Exec Flle Preprocessor Page 1

Exec File Preprocessor
Overview

The exec file preprocessor supports a wide variety of features for generating
exec files, including parameterization (with defaults), prompting for input
and options, nested exec files, commenting, conditlonals, general console 1/0,
among others. These facilities should allow you to create modular, flexible
exec files which are both powerful and easy to maintain.

Essentially the preprocessor provides a language interpreter for the
generation of WorkShop commands. The basic operation of the exec preprocessor
is as follows. The preprocessor is invoked when the WorkShep shell recognizes a
command to run an exec file. The preprocessor then reads and processes its input
file(s) and creates a temporary file with the output it generates (which
typically consists of WorkShop directives and commands to run other programs).
This output file is then passed back to the WorkShop shell for execution. After
the execution of the commands in the temporary file has terminated (either
having run to completion or having raised an error) the temporary file is
deleted by the shell.

Exec file input consists of two types of lines -- normal lines with commands
which will be passed through to the WorkShop and exec command lines which are
directed to the preprocessor (and which will not get passed to the WorkShop).
Thus, exec files actually are written in two languages -- cne directed to the
WorkShop and any programs that may be run under the WorkShop, and the other
directed to the exec preprocessor itself. So, while the preprocessor has a
symbolic, keyword-oriented meta-lanquege, the underlying WorkShop commend
language is the same asusual, 1.e., the keystroke-oriented, UCSD-style command
interface. That is, the exec file preprocessor provides a high level language
for the generation of WorkShop commands, however, it does not provide an
alternative to the WorkShop's basic command language.

In the Test of this document the method for constructing and invoking exec files
isdescribed. The material isorganized in the following sections:

Exec File Invocation - how to runanexec file -page 2
The Exec Language - the exec file command language -page3
Examples - sample exec files - page 11
Exec Invocation Options - options for running exec files - page 15
Exec Programming Tips - exes file programming hints - page 19

Exec Errors - errors reported by preprocessor - page 20

Fred Forsman March 9, 1983

Exec File Pregrocessor Page 2

ExecFile Invocation
An invocation line for the preprocessor has the following form:
<exec command> <exec file> [(<parameter 1ist>) [<execoptions> }]

The <exeC command> can be either “EXEC/" or "<". The <exec file> is the name of
the exec file you wish to run. A “.TEXT" extension will be assumed if one is not
specified; however, you may override the mechanism which supplies the “.TEXT"
extension by ending your <exec file> name with a dot; e.g., using "foo." will
cause the preprocessor to 1ook for the file “foo" rather than "foo.text".

The optional <parameter 1ist> is enclosed in parentheses. The parameter list
may be empty or it may include up to ten parameters delimited by commas. For
example, we may have an exec file to run compiles which takes volume and source
file parameters, which we might invoke with “"compile(foo, -work-)". Parameters
may be omitted (leaving them as null paramters) by specifying them with the null
string, as in “compile(foo,)", which omits the volume from our previous
example. Alternately, parameters may be left unspecified altogether, as in
“compile(fao)”, in which case they also get null values. One reason for leaving
off parameters is that the exec file may have been set up to supply default
values, as is describedbelow.

The <exec options> which follow the closing “)" of the parameter list consist of
single letter commands which will modify the behavior of the preprocessor; for
example, "S" isused to indicate that you want to step through the exec file as it
is being processed, conditionally selecting which commands will be sent to the
workShop shell. The exec options are discussed in detail in the “Exec
Invocation Options® section below.

The preprocessor's output is a temporary file with a "..TEXT" extension. The
temporary file is the processed version of your exec commands, that 1s, all
preprocessor-oriented commands will have been processed and removed, leaving
only the WorkShop-related commands. This temporary file 1s passed to the
WorkShop shell executive when the preprocessor is done. The WorkShop shell will
then run the temporary exec file and delete it automatically when completed.

Note that the preprocessor is not case-sensitive, but it does preserve the case
of parameters and strings suppliedby the user.

Fred Forsman March 9, 1983

Exer Flie Preprocessor Puage 3

The ExeclLanguage

Following is a description of the format of exec files and the language
recognized by the preprocessor. Note that the exec language is independgent of
the underlying command language, that is, the preprocessor recognizes its oun
commands but does not know anything about the form of the commands generated by
the exec flle and passed to the system command shell.

The format of exec files is line oriented. The preprocessor recognizes tuwo
types of lines -- exec command lines and normal lines -- each of which is
processed differently.

Exec Command Lines

Exec command lines are distinguished by having a "$" as their first
significant (non-blank) character; they contain commands which control the
operation of the preprocessor on the rest cf the exec file.

while exec commands have a specific syntax (each command is discussed below),
the command may be entered in a "free format", that is, nothing is required to
appear in a fixed position in a line as long as the order of the syntactic
elements is preserved. Any number of blanks may preceed or follow the “$" of an
exec command line; and any number of blanks may appear between the syntactic
elements of a command. The case of keywords in the preprocessor language is
not significant; however, in this document the keywords appear in uppercase so
that they may be more easily recognjzed.

If an exec command line contains an incomplete command, the preprocessor will
automatically go to the next line to continue the command. Note that "$"
begins exec commands, and should not appear on the continuation line(s).

Normal Lines

Normal lines contain text which is meant to pass through the preprocessor to
the system, that is, normal lines contain system commands and commands
directed to programs being run by the exec file.

The only processing that takes place innormal lines is expansion of parameter
references, removal of comments, and processing of the literalizing character
(see below).

Beginning and Ending an Exec File —— $EXEC and $ENDEXEC

The general form of exec files is they must begin with a "$EXEC" line and must
end with a "$ENDEXEC" line. The exceptions to this basic rule (for those

Fred Forsman March 9, 1983

Exec Fllz Pregrocessor Page 4

miscreants who embed their exec files in their program sources) are: (1) one
line of text may preceed the “"$EXEC" line if the “I" invocation option isused,
and (2) any amount of text may follow the “S$ENDEXEC" line, but it will be
ignored.

{ Comments }

Comments may appear in both exec command lines and normal lines. Comments are
delimited by curly braces. Comments in normal lines are completely removed
and do not appear in the generated exec file. Comments may cross line
boundries and, ineffect, comment out those line boundries.

*n Parameters

Parameters passed to exec files are positional, that is, they are referenced
by the index of their position in the parameter list. Up to ten parameters are
permitted, numbered O through 9. Parameter references are of the form “%n"
wheren isasingledigit.

The values of parameters are strings; they are set either in the parameter list
of the exec invocation line or else by one of the preprocessor commands
described below. If a "%n" parameter reference appears in a normal line its
occurence will be replaced by the string value of that parameter. If a
parameter reference appears in an exec command line it will be recognized as a
symbolic parameter reference and how it will be treated will depend on the
command .

Parameters references are expanded only at the top level; that is, once a
parameter reference has been replaced by its corresponding string value, no
further expansion will take place in that string (i.e., further parameter
references in the string value will not be expanded).

One point to note is that typically not all ten parameters are used, and
unusued parameters may be used as temporary variables inside the exec file.
(The use of such variables is explained below.)

~ the Literalizing Character

Tilde (") may be used as a literalizaing character in normal lines; its
effect 1s to pass the following character through the preprocessor without
processing it. This allows you to have a "$" as the first generated character
of anormal line without making the line appear to be an exec command line. It
also allows you to have a "%" or "{" that will not be interpreted to be the start
of aparameter reference or a comment. Tilde itself is representedby "™ *.

Fred Forsman March 9, 1983

Exec File Preprocessor Page S

SSET and $OEFAULT

The SET and DEFAULT commands provide a way of changing the value of aparameter
inside of anexec file. The formof these commands is:

$ SET <%n> TO <strexpr>
and
$ DEFAULT <%n> TO <strexpr>

where <%n> 1s a parameter reference and <str expr> is a string expression as
described in the following section.

The effect of the SET command is to change the value of the specified parameter
to the value of the given string expression. The effect of the DEFAULT command
is similar to that of the SET command, however, the assignment only takes
place if the value of the specified parameter is the null string when the
DEFAULT command is encountered. Thus, this commend can be used to supply
default values to parameters that have been left unspecified or empty in the
exec invocation line.

String Expressions

A string expression (<str expr>) may specify a string by a number of means, as
noted in the following grammar.

{str expr> {parameter reference>

| <strconstant>

| <expanded str constant>
| <str function>

| <execfunctioncall>

A parameter reference has the usual "%n" form. A string constant has the
standard form of text delimited by single quotes ('), with a quote inside the
string specified by the double quote rule, as in 'That'’s all, folks!'. An
expanded string constant is similar to a string constant, except that double
quotes (") are used as delimiters and parameter references are expanded within
the string. A string function is a preprocessor function which returns a
string value (these are described in the following section). Anexec function
call is an invocation of an exec flle which returns a string value (as
described in a following section, “Exec FunctionCalls").

String Functions -- CONCAT and UPPERCASE

The string functions CONCAT and UPPERCASE may be applied to other string
expressions to produce new string values.

The CONCAT function allows several string expressions to be combined to

Fred Forsmean March 9, 1983

Exec File Preprocessor Page 6

produce a result which is a single string. The CONCAT functicn has the form:
CONCAT (<strexpr> [, <strexpr> J*)
That 1s, CONCAT takes a list of string expressions, separated by commas.

The UPPERCASE function converts any lower case letters in its argument to
upper case. It has the following form:
UPPERCASE (<strexpr>)
An example of the use of this function is
$ SET %0 TO UPPERCASE (%0)
which will set parameter 0 to an uppercase version of its previous value.

$SREQUEST

The REQUEST command provides a way to prompt for values from the console. Its
formis:

$ REQUEST <%n> WITH <{strexpr>
The REQUEST command will print the given string expression to the console and
will read a line from the console which it will assign to the specified
parameter. Thus the <str expr> is the prompt that you will request with.

$SUBHIT

The SUBMIT command allows nesting of exec files, that is, it allows another
exec file to be called from within an exec file. The formof the SUBMIT command
is:

$ SUBMIT <exec command>
where <exec command> is an exec command of the same form as you would have
following the “exec/" or "<" at the WorkShop shell command level. This exec
command may include parameter and exec options in the usual fashion.

The effect of the SUBMIT command is to process the specified exec file, putting
any generated exec output text into the current exec temporary file. Thus,
while a single exec file may have several nested sub-exec files, only a single
temporary output file is generated which includes the output generated by all
of the input files. Exec files may be nested to anarbitrary level.

Note that only the “I" (Ignore first line) and “"B" (Blanks significant)
options are valid on a SUBMIT command, while the "R" (ReRun), "S" (Step mode)
and "T" (Temporary file saved) options are only applicable from the main exec
invocation line.

$RETURN -- Exec Functions

Fred Forsman March 9, 1983

Exec File Preprocessor Page 7

The RETURN command allows exec files to return string values to other
(calling) exec files. Thus the RETURN command can turn an exec file into a
function. The formof the RETURN command is:

$ RETURN [<strexpr>]
Executing a RETURN command will terminate the current exec file and return to

the calling exec file with the specified string value. The method by which
exec functions are called is described in the following section.

Exec functions can be used to do such things as determining whether a program
file (and its corresponding include files, if any) have been modified since
their last compilation, and may thus be used to conditicnally submit compiles.
If writtengenerally enough, sucha function could be used by many exec files.

Exec functions can produce- side effects, that is, they may contain normal
lines which will get placed in the temporary file. W¥hile the intentional use
of such side effects is unlikely, inadvertent instances may occur and will be
potentially hazardous to your exec files. (An unexpected blark line in the
middle of an exec file can often throw it out of sync.)

Exec Function Calls

Exec function calls return string values, and are thus are one of the basic
elements of string expressions. They may also appear in boolean expressions,
supplying arguments for string comparisons. (A typical use of an exec
function would be to return a boolean value by returning either the string 'T*
or ‘F'.) The formof an exec functioncall is:

< <(filename> [(<arglist>)]
where “<" is the character that signals a function invocation (Jjust in the way

that thls character identifies exec files for the WorkShop's Run command).
The <file name> and optional <arg list> are the same as in the SUBMIT command.

Oue to our 1liberal conventions concerning what characters (including blanks)
may appear in file names, the preprocessor must meke some assumptions about
how to identify the exec function file name and the argument 1ist. Recognizing
the file name is more of a problem in the case of exec functions than it for the
SUBMIT command, since exec function calls may appear inside of arbitrary
string expressions, while an exec invocation appears by itself in a SUBMIT
command. The simple rule the preprocessor uses is: if the exec function
invocation has an argument list, the file name is assumed to be everything
between the “<" and the “(" beginning the argument 1ist; otherwise, the file
name 1s assumed to be everything between the “<" and the end of the line, which
means that you will have to supply an empty argument 1ist to an exec funtion

Fred Forsman March 3, 1382

Exec File Pregrocessor Page 8

with no arguments if the function call is not the last thing on the command
line.

$IF, $ELSEIF, $TLSE, and $ENDIF

The IF, ELSEIF, ELSE and ENDIF commands allcw conditional selection in exec
files. The syntax of these commands is as follows:

$ IF <boolexpr> THEN
{stuff>
[$ ELSEIF <boolexpr> THEN
(Stuffy I«
[$ ELSE
{stuffd> }
$ ENDIF

where <bool expr> is a boolean expression as described in the following
section and <stuff> is made up of arbitrary normal and command lines (other
than commands that would be 3 part of the current IF construct). The "[...]="
construct above indicates that zero or more ELSEIF commands may appear between
the IF and the ENDIF command, while the “[...]" indicates that zero or one ELSE
command may appear just before the ENDIF.

The IF construct is evaluated in the usual way. First, the boolean expression
on the IF command itself is evaluated; if it is true then the <{stuff> between
the IF and the next ELSEIF (if any) or ELSE (if any) or ENDIF is selected;
otherwise i1t is not selected. All remainingparts of the IF construct up to the
ENDIF will be parsed but will not be selected once one of the <bool expr>s is
true and its corresponding <stuff> 1s selected. To say that <stuff> is
selected means that any normal lines will generate text and that any command
lines will be processed. Conversely, to say that <stuff> isnot selected means
that any normal lines will not generate text and that command lines will be
parsed (for correctness) but not executed. If the <bool expr> on the IF is not
true then the following ELSEIF or ELSE will be processed. If anELSEIF isnext,
its <bool expr> will be evaluated, and, if true, its following <stuff> will be
selected and the remainder of the IF construct will not be selected.
Processing of the IF construct continues until one of the <bool expr>s onan IF
or ELSEIF is true or until the ENDIF is reached. If no <bool expr> is true
before the ELSE (if any) is reached, its <stuff> will be selected.

IF constructs may be nested within each other toanarbitrary level.
Boolean Expressions -- comparison and logical operators

Booleans expressions (<bool expr>s) enable you to test of string values and
check properties of files. The grammar for boolean expressions is as follous:

Fred Forsman March 9, 1983

Exec File Preprocessor Page ¢

<bool expr> ::= <bool term> [<pinary logic op> <bool expr> *
<binary logicop> ::= AND

| OR
<bool term> ::= <bool factor>

| (<boolexpr>)
| NOT (<boolexpr>)

<bool factor> 1:= (strexpr> <strop> <{strexpr>
| <bool function>

(Str 0p> 1= =
| <

The basic element of a boolean expression (a <bool factor>) is either aboolean
function (see the next section) or a string comparison, testing for eguality
or inequality. These basic elements may be combined using the logical
operators AND, OR and NOT, with parentheses used for grouping. All these
operators function in the usual way.

Boolean Functions —— EXISTS and NE¥ER

Several functions returning boolean results are provided for use with the
conditional contructs.

The EXISTS function allows you to determine whether a file exists. The
function has the following form: :

EXISTS (<strexpr>)
where <str expr> is a string expression whose value is the name of a file.
Typically this <str expr> will be an expanded string constant (discussed
above), suchas "%1.00j". '

The NE®¥ER function allows you to determine whether one file is newer than

another file, that is, whether its last-mogified date is more recent than the

last-modified date of anther file. The function has the following syntax:
NEWER (<strexpr 1>, <strexpr2>)

where the {str expr>s specify file names. TRUE will be returned if the first

file is newer than the second. A preprocessor run-time error will occur if one

of the files does not exist.

$¥RITE and $WRITELN

The WRITE and WRITELN commands allow exec files to write text to the console
screen. This text may be used for informatory messages, prompts, or for any
other purpose. The formof these commands is:

Fred Forsman Maren 9, 1983

Exec Flie Preprocessar Page 10

$ WRITE [(strexpr> [, <strexpr]+]
and
$ WRITELN [<strexpr> [, <strexpr> =]
That is, these commands take an arbitrary number of string expressions,

separated by commas, as arguments. The strings are written to the current
console line, and in the case of WRITELN a final carriage return is written.

$READLN and $READCH

The READLN and READCH commands allow exec files to read in text from the
console and to assign it to aparameter variable. This mechanismmay be used to
obtain parameter values, to gbtain values to control conditional selection,
to pause until the user indgicates to-continue, or for any other purpose. The
formof these commands is:

$ READLN <&n>
and

$ READCH <&no
READLN will read a 1ine from the console and will assign it to the specified
parameter. READCH will read a single character from the console (if <return>
is typed that character will be ablank).

One Restriction

Although you should not have to think about it, the preprocessor uses percents
("%") when it generates its temporary, old-style exec file. This means that you
can prematurely generate and end-of-file by trying to pass two percents inarow
in a normal line (both percents would, of course, have to be literalized as
""%7%").

Please let me know if you find this to be an unbearable restriction.

Fred Forsman March 8, 1983

Exec Flle Preprocessor Page i1

Examples

Example 1 -- anexec file todoaPascal compile

This exec file does a Pascal compile and generate. Note how comments have been
used to make the single-character WorkShop commands more intelligible.

$EXEC { “comp" — performa Pascal compile
%0 — the name of the unit to compile }
P{Pascal compile}%0{source}
{no list file}
{default i-code file}
<(esc>{nodebug file — note {esc> here represents an escape character}
G{generate code }%0
{default obj file}
SENDEXEC

Example 2 -- anexec file to do an assembly

This exec file performs an assembly, and allows for an optional cutput file name
which may be different from the source name.

SEXEC { “'assemb'” — perform an assembly

%0 — the name of the unit to assemble }

%1 — (optional) alternate name of OBJ cutput }
$DEFAULT %1 TO %0 { use msource name if no output name is given }
A{assemble }¥0{source}

{nolist file}
%1{cbj file}
SENDEXEC

Example 3 -- amore flexible exec file to do Pascal compiles

This exec file performs compiles; it allows for an output file with adifferent
name than the souce and permits the use of an alternate intrinsic library.

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 12

SEXEC { “compl® — performa Pascal compile
%0 — the name of the unit to compile
%1 — (optional) alternate name for OBJ file
%2 — (optional) alternate intrinsic library}
SDEFAULT %1 TO%0 { if noalternate OBJ name use same name as source }
SIF%2 <> ' THEN { use alternate intrinsic library }
P{Pascal campile}?{option flag}
%{alternate intrinsic 1ib}
%0{source}
SELSE
P{Pascal compile)}%0{source}
SENDIF
{no list file}
{default i—code file}
<esc>{nodebug file}
G{ generate code }%0
%1{OBJ file}
SENDEXEC

Example 4 -- yet another exec file to do Pascal compiles

This compile exec file will only perform the compile if either the object file
does not exist or the source file is newer than the object file (1.e., the source
has changed since it was last compiled).

SEXEC { “comp2® — performa Pascal compile (only if really required)
%0 — the name of the unit to compile
%1 — (optional) alternate name for OBJ file
%2 — (optional) alternate intrinsic library}
SDEFAULT %S TO %1 { set %9 to name of output OBJ file }
SDEFAULT %S TO %0
SIF EXISTS (*%9.0bj*) THEN
SIF NEWER (“'%0.text®, "%3.0bJ*") THEN {recomp if source newer than object}
SSUBIT compl(%0,%1,%2)
SENDIF
SELSE { OBJ file does not exist, so generate it }
SSUBMIT compl(%0,%1,%2)
SENDIF
SENDEXEC

It 1s left as an exercise as to how to change the above example to take into
account the fact that a unit may have an arbitrary number of include files in
addition to its main source file, and that the unit will have to be recompiled if
one or more of these change.

Example 5 -- exec file “"chaining”

This example (“make/Prog") uses the “smart" compile exec file (“"comp2")
defined in the last example to demonstrate how to “chain” exec file execution.

Fred Forsman March 9, 1883

Exec File Preprocessor Pzge 13

Assume we want to generate a particular program made up of three units
(unitl..unit3) and that we have written “link/Prog”, a smart exec file which
performs a 1ink only when one of the object files for one of the units is newer
than the linked program file. Our generationexec file will use these smart exec
files to perform the minimal required amount of work, thus it may be used to
dgetermine whether we have the latest version of the program without fear of
wasting time.

SEXEC { “make/Prog’ — smart version, only recompiles & 1inks when it has to}

SSUBIT comp2(uniti)
SSUBIT comp2(unit2)
SSUBIT comp2(unit3)
R<1linkProg { run 1ink exec file after compiles have run
so that it will get the correct filedates }
SENDEXEC

Note that in the last 1ine of the above exec file we have scheduled an exec file to
be run at a later time, as opposed to SUBMITting it now, so that the file dates
for the 1link step will be accessed after the compiles have had a chance to run.
The differences between running and submitting and exec files are demonstrated
in the following scenario. When an exec file is submitted it is processed
immediately by the preprocessor, with its output going to the temporary file,
which is then passed back to the WorkShop shell. The then shell runs the
commands in the temporary file until it comes to the command to run another exec
file, at which point it discards the remainder of the temporary file and runs the
preprocessor with the new exec command. This exec file invocation in turn
results in another temporary file of commands which is then runby the shell.

Example 6 -- arecursive exec file to do Pascal compiles

This compile exec file will performup to 10 compiles. It takesanargument list
with the names of the units to be compiled.

SEXEC { “rcomp® — perform any rumber (up to 10) Pascal compiles.
It calls Ycomp® onits first argument and thencalls itself
recursively with its arguments shifted left }
SIF%0<> *’ THEN
SSUBMIT comp(%0) { Pcomp®’ the first one }
SSUBMIT rcomp(%1,%2,%3, %4, %5, %6, %7, %8,%9) { “rcomp® the rest, less first }
SENDIF
SENDEXEC

Example 7 -- aBasic example

This exec file demonstrates some of the constructs in the preprocessor’s
meta-language, by generating the BASIC interpreter. The comments in the body of

fred Forsman March 9, 1983

Exec File Preprocessor Page 14

the example should be sufficient to describe what is taking place. The
essential idea is that Basic is made out of three components, and that we may
want to generate cnly one or more of themat a time.

SEXEC { “make/basic® — generate the BASIC interpreter.
There are three parameters —— if a parameter isa “Yv (yes)
the corresponding part of the systam should be generated:
(0) the b—code interpreter
(1) the run-time system
(2) the commard interpreter
If no parameters are specified, the exec file will prompt to see what parts
of the systemshould be generated. }

SWRITELN ’Starting generation of the BASIC system’

SIF%0 ="' AND%1 ="’ ANDX2 = *’ THEN {no params supplied — prompt for info}
SYRITE *do you want to assemble the b-code interpreter? (yor [n])’
SREADCH %0
SWRITEIN { this writelnputs us onanew line for the next prompt }
SWRITE ’do you want to compile the run—-time system? (yor [n])’
SREADCH %1
SWRITELN
SYRITE ’do you want to compile the command interpreter? (y or [n])’
$READCH %2
SWRITELN

SENDIF

$

SIF UPPERCASE(%0) =Y’ THEN {assemble the b—code interpreter }
$SUBIT as=semb (int.main)

SENDIF

$

SIF UPPERCASE(%1) ='Y’ THEN (compile the run—time unit }
$SUBIT comp(b.rtunit)

SENDIF

S

SIF UPPERCASE(%2) = 'Y’ OR UPPERCASE(%1) =Y’ THEN
${ compile the command interpreter }
${ compile also if the run—time unit has changed }

SSUBMIT camp(b. basic)

SENDIF

$

${ link it all together }

L{link}-p{note that *-p* getsarourd a linker bug}
b.basic

b.rtunit

int.main

hwintl

iosfplid

lospaslidb

basic{executable output}
SENDEXEC

Fred Forsman March 9, 1983

Exec File Preprocessor Fage .5

Exec invocation Options

A number of options are available when running the preprocessor. These cptions
may be specified when invoking the preprocessor or on SUBMIT commands. The
options are specified by single letter commands following the exec parameter
‘1ist. (A null parameter list should be used if you want to use options without
parameters, as in “<foo()s".) The options are as follows:

"B" indicates that the preprocessor should not trim blanks on output lines.
Normally the preprocessor will trim off leading and trailing blanks on
the lines that it outputs to the temporary file. Thisallows you to indent
normal lines (lines which are not exec command lines) without worrying
about generating spurious blanks. Thus the preprocessor assumes that
leading and trailing blanks are insignificant (which is the case for
WorkShop commands, but which may not be true for some perverse programs
you may run via exec files). Thisoptionwill tell the preprocessor not to
trim such blanks. The option applies only to the exec file being run or
SUBMITted, and not to any nested exec files.

"I" indicates that the first line of the exec file is to be ignored by the
preprocessor. This option is intended for deviants who like to embed
their exec files in their program sources, in which case the first line of
the source should be a “(*" and a “»)" should follow the end of the exec
file, thus commenting it out of the program source. (Note that “{(*" and
“#)" should be used in preference to “{" and “}" since the latter are used
as comment characters in the preprocessor.)

“T" indicates that the temporary file which is created (i.e., the expanded
form of the exec file) should not be removed after it is run. One reason to
use this option is to meke it possible to rerun an exec file created with
the step option (see below) without going through the stepping prompts a
second time by running a previously created expanded exec file. The "R"
exec option (cescribed below) is used to run old temporary exec files.
Note that the "T" option is not allowed on SUBMIT commands.

“R" indicates that the a exec temporary file which has been saved with the "T"
option should be rerun, bypassing the normal processing by which the
temporary was created. For example, “foo" may be an exec file which
generates a complicated system via a large number of nested exec files
which take a significant amount of time for the preprocessor to digest.
If we know we are going to run “foo" repeatedly, we may want to generate
the temporary file only once but run it several times. The first time we

Fred Forsman March 9, 1983

Exec File Preprocessor Page 1€

would invoke the preprocessor with “<foo()t" to indicate that the
temeorary flle should not be automatically deleted after it 1s run.
Subseguently, we would invoke the preprocessor with "<foo()r" to rerun
the old temporary file. Note that the “R" option will override any others
that may be specified, and it is not allowed on SUBMIT commands.

"S" indicates that the exec file should be processed in "Step Mode" which
allows selective skipping of output lines and SUBMITs. If thisoptionis
used, the following message will appear when you invoke the preprocessor:

Step Mode:
--inresponse to "Include ?" answer Y, N, A (Abort) or K (Keep rest).

-- inresponse to "Submit ?" answer ¥, N, S (Step), A (Abort) or K (Keep Rest).
More details ? [No]

If you repond with "Y" (yes) to the "More details ?" prompt you will get
further information on what each of stepping responses means.

¥hen you invoke an exec file with the step option you will be prompted when
a line has been generated and is about to go into the temporary file. The
line will be displayed followed by “<= Include ?". A response of "Y" will
include the 1ine in the expanded exec file. A response of “N" will cause
the displayed line to be omitted. A response of “A" will abort out of the
exec file preprocessor and no exec file will be run. Aresponse of “K* will
keep (include) all the remaining lines of the exec file, leaving step
mode.

When a SUBHIT command is encountered when stepping, the SUBHMIT line will
be displayed followed by "<= Submit ?". A responseof "Y" will performthe
SUBMIT unconditionally, that is, without stepping through it. A response
of "N" will ignore the SUBMIT. A response of “S" will step through the
SUBMIT file. A response of “A" will abort out of the exec file
preprocessor and no exec file will be run. A response of "K" will keep the
rest of the exec file, leaving step mode.

Note that a reponse of “?" toa "Submit ?" or "Include ?* prompt will elicit
an explanation of the accepted responses,

Following are some examples of how to use the preprocessor's stepping
facility.

Stepping may be used to resume execution of an exec file which did not run
to termination. For example, if our example "compile” exec file includes
both a compile and a generate step and if we wish to resume with the
generate step we could invoke the preprocessor with

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 17

“compile(foo, -work-)s". Then, in response to the “Include?” promots for
lines corresponding to the compile step we would hit “N" to skip the
lines. Upon reaching the first line of the generate step we would respond
with “K" to keep the rest of the file, and the generate step of the exec
process would be performed.

The stepping mechanism may be used to run only selected parts of an exec
file. Say, for instance, that we have a modular set of exec files which
generate a whole system of programs, such as the WorkShop development
system, and that one exec file called “make/all" can generate the whole
system by SUBMITting exec files for each of the component programs. The
exec files for each component program (development system tool) make use
of other exec files to perform such standard activities as compiling (and
generating) aPascal unit or program, performing an assembly, installing
a library, or manipulating files with the WorkShop's filer. If we are
performing a system build and find ourselves constantly having to
regenerate parts of the system due to bugs, late deliveries or whatever,
then the ability to step by SUBMITs proves to be very useful. Arbitrary
parts of the system can be regenerated by running “<makes/all()s" (i.e.,
our master exec file invoked with the stepping option) and selectively
submitting the sub-exec files for only those things which we wish to
rebuild while stepping over the others.

Stepping in conjuction with the "T" option (for saving the temporary file
created by the preprocessor) can be useful when we are going to be
regenerating a single component of a program or system a number of times
in succession, such as when we are fixing a bug in an element of a system
build and we expect that several iterations will be needed to correct the
problem. To continue our previous example, suppose that we are having a
problem with the "FileIO" unit of the "0bjIOLib" library while building
the development system, and that an exec file called "make/ObjIOLib™
generates and installs the library, submitting compiles and assemblies
for all of itsunits, 1inking everything together, and finally performing
the installation. By invoking the preprocessor with "meke/0bjIOLib()st"
we can go into step mode and submit only those things related to the
compilation of the “FileI0" unit, the link, and the installation of the
library in the Intrinsic Library. Then, after each successive refinement
of "FileI0", we could run the saved temporary file by running
"{make/0bjIOLib()r" without having to go thru the stepping process. Our
alternatives to this procedure are creating another exec file to generate
only the selected parts, or running (and rerunning) the exec file for the

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 18

whole 1ibrary, or runningeach sub-process ingependently (which reguires
more of your attention).

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 19

The following few points may be useful to remember when creating exec files:

Use modular exec files. It may helpful to think of exec files as procedures
which are called via the SUBMIT commend. The more modular your exec files are,
the easier it will be touse the stepping facility on them.

Create standard exec files for common functions; for example, use one exec file
to performall your compilations. One advantage of this is that youonly have to
edit one file when the interface to the tool changes (as it has in the case of the
assembler).

Use optional parameters to support features which are not always (or often) used
(such as the ability to compile against an alternate intrinsic library in your
compile exec file). The parameter mechanism is such that you can remain
oblivious tooptional parameters if youdon't need the functions they support.

Write your exec files to prompt for information which was not supplied in
parameters. This way you don‘t need to remember the meaning of a large number of
parameters.

Fred Forsman March 9, 1983

Exec Flle Preprocessor Page 20

ExecErrors

The preprocessor can recognize a number of errors during its invocation and
execution. The format in which most errors are reported is:

ERROR in <err loc>

<curr line>

{err marker>

{err msg>

where

{err loc> is either 'invocation line’ or ‘line #<n)> of file
“(fllex™!

<curr line> is the current exec line when the error uwas
detected

{err marker> is a 1ine with a question mark indicating where
the preprocessor was in <curr line> when the
error was detected

{err msg> : is one of the messages 1isted below.

10 errors are followed by an additional 1ine with the text of the 0S error raised
during the I0operation. The errors detected are as follows:

I0Errors:

Unable toopen input file "<file>".
Unable to open temporary file "<file>".
Unable toaccess file "<(file>".

Unable torerun file "<file>".

Other ErTOTrS:

File does not begin with "$EXEC".
End of Exec file before "$ENDEXEC".
$EXEC command other than at start.
No Exec file specified.

Hore than 10 parameters.

No closing ")" found.

Line buffer overflow (»>255 chars).
Invalid Exec option: <opticnchar>.
Invalid Exec option on SUBMIT: <optionchar>.
End of Exec file in comment.
Invalid percent: not "%n" form.
Garbage at end of command.

No argument to SUBMIT.

ELSE, ELSEIF or ENDIF not inIF.
ELSEIF after ELSE.

File containsunfinished IF.
Nothing following "<tilde>".

Fred Forsman March 9, 1983

Exec File Preprocessor _ Page 21

Qut of memory. Processing aborted.

Bad temp file name generated: "<file>".

No value returned from file called as function.
RETURN with value in file not called as function.

and
Invalid command. <token, expected.
where <token> may be

String value

"%n" parameter

Terminating string gelimiter
0l=l0 Or u(> “

" (> "

Boolean value

Comma (1ist delimiter)

wsn

valid command keyword
Command

Fred Forsman March 9, 1983

