
PASCAL REFERENCE
MANUAL
for the Lisa ..

Beta DreFt
April 1983

OJstmler satlsfactlm

If you discover physical defects in the manuals distribUted with a Lisa product or
In the media on wtllC1'l a software prOdUCt is distr1buted, Apple wlll replace the
documentation or media at no CI'large to you during the 90-day period after you
purCl'lased the prodUct.
In addition, if Apple releases a corrective update to a software product during
the 9O-day period after you purCl'lased the software, ,A.pple w111 replace the
applicable diskettes and documentation with the revised version at no charge to
you during the six months after the date of purCl'lase.
In some countr1es the replacement period may be different; CI'leck with your
authorized Lisa dealer. Return any item to be replaced with proof of purChase to
Apple or to an authOriZed Lisa dealer.

Limitation on wamrrties cn:I Liabillty
All implied warranties concerning this manual and media, inclUding implied
warranties of merchantability and fitness for a particular purpose, are limited in
duration to ninety (90) days from the date of original retail purchase of this
product.
Even though ,Apple has tested the software described in this manual and
reviewed Its contents, neither Apple nor Its software suppllers make any
warranty or representation, either express or implied, with respect to this
manual or to the sOftware descrioeo In this manual, their qual1ty, performance,
merCl'lantability, or fitness for any particular purpose. ~ a result, this SOftware
and manual are sold "as Is," and you the purctlaser are assuming the entire risk as
to their quality and performance.
In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of sUCl'l
damages.. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all others,
oral or written, express or Impl1ed. No Apple dealer, agent or employee Is
authorized to make any modification, extension or addition to this warranty.

some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

Ucense amCqlyrlglt
This manual and the software (corfl)Uter programs) described In it are
copyrighted by Apple or by .Apple·s software suppllers, with all rights reserved,
and they are covered by the Lisa SOftware License Agreement signed by each
Lisa owner. U'lder the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, withoUt the written consent
of Apple, except in the normal use of the software or to make a backup copy.
This exception does not allow copies to be made for others, whether or not sold,
but all of the material purchased (with all backl4l copies) may be sold, given, or
loaned to other persons if they agree to be bound by the provisions Of the License
Agreement. Copying includes translating into another language or format.
You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some proClUCts, a multiuse llcense may De
purchaSed to allow the software to be used on more than one computer owned by
the purcnaser, InclUding a snared-disk system. (contact your authOrized Lisa
dealer for more information on multiuse llcenses.)

ProWctRevlslms

unless you have purchased the proct.lct update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of a
revision to the software described in this manual, even if you haVe returned a
registration card received with the product. You Should check periodically with
your authoriZed Lisa dealer.

1)1983 by Apple COIllpUter, Inc.
2OS2S Mariani Avenue
CUpertino, California 95014
(408)996-1010

Apple, Lisa, and the Plpple logo are trademarks of ,Apple COIllpUter, Inc.
Simultaneously published in the USA and canada.

Reorder Apple PrOdUct #A600101 (Complete Pascal package)
IA6L0111 (ManualS only)

CONTENTS
~1
TO<ENS AI\[) ca.srANTS

1.1 Character set and Special SymbOls••..•.•..................•...... 1-3
1.2 Id~tlflers ..•.•..•••.•..•.•..•...••........•.•..•••.•......•.•.•.......•. 1-4
1.3
1.4
1.5
1.6
1.7

~~tl~s•.•..•.•..•••.•...•••.•.••.•.•...............•....•....•.. 1~
~u~rs •.•••••.•••••••••••••••••••••••.•••••••••••••••••••••••••••••••••• 1-4
Labels .•.•.••••••••..•••••••.••.••••••••..•...•••••.••....•••••.••...•.••• 1-6
Quoted string Constants •.................••.....••..................••. 1-6
Coostarlt Declarations .•...••...•..•.......•....••.•.•....•.........••.• 1-7

1.8 Comments and Compiler COmmands •••••••••••••••••••••••••.•••••••••• 1-7

Olapter2
BLOCKS, LOOAUTY" AN) SCCFE

2.1
2.2

Olapter 3

Definition Of a Block ••• "' •••••••••• 2-3
Rules of Scope .•...•.•.•.......••......•.....•..............•.•.......... 2-5

DATA TYPES
3.1 Simple-Types (and Ordlnal-Types) .••••••••••••.••••••••.•..•••••.••••• 3-4
3.2 strlJC:tured-Types .. 3-9
3.3 Pointer-Types..... 3-16
3.4 Identical and COmpatible Types .. 3-16
3.5 rne Type-DeclaratlOfl-Flart ••••.••••••.•••••••••••••••••••••••.•••••• 3-19

Olapter4
VARIABLES

4.1 Variable-Declaratlons•..•.••...••...•..••...•.•......•............. 4-3
4.2
4.3

~5

Varlable-References •..••.•.•.•...•.•••..•...•.•..•..•••..••.....•.••••• 4-3
Quadlfiers ...•••••....•.....•••.....•••••.•••.•.•.••••••.•••.•.....••..•.• 4~

EXPRESSIONS
5.1
5.2
5.3

Operators .•••• '" •••.••••.•....•.....•...............•.......•...........•. 5-6
FlI1ctl~ls •••••••••..••••..•.••••.•.••.••..••.•••.•••....•..•..•.• 5-13
set-Constructors •••••••••••••••••••••.••••••••••••••.•••.•••••••••••• 5-14

Chapter 6
STATe-ENTS

6.1 Simple Statements•...........................•.................•.. 6-3
6.2 Structured-Statements .•.................•........•.................•.. 6-6

Chapter 7
PROCEOl..lRES AN) FltCTlONS

7.1 ProcedtJre-Oeclarations ... 7-3
7.2 Functlon-Declaratlons .••••••••.••.•••.••.•.••.••••••••••••••••.•.•••••. 7--6

Parameters ... 7-7

s)nntCC< ••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••.••••• 8-3
program-Parameters .. 8-3
segmentation .. 8-3

~~lar-lJnlts ••.•••••••••..•••••••.....••.••....•............••..•..•..• 9-3
Intrinslc-tJnlts ••••••••••••••••••••••••••••••••••.••••••••••.••••••••••••• ~
units tnat use otner units .. 9-6:

~~ord-()rl~t~I/() ...•...............•.............................
"ext-()rlEH1~I/() ••••••••.••.••••.•...•••••••.•••••••••••••••.•••••.
Unt ypea File I/O ••••••••••••••••••••••••••.••••••••.•••••••.••.••••.••

Exit and Halt PrOCedures ••••••••••••••.••••••••••••••••••.••••••••.•..
Dynamic Allocation Procedures .. .
Transfer FlJflCtions •••••••.•••••••••••••••.•••••.••••.•••••••••••••••••.
~rithnruetlcFlI1ctlons ••••.•.••••••••.••••••••.•••••••••••••••••••••••.

10-10
10-12
10-21

11-3
11-4
11-6
11-7

Ordinal Functions .. . 11-10
String Procedures and Functions .••••...•••••.•••.•••••••••••••••... 11-11
Byte-Drtenteo ProcedUres ana Functlons ••••••••••••.•••••••.•••••. 11-13

12-3
12-4

Apperdx A
ClJ-IPARI~ WITH APPLE n PKJ APPl..E m PASCAl...

AABldlx B
KNlWN ANMAUES IN 11-£ aJvPlLER

Apperdx C
SYNTAX (F 11-£ lAN3UAGE

Appendix 0
FLOATING-POINT ~c

Apperdx E
QJI~W

AppeIIdlx F
HMDWARE 1NTERFACE

lNJE)(

TABIFS
5-1 Precec::lerlce of Operations •.•..• ,. ..••.•...••..•....•..•.•••...•••••.••.. 5-3
5-2 Binary Arithmetic Operations .•.•....••...••..•...••...•.•.....••.•.••• 5-7
5-3 unary Arithmetic Operations (Signs) .•...•••.......•....•........•..... 5-7
5-4 Boolean Operations .. S-9
5-5 Set Operations ..•........••..•.•..•..•....•..•.••........................ 5-9
5-6 RelatiooalOperat1ons ..••.••.•••..•••....•...•.•.....•....•..•....••• 5-10
5-7 Pointer Operation ..••.•..•••.•..••••.....•.•.....•.•••..•......•..•.•• 5-11

10-1 COmDlnatlons of Flle VarlaDle Types wIth External FIle
SpecIes arlO categories .•.....•...•..•.....•...••..•..•.......•....... 10-5

0-1 Results of AddItion and SUbtraction on Infinities •.•..........•••..•. 0-4
0-2 Results Of Multiplication and DIvIsion on InfInIties ••..•••••••••••... 0-5

SYNTAX DIAGRAMS

A,B
~tu~~a~eter ... 5-13
actual-parameter-list .. 5-13
array-ty~ ... 3-11
assigp1~t-state~t •....•....•.....•..................................•...•.. Er-3
b~-type .. 3-16
block • ~ .. " ••••••• -....................................... 2-3

c
case ...•...... 6-8
~tate~t•.•....•...........................•...............•.....• 6-8
COrJlPOUrla-statement .. 6-6
~tl~l-statement •• Er-7
~nstCl1t •••.•••••••••.••••••.•••••.••••..•• 1-7
COI"lstant -cteclaratl00 ••. 1-7
~tCU1t-1j~lClratl~t •..••.•••••.••.•••••••.••.••••.•••..••.....•...•.•.... 2~
control-variable..... .••••••.••.• •••••••...•.••. ...•.••••••••.•••. .••. . •. .. .••. 6-11

D, E, F
algi t -sequence. • • • • . . . • 1-4
~nleratecJ-t~ ...•.•.•••••....•...••...••..•.•.•..•..•...•.•••..•••.•.••.•.... 3-8
e>qpresslCH1 ..•..•••.••.•••••••..••.•...•.......•..•..•..•.....••.•.•..•...•••••••• 5r1O
f~tor •••.•••••.•••••••••••••••••••...•••.••••••••.••••••••••••••••••••••••••••••• 5-4
fleld-1leclaratlon .•••••••••.•••••••••••••.•••••••.•••.•.••••••••.••••••••• -. • . •• 3-12
flel~si~tor•.........................•.............•........•.•..... 4-6
flelct-llst ••• 3-12
flle--buffer-symbol .•••••••••••••••••••••••••••••.•••••••••.••••••••.••.•••••.••• 4-6
fll~t)1le ••• 3-15
final-value •••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••• 6-11
fl~~t .•••.•••••••.•••••••••.•.•••••••..•••.••.••••.•.•..•.•••••••.•.••••••• 3-12
for-statement•.....•.....•.•.••......•.•..•.................•.....•.•.• 6-11
fOrmal~ameter-llst •.......•..•..•......•........................•........... 7-8
f~ti~y ••.••••..•.•..•••.••••.••...•.•••••..••...••••...•••••....•.••••.•• 7-ii
f~tl~l •••••••••••••••••••..••••••••••.•••••••••.•••••••••.••••••.••••..• 5r-13
functlon-declaratlon ••. • • • • . . . • . • • • . • • • • • . • . . . • • • • . • • . . • . . • • • • • • . • . • • . . • . • •• 7-6
fu~tlCNn-fleacd~ ••....•••.••••••••••••••••...••.•.•..••••.•••••••••••.••••••••.. 7-6

G, H, I
goto-statement .. 6-5

hex-cl1git-sequence •• 1-5
IdEHntlfler •• 1-4
l~tlfler-llst•...•••..•••......•..•............••...•.•.••••••.•.•.•••.•. 3-8
If -statement • .. . • 6-7
lmplementatlon-part ... 9-4
l~x ••• 4-5
irldex-type .. 3-11
lnltl~-~ue .•..........••.......••.. 6-11
interface-part .. 9-4

L,M,O
l~l ••••.••.•.•••••.•.•..••.••••••.••••.•••••••••••••••••••••.••.•••.••••.••• 2-3,6-3
laDel--aeClaratlon-part .. 2-3
nlenrnoer-gr~ ••• 5-14
oratnal-type ... 3-4-
otherwlse-clause .. 6-8

p
parameter -declarat1on ... 7-8
polnter-()bject-syrTlbOl ... 4-7
poInter-type .. 3-16
proceclUre-and-functlon-declaratlon-part .•..•••.•..••.••..••..••••••.•.•••.• 2-4
proceclure-body ... 7-3
procedure--deClaratlon ... 7-3
procedure-heaCling •• 7-3
procedUre-statement .•..•..•••.•...•.•...•.......•..•••..............•......... 6-4
pr~rann•..............................•..............•................... 8-3
progratn-neactlng •••••••••••••••••••.••••••••••••••••••••••••••••••••••••••.••.•• 8-3
program-parameters •• 8-3

Q,R
quali fler•...••............................•.•...••....•.•....... 4-4
~t~CK}ter~teunt •.•••.••.•••.•.•..••....•.......•..•.••.••.•..•...... 1-7
quotea-string-constant ..••.••••.....•.....•....•..........•....•..•..•.....••.. 1-6
r~-t~ ... 3-4
record-t ~ • .. 3-12
r~lar-tl11t ...•..•..•..•••.••••.•..•..•.•.•.•...•...••...•••.....•.••....•...... ~3
re~t-st<i~rn~t ...•....•.••.•.•......•..••.............•.....•....•.....•..... 6.J3
r~tltlv~tate~t ... ~
result-type ..•........... 7-6

S
sc~~f~tor•..•................•..••..•..................... 1-5
set~nstrlhOtor ... 5-14

set -type.. 3-14
sign ... 1~
signed-number .. 1-5
simple-expression ... 5-5
simple-statement ... 6-3
simple-type ... 3-4
size-attribute•...•............................ 3-7
statement ... 6-3
statement -part•... 2-5
strlng-Cl'laracter ... 1-6
string-type .. 3-7
structured-staternent ... 6-6
structured-type ... 3-10
sUbrange-type .. 3-9

T
tag-field-type 3-13
term ... 5-5
t~e .. 3-3
type-aeclaratlon ... 3-3
t ype-declaratioo-part ... 2-4

u
unit --heading 11 .. 9-3
uns1gned-const8l'1t 11 ... 5-4
lI1sigp1EKj-lnt~er ••••••.•••• ~ .•.•••.••••••••.•••••.•••••••..•••••..•••.•••.•. 1-5
unslgp1~-nu~r ..•...................•.......•......•..•....................•.. 1-5
lI1si~ed-rerctl•..•....•..•..•..•••.•....•••.•..•.•••••••••...•.•..•.•......... 1-5
u~-clause .•..•.••.•.•..•..••••.••....•.•..••..•••.••••...•.•....•.•••...•••.... 8-3

variable-dec.laratlon .. 4-3
variable-CIeclaration-part .. 2-4
variable-identifier .. 4-4
variable-reference•.....•... 4-3
variCU1t ..•.......•..••..•..•.•........••...•......•..•..•.•••.•...••....••.•..•. 3-13
\r.3riant-part•.................................•......................... 3-13
while-statement......... 6-10
with-statement. .. .• 6-13

PREFACE

This manual Is intended for Pascal programmers. It deScribes an implemen­
tation of Pascal for the Lisa computer. The compiler and code generator
translate Pascal source text to MC68000 object code.
The language Is reasonably compatible with Apple II and Apple III Pascal. See
Appendix A for a discussion of the differences bet ween these forms of PaSCal.
In adcUtIon to providing nearly all the features of standard Pascal, as described
In the Pascall/ser f'o1anl.Ial and Report (Jensen and WIrth), thIs Pascal provIdes
a varIety of extensions. These are summarIzed In Appendix A. They include
32-blt integers, an otherwIse clause In case statements, procedUral and
functional parameters with type-checked parameter lIsts, and the @ operator
for ObtainIng a poInter to an Object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for singie-precision arithmetic.

Operating EnvIronment
The compiler will operate In any standard Usa hardware configuration; thIs
manual assumes the Workshop soft ware environment.

Related Documents
Pascal User Manual and Report, Jensen and Wirth, Springer-verlag 1975.

WOrkSlKJpRererence MantIal ror tile Lisa Apple computer, Inc. 1983.

Other Lisa dOcumentation.
Def1n1Uons

For the purposes of tnis manual tne fOllowing defInitions are used:
• Ermr.: Either a run-time error or a compiler error .
• ~: The body of text for wnlCh the declaration of an Identifier or label

is valid.
• Undefined: The value of a variable or function when tne variable dOes not

necessarily nave a meaningful value of its type assigned to it.
• LJost;leclfled: A value or action or effect that, alttlough possibly

well-defined, Is not specIfied and may not be the same in all cases or for all
versIons or configurations of tne system. Any programmIng construct toot
leadS to an unspecIfied result or effect Is not supported.

Notatlm ern Syntax Diagrams
All numbers tn tnis manual are 1n decimal notation .. except INhere hexadecimal
notation 1s specifically indicated.
rnroughout tnls manual, bold-face type Is used to dIstinguish Pascal text from
EngliSh text. For example, sqr(n dlv 16) represents a fragment of a Pascal

program. Sometimes the same word appears both tn platn text and In bold-face;
for example, "The declaration of a Pascal procedure begins with the word
procewre. "
l.JOOerlining is used When technical terms are introdUced.
Pascal syntax is specified by dIagrams. For example, the following diagram
gives the syntax for an identifier:

~j~=~?~ti~~~~~----~~let~r~~------------~--~.

Start at the left and follow the arrows through the diagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-nead on
the right is valid, and represents a valid way to construct an identifier. The
boxes traversed by a path through the diagram represent the elements that can
be used to construct an identifier. ThUs the diagram embOdies the fOllowing
rules:

• An identifier rrust begin with a letter. since the first arrow goes directly to
a box contaInlng the name "letter."

• An identifIer might consist of nothing bUt a single letter, sInce there Is a
path from this box to the arrow-head on the right, witnout going through
any more boxes.

• The initial letter may be followed by another letter, a a1Q1t, or an
lIldeISCOIe. since there are brancnes of the path that lead to these boxes.

• The InItial letter may be followed by any number of letters, dIgIts, or
underscores, sInce there Is a lOOP In tne path.

A word contained in a rectangular box may be a name for an atomic element l1ke
"letterU or ftdlgIt,'· or it may be a name for some other syntactic construction
that Is specified by another dIagram. The name In a rectangular box Is to be
replaced by an actual instance of the atom or construction that It represents,
e.g. '"311 for ftdIgit" or llCOlI1ter'. for "variable-reference".
Pascal SymbOlS such as reserved wordS.. operators.. and punctuation.. are
bold-face ana are enclosed In circles or ovals, as In the following diagram for
the construction of a compound-statement:

conpotlld-Statement

.(begin) (.1 statement I) .@
.... ----to""---"

Text in a circle or oval represents itself, and Is to be written as shOwn (except
that capItalizatlon of letters Is not sIgnIficant). In the diagram abOve, tne
semicolon and the words begin and end are symbOls. The word "statement"
refers to a construction that has its own syntax diagram.
A compoUnd-statement consists of the reserved word begin, followed by any
number of statements separated by semicolons, folloWed by the reserved word
ern. (As wUl be seen in Chapter 6, a statement may be null; thUs begin end 1s a
valid compound-statement.)

Pascal Reference MantIaJ Tokens & constants

1.1
1.2
1.3
1.lI.
1.5
1.6

Chapter 1
TOKENS AND CONSTANTS

Character set and Special Symbols ••••••••••••••••••••••••••••••••••••• 1-3
I~tlflers ..•...•.........................•.............................. 1~
[)lr~tl~s•....•...•..•..........•.••..••......•.....••.• 1~
~~rs 1-4
Latlels ~ 1-6
Quoted String COI'1starlts ... 1-6

1.6.1 Quoted Character Constants•.....•.•.................•... 1-6
1.7 Constant Declarations .. 1-7
1.8 Comments and Compiler Commands .•.•...••.••••••.•.••.•.••••••••.•.. 1-7

1-1

Pascal Reference Manual TOkens & COnstants

1-2

Pascal Reference M8IllI8l TOkens & COnstants

TOKENS AND CONSTANTS

Tokens are the smallest meaningful units of text In a Pascal program;
structurally, they correspond to the words in an Engl1stl sentence. The tokens
of Pascal are classified into special Sl'mbols.ideotif1erS. numbers. labels. and
QUOted string constants.
The text of a Pascal program consists of tokens and separators; a separator is
either a black. or a comment. Two adjacent tOkens must be separateo by one or
more separators, If Doth tOkens are identifiers, numbers, or reserved worOs.
No separators can De emtledOeO within tokens, except In quoteo string
constants.

1.1 Olaracter Set and speclal Synmls
The Character set used by Pascal on the Usa Is 8-bit extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, nex-dlgits, and blanks are SUbsets of the Character set:
• The letters are thOse of the Engl1Sh alphabet, A through Z and a through 2.

• The Ulg1t1 are the Arable numerals 0 through 9; the hex-dlglts are the
Arabic numerals 0 thrOUgh 9, the letters A through F, and the letters a
throughf.

• The blanks are the space Character (ASCII 32), the horizontal tall Character
(ASCII 91 and the CR Character (ASCII 13).

Special symbolS and reserved words are tokens haVing one or more flxeo mean­
ings. The fOllOwing single Characters are speCial symbols:

+ - * 1= < > [] ... () :; - @ {}$

The following Character pairs are special symbols:

<> <= >= := •• (* *)
The following are the reserved words:.

a1d end
array fUe
~ for
case fWlCtion
COlSt {J)to
creatlon* If
dlv Ifl1)lementaUoo
oownto In
00 Interfooe
else intrinsic-

1-3

label
metl'lOdS*
mod
nil
not
of
or
otherwise
packed
procea.are

program
record
repeat
set
string
Slt)C18SS*
then
to
type
lIlit

l.IlW
uses
var
WhIle
with

Pascal ReFerence /t1aIVaJ Tokens & COOS/ants

The reserved words marKed wIth asterisKs are reserved for future use.
COrrespondIng upper and lower case letters are equivalent In reserved words.
only the first 8 characters of a reserved word are signlf1cant.

1.2 Identifiers
Identifiers serve to denote constants, types, variables, procedUres, functions,
l.I1its and programs, and fields In records. IdentifIers can be of any lengttl, bUt
only tt1e flrst 8 Ctlaracters are significant. corresponding upper and lower case
letters are equIvalent in identifiers.

identiFier

The first 8 ctlaracters of an identifier must not matct1 the first 8 char­
acters Of a reserved word.

Examples of Identifiers:

X RorIe Qed SlI1

1.3 DIrectives
Directives are words ttlat nave special meanings in particular contexts. They
are not reserved ana can be USed as Ident1fiers In ottler contexts. For example,
ttIe word forVcD'd is interpreted as a directive if it occurs immediately after a
procedUre-l1eadtng or functiorH1eaOlng, bUt In any ottler positlon it Is
interpreted as an identifier.

1.4 ttJrmers
The usual decimal notation Is used for numbers ttlat are constants of the data
types integer, longlnt, and real (see Section 3.1.1). Also, a hexadecimallnteger
constant can be written by using the $ Character as a prefix.

t1lgf.t~ ~ OIg1t I ()

1-4

Pascal ReFerence MSfll/8} TOkens & COnstants

(:1 hex-digit 1) ~

lII7slqned-inteqer
~equ~1 i=!

$ hex-d1gtt-sequence

lITISigned-reaJ

-.jdlg!t-seqJellCe ~d1g!t-sequence I \ ;r ~
"'-----------~~~I scale-factort-'"

l"I tmIgned-lnteger ~
~ unsigned-real 1-1 ------:----....

slgned-nllmtJer .. I unsigned-number I ..
~ sign ~

1-5

Pascal Reference ManiJal Tokens & constants

The letter E or e preceding the scale in an unsigned-real means "times ten to
the power of".
Examples of numbers:

1 +100 -0.1 SE-3 87.35e+8

Note that SE-3 means 5Xlo-3 .. and 87.35e+8 means 87.35xI08.

1.5 Labels
A label is a diglt -sequence In the range from 0 ttJrough 9999.

1.6 Quoted string ConsUIlts

$AOSO

A quoted-strlng-constant Is a sequence of zero or more characters .. all on one
line of the program source text and enclosed by apostropheS. currently .. the
maximum number of characters Is 255. A quoted-strlng-constant \tilth nothing
between the apostrophes denotes the null string.
If the quoted-String-constant is to contain an apostrophe .. this apostropne must
be written t wlce.

q.Dtet1-strlng-ca7Sta1t

--~~~C)~--------------~---.~~ q string-character ~

strlng-c/1araCter
T "1a7J' mar =>pI C) orCR If.
l ________ -..~--------.

Examples of quoted-strlng-constants:
'Pascal' 'mlS IS A STRItt;"
tA' , . ' .. • I • I

'Dcxl' 't worry, t

, ,

~

All string values have a length attribute (see Section 3.1.1.6). In tne case of a
string constant value the length is fixed; it is equal to the actual number of
characters In the string value.

1.6.1 QLoted Clar~ter constants
Syntactically, a quoted-ctlaracter-constant is simply a quoted-Strlng-constant
wtlOse length is exactly 1.

1-6

Pascal Reference ManlIal TOkens 8- constants

quotet1-c11Bracter-constant ~ 0-+1 string-character \--t{)-+

A quoted-character-constant Is compatible with any Char-type or string-type;
that 15, It can be USed eIther as a character value ot as a string value.

1.7 Consta'lt Declarations
A constant-declaration defines an Identifier to denote a constant, within the
block. that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include Its own declaration.

constant-decJaration ~t identifier ~ constant J--t<U--+

..:::cons,=.:::.:::tan=.:.::.t--.~--..~ ___ ...,...-l" constant-identifier

quoted-string 1----------.... 1

~~~~-------------~-~ 

Note: A constant -Identifier Is an Identifier tnat has already been declared to 
Clenote a constant. 
A constant-IdentifIer following a sign must denote a value of type Integer, 
looglnt, or real. 

1.8 COmments tn:J COmpiler COfnrncnjs 
The constructs: 

{ any-text-not-contalnlng-right-brace } 
(* any-text-not-contatnlng star-right-paren *) 

are called comments 

A compiler command Is a comment that contains a $ Character immediately 
after the { or (* that begins the comment. The $ Character is followed by the 
mnemonic Of the compller command (see Section 12). 

1-7 



Pascal Reference MantIal TOkens & constants 

Apart from the effects of compUer commands, the sUbstitution of a blank for a 
comment doeS not alter the meaning of a program. 
A comment cannot be nested within another comment formed with the same 
kind of delimiters. However, a comment formed with { •.. } delimiters can be 
nested within a comment formed with (* .•• *)delimlters, and vice versa. 

1-8 



Pascal ReFerence fvIantJal Blocks & SCOpe 

Chapter 2 
BLOCKS, LOCAIJTY, AND SCOPE 

2.1 Defini tion of a BlocK ............•..•.................................... 2-3 
2.2 Rules of Scope ........................................................... 2-5 

2.2.1 scope of a Declaration ..............•........................... 2-5 
2.2.2 Redeclaratlon In an Enclosed BlOCk ............................ 2-5 
2.2.3 PosItion of Declaration WIthin its Block ....................... 2-5 
2.2.4 Redeclaratlon WIthIn a Block ................................... 2-5 
2.2.5 IdentifIers of Standard ObjectS ................................. 2-6 

2-1 



Pascal ReFerence Manual Blocks & Scope 

2-2 



Pascal ReFerence MantJal BlOCks & SCope 

BLOCKS, LOCALITY, AND SCOPE 
2.1 DeflnlUoo Of a BlOCk 

A tllilck consists of declarations and a statement-part. Every blocK is part of a 
procedure-declaratlon" a function-declaratlon" a program" or a unit. All 
identifiers and labels that are declared in a particular blocK are klQal to that 
block. 

blOCk 
==---~-.t label-declaration-part 

constant -declaration-part 

t ype-declaration-part 

variable-declaration-part 

procedUre-and-function-declaration-part 

statement-part 1-------------+ 

The label=declaration-part declares all labels that marK statements in the 
corresponding statement-part. Each label must marK exactly one statement in 
the statement -part. 

label .. , dlglt-sequence I .. 

2-3 



Pascal Reference Manual BlOCks &- SCOpe 

The constaot-1leclaratioo-part contains all constant -declarations local to the 
blOCk. 

cmstant-fJecJaratJen-part 

.( coost ) ( 4 ·r-I cons-t-an-t--dec-lar-a-u-an--'I ) 

Tne t,y,pe-aeclaraUon-part contains all type-aeclaratlons local to tne blOCK. 

type-declaraUm-part 

.. C type ) ( .. , type-declaraUon I ) 
,4 

The variable=declaratioo-part contains all varlable-declaratlons local to tne 
blOCk. 

varia/Jle-declaraUen-part 

The procedure-and-functiOO=declaratlon-part contains all procedure and 
function declarations local to tne block. 

procet:kLre-8ndfu1cUen-t1eclaraUcn-part 

-~--~.. procedure-declaration ~--~-. 

function-declaration 

The statement-part. specifies tne algorltnmic actions to be executed upon an 
activation of tne block. 

2-4 



Pascal Reference Manual BlOCks & SCOpe 

statement-psrt .1 compound-statement 1.-.· ---I •• 

r«:lIE 
At run time, all variables declared witl'lin a particular block have 
unspecifIed values each time the statement-part of the blOCk is entered. 

2.2 RUleS Of SCOpe 
This Chapter discusses the scope Of Objects wit!Jln tile program or I/I?Jt in wIJJch 
tI1eyare definect See Chapter 9 for the scope of objects defined in the 
Interface-part Of a unit ana referenceo In a host program or unit. 

2.2..1 SCOpe Of a Declaratloo 
The appearance of an identifier or label1n a declaration defines the Identifier 
or label. All corresponding occurrences of the identifier or label must be 
within the ~ of this declaration. 
This scope is the blOCk that contains the declaration, and all blOCks enclosed by 
that blocK except as explained in Section 2.2.2 below. 

2.2.2 Redeclaratlon In an Enclosed Block 
SUppose that ruter is a block, and Inner Is another block that is enclosed within 
ruter. If an identifier declared In block wter has a further declaration in blocK 
Inner, then blOCk Inner and all blocKs enclosed by Inner are exclUded from the 
scope of the declaration in block ruter. (See Appendix B for some odd cases.) 

2.2.3 PosItion Of Declaratloo WIthin its Block 
The declaration of an identifier or label must precede all corresponding 
occurrences Of that Identifier or label In the program text -- I.e., laentlflers 
and labels cannot be used until after they are declared. 
There is one exception to this rule: The base-type of a pointer-type (see 
Section 3.3) can be an identifier that has not yet been declared. In thts case, 
the identifier must be declared somewhere In the same type-deClaraUon-part 
in whiCh the pointer-type occurs. (See Appenaix 8 for some odd cases.) 

2.2.4 Redeclaratioo WIthin a Block 
An Identifier or label cannot be declared more than once in the outer level Of a 
particular blOCk, except for record fIeld identifiers. 
A record field identifier (see sections 3.2.2, 4.3, ancI4.3.2) is declared within a 
record-type. It is meaningful only In combination with a reference to a variable 
of that record-type. Therefore a field identifier can be declared again within 
the same block, as long as it is not declared again at the same level witt'lln the 
same record-type. Also, an identifier that has been declared to denote a 

2-5 



Pascal Reference Manual Blocks & SCOpe 

constant, a type, or a var1able can be declared agaln as a record field identifier 
in the same blOCk. 

2.2.5 identifIers Of Standard OOjects 
Pascal on the Usa prOVideS a set Of standard (predeclared) constants, types, 
prOCedUres, and functions. The identifiers of these objects behave as If they 
were declared in an outermost bloCk encloslng U'le enUre program; thUS their 
scope inclUdeS the enUre program. 

2-6 



Pascal ReFerence MantJaJ 

Chapter 3 
DATA TYPES 

Data Types 

3.1 Simple-Types (and Ordinal-Types) •••••••••••••••••••••••••••••.••.•••• 3-4 
3.1.1 Standard SImple-Types and StrIng-Types ...•.............•••.. 3-5 

3.1.1.1 The Integer T,YP-e .......................................................................................... 3-5 
3.1.1.2 The Longlnt Type .•......•..••..•..•...•.............•..••••.. 3-5 
3.1.1.3 The Real Type .................................................................................................. 3-6 
3.1.1.4 The Boolean Type ••••••••..•...•.•.........•..•.••...•.••.•••• 3-7 
3.1.1.5 rne Char Type .................................................................................................. 3-7 
3.1.1.6 String-Types ...................................................................................................... 3-7 

3.1.2 Enumerated-Types ............................................................................................ 3-8 
3.1.3 SUDral1ge-Types .................................................................................................. 3-9 

3.2 StrtJCtured-T,YP-es .............................................................................................................. 3-9 
3.2.1 Array-Types- ........................................................................................ 3-10 
3.2.2 Record-T,YPeS .................................................. 3-12 
3.2.3 8et-Types .••....•............•..•..•..•.•.•.•..•....••......... 3-14 
3.2.4 File-Types ..................................................... 3-15 

3.3 Pointer-Types. . . . .. ...... ....... . . . . . .. ... . . ....... .. ......... ........ 3-16 
3.4 Identical and Compatible Types .•••••.•..•.•••.•.•..••..•...••••••••• 3-16 

3.4.1 Type IdentIty .................................................. 3-16 
3.4.2 Compatlb1l1t y of Types... •• •• •••. •• ••• . •• •• . ••••.•••••••••• ••• 3-18 
3.4.3 Asslgnment-COmpaUb1l1ty •••••••••••••.••.••••.••••••.•••••• 3-18 

3.5 Toe Type-DeClaration-Part ...................•.....•....•.•.••••.•.. 3-19 

3-1 



PascaJ Reference I'*1anUal Data 7ypeS 

3-2 



Pascal Reference tv!afJtJaJ Data Tjpes 

DATA TYPES 
A 1.We.ls usea in oeclaring variables; it determines the set of values which 
thOse variables can assume, and the operations that can be performed upon 
them. A type;jeQlaratloo associates an identifier with a type. 

type-declarat.im ., identifier ~ type ~ 

...::;t~~ ........ ~~ Simple-type 1---_ 

pointer-type 1---............. 

The occurrence of an identifier on the left-hana sioe Of a type-oeclaratlon 
declares it as a type-identifier for the block In which the type-declaratlon 
occurs. The scope Of a type-Identifier ODes not inclUde Its own deClaration, 
except for pointer-types (see sections 2.2.3 and 3.3). 

To help clarify the syntax oescrlption with some semantic hints, ttle fallowing 
terms are used to distinguish identifiers according to what they denote. 
Syntactically, all of them mean simply an identifier: 

slmple-type-loentlfler 
structureO-t ype-identi fier 
polnter-type-ldentIfler 
ordinal-type-identlfier 
rea1-type-loentlfler 
strlng-type-ldentifier 

In other words, a slmple-type-ldentlfier Is any identif1er that Is declared to 
denote a simple type, a structured-type-loentlfler Is any identifier that is 
declared to denote a structured type, ana so forth. A slmple-type-ldentifier 
can be the predeclared identifier of a standard type such as integer, boolean, 
etc. 

3-3 



Pascal Reference M8nlIaJ 

3.1 SImple-Types (and Qrdlnal-Types) 
All tne simple-types define ordered sets of values. 

real-type .1 real-type-ldentlfler I ~ 

..;:;a=-::'fdiJ=rnaJ~-~t~_~--.. subrange-type 1-------. 

enumerated-type 1------1 

ordinal-type-iaentlfler 

rtle standard real-type-ldenUfler Is real. 

StrIng-types are discussed in 8ectlon3.1.1.6 tJelow. 

Data TY/JeS 

ordinal-types are a subSet of tne simple-types, with the following special 
characteristics: 

• Within a given ordinal-type, the possible values are an ordered set and each 
possible value is associated with an ord!nality, which Is an Integer value. 
The first value of the ordinal-type has ordinallty 0, the next has ordlnallty 
1, etc. Each posSible value except the first has a predecessor based on this 
ordering, and each posslble value except the last has a successor based on 
this ordering. 

• The standard function oro (see Section 11.5.1) can be appUed to any value of 
ordInal-type, and returns the Ordlnallty of the value. 

• The standard function pled (see section 11.5.4) can be applied to any value 
of ordinal-type, and returns the predeceSsor of the value. (For the first 
value in the ordinal-type, the result is unspecified.) 



Pascal Reference Manual Data TYpes 

• The standard function sooc (see Section 11.5.3) can be applied to any value 
of ordinal-type, ana returns the successor of the value. (For the first value 
In the ordinal-type, the resUlt 15 unspecifIed.) 

All simple-types except real and the string-types are ordlnal-types. The 
standard ordlnal-type-ldentiflers are 

Integer 
100glnt 
Char 
boolem 

Note that in addition to these standard types, the enumerated-types and 
subrange-types are ordlnal-types. 

3.1.1 Standard S1~Ie-Types em StrIng-Types 
A standard type is denOted by a predefined type-identifier. The simple-types 
integer, Jooglnt, real, dlar, ancJ boolem are stancJard. The string-types are 
user-def1ned sImple-types. 

3.1.1.1 The Integer Type 
The values are a subset of the whOle numoers. (AS constants, these values can 
De denoted as specified in section 1.4.) The predefined integer constant maxlnt 
is defined to De 32767. Maxlnt defines the range of the type integer as the set 
Of values: 

-maxint-1, -maxlnt, .•. -1, 0, 1, ... maxlnt-l, maxint 

These are 16-bit, 2's-complement integers .. 
3.1.1.2 Tne Looglnt Type 

The values are a SUbset of the whOle numDers. (AS constants, these values can 
De denoted as specIfied In Section 1.4.) The range Is the set of values from 
-(231-1) to 231-1 .. I.e ... -2147483648 to 2147483647. 

These are 32-blt integers. 
Arithmetic on integer and longlnt operands Is done in both 16-bit and 32-bit 
precisIon. An expression With mixed operand sizes Is evaluated In a manner 
similar to the FORTRAN singleldoutlle precision floating-point arithmetic 
rules: 

• All "integer" constants in the range of type integer are considered to De of 
type integer. All "Integer" constants In the range of type looglnt .. but not In 
the range of type integer, are considered to De of type lmJInt. 

• When both operands of an operator (or the single operand Of a t.Ilary 
operator) are of type integer .. 16-btt operatlons are always performed and 
the result is of type integer (truncated to 16 bits If necessary). 

3-S 



Pascal Reference fvfanuaJ Data Types 

." When one or both operandS are of type IongInt.. all operands are fIrst 
converted to type Iooglnt .. 32-bit operations are performed, and the result 
Is of type Imgint. However, If thIs value Is assIgned to a varIable of type 
lnteger .. It Is truncated (see next rule). 

• The expressIon on the rlgnt of an assignment statement Is evaluated 
lodepeOdeOtly of the size of the variable on the left. If necessary .. the 
result Of the expression Is truncated or extended to matCh the size of the 
variable on the left. 

The orM function (see section 11.3.3) can be used to convert an Integer value to 
a Imgint value. 

Itfl-EM;NIATION NOTE 
There is a performance penalty for the use of loogint values. The 
penalty Is essentially a factor of 2 for operations other than divisIon and 
rrultlpllcatlon; for divIsIon and multiplIcation .. the penalty Is much 
worse than a factor of 2. 

3.1.1.3 The Real Type 
For details of IEEE standard floating-poInt arithmetic .. see Appendix D. The 
possible real values are 

• Finite values (a SUbSet of the mathematical real numbers). As constants, 
these values can be denoted as specified In Section 1.4. 
The largest absolute numeric real value is approximately 3.402823466E381n 
Pascal notation. 
The smallest absolute numeric noo-zero real value Is approximately 
1.401298464E -45 in Pascal notation. 
The real zero value has a sign .. llke other numbers. However, the sign of a 
zero value is disregarded except In dlvls10n Of a finite number by zero and In 
textual output. 

• Infinite values, +00 and -00. These arise either as the result of an operation 
that overflows the maximum absolute finite value .. or as the result of 
dividing a finite value by zero. Appendix 0 gives the rules for arithmetic 
operations using these values. 

• NaNs (the word "NaN" stands for "not a number"). These are values of type 
real that convey diagnostic information. For example, the result of 
multiplying 00 by 0 is a NaN. 

3-6 



Pascal Reference Manual oata TYPes 

3.1.1.4 The Boolean Type 
The values are truth values denoted by the predefIned constant IdentifIers 
false and true. These values are ordered so that false Is "less than" true. The 
ftl1Ctlon-call ord(faIse) returns 0, ancJord(true)returns 1 (seeSectlon 11.5.1). 

3.1.1.5 The Char Type 
The values are extended 8-blt ASCIL represented by numeric cocIes In the range 
0 .. 255. The ordering of the Char values is defined by the ordering of these 
numeric CodeS. The function-call ord(c), where c Is a char value, returns the 
numeric cocIeOf c(see section 11.5.1). 

3.1.1.6 string-Types 
A strIng value Is a sequence of characters that has a dynamIc length attri­
bute. The length Is the actual number of characters In the sequence at any time 
during program execution. 
A string type has a static m attribute. The size Is the maximum limit on the 
1engtf1 of any Value of this type. The current value of the length attribute Is 
returned by the standard function length (see section 11.6); the size attribute 
of a string type Is determined when the string type Is defined. 

sullY-type 

rl-Strlng-)--.(lH. [sl2e-attrlbute !-CD J 
y string-type-lctenUfler 11---------

.-SJ.=:z.e-.::;....:.;'8t;;.:;:tr..=ibU=te~--.c.1 unSigned-integer 1-1 --........ 

Where the size attribute is an unsignecHnteger. 
JM?I EM;NIATIctI NJTE 

In the current implementation, the size-attribUte must be In the range 
from 1 to 255. 

The ordering relationship between any two' string values Is determined by 
lexical comparison baSed on the ordering relationship bet ween Character 
values In corresponding pos1tIons In the two strIngs. (When the two strings are 
of unequal lengths, each character in the longer string that dOes not correspond 

3-7 



Pascal ReFerence MlnJaJ oata ljtpes 

to a character in the shOrter one compares ''higher''; thUs the string 'attribute' 
is orderea hIgher than °ato.) 
Do not confuse the size with the length. 

NOTES 

The size attribUte of a string constant is equal to the length of the 
string constant value, namely the number of characters actually In the 
string. 
AlthOUgh string-types are sImple-types by defInltlon, they have some 
Characteristics of structured-types. As explained In Section 4.3.1, 
IndividUal characters In a strIng can be accessed as If they were 
components of an array. Also, all string-types are Impllcltly packed 
types and all restrictions on packed types apply to strings (see sections 
7.3.2,5.1.6.1, and 11.7). 

00 not make any assumptions abOUt the internal storage format of strings .. as 
this format may not be the same in allimplementatlons. 
Operators applicable to strings are specified in section 5.1.5. Standard 
procedures and functions for manipulating strings are described tn section 
11.6. 

3.1.2 Erunerated-Types 
An enumerated-type defines an ordered set of values by listing the identifiers 
that denote these values. The ordering of these values Is determined by the 
sequence in which the identifiers are listed. 

enumerated-type .~ identifier-Ust ~ 

identifier-list (-I Identifier I ) 
----tG)lJ-.--

The occurrence of an ldentlfler within the Identifier-Ust of an 
enumerated-type declares it as a constant for the blOCk 1n Which the 
enumerated-type Is declared. The type Of th1s constant Is the enumerated-type 
being declared. 

3-8 



Pascal Reference Mantlal 

ExanplesofenumeI8ted-types: 

rolor = (red, yelloW, green, blue) 
suit = (CllJ), diauld, heart, spade) 
l'IBritalStatus = (PBlTied, divorced, widoWed, single) 

Data TYpes 

GIven these deClarations, yellow 15 a constant of type rotor .. dlamc:n:.t 15 a 
constant of type suit, and so forth. 
When the ord function (see section 11.5.1) Is applled to a value of an 
enumerated-type, it returns an integer representing the ordering of the value 
with respect to the other values of the enumerated-type. For example, given 
the deClarations above .. ord(red) returns 0 .. ord(yellOw) returns 1, and ord(blue) 
returns 3. 

3.1.3 StmI3lge-Types 
A subrange-type provides for range-checklng of values within some 
ordinal-type. The syntax for a subrange-type Is 

sutJranqe-tme .1 constant (--.()--t1 constant ~ 

Both constants must be of ordinal-type. 80th constants must either be of the 
same ordinal-type, or one must be of type integer and the other of type loogtnt. 
If both are of the same ordinal-type, this type Is called the hoSt-type. If one Is 
Of type integer and the other of type knJ1nt, the host-type Is Img1nt. 

Examples of Sl/IJrange-types: 

1 •• 100 
-10 •• +10 
red •• green 

A variable ofsubrange-type possesses all the properties of variables of the 
hOst type .. with the restriction that its run-time value must be in the specified 
closed interval. 

WI FtfNTATIOO OOTE 
Range-checklng Is enabled and disabled by the compiler commandS $R+ 
and $R-(see Chapter 12). The default Is $R+ (range-cheCklng enabled). 

3.2 Structured-Types 
A structured-type is d1aracterized by its structurIng methOd and by the type(s) 
of its components. If the component type is itself structured, tne resulting 

3-9 



Pascal Reference Manl/aJ Data Types 

structured-type exhibits more than one level of structuring. There Is no 
specified limit on the number of levels to which data-types can be structured. 

structured-type-ldentif1er 

The use of the word packed in the deClaration of a structured-type indicates to 
the compUer that data storage Should be economiZed, even if this causes an 
access to a component of a variable of this type to be less efficient. 
The word ~ed only affects the representation Of one level of the 
structured-type in Which it occurs. If a component Is itself structured, the 
component·s representation Is packed only if the word pcD<ed also occurs in the 
declaration of its type. 
For restrictions on the use of components of packed variables, see sections 
7.3.2,5.1.6.1, and 11.7. 

The implementation of paCking Is complex, and details of the allocation Of 
storage to components of a packed variable are lII7SPecJnea 

JM?I Et£NIATIOO MJIE 
In the current implementation, the word packed has no effect on types 
other than array and record. 

3.2.1 Array-Types 
An array-type consIsts of a fIxed number of components that are all of one 
type, called the coroponent-~. The number of elements is determined by one 
or more 100000-ty,pes one for each dimension of the array. There Is no specIfied 
llmit on the rumbar of dimensions. In each dimension, the array can be indexed 
by every possIble value of the corresponding index-type, so the number of 
elements is the prOdUct of the cardinalities of all the index-types. 

3-10 



Pascal ReFerence Manual Data ljtpeS 

array-type 

-C array reD ( .1 Index-type I ).~ type I 
---IO~~--' 

index-type ., ordinal-type I • 

The type fonowing tne word of Is tne component-type of tne array. 
WLEt£NTATICti NOTE 

In the current Implementation, the index-type ShoUld not be Imglnt. or a 
SUbrange of longint, and arrays shOUld not contain more than 32767 
bytes. 

ExanpJesOF array-types: 
array[1. .100] of real 
array[boolem] of color 

If tne component-type of an array-type Is also an array-type, the result can be 
regarded as a single multi-dimenslonal array_ The declarat10n of such an array 
is equivalent to toe declaration Of a multl-dlmensional array, as lllustrated by 
the following examples: 

array[booleal] of array[1. .10] of array[s1ze] of real 

Is equivalent to: 
array[boolean, 1. .10, size] of real 

Likewise, 
packed array(1 •• 10] of packed array[1. .8] of booleal 

Is equivalent to: 
packed array[l •• 10, 1. .8] of boolean 

"Equivalent" means that the compUer does the same thing with the two 
constructions. 
A component of an array can be accessed by referencing the array and applying 
one or more Indexes (see section 4.3.1). 

3-11 



Pascal Reference Manual Data TYPes 

3.2.2 Record-Types 
A record-type consists of a fixed number of components called fields, possIbly 
of different types. For each component, the record-type declaration speclf1es 
the type Of the field and an Identifier that denOtes It. 

recon:t-type to{ record) I. : (~ 
~ fleld-l1st!-"-' . 

field-list 
~r-I f-lxed--par-t""", •. 1 ~ varl91t-part ~ ~ 

fl.xet1-part ( ~I fleld-declaratlm I ) 
~~----~~~~-----

..:;.;f}j='I!14='I1;...:'-deCJ.==er.-=~=tlon=--_."'1 identifier-list r-+0--+I type ~ 

The flxed-part of a record-type specifies a l1st of "fixed" fields, giving an 
identifier and a type for each field. Each of these fields contains data that is 
al ways accessed In the same 'Nay (see section 4.3.2). 

ExampJeofarecord-type: 

record 
year: integer; 
1'Dlth: 1. .12; 
day: 1. .31 

end 

A variant-part allocates memory space with more than one list of fields, thUs 
permitting the data in this space to be accessed In more than one way. Each Ust 

3-12 



Pascal Reference Ma!7l/8J Data TYPes 

of fields is called a variant. The variants "overlay" each other in memory, and 
all fields of all varIants are accessIble at all Urnes. 

varlant-part 

~\I ;o:r.'tag-f1eld-type ~ 
identifier : ; 

\..t field-list ~ 
-(2)-+ 

tag-field-type .. I ordinaI-type-idenUfler l-+ 

In the current implementation, the type looglnt should not be used as a 
tag-type as it w111 not worK correctly. 

Each variant is introduced by one or more constants. All the constants must be 
distinct and must be of an ordinal-type that is compatible with the tag-type 
(see section 3.4). 

The varlant-part allOwS for an optional IdentifIer, CalleCl the tag-fIeld 
identifier. If a tag-field identifier is present, it Is automatically declared as 
the Identifier of an adCIlt10nal fixed fielCl Of the record, called the tag-fleJd. 
The value of the tag-fIeld may be used by the program to indicate Which variant 
ShoUld be used at a given time. If there Is no tag-fleld, then the program must 
select a variant on some other criterion. 

3-13 



Pascal Reference ManIJaJ 

Exanplesof record-types with vari8l1lS: 

record 
naIIIB, firstNaPB: str1ng[80]; 
CI]e: 0 •• 99; 
case PIBlT1ed: booleal of 

entI 

true: (sprusesNate: strirJJ[80]); 
false: () 

record 
~y: real; 
area: real; 
case s: shape of 

end 

tr1C1lgle: (side: real; 1ncl1nat100, CIlgleL CIlgle2: 
angle); 

rectcn;Jle: (sideL s1de2 : real; skew.. CI1gle3: CI1gle); 
circle: (diaPeter: real); 

oata T)lpes 

The constants that introdUce a variant are not used for referring to 
fields of the varIant; however, tney can be USed as optional arguments of 
the new procedUre (see section 11.2). Variant fields are accessed in 
exactly the same way as fIxed fields (see Section 4.3.2). 

3.2.3 8et-Types 
A set-type defInes a range Of values tnat Is the po\tlerset Of some Ordinal-type .. 
called the base-ty,pe. In other words, each possible value of a set-type Is some 
subSet of the possible values of the base-type. 

set-type .~ ordinal-type ~ 

In the present implementation the base-type must not be longlnt. The 
base-type must not have more than 4088 possible values. If the base­
type Is a subrange of integer, It must be withIn the lImits 0 .. 4087. 

Operators applicable to sets are specified in Section 5.1.4. section 5.3 shows 
how set values are denoted In Pascal. 

3-14 



Pascal Reference MantIal . Data l)Ipes 

sets with less than 32 possIble values In the base-type can be held In a register 
and offer the best performance. For sets larger than thIs, there is a 
performance penalty that Is essentially a Unear function of the size of the 
base-type. 
The empty set (see section 5.1.4) is a possible value of every set-type. 

3.2.4 FOe-Types 
A flIe-type Is a structured-type consIsting of a sequence Of components that 
are all of one type, the CQll1JOOent-t,we. The component-type may be any type. 
The component data is not In program-adclressable memory but Is accessed via a 
peripheral device. The number of components (I.e. the length of the fl1e) is not 
fixed by the file-type declaration. 

file-tyPe ~ .. 

\t:CiH type P' 
The type fUe (without the "of type" construct) represents a so-called -untyped 
f11e" type for use with the blockread and blOCkwrtte functions (see section 
10.4). 

NJTE 
AlthoUgh the symbol fUe can be used as If It were a type-Identifier, It 
cannot be redeclared since it Is a reserved word. 

The Standard fUe-type text denotes a file of text organIzed Into l1nes. The flle 
may be stored on a flle-structured device, or it may be a stream of Characters 
from a Character device soon as the LIsa keyt)Oard. FUes of type text are 
supported by the specIaliZed I/O procedUres dIscussed In Section 10.3. 
In Pascal on the LIsa, the type text Is distinct from the type flle Of Char (unlIke 
standard Pascal). The type fUe of char is a file whose recordS are of type char, 
containing char values that are not Interpreted or converted In any way elUring 
I/O operations. 
In a stored file of type text or fUe of -128 •• 127, the component values are 
packed into bytes on the storage medium. However, this does not apply to the 
type flle Of char; the component values of this type are stored In 16-bit words. 
In Pascal on the Lisa, files can be passed to procedUres and functions as 
variable parameters, as explained In section 7.3.2. 

3-15 



Pascal Reference Manual Data TYPes 

sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file compo­
nents and data. 

3.3 Polnter-Types 
A potnter-t ype defines an unboundetl set of values that point to variables of a 
specified type called the base-t)lJlE!. 
Pointer values are created by the standard procedUre new (see section 11.2.1), 
by the @ operator (see section 5.1.6), and by the standard procedUre pointer 
(see section 11.3.4). 

base-type 1---_-+ 

lJase-tyPe ~ type-identifier I • 

The base-type may be an Identifier that has not yet been declared. In 
this case, It must be declared somewhere In the same blocK as the 
poInter-type. 

The special symbol nil represents a standard pointer-ValUed constant that is a 
possIble value of every pointer type. Conceptually, nUts a pointer that does 
not poInt to anything. 
section 4.3.4 discusses the syntax for referencIng the objeCt pointed to by a 
pointer varIable. 

3.4 identical 812 ~ Types 
As explained below, this Pascal has stronger typIng than standard Pascal. In 
Pascal on the LIsa, two types mayor may not be identical. and identity Is 
required In some contexts bUt not In others. 
Even If not Identical, two types may still be compatible. and this Is sufficient In 
contexts where identity is not requIred - except for assIgnment, Where 
assIgnment -compatlb1l1ty Is required. 

3.4.1 Type Identity 
Identical types are required on,ifln the following contexts: 

• Variable parameters (see Section 7.3.2). 

3-16 



Pascal Reference Manual Data TYPes 

• Result types of functional parameters (see section 7.3.4). 
• Value and variable parameters within parameter-lists of procedUral or 

functional parameters (see Section 7.3.5). 

• One-dlmenslonal packed arrays of char being compared via a relational 
operator (see Section 5.1.5). 

Two types, tl and t2, are Identical If either of the fOllowing Is true: 

• The same type identifieris used to declare both t1 and t2, as In 
foo = -integer; 
tl = foo; 
t2 = foo; 

• t1ls declared to be equivalent to t2 as In 
tl = t2; 

Note that the declarations 
tl = t2; 
t3 = tl; 

do not make t3 and t21dentical, even thOUgh they make t1 identical to t2 and t3 
Identical to t1! 

Also note that the declarations 

t4 = integer; 
t5 = integer; 

dO make t4 and t5icJentical, since both are defined by the same type identifier. 
In general, the declarations 

t6 = t7; 
t8 = t7; 

dO make t6 and t8identicallf t71s a type-Identifier. 
HOwever, tne declarations 

t9 = -integer; 
tl0 = -integer; 

do not make t9 and no laentIcal since -Integer Is not a type Identifier Dut a 
user-defined type consisting of the special symbol"" and a type identifier. 
FInally, note that two variables declared In the same declaration, as In 

var1.. var2: -integer; 
are of identical type. However, if the declarations are separate then the 
definitions above apply. 

3-17 



Pascal Reference ManiJaJ 

The declarations 
vari: -integer; 
var2: -integer; 
var3: integer; 
var4: integer; 

make var3 and var4identicalin type, bUt not vari and var2. 
3.4.2 COI11JaUbl1lty of Types 

Data 7}'pes 

Compatib1l1ty is required in the majority Of contexts where two or more 
entities are used together, e.g. in expressions. Specific instances where type 
compatibility is required are noted elsewhere in this manual. 
Two types are compatible if any of the following are true: 

• They are identical. 
• one Is a subrange of the other. 
• Both are subranges of the same type. 
• 80th are string-types (the lengthS and sizes may differ). 
• Both are set-types, and their base-types are compatible. 

3.4.3 Asslglment~tlbUlty 
Assignment-coD'Q&lbll1ty is required whenever a value Is assigned to some­
thIng, either expl1cItly (as In an asslgnment-statement) or Impllcltly (as In 
passing value parameters). 
The value of an expression mcpval Of type exptyp is assignment-compatlble with 
a variable, parameter, or function-identifier Of type vtyp if any of the 
following Is true. 

• vtyp and exptyp are Identical and neither Is a flle-type, or a structured­
type wIth a flle component. 

• vtyp Is real and expt.yp Is Integer or Imgtnt (expvalls coerced to type leal). 

• vtyp and e>eptyp are compatible ordinal-types, and e>epValIS within the 
range of possible values of vtyp. 

• vtyp and exptyp are compatible set-types, and all the members of expval are 
within the range of possible values of the base-type of vtyp. 

• vtyp and exptyp are string types, and the current length of expval is equal 
to or less tI1an the slze-attribUte of vtyp. 

• vtyp is a string type or a Char type and expvalls a quoted-cl1aracter­
constant. 

3-18 



Pascal Reference MantJa1 Data Types 

• vtyp is a packed arra){l •• n] of char and expval Is a string constant 
containIng exactly nCharacters. 
If the index-type of the packed array of char Is not l .. n, bUt the array does 
haVe exactly n elements, no error w1ll occur. However, the results are 
unspeclfied. 

Whenever assignment-compatlb1l1ty Is required and none of the aboVe Is true, 
either a compiler error or a run-time error occurs. 

3.5 The Type-Oeclarattoo-Part 
Any program, procedure, or function that deClares types contains a type­
declaratton-part, as shown in Chapter 2. 

Example of a t)'pe-declaration-part: 

type ca.I1t = integer; 
l"3lQB = integer; 
color = (red, yellOW, green, blue); 
sex = (tIBle, fePBle); 
year = 1900 •• 1999; 
snape = (triangle, rectangle, circle); 
card = array[l .. 80] of CI1ar; 
str = str1ng[80]; 
polar = recoru r: real; theta: in!Jle em; 
person = -personDetailS; 
perso1leta11s = record 

naPe, f1rs't:Na'B: str; 
age: integer: 
PBlTied: boolean; 
fatnel', Child, sibl1lYJ: persoo; 
case s: sex Of 

PBle: (enlisted, bearded: boolES'l); 
fenue: (p~t: bool.ecn) 

em; 
people = file Of persorceta1ls; 
intfile = file of integer; 

In the above example CW'lt, ralga, and Integer denOte Identical types. The type 
year Is compatible wIth, but not identical to, the types I8lQ8, CW'lt, and 
Integer. 

3-19 



Pascal ReFerence HanlJaJ oata T)lpes 

3-20 



Pascal Reference /t1antJaI 

Chapter 4 
VARIABIIFS 

Variables 

4.1 Varlatlle~claratlons .................................................. 4-3 
4.2 Varlat>le-References ................................................ ~ .. . 4-3 
4.3 ~lflers ............................................... ................. 4-4 

4.3.1 Arrays, Strings, and Indexes .•.........•..........•............. 4-5 
4.3.2 Records and Fleld-Des1gnators ................................• 4-6 
4.3.3 Flle-Buffers ..................................................... 4-6 
4.3.4 Pointers and Their Objects .....................•..•.•.......... 4-7 

4-1 



Pascal ReFerence /YtanuaJ VaIJalJles 

4-2 



Pascal ReFerence frlantlal Variables 

VARIABIAFS 
4.1 Varlable-Declaratloos 

A varlable-aeclaration consists Of a list Of identifiers denOting new variables, 
followed by their type. 

var}alJJe-decJaratlm ~I identifier-list I--O-.f type ~ • 

The occurrence Of an identifier within the identifier-list of a variable­
declaration declares it as a variable-Identifier for the block in wnicn the 
declaration occurs. The variable can then be referenced throughout the 
remaining lexical extent of that block, except as specified in section 2.2.2. 

Exanp/es oFvar}aIJle-t1eClaratlms: 

Xr y, Z: real; 
i, J: integer; 
k: O •• 9; 
p, q, r: bool.ea1; 
operator: (plus, PI1nJs, t1PBs); 
a: array[O •• 63] of real; 
c: color; 
f: file of char; 
tl.Ie1,tIJe2: set Of color; 
p1,p2: persoo; . 
Pl,Pd.,PI2: array[1. .10,1 •• 10] Of real; 
coord: polar; 
pooltape: array[l •• 4] Of tape; 

4.2 Varlable-References 
A variable-reference crenotes the value of a variable Of simple-type or 
pointer-type, or the collection Of values represented by a variable of 
structured-type. 

variable-reference 

-~~a,tl varlable-iClentifier I ~ . y quallfler j.J 

4-3 



Pascal ReFerence fYIaIVal VarlaIJles 

variable-identifier .1 identifier j-. 

Syntax for the various kinds of qualifIers Is given below. 
4.3 ~flers 

As snown aDove, a variable-reference Is a variable-identifier followed by zero 
or more QUalIfiers. Each ~lfler modifies the meaning of the varlable­
reference. 

rjFler 

flle-tlUffer-symlJol I---~ 

pointer-object-symbol 

An array identifier with no qualifier is a reference to the entire array: 
xResults 

If the array identifier Is follOWed by an lnaex, this denotes a specific 
component of the array: 

xResultS[current+l] 
If the array component Is a record, the Index may be followed by a field­
designator; in this case the variable-reference denotes a speCific field within a 
specIfic array component. 

)CfteSUlts[ current+ 1] . lin< 
If the field is a pointer, the field-designator may be followed by the 
pointer-object-symbol, to denote the Otlject poInted to by the pointer: 

)Cftesults[current+l].ltnk-
If the objeot of the pointer is an array, another index can be added to denote a 
component of tnis array (ant1 so fortn): 

xResults[current+l].link-[1] 

4-4 



Pascal ReFerence fvJantJaJ VariaIJles 

4.3.1 Arrays, strings, and IOOe><es 
A specific component of an array varIable Is denoted by a variable-reference 
that refers to the array variable, followed by an index that specifies the 
component. 
A specific Character within a string variable Is denoted by a variable­
reference that refers to the string variable, followed by an index that spec1fies 
the Character position. 

Index .CD ( .1 eJCptesslon 1 ) .CD---+ 
---cG)eJ.-"----

Examples of indeXed arrays: 
l'I[i .. j] 
a[1+j] 

Eacn expression In the lnaex selects a component In the corresponding 
dimension of the array. The number of expressions must not exceed the number 
Of lnaex-types In the array C2eClaratlon, ana the type Of eacn express10n must be 
assignment-compattble with the corresponding index-type. 
In indexing a multt-dimensionai array, yru can use either multiple indexes or 
multiple expressions within an index. The two forms are completely equi­
valent. For example, 

,,[1][j] 
is equivalent to 

1'I[1,j] 
For array variables, each index expression must be asslgnment-compatJlJle 
with the corresponding index-type specified in the declaration of the 
array-type. 
A strIng value can be Indexed by only one lnaex expressIon, wnose value must be 
in the range 1 •. n, where n Is the current length of the string value. The effect 
Is to access one cnaracter Of the string value. 
Warning: When a string value is manipulated by assIgnIng values to indivIdUal 
character positions, the dynamic length of the string Is not maintained. For 
example, suppose that strvalls C2eClared as follows: 

strvaJ.: str1ng( 10]; 

The memory space allocated for strvallncludes space for 10 char values and a 
number that will represent the current length of the string - Le., the number 

4-5 



Pascal Reference /'1anUaI VarlaIJles 

of char values currently In the string. Initially, all of this space contains 
t.rlspeclfled values. The assIgnment 

strval[l] :='F' 

mayor may not work, depending on what the unspecified length happens to be. 
If this assignment works .. It stores the Char value 'F'ln Character position 1, but 
the length Of strval rema1ns unspecified. In other words, the value of strva1[l] 
Is now 'F·, but the Value of strvalls unspecified. Therefore, the effect of a 
statement such as wrlteln(strval) is unspecified. 

Therefore, this kind of string manipulation is not recommended. Instead, use 
the standard procedUres described In section 11.6. These procedures properly 
maintain the lengthS of tne string values they modify. 

4.3.2 Records CIld Fleld-DeslCJl8tors 
A speCifiC field of a record variable Is denoted by a variable-reference that 
refers to tne recorCl variable, followed by a field-deSignator that specifies the 
field. 

fleJd-deslQ?8tor "o--.IlcJentlfler I ... 

Exanples OffleJd-deslgnators: 
p2 .... p~t 
CQOrd. theta 

4.3.3 F~fers 
AlthOUgh a fUe variatlle may have any number of components, only one 
component Is accessible at any time. The position of the current component In 
the fUe Is called the current fUe position. see Sections 10.2 and 10.3 for 
standard procedures that move the current fUe position. Program access to the 
current component is via a special variable associated with the fUe, called a 
flle-buffer. 

The flle-bUffer Is ImplicItly cteclared when the fUe variable Is declared. If F Is 
a fUe variable with components of type T, the associated file-buffer is a 
varIable of type T. 

The fUe-bUffer associated with a fUe variable is denoted by a variable­
reference that refers to the file variable, followed by a quaUfler called the 
flle-buffer-symbol. 

Thus the fUe-bUffer of fUe F is referenced by F - . 

4-6 



Pascal ReFerence ",,/antJal Variables 

Sections 10.2 and 10.3 describe standard procedUres that are used to move the 
current fIle position within the fIle and to transfer data between the 
flle-bUffer and the current flIe component. 

4.3.4 PoInters cnj TheIr OOjects 
The value of a pointer variable Is either nil, or a value that identifies some 
other varIable, called the OOject Qf the pointer. 
The ODject pointed to by a pointer variable Is denoted by a variable-reference 
that refers to the pointer variable, followed by a qualifier called tne 
polnter-OOject -symtlOl. 

polnter-otJ):qt-synpol·0 • 

Polnter values are created by the standard procedure new (see Section 
11.2.11 by the @ operator (see Section 5.1.61 and by the standard 
procedUre pointer (see section 11.3.4). 

The constant nil (see Section 3.3) does not point to a variable. If you access 
memory via a nil pointer reference, the results are unspecIfied; there may not 
be any error IndIcation. 
Examplesof references to oojects of pointers: 

pl-
pl- . slbllng-

4-7 



Pascal ReFerence Manual VarJalJles 

4-8 



Pascal Reference Mant.IaI 

Chapter 5 
EXP~ONS 

ExpressIons 

5.1 Operators .. " . " ............ " " " " " " " " " " " " " .. " " " " " " " " " " " " " " " .. " " " " " " " " .. " .. " .... " " " " " " " " 5-6 
5.1.1 BInary Operators: Order of Evaluation of OperandS .•••...••. 5-6 
5.1.2 Ar1thmetic Operators""" ...... """""""""""""""""""""""" .. ,, """""""" "" .. 5-7 
5.1.3 Boolearl Operators """ .. "" .. """"""""" .. """"" .. "" .. "" .. ,,"""",, .... ,,"",, .. ,,""" 5-9 
5.1.4 set Operators""""""""""""""" .... """""""""""""""""""""""""""""",, .... ,," 5-9 

5.1.4.1 Result Type in Set Operations .............................. 5-10 
5.1.5 Relational Operators •.•.•..••••.•. 0 ••• 00 ••• 0" 0 o. 0 o. 0 o. 0 ••••• 5-10 

S.1.s.1 COmparing NUllltle'rs """"""""""" .. """"""" .. """"""",, .... ,, .. ,,""""""" 5-10 
5.1.5.2 COmparing Booleans ..•.••••..•.•..•..•.•....•.. 0 0 0 o. 0 0 0 0 0 ••• 5-11 
5.1.5.3 COfTlPSllng StrIngs""""""""""""""""""" .. " .. """""""""""" .. ,,",, .. ,,""" 5-11 
S.1.S.4 COf1lP8l1ng sets "" .. "" .. "" .. ,,"""""""""""""""""""""""""""""""""""" 5-11 
5.1.5.5 Testing Set MemberShIp. 0 •••• 0 ••• 00.0000. 0 •• 0. 0 0 0 o. 0.000.0 •• 5-11 
5.1.5.6 COmparing Packed Arrays of Char ••••••••••••••••••••••••• 5-11 

5.1.6 @.-Qperator .••..........•.•.•........•.•.....•.•••••.••.••.•... 5-11 
5.1.6.1 @-Operator \-lith a Variable ••.. 0 •••••••••••••••••••••••••••• 5-12 
5.1.6.2 @-Operator with a Value Parameter ................•...... 5-12 
5.1.6.3 @-operator \-lith a Variable Parameter .•••••.••.••.••..•.. 5-12 
5.1.6.a @-Qperator wIth a ProcedUre or Function................. 5-12 

5.2 t=tl)Ctlcrl~ls ..•••••••••..•••••.•.•..•..••••.•••••.•.••••••••••••••.• 5-13 
5.3 Set -constructors ..................................................... 5-14 

5-1 



Pascal ReFerence /'1anUaJ ExpressllY1S 

5-2 



Pascal ReFerence tv/a7tlal Expressions 

EXPRESSIONS 
Express10ns consist of operators and operands, I.e. variables, constants, 
set-constructors, and function calls. Table 5-1 snows the operator 
precedence: 

Operators 
., not 

*, I, div, 
rood, CIld 

+, -, or 
., <>, <, >, 
<=, >=, in 

Table 5-1 
Pr'''''ecedeI~'''''''ICe''''' Of Operators 

Precedence categories 
higt1eSt unary operators 

second H rrultlplylng" operators 

tnird "acldlng" operators & signs 

lowest relational operators 

The following rUles specify the way in which operands are bound to operators: 
• When an operand Is wrItten between two operators Of dIfferent 

precedence, It Is bound to the operator with the higher precedence. 
• When an operand Is written between two operators Of the same preceoence, 

It is bounf:I to the operator on the left. 
Note that the order in which operations are performed is not speCified. 
These rules are implicit in the syntax for expressions, which are bUIlt up from 
factors, terms, and simple-expresslons. 

5-3 



Pascal ReFerence fV/a?Ual Expressions 

The syntax for a factor allows the unary operators @ and not to be applied to a 
value: 

fector 

A functlon-call activates a function, and denotes the value returned by the 
function (see section 5.2). A set-constructor denotes a value of a set-type (see 
Section 5.3). An uosigned-COOStant has the follOwing syntax: 

U7slinn~""""'Of1Stant 
-=-;;.;;;,;;;o;;.="';:;';;;;~=_or----" unsigned-number 1----_ 

Examples of factors: 

x 
IX 
15 
(x+y+z) 
s1n(xl2) 

1---" quoted-strlng-constant 

{variable-reference } 
{pointer to a variable} 
{l.IlSiglf!d-COnsta1t} 

["A" •• "F"" "a" •• 'f'] 

{ st1J-expresslon} 
{fLIlCtiOO-cal.l} 
{set-cmstrootor} 
{negatioo of a lJOOleal} notp 

5-4 



Pascal ReFel"81JC8 /VIantIa1 Expresslons 

The syntax for a 1el:.Ill allows the "multiplying" operators to be applied to 
factors: 

term 

Examples of terms: 

XMy 
1/(1-1) 
p~q 
(x <= y) and (y < z) 

The syntax for a simple-expressioo allows the "adding" operators and s191s to 
be applied to terms: 

Examples of simple-expressions: 

x+y 
-x 
11Je1 + tlJe2 
1*j + 1 

5-5 



PascaJ Reference fvIaIVaJ Expressions 

The syntax for an expression allows the relational operators to be applied to 
slmple-expresslons: 

expression 
slmple-expresslon J..--,-----_--------..,....... .. 

ExanpJes of expressions: 
x = 1.5 
P <= q 
p=qcmr 
(1 < j) = (j < k) 
c in rue1 

5.1 Operators 

)--...,..-~ simple-expression 

5.Ll BInary Operators: order of Evaluatim of 0pera'ldS 
The order of evaluation of the operands of a binary operator is unspecifIed. 

5-6 



Pascal ReFerence /'1anIJaJ Expressions 

S.1.2 Arithmetic Operators 
The types of operanos and results for arithmetic bInary and unary operations 
are shOwn In Tables 5-2 and 5-3 respectively. 

Table 5-2 
Binary ArithmeUc Operations 

Operator Operation Operand 7)lpes JYpe of Result 

+ addition 
.. _ .............................. .. _ ............................. __ ......... __ . 

Integer, real, or Integer, real, or - subtraction 
. _ ............................ ...... _ ... __ ............... _ ......... _ .... lc:n;pnt loogint 

* multiplication 

I division Integer, real, or real 
lUi 'Y" , .. 

div dIvision with 
integer result 

integer or kIngint integer or 1oogInt. 

I1IJd modulo integer or loogint. integer 

Note: The symbOls +, -, and • are also used as set operators (see 
section 5.1.4). 

Table 5-3 
lklary Arithmetic Operations (Sip) 

operator cperallm OperaJd Types T)Ipe OF Result 

+ identity 
...... _ ..... _ ..... _-- _ ....... _ .......... __ .................... integer, real, or same as operald 

- slgn-negatlon longlnt 

My operand WhOSe type Is Sltt, wnere Sltt Is a suorange Of some ordlnal-type 
ordtyp, is treated as if it were of type ordtyp. consequently an expression that 
consists Of a single operano Of type Sltt Is itself of type ordtyp. 
If both the operandS Of the addition, subtraction, or multiplication operators 
are of type Integer or loogint., the result Is of type integer or l0r9nt as 
described In section 3.1.1.2; otherwise, the result is Of type real. 

5-7 



Pascal ReFerence Manua/ ExpressJons 

NOTE 
see Appendix 0 for more informat1on on all arithmetic operat1ons wIth 
operandS or results of type real. 

The result Of the identity or slgn-negaUon operator Is Of the same type as the 
operand. 
The value Of I dlv J Is the mathematical quotient of VJ, rounded toward zero to 
an Integer or lOnglnt value. An error occurs if J-O. 
The value of 1 mod J Is equal to the value of 

1 - (1 dlv J)itJ 
The sIgn of the result of mod Is always the same as the sIgn of 1. An error occurs 
if J-O. 
The predef1ned constant maxlnt Is of type integer. Its value Is 32767. This 
value satisfies the following conditions: 

• AIl WhOle numbers In the closeClinterval from -maxlnt-l to +maxlnt are 
representaDle in the type Integer. 

• Any unary operation performed on a whole number in this interval wlll be 
correctly performed according to the mathematical rules for whOle­
number arithmetic. 

• Any binary Integer operation on t we whole numbers in this same interval 
w111 be correctly performed according to the mathematical rules for 
whole-number arithmetic, prOvided that the result Is also In this InterVal. 
If the mathemat1cal result Is not in this interval .. then the actual result is 
the low-order 16 bits Of the mathematical result. 

• Any relational operation on t we WhOle numbers in this same interval will be 
correctly performed according to the mathematical rules for whole-
number arithmetic. . 

5-8 



Pascal ReFerence Manual Expresslons 

5.1.3 Booleal Operators 
The types Of operands and results for Boolean operations are shown in Table 
5-4. 

Operator 

or ......................... _ ...... 
a1d ............. -................... 
not 

Table 5-4 
Boolean QJeraUons 

Operatlm Operand T)pe$ 

dis jt.rlctlon ............................ ~ ..... -................... 
conjunction booleM .. __ ............................................... 
negation 

7)pe of Result 

booleM 

wnether a Boolean expressIon Is completely or partially evaluated If its value 
can be determined by partial evaluation Is unspecIfied. For example, consider 
the expressIon 

true or boolTst(x) 
where boolTst Is a function that returns a boolean value. This expresSion will 
always nave the value true .. regardless Of the result Of DOoITst(x). The language 
definition does not specify wtlether the boolTst function Is called when this 
expression Is evaluated. This could be important If boolTst haS slde-effects. 

5.1.4 set Operators 
The types of operands and results for set operations are Shown In Table 5-5. 

Operator 

+ 
....................... _-_ . 

-
.,.. ........ _ ....... --._ ... 

* 

Operation 

union 

Table 5-5 
Set qJerations 

Operand T)pe$ 

........... _-_ ... -............... _ ......... compatIble 
difference set-types _ ... _._._-_ ... _ ........... 
intersection 

5-9 

7)pe of Result 

(see 5.1.4.1) 



Pascal Reference I'1aJtJaJ Expresslons 

5.1.4.1 Result Type In set Operatims 
The fOllowIng rules govern the type of the result of a set operation where one 
(or both) Of the operands Is a set of stbr, Where ordtyp represents any 
ordInal-type and stbr represents a sUbrange of ordtyp: 

• If ordtyp Is not the type Integer, then the type of the result Is set of ordtyp. 
• If ordtyp Is the type Integer, then the type of the result Is set of 0 •• 40871n 

the current Implementation (0 .. 327671n a future implementation). This rule 
results from the lImitations on set-types (see Section 3.2.3). 

5.1.5 Relat1~ ~rators 
The types of operands and results for relational operations are ShOwn In Table 
5-6, and discussed further below. 

Operator 

-
............... _ ................ 

() 

< 

> -... _ ............................. 
<-
>-
<= 
>-

in 

Table 5-6 
Relatimal Operatioos 

QJeralJon cperE¥1d Types 

equal compatible set -, 
.... u ................................................. 

simple-, or 
not equal pointer-types 

(& see below) 
less 

greater compatible 
·_·-lessiequaf··················· simple-types 

(& see below) 
greater/equal 

sUbSet of compatible 
superset of set-types 

Jeft operand: 
member of ..... ~y. .. .Q!.~~.:.~~ .. I ......... 

rlf17t opera7d: 
set of T 

5.1.5.1' Comparing IUItlers 

7jtpe Qf Result 

boOle81 

When the operands of <, >, >-, or <-are numeric, they need not be of compatible 
type Ifene operand is real and the other Is Integer or looglnt. 

5-10 



Pascal Reference J"!aIJtJal Expressions 

OOTE 
See Appendix D for more information on relational operations wIth 
operands of type real. 

5.1.5.2 COf11l8ling Boolems 
If p and q are boolecJl operandS, then p-q denotes their equivalence and p<-q 
denotes the implication of q by P (because false<true). Similarly, p<>q denotes 
logical "exclusive-or. II 

5.1.5.3 COfTlmlng str1nJs 
When the relational operators -, <> , < , > , <- , and > are used to compare 
strings (see section 3.1.1.6), they denote lexicographic order1ng according to 
the ordering of the ASCII Character set. Note that any two string values can be 
compared since all string values are compatible. 

5.1.5.4 CofT1laring Sets 
If u and v are set operands, then u<-v denotes the inclusion of u in v, and u>-v 
denotes the inclusion of v in u. 

5.1.5.5 Testing set MentJerShip 
The in operator yields the value true If the value of the ordinal-type operand Is 
a member of the set-type operand; otherwise it yields the value false. 

5.1.5.6 COf11l8ling Packed Arrays Of Olar 
In addition to the operand types Shown In the table, the - and <> operators can 
also be used to compare a packed array(1 •• N] of char with a string constant 
containing exactly N characters .. or to compare two one-dlmenslonal paCked 
arrays of Char of identlcaltype. 

5.1.6 ~rator 
A pointer to a variable can be computed with the @-operator. The operand and 
result types are Shown In Table 5-7. 

Operator Operation 

pointer • formation 

TcmIe 5-7 
Pointer ~ration 

Operand 
varIable, parameter, 
procedure, or 
funct10n 

Type Of Result 

same as nll 

@ is a unary operator taking a single variable, parameter, procedUre, or 
function as its operand and computing the value of its pointer. The type of the 

5-11 



Pascal ReFerence fr/afXJaJ Expressions 

value Is equiValent to the type of nU, and consequently can be assigned to any 
pointer variable. 

5.1.6.1 @-Operator With a Variable 
For an ordinary variable (not a parameter), the use Of @1s straightforward. For 
example, 1f we have the declarations 

type twochar = packed array[o •• 1] of char; 
var 1nt: integer; 

tuocharptr: -twochar; 

then the statement 
twocnarptr := @int 

causes tWOCharptr to point to int. Now tWOCharptr- is a reinterpretation of 
the bit Value of tnt as thOUgh it were a ~ array(o •• l] Of Char. 

rhe operand of @cannot be a component of a pacl<ed variable. 
5.1.6.2 ~ator With a ValUe Parameter 

When @ Is appl1ed to a formal value parameter, the result is a pointer to the 
stack location containing the actual value. SUppose that foo Is a formal value 
parameter In a procedUre and fooptr Is a pointer variable. If the procedure 
executes the statement 

fooptr := @foo 

then fooptr- is a reference to the value of foo. Note that if the 
actual-parameter is a variable-reference, fooptr- is not a reference to the 
variable itself; it is a reference to the value taken from the variable and stored 
on the stack. 

5.1.6.3 @-Operator With a variable Parameter 
When @ Is applied to a formal variable parameter, the result is a pointer to the 
actual-parameter (the pointer Is taken from the staCk). SUppose that fum is a 
formal variable parameter of a proceaure, fie is a variable paSSed to tne 
prOCedure as the actual-parameter for fum, and ftJn1)tr is a pointer variable. 
If the procedUre executes the statement 

flIIptr : = IfU'l 
then fUmptr Is a pointer to fie. fUmptr - is a reference to fie itself. 

5.1.6.4 8-Operator With a Procea.tre or Flnltion 
It Is possIble to apply @ to a proceaure or a function, ylelatng a pointer to the 
entry-point. Note that Pascal provides no meChanism for using such a pointer. 
Currently tne only use for a procedUre pointer is to pass it to an 
assembly-language routine, WniCh can then JSR to tnat address. 
If the procedure pointed to is In the local segment, @ returns the current 
address of the prOCedUre's entry point. If tne proceaure Is In some other 

5-12 



Pascal ReFerence MantJal Expresslons 

segment, hOwever, @. returns the address of the jump table entry for the 
procedure. 
In 10g1cal memory mapping (see Worksnop Reference Manual for tne Lisa), the 
procedure pointer is always valId. 
In physical memory mapping, code swapping may Change a local-segment 
procedure address withOUt warning, and the procedUre pointer can become 
invalid. If the procedUre is not in the local segment, the jump-table entry 
address will remain valId despite swapping because the jump table Is not moved. 

5.2 F~~s 
A function-call specifies the activation of the function denoted by the 
function-identifier. If the corresponding function-declaration contains a l1st 
of formal-parameters, then the function-call must contain a correspOnding list 
of actual-parameters. Each actual-parameter is substituted for the 
correSponding formal-parameter. The correspondenCe is established by the 
positions of the parameters in the lists of actual and formal parameters 
respectively. The number of actual-parameters must be equal to the number of 
formal parameters. 
The order of evaluation ana binding of the actUal-parameters is unspecified. 

Ft.nCtim-caJl 

---'''"1 function-identifier t--\l~-::::::::::::~~~'::_-_-~_-~--"-<"" 
'+j actual-parameter-list t-" 

actllaJ-parameter-1Jst. 17\ I I I)L-----"\.0 ( .. actual-parameter ) .. ~ 

actual 'BI'ameter 

'-----~~~-----

expression 

procedure-identifier 

function-identifier 

A function-identifier Is any Identifier that has been declared to denote a 
function. 

5-13 



Pascal ReFerence fvIantJaJ 

EXBn7ples 01' FU1CtJon-cails: 

SlI'I{ a, 63) 
gcd(147,k) 
s1n(x+y) 
eof(f) 
ort1(f-) 

5.3 set-constrootors 
A set-constructor denotes a value of a set-type, and Is formed by writing 
expressions within [brackets]. Each expression denotes a value of the set. 

set-constrlJCtor 

memtJer-qrap 

.©~\-----------J~.G}+ 
( ., member-group I ) 
--------iO)lllll..-----' 

., expression I \;Q:I f1 
•• expressIon 

The notation [] denotes the empty set, which belongs to every set-type. Any 
member-group x..y denotes as set members the range of all values of the 
base-type In the closed interval xto y. 
If x is greater than y, then x..y denotes no members and [x..y] denOtes the empty 
set. 
All values designated In mernber-groups 1n a particular set-constructor must be 
of the same ordinal-type. This ordinal-type is the base-type of the resulting 
set. If an Integer value desIgnated as a set member Is outside the lIm1ts gIven In 
section 3.2.3 (0 •. 4087 In the current implementation), the results are 
unspecl fled. 
Examples 0; set-constructors: 

[red, c, green] 
[1, 5, 10 .. k POO 12, 23] 
[ "A" •• "1', "a" •• "Z ", dlr(XCOde)] 

5-14 



Pascal Reference MatJl.lai 

Chapter 6 
SfATEMENTS 

Statements 

6.1 51 mple statements ... .. .. . .. .. . . .. . . . .. . . . . . . . . . . . . . .. . .. . . .. . . . . . . . .. . . . . . . . . . . . . 6-3 
6.1.1 Assignment-statements ........•.............. u ••••••••••••••• 6-3 
6.1.2 Procedure-statements .......................................... 6-4 
6.1.3 Gata-Statements ................................................ 6-5 

6.2 Structured-Statements ...................................•............. 6-6 
6.2.1 Compound-statements ............................................. 6-6 
6.2.2 COnditional-Statements ........................................ 6-7 

6.2.2.1 If-Statements ................................................ 6-7 
6.2.2.2 Case-Statements ...................•........................ 6-7 

6.2.3 Repetitive-statements ......................................... 6-9 
6.2.3.1 Repeat-Statements ......................................... 6-9 
6.2.3.2 While-Statements ......................................... 6-10 
6.2.3.3 For-Statements .............................................. 6-11 

6.2.4 With-Statements •............................................. 6-13 

6-1 



Pascal Reference Mantlal Statements 

6-2 



Pascal Reference Mant/81 Statements 

STATEMENTS 

statements denote algorithmic actions, and are executable. Tney can be 
prefixed by labels; a labeled statement can be referenced by a goto-statement. 

slmple-statement 1-----,.-

l8bel .. I digit-sequence I .. 

A dlg1t-sequence USed as a label must be In tne range 0 .• 9999, and must first be 
declared as described in Section 2.1. 

6.1 Sl~le Statements 
A simple-statement Is a statement tnat does not contain any otner statement . 

..:sJ.;:;.z::.'e-.:...::;'$,.:::t8:.::te.:::::men.:::.:.:.t.....,....--I~ assignment-statement 

procecJure-statement .------. 

gote-statement 1-------. 
6.1.1 Ass1(Jlment-Statements 

The syntax for an asslgnment-statement Is as follows: 

asslgnment-statement 
-_ ...... variable-reference 

function-identifier t----~ 

The assignment-statement can be used in two ways: 

expression 

• To replace the current value of a variable by a new value specified as an 
expression 

6-3 



Pascal Reference ManIJaJ Statements 

• To specify an expression whose value is to be returned by a function. 
The expression must be assignment-compatible with the type of the variable or 
the result-type of the function. 

NOTE 
If the selection of the variable involves indexing an array or taking the 
Object of a polnter, it is not specified whether these actions precede or 
follow the evaluation of the expression. 

Examples of" assJ!TIment-statements: 

x := Y+z; 
p := (1<=1) and (1(100); 
1 := sqr(k) - (1*j); 
hUe1 := [blue,succ(c)]; 

6.1.2 Procedlre-Statements 
A procedUre-statement serves to execute the procedure denoted by the 
procedUre-Identifier. 

prtx:etilre-statement 

--~ .. I procedUre-identifier I· ~ \..t actual-parameter-list ~ 
(A procedure-identlfier Is sImply an IdentlfIer tnat nas been used to declare a 
prOcedUre.) 
If the procedure has formal-parameters (see section 7.3), the procedUre­
statement must contain a list of actual-parameters that are bound to the 
corresponding formal-parameters. The number of actual-parameters must be 
equal to the number of formal parameters. The correspondence is establiShed 
by the positions of the parameters in the 11sts of actual and formal parameters 
respectively. 
The rules for an actual-parameter PP depend on the corresponding formal­
parameter fP: 

• If FP is a value parameter, As> must be an expressIon. The type of the value 
of p.p must be assignment-compatible with the type of fP. 

• If fP Is a variable parameter, AP must be a varlatlle-reference. Tne type Of 
As> must be identical to the type of fP. 

6-4 



Pascal Reference ManIJal Statements 

• If FP is a procedural parameter, p.p must be a procedure-identifier. The 
type of each formal-parameter of p.p must be Identical to tne type Of tne 
corresponding formal-parameter of FP. 

• If FP is a functional parameter, N> must be a function-identifier. The type 
of each formal-parameter of p.p must be ldentical to the type of the 
corresponcJ1ng formal-parameter of FP, and the reSUlt-type of N> must be 
identical to the result-type of FP. 

N)JE 

The order of evaluation and binding Of tne actual parameters is 
unspecified. 

ExaRpJes of procet:lUre-statements: 

pr1nthead1ng; 
transpose( a, n,I'I); 
blsect(fct .. -1.0 .. +1.0 .. x); 

6.1.3 Goto-Statements 
A goto-statement causes a jump to another statement in the program, namely 
the statement prefixed by the label that Is referenced in the gote-statement. 

qotO-$tatement .. ~ label l-+ 

OOTE 
Tne constants tnat introduce cases witnin a case-statement (see 
section 6.2.2.2) are not labels, and cannot be referenced In 
goto-statements. 

The fallowing restrictions apply to goto-statements: 
• The effect of a jump into a structured statement from outside of the 

structured statement Is unspecified. 
• The effect of a jump between tne then part and tne else part of an If­

statement Is tmpecifled. 
• The effect of a jump between two different cases wlthin a case-statement 

Is unspecified. 

6-5 



Pascal ReFerence MantJa/ Statements 

6.2 structured-Statements 
structured-statements are constructs composed of other statements tnat must 
be executed either conditionally (conditional-statements), repeatedly 
(repetitive-statements).. or in sequence (compoUnd-statement or witn­
statement). 

structured-statement 
-==~;;;.;;;...==~-=---~1JtoI compound-statement .---

wlth-statement I---------l. 

6.2.1 COqn.n2-Statements 
The compound-statement specifies ttlat its component statements are to be 
executed in the same sequence as they are written. 

compotlfld-statement 

~( begin) C ~I statement I ) ~@ 
.... ----(O .. I----'~ 

Example of compolll7d-statement: 
begin 

Z := X; 
X := y; 
y := Z 

end 

An important use of ttle compound-statement 1s to group more tnan one 
statement into a single statement .. in contexts wnere PaSCal syntax only allows 
one statement. Tne symools begln and end act as "statement bracKets." 
Examples of ttlis will be seen in Section 6.2.3.2. 

6-6 



Pascal Reference Manual Statements 

6.2.2 COndItional-statements 
A conditional-statement selects for execution a single one (or none) of its 
component statements. 

etnt1ItlmaJ-statement 

6.2.2.1 If-~tenlents 

01f~tement k 
y case-statemen~ • 

The syntax for if-statements Is as follows: 

if-statement expression 

statement I-:----------..,......~ 
statement 

The expression must yield a result of type boolean. If the expression yields the 
value t.rt.e, the statement following the then is executed. 
If the expression yieldS false and the else part Is· present, the statement 
fOllowIng tne else Is executed; If tne else part Is not present, notnlng 1s 
executed. 
Tne syntactic ambiguity arIsing from tne construct: 

1f e1 then 
if e2 then s1 

else S2 
is resolved by interpreting tne construct as being equivalent to: 

if e1 then begin 
1f e2 then 51 

else 52 
em 

Examples of if-statements: 

1f x < 1.5 then z := x+y else z := 1.5; 
1f pI <> n1l then pI := pl-.fatner; 

6.2.2.2 case-Statements 
The case-statement contains an expression (tne selector) and a I1st of 
statements. Each statement must be prefixed witn one or more constants 

6-7 



Pascal ReFerence Mantlal Statements 

(called caS9-COostants.), or wlth the reserved word otherwise. All the 
case-constants must be distinct and must be of an ordinal-type that Is 
compatible with the type of the selector. 

C8Se-$18tement expression 

otherwlse-clause 

case ( .1 constalt I) .a-.I statement I 
''-----IG)4Ie--

~a.::.tIJer:=-=w.i:.:.:'ise:;:...:-cJ.::.;:i5f.j=='ISe::::-----. .. CU--< otherwise )-+I. statement I I-- ... 

....... :. :: --.:..-... ~ .:,---' . _ .. _----_. 

The case-statement specifies execution of the statement prefixed by a 
case-constant equal to the current value of the selector. If no SUCh case-. 
constant exists and an otherwise part is present, the statement following the 
word otherwise Is executed; If no otherwise part Is present, nothIng Is 
executed. 

Examples of case-statements: 

case ~rator Of 
plUS: X:= x+y; 
1'I1rus: x: = x-y; 
tiPes: X:= xwy 

end 

case 1 Of 
1: x := sin(x); 
2: x := cos(x): 
3,4,5: x:= exp(x); 
otnerwlse x : = In(x) 

end 

6-8 



Pascal Reference HantIaJ Statements 

Jt1?! Et£NTATION NOTE 

In the current implementation, the case-statement will not work 
correctly if any case-constant is of type loogint or the value of the 
selector is of type loogint. 

6.2.3 Repetitive-Statements 
Repetitive-statements specify that certain statements are to be executed 
repeatedly . 

..;:.::;,c=tJ:.::;;·t1:..;.·tm.;:;.-..:;;'$.:;.:ta:..;.te.:;.:.men=~t_---i'" repeat-statement 

6.2.3.1 Repeat-Statements 

wtdle-state~t 

for-statement 

A repeat-statement contains an expression which controls the repeated 
execution of a sequence of statements contained within the repeat-statement. 

reptJat-statement 

~ rep!IIt >r' statement I) ~. eocpressicn I-
-----fG)...--, 

The expression must yield a result of type boolem. The statements between 
the symbols repeat and l.Ilt1l are repeatedly executed until the expression 
yields the value true on completion of the sequence of statements. The 
sequence of statements Is executed at least once, because the expression is 
evaluated after execution of the sequence. 
ExanplesOf repeat-statements: 

repeat 
k := i PIld j; 
1 := j; 
j := k 

t.r1t11 j ;: 0 

6-9 



Pascal Reference Manl/al 

repeat 
process(fA); 
get{f) 

l.Ilt11 eof(f) 

6.2.3.2 wntle-Statements 

Statements 

A while-statement contains an expression Which controls the repeated 
execution of one statement (possibly a COmpound-statement) contained within 
the while-statement. 

WI11le-statement 

-~ .... ( while H expression ~ statement 1--+ 

The expresslon must yield a result of type boolea'l. It is evaluated before the 
contained statement Is executed. The contained statement Is repeatedly 
executed as long as the expression yieldS the value true. If the expression 
yieldS false at the beginning, the statement Is not executed. 
The whUe-statement: 

wa1le b do body 

is equivalent to: 
1f b then repeat 

body 
l.Iltil not b 

ExamplesoFwhlle-statements: 

wa1le a[1] <> x do 1 := 1+1 
While i>O do begin 

1f cQi(1) then z := ~ 
1 := 1 div 2; 
x := sqr(x) 

end 

While not eof(f) ao begin 
process( fA); 
get(f) 

end 

6-10 



Pascal Reference MantJaJ Statements 

6.2.3.3 For-statements 
The for-statement causes one contaIned statement (possIbly a compound­
statement) to be repeatedly executed wnlle a progression Of values is assigned 
to a varIable called tne control-variable. 

far-statement 

control-variable initial-value 

J-----,..t~ final-value 'statement 

cmtroJ-vari8lJJe .. I variable-identifier I .. 

lnJtJal-v81ue .. I . . expressIon .. 
~fil=rnaJ=-:-vai4=Zte~-i .. ~1 expressIon 

rhe control-variable must be a variable-identifier (witnout any qualifier).·It 
must be local to tne Innermost blocl< containIng tne for-statement, and must 
not be a variable parameter of tnat block. rne control-variable must be of 
Ordinal-type, and tne Initial anCJ f1nal values must be Of a type compatible with 
tnlstype. 
The first value assigned to tne control-variable Is tne initial-value. 
If tne for-statement Is constructed wltn tne reserved woro to, eaen successIve 
Value of tne control-variable Is the successor (see Section 3.1) of tne previous 
value, usIng tne Innerent orCJerlng Of values accorOlng to tne type Of the 
control-variable. When eacn value is assigned to tne control-variable, it is 
compared to tne final-Value; If it is less tnan or equal to tne fInal value, tne 
contained statement is tnen executeCJ. 
If tne for-statement Is constructed wltn the reserved word do'Nnto, eacn 
successive value of tne control-variable 1s tnepredeCessor (see Section 3.1) of 
the previous value. When eaen value is assigned to tne control-variable, it is 

6-11 



Pascal Reference M8IllJal Statements 

compared to the final-value; 1f 1t Is greater than or equal to the final value, the 
containea statement Is then executea. 
If the value of the control-variable is altered by execution of the repeatea 
statement, the effect 1s unspecified. After a for-statement is executea, the 
value of the control-varlable is unspeciflea, unless the for-statement 'HaS 
exitea by a gato. Apart from these restrIctions, the for-statement: 

for v := e1 to e2 do body 

Is equiValent to: 
begin 

teI1>1 : = e1; 
ta,l2 := e2; 
lf tePp1 <= tePp2 tnen begin 

v := tePp1; 
body; 
Whlle v <> tePp2 dO begin 

v := sooc(v); 
body 

end 
end 

end 

ana the for-statement: 
for v : = e1 dOwnto e2 dO body 

Is equivalent to: 
begin 

1:eI1l1 : = e1; 
ta,l2 := e2; 
if terpl >= tePp2 tnen begin 

v := tePp1; 
body; 
Whlle v <> tePp2 do begin 

v := pred(v); 
body 

end 
end 

end 

where tefT1l1 ana teqJ2 are auxiliary variables of the host type of the variable 
v that ao not occur elsewhere In the program. 

6-12 



Pascal Reference Manual 

Examples of for-statements: 

for 1 := 2 to 63 m 1f a[i] ) PBX then PBX := a[1] 

for 1 := 1 to n do for j := 1 to n do 
begin 

x := 0; 
for k := 1 to n do x := X + Pd.[1, k]~[k, j]; 
,.[1, j] := X 

end 

for c := red to blue do q(c) 

6.2.4 With-Statements 
The syntax for a with-statement Is 

w}th-$tatement 

Statements 

~-r-eco-rcJ--va-r-lab-l-e--r-ef-e-rence-""""II ) .~ statement 1-+ 
--------~G)~ - . 

(A record-var1able reference 1s s1mply a reference to some record var1able.) 
The occurrence of a record-variable-reference in a with-statement affects the 
way the compiler processes var1able-references w1thin the statement 
following the word do. Fields of the record- variable can be referenced by 
the1r field-identifiers, w1thout explicit reference to the record-variable. 
Example of k4th-statement: 

w1th date do 1f PD1th = 12 then begin 
PIlnth := 1; 
year := year + 1 

end 
else I'Dlth : = PDlth + 1 

This is equiValent to: 

if date.PDlth = 12 then begin 
date .l'Dlth : = 1; 
date. year : = date.year + 1 

end 
else date.PD1th := date.1'Dlth + 1 

6-13 



Pascal Reference MantlaJ Statements 

Within a with-statement, each variable-reference is checked to see if it can oe 
interpreted as a field of the record. suppose that we have the following 
declarations: 

type recTyp = record 
foo: integer; 
bar: real 

end; 

var baZ: recTyp; 
foo: integer; 

The Identifier foo can refer ooth to a field of the record variable baZ and to a 
variable of type Integer. Now consider the statement 

w1th baZ do begin 

foo := 36; {\111ch foo is this?} 

end 

The foo in this wlth-statement is a reference to the field baZ.foo .. not the 
variable foo. ' 
The statement: 

w1th vL~ •.. vn do s 
is equivalent to the following "nested" with-statements: 

with v1 do 
with V2 do 

with vn do S 

If vn in the above statements is a field Of bOth v1 and V2, it is interpreted to 
mean V2.vo, not v1.vo. The list of record-variable-references In the with­
statement is Checked from right to left. 
If the selection of a variable In the record-variable-list involves the indexing of 
an array or the de-referencIng of a pointer .. these actions are executed oefore 
the component statement is executed. 
warning: If a variable in the record-variable-list is a pOinter-reference .. the 
value of the pointer must not De altered within the with-statement. If the 
value of the pointer Is altered, the results are unspecified. 

6-14 



Pascal Reference MantI8l 

Example of unsafe with-statement using pointer-reference: 
w1tn ppp'" do begin 

new(ppp); {Don't do tn1s , •. } 

ppp: =XXX; { • •• or tn1s} 

end 

6-15 

Statements 



Pascal Reference Manual Statements 

6-16 



Pascal Reference /Y/anUal 

Chapter 7 
PROCEDURES AND FUNCTIONS 

7.1 ProcedUre-Declarations ................................................ 7-3 
7.2 Functlon-Declaratlons .................................................. 7-6 
7.3 Parameters .............................................................. 7-7 

7.3.1 Value Parameters ............................................... 7-9 
7.3.2 Variable Parameters ............................................ 7-9 
7.3.3 Procedural Parameters ......................................... 7-9 
7.3.4 Functional Parameters ........................................ 7-11 
7.3.5 Parameter List Compatiblllty ................................ 7-11 

7-1 



Pascal ReFerence Manual ProcedUres & FlI7Ctims 

7-2 



Pascal ReFerence fr1anUaJ Procet1Ures 8- FlI7Ctlons 

PROCEDURES AND FUNCfIONS 

7.1 ProcedlrtMJeclaratims 
A prOCedure-deClaration associates an identifier with part Of a program so that 
it can be activated by a procedUre-statement. 

prtJCetilre-declaratlon 

---1 .... 1 procedure-headlng ~ procedUre-body ~ 

The procedure-heading speCifies the identifier for the procedure, and the 
formal parameters (1f any). 

proceaue-neadlng 

.(pm:eWre H Identifier I \:j p'. 
formaI-parameter-l1st 

The syntax for a formal-parameter-list is given In Section 7.3. 
A procedUre is activated by a prOCedUre-statement (see Section 6.1.21 whiCh 
gives the prOcedUre's identifier and any actual-parameters required by the 
procedUre. The statements to be executed upon activation of the procedure are 
specified by the statement-part of the procedUre's block. If the procedUre's 
Identifier Is used In a procedUre-statement withIn the prOCedUre's blOCI<, the 
procedure is executed recursively. 

7-3 



Pascal ReFerence Manual Procedures" FtnCtlons 

EXlJnpleoF aprocetilre-declaratlm: 
procewre readIntegeI (var f: text; var x: integer); 

val' value,d1g1tValue: integer; 
begin 

"'11e (f'" = ' ') a"O not eof(f) do get(f); 
value := 0; 
"'11e (f- in ['0' .. 'g']) ~ not eof(f) do begin 

tI1g1tValue : = OId( f-) - orn(' 0' ); 
value : = 10*Val.ue + digitValue; 
get(f} 

em; 
x := value 

end; 

A procedUre-declaration that has forward instead of a blocK is called a forward 
declaration. SOmewhere after the forward declaration (and In the same blOCk), 
the procedure is actually defined by a defining declaration - a procedure­
deClarat10n that uses the same prOCedUre-Identifier, omits the formal­
parameter-list, and includes a block. The forward declaration and the defining 
declarat10n must be local to the same blOCK, bUt need not be contiguous; that Is, 
other procedUres or functions can be declared bet ween them and can call the 
procedUre that has been declared forward. This permits mutual recursion. 
The forward declaration and the defining declaration constitute a complete 
declaration of the procedUre. The procedure is considered to be declared at the 
place of the forward declaration. 
Example of forward dealaratlon: 

proceOJre walter(PI,n: integer); {forward declaration} 
forward; 

proceaae clara(x.r y: real}; 
begin 

walter(4 .. 5); {(J( beCaJse walter is forward declared} 

end; 

procewre walter; {defining declaration} 
begin 

clara(8.3, 2.4); 

end; 

A procedUre-declaratlon that haS external instead Of a blocK defines the Pascal 
Interface to a separately assembled or compiled routine (a .PROC In the case 

7-4 



Pascal Re;erence f'vtanuaJ Procet1tJres & FUlCtions 

of assembly language). The external code must be llnked with the compl1ed 
Pascal host program before executlon; see the WOrkslJopRe;erence/'1antJal for 
tile Lisa for details. 
Exampleo; anextemaJ procedure-t1eclaratlon: 

p.roceWre PB<escreerl(index: integer); 
external; 

This means that makescreen is an external procedure that will be linKed to the 
host program before execution. 

WI ft£NIATIQN bOTE 
It Is the programmer's responsib1l1ty to ensure that the external 
procedure is compatible with the external declaration in the Pascal 
program; the current Linker cIOes no Checking. 

This Pascal (unl1ke Apple II and Apple III Pascal) does not allow a 
variable parameter of an external procedure or function to be deClared 
without a type. To obtain a similar effect, use a formal-parameter of 
poInter-type, as in the following example: 

type biplOC = packed array[o •. 32767] of char; 
b~= -bipmc; 

p.roceWre \Ilatever (byteaITay: bitpaOCptr); 
external; 

The actual-parameter can be any pointer value obtained via the 
@-Operator (see Section 5.1.6). For example, if dots is a packed array of 
booleB\ it can be passed to 'Whatever by writing 

YlateVer( @dOts) 

This descr1ption of external procedUres also applies to external functions. 

7-5 



Pascal Reference fr/antJal ProcedUres 8- FU1CtJons 

7.2 FlIlCUon-DeclaraUons 
A functlon-oeclaratlon serves to cJeflne a part of the program that computes 
and returns a value of slmple~t ype or poInter-type. 

functJon-decJaratJon 

---1~~1 functton-headtng ~ function-body ~ 

ftrlCtJon-lJodJ 

The functIon-heacJ1ng specifies the identifier for the function, the formal 
parameters (If any), and the type of the functIon result. 

identifier 

result-type 

formal-parameter-llst 

..:.Il.:;~.s1;::'lJ..::.:rjt=--.=.Itvoe= __ ~_~. ~ .. { orcJtnaI-type-identif1er 

a--t.M. real-type-identifier ,1---.... 1 

---!~~{ pointer-type-ldentifler .It-------1~ .. 
The syntax for a formal-parameter-llst Is given In Section 7.3. 
A function Is activated by the evaluation of a functIon-call (see Section 5.2), 
whiCh gives the function's identifier and any actual-parameters requ1red by the 
function. The functIon-call appears as an operand In an expression. The 
expression Is evaluated by executing the function, and replacing the 
function-call with the value returned by the function. 
The statements to be executed upon actIvatIon of the functIon are specified by 
tne statement-part of tr.e function's tllOC',(. This blOCk Should normally contain 
at least one assignment-statement (see Section 6.1.1) that assigns a value to 
the function-identIf1er. The result of the function Is the last value assigned. If 

7-6 



Pascal ReFerence /t1anUa1 Procetklres & Functions 

no sUCh asslgnment-statement eXists, or If It eXists but Is not executed, the 
value returned by the function Is unspecIfied. 
If the function's Identifier Is used In a functlon-call withIn the function's 
block, the function Is executed recursively. 
Examples of flInction-deCJarations: 

ft.rlction PI8X{ a: vector; n: integer): real; 
var x: real; 1: integer; 
begin 

x := a[l]; 
for i := 2 to n do if x < a[i] then x := a[1] 
PIBX := x 

end; 

ft.r1Ction power(x: real; y: integer): real; { y )= O} 
var W ... Z: real; 1: integer; 
begin 

w := x: Z := 1; 1 := y; 
"'lIe 1 ) 0 do begin 

{Z*(W**1) = x .. y } 
if ocJd(l} then z := Z*W; 
1 := 1 dlv 2; 
w := sqr{w) 

end; 
{z = X'*'J } 
power := Z 

end; 

A function can be declared forward In the same manner as a procedure (see 
Section 7 .1 above). This permits mutual recursion. 
A function-declaration that has external instead of a blOCK defines the Pascal 
interface to a separately compUed or assembled external routine (a .FlNC In 
the case Of assembly language). See the explanation in Section 7.1 above. 

7.3 Parameters 
A formal-parameter-l1st may be part of a prOcedUre-deClaration or 
function-deClaration, or it may be part Of the declaration of a procedUral or 
functional parameter. 
If it is part of a procedure-deciaratlon or function-deClaratlon, it declares the 
formal parameters of the procedUre or function. Each parameter so declared 
is local to the procedure or function being declared, and can be referenced by 
its identifier in the blOC\( associated with the prOCedUre or function. 
If It is part of the declaration of a procedUral or functional parameter, it 
declares the formal parameters of the prOCedural or functional parameter. In 

7-7 



Pascal Reference /'1anUal Procet1U.res & FU1CtJons 

this case there Is no associated blocK and the identifiers of parameters in the 
formal-parameter-llst are not signIfIcant (see Sections 7.3.3 and 7.3.4 below). 

formaJ-parameter-list 
~--------------~ 

--.t ( parameter-cJeclaratlon I--..,..--~-.c 

procedure-heading 

There are four Kinds Of parameters: value parameters. variable parameters. 
procedural parameters. and functional parameters They are dIstlngulShed as 
follows: 

• A parameter-group preceded by var Is a list of variable parameters. 
• A parameter-group withoUt a preceding var Is a llst of value parameters. 
• A prOCedUre-headlng or function-heading denotes a procedural or 

functional parameter; see Sections 7.3.3 and 7.3.4 below. 
NOTE 

The types of formal-parameters are denoted by type-identifiers. In 
other words, only a simple identifier can be used to denote a type in a 
formal-parameter-l1st. To use a type such as array(O •• 255] of char as 
the type of a parameter, you must deClare a type-identifier for this 
type: 

type charray = array [ O •• 255] of Cf'lar; 

The identifier CI1array can then be used In a fOrmal-parameter-l1st to 
denote the type. 

7-8 



Pascal ReFerence /'1anuaJ . ProcedUres & FU1Ctions 

NOTE 
The word fne (for an "untyped" fIle) is not allowed as a type-identifier 
in a parameter-cleClaratlon, since it is a reserved word. To use a 
parameter of this type, declare some other identifier for the type fne­
for example, 

type phyle = f1le; 

The identifier Plyle can then be used In a formal-parameter-l1st to 
denote the type fUe. 

7.3.1 Value Parameters 
For a Value-parameter, tne corresponding actual-parameter in a procedure­
statement or fll1Ction-call (see sections 5.2 and 6.1.2) must be an expression, 
and its value must not be of fUe-type or of any structured-type that contains a 
file-type. The formal value-parameter denotes a variable local to the 
procedure or function. The current value of the expression Is assigned to the 
formal value-parameter upon activation of the procedure or function. The 
actual-parameter must be assignment-compatible with the type of the formal 
value-parameter. 

7.3.2 Variable Parameters 
For a variable-parameter, the corresponding actual-parameter in a 
procedUre-statement or funct1on-call (see Sect10ns 5.2 and 6.1.2) must be a 
variable-reference. The formal variable-parameter denotes this actual 
variable dUring the entire activation of the procedure or function. 
Within the procedUre or function, any reference to the formal variable­
parameter Is a reference to the actual-parameter itself. The type of the 
actual-parameter must be Identical to that of the formal variable-parameter. 

tI)JE 

If the reference to an actual variable-parameter involves indexing an 
array or finding the object ofa pointer, these actions are executed 
before tne activation of the procedure or function. 

components Of variables of any packed structured type (inCluding string­
types) cannot be used as actual varIable parameters. 

7.3.3 Procedlral Parameters 
When the formal-parameter Is a procedure-headlng, the corresponding 
actual-parameter in a procedUre-statement or function-Call (see Sections 5.2 
and 6.1.2) must be a procedUre-identifier. The identifier in the formal 
prOCedUre-headlng represents the actual procedUre during execution of the 
procedUre or function receiving the procedural parameter. 

7-9 



Pascal Ref'erence I'1aI7lIaJ 

Example of' pr(}(,"'et1lI.r81 parameters: 

progrCJII passProc; 
var 1: integer; 

ProcedUres & Fl.I7Cllons 

procewre a(proceclJre x) {x 1s a fOI'1'B1 procecilral 
paraweter. } 

begin 
wr1te(' AboUt to call x .); 
x {call the proceclJre passed as parareter} 

end; 

proceWre b; 
begin 

wr1te(' In procedure b') 
end; 

fl.llCt1m c(pl'OCEWre x): integer; 
begin 

X; {call tile pl'OCEWre passed as parapeter} 
c:=2 

em; 
begin 

a(b); {call a, passirlJ b as pal'CI'eter} 
1:= C(b) {call c, passing b as parareter} 

end. 

If the actual procedure and the formal procedure have formal-parameter-llsts, 
the formal-parameter-llsts must be compatible (see Section 7.3.5). However, 
only the Identifier Of the actual procedure Is written as an actual parameter; 
any formal-parameter-l1st is omitted. 
Example or procet:lllraJ parameters wit17 tI7elr own forma/parameter-lists: 

ProgICI'I test; 
procet:iJre xAsPar(y: integer); 

tleg1n 
wrlteln('y=', y) 

end; 

proceciIre callProc(procedure xAgain(z: integer»; 
begin 

xAgain(l) 
end; 

begin {bOdy of prograrl} 
cal1Proc(xAsPar } 

end. 

7-10 



Pascal Reference /'1antJaJ PrtJCefilres & FUJCtions 

If the procedural parameter, upon activation, accesses any non-local entity (by 
varIable-reference, procedure-statement, functlon-call, or label), the entity 
accessec\ must be one that was accessible to the procedure when the procedure 
was passed as an actual parameter. 
To see what this means, consider a procedure pp which Is Known to another 
procecture, flrstPasser. Suppose that the following sequence takes place: 

1. flrstPasser 15 executing. 
2. flrst.Passer calls a procedure named flrstRecelver, passIng pp as an 

actual parameter. 
3. flrstRece1ver calls ~ecelver, again passing pp as an actual 

parameter. 
4. seanRecelver calls pp (first execution of pp). 
5. ~ecelver calls th1r~ecelver .. again passIng pp as an actual 

parameter. 
6. thl11Rece1ver calls flrstPasser (indirect recursion), and passes pp to 

flrs1:Passer as an actual parameter. 
7. flrstPasser (executing recursively) calls pp (second execution of pp). 

Thus the procedure pp is called first from seanRece1ver, and then from the 
second (recursive) execution Of flrstPasser. 
SUppose that pp accesses an entity namect ~ which Is not local to pp; and 
suppose that each of the other procectures haS a local entity namec\ xxx. 
EaCh time pp is called, which xxx CIOes It access? The answer Is that in each 
case, pp accesses the xxx that is local to the first execution of flrstPasser -
that is, the xxx that was accessible when pp was originally passed as an actual 
parameter. 

7.3.4 FlIlCtlonal Parameters 
When the formal parameter is a function-heaCllng, the actual-parameter must 
be a function-identifier. The Identifier in the formal funcUon-heact1ng 
represents the actual function cturing the execution of the procecture or 
function receiving the functional parameter. 
Functional parameters are exactly liKe procedural parameters, with the 
actd1tional rule that corresponCl1ng formal anc\ actUal functions must have 
Identical result-types. 

7.3.5 Parameter Ust Coq»atlblUty 
Parameter list COmpatiDl11ty Is requIred of .the parameter llsts of corres­
poncting formal and actual procectural or functional parameters. 

7-11 



Pascal Reference frlanlla.l ProcedUres do FtnCtlons 

Two formal-parameter-l1sts are compatible If they contain the same number of 
parameters and If tne parameters In correspondIng posItions matCh. Two 
parameters match If one of the following Is true: 

• They are both value parameters of Identical type. 
• They are both variable parameters of Identical type. 
• They are both procedural parameters with compatible parameter lists. 
• They are both functional parameters with compatible parameter lists and 

Identical result -types. 

7-12 



Pascal Reference frlantlal 

ChapterS 
PROGRAMS 

Progfoms 

8.1 Syntax .................................................................... 8-3 
8.2 Program-Parameters ................................................... 8-3 
8.3 Segmentation ............................................................ 8-3 

8-1 



Pascal ReFerence MantJal Programs 

8-2 



Pascal ReFerence Manual Programs 

PROGRAMS 

8.1 syntax 
A Pascal program has the form of a procedure declaration except for its 
heading and an optional uses-clause. 

program 

-I progranH1eading HV \I K)J ~ block I-
uses-clause ; 

progranH1eat1lng 

-+(pIogramWr-'"lclen-Uf-le-'r I L /':'. r • 
~ program-parameters ~ 

...;:;:uses-cJ.==--==~=IS8~--eot.( uses ),....--eot.' identifier-list I 

The occurrence of an identifier immediately after the word program declares it 
as the program's Identifier. 
The uses-clause identifies all units required by the program, lnclUding units 
that it uses directly and other units that are used by those units. 

8.2 Program-Parameters 
currently, any program-parameters are purely decorative ana are totally 
ignored by the compUer. 

8.3 Segmentation 
The code of a program's main body is always placed in a run-time segment 
Whose name Is a string Of blanks (the "blank segment"). Any other blOCk can be 
placed in a different segment by using the SS compHer command (see Chapter 
12 and Appendix A). If no $S command is used In the program, all code Is placed 
in the blank segment. Code from a program can be placed in the same segment 
with code from a regUlar-unlt, bUt it cannot be mixed with code from an 
intrinsic-unit (see Chapter 9). 

8-3 



Pascal Reference Manual . Programs 

8-4 



Pascal Reference I'-1antJal 

Chapter 9 
UNITS 

9.1 ~egular-lJnits ........................................................... 9-3 
9.1.1 WrIting Regular-lJnlts .......................................... 9-3 
9.1.2 USing Regular -lJnl ts ............................................. 9-6 

9.2 Intrinsic-lJnits ........................................................... 9-6 
9.3 Units that Use Other Units ........•..................................... 9-6 

9-1 

Uflits 



Pascal Reference /'1anual l/nits 

9-2 

• 



Pascal Reference J'I1antIal 

UNITS 

A unit Is a separately compllecJ, non-executable Object file that can be l1nkecJ 
wIth other Object fUes to prodUce complete programs. There are two kincJs of 
unIts, callecJ regular-unlts and Intrlnslc-unlts. In the current implementation 
of the workshop, you can use Intrinsic-units that are provided, bUt you cannot 
write new ones. 
Each unit used by a program (or another unit) must be compiled, and its Object 
file must be accessible to the compiler, before the host program (or unit) can be 
compiled. 

9.1 REg.d.ar-ll'llts 
Regular-unlts can be used as a means of mOdularizing large programs, or of 
making code available for incorporation In various programs, without making 
the source available. 
When a program or unit (called the tlOSt.) uses a regular-unlt, the Linker inserts 
a copy of the compiled code from the regular-unlt into the host 's Object file. 
By default, the code copied from the regular-unit Is placed In the blanK segment 
(see Chapter 8). The cocJe of the entire unit, or Of blocks within the unit, can be 
placed in one or more different segments by using the SS compiler commancJ (see 
Chapter 12). 

9.1.1 wrltlrlJ Regular-ll'llts 
The syntax for a regular-unlt is: 

-===-=::..:.:.---.t unit-heading 

Interface-part Implementatlon-part 

9-3 

unJts 



Pascal ReFerence MantJaJ 

.!i.JnrJJ.ter.~"'~1l!!l.tr...t Interface J--....~----------...... 

uses-clause 

constant -deClaration-part 

t ype-cleclaratlon-part 

varlable-cleClaration-part 

procedure-a1CI-ftJ'lCtlon-cleclaratlon-patt 

L 'lementati.'nn-nsiTt 
in1J1ementat.1m 

constant-declaration-part 

type-declaratlon-part 

variable-declaration-part 

procedure-and-fll'lCtlon-cleclaratlon-part 

The Interface-part declares constants, types, var1ables, procedures, and 
functions that are "publ1c, "I.e. available to the host. 
The host can access these entities just as if they had been declared tn the host. 
Procedures and functions declared in the Interface-part are abbreviated to 
nothing bUt the procedUre or function name, parameter speCifications, and 
function result-type. 

9-4 

U1lts 



Pascal ReFerence Manual 

NOTE 
Since the interface-part may contain a uses-clause, a unit can use 
another unit (see Section 9.3). 

The implementation-part, whiCh follows the last declaration In the interface­
part, begins by declaring any constants, types .. variables .. procedures .. or 
functions that are "private .. II i.e. not available to the host. 
The publlc proceaures and functions are re-deClared In the implementatIon­
part. The parameters and function result types are omitted from these 
declaratlons, sInce they were declared In the Interface-part; and the procedUre 
and function blocKs, omitted In the Interface-part, are included in the 
Implementation-part. 
In effect, the procedure and function declarations in the interface are liKe 
forward declarations, althOugh the forwara directive 1s not used. Therefore .. 
these procedUres and functions can be deflned and referenced In any sequence 
In the implementation. 

OOTES 
There Is no Hlnltiallzation" section In Pascal units on the LIsa (unl1Ke 
Apple II and Apple III Pascal). If a unit requires initialization of its 
data, it should define a pUbliC procedure that performs the Initial­
ization, and the host should call this procedUre. 
AlSO note that gloDallaDels cannot De declared In a unit. 

A Short example of a unit is: 
1Il1t SiPple; 

. INTERFACE {ptblic objects declared} 
const firstYalue=1; 
procedlre Ad(Dle(var Incr:integer); 
fU1Ction Adt11(Incr:1nteger) :1nteger; 

Im..BefTATIeJI 
procewre Al:m1e; {note leD< of paI8Iieters ••• } 

begin 
Incr:=Incr+l 

end; 
ftJ'lCtioo Adt11; { ••• cn:I lack of ftn:tioo result type} 

begin 
Adt11:=Ioor+l 

end 
end. 

9-5 

UVts 



Pascal ReFerence fr1antJa/ 

9.1.2 USIng R~ar-uuts 
The syntax for a uses4Jlause Is given In Chapter 8. Note that In a host program, 
the uses-clause (If any) must immediately follow the program-headlng. In a 
host unit, the uses-clause (if any) immedIately follows the symtlol interf~. 
Only one uses-clause may appear in any host program or unit; it declares all 
units used tly the host program or unit. 
See Section 9.3 for the case where a host uses a unit that uses another unit. 
It is necessary to specify the file to tle searched for regular units. The $U 
compiler command specIfIes thIs fIle. See Chapter 12 for more details. 
Assume that the example unit Sll1ll1e (see al:)ove) Is compiled to an otlject file 
named APPL:SIMPLE.OBJ. The following Is a shOrt program that uses Simple. 
It also uses another unit named Otter, wnicn is In fIle APPL:OTHER.OBJ. 

progla'll cal.lSirple; 
uses {SU APPL:SII'RE.OOJ} 

Sirple, 
{SU APPL:OTI£R.OOJ} 

. other; 
var 1: integer; 
tlegin 

1: =FirstValue; 
wr1te('i+l is ',Addl(1»; 
wr1te(xyz(i» 

end. 

9.2 Intrtnstc-U'1lts 

{f1le to search for units} 
{use un1t Sirple} 
{f1le to search for units} 
{use l.Illt other} 

{FirstValue 1s f~ S~le} 
{Addl 1s defined in Sirple} 
{xyz is defined in other} 

The only intrinslc-unlts you can use are tne ones provided with the WorKstlop 
software. 
Intrlnsic-units provide a mechanism for Pascal programs to share common code, 
with only one copy of the code In tne system. The code Is I<ept on dlsl<, and wnen 
loaded Into memory It can l:)e executed tly any program that declares the 
Intrinslc-unlt (vIa a uses-clause, the same as for regular-unIts). 
By default, the system loOKS up all intrinsic-units In tne system Intrlnslcs 
lltlrary flle, INTRINSIC. LIB. All Intrlnsic-units are referenced In tnis library, 
so the $U fUename complIer command is not needed with intrinsic-units. 

9.3 Ullts that use other Ullts 
As explalned allove, the uses-clause in the host must name all units that are 
USed tly the host. Here "used·' means that the host alrectly references 
something In the interface of the unit. Consider the fIrst diagram on the next 
page. 

9-6 

U1lts 



Pascal ReFerence MantJaJ 

unitA 
interface 

uses tritC; 11 unitC 

V Host Program Implementation ---. interface uses l.Id.tA, l.Id.tB; 

~ unitB implementation 
interface 

implementation 

The host program directly references the interfaces Of t.IlitA and t.IlitB; the 
uses-clause names both of these units. The Implementation-part of t.IlitA also 
references the interface of lIl1tC, but it Is not necessary to name lIl1tC in the 
host -program's uses-clause. 
In some cases, the uses-clause must also name a unit that is not directly 
referenced by the host. The fOllowing diagram is exactly like the previous one 
except that this time the interface of t.IlitA references the interface of t.IlitC, 
and lIlitC must be named in the host-program's uses-clause. Note that lIlitC 
must be named before t.IlitA. 

unttA 

interface ,. useS tritC; 

~ unitC 
Host Program V implementation 

interface 
uses I6lItc, 16lItA. ~ 

lIl1tB; unItB 
implementation 

interface 

implementation 

In a case like this, the documentation for lIlitA should state that t.IlitC must be 
named in the uses-clause before lIl1tA. 

9-7 

lJnlts 



Pascal ReFerence Manual lhlts 

9-8 



Pascal Reference J'vlanllal 

Chapter 10 
INPUT/OUTPUT 

Jnput/Olltput 

10.1 Introduct1on to I/O •..•..••.•••.••.••.•.•.••.••....••••.••••.•........• 10-3 
10.1.1 Device Types •.•.....••....••....•.•••...•..•..............•.... 10-4 
10.1.2 External File Species. •. . . . •. . .• •. .••• . • . • . . • . • . • .• . • . . • . •. . ... 10-4 
10.1.3 The Reset Procedure ...•.••.........•......................... 10-5 
10.1.4 The Rewrite Procedure................ .. ..•..•••. . .•. •. ..•... 10-7 
10.1.5 The Close Procedure ...........•.............................. to-8 
10.1.6 The Ioresult Function ........••....•.•...•.••..•.............. 10-9 
10.1.7 The Eof Function ..••...............•......•..•.•.......•...... 10-9 

10.2 Record-oriented I/O ......•..•.•.........•.••.....•..••.•..•....•.••. 10-10 
10.2.1 The Get Procedure ........................................... 10-10 
10.2.2 The Put Procedure ....•.....••.•.••.••.••....•.•..•.•.•.....• 10-11 
10.2.3 The Seek Procedure .•..•.....•........•...••................• 10-11 

10.3 Text -Oriented I/O ................................................... 10-12 
10.3.1 The Read Procedure ••...•........•.•..••......•.......••..... 10-13 

10.3.1.1 Read wIth a Char Variable ............................... 10-14 
10.3.1.2 Read with an Integer or Longint Variable •••••.••••.•••. 10-14 
10.3.1.3 Read with a Real Variable .•..•••..•..•..••••••.•.••.••.. 10-15 
10.3.1.4 Read with a String VarIable •.•••••••..•.....•••.•••••.•.• 10-15 
10.3.1.5 Read with a PacKed Array of Char Variable ..•••....... 10-16 

10.3.2 The Readln Procedure. ••.•••. ••• .••••. •. •.. • . .• •. .•• . •. .. . ••. 10-16 
10.3.3 The Write Procedure ...•••..••••.•.••.•.•..••••••••...•.•.... 10-17 

10.3.3.1 OUtput -Specs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-18 
10.3.3.2 Write with a Char Value ••••.••••.••••••..••••••••..••.•• 10-18 
10.3.3.3 Write with an Integer or Longint Value ••••••..•••••.••. 10-18 
10.3.3.4 Write wIth a Real Value .................................. 10-18 
10.3.3.5 Write with a StrIng Value ................................ 10-19 
10.3.3.6 Write with a PacKed Array of Char Value •••••••••••.••• 10-19 
10.3.3.7 Write wIth a 800lean Value ..•..•.••.•.•..•...•••.....••. 10-19 

10.3.4 The Wrlteln Procedure .••••.•••.•..•••...•••.....•...•.•.•... 10-20 
10.3.5 The Eoln Function ..•..••....•••....•......•..........•....... 10-20 
10.3.6 The Page Procedure .••.••••.•.••..•••.....•...•..••....•..•.. 10-21 
10.3.7 Keyboard TestIng and Screen Cursor Control .•••.•.•.•.•.. 10-21 

10.3.7.1 The Keypress Function. •. . ... •. . •. ••. •• . ••• •• .• .• •• •••••• 10-21 
10.3.7.2 The Gotoxy Procedure •.•....•.•••••••.••.••...•.••••.••. 10-21 

10.4 untyped Flle I/O •••••••••.•.••••••.•......••••.•••••••••••••• ~ •...••.• 10-21 
10.4.1 The 810cKread FunctIon .••••...•.....•..••.•.•••.•........... 10-22 
10.4.2 The BlocKwrlte Function ..•.••.•..••.•••.•••••.••••••.•.••••. 10-22 

10-1 



Pascal ReFerence MlTJtJ8l /tpUt/output 

10-2 



Pascal ReFerence fvlBnllal Input/OUtput 

INPUT/OU1PUT 
This Chapter describes the stanclard ("bUll t -In") 1/0 proceoures ancI functions 
of Pascal on the Lisa. 
Stanclard procedures and functions are predeclared. S1nce all predeclared 
entities act as if they were declared In a "blocK" surrounding the program. no 
conflict arises from a declaration that redefines the same identifier within the 
program. 

Standard procedures ana functions cannot be used as actual procedural 
and functional parameters. 

This chapter ana Chapter 11 use a modified BNF notation, insteao of syntax 
dIagrams, to IndIcate the syntax Of actUaI-parameter-llsts for standard 
proceoures and functions. 
EXilmpJe: 

ParameterLfst:new(p [., tL ... tn» 
This represents the syntax of the actuaI-parameter-l1st of the standard 
procedUre new, as follows: 

• P.. tL and tn stand for actual-parameters. Notes on the types and 
interpretations Of the parameters accompany the syntax oescrlptlon. 

• The notation tl, ... tn means that any number of actual-parameters can 
appear here, separated by commas. 

• Square bracKets [ ] indicate parts of the syntax that can be omitted. 
Thus the syntax Shown here means that the p parameter Is required. Any 
number of t parameters may appear, with separating commas, or there may be 
no t parameters. 

10.1 IntrOClCtlon to I/O 
This section covers the 110 concepts and procedures that apply to all file types. 
This includes the types text (see Section 10.3) and"untyped" files (see Section 
10.4). 
To use a Pascal f11e variable (any variable Whose type is a fUe-type), it must be 
associated with an external file. The external fUe may be a named collection Of 
information stored on a peripheral device, or (for certain file-types) it may be 
the peripheral oevice itself. 

10-3 



Pascal ReFerence frIafJUaJ InpuVOUtput 

The association of a flIe variable with an external flIe is made by openIng the 
flle. An existIng fHe Is opened via the reset procedure, and a new file is 
created and opened via the rewrite procedUre. 

NOTE 
Pascal on the Usa does not provide automatic 110 Checking. To CheCk 
the result of any particular I/O operation, use the loresult function 
described In section 10.1.6. 

10.1.1 Device Types 
For purposes of Pascal I/O, there are two types of per1pheral deVices: 

• A flle-structyred device is one that stores flIes of data, such as a diSkette. 
• A Character deVice is one WhOSe Input and output are streams of individUal 

Dytes, suer. as the Usa screen and keybOard or a prInter. 
10.1.2 External Flle SpeCies 

There are three "species" Of external files that can be used In Pascal 110 
operations: 

• A detafile is any fUe that is stored on a fUe-structured device and was not 
originally created in association with a fUe variable Of type text. 

• A textfUe is a fUe that is stored on a fUe-structured device and was 
originally createt1in associat1on with a fUe variable of type text. TextfUes 
are stored in a specialiZed format (see Section 10.3). 

• A Character device can be treated as a fUe. 
Table 10-1 summarizes the effects of all possible combinations of d1fferent fUe 
variable types and external fUe species. The "ort11nary cases" In the table 
reflect the basic intent Of the various fUe-types. Other combinations, suCh as 
block-oriented access to a textfUe via a variable of type fUe, are legal bUt may 
require cautious programming. 

10-4 



Pascal Reference f\1anuaJ Jrput/CJutptJt 
Table 10-1 

ContJinatims of FDe Varlcm1e Types with External File Species 
am categortes 

var f: fDe of 
WI' f: text; var f: file; someType; 

Ordinary' case. (Textflle· format Ordinary' case. 
dataflle After reset, assumed!) After Block access. 

fA • 1st record reset*, fA is 
file. unspecified. 

(TextfUe format ordinary. case. (Textflle format 
not assumed!) Textflle format not assumed!) 

textflle 
After reset*, asSUmed. After Block access. 
, ... = 1st record reset, ,- is 
of fUe (as unspeclf1ed. 
declared). . 
After reset, " Ordinary' case. BlOCk access, 
f- = 1st cnar. After reset, if allowed by 

character from deVice f A Is unspecl- device. 
device (system waits for fled (no wait 

ItO. I/O error If for input char). 
fUe record. type '!.""\'" ~: 

not byte-sized. 

"* In tI1ese case~ tI1e ioresult function will return a "warnlng" 
(i.e., 8 negatlvtllVll1lJer) immeti.ieteJy after the reset operation. 

10.1.3 The Reset ProcedJre 
Opens an existing flIe. 

ParameterList:reset(f, title) 
1. f is a variable-reference that refers to a variable of flIe-type. The flIe 

must not be open. 
2. title is an expression with a string value. The string ShoUld ne a valid 

pathname for a flIe on a flle-structured device, or a patnname for a 
character device. 

10-5 



Pascal Reference /t1anuaI /1ptIt/OUtput 

NOTE 
Both parameters are required (unlike Apple 11 and Apple III Pascal, 
Where the second parameter is optional). 

Reset(f, tille) finds an existing external fUe with the pathname title, and 
associates f with this external fUe. (If there is no existing external fUe with 
the pathname tille, an 110 error occurs; see Section 10.1.6.) 

If tllle is the patl'lname of a Character device, then 
• EOf(f) becomes false. 
• If f Is Of type text, the value of f .... is unspecif1ed. The next read or readln on 

f will wait until a character Is available for input" and begin reading witn 
that character. 

• If f is of type fUe and the device is one that allows oloCk access, there is no 
fUe OUffer variable f .... and the "current fUe position" is set to the first 
block (blOCk 0) of the file. If the deVice does not allow block access, an 110 
error occurs (see Section 10.1.6). 

• If f Is not of type text or fUe, its component-type must be a "oyte-slze" type 
SUCh as the type -128..127. Note that char is not a oyte-slze type! If the 
component-type of f is not byte-size, an I/O error occurs (see sect10n 
10.1.6). 

If no 110 error occurs, the system waits untn a ctlaracter Is available from 
the device and then assigns the Character's 8-bit COde to f'" . 

If uue Is the pathname for an exIsting fUe on a flle-structured device, then 
• EOf(f) becomes false If the external f1le Is not empty. If the external fUe Is 

empty, eOf(f)oecomes true. 

• If f Is not Of type text or fUe, reset sets the "current fUe position" to the 
first record In the external fUe, and assigns the value of this record to the 
flle OUffer variable f..... If tne external fUe is a textfUe, the 10result 
function will return a negative number as a warning (see section 10.1.6). 

• If f is of type text, the value of f'" is unspecified. If the fUe is a textfUe, 
the next read or readln on f will begin at the first Character of f. If the fUe 
is a dataflle, it wlll be treated as if it were a textfile (see Section 10.3)and 
the loresult function will return a negaUve number as a warning (see 
Section 10.1.6). 

• If f Is of type fDe, there Is no flIe buffer variable f- and the "current f1le 
.posltlon"ls set to the fIrst block (block 0) of the flle. 

10-6 



Pascal ReFerence frlalVal Input/Q:/tpl/t 

10.1.4 TIle Rewrite Procedlre 
Creates ana opens a new fIle. 
Parameter List: rewrite(f, title) 

1. f is a variable-reference that refers to a variable of file-type. 
2. UUe Is an expression wIth a string value. The strIng should be a valId 

pathname for a fUe on a flle-structured device, or a pathname for a 
character devIce. 

If f Is already open, an 1/0 error occurs (see Section 10.1.6). 

If title Is the pathname of a Character device, tnen 
• EOf(f) becomes false. 

• Rewrtte(f, Utle)simply associates f with the device and opens f. 
• The status of the devIce Is not affecteCI. 
• The value of f'" becomes unspecified. 

If Utle 1$ the pattlname for a new fUe on a flle-structured device, then 
• Eof(f) becomes tnI!. 

• Rewrlte(f, UUe) creates a new external fUe with the pathname UUe, ana 
associates f with the external flle. This Is the only way to create a new 
external file. 

• The species of ttle new external fUe Is set according to the type of f -
"textflle" for type text, or "dataflle" for any other type. 

• The value of f'" becomes unspecifIed. 
• If f is not of type fUe, the "current fIle position" Is set to "Just before" the 

fIrst record or character post tion of the new external file. 
• If f Is of type fDe .. the "current file posit1on" Is set to block 0 (the fIrst blOCk 

in the file). 
• If f is SUbsequently closed with any option other than lock or C1U1Ch (see 

Section 10.1.5), ttle ~ external file is discarded at that time. Closing f 
with lock or C1U1Ch is the only way to make the new external fUe 
permanent. 

• If Utle Is the pathname of an existing external fUe, the existing fUe wm be 
dlscaraed only When f Is SUbsequently closed with the look or cIt.rlCh opt1on 
(see Section 10.1.5). 

unspeclfleC1 effects are causeCIlf the current file posItion of a fUe f Is altered 
whUe the file-ouffer f- Is an actual variable parameter, or an element of the 
record-variable-reference Ust of a with-statement, or both. 

10-7 



Pascal ReFerence fr1a?ual /tpUt/OtJtptlt 

10.1.5 TIle ClOSe Procecilre . 
Closes a file. 
Parameter List: ClOse( f [, option]) 

1. f is a variable-reference that refers to a variable of file-type. 
2. option (may be omitted) is an identifier from the list given below. If 

omitted, the effect Is the same as usIng the identifier normal. 
Close(f, optlm) closes f, If f Is open. The association between f and its 
external flIe Is broken and the flIe system marks the external file "closed". If f 
Is not open, the close procedUre has no effect. 
The option parameter controls the disposition of the external f11e, If It Is not a 
cnaracter deVice. If It is a Character deVice, f is closed and the status of the 
deVice is unchanged. 
Tne IdentifIers tnat can be used as actual-parameters for option are as follows: 

• normal- If f was opened using rewrite, It Is deleted from the directory. If f 
was opened with reset, It remains In the directory_ This Is the default 
option, in the case where the opUoo parameter is omitted. 

• 1001< - If the external fUe was opened with rewrite, it Is made permanent In 
tne directory. 
If f was opened with rewrite and a title that matches an existing fUe, the 
old fUe is deleted (unless the safety switch Is "on"). If the old fUe has the 
safety switCh "on, " It remains In the directory and the new fUe Is deleted. 
If f was opened with reset, a normal close is done. 

• purge - The external fUe is deleted from the directory (U'lleSS the safety 
switCh Is lion"). In the special case of a fUe that already exists and Is opened 
with rewrite, the orIgInal fUe remains in the directory, unchanged. 

• crtIlCtl- ThIs Is Ilke lOCk except that It lOCkS the end-of-flIe to tne poInt of 
last access; I.e., everything after the last record or Character accessed Is 
thrown away. 

All Closes regardless Of the option wUl cause the fUe system to mark the 
external fUe "closed" and will make the value of f'" unspecified. 
If a program terminates with a fUe open (I.e ... if close Is omitted)., the system 
automatically closes the fUe with the normal option. 

10-8 



Pascal Reference frlantlal /tptlt/Olltput 

tl)TE 

If you open an exIstlng file with reset and modify the file wIth any write 
operation, the contents are Immediately Changed no matter what close 
opt1on you specIfy. 

10.1.6 me Ioresult FtrCtion 
Pascal on the Lisa does not prOVide automat1c I/O CheckIng. To checK the 
result of any partiCUlar I/O operation, you must use tne loresult function. 
Result type: Integer 

Parameter LIst: no parameters 
Ioresu1t returns an Integer value whlen reflects the status of tne last com­
pleted I/O operation. TI'le codes are given in the WOl1<sI1op Reference Hant.Ial 
for tile Lisa. Note tnat the code 0 indicates successful completion, positive 
codes indicate errors, and negative codes are "warnings" (see Table 10-1)' 

Note that the codes returned by loresult are not the same as the codes used In 
Apple II and Apple III Pascal. 

tl)TES 

The real, readln, write, and writeln procedures described In Section 
10.3 may actually perform multiple I/O operations on each call. After 
one of these procedures has executed, loresult wlll return a code for the 
status of the last of the multiple operations. 
Also, I:leware of the following common error in diagnostic code: 

l1B.I(foo); 
ur1teln( '1oreSUlt=', ioreSUlt) 

The Intention Is to write out the status of the read operation, bUt 
instead the status written out will De that of the write operation on the 
string 'loresult-'. 

10.1.7 me Eof FtrlCtlon 
Detects the end of a fUe. 
Result Type: bOOlecil 

Parameter LIst: eof [(f) ] 

1. f Is a variable-reference tnat refers to a variable Of flIe-type. 
If tne parameter-Ust Is omitted, the funct10n Is appl1ed to tne standard fUe 
lnpJt (see Section 10.3). 

10-9 



Pascal ReFerence j'Y1anUal 

After a get or put operation, eof(f) returns true if the current fUe position Is 
beyond tne last external fIle record, or tne external fUe contains no records; 
otherwise, eof(f) returns false. Specifically, th1s means the fOllowing: 

• After a get, eof(f) returns trle 1 f the get attempted to read beyOnd the last 
fUe record (or the fUe Is empty). 

• After a put, eof(f) returns true If the record written by the put Is now the 
last fUe record. 

If f Is a Character Clevice, eof(f) w1ll always return false. 
see section 10.3 for the behavIor of eof(f) after a read or readln operation. 

NOTE 
Whenever eof(f) Is true, tne value of the flIe bUffer variable f- Is 
unspecIfied. 

10.2 Recom-ortented 110 
This section covers the get, put, and seek procedUres, Whicn perform 
record-oriented 110; that Is .. they consiCler a fUe to De a sequence of variables 
of the type specified in the file-type. These procedUres are not allowed with 
files Of type file. 

The effects of get and put are unspecified with fUes Of type text .. and seek has 
no effect with flIes of type text. The text type is supported oy specialized 
procedUres cJescriOed In section 10.3. 

ID.2.1 The Get ProcedIre 
ReadS the next record In a fUe. 
Parameter List: get( f) 

1. f is a variable-reference that refers to a variable Of file-type. The file 
must De open. 

If eof(f) Is false, get(f) advances the current fUe position to the next fUe 
record .. and assigns the value of this record to f-. If no next component exists .. 
then eof(f)oecomes true .. and the value of f- becOmes unspecified. 

If eof(f) Is tne when get(f) Is Called .. then eof(f) remains true .. and the value Of 
,- oecomes unspecified. 

If the external fUe Is a Character deVice .. eat(f) is always false and there is no 
"current fUe position. II In tt11s case .. get(f) waits until a value is ready for input 
and then assIgns the value to f - • 

10-10 



Pascal ReFerence I"tanual /tptIt/OUtput 

10.2.2 The Put Procerure 
Writes the current record In a fIle. 
Parameter List: put ( f) 

1. f is a variable-reference that refers to a variable of fUe-type. The fUe 
must be open. 

If eof(f) Is false, put(f)advances the current fUe position to the next fUe record 
and then writes the value of ,- to' at the new fUe position. If the new fUe 
posltIon is beyOnd the end Of the fUe, eof{f) becomes true, and the value of f­
becomes unspecifIed. 
If eof(f) Is true .. put(f) appendS the value of f - to the end of f and eof(f) remains 
true. 
If the external file Is a character device, eat(f) Is always false, there Is no 
"current fUe position," and the value of f-is sent to the device. 

NOTE 
If put is called immediately after a fUe is opened wIth reset, the put w1ll 
write the seca?drecord of the fUe (since the reset sets the current 
poSition to the first record and put adVances the position before 
wrIting). To get around this and write the first record, use the seek 
procedUre (see Section 10.2.3). 

10.2.3 The seek ProcedIre 
Allows access to an arbitrary record In a fIle. 
ParameterLlst:seek(f, n) 

1. f Is a variable-reference that refers to a variable Of file-type. The file 
must be open. 

2. n Is an expression with an Integer value that specifies a record number In 
the fUe. Note that records in fIles are numbered from O. 

If the fUe Is a character device or Is of type text, seek does nothIng. 
Otherwise, seek(f, n) affects the action of the next get or put from the flIe, 
forcing it to access fUe record n instead of the "next II record. seek(r, n) does 
not affect the flle-bUffer f ..... 
A get or put ITlIJ$tbe executed between seek calls. The result Of two con­
secutive seeks with no Intervening get or put Is unspecifIed. Immediately after 
a seek(f, n), eat(f) w111 return false; a followIng get or put w111 cause eof to 
return the approprIate value. 

10-11 



Pascal ReFerence I'1antIal Irput/OUtpf.lt 

OOIE 
The record number specified In a seek callis not checKed for valIdIty. If 
the number Is not the number Of a record In the fUe and the program 
tries to get tne specified record, the value of the· flle-tlUffer becomes 
unspecified and eat becomes true. 

10.3 Text-ortented I/O 
This section describes input and output using fUe variableS Of the standard type 
text. Note that in Pascal on the Usa, the type text is distinct from fUe Of cnar 
(see section 3.2.4). 

When a text fUe is opened, the external flIe is interpreted in a special way. It is 
considered to represent a sequence of Characters, usually formatted into l1D.e1 
by CR characters (ASCII 13). 

The Usa keyboard and the WorKshop screen appear to a Pascal program to be 
buUt-in fUes of type text named If1llJt and output respectively. These fUes 
need not be declared and need not be opened with reset or rewrite, since they 
are always open. 
When a program is taking input from 1f4lJt, typed Characters are echoed on tne 
WorKshop screen. In addition to tne Ir1JJt fUe, tne Usa KeybOard Is also 
represented as the character deVice -KEYBOARD. To get KeybOard input 
withOUt echoIng on the screen, you can open a fUe variable of type text with 
-KEYBOARD as the external f11e pathname. 
Other interactive devices can also be represented in Pascal programs as flIes 
of type text. 

When a text file Is created on a file-structured device, the external fUe Is a 
textfUe. It contains Information other than the actual sequence of characters 
represented, as follows: 

• The stored fUe is a sequence of 1024-byte ~ 
• Each page contains some number of complete Unes of text and is padded 

wIth null cnaracters (ASCII O) after the last Une. 
• Two 512-byte header blQCks are also present at the beglming of the fUe. 
• A sequence of spaces In the text may be compressed Into a tWO-byte COde, 

namely a OLE character (ASCII 16) followed by a byte containing 32 plus the 
number of spaces represented. 

All of this special formatting Is invisible to a Pascal program if the file is 
accessed via a fUe variable of type text (but visible via a fUe variable of any 
other fUe-type). 

10-12 



Pascal Reference frlantJal Input/OUtput 

Certain things that can be done with a record-structured fUe are impossible 
with a fIle varIable Of type text: 

• The seek procedure ooes nothing with a fUe varIable Of type text. 
• The effects of get and put are l.IlSpeclfled with a flIe variable of type text. 
• The contents of the fUe bUffer varIable are unspecIfIed wIth a flIe varIable 

of type text. 
• A file variable of type text that Is opened with reset cannot be used for 

output, and one opened with rewrite cannot be used for Input. Results are 
unspecified if either of these operations is attempted. 

In place of these capabU1t1es, text-oriented I/O provides the following: 
• Automatic conversIon of each Input CR Character into a space. 
• The eoIn function to detect When the end of an Input 11ne has been reached. 
• The read procecJure, which can read cnar values, string values, packed array 

Of cnar values, and numerIc values (from textual representations). 
• The write procedUre, WhiCh can wrIte Char values, string Values, packed 

array Of Char Values, numeric values, a1CI boOlea1 values (as textual 
representations). 

• Line-oriented reading and writing via the readln and wrltelnprocedures. 
• The page procedUre, Which outputs a form-feed character to the external 

f11e. 
• Automatic conversion of input OLE -codes to the sequences of spaces that 

they represent. Note that output sequences of spaces are not converted to 
OLE-codes. 

• Automatic skipping of header blocks and null Characters during Input. 
• Automatic generation of textflle header blocks, and automatic paddIng of 

textflle pages wIth nUll characters on output. 
10.3.1 The Real Procedure 

Reads one or more values from a text file into one or more program variables. 
Parameter List: read( [f,] v1 [, V2, ••• v n] ) 

The syntax of the parameter-Ust of read allows an indefinite number of 
actual-parameters. Consecutive actual-parameters are separated by commas, 
just as in a normal parameter-Ust. 

1. f (may be omitted) Is a variable-reference that refers to a variable of type 
text. The fUe must be open. If f Is omitted, the procedure reads from the 
standard text file Jr1)ut, whICh represents the Usa keybOard. 

10-13 



Pasc8J ReFerence Manual /nput/attptJt 

2. V1 ... vn are input var1ables. Eacn is a varIable parameter, used as a 
Clestination for cJata read from the fUe. Each input variable must be a 
variable-reference that refers to a variable of one of the following types: 

• CI1ar, Integer, or Imglnt (or a subrange of one of these) 

• real 
• a string-type or a packed array Of cnar type. 

These are the types Of data that can be read (as textual representat1ons) 
from a f11e. At least one Input variable must be present. 

Read(f,V1, ••• ,vn)is equiValent to: 

begin 
read(f .. V1); 

read(f .. vn) 
end 

Read can also be used to read from a fUe fll that is not a text fIle. In this 
case read(fu,x) is equivalent to: 

begin 
x := f11-; 
get (f1l) 

em 

10.3.1.1 Read with a am Variable 
If f is Of type text and v is of type CI1ar, the fallowing things are true 
immediately after rea(f,v): 

• EOf(f) wlll return true If the rem attempted to read beyond the last 
character in the external f11e. 

• Eolr(f) w111 return true, and the value of v w111 De a space, if the cnaracter 
read was the CR cnaracter. Eoln(f) wm also return true if eof{f) 1s true. 

10.3.1.2 Read with an Integer or Longlnt Variable 
If f Is Of type text and v Is of type Integer, subrange Of Integer .. or IoogInt .. then 
read(f ,v) Impl1es the read1ng from f of a sequence of cnaracters that form a 
sIgned wtlOle number accordIng to the syntax Of section 1.4 (except that 
hexacJecimal notation Is not allowed). If the value reaeJ Is 
asslgnment-compatlDle wIth the type of v .. It Is assigned to V; otherwise an 
error occurs. 

10-14 



Pascal ReFerence frfaIX./aJ /tpUt/OUtput 

In readIng the sequence Of Characters, precedIng blanks and CRs are SkIpped. 
ReadIng ceases as soon as a character Is reached that.. together wIth the 
characters already read, does not form part of a Signed whole number. 
An error occurs If a sIgned WhOle number Is not found after SkIpping any 
preceding blanks and CRs. 

If f Is of type text, the following things are true immediately after read(f,V): 
• Eof(f) will return tne if the last character in the numeric string was the 

last character in the external file. 
• Eoln(f) '11111 return true if the last character In the numeric string was the 

last character on the Une (not counting the CR character). Eolr(f) wlll also 
return true if eof(f) is true. 

10.3.1.3 Rea::1 with a Real variable 
If f is of type text and visOf type real, then reaa(f,v)lmpl1es the reading from f 
of a sequence of characters that represents a real value. The real value is 
asSigned to the variable v. 
In reading the sequence of characters, precedIng blanks and CRs are skipped. 
Reading ceases· as soon as a character Is reached that, together wltl'l the 
Characters already read, doeS not form a valid representation. A ''valid 
representat1on" Is either of the fOllowing: 

• A finite real., Integer, or longlnt value represented according to the 
slgnect-numtJer syntax of Sect10n 1.4 (except that hexadecimal notation is 
not allOwed). An Integer or lOnglnt value is converted to type real. 

• An infinite value or Nan represented as described in Appendix D. 

An error occurs If a valid representation is not found after Skipping any 
preceding blanks and CRs. 
Immediately after read(f,v) where v is a real variable, the status of eof(f) and 
eoln(f) are the same as for an Integer variable (see Section 10.3.1.2 above). 

10.3.1.4 Read with a String Variable 
If f is of type text and v Is of string-type, then read(f,v) implies the reading 
from f of a sequence of characters up to !Jut not incJlItting the next CR or the 
end of the flle. The resulting character-string Is assigned to v. An error occurs 
If the number of characters read exceeds the size attribute of v. 

10-15 



Pascal Reference I'1anlIal Input/OUtput 

MJIE 
Read with a string variable does not Skip to the next Une after reading, 
and the CR is left waiting In the input buffer. For this reason, you 
cannot use successIve read calls to read a sequence of strings, as they 
w111 never get past the first CR - after the first read, each subsequent 
read w1l1 see the CR and w1ll read a zero-length string. 
Instead, use nBnn to read string values (see Section 10.3.2). Readln 
Skips to the beglming of the next line after reading. 

The following things are true immediately after reoo(f ,v): 
• Eof{f) will return true If the line read was the last line in the fUe. 
• Eoln{f)wlll always return true. 

10..3.1.5 Read with a PeEked Array of am Variable 
If f is of type text and v is a packed array of char, then read{f,v) impUes the 
reading from f of a sequence of characters. Characters are read into 
successive Character positions in v until all positions have been fllled, or until a 
CR or the end of the f11e is encountered. If a CR or the end-of-flle Is 
encountered, it is not read into v; the remaining positions in v are fllled with 
spaces. 

10.3.2 The Readln ProoeWre 
The readln procedure is an extension of read. Essentially it does the same thing 
as reat and then Skips to the next Une in the input fUe. 
Parameter L1st: The syntax of the parameter list of readln is the same as that 
of read, except as follows: 

• A readln call with no Input varIables Is allowed. Example: 

readl.n( soorcefl1e) 

• The parameter-list can be omitted altogether. 
If the first parameter does not specify a fIle, or if the parameter-list is 
omitted, the procedure readS from the standard fIle Input, which represents the 
Lisa Keyboard. 
ReacJJn(f), with no Input-varIables, causes a sKIp to the beglming of the next 
line (if there Is one, else to the end-of-flle). 

10-16 



Pascal ReFerence frlanllaJ Input/OUtput 

Readln can only be used on a text f11e. Except for this restriction, 
readln(f,Vl, ••• ,vn)Is equIvalent to: 

begin 
read(f, vi, ... , vn); 
readln(f) 

end 

The following things are true immediately after remIn(f ... v). regardless of the 
type of V: 

• Eof(f) will return true if the line read was the last line In the external f11e. 
• EOln(f) w1ll al ways return false. 

10.3.3 The Wl'ite ProcedIre 
Writes one or more values to a text fUe. 
ParameterLlst:wr1te([f,] pi [, p2, ••• pn]) 
The syntax Of tne parameter list of write allows an indefinite number of 
actUal-parameters .. 

1. f (may be omitted) is a variable-reference that refers to a variable of 
type text. The fIle must be open. If f Is omitted, the procedure writes to 
the standard fHe outpJt, whiCh represents the WorkShop screen. 

2. pi ... pn are Qutpyt-specs. Each output-spec inclUdes an output 
expression. wnose value Is to be written to the f11e. As explained below, 
an output -spec may also contain specifIcations of field-width and number 
of decimal places. Eacn output expressIon must nave a result of type 
Integer, IongInt, real, boolean, ctlar, a str1ng-type, or a packed array of 
char type. These are the types of data that can be written (as textual 
representations) to a f11e. At least one output-spec must be present. 

wrtte(f ,pl, .•• ,pn)Is equivalent to: 
begin 

wr1te(f,pl); 

wr1te(f,pn) 
end 

Immediately after wrlte(f), both eof(f) and eoln(f) w1l1 return true. 

10-17 



Pascal ReFerence I'1aI7tIaJ /npul/cutput 

OOTE 
WItte can also be used to write onto a f11e fll that is not a text f11e. In 
this case write(fll,x) Is equivalent to: . 

begin 
fll- := X; 
put(fll} 

end 

10.3.3.1 ~~ 
Each output-spec has the form 

OUtExpr [: IVIlnWldth [: DecPlaces] ] 

where OUtExpr is an output expression. IVIlnWldth and DecPlaces are 
expressIons with Integer or looglnt values. 
IVIlnWldth specifies the minilT1llm field width, with a default value that dependS 
on the type of the value of outExpr (see belOW). MlnWldth should be greater 
than zero; otherwise, the results are unspecified. Exactly MlnWldth 
characters are written (using leading spaces if necessary), except when 
CJutE)(pr has a numeric value that requires more than MlnWldth Characters; in 
this case, enough Characters are written to represent tne value of outExpr. 

DecPlaces specifles the number of decimal places In a flxed-point repre­
sentation of a real value. It can be specifIed only If outExpr has a real value, 
and If MlnWldth Is also specIfIed. If DecPIaces Is not specIfIed .. a floating-point 
representation Is written. 

10.3.3.2 WItte with a Olar ValUe 
If outExpr has a cnar value, the character is written on the fUe f. The default 
value for MlnWldth is one. 

10.3.3.3 Wrtte with an Integer or lmJInt Value 
If CJutE)(pr has an Integer or longlnt value, its decimal representation is written 
on the fUe f. The default value for MlnWldth is 8. The representation consists 
of the digits representing the value, prefixed by a minus sign If the value Is 
negative, and any leadIng spaces that may be requIred to satisfy MlnWldth. If 
the representation requires more than MlnWldth characters, MlnWldth Is 
Ignored. 

10.3.3.4 write \tilth a Real Value 
If outExpr has a real value, the default value for MlnWldth is 12. 
If CJutE)(pr haS an infInite value .. It Is output as a strIng Of at least two "+" 
characters or at least two "_" characters. If OJtExpr Is a NaN, It Is output as 
the Character string .... NaN .. , posslbiy foHowed by a string of cnaracters 
enclosed by singIe-quotes. See section 10.3.3.5 for details on string output. 

10-18 



Pascal ReFerence /I1cnIal /tpUt/OUtput 

If outEXpr has a fInite value, its decImal representation is written on the file 
f. This representation Is the nearest possible decimal representation, 
depending on MlnWldth and DecPlaces. If the unrounded value is exactly 
halfway between two possible representations, the representation whose least 
sIgnifIcant dIgit Is even Is wrItten out. 
If DecPla::es Is not specified, a floating-point representation is written as 
follows: 

• If MlnWldth is less than 6, then its value is set to 6 (internally). This is the 
minimum usable Width for wrIting a floating-point representation. 

• If the sign Of the value of OJtExpr Is negative, a minus sign Is written; 
otherwise, a space Is written. 

• If MlnWldth ~ 8, the sIgnIficant dIgIts are written with one digit to the left 
of the decimal point and (MlnWldth - 7) digits to the right of the decimal 
point. 

• If MlnWldth < 8, the most significant digit is written and the decimal point 
is omitted. 

• The exponent Is written as the letter "EN, an expllclt "+" or "_" sign, ana two 
digits. 

If DecPla::es is specified, a flxed-polnt representation is written as follows: 
• Enougfl leadIng spaces are wrItten to satiSfy MlnWldth. 

• If the value is negat1ve, the m1nus sIgn "_" Is written; If it Is not negative, a 
space Is written. 

• If DecPIaces > 0, the sIgnifIcant dIgits are written wIth the integer part of 
the value to the left of the decimal point. The next DecPlaces digits are 
written to the right of the decImal point. 

• If DecPIaces s 0, only the Integer part of the value Is written and no decImal 
point Is written. 

10.3.3.5 Wrtte with a string value 
If the value Of OUtE)((lf is of string type with length L, the default value for 
MlnWldth is L If MlnWldth>-L, the value Is written on the file f preceded by 
{MlnWldth-L} spaces. If MlnWldth<L, the first MlnWldth characters of the 
string are written. 

10.3.3.6 write with a Packed Array of Char Value 
If E is Of type packed array of char, the effect is the same as writing a string 
whOse length Is the number of elements in the array. 

10.3.3.7 wrtte with a Boolea1 value 
If the value Of CJutE)(pr Is of type boolec:n the string II TRUE" (wltn a leading 
space) or the string "FALSE" is written on the flle f. The default value Of 

10-19 



Pascal ReFerence I--JanuaJ /rput/OI.Itput 

MlnWldth is 5. If MlnWldth>5, leading spaces are added; if MlnWldth<5, the 
first MlnWldth Characters of the string are written. This is equivalent to: 

wr1te(f, I lRlE" :MlnWldth) 
or 

wr1te(f, "FPL.SE" :MlnWldth) 
10.3.4 The wrlteln Procea.sre 

The wrlteln procedUre is an extension Of write. Essentially it dOes the same 
thing as write, and then writes a CR character to the output file (ending the 
lIne). 
Parameter LIst: The syntax of the parameter list of writeln Is the same as that 
Of write, except as follows: 

• A wrlteln call with no output -specs Is allowed. Example: 

wr1teln(outputf11e) 

• The parameter-list can be omitted altogether. 
If the fIrst parameter does not specify a f11e, or If the parameter-list Is 
omitted, the prOCedUre wrItes to the standard fUe outpJt, Which represents the 
WOrkShop screen. 
wrlteJn(f) writes a CR Character to the fUe f. 
WIiteln can only be used on a text fUe. Except for this restriction, 
wrtte1n(f,pl, ••• ,pn)Is equIvalent to: 

begin 
wr1te(f,pl, •• • ,pn); 
wr1teln(f) 

end 

Immediately after wrlte1n(f), both eof(f) and eoln(f) w1l1 return true. 
10.3.5 The EOln FtIlCtlon 

Result T)pe: booleal 

Parameter LIst: eoln[ (f) ] 
1. f Is a varlaDle-reference that refers to a variable of type text. The fIle 

must be open. 
The actual-parameter-l1st can be omitted entirely. In this case, the function Is 
applied to the standard fUe fr1lut. (the Lisa keyboard). 
Eo1n(f) returns true "If the end of a Une has been reached In f." The meaning Of 
this depends on whether the external fUe Is a character devIce, on whiCh 110 
procedUre was executed last, and on what type Of variable was used to receive 
an input value. For detaUs, see Sections 10.3.1 through 10.3.4. 

10-20 



Pascal ReFerence ,.,tanuaJ Input/OUtput 

The end of the file is considered to be the end of a l1ne; therefore eo1n(f) will 
return true whenever eof(f) is true. 

10.3.6 The Page ProceOJre 
Parameter List: page ( f) 

1. f Is a variable-reference that refers to a variable of type text. The flle 
must be open. 

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed 
Character to the fUe f. This will cause a Skip to the top Of a new page when f 1s 
prInted. 
Note that page(output) sends a form-feed to the worKshop screen, but in 
general this wm not clear the screen. For methOds Of Clearing the screen, see 
the WOrkslJOpReFerencefvlantJal For tIJe Lisa. 

10.3.7 Keyboard TestirY:I a1d screen OJrsor cmtrol 
10.3.7.1 The Keypress Ft.I1Ct1m 

Tests the Lisa Keyboard to see If It has a character awaltlng input. 
Parameter list: no pararleters. 
Result 7)'pe: boOlecll. 

Keypress returns true If a Character has been typed on the Usa Keyboard but 
has not yet been read, or false otherwise. This Is done by testing the typeahead 
queue; If the queue Is empty, l<eypressls false, else it is true. 

10.3.7.2 The Gotoxy ProcEd.Ire 
Moves the workshop screen cursor to a specified location on the screen. 
ParameterLlst:fSjtoxy(x. y) 

1. xis an expressIon with an Integer value. If x < 0, the value 0 w111 be used; If 
x> 79, the value 79 will be used. 

2. y is an expressIon with an Integer value. If y < 0, the value 0 w111 be USed; if 
y > 31, the value 31 w111 be used. 

Gotoxy(x, y) moves the cursor to the point (x,y) on the screen. Note that the 
poInt (0,0) Is the upper left corner of the screen. 

10.4 U'ltyped FUe 110 
untyped fUe 110 operates on an "untyped flle,"1.e., a variable of type fDe (no 
component type). An untyped fUe is treated as a sequence of 512-byte bloCkS; 
the bytes are not type-CheCKed but considered as raw data. ThIs can be useful 
for applications where the data need not be interpreted at all dUring I/O 
operatlons. 
The blOCks in an untyped fUe are considered to be numbered sequentially 
starting with O. The system keeps track of the current block number: this Is 
blOCk 0 immediately after the file is opened. Each time a block 1s read, the 

10-21 



Pascal Reference I'1aI1UaI Input/Q/tplIt 

current block number is incremented. By default, each lID operation begins at 
the current block number; hOwever, an arbitrary block number can be specified. 
An untyped flIe haS no flle-lluffer, and it cannot be used with get, put, or any of 
the text-oriented lID procet1Ures. It can only be used with reset, rewrite, 
close, eof, and the blOCkread and blOCkwrlte functions described below. 
To use untyped file I/O, an untyped flle is opened wIth reset or rewrite, and the 
blOCkread and DIOCkwrlte functions are used for input and output. 

10.4.1 TIle BIOCkread Ft6lCUon 
Reads one or more 512-1lyte blocks of data from an untyped fHe to a program 
variable, and returns the number of blocks react 
Result TYPe: Integer 

Parameter List: bl.ockread( f, datcD.If, CWlt [, blOCkrUl]) 

1. f is a variable-reference that refers to a variable of type fUe. The file 
must be open. 

2. datal1If is a variable-reference that refers to the variable into which the 
blOCks of data wlll be read. The size and type of this variable are not 
checked; If it Is not large enough to hOld the data, other program data may 
be overwritten and the results are unpredictable. 

3. COlIlt Is an expression with an Integer value. It speCifies the maximum 
number Of blocKS to be transferred. Blockread '11111 read as many blOCKS as 
it can, up to this limit. 

4. blOCkrUn (may be omitted) Is an expression with an Integer Value. It 
specifies the starting blOCk number for the transfer. If it is omitted, the 
transfer begins with the current blOCK. ThUs the transfers are sequential 
if the blockn.lmber parameter Is never used; if a blocI<nJmber parameter is 
used, it provides random access to blOCks. 

Blockread(f ... databuf, co.nt, blockrl.lm) reads blocKs from f into databuf, 
starting at block blOCkrum. COtnt is the maximum number of blocks read; if the 
end-of-fUe is encountered before co.nt blocKs are read, the transfer endS at 
that point. The value returned is the number Of blOCks actually read. 
If the last block in the fUe was read, the current block number Is unspecified 
and eof(f) is true. Otherwise, eof(f) is false and the currentbloCl< number is 
adVanced to the blOCk after the last block that was react 

10.4.2 TIle BIOCkwrlte Fl.IlCtion 
WrItes one or more 512-Dyte blOCks of data from a program variable to an 
untyped fUe, and returns the number of blocks written. 
Result T)Ipe: tl'lteger 
Par8m!:?terUst:blocl<wr1te(f, dataOOf, CWlt [, blockrUl]) 

10-22 



Pascal ReFerence f\1antI8l /tptlt/aJtput 

1. f is a variable-reference that refers to a variable of type fne. The fUe 
must be open. 

2. databUf 15 a variable-reference that refers to the variable from which the 
blocks of data will be written. The size and type of this variable are not 
Checked. 

3. COlIlt is an expression with an Integer value. It speCifies the maximum 
number of blocKs to be transferred. BIOCkwrite w111 wrtte as many blocKs 
as it can, up to this l1mit. 

4. blOCkrUn (may be omitted) is an expression with an Integer value. It 
specifies the starting blocK number for the transfer. If it is omitted, the 
transfer begins with the current block. ThUS the transfers are sequential 
If the blocknJmber parameter Is never used; If a bloCknJmber parameter is 
used, it provides randOm access to blocks. 

Blockwrtte(f, databUf, COU'lt, blocknJm) writes blocKs into f from databUf, 
starting at block blocknJm. COl.nt Is the maximum number of blocks written; If 
disK space runs out before COU'lt blocks are written, the transfer ends at that 
point. The value returned is the number of blocKs actUally written. 
If disK space ran out, the current block number is unspecified. Otherwise, the 
current blOCk number 15 adVanced to the blocK after the last blOCk that was 
written. 

unlike Apple II and Apple III Pascal, thIs Pascal does not allow 
blockwrtte to write a blocK at a posItion beyOnd the first position after 
the current end of the flle. In other words, you cannot create a block 
file with gaps in it. 

10-23 



Pascal ReFerence />1antIal 

10-24 



Pascal ReFerence MantJal Standard ProcedUres it Funclions 

Chapter 11 
SfANDARD PROCEDURES AND FUNCTIONS 

11.1 Ex1t and Halt Procedures.. ........ ... ............. ........ ....... .. ... 11-3 
11.1.1 The Exit Procedure...... ... ....... ................ .... ........ 11-3 
11.1.2 The Halt Procedure...... ...................... .... ....... ..... 11-3 

11.2 Dynamic Allocation Procedures ...................................... 11-4 
11.2.1 The New Procedure. . . . . .. . . .. .. . .. . . . . . . . . . . . . . . . . .. . . . .. . . . .. 11-4 
11.2.2 The HeapResult Function ..................................... 11-5 
11.2.3 The Mark Procedure. . . .. . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . .. . . . .. 11-5 
11.2.4 The Release Procedure .....•................................. 11-5 
11.2.5 The Memavall Function ...........................•........... 11-5 

11.3 Transfer Functions... . .. . . . . .. .. ... . .. .. .. . . . ... . .. . . . . . .. . . . . . . . . . . .. 11-6 
11.3.1 The Trunc Function ........................................... 11-6 
11.3.2 The Round Function. . . . . . .. . •. . . .• . . •.•. . . . •. . . . . . . . .•. . •. . . .. 11-6 
11.3.3 The DrOll. Funct10n ............................................ 11-6 
11.3.4 The Pointer Function. . .. . .. . . . .•... .. .. . . . . . . . . .. . . . . . . . .. . . .. 11-7 

11.4 Arithmetic Functions ................................................. 11-7 
11.4.1 The Odd Function. . . .. .. . ... . .. ... . . .. ... ... . . .. . . .. .. . . . .. . . .• 11-7 
11.4.2 The Abs Function. .. . . ... . .. . .. .. .. . .. . . .. .. . . . . ..••...•. .. . . .. 11-7 
11.4.3 The Sqr Function .............................................. 11-8 
11.4.4 The Sin Function............................................... 11-8 
11.4.5 The Cos Function. . .. .... .... . . . .. . . ... .. . . .. .... . . . .. . .. . .. •.. 11-8 
11.4.6 The Exp Function................... .....•... .. ......•..•...... 11-8 
11.4.7 The Ln Function ............................................... 11-9 
11.4.8 The sqrt Function ..........•.......................•.•........ 11-9 
11.4.9 The Arctan Function ...............................•.......... 11-9 
11.4.10 The Pwroften Function . ~............. ............ ............ 11-9 

11.5 Ordinal Functions ...•................................................ 11-10 
11.5.1 The Ord Function. ... . . .. . .•. . . . .. . .... .. . . .. . . . . . . . .. . . . . .. .. 11-10 
11.5.2 The Chr Function. . .. ... ... .. . .. ... ... . . .. .•. .. . . . . .. .. .•. . . .. 11-10 
11.5.3 The Succ Function .........................•.....•.........•.. 11-10 
11.5.4 The Pred Function ............................................ 11-11 

11.6 String Procedures and Functions ...............•.......•............ 11-11 
11.6.1 The Length Function ....................•.................... 11-11 
11.6.2 The Pos Function .........................................•... 11-11 
11.6.3 The Concat Function ......................................... 11-12 
11.6.4 The Copy Function ........•..•............•..•............... 11-12 
11.6.5 The Delete Procedure ............. e .......................... 11-12 
11.6.6 The Insert Procedure .......•............•.•.................. 11-12 

11.7 B yte-orlentecJ Procedures and Functions .......................... ;-11-13 
11.7.1 The Moveleft Procedure ..................................... 11-13 
11. 7.2 The Moveright Procedure. .• .. . ... . . . . .. .. .. . . .. . . . .• . .. .. . .. 11-14 
11.7.3 The S1zeof Function .......... o ••••••• 0 ••••••••••••••••••••••• 11-14 

11-1 



Pascal Reference MantIal Standard Procedllres & FlJI7Ctions 

11.8 Packed Array of Char Procedures and Functions ................... 11-14 
11.8.1 The scaneq Functlon ......................................... 11-15 
11.8.2 The Scanne Function .........•........................•....•. 11-15 
11.8.3 The Flllchar Procedure .•...........•........................ 11-15 

11-2 



Pascal ReFerence f\1antJaJ Standard Procedllres & F(Jf]Clions 

STANDARD PROCEDURES AND 
FUNCfIONS 

This chapter descr1bes all the standard ("bunt-in") procedures and funct10ns In 
Pascal on the Usa, except for the I/O procedures and functions described in 
Chapter 10. 

Standard procedUres and functions are predeclared. Since all predeclared 
entities act as if they were declared in a blocK surrounding the program, no 
conflict arIses from a declaration that redefInes the same identi fier wi thin the 
program. 

OOTE 

Standard procedUres and functions cannot be used as actual procedural 
and functional parameters. 

ThIs Chapter uses a modIfied BNF notation, instead Of syntax diagrams, to 
indicate the syntax of actual-parameter-llsts for standard procedures and 
functions. The notation Is explained at the beginning of Chapter 10. 

11.1 ExIt and Halt Procedures 
11.1.1 The Exit ProceciJre 

Exits immedlately from a specified procedure or function, or from the maln 
program. 
Parameter List:ex1t(ld) 

1. ld is the identifier of a procedure or function, or of the main program. If 
Id is an identifier defined 1n the program, it must be In the scope of the 
exit call. Note that this is more restricted than UCSD Pascal. 

Exlt(ld) causes an immediate exit from id. Essentially, it causes a jump to the 
endofld. 

The halt procedure (see below) can be used to exit the main program 
from a l.I11t wIthout Knowing the main program's Identifier. 

11.1.2 The Halt ProcaiJre 
Exits ImmedIately from the maIn program. 
Parameter List: no parameters 
Halt causes an immediate exit from the maln program. 

11-3 



Pascal Ref'enmce tvlantJ8} StandaId Procedllres & FlJI7Clions 

11.2 Dynamic Allocation Proceaures 
These procedures are used to manage the neap" a memory area that is 
unallocated when the program starts running. The procedure new is used for all 
allocation of heap space by the program. The mark and release procedures are 
used together to deallocate heap space, and the heapresult function is used to 
return the status of the last preceding dynamic allocation operation .. 

11.2.1 The New Procewre 
Allocates a new dynamic variable and sets a pointer variable to point to it. 
Paramete.rList:rew(p [, t1, ... tn]) 

1. p Is a variable-reference that refers to a variable Of any pointer-type. 
This Is a variable parameter. 

2. ti, ... tn are constants, used only when allocating a variable of 
record-type with variants (see below). 

New(p) allocates a new variable of the base-type of p, and makes p point to it. 
The variable can be referenced as p..... Successive calls to new allocate 
contiguous areas. 
If the heap does not contain enough free space to allocate the new variable, pIs 
set to nl1 and a SUbsequent call to the heapresult function w1l1 return a non-zero 
result. 
If the base-type of p is a record-type with variants, rew(p) allocates enough 
space to allow for the largest variant. The form 

rew(p, tl, ... tn ) 
allocates a variable with space for the variants specified by the tag values tl, 
... tn (instead of enough space for the largest variants). The tag values must be 
constants. They must be listed contiguously and in the order of their 
declaration. The tag values are not assigned to the tag-fields by this 
procedure. 
Trailing tag values can be omitted. The space allocated allows for the largest 
variants for all tag-values that are not specified. 
waming.- When a record variable is dynamically allocated with explicit tag 
values as Shown above, you should not make aSSignments to any fields of 
variants that are not selected by the tag values. Also, you should not assign an 
entire record to this record. If you do either of these things, other data can be 
overwritten \tIithOut any error being detected at compile time. 

ll-q 



Pascal ReFerence Manual StantJard ProcedUres & FtllJCtlons 

11.2.2 The Heapresult FlIlCtion 
Returns the status of the most recent dynamIc allocation operation. 
Result Type: Integer 

Parameter List: no parameters 
Heapresult returns an Integer code that reflects the status of the most recent 
call on new, mark, release, or memava1l. The codes are given In the WOl1<sI7op 
ReFerence Manual,; note that the code for a successful operation is O. 

11.2.3 The Marl< Procewre 
Sets a poInter to a heap area. 
Parameter List: l'I8l'k(p) 

1. P is a variable-reference that refers to a varIable Of any poInter-type. 
This is a varIable parameter. 

Mark(p)causes the pointer p to point to the lowest free area In the heap. The 
next call to new will alllocate space begimlng at the bOttom of this area, and 
then p will be a pointer to this space. The pointer p Is also placed on a 
stacK-IlKe l1st for SUbsequent use with the release procedure (see belOW). 

11.2.4 The Release ProceWre 
Deallocates all varIables In a marKed heap area. 
Parameter List: release(p) 

1. p is a variable-reference that refers to a pointer variable. It must be a 
pointer that was previously set with the mark procedure. The pointer p 
must be on the list created by the mark procedure; otherwIse an error 
occurs. 

Release(p) removes pointers from the list, bacK to and inClUding the pointer p. 
The heap areas poInted to by these pointers are deallocated. In other words, 
release(p) deallocates all areas allocated since the the pointer p was passed to 
the mark prOCedUre. 

11.2.5 The MemaVall Ft.rlCtiOO 
Returns the maximum possible amount of available memory. 
ReSlJlt Type: longlnt 

Parameter List: no parameters 
Memavail returns the maximum number of words (not byteS) of heap and stacK 
space that could ever be available to the program, allowing for possible 
automatic expansion of the program's data segment. Note that the result of 
memavaU can Change over time even if the program does not allocate any heap 
space, because of activities by the operating system or other processes in the 
system. . 

11-5 



Pascal ReFerence I'1antIal Standard ProcedUres & Funclions 

11.3 Tr~er FlIlCtions 
The procedures pack and ~, described by Jensen and Wirth, are not 
supported. 

11.3.1 The Trt.rE FlIlCtion 
Converts a real value to a longint value. 
Result TYPe: longint 

Parameter List: tn.flC(x) 
1. X is an expression with a value of type real. 

Trunc(x) returns a lorglnt result that is the value of x rounded to the nearest 
whole number that is between 0 and x (inclusive). If x 1s exactly halfway 
between two whole numbers, the result is the even whole number. 

11.3.2 The ROl.Ild FlIlCtion 
Converts a real value to a longint value. 
Result Type: longint 

Parameter List: l'OU'ld(x) 

1. x is an expression with a value of type real. 
ROlI1d(x) returns a longint result that is the value of x rounded to the nearest 
whole number. If xis exactly halfway between two whole numbers, the result is 
the whole number with the greatest absolute magnitude. 

11.3.3 The Ord4 FlIlCtion 
Converts an ordlnal-type or pointer-type value to type longint. 
Result Type: longlnt 
Parameter List: Ord4( x) 

1. xis an expression with a value of ordinal-type or pointer-type. 
ordll(x) returns the value of X, converted to type longlnt. If xis of type ltoJint, 
the result is the same as x. 
If x is Of pointer-type, the result is the correspOnding physiCal address, of type 
longtnt. 
If x is of type integer, the result is the same numerical value represented by X, 
but of type longint. This 1s useful in arithmetic expressions. For example, 
consider the expression 

abc*XyZ 

where both abc and xyz are of type Integer. By the rules given in Section 
3.1.1.2, the result of this mUltiplication is Of type !nt-eger (16 bits). If the 

11-6 



Pascal ReFerence Manual Stanttard Procel1lJres & Ftll7Ctlons 

mathematical product Of abc and xyz cannot be represented in 16 bits, the 
result Is the low-order 16 bitS. To avoid this, the expression can be written as 

orc.I4( abc )*xyz 
This expression causes 32-bit arithmetic to be used, and the result is a 32-bit 
kJ1gInt value. 
If xis of an ordInal-type other than integer or IOngint,the numerical value of 
the result is the ordinal numtJer determined by mapping the values of the type 
onto consecutive non-negative integers starting at zero. 

11.3.4 The Pointer FlIlCtion 
converts an integer or looglnt value to poInter-type. 
Result TYPe: pointer 
Parameter List: po1nter(x) 

1. x Is an expression with a value of type integer or longint. 
Pointer(x) returns a poInter value that corresponds to the physiCal address x. 
This pointer Is of the same type as nil and Is assignment -compatible with any 
painter-type. 

11.4 Arithmetic FlIlCtions 
In general, any real result returned by an arithmetic function is an 
approximation. There are two exceptions to this: the result of the abs function 
is exact, and the result of the pwroften function is exact when the parameter n 
is In the range 0 s n s 10. 

11.4.1 The Qd(J FlIlCtion 
Tests whether a whole-number value is Odd. 
Result TYpe: boolean 

Parameter List: odd(X) 

1. x is an expressIon with a value of type integer or longint. 
CJdd(x) returns true if x 1s Odd; otherwise it yieldS false. 

11.4.2 The Abs FlIlCtion 
Returns the absolute value of a numeric value. 
Rest/lt rype: same as parameter 
Parameter List: abS(x) 

1. xis an expression with a value of type real, integer, or longint. 
AbS(x) returns the absolute value of x. 

11-7 



Pascal Reference fv1anlJaJ 

11.4.3 The Sqr Fl.flCtion 
Returns the square of a numeric value. 
Result TYPe: depends on parameter (see belOW) 
Parameter List: sqr(x) 

Standard Procedllres 8- FlJIlClions 

1. xis an expression with a value of type real, Integer, or longint. 
SQr(x) returns the square of x. If x is Of type real, the result Is real; if x is of 
type longlnt, the result Is longlnt; and if x is of type Integer, the result may be 
el ther integer or longlnt. 
If xis Of type real and floating-point overflow occurs, the result is +00. 

11.4.4 The Sin Fl.flCtion 
Returns the sine Of a numeric value. 
Result TYpe: real 
Parameter List: s1n(x) 

1. x is an expression with a value of type real, Integer, or longint. This value 
is assumed to represent an angle in radians. 

S1n(x) returns the sine of x. 
11.4.5 The COS Fl.flCtion 

Returns the cosine Of a numeric value. 
Result TYpe: real 
Parameter List: cos( x) 

1. x Is an expression with a value of type real, integer, or longint. This value 
Is assumed to represent an angle In radians. 

Cos(x) returns the cosine of x. 
11.4.6 The Exp Fl.flCtion 

Returns the exponential of a numeric value. 
Result TYpe: real 
Parameter Ljst: exp(x) 

1. x is an expression with a value of type real, integer, or longint. All 
possible values are valid. 

Exp(x) returns the value of eX, where e is the base of the natural logarithms. If 
floating-point overflow occurs, the result is +00. 

11-8 



Pascal ReFerence ,.,1antIal StandaI'd ProcedtJres & FlIflClions 

11.4.7 The Ln FlIlCUon 
Returns the natural logarithm of a numeric value. 
Result Type: real 

P8J"8meter List: In(x) 

1. x Is an expression with a value of type real, integer, or longint. All 
non-negative values are valid; negative values are invalid. 

If x Is non-negative, In(x) returns the natural logarithm (log e) Of x. 
If x is negative, a diagnostic NaN is prOduced and the Invalid Operation signal is 
set (see Appendix D). 

11.4.8 The Sqrt FlIlCtion 
Returns the square root of a numeric value. 
Result TYPe: real 

ParameterList: sqrt(x) 
1. x is an expression with a value of type real, Integer, or longint. All 

non-negative values are valid; negative values are invalid. 
If x Is non-negative, sqrt(x) returns the positive square root of x. 
If x Is negative ... a diagnostic NaN Is produced and the Invalid Operation signal Is 
set (see Appendix D). 

11.4.9 The Arctal FlIlCtion 
Returns the arctangent of a numeric value. 
Result Type: real 

Parameter List: arctcrl(x) 
1. x Is an expression with a value of type real, integer ... or longint. All 

numeric values are valid ... inclUding :tOO. 

Arctar(x) returns the principal value ... In radians, of the arctangent of x. 
11.4.10 The Pwroften FlIlCtioo 

Returns a specified power Of 10. 

Resuit Type: real 

Parameter List: pwroften(n) 
1. n Is an expressIon with a value of type integer. 

If -lj.5 s n s 38, then pwroften(n) returns lOn. The result is mathematically 
exact for 0 s ns 10. If ns -li.6, the result Is 0; If n2: 39, the result Is +00. 

11-9 



Pascal ReFerence fvIantIal Standard ProcedLlres & Funclions 

11.5 Ordlnal FlIlCtions 
11.5.1 The Oro FlIlCtion 

Returns the ordinal number of an ordinal-type or pointer-type value. 
Result TYpe: integer or longlnt 
Paran7eterLjst:ord(x) 

1. xis an expression with a value of ordinal-type or pointer-type. 
If xis of type Integer or longtnt, the result is the same as x. 

If x is Of pointer-type, the result is the corresponding physical address, of type 
longint. 
If x is of another ordinal-type, the result is the ordinal number determined by 
mapping the values of the type onto consecutive non-negative whole numbers 
starting at zero. 
For a parameter of type char, the result is the corresponding ASCII code. For a 
parameter of type boolean, 

Ortl(false) returns 0 
ord(true) returns 1 

11.5.2 The Olr FlIlCtion 
Returns the char value corresponding to a whole-number value. 
Result TYpe:char (but see below) 
Paran7eter Ljst: chr(x) 

1. x is an expression with an Integer or longlnt value. 
Olr(x) returns the char value whose ordinal number (Le., its ASCII code) is ~ if 
x is in the range 0 .. 255. If x is not in the range 0 .. 255, the value returned is not 
within the range of the type char, and any attempt to assign it to a variable of 
type Char \Hill cause an error. 
For any Char value Ch, the following is true: 

chr(oro(eIl» = ell 

11.5.3 The SlIce FlIlCtlon 
Returns the successor of a value of ordinal-type. 
Result 7ype:same as parameter (but see below) 
Paran7eterLjst: succ(x) 

1. xis an expression \Hith a value of ordinal-type. 
SUCC(x) returns the successor of X, if such a value exists according to the 
inherent ordering of values In tne type of x. 

11-10 



Pascal ReFerence ""antJal Standard Procedl/re5 & FLIflCt.ions 

If x is the last value in the type of X, it has no successor. In this case the value 
returned Is not within the range of the type of X, and any attempt to assign it to 
a variable of this type will cause unspecified results. 

11.5.4 The Pred Ft.flCtlm 
Returns the predecessor of a value of ordinal-type. 
Result ~:same as parameter (but see below) 
Parameter Ljst: pred(x) 

1. xis an expression with a value of ordInal-type. 
Pred{x) returns the predecessor of X, if such a value exists according to the 
inherent ordering of values in the type of x. 
I f x is the first value in the type of X, it has no predecessor. In this case the 
value returned Is not within the range of the type of X, and any attempt to 
assign it to a variable Of this type will cause unspecified results. 

11.6 string ProcedUres and Ft.flCtions 
The string procedures and functions do not accept packed array of char 
parameters, and they do not accept Indexed string parameters. 

11.6.1 The Lengtll FlJ'lCtim 
Returns the current length of a value of string-type. 
Result ~: integer 
Parameter Ljst: lengtll{str) 

1. str Is an expression with a value of strIng-type. 
Length(str) returns the current length of str. 

11.6.2 The Pas FlIlCtion 
Searches a string for the first occurrence Of a specIfIed SUbstring. 
RestJlt Type: Integer 
Parameter Ljst .. pos{ Stbstr, str) 

1. substr is an expression with a value of string-type. 
2. str is an expressIon with a value of string-type. 

Pos(swstr, str) searches for substr within str" and returns an integer value 
that Is the index of the first character of swstr wI thin str. 
If subStr Is not found, pos(stiJstr, str)returns zero. 

11-11 



Pascal Reference HantIal Standard Procedtlres & Fl/flClions 

11.6.3 The Concat FlI1Ction 
Takes a sequence of strings and concatenates them. 
ReSt/it 7)tpe: string-type 
Parameter List: concat( strl [, str2, ... str n]) 

• Each parameter Is an expressIon wIth a value of strIng-type. Any practical 
number of parameters may be passed. 

Concat(strl, ... , str n) concatenates all the parameters in the order in which 
they are written, and returns the concatenated string. Note that the number of 
characters in the result cannot exceed 255. 

11.6.4 The COpy FlI1Ction 
Returns a substring Of specified length" taken from a specified position within 
a string. 
ReSt/it 7)tpe: strIng-type 
Parameter List: copy( source, index, COlIlt) 

1. source is an expression with a value of string-type. 
2. index is an expression with an integer value. 
3. COlIlt is an expression with an integer value. 

COpy(source, index,. COlIlt) returns a string containing COlIlt characters from 
source" beginning at source[1ndex]. 

11.6.5 The Delete Procewre 
Deletes a substring of specified length from a specified position within the 
value of a string variable. 
Parameter List: delete ( (Jest, index,. COlIlt) 

1. dest is a variable-reference that refers to a variable of string-type. This 
Is a variable parameter. 

2. index is an expression with an integer value. 
3. OOlIlt is an expression with an integer value. 

Delete(dest, index,. ctUlt) removes COlIlt characters from the value of dest, 
beginning at dest[lndex]. 

11.6.6 The Insert ProcedUre 
Inserts a substring into the value of a string variable, at a specified position. 
Parameter List: insert ( source, dest, index) 

1. source is an expression with a value of string-type. 

11-12 



Pascal ReFerence frlantJa/ Standard ProcedlJ.res &- FtJl7CtJons 

2. dest is a variable-reference that refers to a variable of string-type. This 
Is a varIable parameter. 

3. Index is an expression with an integer value. 
Insert(source, dest, Index) inserts source into dest. The first character Of 
source becomes dest[lndex]. 

11.7 Byte-Or1ented Proceo.ares Md Fl.IlCtions 
These features allow a program to treat a program variable as a sequence of 
bytes, without regard to data types. 

NOTE 
The slzeof function can be used to determine the number of bytes in a 
variable. 

These procedures do no t ype-Checklng on their source or dest actual­
parameters. However, since these are variable parameters they cannot be 
indexed If they are paCKed or If they are of string-type. If an unpacked "byte 
array" Is desired, then a variable of the type 

array [10 •• hi] of -128 .. 127 

should be used for source or dest. The elements In an array of this type are 
stored in contiguous bytes, and, since it Is unpacked, an array of this type can 
be used with an index as an actual-parameter for these routines. 

JM?1 EfvENJATION OOTE 
Currently, an array wlth elements of the type 0 .. 255 or the type CIlar 
has its elements stored in words, not bytes. 

11.7.1 The Moveleft ProcedUre 
Copies a speCified number of contiguous bytes from a SOUIce Ian~ to a 
destination r~ (starting at the lowest address). 
Parameter List: PDVel.eft( source, dest, COlIlt) 

1. source is a variable-reference that refers to a variable of any type except 
a file-type or a structured-type that contains a file-type. This is a 
variable parameter. The fIrst byte allocated to source (lowest address 
within source) is the first byte of the source range. 

2. dest is a variable-reference that refers to a variable of any type except a 
file-type or a structured-type that contains a fIle-type. This is a varIable 
parameter. The first byte allocated to dest (lowest address within dest) 
is tne first byte of the destination range. 

11-13 



Pascal Refefence fvlantJaJ Standard PfocedlJfes & FlIIlCUons 

3. COlIlt is an expression with an integer value. The source range and the 
destination range are each cot.rlt bytes long. 

t-1OVeleft(source, dest, COlIlt) copies cot.rlt bytes from the source range to the 
destination range. 
MoVeleft starts from the "left It end of the source range (lowest address). It 
proceeds. to the "right" (higher addresses), copying bytes into the destination 
range, starting at the lowest address of the destination range. 
The COlIlt parameter is not range-checked. 

11.7.2 The Moveri1Jlt ProcedUre 
t-1OVerl~t Is exactly like moveleft (see above), except that It starts from the 
"right" end of the source range (highest address). It proceeds to the "left" 
(lower addresses), copying bytes into the destination range, starting at the 
highest address of the destination range. 
The reason for having both moveleft and moverlgu is that the srurce and 
destination ranges may overlap. If they overlap, the order in Which bytes are 
moved is critical: each byte must be moved before it gets overwritten by 
another byte. 

11. 7 .3 The Slzeof FlIlCtion 
Returns the number of bytes occupied by a specified variable, or by any 
variable of a specified type. 
Result Type: integer 

Pafa~tefLjst:sizeof(ld) 

1. id is either a variable-identifier or a type-identifier. It must not refer to 
a file-type or a structured-type that contains a file-type, or to a variable 
of such a type. 

S1zeof(id) returns the number of bytes occupied by id, if td is a variable­
identifier; If id Is a type-identifier, it returns the number of bytes occupied by 
any variable of type id. 

11.8 PcD<ed Array of Char ProcedUres CI1d FlIlCtiros 
OOTE. 

These routines operate only on packed arrays of Char. The packed 
arrays of char cannot be sUbscripted; the operations al ways begin at the 
first character In a packed array of char. 

11-14 



Pascal ReFe.rence fvIantJaJ StandaId P.rocedU.res "FtIflCtJons 

11.8.1 The scaneq Ft.IlCtion 
Searches a packed array of Char for the first occurrence of a specIfied 
character. 
Result Type.: Integer 

Pa.rameterList: sca'leq(liPIit, en, paoc) 

1. limit Is an expresslon wlth a value of type Integer or longlnt. It is 
truncated to 16 bits, and is not range-checked. 

2. en Is an expressIon with a value of type Char. 

3. paoc is an expression with a value of type packed array Of Char. This is a 
variable parameter. 

5Ca1eQOlmit, ch, pace) scans pace, lOOkIng for the fIrst occurrence of en. The 
scan begins with the first character In pace. If the character is not found 
within llmit enaracters from the beginning of pcrJC, the value returned is equal 
to limit. Otherwise, the value returned Is the number of characters scanned 
before en was found. 

11.8.2 The SCCIIle FLIlCtion 
This function 15 exactly like scaleQ, except that it searches for a character 
that does not match the ch parameter. 

11.8.3 The F1llChar ProceaJre 
Fills a specifIed number of characters in a packed array Of char with a specified 
character. 
Parameter List: f111char(paoc, COlIlt, ch) 

1. paoc Is an expression wIth a value of type packed array Of char. This is a 
variable parameter. 

2. COtflt Is an expression with a value of type Integer or looglnt. It is 
truncated to 16 bits, and is not range-Checked. 

3. ch Is an expression with a value of type Char. 

FUlchar(paoc, ctU1t, ch) writes the value of ch into COl.Ilt contiguous bytes of 
memory, starting at the first byte Of paoc. 
Since the COlI'lt parameter is not range-checked, it Is possible to write into 
memory outside of pace, wIth unspecified results. 

11-15 



Pascal Reference fvIantIaJ Standard Procedtlres & FlII7Ctjons 

11-16 



Pascal Ret'"eIetJC8 Mant/al 

Chapter 12 
THE COMPIIIER 

Tile COmpjjeI 

12.1 CompUer Commands .................................................. 12-3 
12.2 CondItional Compilation .............................................. 12-4 

12.2.1 compUe-Time Variables and the $DECL Command .......... 12-4 
12.2.2 The $SETC Command ......................................... 12-5 
12.2.3 compHe-Time Expressions ................................... 12-5 
12.2.4 The $IFC, $ELSEC, and $ENDC Commands .................. 12-6 

12.3 Optimization of If-Statements ....................................... 12-7 
12.4 Optimization of While-Statements and Repeat-Statements ........ 12-8 
12.5 Efficiency of Case-Statements ...................................... 12-8 

12-1 



Pascal ReFerence ManIJal Tile COmpHer 

12-2 



Pascal Reference MantJaJ Tile COmpj}er 

THE COMPIlER 

The Pascal comp1ler translates Pascal source text to an intermediate code ... and 
the code generator translates the Intermediate code to MC68000 Object code. 
Instructions for operating the compHer and code generator are given in the 
WOfkSlJOp Reference MantIal for tile Lisa 

12.1 Compiler COmrralds 
A compiler command Is a text construction, embedded in source text, that 
controls compUer operation. Every compUer command Is written within 
comment delimiters, { ... } or (* ... *). Every compiler command begins with the $ 
character ... which must be the first Character inside the comment delimiters. 
In this manual ... compller commands are shown in upper case to help distinguish 
them from Pascal program text; however... upper and lower case are 
interchangeable In compiler commands just as they are In Pascal program text. 
ThefolloWlng complIer commands are avallable: 
Input Elle Control 

$Ifl1enare 

$Ufl1enare 

Start taking source code from file fUename. When the 
end of thIs fUe Is reaChed, revert to the previous source 
fUe. The filename cannot begin with + or -. 
Search the file filename for any units SUbsequently 
specified in the uses-clause. Does not apply to intrinsic­
units. 

Cgotrol af COde Generation 

$C+ or $C- Turn code generation on (+) or off (-). This is done on a 
proCedUre-by-procedure basis. These commands should 
be written between procedures; results are unspeCified if 
they are written inside procedures. The default is $C+. 

$R+or $R- Turn range CheckIng on (+) or off (-). At present .. range 
Checking is done in assignment statements and array 
indexes and for string value parameters. The default is 
$R+. 

$X+or$X-

Start putting code modules into segment segname. The 
default segment name is a string of blanks to deSignate 
the "blank segment .. II In which the main program and all 
built-in support code are always linked. All other code 
can be placed into any segment. 
Turn automatic run-time stack expansion on (+) or off (-). 
The default is $X+. 

12-3 



Pascal ReFerence MantJal 

$()+or $0-

Tile COmpiler 

Turn the generation of procedure names in ooject code on 
(+) or off (-). These commands ShoUld be written between 
procedUres; results are unspecified if they are written 
inside procedUres. The default is $0+. 

Condit/anal compilat/on 

$DECL list (see Section 12.2 oelow). 
SELSEC (see Section 12.20elow). 
$EN)C (see Section 12.2 oelow). 
$IFC (see Section 12.20elow). 
$SETC (see Section 12.20elow). 

L jstJng control 

Sf filenaI'IB 

$Lfllenawe 

$L+or $L-

Start making a listing of compiler errors as they are 
encountered. Analogous to $L filename (see oelow). The 
default is no error listing. 
Start listing the compilation on fUe fUename. If a listing 
is being made already, that fUe is closed and saved prior 
to opening the new fUe. The default is no listing. 
The f1rst + or - following the $I... turns the source listing 
on (+) or off (-) without Changing the l1st file. You must 
specify the listing f11e oefore using $1...+. The default Is 
$1..+, but no listing is prOdUced if no listing fUe has oeen 
specif1ed. 

12.2 conditional COfl1lilatlon 
Conditional compilation 1s controlled by the $IFC, SELSEC, and $EN)C 
commands, which are used to oracKet sections of source text. Whether a 
particular bracKeted section of a program is compiled depends on the boolem 
value of a compile-time expressjon, which can contain compjIe-tjrne variables, 

12.2.1 COmpile-Time Variables and the «EeL COmmand 
Compile-time variables are completely independent Of program variables; even 
if a compile-time variable and a program variable have the same identifier, 
they can never oe confused oy the compiler. 
A campUe-time variable is declared when it appears in the identifier-list Of a 
$[EeL command. 
Example OF compile-time varl8IJledecl8I8tion: 

{$lECL LIBVERSION, PROOVERSION} 

12-4 



Pascal ReFerence j'v1antJal The COmplier 

This declares LIBVERSION and PROGVERSION as complle-time variables. 
Notlce that no types are specified. 
Note the following points about compUe-time variables: 

• Complle-time variables have no types, although their values do. The only 
possible types are integer and boolE9l. 

• All compUe-time variables must be declared before the end of the 
variable-declaration-part of the main program. In other words a $[)ECl 
command that declares a new compile-time variable must precede the 
main program's procedure and function declarations (If any). The new 
compUe-time variable is then Known throughout the remainder of the 
compilation. 

• At any poInt in the program, a compUe-time variable can have a new value 
assigned to it by a $SETC command. 

12.2.2 The $SETC CommcnJ 
The $SETC command has the form 

{$SETC ID := EXPR} 

where 10 is the identifier of a compile-time variable and EXPR Is a 
compile-time expression. EXPR is evaluated immediately. The value of EXPR 
Is assigned to 10. 

£xampieOF asslgnmenl locamplie-tlme varIable: 

{$SETC UBVERSI~ := 5} 

This assigns the value 5 to the compile-time variable LIBVERSION. 
12.2.3 COmpile-Time Expresslms 

compile-time expressions appear In the $SETC command and in the $IFC 
command. A compile-time expression is evaluated by the compiler as soon as it 
is encountered in the text. 
The only operands allowed in a compUe-time expression are: 

• Compile-time variables 
• Constants of the types Integer and boolea'l. (These are also the only 

possible types for results of compile-time expressions.) 
All Pascal operators are allowed except as follows: 

• The in operator Is not allowed. 
• The @ operator is not allowed. 
• The / operator is automatiCally replaCed by dlv. 

12-5 



Pascal Reference MantIal Tile COmpiler 

12.2.4 The $IFC, $ELSEC, and $EN)C COmrna1CJS 
The SELSEC and SEr.DC commands taKe no arguments. The SIFC command has 
the form 

{SIfC EXPR} 

where EXPR is a compile-time expression with a bOOlean value. 
These three commands form constructions simllar to the Pascallf-statement, 
except that the $EN)C command is always needed at the end Of the $IFC 
construction. SELSEC Is optional. 
Example of conditionally compiledCode: 

{$IfC PROGVERSION )= LIBVERSION} 
K := kvall(data+indat); 

{$ELSEC} 
k := kval2(data+cpindat"'); 
{~} 

wrlteln(k) 

If the value of PROOVERSION is greater than or equal to the value of 
UBVERSION, then the statement k:=kvall(Clata+indat) is compiled, and the 
statement k:-kval2(Clata+cp1ncJat -)is skipped. 
But if the value of PROOVERSION is less than the value of LIBVERSION, then 
the first statement is skipped and the second statement is compiled. 
In either case, the writeln(k) statement is compiled because the conditional 
construction ends with the $EJ\()C command. 
SIFC constructions can be nested within eaCh other to 10 levels. Every SIFC 
must have a matChing $ENJC. 
When the compiler Is SKipping, all commands in the SKipped text are ignored 
except the following: 

$ELSEC 
$EN)C 
$IfC 
$I 

(so that $EI'IJC's can be matched properly) 
(text from another file is scanned even if it is being 
skipped, in case it contains SELSEC, SENOC, or SIFC 
commandS). 

All program text is ignored during Skipping. If a listing is produced, each source 
line that is skipped is marked with the letter S as its "lex level. " 

12-6 



Pascal Reference ,.,lantJaJ Tile COmpller 

12.3 Optimization of If-Statements 
When the compUer finds an if-statement controlled by a boolean constant, it 
may be unnecessary to compile the then part or the else part. For example, 
given the declarations 

const always = true; 
never = false; 

then the statement 
if never then stateMent 

will not be compiled at all. In the statement 

1f never then stateMent! 
else stateMent2 

"statement1" is not compiled; only "statement2" is compiled. Similarly, in the 
statement 

if always then stateMentl 
else stateMent2 

only "statementl" is compiled. 

The interaction between this optimization and conditional compilation can be 
seen from the fOllowing program: 

PrograPl Foo; 

{$SETC FLAG := FAlSE} 

canst pi = 3.1415926; 
size = 512; 

{$IFC FLAG} 
debUg = false; {a boolean constant .. if FLAG=true} 

{$ENDC} 

var 1, j, K, 1, PI, n: integer; 
{$IFC NOT FLAG} 

debUg: boolean; {a boolean variable, 1 f FLAG=false} 
{$ENDC} 

{$IFC NOT FLAG} 
procedUre IrItlatPDde; 

'~teractive procedUre to set global boolean variable, 
debUg} 

end; 
{$Bf)C} 

12-7 



Pascal ReFerence MantJaI 

begin {rrain} 
{$IFC NOT FLAG} 

~tI'IXJe; 
{$OOC} 

if debUg then begin 
staterent1 

end 

end. 

else begin 
staterent2 

end 

Tile COmpiler 

The way this is compUed depends on the compUe-Ume variable FLAG. If FLAG 
Is false, then debug 1s a boolean variatJle and the \tJhatmode procedure Is 
compiled and called at the beginning of the main program. The if debug 
statement is controlled by a boolean variable and all of it Is compiled, in the 
usual manner. 
But If the value of FLAG is changed to true, then debug is a constant with the 
value false, and whatmode is neither compiled nor called. The if debug 
statement Is controlled by a constant, so only its else part, "statement2", is 
compiled. 

12.4 Optimization of wnlle-Statements em Repeat-statements 
A while-statement or repeat-statement controlled by a boolean constant does 
not generate any conditional branches. 

12.5 EffIcIency Of case-Statements 
A sparse or small case-statement will generate smaller and faster code than 
the correspondIng sequence Of If-statements. 

12-8 



Pascal ReFerence frIatJtJaJ COmparison to Apple 11 " III Pascal 

Appendix A 
COMPARISON TO APPLE IT AND APPLE ill 

PASCAL 

E:~lCWlS •••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••.••• ~-3 
[)eIetiCflS •••••••••••••••••••••••••••••••••••••••••.••••••••••.•••••••••••••••.••• ~-3 
Otne'r Dlffereroes .............................................................. A-4 

A-l 



Pascal ReFerence /t1aVaJ COnparlson to Apple 11 & III Pascal 

A-2 



Pascal Reference I"1afJIJaJ COmparison to Apple II &- III Pascal 

COMPARISON TO APPLE II AND 
APPLE ill PASCAL 

This appendIx contains lists of the major differences between the Pascal 
language on the Lisa and the PasCal implemented on the Apple II ana Apple III. 
Please note that these lists are not eXhaustive. 

Extensions 
The following features have been added on the Lisa: 

• @Operator -returns the pointer to its operand (see Section 5.1.6) 

• Heapresult, pointer, and ord4 functions (see Sections 11.2.2, 11.3.3, and 
11.3.4) 

• Keypress function built into the language, with same effect as the keypress 
function in the applestuff unit of Apple II and Apple III Pascal (see Section 
10.3.7.1) 

• Hexadecimal constants (see section 1.4) 

• Otherwise-clause in case-statement (same as Apple III Pascal; see section 
6.2.2.2) 

• Global goto-statement (see Sect10n 6.1.3) 

• A file of char type that Is distinct from tne text type (see sections 3.2.4 and 
10.3)' 

• NUmerous compiler commands (see Section 12.1) 

• Procedural and functional parameters (see Sections 7.3.3 and 7.3.4) 

• Stronger type-cheCk.lng (see sections 3.4 and 7.3.5) 

Deletions 
The fallowing features are not inclUded on the Lisa: 

• Turtlegrapnlcs, applestuff, and other standard units Of Apple 11 and Apple 
III Pascal. 

• Interactive type (not needed, as the I/O procedures will do tne right tning 
with a f11e of type text if it is opened on a character deVice). 

• Keyboard fUe - same effect can be obtained by openIng a fUe Of type text 
on the device -KEYBOARD (see Section 10.3). 

• unit (cJevice-oriented) I/O procedures. 
• Recognition of the ETX Character (control-G) to mean "end of fUe" in input 

from a character device. 

A-3 



Pascal ReFerence /t1aI'UJJ CtJnparlson to Apple II &- III Pascal 

• "Long Integer" data type, wIth length attrIbUte In declaration. Replaced by 
the lmglnt type (see section 3.1.1.2) 

• '"InItialization" COde In a lI'l1t (see Section 9). 

• The ab111ty to create new intr1ns1c-unlts and Install them In the system. 
(See Section 9.) 

• Reset procecture withoUt an external fUe title, for use on a file that Is 
already open (see Section 10.1.1). To obtain the same effect, close the fUe 
and reopen it. 

• Treesearch. 

• Bytestream, wordStream (ctata types In Apple III Pascal) 
• Exlt(program) - The exlt(ldent1fier) form works, and the identifier can be 

the program-Identifier. Halt can also be used for orderly exit from a 
program (see sectlonll.l). 

• Extended comparisons (see section 5.1.5.) 

• Scanfunction. Replaced by scaneqand sca'Ile (see 5ecUon 11.8) 

• Bit-wise boolecll operations 
• segment keyword for procedUres and functions. use the SS command 

instead. (see section 12.1.) 

• The following compiler commands (see section 12.1): 

• $1+ and $1- (no automatic I/O checking; program must use loresuIt 
function) 

• $G ($G+ Is the assumption on the Usa) 

• IN and SR (for resident code segments) 
.S' 
e$Q 

• $8+ and $8++ for swapping 
• SU+ and SlJ-(for user Program) 
.$1 

In general, do not assume that a compiler command used in Apple II or Apple 
III Pascal Is valid on the Usa. Furthermore, do not assume that an Apple II 
or Apple III Pascal compiler command is "harmless" on the Lisa, as it may be 
implemented with a different meaning. 

A-4 



Pasca/ ReFerence /t1atVaJ COnparlson to Apple II " III Pascal 

Other Dlfferera!S 
The fOllowing features of Pascal on the Usa are different from the 
correspondIng features of Apple II and Apple nI Pascal: 

• Size of all strIngs must be expl1citly declared (see Section 3.1.1.6). 

• Mod and dlv - Pascal on the Usa truncates toward 0 (see Section 5.1.2). 

• Apple II and Apple III Pascal Ignore underscores; Pascal on the Usa does 
not. They are legal characters In identifiers (see section 1.2). 

• A goto-statement cannot refer to a case-constant In Pascal on the Lisa (see 
section 6.1.3). 

• Tn.n: is different (see Section 11.3.1). 

• wrtte(b) Where b is a boolea1 will write either' TRUE' or 'FALSE 'in Pascal 
on the Usa (see section 10.3.3). 

• Whether a file Is a textf11e does not depend on whether 1ts name ends with 
". TEXT" When It is created. Instead .. any external flle opened with a flIe 
variable of type text is treated as a textfile .. while a file opened with a file 
variable of type me of char Is not; It is treated as a "dataflle," I.e. a 
straight file of records Whim are of type Char (see sections 3.2.4 and 10.2). 

• Get, JXJt, and the contents of the file buffer variable are not supported on 
files of type text. Use only the text-oriented I/O procedures with textflles. 

• Eoln and eof functions on files of type text work as they do on interactive 
flIes in Apple II and Apple III Pascal. 

• Pascal on the Lisa does not let you pass an element of a packed variable as a 
variable parameter (see Sections 7.3.2,11.7, and 11.8)' 

• Limits on sets are different (see Section 3.2.3) 

• The control variable Of a for-statement must Oe a local variable (see 
section 6.2.3.3) 

• In a write or wrlteln call.. the default field lengths for Integer and real 
values are 8 and 12 respectively (see section 10.3.3) 

A-5 



Pascal ReFerence Maru1l COnparlson to Apple II & III Pascal 

A-6 



Pascal ReFerence J'vla7tlal Compiler Anomalies 

AppendixB 
KNOWN ANOMALIES IN THE COMPILER 

Scope of Declared constants ...............................•...........•...... B-3 
SCOpe of Base-Types for Pointers ............................•................ B-4 

B-1 



Pascal ReFerence f\'1antJaI COnpjJer Anomalies 

B-2 



Pascal ReFerence Manual COmpiler AnomalJes 

KNOWN ANOMALIES IN THE 
COMPUER 

This appendix describes the known anomalies In the current implementation Of 
the compiler. 

SCOpe Of Declared COnstCllts 
consIder tne following program: 

prograPI cscopel; 
coost ten=10; 

procedlre p; 
cmst ten=ten; {THIS SIGI.D BE PH ERRm} 
begin 

writeln(ten) 
em; 

begin 
P 

eOO. 

The constant declaration In procedure p ShoUld cause a complIer error, because 
it is illegal to use an identifier within its own declaration (except for pointer 
identlfiers). However, the error is not detected by the compiler. The effect is 
that the value of the global constant ten is used in defining the local constant 
ten, and the writeln statement writes "10". 
A more serious anomaly of the same Idoo Is 1llustrated by the following 
program: 

progr8PI csc0pe2i 
coost red=l.; vtolet=2: 
procal.Ire q; 

type arrayT~y[red •• violetl Of integer; 
COlor=(violet,blU8,green,yellou,OnllQ8,red); 

var arrayVar:arrayType; c:color; 
begin 

arrayVar[ 1] : =1; 
c:=red; 
wrtteln( ort1( c» 

end; 

begin 
q 

eOO. 

B-3 



Pascal ReFerence /I1anual COnpller AnomalIes 

Within the procedure q, the global constants red and violet are used to define an 
array Index type; tne effect of array(red •• vlolet]Is equIvalent to array[1 •• 2]. In 
the declaration of the type color, the constants red and vlolet are lOcally 
redefIned; they are no longer equal to 1 and 2 respectively --instead they are 
constants Of type color with ordinallt1es 5 and 0 respectively. The writeln 
statement wrItes "'5 ... 

The use of red In the declaration of the type color shOUld cause a compUer error 
but does not. 
Consider the statement 

arrayVar[ 1] : =1; 
If this statement is replaced by 

arrayVar[red]:=l; 
a compUer error w111 result, as red Is now an Ulegallnaex value for arrayVar -
even thoUgh arrayvar is Of type arrayType and arrayType Is defined by 
array(red •• vlolet]. 
To avoid this kind of Situation, avoid redefinition of constant-identifiers in 
enumerated scalar types. 

~ Of Base-Types for PoInters 
Consider the following program: 

progI8'I PscqJe1; 

type s=O •• 7; 

proceaae Pl8kecurrent; 
type sptr= - s; 

s=record 
ch:char; 
0001:0001881 

em; 
var current:s; 

ptrs:sptr; 
begin 

nev(ptrs); 
ptrs- : =eurrent 

em; 
begin 

P1Bkecurrent 
end. 

Here we nave a global type s, whicn 1s a suurange of integer; we also have a 
local type $, which Is a record-type. Within the procedure makeCUrrent, the 
type sptr Is defined as a pointer to a variable of type s. The intention is that 



Pascal ReFerence /'-'/anuaJ Conpller Anomalies 

this ShoUld refer to the local type s, defined on the next line of the program; 
unfortunately, hOwever, the compHer does not yet know about the local type s 
and uses the glObal type s. ThUs ptrs becomes a pointer to a variable of type 0 •• 7 
instead of a pointer to a record. consequently the statement 

ptrs.... := current 

causes a compller error sInce ptrs .... and current are of Incompatible types. 
To avoid this kind of situation,re-Cleclare the type s lOCally before declaring 
the pointer-type sptr based on s. Alternately, avoId re-declaration Of 
identifiers that are used as base-types for pointer-types. 

6-5 



Pascal ReFerence fvfantJal COnp/ler Anomal/es 

8-6 



Pascal Reference I'1aIJUal 

AppendixC 
SYNTAX OF THE LANGUAGE 

Intr~ctlon ............•...............•....................................... ()-3 
TOkerlS' and COr'lstartts ............................. "." .............. " ................ " ..• C-3 
BlocKs .. " .. ,," .. """ .. ,," "" " " "" •• ". " " " " " .. "" "" " "" " "" ""." "". " "" " " .. "" " " .. "" " " " " "" " .. " " " " " " .. " C--6 
Data Types •••••••••••••••••••••••••••.•...••.••.•••••••.•.••••..•••••.•••••••••• ()-7 
Variables"".""" .. """""",, .. ,,"""""""" """" "" .. """"" .. ,, ...... " ........................ ,," .. " ........ " ............ " .. C-l1 
Expressions .................................................................... ()-12 
Statements .......... " .......... " .... " .......... " ........................................................................ " ........ "" ........ C-14 
Procedures and FunctIons ....................................•................ ()-17 
Programs .......... " ......................... " ........ " ...... " .. " ........ "" ............... " .. " .. " ........ "" ...... "" .... " ............ C-19 
units .. " ...... " .......... " ........ " .............. " .......................................................... " ................................ " .... " C-20 

()-l 

Syntax 



Pascal ReFerence Manual Syntax 

j 

C-2 



Pascal ReFerence frIanUaJ 

SYNTAX OF THE LANGUAGE 
lntr{)(l£tlon 

This appendix collects the syntax diagrams found In the maln sections of this 
manual. see tI1e Preface for an introdUction to syntax diagrams. 

Tokens cI1d COOStants (see Olapter 1) 

Jetter ~I ® t/1r(JlJf;l1 ®, @ through 01 ~ 

digit I I ------... ® tIJrot¢ ® I----+~ 

identiFier 

dlgit-setptnCe C :1 OIgit I ) 

0-3 

Syntax 



Pascal Reference ManlJaJ Syntax 

.!J.hex~~~9Jf!.!·t~-sequence~=~/C_:~1 hex-digit I ) • 

U7Slgner:Hnteqer 

unsigned-real I •. 
--Idlglt~~dlglt-sequence: \ or 

. I '--.... __ '-.:./_ I ______ ~.I. scale-factort-' 

~~~mteger~ 
~ unsigned-real 1-1 -~--...

Slgned-numtJer .. llIlSlgned-number I ..
~ .. Sign ~

C-4

Pascal ReFerence tv/antJal syntax

qLJtet1-string-const8f1t

.C) I) q string-character 14-"

,,::::$~tr..~ing-clJar.~=..!=...:::'8C::.::t.='8T:"-"~l_-I·~lq,. o=;pl 0 arCR I J
l~ _______ -..~ .

quoted-cl1aracter-constant "0--.1 string-character ~

constant-decJaration .1 identifier ~ constant ~

constant constant-identifier

quoted-string
quoteO-ctlar L _______ ---:= __ •

c-s

Pascal Reference fvIanUaJ Syntax

BlOCks (see c::napter 2)

.::1Jl4:.:;tt;1(~~--a.t label-declaration-part

constant-declaration-part

type-declaration-part

variable-declaration-part

procedure-and-fLl'lCtion-declaration-part

statement-part 1-----------..

J8/Jel .1 dlglt-sequence I •

C01Stant-deCJaratJm-pert
.(const) (.r-I cons--tan-t--cj-ec-l-ar-at-ion---'I)

-4

C-6

Pascal Reference Mant/81

type-declaratim-part

-..c~(type) (~I type-declaration I) ~
4

variabJe-decJaration-parl

-c var) C 4 ~I varIaIlle-1leclaration I) ~

procedure-snd-fl.ll7Ction-decJaratiOl7-part

c~~==:p J
~"

slatement-parl .1 compotrld-statement I" •

Data Types (see 01apter 3)

type-Q!1cJaratlm ~I identifier ~ type ~

__ t~_~ Simple-type 1-----.

pointer-type t-----~.

C-7

Syntax

Pascal ReFerence Manual S)If1tax

real-type .. , rea1-type-identifler I

~tm~r:IiJ!:!!.""~'8l~-::J.t c:::::...-~91 subrange-type

enumerated-type

ordinal-type-identif1er

sulng-tjpe

~-string-·-)-(D--.j s1ze-attrioote I-(j) J
'--..f str1ng-type-ldentlf1er LI-------

size-attrJ/JUte .. , unsignetHnteger I

enumerated-trpe .. ~ identifier-list ~

.!J.Jden~tJ.~'f.!.!J1e.!::!'r.::::!.-ll!:::'$!...t -'""":C7"""~lldentifler I)
-----10~1---

C-8

Pascal ReFerence MantJaJ Syntax

sutJranqe-tyPe ~I constant J--O-.J constant J-+

structured-type-identifier 1-------

array-type

---Carray)-.(D (~IIndeX-typel)~ type I
-~O,.--

..

index-tyPe ., ordinal-type I .,

record-trpe ~(record) .,@-+
"\:j field-JIst ~

field-list fir-f-ixe-d--p-ar-t~1 ~ varlMt-part ~ \:0f ~

C-9

Pascal Reference Manual Syntax

flxet1-par1
(~ fleld-declaratloo I)
.... -----(GJ~41------

variant-part

~\l k)J~ltag-fleld-type~
identifier : ;

vsrJ8I1t

(~-I cons-tan-t I) ~0+<D-\1---tr~·CV----
_ r\... _ ~ field-list t--'
----4\.!.r~--

tag-fJeld-type ., ordlnal-type-identlfler r-.

set-type .~ ordinal-type t-+

file-type

C-10

Pascal ReFerence Manual Syntax

pointer-type .0-+1 base-type I •
\+I polnter-type-ldenUfier ~

/Jase-type ~ type-identifier •

Variables (see Olapter 4)

vari8IJJe-decJ8I8tion., identifier-list ~ type ~ ..

variable-reference

- 1 variable-identifier

Cj qualifier j4J

variable-identifier .1 identifier ~

riFie

flle-bUffer-symlJol 1---..... 1

polnter-object-symbol 1-----..

Inti!x -<D (.1 e.pressIm 1) .CD-
------tOJoe--

C-11

Pascal Reference Manual Syntax

fieJd-deSiQ?8tor .. a--.t identifier I ..

polnter-1JlJ{ect-symlJOl"0 ..

Express1ms (see Chapter 5)

..!::lJI7.:!.!~~if.~\S',::::.'(j...::'-ClJ/l.:.::::.:.::~~tan=t_~_ ... unsigned-number 1----_
1'--....... quoted-strlng-constant

..:.1i..:.8C:.:t::.:or=--_~_.-..::-__ ~ __ ..-t variable-reference 1----_.

C-12

Pascal Reference ManI/aJ Syntax

term

-essJon

expression
slmple-expresslon 1--.-------------_ ..

~---.. slmple-expresslon

. flI1Ctlon-caJl

.1 ft.rntion-identifler 1 , (• \.t actual-parameter-list t-"

C-13

Pascal Reference MantJal

actI.l81-parameter-llst 17\(I I .. ~) .w (• actual-parameter) .. ~

-------10 ... --
...::ac::::.t=uaJ~· :..J::!:'8T.::.:;g.:::.:'!T1e=ter=--_~~ expression 1--___ _

procerure-identifier

flllCtlCMn-l~tlfler

set-constrlJCtoi .(0 l J .(j)-+
(~ rnember-group J-I ---)--'

'-------jO~~--

~ ·1 expression 1"\ r-.. I or
~ expression t-'

statements (see ~ter6)

slmple-statement I---~

label -., digit-sequence I •

C-14

Syntax

Pascal ReFerence M8J7t/8l

,.;;Sl;;;,;· ='t!;...-$=t.='lJt=e.='ITleI1=t~~... assignment-statement

gato-statement 1------.......
assfg7ment-statement
----. variable-reference

function-identifier I--~..c

procetiIrtHtatement

expressIon

--~~I procedUre-identifier II-.....~---ac-tual---par-a-me-te-r--l-ls-t-~~ ~

qoto-statement ~~ label 1-+

..:$:.::tmc:..:::.::tUJ'l::.;'ed-s:::...::.::t.::.'lJ,.::te.::.:.'fTltlf1,.::.:.;t=--_~ compoll1d-statement 1--_

compound-statement

repeUtlve-statement ...----....

wlth-statement I-----';:O""'--i.

~(begIn) ("I statement I J ,,~
-,-~O~---

0-15

syntax

Pascal Reference I'1anU81 Syntax

if-statement expression

s~te~t~----------------~~

statement

case-statement express10n

otherwise-clause

..::::::CBSe==----.,..C 1 cmstant I) .. Q-t>I statement 1
----tO~--

-!..!::i!:!5'82:tf,!.!:tli~~~'$:.=ta:.:t::'8men=~t~_9'1 repeat -s~tement

whlle-statement

for-statement I---~----.

repeat-statement

- 1>(repeaifl.:! statement I) .. @-t>Iexpresslonf-
.. l ___ '-tO~I---

C-16

Pascal Reference MantJal Syntax

while-statement

--• .c(while H expression ~ statement ~.

control-variable initial-value

\---4 flnal-value statement

controJ-varialJle .1 variable-identifier I •

Initial-value .1 expressi~ •

flnaJ-vaJue' .1 expression I •

wlth-statement

~r-r-eco-r-d-v-ar-iab-le--r-ef-e-rence---'I) ~®---I stateIrent 1-+
~-----~G)~4~-----

ProoedJres CIld FtmUons (see Olapter 7)

proctJtU"e-cteclaratim

-.-t.1 procedure-head1ng ~ procedure-body ~

C-17

Pascal ReFerence /'1anuaI Syntax

procethre-l1eadlng

~(proced.Ire H identifier I " ;r~
'-111 formal-parameter-l1st t-"

flJnction-decJsration

---..t~1 ft.retion-head1ng ~. function-body ~

result-type

formal-parameter-list

~Il::::-esuJ,=-=t~-t~~VDe==-___ ---l:'~~: ordtnal-type-ldenUfler

.--~~;: real-type-ldenUflerl--:-.... 1

-~: .. ~: polnter-type-ldentlflerl--:~-----~ ...

0-18

Pascal Reference ManIJaJ syntax

formal-parameter-jist ,---------,
--.a: (parameter-aeclaratlon t---,--~-.t

procedure-headlng 1---1

~ .lldentIfler-Ust ~ type-Identifier 1-+

Programs (see Clapter 8)

progr.gm-lJeadlng

-€1lQfam~r-l-cJen-t1-f-le"""'r 11._ ~ _ I :;;..r •
~ program-parameters ~

Pfl1tl1'Bm-parameters ~llcJent1fler-l1st I ~

uses-cJause -(uses))-~.I identifier-list I .~

0-19

Pascal ReFerence MantJaJ Syntax

U'llts (see cnapter 9)

~=rjar=-..;;;'-lIIZ;;.;;if.;;.;;.t_-.. lI1it-heading

Interface-part Implementation-part

..=tnJ.:.::.:..t-l1e..:.,:::'BdJJ=r1tlz....-_eot .. C lIllt)-.l identifier ..

ll.Jn2fte.~trf';.~!:a~t~ interface ~~----------~

uses-claJSe

constant-<1eClaratlon-part

type-declaratlon-part

varlable-deClaration-part

procewre-and-functlon-aeClaratlon-part

0-20

Pascal ReFerence f\'1anUaJ

i 'lementation

constant-declaration-part

type-declaratlon-part

variable-declaration-part

procedure-and-function-declaration-part

C-21

syntax

Pascal ReFerence MantIaI Syntax

C-22

Pascal ReFerence /Ytanual Floating-Point Arithmetic

AppendixD
FLOATING-POINT ARITHMETIC

IntrQ(kJction .. [)-3
Rounding of Real Results................. 0-3
Accuracy of Arithmetic Operations .. [)-4
Overflow and Division by Zero: Infinite Values 0-4
Inval1d operatIons: NaN values•............ [)-5
Integer conversion OVerflow .. 0-6
Text-oriented I/O Conversions•............•................... 0-6
Blbllograptly ... a-a. •• 0-6

[)-1

Pascal Reference ManI8J Floating-Pojnt Arithmetic

0-2

Pascal ReFerence I\1aIXJaJ Floating-Point Arithmetic

FLOATING-POINT ARITHMETIC
Introdlctlm

Floating-poInt arIthmetic In Pascal on the Lisa (aU arIthmetic Involving real
values) conforms to most of the single-precision aspects of the IEEE's
Proposed standard for Binary Floating-Point Arithmetic (Draft 10.0 of IEEE
TaskP754).
IEEE Stanaara arlthmetlc provlaes Detter accuracy tnan many otner
floating-poInt implementations. It also redUCeS tne prOblems Of overflOW,
unaerflow, l1mltea precIsIon, ancIlnval1a operations by provIdIng useful ways of
cleal1ng w1th them.
The FPLIB library unit contains the routines that perform floating-point
arithmetic (lnclucJ1ng all the transcendental functions and the sqrt function).
FPLIB must be linked into any program that uses floating-point arithmetic;
however, it is not necessary to expliCitly refer to FPLlB In a uses clause unless
the program calls the specialized support proceclures and functions deClared in
the interface of FPLlB.
This manual assumes that you cIo not explicitly use the FPLlB unit, and that
therefore only the clefault options of IEEE arithmetic are appliCable.
As a general rule, you can write Lisa Pascal programs that use floating-point
arithmetic without worrying about the differences between IEEE Stanctard
arithmetic and other floating-point implementations.
The fallowing points apply if your program writes out floating-point numbers as
textUal representations (via wr1te or wr1teln):

• Anything In the output that looks l1ke a number w111 be correct (and possibly
more accurate than under other implementations).

• If your output conta1ns a string of two or more pluses or minuses, thIs
indicates a value of 00, reSUlting from division by zero or some other
operation that causea a floating-poInt overflOw.

• If your output conta1ns the string "NaN" (meaning Not a Number), this
indicates the result of some invalid operation that would prObably have
caused a program halt or a wrong output uncIer other implementations. Note
that any real value in text output that dOeS not InclUde the string "NaN" Is
guaranteed not to haVe been affected by any invalid operation.

ROlIldIng of Real Results
When a real result must be rouncled, it Is always rounded to the nearest
representable real value. If the unrounded result Is exactly halfway between
two representable real values, it is rounded to the value that has a zero in the
least significant digit of its binary fraction (the "even" Value).

0-3

Pascal ReFerence f\1aVaJ Floating-PoInt Arithmetic

AlnJrftj Of Arlthmetlc Operations
The arithmetlc operatlons +, -, *, /, rOLlld, tnrlC, and sqrt are accurate to
within half a lIl1t in the last bit. Remainders are computed without rOt.lld1ng
error.

overflow am Dlvlsion by Zero: Inftnite Values
The result of floating-point overflow is eIther 00 or -00. These are values of
type real that can be used in further calculations and follow the mathematical
conventions: for example, a finite number divided by 00 yields zero.

DIviding a flntte non-zero value by zero also yields 00 or -00 (In floating-point
arithmetic).

Infinite values haVe textual representations that can be read by read or reedn
or written out by wrtte or wrtteln.
Tables 0-1 and 0-2 below Show the results of arithmet1c operations on
Inflnitles. Note that any operatlon InVOlving a NaN as an operand prodUces a
NaN as the result.

Table 0-1
Results Of Addltloo am Sl.tJtractlO1 01 Inftnitles

Left
Operand

-00

finite +
+00

-1:10
finite -+00

-00

-00

-00

NaN
NaN
+00

+00

Ri!11t
qJerand

finite
-00

finite'"
+00

-00

finite'"
+00

't Result is an Infinity if the operation overflows.

0-4

+00

NaN
+00

+00

-00

-00

NaN

Pascal ReFerence /t1aIJUaJ Floatlng-Pojnt Arjthmetlc

Table 0-2
Results Of M.dt1pllcatlon and Olvlslon on InflnlUes

LeFt
:to finite Operand :tOO

:1:0 :1:0 :1:0 NaN
finite * :to finite" ;tOO

:too NaN :1:00 :1:00

:1:0 NaN :1:0 :1:0
finite I :too finite t :to

:1:00 :!:CO :1:00 NaN

" Result Is an Infln1ty If the operaUon overflows.

N:Jle: Sign of result Is determined by the usual mathematical rules.

InvalId Operations: NaN Values
An invalid operation (such as dividing zero by zero) does not cause a halt.
Instead it returns a special dIagnostic value, and execution continues. The
result of an Invalid operation Is called a ~ which standS for "not a number ."
A NaN resUlting from an InvalId operation Is a propagating NaN. ThIs means
that if the NaN is used as an operand In another operation, the result of the
operation will be tne same NaN. NaNS can De wr1tten out vIa wrlte or wrlteln
and read via read or readln; the textual representation Is ''NaN'' (optionally
fOllOwed Dy a quoted string).
The fOllowing operations are Invalid and return a NaN value:

• 00-00 or 00+(-00)

• 0*:1:00

• 0/0

• :1:00/:1:00

• The In and sqrt functions, when the arguments are Inappropriate. see
sections 11.4.7 ana 11.4.8.

D-5

Pascal Reference ManuaJ Floating-Point Arithmetic

Integer cooverslon overtlow
Integer conversion overflow can occur In tnrlC or rOll'ld (see Chapter 11) If the
actual-parameter exceeds the bounds of the predeclared type integer. The
result returned Is unspecIf1ed.

Text-ortented I/O conversions
The read, readln, write, and writeln procedUres require the conversion of
numbers from deCimal to binary on Input and from binary to deCimal on output.
The error in these conversions is less than 1 unit of the result's least significant
digit. (In the past, base conversions have rarely been done accurately in a way
that permits simple error bounds to be put on the results.)
Real values appear as character strings In two different contexts: as source
code processed by the cOrf1)ller (real constants), and in text fUes written and
read by Pascal programs. The signed-nUmber syntax of Chapter 1 applies In
both cases. However, the COmpiler dOes not accept infinities and NaN's.
For read and \1Il1te, +00 Is represented by a string Of at least two plUS signs, and
-00 by a string of at least t\tJO minus signs. NaNs are represented by the
characters "NaN", with an optionalleadlng sign, and an optional tra111ng quoted
string Of Characters; an example is

-NaN'12:34'

The character string Is sometimes used to provide diagnost1c data.
BlDl1ogr~y

The fOllo'Ning articles contain detailed information and discussion of the
proposed IEEE floating-point standard. (Articles are listed in order of
importance.)

• "A proposed standard for Binary Floating-Point Arithmetic", lEEE
Computer, Vol. 14, No.3, March 1981.

• COOnen, J.: II An Implementation Guide to a Proposed Standard for
Floating-Point Arithmetic, IEEE COmputer, Vol. 13, No.1, January 1980.

• ACM SIGNUM Newsletter, specIal issue deVOted to the proposed IEEE
floating-point standard, OCtober 1979.

0-6

Pascal Reference Manual

INDEX
Please note that tl1e top1c references in this Index are by section fllImlJer.

$C co~iler co~s: 12.1
$0 co~iler COPJ'll8nds: 12.1
$OECL ~iler c~d: 12.2.1
$E co~iler coPI'IaI1d: 12.1
SELSEC c~iler COPI'IBnd: 12.2.4
$ENOC COI'piler COI'I'I8nd: 12.2.4
$1 ~iler c~: 12.1
$IFC ~1ler coPI'IaI1d: 12.2.4
,$I.. ~iler co~s: 12.1
i $R COI'piler COPPIaI1ds: 3.1. 3, 12.1
i$S ~iler coPI'IaI1d: 8.3, 9.1, 9.2, 12.1
I

: $SETC COI1l1ler COPI'I8I1d: 12.2.1
. $U COI'pller COPI'IBnds: 9.1.2, 9.2.2, 12.1
$X COI'piler ~s: 12.1
0, signed: 3.1.1.3
16-blt integer arlt~tlc: 3.1.1.1-2, 11.3.3
32-bit integer ari~tic: 3.1.1.2, 11.3.3
@ operator: 3.3, 5.1.6
----------A----------
abs function: 11.4.2
·accuracy in real ~ithr1etic: 0
actual-par8Pleter: 5.2, 7 .1, 7.3
actual-par8Pleter-list: 5.2
actual-paraPlBters 1n procedure call: 6.1. 2
arlOI'lalies in Lisa Pascal: 8
Apple II & III Pascals: A
Apple II Pascal: A
Apple III Pascal: A
apple stuff unit: A
arctan function: 11.4.9

- arithAetic functions: 11.4
arithr1etic operators: 5.1.2, 0

Index-1

Index

Pascal Reference Manual Index

array: 3.2.~ 4.3.1
- ~ent: 3.2.1, 4.3.1
- reference: 4.3.1
array-type: 3.2.1
ascii: 3.1.1.5
assig~nt-~tibility: 3.4.3
assign~nt-state~t: 6.1.1
----------6----------
base-type: 3.2.3, 3.3, 5.3
- of painter-type: 3.3
- scope anol'l8ly: 6
- of set-type: 3.2.3, 5.3
bitwise boolean operations: A

blank character: 1.1
blank seg~t: 8.3, 9.1
block: 2
bloCk-structured 110: 3.2.4, 10.1.1-2, 10.4
blockread function: 3.2.4, 10.4.1
blockwrite function: 3.2.4, 10.4.2
boolean: 3.1.1.4, 5.1.3, 5.1.5.2, 10.3.3.7, 12.3-12.4
- co~lsons: 5.1.5.2
- constants as control values: 12.3, 12.4
- operands, evaluation of: 5.1.3
- operators: 5.1.3
- type: 3.1.1.4
- values in text-oriented output: 10.3.3.7
buffer variable: 10.1.3, 10.1.7
built-in procedures & functions: 10, 11
byte array: 11.7
byte-oriented procedures & functions: 11.7
byte-size files: 3.2.4
bytestreaJ'1 type: A

----------C----------
case: 6.2.2.2
case-constant in case statePtent: 6.2.2.2
case-sensitivity: 1.1, 1.2, 1.4
case-state~nt: 6.2.2.2
:- efficiency: 12.5

Index-2

Pascai Reference HantJai

char: 1.6.1, 3.1.1.5, 10.3.1.1, 10.3.3.2, 11.5
- constant: 1.6.1
- type: 3.1.1.5
- values in text-oriented I/O: 10.3.1.1, 10.3.3.2
character: 1.1, 3.2.4, 4.3.1
- device: 3.2.4, 10.1.1-2
- fUes: 3.2.4
- in string: 4.3.1
- set: 1.1
chr function: 11.5.2
close procedUre: 10.1.5
closing a file: 10.1.5
code generation: 12.1
cOl'I'I8nt: 1.8
co~risons: 5.1.5
co~atibility of paraMeter lists: 7.3.5
~atible types: 3.4
c~ile-ti~ expressions & variables: 12.2.1-3
~iler: 1.8, 12, A
~ cOMMands: 1.8, 12.1-2, A

~onent of array: 3.2.1, 4.3.1
cor,xment of file: 3.2.4, 4.3.3
c~onent-type of array: 3.2.1
c~ent-type of file: 3.2.4
COMpOund-stateMent: 6.2.1
concat function: 11.6.3
conditional ~ilation: 12.2
conditional-stateMent: 6.2.2
constant: 1.4-7
constant-declaration: 1.7, 2.1, 8
- scope anol'l8l y: B
constant -declaration-part: 2.1
control-variable: 6.2.3.3
copy function: 11.6.4
cos function: 11.4.5
CR character: 1.1, 1.6, 10.3
- in text-oriented I/O: 10.3
crunch: 10.1. 5
current block nurrtJer: 10.4
current file position: 4.3.3
cursor control: 10.3.7

Index-3

index

Pascal Reference Manual

----------0----------
data type: 3
dataf1le: 10.1.2
debugging: 12.1
defining declaration: 7.1
delete procedure: 11.6.5
device: 10.1.1-2
- character: 10.1.1, 10.1.2
- file-structured: 10.1.1, 10.1.2
- types: 10.1.1, 10.1.2
digit: 1.1
digit-sequence: 1.4
directive: 1.3
div operator: A
divis10n by zero (real arlth~tic): 3.1.1.3, 0
OLE character: 10.3
d~c allocation procedures: 11.2
----------E----------
eff1ciency, case-state~ts: 12.5
erpty set: 5.3
eruPerated-type: 3.1.2
eof function: 10.1.7

Index

- and various procedures: 10.1.3-4, 10.1.7, 10.2.1-2, 10.2.4, 10.3.1-2, 10.4.1
eoln function: 10.3.5
- and read and read In procedures: 10.3.1, 10.3.2
ETX character: A
exit procedUre: 11.1.1, A
exp funct1on: 11.4.6
expression: 5
extended eopparisons: A
external file: 10.1
external function: 7.2
external procedure: 7.1-2
----------F----------
factor: 5
field of record: 3.2.2, 4.3.2, 6.2.4
field-declaration: 3.2.2
field-designator: 4.3.2
field-list: 3.2.2

Index-4

Pascal Reference Manual

f11e: 3.2.4, 4.3.3, 10
- buffer: 4.3.3
- buffer and eof function: 10.1.7
- buffer and reset procedure: 10.1.3
- co~ent: 3.2.4, 4.3.3
- identifier as par~r type: 7.3
- of char: 3.2.4
- position and reset procedure: 10.1.3
- record: 10.2
- reference: 4.3.3
- species: 10.1.2
- standard file-type identifier: 3.2.4, 10.1, 10.4
-types and reset procedUre: 10.1.3
- variable: 3.2.4, 4.3.3, 10
file-buffer-s~l: 4.3.3
file-structured device: 3.2.4, 10.1.1-2, 10.4
file-type: 3.Z:-4
fillchar procedure: 11.8.3
final-value: 6.2.3.3
finite real values: 3.1.1.3
fixed-part: 3.2.2
fixed-point output of real value: 10.3.3.4
floating-point ari thPtetic: 0
floating-point output of real value: 10.3.3.4, A
for-statePEnt: 6.2.3.3
forl"l8l-par81'18ter-list: 7.3
forl"l8l-paraPIBters and procedure call: 6.1. 2
forYard declaration: 7.1-2
function: 7.2-3
flrlCtion-body: 7.2 . - - - -_ .. ------~ .--- .. ---~-- ----_ _----, .. _._--- ---.-

function-call: 5, 5.2, 7.2, 7.3
function-declaration: 7.2
function-heading: 7.2
functional par8Pl8ter: 7.3.4
----------G----------
get procedure: 10.2.1, 10.2.3
goto-statePJent: 6.2, A
gotoxy prOCedUre: 10.3.7.2

Index-S

Index

Pascal Reference Manual

----------H----------
halt procedure: 11.1.2, A
heap: 11.2
heapresult function: 11.2.2
hex-digi t: 1.1
hex-digit-sequence: 1.4
hexadeciPl8l constants: 1. 4
hOst progr8l'l or unit: 9
host-type of subrange: 3.1.3
----------1, J----------
identical types: 3.4
identifier: 1.2
- of progr8l'l: 8.1
identifier-list: 3.1.2
IEEE Floating-Point standard: 0
if-state~t: 6.2.2.1
- optiPli.zation: 12.3
iI1l1ePlentation-part: 9.1.1.
in operator: 5.1.5.5
index: 4.3.1
- in variable-reference: 4.3.1
index-type: 3.2.1
infinities: 3.1.1.3, 0
initial-value: 6.2.3.3
initialization-part: A
input (standard file): 10.1.7, 10.3
input file control (in ~ilation): 12.1
input variables in read procedure: 10.3.1
input/output: 10
insert procedure: 11.6.6
integer: 1.4, 3.1.1.1-2, 10.3.1.2, 10.3.3.3, 11.3-5, 0
- ari'thretic: 3.1.1.1, 3.1.1.2
- constant: 1.4
- conversion overflow: 0
- type: 3.1.1.1, 3.1.1.2
- type conversions: 3.1, 3.1.1.5, 3.1.2, 11.5.1
- values in text-oriented 1/0: 10.3.1.2, 10.3.3.3

Index-6

lndex

Pascal Reference ManlJal

interactive file-type: A
interface-part: 9.1.1
intrinsic-unit: 9.2
INTRINSIC.LIB: 9.2, 12.1
.invalid operations in real ari~tic: 0
ioresult function: 10.1.2, 10.1.6
----------K----------
KeybOard: 3.2.4, 10.1.1, 10.3, 10.3.7.1
- echoing on input: 10.3
- physical: 3.2.4, 10.1.1, 10.3, 10.3.7.1
- testing: 10.3.7.1
keypress function: 10.3.7.1
----------L----------
label: 1.5, 2.1, 6
- on statel"Ent: 6
label-deClaration-part: 2.1
length attribute: 3.1.1.6
length function: 11.6.1
letter: 1.1
Linker: 7.1
listing control: 12.1
In function: 11.4.7
lock: 10.1.5
long integer type: A
longint: 1.4, 3.1.1.2, 10.3.1.2, 10.3.3.3, 11.3-5, 0
- ari~tic: 3.1.1.2
- constant: 1.4, 1.6, 1.7
- type: 3.1.1.2
- type conversions: 11.3.3, 11.3.4
- values in text-oriented I/O: 10.3.3.3
----------M----------
~ proceoure: 11.2.3, A
l'I8Xint : 3.1.1.1
~vail function: 11.2.5
~r-group: 5.3
~ry allocation procedUres: 11.2
I'IXf operator: A
~veleft procedure: 11.7.1
~veright procedure: 11.7.2

Inctex-7

Index

Pascal Reference Manual

----------N----------
NaNs: 3.1.1.3, 0
new procedure: 3.3, 11.2.1, A
nil: 3.3, 4.3.4, 11.2.1
norfl'l8l: 10 .1. 5
nUf'tler: 1. 4 - - ----

~rical ~arisons: 5.1.5.1
----------0----------
object file: 9
Db ject of pointer: 4.3.4
odd function: 11.4.1
opening a file: 10.1, 10.1.2-4
operands: 5
- coMPile-tiMe: 12.2.3
- in expressions: 5
operators: 5
- COMPile-tiMe: 12.2.3
- in expressions: 5
opti~ization of if, repeat, and while stat~ts: 12.3, 12.4
ord function: 3.1, 3.1.1.5, 3.1.2, 11.5.1
ord4 function: 3.1.1.2, 11.3.3
order of evaluation of operands: 5.1.1
ordinal functions: 11.5
ordinal-type: 3.1
- and ord function: 11.5.1
- and ord4 function: 11.3.3
- and pred function: 11.5.4
- and succ function: 11.5.3
ordinal-type-identifier: 3
ordinal1ty: 3.1
otherwise-clause: 6.2.2.2
output (standard file): 10.3
output expression in write procedure: 10.3.3
output file in write prOCedUre: 10.3.3
output-specs in write procedure: 10.3.3
overflow (real arit~tic): 3.1.1.3, 0

Index-8

Index

Pascal Reference Manual

----------p----------
packed array of char: 5.1.5.6, 10.3.1.5, 10.3.3.6, 11.8
- ~isons: 5.1.5.6
- fillchar procedure: 11.8.3
- scanning functions: 11.8.1, 11.8.2
- text-oriented 1/0: 10.3.1.5, 10.3.3.6
packed types: 3~1.1.6, 3.2
page procedure: 10.3.6
par~ter: 7.1, 7.3
p~ter l1st c~tlD1l1ty: 7.3.5
paral'lBter-declaration: 7.3
par~ters in procedure call: 6.1.2
Pascal ~iler: 12
perfor~ penalty for long1nt values: 3.1.1.2
pointer: 4.3.4, 11.2
pointer function: 3.3, 11.3.4
pointer-object-syl'tlOl: 4.3.4
pointer-reference: 4.3.4
pointer-type: 3.3
- conversions: 11.3.3, 11.3.4
pointer-type-identifier: 3
pas function: 11.6.2
precedenCe of operators: 5
pred function: 3.1, 11.5.4
predecessor: 3.1
procedUral par~ter: 7.3.3
procedUre: 7.1, 7.3
procedUre-and-function-declaration-part: 2.1
procecture-Dody: 7.1
procedUre-declaration: 7.1
procedUre-heading: 7.1
procedUre-stat~t: 6.1.2, 7.1
progr8P'l: 8
- identifier: 8.1
- segI'1ents: 8.3
progr8P1-heading: 8.1
prograPl-par~ters: 8.1, 8.2
purge: 10.1.5
put procedUre: 10.2.2-3
pwroften function: 11.4.10

Index-9

Index

Pascal Reference MantIaJ

----------Q----------
qualifier: 4.3
quoted-cnaracter-constant: 1.6.1
quoted-string-constant: 1.6

----------R----------
range-checking: 3.1.3, 12.1
read procedUre: 10.3.1
readln procedure: 10.3.2
real: 1.4, 3.1.1.3, 10.3.1.3, 10.3.3.4, 11.3-4, 0
- arithPletic: 0
- constant: 1.4
- type: 3.1.1.3, 0
- type and round function: 11.3.2
- values: 3.1.1.3
- values and write procedure: 0
- values in text-oriented 110: 10.3.1.3, 10.3.3.4, 0
real-type: 3.1
real-type-identifier: 3
record: 3.2.2, 4.3.2
- field: 3.2.2, 4.3.2
- nurtler and seek procedure: 10.2.4
- of file: 10.2
- reference: 4.3.2
- reference in wi tn statePEnt: 6.2.4
record-oriented 110: 10.2
record-type: 3.2.2
- new procedUre: 11.2.1
recursion: 7.1-2
redeclaration of identifier: 2.2.2, 2.2.4
regular-unit: 9.1
relational operators: 5.1.5
release procedure: 11.2.4, A
repeat -statePlent: 6.2.3.1
- optiPlization: 12.4
repetitive-statef!lent: 6.2.3
reserved words: 1.1
reset procedure: 10.1, 10.1.5, A
result-type: 7.2
rewrite procedure: 10.1.4
round function: 11.3.2, 0
rounding in real ari ttlPletic: 0

Index-10

Index

Pascal Reference MantJaJ

----------s----------
scale-factor: 1.4
scan function: A
scaneq function: 11.8.1
scanne function: 11.8.2
scope: 2.2
- Of standard objects: 2.2.5
screen: 10.3, 10.3.7.2
- cursor control: 10.3.7.2
- physical: 10.3
seeK procedUre: 10.2.3
segrent Keyword: A
segptentation: 8.3
segMents: 8.3, 9.1, 9.2.1
selector in case stat~t: 6.2.2.2
set: 3.2.3, 5.1.4, 5.1.5.4, 5.3
- co'1Jarisons: 5.1.5.4
- I'EPtlership testing: 5.1.5.5
- operators: 5.1.4
- values: 5.3
set-constructor: 5, 5.3
set-type: 3.2.3
sign: 1.4
signecJ zel't!~~~.-: 1 .. 3
signed-nuMber: 1.4
si'1Jle-expression: 5
si'1Jle-statePEnt: 6.1
siPple-type: 3.1
si'1Jle-type-identifier: 3
sin function: 11.4.4
size-attribute: 3.1.1.6
sizeof function: 11.7.3
special syMbols: 1.1
sqr function: 11. 4.3
sqrt function: 11.4.8, 0
StacK space and ~vall function: 11.2.5
standard procedures and functions: 10, 11
- for I/O: 10
standard sipple-types: 3.1
statePEnt: 6

lndex-ll

IndeX

Pascal Reference /t1antIal

stateMent-part: 2.1
string: 1.6, 3.1.1.6, 4.3.1, 5.1.5.3, 10.3.1.4, 10.3.3.5, 11.6, A
- character: 4.3.1
- ~isons: 5.1.5.3
- concatenation: 11.6.3
- constant: 1.6, 3.1.1.6
- constant COf1l8l'isons: 5.1. 5.3
- length function: 11.6.1
- procedures and functions: 11.6
- reference: 4.3.1
- substring copying: 11.6.4
- sUbstring deletion: 11.6.5
- substring insertion: 11.6.6
- substring search: 11.6.2
- values in text-oriented 1/0: 10.3.1.4, 10.3.3.5
string-Character: 1.6
string-type: 3.1.1.6
string-type-identifier: 3
structured-stat8P1eflt: 6.2
structured-type: 3.2
structured-type-identifier: 3
subrange-type: 3.1.3
succ function: 3.1, 11.5.3
successor: 3.1
syntax diagr8l'ls, COI'1Jlete collection: C
syntax diagraPIs, explanation: Preface
syst~ intrinsic library: 9.2.2, 12.1
----------T----------
~_~~~ts in new and dispose pr~~~: __ ~~:2._!:_2
tag-field: 3.2.2
tag-field-type: 3.2.2
tem: 5
testing set I'EI'tlerSh1p: 5.1.5.5
text type: 3.2.4, 10.1.2, 10.3
text-oriented I/O: 10.3
textfile: 10.1.2, 10.3, A
textfile for~t: 10.1.2, 10.3
transfer functions: 11.3
treesearch procedure: A

Index-12

Index

Pascal Reference Manual

trunc function: 11.3.1, A, 0
turtlegrapn1cs m1t: A
type: 3
- co~tibility and identity: 3.4
type-declaration: 3
type-declarat1on-part: 2.1, 3.5
----------u----------
UCSO Pascal: A
unary arit~tic operators: 5.1.2
underscore Character: A
unit: 9
- intrinsic: 9.2
- regular: 9.1
un1t-headIng: 9.1.1
unsigned-constant: 5
unsigned-integer: 1.4
unsigned-~r: 1.4
uns1gned-real: 1.4
untyped file: 3.2.4, 10.1.1-2, 10.4
- I/O: 10.4
uses-clause: 8.1, 9.1.1-2, 9.2, 9.3
----------v----------
value par8l'leter: 7.3.1
variable: 4
variable paraPleter: 7.3.2, A
variable-declaration: 4.1
variable-declaration-part: 2.1
variable-identifier: 4.1
variable-reference: 4.2
var1ant: 3.2.2
- records, new procedure: 11.2.1
variant-part: 3.2.2
----------1.1, X, v----------
whlle-statePJent: 6.2.3.2
- opt1~zation: 12.4

Index-13

Index

Pascal ReFerence Manual

with-stateMent: 6.2.4
wordstre8PI type: A
write procedure: 10.3.3, A
- with real values: 0
write-protection of file: 10.1.5
writeln procedure: 10.3.4, A

----------Z----------
zero, signed: 3.1.1. 3

Index-14

Index

Pesce} Refe1'8f1Ce H8nU8J QulckDraw

AppendixE
QillCKDRAW

E.l
E.2

Atlout 'ThIs MarllJaJ. •• E -3
~ QtJI,ckDI"aW' ••.•••••••••••••••••••.•••.••• E-4

E.2.1 How To use QulckDraw ••.•••••••••••••••••••••••••••••..••••••.•••..•.••• E-S
E.3 The Mathematical Foundation of QtJI,ckDraw E-6

E.3.l The Coordinate Plane ..•.••......•....••••••••...•.••••..........••.....••. E-6
E.3.2 Points.. .•................. E-7
E.3.3 Rectarlgles•...•.••.•.•...•.. E-7
E.3.4 ReglOflS ••••• •••••••••••••.••••••••••.••.•••••••••••••• •••••••• •••...••••••••••. E-9

E.4 GraJlt'llC Entities •••.•••••••••••••••••.•• E -11
E.4.1
E.4.2
E.4.3
E.4.4

Tt1e Bit 1rTl8QE! ••• E-12
Tt1e Bl'tMaJ) •• E -13
Pattem!' •• E -15
cursors ... E -16

E.S Tt1e DrawIng Envir(Jll"'lT'8lt: GrafPort ••••••••••.••••••••••••••••••••.••••••.••• E -17
Pen CI'laIac:tertstlcs ••• E -21
Text Ctlaracterlstics •• E -23

E.S.l
E.S.2

E.6 COO:rd1nates'in GrafPorts •• E-2S
E.7 General Discussion of Drawing .. E-27

E.7.l
E.7.2

TIa'lSfer ~ ••• E-29-
DrawIng In Color ••• E-31

E.8 Pictures ar1d PolygclrlS ... E-31
E.B.l Pictures .. E - 32
E.8.2 Pol YgorlS. •• E - 33

E.9 QtJickDraw RotJt.ines ... E - 35
E.9.1
E.9.2
E.9.3
E.9.4
E.9.5
E.9.6
E.9.7
E.9.B
E.9.9
E.9.10
E.9.11
E.9.12
E.9.l3
E.9.14
E.9.1S
E.9.16

Gr8'fPort ROlJtlrleS ... E - 35
CtJrsor-~lirlg ROUtirleS •• E -40
Pen and Une-Drawing Routines E -41
Text.-DrawlJ'lQ ROlJt1nes ••••••.•• E-44
Drawlrlg In co.lor ••••••.•••••••••••••••••••••••••••••••••••.•••••••••••••••• E-46
calctJlatiCllS with Rectqles ... E-47
Graphic ~rations on Rectangles E-SO
Graflhlc ~ratlCJrlS (JI1 CJ\Iels ... E-SO
GraptUc Qlerattons on Rounded-co.mer Rectangles •.•••••••••• E-S1
Graphic ~rat1ons on Arcs and Wedges E-S3
calculations w1'th Regions •••••.••.••••••••••••••••••••••••••••••••••••• E -55
Graptllc ~rattOl1S 011 ReglOlls ••• ·E-60
Bit Transfer ~rations •••••..••..••.••••.•••..••••••.••••••••••.••••..••• E-61
Pictures ... E -63
calculatlOflS with PolygortS•.••...•••.•..•............•......... E-64
Graphic ~rat1Ol1S on Polygons E-66

E-l

Pescel ReFerence /'1817t18l

E.9.l7
E.9.l8

Calculations with Points ••.••••.••••..••...•••••••••.••••..•.•.•.....•••. E -67
Miscel18lleOlJS Utilitles ... E-69

E.10 CUStomizIng QuickDraw Q:lerations ... E -72
E.ll USIng QuICkDraw from Assembly Language E -75

E.ll.1 cmsta'lt.s .. E -76
E.ll.2
E.ll.3
E.ll.4

Da'ta Types•.........•...................................... E -76
Global Variables ••••••••••••••.••••••••••••••••••••••••••••••••••••••.•••••• E -77
ProcedUres and Functions ..•••••••.•.••••.••..•...•.....•.••..••..•••••• E -78

E.12
E.13
E.14

SlJrT'V'nary of QulckDraw .. E - 79
QuiCkDraw SarTlple Pf()Qf8n ... E-95
Glossary ... 0 •••••• E-l04

E-2

Pascal ReFerence M8I7fJ8J QuickOraw

QillCKDRAW

E.l Aboot 11lls McnJal
This manual describes QuickDraw, a set of graphics procedUres, ft.llCtions, and
data types that allows a Pascal or assembly language programmer of Lisa to
perform highly complex graphic operations veryeasUy and very quicldy. It
covers the graphic concepts l:let1int1 QulckOI'a'N, as well as the technical details
of the data types, procedures, and functions you will use in your programs.
We assume that you are famU1ar with tne Lisa workShop Manager, Lisa Pascal,
and the Lisa qJeratlng system's memory management. This graphics package is
for programmers, not end users. Altnougn QutckDraw may be used from either
Pascal or assembly language .. this manual gives all examples in their Pascal form..
to be clear, concise, and more intuitive; Section E.ll describes the details of the
assembly language interface to QutckOraw.
The manuallJegins with an introduction to QulckDraw and what you can do with
it (Section E.2~ It then steps back a little and lOOks at tne mathematical concepts
that form the fOt.l1dation for QutckOraw: coordinate planes, points, and
rectangles (Section E.3~ 01ce you understand these concepts, read on to Section
E.4, which describes the graphic entities based on them--tlOW the mathematical
world of planes and rectangles is translated tnto the physical phenomena of ligttt
and shadow.

Then comes some discussion of how to use several graphics ports (Section E.6), a
summary of the basic drawing process (section E.7), and a discussion of two more
parts of QuickOI'a'N, pictures and polygons (Section E.8~
Next .. !n Section E.9, there's a detailed description of all QuickOraw procedures
and functions .. their parameters, calling protocol, effects, side effects, and so
on-all the technlcallnformation you'll need each time you write a program for
the Lisa.

FOllowing these descriptions are sections that w111 not be of Interest to all
readers. Special information Is given in Section E.10 for programmers who want
to customize QutckOraw operations by overriding the standard drawing
procedUreS, and In section E.1l for those who wUl be using QutckQraw from
assembly language.
Finally, there's a ummy Of the QutckDraw data structures and routine calls
(Section E.12), and a glossary that explains terms that may be unfamil1ar to you
(Section E.13~

E-3

Pascal RefeJ7!Jnce Manual C)uickDraw

E.2 About Qu1ckOraw
QuickDraw allows you to organize the Lisa screen into a number of individual
areas. Within each area you can draw many things, as illustrated in Figure E-l.

Text
Bold
11811i.~
Underline

@JnItDDm
IIiJDII:iRrI

RoundRects Polygons Regions

0.0 Cla c?tP
~"'" , , , , .Gl

FIgure E-l
SCIT1Jles of Quicl<OraW's Pblllties

You can draw:
• Text Characters In a number Of proportionally-spaced fonts, with variations

that include boldfacing, italicizing, Underlining, and outlining.
• Straight l1nes of any length and width.
• A variety of ShapeS, either solid or hollow, including: rectangles, with or

withOut rounded comers; full circles and ovals or wedge-shaped sections;
and polygons.

• Any other arbitrary shape or collection of Shapes, again either solid or
hollow.

• A plctL .. re consistip.g of a'1Y combination of tt"!e above items, witt"! just a single
procedure call.

E-4

Psscal Reference /'18ntJal QuiCkOraw

In addition, QuickDraw has some other abilities that you won't find in many other
graphIcs packages. These abllities take care of most of the "hOUSekeeplng"--the
trivial but time-consuming and bothersome overhead that's necessary to keep
things in order.

• The ablllty to defIne many dIstinct "ports" on the screen, each wIth its own
complete drawing environment--its own coordinate system, drawing
location, character set, location on the screen, and so on. You can easily
switch from one such port to another.

• Full and complete "clipping" to arbItrary areas, so that drawing will occur
only where you want. It's Ilke a super-dUper cOloring book that won't let you
color outside the Unes. You don't have to worry about accidentally drawing
over something else on the screen, or drawIng off the screen and destroying
memory.

• Off-screen drawIng. Anything you can draw on the screen, you can draw into
an off-screen buffer, so you can prepare an image for an output deVIce
wIthout distuming the screen, or you can prepare a picture and move it onto
the screen very quickly.

And QuickDraw Uves up to its name! It's very fast. The speed and
responsiveness of the Lisa user interface is due primarily to the speed of the
QuickDraw package. You can dO good-quality animation, fast interactive
graphics, and complex yet speedy text displays using the full features of
QuickDraw. This means you don't have to bypass the general-purpose
QuickOraw routines by writing a lot of special routines to improve speed.

E.2.1 I-bw To use QulCkDraW
QuickDraw can be used from either Pascal or MC68000 machine language. It has
no user interface of its own; you must write and compile (or assemble) a Pascal
(or assembly-language) program that inclUdes the proper QuiCkOraw calls, link
the resulting Object COde with the QuiCkDraw code, and execute the linked
Object fUe.
A prograrrming model is included with the WOrkshop software; it shows the
structure of a properly organized QuickDraw program. What's best for beginners
is to read through the text, and, using the superstructure of the program as a
"shell", modify it to suit your own purposes. O1ce you get the hang of writing
programs Inside the presupplied shell, you can work on changing the shell Itself.
QulckDraw includes only the graphics and utility procedUres and functions you'll
need to create graphics on the screen. ProcedUres for dealing with the Mouse,
CUrsors, Keyboard, and screen settings, as well as those allowing you to generate
sounds, and read and set clocks and dates, are available in the unit "Hardware",

E-S

Pascal Reference Manual

E.3 TIle Mathematical FWldatloo of QulcI<DIaW
To create graphics that are both precise and pretty requires not supercharged
features but a firm mathematical foundation for the features you have. If the
mathematics that underl1e a graphics package are imprecise or fuzZY, the
graphics will be, too. QutckDraw defines some clear mathematical constructs
that are widely used in its procedUres, functions, and data types: the coordinate
plane, the pOint, the rectangle, and the region.

E.3.1 TIle Coordinate Plale
All information aboUt location, placement, or movement that you give to
QutckDraw is In terms of coordinates on a plane. The coordinate plane is a
two-dimensional grid" as illustrated in Figure E-2.

-32768
t

• 32767

Figure E-2
The COOrdlnate PIClle

There are two distinctive features of the QuickDraw coordinate plane:
• All grid coordinates are integers.
• All grid l1nes are infinitely thin.

These concepts are Important! First, tney mean that the QutCkDraw plane Is
fInite, not InfInIte (althOUgh it's very large~ Horizontal COOrdinates range from
-32768 to +32767,andvertlca1 coordinates nave the same range.
Second, they mean that all elements represented on the coordinate plane are
mathematiCally pure. Mathematical calculations us1ng integer arithmetic w111

E-6

P8SC8l ReFerence /'-/anuaJ QujckDmw

produce intuitively correct results. If you keep in mind that grid lines are
infinitely thin, you'll never have "endpoint paranoiau--the confusion that results
from not knowing whether that last dot is included in the line.

E.3.2 Points
01 the coordinate plane are 4,294,967,296 unique pOints. Each point is at the
intersection of a horizontal grid line and a vertical grid line. As the grid lines are
infinitely thin, a point is infinitely small. Of course there are more points on this
grid than there are dots on the Lisa screen: when using QuiCkDraw you associate
small parts of the grid with areas on the screen, so that you aren't bound into an
arbitrary, limited coordinate system.
The coordinate origin (0,0) is in the middle of the grid. Horizontal coordinates
increase as you move from left to right, and vertical coordinates increase as you
move from top to bottom. This is the way both a TV screen and a page Of English
text are scanned: from the top left to the bottom right.
You can store the coordinates of a point in a Pascal variable whose type is
defined by QuickDraw. The type Point Is a record of two integers, and has the
following structure:

type YHSe1ect - (V,H);
Point - record case integer of

0: (v: integer;
h: integer);

1: (vh: array [VHSelect] of integer)

end;

The variant part allows you to access the vertical and horizontal components of
a point either IndivIdually or as an array. For example, if the variable
typegoodPt were declared to be of type Point, the following would all refer to
the coordinate parts of the point:

goOdPt.v goodPth
goodPt. vt(V] goodPt.vt(H]

E.3.3 Rectargles
My two points can define the top left and bottom right comers of a rectangle.
As these points are infinitely small, the borders of the rectangle are infinitely
thin (see Figure E - 3~

E-7

Pascal Reference Manllal

Left

RigtLt

Figure E-3
A Rectangle

Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
drawing commands. QuicKDraw also allows you to perform many mathematical
calculations on rectangles--Changing their sizes, shifting them around, and so
on.

Remember that rectangles, I1l<e poInts, are mathematical concepts that
have no direct representation on the screen. The association between
mese conceptual elements ana theIr pnyslcal representations Is made by
a bitMap,descrlbed below.

E-8

Pascal Reference Mat7lJal QulckDl'8W

The data type for rectangles is called Rect, and consists of four integers or two
points:

type Rect - record case integer Of

0: (top: Integer;
left: Integer;
bottom: integer;
right: Integer);

1: (topLeft: Point;
bOtRight: PoInt)

end;

Again, the record varIant allows you to access a variable Of type Rect either as
four boundary coordinates or as two diagonally opposing comer points.
Combined with the record variant for paints, all of the following references to
the rectangle named bRect are legal:

bRect {type Rect}

bRect.topLeft bRect.botRight {type point}

bRect.top bRect.left {type Integer}
bRect.topLeft.v bRect.topLeft.h {type Integer}
bRect.topLeft.vt(V] bRect.topLeft.vt{H] {type integer}

bRect.bOttom bRect.right {type integer}
bRect.botRIght.v bRect.botRIght.h {type Integer}
bRect.bOtRlght. vt'(V] bRect.botRight. vt{H] {type Integer}

WARNING

If the bottom coordinate of a rectangle Is equal to or less than the top,or
the right coordinate Is equal to or less than the left, the rectangle is an
empty rectangle (I.e., one that contains no bits~

E.3.4 Regions
Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectlUnear,at that), Quicl<Draw can gather an arbitrary set of
spatially coherent points into a structure called a regIon, and perform complex
yet rapid manIpulations and calculations on such structures. This remarkable
feature not only will make your standard programs sImpler and faster, but w1ll

E-9

QulckDmw

let you perform operations that would otherwise be nearly impossible; it is
fundamental to the Lisa user interface.
You define a region by drawing lines, shapes such as rectangles and ovals, or
even other regions. The outline of a region should be one or more closed loops. A
region can be concave or convex, can consist of one area or many disjoint areas,
and can even have "holes" in the middle. In Figure E-li., the region on the left has
a hole in the middle, and the region on the right consists of two diSjoint areas.

FIgure E-4
Regions

Because a region can be any arbitrary area or set of areas on the coordinate
plane, it takes a variable amount of Information to store the outline of a region.
The data structure for a region, therefore, Is a variable-length entity with two
fixed fields at the beginning, followed by a variable-length data field:

type Region - record
rgnSize: integer;
rgnBBox: Rect;
{optional region definition datal

end;

The rgnSize field contains the size, in bytes, of the region variable. The rgnBBox
field is a rectangle which completely encloses the region.
The simplest region Is a rectangle. In this case, the rgnBBox field defines the
entire region, and there is no optional region data For rectangular regions (or
empty regions), the rgnSize field contains 10.

E-10

Pascal Reference M8J?(./81 QuickDnJW

The region definition data for nonrectangular regions is stored in a compact way
which allows for highly efficient access by QuickDraw prOCedures.
p.s regions are of variable sIze, they are stored dynamically on the heap, and the
cperating System's memory management moves them around as their sIzes
change. BeIng dynamic, a regIon can be accessed only thrOUgh a pointer; bUt
when a regIon Is moved, all pointers referring to it must be updated. For this
reason, all regions are accessed through handles, whIch point to one master
poInter which in tum points to the region.

type RgnPtr - A RegIon;
RgnHandle _ A RgnPtr;

When the memory management relocates a region's data in memory, it updates
only the RgnPtr master pointer to that reglon. The references through the
master pointer can find the region's new hOme, bUt any references pointing
directly to the region's previous position in memory would now point at dead
bits. To access IndIvidUal fields of a region, use the region handle and double
Indirection:

myRgn rgnSize
myRgn rgnBBox
myRgn rgnBBox.top

myRgn rgnBBox

{size of region whOse handle is myRgn}
{rectangle enclosing the same region}
{minimum vertical coordinate of all
points In the region}
{semantically incorrect; w1l1 not compile
if myRgn is a rgnHandle}

Regions are created by a QulCl<Draw function which allocates space for the
region, creates a master pOinter, and returns a rgnHandle. When you're done
with a region, you dispose of it with another QulCl<Draw routine which frees up
the space used by the region~ Olly these calls allocate or deallocate regIons; do
not use the Pascal procedUre NEW to create a new region!
You specify the outlIne of a reglon with proCedUres that draw Unes and shapes,
as described in Section E.9, QulckDraw Routines. M example is given In the
dIscussion of CloseRgn in section E.9.11, Calculations with Regions.
Many calculations can be performed on regions. A region can be "expanded" or
"shrunk" and, given any two regions, QuickDraw can fInd their union,
intersection, difference, and exclusive-m; It can also determine whether a
given point or rectangle intersects a given region, and so ~ There is of course a
set of graphic operations on regions to draw them on the screen.

E.4 GIaphlc Entities
Coordinate planes, points, rectangles, and regions are all good mathematical
models, but they aren't really graphic elements--they don't have a direct
physical appearance. Some graphic entities that do have a direct graphiC
interpretation are the bit image, bitMap, pattern, and cursor. This section

E-ll

Pascal Reference Manual QuickDraw

descrIbes the data structure of these graphIc entities and how they relate to the
mathematical constructs described above.

E.lf..l The Bit Image
A bit image is a collection of bits in memory which have a rectilinear
representation. Take a collection of VJOrcis in memory and lay them end to end so
that bit 15 of the lowest-numbered word is on the left and bit 0 of the
highest-numbered word is on lhe far right. Then take this array of bits and
divide it, on word boundaries, into a number of equal-size rows. StaCk these rows
vertically so that the first row is on the top and the last row Is on the bottom.
The result is a matrix liKe the one shown in Figure E-5--rows and columns of
bits, with each row containing the same number of bytes. The number of bytes in
eaCh row of the bit image is called the row width of that image.

Figure E-5
A Bit Image

Row
Wid.th.
is
8 bytes

last
Byte

A bit image can be stored in any static or dynamic variable, and can be of any
length that Is a mUltiple of the row width.
The Lisa screen itself is one large visible bit image. There are 32,760 bytes of
memory that are displayed as a matrix of 262,()80 pixels on the screen, eaCh bit
corresponding to one pixel. If a bit's value is 0, its pixel is white; if the bit's value
is 1, the pixei is biaci<.

The screen Is 364 pixels tall and 720 pixelS wide, and the row wIdth Of its btt
image is 90 bytes. Each pixel on the screen is one and a half times taller than it

E-12

Psscsl Reference H8f7f.I8i Qulcl<Orsw

is wide, meaning a rectangle 30 pixelS wide by 20 tall looks square, and a 30 by 20
oval lOOks circular. There are 90 pixels per inch horizontally, and 60 per inch
vertically.

Since each pixel on the screen represents one bit in a bit image, wherever
this document says "bit", you can substitute "pixel" if the bit image is the
Lisa screen. Likewise, this dOcument often refers to pixels on the screen
where the discussion applies equally to bits In an off-screen bit image.

E.4.2 'The BitMap
When you combine the physical entity of a bit image with the conceptual entities
of the coordinate plane and rectangle, you get a bitMap. A bitMap has three
parts: a pointer to a bit image, the row width (in bytes) of that image, and a
boundary rectangle which gives the bitMap both its dimensions and a coordinate
system. Notice that a bitMap does not actually inclUde the bits themselves: it
points to them.

There can be several bitMaps pointing to the same bit image, each imposing a
different coordinate system on it. This important feature is explained more fully
in section E.6, COOrdinates in GrafPorts.
~ shown in Figure E-6, the data structure of a bitMap 15 as follows:

type BitMap - record
baseAddr:
rowBytes:
bounds:

end;

QOPtr;
integer;
Rect

E-13

Pascal Reference H8ntJ81

~(--- Row Wid.th.. --~)

Figure E-6
A Bitt-1ap

QuJCI<Draw

The baseAcldr field is a pointer to the beglmlng Of the bit image in memory, and
the rowBytes field is the numt::Jer of bytes in each row of the image. Both Of these
should always be even: a bitMap Should always begin on a word boundary and
contain an integral ntJfTll:)er of words in each row.
The bounds field is a boundary rectangle that both encloses the active area of
the bit image and imposes a coordinate system on it. The relatlonsnlp between
the boundary rectangle and the bit image in a bitMap Is simple yet very
important. First, a few general rules:

• Bits in a bIt Image fall between points on the coordinate plane.
• A rectangle dIvides a bit image into two sets of bits: those bits inside the

rectangle and those outside the rectangle.
• A rectangle that is H points wide and V points tall encloses exactly

(H-l)t-(V-l) bits.
The top left comer of the boundary rectangle is aligned around the first bit in the
bit image. The width of the rectangle determines how many bits of one row are
logically owned by the bitMap; the relatlonsnip

8*1'Tlap.rowBytes >- map.bOUnds.right-map.boundsJeft
must always be true. The height Of the rectangle determines how many rows of
the image are logically owned by the bitMap. To ensure that the number of bits

E-14

c;uJckOraw

in ttle logiCal bitMap is not larger ttlan the number of bits in ttle bit image, the bit
image must be at least as big as

(map.bounds.bottom-map.bounds. top)ttrnap.rowBytes.
NOrmally, the bounclary rectangle completely encloses ttle bit Image: tne wIdttl
of the boundary rectangle Is equal to the number of bIts In one row of the Image,
and ttle height of tne rectangle Is equal to tne number of rows In ttle Image. If tne
rectangle Is smaller tnan the dimensIons Of the image, the least sIgnificant bits
In eaCh row, as well as tne last rows In ttle Image, are not affected by any
operations on the bitMap.
The bitMap also imposes a coordinate system on the image. Because bits fall
between coordinate points, the coordinate system assigns integer values to the
lines that border and separate bits, not to the bit positions themSelves. For
example, if a bitMap is asSigned the boundary rectangle with comers (10,-8) and
(34,8), the bottom right bit in the image will be between horizontal coordinates
33 and 34, and between vertical coordinates 7 and 8 (see Figure E-7~

(1~ -8)

(10,8)

E.4.3 Patterns

Figure E-7
COordinates and BitMaps

(34,8)

A pattern is a 64-bit image, organiZed as an 8-by-8-bit rectangle, which is used
to define a repeating design (SUCh as stripes) or tone (SUCh as gray~ Patterns can
be used to draw lines and shapes or to fill areas on the screen.
When a pattern is drawn, it is aligned such that adjacent areas of the same
pattern in the same. graphics port will blend with it into a continuous,
coordinated pattern QuickDraw prOvides the predefined patterns white, black,

E-15

Pascal Refemnce Hantlal QulckOraw

gray,ltGray, and dKGray. My other 64-blt variable or constant can be used as a
pattern, too. The data type definition for a pattern Is as follows:

type Pattern .. packed array [0 .• 7] of 0 .. 255;
The row widtn of a pattern is 1 byte.

E.4.4 cursors
A cursor is a small image tnat appears on tne screen and is controlled by tne
mouse. (It appears only on the screen, and never in an off-screen bi t image.)

A cursor is defined as a 256-bit image, a 16-by-16-bit rectangle (remember tnat
the pixelS are not square~ The row widtn of a cursor is 2 bytes. Figure E-8
illustrates four cursors.

o
0-

8
I

Figure E-8
0Jrs0rs

8
I

8

16
I

II II IIUIIII
I III IIUIIIII
... 111111.11
II. •
II. •
........ 11.

III 111111
IIU ...

A cursor has three fields: a 16-word data fIeld that contains the image itsel f, a
16-word mask field that contains Information aboUt the screen appearance of
each bIt of the cursor, and a hOtspot poInt that aligns the cursor with the pos1 tion
Of me mouse.

type Cursor .. record
data:
mask:
hOtspot:

end;

array [0..15] of integer;
array [0..15] of integer;
Point

The data for the cursor must begin on a word boundary.
The cursor appears on the screen as a 16-by-16-bit rectangle. The appearance
of each bit of the rectangle Is determined by the corresponding bits In the data

E-16

Pascal ReFerence I'1a17tI8l Qulcl<Draw

and mask and, if the mask bit is 0, by the pixel "under" the cursor (the one already
on the screen in the same position as this bit of the cursor~

Data Mask Resulting pixel on screen
-0 - --1- White

1 1 Black
o 0 Same as pixel under cursor
1 0 Inverse of pixel under cursor

Notice that if all mask bits are 0, the cursor is completely transparent, in that
the image under the cursor can still be viewed: pIxels under the white part of the
cursor appear unchanged, while under the black part of the cursor, black pixels
show through as whi teo
The hotSpot aligns a point in the image (not a bit, a point!) with the mouse
position. Imagine the rectangle with comers (0,0) and (16,16) framing the image,
as in each of the examples in Figure E-8; the hotSpot is defined in this coordinate
system. A hotSpot Of (OJ) is at the top left Of the image. For the arrow in Figure
E -8 to point to the mouse pOSition, (OJ) would be its hOtSpot. A hotSpot of (8,8) is
in the exact center of the image; the center of the plus sign or oval in Figure E-8
would coincide with the mouse poSition if (8,8) were the hotSpot for that cursor.
Similarly, the hOtSpot for the pointing hand would be(16,9~
Whenever you move the mouse, the low-level interrupt-driven mouse routines
move the cursor's hotSpot to be aligned with the new mouse position.
QuickDraw supplies a predefined arrow cursor, an arrow pointing
north-northwest.
Refer to AppendIx F, Hardware Interface, for more information on the mouse and
cursor control.

ES l1le Drawing Envirorment: GrafPort
A grafPort Is a complete drawing environment that defines how and where
graphIc operations w111 have their effect It contains all the information about
one instance of graphic output that Is kept separate from all other instances.
You can have many grafPorts open at once, and each one will have its own
coordinate system, drawing pattern, baCkground pattern, pen size and location,
character font and style, and bItMap in which drawing takes place. You can
instantly switch from one port to another. GrafPorts are the structures on which
a program bullets windows, which are fundamental to the Lisa's "overlapping
windows" user interface.

E-17

Pascal Reference Manual

A grafPort is a dynamic data structure, defined as follows:
type GrafPtr - "GrafPort;

GrafPort .. record
device:
portBits:
portRect:
visRgn:
cl1pRgn:
bKPat:
f1l1Pat:
pnLoc:
pnSize:
pnMode:
pnPat:
pnvts:
txFont:
txFace:
txMode:
txSize:
spExtra:
fgColor:
OKColor:
colrBit:
patStretCh:
picSave:
rgnSave:
polySave:
grafProcs:

end;

Integer;
BitMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
POint;
Point;
integer;
Pattern;
integer;
integer;
Style;
integer;
integer;
integer;
longint;
longint;
integer;
integer;
QDHandle;
QOHandle;
QDHandle;
QDProcsPtr

All QuicKDraw operations refer to grafPorts via grafPtrs. You create a grafPort
with the Pascal procedure NEW and use the resulting pointer in calls to
QuickDraw. You could, of course, declare a static var of type grafPort, and
obtain a pOinter to that static structure (with the @I operator), but as most
grafPorts will be used dynamically, their data structures should be dynamic also.

E-18

Pascal Reference M8I7I/8J QuickOraw

You can access all fields and subfields of a grafPort normally, but you
should not store new values directly into them. QuickDraw has
procedures for altering all fields of a grafPort, and using these
procedures ensures that changing a grafPort produces no unusual side
effects.

The device field of a grafPort is the number of the logical output device that the
grafPort will be usIng. Qulcl<Draw uses this infOrmation, since there are
physical differences in the same loglcal font for different output devices. The
default devIce number is 0, for the Lisa screen.
The portBits f1eld Is the bItMap that points to the bIt Image to be used by the
grafPort. All drawIng that Is done In thIs grafPort will take place In this bit
Image. The default bitMap uses the entire Lisa screen as its bit Image, wIth
rowBytes of 90 and a bOundary rectangle Of (0,o,720,364~ The DitMap may be
changed to Indicate a different structure In memory: all graphics procedures
worK In exacUy the same way regardless of whether their effects are visiDle on
the screen. A program can, for example, prepare an Image to De printed on a
printer withOUt ever dIsplaying the Image on the screen, or develop a pIcture in
an off-screen DitMap before transferring it to the screen. By altering the
coordinates of the portBlts.bounds rectangle, you can change the coordInate
system of the grafPort; wIth a QuickDraw procedure call, you can set an
arDltrary coordinate system for each grafPort,even If the dlfferentgrafPorts all
use the same Dit Image (e.g., the full screen~
The portRect field Is a rectangle that defInes a subSet of the bItMap for use by
the grafPort. Its coordinates are In the system defIned by the portBlts.Dounds
rectangle. All drawing done by the appllcation occurs InsIde thIs rectangle. The
portRect usually defInes the "wrltable"lnterlor area of a window, docUment, or
other aDject on the screen.
The visRgn field indIcates the regIon that Is actually vlsiDle on the screen. It is
reserved for use by future software, and should be treated as read-only. The
default vIsRgn Is set to the portRect (the entire screen).
The cl1pRgn Is an arDltrary region that the appllcation can use to limit drawing
to any region wIthin the portRect If, for example, you want to draw a half circle
on the screen, you can set the clipRgn to half the square that would enclose the
whole cIrcle, and go ahead and draw the whole circle. O'lly the half within the
cl1pRgn will actually be drawn in the grafPort. The default cl1pRgn is set
arDitrarlly large, and you have full control over its setting. Notice that unliKe

E-19

the visRgn, the clipRgn affects the image even If it is not displayed on the
screen.
Figure E-9 illustrates a typical bitMap (as defined by portBits), portRect,
visRgn, and cl1pRgn.

Figure E-9
GrafPoIt Reg1ms

The bkPat and fillPat fields of a grafPort contain patterns used by certain
QuickDraw routines. BkPat Is the "background" pattern that Is used when an
area is erased or when bits are scrolled out of it. When asked to fill an area with
a specified pattern, QuickDraw stores the given pattern in the flllPat field and
then calls a low-level drawing routine which gets the pattern from that field.
The various graphic operations are cJ1scussed in detail later in the descriptions of
individual QuickDraw routines.
Of the next ten fields, the first five determine Characteristics of the graphiCS
pen and the last five determine Characteristics Of any text that may be drawn;
these are described in subsections below.
The fgColor, bkColor, and calrett fields contain values related to drawing in
color, a capabil1ty that will be available in the future when Apple supports color
output devices for the Usa FgColor is the grafPort's foreground color and
bkColor is its background color. ColrBit tells the color imaging software which
plane of the color picture to draw into. For more information, see Section E.7.2,
Drawing In Color.

E-20

Pascal Reference M8I7I/8J QuickOraw

The patStretch field is used during output to a printer to expand patterns If
necessary. The application should not Change its value.
The plCSave, rgnSave, and polysave fields reflect the state Of pIcture, reglon,
and polygon definition, respectively. To defIne a region, for example, you "open"
It, call routines that draw it, and then "close" It. If no region Is open, rgnsave
contains NIL; otherwise, It contains a handle to information related to the regIon
defInition. The application ShOUld not tie concerned atJout exactly what
Information the handle leads to; you may, hoWever, save the current value of
rgnSave, set the field to NIL to dlsatJle the regIon defInition, and later restore it
to the saved value to resume the reglon definition. The pIcsave and polyS8ve
fIelds work sImilarly for pictures and pOlygons.
Finally, the grafProcs fIeld may point to a specIal data structure that the
appl1cation stores Into if It wants to customIze Qulcl<Draw drawIng procedUres
or use QuickDraw In other adVanced, highly specIalized ways. (For more
Information, see section E.l0, CUStomizIng QuickDraw ~rations.) If grafProcs
Is NIL, QulckDraw responds In the standard ways descrltJed In this manual.

E.5.1 Pen ChaI8cterlstics
The pnLoc, pnS1ze .. pnMode .. pnPat .. and pnVis fields of a grafPort deal wIth the
graphics pen. Each grafPOrt has one and only one graphIcs pen, which is used for
drawing lines .. shapes, and text. As illustrated In Figure E-l0, the pen has four
characteristics: a location, a sIze, a drawing mode, and a drawing pattern.

E-21

Pascal Reremnce M8nt.I8J t:;VJckDraw

FIgure E-l0
A Grap'llcs Pen

The pen location is a point in the coordinate system of the grafPort, and Is 'Where
QulckDraw wm begIn drawIng the next Une, Shape, or character. It can be
anywhere on tne coordinate plane: there are no restrictions on tne movement or
placement of the pen. Remember that the pen location Is a poInt on the
coordinate plane, not a pixel in a bi t image!
The pen is rectangular in shape, and has a user-definable wldtn and heIght. The
default size is a 1-by-l-bit rectangle; tne widtn and height can range from (0,0)
to (32767 ;32767). If eitner the pen wIdth or the pen neignt is less than 1, tne pen
will not draw on the screen.

• The pen appears as a rectangle with its top left comer at the pen location; it
hangs below and to the right of the pen location.

TIle pnMode and pnPat fields of a grafPort determine how the bits under the pen
are affected when lines or shapes are drawn. The pnPat is a pattern that is used
as the "ink" in the pen. This pattern, like all other patterns drawn in the grafPort,
is always aligr.ed wit.., the port's coordinate system: t.'1e top left comer of tt"!e
pattern is alIgned with the top left comer of the portRect, so that adjacent areas
of the same pattern w111 blend into a continuous, coordinated pattern. Five

E-22

Pascal Reference Manual QuickOraw

patterns are predefIned (white, black, and three shades of gray); you can also
create your own pattern and use it as the pnPat. (A utility procedure, called
StuffHex, allows you to f111 patterns easily.)
The pnMode field determines how the pen pattern is to affect what's already on
the bitMap when lines or Shapes are drawn. When the pen draws, QuiCkDraw first
determines what bits of the bitMap wUl be affected and finds their
corresponding bits in the pattern. It then does a bit-by-blt evaluation based on
the pen mode, which specifies one of eight boolean operations to perform. The
resulting bit is placed into its proper place in the bitMap. The pen modes are
described In section E.7.1, Transfer Modes.
The pnvts field determines the pen's visibUlty, that is, whether it draws on the
screen For more information, see the descriptions ofHidePen and ShowPen In
Section E.9.3, Pen and Line-Drawing Routines.

E.5.2 Text Character1st1cs
The txFont, txFace, txMode, txSize, and spExtra fields of a grafPort determine
how text will be drawn--tt\e font, style, and size of characters and how they wUl
be placed on the bitMap.
QuickDraw can draw characters as quiCkly and easlly as it draws lines and
Shapes, and In many prepared fonts. Figure E-ll shows two QulCkDraw
characters and some terms you should become famUlar with.

~--.--...,..--- ~t line

escent

liescent
......... -----"--- descent line

Ft~ E-ll
QulCkOraw Olaracters

QulckDraw can display cnaracters in any size, as well as boldfaced, italicized,
outlined, or ShadOWed, all withOut changing fonts. It can also Underline the
Characters, or draw them closer together or farther apart.
The txFont field is a font number that identifies the character font to be used in
the grafPort. The font number 0 represents the system font, and is the default
establiShed by qJenPort. The unit "QOSupport" includes definitions of other
available font numbers.
A character font Is defined as a COllection Of bit Images: these Images make up
the individual characters of the font. The characters can be of unequal widths,

E-23

Pascal Reference I'18nlIaJ

and they're not restricted to theIr "cells": the lower curl of a lowercase j, for
example, can stretch back under the previous character (typographers call this
kerning). A font can consist of up to 2S6 distinct characters, yet not all
characters need be defined In a single font. Each font contains a missing symbol
to be drawn In case of a request to draw a character that is missing from the font.
The txFac~ fIeld controls the appearance of the font with values from the set
defined by the Style data type:

type Styleltem - (bold, italic, underUne, outline, Shadow,
condense,extend~

Style - set of Styleltem;
You can apply these either alone or in combination (see Figure E-12~ Most
combinat1ons usually loOk good only for large fonts.

Normal Characters
Bold Characters
/la/il."? 1..7I7L9nJlYSrs
Underlined Characters ~Y.Z

IDIdIIDnl;l1d\ C~n
11l1li1111"11'1 alJimrlrlllffl
Condensed Characters
Extended Characters
lJoIIlaIc CIJanJcIen
M@vfJ1tmJI1llJlJJOlmfDmJ!l

... and in other fonts, too!

Figure E-12
Character styles

If you specify bold, each character is repeatedly drawn one bit to the right an
appropriate number of times for extra thiCkness.
Italic adds an italic slant to the characters. Character bits above the base line
are skewed right; bits below the base line are skewed left

underUne draws a Une below the base Une of the characters. If part of a
character descends below the base line (as 'yi in Figure E-12), the underline is
not orawn through the pixel on either side of the descenttlng part.

E-24

Pascal Reference M8I7lI8l QlJiCkDraw

You may specify either outline or shadow. OJtline makes a hOllow .. outlined
Character rather than a sol1d one. With Shadow, not only Is the Character hollow
and ouUlned, but the ouUIne is thickened below and to the right of the character
to achIeve the effect of a ShadoW. If you specify bold along with outline or
shadow .. the hollow part of the character is widened.
Condense and extend affect the horizontal distance between all characters,
including spaces. condense· decreases the distance between characters and
extend increases it, by an amount Which QuickDraw determines is appropriate.
The txMode field controls the way characters are placed on a bit image. It
functions much like a pnMade: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a bit-by-bit
comparison based on the mode .. and stores the reSUlting bits into the bit image.
These modes are described in Section E.7.1, Transfer Modes. O1ly three of
them--srcDr, srcXor, and srcBlc-shOUld be used for drawing text.
The tXSize field specifies the type size for the font, in points (Where "point" here
is a printing term meaning lfl2 inch~ My size may be specified. If QuickDraw
does not have the font in a speCified size, it wUl scale a size it does have as
necessary to produce the size desired. A value of 0 in this field directs
QuiCkDraw to ChOOse the size from among thOse it has for the font; it will Choose
whichever size is closest to the system font size.
FInally, the spExtra field is useful when a Une of Characters is to be drawn
justified such that It Is aligned wIth both a left and a right margin (sometimes
called "full justificationj. SpExtra Is the number Of pixels by which each space
character should be widened to f111 out the llne.

E.6 COOrdInates In GrafPorts
Each grafPort has its own local coordinate system. All fields in the grafPort are
expresSed in these coordinates, and all calculations and actions performed in
QuickDraw use the local coordinate system of the currently selected port.
Two things are important to remember:

• Each grafPOrt maps a portion of the coordinate plane into a similarly-siZed
portion of a bit image.

• The portBits.bounds rectangle defines the local coordinates for a grafPOrt.
The top left corner of portBits.boUndS is always allgned around the first bit in the
bit image; the coordinates of that comer "anchor' a point on the grid to that bit
in the bit image. This forms a common reference point for multiple grafPOrts
USing the same bit image (SUCh as the screen~ Given a portBits.boundS rectangle
for each port, you know that their top left corners coincide.
The Interrelationship between the portBlts.bounds and portRect rectangles is
very Important p.s the portBlts.boundS rectangle establlshes a coordinate
system for tJ1e port, the portRect rectangle IndIcates the section of the

E-25

coordInate plane (and thUs the blt image) that w111 be used for drawIng. The
portRect usually falls inside the portBits.boUndS rectangle, but it's not required
to do so.
'When a new grafPort is created, its bitMap is set to point to the entire Lisa
screen, and both the portBlts.bounds and the portRect rectangles are set to
720-by-364-bit rectangles, with the point (0,0) at the top left corner of the
screen.
You can redefIne the local coordinates Of the top left comer of the grafPort's
portRect, using the setOrtgin procedure. This ChangeS the local coordinate
system of the grafPort, recalculating the coordInates of all points in the
grafPort to be relative to the new comer coordinates. For example, consider
these procedure calls:

SetPort(gamePort);
setOr1g1n(40~0);

The call to setport sets the current grafPort to gamePort; the call to SetOrtgln
Cha."'lges the local coordinates of the top left comer of that port's portRect to
(40~O)(see FIgure E-13~

Before setOriqin. After SetOriqin.(40,80)

Figure E-13
0la1ging Local Coordinates

E-26

Pascal Reference Manual QulckDraw

ThIs recalculates the coordInate components of the following elements:
gameport" .portBlts.bounds gamePort" .portRect
gamePort" .vlsRgn

These elements are always kept "In sync", so that all calculations, comparisons,
or operations that seem right, work right.
Notice that when the local coordinates of a grafPort are offset, the vlsRgn of
that port is offset also, bUt the clipRgn Is not. A gOOd way to think of It Is that if
a document is being shown inside a grafPort, the document "sticks" to the
coordinate system, and the port's structure '·sticks" to the screen. Suppose .. for
example .. that the visRgn and cl1pRgn in Figure E-13 before SetOrlgin are the
same as the portRect, and a doct..ment is being shown. After the SetOrlgln call ..
the top left comer of the cl1pRgn is st111 (95,120), bUt this location has moved
down and to the right .. and the location of the pen within the document has
similarly moved. The locations of portBits.boUndS, portRect, and vlsRgn did not
change; their coordinates were offset. ~ always .. the top left comer of
portBits.bounds remains aligned around the first bit in the bit image (the first
pixel on the screen~
If you are moving, comparing, or otherwise dealing with mathematical items in
different grafPorts (for example, finding the intersection of two regions in two
different grafPorts), you must adjust to a common coordinate system before you

. perform the operation. A QuiCkOraw procedure, LocalToGlobal, lets you
convert a point's local coordinates to a global system where the top left comer
of the bit image is (0,0); by converting the various local coordinates to glObal
coordinates, you can compare and mix them with confidence. For more
information, see the description of this procedure in section E.9.I7, Calculations
with Points.

E.7 General Discussion of Drawing
Drawing occurs:

• Always inside a grafPort, in the bit image and coordinate system defined by
the grafPort's bitMap.

• Always wIthin the intersection of the grafPort's portBlts.bOUndS and
portRect,and cl1pped to Its vlsRgn and cl1pRgn.

• Always at the grafPort's pen location.
• USUally wIth the grafPort's pen size, pattern, and mode.

With QuickDraw procedures, you can draw lines, shapes, and text. Shapes include
rectangles, ovals, rounded-corner rectangles, wedge-shaped sections of oVals,
regions, and polygons.
Lines are defined by two points: the current pen location and a destination
location. When drawing a line, QuickDraw moves the top left comer of the pen

E-27

Pascal Reference Manual C)v/ckDraw

along the mathematical trajectory from the current location to the destination.
The pen hangs below and to the right of the trajectory (see FIgure E -14).

I -II
--

I

Figure E-14
Drawlng Unes

NJTE

No mathematical element (sUCh as the pen location) is ever affected by
cUpping; clipping only determInes what appears where in the bit Image. If
you draw a Une to a location outside your grafPort, the pen location will
move there, but only the portion of the Une that Is inside the port will
actual 1 y be drawn. This is true for all drawing procedures.

Rectangles, ovals, and rounded-comer rectangles are defined by two comer
pOints. The shapes always appear inside the mathematical rectangle defined by
the two pOints. A region is defined in a more complex manner, but also appears
only within the rectangle enclosing it. Remember, these enclosing rectangles
have infinitely thin borders and are not visible on the screen.
M, 1llustratedin Figure E-15, Shapes may be drawn either soUd (f1lled in with a
pattern) or framed (outlined and hollow~

E-28

Pascal Reference ManlJal

pen height

""

Figure E-15
SOnd Shapes and Fnmed Shapes

QulckDraw

In the case of framed shapes, the outline appears completely within the
enclosing rectangle--with one exception--and the vertical and horizontal
thickness of the outline is determined by the pen size. . The exception is
pOlygons, as discussed in "Pictures and Polygons" below.
The pen pattern is used to fill in the bits that are affected by the drawing
operation. The pen mode defines now thOse bits are to be affected by directing
QulcKDraw to apply one of eight boolean operations to the bits in the Shape and
the corresponding pixelS on the screen.
Text drawing does not use the pnSlze, pnPat, or pnMOde, but it does use the
pnLOc. Each Character is plaCed to the right of the current pen location, with the
left end of its base line at the pen's location. The pen is moved to the right to the
location where it will draw the next Character. No wrap or carriage return is
performed automatically.
The methOd QulcKDraw uses in placing text is controlled by a mode similar to
the pen mode. This Is explained In Section E.7.1, Transfer MOdes. CUpping Of
text Is performed in exactly the same manner as all other clipping in Qulcl<Draw.

E.7.1 Transfer Modes
When lines or shapes are drawn, the pnMode field of the grafPort determines how
the drawing is to appear in the port's bit image; similarly, the txMOde field
determines how text is to appear. There is also a QuicKDraw procedUre that
transfers a bit image from one bitMap to another, and this procedUre has a mode

E-29

Pascal Reference M8nl/8l QuickOraw

parameter that determines the appearance of the result. In all these cases, the
mode, called a transfer mode, specifies one of eight boolean operations: for each
bit in the item to be drawn, QuiCl<Draw finds the correSponding bit in the
destination bit image, performs the boolean operation on the palr of bits, and
stores the resulting bit into the bit image.
There are two types of transfer mode:

• Pattern transfer modes, for drawing lines or Shapes with a pattern.
• Source transfer modes, for drawing text or transferring any bit image

between two bitMaps.
For each type of mode, there are four basic operations--Copy, Dr, Xor, and Bic.
The copy operation simply replaces the pixelS in the destination with the pixelS
in the pattern or source, "painting" over thedestination without regard for what
is already there. The Dr, Xor .. and Bic operations leave the destination pixelS
under the white part Of the pattern or source unChanged, and differ in how they
affect the pixels under the black part: Dr replaces those pixelS with blacK pixels,
thus ··overlaying" the destination with the black part of the pattern or source;
Xor inverts the pixels under the black part; and Bic erases them to white.
EaCh of the basic operations has a variant in whiCh every pixel In the pattern or
source Is inverted before the operation is performed, giving eight operations in
all. Each mode is defined by name as a constant in QuiCl<Draw (see Figure E-16~

II
pattern or source 4estination

"Paint H -Overlsy" "Invert H -Erase"

1111 lilt
patCopy patOr
srcCopy stcOr

patXor
stcXor

patBic
stcBie

11111111
notPatCopy notPatOr notPatXor notPatBic
notSrcCopy notSrcOr notSrcXor notSrcBic

FIgure E-16
Tralasfer MOOes

E-30

}

Pascal Reference 1'18171./81 C/lIickDraw

Action on each pIxel In destination: Pattern
transfer
mode

SOUrce
transfer
mOde

If black pIxel In If white pixel In

patCopy
patOr
patxor
patBlc

srcCopy
srcDr
srcXor
srcBlc

pattern or source pattern or source
Force blacK Force white
Force blacK Leave alone
Invert Leave alone
Force whIte Leave alone

notpatCopy notsrcCopy Force wh1te Force black
Force black
Invert
Force whIte

notpatOr notsrcOr Leave alone
notpatxor notsrcXor Leave alone
notpatBic notsrc8ic Leave alone

E.7.2. Drawing In COlOr
CurrenUy you can only look at QuickDraw output on a black-and-white screen
or printer. Eventually, hoWeVer, Apple will support color output devices. If you
want to set up your application now to prodUce color output in the future, you can
do so by using QuiCkDraw procedUres to set the foregrOUnd color and the
background color. EIght standard colors may be specified with the following
predefined constants: blackColor, whiteColof, redColor, greencolor,blueColor,
cyanColor, magentaColor, and yellowCOlor. Initially, the foreground color is
blackColor and the background COIOf is whiteColof. If you specify a color other
than WhiteColor, it will appear as black on a black-and-white output device.
To apply the table In the "Transfer ModeS" section above to drawing In color,
make the following translation: where the table ShoWs "Force black", read
-,=orce foreground color", and where it ShOws tfForce white", read ''Force
backgrOUnd color". When you eventually receive the color output device, you'll
ftnd out the effect of inverting a color on it.

I'DTE

QuickDraw can support output devices that have up to 32 bits of color
information per pixel. A color picture may be thought of, then, as having
up to 32 planes. At anyone time, QuiCkDraw draws into only one of these
planes. A QuickDraw routine called by the color-imaging software
specifies which plane.

E.8 Pictures ~ Polyga'lS
QuickDraw lets you save a sequence of drawing commands and "play them back"
later with a single procedure call. There are two such mechanisms: one for
drawing any picture to scale in a deStination rectangle that you specify, and
another for drawing pOlygons in all the ways you can draw other shapes in
QuickDraw.

E-31

Pascal Reference H8J7U8l QulckDrsw

E.8.1 Pictures
A picture in QuickDraw is a transcript of calls to routines which draw
something--anything--on a bitMap. Pictures make it easy for one program to
draw something defined in another program, with great flexibil1ty and without
Knowing the details about what·s being drawn.
For each picture you define, you specify a rectangle that surrounds the picture;
this rectangle Is called the picture frame. When you later call the procedure
that draws the saved picture, you SupplY a destination rectangle, and QuicKDraw
scales the picture so that its frame Is completely aligned with the destination
rectangle. Thus, the picture may be expanded or shrunk to fit its destination
rectangle. For example, if the picture is a circle inside a square picture frame,
and the destination rectangle is not square, the picture Is drawn as an oval.
Since a picture may inclUde any sequence of drawing commands, its data
structure is a variable-length entity. It consists of two fixed fields followed by
a variable-length data field:

type PIcture - record
piCSize: Integer;
picFrame: Rect;
{pIcture definition data}

end;
The pICSlze fIeld contains the size, In bytes, of the pIcture variable. The
pIcFrame field is the picture frame Whien surroundS the picture and gives a
frame of reference for scalIng when the pIcture Is drawn. The rest of the
structure contains a compact representation of the drawing commandS that
defIne the pIcture.
All pictures are accessed through handles, which point to· one master pointer
which in tum points to the picture.

type PicPtr - .. Picture;
PicHandle - .. PicPtr;

To define a picture, you call a QulcKDraw function that returns a plcHandle and
then call the routines that draw the picture. There is a procedure to call when
you've fIniShed defInIng the picture, and another for When you're done wi th the
picture altogether.
QuicKDraw also allows you to intersperse picture comments with the definition
of a picture. These comments, Which do not affect the picture·s appearance,
may be used to provide additional information about the picture when ies played
bacK. This is especially valuable when pictures are transmitted from one
application to another. There are two standard types of comment Which, liKe

E-32

Pascal Reference M8I7lIaJ QlJickOraw

parentheses, serve to group drawing commands together (sUCh as all the
commands that draw a particular part of a picture~

const picLParen = 0;
plcRParen - 1;

The appl1catlon defining the pIcture can use these standard comments as well as
comments of its own deSign.
To include a comment in the definition of a picture, the application calls a
QulckDraw procedUre that specifies the comment with three parameters: the
comment kind, which identifies the type of comment; a handle to additional data
if desired; and the size of the additional data, if any. When playing baCk a
picture, QuickDraw passes any comments in the picture's definition to a
low-level procedure accessed indirectly through the grafProcs field of the
grafPort (see Section E.10, CUstomiZing QuickDraw ~erat1ons for more
information~ To process comments, the application must include a procedure to
do the processing and store a painter to it in the data structure pointed to by the
grafProcs field.

The standard low-level procedure for processing picture comments
simply ignores all comments.

E.82 Pol}9Y1S
POlygons are similar to pictures in that you define them by a sequence of calls to
QuickDraw routines. They are also similar to other shapes that QuickDraw
knows about, since there is a set of procedures for performing graphiC operations
and calculations on them.

A polygon is simply any sequence of connected lines (see Figure E-17~ You
define a polygon by moving to the starting point of the polygon and drawing lines
from there to the next point, from that point to the next, and so on.

E-33

Pascal Reference M8nu81

Figure E-17
Polygons

QI.IlckDrew

The data structure for a pOlygon Is a variable-length entity. It consists of two
fixed fields followed by a variable-length array:

type Polygon.... record
polySize:
polyBBox:
polyPoints:

end;

integer;
Rect;
array [0..0] of Point

The polySize field contains the size, in bytes, of the polygon variable. The
polyBBox field is a rectangle which just encloses the entire polygon. The
polyPolnts array expands as necessary to contain the points of the polygon-- the
starting point followed by each successive point to whiCh a Une Is drawn.
Like pictures and regions, polygons are accessed through handles.

type PolyPtr - "Polygon;
PolyHancUe = .. PolyPtr;

To define a polygon, you call a QuickDraw function that returns a polyHandle
and then fonn the polygon by calling procedures that draw lines. You call a
procedure when you've finished defining the polygon, and another when you're
done with the polygon altogether.
Just as for other shapes that QuiCkDraw Knows about, there is a set of graphic
operations on polygons to draw them on the screen. QulcKDraw draws a polygon
by moving to the starting point and then drawIng lines to the remaining points in
succession, just as when the routines were called to define the polygon. In this
sense it "plays back" thOse routine caUs. As a result, polygons are not treated
exacUy the same as other QuiCkDraw Shapes. For example, the procedUre that
frames a polygon draws outside the actual bOundary of the polygon, because

E-34

Pascal ReFerence Ha?ual QulckDraw

QuickDraw Une-drawing routines draw below and to the right of the pen
location. The procedures that f1ll a polygon with a pattern, hOwever, stay within
the boundary of the polygon; they also add an additionall1ne between the ending
point and the starting point if thOse points are not the same, to complete the
Shape.
There is also a difference in the way QulckDraw scales a polygon and a
similarly-shaped region if it's being drawn as part of a picture: when stretched, a
slanted line is drawn more smoothly if it's part of a polygon rather than a region.
You may find it helpful to keep in mind the conceptual difference between
polygons and regions: a pOlygon is treated more as a continuous shape, a region
more as a set of bits.

E.9 QuIcI<Draw Rrutlnes
This section describes all the procedUres and functions in QuickDraw, their
parameters, and their operation. They are presented in their Pascal form; for
information on USing them from aSsembly language, see Section E.ll, Using
QuickDraw from AsSembly Language.

E.9.1 GrafPort Rrutlnes

Procedure InitGraf (glObalPtr: QDPtr);
Call InitGraf once and only once at the beginning of your program to initialize
QuickDraw. It initializes the QuickDraw global variables listed below.

Variable
thePort
white
black
gray
ItGray
dkGray
arrow
screenBit
randSeed

~
GrafPtr
Pattern
Pattern
Pattern
Pattern
Pattern
Cursor
BitMap
longint

Initial setting
NIL .
all-white pattern
all-black pattern
50% gray pattern
25% gray pattern
75% gray pattern
pointing arrow cursor
Lisa screen, (0,0,720,364)
1

The globalPtr parameter tells QuickDraw where to store its global variables,
beginning with thePort. From Pascal programs, this parameter should always be
set to (l)thePort; assembly language programmers may choose any location, as
long as it can accommOdate the number of bytes specified by GRAFSlZE In
GRAFTYPES.TEXT (see Section E.11, USing QuickDraw from Assembly
Language~

E-35

Pascal Reference MsnusJ Quicl<Dmw

To initialize the cursor, call InltCursor (described in Section E.9.2,
Cursor-Handling Rout1nes~

Procedure ~enPort (gp: GrafPtr);

~enPort allocates space for the given grafPort's visRgn and cllpRgn, Inl tiallzes
the fields of the grafPort as indicated below .. and makes the grafPort the current
port (see Setport). You must call ~ort before using any grafPort; fIrst
perform a NEW to create a grafPtr and then use that grafPtr in the ~enPort caU.

Field Type InItial setting
devIce integer 0 (LIsa screen)
portBlts Bl tMap screenBi ts (see InitGraf)
portRect Rect screenBIts.bounds (0,0,720,364)
visRgn RgnHandle handle to the rectangular region

(0,0,720,364)
cl1pRgn

bkPat
f1l1Pat
pnLoc
pnSlze
pnMade
pnPat
pnVis
txFont
txFace
txMode
txSlze
spExtra
fgColor
bkColor
colrBlt
patStretch
picSave
rgnSave
polySave
grafProcs

RgnHancne handle to the rectangular region
(-30000,-30000,30000,30000)
white Pattern

Pattern
Point
Point
integer
Pattern
integer
integer
Style
Integer
integer
integer
longint
longlnt
integer
integer
QDHandie
QDHandle
QDHandle
QDProcsPtr

black
(0,0)
(1,1)
patCopy
blaCk
o (visible)
o (system font)
normal
srcDr
o (QuickDraw decides)
o
blackCOlor
wtliteColor
o
o
NIL
NIL
NIL
NIL

E-36

Qu/CkOraw

Procedure InltPort (gp: GrafPtr);
Given a poInter to a grafPort that has been opened with QJenPort,InitPort
reInIt1alizes the fIeldS of the grafPort and makes it the current port (If It's not
a1ready~

InitPort does everything QJenPort does except allocate space for the
visRgn and cl1pRgn.

ProcedUre ClosePort(gp: GrafPtr);
ClosePort deallocates the space occupied by the given grafPort's visRgn and
cl1pRgn. When you are completely through with a grafPort, call this procedure
and then dIspose of the grafPort (wi th a DISPOSE Of the grafPtr~

WARNING
If you dO not call ClosePort before disposIng of the grafPort, the memory
used by the visRgn and clipRgn will be unrecoverable.

WARNING

After call1ng ClassPort, be sure not to use any copies of the visRgn or
cl1pRgn handles that you may have made.

Procedure SetPort (gp: GrafPtr);
SetPort sets the grafPort indIcated by gp to be the current port. The global
poInter thePort always points to the current port. All QuicKDraw drawing
routines affect the bitMap thePort" .portBlts and use the local coordinate
system of thePort ". Note that QlenPort and Initport do a Setport to the given
port.

WAANING

Never do a SetPort to a port that has not been opened with QJenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

Procedure GetPort (var gp: GrafPtr);
Getport returns a pointer to the current grafPort. If you have a program that
draws into more than one grafPort, it's extremely useful to have each procedure

E-37

Pascal Reference Hant.lal Q(.Jicl<Draw

save the current grafPort (with GetPort)" set its own grafPort, do drawing or
calculations" and then restore the previous grafPort (with SetPort~ The pOinter
to the current grafPort Is also available through the global pOinter thePort" but
you may prefer to use GetPort for better readability of your program text. For
example" a procedure could do a GetPort(savePort) before setting its own
grafPort and a setPort(savePort) afterwards to restore the previous port.

Procedure GrafOevice (device: integer);
GrafDevice sets thePort" .device to the given number" whiCh identifies the
logIcal output device for this grafPort. QuicKDraw uses this information. The
initial device number is 0" whiCh represents the Lisa screen.

Procedure SetportBits (bm: BltMap);
SetPortBits sets thePort ... portBlts to any previously defined bitMap. This allows
you to perform all normal drawing and calculations on a buffer other than the
Lisa screen--for example" a 64D-by-8 output buffer for a C. Itoh printer" or a
small off-screen image for later "stamping" onto the screen.
Remember to prepare all fields of the bitMap before you call SetportBits.

Procedure PortSize (width,height: integer);
PortSize changes the size of the current grafPort's portRect. This does not
affect the screen; it merely changes the size of the "active area" of the grafPort.
The top left comer of the portRect remains at its same location; the width and
height of the portRect are set to the given width and height. In other words,
PortSize moves the bottom right comer of the portRect to a position relative to
the top left corner.
PortSize does not Change the clipRgn or the visRgn, nor does it affect the local
coordinate system of the grafPort: it Changes only the portRect's width and
height. Remember that all drawing occurs only in the intersection of the
portBits.bounds and the portRect, Clipped to the visRgn and the clipRgn.

Procedure MovePortTo (leftGlobal,topGlobal: integer);
MovePortTo changes the position of the current grafPort's portRect. This does
not affect the screen; it merely changes the location at which subsequent
drawing inside the port will appear.

E-38

Pascal Reference Manual QuickDraw

TheleftGlobal and topGlobal parameters set the distance between the top left
comer of portBits.bOUOOS and the top left comer of the new portRect For
example,

MovePortTc(360,182);
will move the top left comer of the portRect to the center of the screen (1f
portBits is the Lisa screen) regardless Of the local coordinate system.
Like PortSize, MovePortTo does not change thecl1pRgn or the visRgn, nor does
it affect the local coordinate system of the grafPort.

Procedure SetOrigin (h,v: integer);
setDrigin changes the local coordinate system of the current grafPort. This does
not affect the screen; it does, however, affect where subsequent drawing and
calculation will appear In the grafPort. SetOrigin updates the coordinates of the
portBits.bOundS, the portRect, and the visRgn. All subsequent drawing and
calculation routines will use the new coordinate system.
The h and v parameters set the coordinates Of the top left comer of the portRect
All other coordinates are calculated from this poInt All relative distances
among any elements In the port will remaIn the same; only their absolute local
coordinates w111 Change.

SetOrlgln does not Update the coordInates of the cllpRgn or the pen; these
items stick to the coordinate system (unlike the port's structure, which
sticks to the screen).

setorigin is useful for adjusting the coordinate system after a scroll1ng
operation. (see SCrollRect In section E.9.13,Blt Transfer QJerations.)

Procedure SetCllp (rgn: RgnHandle);
SetCl1p Changes the cUppIng region of the current grafPort to a regIon
equivalent to the given region. Note that this does not change the region handle,
but affects the cUpping region itself. Since SetCllp makes a copy of the given
region, any subsequent changes you make to that reglon will not affect the
cUpping reglon of the port.
You can set the cUpping region to any arbitrary reglon, to aid you in drawing
inside the grafPort. The initial clipRgn is an arbitrarUy large rectangle.

E-39

Pascal Reference /'18171.18l QtJiC/<Omw

Procedure GetCl1p (rgn: RgnHandle);
GetClip changes the given region to a region equivalent to the cUpping region of
the current grafPort. This is the reverse Of what SetClip does. liKe SetCllp, it
does not change the region handle.

Procedure Cl1pRect (r: Rect);
ClipRect changes the clipping region of the current grafPort to a rectangle
equivalent to given rectangle. Note that this does not change the region handle,
but affects the region itself.

Procedure BacKPat (pat: pattern);
BacKPat sets the bacKground pattern of the current grafPort to the given
pattern. TIle bacKground pattern is used in ScrollRect and In all QuicKDraw
routines that perform an "erase" operation.

E..9.2 cursor-Handling Routines

Additional information on cursor handling can be found in Appendix F, Hardware
Interface.
Procedure InitCursor;
InitGursor sets the current cursor to the predefined arrow cursor, an arrow
pointing north-northwest, and sets the cursor level to 0, making the cursor
visible. TIle cursor level, whiCh Is initialized to 0 when the system is booted,
Keeps tracK of the number of times the cursor has been hidden to compensate for
nested calls to Hldecursor and ShowCursor (tJelow~
Before you call InitCursor, the cursor is undefined (or, if set by a previous
process, it's whatever that process set it to~

Procedure SetCursor (crsr: CUrsor);
SetCursor sets the current cursor to the 16-by-16-bit image in crsr. If the
cursor is hidden .. it remains hidden and will attain the new appearance when it's
uncovered; if the cursor is already visible, it Changes to the new appearance
immediately.
TIle cursor image is initialized by InitCUrsor to a north-northWest arrow, visible
on the screen. TIlere is no way to retrieve the current cursor image.

E-40

Pascal Reference M8I7lJai QtJickDraw

Procedure HldeCursor;
HideCursor removes the cursor from the screen, restoring the bits under it, and
decrements the cursor level (which InitCursor initialized to O~ Every call to
HideCUrsor shoUld be balanced by a subsequent Call to ShowCursor.

Procedure ShowCursor;
ShowCursor increments the cursor level, which may have been decremented by
HideCUrsor, and displays the cursor on the screen if the level becomes O. A call
to ShowCUrsor should balance each previous call to Hid8CUrsor. The level is not
incremented beyond 0, so extra calls to ShowCUrsor don't hurt.
If the cursor has been changed (with SetCursor) while hidden, ShowCursor
presents the new cursor.
The cursor is initialized by InltCUrsor to a north-northwest arrow, not hidden.

Procedure Cbscurecursor;
(l)scureCursor hides the cursor until the next time the mouse Is moved. unliKe
HideCursor, it has no effect on the cursor level and must not be balanced by a
call to ShowCUIsor.

E.9.3 Pen ald Une-Drawing Rrut1nes
The pen and line-drawIng routines all depend on the coordinate system of the
current grafPort. RememDer that each grafPort haS its own pen; If you draw in
one "grafPort, Change to another, and return to the fIrst, the pen w1ll haVe
remained In the same location •

. Procedure HidePen;
HldePen decrements the current grafPort's pnVis fIeld, which is initialIzed to 0
by QJenPort; whenever pnVls Is negative, the pen does not draw on the screen.
PnVis Keeps tracK of the number of times the pen haS been hIdden to compensate
for nested calls to HidePen and ShOwPen (belOW). HidePen Is Called by Q;lenRgn,
Q;lenPlcture,and ~enPoly so tnatyou can define regions, pIctures, and polygons
wIthout drawing on the screen.

Procedure ShowPen;
ShowPen increments the current grafPort's pnVis fIeld, which may have been
decremented by HdePen; if pnVis becomes 0, QulcKDraw resumes drawing on
the screen. Extra Calls to ShowPen will increment pnVis beyond 0, so every call
to ShowPen shOUld be balanced by a SUbsequent call to HdePen. ShowPen 1s
called by CloseRgn, ClosePicture, and ClosePoly.

E-41

Pascal Reference Henu8l QiliCkDraw

Procedure Getpen (var pt: Point);
GetPen returns the current pen location, in the local coordinates of the current
grafPort.

Procedure GetpenState (var pnState: PenState);
GetPenState saves the pen location, size, pattern, and mode In a storage
variable, to be restored later "11th SetPenState (bela'll). This is useful when
call1ng short subroutines that operate in the current port but must change the
graphics pen: each such procedure can save the pen's state when it's called, do
whatever it needs to do, and restore the previous pen state immediately before
returning.
The PenState data type is not useful for anything except saving the pen's state.

Procedure SetpenState (pnState: PenState);
SetPenState sets the pen location, size, pattern, and mode in the current
grafPort to the values stored In pnState. This is usually called at the end of a
procedure that has altered the pen parameters and wants to restore them to their
state at the beginning of the procedure. (See GetPenState, above.)

Procedure PenSlze (wldth,helght: integer);
pensize sets the dimensions of the graphics pen in the current grafPort All
subsequent calls to Line, LineTo, and the procedUres that draw framed shapes in
the current grafPort will use the new pen dimensions.
The pen dimensions can be accessed in the variable thePort" .pnSize, which is of
type Point If either of the pen dimensions Is set to a negative value, the pen
assumes the dImensions (0,0) and no drawing Is performed. For a discussion of
how the pen draws, see the "General Discussion of DrawIng" earlier in this
manual.

Procedure PenMode (mOde: integer);
PenMode sets the transfer mode thrOUgh which the pnPat is transferred onto the
bitMap when lines or shapes are drawn. The mode may be anyone of the pattern
transfer modes:

patCopy
pater

patXor
patBic

notPatCopy notPatXor
notPatDr notPatBic

If the mode Is one of the source transfer modes (or negative), no drawing Is
performed. The current pen mode can be obtained In the variable

E-42

Pascal Reference Manual QlIickDraw

thePort A .pnMode. The Initial pen mocJe is patCopy, in whiCh the pen pattern is
copied directly to the bitMap.

Procedure PenPat (pat: Pattern);
PenPat sets the pattern that is used by the pen in the current grafPort. The
standard patterns whIte, blaCk, gray, ItGray, and dkGray are predefined; the
initial pnPat is black. The current pen pattern can be obtained in the variable
thePort A .pnPat, and this value can be assigned (but not compared!) to any other
variable of type Pattern.

Procedure PenNormaI;
PenNormal resets the initial state of the pen in the current grafPort, as ·fo11ows:

Field [etvng
pnSlze 1,1
pnMode patCopy
pnPat black

The pen location is not changed.

Procedure MoveTo (h,v: integer);
MoveTo moves the pen to location (h,v) in the local coordinates of the current
grafPort. No draWing Is performed.

Procedure Move (dh,dV: integer);
thIs procedure moves the pen a distance of dh horizontally and dv vertiCally
from its current location; it calls MoveTc(h+dh,V+dv), Where (h,v) is the current
location. The positive directions are to the Tight and dOwn. No drawing is
performed.

Procedure LineTo (h,v: integer);
LineTo draws a Une from the current pen location to the location specified (in
local coordinates) by hand v. The new pen location Is (h,v) after the Une Is drawn.
See the general discussion of drawing.
If a region or polygon Is open and being formed, its outline is InfInitely thin and Is
not affected by the pnSlze,pnMocJe,or pnPat (see ~nRgn and qJenPoly.)

Procedure Line (dh,dV: integer);
This procedUre draws a line to the location that Is a distance of dh horizontally
and dv vertically from the current pen location; It calls LineTc(h+dh,v+dV), Where

E-43

Pascal ReFerence I'1entI8l C):J/ckDraw

(h,V) is the current location. The positive directions are to the right and down.
The pen location becomes the coordinates of the end of the line after the Une Is
drawn. See the general discussion of drawing.
If a reglon or polygon Is open and beIng formed, 1 ts outline is infini tely thin and is
not affected by the pnSlze,pnMode,or pnPat (See qJenRgn and qJenPoly.)

E.9.4 Text-Drawlng Routines
Each grafPort has its own text Characteristics, and all these procedures deal
with those of the current port.

Procedure Textfont (font: integer);
TextFont sets the current grafPort's font (theport A .txFont) to the given font
number. The initial font number Is 0, which represents the system font.

Procedure TextFace (face: Style);
TextFace sets the current grafPort's Character style (theport A .txFace~ The
Style data type allows you to specify a set Of one or more of the following
predefined constants: bold, italiC, Underltne, outline, shadoW, condense, and
extend. For example:

TextFace([bold];
TextFace([bold,ltalic];
TextFace(thePort A • txFace+[boldD;
TextFace(thePort A .txFace-[boldD;
TextFace([D;

Procedure TextMode (mode: integer);

{bOld}
{bold and italic}
{whatever it was plus bold}
{Whatever it was but not bold}
{normal}

TextMode sets the current grafPort's transfer mode for drawing text
(thePort A .txMode~ The mode Should be srcOT, srcXor, or srcBic. The initial
transfer mode for drawing text is srcOT.

Procedure TextSlze (size: integer);
TextSize sets the current grafPort's type size (thePort A .txSlze) to the given
number of pOints. My size may be specified, but the result will look best
ifQuickDraw has the font in that size (otherwise it will scale a size it does have~
The next best result will occur if the given size Is an even multiple of a size
available for the font. If 0 is speCified, QuickDraw will Choose one of the
available slzes--whichever is closest to the system font size. The initial tXSlze
setting is 0.

E-44

Pascal Reference Manual QtJickOraw

Procedure SpaceExtra (extra: integer);
SpaceExtra sets the current grafPort's spExtra field, whiCh specifies the number
of pixels by which to widen each space in a Une of text. This is useful when text is
being fully justified (that is, aligned with both a left and a right margin~
Consider, for example, a Une that contains three spaces; if there would normally
be six pixelS between the end of the Une and the right margin, you would call
SpaceExtrc(2) to print the line with full justification. The initial spExtra setting
isO.

SpaceExtra wUl also take a negative argument, but be careful not to
narrow spaces so muCh that the text is unreadable.

Procedure DrawChar(Ch: char);

DrawChar places the given character to the right of the pen location, with the
left end of its base lIne at the pen's location, and advances the pen accordingly.
If the character Is not in the font, the font's miSSing symbol is drawn.

ProcedUre Drawstring (s: Str255);
DraWString performs consecutive calls to DrawChar for each character In the
supplIed string; the string is placed beginning at the current pen location and
extending right. No formatting (carriage returns, line feeds, etc.) Is performed
by QulckDraw. The pen location ends up to the right of the last character in the
string.

Procedure DrawText (textBuf: QDPtr; flrstBytepytecount: integer);
DrawText draws text from an arbitrary structure in memory specified by
textBuf, starting flrstByte bytes into the structure and continuing for byteCOunt
bytes. The string of text is placed beginning at the current pen location and
extending right. No formatting (carriage returns, line feeds, etc.) is performed
by QuickDraw. The pen location ends up to the right of the last Character in the
string.

Function CharWldth (Ch: char): integer;
CharWidth returns the value that wUl be added to the pen horizontal coordinate
if the specified character is drawn. CharWidth includes the effects of the
stylistic variations set with TextFace; if you Change these after determining the
character width but before actually drawing the character, the predetermined

E-45

Pascal Reference M8fJlIal QuiCk01'8W

width may not be correct If the character is a space, CharWidth also includes
the effect of SpaceExtra .

Function StringWidth (s: Str255): integer;
String Width returns· the width of the given text string, which it calculates by
addIng the CharWidths of all the characters In the strIng (see above). This value
will be added to the pen horizontal coordinate if the specified string Is drawn.

Function TextWidth (textBuf: QDPtr; flrstByte.,byteCount: integer) : integer;
TextWidth returns the width of the text stored in the arbitrary structure In
memory specIfied by textBuf, starting firstByte bytes Into the structure and
continuing for byteCount bytes. It calculates the width by adding the
CharWIdths of all the characters in the text (See CharWidth, above.)

Procedure GetFonUnfo (var info: FonUnfo);
GetFonUnfo returns the following information about the current grafPort's
character font, takIng into consIderation the style and size in which the
characters will be drawn: the ascent, descent, maximum character width (the
greatest distance the pen w111 move when a character is drawn), and leading (the
vertical dIstance between the descent Une and the ascent line below it), all in
pixels. The FonUnfo data structure is defined as:

type FonUnfo - record
ascent:
descent:
widMax:
leading:

end;
E.9.5 DrawIng In COlor

integer;
integer;
integer;
Integer

These routines w111 enable appllcations to do color drawing in the future when
Apple supports color output devices for the Usa. All nonwhite colors w111 appear
as blacK on blacK -and-whi te output devices.

PrOcedUre F oreCOlor (color: longint);
ForeColor sets the foreground color for all drawing in the current grafPort
(thePort A .fgColor) to the gIven color. The following standard colors are
predefined: blacKColor, whiteColor, redCOlor, greenColor, blueColor,
cyanColor, magentaColor, and yelloWColor. The initial foreground color is
blacKCOlor.

E-46

Pascal Reference Manval qvickDraw

Procedure BackColor (color: longint);
BackColor sets the background color for all drawing in the current grafPort
(thePort A .bkColor) to the given color. Eight standard colors are predefined (see
ForeColor above~ The initial background color is whiteColor.

Procedure ColorBit (whichBit: integer);
ColorBit is called by printing software for a color printer, or other color-imaging
software, to set the current grafPort's colrBit field to whichBit; this tells
QuickOraw which plane of the color picture to draw into. QuickOraw will draw
into the plane corresponding to bit number whichBit. Since QuickOraw can
support output devices that have up to 32 bits of color information per pixel, the
possible range of values for whichBit is 0 through 31. The initial value of the
colrBit field is O.

E.9.6 calculations with Rectangles
Calculation routines are independent of the current coordinate system; a
calculation will operate the same regardless of which grafPort is active.

I'IlTE

Remember that if the parameters to one of the calculation routines were
defined in different grafPorts, you must first adjust them to be in the
same coordinate system. If you do not adjust them, the result returned by
the routine may be different from what you see on the screen. To adjust
to a common coordinate system, see LocalToGlobal and GlobalToLocal
in Section E. 9.17, Calculations with Points.

Procedure SetRect(var r: Rect;left,top)"ight)JOttom: integer);
SetRect assigns the four boundary coordinates to the rectangle. The result is a
rectangle with coordinates (left,top)"ight,bottom~
This procedure is supplied as a utility to help you shorten your program text. If
you want a more readable text at the expense of length, you can assign integers
(or points) directly into the rectangle's fields. There is no significant code size
or execution speed advantage to either method; one's just easier to write, and
the other's easier to read.

Procedure OffsetRect (var r: Rect; dh,dv: integer);
OffsetRect moves the rectangle by adding dh to each horizontal coordinate and
dv to each vertical coordinate. If dh and dv are positive, the movement is to the
right and down; if either is negative, the corresponding movement is in the
opposite direction. The rectangle retains its shape and size; it's merely moved

E-47

Pascal Reference Manual QlIlckDraw

on the coordinate plane. This does not affect the screen unless you subsequently
call a routine to draw within the rectangle.

Procedure InsetRect (var r: Rect; dhAv: integer);
InsetRect shrinks or expands the rectangle. The left and right sides are moved
in by the amount specified by dh; the top and bottom are moved toward the
center by the amount specified by dv. If dh or dv is negative, the appropriate
pair of sides is moved outward instead of inward. The effect is to alter the size
by 2*dh horizontally and 2*dv vertically, with the rectangle remaining centered
in the same place on the coordinate plane.
If the resulting width or height becomes less than 1, the rectangle is set to the
empty rectangle (O,o,o,o~

Function SectRect (srcRectA~rcRectB: Rect; var dstRect: Rect) : boolean;
SectRect calculates the rectangle that is the intersection of the two input
rectangles, and returns TRUE if they indeed intersect or FALSE if they do not.
Rectangles that ''touch" at a line or a point are not considered intersecting,
because their intersection rectangle (really, in this case, an intersection line or
point) does not enclose any bits on the bitMap.

If the rectangles dO not intersect, the destination rectangle is set to (O,o,o,o~
SectRect works correctly even if one of the source rectangles is also the
destination.

Procedure UnionRect (srcReCtA,srcRectB: Rect; var dstRect: Rect);
UnionRect calculates the smallest rectangle which encloses both input
rectangles. It works correctly even if one of the source rectangles is also the
destination.

Function PtinRect (pt: Point; r: Rect): boolean;
PtInRect determines whether the pixel below and to the right of the given
coordinate point is enclosed in the specified rectangle, and returns TRUE if so
or FALSE if not.

Procedure Pt2Rect (ptA,ptB: Point; var dstRect: Rect);
Pt2Rect returns the smallest rectangle whiCh encloses the two input paints.

E-48

Pascal Ref'e.rence /V1anua/ QuickD.raw

Procedure PtToAngle (r: Rect;pt: POint; var angle: integer);
PtToAngle calculates an integer angle between a line from the center of the
rectangle to the given point and a line from the center of the rectangle pointing
straight up (12 o'clock high). The angle is in degrees from 0 to 359, measured
clockwise from 12 O'ClOCk, with 90 degrees at 3 o'clock, 180 at 6 o'Clock, and 270
at 9 o'clock. Other angles are measured relative to the rectangle: If the line to
the given point goes through the top right comer of the rectangle, the angle
returned is 45 degrees, even if the rectangle is not square; if it goes through the
bottom right comer, the angle is 135 degrees, and so on (see Figure E-18).

r r

Fi~ E-18
ptToAngle

angle = 45

pt
~

The angle returned mIght be used as input to one Of the procedures that
manipulate arcs and wedges, as described in Section E.9.10, Graphic q:lerations
on Arcs and wedges.

Function EqualRect (rectA,rectB: Rect): boolean;
EqualRect compares the two rectangles and returns TRUE If they are equal or
FALSE if not. The two rectangles must have identical boundary coordinates to
be considered equal.

Function Empt yRect (r: Rect): boolean;
EmptyRect returns TRUE if the given rectangle is an empty rectangle or F ,A,lSE
if not. A rectangle is considered empty if the bottom coordinate is equal to or
less than the top or the rIght coordinate Is equal to or less than the left

E-49

Pascal Reference fvl8ntJal QuickDraw

E.9.7 GraphIc ~rations 00 Rectcl1g1es
These procedures perform graphic operations on rectangles. See also
ScrollRect in Section E.9.13, Bit Transfer Q:lerations.

Procedure FrameRect (r: Rect);
FrameRect draws an outline just inside the specified rectangle, using the
current grafPort's pen pattern, mode, and size. The outlIne is as wide as the pen
wldth and as tall as the pen height. It is drawn with the pnPat, according to the
pattern transfer mode specified by pnMode. The pen location is not changed by
this procedure.
If a region is open and being formed, the outside outline of the new rectangle is
mathematically added to the region's boundary.

Procedure PaintRect (r: Rect);
PaintRect paints the speCified rectangle with the current grafPort's pen pattern
and mode. The rectangle on the bitMap is filled with the pnPat, according to the
pattern transfer mode speCified by pnMode. The pen location is not changed by
this procedure.

Procedure EraseRect (r: Rect);
EraseRect paints the specified rectangle with the current grafPort's baCkground
pattern bkPat (in patCopy mOde~ The grafPort's pnPat and pnMode are ignored;
the pen location is not changed.

Procedure InvertRect (r: Rect);
InvertRect inverts the pixels enclosed by the specified rectangle: every white
pixel becomes black and every black pixel becomes white. The grafPort's pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRect (r: Rect; pat: Pattern);
FillRect fills the specified rectangle with the given pattern (in patCopy mode).
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location is not
Changed.

E.9.8 Graphic qJerations 00 CMils
OVals are drawn inside rectangles that you specify_ If the rectangle you specify
is square, QuickDraw draws a circle.

E-50

Pascal Reference Manual QujckOraw

Procedure FrameOVal (r: Rect);
FrameOVal draws an outline just inside the oval that fits inside the specified
rectangle, using the current grafPort's pen pattern, mode, and size. The outline
is as wide as the pen width and as tall as the pen height. It is drawn with the
pnPat, according to the pattern transfer mode specified by pnMode. The pen
location is not changed by this procedure.
If a region is open and being formed, the outside outline of the new oval is
mathematically added to the region's boundary.

Procedure PaintOVal (r: Rect);
PaintOval paints an oval just insIde the specl fled rectangle with the current
grafPort's pen pattern and mode. The oval on the bitMap is filled with the pnPat,
according to the pattern transfer mode specified by pnMode. The pen location is
not changed by this proCedure.

Procedure EraseOVal (r: Rect);
EraseOVal paints an oval just inside the specified rectangle with the current
grafPort's bacKground pattern bKPat (in patCopy mode). The grafPort's pnPat
and pnMode are ignored; the pen location is not changed.

Procedure InvertOVal (r: Rect);
InvertOVal inverts the pixels enclosed by an oval just inside the specified
rectangle: every white pixel becomes blacK and every black pixel becomes
white. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location
is not changed.

Procedure FillOVal (r: Rect;pat: Pattern);
FUlOVal fUls an oval just inSide the specified rectangle with the given pattern (in
patCopy mOde~ The grafPort's pnPat, pnMode, and bKPat are all ignored; the pen
location is not Changed.

E.9.9 Graphic qJerations on R~mer Rectangles
Procedure FrameRoundRect (r: Rect; oval Width.,ovalHeight: integer);
FrameRoundRect draws a hollow outline just inside the speCified
rounded-corner rectangle, using the current grafPort's pen pattern, mode, and
size. OVal Width and ovalHeight specify the diameters of curvature for the
corners (see Figure E-19~ The outline is as wide as the pen width and as tall as
the pen heighl It is drawn with the pnPat, acCOrding to the pattern transfer
mode specified by pnMode. The pen location is not changed by this procedure.

E-Sl

Pascal Reference Manuel

ovalWidth ovalHeight

Figure E-19
ROlIlded-Comer Recta1gle

QuickDrew

If a region Is open and being formed, the outside outl1ne Of the new
rounded-comer rectangle is mathematically added to the region's OOundary.

Procedure PaintRoundRect (r: Rect; oval Width,ovalHeight: integer);
PaintRoundRect paints the specified rounded-comer rectangle with the current
grafPort's pen pattern and mode. OVal Width and OVaIHeight specify the
diameters of curvature for the comers. The rounded-comer rectangle on the
bitMap is fUled wIth the pnPat, according to the pattern transfer mode specified
by pnMode. The pen location is not changed by this procedure.

Procedure EraseRoundRect (r: Reet; oval Width,ovalHeight: integer);
EraseRoundRect paints the specified rounded-comer rectangle with the current
grafPort's bacKgrOUnd pattern bKPat (In patCopy mOde~ OVal Width and
ovalHeight specify the diameters of curvature for the comers. The grafPort's
pnpat and pnMode are ignored; the pen location Is not Changed.

Procedure InvertRoundRect (r: Rect; oval Width,ovaIHeight: integer);
InvertRoundRect inverts the pIxelS enclosed by the specifled rounded-comer
rectangle: every white pixel becomes blacK and every blacK pixel becomes
white. OVaIWldth and ovaIHeight specify the dIameters of curvature for the
comers. The grafPort's pnPat, pnMode, and bKPat are all ignored; the pen
location Is not Changed.

E-52

Pascal Reference Mantlal QtlickDraw

Procedure FillRoundRect (r: Rect; oval Width))valHeight: integer; pat: Pattern);
FillRoundRect fills the specified rounded-corner rectangle with the given
pattern (in patCopy mode~ OValWidth and ovalHeight specify the diameters of
curvature for the comers. The grafPort's pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

E.9.10 Graphic ~rations on Arcs and Wedges
These procedures perform graphic operations on arcs and wedge-shaped
sections of ovals. See also PtToAngle in Section E.9.6, Calculations with
Rectangles.

Procedure FrameArc (r: Rect;startMgle,arCAngle: integer);
FrameArc draws an arc of the oval that fits inside the specified rectangle, using
the current grafPort's pen pattern, mode, and size. StartAngle indicates where
the arc begins and is treated mod 360. ArcAngle defines the extent of the arc.
The angles are given in positive or negative degrees; a positive angle goes
ClOCkwIse, while a negative angle goes counterclockwise. Zero degrees is at 12
o'clock hIgh, 90 (or -270) Is at 3 o'ClOCk, 180 (or -180) Is at 6 O'ClOCk, and 270 (or
-90) is at 9 o·cloCk. other angles are measured relative to the enclosing
rectangle: a line from the center of the rectangle through Its top right comer Is
at 45 degrees, even if the rectangle is not square; a line through the bottom right
comer is at 135 degrees, and so on (see FigureE-20).

E-53

PasceJ ReFerence /V/anueJ

startAngle = 0

arcAng1.~ = -45 !

r

stattAngle = 0

r

! atcAngle= 45
i l

FrameArc

Fl!J.11e E-20

startAngle = 0

! arcAngle = 45

I,
:
l-···;' -I

FrameArc

startAng1.e = 0

I, ~.~_4l
PaintArc

(lJerations on Arcs and Wedges

QulckDmw

The arc Is as wIde as the pen width and as tall as the pen heIght. It Is drawn wIth
the pnPat, according to the pattern transfer mode specified by pnMode. The pen
location Is not Changed by thIs procedure.

WARNING

FrameArc differs from other Quicl<.Draw procedures that frame shapes in
that the arc is not mathematical1 y added to the boundary of a region that
is open and being formed.

Procedure PaintArc (r: Reel; startAngle,arCAngle: integer);

PaintArc paints a wedge of the oval just inside the specified rectangle with the
current grafPort's pen pattern and mode. StartAngle and arCAngle defIne the
arc of the wedge as in FrameArc. The wedge on the bitMap Is filled with the
pnpat, accordIng to the pattern transfer mode specIfIed by pnMode. The pen
location is not Changed by this procedure.

E-S4

Pascal ReFerence I'1anI.Ial QuiCkDmw

Procedure EraseArc (r: Rect; startAngle..arcAAgle: integer);
EraseArc paints a wedge of the oval just inside the specified rectangle with the
current grafPort"s bacKground pattern bKPat (in patcopy mode). StartAngle and
arcAngle define the arc of the wedge as in FrameArc. The grafPort"s pnPat and
pnMode are ignored; the pen location is not changed.

Procedure InvertArc (r: Rect; StartAngle..arCAngle: integer);
InvertArc inverts the pixelS enclosed by a wedge of the oval just inside the
spec! fled rectangle: every white pixel becomes blacK and every blacK pixel
becomes white. StartAAgle and arcAAgle define the arc of the wedge as in
FrameArc. The grafPort"s pnPat, pnMode, and bKPat are all ignored; the pen
. location Is not changed.

Procedure F1llArc (r: Reet; startAngle..arCAngle: integer; pat: pattern);
F1l1Arc fills a wedge of the oval just inside the speCified rectangle with the
given pattern (In patCopy mode). StartAngle and arcAAgle defIne the arc of the
wedge as in FrameArc. The grafPort"s pnPat, pnMOde, and bKPat are all Ignored;
the pen location is not changed.

E.9.11 calculations with Regions
NOTE

Remember that if the parameters to one of the calculation routines were
defined in different grafPorts .. you must first adjust them to be in the
same coordinate system. If you do not adjust them, the result returned by
the routine may be different from what you see on the screen. To adjust
to a common coordinate system .. see LocaltoGlobal and GlooalToLocal in
Section E.9.17" Calculations with Points.

Function NewRgn : RgnHandle;
NewRgn allocates space for a new" dynamic, variable-size region, initializes it
to the empty region (0,0,0,0), and returns a handle to the new region. Il1ly this
function creates new regions; all other procedures just alter the size and shape
of regions you create. qJenPort calls NewRgn to allocate space for the port's
visRgn and cl1pRgn.

E-SS

Pascal Reference Manual quickDraw

WAANING

Except when using visRgn or cUpRgn, you MUST call NewRgn before
~pecifylng a region's handle in any drawing or calculation procedure.

WARNING

Never refer to a region wi thout using its handle.

Procedure DisposeRgn (rgn: RgnHandle);
DisposeRgn deallocates space for the region whose handle is supplied, and
returns the memory used by the region to the free memory pool. Use this only
after you are completely through with a temporary region.

WARNING

Never use a region once you have deallocated it, or you will risk being
hung by dangling pointers!

Procedure CopyRgn (srcRgn,dstRgn: RgnHandle);
CopyRgn copIes the mathematical structure of srcRgn into dstRgn; that is, it
makes a duplicate copy of srcRgn. O1ce this is done, srcRgn may be altered (or
even disposed Of) without affecting dstRgn. CopyRgn does not create the
destination region: you must use NewRgn to create the dstRgn before you call
CopyRgn.

Procedure SetEmptyRgn (rgn: RgnHandle);
SetEmptyRgn destroys the previous structure of the given region, then sets the
new structure to the empty region (0,0,0,0).

Procedure SetRectRgn (rgn: RgnHandle; left,top,right,bottom: integer);
SetRectRgn destroys the previous structure of the given region, then sets the
new structure to the rectangle specified by left, top, right, and bottom.
If the speCified rectangle 1s empty (Le., left>=right or top > =bottom), the region is
set to the empty region (O,O,o,O~

E-56

Pascal Reference Manual QuickDraw

Procedure RectRgn (rgn: RgnHandle; r: Rect);
RectRgn destroys the previous structure Of the given region, then sets the new
structure to the rectangle specified by r. This is operationally synonymous with
SetRectRgn, except the input rectangle is defined by a rectangle rather than by
four boundary coordinates. .

Procedure (llenRgn;
(llenRgn tells QuickDraw to allocate temporary space and start saving lines and
framed shapes for later processing as a region definition. While a region is open,
all calls to Line, LineTo, and the procedures that draw framed shapes (except
arcs) affect the outline of the region. 011y the line endpoints and shape
boundaries affect the region definition; the pen mode, pattern, and size do not
affect it In fact, (llenRgn calls HidePen, so no drawing occurs on the screen
while the region is open (unless you called ShowPen just after (llenRgn, or you
called ShowPen previously without balancing it by a call to HidePen~ Since the
pen hangs below and to the right of the pen location, drawing lines with even the
smallest pen will change bits that lie outside the region you define.
The outline of a regIon is mathematically defIned and infInitely thIn, and
separates the bItMap Into two groups of bits: those within the region and those
outside it A region shoUld consist of one or more closed lOOps. Each framed
shape itself constitutes a loop. My lines drawn with Line or LineTo should
connect wIth each other or with a framed shape. Even thOugh the on-screen
presentation of a regIon Is cUpped, the defInition of a region is not; you can
define a region anywhere on the coordinate plane with complete dIsregard for
the location of various grafPort entities on that plane.
When a region is open, the current grafPort's rgnSave field contains a handle to
information related to the regIon definition. If you want to temporarily disable
the collection of lInes and Shapes, you can save the current value of this field,
set the field to NIL, and later restore the saved value to resume the region
definition.

Do not call (llenRgn while another region is already open. All open
regions bUt the most recent will behave strangely.

Procedure closeRgn (dStRgn: RgnHandle);
CloseRgn stops the collection of lines and framed Shapes, organizes them into a
region definition, and saves the resulting region into the region indicated by

E-57

Pascal Reference /'1anu8l Qu}ckDraw

dstRgn. You should perform one and only one CloseRgn for every ~enRgn.
CloseRgn calls ShowPen, balancing the HidePen call made by ~enRgn.
Here's an example of how to create and open a region, define a barbell shape,
close the region, and draw it:

barbell :- NewRgn;
~enRgn;

SetRect(tempRect,20,20,30,sO);
FrameOVal(tempRect);
SetRect(tempRect,30,30,80,40);
FrameRect(tempRect);
SetRect(tempRect,80,20,90,sO);
FrameOVal(tempRect);

CloseRgr(barbell);
FillRgn(barbell,.black);
DlsposeRgn(barbell);

{make a new region}
{begin cOllecting stuff}
{form the left weight}

{form the bar}

{form the right weIght}

{we're done; save in barbell}
{draw it on the screen}
{we don't need you anymore ••• }

Procedure OffsetRgn (rgn: RgnHandle; dh.dv: integer);

OffsetRgn moves the region on the coordinate plane, a distance of dh
horizontally and dv vertically. This dOes not affect the screen unless you
sUbsequently call a routine to draw the region. If dh and dv are positive, the
movement is to the right and down; if either is negative, the corresponding
movement is in the opposi te direction. The regIon retains its size and shape.

~

OffsetRgn is an especially effIcient operation, because most of the data
defining a region is stored relative to rgnBBox and so isn't actually
changed by OffsetRgn.

Procedure InsetRgn (rgn: RgnHandle; dh.dv: integer);
InsetRgn shrinks or expandS the region. All pOints on the region boundary are
moved inwards a distance of dv vertically and dh horizontally; if dh or dv Is
negative, the pOints are moved outwards in that direction. InsetRgn leaves the
region "centered" at the same position, but moves the outline in (for positive
values of dtl and dV) or out (for negative values of dh and dv~ InsetRgn of a
rectangular region works just like InsetRect.

Procedure SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

SectRgn calculates the intersection of two regions and places the intersection
in a third region. This does not create the destination, region: you must use

E-58

Pascal Reference Manll8l QuickDraw

NewRgn to create the dstRgn before you call SectRgn. The dstRgn can be one of
the source regions, if desired.

If the regions do not intersect, or one of the regions is empty, the destination Is
set to the empty region (o,o,o,o~

Procedure UnlonRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

UnionRgn calculates the union of two regions and places the union in a third
region. This does not create the destination region: you must use NewRgn to
create the dstRgn before you call unionRgn. The dstRgn can be one of the
source regions, if desired.
If both regions are empty, the destination is set to the empty region (0,0,0,0),

Procedure DlffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

DlffRgn subtracts srcRgnB from srcRgnA and places the difference in a third
region. This does not create the destination region: you must use NewRgn to
create the dstRgn before you call DlffRgn. The dstRgn can be one of the source
regions, if desired.

If the first source region is empty, the destination is set to the empty region
(O,o,o,O~

Procedure XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

XorRgn calculates the difference between the union and the intersection of two
regions and places the result in a third region. This does not create the
destination region: you must use NewRgn to create the dstRgn before you call
XorRgn. The dstRgn can be one of the source regions, if desired.

If the regions are coincident, the destination is set to the empty regIon (O,o,D,O~

Function PtInRgn (pt: POint; rgn: RgnHandle): boolean;

PUnRgn checKs whether the pixel below and to the right of the given coordInate
point Is within the specifIed region, and returns TRUE If so or FALSE if not.

Function RecUnRgn (r: Rect; rgn: RgnHandle): boolean;

RectInRgn checKs whether the given rectangle Intersects the specified region,
and returns TRUE if the intersection encloses at least one bit or FALSE if not.

E-59

QulckDraw

Function EqualRgn (rgnA..rgnB: rgnHandle): boolean;
EqualRgn compares the two regions and returns TRUE if they are equal or
FALSE if not The two regions must have identical sizes, shapes, and locations to
be considered equal. Any two empty regions are always equal.

Function EmptyRgn (rgn: RgnHandle): boolean;
EmptyRgn returns TRUE if the region is an empty region or FALSE if not Some
of the circumstances In which an empty region can be created are: a NewRgn
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty
rectangle as an argument; CloseRgn without a previous QJenRgn or with no
drawing after an QJenRgn;OffsetRgn of an empty region; InsetRgn with an empty
region or too large an inset; SectRgn of nonintersecting regions; UnionRgn of
two empty regions; and DiffRgn or XorRgn of two identical or nonlntersecting
regions.

E.9.12 Graphic (llerations 00 Regions
These routines all depend on the coordinate system of the current grafPort. If a
region is drawn In a dIfferent grafPort than the one in which it was defined, it
may not appear in the proper position insIde the port.

Procedure FrameRgn(rgn: RgnHandle);
FrameRgn draws a hollow outline just inside the specified region, using the
current grafPort's pen pattern, mode, and size. The outline is as wide as the pen
width and as tall as the pen height; under no circumstances will the frame go
outside the regIon boundary. The pen location is not changed by this procedure.
If a region is open and being formed, the outside outline of the region being
framed is mathematically added to that region's boundary.

Procedure PaintRgn (rgn: RgnHandle);
PaintRgn paints the specified region with the current grafPort's pen pattern and
pen mode. The region on the bitMap is filled with the pnPat, according to the
pattern transfer mode specified by pnMode. The pen location is not Changed by
this procedure.

Procedure EraseRgn (rgn: RgnHandle);
EraseRgn paints the specified region with the current grafPort's background
pattern bkPat (in patCopy mOde~ The grafPort's pnPat and pnMode are ignored;
the pen location is not changed.

E-60

Pascal Reference Manual QuickDraw

Procedure InvertRgn (rgn: RgnHandle);
InvertRgn inverts the pixels enclosed by the specified region: every white pixel
becomes black and every black pixel becomes white. The grafPort's pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRgn (rgn: RgnHandle; pat: Pattern);
FillRgn fills the specified region with the given pattern (in patCopy mOde~ The
grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location Is not
Changed.

E.9.13 Bit Transfer qJerations

Procedure ScrollRect (r: Rect; dh,dv: integer; updateRgn: RgnHandle);
ScrollRect shifts C'scroUs") those bits inside the intersection of the speCified
rectangle, visRgn, cl1pRgn, portRect, and portBlts.bounds. The bIts are Shifted a
distance of dh horizontally and dv vertiCally. The positive directions are to the
right and down. No other bits are affected. Bits that are shifted out of the scroll
area are lost; they are neither placed outside the area nor saved. The grafPort's
baCkground pattern bkPat fills the space created by the scroll. In addition,
updateRgn is changed to the area filled with bkPat(see Figure E-21).

Before Scrol!Rect After ScroI!Rect(astR6Ct,-10,5 •••)

~

Upaa.teRgn 10
FIgure E-21
scrolllng

Figure E-21 shows that the pen location after a ScrollRect is in a different
position relative to what was scrolled in the rectangle. The entire scrolled item
has been moved to different coordinates. To restore it to its coordinates before
the ScrollRect, you can use the Setorigin procedure. For example, suppose the
dstRect here is the portRect of the grafPort and its top left corner is at (95,120).
Setorigin(105,115) w111 offset the coordinate system to compensate for the

E-61

Pascal Reference jVl8nUaJ t:;WckDrew

scroll. Since the clipRgn and pen location are not offset, they move down and to
the left.

Procedure CopyBits (srcBitsAstBits: BitMap; srcRectAstRect: Rect; mode:
integer; maskRgn: RgnHandle);

CopyBlts transfers a bit Image between any two bitMaps and clips the result to
the area specIfIed by the maskRgn parameter. The transfer may be performed!n
any of the eight source transfer mOdes. The result is always clipped to the
maskRgn and the boundary rectangle of the destination bitMap; if the
destination bitMap is the current grafPort's portBi ts, it is also clipped to the
intersection of the grafPort's cl1pRgn and vlsRgn. If you do not want to clip to a
maskRgn, just pass NIL for the maskRgn parameter.
The dStRect and maskRgn coordinates are in terms of the dstBi ts.bounds
coordinate system, and the srcRect coordinates are in terms of the
srcBlts.bounds coordinates.
The bits enclosed by the source rectangle are transferred into the destination
rectangle according to the rules of the chosen mode. The source transfer mOdes
are as follows:

srcCopy srcXor notSrcCopy notSrcXor
srcOr srcBic notSrcOr notSrcBic

The source rectangle is completely aUgned with the destination rectangle; if the
rectangles are of different sizes, the bit image is expanded or shrunk as
necessary to fit the destination rectangle. For example, if the bit image is a
circle in a square source rectangle, and the destination rectangle is not square,
the bit image appears as an oval in the destination (see Figure E-22~

E-62

Pascal Reference Manual

Source BitMap

Source BItMap

E..9.14 Pictures

Source
TranSfer

Mode

Source
Transfer

Mode

Destination BitMap

•
Destination BitMap

FIgure E-22
qJeratlon of Cq:lyBlts

Function Q'Jenplcture (plcFrame: Rect) : PicHanclle;

QuickDraw

masKRgn

masKRgn
= NIL

Q'JenPicture returns a handle to a new picture which has the given rectangle as
its picture frame, and tells QuicKDraw to start saving as the picture definition
all calls to drawing routines and all picture comments (if any~
qlenPicture calls HidePen, so no drawing occurs on the screen while the picture
Is open (unless you call ShowPen just after Q'JenPlcture, or you called ShowPen
previously without balancing it by a call to HidePen~
When a picture is open, the current grafPort's picSave field contains a handle to
information related to the picture definition. If you want to temporarily disable
the collection of routine calls and picture comments, you can save the current
value of this field, set the field to NIL, and later restore the saved value to
resume the picture definition.

E-63

Pascal Reference Hanual QuickDraw

WARNING

Do not call qJenPicture while another picture is already open.

Procedure ClosePlcture;
ClosePicture tells QuickDraw to stop saving routine calls and picture comments
as the definition of the currently open picture. You should perform one and only
one ClosePicture for every qJenPlcture. ClosePicture calls ShowPen, balancing
the HidePen call made by qJenPicture.

Procedure PicComment (kind,dataSlze: integer; dataHandle: QDHandle);
PlcComment inserts the specified comment into the definition Of the currently
open picture. Kind Identifies the type of comment DataHandle is a handle to
additional data If desIred, and dataSlze Is the size of that data in bytes. If there
is no additional data for the comment, dataHandle should be NIL and dataSlze
should be O. The appllcatlon that processes the comment must include a
procedure to do the processIng and store a pOinter to the procedure In the data
structure poInted to by the grafProcs field of the grafPort (see Section E.l0,
Customizing QulckDraw qJeratlons).

Procedure DrawPicture (myPlcture: PicHandle; dstRect: Rect);
DrawPicture draws the given picture to scale in dstRect, expanding or shrinking
it as necessary to align the borders of the picture frame with dstRect
DrawPicture passes any pIcture comments to the procedure accessed indirectly
through the grafProcs fIeld Of the grafPort (see PlcComment above).

Procedure KlllPicture (myPicture: PlcHandle);
Kll1Picture deal locates space for the picture whose handle Is supplied, and
returns the memory used by the picture to the free memory pool. Use this only
when you are completely through with a picture.

E.9.iS calculations with Polygons

Function qJenPoly: POlyHandle;
~enPoly returns a handle to a new polygon and tells QuickDraw to start saving
the polygon definition as specified by calls to line-drawing routines. While a
polygon is open, all calls to Line and LineTo affect the outline of the polygon.
fl1ly the line endpoints affect the polygon definition; the pen made, pattern, and
size do not affect it. In fact, QJenPoly calls HidePen, so no drawing occurs on the

E-64

Pascal Reference Manual QuickDraw

screen while the polygon Is open (unless you call ShowPen just after Q'JenPoly .. or
you called ShowPen previously without balancing it by a call to HidePen~
A polygon should consist of a sequence of connected lines. Even though the
on-screen presentation of a polygon is clipped, the definition of a polygon is not;
you can define a polygon anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.
When a polygon is open, the current grafPort's polySave field contains a handle
to Information related to the polygon definition. If you want to temporarily
disable the polygon definition .. you can save the current value of this field, set
the field to NIL, and later restore the saved value to resume the polygon
definition.

WAANING

Do not call Q'JenPoly while another polygon is already open.

Procedure ClosePoly;
ClosePoly tells QuickOraw to stop saving the definition of the currently open
pOlygon and computes the polyBBox rectangle. You shOUld perform one and only
one ClosePoly for every qJenPoly. ClosePoly calls ShowPen, balancing the
HldePen call made by Q'JenPoly.
Here's an example of hoW' to open a polygon, define it as a triangle, close it, and
draw it:

triPoly :- qJenPoly;
Move Tc(300,lOO);
LineTc(400..200);
Line Tc(200..200);
LineTc(300,lOO);

Closepoly;
FillPoly(triPoly..gray);
KlllPolyCtriPoly);

{save handle and begin COllecting stuff}
{ move to first point and }
{form }
{the }
{triangle }
{ stop COllecting stuff }
{ draw it on the screen }
{ we're all done }

Procedure KlllPol y (poly: Pol yHandle);
KlllPoly deallocates space for the polygon whose handle is supplied, and returns
the memory used by the polygon to the free memory pOOl. Use this only after you
are completely through with a pOlygon.

E-65

Pascal ReFerence fvl8nuBl QujckDmw

Procedure OffsetPoly (poly: POlyHandle;dh,dv: integer);
OffsetPoly moves the polygon on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the screen unless you
subsequently call a routine to draw the polygon. If dh and dv are positive, the
movement is to the right and down; if either is negative, the corresponding
movement is in the opposi te direction. The polygon retains its shape and size.

NJTE

OffsetPoly is an especially efficient operation, because the data defining
a polygon is stored relative to pOlyStart and so isn't actually changed by
OffsetPoly.

E.9.16 Graptlic ~ratlons on Polygons
Procedure FramePoly (poly: POlyHandle);
FramePoly plays back the line-drawing routine calls that define the given
polygon, using the current grafPort's pen pattern, mode, and size. The pen will
hang below and to the right of each point on the boundary of the polygon; thus,
the polygon drawn will extend beyond the right and bottom edges of
poly ~ .polyBBox by the pen width and pen height, respectively. All other
graphic operations occur strictly within the boundary of the polygon, as for other
shapes. You can see this difference in Figure E-23, where each of the polygons is
shown with its polyBBox.

FramePoly PaintPoly

Figure E-23
Drawing Polygons

If a polygon is open and being formed, FramePoly affects the outline of the
polygon just as if the line-drawing routines themselves had been called. If a

E-66

Pascal Reference Manual QuickDraw

region is open and beIng formed, the outsIde outllne of the polygon being framed
is mathematically added to the region's boundary.

Procedure PaintPoly (poly: Pol yHandle);
PaintPoly paints the specified polygon with the current grafPort's pen pattern
and pen mode. The polygon on the bitMap is filled with the pnPat, according to
the pattern transfer mode specified by pnMode. The pen location is not changed
by this procedure.

Procedure ErasePoly (pOly: POlyHandle);
ErasePoly paints the specifIed polygon with the current grafPort's bacKground
pattern bkPat (in patCopy mOde). The pnPat and pnMode are ignored; the pen
location is not changed.

Procedure InvertPoly (poly: PolyHandle);
InvertPoly inverts the pixels enclosed by the specified polygon: every white
pixel becomes black and every black pixel becomes white. The grafPort's pnPat,
pnMode, and bKPat are all ignored; the pen location is not changed.

Procedure FillPOly (poly: PolyHandle;pat: Pattern);
FillPoly fills the specified polygon with the given pattern (in patCopy mOde~
The grafPort's pnPat, pnMode, and bKPat are all ignored; the pen location is not
changed.

E.9.17 Calculations with Points

Procedure AddPt (srcPt: Point; var dstpt: Point);
AddPt adds the coordinates of srcPt to the coordinates of dstPt, and returns the
result in dstPt.

Procedure SubPt(srcPt: POint;var dstpt: Point);
SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, and
returns the result in dstpt.

Procedure Setpt (var pt: Point; h,v: integer);
Setpt assigns two integer coordinates to a variable of type Point.

E-67

Pascal Reference Hanual QuickDraw

Function EqualPt (PtAPtB: Point) : boolean;
EqualPt compares the two points and returns TRUE if they are equal or FALSE if
not.

Procedure LocalToGlobal (var pt: Point);
LocalToGlobal converts the given point from the current grafPort's local
coordinate system into a global coordinate system with the origin (0,0) at the top
left comer of the port's bit image (such as the screen~ This glObal point can then
be compared to other glObal points" or be Changed into the local coordinates of
another grafPort.
Since a rectangle is defIned by two poInts, you can convert a rectangle into
glObal coordinates by performIng two LocalToGlobal calls. You can also convert
a rectangle, region, or polygon into glObal coordInates by Calling OffsetRect,
OffsetRgn,or OffsetPoly. For examples, see GlobalToLocal below.

Procedure GlobalToLocal (var pt: Point);
GlobalToLocal takes a point expressed In glObal coordinates (wIth the top left
comer of the bitMap as coordinate (0,0» and converts it into the local
coordinates of the current grafPort. The global point can be obtained with the
LocalToGlobal call (see above). For example, suppose a game draws a "ball"
within a rectangle named ballRect, defined in the grafPort named gamePort (as
illustrated below in Figure E -24). If you want to draw that ball in the grafPort
named selectPort, you can calculate the ball's selectPort coordinates Ilke this:

Setport(gamePort); {start In origin port}
selectBall := ballRect; {make a copy to be moved}
LocalToGlobal(selectBall.topLeft); {put both comers into }
LocalToGlotJal(selectBall.botRlght); {glObal coordinates }

SetPor~selectPortt
GlObalToLocal(selectBall.topLeft);
GlobalToLocal(selectBall.botRight);
FlllOVal(selectBall,ballColor);

E-68

{swi tch to destination port}
{put both comers into }
{ these local coordinates}
{now you have the ball!}

P8SC8l ReFerence f'v18ntl8l QujckDfBW

20 50 90 15 45 85
40 I I I - -30-

I I I

• 0
70

r-

- 50-o 30 70
120

0- I

gamePort selectPo rt
30- •

/ "
.......
..-r -LocalToGlobal 80- GlobalToLoc al

Figure E-24
cmvert.lnJ between COordinate Systems

You can see from FIgure E-24 that LocalToGlobal and GlobalToLocal simply
offset the coordInates of the rectangle by the coordinates of the top left comer
of the local grafPort's boundary rectangle. You could also do this with
OffsetRect. In fact, the way to convert regIons and pOlygons from one
coordinate system to another is with OffsetRgn or Offsetpol y rather than
LOCalToGlobal and GIObalToLocal. For example, If myRgn were a regIon
enclosed by a rectangle having the same coordinates as ballRect in gamePort,
you could convert the regIon to global coordinates wIth

OffsetRgr(myRgn, -20,--40);

and then convert it to the coordinates of the selectPort grafPort wi th
OffsetRgn(myRgn, 15, -30);

E.9.18 Miscellaneous UUlltles

Function Random: integer;

This function returns an integer, uniformly distributed pseudo-random, in the
range from -32768 through 32767. The value returned dependS on the glObal

E-69

Pascal Reference Hanual QtJickDraw

variable randSeed, whiCh InitGraf initializes to 1; you can start the sequence
over again from where it began by resetting randSeed to 1.

Function GetPixel (h,v: integer) : boolean;
GetPixel looks at the pixel associated with the given coordinate point and
returns TRUE If It is black or FALSE if it Is whIte. The selected pixel is
immediately below and to the right of the point whose coordinates are given in h
and v, in the local coordinates of the current grafPort There is no guarantee
that the specIfied pIxel actually belongs to the port, however; it may have been
drawn by a port overlapping the current one. To see if the point indeed belongs
to the current port, perform a PtInRgn(pt,thePort A • visRgn).

Procedure StuffHex (thingPtr: QDPtr; s: Str255);
StuffHex pokes bits (expressed as a string of hexadecimal digits) into any data
structure. This is a gOOd way to create cursors, patterns, or bit images to be
"stamped" onto the screen with CopyBits. For example,

StuffHex(lPStripes,'01020lf.081020lf.080j
places a striped pattern into the pattern variable stripes.

WAANING

There is no range Checking on the size of the destination variable. It's
easy to overrun the variable and destroy something if you don't know
what you're doing.

Procedure ScalePt (var pt: Point; srcRect,dstRect: Rect);
A width and heIght are passed in pt; the horizontal component of pt is the width,
and the vertical component of pt is the height ScalePt scales these
measurements as follows and returns the result in pt: it multiplies the given
width by the ratio of dstRect's wIdth to srcRect's width, and multiplies the given
height by the ratio of dstRect's height to srcRect's height In Figure E -25, where
dstRect's width is twice srcRect's width and its height is three times srcRect's
height, the pen width is scaled from 3 to 6 and the pen height is scaled from 2 to
6.

E-70

Pascal Reference Manual

o 3
0-' ,
2-
4-

7

rr-

I I I I

ell
1618 , ,

I I
I I I I /I I

!""'

-

Scalept scales pen size (3~3) to (6~6)

Mappt maps point (3,2) to (18,7)

Figure E-25
8calePt and MapPt

Procedure MapPt (var pt: Point; srcRect"dstRect: Rect);

quickDraw

Given a point within srcRect, MapPt maps it to a siml1arly located point within
dstRect (that is, to where it would fall if it were part of a drawing being
expanded or shrunk to fit dstRect~ The result is returned in pt A comer point of
srcRect would be mapped to the corresponding comer point of dstRect, and the
center Of srcRect to the center of dstRect In Figure E-25 above, the point (3,2)
in srcRect is mapped to (18,7) in dstRect FromRect and dstRect may overlap,
and pt need not actually be wi thin srcRect

W~

Remember, if you are going to draw inside the rectangle in dstRect, you
will probably also want to scale the pen size accordingly with ScalePt

E-71

Pascal Reference Manual QujckDraw

Procedure MapRect (var r: Rect; srcRect,dstRect: Rect);
Given a rectangle within srcRect, MapRect maps it to a similarly located
rectangle within dstRect by Calling MapPt to map the top left and bottom right
comers of the rectangle. The result is returned in r.

Procedure MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);
Given a region within srcRect, MapRgn maps it to a similarly located region
within dstRect by calling Mappt to map all the points in the region.

Procedure MapPol y (poly: Pol yHandle; srcRect,dstRect: Rect);
Glven a polygon within srcRect, MapPoly maps it to a similarly located polygon
within dstRect by calling MapPt to map all the points that define the polygon.

E..l0 CUstomizing QuickDraw [perations
For each shape that QuickDraw knows how to draw, there are procedures that
perform these basic graphic operations on the shape: frame, paint, erase, invert,
and f1l1. Those procedures in tum call a low-level drawing routine for the shape.
For example, the FrameOVal, PaintOVal, EraseOVal, InvertOVal, and FillOVal
procedures all call a low-level routine that draws the oVal. For each type of
Object QuickDraw can draw, including text and lines, there is a pointer to such a
routine. By Changing these pointers, you can install your own routines, and ei ther
completely override the standard ones or Call them after your routines have
modi fied parameters as necessary.
Other low-level routines that you can install in this way are:

• The procedure that does bit transfer and is called by CopyBits.
• The function that measures the width of text and is called by CharWidth,

String Width, and TextWidth.
• The procedure that processes picture comments and is called by

DrawPicture. The standard such procedure ignores picture comments.
• The procedure that saves drawing commands as the definition of a picture,

and the one that retrieves them. This enables the application to draw on
remote devices, print to the disk, get picture input from the disk, and support
large pictures.

The grafProcs field of a grafPort determines which low-level routines are
called; if it contains NIL, the standard routines are called" so that all operations
in that grafPort are done in the standard ways described in this manual. You can
set the grafProcs field to point to a record of pointers to routines. The data type
of grafProcs is QDProcsPtr:

E-72

>'-.

P8SC8l Reference M8nu8l QuickDraw

type QDProcsPtr = .. QDProcs;
QDProcs - record

textProc:
lineProc:
rectProc:
rRectProc:
ovalProc:
arcProc:
polyProc:
rgnProc:
OitsProc:
commentProc:

txMeasProc:
getPicProc:
putPicProc:

end;

QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;

QDPtr;
QDPtr;
QDPtr

{text drawing}
tUne drawing}
{rectangle drawing}
{roundRect drawing}
{oval drawing}
{arc/wedge drawing}
{polygon drawing}
{region drawing}
{Oit transfer}
{picture comment
processing}
{text width measurement}
{picture retrieval}
{picture saving}

To assist you in setting up a QDProcs record, QuickOraw provides the following
procedure:

Procedure SetStdProcs (var procs: QOProcs);

This procedure sets all the fields of the given QOProcs record to point to the
standard low-level routines. You can then change the ones you wish to point to
your own routines. For example, if your procedure that processes picture
comments is named MyComments.. you will store @t-1yComments in the
commentProc field of the QDProcs record.

The routines you install must of course have the same Calling sequences as the
standard routines, which are described below. The standard drawing routines
tell which graphic operation to perform from a parameter of type GrafVerb.

type GrafVerb = (frame, paint .. erase, invert .. fill);

When the grafVerb is fill, the pattern to use when filling is passed in the fillPat
field of the grafPort.

Procedure StdText (byteCount: integer; textBuf: QDPtr; numer,denom:
integer);

StdText is the standard low-level routine for drawing text. It draws text from
the arbitrary structure in memory specified by textBuf, starting from the first
byte and continuing for oyteCount bytes. Numer and denom specify the scaling,
if· any: numer.v over denom.v gives the vertical scaling, and numer.h over
denom.h gives the horizontal scaling.

E-73

Pascal Reference Hanual QuickDraw

Procedure StdLine (newPt: Point);
StdLine is the standard low-level routine for drawing a line. It draws a line from
the current pen location to the location specified (in local coordinates) by newPt.

Procedure StdRect (verb: GraNerb; r: Rect);
StdRect is the standard low-level routine for drawing a rectangle. It draws the
given rectangle according to the specified grafverb.

Procedure StdRRect (verb: GrafVerb; r: Rect; ovalwidth"ovalHeight: integer);
StdRRect is the standard low-level routine for drawing a rounded-corner
rectangle. It draws the given rounded-comer rectangle according to the
specified grafVerb. OVal Width and oval Height specify the diameters of
curvature for the comers.

Procedure StdOVal (verb: GrafVerb; r: Rect);
StdOVal is the standard low-level routine for drawing an oval. It draws an oval
inside the given rectangle according to the specified grafVerb.

Procedure StdArc (verb: GrafVerb; r: Rect; startAngle.,arCAngle: integer);
StdArc is the standard low-level routine for drawing an arc or a wedge. It draws
an arc or wedge of the oval that fits inside the given rectangle. The grafVerb
specifies the graphic operation; if it's the frame operation, an arc is drawn;
otherwise, a wedge is drawn.

Procedure StdPoly (verb: GrafVerb; poly: POlyHandle);
StdPol y is the standard low-level routine for drawing a polygon. It draws the
given polygon according to the specified grafVerb.

Procedure StdRgn (verb: GrafVerb; rgn: RgnHandle);
StdRgn is the standard low-level routine for drawing a region. It draws the given
region according to the speCified grafVerb.

Procedure StdBits (var srcBits: BitMap; var srcRect,dstRect: Rect; mode:
integer; maskRgn: RgnHandle);

~+,..,o; ... ,.. ~,.,. th" "'+""r'\""'_"""" 1,...., J 1,·,u. ,,,1 '\11"1""\1 .+'n" .en.,. ,..n;ng kIt +Y'~r\~.c:0r Tt tv~n~+oy~ a bit
.;)\.U01\.;) 1;) Ie ;)\.0111.1011.1 lUW~leVel lU\'H.llle IUl 1.11.1111 Ul .. 1.1011';>'<:; • ,I. 1.1011';>1<:;1'" .1.

image between the given bitMap and thePort ~ .portBits, just as if CopyBits were

E-74

Pascal Reference H8f7l/eJ QuickDrew

called with the same parameters and with a destination bitMap equal to
thePort A .portBits.

Procedure StdComment (kind,dataSize: integer; dataHandle: QDHandle);
StdComment is the standard low-level routine for processing a picture
comment. Kind. identifies the type of comment. DataHandle is a handle to
additional data, and dataSize is the size of that data in bytes. If there is no
additional data for the command, dataHandle will be NIL and dataSize will be O.
StdComment simply ignores the comment.

Function StdTxMeas (byteCount: integer; textBuf: QDPtr; var numer,denom:
Point; var info: FontInfo) : integer;

StcJTxMeas Is the standard low-level routine for measuring text width. It returns
the·wldth of the text stored in the arbitrary structure in memory specified by
textBuf, starting with the first byte and continuing for byteCount bytes. Numer
and denom specify the scaling as in the StcJText procedure; note that StdTxMeas
may change them.

Procedure StdGetpic (dataPtr: QDptr; byteCount: integer);
StcJGetpic Is the standard low-level routine for retrieving information from the
definition of a picture. It retrieves the next byteCount bytes from the defini tion
of the currently open picture and stores them in the data structure pointed to by
dataPtr.

Procedure StdPutpic (dataPtr: QDPtr; byteCount: integer);
StdPutpic is the standard low-level routine for saving information as the
definition of a picture. It saves as the definition of the currently open picture
the drawing commands stored in the data structure pointed to by dataPtr,
starting with the first byte and continuing for the next byteCount bytes.

E.ll Using QuickDraw from Assembly Language
All QuickDraw routines can be called from assembly language programs as well
as from Pascal. When you write an assembly language program to use these
routines, though, you must emulate Pascal's parameter passing and variable
transfer protocols.
This section discusses how to use the QuickDraw constants, global variables,
data types, procedures, and functions from assembly language.
The primary aid to assembly language programmers is a file named
GRAFTYPES. TEXT. If you use .INCLUDE to inclUde this file when you assemble
your program, all the QuicKDraw constants, offsets to locations Of glObal

E-75

Pascal Reference Mamal QulckDraw

variables, and offsets into the fields of structured types will be available in
symbollc form.

E.l1.1 Gonsta1ts
QuickDraw constants are stored in the GRAFTYPES. TEXT file, and you can use
the constant values symbolically. For example, if you've loaded the effective
address of the thePort ~ .txMode field into address register ~, you can set that
field to the srcXor mode with this statement:

MOVE. W 4~SRCXCRA~)
To refer to the number of bytes occupied by the QuickDraw global variables, you
can use the constant GRAFSlZE. When you call the InitGraf procedure, you must
pass a pointer to an area at least that large.

E.l1.2 Data Types
Pascal's strong typing ability lets you write Pascal programs without really
consIdering the size of a variable. But in assembly language, you must keep
track of the size of every variable. The sizes of the standard Pascal data types
are as follows:

~ SIze
integer Word (2 bytes)
longint Long (/.I. bytes)
boolean Word (2 bytes)
char Word (2 bytes)
real Long (/.I. bytes)

Integers and longlnts are in two's complement form; booleans have their boolean
value in bit 8 of the word (the low-order bit of the byte at the same location);
chars are stored in the high-order byte of the word; and reals are in the KCS
standard format
The QuickDraw simple data types listed below are constructed out of these
fundamental types.

~
QDPtr
QDHandie
Word
Str255
Pattern
Bits 16

Size
Long (/.I. bytes)
Long (/.I. bytes)
Long (/.I. bytes)
Page (256 bytes)
8 bytes
32 bytes

Other data types are constructed as records of variables of the above types. The
size of such a type is the sum of the sIzes of all the fields in the record; the fields
appear in the variable with the first fIeld in Ute lowest address. For example,
consider the data type BItMap, which Is defined as follows:

E-76

"".

Pascal ReFerence MentI8J

type BitMap:z record
baseAddr: QOPtr;
rowBytes: integer;
bounds: Rect

end;

QujckDraw

This data type would be arranged in memory as seven words: a long for the
baseAddr, a word for the rowBytes, and four words for the top, left, right, and
bottom parts of the bounds rectangle. To assist you in referring to the fields
inside a variable that has a structure like this, the GRAFTYPES. TEXT file
defines constants that you can use as offsets into the fields of a structured
variable. For example, to move a bitMap's rowBytes value into 03, you would
execute the following instruction:

MOVE. W MYBITMAP+ROWBYTES.D3
Displacements are given In the GRAFTYPES.TEXT file for all fields of all data
types defined by QulckDraw.
To do double indirection, you perform an LEA indirectly to obtain the effective
address from the handle. For example, to get at the top coordinate of a region's
enclosing rectangle:

MDVE.L MYHANDLE.Ai ; Load handle into Ai
MDVE.L (Al).Al ; Use handle to get pointer
MOVE. W RGNBBOX + TOP(Ai).D3 ; Load value using pOinter

WARNING

For regions (and all other variable-length structures with handles), you
must not move the pointer into a register once and just continue to use
that pointer; you must do the double indirection each time. Every
QuickOraw call you make can possibly trigger a heap compaction that
renders all pointers to movable heap items (like regions) invalId. The
handles w111 remain Valid, but pointers you've obtained through handles
can be rendered invalid at any subroutine call or trap in your program.

E.l1.3 Global variables
Register AS always pOints to the section of memory where global variables are
stored. The GRAFTYPES. TEXT file defines a constant GRAFGLCE that paints
to the beginning of the QulckOraw variables in this space, and other constants
that point to the individual variables. To access one of the variables, put
GRAFGLOB in an address register, sum the constants, and index off of that
register. For example, if you want to know the horizontal coordinate of the pen

E-77

Pascal Reference Manual QtJickDraw

location for the current grafPort, which the glObal variable thePort points to,
you can gIve the fOllowIng instructions:

MOVE.L GRAFGUE(AS)AO ; Point to QulcKOraw globals
MDVE.L THEPCRT(AO)Al ; Get current grafPort
MOVE. W PNLCC+t-(Al).DO ; Get thePort" .pnLoc.h

E.ll.4 ProceclJres and FlIlCtions
To call a QuickOraw procedure or function, you must push all parameters to it on
the stacK, then JSR to the function or procedure. When you linK your program
with QulcKDraw, these JSRs are adjusted to refer to QuicKOraw's jump table, SO
that a JSR into.the table redirects you to the actual location of the procedure or
function.
The only difficult part about calling QuicKOraw procedures and functions is
stacKing the parameters. You must follow some strict rules:

• Save all registers you wish to preserve before you begin pushing parameters.
Any QuickDraw procedure or function can destroy the contents of the
registers AO, Al, ~O, 01, and 02, but the others are never al teredo

• Push the parameters in the order that they appear In the Pascal procedural
interface.

• For booleans, push a byte; for integers and characters, puSh a word; for
pointers, handles, long integers, and reals, push a long.

• For any structured variable longer than four (4) bytes, push a pointer to the
variable.

• For all var parameters, regardless of size, push a pointer to the variable.
• When Calling a function, first push a null entry equal to the size of the

function result, then puSh all other parameters. The result will be left on the
stacK after the function returns to you.

This maKes for a lengthy Interface, but It also guarantees that you can mocK up a
Pascal version of your program, and later translate it into assembly code that
worKs the same. For example, the Pascal statement

blacKness:= Getplxel(50;nousePos.v);
would be written in assembly language liKe this:

CLR.W -(SP) ; save space for boolean result
MOVE.W 4~0,-(SP) ; Push constant 50 (decimal)
MDVE.W MOJSEPOS+V,-{SP) ; Push the value of mousePos.v
JSR GETPlXEL ; Call routine
MOVE. W (SP)+ J3LACKNESS ; Fetch result from stack

E-78

Pascal Reference M8I?lIal QulckDrsw

This Is a simple example, pushing and pull1ng word-long constants. Normally,
you'll be pushing more pointers, using the PEA (Push Effective Address)
instruction:

F1llRoundRect(myRect,1,thePort ... pnS1ze.v,white);

PEA
MDVE.W
MOVE.L
I'1OVE.L
MOVE.W
PEA
JSR

MYRECT
~1,-(SP)
GRAFGUE(A51AO
Tl-EPtRT(AOlA1
PNSlZE +V(A1), -(SP)
WHITE(AO)
FILLRCl.JNJRECT

; Push pointer to myRect
; Push constant 1
; Point to QuickOraw globals
; Get current grafPort
; PUSh value of thePort" .pnSlze. v
; Push pointer to glObal variable white
; can the sUbroutine

To call the TextFace procedUre, pUSh a word in whiCh eaCh Of seven bits
represents a stylistic variation: set bit 0 for bold, bit 1 for italic, bit 2 for
underline, bit 3 for outline, bit 4 for shadow, bit 5 for condense, and bit 6
for extend.

E.12 Sl.mnary of QuICkDIaW

UNIT QuickOraw;

{ COpyright 1983 Apple COP1luter Inc. }

INTERFACE

CONST srCCopy
srcDr
srcXor
srcBlc
notSrCCopy
notSrcor
notSrcXor
notSrcBic
patCopy
pator
patXor
patBlc
notPatCOpy
notPatOr
notPatXor
notPatBlc

= 0; {the 16 transfer MOdes }
= 1;
=2;
= 3;
= 4;
= 5;
= 6;
= 7;
= 8;
= 9;
= 10;
'" 11;
= 12;
= 13;
= 14;
= 15;

E-79

Pasc81 RefeJ'ence Manual

{ QuickDraw color separation constants }

no1'l'l8lBlt = 0;
inverseBit = 1;
reclBit = 4;
greenBit = 3;
blueB1t = 2;
cyanBit = 8;
I'l8g8ntaBi t = 7;
yelloWSi t = 6;
blackBit = 5;

{ no1'l'l8l screen Pl8pping }
{ inverse screen ~ing }
{ RGB additive l'Iapping }

{ CMVBk subtractive l'Iapping }

QulckOraw

blackColor = 33;
wh1 teCOlor = 30;
redColor = 2OS;
greencolor = 341;

{ colors expressed in ttlese ~ings }

blueCOlor = 409;
cyancolor = 273;
MagentaColor = 137;
yelloWColor = 69;

piClParen = 0;
picRParen = 1;

TYPE QDByte = -128 •• 127;

{ standard picture ~ts }

QDPtr = ~QDByte; { bl1nd pointer }
QDHandle = ~QDPtr; { blind handle }
str255 = string [255];
Pattern = PACKED ARRAV[O •• 7] OF O •• 255;
Bi ts16 = ARRAV [0 •• 15] OF INTEGER;
VHSelect = (v, h);
GrafVerb = (f~,paint,erase,invert,f111);
styleItePI = (bold, italic, Ul'ltterline, outline, Shadow, condense, extend);
style = SET OF styleIteM;

FontInfo = RECORD
ascent: INTEGER;
descent: INTEGER;
w1dMax: INTEGER;
leading: INTEGER;

END;

E-80

Pascal Reference M8ni.J81

Point = RECORD CASE INTEGER Of

0: (v: INTEGER;
n: INTEGER);

1: (vn: ARRAV[VHSelect] OF INTEGER);

END;

Rect = RECORD CASE INTEGER OF

0: (top: INTEGER;
left: INTEGER;
bottOfYl: INTEGER;
right: INTEGER);

1: (topLeft: Point;
l'JotR1ght: Po1nt);

ENO;

B1 map = RECORD·
baseAddr: QOPtr;
rowBytes: INTEGER;
bounds: Rect;

END;

Cursor = RECORD
data: B1tS16;
I'laSk: B1 ts16;
notSpot: Point;

END;

PenState = RECORD
pnLoc:
pnS1ze:
pnMode:
pnPat:

END;

Point;
Po1nt;
INTEGER;
Pattern;

E-81

QtJlckOraw

Pascal Reference Manl/aJ

PolyHandle = APolyPtr;
polyPtr = Apolygon;
Polygon = RECORD

polySize: INTEGER;
polyBBox: Rect;
polyPolnts: ARRAV[O •• 0] OF Point;

END;

RgnHandle = "RgnPtr;
RgnPtr = "Region;
Region = RECORD

Qulcl<Oraw

rgnS1ze: INTEGER; {rgnS1ze = 10 for rectangular }
rgnBBox: Rect;
{ plus ~re data if not rectangular }

END;

PlcHandle = "PIcPtr;
PicPtr = "PIcture;
P1cture = RECORD

piCSize: INTEGER;
pICfraMe: Rect;
{ plus byte cOdes for picture content }

END;

QDProcsPtr = "QDProcs;
QDProcs = RECORD

textProc: QOPtr;
IlneProc: QOPtr;
rectProc: QDPtr;
rRectProc: QDPtr;
ovalProc: QOPtr;
arcProc: QOPtr;
polyProc: QOPtr;
rgnProc: QDPtr;
bitsProc: QDPtr;
COPI'IerltProc: QDPtr;
txMeasProc: QDPtr;
getPIcProc: QDPtr;
putPicProc: QDptr;

END;

E-82

Pascal Reference i'18171Jal

GrafPtr = AGrafPort;
GrafPort = RECORD

dev1ce:
portB1ts:
portRect:
v1sRgn:
cl1pRgn:
bkPat:
f111Pat:
pnloc:
pnSlze:
pnMode:
pnPat:
pnVls:
txFont:
txFace:
txMOde:
tXSlze:
spExtra:
fgColor:
bkCOlor:
colrB1t:
patStretCh:
p1CS8Ve:
rgnSave:
polySave:
grafProcs:

END;

VAR thePort: GrafPtr;
White: Pattern;
black: Pattern;
gray: Pattern;
ltGray: Pattern;
dkGray: Pattern;
arrow: CUrsor;
screenB1ts: B1tMap;
randSeed: LongInt;

INTEGER;
B1tMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
Point;
INTEGER;
Pattern;
INTEGER;
INTEGER;
Style;
INTEGER;
INTEGER;
INTEGER;
LongInt;
LongInt;
INTEGER;
INTEGER;
QOHandle;
QDHandle;
QDHandle;
QOProcsPtr;

E-83

QuickOraw

Pascal RefenJnce MaruaJ

{ GrafPort Routines }

PROCEDURE InltGraf (globalPtr: QDPtr);
PROCEDURE OpenPort (port: GrafPtr);
PROCEDURE InitPort (port: GrafPtr);
PROCEDURE ClosePort (port: GrafPtr);
PROCEDURE setPort (port: GrafPtr);
PROCEDURE GetPort (VAR port: GrafPtr);
PROCEDURE GrafDev1ce (dev1ce: INTEGER);
PROCEDURE setportB1ts(bM: B1tMap);
PROCEDURE PortSize (w1dtn,nelght: INTEGER);
PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER);
PROCEDURE SetOr1g1n (n,v: INTEGER);
PROCEDURE SetC11p (rgn: RgnHandle);
PROCEDURE GetCl1p (rgn: RgnHandle);
PROCEDURE Cl1pRect (r: Rect);
PROCEDURE BackPat (pat: pattern);

{ CUrsor Routines }

PROCEDURE In1tCUrsor;
PROCEDURE setCUrsor(crsr: CUrsor);
PROCEDURE HldeCursor;
PROCEDURE ShoWCUrsor;
PROCEDURE ObscureCUrsor;

{ Line Routines }

PROCEDURE HldePen;
PROCEDURE ShowPen;
PROCEDURE GetPen (VAR pt: Point); I

PROCEDURE GetPenState(VAR pnState: Pen8tate);
PROCEDURE setpenState(pnState: penState);
PROCEDURE PenSlze (widtn, tleigtlt: INTEGER);
PROCEDURE PenMode (PKXJe: INTEGER);
PROCEDURE PenPat (pat: Pattern);
PROCEDURE PenNomal;
PROCEDURE MoveTo (n, V: INTEGER);
PROCEDURE MoVe (dn, dV: INTEGER);
PROCEDURE L1neTo (n, V: INTEGER);
PROCEDURE Line (dn, dv: INTEGER);

E-84

&;UJckDraw

(font: INTEGER);
(face: Style);
(rode: INTEGER);
(size: INTEGER);
(extra: INTEGER);
(ch: char);
(s: Str255);

QulckD.llIw

{ Text Routines }

PROCEDURE TextFont
PROCEDURE TextFace
PROCEDURE TextMode
PROCEDURE TextSize
PROCEDURE SpaceExtra
PROCEDURE OraWChar
PROCEDURE DraWString
PROCEDURE OrawText
FUNCTION CharWidth
FUNCTION StringWidth
FUNCTION TextWidth

(textBuf: QOPtr; firstSyte,byteCOunt: INTEGER);
(ch: CHAR): INTEGER;
(5: Str255): INTEGER;
(textBuf: QOPtr; firstSyte,bytecount: INTEGER):

INTEGER;
PROCEDURE GetFontInfo (VAR info: FontInfo);

{ Point calculations }

PROCEDURE AddPt (src: Point; VAR dst: POint);
PROCEDURE SUbPt (src: Point; VAR dst: Point);
PROCEDURE SetPt (VAR pt: Point; h, v: INTEGER);
FUNCTION Equa1Pt (ptl, pt2: Point): BOOLEAN;
PROCEDURE SC81ePt (VAR pt: Point; frOPfiect, toRect: Rect);
PROCEDURE MapPt (VAR pt: Point; frOMRect,toRect: Rect);
PROCEDURE Loca1ToG1oba1 (VAR pt: Point);
PROCEDURE G1oba1ToLoca1 (VAR pt: Point);

{ Rectangle calculations }

PROCEDURE SetRect (VAR r: Rect; left, top, right, bottOPl: INTEGER);
FUNCTION Equa1Rect (rectl, rect2: Rect): BOOLEAN;
FUNCTION E~tyRect (r: Rect): BOOLEAN;
PROCEDURE OffsetRect (VAR r: Rect; dh, dV: INTEGER);
PROCEDURE MapRect (VAR r: Rect; f~t, toRect: Rect);
PROCEDURE InsetRect (VAR r: Rect; dh, dV: INTEGER);
FUNCTION SectRect (srcl, 5rc2: Rect; VAR dstRect: Rect): BOOLEAN;
PROCEDURE lJnlonRect (srcl, src2: Rect; VAR dstRect: Rect);
FUNCTION PtInRect (pt: Point; r: Rect): BOOLEAN;
PROCEDURE Pt2Rect (ptl,pt2: Point; VAR dstRect: Rect);

E-8S

Pascal Refemnce I'1antIal

{ Graphical Operations on Rectangles }

PROCEDURE FraPeRect (r: Rect);
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);
PROCEDURE FillRect (r: Rect; pat: Pattern);

{ RoundRect Routines }

PROCEDURE Fr~oundRect (r: Rect; ovWd~ovHt: INTEGER);
PROCEDURE PaintRot.n:lRect (r: Rect; ovlJd~ ovHt: INTEGER);
PROCEDURE EraseRoundRect (r: Rect; ovlJd, ovHt: INTEGER);
PROCEDURE InvertRoundRect (r: Rect; ovlJd~ ovHt: INTEGER);

CMCkDraw

PROCEDURE FillRoundRect (r: Rect; ovlJd~ ovHt: INTEGER; pat: Pattern);

{ OVal Routines }

PROCEDURE FraPEOVal (r: Rect);
PROCEDURE PaintOVal (r: Rect);
PROCEDURE Eraseoval (r: Rect);
PROCEDURE InvertOVal (r: Rect);
PROCEDURE FlllGval (r: Rect; pat: Pattern);

{ Arc Routines }

PROCEDURE FrareArc (r: Rect; startAngle .. arcAngle: INTEGER);
PROCEDURE PaintArc (r: Rect; startAngle~arcAngle: INTEGER);
PROCEDURE EraseArc (r: Rect; startAngle~ arcAngle: INTEGER);
PROCEDURE InvertArc (r: Rect; startAngle~ arcAngle: INTEGER);
PROCEDURE F1l1Arc (r: Rect; startAngle .. arcAngle: INTEGER; pat:

Pattern);
PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

E-86

Pascal ReFerence M8nf./aJ

{ Polygon Routines }

FUNCTION OpenPoly:
PROCEDURE ClosePoly;
PROCEDURE KillPoly
PROCEDURE OffsetPoly
PROCEDURE MapPoly
PROCEDURE FraPEPoly
PROCEDURE PaintPoly
PROCEDURE ErasePoly
PROCEDURE InvertPoly
PROCEDURE FillPoly

PolyHandle;

(poly: PolyHanclle);
(poly: PolyHandle; dtl, t1V: INTEGER);
(poly: PolyHandle; fl'Ol"frect, toRect: Rect);
(poly: PolyHandle);
(poly: PolyHandle);
(poly: POlyHandle);
(poly: PolyHandle);
(poly: PolyHandle; pat: Pattern);

{ Region calculations }

FUNCTION NewRgn: RgnHandle;
PROCEDURE OisposeRgn(rgn: RgnHandle);
PROCEDURE copyRgn (srcRgn, dstRgn: RgnHancIle);
PROCEDURE SetEJlPtyRgn(rgn: RgnHandle);

QulckDraw

PROCEDURE SetRectRgn(rgn: RgnHancIle; left, top, right, bottorl: INTEGER);
PROCEDURE RectRgn (rgn: RgnHancIle; r: Rect);
PROCEDURE OpenRgn;
PROCEDURE CloseRgn (dStRgn: RgnHandle);
PROCEDURE OffsetRgn (rgn: RgnHandle; dtI, dV: INTEGER);
PROCEDURE MapRgn (rgo: RgnHancIle; frot"flect .. toRect: Rect);
PROCEDURE InsetRgn (rgn: RgnHancIle; dh, dV: INTEGER);
PROCEDURE SeCtRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle);
PROCEDURE unionRgn (SrcRgnA, srcRgnB, dstRgn: RgnHandle);
PROCEDURE 01 ffRgn (srcRgnA, srcRgnB, dStRgn: RgnHandle);
PROCEDURE XorRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle);
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOOLEAN;
FUNCTION EJlPtyRgn (rgn: RgnHandle): BOOlEAN;
FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): BOOLEAN;
FlNJTION RectInRgn (r: Rect; rgn: RgnHandle): BOOlEAN;

{ Graphical Operations on Regions }

PROCEDURE FraPERgn (rgn: RgnHandle);
PROCEDURE PaintRgn (rgn: RgnHandle);
PROCEDURE EraseRgn (rgo: RgnHandle);
PROCEDURE InvertRgn (rgo: RgnHancUe);
PROCEDURE FillRgn (rgn: RgnHancIle; pat: Pattern);

E-87

Pascal Reference MantJal

{ Graphical Operations on Bi maps }

PROCEDURE ScrollRect(dstRect: Rect; dIl, dv: INTEGER; updateRgn:
rgnHandle);

PROCEDURE COpyBits (srcBits,dstBits: BitMap;
srcRect, dstRect: Rect;
PIlde: INTEGER;
PaSkRgn: RgnHandle);

{ Picture Routines }

FUNCTION OpenPicture(picFrare: Rect): PicHandle;
PROCEDURE CloseP1cture;

QtJ1C1<Draw

PROCEDURE DraWPicture(l'IyPicture: P1cHandle; dstRect: Rect);
PROCEDURE P1CCOP1'1ent(kind,datasize: INTEGER; dataHandle: QDHandle);
PROCEDURE KillPicture(l'IyPicture: PicHandle);

{ The Bottleneck Interface: }

PROCEDURE setStdProcs(VAR procs: QDProcs);
PROCEDURE StdText (count: INTEGER; textAddr: QDPtr; nurer, ClertOl'l:

PROCEDURE StdLine
PROCEDURE StdRect
PROCEDURE StdRRect
PROCEDURE StdOval
PROCEDURE StdArc

Point);
(newPt: point);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; ovt.JcJ, ovHt: INTEGER);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; startAngle, arcAngle:
INTEGER);

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);
PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHancUe);
PROCEDURE StdB1 ts (VAR sroBi ts: BitMap; VAR srcRect, ClstRect: Rect;

i'IXIe: INTEGER; PaskRgn: RgnHanClle);
PROCEDURE StdCoPJrlent (kind,datas1ze: INTEGER; dataHandle: QOHandle);
FUNCTION StdTxMeas (count: INTEGER; textAddr: QDPtr; VAR nurer, ClenoI'I:

Point; VAR info: FontInfO): INTEGER;
PROCEDURE StdGetPic (dataPtr: QDPtr; byteCount: INTEGER);
PROCEDURE StdPUtPic (dataPtr: QOPtr; bytecount: INTEGER);

E-88

{ Mise Utility Routines }

FUNCTION GetP1xel (h, v: INTEGER): BOOLEAN;
FUNCTION RandoPl: INTEGER;
PROCEDURE StuffHex (th1ngptr: QDPtr; s:Str255);
PROCEDURE ForeColor (COlor: LongInt);
PROCEDURE BackColor (COlor: LongInt);
PROCEDURE ColorBit (wh1ChB1t: INTEGER);

IMPlEMENTATION

{$I Qu1CkDraw2.text }

{ QuiCkDraw2. text: IpplePe'ltat1on part of QuiCkDraw }

{$S Graf }

TYPE FMOutPtr = "'FMOutRec;
FMOutrec = PACKED RECORD

errNuPl: INTEGER;
fontHandle: QDHandle;
bold: O .. 255;
ital1c: O •• 255;
ulOffset: O •• 255;
ulShadow: O •• 255;
ulThick: O •• 255;
shadow: O •• 255;
extra: -128 .• 127;
ascent: O •• 255;
descent: O •• 255;
wId11aX: O •• 255;
leading: -128 •• 127;
unused: O .. 255;
nt.II'ler: Point;
denOrl: Point;

END;

E-89

{ .usecJ only for GrafError }
{ handle to font }}
{ hOw PUCh toSl"le8r heriz
{ hOw I"UCh to Shear }
{ pixels below baseline }
{ hOw big is the halo }
{ hOw thick 1s the underline }
{ 0, 1,2, or 3 only }
{ extra White dots each Char }
{ ascent reasure for font }
{ descent reasure for font }
{ w1dth of wIdest Char }
{ leading between lines }

{ use this MOdified scale to }
{ draw or PEasure text with }

Pascal Reference Manual

VAR wideOpen: RgnHandle;
wideMaster: RgnPtr;
wideOata: Region;
rgnBuf: QOHandle;
rgnIndex: INTEGER;
rgnMax: INTEGER;
playPic: PicHandle;
playIndex: INTEGER;
thePoly: PolyHandle;
polyMax: INTEGER;
patAlign: Point;
fon'tPtr: FtD.rtPtr;
fontoata: FMOutRec;

{ grafPort routines }

PROCEDURE InitGraf;
PROCEDURE OpenPort;
PROCEDURE InltPort;
PROCEDURE ClosePort;
PROCEDURE GrafDevlce;
PROCEDURE 8etPort:
PROCEDURE GetPort;
PROCEDURE setPortBits;
PROCEDURE PortSlze;
PROCEDURE MovePortTo;
PROCEDURE SetOrlgin;
PROCEDURE setCllp;
PROCEDURE GetClip;
PROCEDURE CllpRect;
PROCEDURE BackPat;

{ cursor routines }

PROCEDURE Inltcursor;
PROCEDURE setCUrsor;
PROCEDURE HideCursor;
PROCEDURE ShoWClJrsor;
PROCEDURE Obscurecursor;

QuiCkDraw

{ a ~ rectangular region, read-only }

{ point saving buffer for OpenRgn }
{ current bytes used in rgnBuf }
{ ~ bytes allocated so far to rgnBuf }}}
{ used by StdGetpic
{ used by StdGetpic
{ the current polygon being defined }
{ ~ bytes allocated so far to thePoly }
{ to align pattern during OrawPicture }
{ the last font used, used by OrawText }

EXTERNAL;
EXTERNAl;
EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL:
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAl:
EXTERNAl;

EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAl;

E-90

Pascal Reference frf8tJtla/

{ text routines }

PROCEDURE TextFont;
PROCEDURE TextFace;
PROCEDURE TextMode;
PROCEDURE TextSize;
PROCEDURE SpaceExtra;
PROCEDURE DraWChar;
PROCEDURE DraWString;
PROCEDURE DrawText;
FUNCTION GharUidth;
FUNCTION Stringuidth;
FUNCTION TextUidth;
PROCEDURE GetFontInfo;

{ line routines }

PROCEDURE H1dePen;
PROCEDURE ShowPen;
PROCEDURE GetPen;
PROCEDURE GetPenState;
PROCEDURE SetPenState;
PROCEDURE PenS1ze;
PROCEDURE PenMode;
PROCEDURE PenPat;
PROCEDURE PenNomal;
PROCEDURE MoveTo;
PROCEDURE Move;
PROCEDURE lineTo;
PROCEDURE line;

{ rectangle calculations }

PROCEDURE SetRect;
FUNCTION EqualRect;
FUNCTION EMptyRect;
PROCEDURE OffsetRect;
PROCEDURE MapRect;
PROCEDURE InsetRect;
FUNCTION SectRect;
PROCEDURE unionRect;
FUNCTION PtInRect;
PROCEDURE pt2Rect;

EXTERNAL;
EXTERNAl;
EXTERNAl;
EXTERNAl;
EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAL;

EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAl;
EXTERNAL; ./
EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAl;
EXTERNAl;
EXTERNAL;
EXTERNAL;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAl;

E-91

Qu/CkDraw

Pascal Reference Manual

{ graphical operations on rectangles }

PROCEDURE FraPeRect;
PROCEDURE PalntRect;
PROCEDURE EraseRect;
PROCEDURE InvertRect;
PROCEDURE FI11Rect;

EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

{ graphical operations on ROt.r'tC.Rects }

PROCEDURE FraI'IeRoundRect;
PROCEDURE PalntRru'1dRect;
PROCEOlRE EraseRoundRect;
PROCEDURE InvertR~ect;
PROCEDURE FillRoundRect;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

{ graphical operatIons on ovals }

PROCEDURE FrarreDval;
PROCEDURE PalntDval;
PROCEDURE Eraseoval;
PROCEDURE Invertoval;
PROCEDURE FlllOVal;

{ Arc routines }

PROCEDURE FraPIeArc;
PROCEDURE PalntArc;
PROCEDURE EraseArc;
PROCEDURE InvertArc;
PROCEDURE Fl11Arc;
PROCEDURE PtToAngle;

EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAL;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

E-92

QulCkDmw

{ polygon routlnes }

FUNCTION OpenPOly;
PROCEDURE ClOsePoly;
PROCEDURE KlllPoly;
PROCEDURE OffsetPoly;
PROCEDURE MapPoly;

PROCEDURE FrarlePoly;
PROCEDURE Paintpoly;
PROCEDURE Erasepoly;
PROCEDURE Invertpoly;
PROCEDURE FlllPoly;

{ reglon calculations }

FUNCTION NewRgn;
PROCEDURE DlsposeRgn;
PROCEDURE OpenRgn;
PROCEDURE ClOseRgn;
PROCEDURE OffsetRgn;
PROCEDURE MapRgn;
PROCEDURE InsetRgn;
PROCEDURE 5ectRgn;
PROCEDURE COpyRgn;
PROCEDURE setEl1>tyRgn;
PROCEDURE setReotRgn;
PROCEDURE ReotRgn;
PROCEDURE unionRgn;
PROCEDURE Di ffRgn;
PROCEDURE XOrRgn;
FUNCTION EqualRgn;
FUNCTION ErptyRgn;
FUNCTION PtlnRgn;
FUNCTION ReotlnRgn;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAl;

EXTERNAL;
EXTERNAL;
EXTERNAl..;
EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAL.;
EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAl..;
EXTERNAL;

{ graphical operations on Regions }

PROCEDURE Fr8Pl8Rgn;
PROCEDURE PalntRgn;
PROCEDURE EraseRgn;
PROCEDURE InvertRgn;
PROCEDURE Fl1lRgn;

EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAL;

E-93

QulckOraw

Pascal Reference Manual

{ BitMap routines }

PROCEDURE CopyBits;
PROCEDURE SCrollRect;

{ Picture routines }

FUNCTION OpenPlcture;
PROCEDURE ClosePicture;
PROCEDURE Kll1Plcture;
PROCEDURE OrawPicture;
PROCEDURE PlcC~t;

{ BottleNeck routines }

PROCEDURE StdText;
PROCEDURE Stdllne;
PROCEDURE StdRect;
PROCEDURE StdRRect;
PROCEDURE StdOval;
PROCEDURE StdArc;
PROCEDURE StdPoly;
PROCEDURE StdRgn;
PROCEDURE StdBi ts;
PROCEDURE StdCOI'I'ent;
FUNCTION StdTxMeas;
PROCEDURE StdGetPlc;
PROCEDURE StdPUtplc;

{ ~lsc utility routines }

FUNCTION GetPixel;
FUNCTION RandoM;
PROCEDURE AddPt;
PROCEDURE SUbPt;
PROCEDURE SetPt;
FUNCTION EqualPt;
PROCEDURE StuffHex;
PROCEDURE LocalToGIObal;
PROCEDURE GIObalToLocal;

EXTERNAL;
EXTERNAL;

EXTERNAl;
. EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

E-94

QuiCkDraw

PROCEDURE SCalePt;
PROCEDURE MapPt;
PROCEDURE Forecolor;
PROCEDURE BackColor;
PROCEDURE COlorBit;
PROCEDURE setStdProcs;

END. { of UNIT }

E.13 QJiCkOraW 8ample ProgIan

{CQDSaJ1>le

I
gQOSarple

x#5: lul1nker
-P
obj:HUIntL
Obj :lJnit68K
Obj : tni tStd
Obj:lJnitHz
obj:FontMgr
Obj:FM68K
Obj : Storage
Obj : QuickDraw
Obj : GrafLib
Obj :QDSupport
~le
ftiospasl1b

EXTERNAl;
EXTERNAL;
EXTERNAL;
EXTERNAL:
EXTERNAl;
EXTERNAL;

QDSa~le
{ { the above junk is an exec file to cOf1)lle and run this progrart J

PROGRAM QDSarple;

{su-}

USES {SU obj : QuickDraw } QuiCkOraw,
{$U Obj:QOSUpport} QDSUpport;

E-95

Pascal Reference HanlJ8l QulckDraw

TYPE IconData = ARRAY [O .• 95] OF INTEGER;

VAR heapBuf: ARRAY[O .. lOOOO] OF INTEGER;
M)'Port: GrafPort;
icons: ARRAY [0 •• 5] OF IconData;
errNuM: INTEGER;

FUNCTION HeapFull(hZ: QOPtr; oyteSNeeded: INTEGER): INTEGER;
{ this function will be called if the heapZone runs out of space }
BEGIN

WRlTELN(' The heap is full. User croak !! ');
Halt;

END;

PROCEDURE Inltlcons;
{ Manually stuff SOPle icons. Nol'1'l8l1y we would read theM frOM a file}
BEGIN

{ Lisa }
stuffHex(@icons[O, 0], 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFFFC');
StuffHeX(@icons[0,l2], '0060000000060l80000000080600000000l3OFFFFFFFFFA3');
StuffHex(@icons[O,24], 'l80000000043l1FFFFF0002312000008OF23l20000OBF923');
StuffHex(@1cons[0,36], '120000OSOF23l20000OS0023120000OS0023120000OSOF23');
StUffHex(@icons[O,48], 'l2000008F923120000OSOF23120000OS00231lFFFFF00023');
StuffHex(@icons[0,60], 'OS000000004307FFFFFFFFA3010000000026OFFFFFFFFE2C');
StUffHex(@icons[0,72], 'l8000000013832AAAAA8A9F06555555l5380C2AAAA82A580');
StUffHex(@icons[O,84], '80000000098OFFFFFFFFF30OS0000000l600fFFFFFFFFCOO');

{ Printer }
StuffHex(@1cons[1, 0], '00');
StuffHeX(@1COnS!l,12], '00000000000000007FFFFFOOOOOOS00002800001l15l4440');
StuffHex(@1cons 1,24], '0002000008400004454510400004000017C00004A5151000');
StuffHex(@1cons L36], '0004000010000004A54510000004000017FEOOF4A5151003');
stuffHex(@1cons[1,48], '0184000013870327FFFFF1Of06400000021BOCFFFFFFFC37');
StuffHex(@1cons[1,60], '18000000006B3000000000077FFFFFFFFFABC00000000356');
StuffHex(@1cons[1,72], '8000000001AC87FOOOOOOl5884100OCCCIB087FOOOCCC160');
StuffHex(@iconS[l,84], '800000000lCOC000000003807FFFFFFFFF0007800001EOOO');

E-96

Pascal Reference Manual QtJiC/<Oraw

{ Trash can }
StuffHex(@icons[2, OJ' 'OOOOOlFCOOOOOOOOOE0600000000300300000000C0918000');
StuffHex(@icons[2,12, '00013849800000026C4980000004C093000000OB61260000');
StuffHex(@icons[2,24 , '0010064FE0000031199830000020E6301800002418EOOBOO');
StuffHex(@icons[2,36], '0033E3801C0000180E002C0000OFF801CC0000047FFEOCOO');
StUffHex(@icons[2,48], 'OOOSOOOO4C000005259A4C000005250A4C00000525FA4C00');
stuffHeX(@iconS[2,60j' '000524024C0000OS24924C00600524924C009OES24924C7C');
StUffHex(@icons[2,72 , '932524924C82A44S24924DOIC88S24924CFI0C4S24924C09');
stUffHex(@icons[2,84 , '0784249258E70003049233100000E000E4OBOOOOIFFFC3FO');

{ tray }
StUffHex(@1cons[3, 0], '00');
StUffHex(@1cons[3,12], '0000000000000000000000000000000000000007FFFFFFFO');
stUffHex(@icons[3,24], 'OOOE00000018001A00000038003600000078006AOOOOOOO8');
stuffHex(@1cons[3,36], 'OOO7FFFFFFBBOIAC0000035803580000068807FCOOOFFD58');
StuffHex(@icons[3,48], '040600180ABB0403FFF00D58040000000AB8040000000D58');
StuffHex(@icons[3,60], '040000000ABB07FFFFFFFD5806ACOOOOOABB055800000058');
stUffHex(@1cons[3,72], '06B000000AB807FCOOOFF070040600180AE00403FFFOOOCO');
stuffHex(@icons[3,84], '04000000OBB004000000OF00040000000E0007FFFFFFFCOO');

{ File Gabinet }
StuffHex(@icons[4, 0], '0007FFFFFCOOOOOBOOOOOCOOOOI000001C00002000003400');
StuffHex(@icons[4,12], '004000006C000OFFFFFF04000OBOOOOOACOOOOBFFFFE0400');
StuffHex(@1cons[4,24], 'OOA00002ACOOOOA07F02040000A04102ACOOOOA07F020400');
StuffHex(@iconS[4,36], '00A00002ACOOOOAOB082040000AOFF82ACOOOOAOOO02D400');
StUffHex(@iconS[4,48], 'OOA00002ACOOOOBFFFFE04000OBOOOOOACOOOOBFFFFE0400');
StUffHex(@icons[4,60], '00A00002ACOOOOA07F02040000A04102ACOOOOA07F020400');
StUffHex(@1cons[4,72], 'OOA00002ACOOOOA08082D40000AOFF82ACOOOOA000020800');
StuffHex(@icons[4,84], 'OOA00002BOOOOOBFFFFEEOOOOOBOOOOOCOOOOOFFFFFF8000');

{ drawer }
stuffHex(@icons[S, 0], '00');
StuffHex(@1cons[S,12], '00');
StuffHex(@icons[S,24], '00');
StuffHeX(@1conS(S,36j' 'OOlFFFFFFO');
StuffHex(@1cons[S,48 , '000038000030000068000070000008000000003FFFFFFIBO');
StuffHex(@1cons(S, 60 , '0020000013S00020000016B000201FEOI050002010201ABO');
StuffHex(@1cons[5,72], '00201FE01560002000001AC0002000001580002020101BOO');
StuffHex(@1cons(5,84], '00203FF01600002000001C00002000001800003FFFFFFOOO');

END;

E-97

Pascal Reference H8/7tJ8J

PROCEDURE DrawIcon(whIcnI~h,v: INTEGER);
VAR srcB1 ts: 81 tMap;

srcRect,dstRect: Rect;
BEGIN
srcBIts.baseAddr:=@lcons[WhIChIcon];
srcB1ts.rowBytes:=6;
SetRect(srcB1 ts. tlOUnCIs, 0, 0, 48, 32);
srcRect:=srcB1ts.bounds;
ostRect:=srcRect;
OffsetRect(dstRect,h,v);
COpyBIts(srcBlts,thePort A .portBlts,SrcRect,dstRect,srcOr,Nil);

END;

PROCEDURE Drawstuff;

VAR i: INTEGER;
ter,JRect: Rect;
~yPoly: PolyHandle;
I'IYRgn: RgnHandle;
~yPattern: Pattern;

BEGIN
StUffHex(@MyPattern, '8040200002040800');

tef1)Rect : = thePort". portRect;
CllpRect(t~Rect);
EraseRoundRect(tef1lReCt, 30,20);
FraI'eROundRect(t~ect,30,20);

{ draw two horIzontal lines across the top }
MoveTo(0,18);
LineTo(719,18);
MoveTo(0,20);
LineTo(719,20);

{ draw divider lines }
MoveTo(0,134);
LlneTo(719,134);
MoveTo(0,248);
LlneTo(719,248);
MoveTo(240,21);
L1neTo(240,363);
MoveTo(480,21);
LlneTo(480,363);

E-98

QtJJcI<Draw

Pascal Reference M8I7lIal

{ draw title }
TextFont(0);
MoveTo(210,14);
DrawString('LooK what you can draw with QuickDraw');

{--------- draw text s~les --------- }

MoveTo(80~34); DrawString('Text');

TextFace([bold]);
MoveTo(70, 55); DraWString('Bold');

TextFace([ltalic]);
MoveTo(70,70); Drawstring('Itallc');

TextFace([underllne]);
MoveTo(70,85); DrawString('Uhderline');

TextFace([outllne]);
MoveTo(70~100); DraWString('OUtline');

TextFace([Shadow]);
MoveTo(70, 115); Drawstring(' Shadow');

TextFace([]); {restore to norMal }

{ --------- draw line SaMples --------- }

MoveTo(330,34); DrawString('Llnes');

MoveTo(280,25); Line(160,40);

PenSize(3,2);
MoveTo(280, 35); Line(160~ 40);

PenSize(6~ 4);
MoveTo(280, 46); Llne(160,40);

E-99

QlIlckDraw

P8SC8l Reference H8171J81

PenSlze(12,8);
PenPat(gray);
MoveTo(280,61); Llne(160,40);

PenSlze(15,10);
PenPat(~yPattern);
MoveTO(280,80); L1ne(160,40);
PenNol'l"18l;

{ --------- draw rectangle s~les --------- }

MoveTo(560,34); DraWStr1ng('Rectangles');

SetRect(teMPRectl 510, 401 5701 70);
Fr~t(~ct);

OffsetRect(t~Rect,25,15);
PenSlze(3,2);
EraseRect(teMpRect);
Fr8Pl9Rect(~t);

Off setRect (tet'lJRect, 25, 15);
Pa1ntRect(teMpRect);

OffsetRect(te~ect,25,15);
PenNorl'l8l;
Fl l1Rect (tef1lRect, gray);
FraMeRect(teMpRect);

OffsetRect(te~ect,25,15);
Fl11Rect(teMpRect,~ttern);
FraMeRect(teMpRect);

{ --------- draw roundRect s~les --------- }

MoveTo(70,l48); DraWStrlng('RoundRects');

setRect(teI1lRect,30,150,90,180);
FraMeRoundRect(teMpRect,30,20);

E-IOO

Quicl<Draw

Pascal Reference M8f7lJal

OffsetReet(te~ect,25,15);
PenSlze(3 .. 2);
EraseRoundRect(t~eet,30,20);
FraMeRoundReet(teMpRect, 30, 20);

OffsetReet(teMPReet,25,15);
PaintRoundRect(teMpRect,30,20);

OffsetReet(teMPRect,25,15);
PenNorl'tal;
FillRoundRect(teMpReet,30,20,gray);
FraMeRoundRect(teMPReet,30,20);

OffsetReet(teMpRect,25,15);
FlllRoundRect(teMpRect,30,20,MYPattern);
Fr~oundRect(teMPRect,30,20);

{ --------- draw bitMap saMples --------- }

MoveTo(320,148); DraWStrlng('BltMaps');

Drawlcon(O,266,1S6);
Drawl eon (1, 336, 156);
Drawlcon(2, 406, 156);
Drawleon(3 .. 266 ... 196);
Drawlcon(4,336,196);
Drawl con (5, 406, 196);

{ --------- draw ARC saMples --------- }

MoveTo(570,148); OraWStrlng('Arcs');

SetReet(teMpRect,520,153,655,243);
Fl11Arc(te~ect,135,65,dkGray);
FI11Are(teMpRect,200,130,MYPattern);
FillAre(t~ect,330,75,gray);
FraMeAre(teMPRect,135,270);
OffsetReet(te~eet,20,O);
PalntArc(teMpRect,45,90);

E-lOl

QuickD18W

Pascal Reference M8niJ81

{ --------- draw polygon saMples --------- }

MoveTo(80,262); DrawString(• Polygons');

Pl)'Pol y: =OpenPol y;
MoveTo(30,290);
LineTo(30,280);
LlneTo(50, 265);
LineTo(90,265);
LlneTo(80,280);
LineTo(95,290);
LlneTo(30,290);

ClosePoly; { end of definition }

Fr~Poly(~Oly);

Off setPo ly(!'IyPoly, 25, 15);
Penslze(3,2);
ErasePolY(MyPoly);
F~ly(MyPoly);

OffsetPolY(MyPoly,25,15);
PaintPoly(~yPoly);

OffsetPoly(rtyPoly,25,15);
PenNorl"lBl;
FillPoly(l'l}'Poly, gray);
Fr~oly(~yPoly);

OffsetPoly(MyPoly,25,15);
FillPoly(~yPOly,MyPattern);
Fr~oly(MyPoly);

Kl11Poly(~yPoly);

E-I02

QuiekDraw

Pascal Reference Manual

{ --------- d~strate region clipping --------- }

MoveTo(320,262); Orawstring('Regions');

I'1}'Rgn : =NewRgn;
OpenRgn;·

ShowPen;

SetRect(t8f1)Rect, 260, 270, 460, 350);
Fr~oundRect(teMpRect,24,16);

MoveTo(275,335); {define triangular hole}
LineTo(325,285);
LineTo(375,335);
LineTo(275,335);

setRect(t8f1)Rect, 365,277, 445, 325); {oval hole}
FraMeOVal(t8f1)Rect);

HidePen;
CIOSeRgn(MyRgn); { end of definition }

SetCl1p(MyRgn);

FOR i: =0 TO 6 00 {draw stuff inside the cUp region }
BEGIN
MoveTo(260,280+12*i);
DraWString('Arbitrary Cl1pping Regions');

END;

ClipRect(thePort~.portRect);
OispoSeRgn(MyRgn);

{ --------- draw oval saMples --------- }

MoveTo(580,262); Drawstring('Dvals');

setRect(t8f1)Rect, 510,264, 570,294);
FraMeOval(teMpRect);

E-I03

QulekDraw

OffsetRect(teMpRect,25,15);
Pen51ze(3,2);
EraseOVal(teMpRect);
Fr~al(t~ect);

OffsetRect(teMpRect,25,15);
Pa1ntOVal(teMpRect);

OffsetRect(teMpRect,25,15);
PenNorrral;
F1110val(t~ect,gray);
Fr~val(teApRect);

OffsetRect(t~t,25,15);
F111OVal(teMPRect,~attern);
FraAeOval(t~t);

END; {DraWStuff}

BEGIN {rain progrBl'l }
InitHeap(@heapBuf,lheapBuf[10000],lHeapFUll);
In1tGraf(@thePort);
In1 tCUrsor;
H1deCursor;
FMIn1t(erl'NUPl);
OpenPort(@MyPort);
Pa1ntRect(thePortA .portRect);
In1tIcons;
OraWStuff;

END.

E.14 Glossary
bit Image: A collection of bits in memory whiCh have a rectillnear
representation. The Lisa screen is a visible bit Image.
bi~ A poInter to a bit image, the row wIdth of that Image, and its bOundary
rectangle.
bouldary rectangle: A rectangle defined as part of a bItMap, whiCh encloses the
active area of the bit image and irr.posas a coordinate system on it. Its top left
comer Is always aligned around the ftrst btt In the bit Image.

E-l04

Pascal Reference Manual QulckDraw

character style: A set of stylistic variations, sUCh as bold, Italic, and underlIne.
The empty set Indicates normal text (no styl1stic varlations~
cUppIng: LImiting drawing to wltn1n the tx:u'lcJs of a particular area
cllWing region: Same as cl1pRgl.

c1lpR~ The region to which an application limits drawing In a grafPort.
coonlnate plane: A two-dimensional grid. In QuickDraw, the grid coordinates
are integers ranging from -32768 to + 32767, and all grid Unes are infinitely thin.

cursor. A 16-by-16-bit image that appears on the screen and is controlled by the
mouse.
amor level: A value, InitialIZed to 0 wnen the system is booted, that keeps track
of the number of times the cursor has been hIdden.

erJ1)ty: containing no bits, as a snape defined by only one point.
font: The complete set of Characters Of one typeface, SUCh as century.
frame: To draW a shape by drawing an outline of it.
glObal coordlnate system The coordinate system based on the top left comer of
the bit Image beIng at (OJ)).

gmfPort: A complete drawing envirorvnent, including such elements as a bitMap,
a subset of It in which to draw, a character font, patterns for drawing and erasing,
and other pen characteristics.
grafPtr: A pointer to a grafPort.
I'&1dle: A pointer to one master pointer to a dynamiC, relocatable data structure
(such as a region~
hotSpot: The point in a cursor that Is aligned with the mouse position.

kem To stretch part of a Character baCk under the previous character.
local coordlnate systEm The coorcJ1nate system local to a grafPort, imposed by
the boundary rectangle defined In Its bItMap.
mlssblJ syn1Jol: A character to be drawn In case of a request to draw a character
that Is missIng from a particular font.
pattem M 8-by-8-blt Image, used to define a repeating desIgn (SUCh as stripes)
or tone (SUCh as gray~
pattem transfer mode: Il'le of eight transfer modes for drawing lines or shapes
with a pattem
picture: A saved sequence of QulCkDraw drawing commands (and, optionally ..
picture comments) that you can play baCk later with a single procedUre call; also,
the Image resulting from these corrmands.

E-l05

Pasc81 Reference Manual QtlickDraw

pIcture cooments: Data stored in the defInition of a pIcture WhiCh does not
affect the picture's appearance bUt may be used to prOVide additional
Information about the picture When It's played baCk.
picture fnme: A rectangle, defIned as part of a pIcture, WhICh surroundS the
picture and gives a frame of reference for scalIng when the picture is drawn.
pixel: The visual representation of a bIt ori tre screen (white if the btt is 0, blacK
if It's 1~
point: The intersection of a hOrizontal grid line and a vertical grid Une on the
coordinate plane, defined by a horizontal and a vertical coordinate.

polygort A sequence of connecteclllnes, defined by QuickDraw Une-drawing
commands.
port: same as grafPort.
portBlts: The bitMap of a grafPort.
portBltslD.llds: The boundary rectangle of a grafPort's bitMap.
portRect: A rectangle .. defined as part Of a grafPort .. whiCh encloses a subSet of
the bItMap for use by the grafPort
regim AA arbItrary area or set Of areas on the coordinate plane. The outlIne of
a region shoUld be one or more closed loops.
row \IIldttt The number of bytes In each row of a bIt image.
saUd: F1l1ec1In with any pattern.
source trcrlSfer mode: Ole Of eIght transfer modes for drawing text or
transferrIng any bit Image between two bItMaps.
style: see Character style.
thePort: A glObal variable that paints to the current grafPort.
trarl!fer mode: A specification of which boolean operation QuickDraw should
perform when drawing or when transferring a bet lmage from one bitMap to
another.
visRgt The region of a grafPort which Is actually visible on the screen.

E-106

PascaJ Reference M8I7I.I81 H8R:Iw8n! Interface

Appendix. F
HARDWARE INTERFACE

F.1 The Mouse ..•••.••••••••••••.•••.••••.•••••.•..•••.•..•..••.•••••.••••..•..•.•••...•....• F-3
F .1.1 MotJse Locatioo. .•••• .•.. .••...... .•. •••.• •••.• ••••••• .••.....•..•. •.•••• F ~ 3
F .1.2 Mouse Update Frequency ... F -3
F .1.3 MotJse SCalirlg ••• •••• ••••••••••• •••••• •••• •••••••• ••••••••• ••••••••• ••••••• ••• F - 3
F .1.4 Mouse o:Jonleter .••. .••. .•••• .•••. .•. ••••••• .•.•••..............• .•..... F-4

F .2 The CUrsor .•••..•.....•..•.••••...•••••.••••.•••..••••••••.••••••.••..••.........••..•.. F-4
F.2.1 CUrsorlMouse TrackIng ... F-5
F .2.2 The BlJsy CUrsor •••• ••• •••••••••• ••••••••••• •••••. ••••••• •••••••••••••• ••• ••• F-5

F .3 The Display Screen .•.•.•...••.•••. •••.•.•••••...••.•..•.••...• ••••........•.......... F-6
F .3.1 Screen COI'ltrast .••••. .•.•.••.. .•.•••.. •••••... .•.••.. .••. •.... •..••.•. .•••.• F-6
F 32 Automatic SCreen F acJlng •••••••••••• •••••••• •••••••• ••••••. F-6

F.4 :Ttle" Spel:tl<er ••••• •••••••••••••••• ••••••••••••• •••••••• ••••••••••• •••••• ••••• ••• ••• •••••• F-7
F .5 Tre Keyboard •••• ••••••••••••••••••••••••••••••••••••• ••••••••• •••••••••••••••••••••••• F - 7

F .5.1 KeybOard IderltlflcatlOl'l •• •••••••• ••••• •••••••••• •••• •••••••••••••••• ••••• F-9
F .5.2 KeybOard State ... F -10
F .5.3 KeybOard Evet'lts •••••••••••••••••••••.•••.••••••••••••••••••••••••••••••••• F -10
F .5.4 Dead Key Diacri ticals .••••••••••••••••.••••.•••.••...•••••.•.•••••••••.•• F -12
F .5.5 Repeats .••••...••••.....•..••..••••.••......••••••.••..••.......•••..••..•.... F -12

F .6 The Microsectr'ld TIrTlE!f •• F --: 13
F.7
F.B
F~9
F.10

The Mllllsec:orld TImer •• F -13
Date aJ"ld TIme ••••••.••••••.••••••..••••.•••..••.•••••••••.•••••...••••••.••••••.••.•• F -14
Tln-ae S't,at'l")p ... F -14
SUrnrnary of the HardWare Interface ... F -15

F-l

Pascal RefeJ'lJflCe Hantlal

F-2

Pascal Reference Mant./8l H8rdWere Interface

HARDWARE INTERFACE

The han::lware interface software provides an interface for accessing and
controlllng several parts of the Lisa hardware. The hardware/software
capabil1ties addressed inclUde the mouse, the cursor, the display, the contrast
control, the speaker, both unctecoded and decoded keyboard access, the
microsecond and millisecond timers and the hard'tJare clocK/calendar.
The documentation below contains interleaved text descriptions and Pascal
fl.rlction and procedure declarations. Pascal type declarations and a summary of
the function and procedUre declarations can be found in Section F .10, SUmmary
of the HardWare Interface.

F.1 1l1e Moose
F.1.l Mouse Location

The mouse Is a pointing device used to indicate screen locations. Procedure
MouseLocation returns the location of the mouse. The X-coordinate can range
from 0 to 719, and the Y-coordinate from 0 to 363. The initial mouse location Is
0,0.

procedure MouseLocation (var x: Pixels; var y: PixelS);

F.U Moose ~te F~
Software knowledge of the mouse location is updated periodically, rather than
continuously. The freqUency of these updates can be set by Calling procedUre
MouseUpdates. The time between updates can range from 0 milliseconds
(continuous updating) to 28 milliseconds, in intervals of 4 millisecondS. The
Initial setting is 16 millisecondS.

procedure MouseUpdates (delay: M1l1iSecondS);
F.U Moose Scaling

The relationship between physical mouse movements and logical mouse
movements Is not necessarily a fixed linear mapping. Three alternatives are
available: 1) unsealed, 2) sealed for fine movement and 3) scaled for coarse
movement. Initially mouse movements are unsealed.

When mouse movement Is unsealed, a horizontal mouse movement of x units
yields a Change In the mouse X-coordinate of x pIxels. Slmlllarly, a vertical
movement of y lIl1ts yields a Change Is the mouse Y -coordinate of y pixels. These
rules apply Independent of the speed of the mouse movement.
When mouse movement Is scaled, horizontal movements are magnified by 312
relative to vertical movements. This Is intended to compensate for the 213
aspect ratio of pixels on the screen. When scaling Is In effect, a distinction is
made between fine (small) movements and coarse (large) movements. Fine
movements are slightly redUced, while coarse movements are magnlflect For

F-3

Ha.rl1Ware Interface

scaled fine movements, a norizontal mouse movement of x units yields a Change
in the X-coordinate of x pixels, bUt a vertical movement of y units yields a
change of (213'ry pixels. For scaled coarse movements, a hOrizontal movement a
x units yields a change of (312'J*x pixels, while a vertical movements of y units
yields a change of Y pixels.
The distinction between fine movements and coarse movements Is determined by
the sum of the x and y movements each time the mouse location is updated. if
this sun is at or below the 'tnreshold', the movement is considered to be a fine
movement. Values of the threshold range from 0 (which yields all coarse
movements) to 256 (which yields all fine movements~ Given the default mouse
updating frequency, a threshold of about 8 (threshOld"S initial setting) gives a
comfortable transition between fine and coarse movements.
ProcedUre fVIouseScaling enables and disables mouse scaling. ProcedUre
Mouse Thresh sets the threShold between fine and coarse movements.

procedure MouseScallng (scale:Boolean);
procedUre Mouse Thresh (threShOld: Pixels);

F.1.4 Moose WoIreter
In order to properly specify, design and test mice, it's important to estimate how
far a mouse moves during its lifetime. Function Mousectlometer returns the sum
of the X and Y movements of the mouse since boot time. The value returned is In
(unsealed) pixels. There are 180 pIxels per inch of mouse movement.

fl.l'lCtion MouseO:Iometer: ManyPlxels;
F.2 The ClJnor

The cursor is a small1mage that Is displayed on the screen. Its snape is specif1ed
by t'NO bitmaps, called 'data' and'mask'. These bitmaps are 16 bits wide and from
o to 32 bits h1gh. The rule used to combine the bits already on the screen with the
data and mask is

screen <- (screen and (not mask» xor data
The effect 1s that white areas of the screen are replaced with the cursor data
Black areas of the screen are replaced 'Nith (not mask) xor data. If the data and
mask bitmaps are identical, the effect is to 'or' the data onto the screen.
The cursor has both a location ana a hOtspot. The location Is a position on the
screen, with X-coordinates of 0 to 719 and V-coordinates of 0 to 363. The
hOtspot Is a posItion wIthin the cursor bItmaps, with X- and V-coordinates
ranging from 0 to 16. The cursor is displayed on the screen with Its hOtspot at Its
location. If the cursor's location Is near an edge of the screen, the cursor image
may be partially or comple~ly off the screen.
f'w"lOSt cursor operatlOi ~ can be perfOrmed by Call1iIQ procedUres SetCUrsOf,
HldeCursor, ShOwCursor, and ())scurecursor defined by QulckDraw (see Section

F-li.

Pascal Refimlnce I'18ntIal

f.9.2, CUrsor-Handllng Routines~ AddItional capabillties are provided by the
Hardware Interface routines desCribed below.

ProcedUre CUrsorImage Is used to specify the data bltamp, masK bitmap, height
and hOtspot of the cursor. Initially the cursor data and mask bItmaps conta1n all
zeros, whiCh yieldS a blCllK (InvIsible) cursor. The initial hOtspot is 0,0.

procedUre CtJrsorImage (hotx: Pixels; hOtY: Pixels; height:
CUrsorHeight; procecJurecJata: CtJrsorPtr; mask: CUrsorPtr);

F 2.1 0m0r1M:Juse TnEI<lrrJ
ProcedUre CunorTraCldng enables and disables cursor tracking of the mouse.
When tracKing Is enabled the cunor location Is changed to the mouse location
each time the mouse moves. Setting the cursor location will haVe no effect, the
cursor sticks with the mouse.
When tracking Is disabled, the mouse location and cursor location are
IncfepencJenl setting the cursor location w111 move the cursor; moving the mouse
wlllnol

When trackIng Is fint enabled (l.e. on each transition from disabled to enabled)
the mouse location Is modified to equal the cursor location. Therefore, enabling
tracking dOes not move the cursor; it dOeS modify the mouse location. Initially
tracking is enabled.

procedure cursor Tracking (track: Boolean);

F.2.2 The Busy omor
Applications may desire to display a busy cursor (e.g. an hourglass) when an
operation In progress requires more than a few secondS to complete. ProcedUre
BusyImage is used to specify the data bitmap, mask bitmap, height and hOtspot of
the bUsy cursor.

A call to procedUre BusyOelay specifies that the normal cursor shOuld currently
be displayed, and that display of the bUsy cursor should be delayed for the
specified number of mllUseconcJs.. SUbsequent calls to BusyOelay override
prev10us calls, postponing display of the bUsy cursor. If no calls to BusyOelay
occur for the specified number of milliseconds, the bUsy cursor will be displayed
until the next call to eusyCUrsor.
Initially the busy cursor data and mask bitmaps contain all zeros, whiCh yields a
blank (invisible) cursor. The initial hOtspot is 0,0. The initial busy delay Is
infinite, that is, the bUsy cursor will not be displayed t.rltil BusyOelay is Called.

procedure BusyImage (hotX: PixelS; hotY: Pixels; height: CursorHeight;
data: CtJrsorPtr; mask: CtJrsorPtr);

procedUre BusyDelay (delay: Milliseconds);

F-S

Pascal Reference M8I7tI8l HarriW8J1: Interface

F 3 TIle Display SCreen
The display screen is a bit mapped display; that is, each pixel on the screen Is
controlled by a bit in main memory. The display has 720 pixels horizontally and
364 lines vertically, and therefore requires 32,760 bytes of main memory. The
screen size may be determined by calling procedure ScreenSlze.

procedUre ScreenSize (var x: Pixels; var y: Pixels);
The screen Is redlsplayed abOUt 60 times per second. A frame counter Is
incremented between screen Updates, at the vertical retrace interrupt. The
frame counter is an unsigned 32-bit integer which is reset to 0 each time the
machine is booted. Function Framecounter returns this value. AA application
can synchronize with the vertical retraces by watching for changes in the value
of this counter. The frame counter should not be used as a timer, use the
millisecond and mlrcosecond timers instead. -

function FrameCOUOter: Frames;
F 3.1 SCreen contrast

The display's contrast level is under program control. contrast values range
from 0 to 255 ($FF), with 0 as maximum contrast and 255 as minimum. Function
Contrast returns the contrast setting; procedure Setcontrast sets the screen
contrast. The low order two bits of the contrast value are ignored. The initial
contrast value is 128 ($80~

function contrast: SCreenCOntrast;
procedure SetContrast (contrast: ScreenContrast);

A sUdden Change in the contrast level can be jarring to the user. Procedure
RampCOntrast gradUally changes the contrast to the new setting over a period of
approximately a second. RampContrast returns immediately, then ramps the
contrast using interrupt driven processIng.

procedUre RampContrast (contrast: SCreenContrast);
F.3.2 .ALItornaUc SCreen Fading

The screen contrast level is automatically dimmed if no user activity is noted
over a specified period (usually several minutes~ This is done in order to preserve
the screen phOspheT. Function DimGontrast returns the contrast value to which
the screen is dimmed; procedure SetDlmContrast sets this value. The initial dim
contrast setting Is 176 ($80~

function Dlmcontrast: ScreenCOntrast;
procedure setOimcontrast (contrast: Screencontrast);

The delay between the last user activIty and dimming of the screen Is under
software control. Function FacJeDelay returns the fade delay; procedure
SetFadeDelay sets it. The actual delay will range from the specIfIed delay to
twice the specIfied delay. The Initial delay periOd is five minutes.

F-6

Pescal ReFeJ7!lfJCe I'18ntI8J J-I8.f'l1W8.m Interface

When tne screen is dimmed .. user interaction w111 cause the screen contrast to
return to its normal bright level (determined by routines contrast and
SetContrast defined above~ Moving the mouse or pressing a key on the keyboard
(e.g. SHIFT) is enough to trigger the screen brightening. call1ng procedures
CUrsorLocation and/or setFadeDelay also indicates user activity.

function FadeOelay: Mill1SecondS;
procedUre setFadeDelay (delay: M1lliseconds);

F.4 1he Spea<er
The routines below provide square wave output from the Usa speaker. The
speaker volume can be set to values In the range 0 (soft) to 7 (lou~ Function
Volt.me reads tI1e voltme setting; procedure SetVolume sets it. The initial
volt.me setting is 4.

ProcedUre NoIse prodUces a square wave of approximately tne specifIed
wavelength. ProcedUre Sllence sruts off the square wave. The mInim.m
wavelengtnls aboUt 8 microseconds .. wtl1ch correspondS to a frequency of 125..000
cycles per seconds, well above the audible range. The maxinun wavelength Is
8..191 mIcroseconds, WhIch corresponds to aboUt 122 cycles per second.
ProcedUres Noise and Silence are called in pairs to start and stop square wave
output. In contrast.. proceckJre Beep starts square wave output whIm will
automatically stop after the speclfiedperlod of time. The effects of Noise,
Sllence and Beep are overridden by subsequent calls.

function Volume: Speakervolume;
procedure SetVolt.me (volt.rne: SpeakerVolume);

procedUre Noise (wavelength: MicroSeconds);
procedUre Silence;

procedUre Beep (waVelength: MicrOSeconds; duration: M111iSecondS);
F 5 llle Keyboard

The routines below provide an Interface to the keyboard, the keypad .. tne mouse
bUtton and plug, the diskette bUttons and insertion switches, and tI1e power
switch. Two interfaces are provided, a pollable keyboard state and a queue of
keyboard events.
Three physical keyboard layouts are defined, the "Old US Layout" (with 73 keys on
the maln keybOard and numeric keypad), the "Final US Layout" (76 keys) and the
"European Layout" (77 keys~ Eactl key has been asSigned a keycode, which
unIquely Identifies the key. Keycocle values range from 0 to 127. The matrix
below defines the keycodes for the "FInal US Layout", using the legends from the
US Keyboard. The "Old US Layout" has three less keys. I\, Alptla Enter, and Rigtlt
qltion are not on the old keyboard. The "European Layout" has one additional
key .. >< .. with a keycode of $43.

F-7

Pascal ReFerence Manual HardWare Interface

Two keys on the "Old US Layout" generate keycodes different from the
correspond1ng keys on the "FInal US Layout". To ald In compatlb1l1ty, software
changes the keycode for from $7C to $68 .. and the keycode for Right [ptlon
from $68 to $41:.

high 000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

low

00000 Clear (9 E A

00011 Disk 1 +-)0 .. 6 il2
Inserted

00102 Disk 1 + Left 1\ U &7 #3
Button

0011 3 Disk 2 * Right I *8 $4
Inserted

0100 it. Disk 2 7 P J %5 !1
Button

01015 Parallel 8 BackSp K R Q
Port

01106 Mouse 9 Alpha {[T S
Button Enter

0111 7 Mouse /Llp }] y W
Plug

10008 Power it. Return M Tab
Button

10019 5 0 L F Z

1010 A 6 .. G X . ,
1011 B ,Down ... H D

1100 C 11 Space V Left
~t1on

1101 D 2 1 <, C caps
Lock

1110 E 3 Right >. B Shift
cptlon

1111 F Enter 0 N •

F-8

FS.l Ke~IdenUftcatlon
The Lisa supports a host of different keyboards. Each keyboard has three major
attributes: manufacturer, physical layout, and keycap legendS. The chart below
describes how these three attribUtes are combined to form a keyboard
Identification number. The keybOards self identify when the machine is turned
on and when a new keyboard Is attached. Ft.a'lCtion Keyboard returns the
identification number of the keyboard currently attached. Function LegendS and
procedUre SetLegends provide a means of pretending to have different legends,
withOut physiCally replacing the keyboard.

Keyboard identification rumbers:

7 6 5 4

manUfacturer Layout

Manufacturer:

00 -- APD (l.e. TKC)
01 --
10 -- Keytronics

Layout:

00 Old US (73 keys)
01 --
10 -- EUropean (77 keys)
11 -- Final US (76 keys)

LayoutILegendS:

OF -- OldUS

26 Swiss-German (proposed)
27 -- SWlss-French (proposed)
29 -- Portuguese (pr=
29 -- Spallsh (pr
2A -- Danish (proposed)
28 -- SWedish
2C -- ItalIan
20 -- Frencn
2E -- German
2F -- LI<

f-9

3 2 1 o
Keycap LegenQs

Pascal Reference M8nu8l

3C -- APL (proposed)
30 -- canad1an (proposed)
3E -- US-Dvorak
3F -- Final US

function Keyboard: KeytJdId;
function Legends: KeyiXild;
procedUre 8etLegendS (Id: KeytJdId);

F 52 KeybOard state

Hair1Ware Interface

Low level access to the KeytlOard is provided through a pollable Keyboard state.
ThIs state Information Is baSed on the physical KeycOdeS defined abOve. Function
KeyIsDown returns the position of a single specifIed Key. Procedure KeyMap
returns an 128-bit map, one bit for each Key. A zero Indicates the Key Is up, a one
indicates down. For the mouse plug, a zero Indicates unplugged, a one indicates
plugged In. Certain Keys are not pollable; the correspondIng bits w111 always be
zero. These Keys are the disKette Insertion switches aid buttons, parallel port,
and power switcn. The parallel port and mouse plug Keys are unrel1able across
reboots on older hardware.

function KeyIsOown (Key: KeyCap) Boolean;

procedUre KeyMap (var Keys: KeyCapSet);
F.5.3 KeybOard Events

The hardWare interface prOVides a queue of keyboard events. The events in the
input queue are generally Key doWn transitions. Each event contains the
following information:

keycode -- physical key
ascii -- ASCII interpretation of this key
state -- caps-lock, shift, option, ti, mouse button and repeat
mouseX -- X-coordinate of the mouse when the key was pressed
mouseY -- Y -coordinate of the mouse wtlen the key was pressed
time -- value Of the mUl1second timer wnen the key was pressed

Keycode -- KeyCOdeS are defined In the chart abOVe.

Ascll -- The ASCII Interpretation of Keys dependS on the state of the caps-lOCk,
shift and option Keys. SIx Interpretations are assocIated with each different
KeybOard layout:

normal
caps-lock
shift or (shift and capS-lOCK)

alternate
alternate with capS-lOCk
alternate with shift or (Shift and capS-lock)

F-IO

Pssc81 Reference M817t181 H8rdW8nJ Interface

In most cases the ASCII value returned Is obVious. The table below lists the cases
that aren't so obvious.

amI
$00 (NUL(NUL»
$00

:~ ~)
$01 (S01)
$03 (ETX)
$08 (65)
$09 (HT)
$00 (CR)
$16 (ESC)

$1C (FS)
$lD (GS)
$1E (RS)
$1F (US)
$20 (SP)

Disk 1 Inserted
Disk 1 Button
Disk 2 Inserted
Disk 1 Button
Power Button
Mouse Button (doWn)
Mouse Plug (In)
Mouse Button (up)
Mouse Plug (out)
Enter
BackSpace
Tab
Return
Clear

Left
Right
Up
Down
Space

State --A 16-blt word Is used to return the state of several keys with each event.
Each bit represents one or more keys, a zero indicates that all of the keys are up,
a one indicates that at least one of the keys is doWn. ,Ail additional bit indicates,
If it Is a one, that the event was generated by repeating the previous event. The
following bits of state are currently assigned:

bit 0: caps-lock
bit 1: left or right shift
bit 2: left or right option
blt3: ti
bit 4: mouse button
bit 5: this event Is a repeat

Certain keys never ~rate events. These keys are caps-lock, both shift keys,
option keys .. and the • key. The mouse button generates events on bOth the down
and up transitions. Down transitions haVe an ASCII value of 0 .. up transitions 1.
The mouse plug also generates two dIfferent events. When the mouse Is plugged
In an event with an ASCII value of 0 Is returned, When It is unplugged a Value of 1
Isretumed.
Function KeybdPeek is used to examine events in the keyboard queue, withOUt
removing them from the queue. The fim input parameter indicates whether
repeats are desired. The second parameter is the queue index. The first output
parameter indicates whether the specified queue entry contains an event. To

F-ll

Pascal Reference Manual Ha.n:/Ware lnterface

examine an entire queue, fIrst call KeybdPeeK with a queue index of 1. If an
event is returned, call it again wI th a queue index of 2, etc.
Function KeybdEvent is used both to determine if a Keyboard event is available,
and to retum the event if one Is available. The event is removed from the queue.
KeybdEvent retums a boolean result which Is true if an event is returned. The
fIrst parameter to KeybdEvent Is LISsa to indicate if the caller will accept
repeated events on this call. The second parameter indicates if the functions
should wait for an event if one is not immediately available.

flXlCtion KeybcJPeeK (repeats: Boolean; Index: KeybdQIndex; var
event: KeyEvent~ Boolean;

function KeybdEvent (repeats: Boolean; wait: Boolean; var event:
KeyEvent~ Boolean;

F 5.4 Dead Key DiacIitlcals
Many languages employ diacritical marks on certain letters. Several of the
required diacritical mark-letter combinations appear on European Keyboards ..
but others do not. The combinations shown in the table below may be typed as a
two-key sequence, by first typing the dead key diacritical (Which has no
immediate effect), and then typing the letter. Dead key diacriticals appear on
keybOard legendS as the diacritical mark over a dotted square.

circumflex -- a e i 0 Q
grave accent ' -- a e i 0 a
tilde ... -- a fiI\I (5
acute accent • -- a e£: i 6 a
umlaut .. -- aA e i ij{j 00

A dead Key diacritical followed by a letter which appears in the table above
yields the corresponding Character. The event that Is generated contains the
keycode, state, mouse location and time that correspond to the letter, but the
ASCIl value of the letter-diacritical combination. A dead key diacritical
followed by a space yields just the diacritical mark. The event contains the
Keycode .. state, mouse location and time corresponding to the space, bUt the
ASCII value of the diacritical mark. Finally, a dead key diacritical followed by
any other character (1.e. not a space or defined letter) yields the diacritical mark
followed by the other character.

diacritical, defined letter
diacritical, space
diacritical, other character

F55 Repeats

--> foreign character
--> diacritical
--> diacritical, other Character

Most keys, if held down for an extended period of time, may generate multiple
events (repeats). Several conditions must all be satisfied before a repeat is
generated. These conditions are as follows:

F-12

Pascel Reference M8niAJl H8J'l1W8l'e Interface

1. KeybdPeek or KeybdEvent Is called with repeatsOesired true.
2. The keyboard event queue Is empty.
3. The key returned In the last event Is still down.
4. No down transitions haVe occurred since the last event.
5. The key Is repeatable.
6. Enougn time nas elapsed.
All keys are repeatable, with the exception of caps-lOCk, sh1fts, options,., disk 1
inserted, disk 1 bUtton, disk 21nserted, disk 2 button, parallel port, mouse button,
mouse plug, and the power button.
Repeats generate events wIth the followIng attrIbutes:

keycode -- anginal keycode
ascU -- anginal ASCII Interpretation
state -- anginal posItion of the caps-lock,shlft,etc.
mouseX -- revised X -coorcl1nate of the mouse
mouseY -- revIsed Y -coordinate of the mouse
time -- revised value of the m1l11second timer

The repeat rates can be read and set by calls to RepeatRate and SetRepeatRate.
The rates include an Initial delay, which occurs pnor to the fint repetition, and a
subsequent delay, prIor to addItional repetitions. They are both in units of
mill1seconds. The default repeat rates are 400 mill1seconcJs Inl tiall y and 100
mllllsecondS subSeqUently.

procedure RepeatRate (var initial: Mill1Seconds; var subsequent:
M11liSeconds);

procecJure 8etRepeatRate (Initial: M1l11Seconds; SUbSeqUent:
Mi1l18econds);

F.6 The Mlcmseaxld TImer
Function MicroTimer simulates a continuously running 32-blt counter which is
incremented every microsecond. The timer is reset to 0 each time the machine Is
booted. The timer changes sign aboUt once every 35 minutes, and rolls over every
7Dmirutes..
The microsecond timer is designed for perfonnance measurements. It has a
resolution of 2 microseconds. Call1ng MicroTImer from Pascal takes about 135
microseconds. Note that interrupt processing will have a major effect on
microsecond timIngs.

function MicroTlmer: Microseconds;
F.71lleMllHseamTImer

Function Timer simulates a continuously running 32-blt counter which is
incremented every millisecond. The timer is reset to 0 each time the machine is
booted. The timer changes sign about once every 25 days, and rolls over every 7
weeks.

F-13

Pascal Reference H8l7tlai H8J'l:Iwam Interface

The mllllsecond timer is desIgned for timIng user interactions SUCh as mouse
clicks and repeat keys. It can also be used for performance measurements,
assuming that millisecond resolution Is sufficient

function Timer: MUliseconds;

F.8 Date CI1d Time
The current date and time Is avallable as a set of 16-bit integers which represent
the year, day, hour, minute and second, by call1ng procedures DateTime and
SetOateTlme. The date and time are based on U'le hardWare clock/calendar. This
restricts dates to the years 1980-1995. The clOck/calendar continues to operate
dUring soft power off, and for brief periods on oattery backup if the machine Is
unplugged. If the clOck/calendar hasn't been set since the last loss of battery
power, the date and time w1l1 be midnight prior to January 1,1980. Setting the
date and time also sets the time stamp described below. Procedure DateToTlme
converts a date and time to a time stamp, defined in the next section.

procedure DateTime (var date: DateArray);

procedure SetDateTlme (date: DateArray);
procedure DateToTime (date: DateArray; var time: SecondS);

F.9 TIme Sta'f1l
The current date and time is also available as a 32-bit unsigned integer which
represents the number of seconds since the midnIght prior to 1 January 1901, by
call1ng ft.l'lCtion Timestamp and procedure setTimeStamp. The time stamp will
roll over once every 135 years. Beware - for dates beyond the mid 1960's the sIgn
bit is set The time stamp Is based on the hardware clock/calendar. This clock
continues to operate dUring soft power off, and for brief periods on battery
backup If the machine is unplugged. If the clock/calendar hasn't been set since
the last loss of battery power, the date and time will be midnight prior to January
1, 1980. Setting the time stamp also sets the date and time described above.
Since the date and time Is restricted to 1980-1995, the time stamp is also
restricted to this range. Procedure TimeToDate converts a time stamp to the
date and time format defined above.

function TimeStamp: Seconds;

procedure SetTlmeStamp (time: Seconds);
procedure TimeToDate (time: Seconds; var date: DateArray);

F-14

Pesc81 Reference M8nlI8l

F.1D Sl.mnaIy of tile Hardware InterfaCe

unIt Hardware;

Interface

type

Pixels
ManyPlxels
CursorHelgtlt
CUrsorPtr
DateArray

Frames
Seconds
MUU5econds
Micro5econcls
SpeakerVOlume
ScreenContrast
KeybdQIndex
KeybdId
KeyCap
KeyCapSet

KeyEvent

{Mouse}

- Integer;
- LongInt;
• Integer;
- "Integer;
- Record

year: Integer;
day: Integer;
tlOUr: Integer;
minute: Integer;
second: Integer;
end;

- Longlnt;
- Longlnt;
- Longlnt;
- LongInt;
- Integer;
• Integer;
- 1_1000;
- Integer;
- 0-127;
- Set of KeyCap;

- Packed Record
key: KeyCap;
ascii: Char;
state: Integer;
mouseX: Pixels;
mouseY: PixelS;
time: M1ll1seconds;
end;

procedUre MouseLocation (var x: Pixels; var y: Pixels);
procedUre MouseUpdates (delay: Mill1SecondS);
procedUre Mousescallng (SCale: Boolean);
prOCedUre MouseThresn (ttlresnold: Pixels);
function Mouse{lj()flleter: ManyPlxels;

F-15

I-18rt:/wsre Interface

Pascal Reference Manual

{ CUrsor}

procedure CursorLocation (x: Pixels; y: Pixels);
procedUre CUnorTracidng (track: Boolean);

Han:lware Interface

procedUre CUrsorImage (hotX: Pixels; hOtY: Pixels; height: CUrsorHeight;
data: CUIsorPtr; mask: cursorPtr);

procedure BusyImage (hotX: Pixels; hOtY: PixelS; height: CUrsorHetght; data:
CUrsorPtr; mask: CursorPtr);

procedure BusyDelay (delay: Milliseconds);

{ Screen}

function Framecounter: Frames;
procedUre SCreen8lze (var x: Pixels; var y: Pixels);

fUnction Contrast: SCreenContrast;
procecJure setCDntrast (contrast: screencontrast);
procedure RampContrast (contrast: screencontrast);
function DlfTlContrast: SCreencontrast;
procedUre SetDlmContrast (contrast: SCreencontrast);

function FadeDelay: MllllSeconds;
procedUre setFadeDelay (delay: Mill1Seconds);

{ Speaker}

function Volume: Speal<erVolume;
procedure setVolurne (volume: SpeakerVolurne);
prOCedUre Noise (wavelength: MicrosecondS);
procecJure Silence;
procedure Beep (wavelength: MicroSeconds; duration: MlllISeconds);

F-16

Pascal Reference I'18I7U8J

(Keyboard)

fUnct10n KeybOard: KeybdId;
function Legends: Keybdld;
procedUre SetLegends (id: KeybdId);
function KeyIsDown (key: KeyCap~ Boolean;
procedure KeyMap (var keys: KeyCapSet);

Hardware Interface

function KeytlflPeek (repeats: Boolean; index: KeytldQlncJeX; var event:
KeyEvent~ Boolean;

function KeybdEvent (repeats: Boolean; wait: Boolean; var event:
KeyEvent~ Boolean;

procedure RepeatRate (var initial: MilliSeconds; var subsequent:
MUliSeconds);

procedure SetRepeatRate (initial: Mi1l1SecondS; subsequent: M11l1Seconds);

{ Timers}

function MlcroTimer: MicroSeconds;
function Timer: MUllSeconds;

{ Date and Time }

procedure DateTime (var date: DateArray);
procedure SetDateTlme (date: DateArray);
procedure DateToTime (date: DateArray; var time: seconds);

{ Time stamp }

fUnction Timestamp: seconds;
procedure setTlmeStamp (time: Seconds);
procedure TtmeToOate (time: Seconds; var date: DateArray);

F-17

MANUAL was produced using
LisaWrite, LisaDraw, and

LisaList.

PRINTING was done with an
Apple Dot-Matrix Printer .

... we use it ourselves.

.......... --_ .. _ --.......... Fa.D .. .

.. Fa.D······························ .. ·· .. ·•············ .. ·· .. .

,
~ APPLE a:M'UTER INC.

POS Publications Department
20525 Marlanl Avenue, MS 2-0
CUpertino, California 95014

@JACE
STIIfP
/E/lE

Pascal Reference Manual Hajl Back

Apple publications would like to learn about readers and what you think about
this manual in order to make better ma.nuals in the future. Please fill out this
fonn. or write all over it. andsendittous. We promise to read it.

Is it quick and easy to find the information you need in this manual?
[] always [] often [] sometimes [] seldom [] never
COnunents __ __

What made this manual easy to use? __________________________ _

What made this manual hard to llse? __________________________ _

How are you using this manual?
[] learning to use the product [] reference [] both reference and learnir.g
[] other __ _

Please comment on, for example. accuracy. level of detail, number and
usefulness of examples, length or brevity of explanation, style, use of
graphics, usefulness of the index, organization, suitability to your particular
needs, readability.

What do you like most about the manua1? __________________ _

What do you like least about the m.a:n:ual? _______________ _

In school have you completed?

[] high school [] some college [] BA/BS [] MA/MS [] more
Conunents __________________________________ _

What is your job t1tle? __________________________ _

How long have you been progra;mming?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
COnunents ___ _

Wha.t languages do you use on your Lisa? (check each)
(] Pascal (] BASIC (] COBOL [] other _____________ _
COnunents ___ _

What magazines do you read? _________________________ _

