec file may have several nested sub-exec files~ only a single
te~orary output file is generated which includes the output generated by all
of the input files. Exec files may be nested to an arbitrary level.

Note that only the HI" (Ignore first line) and "B" (BlankS significant)
options are valid on a SUBMIT conmand, while the "R" (ReRun)~ "S" (Step rode)
and "T" (T~rary file saved) options are only app11cable from the main exec
invocation line.

$RETrnN -- Exec FLnrtims

Fred Forsman March 9 ~ 1983

Exec File PreoICJCessul Page 7

The RETURN conmand allol.'Js exec files to return string values to otner
(ca1l1ng) exec files. Thus the RETURN CORmanC1 can turn an exec file into a
fll1Ction. The form of the RETURN CORmanC11 s:

$ RETURN [<str expr>]
Executing a RETURN conmand ""'ill terminate the current exec file anC1 return to
the calling exec file ~ith the specified string value. The methoC1 by which
exec functions are called is describeC1in the following section.

Exec functions can be used to C10 such things as determining Whether a program
file (and its corresponC1ing include files, 1f any) have been rroC1ifieC1 since
their last c~ilation, and may thus be used to condi ticnally submit coltlJiles.
If written generally enough, such a function could be used by many exec files.

Exec functions can produce· side effects, that is, they may contain normal
lines which will get placed in the teltlJorary file. While the intentional use
Of such side effects is unlikely, inadVertent instances may occur and will be
potentially hazardous to your exec files. (An unexpected blank line 1n the
middle of an exec file can often throw 1 t out Of sync.)

Exec FlI1Ctim calls

Exec function calls return string values, and are thUs are one of the basic
elenents of string expressions. They may also appear in boolean expressions,
supplying arguments for string c~arisons. (A typical use Of an exec
function would be to return a boolean value by returning either the string 'T'
or • F' .) The form of an exec ftllCtioo callis:

< <f1le nane> [(<erg list>)]
where "<" 1s the Character that signals a.function invocation (just in the way
that this CI"Iaracter identifies exec files for the IJJOrKShop' s Run conmand).
The <file nane> and optional <arg list> are the sane as in the SUBMITconmand.

Due to our liberal conventions concerning IIIhat cnaracters (incluC1ing blankS)
may appear 1n file nanes, the preprocessor rust make some ass~tions about
how to identify the exec function file naneand the argument l1~t. Recognizing
the file nane is fll)re of a prOblem in the case of exec functions than it for the
SUBMIT command, since exec function calls may appear inside of arbitrary
string expreSSions, while an exec invocation appears by itself in a SUBMIT
command. The siltlJle rule the preprocessor uses is: if the exec function
invocation has an argument list, the file name is assumed to be everything
between the "<" and the "(" beginning the argunent list; otherwise, the file
nalre 1s assumed to be everything betlJleen the "(" and the end of the line, WhiCh
means that you will have to supply an eltlJty argument list to an exec funt10n

Fred Forsman March '3, 1983

Exec File Pn=plt:X%SSOf Page 8

with no argumants if the function call is not the last thing on the conmand
11ne.

$IF, $ELSEIF, SELSE, ald SENlIF

The IF, ELSEIF, ELSE and ENOIF conmands allcw cond1tional selection in exec
files. The syntax of these conmands 1s as follows:

$ IF <bool expr> THEN
<stuff>

[$ ELSEIF <bOOl expr> THEN
(stuff>]*

[$ ELSE
(stuff>]

$ ENOIF

where <bool expr> is a boolean expression as descr1bed in the fOllowing
section and <stuff> is made up of arbitrary normal and conmand lines (other
than.conmands that wuld be a part of the current IF construct). The"[...]
construct above indicates that zero or rore ELSEIF conmands may appear between
the IF and the ENDIF conmancJ, while the ., [...] .. indicates that zero or one ELSE
corrmand may appear just before the ENDIF .

The IF construct is evaluated in the usual way. First, the boolean expression
on the IF comnand itself is evaluated; if it is true then the (stuff) between
the IF and the next ELSEIF (if any) or ELSE (if any) or ENOIF is selected;
otherl.llise it 1s not selected. All remaining parts of the IF construct up to the
ENOIF 1.11111 be parsed but will not be selected once one of the (bool expr>s is
true and its corresponding <stuff> 1s selected. To say that <stuff> 1s
selected !lEans that any normal lines will generate text and that any conmand
lines 1.11111 be processed. Conversely, to say that (stuff> is not selected !lEans
that any normal lines will not generate text and that conmand lines l.IIill be
parSed (for correctness) but not executed. If the (bool expr> on the IF 1s not
true then the fo11ol.lling ELSEIF or ELSE 1.11111 be processed. If an ELSEIF is next,
its <bool expr> will be evaluated, and, if true, its follol.ll1ng <stuff> will be
selected and the remainder Of the IF construct will not be selected.
Processing of the IF construct continues until one of the <bool expr>s on an IF
or ELSEIF 1s true or until the ENOIF is reaChed. If no <bool expr> is true
before the ELSE (if any) 1s reaChed, its <stuff> w111 be selected.

IF constructs may be nested w1 thin eaCh other to an arbi trary level.

Boolecrl Express1ms -- COIlll<1Iism cnj logical operators

Booleans expressions «0901 expr>s) enable you to test of string values and

checK properties of files. The granmar for boOlean expressions is as follows:

Fred Forsman MarCh 9, 1983

',--_ .. -

Exec FUe Plel'Jlly.;essor Page 9

(0001 expr> .. - (bOol term> [(Oinary logic op> <bool expr>]*

<binary logic op> : : = AND
OR

<b001 term) : : = (b001 factor>
(<0001 expr))
NOT (<0001 expr>)

<bo01 factor) .. - <str expr> <str op> <str expr>
<bOOl function>

<str op> :: = =
<>

The Oasic elerrent of a boolean expression (a <boo1 factor» is either a boolean
function (see the next section) or a string cOllllaI"ison, testing for equality
or inequality. These basic elenents may be cont)ined using the logical
operators ptf), (fl and NOT, with parentheses used for grouping. All these
operators function in the usual \IIay.

BoolfSl Flnrtims - EXISTS cn:i tEe

Several functions returning boolean results are provided for use ",1 ttl the
conditionalcontructs.

The EXISTS function allows you to determine Whether a file ex1sts. The
function has the following form:

EXISTS (<str expr))
where (str expr) is a string expression whose value is the name of a file.
Typically this <str expr> will be an expanded string constant (discussed
aoove), such as "%1.Obj".

The tEe function allows you to determine whether one file is newer than
another file, that is, whether its 1ast-lOOdified date is IOOre recent than the
last-IOOd1f1ed date of anther file. The function has the fOllollJing syntax:

NEWER (<str expr 1), <str expr 2))
\IIhere the <str expr)s specify file nanes. TRUE will be returned if the first
file is newer than the second. A preprocessor run-time error will occur if one
of the files does not exist.

The WRITE and WRlTELN conmands allow exec files to \IIri te text to the console
screen. This text may be used for informatory messages, pro~ts, or for any
other purpose. The form of these conmands is:

Fred Forsman rvlarcn 9, 1983

ExecFUe~

$ WRITE [(str expr> [.. (str expr>]*]

and

$ WRlTELN [(str expr> [, (str expr>]* 1

Page 10

That is, these conmands taKe an arbitrary nurrber of string expressions,
separated by corrmas, as argurrents. The strings are II1ri tten to the current
console line, and in the case of l1.IRITELN a final carriage return is IIIritten.

ftAIl..N ~ SRaOli

The READLN and READCH commands allow exec files to read in text from the
console and to assign it to a paraneter variable. This mechanism may be used to
obtain paraneter values, to obtain values to control conditional selection,
to pause until the user indicates to continue, or for any other purpose. The
form of these corrmands is:

$ READLN (%n)

and

$ READCH <%n)

READLN will read a line from the console and II/ill assign it to the specified
pararreter. READCH will read a s1ngle character from the console (1 f <return)
is typed that character will be a blank).

me Restr1ct1on

Al thOugh you ShOuld not have to think about 1 t, the preprocessor uses percents
C",.") when it generates its t~rary, old-style exec file. This rreans that you
can prematurely generate and end-of -fHe by trying to pass two percents in a row
in a normal line (both percents would, of course, have to be literalized as
H"''''''%").

Please let rre know 1 f you find th1s to be an unbearable restriction.

Fred Forsman March 9, 1983

"---.--

~ File Pleplucesscr Page 11

Examples

Exatple 1 -- iYl EM!C file to 00 a Pascal coopile

This exec file does a Pascal cOfTl)ile and generate. Note how comrents have been
used to make the single-character WOrkShop conmands rote intelligible.

$!XEC { "comp" - perform a Pascal compile
%0 - the naJI\e of the unit to COlIl'pile }

P{Pascalcampile)%O{source}
{no list file}
{defaul t i -code file}
<esc>{no debug file - note <esc) here represents an escape chara.eter}
G{generatecode)%O
{defaul t obj file}

SENDEXEC

Exarple 2 -- al exec file to do al assentJly

This exec file performs an assentlly, and allolls for an optional output file nane
lJIhich may be different from the source nane .

$EXEC { "asselllbc, - perform an asseJllbly
%0 - the naJIle of the unit to assemble }
%l. - (optional) alternate name of OBJ output }

$DEFAULT %l. TO ~ { use source .reJRe if no output naae is g1 yen }
A{asseJllble}%O{source}
{no list file}
%l.{obj file}

SENDEXEC

~le 3 -- a nme flexible exec file to do Pascal call1lles

This exec file performs cOfTl)l1es; 1 t allollls for an output file w1 th a different
name than the souce and permits the use of an alternate intrinsic library.

Fred Forsman March 9, 1983

Exec FUe Preplt-azuI

SEXIC { Hcompl U - perform a Pascal compile
%0 - the name of the un1 t to compi Ie
%1- (optional) a.l terna.te name for OBJ file
%2 - (optional) alternate intrinsic library}

SDUAtJL'1' %1 TO %0 { if no a.l terre te OBJ na.me use sa.m.e name as source }
SIP %2 < > " 'l'HEH { use alternate intrinsic library }

P{ Pasca.l. cOlltpile }?{ option flag}
%2{alternate intrinsic lib}
%O{source}

SELSE
P{Pascalcompile}%O{source}

SENDIF
{no list file}
{defaul t i-eode file}
<esc>{nodebug file}
G{ genera. te code}%O
%.l.{OBJ file}

SENDEXEC

Exarple 4 -- yet cnJtrer exec file to dO Pascal cootliles

Page 12

Tnis corrplle exec file !lIill only perform the corrplle if either the OOject file
does not exist or the source file is nelJ18r than the Object file (1.e., the source
has Changed Since it was last corrPiled).

SIXIC { ucompZu - perform a. Pascal compile (only if really required)
%0 - the name of the unit to colltplle
%1- (optional) a.l terrete name for OBJ file
%2 - (optional) alternate intrinsic library}

SDEFAULT %9 TO %1 { set %9 to name of output OBJ file}
SDEFAULT%9 TO %0
SIF EXISTS (''%9. objU) mEN

SIF NEWER (''%0. text", "%9. obJ") 'mEN {recomp if source newer than object}
SSUBITcompl(%O,%1,%2)

SENDIF
SELSE { OBJ file doel! not exil!t, l!0 generate it}

SSUBMIT compl(%O,%1,%2)
SENDIF

SENDEXEC

It is left as an exercise as to ho~ to Change the above example to take into
account the fact that a unit may have an arbitrary nuntJer of include files in'
aCldi tion to its main source file, and that the un! t will have to be reco~i1ed if
one or ITOre of these Change.

Exartlle 5 -- exec file -chaining-

This exarrple ("maKe/Prog") uses the "smart" corrpile exec file ("co~2")

defined in the last exarrple to delTOnstrate how to "Chain" exec file execution.

Fred Forsman March 9, 1983

Exec File Plt:plOcessor

Assurre we want to generate a particular program made up of three units
(unitl. .unit3) and that we have written "link/Prog", a smart exec file which
performs a link only when one of the object files for one of the units is newer
than the linked program file. Our generation exec file will use these smart exec
files to perform the minimal required amount of ~ork, thus it may be used to
determine whether we have the latest version of the program without fear of
wasting tirre.

SEXEC { t'make/Pro(' - smart version, only recompiles & links when it has to}
$SUBI! comp2(uni t1)
SSUBITcomp2(un1tZ)
SSUBI! comp2 (uni t3)
R<link/Prog { run link exec file after compiles ha.ve run

so that it will get the correct file dates}
SENDE:cEC

Note that in the last line of the above exec file we have scheduled an exec file to
be run at a later tirre, as opposed to SUBMITting it now, so that the file dates
for the link step will be accessed after the cOfIlliles have had a chance to run.
The differences between ruming and submitting and exec files are de!TOflstrated
in the following scenario. When an exec file is submitted it is processed
immediately by the preprocessor, ~ith its output going to the temporary file,
which is then passed back to the WorkShop shell. The then shell runs the
conmands in the telJl)Orary file until it comes to the conmand to IU"1 another exec
file, at mich point it discards the remainder of the temporary file and runs the
preprocessor with the new exec command. This exec file invocation in turn
resul ts in another temporary file of conmands lIIhich is then run by the shell.

~le 6 -- a recursive exec file to dO Pascal carpiles

This corrpile exec file will perform up to 10 compiles. It takes an argurrent list
wi th the narres of the units to be compiled.

SEXIC { t\rcompu - perform axr'J number (up to 10) Pascal compiles.
It calls uCOJIll)u on its first argument ard then calls itself
recurs1velyw1th its arguments shifted left}

$ IF %0 <> " THEN
SSUBMIT comp(%O) { "compn the first one }
$SUBMIT rcomp(%1, %2, %3, %4,%5,%6,%7,%8,%9) { urcomp" the rest, less first}

SENDIF
$ENDIXEC

Exarple 7 -- a Basic ~le

This exec file demonstrates some of the constructs in the preprocessor's
meta-language, by generating the BASIC interpreter. The corments in the body of

Fred Forsman March 9,. 1983

Exec File Preproce~r Page 14

the exarrple snoulCl be sufficient to oescribe fl.lhat is taking place. The
essential 10ea is that Basic is maCJe out of three COrT;lonents, anO that fI.I8 may
Ij/ant to generate only one or rrore of them at a tine.

SEXEC { ttmake/basicn - generate the BASIC interpreter.
There are three parameters - if a parameter is a tT' (yes)
the correspon:::!ing part of the system should: be genera ted:

(0) the 'b-eode interpreter
(1) the run-time systell\
(2) the colllllland: interpreter

If no parameters are specified, the exec file will prompt to see what parts
of the systeJll should be generated. }

SWRI'n:I.N 'Starting genera t10n of the BASIC system'
SI'F!W = " AND%!. = " AND %2 = " THEN {nopa.raJIIS supplied - prompt for info}

SWRIT.E 'do you want to assemble the b-code interpreter? (y or [n])'
SlU'.A:OCH %0
S'WRITELN { this wri teln puts us on a new line for the next prompt}
S'«RITE 'do you want to compile the run-time system? (yor [n])'
SR.:EAOCH %1
S'tr'RITELN
S'WRITE 'do you want to compile the comman:i interpreter? (y or [n])'
SXEAtlCH%2
S'w'RITELN

SENDI!
S
SIFUPPERCASE(%O) = 'Y' THEN {assemble the b-code interpreter}

SSUBIT a.ssemb (int. m.in)
SENDIF
S
SIF UPPERCASE(~l) = 'Y' THEN {compile the run-time unit}

SSUBIT comp(b. rtuni t)
SENDIF
S
SIF UPPERCASE(%2) = 'Y' OR UPPERCASE(%l) = 'Y' mEN

S{ compile the comma.n:i interpreter}
S{ compile also if the run-time unit has changed }
SSUBMIT comp(b. basic)

SENDI!
S
S{ link it all together }

L{ link}-p{note that u_pu gets aroun:i a linker bug}
b.bas1c
b.rtunit
int.main
hwintl
iosfplib
1ospasl1b

basic{ executable output}
SENDEXEC

Fred Forsman March 9, 1983

Page 1.5

Exec invocation Options
A nullt)er of options are available when running the preprocessor. These options
rray be specified when invoking the preprocessor or on SUBMIT colTlllands. The
options are specified by single letter conrnands following the exec pararreter

,list. (A null paraaeter list should be used if you want to use options without
paraneters, as in lO<fooOs".) The options are as follows:

"8" indicates that the preprocessor should not trim blankS on output lines.
Normally the preprocessor 111111 trim off leading and trailing blanKs on
the lines that it outputs to the t~rary file. This a11ol#s you to indent
normal lines (lines I#hich are not exec contnand lines) I#i thout worrying
abOut generating spurious blanKs. Thus the preprocessor assumes that
leading and trailing blanKs are insignificant (I#hich 1s the case for
1#0rkShop conmandS, bUt Which rray not be true for some perverse programs
you may run via exec files). This option 1#111 tell the preprocessor not to
trim such blanKs. The option applies only to the exec file being run or
SUBMITted, and not to any nested exec files.

"I" indicates that the first line of the exec file is to be ignOred by the
preprocessor. This option is intended for deviants whO like to entled
their exec files in their program sources, in which case the first line of
the source should be a .. (..... and a "*) .. Should follo", the end of the exec
file, thus conmenting it out of the program source. (Note that "(... ,, and

w*)" ShOuld be used in preference to ,,{ .. and "}" since the latter are used
as comment characters in the preprocessor.)

lOT" indicates that the t~rary file IIIhich is created (1.e., the expanded
form of the exec file) should not be removed after 1 t 1s run. One reason to
use this option is to make it possible to rerun an exec file created III1th
the step option (see belol#) without going through the stepping prorrpts a
second time by running a previously created expanded exec file. The "R"

exec option (described belol#) 1s uSed to run old terrporary exec files.
Note that the "T" option is not allowed on SUBMIT conmandS.

"R" indicates that the a exec teftl)orary file which haS been saved 1111 th the "T"
option Should be rerun, bypassing the normal processing by I#hich the
terrporary !#as created. For eXaJll)le, "foo" may be an exec file I#hiCh
generates a corrpl1cated system via a large nullt)er of nested exec files
Which take a sign1 ficant aroount of t1me for the preprocessor to digest.
If we Know we are going to run "foo" repeatedly, we may want to generate
the t~orary file only once but run it several t1:tes. The first time we

Fred Forsman MarCh 9, 1983

Exec File PrepI.JcessOl Page 16

lIJould invOke the preprocessor fI.Iith "<fooOt" to indicate that the
temporary file should not be automatically deleted after it 1s run.
SUbsequently, we llIOuld invOke the preprocessor with "<fooOr" to rerun
the old te~orary file. Note that the "R" option will override any others
that may be specified, and it is not allowed on SUBMIT conmandS.

"S" indicates that the exec file should be processed in "Step MOde" whiCh
allows selective Skipping Of output lines and SUBMITs. If this option is
used, the follollling nessage dll appear when you invoKe the preprocessor:

Step Mode:
-- in response to "InclUde?" answer V, N, A (Abort) or K (Keep rest).
--in response to "SUbmit ?" anslller V, N, S (Step), A (Abort) or K (Keep Rest).
More details? [No]

If you repone! with "Y" (yes) to the "More details ?" pro~t you will get
further information on what each of stepping responses neans.

\I.Itlen you invoKe an exec file with the step option you will be pro~ted when
a line has been generated and is about to go into the te~orary file. The
line will be displayed follollled by "(= Include T'. A response of "Y" will
include the line in the expanded exec file. A response of "N" will cause
the displayed line to be omitted. A response of "A" will abort out of the
exec file preprocessor and no exec file will be run. A response of "K" will
Keep (include) all the remaining lines of the exec file, leaving step
roode.

When a SUBMIT conmand is encountered when stepping, the SUBMIT line will
be displayed followed by "(= Submit ?". A response of "Y" will perform the
SUBMIT unConditionally, that is, without stepping through it. A response
of "N" \tIill ignore the SUBMIT. A response of "S" will step through the
SUBMIT file. A response of "A" will abort out of the exec file
preprocessor and no exec file will be run. A response of "K" uslll Keep the
rest of the exec f11e, leaving step IlDde.

Note that a reponse of "?" to a "Submit ?" or "Include ?" pro~t will elicit
an explanation of the accepted responses:

Following are some examples of how to use the preprocessor's stepping
facility.

Stepping may be used to resure execution of an exec f11e which did not run
to termination. For exa!'lllle, if our exarrple "co~ile" exec file includes
both a co~i1e and a generate step and if we wish to resume with the
generate step we could invoKe the preprocessor wi th

Fred Forsman MarCh 9, 1983

Exec File PleplU :essor Page 17

"corrplle(foo, -f.>Jork-)s". Then, in response to the "Include?" prorrpts for
lines correspond1ng to the corrp1le step ~ would hit lOW to Skip the

lines. upon reaching the first line of the generate step we would respond
wi ttl 10K" to keep the rest of the file, and the generate step of ttle exec
process would be performed.

The stepping ITechanism may be used to run only selected parts of an exec
file. say, for instance, that we have a rrodUlar set Of exec files which
generate a wOOle system of programs, SUCh as the workShop development
system, and that one exec file called "make/all" can generate the whole
system by SUBMITting exec files for each of ttle corrponent programs. The
exec files for each ~t program (development system tool) maKe use
of other exec files to perform SUCh standard activities as colt'plling (and
generating) a Pascal unit or progrcm, performing an aSsenDly, installing
a library, or manipulating files with the IIJOrkShop' s filer. If lIIe are
performing a system bUild and find ourselves constantly having to
regenerate parts of the system dUe to bugs, late deliveries or IJIhatever,
then the ability to step by SUBMITs proves to be very useful. Arbi trary
parts of the system can be regenerated by rLming "<maKe/allOs" (1.e.,
our master exec file invoked IrIittl the stepping option) and selectively
submitting the SUb-exec files for only thOse things tJ.Ihich lIIe lIIish to
rebUild while stepping over the others.

Stepping in conjuction Id th the "T" option (for saving the teIt'pOrary file
created by the preprocessor) can be useful when we are going to be

regenerating a single ~t of a program or system a nunt)er of times
in succession, such as when we are fixing a bug in an element of a system
bUild and we expect that several iterations "ill be needed to correct the
problem. To continue our previous eX8f1llle, suppose that IIIe are having a
problem with the "FileIO" unit of ttle "ObjIOLib" library tJ.Ihile bUilding
the development system, and that an exec file called "make/ObjIOLib"
generates and installs the library, SUbmitting colt'piles and asselltllies
for all of its units, linking everything together, and finally performing
the installation. By inVOking ttle preprocessor with "make/ObjIOLib()st"
tJ.I8 can go into step lOOde and submit only those things related to the
c~ilation of the "FileIO" unit, the link, and the installation of the
library in the Intrinsic Library. Then, after each successive refinement
of "FileIO", tJ.I8 could run the saved telTporary file by running
M<maKe/OtJjIOLibOr" lllittlout having to go thru the stepping process. Our
alternatives to this procedure are creating another exec file to generate
only the selected parts, or running (and rerunning) the exec file for the

Fred Forsman f'-1arCt1 9, 1983

Exec FUe Pleplooessor Page 18

whole liorary, or running each suo-process int1ependently (whiCh requires
IOOre of your attention) .

Fred Forsman March 9, 1983

Exec Flle PlepnX:essoI Page 19

Exec Programming Tips
The following fe" points may be useful to rel1EfTt)er IIIhen creating exec files:

Use IIIX1Jlar exec files. It may helpful to think of exec files as procewres
IIIhiCh are called via the SUBMIT conmand. The IOOre IOOdular your exec files are,
the easier it \11111 be to use me stepping facility on tnem.

Create standard exec files for COI'IIOOI"l functions; for exaJT1)le, uSe one exec file
to perform all your co~ilat1ons. One adVantage of this 1s mat you only have to
ed1 t one file ",hen the interface to the tool changeS (as it has in the case of the
asserrt)ler) .

Use C4'lt1ooal. pararlEters to support features which are not allllaYs (or often) used
(SUch as the ab1l1 ty to COlJlllle against an alternate intrinsic library in your
corrplle exec file). The parameter mechanism is SUCh that you can remain
Oblivious to optional paraneters if you don't need the functions they support.

write your exec flIes to prompt for information which was not supplied in
pararreters. This wy you don't need to renentler the neaning of a large nurrt)er of
parameters.

Fred Forsman March 9, 1983

Exec FUe PxepIOcessor Page 20

Exec Errors
The preprocessor can recognize a number Of errors during its invocation and
execution. The format in lJIhiCh roost errors are reported is :

\\!here

ERROR in <err loc>
<curr line)
<err marker)
<err msg>

<err loc> 1s either 'invocation line' or 'line I<n> Of file
"(file)"'

<curr line> is the current exec line when the error was
detected

<err marker> is a line with a question mark indicating where
the preprocessor was in <curr line> when the
error was deteCted

<errmsg> is one of the nessages listed below.

10 errors are followed by an additional line Idth the text of the OS error raised
dUring the 10 operation. The errors detected are as follows:

10 Errors:

Unable to open input file "<file)".
Unable to open terrporary file" <file)" .
Unable to access file "<file)".
Unable to rerun file "<file)".

Other Errors:

File does not begin with "$EXEC" .
End of Exec file before "SENOEXEC" .
$EXEC conmand other than at start.
No Exec file specified.
More than 10 paraneters.
NO closing ") It found.
Line buffer overflow (>255 Chars).
Invalid Exec option: <option Char> .
Invalid Exec option on SUBMIT: <option char> .
End of Exec file in conment.
Invalid percent: not "%n" form.
Garbage at end of conmand.
No argurrent to SUBMIT.
ELSE, ELSEIF or ENDIF not in IF.
ELSEIF after ELSE .
File contains unfiniShed IF.
Nothing following "<tilde)" .

Fred Forsman March 9, 1983

Exec File PlepU£eSSOI

and

Out of I1eIOOry. Processing aborted.
Bad t~ file narre generated: "<file>".
NO value returned from file called as function.
RETURN I1Ii th value 1n file not called as function.

Invalid command. (token> expected.

where <token) may be

String value
"%n" paraneter
Terminating string delimiter
"=" or "()"
"0"
Boolean value
Conma (list delimiter)
"("
")"
Valid conmand keYlIIOrd
Command

Fred Forsman

Page 21

Marct'l 9, 1983

