PASCAL REFERENCE
MANUAL

for the Lisa™

Beta Draft
April 1983

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa product or
in the media on which a software product is distributed, Apple will replace the
documentation or media at no charge to you during the 90-day period after you
purchased the product.

In addition, if Apple releases a corrective update to a software product during
the 90-day period after you purchased the software, Apple will replace the
applicable diskettes and documentation with the revised version at no charge to
you during the six months after the date of purchase.

In some countries the replacement period may be different; check with your
authorized Lisa dealer. Returnany item to be replaced with proof of purchase to
Apple or to an authorized Lisa gealer.

Limitation on Warranties and Liability

All implied warranties conceming this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited in
duration to ninety (90) days from the date of original retail purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. As aresult, this software
and manual are sold “as is,” and you the purchaser are assuming the entire risk as
to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such

s. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all others,
oral or written, express or implied. No Apple dealer, agent or employee Is
authorized to make any modification, extension or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

License and Copyright

This manual and the software (computer programs) described in it are
copyrighted by Apple or by Apple's software suppliers, with all rights reserved,
and they are covered by the Lisa Software License Agreement signed by each
Lisa owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written consent
of Apple, except in the normal use of the software or to make a backup copy.
This exception does not allow copies to be made for others, whether or not sold,
but all of the material purchased (with all backup copies) may be sold, given, or
loaned to other persons if they agree to be bound by the provisions of the License
Agreement. Copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may be
purchased to allow the software to be used on more than one comnputer owned by
the purchaser, including a shared-disk system. (Contact your authorized Lisa
dealer for more information on multiuse licenses.)

Product Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of a
revision to the software described in this manual, even if you have returned a
registration card received with the product. You should check periodically with
your authorized Lisa dealer.

©1983 by Apple Computer, Inc.
20525 Mariani Averue

Cupertino, California 95014
(408)996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultanegusly published in the USA and Canada.

Reorder Apple Product #A60D0101 (Complete Pascal package)
#A6L0111 (Manuals only)

CONTENTS

Chapter 1
TOKENS AND CONSTANTS
1.1 Character Set and Special SymbolSciceeiiieinenennnns
1.2 Identifiers ciciiciiiiiiiiiiiiieiciisiicieiiiesscesaecnncnnns
1.3 DIreclIVES ...cviiiiiiiiiiiiiiiiiitiienietiennsassecnnnnnns
1.4 NUMDEIS...citiittteittinnesaescstssssesssssesssssasesasnnns
B T 1
1.6 QuotedStringConstants...c.ccvviviiiiiiiiicianeneceenees
1.7 Constant Declarations c.cccieeeieieciicieeceensnnesaccanes
1.8 Comments and Compiler CoOMMandS....veeeeeeresenneanes
Chapter 2
BLOCKS, LOCALITY, AND SCOPE
2.1 Definitlonof aBIocK ...ccciiiiiiiiiiiiiaiiiiieiinnennnans
22 RUIESOf SCOPE ..ucvveeireiieacnnnnncccttetennecenaassscnans
Chapter 3
DATA TYPES
3.1 Simple-Types (@nd Orainal-TYPes) «cecccvenenrrrsanneness
3.2 SUIUCLUIEO-TYPES tiiiiieieanennnecrtenensesescscasannnnns
3.3 POINEI=TYPES cvvirirristetanensnstscsassnssssescsnesnnnns
3.4 Identical and Compatible TYPES ...vcvivvierntnrenincnnans
3.5 The Type-Declaration—Partccccciviierciniciinncnnss
Chapter 4
VARIABLES
4.1 Variable-Declarationscccceeiiiiiiiiieiiiiinnnannnens
4.2 Variable-Referentes.ciuiiiiiieieictrtinenneerrstascennaas
43 Qualifiers..cceieiiieiiiiiiiaiaiaiaiennneesacnasnennans
Chapter S
EXPRESSIONS
5.1 OPEralOrS...cceeecerctrecaaaannscncsassasasssssessssannans
5.2 Function-Calls «.cveereeeiiiaiiecacnnncnnnercencecncanaans
5.3 Set-CONnSLTUCLOTS .eeiiieeieanecsnassassonssssssnsessasanes
Chapter 6
STATEMENTS
6.1 SimpleStatementscccciiiiiiiiiiiiiiiiaiiirieeianaenn
6.2 Structured-Statementsccccciiiiiiiciciiietinannnns
Chapter 7

PROCEDURES AND FUNCTICNS

7.1 PTrocedure-Declarations ..vveeeeeeeererecrcsescssasancanes
7.2 FUNCLIoN-0eClarationS coieeeirieireecreresecnsennenaenns

A I o - £ 111117 & 7-7

Chapter 8

PROGRAMS
=30 3 1 |- 3-3
8.2 Program-ParamelerS .iivecerrssesceesaesseasssssassssssstssssansssssas 8-3
2T TS =To [111=10 1 =14 (oo [8-3

Chapter 9

UNITS
9.1 RegUIar-UNItS ..ttt rct et e s e e 9-3
1 S (114°6 14151 (o2 U)1 £ 9-6
9.3 Unitsthat UseOther UnitS cviiiiiiiiiiiiiiieiiiinteteinneeniiennseenes 9-6

Chapter 10

INPUT/OUTPUT
101 INtroductloNtO /O ciciiiiiiiiniiiiiiiianinncesttccrseesennnnnnsensnes 10-3
10.2 Record-Orientedl/O. . cuiiiiiiiiiiiiiiietesiticisnaserscssensasennes 10-10
10.3 Text-OrientedI/O ..ccoviviiiiiiiiineiiciiaietitiesennttasnneenennns 10-12
108 UNLYPEAFIIEI/O . uiueeiieaeirerariearerserasesasesnsersesesesasenss 10-21

Chapter 11

STANDARD PROCEDURES AND FUNCTIONS
11.1 EXit andHaIt PIOCEOUIES ... eiiiiiaiiitieiniseiiterecnnnnecenans 11-3
11.2 Dynarmic Allocation ProCEadUres ...ccevieiiiiiiiieiiniiecniaceninanns 114
11.3 Transfer FUNCLIONS ciciiiiiiiiaiiiianesctctincctrsencentstesacnannnns 11-6
11.4 Arithmetic FUNCLIONS ciiiiiiiiiiiiiiiiiiiiiiciiiiiictrenetenneannne 11-7
11.5 Ordinal FUNCLIONS c.eiiiiieiiaiiiiaaiictenartecesentssensnanssenaes 11-10
11.6 StringProcedures and FUNCLIONS ...cciviieiiiiiiiiiiiiiiiinnenns 11-11
11.7 Byte-OrientedProcedures and FUNCLIONS...c.cvvvvenerriiannennaes 11-13
11.8 Packed Array of Char Procedures and Functions.....ccocoveeeenne. 11-14

Chapter 12

THE COMPILER
12.1 Compller COMMENGAS ..ccueeeererenseneneccsonsesssssssessssssssssanans 12-3
12.2 Conditional Compilation..cceeciiieiiiiieiiiiaiiiiiecinensiestenacnns 12-4
12.3 Optimizationof If-Statements titesseessirrasssssttesrrsennsnen 12-7
12.4 Optimization of while-Statements and Repeat—Statements 12-8

12.5 Efficiency of Case-Statementsccceeiiiirieiiirreccannneannnes 12-8

Appendix A
COMPARISON WITH APPLE IT AND APPLE Il PASCAL

Appendix B
KNOWN ANOMALIES IN THE COMPILER

Appendix C

SYNTAX OF THE LANGUAGE
x D

FLOATING-POINT ARITHMETIC

E
QUICKDRAW

Appendix F
HARDWARE INTERFACE
INDEX

TABLES

Precedence of Operationscccieciecieieiiannciienesssssscesennnaess 5-3
Binary Arithmetic Operations .cocoieieiiiiiiiiiiiiaiicnceiiircenenennns 5-7
Unary Arithmetic Operations (SIgns)..c.cveeiiiiiiniiiiiiiiiiiinnennss 5-7
Boolean Operationsc.ccciiiiiiiiianeiiiettiacicncnnnttiresstsenannans 5-9
RT-H A 1= 1=1A [41 S PP 5-9
Relational Operatlonscccceeceiiieieaiiiiieiiecnncensssasennnnnes 5-10
501 01453 40 0= €1 oo [5-11
Combinations of File Variable Types with External File

Specles and Categoriesvveeiiieeeniiianriiianteeanesiosocannnn. 10-5
Results of Addition and SubtractiononInfinitiesc...cce..le. D-4

Results of Multiplication and Division on Infinities D-5

SYNTAX DIAGRAMS

A B
= ATz 1R aTo) =11 11=) K) 5-13
actual-parameter-listciviiiiiiiieniiiiiiiiiiiieniitieiieiiietienncananes 5-13
£=1 8 €= T 11 o R 3-11
assignment-Statementcoiiiiiiiiii i ciiiecarrceeeeraceaaan e nnanaas 6-3
07T =T A o - PP 3-16
DIOCK ueuueniieireiiisinecnenttsastesescecnnensstsssensenssssssesscssssssssonnnns 2-3
C
072 R R 6-8
CASe-SLAlEBMENT tiiiiiiiieetttictttsasnnnessttrteessssssttesesssenssnsssennnnns ... 68
COMPOUNT-STALEMENT .. iiiiiiiiiiaannansttttecteansansescescasessnssnannanssans 6-6
conaitional-statement .ccuiiiiiiiiiiiiieiiiiiienir ettt st e a s s e e nans 6-7
(001051 = o | Yeseencennanes 1-7
constant-gdeclarationccieiiiiiiiiiiiiiiiitiiittetirett et s s st et s s eannes 1-7
(00 g1 = g1 A s (=103 0= €14 (04 o 45) A PP 2-4
[o0aT 1A €0 V7= 1 6 1= o] [T PPN 6-11
D,EF
0} 0} LR = 1T oot IR 1-4
a0 14453 o 1A=To oY o TP S 3-8
BXPIESSION ©iitiiiiiientiiectteeaatnenestatteiansnssstsossssssnsnsnnnnnnnanns 5-6
L= | S-4
1 (=3 (o o = sy b1 =18 Lo o TR 3-12
L (53 (5 3o T=253 [4= 1) 4-6
1 (=3 [0 g § Y RN 3-12
flle-DUffer-SYMBOL .uiviiiiiiiiiiiaieiiiiiiteeteacstttsetescnnsansnnasnnsnessans 4-6
108 STt 1 o 3-15
1L S = 6-11
flxed-part.....cceeeecnens Sreeesenseresreasastnessetarnetrassasnnsansisastrnrnnas 3-12
0] Gard =T =T 1T g/ 6-11
formal-parameter-115t .ouiiiieiireiciccierieteerenernercnncncnnnncanans 7-8
fUNCLIONDOAY +vvviviiieierneenreennneceessnnnsssiscsssnssssssssssesssssanssnses 7-6
L7 o8 0 o 0 cesesesenisani 5-13
functlon-0eclaration .coociiiiiiei i c ittt et rc e et s r e e aea 7-6
fUNCLIONNEAOING . iiiiiiiiiieiiac i itiacee e eecreceseensasanannnns 7-6
G, H I

QOLO-SLALEMENT 1 e enveneereererecnrasensesasnsansensesssasesssasensasasnsas veeeaB5

LN 1o} LAt 1 oot S 1-5

10 1= 018 3 =) 1-4
Identifler-1st ..o e e e 3-8
F e = A= 1 g 6-7
implementation—partccicciiiiiiiiiiiici et e r st e s e e g9-4
0101 4-5
107015 G Y o PP 3-11
L) U8 E= =LV S 6-11
LTA=) Q1o 6T) o AP 9-4
LLMO
=T = 2-3,6-3
13Del-0eClaratloN—Parl cuuueiiecieriieriieressronessecectesaersncesanssasnssnsnas 2-3
MEMDEI—gIOUP teeieeeernnticrsesstesssasasscsssssessssennssssssssassssssnanns 5-14
0] (o) L) S Y/ o 3-4
OLhEYWISE-ClaUSE . ceiiiiiiiiiirirserenteasssssstcsrsersotesasssssssnessssncnnnns 6-8
P
parameter-adeclaration.....ceeeceiiiiiiiiianiecnietiiiiietonncnenenttreccnsnones 7-8
pointer-o0bJect-SYMBOL ..icviieiieiiieieienensctiesisstsesnensanstsassessnnns 4-7
1) (1A= Gt A o TR 3-16
procedure-and-function-declaration-partccciiiiiiiieiiniiiiinecienaa. 2-4
PIOCEAUIEDO0UY ccvviiennenennseesrtrseeseaennssssssssasassssssssssssassescsssnses 7-3
procedure-declaration ...ociiiiiiiiiiiiieriertentticeseresesstasennnanenannes 7-3
Procedure—Neading «..cceveiiiirrereieirersctteresttnsesncscescencnnenssennnannns 7-3
Procedure-statemMeNntcceiieieciiianeneeaaneresecnncnsensennsasasanncrees 6-4
PIOGYEM ttueurieenssreeonensassssesassssssssssessasssssessasstssassnsssssanssnses 8-3
Program-NEatING veveeeessessseessnersrtsessesessnesesssrsssessssssensasasssansas 8-3
PrOgIam=pParamMElEIS tuevereeareesssisresetassssssssssssssssssnscsnnsssassassonne 8-3
Q,R
5121113 (=) S PP 4-4
guoted-character-constant....cceeeevcencnees cerseeens tectessenesnane ceeenenas 177
o WTald=10 Bt 8 g1l e gt = | PP 1-6
=221 Bt o= PP 3-4
(1) 6o A o - P 3-12
=10 0 =) o g L 9-3
repeat-Statementottt iiiae ettt ercetae et etteaate e aaan 6-9
repetitive-statementcciiiiiiiiiiiiiiiii e circrtrrerer s e r e e aas 6-9
= L R A o= 7-6
S
10221 L o2 RN 1-5

P11 A 101653 3 €3 93 10) G 5-14

o g PN 3-14

3 [TS 1-5
SIgNEO-NUMDEY «eeiiiiiiiiaiiiiiitiiitttttitaeettattenensessasesssasssssenasanns 1-5
B3 113161 (==b5 0] €283 (6 o 1S 5-5
B3 (10 (o 2o =T 1= o A 6-3
3 1) 10 [A o= P 3-4
3 P LA Lo 1D 1 3-7
321 A=) 1= o | A 6-3
L1 A= 11 g A0) AS 2-5
SUIINGChAIACTET tiiineeiiiiiettetetesanensetssssesssssssssesssssssssassnssnans 1-6
£ 8 LT A o 3-7
CTREV oTR) =0 pe =T A =T 11 o AP 66
SUTUCTUTBO-LYPR 1 eiiiieniiiittiietsieennesestsensesnnasssrascsessssssanenes 3-10
SUDTANGE YD «iiiiiienannneettttecettseaanasasttsesesasssssstssssstsccssanssnnne 3-9
T
=0 ot (=100 A o crestsassrsaunrrnETesTanLS 3-13
LI ceiecescescencsnassncsessasassssnssssssnsnsnnans testessessrsactsssnsreantrnene 5-5
L/ L Cerresessesassssereenaes 3-3
LYPE-0ECIAYALION vvuvueverirreereereererereerersacesesensansensassnsensensnnsnnns 3-3
type-declaration—Partcciireiriiieaiiinsiertieesscirttitisatetiistennnnnns 2-4
U
UNL-NBA0ING «.eieiiiiiiiiiiiciiieceenacanaacacensensssecssnnassssasssssacsnnes 9-3
011310 g7=To Tty =" g | R 5-4
UNSIgNEO-INtBOET tiviiieiiiiiiiiinnetettttcsnsescnensessssensasssasnssssassnes 1-5
UNSIGNEA-NUMDEYuueeiiiiiiiiiiitetstiecseressenssesansssosssssssenennsnsannns 1-5
018153 (01 9T=T s o =22 R 1-5
USES=ClABUSE 1uuueurennnneecneeneeseseesessasecassesessnsncsssassssssnasansnnnnnnne 8-3
V., W
variable-geclarationcccciiiiiiiiiiiiiii i i e e e s s e s e e ns 4-3
variable-declaration-Part ... oo iiii i iiiiiiiieicieecccecccaecaaaan 2-4
variable-Identifier coiceeeriiiiiiiiiiiii it ri e et s et e s c et r e nas 4-4
V=T g k=) (oo £ =) £l o = PN 4-3
17221 @ L= 0 | 3-13
(V221 4 62141 A = | ¢ A PPN 3-13
WhIlE-StatemeNt . cvueeiiitiiiiiiiriiieiiceeiennnncencencenecnnsascnrnones 6-10

T L A LA 111= o | APR 6-13

PREFACE

This manual is intended for Pascal programmers. It describes an implemen-
tation of Pascal for the Lisa computer. The compiler and code generator
translate Pascal source text to MC68000 object code.

The language s reasonably compatible with Apple II and Apple III Pascal. See
Appendix A for a discussion of the differences between these forms of Pascal.

In addition to providing nearly all the features of standard Pascal, as described
in the Pascal Lser Manual ano Report (Jensen and Wirth), this Pascal provides
a varietly of extensions. These are summarized in Appendix A. They include
32-bit integers, an otherwise clause in case statements, procedural and
functional parameters with type-checked parameter lists, and the @ operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arithmetic.

Operating Environment
The compiler will operate in any standard Lisa hardware configuration; this
manual assumes the Workshop software environment.

Related Documents
Pascal User Manual and Report, Jensen and Wirth, Springer-verlag 1975.

Worksnop Rererence Manual for the L1sg Apple Computer, Inc. 1983.
Other Lisadocumentation.

Definitions
For the purposes of this manual the following definitions are used:

e Exrror: Either arun-time error or acompiler error.

= Scope: The body of text for which the declaration of an identifier or label
is valid.

» Undefined: The value of a variable or function when the variable does not
necessarily have a meaningful value of its type assigned toit.

» Unspecified: A value or action or effect that, although possibly
well-gefined, is not specified and may not be the same in all cases or for all
versions or configurations of the system. Any programming construct that
leads to an unspecified result or effect is not supported.

Notation and Syntax Diagrams
All numbers in this manual are in decimal notation, except where hexadecimal
notation is specifically indicated.

Throughout this manual, bold-face type is used to distinguish Pascal text from
English text. For example, sqr(n div 16) represents a fragment of a Pascal

program. Sometimes the same word appears both in plain text and in bold-face;
for example, "The declaration of a Pascal procedure begins with the word
procedure.”

Underlining is used when technical terms are introduced.

Pascal syntax is specified by diagrams. For example, the following diagram
gives the syntax for an identifier:

ldentifier

letter >
letter

digit

underscore

Start at the left and follow the arrows through the diagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-head on
the right is valid, and represents a valid way to construct an identifier. The
boxes traversed by a path through the diagram represent the elements that can
be used to construct an identifier. Thus the diagram embodies the following
rules:

* An identifier must begin witha letter, since the first arrow goes directly to
abox containing the name “letter."

* An identifier might consist of nothing but a single letter, since there is a
path from this box to the arrow-head on the right, without going through
any more boxes.

» The initial letter may be followed by another letter, a digit, or an
underscore, since there are branches of the path that lead to these boxes.

» The Initial letter may be followed by any number of letters, digits, or
underscores, since there is aloop in the path.

A word contained in a rectangular box may be a name for an atomic element like
"letter” or "aigit,” or it may be a name for some other syntactic construction
that is specified by another diagram. The name in a rectangular box is to be
replaced by an actual Instance of the atom or construction that it represents,
e.g. "3" for “digit” or “counter” for "variable-reference”.

Pascal symbols, such as reserved words, operators, and punctuation, are
bold-face and are enclosed in circles or ovals, as in the following diagram for
the construction of a compound-statement.:

compouna-statement
Statement

Text in a circle or oval represents itself, and is to be written as shown (except
that capitalization of letters is not significant). In the diagram above, the
semicolon and the words begin and end are symbols. The word “statement"
refers to aconstruction that has its own syntax diagram.

A compound-statement consists of the reserved word begin, followed by any
number of statements separated by semicolons, followed by the reserved word
end. (As will be seen in Chapter 6, a statement may be null; thus beginendis a
valid compound-statement.)

Pascal Rererence Manual Tokens & constants

Chapter 1
TOKENS AND CONSTANTS

1.1 Character Set and Special SymbolIS ..ccccvviiiiiiiiiiiiiiiiiiniienannas 1-3
S BV (0 =114 15 (-3 ¢ PPN 1-4
TN 61 (=0} £ 1V PP 1-4
1.4 NUMDEIS ... iiiiiiiiiiiitieratetatectseeneeccssscsssssancsancnncnaannnnns 1-4
15 = o] 1-6
1.6 QuOoted StIINg CoNStaNtS..cciiiiiiiiaiaiiitectietetencanannnnnsnsnnenss 1-6

1.6.1 Quoted Character Constants ...ccviiiiiiinenanaereareecannns 1-6
1.7 Constant Declarationsccciiiiiiineiaieioetecenenannacannsesecarecans 1-7
1.8 Commentsand Compiler CommMandS...cueeerirersesssassssssesnsnnaanas 1-7

FPascal Reference Mamal Tokens & Constants

1-2

Pascal Reference Mariial Tokens & Constants

TOKENS AND CONSTANTS

Iokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an English sentence. The tokens

of Pascal are classified into special symbols, identifiers, numbers, labels, and
quoted string constants.

The text of a Pascal program consists of tokens and separators; a separator is
either a blapk or a comment. Two adjacent tokens must be separated by one or
more separators, if both tokens are identifiers, numbers, or reserved words.

No separators can be embedded within tokens, except in quoted string
constants.

1.1 Character Set and Special Symbols
The character set used by Pascal on the Lisa is 8-bit extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digits, and blanks are subsets of the character set:
» The letters are those of the English alphabet, A through Z and athrough z.

» The gigits are the Arabic numerals 0 through 9; the hex-digits are the
Arabic numerals 0 through 9, the letters A through F, and the letters a

through f.

 The blanks are the space character (ASCII 32), the horizontal tab character
(ASCII 9), and the CR character (ASCII 13).

Special symbols and reserved words are tokens having one or more fixed mean-
ings. The following single characters are special symbols:

+ - / = <> [) .. (C) :; =~ 8 {}s
The following character pairs are special symbols:

O = d= = .. (n %)

The following are the reserved words:
and end label program until
array flle methods* record uses
begin for mod repeat var
case function nil set while
const goto not string with
creation* if of subclass*
div Implementation or then
downto in otherwise to
do Interface packed type
else intrinsic* procedure unit

1-3

Fascal Reference Mamal Tokens & Constants

The reserved words marked with asterisks are reserved for future use.

Corresponding upper and lower case letters are equivalent in reserved words.
Only the first 8 characters of areserved word are significant.

1.2 Identifiers
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Identifiers can be of any length, but
only the first 8 characters are significant. Corresponding upper and lower case
letters are equivalent in identifiers.

loentifier

#1 letter »
letter
digit
underscore
NOTE
The first 8 characters of an identifier must not match the first 8 char-
acters of areserved word.
Examples of identifiers:
X Rome gcd St get_byte
1.3 Directives

Directives are words that have special meanings in particular contexts. They
are not reserved and can be used as ldentifiers In other contexts. For example,
the word forward is interpreted as a directive if it occurs immediately after a
procedure-heading or function-heading, but in any other position it is
interpreted as an identifier.

1.4 Numbers)
The usual decimal notation is used for numbers that are constants of the data

types integer, longint, and real (see Section 3.1.1). Also, ahexadecimal integer
constant can be written by using the $ character as aprefix.

1-4

Pascal Reference Manual

hex-aigit-sequence

unsignea-integer

(: nex-digit Ts

Tokens & Constants

®1 digit-sequence
h@—* hex-digit-sequence

_f »

unsigneg-real

—®digit-sequence

seale-ractor

»(+) >
02

TO-» digit-sequence Y
»

scale-factor

(RCEAT: vy

digit-sequence |—%

_Slanea-number

»| unsigned-integer P\

unsigned-real

sign

1-5

fb unsigned-number —»

Pascal Rerference Manual TJokens & Constants

The letter E or e preceding the scale in an unsigned-real means “"times ten to
the power of ".

Examples af numbers:
1 +100 -0.1 SE-3 87.35e+8 $A05D

Note that SE-3 means 5x10-3, and 87.35e+8 means 87.35x108,

15 Labels
A label is a digit-sequence in the range from 0 through 9999.

1.6 Quoted String Constants
A quoted-string-constant s a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

Quoted-string-constant

O

o o

string-character

~—¥ay onar except () orcr j————o

Examples of quotea-string-constants:
‘Pascal’ ‘THIS IS A STRING' ‘Don’ "t vorryt’

.a. .;. T e .

string-character

All string values have a length attribute (see Section 3.1.1.6). Inthecaseof a
string constant value the length is fixed; it is equal to the actual number of
characters inthe string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a quoted-string-constant
whose length is exactly 1.

1-6

Pascal Rerferernice Manual Tokens & Constants

quoted-character-constant .O »| string-character __.O_’

A quoted-character-constant is compatible with any char-type or string-type;
that 1s, it canbe used elther as a character value or as a string value.

1.7 Constant Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2)does not include its own declaration.

canstant-dec/arstion # identifier —{ : — constant —#{ —b

canstant

~ _/ #1 constant-identifier ——
! sign

| signed-number N
! quoted-string ~
“»{ quotea-char > >

Mote: A constant-identifier is an identifier that has already been declared to
denote aconstant.

A constant-ldentifier following a sign must denote a value of type integer,
longint, or real.

1.8 Comments and Compiler Commands
The constructs:

{ any-text-not-containing-right-brace }
(= any-text-not-containing star-right-paren =)
are called comments.

A compiler command is a comment that contains a $ character immediately
after the { or (* that begins the comment. The $character is followed by the
mnermonic of the compiler command (see Section 12).

1-7

Pascal Reference Manal Tokens & Cconstants

Apart from the effects of compiler commands, the substitution of a blank for a
comment does not alter the meaning of a program.

A comment, cannot be nested within another comment formed with the same
kind of delimiters. However, a comment formed with {...} delimiters can be
nested withina comment formed with (*...#)delimiters, and vice versa.

1-8

Fascal Rererence Mamal Blocks & Scope

Chapter 2
BLOCKS, LOCALITY, AND SCOPE
2.1 Definition Of @BlOCK .ovuuiiieiiiiiiiiiiiiieieiieaceaeanceasiasananans 2-3
2.2 RUICS Of SCOPE . euiierneeereraceerenecesssasesesnscsassssessscascsecsanes 2-5
2.2.1 Scopeof aDeclarationceeeviieiiiiieneiiiiiieeiceineeeans 2-5
2.2.2 Redeclaration InanEnclosedBlOCK ...ccveeveeeeieeennaennnnnns 2-5
2.2.3 Position of Declaration WithinitsBIOCKccvevivenivennnnnnn 2-5
2.2.4 Redeclaration WIthin @BIOCK ceeeevreiiiriiiierieeeenieennannns 2-5
2.2.5 Identifiers of Standard ObJECS..eeeenneeeeiiiienieiiiniannnnn. 2-6

Pascal Reference Mamal) Blocks & Scope

2-2

Pascal Reference Mamal Blocks & Scope

BLOCKS, LOCALITY, AND SCOPE

2.1 Definition of a Block
A block consists of declarations and a statement-part. Every block is part of a
procedure-declaration, a function-declaration, a program, or a unit. All
identifiers and labels that are declared in a particular block are local to that
block.

block

label-declaration-part j

constant-declaration-part j

type-declaration-part —)

variable-declaration-part j

procedure-and-function-declaration-part —)

ANANANANS l

statement-part >

The label-declaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement, in
~ the statement-part.

label-ceciaration-part
Tavel |~—>()—>
(L

286l oI sigit-sequence ——»

Pascal Reference Mamual Blocks & scape

The constant-declaration-part contains all constant-declarations local to the
block.

constant -declaration-part

constant-declaration -j—b

The type-geclaration-part contains all type-tdeclarations local to the block.

Lype-deciaration-part

type-declaration —j——b

The variable-declaration-part contains all variable-declaraticns local to the
block. A .

variatle-geclaration-part

variable-geclaration —-j——-b

The procedure-and-function-declaration-part contains all procedure and
function declarations local to the block.

procegure-and-runction-geclaration-part
procedure-declaration |
function-declaration

The statement-part specifies the algorithmic actions to be executed upon an
activationof the block.

2-4

Pascal Rererence Marnual Blocks & Scape

statementpart »

compound-statement ——&

NOTE

At run time, all variables declared within a particular block have
unspecified values each time the statement-part of the block is entered.

2.2 Rules of
This chapter discusses the scope of objects within the pragram or wilt in which
they are cefined See Chapter 9 for the scope of abjects defined in the
interface-part of aunit and referenced in a host program or unit.

2.2.1 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or lapel. All corresponding occurrences of the identifier or label must be
within the scope of this declaration.

This scope is the block that contains the declaration, and all blocks enclosed by
that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and inner is another block that is enclosed within
outer. If an identifier declared in block outer has a further declaration in block
inner, then block inner and all blocks enclosed by inner are excluded from the
scope of the declaration inblock outer. (See Appendix B for some odd cases.)

2.2.3 Position of Declaration within its Block
The declaration of an identifier or label must precede all corresponding
occurrences of that identifler or label in the program text -- i.e., lgentifiers
and labels cannot be used until after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 Redeclaration within a Block
An identifier or label cannot be declared more than once In the outer level of a
particular block, except for record field identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared withina
record-type. It is meaningful only in combination with a reference toa variable
of that record-type. Therefore a field identifier can be declared again within
the same block, as long as it is not declared again at the same level within the
same record-type. AIlso, an identifier that has been declared to denote a

2-5

Pascal Rererence Manual Blocks & Scgpe

constant, a type, or a variable can be declared again as a record field identifier
in the same block.

2.2.5 Identifiers of Standard Objects
Pascal on the Lisa provides a set of stadaro (predeclared) constants, types,
procedures, and functions. The identifiers of these objects behave as if they

were declared in an outermost block enclosing the entire program; thus their
scope Includes the entire program.

2-6

Pascal Referernce Maral Datla Types

Chapter 3
DATA TYPES

3.1 Simple-Types (@and Ordinal-TYPES) +.vceerrceareesracaonesnssoseannnanns 3-4
3.1.1 Standard Simple-Types and String-Typesccccceveeiennnnn. 3-5
3.1.1.1 TheInteger TYPE meeeiieeeieeieerrenacerreencaccasacasnnnanss 3-5
3.1.1.2 The LongINt TYPE cocneeiiieiineiiicieiiacacenaarenncscnanns 3-5
3.3.1.3 The REAITYPE cueureurnenenrnennrnrnenenrncnencnenasasasnsnnns 3-6
3.1.1.4 The BOOICAN TYPE veeeveneireiierraiieennenesosacnsscscscnnnans 3-7
3.1.1.5 THE Chal TYPC.euenrnrnenrrereraraeareresasenrnenrnsnsnsnsns 3-7
3.1.1.6 SUING-TYPES cetunerieneriraeeanrraesaecsasarssansssanncassnnns 3-7

3.1.2 ENUMEIated-TyYPeS «.uueiiiiiereeattienerneancaaaenccanancaan 3-8
3.1.3 SUDIANGE-TYPES .eeernererenriennraonecanansonaacronensassansanes 3-9
3.2 SLIUCLUIEO-TYPES wueerrrernenenrenrnenrieneesensnsessncnsensnsnsnsensans 3-9
3.2.1 ATTAY-TYPES . oiiiirieneteaanratsrsssassosascsansscsnnssannnns 3-10
3.2.2 RECOIO-TYPES tevuierrinrrorancnraratcscnsccsccscncsaccsasannns 3-12
3.2.3 SEL=TYPES «vnenenrnenenrernineenernencneeeneeaeenensnanns 3-14
3.2.4 Fle-TYPeS voicrieiiereaiennesencescsanncnnsnsassascassasascanns 3-15
3.3 POIN I -TYPES cueeeieeeiiiceeereeeaerancecasaseaannsaaanssasnnnanns 3-16
3.4 Identical and Compatible TYPES ..cocerrriiineneeereeeiecneaanaans 3-16
3.4.1 BB 213 (6 =121 41 4 3-16
3.4.2 Compatibllity Of TYPeS..cciviiiiiiiiresiiiieiinecrensennnaceas. 3-18
3.4.3 Assignment-Compatibilitycovvviiniiiiiiiiiiiiiina. 3-18
3.5 TheType-Declaration-Partccceiieieiiiiriiiaicieieeaananenn 3-19

3-1

Fascal Reference Maral Data Types

Pascal Rererence Manal Data Types

DATA TYPES

A Lype is used in declaring variables; it determines the set of values which
those variables can assume, and the operations that can be performed upon
them. A type-declaration associates an identifier with a type.

Lpe-declarslion | identifier = type —9 —

simple-type }
structured-type
pointer-type

The occurrence of an identifier on the left-hand side of a type-declaration
declares it as a type-identifier for the block in which the type-declaration
occurs. The scope of a type-identifier does not include its own declaration,
except for pointer-types (see Sections 2.2.3and 3.3).

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

simple-type-identifier
structured-type-identifier
pointer-type-identifier
ordinal-type-identifier
real-type-ldentifier
string-type-identifier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolean,
etc.

3-3

Pascal Rererence Manual Data Types

3.1 Simple-Types (and Ordinal-Types)
All the simple-Lypes define ordered sets of values.

simple-tyoe ! ordinal-type

real-type

string-type
Leallpe y[reai-type-identifier |——»
aradinal-type »| subrange-type

enumerated-type

ordinal-type-identifier

The standard real-type-identifier is real.
String-types are discussed in Section 3.1.1.6 below.

- are a subset of the simple-types, with the following special
characteristics:

» within a given ordinal-type, the possible values are an ordered set and each
possible value Is assoclated with an grdinality, which is an integer value.
The first value of the ordinal-type has ordinality 0, the next has ordinality
1, etc. Each possible value except the first has a predecessor based on this
ordering, and each possible value except the last has a successor based on
this ordering.

 The standard function ord (see Section 11.5.1) can be applied to any value of
ordinal-type, and returns the ordinality of the value.

 The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value in the ordinal-type, the result is unspecified.)

3-4

Pascal Reference Manual Data Types

* The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the first value
in the ordinal-type, the result is unspecified.)

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-type-identifiers are

Integer
longint
char

boolean

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Standard Simple-Types and String-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longint, real, char, and boolean are standard. The string-types are
user-defined simple-types.
3.1.1.1 The Integer Type

The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4.) The predefined integer constant maxint
Is gefined to be 32767. Maxint defines the range of the type integer as the set
of values:

-maxint-1, -maxint, ... -1, 0, 1, ... maxint-1, maxint
These are 16-bit, 2's-complement integers.

3.1.1.2 The Longint Type
The values are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4.) The range is the set of values from
-(231-1)t0 2311, L.e., 2147483648 10 2147483647,

These are 32-bit integers.

Arithmetic on integer and longint operands is done in both 16-bit and 32-bit
precision. An expression with mixed operand sizes is evaluated in a manner
similar to the FORTRAN single/double precision floating-point arithmetic
rules:

« All “integer" constants in the range of type integer are considered tao be of

type integer. All “integer” constants in the range of type longint, but not in
the range of type integer, are considered tobe of type longint.

» when both operands of an operator (or the single operand of a unary
operator) are of type integer, 16-bit operations are always performed and
the result is of type integer (truncated to 16 bits if necessary).

3-5

Pascal Reference Manual Data Types

« when one or both operands are of type longint, all operands are first
converted to type longint, 32-bit operations are performed, and the result
is of type longint. However, if this value is assigned to a variable of type
integer, it Is truncated (see next rule).

e The expression on the right of an assignment statement is evaluated

If necessary, the

result of the expression Is truncated or extended to match the size of the
variable on the left.

The orda function (see Section 11.3.3) can be used to convert an integer value to
alongint value.

IMPLEMENTATION NOTE

There is a performance penalty for the use of longint values. The
penalty is essentially a factor of 2 for operations other than division and
multiplication; for division and multiplication, the penalty is much
worse than a factor of 2.

3.1.1.3 The Real Type
For details of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

» Finite values (a subset of the mathematical real numbers). As constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.

The smallest absolute numeric non-zero real value is approximately
1.401298464E-45 In Pascal notation.

The real zero value has a sign, like other numbers. However, the signof a
zero value is disregarded except in division of a finite number by zero and in
textual output.

« Infinite values, +o0 and -oo, These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix D gives the rules for arithmetic
operations using these values.

« NaNs (the word “NaN" stands for “not a number"). These are values of type
real that convey diagnostic information. For example, the result of
multiplying oo by 0 is aNaN.

Pascal Rererence Manual Data Types

3.1.1.4 The Boolean Type
The values are truth values denoted by the predefined constant identiflers
false and true. These values are ordered so that false is “less than” true. The
function-call ora(false) returns 0, and ord(true) returns 1 (see Section 11.5.1).

3.1.1.5 The Char Type
The values are extended 8-bit ASCII, represented by numeric codes in the range
0..255. The ordering of the char values is defined by the ordering of these
numeric codes. The function-call ord(c), where c is a char value, returns the
numeric code of c(see Section 11.5.1).

3.1.1.6 String-Types
A string value is a sequence of characters that has a dynamic length attri-
bute. The length is the actual number of characters in the sequence at any time
during program execution.

A string type has a static size attribute. The size is the maximum limit on the
length of any value of this type. The current value of the length attribute is
returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type is defined.

string-type

(1)—»] size-attribute —@7—»

string-type-identifier

size-aterioute unsigned-integer | .

where the size attribute is an unsigned-integer.
IMPLEMENTATION NOTE

In the current implementation, the size-attribute must be in the range
from 1 to 255.

The ordering relationship between any two string values is determined by
lexical comparison based on the ordering relationship between character
values in corresponding positions in the two strings. (When the two strings are
of unequal lengths, each character in the longer string that does not correspond

3-7

Pascal Reference Maal Data Types

to acharacter in the shorter one compares “higher”; thus the string ‘attribute’
is ordered higher than ‘at".)

Do not confuse the size with the length.
NOTES

The size attribute of a string constant s equal to the length of the
string constant value, namely the number of characters actually in the
string.

Although string-types are simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
individual characters in a string can be accessed as if they were
components of an array. Also, all string-types are implicitly packed
types and all restrictions on packed types apply to strings (see Sections
7.3.2,5.1.6.1,and 11.7).

Do not make any assumptions about the internal storage format of strings, as
this format may not be the same in all implementations.

Operators applicable to strings are specified in Section 5.1.5. Standard
procedures and functions for manipulating strings are described in Section
11.6. A

3.1.2 Enumerated-Types
An enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The ordering of these values is determined by the
sequence in which the identifiers are listed.

LMEISLETUPE u(()—»] icentifler-list |—())—»

laentifler-list

®i identifier >
C)

Oe

The occurrence of an ldentifier within the identifier-list of an
enumerated-type declares it as a constant for the block in which the
enumerated-type is declared. The type of this constant is the enumerated-type
being declared.

3-8

Fascal Rererence Manual oata Types

Examples of enumerated-Ltypes:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, vidoved, single)

Given these declarations, yellow is a constant of type color, diamond is a
constant of type suit, and so forth.

when the ord function (see Section 11.5.1) is applied to a value of an
enumerated-type, it returns an integer representing the ordering of the value
with respect to the other values of the enumerated-type. For example, given
the declarations above, ora(red) returns 0, ord{yellow) returns 1, and orc(blue)
returns 3.

3.1.3 Subrange-Types
A subrange-type provides for range-checking of values within some

ordinal-type. The syntaxfor asubrange-typeis

subrange-type [constant (.)—{ constant |-

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type integer and the other of type longint.
If both are of the same ordinal-type, this type is called the host-type. If oneis
of type Integer and the other of type longint, the host-type is longint.

Examples of subrange-types:

1..100
-10..+10

red. .green

A variable of subrange-type possesses all the properties of variables of the
host type, with the restriction that its run-time value must be in the specified
closed interval.

IMPLEMENTATION NOTE

Range-checking is enabled and disabled by the compiler commands $R+
and $R-(see Cnhapter 12). The default is $R+(range-checking enabled).

3.2 Structured-Types
A structured-type is characterized by its structuring method and by the type(s)
of its components. If the component type is itself structured, the resulting

Pascal Rererence Manual Data Types

structured-type exhibits more than one level of structuring. There is no
specified limit on the number of levels to which data-types can be structured.

Stueired type ®! array-type —
set-type

flle-type

record-type

“—{ structured-type-identifier /

The use of the word packed in the declaration of a structured-type indicates to
the compiler that data storage should be economized, even if this causes an
access toacomponent of a variable of this type to be less efficient.

The word packed only affects the representation of one level of the
structured-type in which it occurs. If a component is itself structured, the
component’s representation is packed only if the word packed also occurs in the
declaration of its type.

For restrictions on the use of components of packed variables, see Sections
7.3.2,5.1.6.1,and 11.7.

The implementation of packing is complex, and details of the allocation of
storage to components of a packed variable are w2speciried

IMPLEMENTATION NOTE

In the current implementation, the word packed has no effect on types
other than array and record.

3.2.1 Array-Types
An array-type consists of a fixed number of components that are all of one
type, called the component-type. The number of elements is determined by one
or more index-types, one for each dimension of the array. There is no specified
Himit on the number of dimensions. In each dimension, the array can be indexed
by every possible value of the corresponding index-type, so the number of
elements is the product of the cardinalities of all the index-types.

3-10

Pascal Reference Manual Data Types

arréy-type

Wegrpe type [—»

Lngex-type oI ordinal-type |—

The type following the word of is the component-type of the array.
IMPLEMENTATION NOTE

In the current implementation, the index-type should not be longint or a
subrange of longint, and arrays should not contain more than 32767
bytes.

Examples of array-Lypes:

array[1..100] of real
array{boolean] of color

If the component-type of an array-type is also an array-type, the result can be
regarded as a single multi-dimensional array. The declaration of such an array
is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[boolean] of array[1..10] of array[size] of real
is equivalent to:

array[boolean, 1..10, size] of real
Likewise,

packed array(1..10] of packed array{1..8] of boolean
is equivalent to:

packed array[1..10,1..8] of boolean

“Equivalent" means that the compiler does the same thing with the two
constructians.

A component of an array can be accessed by referencing the array and applying
one or more indexes (see Section 4.3.1).

3-11

Pascal Reference Manal Data Types

3.2.2 Record-Types
A record-type consists of a fixed number of components called fields, possibly
of different types. For each component, the record-type declaration specifies
the type of the field and an identifier that denotes it.

e DD

fleld-list

rielg-list

fixed-part >
MG)TM variant-part |—/ L@—f

g part field-declaration j—b

flela-geclaration

identifier-list : type —»

The fixed-part of a record-type specifies a list of “fixed" fields, giving an
identifier and a type for each field. Each of these fields contains data that is
always accessed In the same way (see Section 4.3.2).

Example of a record-type:
record
year: integer;
month: 1..12;
day: 1..31
end

A variant-part allocates memory space with more than one list of fields, thus
permitting the data in this space to be accessed in more than one way. Eachlist

3-12

Pascal Rerference Manual Data Types

of flelds is called a variant. The variants “overlay” each other in memory, and
all fields of all variants are accessible at all times.

variant-part
case »| tag-field-type [»(of)] variant
identifier : 6
varlant

T 00"532" j (\b field-list \—/’@—.

tag-fielad-type >

ordinal-type-identifier —»

IMPLEMENTATION NOTE

In the current implementation, the type longint should not be used as a
tag-type as it will not work correctly.

Each variant is introduced by one or more constants. All the constants must be
distinct and must be of an ordinal-type that is compatible with the tag-type
(see Section 3.4).

The variant-part allows for an optional identifier, called the tag-fleld
identifier. If a tag-field identifier is present, it is automatically declared as
the identifier of anadditional fixed field of the record, called the tag-fieid.

The value of the tag-field may be used by the program to indicate which variant
should be used at a given time. If there is no tag-field, then the program must
select a variant on some other criterion.

3-13

Pascal Rererence Manual pata Types

Examples of record-types wilh variants:

Trecord
name, firstName: string[80];
age: 0..99;
case married: boolean of
true: gspwsesua'e: string[80]);
false: ()

record
X y: real;
area: real;
case s: shape of
triangle: (side:)rea]; inclination, anglel, angle2:
angle);
rectangle: (sidel, side? : real; skew, angle3: angle);
circle: (diameter: real);
end

NOTE

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments of
the new procedure (see Section 11.2). Variant fields are accessed in
exactly the same way as fixed fields (see Section 4.3.2).

3.2.3 Set-Types
A set-Lype defines a range of values that Is the powerset of some ordinal-type,
called the base-type. In other words, each possible value of a set-type is some
subset of the possible values of the base-type.

ordinal-type —

IMPLEMENTATION NOTE

In the present implementation the base-type must not be longint. The
base-type must not have more than 4088 possible values. If the base-
type Is a subrange of integer, it must be within the limits 0..4087.

Operators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

3-14

Pascal Rererence Manual Data Types

Sets with less than 32 possible values in the base-type can be held in a register
and offer the best performance. For sets larger than this, there is a
performance penaity that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) is apossible value of every set-type.

3.2.4 File-Types
A flle-type is a structured-type consisting of a sequence of components that
are all of one type, the component-type. The component-type may be any type.
The component data is not in program-addressable memory but is accessed viaa

peripheral device. The number of companents (1.e. the length of the file) is not
fixed by the file-type declaration.

__&_.(ﬁie—t file) >
\@’ type rf

The type file (without the “of type" construct) represents a so-called “untyped
fne“) type for use with the blockread and blockwrite functions (see Section
10.4).

NOTE

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is areserved word.

The standard flle-type text denotes a file of text organized into lines. The file
may be stored on a flle-structured device, or it may be a stream of characters
from a character device such as the Lisa keyboard. Files of type text are
supported by the specialized I/0 procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type file of char (unlike
standard Pascal). The type flile of char is a file whose records are of type char,
containing char values that are not interpreted or converted in any way during
1/0 operations.

In a stored file of type text or file of -128..127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type file of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

3-15

Pascal Rererence Manual Data Types

Sectlions 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing flle compo-
nents and data.

3.3 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a

specified type called the base-type.
Pointer values are created by the standard procedure new (see Section 11.2.1),

by the @ operator (see Section 5.1.6), and by the standard procedure pointer
(see Section 11.3.4).

pointer-type - base-type

pointer-type-identifier

Lase-ippe o[tyne-identifier |—

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 Identical and Compatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types may or may not be identical, and identity is
required in some contexts but not inothers.

Even if not identical, two types may still be compatible, and this is sufficient in
contexts where identity is not required — except for assignment, where

assignment-compatibility is required.

3.4.1 Type Identity
Identical types are required a2y in the following contexts:

- Variable parameters (see Section 7.3.2).

3-16

Pascal Reference Manual Data Types

* Result types of functional parameters (see Section 7.3.4).

* Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5).

« One-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5).

Two types, t1and t2, are [dentical if either of the following is true:
« The same Zype identifier is used to declare both t1and t2, as in

foo = ~integer;
t1 = foo;
t2 = foo;

» t1isdeclaredtobeequivalent tot2asin
t1 = t2;
Note that the declarations

t1 = t2;
3 =t1;

do 7ot make t3 and t2 identical, even though they make t1identical tot2andt3
ldentical to t1!

Alsonote that the declarations

t4 = integer;
tS = integer;

ov make t& and tS identical, since both are defined by the same type identifler.
Ingeneral, the declarations

te = t7;
18 = t7;

ao make t6 and t8 identical if t7 is a type-identifier.
However, the declarations

t9 ~integer;

t10 = “integer;

do /2o¢ make t9 and 110 identical since ~Integer is not a type identifier but a
user-defined type consisting of the special symbol = and a type identifier.

Finally, note that two variables declared in the same declaration, as in
varl, var2: ~integer;

are of identical type. However, if the declarations are separate then the
definitions above apply.

3-17

Pascal Reference Manual DOata Types

The declarations
varl: ~integer;
var2: ~integer;
var3: integer;
var4: integer;
make var3 and var4 identical in type, but not varl and var2.

3.4.2 Compatibility of Types
Compatibility is required in the majority of contexts where two or more
entities are used together, e.g. in expressions. Specific instances where type
compatibility is required are noted elsewhere in this manual.

Two types are compatible if any of the following are true:
» They are identical.
* One is a subrange of the other.
« Both are subranges of the same type.
« Bothare string-types (the lengths and sizes may differ).
« Both are set-types, and their base-types are compatible.

3.4.3 Assignment-Compatibility
is required whenever a value is assigned to some-
thing, either expiicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).

The value of an expression expval of type exptyp is assignment-compatible with
a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

« viyp and exptyp are identical and neither is a file-type, or a structured-
type with a file component.

« vtypis real and exptyp is integer or longint (expval is coerced to type real).

 vtyp and exptyp are compatible ordinal-types, and expval is within the
range of possible values of vtyp.

* vtyp and exptyp are compatible set-types, and all the members of expval are
within the range of possible values of the base-type of vtyp.

» vtyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute of vtyp.

 vtyp is a string type or a char type and expval is a quoted-character-
constant.

3-18

Pascal Reference Mamual Data Types

- vtyp is a packed array{l..»] of char and expval is a string constant
containing exactly s2characters.

If the index-type of the packed array of char is not 1..,, but the array does
have exactly ~ elements, no error will occur. However, the results are
unspecified.

whenever assignment-compatibility is required and none of the above is true,
either a compiler error or a run-time error occurs.

3.5 The Type-Declaration-Part
Any program, procedure, or function that declares types contains a type-
declaration-part, as shownin Chapter 2.

Example of a type-deciaration-part:
type count = integer;
range = integer;
color = gred, yellov, green, blue);
sex = (male, female);
year = 1900..1999;
shape = (triangle, rectangle, circle);
card = array[l..80] of char;
str = string{80];
polar = record r: real; theta: angle end;
person = ~personDetails;
personDetails = record
name, firstName: str;
age: A
married: boolean;

father, child, sibling: person;
case s: sex of
male: %enlisted, bearded: boolean);
female: (pregnant: boolean)
end;

people = file of personDetails;
intfile = file of integer;

In the above example count, range, and integer denote identical types. The type
year is compatible with, but not identical to, the types range, count, and

integer.

3-19

Pascal Rererence Marmual Data Types

3-20

Pascal Reference Mamal Variables

Chapter 4
VARIABLES
4.1 Variable-Declarationsccccieieiiiiiiiciiiiiieiiiiieiieniaaannaas 4-3
4.2 Variable-RefEIENCES....cviiieirriiiaintirnrriciensiinconsansssenatess -3
T T 1 1113 (=3 PP 4-4
4.3.1 Arrays, Strings, andINEXES ceveeeereireeeeeecreeeenannncennas 4-5
4.3.2 Records and Fleld-Designatorsccevieiiiiiniiiiiinannnnn. 4-6
433 FIHEBUFFEYS teeiiiiiiiiiiiiiiiiiiiiiieaetiieesaansneanns 4-6
4.3.4 Pointersand Their ObJects ..cveieneiiiiiiiiiiiciieeeeannnnn. 4-7

Pascal Reference Manual " Variables

4-2

Pascal Rerference Maal Variables

VARIABLES

4.1 Variable-Declarations
A variable-declaration consists of a list of igentifiers denoting new variabies,

followed by their type.
type —b@—>

varliable-geclaration

»| identifier-list

The occurrence of an identifier within the identifier-list of a variable-
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specified in Section 2.2.2.

Examples of variable-geclaratlons:

X ¥,2: real;

1 ,J: integer;
1 0..9;

p,q,r- boolean;

operator: (plus, minus, times);

a: array[0..63] of real;

C: color;

f: file of char;

huel, hue2: set of 00101',

pl,p2: person;

m ml, m2: array[1..10,1..10] of real;

coord: polar;

pooltape: array[1..4] of tape;

4.2 Vvariable-References

A variable-reference denotes the value of a varlable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

variable-reference

—] varlable-identifler |- Q >
qualifier

4-3

Pascal Reference Marial variavles

variable-identifier | identifier .

Syntax for the various kinds of qualifiers is given below.

4.3 Qualifiers
As shown above, a variable-reference is a varlable-identifier followed by zero
or more qualifiers. Each qualifier modifies the meaning of the variable-

reference.

qualifier o] index
field-designator
flle-buffer-symbol
pointer-object-symbol

An array identifier with no qualifier is areference to the entire array:
xResults

If the array ldentifier is followed by an index, this denotes a specific
component of the array:

xResults{current+1]

If the array component Is a record, the index may be followed by a field-
designator; in this case the variable-reference denotes a specific field withina

specific array component.
xResults[current+1].1ink

If the fleld is a pointer, the field-designator may be followed by the
pointer-object-symbol, to denote the object pointed to by the pointer:

xResults[current+1].1ink~

If the object of the pointer is an array, another index can be added to denote a
component of this array (and so forth):

xResultsfcurrent+1].1ink ~[1]

PFascal Rererence Maral Variables

4.3.1 Arrays, Strings, and Indexes
A specific component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.

A specific character within a string variable is denoted by a variable-
reference that refers to the string variable, followed by an index that specifies
the character position.

dncex b@ »| expression T—h@—b
-

Examples or Inaexea arrays:

mfi, j]

afi+]j]
Each expression in the index selects a component in the corresponading
dimension of the array. The number of expressions must not exceed the number
of Index-types in the array declaration, and the type of each expression must be
assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equi-
valent. For example,

m{1]03]
isequivalent to

m[i, j]
For array variables, each index expression must be assignment-compatible
with the corresponding index-type specified in the declaration of the
array-type.
A string value can be indexed by only one index expression, whose value must be

in the range 1..72, where » is the current length of the string value. Theeffect
Is to access one character of the string value.

warning: \When a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained. For
example, suppose that strval is declared as follows:

strval: string{10];

The memory space allocated for strval includes space for 10 char values and a
number that will represent the current length of the string — i.e., the number

Pascal Reference Mamal variables

of char values currently in the string. Initially, all of this space contalns
unspecified values. The assignment

strval[1]:='F’

may or may not work, depending on what the unspecified length happens to be.
If this assignment works, it stores the char value ‘F’ in character position 1, but
the length of strval remains unspecified. In other words, the value of strvaif1]
is now °F°, but the value of strval is unspecified. Therefore, the effect of a
statement such as writeln(strvat)is unspecified.

Therefore, this kind of string manipulation is not recommended. Instead, use
the standard procedures described in Section 11.6. These procedures properly
maintain the lengths of the string values they modify.

4.3.2 Records and Fleld-Designators
A specific field of a record variable is denoted by a variable-reference that
r;efers to the record variable, followed by a field-designator that specifies the
field.

LeloeI@t () wf igentifier —»

Examples of flela-gesignators:

p2~ .pregnant
coord.theta
4.3.3 Flle-Buffers

Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the file is called the current file position. See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the
current component is via a speclal variable associated with the file, called a
file-buffer.

The file-buffer is implicitly declared when the file variable is declared. If Fis
a flle variable with components of type T, the associated file-buffer is a
variable of type T.

The flle-buffer associated with a flle variable is denoted by a variable-
reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

file-burrer-symool ,@ >

Thus the file-buffer of file F is referenced by F~.

4-6

Pascal Rererence Maal . Variables

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the
file-buffer and the current file component.

4.3.4 Pointers and Their Objects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the object of the pointer,
The object pointed to by a pointer variable is denoted by a variable-reference
that refers to the pointer variable, followed by a qualifier called the
pointer-object-symbol.

pointer-obgect-symool > @ >

NOTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the @ operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4).

The constant nil (see Section 3.3) does not point to a variable. If you access
memory via a nil pointer reference, the results are unspecified; there may not
be any error indication.

Examples of references to olfects of pointers:

p1~
p1~.sibling™

Pascal Reference Mamual Variavies

Pascal Rererence Maal Expressions

Chapter b
EXPRESSIONS

% S o =111 ¢ SR 5-6
5.1.1 Binary Operators: Order of Evaluation of Operandgs 5-6
5.1.2 ArIthMetiC OperatorS . .occvrieiiiciieirieraanereaieiacnnsans 5-7
5.1.3 B001ean OPErators ...ciieieeeireneeiisiansescasencnsrasoannnnes 5-9
5.1.4 RTS8 0] =10 & 5-9
5.1.4.1 Result TypeinSet Operationscccceveveinericiniennnns 5-10

5.1.5 Relational Operatorscceeeeieiieiieneencasenrocneeenaaans 5-10
5.1.5.1 ComparingNUMDEYSccieiriecneeiiaiiaieasoaccancnnans 5-10
5.1.5.2 ComparingBoO0leaNscoeeereinnniiiaeiiaiaioiiaasanacanes 5-11
5.1.5.3 ComparingStrings....cccvviiiiienrieriiiiiiioceiancannnnnss 5-11
5.1.5.4 ComparingSets ..ccceeeeieeiriiieieenenriaseecnensenaacaneens 5-11
5.1.5.5 TestingSet MembershiP...cieiieeiieiiiienresainennnnnnnss 5-11
5.1.5.6 ComparingPacked Arraysof Charccceeeeeeceaeenan.. 5-11

5.1.6 (O /e7=] ¢-111) QPPN 5-11
5.1.6.1 @-Operator withavariable.......cccceveriiiiiiiiniiinnne.. 5-12
5.1.6.2 @-Operator withaValueParametercecevvvvnnnnne 5-12
5.1.6.3 ®@-Operator withaVariable Parameterc......... 5-12
5.1.6.4 @-Operator withaProcedureor Function 5-12

5.2 FUNCLION-Calls ..cvveiiiiinicineninrnnraeciiencanceesanceeacaacannas 5-13
5.3 Sel-CONSLIUCLOYS ..ouvunneniiieinneeeiiiitresenscrissenneccsoesannnans 5-14

5-1

Fascal Rererence Mamal Expressions

5-2

Fascal Rererence Mamal) Expressions

EXPRESSIONS

Expressions consist of operators and operands, i.e. variables, constants,
set-constructors, and function calls. Table 5-1 shows the operator

precedence:
Table S-1
Precedence of Operators
QOperators Precedence | Categories
@, not highest unary operators
* /, div “ “
[hamid second multiplyi rators
mod, and piying- ope
+, -, 0r third “adding” operators & signs
= <, <',>' lowest relational operators
{=, >=,in

The following rules specify the way in which operands are bound to operators:

* wWhen an operand is written between two operators of different
precedence, it is bound to the operator with the higher precedence.

* When an operand is written between two operators of the same precedence,
it is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are buiit up from
factors, terms, and simple-expressions.

5-3

Fascal Rererence Mamal Expressions

The syntax for a factor allows the unary operators @ and not to be applied to a
value:

ractor

~ | variable-reference |———

N— unsigned-constant N
N—=! function-call N
N—! set-constructor N

;

expression ->® N

no factor -

é

A function-call activates a function, and denotes the value returned by the
function (see Section 5.2). A set-constructor denotes a value of a set-type (see
SectionS.3). An msmnmﬂnslmlhas the following syntax:

unsignea-constant »| unsigned-number
quoted-string-constant |
constant-identifier
nil >
Examples of factors:
X {variable-reference}
&x {pointer to a variable}
15 {unsigned-constant}
(x+y+2) {sub-expression}
sin(x/2) {function-call}
["A*..°F,"a" .. " F"] {set-constructor}
not p {negation of a boolean}

5-4

Pascal Reference Maral Expressions

The syntax for a term allows the “multiplying” operators to be applied to
factors:

Lerm

& factor —j—’
D

/ N

7Y

Examples of terms:

Xy

1/(1-1)

pandq
(x<=y) and (y < 2)

The syntax for a simple-expression allows the “adding” operators and signs to
be applied to terms:

Simple-expression

\N = —/ w1 term |

Examples of simple-expressions:
X+y

S
huel + hue2
i) + 1

5-5

Fascal Rererence Mamual Expressions

The syntax for an gxpression allows the relational operators to be applied to
simple-expressions:
EXpression

—®1 simple-expression — >
simple-expression —

SR

Examples of expressions:

Xx=1.5
p<=q

pP=qadr
(1<) =0<K)
c in huel

5.1 Operators

5.1.1 Binary Operators: Order of Evaluation of Operands
The order of evaluation of the operands of abinary operator is unspecified.

5-6

Pascal Rererence Maal

5.1.2 Arithmetic Operators

The types of operands and results for arithmetic binary and unary operations

are shown in Tables 5-2 and 5-3 respectively.

Binary Arithmetic Operations

Table 5-2

Expressions

Qperatar | Qperation QOperand Types Type of Result
+ addition
- subtracti integer, real, or integer, real, or
reckian longint longint
- multiplication
/ division integer, real, or real
longint
div division with]'mm or longint integer or lmm
integer result
mod modulo integer or longint integer
MNote: The symbols +, -, and * are also used as set operators (see
Section S.1.4).
Table 5-3
Unary Arithmetic Operations (Signs)
Cperatar| Cperation Qperang 7ypes Type of Result
+ identity .
integer, real, or same as operand
- signnegation | longint

Any operand whose type Is subr, where subr is a subrange of some ordinal-type
ordtyp, is treated as if it were of type ordtyp. Consequently an expression that
consists of asingle operand of Lype subr 1s {tself of type oratyp.

If both the operands of the addition, subtraction, or multiplication operators

are of type integer or longint, the result is of type integer or longint as
described in Section 3.1.1.2; otherwise, the result is of type real.

5-7

Pascal Reference Maxil Expressions

NOTE

See Appendix D for more information on all arithmetic operations with
operands or results of type real.

The result of the identity or sign-negation operator is of the same type as the
operand.

The value of 1 div Jis the mathematical quotient of 1/}, rounded toward zero to
an integer or longint value. Anerror occurs if j=0.

The value of 1 mod j is equal to the value of
1-(1div =)

The sign of the result of mod is always the same as the sign of 1. Anerror occurs
if j=0.

The predefined constant maxint is of type integer. Its value is 32767. This
value satisfles the following conditlons:

* All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type integer.

* Any unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-
number arithmetic.

 Any binary integer operation on two whole numbers in this same interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval.
If the mathematical result is not in this interval, then the actual result is
the low-order 16 bits of the mathematical resuit.

* Any relational operation on two whole numbers in this same interval will be
correctly performed according to the mathematical rules for whole-
number arithmetic. ‘

5-8

Pascal Rererence Manual Expressions

5.1.3 Boolean Operators
The types of operands and results for Boolean operations are shown in Table
5-4.

Table 54
Boolean Operations
Cperatar| Cperation Cperang Types Type of Result
or disjunction
and conjunction boolean boolean
not negation

whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation is unspecified. For example, consider
the expression

true or boolTst(x)

where boolTst is a function that returns a boolean value. This expression will
always have the value true, regardiess of the result of boolTst(x). The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be important if boolTst has side-effects.

5.1.4 Set Operators
The types of operands and results for set operations are shown in Table S-5.

Table 5-5
Set Operations
Cperator| Cperatlon Cperand Types Type of Result
+ union
compatible
- difference seg;pes (see 5.1.4.1)
* intersection

Pascal Reference Manual Expressions

5.1.4.1 Result Type in Set Operations
The following rules govern the type of the result of a set operation where one
(or both) of the operands is a set of subr, where ordtyp represents any
ordinal-Ltype and subr represents a subrange of oratyp:

« If ordtyp s not the type Integer, then the type of the result s set of ordtyp.

« If ordtyp is the type integer, then the type of the result is set of 0..4087 in
the current implementation (0..32767 in a future implementation). Thisrule
results from the limitations on set-types (see Section 3.2.3).

5.1.5 Relational Operators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relational Operations

Gperstaor| Operation Cperand Types Type of Result
- equal compatible set-,
simple-, or
O not equal pointer-types
(& see below)
< less
> greater compatible
simple-types
<= less/equal (& see below) boolean
S greater/equal
= subset of compatible
o= superset of set-types
lert gperano:
in member of any ordinal-type T
rignm gperana:
setof T

5.1.5.1 Comparing Numbers
when the operands of <, >, >=, or {=are numeric, they need not be of compatible
type /7 one operand is real and the other is integer or longint.

5-10

Expressions

Pascal Reference Maral
NOTE
See Appendix D for more information on relational operations with
operands of type real.

5.1.5.2 Comparing Booleans
If p and q are boolean operands, then p~q denotes their equivalence and p<-q

denotes the implication of g by p (because false<true). Similarly, p<>qdenotes
logical “exclusive-or."

5.1.5.3 Comparing Strings
when the relational operators =, <>, ¢, >, <=, and > are used to compare

strings (see Section 3.1.1.6), they denote lexicographic ordering according to
the ordering of the ASCII character set. Note that any two string values canbe

compared since all string values are compatible.
5.1.5.4 Comparing Sets

If uand v are set operands, then u<=v denotes the inclusion of uinv, and u>=v
denotes the inclusionof vinu.
5.1.5.5 Testing Set Membership

The in operator yields the value true if the value of the ordinal-type operand is
amember of the set-type operand; otherwise it yields the value false.

5.1.5.6 Comparing Packed Arrays of Char
In addition to the operand types shown in the table, the = and <> operators can

also be used to compare a packed array[1..N] of char with a string constant
containing exactly N characters, or to compare two one-gimensional packed
arrays of char of Joentical type.

S.1.6 @-Operator ,
A pointer to a variable can be computed with the @-operator. The operand and

result types are shown in Table 5-7.

Table 5-7
Pointer Operation
Qperator| Cperation Qperand Type of Result
inter variable, parameter,
@ ?f,’rmaum procedure, or same as nil
function

@ is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of the

5-11

Fascal Reference Maal Expressions

value Is equivalent to the type of nil, and consequently can be assigned to any
pointer variable.

5.1.6.1 @-Operator with a Variable
For an ordinary variable (not a parameter), the use of @ is straightforward. For
example, if we have the declarations

type twochar = packed array[0..1] of char;
var int: integer;
tvocharptr: ~twochar;

then the statement

tvocharptr := @int

causes twocharptr to point to int. Now twocharptr~ is a reinterpretation of
the bit value of int as though it were a packed array{0..1] of char.

The operand of @ cannot be a component of a packed varlable.

5.1.6.2 @-Operator with a Value Parameter
when @ is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value
parameter in a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr := @foo
then fooptr~ is a reference to the value of foo. Note that if the
actual-parameter is a variable-reference, fooptr~ is not a reference to the

variable itself; it is a reference to the value taken from the variable and stored
on the stack.

5.1.6.3 @-Operator with a variable Parameter
when @ is applied to a formal variable parameter, the result is a pointer to the
actual-parameter (the pointer is taken from the stack). Suppose that fumis a
formal varlable parameter of a procedure, fle is a variable passed to the
procedure as the actual-parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := &fum
then fumptr is a pointer to fie. fumptr = is areference to fieitself.

5.1.6.4 @-Operator with a Procedure or Function
It is possible t0 apply @ 10 a procedure or a function, yielding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a pointer.
Currently the only use for a procedure pointer is to pass it to an
assembly-language routine, which can then JSR to that address.

If the procedure pointed to is in the local segment, @ returns the current
address of the procedure's entry point. If the procedure is in some other

5-12

Fascal Rererence Mamnual Expressions

segment, however, @ returns the address of the jump table entry for the
procedure.

In logical memory mapping (see workstiop Reference Manual for the Lisa), the
procedure pointer is always valid.

In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address will remain valid despite swapping because the jump table is not moved.

5.2 Function-Calls

A function-call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list
of formal-parameters, then the function-call must contain a corresponding list
of gctual-parameters. Each actual-parameter is substituted for the
corresponding formal-parameter. The correspondence is established by the
positions of the parameters in the lists of actual and formal parameters
respectively. The number of actual-parameters must be equal to the number of
formal parameters.

The order of evaluation and binding of the actual-parameters is unspecified.

rctlon-call
—| function-identifier +—<

>
actual-parameter-list J

wtzﬁjﬂaméef-ljst ,@ C »| actual-parameter > @ >
(D

aetual-parameter >

expression

variable-reference

procedure-identifier

function-identifier

A function-identifier is any identifier that has been declared to denote a
function.

5-13

Fascal Rererence Maal Expressions

Examples of function-calls:

smga, 63)
gcd{147, k)
sin(x+y)
eof (f
ord(f~)
5.3 Set-Constructors

A set-constructor denotes a value of a set-type, and is formed by writing
expressions within [brackets]. Each expression denotes a value of the set.

s Ong
i

mEMOEr o o f expression >
\@-v expression r/

The notation [] denotes the empty set, which belongs to every set-type. Any
member-group x..y denotes as set members the range of all values of the
base-type in the closed interval xto y.

If x is greater than y, then x..y denotes no members and [x..y] denates the empty
set.

All values designated in member-groups In a particular set-constructor must be
of the same ordinal-type. This ordinal-type is the base-type of the resulting
set. If aninteger value designated as a set member s outside the limits given in
Section 3.2.3 (0..4087 in the current implementation), the results are
unspecified.

Examples of set-constructors:

[red, ¢, green]
[1, 5, 10..k mod 12, 23]
[‘Aa*..'Z°, 'a"..'z', chr(xcode)]

set-constructor
s O,

5-14

Fascal Rererence Manual Statements

Chapter 6
STATEMENTS

6.1 SImple Statements ..iiiiiiiiiiiiiiiiciiieeetttieeencecansessansnnanaanes 6-3
6.1.1 ASSIgNMENt-StateMeNtScciieciicincnacaccaceccaanaess 6-3
6.1.2 Procedure-StalemMeNtS .. i iiieieiteeireiereereeeencnancnsnnns 6~
6.1.3 GO0 S Al Mt S« eeeieeiiieeieeenrsenessssescsancesncansnnnns 6-5
6.2 SUrUCIUYEO-SlalemMENS tuiiiiiiiiiieiiiereeecneeteeereneescansasnnannns 66
6.2.1 CompOoUNd-StaleMENTS cciiieieieienaeeeneeecnaccassannnsacanns 66
6.2.2 Conditional-Statements «.uiieiiiiiiiieiiieirneereecenennennanes 6-7
6.2.2.1 If-StalementS. . .ccciiieiiiiiiiiieeienaeenctanncsassocsancannen 6-7
6.2.2.2 Case-Stalements .coiviiiiiiieatetacacececcaccacsnsnansannsne 6-7

6.2.3 Repetitive-Statements (. veiiiiiiiiiiiiiiiiiiietereaeteeaaeaaen 6-9
6.2.3.1 Repeat-Statements ...iiiiiiiiiiiiiiiiiiiiiieieerecenanncees 6-9
6.2.3.2 While-Stalements cuueuiiieiiiiiiiiiiieiaecenaeennnnanas 6-10
6.2.3.3 FOr-StatemeBNLS .eeveeeeerenreseeeeeecesecnnsessasassancnns 6-11

6.2.4 WILN=SLaleMENES civeeieiiiiiiieiiiiieiateeeetecncccenaennnnnnn 6-13

6-1

Pascal Reference Manual Statemernts

6-2

Pascal Rererence Manual Statements

STATEMENTS

Statements denote algorithmic actions, and are executable. They can be
prefixed by labels; a 1abeled statement can be referenced by a goto-statement.

statement

>
\b label -0@/ h simple-statement

structured-statement

L2 o[Sigit-sequence |—»

A digit-sequence used as a label must be in the range 0..9999, and must first be
declared as described in Section 2.1.

6.1 Simple Statements
A simple-statement is a statement that does not contain any other statement.

.s'i/;zale-statemer}t

| assignment-statement |

procedure-statement |

goto-statement >

6.1.1 Assignment-Statements
The syntax for an assignment-statement is as follows:

assignment -statement
T variable-reference
function-identifier = expression —»

The assignment-st.atement can be used in two ways:

= To replace the current value of a variable by a new value specified as an
expression

6-3

Pascal Reference Manual Statements

« Tospecify an expression whose value is to be returned by a function.

The expression must be assignment-compatible with the type of the variable or
the result-type of the function.

NOTE

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment -statements:
X 1= y+2;
p := (1<=1) and (i<100);
1 := sqr(k) - (i%J).

huel := [blue, succ(c)).
6.1.2 Procedure-Statements

A procedure-statement serves Lo execute the procedure denoted by the
procedure-identifier.

proceaure-statement
procedure-identifier <

Y
actual-parameter-list

(A procedure-identifier is simply an ldentifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Section 7.3), the procedure-
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence is established
by the positions of the parameters in the lists of actual and formal parameters
respectively.

The rules for an actual-parameter AP depend on the corresponding formal-
parameter FP:

« If FP is a value parameter, AP must be an expression. The type of the value
of AP must be assignment-compatible with the type of FP.

« If FP is a variable parameter, AP must be a variable-reference. The type of
AP must be identical to the type of FP.

6-i

Pascal Rererence Mamal siatements

- If FP is a procedural parameter, AP must be a procedure-identifier. The
type of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP.

« If FP is a functional parameter, AP must be a function-identifier. The type
of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP, and the result-type of AP must be
identical tothe result-type of FP.

NOTE

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of proceaure-statements:

printheading;

transpose(a, n, m);

bisect(fct,-1.0,+1.0.%).
6.1.3 Goto-Statements

A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement.

qolo-statement (g)m) ol 1208l o

NOTE

The constants that introduce cases within a case-statement (see
Section 6.2.2.2) are not labels, and cannot be referenced in
goto-statements.

The following restrictions apply to goto-statements:

e The effect of a jump into a structured statement from outside of the
structured statement is unspecified.

» The effect of a jump between the then part and the else part of an if-
statement is unspecified.

» The effect of a jump between two different cases within a case-statement
is unspecified.

Pascal Rererence Manual ' Statements

6.2 Structured-Statements :
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-

statement).

structureg-statement #| compound-statement
conditional-statement |
repetitive-statement
with-statement >

6.2.1 Compound-Statements
The compound-statement specifies that its component statements are to be
executed In the same sequence as they are written.

compound-statement
begin statement

Example of compolna-siatement:

begin
2 =X
X =Yy
y:==2
end

An important use of the compound-statement is to group more than one
statement into a single statement, in contexts where Pascal syntax anly allows
one statement. The symbols begin and end act as “statement brackets.”
Examples of this will be seen in Section 6.2.3.2.

Fascal Rererence Manual Statements

6.2.2 Conditional-Statements
A conditional-statement selects for executlon a single one (0r none) of its
component statements.

cona/tional-statement >

- {f-statement l
L’ case-statement
6.2.2.1 If-Statements

The syntax for if-statements is as follows:

If-statement expression r)
Cb(then)—b statement _/ >
\-b(else statement

The expression must yield a result of type boolean. If the expression yields the
value true, the statement following the thenis executed.

If the expression yields false and the else part is present, the statement
following the else is executed; if the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

if el then
if e2 then s1
else sz

is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then s1
else s2
end

Examples of if-statements:

if x < 1.5 then z := x+y else z := 1.5;
if p1 <& nil then p1 := p1~.father;

6.2.2.2 Case-Statements
The case-statement contains an expression (the selector) and a list of
statements. Each statement must be prefixed with one or more constants

6-7

Pascal Reference Manual ' statements

(called case-constants), or with the reserved word otherwise. All the
case-constants must be distinct and must be of an ordinal-type that is
compatible with the type of the selector.

case \ 7
otherwise-clause \b@/
—i@—(-b constant —j—-0®—> statement
(D

otherwise-clause .@_.(Om‘ fise)_. ‘statement ——»

The case-statement specifies execution of the statement prefixed by a
case-constant equal to the current value of the selector. If no such case-.
constant exists and an otherwise part is present, the statement following the
word otherwise is executed; if no otherwise part is present, nothing is
executed.

Examples of case-statements:
case operator of

plus: X := X+y;
minus: X := X-y;
times: X := xny

end

case 1 of
1: x == sin(x);
2: X := c0S(X);
3,4,5: X = exp(x);
othervise x := 1In(x)

end

Fascal Rerference Marnual ' Statements

IMPLEMENTATION NOTE

In the current implementation, the case-statement will not work
correctly if any case-constant is of type longint or the value of the
selector is of type longint.

6.2.3 Repetitive-Statements
Repetitive-statements specify that certain statements are to be executed

repeatedly.
repetitive-siatement [yeneat-statement
while-statement
for-statement >

6.2.3.1 Repeat-Statements
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement.

18pe5t~statement
—(repeat statement -j—-b(mm)—-i expression |—»

The expression must yield a result of type boglean. The statements between
the symbols repeat and until are repeatedly executed until the expression
yields the value true on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression is
evaluated arZerexecution of the sequence.

Examples of repeat-statements:

-9

Pascal Rererence Marmal Statements

repeat
process(f~);
get(f)
until eof(f)
6.2.3.2 Wwhile-Statements
A while-statement contains an expression which controls the repeated
executlon of one statement (possibly a compound-statement) contained within
the while-statement.

while-statement

——»{(while }—»| expression [—»{ do }—{ statement |—»

The expression must yield a result of type boolean. It is evaluated serore the
contained statement Is executed. The contalned statement is repeatedly
executed as long as the expression yields the value true. If the expression
ylelds false at the beglnning, the statement Is not executed.

The while-statement:
vwhile b do body
is equivalent to:

if b then repeat
body
until not b

Examples of while-statements:
while afi] <> xdo 1 := i+1

vhile 1>0 do begin
if odd(1) then z := z»x;
1:=1div 2;
X := sqr{x)

end

while not eof(f) do begln
process(f~);
get(f)

end

6-10

Pascal Reference Manual statements

6.2.3.3 For-Statements
The for-statement causes one contained statement (possibly a compound-
statement) to be repeatedly executed while a progression of values is assigned
toavariable called the control-variable,

rar-statement

—»(for }-¥{ control-variale
C @ ®i final-value :st.at.enxent —

initial-value -)

Lcontrol-variable y[™ o iapie-identifier |—

inltial-valie_J[eo e sl

The control-variable must be a variable-identifier (without any qualifier). It
must be local to the innermost block containing the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
orti:nnal-t.ype, and the Initlal and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement 1s constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. Wwhen each value is assigned to the control-variable, it is
compared to the final-value; if it is less than or equal to the final value, the
contained statement is then executed.

If the for-statement is constructed with the reserved word downto, each
successive value of the control-variable is the predecessor (see Section 3.1) of
the previous value. When each value is assigned to the control-variable, it is

6-11

Pascal Reference Marnual statements

compared to the final-value; if it is greater than or equal to the final value, the
contained statement Is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect is unspecified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the for-statement was
exited by agoto. Apart from these restrictions, the for-statement:

for v := el to e2 do body

is equivalent to:
begin
templ := el;
temp2 := e2;
if templ <= temp2 then begin
v := templ;
body;

while v <> temp2 do begin
v = suce(v);

body
end
end
end
and the for-statement.:
for v := el downto e2 do body
is equivalent to:
begin
templ := el;
temp2 := e2;
if templ >= temp2 then begin
:= templ;
body,
vhile v <> temp2 do begin
:= pred(v);
end
end
end

where templ and temp2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program. :

6-12

Pascal Rererence Manual Statements

Examples of for-statements:
for 1 := 2 to 63 do if afi] > max then max := a[i]
for i :=1tondofor j:=1tondo

begin
X :=0;
for k := 1 tondox :=x + m[ik]2[k, jl;
m[i, j] :=x

end

for ¢ := red to blue do g(c)

6.2.4 Wwith-Statements
The syntax for a with-statement is

with-statement

—b(with}(b recorg-variable-reference statement |-

(A record-variable reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes variable-references within the statement
following the word do. Fields of the record- variable can be referenced by
their field-identifiers, without explicit reference to the record-variable.

Example of with-statement.
vith date do if month = 12 then begin
month := 1;
year := year + 1
end
else month := month + 1
This is equivalent to:

if date.month = 12 then begin
date.month := 1;
date.year := date.year + 1

end

else date.month := date.month + 1

6-13

Pascal Rererence Mamual Statements

within a with-statement, each variable-reference is checked to see if it canbe
interpreted as a field of the record. Suppose that we have the following

declarations:
type recTyp = record
foo: integer;
bar: real
end;

var baz: recTyp;
foo: integer;
The identifier foo can refer both to a fleld of the record variable baz and to a
variable of type integer. Now consider the statement

vith baz do begin
foo := 36; {which foo is this?}

end

The foo in this with-statement is a reference to the fleld baz.foo, not the
variable foo.

The statement:
vithviv2, ... vndos
is equivalent to the following "nested” with-statements:

vith v1 do
with v2 do

vithvndo s

If vn in the above statements is a field of both v1 and v2, it is interpreted to
mean v2.vn, not vi.vn. The list of record-variable-references in the with-
statement is checked from right toleft.

If the selection of a variable in the record-variable-list involves the indexing of
an array or the de-referencing of a pointer, these actions are executed before
the component statement is executed.

warning: 1f a variable in the record-variable-list is a pointer-reference, the
value of the pointer must not be altered within the with-statement. If the
value of the pointer is altered, the results are unspecified.

6-14

Pascal Rererence Manual Statements

Example of unsare with-statement using pointer-reference:
vith ppp~ do begin

nev(ppp); {Don't do this ...}

f)ﬁf):mo(; {... or this}

end

6-15

Pascal Rererence Manual Statements

6-16

Fascal Rererence Manal Procegures & Fuictions

Chapter 7
PROCEDURES AND FUNCTIONS
7.1 Procedure-Declarations «ueeeeeeiiieeiereeeneeecneentecccerenanannas 7-3
7.2 (S Tod A0 g T B =Tod F=1 €= 14 (0] 6 J 76
7.3 oY = 111 =1 K<) & S 7-7
7.3.1 ValUE ParaMELerS vieiieeerereeeneeeneeseseenecesnsecsssasannnnns 7-9
7.3.2 N2 g El o) (SR o) €2 11111 15) o SN 7-9
7.3.3 ProceauUral ParamelerS .ueeeeerereeenesnennsecsnnscsscnsananas 7-9
7.3.4 FUNCLIONAl ParameterS . o e e i ir i ieeeeieneeerenaresacncsanns 7-11
7.3.5 Parameter List Compatibility ...coveniiiierniiiiiiiinn... 7-11

Pascal Rererence Manal Proceures & Fuictions

Pascal Rererernce Maral Procedures & Functions

PROCEDURES AND FUNCTIONS

7.1 Procedure-Declarations
A procedure-declaration associates an identifier with part of aprogram so that

it can be activated by a procedure-statement.
proceagure-aeclaration

——| procedure-heading -b@-b procedure-body -b@——-»

procegure-body

The procedure-heading specifies the identifier for the procedure, and the
formal parameters (if any).

proceaure-eading

——»(procedure)—»| identifier \H

Vs
formal-parameter-list

The syntax for a formal-parameter-list is givenin Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure's identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure are
specified by the statement-part of the procedure’s block. If the procedure’s
identifier is used in a procedure-statement within the procedure's block, the
procedure is executed recursively.

7-3

rascal Rereremnce Manal Procegures & Functions

Example of a procecure-ceclaration:

readInteger (var f: text; var x: integer);
var value,digitvalue: integer;

begin
vnile (f~ = * ') and not eof(f) do get(f);
value := 0;

vhile (f~ in ['0'..'9"]) and not eof(f) do begin
digitvalue := ord(f~) - ord('0');
value := 10*value + digitvalue;
get(f)
end;
X := value
end;

A procedure-declaration that has forward instead of a block is called a forward
declaration. Somewhere after the forward declaration (and in the same block),
the procedure is actually defined by a defining declaration — a procedure-
declaration that uses the same procedure-identifier, omits the formal-
parameter-list, and includes a block. The forward declaration and the defining
declaration must be local to the same block, but need not be contiguous; that is,
other procedures or functions can be declared between them and can call the
procedure that has been declared forward. This permits mutual recursion.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered to be declaredat the
place of the forward declaration.

Example of forwarad aeclaration:
procedure valter(m n: integer); {forward declaration}

forwvard;
procedure clara(x, y: real);
begin
valter(s, 5); {OK because valter is forvard declared}
end;

procedure walter; {defining declaration}

clara(8.3, 2.4);

end;

A procedure-declaration that has external instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a .PROC in the case

Pascal Rererernce Mamual Proceaures & Functions

of assembly language). The external code must be linked with the compiled
Pascal host program before execution; see the Worksiigo Reference Mamual for
et isa for detalls.

Example of anextemal procecure-geclaration:
procedure makescreen(index: integer);
external;

This means that makescreen is an external procedure that will be linked to the
host program before execution.

IMPLEMENTATION NOTE

It is the programmer's responsibility to ensure that the external
procedure is compatible with the external declaration in the Pascal
program; the current Linker does no checking.

NOTE

This Pascal (unlike Apple II and Apple III Pascal) does not allow a
variable parameter of an external procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
pointer-type, as in the following example:

type bigpaoc = packed array[0..32767] of char;
bigpaocptr = ~bigpaoc;
procedure whatever (bytearray: bigpaocptr);
external;

The actual-parameter can be any pointer value obtained via the
@-operator (see Section 5.1.6). For example, if dots is a packed array of
boolean, it can be passed to whatever by writing

vhatever(&dots)

This description of external procedures also applies to external functions.

7-5

Pascal Rererence Maal Proceaures & Functions

7.2 Function-Declarations
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pointer-type.

runiction-geclaration .
——sf{ function-neading |)#{ function-oody }o(G)—»
runction-boay ol block

external >

The function-heading specifies the identifier for the function, the formal
parameters (if any), and the type of the function result.

M—m—ﬁ'm—{fwﬁm}b identifier -)

(% 7 »(-)-o{ resuit-type }-»

formal-parameter-list

result-type

®{ ordinal-type-identifier
real-type-identifier
pointer-type-identifier >

The syntax for a formal-parameter-nst is glveninSection 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function’s identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expression is evaluated by executing the function, and replacing the
function-call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned. If

7-6

Pascal Rererence Maral Procegures & Functions

no such assignment-statement exists, or if it exists but is not executed, the
value returned by the function is unspecified.

If the function’s identifier is used in a function-call within the function’s
block, the function is executed recursively.

Examples of function-geclarations:

function max(a: vector; n: integer): real;
var x: real; i: integer;

begin
x := af1};
for 1 := 2 to n do if x < 3[i] then x := a[i]
max := X

end; :

function power(x: real; y: integer): real; { y >= 0}
var v,z: real; i: integer:
begin
V=X 2z2:=11:=y
vhile i > 0 do begin
{zr(unxl) = x = y }
if ood(1) then Z = 2%;

i:=1div 2
:= sqr(v)
end;
(2 = xmny }
pover := z
end;

A function can be declared forward in the same manner as a procedure (see
Section 7.1above). This permits mutual recursion.

A function-declaration that has external instead of a block defines the Pascal
interface to a separately compiled or assembled external routine (a .-FUNC in
the case of assembly language). See the explanationin Section 7.1 above.

7.3 Parameters
A formal-parameter-list may be part of a procedure-declaration or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.

If 1t is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

7-7

FPascal Rererence Mamal Procegures & Functions

this case there is no associated block and the identifiers of parameters in the
formal-parameter-list are not significant (see Sections 7.3.3 and 7.3.4 below).

formal-parameter-list
»(O | parameter-geclaration |
procedure-heading
function-heading

Qe

oal: amzef-wwaum » identifter-list _.@-p type-identifier

There are four kinds of parameters: value parameters, variable parameters,
procedural parameters, and functional parameters. They are distinguished as

follows:
* A parameter-group preceded by var is alist of variable parameters.
* A parameter-group without a preceding var is a list of value parameters.

* A procedure-heading or function-heading denotes a procedural or
functional parameter; see Sections 7.3.3 and 7.3.4 below.

NOTE

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type ina
formal~paramet.er—list. To use a type such as array{0..255] of char as
the type of a parameter, you must declare a type-identifier for this
type:

type charray = array[0. .255] of char;

The identifier charray can then be used in a formal-parameter-list to
denote the type.

Pascal Reference Mamial Proceoures & Funclions

NOTE

The word flle (for an "untyped” file) is not allowed as a type-identifier
in a parameter-declaration, since it is a reserved word. To use a
parameter of this type, declare some other identifier for the type file —
for example,

type phyle = file;

The identifier phyle can then be used in a formal-parameter-list to
denote the type file.

7.3.1 Value Parameters

For a value-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of flle-type or of any structured-type that contains a
file-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter in a
procedure-statement or function-call (see Sections 5.2 and 6.1.2) must be a
variable-reference. The formal variable-parameter denotes this actual
variable during the entire activation of the procedure or function.

within the procedure or function, any reference to the formal variable-
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Jaent/ca/ to that of the formal variable-parameter.

NOTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a pointer, these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (Including string-
Lypes) cannot be used as actual variable parameters.

7.3.3 Procedural Parameters
when the formal-parameter is a procedure-heading, the corresponding
actual-parameter in a procedure-statement or function-call (see Sections 5.2
and 6.1.2) must be a procedure-identifier. The identifier in the formal
procedure-heading represents the actual procedure during execution of the
procedure or function receiving the procedural parameter.

7-9

Pascal Rererence Maal Proceadures & Functions

Example of procecural parameters:
program passProc;

var 1: integer;
procedure a(procedure x) {x is a formal procedural
parameter. }
begin

vrite("About to call x °);
x {call the procedure passed as parameter}
end;
procedure b;
begin
vrite("In procedure b*)
end;
function c(procedure x): integer;
begin
X; {call the procedure passed as parameter}
C:=2
end;
begin
a(b); {call a, passing b as parameter}
i:= c(b) {call c, passing b as parameter}
If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5). However,
only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-list is omitted.

Example of proceaural parameters wilh thelr own formal-parameter-1/sts:

program test;
procedure xAsPar(y: integer);

vriteln('y=", y)
end;

procedure callProc(procedure xAgain(z: integer));
xAgain(1)
end;

begin {body of program}
mcallProc(xAsPar)

7-10

Fascal Rererence Mamual Proceagures & Functions

If the procedural parameter, upon activation, accesses any non-local entity (by
variable-reference, procedure-statement, function-call, or label), the entity
accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, firstPasser. Suppose that the following sequence takes place:

1. firstPasser is executing.

2. firstPasser calls a procedure named firstReceiver, passing pp as an
actual parameter.

3. firstReceiver calls secondReceiver, again passing pp as an actual
parameter.

4. secondReceiver calls pp (first execution of pp).

5. secondReceiver calls thirdReceiver, again passing pp as an actual
parameter.

6. thirdRecelver calls firstPasser (indirect recursion), and passes pp to
firstPasser as an actual parameter.

7. firstPasser (executing recursively)calls pp (second execution of pp).

Thus the procedure pp is called first from secondReceiver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has alocal entity named xxx.

Each time pp is called, which xxx does it access? The answer is that in esc?
case, pp accesses the xxx that is local to the 7irs¢ execution of firstPasser —
that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

7.3.4 Functional Parameters
when the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the
additional rule that corresponding formal and actual functions must have
loentical result-types.

7.3.5 Parameter List Compatibility
Parameter list compatibility is required of the parameter lists of corres-
ponding formal and actual procedural or functional parameters.

7-11

Pascal Reference Manal Procegures & Fuctions

Two formal-parameter-lists are compatible if they contain the same number of
parameters and if the parameters in corresponding positions match. Two
parameters match if one of the following is true:

» They are both value parameters of /dentical type.
» They are both variable parameters of Joentical type.
» They are both procedural parameters with compatible parameter lists.

« They are both functional parameters with compatible parameter lists and
loentical result-types.

7-12

Fascal Rererence Maal Frograms

Chapter 8
PROGRAMS
35 B 13- S 8-3
8.2 (3 €000) =111 T o= 1 €2 1111=14=) € 8-3
L0 TR 11111 g1 < 18 (u o 8-3

8-1

Fascal Reference Manal Frograms

8-2

Pascal Rererence Mamnal

8.1 Syntax

PROGRAMS

Programs

A Pascal program has the form of a procedure declaration except for its
heading and an optional uses-clause.

progiram

—»

program-heading

program-headtng

—»{program)-»{ identifier

program-parameters .

O

block —»

\
uses-clause H : >—‘

uses-clause

okl

program-parameters

fdentifier-list —»

identifier-list —»

The occurrence of an ldentifier immediately after the word program declares it
as the program’s identifier.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

8.2 Program-Parameters
Currently, any program-parameters are purely decorative and are totally

ignored by the compiler.

8.3 Segmentation
The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segment™). Any other block can be
placed in a different segment by using the $S compiler command (see Chapter
12 and Appendix A). If no $S command is used in the program, all code is placed
in the blank segment. Caode from a program can be placed in the same segment
with code from a regular-unit, but it cannot be mixed with code from an
intrinsic-unit (see Chapter 9).

8-3

Pascal Reference Mamual - Programs

8-4

Pascal Reference Maual
Chapter 9
UNITS
9.1 RegUIAr-UNILS «ooueiiiiiiiiiiiiiiiiiiiiciie it aas 9-3
9.1.1 WritingRegular-Units ...ooiiiiiieiiiiiiiiiiiiiiiiiiiiiiaaanees 9-3
9.1.2 UsingRegular-Unitscceieiiiiiiiiiiiiiiiiicieiciicaee 9-6
VA (114 ¢ 1453 (ol o)1 & S 9-6
9.3 Unitsthat Use Other UnitS coveeeeeiniiiiiiineniiiiiiiiiiiicineencnacanns 9-6

Units

Fascal Rererence Mamnuasl

9-2

nits

FPascal Rererence Manual nits

UNITS

A unit is a separately compiled, non-executable object file that can be linked
with other object files to produce complete programs. There are two kinds of
units, called regular-upits and intrinsic-units. In the current implementation
of the wWorkshop, you can use intrinsic-units that are provided, but you cannot
write new ones.

Each unit used by a program (or another unit) must be compiled, and its object
file must be accessible to the compiler, before the host program (or unit) canbe
compiled.

9.1 Regular-Units
Regular-units can be used as a means of modularizing large programs, or of
making code available for incorporation in various programs, without making
the source available.

when a program or unit (called the host) uses a regular-unit, the Linker inserts
acopy of the compiled code from the regular-unit into the host's object file.

By default, the code copied from the regular-unit is placed in the blank segment
(see Chapter 8). The code of the entire unit, or of blocks within the unit, can be
placed in one or more dif ferent segments by using the $S compiler command (see
Chapter 12).

9.1.1 Wwriting Regular-Units
The syntax for a regular-unit is:

(-b Interface-part_|#{ implementation-part |(end }»()—»

Lnltneddng o it)] identifler —»-

9-3

Pascal Rerference Mamual wnits

Interacepart o iertace) |

uses-clause P)

constant-declaration-part j

1 ¢) ¢

type-declaration-part —)

variable-declaration-part —)

¢ | ¢

procedure-and-function-geclaration-part ——=»

Jmlementaaonﬂartb(ilmlementat.im)) N
{ .
N constant-declaration-part j

P
| type-declaration-part h)

r
\{ variable-declaration-part —)

(
| procedure-and-function-declaration-part ——

The interface-part declares constants, types, variables, procedures, and
functions that are "public,” 1.e. avallable to the host.

The host can access these entities just as if they had been declared in the host.
Procedures and functions declared in the interface-part are abbreviated to
nothing but the procedure or function name, parameter specifications, and
function result-type.

9-4

Pascal Rererence Man/al Lnits

NOTE

Since the Interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3).

The implementation-part, which follows the last declaration in the interface-
part, begins by declaring any constants, types, variables, procedures, or
functions that are “private," i.e. not available to the host.

The public procedures and functions are re-declared in the implementation-
part. The parameters and function result types are omitted from these
declarations, since they were declared in the interface-part; and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

NOTES

There is no “Initialization” section in Pascal units on the Lisa (unlike
Apple 11 and Apple III Pascal). If a unit requires initialization of its
data, it should define a public procedure that performs the initial-
ization, and the host should call this procedure.

Also note that global labels cannot be declared inaunit.

A short example of aunit is:

unit Simple;
- INTERFACE {public objects declared}
const Firstvalue=1;
procedure AddOne(var Incr:integer);
function Addl(Incr:integer):integer;
IMPLEMENTATION
procegn.aream;e, {note lack of parameters...}
beg
Incr:=Incr+1
end;
function Addl; {...and lack of function result type}
begin
Addl:=Incr+1
end
end.

9-5

Fascal Rererence Manal) Lnits

9.1.2 Using Regular-Units .
The syntax for a uses-clause s given in Chapter 8. Note that inahost program,
the uses-clause (If any) must immediately follow the program-heading. In a
host unit, the uses-clause (if any) immediately follows the symbol interface.
Only one uses-Clause may appear in any host program or unit; it declares all
units used by the host program or unit.

See Section 9.3 for the case where a host uses a unit that uses another unit.

It is necessary to specify the file to be searched for regular units. The $U
compiler command specifies this file. See Chapter 12 for more details.

Assume that the example unit Simple (see above) is compiled to an object file
named APPL:SIMPLE.OBJ. The following is a short program that uses Simple.
It also uses another unit named Other, which is in file APPL:OTHER.OBJ.

- program CallSimple;
uses {$U APPL:SIMPLE.OBJ} {file to search for units}

Simple, {use unit Simple}
{SU APPL:0THER.0BJ} {file to search for units}
Other; {use unit Other}
var i;l‘:integer:
i:=Firstvalue; {Firstvalue is from Simple}
vrite("i+1 is °,Add1(i)); {Addl is defined in Simple}

vrite(xyz(i)) {xyz is defined in Other}

9.2 Intrinsic-Units
The only intrinsic-units you can use are the ones provided with the wWorkshop
software.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code in the system. The code is kept on disk, and when
loaded into memory it can be executed by any program that declares the
intrinsic-unit (via auses-clause, the same as for regular-units).

By default, the system looks up all intrinsic-units in the system intrinsics
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library,
so the $U filename compiler command is not needed with intrinsic-units.

9.3 Units that Use Other Units
As explained above, the uses-clause In the host must name all units that are
used by the host. Here “used"” means that the host directly references
something in the interface of the unit. Consider the first diagram on the next

page.

9-6

FPascal Rererence Maal

unitA

interface
uses unitC; .
_ unitC
Host Program Implementation I—__ |
uses unitA, unitB;

interface

unitB

implementation

interface

Implementation

The host program directly references the interfaces of unitA and unitB; the
uses-clause names both of these units. The implementation-part of unitA also
references the interface of uitC, but it is not necessary to name unitC in the
host-program's uses-clause.

In some cases, the uses-clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly like the previous one
except that this time the /nterface of unitA references the interface of unitcC,
and unitC must be named in the host-program's uses-clause. Note that unitC
must be named sefore unitA.

unitA

interface
uses unitC;

unitC
I implementation
interface

unitB

implementation

interface

implementation

|

In a case like this, the documentation for unitA should state that unitC must be
named in the uses-clause before unitA.

9-7

nits

Pascal Reference Manal nits

Pascal Rererence Maral Input/Cutput

Chapter 10
INPUT/OUTPUT

10,1 INtroguUCHION L0 1/0 .ueeiiiei ittt iieiacieneeieetenecannencnnnnnns 10-3
10.1.1 [B11Y) (o B o= 10-4
10.1.2 External FlleSpecies.....cccveiiiiiiiniiiiiiiiiiiiiaaanns 10-4
10.1.3 The RESEL PrOCEOUIE ..cveeeiiiieeeaierennsennnseennssnnnnnn 10-5
10.1.4 The RewI e PrOCEOUNe .cevieieieirireereerensnsnanaansas 10-7
10.1.5 ThE ClOSE PIOCEAUIE vveieeeeeeieeneneereeesscanssesnsasnnans 10-8
10.1.6 TheIoresult FUNCLION ..eeeiee i ieieiieeiieieeiieeeianeneas 10-9
10.1.7 The EOf FUNCLION ...veeiiiieieeiieereiieneneerenncescnanennns 10-9
10.2 Recorgd-Or ented /0. cuer it ieeiiieieieeeteeseeessseesnssncnanans 10-10
10.2.1 The GELPYOCEAUIE ..eveeeieiiiiereieeeeeeiieeeannnsecanannns 10-10
10.2.2 THEPUL PIOCEOUIR ..viveiriieerirecsereneesccsacnserannsanss 10-11
10.2.3 The SEEK PYOCEAUIE ..eeueeereeiiieeeenneeeseeiarnnsesencanens 10-11
10.3 TexXt-Orfente0I/O couuieeiieiiiieiiieieieeeerecseeeeeseccncescnanens 10-12
10.3.1 The REa0 PIOCEOUNE ..cveee e ieeieienesescnneerensssscncanens 10-13
10.3.1.1 ReadwithaCharVvariableceeeeeereiiereenrcnannnn. 10-14
10.3.1.2 Read withanInteger or Longint Variable............... 10-14
10.3.1.3 ReadwithaRealVariableccciverieerreriernennnnnn. 10-15
10.3.1.4 ReadwithaStringVariable......cccivvviriiiiiinnnnnnnn. 10-15
10.3.1.5 Read withaPacked Array of Char Variable 10-16

10.3.2 The ReadlNn PrOCEOUIe. ..ccuereieieieeieeeeeneaenncecenannnes 10-16
10.3.3 The Wrile PrOCeOUIe «.vieeriieiieiciiieeenenncennnanennes 10-17
10.3.3.1 OULPUL-SPECS - e eeeererereenenennnisesesannsssssannncnann 10-18
10.3.3.2 WritewlthaCharValueeeeviveuenierneenenaennnnen 10-18
10.3.3.3 Write withanInteger or Longint Valuecceuuue. 10-18
10.3.3.4 WritewithaRealVallevoveriierieiriereenciennnnns 10-18
10.3.35 WritewithaStringValueccceeevvvieviiiinninnnnnn. 10-19
10.3.3.6 Write withaPacked Array of Char Value................ 10-19
10.3.3.7 WritewithaBooleanValuec.ceveiernierneecnnnnnnns 10-19

10.3.4 The WILeIN PrOCEOUIE ovrieerieeeerecenenesenennceaacenns 10-20
10.3.5 The EOIN FUNCLION «eveeeeiiiiieieieeierenciseensensencannns 10-20
10.3.6 The Page PYOCEAUIE «.cuueverreeianenceerneseaseascrnsaaannas 10-21
10.3.7 Keyboard Testing and Screen Cursor Control 10-21
10.3.7.1 TheKeypress FUNCLION....ceeiiiiiieiiaiiiienaieans 10-21
10.3.7.2 The GOlOXYPYOCEOUIE ...cvvverereenreneenceneannannanens 10-21

104 UNLYPEAFHE /O eneneeeeieieeeeeeereeiceeesessnensenenennnnnns 10-21
10.4.1 The Blockread FUNCLION ..cveeeieiiieeiieeeireensenenncannes 10-22
10.4.2 The BlocKwrile FUNCHION .o e e ieiieiitiiececenneiennanns 10-22

10-1

Pascal Reference Maral Inoul/Cutput

10-2

Pascal Reference Manual Inout/Cutput

INPUT/OUTPUT

This chapter describes the standard (“built-in") 170 procedures and functions
of Pascal on the Lisa.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a "block" surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the

program.
NOTE
Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter and Chapter 11 use a modified BNF notation, instead of syntax
diagrams, to indicate the syntax of actual-parameter-lists for standard
procedures and functions.

Example:
Parameter List:nev(p [, t1, ... tn])

This represents the syntax of the actual-parameter-list of the standard
procedure new, as follows:

ep, t1, and t2~ stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

* The notation t1, ... t/7 means that any number of actual-parameters can
appear here, separated by commas.

* Square brackets|[}indicate parts of the syntax that canbe omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Introduction to 1/0
This section covers the I/0 concepts and procedures that apply toall file types.
This)includes the types text (see Section 10.3) and “untyped” files (see Section
10.4).

Touse a Pascal file variable (any variable whose type is a file-type), it must be
associated with anexternal file. The external file may be a named collectionof
information stored on a peripheral device, or (for certain file-types) it may be
the peripheral device itself.

10-3

Pascal Reference Manusl Input/Cutput

The association of a file variable with an external file is made by opening the
file. An existing file is opened via the reset procedure, and a new file is
created and opened via the rewrite procedure.

NOTE

Pascal on the Lisa does not provide automatic I/0 checking. To check
the result of any particular I/0 operation, use the ioresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 1/0, there are two types of peripheral devices:

« A file-structyred device is one that stores files of data, such as adiskette.

= A character device Is one whose input and output are streams of individual
bytes, such as the Lisa screen and keyboard or a printer.

10.1.2 External Flle Specles

There are three “species” of external files that can be used in Pascal 1/O
operations:

* A datafile Is any flle that is stored on a flle-structured device and was /ot
originally created in association with a file variable of type text.

e A textflle is a flle that is stored on a file-structured device and was
originally created in association with a file variable of type text. Textfiles
are stored in a specialized format (see Section 10.3).

« Acharacter device canbe treatedas a file.

Table 10-1 summarizes the effects of all possible combinations of different file
variable types and external flle species. The “ordinary cases” in the table
reflect the basic intent of the various file-types. Other combinations, such as
block-oriented access to a textfile via a variable of type file, are legal but may
require cautious programming.

10-4

Fascal Rererence Marial

Table 10-1
Combinations of File Variable Types with External File Species

Inout/Cuiput

and Categories
var f: file of .
someType; var f: text; var f: file;
Ordinary case. (Textfile format | Ordinary case.
datafile After reset, assumed!) After | Block access.
f~ = 1ist record }resets, f~ is
file. unspecified.
(Textfile format | Ordinary case. | (Textfile format
not assumed!) Textfile format J not assumed!)
After reset», assumed. After | Block access.
textfile | e~ _ 15t record }reset, £~ is
of flle (as unspecified.
declared). -
After reset, - Ordinary case. { Block access,
f~ = 1st char. After reset, if allowed by
character | from device f~ is unspeci- | device.
device |(system waits for | fied (no wait
it!). I/0 error if |} for input char).
file record type
not byte-sized.
* [n these cases, theloresult runction will return a "warning”
d.e., a negativenumber) immediately after the reset gperation.

10.1.3 The Reset Procedure
Opens an existing file.

Parameter List: reset(f, title)

1. fis a variable-reference that refers to a variable of file-type. The file
must not be open.

2. title is an expression with a string value. The string should be a valld
pathname for a file on a file-structured device, or a pathname for a
character device.

r

10-5

Pascal Reference Manual Input/Cutput

NOTE

Both parameters are required (unlike Apple 11 and Apple 1lI Pascal,
where the second parameter is optional).

Reset(f, title) finds an existing external file with the pathname title, and
associates f with this external file. (If there is no existing external file with
the pathname title, an 1/0 error occurs; see Section 10.1.6.)

If title is the pathname of acharacter device, then
« Eof(f)becomes false.

« If f is of type text, the value of £~ is unspecified. The next reador readinon
f will wait until a character is available for input, and begin reading with
that character.

« If f is of type file and the device is one that allows block access, there isno
file buffer variable f~ and the “current file position” is set to the first
block (block 0) of the file. If the device does not allow block access, an 1/0
error occurs (see Section 10.1.6).

» If fisnot of type text or file, its component-type must be a “byte-size" type
such as the type -128..127. Note that char is not a byte-size type! If the
cgmpg;\ent-type of f is not byte-size, an 1/0 error occurs (see Section
10.1.6).

If no I/0 error ocours, the system waits until a character is available from
the device and then assigns the character's 8-bit code tof~.

If title Is the pathname for an existing file on a flle-structured device, then

« Eof(f) becomes false if the external file Is not empty. If the external file is
empty, eof(f) becomes true.

= If f is not of type text or file, reset sets the “current file position™ to the
first record in the external file, and assigns the value of this record to the
file buffer variable f~. If the external file is a textfile, the ioresult
function will return a negative number as a warning (see Section 10.1.6).

« If f is of type text, the value of £~ is unspecified. If the file is a textfile,
the next read or readln on f will begin at the first character of f. If the file
is adatafile, it will be treated as if it were a textfile (see Section 10.3)and
the loresult function will return a negative number as a warning (see
Section 10.1.6).

« If f Is of type file, there is no file buffer variable f~ and the “current file
position” is set to the first block (block 0) of the file.

10-6

Pascal Reference Manual Inout/Cutput

10.1.4 The Rewrite Procedure
Creates and opens anew file.

Parameter List: reurite(f, title)
1. fisavariable-reference that refers to a variable of file-type.

2. title is an expression with a string value. The string should be a valid
pathname for a file on a flle-structured device, or a pathname for a
character device.

If f is already open, an I/O error occurs (see Section 10.1.6).
If titleis the pathname of a character device, then
- Eof(f)becomes false.
» Rewrite(f, title)simply associates f with the device and opens f.
* The status of the device is not affected.
» The value of f~ becomes unspecified.
If title is the pathname for a new file on a file-structured device, then
* Eof(f)becomes true.

« Rewrite(f, title) creates a new external file with the pathname title, and
associates f with the external file. This is the only way to create a new
external file.

» The species of the new external file is set according to the type of f —
“textfile" for type text, or “datafile” for any other type.

» The value of f~ becomes unspecified.

» If f is not of type flle, the “current file position” is set to "just before” the
first record or character position of the new external file.

« If fis of type file, the “current file position” is set to block 0 (the first biock
inthe file).

« If f is subsequently closed with any option other than lock or crunch (see
Section 10.1.5), the new external file is discarded at that time. Closing f
with lock or crunch is the only way to make the new external file
permanent.

« If title is the pathname of an existing external file, the existing file will be
discarded only when f Is subsequently closed with the lock or crunch option
(see Section 10.1.5).

Unspecified effects are caused if the current file position of a file f is altered
while the file-buffer £~ is an actual variable parameter, or an element of the
record-variable-reference list of a with-statement, or both.

10-7

FPaseal Rerference Maral Input/Cutput

10.1.5 The Close Procedure -
Closes a file.

Parameter L Ist: close(f [, option])
1. fisavarlable-reference that refers to avariable of file-type.

2. option (may be omitted) is an identifier from the list given below. If
omitted, the effect is the same as using the identifier normal.

Close(f, option) closes f, if f is open. The association between f and its
external file is broken and the file system marks the external file "closed”. If f
is not open, the close procedure has no effect.

The option parameter controls the disposition of the external file, if it isnot a
character device. If it is a character device, f is closed and the status of the
device Is unchanged.

The ldentifiers that can be used as actual-parameters for optlon are as follows:

 normal —If f was opened using rewrite, it is deleted from the directory. If f
was opened with reset, it remains in the directory. This is the default
option, in the case where the option parameter is omitted.

= lock — If the external file was opened with rewrite, it is made permanent in
the directory.

If f was opened with rewrite and a title that matches an existing file, the
old file is deleted (unless the safety switch is “on"). If the old file has the
safety switch “on," it remains in the directory and the new file is deleted.

If f was opened with reset, a normal close is done.

 purge — The external file is deleted from the directory (unless the safety
switchis "on"). Inthe special case of a file that already exists and is opened
with rewrite, the original file remains in the directory, unchanged.

« crunch — This is like lock except that it locks the end-of-flle to the point of
last access; l.e., everything after the last record or character accessed is
thrown away.

All closes regardless of the option will cause the file system to mark the
external file “closed" and will make the value of f~ unspecified.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file with the normal option.

10-8

Fascal Rererence Memal Input/Cutput

NOTE

If you open an existing file with reset and modify the file with any write
operation, the contents are immediately changed no matter what close
option you specify.

10.1.6 The Ioresult Function
Pascal on the Lisa does not provide automatic 1/0 checking. To check the
result of any particular 1/0 operation, you must use the ioresult function.

Resuit type: integer

Farameter L[st: no parameters

Ioresult returns an integer value which reflects the status of the last com-
pleted I/0 operation. The codes are given in the worksfigp Reference Manual

for tne Lisa. Note that the code 0 indicates successful completion, positive
codes indicate errors, and negative codes are "warnings" (see Table 10-1).

Note that the codes returned by ioresult are not the same as the codes used In
Apple Il and Apple III Pascal.

NOTES

The read, readln, write, and writeln procedures described in Section
10.3 may actually perform multiple I/O operations on each call. After
one of these procedures has executed, ioresult will return acode for the
status of the /as¢ of the multiple operations.

Also, beware of the following common error indiagnostic code:

read(foo);
vriteln('ioresult=", ioresult)

The intention is to write out the status of the read operation, but
instead the status written out will be that of the write operationonthe
string 'loresult='.

10.1.7 The Eof Function
Detects the end of a file.

Result Type: boolean
ParameterList: eof [(f)]
1. flsavariable-reference that refers to avariable of file-type.

If the parameter-list s omitted, the function Is applied to the standard file
input (see Section 10.3).

10-9

Pascal Reference Manual Input/Cutput

After a get or put operation, eof(f) returns true if the current flle position is
beyond the last external file record, or the external flle contains no records;
otherwise, eof(f) returns false. Specifically, this means the following:

* After a get, eof(f) returns true if the get attempted to read beyond the last
file record(or the file is empty).

- After aput, eof(f) returns true if the record written by the put is now the
last file record.

If f isacharacter device, eof(f) will always return false.
See Section 10.3 for the behavior of eof(f)after a read or readln operation.
NOTE

whenever eof(f) is true, the value of the flle buffer variable f~ is
unspecified.

10.2 Record-Oriented I/0
This section covers the get, put, and seek procedures, which perform
record-oriented 1/0; that is, they consider a file to be a sequence of variables
of the type specified in the file-type. These procedures are not allowed with
files of type file.

The effects of get and put are unspecified with files of type text, and seek has
no effect with files of type text. The text type is supported by specialized
procedures described in Section 10.3.

10.2.1 The Get Procedure
Reads the next record Ina file.

Parameter List: get(f)

1. fis a variable-reference that refers to a variable of file-type. The file
must be open.

If eof(f) is false, get(f) advances the current file position to the next flle
record, and assigns the value of this record to f~. If no next component exists,
then eof(f)becomes true, and the value of £~ becomes unspecified.

If eof(f) is true when get(f) is called, then eof(f) remains true, and the value of
f~ becomes unspecified.

If the external file is a character device, eof(f) is always false and there is no
“current file position.” In this case, get(f) waits until a value is ready for input
and then assigns thevalueto f~.

10-10

Pascal Reference Mamal Input/Cutput

10.2.2 The Put Procedure
writes the current record in a file.

Parameter Lfst: put(f)

1. f is a variable-reference that refers to a variable of file-type. The file
must be open.

If eof(f)1s false, put(f)advances the current file position to the next file record
and then writes the value of f~ to f at the new file position. If the new file
position is beyond the end of the file, eof(f) becomes true, and the value of f~
becomes unspecified.

If eof(f) is true, put(f) appends the value of f~ to the end of f and eof(f) remains
true.

If the external file is a character device, eof(f) is always false, there is no
“current file position," and the value of f~ is sent to the device.

NOTE
If put is called immediately after a file is opened with reset, the put will
write the secona'record of the file (since the reset sets the current
position to the first record and put advances the position before

writing). To get around this and write the first record, use the seek
procedure (see Section 10.2.3).

10.2.3 The Seek Procedure
Allows access to an arbitrary record inafile.

Parameter List: seek(f, n)

1. fis a variable-reference that refers to a variable of file-type. The file
must be open.

2. nis anexpression with an integer value that specifies a record number in
the file. Note that records in files are numbered from 0.

If the flle is a character device or is of type text, seek does nothing.
Otherwise, seek(f, n) affects the action of the next get or put from the file,
forcing it to access file record n instead of the “next” record. Seek(f, n)does
not affect the file-buffer f~.

A get or put mustbe executed between seek calls. The result of two con-
secutive seeks with no intervening get or put isunspecified. Immediately after
a seek(f, n), eof(f) will return false; a following get or put will cause eof to
return the appropriate value.

10-11

Pascal Rererence Manual Input/Cutpt

NOTE

The record number specified in a seek call is not checked for validity. If
the number is not the number of a record in the file and the program
tries to get the specified record, the value of the file-buffer becomes
unspecified and eof becomes true.

10.3 Text-Oriented /O
This section describes input and output using file variables of the standard type
text. Note that in Pascal on the Lisa, the type text is distinct from file of char
(see Section 3.2.4).

when a text file is opened, the external file is interpreted ina special way. It is
considered to represent a sequence of characters, usually formatted into lines
by CR characters (ASCII 13).

The Lisa keyboard and the workshop screen appear to a Pascal program to be
built-in files of type text named input and output respectively. These flles
need not be declared and need not be opened with reset or rewrite, since they
are always open.

when a program is taking input from input, typed characters are echoed on the
workshop screen. In addition to the input file, the Lisa keyboard is also
represented as the character device KEYBOARD. To get keyboard input
without echoing on the screen, you can open a file variable of type text with
-KEYBOARD as the external file pathname.

Other interactive devices can also be represented in Pascal programs as files
of type text.

when a text file is created on a file-structured device, the external file is a
textfile. It contains information other than the actual sequence of characters
represented, as follows:

» The stored file is a sequence of 1024-byte pages.

 Each page contains some number of complete lines of text and is padded
with null characters (ASCII 0) after the last line.

« Two 512-byte header blocks are also present at the beginning of the file.

* A sequence of spaces in the text /mgy be compressed into a two-byte code,
namely a DLE charactex (ASCII 16) followed by a byte containing 32 plus the
number of spaces represented.

All of this special formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other file-tyne).

10-12

Fascal Rererence Manual Input/Cutput

Certain things that can be done with a record-structured file are impossible
with a file variable of Lype text:

* The seek procedure does nothing with a file variable of type text.
» The effects of get and put are unspecified with a file variable of type text.

* The contents of the file buffer variable are unspecified with a file variable
of type text.

* A flle variable of type text that is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capabilities, text-oriented I/0 provides the following:
* Automatic conversion of each input CR character into a space.
» The eoln function to detect when the end of an input line has been reached.

« The read procedure, which can read char values, string values, packed array
of char values, and numeric values (from textual representations).

» The write procedure, which can write char values, string values, packed
array of char values, numeric values, and boolean values (as textual
representations).

* Line-oriented reading and writing via the readin and writeln procedures.

. Tihe page procedure, which outputs a form-feed character to the external
flle.

* Automatic conversion of input DLE-codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
DLE-codes.

* Automatic skipping of header blocks and null characters during input.

* Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 The Read Procegdure
Reads one or more values from a text file into one or more program variables.

Parameter List:read([f,] vi[, v2, ... vn})

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as inanormal parameter-list.

1. f(may be omitted)is avariable-reference that refers to a variable of type
text. The file must be open. If f {s omitted, the procedure reads from the
standard text file input, which represents the Lisa keyboard.

10-13

Pascal Rererence Maial Inpul/Cutput

2. v1..vn are |nput variables. Each is a variable parameter, used as a
destination for data read from the flle. Each input variable must be a
variable-reference that refers to a variable of one of the following types:

= char, Integer, or longint (or a subrange of one of these)
* real
* astring-type or a packed array of char type.

These are the types of data that can be read (as textual representations)
froma file. At least one Input variable must bepresent.

Read(f,v1,...,vm)is equivalent to:
begin
read(f, v1);

i‘ééd(f, vn)
end

NOTE

Read can also be used to read from a file fil that is not a text file. In this
case read(fil,x)is equivalent to:

X := fi1~;
get(fil)
end

10.3.1.1 Read with a Char Variable
If fis of type text and v is of type char, the following things are true
immediately after read(f,v):

 Eof(f) will return true if the read attempted to read beyond the last
character in the external file.

* Eoin(f) will return true, and the value of v will be a space, if the character
read was the CR character. Eoln(f) will also return true if eof(f)is true.

10.3.1.2 Read with an Integer or Longint Variable
If f Is of Lype text and v is of type Integer, subrange of integer, or longint, then
read(f,v) implies the reading from f of a sequence of characters that form a
signed whole number according to the syntax of Section 1.4 (except that
hexadecimal notation s not allowed). If the value read Iis
assignment-compatible with the type of v, it is assigned to v; otherwise an
error occurs.

10-14

Pascal Rererence Manual Inout/Cutput

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together with the
characters already read, does not form part of a signed whole number.

An error occurs if a signed whole number is not found after skipping any
preceding blanks and CRs.

If £ is of type text, the following things are true immediately after read(f,v}

* Eof(f) will return true if the last character in the numeric string was the
last character in the external file.

* Eoln(f) will return true if the last character in the numeric string was the
last character on the line (not counting the CR character). Eoln(f) will also
return true if eof(f)is true.

10.3.1.3 Read with a Real Variable
If £ s of type text and vis of type real, then read(f,v) implies the reading from f
of a sequence of characters that represents a real value. The real value is
assigned to the variable v.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together with the
characters already read, does not form a valid representation. A “valid
representation” is either of the following:

* A finite real, integer, or longint value represented according to the
signed-number syntax of Section 1.4 (except that hexadecimal notation is
not allowed). Aninteger or longint value is converted to type real.

» Aninfinite value or Nan represented as described in Appendix D.

An error occurs if a valld representation is not found after skipping any
preceding blanks and CRs.

Immediately after rea(f,v) where v is a real variable, the status of eof(f) and
eoln(f)are the same as for an integer variable (see Section 10.3.1.2 above).

10.3.1.4 Read with a String Variable
If f is of type text and v is of string-type, then rea(f,v) implies the reading
from f of a sequence of characters up to owe not incluaing the next CR or the
end of the file. The resulting character-stringis assigned tov. Anerror occurs
if the number of characters read exceeds the size attribute of v.

10-15

Pascal Reference Meanal Input/Cutput

NOTE

Read with a string variable does not skip to the next line after reading,
and the CR is left waiting In the input buffer. For this reason, you
cannot use successive read calls 1o read a sequence of strings, as they
will never get past the first CR — after the first read, each subsequent
read will see the CR and will read a zero-length string.

Instead, use readin to read string values (see Section 10.3.2). ReadIn
skips to the beginning of the next line after reading.

The following things are true immediately after read(f,v):
 Eof(f) will return true if the line read was the last line in the file.
« EolIn(f) will always return true.

10.3.1.5 Read with a Packed Array of Char Variable
If f is of type text and v is a packed array of char, then read(f,v) implies the
reading from f of a sequence of characters. Characters are read into
successive character positions in vuntil all positions have been filled, or untila
CR or the end of the flle is encountered. If a CR or the end-of-file is
encountered, it is not read into v; the remaining positions in v are filled with
Spaces.

10.3.2 The Readin Procedure
The readin procedure is an extension of read. Essentially it does the same thing
as read, and then skips to the next line in the input file.

Parameter List: The syntax of the parameter list of readln is the same as that
of read, except as follows:

» Areadincall withno input variables is allowed. Example:
readln(sourcefile)
* The parameter-1ist canbe omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure reads from the standard file input, which represents the
Lisakeyboard.

ReadIn(f), with no input-variables, causes a skip to the beginning of the next
line (if there is one, else to the end-of-file).

10-16

Pascal Reference Manal : Input/Output

Readin can on/y be used on a text file. Except for this restriction,
readin(f,vi,....v7)is equivalent to:

begin
read(f,vl, ..., v2)
readln(f)
end
The following things are true immediately after readin(f.v), regardless of the
type of v:

* Eof(f) will return true if the line read was the last line in the external file.
* EolIn(f) will always return false.

10.3.3 The Write Procedure
writes one or more values to a text file.

Parameter List: write([f, 1pl [, p2, ... p~nl)

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f (may be omitted) is a variable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure writes to
the standard file output, which represents the Workshop screen.

2. p1 ... prare gutput-specs. Each output-spec includes an gutput
expression, whose value is 1o be written to the file. As explained below,
an output-spec may also contaln specifications of field-width and number

of decimal places. Each output expression must have a result of type

integer, longint, real, boolean, char, a string-type, or a packed array of
char type. These are the types of data that can be written (as textual
representations)toafile. At least one output-spec must be present.

write(f,p1,...,p77)Is equivalent to:

begin
urite(f,p1);

vrite(f,pn)

Immediately after write(f), both eof(f)and eoln(f) will return true.

10-17

Pascal Reference Manual Input/Qutput

NOTE

write can also be used to write onto a file fil that is not a text file. In
this case write(fil,x)is equivalent to:

begin
fil” = x
put(fil)
end

10.3.3.1 Output-Specs
Each output-spec has the form

OutExpr [: Minwidth [: DecPlaces]]

where OutExpr is an output expression. Minwidth and DecPlaces are
expressions with integer or longint values.

Minwidth specifies the min/mum fleld width, with adefault value that depends
on the type of the value of OutEXpr (see below). Minwidth should be greater
than zero; otherwise, the results are unspecified. Exactly Minwidth
characters are written (using leading spaces if necessary), except when
OutExpr has a /wmeric value that requires more than Minwidth characters; in
this case, enough characters are written to represent the value of OUtExpr.

DecPlaces specifies the number of decimal places in a fixed-point repre-
sentation of a real value. It can be specified only if OUtExpr has a real value,
and if Minwidth is also specified. If DecPlaces is not specified, a floating-point
representation is written.

10.3.3.2 write with a Char value
If OUtExpr has a char value, the character is written on the file f. The default
value for Minwidth is one.

10.3.3.3 write with an Integer or Longint Value
If OUtEXpr has an integer or longint value, its decimal representation is written
on the file f. The default value for Minwidth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value is
negative, and any leading spaces that may be required to satisfy Minwidth. If
the representation requires more than Minwidth characters, Minwidth is

ignored.

10.3.3.4 Wwrite with a Real Value
If OutEXpr has a real value, the default value for Minwidthis 12.

If OutEXpr has an infinite value, it is output as a string of at least two "+"
characters or at least two “-" characters. If OULEXpr is aNaN, it is output as
the character string "NaN®, possibly followed by a string of characiers
enclosed by single-quotes. See Section 10.3.3.5 for detalls on string output.

10-18

Fascal Rererence Mamal Input/Cutput

If OUtExpr has a finite value, its decimal representation is written on the file
f. This representation Is the nearest possible decimal representation,
depending on Minwidth and DecPlaces. If the unrounded value is exactly
half way between two possible representations, the representation whose least
significant digit is evenis writtenout.

If DecPlaces is not specified, a floating-point representation is written as
follows:

« If Minwidth is less than 6, then its value is set to 6 (Internally). Thisis the
minimum usable width for writing a floating-point representation.

« If the sign of the value of OUutExpr Is negative, a minus sign Is written;
otherwise, a space is written.

« If Minwidth = 8, the significant digits are written with one digit to the left
of the decimal point and (Minwidth - 7) digits to the right of the decimal
point.

« If Minwidth < 8, the most significant digit is written and the decimal point
is omitted.

. Trgia exponent is writtenas the letter "E”, an explicit "+" or "-* sign, and two
digits.

If DecPlaces is specified, a fixed-point representation is written as follows:
» Enough leading spaces are written to satisfy Minwidth.

« If the value is negative, the minus sign “-* is written; if it is not negative, a
space is written.

« If DecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point. The next DecPlaces digits are
written to the right of the decimal point.

» If DecPlaces < 0, only the Integer part of the value Is written and no decimal
point is written.

10.3.3.5 Wwrite with a String Value
If the value of OutEXpr is of string type with length L, the default value for
Minwidth is L. If Minwidth>=L, the value is written on the file f preceded by
(Minwidth-L) spaces. If Minwidth<L, the first Minwidth characters of the
string are written.

10.3.3.6 Wwrite with a Packed Array of Char Value
If E is of type packed array of char, the effect is the same as writing a string
whose length is the number of elements in the array.

10.3.3.7 Wwrite with a Boolean Value
If the value of OUtEXpr is of type boolean, the string * TRUE" (with a leading
space) or the string “FALSE" is written on the file f. The default value of

10-19

Pascal Reference Manual Inout/Cutput

Minwidth is 5. If Minwidth>5, leading spaces are added; if Minwidth<5, the
first Minwldth characters of the string are written. This is equivalent to:

vrite(f, * TRUE' :Minwidth)
ar
write(f, ‘FALSE’ :Minwidth)

10.3.4 The Writeln Procedure
The writeln procedure is an extension of write. Essentlally it does the same
thln;_:; as write, and then writes a CR character to the output file (ending the
line).

Parameter List: The syntax of the parameter list of writelnis the same as that
of write, except as follows:

* A writelncall with no output-specs is allowed. Example:
vriteln(outputfile)
= The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure writes to the standard file output, which represents the
workshop screen.

writeln(f) writes a CR character to the file f.

writeln can oniy be used on a text file. Except for this restriction,
writeln(f,p1,....p/7)1s equivalent to:

begin
vrite(f,pl,pn)%;
vriteln(f)

end

Immediately after writeln(f), both eof(f)and eoln(f) will return true.

10.3.5 The Eoln Function
Result Type: boolean

ParameterList: eoln[(f)]

1. f s a varlable-reference that refers to a varlable of type text. The file
must be open.

The actual-parameter-list can be omitted entirely. Inthiscase, the functionis
applied to the standard file input (the Lisa keyboard).

Eoln(f) returns true "if the end of a line has been reached in f." The meaning of
this depends on whether the external file is a character device, on which I/0
procedure was executed last, and on what type of variable was used to receive
an input value. For details, see Sections 10.3.1 through 10.3.4.

10-20

Pascal Reference Manual Input/Cutput

The end of the flle is considered to be the end of a line; therefore eoln(f) will
return true whenever eof(f)is true.

10.3.6 The Page Procedure
Farameter L/st: page(f)

1. fls a varlable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the file f. This will cause a skip to the top of anew page when f1s
printed.

Note that page(output) sends a form-feed to the workshop screen, but in
general this will not clear the screen. For methods of clearing the screen, see
the workshop Reference Manual for the Lisa.

10.3.7 Keyboard Testing and Screen Cursor Control
10.3.7.1 The Keypress Function
Tests the Lisakeyboard to see if it has a character awaiting input.

Parameterlist:no parameters.
Resuilt Type: boolean.

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This is done by testing the typeahead
queue; if the queue is empty, keypress is false, else it is true.

10.3.7.2 The Gotoxy Procedure
Moves the Workshop screen cursor to a specified location on the screen.

Parameter List: gotoxy(X. ¥)

1. xisanexpression withan integer value. If X< 0, the value 0 will be used; if
X > 79, the value 79 will be used.

2. ylsanexpression with an integer value. If y < 0, the value 0 will be used; if
y > 31, the value 31 will be used.

Gotoxy(x, y) moves the cursor to the point (X,y) on the screen. Note that the
point (0,0) is the upper left corner of the screen.

10.4 Untyped File 1/0
Untyped file 170 operates on an “untyped file," i.e., a variable of type file (no
component type). An untyped file is treated as a sequence of 512-byte plocks:
the bytes are not type-checked but considered as raw data. This can be useful
for applications where the data need not be interpreted at all during 170
operations.

The blocks in an untyped file are considered to be numbered sequentially
starting with 0. The system keeps track of the current block number: this is
block 0 immediately after the file is opened. Each time a block is read, the

10-21

Pascal Reference Manual Input/cutput

current block number is incremented. By default, each I/0 operation begins at
the current block number; however, an arbitrary block number can be specified.

An untyped file has no file-buffer, and it cannot be used with get, put, or any of
the text-oriented 1/0 procedures. It can only be used with reset, rewrite,
close, eof, and the blockread and blockwrite functions described below.

To use untyped file 1/0, an untyped file is opened with reset or rewrite, and the
blockread and blockwrite functions are used for Input and output.

10.4.1 The Blockread Function
Reads one or more 512-byte blocks of data from an untyped file Lo a program
variable, and returns the number of blocks read.

Result Type: integer
Parameter L/st: blockread(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type file. The file
must be open.

2. databuf is a variable-reference that refers to the variable into which the
blocks of data will be read. The size and type of this variable are not
checked; if it is not large enough to hold the data, other program data may
be overwrittenand the results are unpredictable.

3. count is an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockread will read as many blocks as
it can, up to this limit.

4. blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter is
used, it provides random access 1o blocks.

Blockrea(f, databuf, count, blocknum) reads blocks from f into databuf,
starting at block blocknum. Count is the maximum number of blocks reag; if the
end-of-file is encountered before count blocks are read, the transfer ends at
that point. The value returned is the number of blocks actually read.

If the last block in the file was read, the current block number is unspecified
and eof(f) is true. Otherwise, eof(f) is false and the current block number is
advanced to the block after the last block that was read.

10.4.2 The Blockwrite Function
writes one or more 512-byte blocks of data from a program variable to an
untyped file, and returns the number of blocks written.

Result Type: integer
Parameter L/st: blockwrite(f, databuf, count [, blocknum])

10-22

Fascal Rererence Maal Input/Cutput

1. fis a variable-reference that refers to a variable of type file. The file
must be open.

2. databuf is a variable-reference that refers to the variable from which the
blocks of data will be written. The size and type of this variable are not
checked.

3. count is an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockwrite will write as many blocks
as it can, up to this limit.

4. blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter is
used, it provides random access to blocks.

Blockwrite(f, databuf, count, blocknum) writes blocks into f from databuf,
starting at block blocknum. Count is the maximum number of blocks written; if
disk space runs out before count blocks are written, the transfer ends at that
point. The value returned is the number of blocks actually written.

If disk space ran out, the current, block number is unspecified. Otherwise, the
current block number is advanced to the block after the last block that was
written.

NOTE

Unlike Apple II and Apple III Pascal, this Pascal does not allow
blockwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file withgaps init.

10-23

Fascal Rererence Maal Input/Cutput

10-24

Pascal Rererence Manual Standard Proceaures & Functions

Chapter 11
STANDARD PROCEDURES AND FUNCTIONS
11.1 EXItandHall PrOCEOUIES ceeuveeneereaeeeiaeeeanesesnccansasaanscnnnes 11-3
11.1.1 THE EXIL PYOCEAUN .. ieeeeeeenieeneeeneeneensensensenanaanes 11-3
11.1.2 ThEeHAIL PrOCEOUIE ...veeeeeeeieereeeeeeseeessnsesasnnnnncaanns 11-3
11.2 Dynamic Allocation ProCEAUIESeuereeereeeenniriieecianeneenns 11-4
11.2.1 THENEW PIOCEAUIB ..cieeiiitiaiirecieieeeiecienseneannnannns 11-4
11.2.2 The HeapResult FUNCLIoNcveiiiiiiiiiiiiiianee 11-5
11.2.3 THEMArK PIOCEAUIE ccveveeeeeetercneneerecsecasssasscansansans 115
11.2.4 The Release PrOCEAUIE ...ueveereeeeeeeeeeeeennsseseensennsans 11-5
11.2.5 TheMemavall FUNCLION ..veeverioiiiiiiiiiieiieeieaeananaans 11-5
11.3 Transfer FUNCLIONS ovr et iieieieeitieicteeeecateenenanancnnenannn 11-6
11.3.1 The TIUNC FUNCLION +iviiiiiiiieieeeteeseacneencnncecannnnans 11-6
11.3.2 The RoUNG FUNCLION v.veieeieeieieneneeeeennerecansansanann 11-6
11.3.3 The Oral FUNCLION tveiveeieeeieereeeeeeencesensesessnccasanans 11-6
11.3.4 The Pointer FUNCLION . .ceeuie i iieiiicienieeieniennnnnn. 11-7
11.4 Arlthmetic FUNCLIONS vuirveieiiiiiiiiiieeeeretenaeenresecacncennnns 11-7
11.4.1 RE s oo F IV o1 4 (o] o S 11-7
11.4.2 THE ADS FUNCLION e et iieiieiiiiiiiieeiieeeneeeeneanesancannnn 11-7
11.4.3 The Sar FUNCLION ...uveiiiiiiiiiiiiiiieeeeeeaeenas 11-8
11.4.4 The SIN FUNCUION . e iieiieiiiiieieeeeeeeseeceenceaneencnanns 11-8
11.4.5 The COS FUNCLION . et eieieeeieeiieceeereeeieeeeasennnanas 11-8
11.4.6 The EXP FUNCLION <. iiiiiiiiiiieiiiecieiicieiiecieneancannas 11-8
11.4.7 The LR FUNCLION ..eeriiieiieeeiieieeieeeeeeeneaennannnans 11-9
11.4.8 The SQrt FUNCLION ..u.iieiiiiiiiiiiiiiieieriaceneeirocnanannaes 11-9
11.4.9 The Arctan FUNCLION ..o eeieeeireeeeceeeenianan 11-9
11.4.10 ThePwroften FUNCLION ..veevieeriiiiiiiierieeriieeneanennnes 11-9
11.5 Ordinal FUNCLIONS .ueeeiieeiiieeiieeciieeaieeasssanssannaanans 11-10
11.5.1 The Ord FUNCL 0N . iveieeiiiiieiiieieeereteeeeeeeenenannncanns 11-10
11.5.2 RE2 =T 0} g ¥ 1o 4 (] o S 11-10
11.5.3 The SUCC FUNCLION et ieiii i iiieiiiecieeeieeesneensnaannnns 11-10
11.5.4 ThePred FUNCLION .cve e i iiiieceeiieieitceeecinnennnnnns 11-11
11.6 StringProcedures and FUNCLIONSvvvieeiieeeieieniieieecenecnnn. 11-11
11.6.1 The Length FUNCLIONeeeiiiieiiicciiiiiceeceaaaas 11-11
11.6.2 The POS FUNCLION L.eiiieiiiriiiiiiiieeiesienesancaneaannnns 11-11
11.6.3 The Concat FUNCLION . veevrieiieiviiieineereeinnnesaaenaen. 11-12
11.6.4 The Copy FUNCLIONiiiiiiiiiiiiiiiiiiiciiiiieeieanaananas 11-12
11.6.5 The Delete PrOCEAUIE «.oveeiieeeeeiieereeieneeresnecananaes 11-12
11.6.6 TR INSEI L PrOCEOUIE . oveeteeeeeereeieersesacensescnnenennnens 11-12
11.7 Byte-Oriented Procedures and Functions.......cccevveeeveennnnn... "11-13
11.7.1 The MOVEIEft PIOCEAUIE ..uveeiiieeeeenierneeeeesnecsncnncens 11-13
11.7.2 The Moveright PYOCEAUIecviviiieieneeiieeanannnn. 11-14
11.7.3 The SIZeof FUNCLION 1. iiiiiieeieireeereenaans 11-14

11-1

Fascal Rererence Mamnal Stanadara FProceoures & Functions

11.8 Packed Array of Char Proceduresand Functions................... 11-14
11.8.1 The SCaNeq FUNCLION ...iiieiiiieiiiiiiecierieneeearecnnnnns 11-15
11.8.2 The SCanne FUNCLION ..vuireiiiiiiieiiieeieeieeincecccanes 11-15
11.8.3 The FillChar PYOCEOUIEveeeeiieneseeeereeesncenneanannes 11-15

11-2

Pascal Rererence Manual Stangara Proceaures & Funclions

STANDARD PROCEDURES AND
FUNCTIONS

This chapter describes all the standard (“built-in") procedures and functions in
Pascal on the Lisa, except for the 1/0 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the

program.
NOTE
Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax diagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation is explained at the beginning of Chapter 10.

11.1 Exit and Halt Procedures
11.1.1 The Exit Procedure
Exits immediately from a specified procedure or function, or from the main
program.

Parameter List: exit(id)

1. idis the identifler of a procedure or function, or of the main program. If
id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exdt(id) causes an immediate exit from id. Essentially, it causes a jump to the
end of id.

NOTE

The halt procedure (see below) can be used to exit the main program
from a unit without knowing the main program's identifier.

11.1.2 The Halt Procedure
Exits immediately from the main program.

Parameter List: no parameters
Halt causes an immediate exit from the main program.

11-3

Fascal Rererence Meral Standard Proceaures & Functions

11.2 Dynamic Allocation Procedures
These procedures are used to manage the heap, @ memory area that is
unallocated when the program starts running. The procedure new is used for all
allocation of heap space by the program. The mark and release procedures are
used together to deallocate heap space, and the heapresult function is used to
return the status of the last preceding dynamic allocation operation..

11.2.1 The New Procedure
Allocates anew dynamic variable and sets a pointer variable to point toit.

ParameterList:nevw(p [, t1, ... tn])

1. p is a variable-reference that refers to a variable of any pointer-type.
This is avariable parameter.

2. t1, ... tm are constants, used only when allocating a variable of
record-type with variants (see below).

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The variable can be referenced as p~. Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, pis
set to nil and a subsequent call to the heapresult function will return anon-zero
result.

If the base-type of p is a record-type with variants, new(p) allocates enough
space to allow for the largest variant. The form

nev(p, t1, ...tn)

allocates a variable with space for the variants specified by the tag values t1,
... t72 (instead of enough space for the largest variants). The tag values must be
constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fields by this
procedure.

Trailing tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specified.

Wwarning: When a record variable is dynamically allocated with explicit tag
values as shown above, you should not make assignments to any fields of
variants that are not selected by the tag values. Also, you should not assign an
entire record to this record. If you do either of these things, other datacan be
overwritten without any error being detected at compile time.

11-4

Pascal Reference Mamual Stanaard Proceoures & Functions

11.2.2 The Heapresult Function
Returns the status of the most recent dynamic allocation operation.

Resuit Type: integer
Parameter List: no parameters

Heapresult returns an integer code that reflects the status of the most recent
call on new, mark, release, or memavail. The codes are given in the warkshop
Refrerence Manual, note that the code for a successful operation is 0.

11.2.3 The Mark Procedure
Sets apointer to aheap area.

Parameter List: mark(p)

1. pis a variable-reference that refers to a variable of any pointer-type.
This is avariable parameter.

Mark(p) causes the pointer p to point to the lowest free area in the heap. The
next call to new will alllocate space beginning at the bottom of this area, and
then p will be a pointer to this space. The pointer p is also placed on a
stack-like list for subsequent use with the release procedure (see below).

11.2.4 The Release Procedure
Deallocates all variables in a marked heap area.

Parameter L/st: release(p)

1. p is a variable-reference that refers to a pointer variable. It must be a
pointer that was previously set with the mark procedure. The pointer p
must be on the list created by the mark procedure; otherwise an error
occurs.

Release(p) removes pointers from the list, back to and including the pointer p.
The heap areas pointed to by these pointers are deallocated. In other words,
rel) deallocates all areas allocated since the the pointer p was passed to
the mark procedure.

11.25 The Memavail Function
Returns the maximum possible amount of available memory.

Result Type: longint
Parameter LIst: no parameters

Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be available to the program, allowing for possible
automatic expansion of the program’s data segment. Note that the result of
memavail can change over time even if the program does not allocate any heap
space, because of activities by the operating system or other processes in the
system.

11-5

Pascal Reference Maral Stanaard Procecures & Funclions

11.3 Transfer Functions
The procedures pack and unpack, described by Jensen and Wirth, are not
supported.

11.3.1 The Trunc Function
Converts areal value to a longint value.

Result Type: longint
Parameter Lfst: trunc(x)
1. xisanexpression with a value of type real.

Trunc(x) returns a longint result that is the value of x rounded to the nearest
whole number that is between 0 and x (inclusive). If x is exactly halfway
between two whole numbers, the result is the ever? whole number.

11.3.2 The Round Function
Converts areal value to a longint value.

Resuit Type: longint
Parameter L/st: round(X)
1. xisanexpression with avalue of type real.

Round(x) returns a longint result that is the value of x rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result is
the whole number with the greatest absolute magnitude.

11.3.3 The Orda Function
Converts an ordinal-type or pointer-type value to type longint.

Resuit Type: longint
Parameter LIst: orda(x)
1. xisanexpression with a value of ordinal-type or pointer-type.

Orda(x) returns the value of X, converted to type longint. If xis of type longint,
the result is the same as x.

If x is of pointer-type, the result is the corresponding physical address, of type
longint.

If xis of type integer, the result is the same numerical value represented by x,
but of type longint. This is useful in arithmetic expressions. For example,
consider the expression

abcxyz

where both abc and xyz are of type integer. By the rules given in Section
3.1.1.2, the result of this multiplication is of type integer (16 bits). If the

11-6

Pascal Rererence Manual Standarg Proceaures & Functions

mathematical product of abc and xyz cannot be represented in 16 bits, the
result is the low-order 16 bits. Toavoid this, the expression canbe writtenas

orda(abc)»xyz

This expression causes 32-bit arithmetic to be used, and the result is a 32-bit
longint value.

If x is of an ordinal-type other than integer or longint, the numerical value of
the result is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Pointer Function
Converts an integer or longint value to pointer-type.

Resuit Type: pointer
Parameter List: pointer(x)
1. xisanexpression with a value of type integer or longint.

Pointer(x) returns a pointer value that corresponds to the physical address Xx.
This pointer is of the same type as nil and is assignment-compatible with any

pointer-type.

11.4 Arithmetic Functions
In general, any real result returned by an arithmetic function is an
approximation. There are two exceptions to this: the result of the abs function
is exact, and the result of the pwroften function is exact when the parameter n
isintherange 0<n=< 10.

11.4.1 The Odd Function
Tests whether a whole-number value is odd.

Resuit Type: boolean
Parameter List: ood(X)

1. xisanexpression with a value of type integer or longint.
Odd(x) returns true if x is odd; otherwise it yields false.

11.4.2 The Abs Function
Returns the absolute value of a numeric value.

Result Type: same as parameter
Parameter List: abs(x)

1. xisanexpression withavalue of type real, integer, or longint.
Abs(x)returns the absolute value of x.

11-7

Pascal Reference Manual Stangard Proceaures & Functions

11.4.3 The Sgr Function
Returns the square of a numeric value.

Resuit Type: depends on parameter (see below)
ParameterList: sqr(x)
1. xisanexpression with a value of type real, integer, or longint.

Sar(x) returns the square of X. If X is of type real, the result is real; if x is of
type longint, the result is longint; and if x is of type integer, the result may be

either integer or longint.
If xis of type real and floating-point overflow occurs, the result is +oo.

11.4.4 The Sin Function
Returns the sine of a numeric value.

Result Type: real
Parameter List: sin(x)

1. xisan expression with a value of type real, integer, or longint. This value
is assumed to represent an angle in radians.

Sin(x) returns the sine of x.

11.4.5 The Cos Function
Returns the cosine of a numeric value.

Result Type: real
Parameter List: cos(X)

1. xisanexpression with a value of type real, integer, or longint. This value
is assumed to represent an angle in radians.

Cos(x) returns the cosine of x.

11.4.6 The Exp Function
Returns the exponential of a numeric value.

Result Type: real
Parameter List: exp(X)

1. x iIs an expression with a value of type real, integer, or longint. All
possible values are valid.

Exp(x) returns the value of eX, where g1is the base of the natural logarithms. If
floating-point overflow occurs, the result is +oo.

11-8

Pascal Rererence Mamnual Stanadard Procegures & Funetions

11.4.7 The Ln Function
Returns the natural logarithm of a numeric value.

Resuit Type: real
Parameter List: In(x)

1. x is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If xis non-negative, In{(x) returns the natural logarithm (logg) of x.

If x is negative, a diagnostic NaN is produced and the Invalid Operation signal is
set (see Appendix D).

11.4.8 The Sqrt Function
Returns the square root of a numeric value.

Resuit Type: real
Parameter List: sqrt(x)

1. x iIs an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x is non-negative, sqrt(x) returns the positive square root of x.

If x is negative, a diagnostic NaN is produced and the Invalid Operation signal is
set (see Appendix D).

11.4.9 The Arctan Function
Returns the arctangent of a numeric value.

Resuit Type: real
Parameter List: arctan(x)

1. x is an expression with a value of type real, integer, or longint. All
numeric values are valid, including zco.

Arctan(x) returns the principal value, in radians, of the arctangent of x.

11.4.10 The Pwroften Function
Returns a specified power of 10.

Resuit Type: real
Parameter List: puroften(n)
1. nisanexpression withavalue of type integer.

If -45 < n < 38, then pwroften(n) returns 10N. The result is mathematically
exact for 0sn<10. If n<-U6, the result is 0; if n> 39, the result is +oo.

11-9

Fascal Reference Manual : Stanaara Proceoures & Functions

11.5 Ordinal Functions
11.5.1 The Ord Function
Returns the ordinal number of an ordinal-type or pointer-type value.

Result Type: Integer or longint
Parameter List: ord(X)

1. xisanexpression with avalue of ordinal-type or pointer-type.
If xis of type integer or longint, the result is the same as x.

If x is of pointer-type, the result is the corresponding pnysical address, of type
longint.

If x is of another ordinal-type, the result is the ordinal number determined by
mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.

For a parameter of type char, the result is the corresponding ASCII code. For a
parameter of type boolean,

ord(false) returns O
ord(true) returns 1

11.5.2 The Chr Function
Returns the char value corresponding to a whole-number value.

Result Type:-char (but see below)
Parameter List: chr(x)
1. xisanexpression with an integer or longint value.

chr(x) returns the char value whose ordinal number (i.e., its ASCII code)is X, if
x is in the range 0..255. If xis not in the range 0..255, the value returned is not
within the range of the type char, and any attempt to assign it to a variable of
type char will cause an error.

For any char value ch, the following is true:
chr(ord(ch)) = ch

11.5.3 The Succ Function
Returns the successor of a value of ordinal-type.

Result Type:same as parameter (but see below)
Parameter List: succ(X)
1. xisanexpression withavalue of ordinal-type.

Succ(Xx) returns the successor of X, if such a value exists according to the
innerent ordering of vaiues in the type of x.

11-10

FPascal Rererence Manal Stanadalrd Procegures & Functions

If x is the last value in the type of X, it has no successor. In this case the value
returned is not within the range of the type of X, and any attempt to assignit to
avariable of this type will cause unspecified results.

11.5.4 The Pred Function
Returns the predecessor of a value of ordinal-type.

Result Type:same as parameter (but see below)
Parameter List: pred(Xx)
1. xisanexpression with avalue of ordinal-type.

Pred(x) returns the predecessor of X, if such a value exists according to the
inherent ordering of values in the type of x.

If x is the first value in the type of X, it has no predecessor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it toavariable of this type will cause unspecified results.

11.6 String Procedures and Functions
The string procedures and functions do not accept packed array of char
parameters, and they do not accept indexed string parameters.

11.6.1 The Length Function
Returns the current length of a value of string-type.

Result Type: integer
Parsmeter List: length(str)

1. strisanexpression with avalue of string-type.
Length(str)returns the current length of str.

11.6.2 The Pos Function
Searches a string for the first occurrence of a specified substring.

Result Type: integer

Parameter List: pos(substr, str)
1. substr is an expression with a value of string-type.
2. strisanexpression with avalue of string-type.

Pos(substr, str) searches for substr within str, and returns an integer value
that is the index of the first character of substr within str.

If substr is not found, pos(substr, str)returns zero.

11-11

Fascal Reference Mamual Stanaara Proceaures & Funclions

11.6.3 The Concat Function
Takes a sequence of strings and concatenates them.

Resuit Type: string-type
ParameterList: concat(strl [, str2, ... strn])

» Each parameter is an expression with a value of string-type. Any practical
number of parameters may be passed.

Concat(strl, ..., str2) concatenates all the parameters in the order in which
they are written, and returns the concatenated string. Note that the number of
characters in the result cannot exceed 255.

11.6.4 The Copy Function
Returns a substring of specified length, taken from a specified position within
astring.

Resuit Type: string-type

Parameter LIst: copy(source, index, cbmt)
1. source is an expression with a value of string-type.
2. indexis anexpression with an integer value.
3. count is an expression with an integer value.

Copy(source, index, count) returns a string containing count characters from
source, beginning at source{index].

11.6.5 The Delete Procedure
Deletes a substring of specified length from a specified position within the
value of astring variable.

Parameter List: delete(dest, index, count)

1. dest is avariable-reference that refers to a variable of string-type. This
is a variable parameter.

2. indexis anexpression with an integer value.
3. count is anexpression with an integer value.

Delete(dest, index, count) removes count characters from the value of dest,
beginning at dest{index].

11.6.6 The Insert Procedure
Inserts a substring into the value of a string variable, at a specified position.

Parameter List: insert(source, dest, index)
1. sourceisanexpression with avalue of string-type.

11-12

Fascal Reference Mamual Stanaara Procegures & Functions

2. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

3. indexis anexpression with an integer value.

Insert(source, dest, index) inserts source into dest. The first character of
source becomes dest{index].

11.7 Byte-Oriented Procedures and Functions
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.
NOTE

The sizeof function can be used to determine the number of bytes in a
variable.

These procedures do no type-checking on their source or dest actual-
parameters. However, since these are variable parameters they camwwot be
Incexed if they are packed or if they are of string-type. If anunpacked “byte
array" is desired, then a variable of the type

array [lo..ni] of -128..127

should be used for source or dest. The elements in an array of this type are
stored in contiguous bytes, and, since it is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

IMPLEMENTATION NOTE

Currently, an array with elements of the type 0..255 or the type char
has its elements stored in words, not bytes.

11.7.1 The Moveleft Procedure
Copies a specified number of contiguous bytes from a sgurce range to a
destination range (startingat the lowest address).

Parameter List: moveleft(source, dest, count)

1. source is avariable-reference that refers to a variable of any type except
a flle-type or a structured-type that contains a flle-type. This is a
variable parameter. The first byte allocated to source (lowest address
within source) is the first byte of the source range.

2. dest is avariable-reference that refers to a variable of any type except a
file-type or a structured-type that contains a file-type. This is a variable
parameter. The first byte allocated to dest (lowest address within dest)
is the first byte of the destinationrange.

11-13

Pascal Rerference Mamual Standard Proceoures & Functions

3. count is an expression with an integer value. The source range and the
destination range are each count bytes long.

Moveleft(source, dest, count) copies count bytes from the source range to the
destination range.

Moveleft starts from the “left" end of the source range (lowest address). It
proceeds to the “right" (higher addresses), copying bytes into the destination
range, starting at the lowest address of the destination range.

The count parameter is not range-checked.

11.7.2 The Moveright Procedure
Moveright is exactly like moveleft (see above), except that it starts from the
"right” end of the source range (highest address). It proceeds to the “left"
(lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for having both moveleft and moveright is that the source and
destination ranges may overlap. If they overlap, the order in which bytes are
moved is critical: each byte must be moved before it gets overwritten by
another byte.

11.7.3 The Sizeof Function

Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.

Resuit Type: integer
Parameter List: sizeof(1d)

1. idiseither avariable-identifier or a type-identifier. It must not refer to
a file-type or a structured-type that contains a file-type, or to a variable
of suchatype.

Sizeof(id) returns the number of bytes occupied by id, if id is a variable-
identifier; if id is a type-identifier, it returns the number of bytes occupied by
any variable of type id.

11.8 Packed Array of Char Procedures and Functions
NOTE

These routines operate only on packed arrays of char. The packed
arrays of char cannot be subscripted; the operations always beginat the
first character in a packed array of char.

11-14

Pascal Rererence Marnial Standard Proceaures & Functions

11.8.1 The Scaneq Function
Searches a packed array of char for the first occurrence of a specified
character.

Result Type: integer
Parameter List: scaneq(limit, ch, paoc)

1. limit is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

2. chisanexpression with a value of type char.

3. paoc is an expression with a value of type packed array of char. Thisisa
variable parameter.

Scaneq(limit, ch, paoc) scans paoc, looking for the first occurrence of ch. The
scan begins with the first character in paoc. If the character is not found
within limit characters from the beginning of paoc, the value returned is equal
to limit. Otherwise, the value returned is the number of characters scanned
before ch was found.

11.8.2 The Scanne Function
This function is exactly like scaneg, except that it searches for a character
that does 770t match the ch parameter.

11.8.3 The Fllichar Procedure
Fills a specified number of characters in a packed array of char with a specified
character.

Parameter List: fillchar(paoc, count, ch)

1. paoc is an expression with a value of type packed array of char. Thisisa
variable parameter.

2. count is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

3. chisanexpression withavalue of type char.

Fillchar(paoc, count, ch) writes the value of ch into count contiguous bytes of
memory, starting at the first byte of paoc.

Since the count parameter is not range-checked, it is possible to write into
memory outside of paoc, with unspecified results.

11-15

Pascal Reference Mamial Stanaarad Proceaures & Functions

11-16

Pascal Rererence Manal Tre Compiler

Chapter 12
THE COMPILER
12,1 Compiler COMMANGS ...uveeeeneieinenanueeneseecaenasnessacesananenes 12-3
12.2 Conditional Compilationceueeeiiiiiiiiiiiiiiiirieeiieeannnnn. 12-4
12.2.1 Compile-Time Variables and the $DECL Command.......... 12-4
12.2.2 The $SSETC COMMAND .eeverrriiiineniertiiiiiacsnennannanes 12-5
12.2.3 Compile-Time EXpressionsceeeeiiiiiireiiiiiennannn. 12-5
12.2.4 The $IFC, $ELSEC, and $ENDC Commandscecvveen. 12-6
12.3 Optimizationof If-Statementsc.ccciieiiiiiiierinniiaiiaannna.. 12-7
12.4 Optimization of While-Statements and Repeat-Statements........ 12-8
12,5 Efficiency of Case-Statementsccoieeirriiiiieinrciiiannnann. 12-8

12-1

Pascal Reference Manual The Compiler

12-2

FPascal Rererence Marnual Tne Compiler

THE COMPILER

The Pascal compiler translates Pascal source text to an intermediate code, and
the code generator translates the Intermediate code to MC68000 object code.
Instructions for operating the compiler and code generator are given in the
Workshop Rererence Manual for the L1sa

12.1 Compiler Commands
A compiler command is a text construction, embedded in source text, that
controls compiler operation. Every compller command is written within
comment delimiters, {...}or (*...*). Every compiler command begins with the $
character, which must be the first character inside the comment delimiters.

In this manual, compiler commands are shown in upper case 1o help distinguish
them from Pascal program text; however, upper and lower case are
interchangeable in compiler commands just as they are in Pascal program text.

The following compiler commands are available:
lnput File Control

$I filename Start taking source code from file filename. Wwhen the
end of this file is reached, revert to the previous source
file. The filename cannot begin with +or -

U filename Search the file filename for any units subseguently
specified in the uses-clause. Does not apply to intrinsic-

units.
Loptral of Coge Generation
$C+or $C- Turn code generation on (+) or off (-). This isdoneona

procedure-by-procedure basis. These commands should
be written between procedures; results are unspecified if
they are written inside procedures. The default is $C+.

$R+0r IR- Turn range checking on (+) or off (-). At present, range
checking is done in assignment statements and array
indexes and for string value parameters. The default is

R+

$S segname Start putting code modules into segment segname. The
default segment name is a string of blanks to designate
the "blank segment,” in which the main program and all
puilt-in support code are always linked. All other code
can be placed into any segment.

$X+or $X- Turn automatic run-time stack expansion on (+) or off (-).
The default is $X+.

12-3

FPascal Rererence Mamnal The Compller

Lebugging
$0+o0r $0- Turn the generation of procedure names in object code on
(+)or off (-). These commands should be writtenbetween
procedures; results are unspecified if they are written
inside procedures. The default is $D+.
Conaitional Compllation
$DECL 1ist (see Section 12.2 below).
$ELSEC (see Section 12.2 below).
$ENDC (see Section 12.2 below).
$IFC (see Section 12.2 below).
$SETC (see Section 12.2 below).
Listing Conlrol

$E filename Start making a listing of compiler errors as they are
encountered. Analogous to $L filename (see below). The
default is no error listing.

$L filename Start listing the compilation on file filename. If alisting
is being made already, that file is closed and saved prior
toopening the new file. The default is no listing.

$L+or $L- The first + or - following the $L turns the source listing
on (+) or off (-) without changing the list file. You must
specify the listing file before using $L+. The default is
$L+, but no listing Is produced if no listing file has been
specified.

12.2 Conditional Compilation
Conditional compilation is controlled by the $IFC, $ELSEC, and $ENDC
commands, which are used to bracket sections of source text. whether a
particular bracketed section of a program is compiled depends on the boolean

value of a compile-time expression, which can contain compile-time variables.

12.2.1 Compile-Time Variables and the $OECL Command
Compile-time variables are completely independent of program variables; even
if a compile-time variable and a program variable have the same identifier,
they can never be confused by the compiler.

A compile-time variable is declared when it appears in the identifier-list of a
$DECL command.

Example of complle-time variable aeclaration:
{$DECL LIBVERSION, PROGVERSION}

12-4

Fascal Rererence Maral The Compller

This declares LIBVERSION and PROGVERSION as compile-time variables.
Notice that no types are specified.

Note the following points about compile-time variables:

- Compile-time variables have no types, although their values do. The only
possible types are integer and boolean.

» All compile-time variables must be declared before the end of the
variable-declaration-part of the main program. Inother words a $DECL
command that declares a new compile-time variable must precede the
main program's procedure and function declarations (if any). The new
compile-time variable is then known throughout the remainder of the
compilation.

» At any point in the program, a compile-time variable can have anew value
assigned to it by a $SETC command.

12.2.2 The $SETC Command
The $SETC command has the form

{$SETC ID := EXPR}

where ID is the identifier of a compile-time variable and EXPR is a
compile-time expression. EXPR is evaluated immediately. The value of EXPR
is assigned to ID.

Example of assignment Lo compile-time variabie:
{$SETC LIBVERSION := 5}
This assigns the value 5 to the compile-time variable LIBVERSION.

12.2.3 Compile-Time Expressions
Compile-time expressions appear in the $SETC command and in the $IFC
command. A compile-time expression is evaluated by the compiler as soon as it
is encountered in the text.

The only operands allowed in a compile-time expression are:
« Compile-time variables '

» Constants of the types integer and boolean. (These are also the only
possible types for results of compile-time expressions.)

All Pascal operators are allowed except as follows:
* The inoperator is not allowed.
» The @ operator is not allowed.
» The / operator is automatically replaced by div.

12-5

Pascal Refererce Mamnual The Compller

12.2.4 The $IFC, $ELSEC, and $ENDC Commands
The $ELSEC and $ENDC commands take no arguments. The $IFC command has
the form

{$IFC EXPR}
where EXPR is a compile-time expression with a boolean value.

These three commands form constructions similar to the Pascal if-statement,
except that the $ENDC command is always needed at the end of the $IFC
construction. $ELSEC is optional.

Example of conditionally complled cooe:

{$IFC PROGVERSION >= LIBVERSION}

k := kvall(data+indat);
{$ELSEC}

K := kval2(data+cpindat~);
{$ENDC}

vriteln(k)

If the value of PROGVERSION is greater than or equal to the value of
LIBVERSION, then the statement k:=kvall(data+indat) is compiled, and the
statement k:=kval2(data+cpindat ~)is skipped.

But if the value of PROGVERSION is less than the value of LIBVERSION, then
the first statement is skipped and the second statement is compiled.

In either case, the writeln(k) statement is compiled because the conditional
construction ends with the $ENDC command.

$IFC constructions can be nested within each other to 10 levels. Every $IFC

must have a matching $ENDC.
when the compiler is skipping, all commands in the skipped text are ignored
except the following:
$ELSEC
$ENDC
$IFC (so that $ENDC's can be matched properly)
$I (text from another file is scanned even if it is being
skipped, in case it contains $ELSEC, $ENDC, or $IFC
commands).

All program text is ignored during skipping. If alisting is produced, each source
line that is skipped is marked with the letter Sas its “lexlevel.”

12-6

Pascal Reference Memal The Compller

12.3 Optimization of If-Statements
’ when the compiler finds an if-statement controlled by a boolean constant, it
may be unnecessary to compile the then part or the else part. For example,
given the declarations

const always = true;
never = false;

then the statement
if never then statement
will not be compiled at all. Inthe statement

if never then statementi
else statement2

“statement1" is not compiled; only “statement2” is compiled. Similarly, in the
statement

1f aluays then statementi
else statement2

only "statement1” is compiled.

The interaction between this optimization and conditional compilation can be
seen from the following program:

program Foo;
{$SETC FLAG := FALSE}
const pi = 3.1415926;

size = 512;
{$IFC FLAG}

debug = false; {a boolean constant, if FLAG=true}
{$ENDC}

var i, j,k,1,mn: integer;
{$IFC NOT FLAG}

debug: boolean; {a boolean variable, if FLAG=false}
{$ENDC}

{$IFC NOT FLAG}
procedure whatmode;
in
blaiinterat;tive procedure to set global boolean variable,
debug

end;
{$ENDC}

12-7

Pascal Reference Manual The Compiler

begin {main}
{$IFC NOT FLAG}

whatmode;
{$ENDC}

if debug then begin
statement1
end
else begin
statement2
end

end.

The way this is compiled depends on the compile-time variable FLAG. If FLAG
is false, then debug is a2 boolean var/ab/e and the whatmode procedure is
compiled and called at the beginning of the main program. The if
statement is controlled by a boolean variable and all of it is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debug is a constant with the
value false, and whatmode is neither compiled nor called. The if debug
statement is controlled by a constant, so only its else part, "statement2”, is
compiled.

12.4 Optimization of wWhile-Statements and Repeat-Statements
A while-statement or repeat-statement controlled by a boolean constant does
not generate any conditional branches.

125 Efficiency of Case-Statements
A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-8

Pascal Reference Menual Comparison to Appole II & Il7 Pascal

Appendix A
COMPARISON TO APPLE II AND APPLE III
PASCAL
EXUENISIONS eueeererenreeenenrneessernreeeesseearssasssasssssssesnsnsnnnnsnns A-3
(8721 (=14 1 4T SRS A-3
(81127 4153 (-0 'e: - A-4

A-1

Pascal Reference Manal V Comparison to Agole I & Il Pascal

Pascal Reference Mamnual Comparlson to Apple II & Il Pascal

COMPARISON TO APPLE I AND
APPLE III PASCAL

Tnis appendix contains lists of the major differences between the Pascal
language on the Lisa and the Pascal implemented on the Apple II and Apple 111
Please note that these lists are not exhaustive.

Extensions
The following features have been added on the Lisa:

* @Operator —returns the pointer to its operand (see Section 5.1.6)

. Hea)rt)asmt, pointer, and ordd functions (see Sections 11.2.2, 11.3.3, and
11.3.4

» Keypress function built into the language, with same effect as the keypress
function in the applestuff unit of Apple II and Apple III Pascal (see Section
10.3.7.1)

« Hexadecimal constants (see Section 1.4)

» Otherwise-clause in case-statement (same as Apple III Pascal; see Section
6.2.2.2)

* Global goto-statement (see Section6.1.3)

e A fil)t‘a of char type that is distinct from the text type (see Sections 3.2.4 and
10.3

« Numerous compiler commands (see Section 12.1)
* Procedural and functional parameters (see Sections 7.3.3and 7.3.4)
* Stronger type-checking (see Sections 3.4 and 7.3.5)

Deletions
The following features are not included on the Lisa:

» Turtlegraphics, applestuff, and other standard units of Apple Il and Apple
[l Pascal.

« Interactive type (not needed, as the I/0 procedures will do the right thing
witha file of type text if it is opened onacharacter device).

» Keyboard file — same effect can be obtained by opening a file of type text
on the device -KEYBOARD (see Section 10.3).

» Unit (device-oriented)1/0 procedures.

« Recognition of the ETX character (control-C) to mean "end of file” in input
from a character device.

A-3

Pascal Rerference Manual Comparison to Agple Il & Il Pascal

« “Long integer” data type, with length attribute in declaration. Replaced by
the longint type (see Section 3.1.1.2)

« “Initialization® code in a unit (see Section 9).

* The ability to create new intrinsic-units and install them in the system.
(See Section 9.)

» Reset procedure without an external file title, for use on a file that is
already open (see Section 10.1.1). Toobtain the same effect, close the file
and reopen it.

» Treesearch.
* Bytestream, wordstream (data types in Apple 11l Pascal)

 Exit(program) — The exit(identifier) form works, and the identifier can be
the program-identifier. Halt can also be used for orderly exit from a
program (see Sectlonili.1).

» Extended comparisons (See Section5.1.5.)
- Scan function. Replaced by scaneq and scanne (see Section 11.8)
* Bit-wise boolean operations

» Segment keyword for procedures and functions. Use the $S command
instead. (See Section12.1.)

* The following compiler commands (see Section 12.1):

« $I+ and $I- (no automatic 1I/0 checking: program must use ioresult
function)

* $G ($G+ Is the assumption on the Lisa)
« $Nand $R (for resident code segments)
- P

- $Q

* $S+and $S++ for swapping

» $U+and $U-(for User Program)

oV

In general, do not assume that a compiler command used in Apple I or Apple
Il Pascal is valid on the Lisa. Furthermore, do not assume that an Apple I
or Apple 11l Pascal compiler command is "harmless” on the Lisa, as it may be
implemented with a different meaning.

A-4

Pascal Reference Maal Comparison to Apple IT & Il Pascal

Other Differences
The following features of Pascal on the Lisa are different from the
corresponding features of Apple Il and Apple Il Pascal:

= Size of all strings must be explicitly declared (see Section 3.1.1.6).
« Mod and dlv —Pascal on the Lisa truncates toward 0 (see Section5.1.2).

 Apple 1I and Apple I1I Pascal ignore underscores; Pascal on the Lisa does
not. They are legal characters in identifiers (see Section 1.2).

* A goto-statement cannot refer to a case-constant inPascal on the Lisa (see
Section6.1.3).

* A program must begin with the word program in Pascal on the Lisa (see
Chapter 8).
» Truncis different (see Section 11.3.1).

* write(b) where b is a boolean will write either * TRUE' or 'FALSE " inPascal
onthe Lisa(see Section 10.3.3).

» Whether a file is a textfile does not depend on whether its name ends with
" TEXT" when it is created. Instead, any external file opened with a file
variable of type text is treated as a textfile, while a file opened with a file
variable of type file of char is not; it is treated as a “datafile,” l.e. a
straight file of records which are of type char (see Sections 3.2.4 and 10.2).

* Get, put, and the contents of the file buffer variable are not supported on
files of type text. Use only the text-oriented /0 procedures with textfiles.

« Eoln and eof functions on files of type text work as they do on interactive
files in Apple Il and Apple Il Pascal.

« Pascal on the Lisa does not let you pass an element of a packed variableasa
variable parameter (see Sections 7.3.2, 11.7, and 11.8).

» Limits onsets are different (see Section 3.2.3)

e The control variable of a for-statement must be a local variable (see
Section 6.2.3.3)

* In a write or writeln call. the default field lengths for integer and real
values are 8 and 12 respectively (see Section 10.3.3)

A-5

Pascal Reference Manual Comparison to Agple I & Il Pascal

A-6

Pascal Rererence Mamnal Compller Anomalles

Appendix B
KNOWN ANOMALIES IN THE COMPILER
Scope of Declared Constantsieeecerieceeniaseccecsosessseasosonnscacnnes B-3
Scope of Base-Types fOr POINLEISiriiiiiiiiriireereieeieiieeceeeannenans B-4

B-1

Pascal Rererence Mamal Compller Anomalles

Pascal Rererence Maral Compller Anomalies

KNOWN ANOMALIES IN THE
COMPILER

This appendix describes the known anomalies in the current implementation of
the compller.

Scope of Declared Constants
Consider the following program:

program cscopel;
const ten=10;

procedure p;
const ten=ten; {THIS SHOULD BE AN ERROR}
vriteln(ten)

begin

p
end.

The constant declaration in procedure p should cause a compiler error, because
it is illegal to use an identifier within its own declaration (except for pointer
identifiers). However, the error is not detected by the compiler. The effect is
that the value of the global constant ten is used in defining the local constant
ten, and the writeln statement writes “10".

A more serious anomaly of the same kind is illustrated by the following
program:

program cscopez;
const red=1; violet=2;
procedure q;
type arrayT y[red..violet] of integer;
color=(violet, blue, green, yellow, orange, red);
var arrayVar:arrayType; c:color;
begin
arrayvar[1]:=1;
c:=red;
uriteln(urd(c))

begin
q
end.

B-3

Pascal Rererence Mamal Compller Anomalies

within the procedure g, the global constants red and violet are used to define an
array index type; the effect of array{red..violet] is equivalent to array{1..2]. In
the declaration of the type color, the constants red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively -- instead they are
constants of type color with ordinalities 5 and 0 respectively. The writeln
statement writes "5".

The use of red in the declaration of the type color should cause a compiler error
but does not.

Conslider the statement
arrayvar{1]:=1;

If this statement is replaced by
arrayvar[red]:=1;

acompiler error will result, as red is now an illegal index value for arrayvar ——
even though arrayvar is of type arrayType and arrayType is defined by
array{red..violet}). .

To avoid this kind of situation, avoid redefinition of constant-identifiers in
enumerated scalar types.

Scope of Base-Types for Pointers
Consider the following program:

program pscopel;
type s=0..7;

procedure makecurrent;
type sptr="s;
s=record
ch:char;
bool:boolean
end;
var current:s;

ptrs:sptr;
in
nev(ptrs);

ptrs~ :=current
end;

mekecurrent
end.
Here we have a global iype s, which is a subrange of integer; we also have a
local type s, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type s. The intention is that

B-4

Pascal Rererence Manual Compller Anomalies

this should refer to the local type s, defined on the next line of the program;
unfortunately, however, the compiler does not yet know about the local type s
and uses the global type s. Thus ptrs becomes apointer to a variable of type 0..7
instead of apointer to arecord. Consequently the statement

ptrs™ := current
causes acompiler error since ptrs™ and current are of incompatible types.
To avoid this kind of situation,re-declare the type s locally before declaring

the pointer-type sptr based on s. Alternately, avoid re-declaration of
identifiers that are used as base-types for pointer-types.

B-5

Fascal Rererence Mamal Compller Anomalies

B-6

Pascal Reference Mamsal Symtax

Appendix C
SYNTAX OF THE LANGUAGE
{814 ¢a70 (8 o1 4« o TP C-3
TOKENS ANA CONSLANLS veenreieerrereceeeeesenesassesacnssseacecsssecasscnsnsnnns cC-3-
BlOCKS veveeeneeeeneneeeeeceesesaseennsescasssnssssnsnssssssssssssassnnnsnssnneas C-6
(D71 4= T I o= PP c-7
AT 1 ¢ E o] (= C-11
(2% 0] (113 (0] S C-12
Sl Al B MNENLS tuivienereavacercenaresecoasssecscnseneanasssacscanssesessnnennansen C-14
Procedures and FUNCLIONS .. vu.eiieeeieereeneeeseeeecearsssassecassncasasnnanas C-17
(34 (a]0) €=} 1 SO C-19
L 3 C-20

C-1

Pascal Rerference Manual Syntax

C-2

Fascal Rereremnce Manal Smtax

SYNTAX OF THE LANGUAGE

Introduction

This appendix collects the syntax diagrams found in the main sections of this
manual. See the Preface for an introduction to syntax diagrams.

Tokens and Constants (see Chapter 1)

letter

EE s @) o @, @ e D>

22y (0) tragn ()—>

hex-digit

L@tﬂm&gﬁ ®—j

¥ letter >

loentifier

digit

underscore

C-3

Pascal Rererence Manal Syntax

hex-digit-sequernce

(: hex-digit T’

unsignea-integer aigit >
e hex-digit-sequence —

(>

unsignea-real

—»|digit-sequence TO-. digit-sequence >
\ - scale-factor J

scale-faeiar ’@ _f digit-sequence >

Lo =
<R moer ® unsigned-integer -—\
\’ unsigned-real »
_Signea-rumber

J #| unsigned-number ——»

sign

Pascal Reference Manual Symiax

quoteg-string-constant

—0O

oo

string-character

string-character » any char except @ arCR

quoted-character-constant ,@_, string-character _,Q_,

canstant-geglaration [(o constant | —»

consiant

_f #i constant-identifier ——

|

! signed-number N
N quoted-string h
-/ quotea-cnar —>

C-5

Pascal Rererence Manal Symtax

Blocks (see Chapter 2)

block

label-declaration-part —)

A

! constant-declaration-part —)

~

type-declaration-part —)

~

variable-declaration-part —)

procedure-and-function-declaration-part —)

AW

statement-part >

lavel-geclaration-pert
(o) tabel |—~—+()—>
()

lavel

digit-sequence |——»

constant-geclaration-part

constant-declaration T—b

Cc-6

Fascal Rererence Manual

Lype-deciaration-part

type-declaration —j——b

variatle-geclarstion-part

——*@——Cf variable-declaration —j—D

proceaure-and-runction-geciaration-part
procedure-declaration :
function-declaration

statementpart |

" compound-statement ——

Data Types (see Chapter 3)

Lipe-geciarsion _y[iaeryifier —»(=)—»] type —b@—o

simple-type |
structured-type

pointer-type >

c-7

Syntax

Pascal Rererence Manual
simple-tyoe » ordinal-type
real-type
string-type |

Leal-tppe) real-type-identifiey —»
orainal-t subrange-type
enumerated-type
ordinal-type-identifier
string-type

0 size-attribute

string-type-identifier

_sSize-attribute >

unsigned-integer ———»

EUmeraterire o (()—sf icentifier-list |—())—»

Iaentifler-list »| identifier)

Syntax

Pascal Reference Mamal Smlax

suprange-type

»| constant |)—{ constant

!

strctured-type
\

file-type

record-type

“—| structured-type-identifier ~

array-type
(D] inex-type |—~(1)—»(of)-+{ type |—»
L

_f

Jecard-type @ k

field-list

rlela-list
- fixed-part

-

Lol

\;% variant-part

C-9

Pascal Reference Mamal

Fixeq-part

Syntax

| field-declaration —j——’
Held-geclaration identifier-list : type [—
variant-part

tag-field-type H»{ of variant

identifier

Ne

lag-fiela-type

T’((O »(>
\h field-list

SECUE —p((set)+(of)+

He-tpe o

»| ordinal-type-identifier

ordinal-type |—»

>
type —/

C-10

Fascal Rererence Mamal

Ldointer-type \ @ base-type

pointer-type-identifier

Symtax

Lase-type ol 1ype-igentifier |—

Variables (see Chapter 4)

_variable-geclaration »

icentifier-list_|-(: %[type |-+)—»

variable-reference
—| variable-identifier

>
(— qualifier

variable-icentifier »

identifier —»

qualifier

1 index

field-designator |

file-buffer-symbol

pointer-object-symbol

10Xy T)——»{ expression —-)—-.@—o
Gl

C-11

Pascal Reference Manual

Helg-oesianator g () pf identifler |—

fle-bufrer-symbol .@ >
Lointer-ovjectsymbal_ (= >
Expressions (see Chapter 5)
unsigneda-constant »| unsigned-number
quoted-string-constant |
constant-identifier
nil
factor ~ o —{ variable-reference ————
N—=| unsigned-constant
| function-call
N—1 set-constructor

factor

;

expression -P@

C-12

Syntax

Pascal Rererence Manual Syntax

lerm

1 factor ——;———D

simple-expression ol term

expression
—»1 simple-expression >
\\0@—7—> simple-expression —/
ReOae
O~
(<=
()
“»(in)~
" -Runction-call

—| function-identifier _f >
\N actual-parameter-list

C-13

Pascal Reference Marual

seuiparameter-ilst .@ .

actual-parameter) »O)—>

actual-parameter

(O

®| expression

variable-reference

procedure-identifier

function-identifier |

set-constructor
»D

member-groun

DETOEr D)| expression

Statements (see Chapter 6)

statement

»
\’Q—F expression -/

e/ s

»>
simple-statement —TI
structured-statement

ﬁbi—’ digit-sequence —»

C-14

Syntax

Pascal Reference Manual
stmple-statement » assignment-statement |
procedure-statement
goto-statement >
m@v T b _
—T: variable-reference
function-identifier 1»@—» expression
proceaure-statement
—| procedure-identifier _/ >
actual-parameter-list
qoto-statement .(mw label 1—
structured-statement »| compound-statement |
conditional-statement
repetitive-statement
with-statement >
compoung-statement

seatement
conditional-statement ol tf-statement
\—v case-statement, l—>

C-15

Pascal Rererence Manal

Jf-statement @. expression _)

Syntax

(b(then)—b statement

\b(else

statement

case-statement »(case

expression

case

otherwise-clause

&—CM constant TO@—D statement |——

Ao

QUETWISOCISE o -) otherwise)—»{ statement |—»

repetitive-statement

repeat-statement

while-statement

for-statement >

repeat-statement

—-b(repmt)—cb statement

G‘.)

C-16

j——b@tﬂ expression

Pascal Reference Marnal Syntax

while-statement

—»(while)—»| expression statement [—&

—»(for)®{ control-variable —»@—u initial-value)

&1 final-value do statement —»

control-variable i variable-identifier —»

Initia-value_y[omreai] o

with-statemernt

—*(wi@(u record-variable-reference statement [

O

Procedures and Functions (see Chapter 7)

procegure-ceciaration
——{ procedure-heading |»(;)| procedure-body [»(;)—»

C-17

Pascal Reference Manual

grocegure-bogy block
external >
procedure-heading
—=(procedure)—»| identifier
\b formal-parameter-list
function-geclaration

—»} function-heading

(>

runection-boay

function-body

Ne

function-heads fmctim)—ﬂ identifier —)

C

formal-parameter-list

result-type

»| block
extemal >
_f result-type

»

ordinal-type-identifier

real-type-identifier

pointer-type-identifier

c-18

Syntax

Pascal Reference Manual yniax

formal-parameter-list
b@ ®i parameter-declaration
procedure-heading
function-heading

e

'- : W“W”aﬂm identifier-list [—»(:)| type-identifier -

Programs (see Chapter 8)

program
. —»] program-heading |-»(;) »| block [—+
| : A uses-clause ;- -
program-heacing ‘)

—{program)-»| identifier : >
\@0 program-parameters —b@—j

Lrogram-parameters o[envifler-list —

uses-clause »(_uses — identifier-list |—

C-19

Pascal Reference Marnual

Units (see Chapter 9)

Jegular-Lnit

»{ unit-heading |-+

Syntax

(v interface-part H»{ implementation-part -b(end)-o@—»

ithesdng o (it)| icentifier

—

—ﬂ—ﬂ"”w’f 4 interface }

\

uses-clause

-

constant-declaration-part —)

type-declaration-part —)

variable-declaration-part j

ANAR AR AN

procedure-and-function-declaration-part ———

C-20

Fascal Rererence Mamal

imp!ementatianﬂaft.(implementation))

constant-declaration-part

~

type-declaration-part

variable-declaration-part

S

ARANANS

procedure-and-function-declaration-part

C-21

Smtax

Pascal Reference Manal Syntax

C-22

Pascal Rererence Maal Floating-Point Arithmetic

Appendix D
FLOATING-POINT ARITHMETIC
(1% (370 (V151 & (5o [P D-3
RoUNOINGOf REAIRESUILS ..cuvieeeiieieeiieeeicceiceceeeeeeeseeeeeeenaaaaans D-3
Accuracy of Arithmetic Operationsccvieiiieiiiiiiiiiiiinina... D-4
Overflow and Division by Zero: Infinite Valuescccceevveeiiiiennnnn... D-4
Invalld Operations: NaN VAIUES «..c.eveieeiiicieiiiieiieeerienreencenneas D5
Integer ConVersion OVeIflOWvieeiiiiiiiieaciccisecaneeaseaseaeasaeananans D-6
Text-Oriented I/O Conversions ..o.evecceiiieerierecieeeeeescesecscsnananneas D-6
(531611 (70) €= o o D-6

Fascal Reference Manal Floating-Point Arithmetic

D-2

Fascal Rererence Manual Floating-Foint Arithmetic

FLOATING-POINT ARITHMETIC

Introduction
Floating-point arithmetic in Pascal on the Lisa (all arithmetic involving real
values) conforms to most of the single-precision aspects of the IEEE's
Proposed fta/ward for Binary Floating-oint Arithmetic (Draft 10.0 of IEEE
Task P754

IEEE Standard arithmetlc provides better accuracy than many other
floating-point implementations. It also reduces the problems of overfiow,
underflow, limited precision, and invalid operations by providing useful ways of
dealing with them.

The FPLIB library unit contains the routines that perform floating-point
arithmetic (including all the transcendental functions and the sqrt function).
FPLIB must be linked into any program that uses floating-point arithmetic;
however, it is not necessary to explicitly refer to FPLIB in a uses clause unless
the program calls the specialized support procedures and functions declared in
the interface of FPLIB.

This manual assumes that you do not explicitly use the FPLIB unit, and that
therefore only the default options of IEEE arithmetic are applicable.

As a general rule, you can write Lisa Pascal programs that use floating-point
arithmetic without worrying about the differences between IEEE Standard
arithmetic and other floating-point implementations.

The following points apply if your program writes out floating-point numbers as
textual representations (via write or writeln):

» Anything in the output that looks like a number will be correct (and possibly
more accurate thanunder other implementations).

» If your output contains a string of two or more pluses or minuses, this
indicates a value of oo, resulting from odivision by zero or some other
operation that caused a floating-point overflow.

o If your output contains the string “NaN” (meaning Not a Number), this
indicates the result of some invalid operation that would probably have
caused a program halt or a wrong output under other implementations. Note
that any real value in text output that does not include the string “NaN" is
guaranteed not to have been affected by any invalid operation.

Rounding of Real Results
when a real result must be rounded, it is always rounded to the nearest
representable real value. If the unrounded result is exactly haifway between
two representable real values, it is rounded to the value that has a zero in the
least significant digit of its binary fraction (the “even” value).

b-3

Pascal Reference Manal Floating-Foint Arithmetic

Accuracy of Arithmetic Operations
The arithmetic operations +, -, ®, /, round, trunc, and sqrt are accurate to
within half a unit in the last bit. Remainders are computed without rounding
error.

Overflow and Division by Zero: Infinite Values
The result of floating-point overflow is either oo or -oo. These are values of
type real that can be used in further calculations and follow the mathematical
conventions: for example, a finite number divided by oo yields zero.

Dividing a finite non-zero value by zero also yields oo or -oo (in floating-point
arithmetic).

Infinite values have textual representations that can be read by read or readin
or writtenout by write or writeln.

Tables D-1 and D-2 below show the results of arithmetic operations on
infinities. Note that any operation involving a NaN as an operand produces a

NaN as the resuit.
Table D-1
Results of Addition and Subtraction on Infinities
Right
Lert Qperand
Cperand -00 finite +00
-00 -00 -00 NaN
finite -00 finite® +00
+00 NaN +00 +00
-00 NaN -00 -00
finite +00 finite* -00
+00 +00 +00 NaN
' Result is an infinity if the operation overflows.

D-4

Pascal Reference Mamnal Floating-Foint Arithmetic

Table D-2
Results of Multiplication and Division on Infinities

Right
Cperand
Lert -
Qperand =0 finite 100
+0 +0 +0 NaN
finite * +0 finite' *00
+00 NaN +00 +00
+0 NaN 0 +0
finite / 200 finite’ =0
+00 +00 +00 NaN
' Result is an Infinity if the operation overflows.
Aote: Sign of result Is determined by the usual mathematical rules.

Invalid Operat.ions NaN Values
An invalid operation (such as dividing zero by zero) does not cause a halt.
Instead it returns a special diagnostic value, and execution continues. The
result of an invalid operation is called a NalN, which stands for "not a number."

A NaN resulting from an invalld operation Is a propagating NaN. This means
that if the NaN is used as an operand in another operation, the result of the
operation will be the same NaN. NaNs can be written out via write or writeln
and read via read or readln; the textual representation is “NaN" (optionally
followed by a quoted string).

The following operations are invalid and return a NaN value:
* 0000 Of 00+(~00)

® (*+00
« 0/0
s +00/+00

* The In and sqrt functions, when the arguments are inappropriate. See
Sectlons 11.4.7 and 11.4.8.

0-5

Pascal Rererence Maral Floating-oint Arithmetic

Integer Conversion Overflow
Integer conversion overflow can occur in trunc or round (see Chapter 11) if the
actual-parameter exceeds the bounds of the predeclared type integer. The
result returned is unspecified.

Text-Oriented I/O Conversions
The read, readin, write, and writeln procedures require the conversion of
numbers from decimal to binary on input and from binary to decimal on output.
The error in these conversions is less than 1 unit of the result’s least significant
digit. (In the past, base conversions have rarely been done accurately in a way
that permits simple error bounds to be put on the results.)

Real values appear as character strings in two different contexts: as source
code processed by the compiler (real constants), and in text files written and
read by Pascal programs. The signed-number syntax of Chapter 1 applies in
both cases. However, the Compiler does not accept infinities and NaN's.

For read and write, +co is represented by a string of at least two plus signs, and
-oo by a string of at least two minus signs. NaNs are represented by the

characters “NaN", with an optional leading sign, and an optional trailing quoted
string of characters; an example is

-NaN'12:34*
The character string is sometimes used to provide diagnostic data.

Bibliography

The following articles contain detalled information and discussion of the

proposed IEEE floating—point standard. (Articles are listed in order of
importance.)

* "A Proposed Standard for Binary Floating-Point Arithmetic”, ZF£F
Computer Vol. 14, No. 3, March 1981.

e Coonen, J.: “An Implementation Guide to a Proposed Standard for
Floating-Point Arithmetic, /E££ Computer, Vol. 13, No. 1, January 1980.

* ACM SIGNUM Newsletter, special issue devoted to the proposed IEEE
floating-point standard, October 1979.

D-6

Pascal Rererence Maal Inaex

INDEX

Please note that the topic references in this Index are by section number.

$C compiler commands: 12.1
$D compiler commands: 12.1
$DECL compiler command: 12.2.1
$£ compiler command: 12.1
$ELSEC compiler command: 12.2.4
$ENDC compiler command: 12.2.4
$I compiler command: 12.1
$IFC compiler command: 12.2.4
$L compiler cormmands: 12.1
$R compiler commands: 3.1.3, 12.1
$S compiler command: 8.3, 9.1, 9.2, 12.1
'$SETC compiler command: 12.2.1
‘$U compiler commands: 9.1.2, 9.2.2, 12.1
$X compiler commands: 12.1
0, signed: 3.1.1.3
16-bit integer arithmetic: 3.1.1.1-2, 11.3.3
32-bit integer arithmetic: 3.1.1.2, 11.3.3
@ operator: 3.3, 5.1.6
O

abs function: 11.4.2
accuracy in real arithmetic: D
actual-parameter: 5.2, 7.1, 7.3
actual-parameter-list: 5.2
actual-parameters in procedure call: 6.1.2
anomalies in Lisa Pascal: B
Apple II & III Pascals: A
Apple II Pascal: A
Apple III Pascal: A
applestuff unit: A
arctan function: 11.4.9

- arithmetic functions: 11.4
arithmetic operators: 5.1.2, D

Index-1

Pascal Reference Marnal Inoex

array: 3.2.1, 4.3.1

- component: 3.2.1, 4.3.1

- reference: 4.3.1

array-type: 3.2.1

ascii: 3.1.1.5
assignment-compatibility: 3.4.3
assignment-statement: 6.1.1

R
1=

base-type: 3.2.3, 3.3, 5.3

- of pointer-type: 3.3

- scope anomaly: B

- of set-type: 3.2.3, 5.3
bitwise boolean operations: A

blank character: 1.1

blank segment: 8.3, 9.1

block: 2

block-structured I/0: 3.2.4, 10.1.1-2, 10.4
blockread function: 3.2.4, 10.4.1
blockurite function: 3.2.4, 10.4.2

boolean: 3.1.1.4, 5.1.3, 5.1.5.2, 10.3.3.7, 12.3-12.4
- comparisons: 5.1.5.2

constants as control values: 12.3, 12.4
operands, evaluation of: 5.1.3

operators: 5.1.3

- type: 3.1.1.4

- values in text-oriented output: 10.3.3.7
buffer variable: 10.1.3, 10.1.7

built-in procedures & functions: 10, 11
byte array: 11.7

byte-oriented procedures & functions: 11.7
byte-size files: 3.2.4

bytestream type: A

case: 6.2.2.2

case-constant in case statement: 6.2.2.2
case-sensitivity: 1.1, 1.2, 1.4
.case-statement: 6.2.2.2

- efficiency: 12.5

Index-2

Pascal Rererence Manual lnaex

char: 1.6.1, 3.1.1.5, 10.3.1.1, 10.3.3.2, 11.5

i- constant: 1.6.1

- type: 3.1.1.5

- values in text-oriented I/0: 10.3.1.1, 10.3.3.2
character: 1.1, 3.2.4, 4.3.1

- device: 3.2.4, 10.1.1-2

- files: 3.2.4
- in string: 4.3.1
- set: 1.1

chr function: 11.5.2

close procedure: 10.1.5

closing a file: 10.1.5

code generation: 12.1

coment: 1.8

comparisons: 5.1.5
compatibility of parameter lists: 7.3.5
compatible types: 3.4
compile-time expressions & variables: 12.2.1-3
compiler: 1.8, 12, A

- commands: 1.8, 12.1-2, A
component of array: 3.2.1, 4.3.1
component of file: 3.2.4, 4.3.3
component-type of array: 3.2.1
component-type of file: 3.2.4
cormpound-statement: 6.2.1

concat function: 11.6.3
conditional compilation: 12.2
conditional-statement: 6.2.2
constant: 1.4-7
constant-declaration: 1.7, 2.1, B
- scope anomaly: B
constant-declaration-part: 2.1
control-variable: 6.2.3.3

copy function: 11.6.4

cos function: 11.4.5

CR character: 1.1, 1.6, 10.3

- in text-oriented I/0: 10.3
crunch: 10.1.5

current block number: 10.4
current file position: 4.3.3
cursor control: 10.3.7

Index-3

Pascal Reference Maal Inaex

data type: 3
datafile: 10.1.2
debugging: 12.1
defining declaration: 7.1
delete procedure: 11.6.5
device: 10.1.1-2
- character: 10.1.1, 10.1.2
- file-structured: 10.1.1, 10.1.2
- types: 10.1.1, 10.1.2
digit: 1.1
digit-sequence: 1.4
directive: 1.3
div operator: A
division by zero (real arithmetic): 3.1.1.3, D
DLE character: 10.3
dynamic allocation procedures: 11.2
[=g
efflciency, case-statements: 12.5
empty set: 5.3
enumerated-type: 3.1.2
eof function: 10.1.7
- and various procedures: 10.1.3-4, 10.1.7, 10.2.1-2, 10.2.4, 10.3.1-2, 10.4.1
eoln function: 10.3.5 ,
- and read and readln procedures: 10.3.1, 10.3.2
ETX character: A
exit procedure: 11.1.1, A
exp function: 11.4.6
expression: 5
extended comparisons: A
external file: 10.1
external function: 7.2
external procedure: 7.1-2
f =3
factor: S
field of record: 3.2.2, 4.3.2, 6.2.4
field-declaration: 3.2.2
field-designator: 4.3.2
field-list: 3.2.2

Index-4

Pascal Rererence Manual naex

file: 3.2.4, 4.3.3, 10

- buffer: 4.3.3

- buffer and eof function: 10.1.7

- buffer and reset procedure: 10.1.3

- component: 3.2.4, 4.3.3

- identifier as parameter type: 7.3

- of char: 3.2.4

- position and reset procedure: 10.1.3

- record: 10.2

- reference: 4.3.3

- species: 10.1.2

- standard file-type identifier: 3.2.4, 10.1, 10.4
- types and reset procedure: 10.1.3

- variable: 3.2.4, 4.3.3, 10
file-buffer-symbol: 4.3.3

file-structured device: 3.2.4, 10.1.1-2, 10.4
file-type: 3.274

fillchar procedure: 11.8.3

final-value: 6.2.3.3

finite real values: 3.1.1.3

fixed-part: 3.2.2

fixed-point output of real value: 10.3.3.4
floating-point arithmetic: D

floating-point output of real value: 10.3.3.4, A
for-statement: 6.2.3.3
formal-parameter-list: 7.3
formal-parameters and procedure call: 6.1.2
forvard declaration: 7.1-2

function: 7.2-3

function-body: 7.2
function-call: 5, 5.2, 7.2, 7.3
function-declaration: 7.2
function-heading: 7.2

functional parameter: 7.3.4

get procedure: 10.2.1, 10.2.3
goto-statement: 6.2, A
gotoxy procedure: 10.3.7.2

Index-5

Pascal Rerference Manual naex

halt procedure: 11.1.2, A
heap: 11.2
heapresult function: 11.2.2
hex-digit: 1.1
hex-digit-sequence: 1.4
hexadecimal constants: 1.4
host program or unit: 9
host-type of subrange: 3.1.3

I, 3
identical types: 3.4
identifier: 1.2
- of program: 8.1
identifier-list: 3.1.2
IEEE Floating-Point Standard: D
if-statement: 6.2.2.1
- optimization: 12.3
implementation-part: 9.1.1
in operator: 5.1.5.5
index: 4.3.1
- in variable-reference: 4.3.1
index-type: 3.2.1
infinities: 3.1.1.3, D
initial-value: 6.2.3.3
initialization-part: A
input (standard file): 10.1.7, 10.3
input file control (in compilation): 12.1
input variables in read procedure: 10.3.1
input/output: 10
insert procedure: 11.6.6
integer: 1.4, 3.1.1.1-2, 10.3.1.2, 10.3.3.3, 11.3-5, D
- arithmetic: 3.1.1.1, 3.1.1.2
constant: 1.4
- conversion overflow: D
type: 3.1.1.1, 3.1.1.2
type conversions: 3.1, 3.1.1.5, 3.1
values in text-oriented I/0: 10.3.1

’

2, 11.5.1
.2, 10.3.3.3

Index-6

Pascal Reference Manial naex

interactive file-type: A

interface-part: 9.1.1

intrinsic-unit: 9.2

INTRINSIC.LIB: 9.2, 12.1

.invalid operations in real arithmetic: D
ioresult function: 10.1.2, 10.1.6

keyboard: 3.2.4, 10.1.1, 10.3, 10.3.7.1

- echoing on input: 10.3

- physical: 3.2.4, 10.1.1, 10.3, 10.3.7.1
- testing: 10.3.7.1

keypress function: 10.3.7.1

label: 1.5, 2.1, 6

- on statement: 6

label-declaration-part: 2.1

length attribute: 3.1.1.6

length function: 11.6.1

letter: 1.1

Linker: 7.1

listing control: 12.1

In function: 11.4.7
lock: 10.1.5

long integer type: A
longint: 1.4, 3.1.1.2, 10.3.1.2, 10.3.3.3, 11.3-5, D
- arithmetic: 3.1.1.2

constant: 1.4, 1.6, 1.7

type: 3.1.1.2

- type conversions: 11.3.3, 11.3.4

values in text-oriented I/0: 10.3.3.3

mark procedure: 11.2.3, A

maxint: 3.1.1.1

memavail function: 11.2.5

member-group: 5.3

memory allocation procedures: 11.2

mod operator: A

moveleft procedure: 11.7.1

moveright procedure: 11.7.2

Index-7

Pascal Reference Manal Inoex

NaNs: 3.1.1.3, D

new procedure: 3.3, 11.2.1, A
nil: 3.3, 4.3.4, 11.2.1
normal: 10.1.5

number: 1.4)

numerical comparisons: 5.1.5.1

object file: 9

object of pointer: 4.3.4

odd function: 11.4.1

opening a file: 10.1, 10.1.2-4

operands: 5

- compile-time: 12.2.3

- in expressions: S

operators: 5

- compile-time: 12.2.3

- in expressions: 5

optimization of if, repeat, and while statements: 12.3, 12.4
ord function: 3.1, 3.1.1.5, 3.1.2, 11.5.1
ord4 function: 3.1.1.2, 11.3.3

order of evaluation of operands: 5.1.1
ordinal functions: 11.5

ordinal-type: 3.1

- and ord function: 11.5.1

- and ord4 function: 11.3.3

- and pred function: 11.5.4

- and succ function: 11.5.3
ordinal-type-identifier: 3

ordinality: 3.1

othervise-clause: 6.2.2.2

output (standard file): 10.3

output expression in write procedure: 10.3.3
output file in write procedure: 10.3.3
output-specs in write procedure: 10.3.3
overflow (real arithmetic): 3.1.1.3, D

Index-8

Pascal Reference Menual ’ ‘ Inaex

D

packed array of char: 5.1.5.6, 10.3.1.5, 10.3.3.6, 11.8
- comparisons: 5.1.5.6

- fillchar procedure: 11.8.3

- scanning functions: 11.8.1, 11.8.2

- text-oriented I/0: 10.3.1.5, 10.3.3.6
packed types: 3.1.1.6, 3.2

page procedure: 10.3.6

parameter: 7.1, 7.3

parameter 1ist compatibility: 7.3.5
parameter-declaration: 7.3

parameters in procedure call: 6.1.2
Pascal compiler: 12

performance penalty for longint values: 3.1.1.2
pointer: 4.3.4, 11.2

pointer function: 3.3, 11.3.4
pointer-object-symbol: 4.3.4
pointer-reference: 4.3.4

pointer-type: 3.3

- conversions: 11.3.3, 11.3.4
pointer-type-identifier: 3

pos function: 11.6.2

precedence of operators: 5

pred function: 3.1, 11.5.4

predecessor: 3.1

procedural parameter: 7.3.3

procedure: 7.1, 7.3
procedure-and-function-declaration-part: 2.1
procedure-body: 7.1
procedure-declaration: 7.1
procedure-heading: 7.1
procedure-statement: 6.1.2, 7.1

program: 8
- identifier: 8.1
- segments: 8.3

program-heading: 8.1
program-parameters: 8.1, 8.2
purge: 10.1.5

put procedure: 10.2.2-3
pwroften function: 11.4.10

Index-9

Pascal Reference Manual inaex
Q
qualifier: 4.3
quoted-character-constant: 1.6.1
guoted-string-constant: 1.6

range-checking: 3.1.3, 12.1
read procedure: 10.3.1
readln procedure: 10.3.2
real: 1.4, 3.1.1.3, 10.3.1.3, 10.3.3.4, 11.3-4, D
- arithmetic: D
- constant: 1.4
- type: 3.1.1.3, D
- type and round function: 11.3.2
- values: 3.1.1.3
- values and write procedure: D
- values in text-oriented I/0: 10.3.1.3, 10.3.3.4, D
real-type: 3.1
real-type-identifier: 3
record: 3.2.2, 4.3.2
- field: 3.2.2, 4.3.2
- number and seek procedure: 10.2.4
- of file: 10.2
- reference: 4.3.2
- reference in with statement: 6.2.4
record-oriented 1/0: 10.2
record-type: 3.2.2
- new procedure: 11.2.1
recursion: 7.1-2
redeclaration of identifier: 2.2.2, 2.2.4
regular-unit: 9.1
relational operators: 5.1.5
release procedure: 11.2.4, A
repeat-statement: 6.2.3.1
- optimization: 12.4
repetitive-statement: 6.2.3
reserved words: 1.1
reset procedure: 10.1, 10.1.5, A
result-type: 7.2
rewrite procedure: 10.1.4
round function: 11.3.2, D
rounding in real arithmetic: D

Index-10

Pascal Reference Manual Inaex

S-
scale-factor: 1.4
scan function: A
scaneq function: 11.8.1
scanne function: 11.8.2
scope: 2.2
- of standard objects: 2.2.5
screen: 10.3, 10.3.7.2
- cursor control: 10.3.7.2
- physical: 10.3
seek procedure: 10.2.3
segment keyword: A
segmentation: 8.3
segments: 8.3, 9.1, 9.2.1
selector in case statement: 6.2.2.2
set: 3.2.3, 5.1.4, 5.1.5.4, 5.3
- comparisons: 5.1.5.4
- membership testing: 5.1.5.5
- operators: 5.1.4
- values: 5.3
set-constructor: 5, 5.3
set-type: 3.2.3
sign: 1.4
signed zero: 3.1.1.3
signed-number: 1.4
simple-expression: 5
simple-statement: 6.1
simple-type: 3.1
simple-type-identifier: 3
sin function: 11.4.4
size-attribute: 3.1.1.6
sizeof function: 11.7.3
special symbols: 1.1
sqr function: 11.4.3
sgrt function: 11.4.8, D
stack space and memavail function: 11.2.5
standard procedures and functions: 10, 11
- for I/0: 10
standard simple-types: 3.1
statement: 6

Index-11

Pascal Rererence Manual Inadex

statement-part: 2.1

string: 1.6, 3.1.1.6, 4.3.1, 5.1.5.3, 10.3.1.4, 10.3.3.5, 11.6, A

- character: 4.3.1

- comparisons: 5.1.5.3

- concatenation: 11.6.3

- constant: 1.6, 3.1.1.6

- constant comparisons: 5.1.5.3

- length function: 11.6.1

- procedures and functions: 11.6

- reference: 4.3.1

- substring copying: 11.6.4

- substring deletion: 11.6.5

- substring insertion: 11.6.6

- substring search: 11.6.2

- values in text-oriented I/0: 10.3.1.4, 10.3.3.5

string-character: 1.6

string-type: 3.1.1.6

string-type-identifier: 3

structured-statement: 6.2

structured-type: 3.2

structured-type-identifier: 3

subrange-type: 3.1.3

succ function: 3.1, 11.5.3

successor: 3.1

syntax diagrams, complete collection: C

syntax diagrams, explanation: Preface

system intrinsic library: 9.2.2, 12.1
T

tag constants in new and dispose procedures: 11.2.1-2

tag-field: 3.2.2

tag-field-type: 3.2.2

term: 5

testing set membership: 5.1.5.5

text type: 3.2.4, 10.1.2, 10.3

text-oriented I/0: 10.3

textfile: 10.1.2, 10.3, A

textfile format: 10.1.2, i0.3

transfer functions: 11.3

treesearch procedure: £

Index-12

Pascal Rerference Manual naex

trunc function: 11.3.1, A, D
turtlegraphics unit: A

type: 3

- compatibility and identity: 3.4
type-declaration: 3
type-declaration-part: 2.1, 3.5

UCSD Pascal: A
unary arithmetic operators: 5.1.2
underscore character: A

unit: 9

- intrinsic: 9.2

- regular: 9.1

unit-heading: 9.1.1
unsigned-constant: 5
unsigned-integer: 1.4
unsigned-number: 1.4
unsigned-real: 1.4

untyped file: 3.2.4, 10.1.1-2, 10.4
- 1/0: 10.4 '

uses-clause: 8.1, 9.1.1-2, 9.2, 9.3
value parameter: 7.3.1

variable: 4

variable parameter: 7.3.2, A
variable-declaration: 4.1
variable-declaration-part: 2.1
variable-identifier: 4.1
variable-reference: 4.2

variant: 3.2.2

- records, new procedure: 11.2.1
variant-part: 3.2.2

while-statement: 6.2.3.2
- optimization: 12.4

Index-13

Pascal Reference Manual Inoex

with-statement: 6.2.4
vordstream type: A
write procedure: 10.3.3, A
- with real values: D
write-protection of file: 10.1.5
writeln procedure: 10.3.4, A

z
zero, signed: 3.1.1.3

Index-14

Pascal Reference Menual QuickDraw
Appendix E
QUICKDRAW
E.l ADOUL TRISMENUEL......cotimmeneiereaneeeisteietaennecssrannessssnanseeesresannenans E-3
E2 ADOUL QUICKDIAW ccceuuuiirnennnnisecneennnieeserassnsscsssesssssssassassasassnassans E-4
E.2.1 How TOUSE QUICKDIBWc.ceeeemmennneiinenencncinnenencessanesnnesens E-5
E.3 TheMathematical Foundation of QUICKDIAWccceeeirenncrensencccennnane E-6
E3.1 The Coordinate P1ane........ccceeeereecstnnccenenncssennssenenesenseesens E-6
E.3.2 e LR E-7
E.3.3 RECLANGIES ... eeeeeneiirinttencttstieteneteenenneessennnnsessnsanesneees E-7
E.34 REGIONS «.ieeeeeiieenniirennntienensiraeniesstensssssassssensssssnsessanseasens E-9
Ed4 GraphiCENtIUEs. .. cciemeciciieie ittt cteneectee e csensaenaen E-11
Ea4l TREBILIMAGE ...ietimnniiiieeeiitisentnnnetentneneteraeaneeeensennnes E-12
E4.2 L= L= E-13
E.43 2= AR =) ¢4 Y E-15
Ea44 [0:F) 15 ¢ 3 E-16
E.5 TheDrawing Environment: GrafPortcccecceeeeeeeeenceennncnssasnnnenns E-17
ES.1 Pen CharaCteristiCs ... ivueccieenniiciarensiinnnectruenceneesnenencnnes E-21
E.5.2 Text CharaCteristiCs. ... iiciiiinicciiiesitnecennctenencneeneces E-23
E.6 Coordinatesin GrafPorts eeessscsmssststanensernnstetsanssasssernnssnanen E-25
E.7 General Discussion of DIawing ...c.cecccceeeeimecenneeencenecannccocscnences E-27
E7.1 Transfer Modes . cissssuapimnessesueessesnasannsurasaiaise E-29
E.7.2 [0 ¢ 150 B L0210 (s) E-31
E.8 PICtUres andPOIYQONS ...cccceceeeseeeecnneacsresannsnnsescessassesasnssnsssasasnans E-31
E.8.1 3 (0113 (- SN E-32
E.8.2 POLYGONS ..ccuietieeitnnencsnncnnteneessasencassssensasmsensancsssanessasanes E-33
E9 QUICKDTAW ROULINES ...ceeuireennieannrctennnicsansnninesnnsesenssescsssasasansanes E-35
ES.1 GIrafPOTt ROULINES «...cceeniiiiiireninirnecccntnnncteenntenecsanacascnnes E-35
E9.2 Cursor-Handling ROULINEScoueveeeiiiiiimmnicirnencccieeennnenes E-40
ES.3 Penand Line-Drawing ROULINES ... cceuveeennirnnetienacceneeccennes E-41
ES4a Text-Drawing ROULINES cccueeeciriniitccrnecennncccseaneenencnes E-44
E.95S (193 €379 130 BT T 0] Lo} G E-a6
E.9.6 Calculations with ReCtanglescccccceetenccesncnsareneseencenes E-47
E.9.7 Graphic Operations on RECLaANGIEscceeeeicenenieennnccnanennnee E-S50
E.9.8 Graphic Operations oNOVAILSccccceeecreecseecctenianecseenenenens E-S0
ES.9 Graphic Operations on Rounded-Corner Rectangles E-51
E.S.10 Graphic Operations on Arcs and WedgeSeeeeceereneceescnneanas E-53
ES.11 Calculations with Regionsccccccevcerieennncneneee. enneeans E-55
E.S.12 Graphic Operations oNREGIONS...ueeee cceeereneitetennncrenenecnnees E-60
E.S.13 Bit Transfer OperationsS......cccveerieemeeicinienececietennescenenannnes E-61
ES.14 g 103 () (. E-63
E.9.15 Calculations With POLYGONSccveeeemenciennnncnnisnenenensecnnnanans E-64
E.9.16 Graphic Operations oNPOLYGONScceecireeierecceeccanasseensenanss E-66

Pascal Reference Mernsal QuickDraw
E.0.17 Calculations With POINESceeieemeeiieeecineecssonccnncscnecnnnccces E-67
E.0.18 Miscellaneous UIHUESceveereeeciemeiiienaicneecaccsnceccannneacns E-69

E.10 Customizing QuickDraw Operationsccccceeeeamecccscecacoccccsacsnces E-72
E.11 Using QuickDraw from ASSembly LangUaQEccececeseeeccneeeecerscennes E-75
E.ll1 (97013 7= | 5 E-76
E.11.2 DAl TYPES ..eceeeeeeeacsecsncrecceacecaecccnsssenacsecrecnasesnacanssoscne E-76
E113 Global Variables.....c..cceeereemeansrenaniesncncasccosacncossesssosaansass E-77
E.114 Procedures and FUNCHIONSceeecemeieneeiecciconicinecsiececencnanes E-78
E.12 Summary of QUICKDIAWccccemeueeeanamssceanenscsseenemsmsocesasssessassnses E-79
E.13 QuickDraw Sample PYOGIAMc.ccceceeecrmcsesccrssesanccssncssssesssssscnsans E-95
E.18 GlOSSAIY cevcneracasscesesonsonnssssonassscossasssnssssssassscssasnarsssssssssssssnasss E-104

E-2

Pascal Rerference Manal QuickOraw

QUICKDRAW

E.l About This Manual
This manual describes QuickDraw, a set of graphics procedures, functions, and
data types that allows a Pascal or assembly language programmer of Lisa to
perform highly complex graphic operations very easily and very quickly. It
covers the graphic concepts behind QuickDraw, as well as the technical details
of the data types, procedures, and functions you will use in your programs.

Wwe assume that you are familiar with the Lisa workshop Manager, Lisa Pascal,
and the Lisa Operating System's memory management. This graphics package is
for programmers, not end users. Although QuickDraw may be used from either
Pascal or assembly language, this manual gives all examples in their Pascal form,
to be clear, concise, and more intuitive; Section E.11 describes the details of the
assembly language interface to QuickDraw.

The manual begins with an introduction to QuickDraw and what you can do with
it (Section E.2). It then steps back a little and looks at the mathematical concepts
that form the foundation for QuickDraw: coordinate planes, points, and
rectangles (Section E.3). Once you understand these concepts, read on to Section
E.4, which describes the graphic entities based on them--how the mathematical
world of planes and rectangles is translated into the physical phenomena of light
and shadow.

Then comes some discussion of how to use several graphics ports (Section E.6),a
summary of the basic drawing process (SectionE.7), and a discussxon of twomore
parts of QuickDraw, pictures and polygons (Section E.8).

Next, in Section E.9, there's a detailed description of all QuickDraw procedures
and functions, their parameters, calling protocol, effects, side effects, and so
on-—?u the technical information you'll need each time you write a program for
thelisa.

Following these descriptions are sections that will not be of interest to all
readers. Special information is given in Section E.10 for programmers who want
to customize QuickDraw operations by overriding the standard drawing
procedures, and in Section E.11 for those who will be using QuickDraw from
assembly language.

Finally, there's a summary of the QuickDraw data structures and routine calls
(Section E.12), and a glossary that explains terms that may be unfamiliar to you
(SectionE.13).

Pascal Reference Manual

E2 About QuickDraw

QuickDraw

QuickDraw allows you to organize the Lisa screen into a number of individual
areas. withineach area you can draw many things, as illustrated in Figure E-1.

Text

Lines

Rectangles Ovals
Bold \
000
Underline | *
Gutilae | Vo v &)
Badew | N @
RoundRects | Wedges Polygons

o0
B0

You can draw:

Figure

{Z

E-1
Samples of QuickDraw's Abilities

Regions
el
.»

* Text characters in a number of proportionally-spaced fonts, with variations
that include boldfacing, italicizing, underlining, and outlining.

* Straight lines of any length and width.

* A varlety of shapes, either solid or hollow, including: rectangles, with or
without rounded corners; full circles and ovals or wedge-shaped sections;

and polygons.

* Any other arbitrary shape or collection of shapes, again either solid or

hollow.

* Apicture consisting of any combination of the above items, with ju

procedure call.

ust asingle

Pascal Rerference Msanual QuickDraw

Inaddition, QuickDraw has some other abilities that you won't find in many other
graphics packages. These abilities take care of most of the "housekeeping”--the
trivial but time-consuming and bothersome overhead that's necessary to keep
things in order.

* The ability to define many distinct "ports” on the screen, each with its own
complete drawing environment--its own coordinate system, drawing
location, character set, location on the screen, and so on. You can easily
switch from one such port to another.

* Full and complete “clipping" to arbitrary areas, so that drawing will occur
only where you want. It's like a super-duper coloring book that won't let you
color outside the lines. You don't have to worry about accidentally drawing
over something else on the screen, or drawing off the screen and destroying
memory.

* Off-screen drawing. Anything you can draw on the screen, you can draw into
an off-screen buffer, so you can prepare an image for an output device
without disturbing the screen, or you can prepare a picture and move it onto
the screen very quickly.

And QuickDraw lives up to its name! It's very fast. The speed and
responsiveness of the Lisa user interface is due primarily to the speed of the
QuickDraw package. You can do good-quality animation, fast interactive
graphics, and complex yet speedy text displays using the full features of
QuickDraw. This means you don't have to bypass the general-purpose
QuickDraw routines by writing a 1ot of special routines to improve speed.

E2.1 How To Use QuickDraw
QuickDraw can be used from either Pascal or MC68000 machine language. It has
no user interface of its own; you must write and compile (or assemble) a Pascal
(or assembly-language) program that includes the proper QuickDraw calls, link
the resulting object code with the QuickDraw code, and execute the linked
object file.

A programming model is included with the Workshop software; it shows the
structure of a properly organized QuickDraw program. What's best for beginners
is to read through the text, and, using the superstructure of the program as a
“shell", modify it to suit your own purposes. Once you get the hang of writing
programs inside the presupplied shell, you can work on changing the shell itself.

QuickDraw includes only the graphics and utility procedures and functions you'll
need to create graphics on the screen. Procedures for dealing with the Mouse,
Cursors, Keyboard, and screen settings, as well as those allowing you to generate
sounds, and read and set clocks and dates, are available in the unit "Hardware”.

E-5

Pascal Reference Manual QuickDraw

E.3 The Mathematical Foundation of QuickDraw
To create graphics that are both precise and pretty requires not supercharged
features but a firm mathematical foundation for the features you have. If the
mathematics that underlie a graphics package are imprecise or fuzzy, the
graphics will be, too. QuickDraw defines some clear mathematical constructs
that are widely used in its procedures, functions, and data types: the coordinate
plane, the point, the rectangle, and the region.

E3.1 The Coordinate Plane
All information about location, placement, or movement that you give to
QuickDraw is in terms of coordinates on a plane. The coordinate plane is a
two-dimensional grid, as illustrated in Figure E-2.

-32768
4

-32768 ¢« - 32767

¥
32767

Figure E-2
The Coordinate Plane

There are twodistinctive features of the QuickDraw coordinate plane:
* All grid coordinates are integers.
* All gridlines are infinitely thin.

These concepts are important! First, they mean that the QuickDraw plane is
finite, not infinite (although it's very large). Horizontal coordinates range from
-32768 10 +32767,and vertical coordinates have the same range.

Second, they mean that all elements represented on the coordinate plane are
mathematically pure. Mathematical calculations using integer arithmetic will

E-6

Pascal Reference Marnial QUCKkDraw

produce intuitively correct results. If you keep in mind that grid lines are
infinitely thin, you'll never have “endpoint paranoia“--the confusion that results
from not knowing whether that last dot is included in the line.

E3.2 Points
On the coordinate plane are 4,294,967,296 unique points. Each point is at the
intersection of a horizontal grid line and a vertical grid line. As the grid lines are
infinitely thin, a point is infinitely small. Of course there are more points on this
grid than there are dots on the Lisa screen: when using QuickDraw you associate
small parts of the grid with areas on the screen, so that you aren't bound into an
arbitrary, limited coordinate system.

The coordinate origin (0,0) is in the middle of the grid. Horizontal coordinates
increase as you move from left to right, and vertical coordinates increase as you
move from top to bottom. This is the way both a TV screen and a page of English
text are scanned: from the top left to the bottom right.

You can store the coordinates of a point in a Pascal variable whose type is
defined by QuickDraw. The type Point is a record of two integers, and has the
following structure:

type VHSelect = (VH)
Point = record case integer of

0: (v: integer:
h: integer);
1: (vh: array [VHSelect] of integer)

end;

The variant part allows you to access the vertical and horizontal components of
a point either individually or as an array. For example, if the variable
typegoodPt were declared to be of type Point, the following would all refer to
the coordinate parts of the point:

goodPt.v - goodPt.h
goodPt.vh(V] goodPt.vh{H]
E33 Rectangles

Any two points can define the top left and bottom right corners of a rectangle.
As these points are infinitely small, the borders of the rectangle are infinitely
thin(see Figure E-3).

Pascal Reference Manual QuickDraw

Top »

¥+ Bottom
Right

Figure E-3

A Rectangle
Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
drawing commands. QuickDraw also allows you to perform many mathematical

calculations on rectangles--changing their sizes, shifting them around, and so
on.

NOTE

Remember that rectangles, like points, are mathematical concepts that
have no direct representation on the screen. The association between
these conceptual elements and thelr physical representations is made by
abitMap, described below.

Pascal Reference Marnugal

QuUickDraw

The data type for rectangles is called Rect, and consists of four integers or two

points:

type Rect = record case integer of

0: (top: integer;

left: integer;
bottom: integer;
right: integer);

1: (topLeft: Point;

botRight: Point)

end;

Again, the record variant allows you to access a variable of type Rect either as
four boundary coordinates or as two diagonally opposing comer points.
Combined with the record variant for points, all of the following references to
the rectangle named bRect are legal:

bRect {type Rect}

bRect.topLeft bRect.botRight {type Point}

bRect.top bRect.left {type integer}
bRect.topLeft.v bRect.topLeft.h {type integer}
bRect.topLeft.vhV] bRect.topLeft.vh{H] {type integer}
bRect.bottom bRect.right {type integer}
bRect.botRight.v bRect.botRight.n {type integer}

bRect.botRight.vh{V] bRect.botRight.vhi[H] {type integer}

WARNING

If the bottom coordinate of a rectangle is equal to or less than the top, or
the right coordinate is equal to or less than the left, the rectangle is an
empty rectangle (i.e., one that contains no bits).

E.3.4 Regions

Unlike most graphics packages that can manipulate only simple geometric

structures (usually recti

linear, at that), QuickDraw can gather an arbitrary set of

spatially coherent points into a structure called a region, and perform complex
yet rapid manipulations and calculations on such structures. This remarkable
feature not only will make your standard programs simpler and faster, but will

Pascal Reference Mol QAickDraw

let you perform operations that would otherwise be nearly impossible; it is
fundamental to the Lisa user interface.

You define a region by drawing lines, shapes such as rectangles and ovals, or
even other regions. The outline of a region should be one or more closed loops. A
region can be concave or convex, can consist of one area or many disjoint areas,
and can even have "holes” in the middle. In Figure E-4, the region on the left has
ahole in the middle, and the region on the right consists of two disjoint areas.

LTI
LT

NN AN U NN
TIITIITIILT

xxxxx

Figure E-4
Regions
Because a region can be any arbitrary area or set of areas on the coordinate
plane, it takes a variable amount of information to store the outline of a region.
The data structure for a region, therefore, is a variable-length entity with two
fixed fields at the beginning, followed by a variable-length data field:

type Region = record
rgnSize: integer;
rgnBBox: Rect;
{optional region definition data}
end;

The rgnSize field contains the size, in bytes, of the region variable. The rgnBBox
field is a rectangle which completely encloses the region.

The simplest region is a rectangle. In this case, the ragnBBox field defines the
entire region, and there is no optional region data. For rectangular regions {or
empty regions), the rgnSize field contains 10.

E-10

Pascal Rerference Manual QuickDraw

The region definition data for nonrectangular regions is stored in a compact way
which allows for highly efficient access by QuickDraw procedures.

As regions are of variable size, they are stored dynamically on the heap, and the
Operating System's memory management moves them around as their sizes
change. Being dynamic, a region can be accessed only through a pointer; but
when a region is moved, all pointers referring to it must be updated. For this
reason, all regions are accessed through handles, which point to one master
pointer which in tum points to the region.

type RgnPtr = "Region;
RgnHandle = RgnPtr;

when the memory management relocates a region’s data in memory, it updates
only the RgnPtr master pointer to that region. The references through the
master pointer can find the region's new home, but any references pointing
directly to the region's previous position in memory would now point at dead
bits. To access individual fields of a region, use the region handle and double

indirection:
myRgn” ".rgnSize {size of region whose handle is myRgn}
myRgn” ~.rgnBBox {rectangle enclosing the same region}
myRgn .rgnBBox.top {minimum vertical coordinate of all
. points in the region}
myRgn .rgnBBox {semantically incorrect; will not compile

if myRgn is a rgnHandle}

Regions are created by a QuickDraw function which allocates space for the
region, creates a master pointer, and returns a rgnHandle. when you're done
with a region, you dispose of it with another QuickDraw routine which frees up
the space used by the region. Only these calls allocate or deallocate regions; do
not use the Pascal procedure NEW to create a new region!

You specify the outline of a region with procedures that draw lines and shapes,
as described in Section E.9, QuickDraw Routines. An example is given in the
discussion of CloseRgn in Section E.9.11, Calculations with Regions.

Many calculations can be performed on regions. A region can be “expanded" or
“shrunk” and, given any two regions, QuickDraw can find their union,
intersection, difference, and exclusive-OR; it can also determine whether a
given point or rectangle intersects a given region, and so on. There is of course a
set of graphic operations on regions to draw them on the screen.

E.4 Graphic Entities
Coordinate planes, points, rectangles, and regions are all good mathematical
models, but they aren’t really graphic elements--they don't have a direct
physical appearance. Some graphic entities that do have a direct graphic
interpretation are the bit image, bitMap, pattem, and cursor. This section

E-11

Pascal Reference Manual QuUickDraw

describes the data structure of these graphic entities and how they relate to the
mathematical constructs described above.

E.4.1 The Bit Image

A bit image is a collection of bits in memory which have a rectilinear
representation. Take a collection of words in memory and lay themend toend so
that bit 1S of the lowest-numbered word is on the left and bit 0 of the
highest-numbered word is on Lhe far right. Then take this array of bits and
dlvide it, on word boundaries, into a number of equal-size rows. Stack these rows
vertically so that the first row is on the top and the last row is on the bottom.
The result is a matrix like the one shown in Figure E-5--rows and columns of
bits, with each row containing the same number of bytes. The number of bytes in
each row of the bit image is called the row width of that image.

First

Byte i

Row
Width

8 bytes

Last
Byte

Figure E-5
A Bit Image

A bit image can be stored in any static or dynamic variable, and can be of any
length that is a multiple of the row width.

The Lisa screen itself is one large visible bit image. There are 32,760 bytes of
memory that are displayed as a matrix of 262,080 pixels on the screen, each bit
corresponding to one pixel. If abit's value is 0, its pixel is white; if the bit's value

- oae

is 1, the pixel is black.

The screen is 364 pixels tall and 720 pixels wide, and the row width of its bit
image is 90 bytes. Each pixel on the screen is one and a half times taller than it

E-12

Pascal Referernce Manual QuickDraw

is wide, meaning a rectangle 30 pixels wide by 20 tall looks square, and a 30 by 20
oval looks circular. There are 90 pixels per inch horizontally, and 60 per inch
vertically.

NOTE

Since each pixel on the screen represents one bit inabit image, wherever
this document says "bit", you can substitute "pixel” if the bit image is the
Lisa screen. Likewise, this document often refers to pixels on the screen
where the discussion applies equally to bits in an off-screen bit image.

E.A2 The BitMap
when you combine the physical entity of abit image with the conceptual entities
of the coordinate plane and rectangle, you get a bitMap. A bitMap has three
parts: a pointer to a bit image, the row width (in bytes) of that image, and a
boundary rectangle which gives the bitMap both its dimensions and a coordinate
system. Notice that a bitMap does not actually include the bits themselves: it
points to them.

There can be several bitMaps pointing to the same bit image, each imposing a
different coordinate systemonit. This important feature is explained more fully
in Section E.6, Coordinates in GrafPorts.

As shown in Figure E-6, the data structure of abitMap is as follows:

type BitMap = record
baseAddr: QDPtr;
rowBytes: integer;
bounds: Rect
end;

E-13

Pascal Reference Marnual QuickDraw

Base
Address
baseAddr d
rowBytes
bounds

—— Row Width ——

Figure E-6
A BitMap

The baseAddr field is a pointer to the beginning of the bit image in memory, and
the rowBytes field is the number of bytes in each row of the image. Both of these
should always be even: a bitMap should always begin on a word boundary and
contain an integral number of words in each row.

The bounds field is a boundary rectangle that both encloses the actlve area of
the bit image and imposes a coordinate system on it. The relationship between
the boundary rectangle and the bit image in a bitMap is simple yet very
important. First, a few general rules:

* Bits in abit image fall between points on the coordinate plane.

* A rectangle divides a bit image into two sets of bits: those bits inside the
rectangle and those outside the rectangle.

* A rectangle that is H points wide and V points tall encloses exactly
(H-1)«(v-1)bits.

The top left comer of the boundary rectangle is aligned around the first bit inthe
bit image. The width of the rectangle determines how many bits of one row are
logically owned by the bitMap; the relationship

8*map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many rows of
the image are logically owned by the bitMap. To ensure that the number of bits

E-14

Pascal Referemnce Marnal QKdokOraw

in the logical bitMap is not larger than the number of bits in the bit image, the bit
image must be at least as big as

(map.bounds.bottom-map.bounds.top)*map.rowBytes.

Normally, the boundary rectangle completely encloses the bit image: the width
of the boundary rectangle is equal to the number of bits in one row of the image,
and the height of the rectangle is equal to the number of rows in the image. If the
rectangle is smaller than the dimensions of the image, the least significant bits
in each row, as well as the last rows in the image, are not affected by any
operations on the bitMap.

The bitMap also imposes a coordinate system on the image. Because bits fall
between coordinate points, the coordinate system assigns integer values to the
lines that border and separate bits, not to the bit positions themselves. For
example, if a bitMap is assigned the boundary rectangle with corners (10,-8) and
(34,8), the bottom right bit in the image will be between horizontal coordinates
33 and 34, and between vertical coordinates 7 and 8 (see Figure E-7).

{(16,-8) (34,-8)
R
(10,8) (34,8)
Figure E-7

Coordinates and BitMaps

E4.3 Pattems
A pattern is a 64-bit image, organized as an 8-by-8-bit rectangle, which is used
to define a repeating design (such as stripes) or tone (such as gray). Patternscan
be used to draw lines and shapes or to fill areas on the screen.

when a pattern is drawn, it is aligned such that adjacent areas of the same
pattern in the same graphics port will blend with it into a continuous,
coordinated pattern. QuickDraw provides the predefined patterns white, black,

E-15

Pascal Reference Manual QuickDraw

gray, 1tGray, and dkGray. Any other 64-bit variable or constant canbe usedasa
pattemn, too. The data type definition for a pattem is as follows:

type Pattem = packed array [0..7] of 0..255;
The row width of apattemis 1 byte.

E.Al4 Cursors
A cursor is a small image that appears on the screen and is controlled by the
mouse. (It appears only on the screen, and never in an off-screen bit image.)

A cursor is defined as a 256-bit image, a 16-by-16-bit rectangle (remember that
the pixels are not square). The row width of a cursor is 2 bytes. Figure E-8
illustrates four cursors.

0 8 8 16
0_' : l

1l

Figure E-8
Cursors
A cursor has three fields: a 16-word data field that contains the image itself, a
16-word mask fleld that contains information about the screen appearance of

each bit of the cursor, and a hotSpot point that aligns the cursor with the position
of the mouse.

type Cursor = record
data: array [0..15] of integer;
mask: array [0..15] of integer;
hotSpot: Point
end;

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit rectangle. The appearance
of each bit of the rectangle is determined by the corresponding bits in the data

E-16

Pascal Reference Mol QickDraw

and mask and, if the mask bit is 0, by the pixel “under” the cursor (the one already
on the screen in the same position as this bit of the cursor)

Data Mask Resulting pixel on screen
0 1 white
1 1 Black
0 0 Same as pixel under cursor
1] Inverse of pixel under cursor

Notice that if all mask bits are 0, the cursor is completely transparent, in that
the image under the cursor can still be viewed: pixels under the white part of the
cursor appear unchanged, while under the black part of the cursor, black pixels
show through as white.

The hotSpot aligns a point in the image (not a bit, a point!) with the mouse
position. Imagine the rectangle with corners (0,0) and (16,16) framing the image,
as in each of the examples in Figure E-8; the hotSpot is defined in this coordinate
system. A hotSpot of (0,0) is at the top left of the image. For the arrow in Figure
E-8 to point to the mouse position, (0,0) would be its hotSpot. A hotSpot of (8,8) is
in the exact center of the image; the center of the plus sign or oval in Figure E-8
would coincide with the mouse position if (8,8) were the hotSpot for that cursor.
Similarly, the hotSpot for the pointing hand would be (16,3).

whenever you move the mouse, the low-level interrupt-driven mouse routines
move the cursor's hotSpot to be aligned with the new mouse position.

QuickDraw supplies a predefined arrow cursor, an arrow pointing
north-northwest.

Refer to Appendix F, Hardware Interface, for more information on the mouse and
cursor control.

ES5 The Drawing Environment: GrafPort

A grafPort is a complete drawing environment that defines how and where
graphic operations will have their effect. It contains all the information about
one instance of graphic output that is kept separate from all other instances.
You can have many grafPorts open at once, and each one will have its own
coordinate system, drawing pattem, background pattem, pen size and location,
character font and style, and bitMap in which drawing takes place. You can
instantly switch from one port to another. GrafPorts are the structures on which
a program builds windows, which are fundamental to the Lisa's “overlapping
windows" user interface.

E-17

Pascal Referernce Manual QuickDraw

A grafPort is a dynamic data structure, defined as follows:

type GrafPtr = "GrafPort;
GrafPort = record
device: integer;
portBits: BitMap;
portRect: Rect;

visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat: Pattermn;
fillPat: Pattem;
pnLoc: Point;
pnSize: Point;
pnMode: integer;
pnPat: Pattem;
pnvis: integer;
txFont: integer;
txFace: Style;
txMode: integer;
txSize: integer;

spExtra: integer;
fgColor: longint;
bkColor: longint;
colrBit: integer;
patStretch: integer;
picSave: QDHandle;
rgnSave: QDHandle;
polySave: QDHandle;
grafProcs: QDProcsPtr
end;

All QuickDraw operations refer to grafPorts viagrafPtrs. You create a grafPort
with the Pascal procedure NEW and use the resulting pointer in calls to
QuickDraw. You could, of course, declare a static var of type grafPort, and
obtain a pointer to that static structure (with the @ operator), but as most
grafPorts will be used dynamically, their data structures should be dynamic also.

E-18

Pascal Reference Marnual QuickOraw

NOTE

You can access all fields and subfields of a grafPort normally, but you
should not store new values directly into them. QuickDraw has
procedures for altering all flelds of a grafPort, and using these
procedures ensures that changing a grafPort produces no unusual side
effects.

The device field of a grafPort is the number of the logical output device that the
grafPort will be using. QuickDraw uses this information, since there are
physical differences in the same logical font for different output devices. The
default device number is 0, for the Lisa screen.

The portBits field is the bitMap that points to the bit image to be used by the
grafPort. All drawing that is done in this grafPort will take place in this bit
image. The default bitMap uses the entire Lisa screen as its bit image, with
rowBytes of 90 and a boundary rectangle of (0,0,720,364). The bitMap may be
changed to indicate a different structure in memory: all graphics procedures
work in exactly the same way regardless of whether their effects are visible on
the screen. A program can, for example, prepare an image to be printed on a
printer without ever displaying the image on the screen, or develop a picture in
an off-screen bitMap before transferring it to the screen. By altering the
coordinates of the portBits.bounds rectangle, you can change the coordinate
system of the grafPort; with a QuickDraw procedure call, you can set an
arbitrary coordinate system for each grafPort, even if the different grafPorts all
use the same bit image (e.g., the full screen).

The portRect field is a rectangle that defines a subset of the bitMap for use by
the grafPort. Its coordinates are in the system defined by the portBits.bounds
rectangle. All drawing done by the application occurs inside this rectangle. The
portRect usually defines the "writable" interior area of a window, document, or
other object on the screen.

The visRgn field indicates the region that is actually visible on the screen. It is
reserved for use by future software, and should be treated as read-only. The
default visRgn is set to the portRect (the entire screen).

The clipRgn is an arbitrary region that the application can use to limit drawing
to any region within the portRect. If, for example, you want to draw ahalf circle
on the screen, you can set the clipRgn to half the square that would enclose the
whole circle, and go ahead and draw the whole circle. Only the half within the
clipRgn will actually be drawn in the grafPort. The default clipRgn is set
arbitrarily large, and you have full control over its setting. Notice that unlike

E-19

Pascal Reference Marnial CRACKDraw

the visRgn, the clipRgn affects the image even if it is not displayed on the
screen,

Figure E-9 illustrates a typical bitMap (as defined by portBits), portRect,
visRgn, and clipRgn.

GrafthRont PortBits?

Figure E-9
GrafPort Reglions

The bkPat and fillPat fields of a grafPort contain patterns used by certain
QuickDraw routines. BkPat is the "background” pattem that is used when an
area is erased or when bits are scrolled out of it. When asked to fill anarea with
a specified pattem, QuickDraw stores the given pattern in the fillPat field and
then calls a low-level drawing routine which gets the pattem from that field.
The various graphic operations are discussed in detail later in the descriptions of
individual QuickDraw routines.

Of the next ten fields, the first five determine characteristics of the graphics
pen and the last five determine characteristics of any text that may be drawn;
these are described in subsections below.

The fgColor, bkColor, and colrBit fields contain values related to drawing in
color, a capability that will be available in the future when Apple supports color
output devices for the Lisa. FgColor is the grafPort's foreground color and
bkColor is its background color. ColrBit tells the color imaging software which
plane of the color picture to draw into. For more information, see Section E.7.2,
Drawing in Color.

E-20

Pascal Rerferernce Manual QuickDraw

The patStretch field is used during output to a printer to expand patterns if
necessary. The application should not change its value.

The picSave, rgnSave, and polySave fields reflect the state of picture, region,
and polygon definition, respectively. To define a region, for example, you “open*
it, call routines that draw it, and then “close” it. If no region is open, rgnSave
contains NIL; otherwise, it contains a handle to information related to the region
definition. The application should not be concemed about exactly what
information the handle leads to; you may, however, save the current value of
rgnSave, set the field to NIL to disable the region definition, and later restore it
to the saved value to resume the region definition. The picSave and polySave
fields work similarly for pictures and polygons.

Finally, the grafProcs field may point to a special data structure that the
application stores into if it wants to customize QuickDraw drawing procedures
or use QuickDraw in other advanced, highly specialized ways. (For more
information, see Section E.10, Customizing QuickDraw Operations.) If grafProcs
is NIL, QuickDraw respongds In the standard ways described in this manual.

ES.1 Pen Characteristics
The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a grafPort deal with the
graphics pen. Each grafPort has one and only one graphics pen, which is used for
drawing lines, shapes, and text. As illustrated in Figure E-10, the pen has four
characteristics: alocation,a size,adrawing mode, and a drawing pattem.

E-21

Pascal Reference Mernisl QuickDraw

Iééé

I\ Height

Pmem
Wiath
Location

Figure E-10
A Graphics Pen
The pen location is a point in the coordinate system of the grafPort, and is where
QuickDraw will begin drawing the next line, shape, or character. It can be
anywhere on the coordinate plane: there are no restrictions on the movement or

placement of the pen. Remember that the pen location Is a point on the
coordinate plane, not a pixel in a bit image!

The pen is rectangular in shape, and has a user-definable width and height. The
default size is a 1-by-1-bit rectangle; the width and height can range from (0,0)
to (32767, 32767). If either the pen width or the pen height is less than 1, the pen
will not draw on the screen.

* The pen appears as a rectangle with its top left corner at the pen location; it
hangs below and to the right of the pen location.

The pnMode and pnPat fields of a grafPort determine how the bits under the pen
are affected when lines or shapes are drawn. The pnPat is a pattern that is used
as the "ink" in the pen. This pattern, like all other patterns drawn in the grafPort,
is always aligned with the port’s coordinate system: the top left corner of the
pattern is aligned with the top left comer of the portRect, so that adjacent areas
of the same pattern will blend into a continuous, coordinated pattemn. Five

E-22

Pascal Rererence Manal QuickDraw

pattemns are predefined (white, black, and three shades of gray); you can also
create your own pattern and use it as the pnPat. (A utility procedure, called
StuffHex, allows you to fill patterns easily.)

The pnMode field determines how the pen pattern is to affect what's already on
the bitMap when lines or shapes are drawn. when the pen draws, QuickDraw first
determines what bits of the bitMap will be affected and finds their
corresponding bits in the pattern. It then does a bit-by-bit evaluation based on
the pen mode, which specifies one of eight boolean operations to perform. The
resulting bit is placed into its proper place in the bitMap. The pen modes are
described in Section E.7.1, Transfer Modes.

The pnVis field determines the pen's visibility, that is, whether it draws on the
screen. For more information, see the descriptions of HidePen and ShowPen in
Section E.9.3, Pen and Line-Drawing Routines.

ES5.2 Text Characteristics
The txFont, txFace, txiMode, txSize, and spExtra fields of a grafPort determine
how text will be drawn--the font, style, and size of characters and how they will
be placed on the bitMap.

QuickDraw can draw characters as quickly and easily as it draws lines and
shapes, and in many prepared fonts. Figure E-11 shows two QuickDraw
characters and some terms you should become familiar with.

: ascent line
ascent
-+ Q—— base line
character
descent width
3 descent line

Figure E-11
QuickDraw Characters

QuickDraw can display characters in any size, as well as boldfaceq, italicized,
outlined, or shadowed, all without changing fonts. It can also underline the
characters, or draw them closer together or farther apart.

The txFont field is a font number that identifies the character font to be used in
the grafPort. The font number 0 represents the system font, and is the default
established by OpenPort. The unit "QDSupport” includes definitions of other
available font numbers.

A character font Is gefined as a collection of bit images: these images make up
the individual characters of the font. The characters can be of unequal widths,

E-23

Pascal Reference Manual QuickDraw

and they're not restricted to their “cells™: the lower curl of a lowercase j, for
example, can stretch back under the previous character (typographers call this
kerning). A font can consist of up to 256 distinct characters, yet not all
characters need be defined in a single font. Each font contains a missing symbol
to be drawn in case of a request to draw a character that is missing from the font.

The txFace field controls the appearance of the font with values from the set
defined by the Style data type:

type Styleltem = (bold, italic, underline, outline, shadow,
condense, extend);

Style = setof Styleltem;

You can apply these either alone or in combination (see Figure E-12). Most
combinations usually ook good only for large fonts.

Normal Characters

Bold Characters

A Characrers

Underlined Characters xyz
Cutlined Cherasisrs
Bhadowssd Bharasisrs
Condensed Characters
Extended Characters

. and in other fonts, ool

Figure E-12
Character Styles

If you specify bold, each character is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above the base line
are skewed right; bits below the base line are skewed left.

Underline draws a line below the base line of the characters. If part of a
character descends below the base line (as “y” in Figure E-12), the underline is
not drawn through the pixel on either side of the descending part.

E-24

Pascal Reference Maral QuickDraw

You may specify either outline or shadow. Outline makes a hollow, outlined
character rather than a solid one. With shadow, not only is the character hollow
and outlined, but the outline is thickened below and to the right of the character
to achieve the effect of a shadow. If you specify bold along with outline or
shadow, the hollow part of the character is widened.

Condense and extend affect the horizontal distance between all characters,
including spaces. Condense decreases the distance between characters and
extend increases it, by an amount which QuickDraw determines is appropriate.

The txMode field controls the way characters are placed on a bit image. It
functions much like a pnMode: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a bit-by-bit
comparison based on the mode, and stores the resulting bits into the bit image.
These modes are described in Section E.7.1, Transfer Modes. Only three of
them--srcOr, srcXor, and srcBic--should be used for drawing text.

The txSize field specifies the type size for the font, in points (where "point” here
is a printing term meaning 1/72 inch). Any size may be specified. If QuickDraw
does not have the font in a specified size, it will scale a size it does have as
necessary to produce the size desired. A value of 0 in this field directs
QuickDraw to choose the size from among those it has for the font; it will choose
whichever size is closest to the system font size.

Finally, the spExtra field is useful when a line of characters is to be drawn
Justified such that it is aligned with both a left and a right margin (sometimes
called “full justification™). SpExtra is the number of pixels by which each space
character should be widened to fill out the line.

E.6 Coordinates in GrafPorts
Each grafPort has its own local coordinate system. All fields in the grafPort are
expressed in these coordinates, and all calculations and actions performed in
QuickDraw use the local coordinate system of the currently selected port.

Two things are important to remember:

* Each grafPort maps a portion of the coordinate plane into a similarly-sized
portion of abit image.

* The portBits.bounds rectangle defines the local coordinates for a grafPort.

The top left corner of portBits.bounds is always aligned around the first bit in the
bit image; the coordinates of that cormner “anchor” a point on the grid to that bit
in the bit image. This forms a common reference point for multiple grafPorts
using the same bit image (such as the screen). Given a portBits.bounds rectangle
for each port, you know that their top left corners coincide.

The interrelationship between the portBits.oounds and portRect rectangles is
very important. As the portBits.bounds rectangle establishes a coordinate
system for the port, the portRect rectangle indicates the section of the

E-25

Pascal Reference Mernal QXLckDraw

coordinate plane (and thus the bit image) that will be used for drawing. The
portRect usually falls inside the portBits.bounds rectangle, but it's not required
todo so.

‘when a new grafPort is created, its bitMap is set to point to the entire Lisa
screen, and both the portBits.bounds and the portRect rectangles are set to
720-by-364-bit rectangles, with the point (0,0) at the top left comer of the
screen.

You can redefine the local coordinates of the top left comer of the grafPort's
portRect, using the SetOrigin procedure. This changes the local coordinate
system of the grafPort, recalculating the coordinates of all points in the
grafPort to be relative to the new comer coordinates. For example, consider
these procedure calls:

SetPort(gamePort);
SetOrigin(40,30);

The call to SetPort sets the current grafPort to gamePort; the call to SetOrigin
changes the local coordinates of the top left comer of that port's portRect to
(40,80)(see Figure E-13).

0 g5 300 720 -55 40 245 665
- -40— !
4
120- | w-
3 e M?‘_ anoc :
i portRect i |
275= | 25—
384~ 3 324

V.isﬁgn (95,120%300,275) visRgn (40,80)(245,235)
clipRgn (85,120)(300,275) clipRgn (95,120%300,275)

Before SetOrigin After SetOrigini40,80)

Figure E-13
Changing Local Coordinates

E-26

Pascal Rererernce Manual QuickDraw

This recalculates the coordinate components of the following elements:
gamePort " .portBits.bounds gamePort " .portRect
gamePort " .visRgn

These elements are always kept "in sync”, so that all calculations, comparisons,
or operations that seem right, work right.

Notice that when the local coordinates of a grafPort are offset, the visRgn of
that port is offset also, but the clipRgn is not. A good way to think of it is that if
a document is being shown inside a grafPort, the document “sticks” to the
coordinate system, and the port's structure “sticks” to the screen. Suppose, for
example, that the visRgn and clipRgn in Figure E-13 before SetOrigin are the
same as the portRect, and a document is being shown. After the SetOrigin call,
the top left comer of the clipRgn is still (35,120), but this location has moved
down and to the right, and the location of the pen within the document has
similarly moved. The locations of portBits.bounds, portRect, and visRgn did not
change; their coordinates were offset. As always, the top left comer of
portBits.bounds remains aligned around the first bit in the bit image (the first
pixel on the screen).

If you are moving, comparing, or otherwise dealing with mathematical items in
different grafPorts (for example, finding the intersection of two regions in two
different grafPorts), you must adjust to a common coordinate system before you
‘perform the operation. A QuickDraw procedure, LocalToGlobal, lets you
convert a point’s local coordinates toa global system where the top left corner
of the bit image is (0,0); by converting the various local coordinates to global
coordinates, you can compare and mix them with confidence. For more
iniforma;tion, see the description of this procedure in Section £.9.17, Calculations
with Points.

E.7 General Discussion of Drawing
Drawing occurs:

* Always inside a grafPort, in the bit image and coordinate system defined by
the grafPort's bitMap.

* Always within the intersection of the grafPort's portBits.bounds and
portRect, and clipped to its visRgn and clipRan.

* Always at the grafPort's pen location.
* Usually with the grafPort's pen size, pattern, and mode.

with QuickDraw procedures, you can draw lines, shapes, and text. Shapes include
rectangles, ovals, rounded-cormer rectangles, wedge-shaped sections of ovals,
regions, and polygons.

Lines are defined by two points: the current pen location and a destination
location. when drawing a line, QuickDraw moves the top left corner of the pen

E-27

Pascal Reference Msanual ' QuickDraw

along the mathematical trajectory from the current location to the destination.
The pen hangs below and to the right of the trajectory (see Figure E-14).

|

v o AR

DOOKD * > : g

e eeaareteleleelelelete el
OO0

»:.:0;«:9.0:0:0:0:0:0:0:1:0:0:9:0:0:->:0:o:c

OO OO MO MO0, X

-~

No mathematical element (such as the pen location) is ever affected by
clipping; clipping only determines what appears where in the bit image. If
you draw a line to a location outside your grafPort, the pen location will
move there, but only the portion of the line that is inside the port will
actually be drawn. This is true for all drawing procedures.

Rectangles, ovals, and rounded-corner rectangles are defined by two corner
points. The shapes always appear inside the mathematical rectangle defined by
the two points. A region is defined in a more complex manner, but also appears
only within the rectangle enclosing it. Remember, these enclosing rectangles
have infinitely thin borders and are not visible on the screen.

As illustrated in Figure E-15, shapes may be drawn either solid (filled in with a
pattern) or framed (outlined and hollow).

E-28

Pascal Reference Manual QuickOraw

pen height

Figure E-15
Solid Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the
enclosing rectangle--with one exception--and the vertical and horizontal
thickness of the outline is determined by the pen size. - The exception is
polygons, as discussed in "Pictures and Polygons” below.

The pen pattern is used to fill in the bits that are affected by the drawing
operation. The pen mode defines how those bits are to be affected by directing
QuickDraw to apply one of eight boolean operations to the bits in the shape and
the corresponding pixels on the screen.

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use the
pnLoc. Each character is placed to the right of the current pen location, with the
left end of its base line at the pen's location. The pen is moved to the right to the
location where it will draw the next character. No wrap or carriage return is
performed automatically.

The method QuickDraw uses in placing text is controlled by a mode similar to
the pen mode. This iIs explained in Section E.7.1, Transfer Modes. Clipping of
text is performed in exactly the same manner as all other clipping in QuickDraw.

E.7.1 Transfer Modes
when lines or shapes are drawn, the pnMaode field of the grafPort determines how
the drawing is to appear in the port's bit image; similarly, the txtode field
determines how text is to appear. There is also a QuickDraw procedure that
transfers a bit image from one bitMap to another, and this procedure has a mode

E-29

Pascal Reference Msanual QuUickDraw

parameter that determines the appearance of the result. In all these cases, the
mode, called a transfer mode, specifies one of eight boolean operations: for each
bit in the item to be drawn, QuickDraw finds the corresponding bit in the
destination bit image, performs the boolean operation on the pair of bits, and
stores the resulting bit into the bit image.

There are two types of transfer mode:
* Pattern transfer modes, for drawing lines or shapes witha pattem.

* Source transfer modes, for drawing text or transferring any bit image
between two bitMaps.

For each type of mode, there are four basic operations-—Copy, Or, Xor, and Bic.
The Copy operation simply replaces the pixels in the destination with the pixels
in the pattern or source, "painting” over thedestination without regard for what
is already there. The Or, Xor, and Bic operations leave the destination pixels
under the white part of the pattern or source unchanged, and differ in how they
affect the pixels under the black part: Or replaces those pixels with black pixels,
thus “overlaying” the destination with the black part of the pattern or source;
Xor inverts the pixels under the black part; and Bic erases them to white.

Each of the basic operations has a variant in which every pixel in the pattern or
source is inverted before the operation is performed, giving eight operations in
all. Each mode is defined by name as a constant in QuickDraw (see Figure E-16).

pattern or source destination
"Paint" “Overlay” “Invert" “Erase"

patCopy patOr patXor patBic
srcCopy srcOr srcXor srcBic

BB X E

notPatCopy notPatOr notPatXor notPatBic
notSreCopy notSrcOr notSreXor notSrcBic

Figure E-16
Transfer Modes

E-30

Pascal Reference Marual QuiIckDraw
Pattem Source Action on each pixel in destination:
transfer transfer If black pixel in If white pixel in
mode mode pattermn or source pattemn or source
patCopy srcCopy Force black Forcewhite
pator srcor Force black Leave alone
patXor srcxXor Invert Leave alone
patBic srcBic Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatOr notSrcOr Leave alone Force black
notPatXor notSrcXor Leavealone Invert
notPatBic notSrcBic Leave alone Force white

E.7.2 Drawing in Color

Currently you can only look at QuickDraw output on a black-and-white screen
or printer. Eventually, however, Apple will support color output devices. If you
want to set up your application now to produce color output in the future, you can
do so by using QuickDraw procedures to set the foreground color and the
background color. Eight standard colors may be specified with the following
predefined constants: blackColor, whiteColor, redColor, greenColor, blueColor,
cyanColor, magentaColor, and yellowColor. Initially, the foreground color is
blackColor and the background color is whiteColor. If you specify a color other
than whiteColor, it will appear as black on a black-and-white output device.

To apply the table in the “Transfer Modes™ section above to drawing in color,
make the following translation: where the table shows “Force black", read
“Force foreground color”, and where it shows “Force white", read “Force
background color”. when you eventually receive the color output device, you'll
find out the effect of invertingacoloronit.

NOTE

QuickDraw can support output devices that have up to 32 bits of color
information per pixel. A color picture may be thought of, then, as having
up to 32 planes. At any one time, QuickDraw draws into only one of these
planes. A QuickDraw routine called by the color-imaging software
specifies which plane.

E.8 Pictures and Polygons
QuickDraw lets you save a sequence of drawing commands and "play them back”
later with a single procedure call. There are two such mechanisms: one for
drawing any picture to scale in a destination rectangle that you specify, and

another for drawing polygons in all the ways you can draw other shapes in
QuickDraw.

E-31

Pascal Reference Menusl ' QuickDraw

E.8.1 Pictures .
A picture in QuickDraw is a transcript of calls to routines which draw
something--anything--on a bitMap. Pictures make it easy for one program to
draw something defined in another program, with great flexibility and without
knowing the details about what's being drawn.

For each picture you define, you specify a rectangle that surrounds the picture;
this rectangle is called the picture frame. when you later call the procedure
that draws the saved picture, you supply a destination rectangle, and QuickDraw
scales the picture so that its frame is completely aligned with the destination
rectangle. Thus, the picture may be expanded or shrunk to fit its destination
rectangle. For example, if the picture is a circle inside a square picture frame,
and the destination rectangle is not square, the picture is drawnas an oval.

Since a picture may include any sequence of drawing commands, its data
structure is a variable-length entity. It consists of two fixed fields followed by
avariable-length data field:

type Picture = record
picSize: integer;
picFrame: Rect;
{picture definition data}
end;

The picSize field contains the size, in bytes, of the picture variable. The
picFrame field is the picture frame which surrounds the picture and gives a
frame of reference for scaling when the picture is drawn. The rest of the
structure contains a compact representation of the drawing commands that
define the picture.

All pictures are accessed through handles, which point to one master pointer
which in turn points to the picture.

type PicPtr = "Picture;
PicHandle = PicPtr;

To define a picture, you call a QuickDraw function that retumns a picHandle and
then call the routines that draw the picture. There is a procedure to call when
you've finished defining the picture, and another for when you're done with the
picture altogether.

QuickDraw also allows you to intersperse picture comments with the definition
of a picture. These comments, which do not affect the picture’s appearance,
may be used to provide additional information about the picture when it’s played
back. This is especially valuable when pictures are transmitted from one
application to another. There are two standard types of comment which, like

E-32

Pascal Rererence Manual QuUickDraw

parentheses, serve to group drawing commands together (such as all the
commands that draw a particular part of a picture}

const picLParen=0;
picRParen=1;

The application defining the picture can use these standard comments as well as
comments of its own design.

To include a comment in the definition of a picture, the application calls a
QuickDraw procedure that specifies the comment with three parameters: the
comment king, which identifies the type of comment;a handle to additional data
if desired; and the size of the additional data, if any. When playing back a
picture, QuickDraw passes any comments in the picture’'s definition to a
low-level procedure accessed indirectly through the grafProcs field of the
grafPort (see Section E.10, Customizing QuickDraw Operations for more
information). To process comments, the application must include a procedure to
do the processing and store a pointer to it in the data structure pointed to by the
grafProcs field.

NOTE

The standard low-level procedure for processing picture comments
simply ignores all comments.

E.8.2 Polygons
Polygons are similar to pictures in that you define them by a sequence of calls to
QuickDraw routines. They are also similar to other shapes that QuickDraw
knows about, since there is a set of procedures for performing graphic operations
and calculations on them.

A polygon is simply any sequence of connected lines (see Figure E-17). You
define a polygon by moving to the starting point of the polygon and drawing lines
from there to the next point, from that point to the next, and so on.

E-33

Pascal Reference Marual QuickDraw

Figure E-17
Polygons

The data structure for a polygon is a variable-length entity. It consists of two
fixed fields followed by a variable-length array:

type Polygon - record
polySize: integer;
polyBBox: Rect;
polyPoints: array [0..0] of Point

’

The polySize field contains the size, in bytes, of the polygon variable. The
polyBBox field is a rectangle which just encloses the entire polygon. The
polyPoints array expands as necessary to contain the points of the polygon-- the
starting point followed by each successive point to which a line is drawn.

Like pictures and regions, polygons are accessed through handles.

type PolyPtr = "Polygon;
PolyHandle = “PolyPtr;

To define a polygon, you call a QuickDraw function that returns a polyHandle
and then form the polygon by calling procedures that draw lines. You call a
procedure when you've finished defining the polygon, and another when you're
done with the polygon altogether. '

Just as for other shapes that QuickDraw knows about, there is a set of graphic
operations on polygons to draw them on the screen. QuickDraw draws a polygon
by moving to the starting point and then drawing lines to the remaining points in
succession, just as when the routines were called to define the polygon. In this
sense it "piays back™ those routine calls. As a resuit, polygons are not treated
exactly the same as other QuickDraw shapes. For example, the procedure that
frames a polygon draws outside the actual boundary of the polygon, because

E-34

Pascal Reference Maral! QUCKDraw

QuickDraw line-drawing routines draw below and to the right of the pen
location. The procedures that fill a polygon with a pattern, however, stay within
the boundary of the polygon; they also add an additional line between the ending
point and the starting point if those points are not the same, to complete the

shape.

There is also a difference in the way QuickDraw scales a polygon and a
similarly-shaped region if it's being drawn as part of a picture: when stretched, a
slanted line is drawn more smoothly if it's part of a polygon rather than a region.
You may find it helpful to keep in mind the conceptual difference between
polygons and regions: a polygon is treated more as a continuous shape, a region
more as a set of bits.

E9 QuickDraw Routines
This section describes all the procedures and functions in QuickDraw, their
parameters, and their operation. They are presented in their Pascal form; for
information on using them from assembly language, see Section E.11, Using
QuickDraw from Assembly Language.

ES.1 GrafPort Routines
Procedure InitGraf (globaiPtr: QDPLY);

Call InitGraf once and only once at the beginning of your program to initialize
QuickDraw. It initializes the QuickDraw global variables listed below.

Variable Type Initial setting

thePort GrafPtr NIL

white Pattern all-white pattern

black Pattern all-black pattemn

gray Pattern S0% gray pattern

1tGray Pattemn 25% gray pattem
dkGray Pattern 75% gray pattern

arrow Cursor pointing arrow cursor
screenBit BitMap Lisa screen, (0,0,720,364)
randSeed longint 1

The globalPtr parameter tells QuickDraw where to store its global variables,
beginning with thePort. From Pascal programs, this parameter should always be
set to @thePort; assembly language programmers may choose any location, as
long as it can accommodate the number of bytes specified by GRAFSIZE in
GRAFTYPES.TEXT (see Section E.11, Using QuickDraw from Assembly
Language)

E-35

Pascal Rerference Msnual QuickDraw

NOTE

To initialize the cursor, call InitCursor (described in Section E.9.2,
Cursor-Handling Routines).

Procedure OpenPort (gp: GrafPtr);

OpenPort allocates space for the given grafPort’s visRgn and clipRgn, initializes
the flelds of the grafPort as indicated below, and makes the grafPort the current
port (see SetPort). You must call OpenPort before using any grafPort; first
perform a NEW to create a grafPtr and then use that grafPtr in the OpenPort call.

Field Type Initial setting

device integer O(Lisa screen)

portBits BitMap screenBits (see InitGraf)

portRect Rect screenBits.bounds (0,0,720,364)

visRgn RgnHandle handle to the rectangular region
(0,0,720,364)

clipRgn RgnHandle handle to the rectangular region
(-30000,-30000,30000,30000)

bkPat Pattem white

fillPat Pattem black

pnLoc Point (0,0)

pnSize Point (1)

pnMode integer patCopy

pnPat Pattem black

pnVvis integer O(visible)

txFont integer O(system font)

txFace Style normal

txMode integer srcOr

txSize integer 0(QuickDraw decides)

spExtra integer 0

fgColor longint blackColor

bkColor longint whiteColor

colrBit integer 0

patStretch integer 1]

picSave QDHandle NIL

rgnSave QDHandle NIL

polySave QDHandle NIL

grafProcs QDProcsPtr NIL

E-36

Pascal Rererence Marnkal QuckDraw

Procedure InitPort (gp: GrafPtr);

Given a pointer to a grafPort that has been opened with OpenPort, InitPort
reinitializes the fields of the grafPort and makes it the current port (if it's not

already).
NOTE
InitPort does everything OpenPort does except allocate space for the
visRgn and clipRgn.

Procedure ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort's visRgn and
clipRgn. When you are completely through with a grafPort, call this procedure
and then dispose of the grafPort (with a DISPOSE of the grafPtr).

WARNING

If you do not call ClosePort before disposing of the grafPort, the memory
used by the visRgn and clipRgn will be unrecoverabie.

WARNING

After calling ClosePort, be sure not to use any copies of the visRgn or
clipRgn handles that you may have made.

Procedure SetPort (gp: GrafPtr);

SetPort sets the grafPort indicated by gp to be the current port. The global
pointer thePort always points to the current port. All QuickDraw drawing
routines affect the bitMap thePort ".portBits and use the local coordinate
system of thePort”™. Note that OpenPort and InitPort do a SetPort to the given
port.

WARNING
Never do a SetPort to a port that has not been opened with OpenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

Procedure GetPort (var gp: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a program that
draws into more than one grafPort, it's extremely useful to have each procedure

E-37

Pascal Rererence Manual QuUickDraw

save the current grafPort (with GetPort), set its own grafPort, do drawing or
calculations, and then restore the previous grafPort (with SetPort). The pointer
to the current grafPort is also available through the global pointer thePort, but
you may prefer to use GetPort for better readability of your program text. For
example, a procedure could do a GetPort(savePort) before setting its own
grafPort and a SetPort(savePort) afterwards to restore the previous port.

Procedure GrafDevice (device: integer);

GrafDevice sets thePort”.device to the given number, which identifies the
logical output device for this grafPort. QuickDraw uses this information. The
initial device number is 0, which represents the Lisa screen.

Procedure SetPortBits (bm: BitMap);

SetPortBits sets thePort " .portBits to any previously defined bitMap. This allows
you to perform all normal drawing and calculations on a buffer other than the
Lisa screen--for example, a 640-by-8 output buffer for a C. Itoh printer, or a
small off-screen image for later "stamping” onto the screen.

Remember to prepare all fields of the bitMap before you call SetPortBits.

Procedure PortSize (width height: integer);

PortSize changes the size of the current grafPort's portRect. This does not
affect the screen; it merely changes the size of the "active area" of the grafPort.

The top left comer of the portRect remains at its same location; the width and
height of the portRect are set to the given width and height. In other words,
PortSize moves the bottom right comer of the portRect to a position relative to
the top left corner.

PortSize does not change the clipRgn or the visRgn, nor does it affect the local
coordinate system of the grafPort: it changes only the portRect’s width and
height. Remember that all drawing occurs only in the intersection of the
portBits.bounds and the portRect, clipped to the visRgn and the clipRgn.

Procedure MovePort To (leftGlobal,topGlobal: integer);

MovePortTo changes the position of the current grafPort’s portRect. This does
not_affect the screen; it merely changes the location at which subseguent
drawing inside the port will appear.

E-38

Pascal Reference Msanual QuickDraw

The leftGlobal and topGlobal parameters set the distance between the top left
corner of portBits.bounds and the top left comer of the new portRect. For
example,

MovePort To(360,182);

will move the top left corner of the portRect to the center of the screen (if
portBits is the Lisa screen) regardless of the local coordinate system.

Like PortSize, MovePortTo does not change the clipRgn or the visRgn, nor does
it affect the local coordinate system of the grafPort.

Procedure SetOrigin (h,v: integer);

SetOrigin changes the local coordinate system of the current grafPort. This does
not _affect the screen; it does, however, affect where subsequent drawing and
calculation will appear in the grafPort. SetOrigin updates the coordinates of the
portBits.bounds, the portRect, and the visRgn. All subsequent drawing and
calculation routines will use the new coordinate system.

The hand v parameters set the coordinates of the top left corner of the portRect.
All other coordinates are calculated from this point. All relative distances
among any elements in the port will remain the same; only their absolute local
coordinates will change.

NOTE

SetOrigin does not update the coordinates of the clipRgn or the pen; these
items stick to the coordinate system (unlike the port's structure, which
sticks to the screen).

SetOrigin is useful for adjusting the coordinate system after a scrolling
operation. (See ScroliRect in Section E.9.13, Bit Transfer Operations.)

Procedure SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a region
equivalent to the given region. Note that this does not change the region handle,
but affects the clipping region itself. Since SetClip makes a copy of the given
region, any subsequent changes you make to that region will not affect the
clipping region of the port.

You can set the clipping region to any arbitrary region, to aid you in drawing
inside the grafPort. The initial clipRgn is an arbitrarily large rectangie.

E-39

Pascal Reference Marnual QuickDraw

Procedure GetClip (rgn: RgnHandle);

GetClip changes the given region to a region equivalent to the clipping region of
the current grafPort. This is the reverse of what SetClip does. Like SetClip, it
does not change the region handle.

Procedure ClipRect (r: Rect);

ClipRect changes the clipping region of the current grafPort to a rectangle
equivalent to given rectangle. Note that this does not change the region handle,
but affects the region itself.

Procedure BackPat (pat: Pattern);

BackPat sets the background pattern of the current grafPort to the given
pattern. The background pattern is used in ScrollRect and in all QuickDraw
routines that perform an "erase" operation.

E.9.2 Cursor-Handling Routines

Additional information on cursor handling can be found in Appendix F, Hardware
Interface.

Procedure InitCursor;

InitCursor sets the current cursor to the predefined arrow cursor, an arrow
pointing north-northwest, and sets the cursor level to 0, making the cursor
visible. The cursor level, which is initialized to 0 when the system is booted,
keeps track of the number of times the cursor has been hidden to compensate for
nested calls to HideCursor and ShowCursor (below).

Before you call InitCursor, the cursor is undefined (or, if set by a previous
process, it's whatever that process set it to).

Procedure SetCursor {crsr: Cursor);

SetCursor sets the current cursor to the 16-by-16-bit image in crsr. If the
cursor is hidden, it remains hidden and will attain the new appearance when it's
uncovered; if the cursor is already visible, it changes to the new appearance
immediately.

The cursor image is initialized by InitCursor to a north-northwest arrow, visible
on the screen. There is no way to retrieve the current cursor image.

E-40

Pascal Re)’emnce Marnual QuickDraw

Procedure HideCursor;

HideCursor removes the cursor from the screen, restoring the bits under it, and
decrements the cursor level (which InitCursor initialized to 0). Every call to
HideCursor should be balanced by a subsequent call to ShowCursor.

Procedure ShowCursor;

ShowCursor increments the cursor level, which may have been decremented by
HideCursor, and displays the cursor on the screen if the level becomes 0. Acall
to ShowCursor should balance each previous call to HideCursor. The level is not
incremented beyond 0, so extra calls to ShowCursor don't hurt.

If the cursor has been changed (with SetCursor) while hidden, ShowCursor
presents the new cursor.

The cursor is initialized by InitCursor to a north-northwest arrow, not hidden.

Procedure ObscureCursor;

ObscureCursor hides the cursor until the next time the mouse is moved. Unlike
HideCursor, it has no effect on the cursor level and must not be balanced by a
call to ShowCursor.

E93 Pen and Line-Drawing Routines
The pen and line-drawing routines all depend on the coordinate system of the
current grafPort. Remember that each grafPort has its own pen; if you draw in
one grafPort, change to another, and return to the first, the pen will have
remained in the same location.

Procedure HidePen;

HidePen decrements the current grafPort's pnVis field, which is initialized to 0
by OpenPort; whenever pnVis is negative, the pen does not draw on the screen.
PnVis keeps track of the number of times the pen has been hidden to compensate
for nested calls to HidePen and ShowPen (below). HidePen is called by OpenRgn,
OpenPicture, and OpenPoly so that you can define regions, pictures, and polygons
without drawing on the screen.

Procedure ShowPen;

ShowPen increments the current grafPort's pnVis field, which may have been
decremented by HidePen; if pnVis becomes 0, QuickDraw resumes drawing on
the screen. Extra calls to ShowPen will increment pnVis beyond 0, so every call
to ShowPen should be balanced by a subsequent call to HidePen. ShowPen is
called by CloseRgn, ClosePicture, and ClosePoly.

E-41

Pascal Reference Msrnual QUIckDraw

Procedure GetPen (var pt: Point);

GetPen returns the current pen location, in the local coordinates of the current
grafPort.

Procedure GetPenState (var pnState: PenState);

GetPenState saves the pen location, size, pattern, and mode in a storage
variable, to be restored later with SetPenState (below). This is useful when
calling short subroutines that operate in the current port but must change the
graphics pen: each such procedure can save the pen's state when it's called, do
whatever it needs to do, and restore the previous pen state immediately before
returning.

The PenState data type is not useful for anything except saving the pen's state.

Procedure SetPenState (pnState: PenState);

SetPenState sets the pen location, size, pattem, and mode in the current
grafPort to the values stored in pnState. This is usually called at the end of a
procedure that has altered the pen parameters and wants to restore them to their
state at the beginning of the procedure. (See GetPenState, above.)

Procedure PenSize (width height: integer);

PenSize sets the dimensions of the graphics pen in the current grafPort. All
subsequent calls to Line, LineTo, and the procedures that draw framed shapes in
the current grafPort will use the new pen dimensions.

The pen dimensions can be accessed in the variable thePort”.pnSize, which is of
type Point. If either of the pen dimensions is set to a negative value, the pen
assumes the dimensions (0,0) and no drawing is performed. For a discussion of
how the pen draws, see the “"General Discussion of Drawing" earlier in this
manual.

Procedure PenMode (mode: integer);

PenMode sets the transfer mode through which the pnPat is transferred onto the
bitMap when lines or shapes are drawn. The mode may be any one of the pattemn

transfer modes:
patCopy patXor notPatCopy notPatXor
pator patBic notPatOr notPatBic

If the mode is one of the source transfer modes (or negative), no drawing is
performed. The current pen mode can be obtained in the variable

E-42

Pascal Rerference Mamal QuickDraw

thePort”.pnMode. The initial pen mode is patCopy, in which the pen pattern is
copied directly to the bitMap.

Procedure PenPat (pat: Pattern);

PenPat sets the pattern that is used by the pen in the current grafPort. The
standard patterns white, black, gray, 1tGray, and dkGray are predefined; the
initial pnPat is black. The current pen pattemn can be obtained in the variable
thePort”.pnPat, and this value can be assigned (but not compared!) to any other
variable of type Pattem.

Procedure PenNormal;
PenNormal resets the initial state of the pen in the current grafPort, as follows:
Field Settin
pnSize @y
pnMode patCopy
pnPat black

The pen location is not changed.

Procedure MoveTo(h,v: integer);

MoveTo moves the pen to location (h,v) in the local coordinates of the current
grafPort. No drawing is performed.

Procedure Move (dh,dv: integer);

This procedure moves the pen a distance of dh horizontally and dv vertically
from its current location; it calls MoveTo(h+dh,v+dv), where (h,v) is the current
location. The positive directions are to the right and down. No drawing is
performed. :

Procedure LineTo(h,v: integer);

LineTo draws a line from the current pen location to the location specified (in
local coordinates) by hand v. The new pen location is (h,v) after the line is drawn.
See the general discussion of drawing.

If a region or polygon is open and being formed, its outline is infinitely thinand is
not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and OpenPoly.)

Procedure Line (dh,dv: integer);

This procedure draws a line to the location that is a distance of dh horizontally
and dv vertically from the current pen location; it calls LineTo(h+dh,v+dv), where

E-43

Pascal Reference Marxal ' QuickDraw

(h,v) is the current location. The positive directions are to the right and down.
The pen location becomes the coordinates of the end of the line after the line is
drawn. See the general discussion of drawing.

If a region or polygon is open and being formed, its outline is infinitely thinand is
not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and OpenPoly.)

E.9.4 Text-Drawing Routines
Each grafPort has its own text characteristics, and all these procedures deal
with those of the current port.

Procedure TextFont (font: integer);

TextFont sets the current grafPort’s font (thePort”.txFont) to the given font
number. The initial font number is 0, which represents the system font.

Procedure TextFace (face: Style);

TextFace sets the current grafPort's character style (thePort”.txFace). The
Style data type allows you to specify a set of one or more of the following
predefined constants: bold, italic, underline, outline, shadow, condense, and
extend. For example:

TextFace(bold]); {ooid}

TextFace(bold,italic]); {bold and italic}
TextFace(thePort ".txFace+{bold]; {whatever it was plus bold}
TextFace(thePort ".txFace-{bold]); {whatever it was but not bold}
TextFace(]); [normat}

Procedure TextMode (mode: integer);

TextMode sets the current grafPort’s transfer mode for drawing text
(thePort ".txMode). The mode should be srcOr, srcXor, or sreBic. The initial
transfer mode for drawing text is srcOr.

Procedure TextSize (size: integer);

TextSize sets the current grafPort's type size (thePort”.txSize) to the given
number of points. Any size may be specified, but the result will look best
ifQuickDraw has the font in that size (otherwise it will scale a size it does have).
The next best result will occur if the given size is an even multiple of a size
available for the font. If O is specified, QuickDraw will choose one of the
available sizes--whichever is closest to the system font size. The initial txSize
settingis 0.

Pascal Rererence Mamnual QuickDraw

Procedure SpaceExtra(extra: integer);

SpaceExtra sets the current grafPort's spExtra field, which specifies the number
of pixels by which to widen each space in a line of text. This is useful when text is
being fully justified (that is, aligned with both a left and a right margin).
Consider, for example, a line that contains three spaces; if there would normally
be six pixels between the end of the line and the right margin, you would call
SpaceExtra(2) to print the line with full justification. The initial spExtrasetting
is 0.

NOTE

SpaceExtra will also take a negative argument, but be careful not to
narrow spaces so much that the text is unreadable.

Procedure DrawChar (ch: char);

DrawChar places the given character to the right of the pen location, with the
left end of its base line at the pen's location, and advances the pen accordingly.
If the character is not in the font, the font's missing symbol is drawn.

Procedure DrawString (s: Str255);

DrawString performs consecutive calls to DrawChar for each character in the
supplied string; the string is placed beginning at the current pen location and
extending right. No formatting (carriage retums, line feeds, etc.) is performed
by QuickDraw. The pen location ends up to the right of the last character in the
string.

Procedure DrawText (textBuf: QDPtr; firstByte,byteCount: integer);

DrawText draws text from an arbitrary structure in memory specified by
textBuf, starting firstByte bytes into the structure and continuing for byteCount
bytes. The string of text is placed beginning at the current pen location and
extending right. No formatting (carriage returns, line feeds, etc.) is performed
by QuickDraw. The pen location ends up to the right of the last character in the
string.

Function Charwidth(ch: char): integer;

CharWidth returns the value that will be added to the pen horizontal coordinate
if the specified character is drawn. Charwidth includes the effects of the
stylistic variations set with TextFace; if you change these after determining the
character width but before actually drawing the character, the predetermined

E-45

Pascal Rerference Marial QuUickDraw

width may not be correct. If the character is a space, Charwidth also includes
the effect of SpaceExtra. ' '

Function Stringwidth(s: Str255): integer;

Stringwidth returns the width of the given text string, which it calculates by
adding the Charwidths of all the characters in the string (see above). This value
will be added to the pen horizontal coordinate if the specified string is drawn.

Function Textwidth (textBuf: QDPtr; firstByte byteCount: integer) : integer;

Textwidth returns the width of the text stored in the arbitrary structure in
memory specified by textBuf, starting firstByte bytes into the structure and
continuing for byteCount bytes. It calculates the width by adding the
Charwidths of all the characters in the text. (See Charwidth, above.)

Procedure GetFontInfo (var info: FontInfo);

GetFontInfo returns the following information about the current grafPort's
character font, taking into consideration the style and size in which the
characters will be drawn: the ascent, descent, maximum character width (the
greatest distance the pen will move when a character is drawn), and leading (the
vertical distance between the descent line and the ascent line below it), all in
pixels. The Fontinfo data structure is defined as:

type Fontinfo= record
ascent: integer;
descent: Integer;
widMax: integer;
leading: integer
end;

E.9.5 Drawing in Color
These routines will enable applications to do color drawing in the future when
Apple supports color output devices for the Lisa. All nonwhite colors will appear
as black on black-and-white output devices.

Procedure ForeColor (color: longint);

ForeColor sets the foreground color for all drawing in the current grafPort
(thePort " .fgColor) to the given color. The following standard colors are
predefined: blackColor, whiteColor, redColor, greenColor, blueColor,
cyanColor, magentaColor, and yellowColor. The initial foreground color is
blackColor.

E-46

Pascal Rerference Manual QuUickDraw

Procedure BackColor (color: longint);

BackColor sets the background color for all drawing in the current grafPort
(thePort ".bkColor) to the given color. Eight standard colors are predefined (see
ForeColor above). The initial background color is whiteColor.

Procedure ColorBit (whichBit: integer);

ColorBit is called by printing software for a color printer, or other color-imaging
software, to set the current grafPort's colrBit field to whichBit; this tells
QuickDraw which plane of the color picture to draw into. QuickDraw will draw
into the plane corresponding to bit number whichBit. Since QuickDraw can
support output devices that have up to 32 bits of color information per pixel, the
possible range of values for whichBit is 0 through 31. The initial value of the
colrBit field is 0.

E.96 Calculations with Rectangles
Calculation routines are independent of the current coordinate system; a
calculation will operate the same regardless of which grafPort is active.

NOTE

Remember that if the parameters to one of the calculation routines were
defined in different grafPorts, you must first adjust them to be in the
same coordinate system. If you do not adjust them, the result returned by
the routine may be different from what you see on the screen. To adjust
to a common coordinate system, see LocalToGlobal and GlobalTolLocal
in Section E.9.17, Calculations with Points.

Procedure SetRect (var r: Rect; left top right bottom: integer);

SetRect assigns the four boundary coordinates to the rectangle. The resultisa
rectangle with coordinates (left,top,right, bottom).

This procedure is supplied as a utility to help you shorten your program text. If
you want a more readable text at the expense of length, you can assign integers
(or points) directly into the rectangle's fields. There is no significant code size
or execution speed advantage to either method; one’s just easier to write, and
the other's easier to read.

Procedure OffsetRect (var r: Rect; dn,dv: integer);

OffsetRect moves the rectangle by adding dh to each horizontal coordinate and
dv to each vertical coordinate. If dh and dv are positive, the movemnent is to the
right and down; if either is negative, the corresponding movement is in the
opposite direction. The rectangle retains its shape and size; it's merely moved

E-47

Pascal Rererernce Msanual QUICkDraw

on the coordinate plane. This does not affect the screen unless you subsequently
call aroutine todraw within the rectangle.

Procedure InsetRect (var r: Rect; dh,dv: integer);

InsetRect shrinks or expands the rectangle. The left and right sides are moved
in by the amount specified by dn; the top and bottom are moved toward the
center by the amount specified by dv. If dh or dv is negative, the appropriate
pair of sides is moved outward instead of inward. The effect is to alter the size
by 2*dh horizontally and 2«dv vertically, with the rectangle remaining centered
in the same place on the coordinate plane.

If the resulting width or height becomes less than 1, the rectangle is set to the
empty rectangle (0,0,0,0).

Function SectRect (srcRectA,srcRectB: Rect; var dstRect: Rect) : boolean;

SectRect calculates the rectangle that is the intersection of the two input
rectangles, and returns TRUE if they indeed intersect or FALSE if they do not.
Rectangles that "touch” at a line or a point are not considered intersecting,
because their intersection rectangle (really, in this case, an intersection line or
point) does not enclose any bits on the bitMap.

If the rectangles do not intersect, the destination rectangle is set to (0,0,0,0).
SectRect works correctly even if one of the source rectangles is also the
destination.

Procedure UnionRect (STCRect A, srcRectB: Rect; var dstRect: Rect);

UnionRect calculates the smallest rectangle which encloses both input
rectangles. It works correctly even if one of the source rectangles is also the
destination.

Function PtInRect (pt: Point; r: Rect) : boolean;

PtInRect determines whether the pixel below and to the right of the given
coordinate point is enclosed in the specified rectangle, and returns TRUE if so
or FALSE if not.

Procedure Pt2Rect (ptA ptB: Point; var dstRect: Rect);
Pt2Rect returns the smallest rectangle which encloses the two input points.

E-48

Pascal Reference Mamal QuickDraw

Procedure PtToAngle(r: Rect; pt: Point; var angle: integer);

PtToAngle calculates an integer angle between a line from the center of the
rectangle to the given point and a line from the center of the rectangle pointing
straight up (12 o'clock high). The angle is in degrees from 0 to 359, measured
clockwise from 12 o'clock, with 90 degrees at 3 0'clock, 180 at 6 o‘clock, and 270
at 9 o'clock. Other angles are measured relative to the rectangle: If the line to
the given point goes through the top right comer of the rectangle, the angle
returned is 45 degrees, even if the rectangle is not square; if it goes through the
bottom right comer, the angle is 135 degrees, and so on (see Figure E-18).

angle = 45

pt
_\;/ angle = 45

T~ 1t

/

Figure E-18
PtToAngle
The angle returned mlgnt be used as Input to one of the procedures that

manipulate arcs and wedges, as described in Section E.9.10, Graphic Operations
on Arcs and wedges.

Function EqualRect (rectA, rectB: Rect): boolean;

EqualRect compares the two rectangles and retums TRUE If they are equal or
FALSE if not. The two rectangles must have identical boundary coordinates to
be considered equal.

Function EmptyRect (r: Rect): boolean;

EmptyRect returmns TRUE if the given rectangle is an empty rectangle or FALSE
if not. A rectangle is considered empty if the bottom coordinate is equal to or
less than the top or the right coordinate is equal to or less than the left.

E-49

Pascal Reference Mamsl QickDraw

E9.7 Graphic Operations on Rectangles
These procedures perform graphic operations on rectangles. See also
ScrollRect in Section E.9.13, Bit Transfer Operations.

Procedure FrameRect (r: Rect);

FrameRect draws an outline just inside the specified rectangle, using the
current grafPort's pen pattemn, mode, and size. The outline is as wide as the pen
width and as tall as the pen height. It is drawn with the pnPat, according to the
pattern transfer mode specified by pnMode. The pen location is not changed by
this procedure.

If a region is open and being formed, the outside outline of the new rectangle is
mathematically added to the region's boundary.

Procedure PaintRect (r: Rect);

PaintRect paints the specified rectangle with the current grafPort's pen pattern
and mode. The rectangle on the bitMap is filled with the pnPat, according to the
pattem transfer mode specified by pnMode. The pen location is not changed by
this procedure.

Procedure EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort’'s background
pattern bkPat (in patCopy mode). The grafPort's pnPat and pnMode are ignored;
the pen location is not changed.

Procedure InvertRect (r: Rect);

InvertRect inverts the pixels enclosed by the specified rectangle: every white
pixel becomes black and every black pixel becomes white. The grafPort's pnPat,
pnMaode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in patCopy mode).
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location is not
changed.

E.9.8 Graphic Operations on Ovals
Ovals are drawn inside rectangles that you specify. If the rectangle you specify
is square, QuickDraw draws a circle.

E-50

Pascal Rererence Marnual QuUickDraw

Procedure FrameQval (1: Rect);

FrameOval draws an outline just inside the oval that fits inside the specified
rectangle, using the current grafPort's pen pattern, mode, and size. The outline
is as wide as the pen width and as tall as the pen height. It is drawn with the
pnPat, according to the pattern transfer mode specified by pniMode. The pen
location is not changed by this procedure.

If a region is open and being formed, the outside outline of the new oval is
mathematically added to the region’s boundary.

Procedure PaintOval (1: Rect);

PaintOval paints an oval just inside the specified rectangle with the current
grafPort's pen pattern and mode. The oval on the bitMap is filled with the pnPat,
according to the pattem transfer mode specified by pnMode. The pen location is
not changed by this procedure.

Procedure EraseQval (r: Rect);

EraseOval paints an oval just inside the specified rectangle with the current
grafPort's background pattern bkPat (in patCopy mode). The grafPort's pnPat
and pnMode are ignored; the pen location is not changed.

Procedure InvertOval (r: Rect);

InvertOval inverts the pixels enclosed by an oval just inside the specified
rectangle: every white pixel becomes black and every black pixel becomes
white. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location
is not changed.

Procedure FillOval (r: Rect; pat: Pattern);

FillOval fills an oval just inside the specified rectangle with the given pattern(in
patCopy mode). The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

E.S.9 Graphic Operations on Rounded—-Comer Rectangles
Procedure FrameRoundRect (1: Rect; ovalWidth,ovalHeight: integer);

FrameRoundRect draws a hollow outline just inside the specified
rounded-corner rectangle, using the current grafPort’s pen pattern, mode, and
size. Ovalwidth and ovalHeight specify the diameters of curvature for the
corners (see Figure E-19). The outline is as wide as the pen width and as tall as
the pen height. It is drawn with the pnPat, according to the pattern transfer
mode specified by pnMode. The pen location is not changed by this procedure.

E-51

Pascal Reference Manual QuUickOraw

oval Width ovalHeight

o O
OI®

Figure E-19
Rounded-Comer Rectangle

If a reglon is open and belng formed, the outside outline of the new
rounded-corner rectangle is mathernatically added to the region's boundary.

Procedure PaintRoundRect (r: Rect; ovalwidth ovalHeight: integer);

PaintRoundRect paints the specified rounded-corner rectangle with the current
grafPort’s pen pattern and mode. Ovalwidth and ovalHeight specify the
diameters of curvature for the comers. The rounded-corner rectangle on the
bitMap is fllled with the pnPat, according to the pattem transfer mode specified
by pnMode. The pen location is not changed by this procedure.

Procedure EraseRoundRect (r: Rect; ovalwidth,ovalHeight: integer);

EraseRoundRect paints the specified rounded-corner rectangie with the current
grafPort’s background pattern bkPat (In patCopy mode) Ovalwidth and
ovalHeight specify the diameters of curvature for the corners. The grafPort's
pnPat and pnMode are ignored; the pen location Is not changed.

Procedure InvertRoundRect (1: Rect; ovalwidth ovalHeight: integer);

InvertRoundRect inverts the pixels enclosed by the specified rounded-corner
rectangle: every white pixel becomes black and every black pixel becomes
white. Ovalwidth and ovalHeignht specify the diameters of curvature for the
corners. The grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

E-52

Pascal Reference Manual QuickDraw

Procedure FillRoundRect (r: Rect; ovalwidth,ovalHeight: integer; pat: Patterm);

FillRoundRect fills the specified rounded-corner rectangle with the given
pattern (in patCopy mode). Ovalwidth and ovalHeight specify the diameters of
curvature for the corners. The grafPort's pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

E.S.10 Graphic Operations on Arcs and wedges
These procedures perform graphic operations on arcs and wedge-shaped
sections of ovals. See also PtToAngle in Section E.9.6, Calculations with
Rectangles.

Procedure FrameArc (r: Rect; startAngle,arcAngle: integer);

FrameArc draws an arc of the oval that fits inside the specified rectangle, using
the current grafPort's pen pattern, mode, and size. StartAngle indicates where
the arc begins and is treated mod 360. ArcAngle defines the extent of the arc.
The angles are given in positive or negative degrees; a positive angle goes
clockwise, while a negative angle goes counterclockwise. Zero degrees is at 12
o'clock high, 90 (or -270) is at 3 o'clock, 180 (or -180) is at 6 o‘clock, and 270 (or
-90) is at 9 o'clock. Other angles are measured relative to the enclosing
rectangle: aline from the center of the rectangle through its top right corner is
at 45 degrees, even if the rectangle is not square; a line through the bottom right
comer is at 135 degrees, and so on (see Figure E-20).

E-53

rascal Rererence Mermeal

startAngle=0 star;Angle =0
arcAngle =-45§ %srcArggle= 45
Y Y
FrameArc

Figure E-20

starmggle =
 arcAngle = 43

FrameArc

stertApgle =0
LarcAngle = 45

PaintArc

Operations on Arcs and wWedges

The arc Is as wide as the pen width and as tall as the pen height. It is drawn with
the pnPat, according to the pattem transfer mode specified by pnMode. The pen
location Is not changed by this procedure.

WARNING

QUICkDraw

FrameArc differs from other QuickDraw procedures that frame shapes in
that the arc is not mathematically added to the boundary of a region that
is open and being formed.

Procedure PaintArc (r: Rect; startAngle arcAngle: integer);

PaintArc paints a wedge of the oval just inside the specified rectangle with the
current grafPort's pen pattemn and mode. StartAngle and arcAngle deflne the
arc of the wedge as in FrameArc. The wedge on the bitMap is filled with the
pnPat, according to the pattern transfer mode specified by pnMode. The pen
location is not changed by this procedure.

E-54

Pascal Rererence Manual GickDraw

Procedure EraseArc (r: Rect; startAngle.arcAngle: integer);

EraseArc paints a wedge of the oval just inside the specified rectangle with the
current grafPort's background pattern bkPat (in patCopy mode). StartAngle and
arcAngle define the arc of the wedge as in FrameArc. The grafPort's pnPat and
pnMode are ignored; the pen location is not changed.

Procedure InvertArc (r: Rect; startAngle arcAngle: integer);

InvertArc inverts the pixels enclosed by a wedge of the oval just inside the
specified rectangle: every white pixel becomes black and every black pixel
becomes white. StartAngle and arcAngle define the arc of the wedge as in
FrameArc. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

Procedure FillArc (r: Rect; startAngle arcAngle: integer; pat: Pattem);

FillArc fills a wedge of the oval just inside the specified rectangle with the
given pattern (in patCopy mode). StartAngle and arcAngle define the arc of the
wedge as in FrameArc. The grafPort's pnPat, pnMode, and bkPat are all ignored;
the pen location is not changed.

E.S.11 Calculations with Regions
NOTE

Remember that if the parameters to one of the calculation routines were
defined in different grafPorts, you must first adjust them to be in the
same coordinate system. If you do not adjust them, the result returned by
the routine may be different from what you see on the screen. To adjust
to a common coordinate system, see LocaltoGlobal and GlobalToL.ocal in
Section E.9.17, Calculations with Points.

Function NewRgn : RgnHandle;

NewRgn allocates space for a new, dynamic, variable-size region, initializes it
to the empty region (0,0,0,0), and returns a handle to the new region. Only this
function creates new regions; all other procedures just alter the size and shape
of regions you create. OpenPort calls NewRgn to allocate space for the port's
visRgn and clipRgn.

E-55

Pascal Rerference Msrnual QuickDraw

WARNING

Except when using visRgn or clipRgn, you MUST call NewRgn before
specifying aregion’s handle in any drawing or calculation procedure.

WARNING

Never refer to aregion without using its handle.

Procedure DisposeRgn (rgn: RgnHandle);

DisposeRgn deallocates space for the region whose handle is supplied, and
returns the memory used by the region to the free memory pool. Use this only
after you are completely through with a temporary region.

WARNING

Never use a region once you have deallocated it, or you will risk being
hung by dangling pointers!

Procedure CopyRgn (srcRgn,dstRgn: RgnHandle);

CopyRgn coples the mathematical structure of srcRgn into dstRgn; that is, it
makes a duplicate copy of srcRgn. Once this is done, srcRgn may be altered (or
even disposed of) without affecting dstRgn. CopyRgn does not create the
destination region: you must use NewRgn to create the dstRgn before you call
CopyRgn.

Procedure SetEmptyRgn(rgn: RgnHandle);

SetEmptyRgn destroys the previous structure of the given region, then sets the
new structure to the empty region (0,0,0,0).

Procedure SetRectRgn (rgn: RgnHandle; left,top,right bottom: integer);

SetRectRgn destroys the previous structure of the given region, then sets the
new structure to the rectangle specified by left, top, right, and bottom.

If the specified rectangle is empty (i.e., left>=right or top>=bottom), the region is
set to the empty region (0,0,0,0).

E-56

Pascal Rererence Manual QuickDraw

Procedure RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the given region, then sets the new
structure to the rectangle specified by r. This is operationally synonymous with
SetRectRgn, except the input rectangle is defined by a rectangle rather than by
four boundary coordinates. ‘

Procedure OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving lines and
framed shapes for later processing as a region definition. wWhile aregionis open,
all calls to Line, LineTo, and the procedures that draw framed shapes (except
arcs) affect the outline of the region. Only the line endpoints and shape
boundaries affect the region definition; the pen mode, pattern, and size do not
affect it. In fact, OpenRgn calls HidePen, so no drawing occurs on the screen
while the region is open (unless you called ShowPen just after OpenRgn, or you
called ShowPen previously without balancing it by a call to HidePen). Since the
pen hangs below and to the right of the pen location, drawing lines with even the
smallest pen will change bits that lie outside the region you define.

The outline of a region is mathematically defined and infinitely thin, and
separates the bitMap into two groups of bits: those within the region and those
outside it. A region should consist of one or more closed loops. Each framed
shape itself constitutes a loop. Any lines drawn with Line or LineTo should
connect with each other or with a framed shape. Even though the on-screen
presentation of a region is clipped, the definition of a region is not; you can
define a region anywhere on the coordinate plane with complete disregard for
the location of various grafPort entities on that plane.

when a region is open, the current grafPort's rgnSave field contains a handle to
information related to the region definition. If you want to temporarily disable
the collection of lines and shapes, you can save the current value of this field,
set the field to NIL, and later restore the saved value to resume the region
definition.

WARNING

Do not call OpenRgn while another region is already open. All open
regions but the most recent will behave strangely.

Procedure CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes them into a
region definition, and saves the resulting region into the region indicated by

E-57

Pascal Reference Marxl GAdckDraw

dstRgn. You should perform one and only one CloseRgn for every OpenRgn.
CloseRgn calls ShowPen, balancing the HidePen call made by OpenRgn.

Here's an example of how to create and open a region, define a barbell shape,
close the region, and draw it:

barbell := NewRgn; {make a new region}
OpenRgn; {begin collecting stuff}
SetRect(tempRect,20,20,30,50); {form the left weight}
FrameQval(tempRect);
SetRect(tempRect,30,30,80,40); {form the bar}
FrameRect(tempRect);
SetRect(tempRect,80,20,90,50); {form the right weight}
FrameQval(tempRect);
CloseRgn(parbell); {we're done; save in barbell}
FillRgn(barbell black): {draw it on the screen}
DisposeRgn(barbell); {we don't need you anymore...}

Procedure OffsetRgn (rgn: RgnHandle; dh,dv: integer);

OffsetRgn moves the region on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the screen unless you
subsequently call a routine to draw the region. If dh and dv are positive, the
movement is to the right and down; if either is negative, the corresponding
movement is in the opposite direction. The region retains its size and shape.

NOTE

OffsetRgn is an especially efficient operation, because most of the data
defining a region is stored relative to rgnBBox and so isn‘t actually
changed by OffsetRgn.

Procedure InsetRgn (rgn: RgnHandle; dh,dv: integer);

InsetRgn shrinks or expands the region. All points on the region boundary are
moved inwards a distance of dv vertically and dh horizontally; if dh or dv is
negative, the points are moved outwards in that direction. InsetRgn leaves the
region “centered" at the same position, but moves the outline in (for positive
values of dh and dv) or out (for negative values of dh and dv). InsetRgn of a
rectangular region works just like InsetRect.

Procedure SectRgn (SICRgNA,srcRgnB,dstRgn: RgnHandle);

SectRgn calculates the intersection of two regions and places the intersection
in a third region. This does not create the destination region: you must use

Pascal Rererence Manua! QuickDraw

NewRgn to create the dstRgn before you call SectRgn. The dstRkgn can be one of
the source regions, if desired.

If the regions do not intersect, or one of the regions is empty, the destination is
set to the empty region(0,0,0,0).

Procedure UnionRgn (STcRgnA,srcRgnB,dstRgn: RgnHandle);

UnionRgn calculates the union of two regions and places the union in a third
region. This does not create the destination region: you must use NewRgn to
create the dstRgn before you call UnionRgn. The dstRgn can be one of the
source regions, if desired.

If both regions are empty, the destination is set to the empty region (0,0,0,0).

Procedure DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

DiffRgn subtracts srcRgnB from srcRgnA and places the difference in a third
region. This does not create the destination region: you must use NewRgn to
create the dstRgn before you call DiffRgn. The dstRgn can be one of the source
regions, if desired.

%f the ;irst source region is empty, the destination is set to the empty region
0,0,0,0

Procedure XorRgn (STcRgNA,STcRgnB,dstRgn: RgnHandle);

XorRgn calculates the difference between the union and the intersection of two
regions and places the result in a third region. This does not create the
destination region: you must use NewRgn to create the dstRgn before you call
XorRgn. The dstRgn can be one of the source regions, if desired.

If the regions are coincident, the destination is set. to the empty region(0,0,0,0).

Function PtInRgn (pt: Point; rgn: RgnHandle): boolean;

PtInRgn checks whether the pixel below and to the right of the given coordinate
point is within the specified region, and returns TRUE if so or FALSE if not.

Function RectInRgn (r: Rect; rgn: RgnHandle) : boolean;

RectInRgn checks whether the given rectangle intersects the specified region,
and returmns TRUE if the intersection encloses at least one bit or FALSE if not.

E-59

Pascal Refererce Maniwgl CRuckDraw

Function EqualRgn{rgnA.rgnB: rgnHandle): boolean;

EqualRgn compares the two regions and returmns TRUE if they are equal or
FALSE if not. The two regions must have identical sizes, shapes, and locations to
be considered equal. Any two empty regions are always equal.

Function EmptyRgn (rgn: RgnHandle) : boolean;

EmptyRgn returns TRUE if the region is an empty region or FALSE if not. Some
of the circumstances in which an empty region can be created are: a NewRgn
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty
rectangle as an argument; CloseRgn without a previous OpenRgn or with no
drawing after an OpenRgn; OffsetRgn of an empty region; InsetRgn with an empty
region or too large an inset; SectRgn of nonintersecting regions; UnionRgn of
two empty regions; and DiffRgn or XorRgn of two identical or nonintersecting
regions.

E.9.12 Graphic Operations on Regions
These routines all depend on the coordinate system of the current grafPort. If a
region is drawn in a different grafPort than the one in which it was defined, it
may not appear in the proper position inside the port.

Procedure FrameRgn (rgn: RgnHandle);

FrameRgn draws a hollow outline just inside the specified region, using the
current grafPort's pen pattemn, mode, and size. The outline is as wide as the pen
width and as tall as the pen height; under no circumstances will the frame go
outside the region boundary. The pen location is not changed by this procedure.

If a region is open and being formed, the outside outline of the region being
framed is mathematically added to that region's boundary.

Procedure PaintRgn (rgn: RgnHandle);

PaintRgn paints the specified region with the current grafPort's pen pattern and
pen mode. The region on the bitMap is filled with the pnPat, according to the
pattemn transfer mode specified by pnMode. The pen location is not changed by
this procedure.

Procedure EraseRgn (rgn: RgnHandle);

EraseRgn paints the specified region with the current grafPort's background
pattern bkPat (in patCopy mode). The grafPort’s pnPat and pn™Mode are ignored;
the pen location is not changed.

E-60

Pascal Reference Manual QuickDraw

Procedure InvertRgn (rgn: RgnHandle);

InvertRgn inverts the pixels enclosed by the specified region: every white pixel
becomes black and every black pixel becomes white. The grafPort’s pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRgn (rgn: RgnHandle; pat: Pattern);

FillRgn fills the specified region with the given pattern (in patCopy mode). The
grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen location is not
changed.

E.9.13 Bit Transfer Operations
Procedure ScrollRect (1: Rect; dh,dv: integer; updateRgn: RgnHandle);

ScrollRect shifts ("scrolls”) those bits inside the intersection of the specified
rectangle, visRgn, clipRgn, portRect, and portBits.bounds. The bits are shifteda
distance of dh horizontally and dv vertically. The positive directions are to the
right and down. No other bits are affected. Bits that are shifted out of the scroll
area are lost; they are neither placed outside the area nor saved. The grafPort’s
background pattern bkPat fills the space created by the scroll. In addition,
updateRgn is changed to the area filled with bkPat (see Figure E-21).

Before ScrollRect After ScrollRect(dstRect,~10,5...)

5l
bkPat
QuickDrow, ="
NA
dstRect Up aa,tz{gnw
Figure E-21

scrolling

Figure E-21 shows that the pen location after a ScrollRect is in a different
position relative to what was scrolled in the rectangle. The entire scrolled item
has been moved to different coordinates. To restore it to its coordinates before
the ScrollRect, you can use the SetOrigin procedure. For example, suppose the
dstRect here is the portRect of the grafPort and its top left comer is at (95,120).
SetOrigin(105,115) will offset the coordinate system to compensate for the

E-61

Pascal Reference Manal &idckOraw

scroll. Since the clipRgn and pen location are not offset, they move down and to
the left.

Procedure CopyBits (srcBits,dstBits: BitMap; srcRect, dstRect: Rect; mode:
integer; maskRgn: RgnHandle);

CopyBits transfers a bit image between any two bitMaps and clips the result to
the area specified by the maskRgn parameter. The transfer may be performed in
any of the eight source transfer modes. The result is always clipped to the
maskRgn and the boundary rectangle of the destination bitMap; if the
destination bitMap is the current grafPort’s portBits, it is also clipped to the
intersection of the grafPort’s clipRgn and visRgn. If you do not want tocliptoa
maskRgn, just pass NIL for the maskRgn parameter.

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds
coordinate system, and the srcRect coordinates are in terms of the
srcBits.bounds coordinates.

The bits enclosed by the source rectangle are transferred into the destination
rectangle according to the rules of the chosen mode. The source transfer modes

are as follows: _
srcCopy srcXor notSrcCopy notSrcXor
srcOr . sreBic notSrcOr notSrcBic

The source rectangle is completely aligned with the destination rectangle; if the
rectangles are of different sizes, the bit image is expanded or shrunk as
necessary to fit the destination rectangle. For example, if the bit image is a
circle in a square source rectangle, and the destination rectangle is not square,
the bit image appears as an oval in the destination(see Figure E-22).

E-62

Pascal Rerference Manual QuickDraw

——_m. e I

Pe— maskRgn

PR

T EY
INAmAREnns |

H
“many , AN N
‘a ai -

LT T T TR
- ~us |

ur Source PN
Transfer $E85 Eone e e
Source BitMap Mode i
Destination BitMap
IENEREERNT (.! maSKRgn
. = NIL
Source !
e Transfer
Source BitMap Mode e
Destination BitMap
Figure E-22
Operation of CopyBits

E.9.14 Pictures
Function OpenPicture (picFrame: Rect): PicHandle;

OpenPicture returns a handle to a new picture which has the given rectangle as
its picture frame, and tells QuickDraw to start saving as the picture definition
all calls to drawing routines and all picture comments (if any).

OpenPicture calls HidePen, so no drawing occurs on the screen while the picture
is open (uniess you call ShowPen just after OpenPicture, or you called ShowPen
previously without balancing it by a call to HidePen).

when a picture is open, the current grafPort’s picSave field contains a handle to
information related to the picture definition. If you want to temporarily disable
the collection of routine calls and picture comments, you can save the current
value of this field, set the field to NIL, and later restore the saved value to
resume the picture definition.

E-63

Pascal Rererence Msanus! QUickDraw

WARNING

Do not call OpenPicture while another picture is already open.

Procedure ClosePicture;

ClosePicture tells QuickDraw to stop saving routine calls and picture comments
as the definition of the currently open picture. You should perform one and only
one ClosePicture for every OpenPicture. ClosePicture calls ShowPen, balancing
the HidePen call made by OpenPicture.

Procedure PicComment (kind,dataSize: integer; dataHandle: QDHandle);

PicComment inserts the specified comment into the definition of the currently
open picture. Kind identifies the type of comment. DataHandle is a handle to
additional data if desired, and dataSize is the size of that data in bytes. If there
is no additional data for the comment, dataHandle should be NIL and dataSize
should be 0. The application that processes the comment must include a
procedure to do the processing and store a pointer to the procedure in the data
structure pointed to by the grafProcs field of the grafPort (see Section E.10,
Customizing QuickDraw Operations).

Procedure DrawPicture (myPicture: PicHandle; dstRect: Rect);

DrawPicture draws the given picture to scale in dstRect, expanding or shrinking
it as necessary to align the borders of the picture frame with dstRect.
DrawPicture passes any picture comments to the procedure accessed indirectly
through the grafProcs field of the grafPort (see PicComment above).

Procedure KillPicture (myPicture: PicHandle);

KillPicture deallocates space for the picture whose handle is supplied, and
retumns the memory used by the picture to the free memory pool. Use this only
when you are completely through with a picture.

E.9.15 Calculations with Polygons
Function OpenPoly : PolyHandle;

OpenPoly returns a handle to a new polygon and tells QuickDraw to start saving
the polygon definition as specified by calls to line-drawing routines. while a
polygon is open, all calls to Line and LineTo affect the outline of the polygon.
Only the line endpoints affect the polygon definition; the pen mode, pattern, and
size do not affect it. In fact, OpenPoly calls HidePen, so no drawing occurs on the

E-64

Pascal Rererence Marnua! QUickDraw

screen while the polygon is open (unless you call ShowPen just after OpenPoly, or
you called ShowPen previously without balancing it by a call to HidePen).

A polygon should consist of a sequence of connected lines. Even though the
on-screen presentation of a polygon is clipped, the definition of a polygon is not;
you can define a polygon anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.

when a polygon is open, the current grafPort's polySave field contains a handle
to information related to the polygon definition. If you want to temporarily
disable the polygon definition, you can save the current value of this field, set
the field to NIL, and later restore the saved value to resume the polygon
definition.

WARNING

Do not call OpenPoly while another polygon is already open.

Procedure ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the currently open
polygon and computes the polyBBox rectangle. You should perform one and only
one ClosePoly for every OpenPoly. ClosePoly calls ShowPen, balancing the

HidePen call made by OpenPoly.
Here's an example of how to open a polygon, define it as a triangle, close it, and
draw it:
triPoly = OpenPoly; {save handle and begin collecting stuff}
MoveTo(300,100); { move to first point and }
LineTo(400,200); { form }
LineTo(200,200); { the }
LineTo(300,100); { triangle }
ClosePoly; { stop collecting stuff }
FillPoly(triPoly gray); { draw it on the screen }
KillPoly(triPoly); { we're all done }

Procedure KillPoly (poly: PolyHanale);

KillPoly deallocates space for the polygon whose handle is supplied, and returns
the memory used by the polygon to the free memory pool. Use this only after you
are completely through with a polygon.

E-65

Pascal Reference Meargl QuickDraw

Procedure OffsetPoly (poly: PolyHandle; dn,dv: integer);

OffsetPoly moves the polygon on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the screen unless you
subsequently call a routine to draw the polygon. If dh and dv are positive, the
movement is to the right and down; if either is negative, the corresponding
movement is in the opposite direction. The polygon retains its shape and size.

NOTE

OffsetPoly is an especially efficient operation, because the data defining
a polygon is stored relative to polyStart and so isn't actually changed by
OffsetPoly.

E9.16 Graphic Operations on Polygons
Procedure FramePoly (poly: PolyHandle);

FramePoly plays back the line-drawing routine calls that define the given
polygon, using the current grafPort’s pen pattern, mode, and size. The pen will
hang below and to the right of each point on the boundary of the polygon; thus,
the polygon drawn will extend beyond the right and bottom edges of
poly .polyBBox by the pen width and pen height, respectively. All other
graphic operations occur strictly within the boundary of the polygon, as for other
shapes. You can see this difference in Figure E-23, where each of the polygons is
shown with its polyBBox.

FramePoly PaintPoly

Figure E-23
Drawing Polygons
If a polygon is open and being formed, FramePoly affects the outline of the
polygon just as if the line-drawing routines themselves had been called. If a

E-66

Pascal Reference Manual QuickDraw

region is open and being formed, the outside outline of the polygon being framed
is mathernatically added to the region’s boundary.

Procedure PaintPoly (poly: PolyHandle);

PaintPoly paints the specified polygon with the current grafPort's pen pattern
and pen mode. The polygon on the bitMap is filled with the pnPat, according to
the pattern transfer mode specified by pnMode. The pen location is not changed
by this procedure.

Procedure ErasePoly (poly: PolyHandle);

ErasePoly paints the specified polygon with the current grafPort's background
pattern bkPat (in patCopy mode). The pnPat and pnMode are ignored; the pen
location is not changed.

Procedure InvertPoly (poly: PolyHandle);

InvertPoly inverts the pixels enclosed by the specified polygon: every white
pixel becomes black and every black pixel becomes white. The grafPort's pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillPoly (poly: PolyHandle; pat: Pattern);

FillPoly fills the specified polygon with the given pattern (in patCopy mode).
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location is not
changed.

E.8.17 Calculations with Points
Procedure AddPt (srcPt: Point; var dstPt: Point);

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and returns the
result indstPt.

Procedure SubPt (srcPt: Point; var dstPt: Point);
SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, and
returns the result in dstPt.

Procedure SetPt (var pt: Point; h,v: integer);
SetPt assigns two integer coordinates to a variable of type Point.

E-67

Pésca! Rerference Manual QuickDraw

Function EqualPt (ptA,ptB: Point): boolean;

EqualPt compares the two points and returns TRUE if they are equal or FALSE if
not.

Procedure Local ToGlobal (var pt: Point);

LocalToGlobal converts the given point from the current grafPort's local
coordinate system into a global coordinate system with the origin(0,0) at the top
left corner of the port's bit image (such as the screen). This global point can then
be compared to other global points, or be changed into the local coordinates of
another grafPort.

Since a rectangle is defined by two points, you can convert a rectangle into
global coordinates by performing two Local ToGlobal calls. You can also convert
a rectangle, region, or polygon into global coordinates by calling OffsetRect,
OffsetRgn, or OffsetPoly. For examples, see GlobalTolL ocal below.

Procedure Global TolL.ocal (var pt: Point);

GlobalTolL.ocal takes a point expressed in global coordinates (with the top left
comer of the bitMap as coordinate (0,0) and converts it into the local
coordinates of the current grafPort. The global point can be obtained with the
LocalToGlobal call (see above). For example, suppose a game draws a “pall”
within a rectangle named ballRect, defined in the grafPort named gamePort (as
illustrated below in Figure E-24). If you want to draw that ball in the grafPort
named selectPort, you can calculate the ball's selectPort coordinates like this:

SetPort(gamePort); {start in origin port}
selectBall := ballRect; {make a copy to be moved}
LocalToGlobal(selectBall.toplLeft); {put both comers into }
LocalToGlobal(selectBall.botRight); { global coordinates }

SetPort(selectPort); {switch to destination port}
Global ToLocal(selectBall.topLeft); {put both comers into }
GlobalToLocal(selectBall.ootRight); { these local coordinates }
FillOval(selectBall ballColor); {now you have the balll}

Pascal Reference Manial QRUCKkDrayw

2050 90 15 45 85
P I
70 i -
0 I
120— a3 70 50—
U—' | | s
gamePort selectPort
30-Hpet
LocalToGlobal 80— HHe GlobalToLocal
Figure E-24

Converting between Coordinate Systems

You can see from Figure E-24 that LocalToGlobal and GlobalTol.ocal simply
offset the coordinates of the rectangle by the coordinates of the top left corner
of the local grafPort's boundary rectangle. You could also do this with
OffsetRect. In fact, the way to convert regions and polygons from one
coordinate system to another is with OffsetRgn or OffsetPoly rather than
LocalToGlobal and GlobalToLocal. For example, If myRgn were a region
enclosed by a rectangle having the same coordinates as ballRect in gamePort,
you could convert the region to global coordinates with
OffsetRgn(myRgn, =20, -40);
and then convert it to the coordinates of the selectPort grafPort with
OffsetRgn{myRgn, 15, -30);
E.9.18 Miscellaneous Utilities
Function Random: integer;

This function returns an integer, uniformly distributed pseudo-random, in the
range from -32768 through 32767. The value returned depends on the global

E-69

Pascal Reference Maral QuUickDraw

variable randSeed, which InitGraf initializes to 1; you can start the sequence
over again from where it began by resetting randSeed to 1.

Function GetPixel (h,v: integer): boolean;

GetPixel looks at the pixel associated with the given coordinate point and
returns TRUE if it is black or FALSE if it is white. The selected pixel is
immediately below and to the right of the point whose coordinates are giveninh
and v, in the local coordinates of the current grafPort. There is no guarantee
that the specified pixel actually belongs to the port, however; it may have been
drawn by a port overlapping the current one. To see if the point indeed belongs
to the current port, perform a PtInRgn(pt thePort " .visRgn).

Procedure StuffHex (thingPtr: QDPtr; s: Str2s5);

StuffHex pokes bits (expressed as a string of hexadecimal digits) into any data
structure. This is a good way to create cursors, pattems, or bit images to be
“stamped" onto the screen with CopyBits. For example,

StuffHex(@stripes,'0102040810204080%
places a striped pattern into the pattern variable stripes.
WARNING

There is no range checking on the size of the destination variable. It's
easy to overrun the variable and destroy something if you don't know
what you're doing.

Procedure ScalePt (var pt: Point; srcRect dstRect: Rect);

A width and height are passed in pt; the horizontal component of pt is the width,
and the vertical component of pt is the height. ScalePt scales these
measurements as follows and returns the result in pt: it multiplies the given
width by the ratio of dstRect’s width to srcRect's width, and multiplies the given
height by the ratio of dstRect's height to srcRect's height. InFigure E-25, where
dstRect’s width is twice srcRect's width and its height is three times srcRect's
height, the pen width is scaled from 3 to 6 and the pen height is scaled from 2 to
6.

E-70

Pascal Reference Manual QuickDraw

0 3 15 18
oL 1 L

2 -
4~

7 -

|

ScalePt scales pen size (3,3) to (6,6)
MapPt maps point (3,2) to (18,7)

Figure E-25
ScalePt and MapPt

Procedure MapPt (var pt: Point; srcRect dstRect: Rect);

Given a point within srcRect, MapPt maps it to a similarly located point within
dstRect (that is, to where it would fall if it were part of a drawing being
expanded or shrunk to fit dstRect). The result is returned in pt. A corner point of
srcRect would be mapped to the corresponding cormer point of dstRect, and the
center of srcRect to the center of dstRect. In Figure E-25 above, the point (3,2)
in srcRect is mapped to (18,7) in dstRect. FromRect and dstRect may overlap,
and pt need not actually be within srcRect.

WARNING

Remember, if you are going to draw inside the rectangle in dstRect, you
will probably also want to scale the pen size accordingly with ScalePt.

E-71

Pascal Rererence Manual QuickDraw

Procedure MapRect (var 1: Rect; srcRect dstRect: Rect);

Given a rectangle within srcRect, MapRect maps it to a similarly located
rectangle within dstRect by calling MapPt to map the top left and bottom right
corners of the rectangle. The resultis returnedinr.

Procedure MapRgn (rgn: RgnHandle; srcRect dstRect: Rect);

Given a region within srcRect, MapRgn maps it to a similarly located region
within dstRect by calling MapPt to map all the points in the region.

2

Procedure MapPoly (poly: PolyHandle; srcRect dstRect: Rect);

Given a polygon within srcRect, MapPoly maps it to a similarly located polygon
within dstRect by calling MapPt to map all the points that define the polygon.

E.10 Customizing QuickDraw Operations

For each shape that QuickDraw knows how to draw, there are procedures that
perform these basic graphic operations on the shape: frame, paint, erase, invert,
and fill. Those procedures in turn call a low-level drawing routine for the shape.
For example, the FrameOval, PaintOval, Erase0Oval, InvertOval, and FillOval
procedures all call a low-level routine that draws the oval. For each type of
object QuickDraw can draw, including text and lines, there is a pointer to such a
routine. By changing these pointers, you can install your own routines, and either
completely override the standard ones or call them after your routines have
modified parameters as necessary.

Other low-level routines that you can install in this way are:
* The procedure that does bit transfer and is called by CopyBits.

* The function that measures the width of text and is called by Charwidth,
Stringwidth, and Textwidth.

* The procedure that processes picture comments and is called by
DrawPicture. The standard such procedure ignores picture comments.

* The procedure that saves drawing commands as the definition of a picture,
and the one that retrieves them. This enables the application to draw on
remote devices, print to the disk, get picture input from the disk, and support
large pictures.

The grafProcs field of a grafPort determines which low-level routines are
called; if it contains NIL, the standard routines are called, so that all operations
in that grafPort are done in the standard ways described in this manual. Youcan
set the grafProcs field to point to a record of pointers to routines. The datatype
of grafProcs is QDProcsPtr:

E-72

Pascal Rererence Maral

type QDProcsPtr = “QDProcs;
QDProcs = record

textProc: QDPtr; {text drawing}
lineProc: QDPtr; {line drawing}
rectProc: QDPtr; {rectangle drawing}
rRectProc: QDPtr; {roundRect drawing}
ovalProc: QDPtr; {oval drawing}
arcProc: QDPtr; {arc/wedge drawing}
polyProc: QDPtr; {polygon drawing}
rgnProc: QDPtr; {region drawing}
bitsProc: QDPtr; {bit transfer}
commentProc: QDPtr; {picture comment
processing}

txMeasProc: QDPtr; {text width measurement}
getPicProc: ~ QDPtr; [picture retrieval}
putPicProc: QDPtr ({picture saving}

eng;

To assist you in setting up a QDProcs record, QuickDraw provides the following
procedure:

Procedure SetStdProcs (var procs: QDProcs);

This procedure sets all the fields of the given QDProcs record to point to the
standard low-level routines. You can then change the ones you wish to point to
your own routines. For example, if your procedure that processes picture
comments is named MyComments, you will store @vyComments in the
commentProc field of the QDProcs record.

The routines you install must of course have the same calling sequences as the
standard routines, which are described below. The standard drawing routines
tell which graphic operation to perform from a parameter of type GrafVverb.

type GrafVerb = (frame, paint, erase, invert, fill);

when the grafVerb is fill, the pattern to use when filling is passed in the fillPat
field of the grafPort.

Procedure StdText (byteCount: integer; textBuf: QDPtr; numer,denom:
integer);

StdText is the standard low-level routine for drawing text. It draws text from
the arbitrary structure in memory specified by textBuf, starting from the first
byte and continuing for byteCount bytes. Numer and denom specify the scaling,
if any: numer.v over denom.v gives the vertical scaling, and numer.h over
denom.h gives the horizontal scaling.

E-73

QuickDraw

Pascal Rerference Marual QuickDraw

Procedure StdLine (newPt: Point);

StdLine is the standard low-level routine for drawing a line. It draws a line from
the current pen location to the location specified (in 1ocal coordinates) by newPt.

Procedure StdRect (verb: GrafVerb; 1: Rect);

StdRect is the standard low-level routine for drawing a rectangle. It draws the
given rectangle according to the specified grafVverb.

Procedure StdRRect (verb: Grafverb; r: Rect; ovalwidth,ovalHeight: integer);

StdRRect is the standard low-level routine for drawing a rounded-corner
rectangle. It draws the given rounded-corner rectangle according to the
specified grafverb. Ovalwidth and ovalHeight specify the diameters of
curvature for the corners.

Procedure StdOval (verb: GrafVerb; r: Rect);

StdOval is the standard low-level routine for drawing an oval. It draws an oval
inside the given rectangle according to the specified grafVerb.

Procedure StdArc (verb: GrafVerb; r: Rect; startAngle arcAngle: integer);

StdArc is the standard low-level routine for drawing an arc or a wedge. It draws
an arc or wedge of the oval that fits inside the given rectangle. The grafverb
specifies the graphic operation; if it's the frame operation, an arc is drawn;
otherwise, a wedge is drawn.

Procedure StdPoly (verb: GrafVerb; poly: PolyHandle);

StdPoly is the standard low-level routine for drawing a polygon. It draws the
given polygon according to the specified grafverb.

Procedure StdRgn (verb: GrafVerb; rgn: RgnHandle);

StdRgn is the standard low-level routine for drawing a region. It draws the given
region according to the specified grafverb.

Procedure StdBits (var srcBits: BitMap; var srcRect,dstRect: Rect; mode:
integer; maskRgn: RgnHandle);

StdBits is the standard low-level routine for doing bit transfer. It transfersabit
image between the given bitMap and thePort .portBits, just as if CopyBits were

E-74

Pascal Rerference Manual QuickDraw

called with the same parameters and with a destination bitMap equal to
thePort " .portBits.

Procedure StdComment (kind,dataSize: integer; dataHandle: QDHandle);

StdComment is the standard low-level routine for processing a picture
comment. Kind identifies the type of comment. DataHandle is a handle to
additional data, and dataSize is the size of that data in bytes. If there is no
additional data for the command, dataHandle will be NIL and dataSize will be 0.
StdComment simply ignores the cormment.

Function StdTxMeas (pyteCount: integer; textBuf: QDPtr; var numer,denom:
Point; var info: FontInfo) : integer;

StdTxMeas is the standard low-level routine for measuring text width. It returmns
the width of the text stored in the arbitrary structure in memory specified by
textBuf, starting with the first byte and continuing for byteCount bytes. Numer
and denom specify the scaling as in the StdText procedure; note that StdTxMeas
may change them.

Procedure StdGetPic (dataPtr: QDPtr; byteCount: integer);

StdGetPic is the standard low-level routine for retrieving information from the
definition of a picture. It retrieves the next byteCount bytes from the definition
of the currently open picture and stores them in the data structure pointed to by
dataPtr.

Procedure StdPutPic (dataPtr: QDPtr; byteCount: integer);

StdPutPic is the standard low-level routine for saving information as the
definition of a picture. It saves as the definition of the currently open picture
the drawing commands stored in the data structure pointed to by dataPtr,
starting with the first byte and continuing for the next byteCount bytes.

E.11 Using QuickDraw from Assembly Language
All QuickDraw routines can be called from assembly language programs as well
as from Pascal. When you write an assembly language program to use these
routines, though, you must emulate Pascal's parameter passing and variable
transfer protocols.

This section discusses how to use the QuickDraw constants, global variables,
data types, procedures, and functions from assembly language.

The primary aid to assembly language programmers is a file named
GRAFTYPES.TEXT. If you use .INCLUDE to include this file when you assemble
your program, all the QuickDraw constants, offsets to locations of global

E-75

Pascal Reference Manual QuickDraw

variables, and offsets into the fields of structured types will be available in
symbolic form.

E.11.1 Constants
QuickDraw constants are stored in the GRAFTYPES.TEXT file, and you can use
the constant values symbolically. For example, if you've loaded the effective
address of the thePort .txMode field into address register A2, you can set that
field to the srcXor mode with this statement:

MOVE.W #SRCXOR(A2)

To refer to the number of bytes occupied by the QuickDraw global variables, you
can use the constant GRAFSIZE. when you call the InitGraf procedure, you must
pass a pointer to an area at least that large.

E.11.2 Data Types
Pascal's strong typing ability lets you write Pascal programs without really
considering the size of a variable. But in assembly language, you must keep
track of the size of every variable. The sizes of the standard Pascal data types

are as follows:
Type Size
integer word (2 bytes)
longint Long (4 bytes)
boolean word (2 bytes)
char word (2 bytes)
real Long (4 bytes)

Integers and longints are in two's complement form;booleans have their boolean
value in bit 8 of the word (the low-order bit of the byte at the same location);
chars are stored in the high-order byte of the word; and reals are in the KCS

standard format.
The QuickDraw simple data types listed below are constructed out of these
fundamental types.

Type Size

QDPtr Long (4 bytes)

QDHandle Long (4 bytes)

word Long (4 bytes)

Str2ss Page (256 bytes)

Pattern 8 bytes

Bits16 32 bytes

Other data types are constructed as records of variables of the above types. The
size of such a type is the sum of the sizes of all the fields in the record; the fields
appear in the variable with the first field in the lowest address. For example,
consider the data type BitMap, which is defined as follows:

E-76

Pascal Reference Manual CICKOraw

typeBitMap= record
baseAddr: QDPtr;
rowBytes: integer;
bounds: Rect
end;

This data type would be arranged in memory as seven words: a long for the
baseAddr, a word for the rowBytes, and four words for the top, left, right, and
bottom parts of the bounds rectangle. To assist you in referring to the fields
inside a variable that has a structure like this, the GRAFTYPES.TEXT file
defines constants that you can use as offsets into the fields of a structured
variaple. For example, to move a bitMap's rowBytes value into D3, you would
execute the following instruction:

MOVE.W MYBITMAP+ROWBYTES,D3

Displacements are given in the GRAFTYPES.TEXT file for all fields of all data
types defined by QuickDraw.

To do double indirection, you perform an LEA indirectly to obtain the effective
address from the handle. For example, to get at the top coordinate of a region's

enclosing rectangle:
MOVE.L MYHANDLEA1 ; Load handle into Al
MOVEL (Al1)A1 ; Use handle to get pointer
MOVE.W RGNBBOX+TOP(A1),03 ; Load value using pointer

WARNING

For regions (and all other variable-length structures with handles), you
must not move the pointer into a register once and just continue to use
that pointer; you must do the double indirection each time. Every
QuickDraw call you make can possibly trigger a heap compaction that
renders all pointers to movable heap items (like regions) invalid. The
handles will remain valid, but pointers you've obtained through handles
can be rendered invalid at any subroutine call or trap in your program.

E.11.3 Global Variables
Register AS always points to the section of memory where global variables are
stored. The GRAFTYPES.TEXT file defines a constant GRAFGLOB that points
to the beginning of the QuickDraw variables in this space, and other constants
that point to the individual variables. To access one of the variables, put
GRAFGLOB in an address register, sum the constants, and index off of that
register. For example, if you want to know the horizontal coordinate of the pen

E-77

Pascal Reference Manual QuickDraw

location for the current grafPort, which the global variable thePort points to,
you can give the following instructions:

MOVE.L GRAFGLOB(AS),A0 ; Point to QuickDraw globals
MOVE.L THEPORT(AD)A1 ; Get current grafPort
MOVE.W PNLOC+H(A1)D0 ; Get thePort .pnLoc.h

E.11.4 Procedures and Functions
To call a QuickDraw procedure or function, you must push all parameters toiton
the stack, then JSR to the function or procedure. when you link your program
with QuickDraw, these JSRs are adjusted to refer to QuickDraw's jump table, so
that a JSR into-the table redirects you to the actual location of the procedure or
function.

The only difficult part about calling QuickDraw procedures and functions is
stacking the parameters. You must follow some strict rules:

* Save all registers you wish to preserve before you begin pushing parameters.
Any QuickDraw procedure or function can destroy the contents of the
registers A0, A1, D0, D1, and D2, but the others are never altered.

* Push the parameters in the order that they appear in the Pascal procedural
interface.

* For booleans, push a byte; for integers and characters, push a word; for
pointers, handles, long integers, and reals, push a long.

* For any structured variable longer than four (4) bytes, push a pointer to the
variable.

* For all var parameters, regardless of size, push a pointer to the variable.

* When calling a function, first push a null entry equal to the size of the
function result, then push all other parameters. The result will be left on the
stack after the function returns to you.

This makes for a lengthy interface, but it also guarantees that you can mock up a
Pascal version of your program, and later translate it into assembly code that
works the same. For example, the Pascal statement

blackness := GetPixel(50,mousePos.v);
would be written in assembly language like this:

CLRW —(8P) ; Save space for boolean result
MOVE.W #50,-(SP) ; Push constant SO (decimal)
MOVE.W MOUSEPOS+V,~(SP) > Push the value of mousePos.v
JSR GETPIXEL ,; Call routine

MOVE.W {SP)+ BLACKINESS ; Fetch result from stack

E-78

Pascal Reference Manual

QuUickDraw

This is a simple example, pushing and pulling word-long constants. Normally,
you'll be pushing more pointers, using the PEA (Push Effective Address)

instruction:
FillRoundRect(myRect,1,thePort ~ pnSize.v,white);
PEA MYRECT ; Push pointer to myRect
MOVE.W #1,-(SP) ; Push constant 1

MOVEL GRAFGLOB(AS),AD ; Point to QuickDraw globals

MOVEL THEPORT(ADLAL : Get current grafPort

MOVE.W PNSIZE+VA1),<SP) ; Push value of thePort .pnSize.v

PEA WHITE(AD) ;> Push pointer to global variable white
JSR FILLROUNDRECT ; Call the subroutine

To call the TextFace procedure, push a word in which each of seven bits
represents a stylistic variation: set bit 0 for bold, bit 1 for italic, bit 2 for
underline, bit 3 for outline, bit 4 for shadow, bit S for condense, and bit 6

for extend.

E.12 Summary of QuickDraw

UNIT QuickDraw;

{ Copyright 1983 Apple Computer Inc. }

INTERFACE

CONST srcCopy
src0r
srcXor
srcBic
notSrcCopy
notSrcOor
notSrcXor
notSrcBic
patCopy
patOr
patXor
patBic
notPatCopy
notPator
notPatXor
notPatBic

LI T T T T O TN T O VA T TR | I T Y | I}

{ the 16 transfer modes }

WVRJIQNENIEE

10;

E-79

Pascal Rererence Manual

QUickDraw

{ QuickDraw color separation constants }

TYPE

normalBit
inverseBit
redBit
greenBit
blueBit
cyanBit
magentaBit
yellowBit
blackBit

blackColor
whiteColor
redColor
greenColor
blueColor
cyanColor

magentaColor

picLParen
picRParen

QDByte
QDPtr
QDHandle
Stra2ss
Pattern
Bits16
VHSelect
Grafyerb
Styleltem
Style

FontInfo

yellouwColor

{ normal screen mapping }
{ inverse screen mapping }
{ RGB additive mapping }

{ CHMYBK subtractive mapping }

nuwonuwwwnounon
RARARNRL 20 S A ol

3; { colors expressed in these mappings }

AN AN

nuwon ouwonon o u
g
N

{ standard picture comments }

nn
-\Qo

-128..127;

“QDByte; { blind pointer }

“QOPtr; { blind handle }

String[255);

PACKED ARRAY[0..7] OF 0..255;

ARRAY[0..15] OF INTEGER;

(v.h);

(frame, paint, erase, invert, fill);

(bold, italic, underline, outline, shadow, condense, extend):
SET OF StyleItem;

RECORD
ascent: INTEGER:
descent: INTEGER;
vidMax: INTEGER;
leading: INTEGER;
END;

E-80

Pascal Reference Mangl QuickDraw

Point = RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER);
END;

Rect = RECORD CASE INTEGER OF

0: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER);

1: (topLeft: Point;
botRight: Point);
END;

BitMap = RECORD-
baseAddr: QDPtr;
rowBytes: INTEGER;
pounds: Rect;
END;

Cursor = RECORD
data: Bitsie;
mask: Bitsise;
hotSpot: Point;
END;

PenState = RECORD
pnLoc: Point;
pnSize: Point;
pniiode: INTEGER;
pnPat: Pattern;
END;

E-81

Pascal Rererence Manual

PolyHandle
POlyPtr

Polygon

RgnHandle
RgnPtr
Region

PicHandle
PicPtr
Picture

“PolyPtr;

“Polygon;

RECORD
polySize:
polyBBox:

INTEGER;
Rect;

QuickDraw

polyPoints: ARRAY[0..0] OF Point;

END.

“RgnPLr;
“Region:
RECORD

rgnsize:
rgnBBox:

INTEGER;
Rect;

{ rognSize = 10 for rectangular }

{ plus more data if not rectangular }

END;

“PicPtr;
“Picture;
RECORD
picSize:
picFrame:

INTEGER;
Rect.

{ plus byte codes for picture content }

’

QDProcsPtr = “QDProcs;
QDProcs = RECORD

textProc:
lineProc:
rectProc:
rRectProc:
ovalProc:
arcProc:
polyProc:
rgnProc:
bitsProc:
commentProc:
txMeasProc:
getPicProc:
putPicProc:

END;

QDPtr;
QDPtr:
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPLr;
QDPtr;
QDPtr;
QDPtr;

E-82

Pascal Reference Manual QUIickDraw

GrafPtr = “GrafPort;
GrafPort = RECORD
device: INTEGER;

portBits: BitMap;
portRect: Rect.
visRgn: RgnHandle;
clipRgn: RgnHandle;

bkPat: Pattern;
fillPat: Pattern;
pnLoc: Point;

pnSize: Point;

pnMode: INTEGER;
pnPat: Pattern;
pnvis: INTEGER;
txFont: INTEGER;
txFace: Style;

txiode: INTEGER;
txSize: INTEGER;

spExtra: INTEGER;
fgColor: LongInt;
bkColor: LongInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: QDHandle;
rgnSave: QDHandle;
polySave: QDHandle;
grafProcs: QDProcsPtr;
END;

VAR thePort: GrafPtr;

white: Pattern;
black: Pattern;
gray: Pattern;
1tGray: Pattern;
dkGray: Pattern;
arrow: gursor;

screenBits: BitMap;
randSeed: LongInt;

E-83

Pascal Reference Manial QQuickDraw

{ GrafPort Routines }

PROCEDURE InitGraf (globalPtr: QDPtr);
PROCEDURE OpenPort (port: GrafPtr):
PROCEDURE InitPort (port: GrafPtr):
PROCEDURE ClosePort (port: GrafPtr);
PROCEDURE SetPort (port: GrafPtr);
PROCEDURE GetPort (VAR port: GrafPtr);
PROCEDURE GrafDevice (device: INTEGER);
PROCEDURE SetPortBits(bm: BitMap).

PROCEDURE PortSize (width,height: INTEGER);
PROCEDURE MovePortTo (leftGlobal, topGlobal: INTEGER);
PROCEDURE SetOrigin (h,v: INTEGER);
PROCEDURE SetClip (rgn: RgnHandle):
PROCEDURE GetClip (rgn: RgnHandle);
PROCEDURE ClipRect (r: Rect):

PROCEDURE BackPat (pat: Pattern);

{ Cursor Routines }

PROCEDURE InitCursor;

PROCEDURE SetCursor(crsr: Cursor);
PROCEDURE HideCursor;

PROCEDURE ShowCursor;

PROCEDURE ObscureCursor:

{ Line Routines }

PROCEDURE HidePen;

PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point); ’
PROCEDURE GetPenState(VAR pnState: PenState):
PROCEDURE SetPenState(pnState: PenState);

PROCEDURE PenSize (width,height: INTEGER):
PROCEDURE PenMode (mode: INTEGER);

PROCEDURE PenPat (pat: Pattern):

PROCEDURE PenNormal;

PROCEDURE MoveTo (n,v: INTEGER);

PROCEDURE Move (dh,dv: INTEGER);
PROCEDURE LineTo (h.v: INTEGER):
PROCEDURE Line (dh,dv: INTEGER);

E-84

Pascal Rererence Marnal QRUCkDraw

{ Text Routines }

PROCEDURE TextFont (font: INTEGER);

PROCEDURE TextFace (face: Style):

PROCEDURE TextHMode (mode: INTEGER);

PROCEDURE TextSize (size: INTEGER);

PROCEDURE SpaceExtra (extra: INTEGER);

PROCEDURE DrawChar (ch: char);

PROCEDURE DrawString (s: Str2s5);

PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: INTEGER):
FUNCTION CharWidth (ch: CHAR): INTEGER;

FUNCTION Stringwidth (s: Str2sS5): INTEGER;

FUNCTION Textwidth (textBuf: QDPtr; firstByte,byteCount: INTEGER):

INTEGER;
PROCEDURE GetFontInfo (VAR info: FontInfo);

{ Point Calculations }

PROCEDURE AddPt (src: Point; VAR dst: Point);

PROCEDURE SubPt (src: Point; VAR dst: Point);

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

FUNCTION EqualPt (pt1,pt2: Point): BOOLEAN;

PROCEDURE ScalePt (VAR pt: Point; fromRect, toRect: Rect);
PROCEDURE MapPt (VAR pt: Point; fromRect, toRect: Rect);

PROCEDURE LocalToGlobal (VAR pt: Point);
PROCEDURE GlobalToLocal (VAR pt: Point);

{ Rectangle Calculations }

PROCEDURE SetRect (VAR r: Rect; left,top, rignht,bottom: INTEGER);
FUNCTION EqualRect (rectl,rect2: Rect): BOOLEAN;

FUNCTION EmptyRect (r: Rect): BOOLEAN;

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);

PROCEDURE MapRect (VAR r: Rect; fromRect, toRect: Rect);
PROCEDURE InsetRect éVAR r: Rect; dh,dv: INTEGER);

FUNCTION SectRect srcl, src2: Rect; VAR dstRect: Rect): BOOLEAN;
PROCEDURE UnionRect (srci,src2: Rect; VAR dstRect: Rect);

FUNCTION PtInRect (pt: Point; r: Rect): BOOLEAN;

PROCEDURE PtZRect (pt1,pt2: Point; VAR dstRect: Rect);

E-85

Pascal Reference Marxial QuckDraw

{ Graphical Operations on Rectangles }

PROCEDURE FrameRect (r: Rect);
PROCEDURE PaintRect (r: Rect):
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect):
PROCEDURE FillRect (r: Rect; pat: Pattern);

{ RoundRect Routines }

PROCEDURE FrameRoundRect (r: Rect; ovid,ovHt: INTEGER):
PROCEDURE PaintRoundRect (r: Rect; ovkd, ovHt: INTEGER);
PROCEDURE EraseRoundRect (Tr: Rect; ovud, ovHt: INTEGER):
PROCEDURE InvertRoundRect (r: Rect; ovWd, ovHt: INTEGER);
PROCEDURE FillRoundRect (r: Rect; ovWd,ovHt: INTEGER; pat: Pattern);

{ Oval Routines }

PROCEDURE FrameOval (r: Rect):
PROCEDURE PaintOval (r: Rect):
PROCEDURE EraseOval (r: Rect);
PROCEDURE InvertOval (r: Rect):
PROCEDURE FillOval (r: Rect; pat: Pattern);

{ Arc Routines }

PROCEDURE FrameArc (r: Rect; startAngle, arcAngle: INTEGER):

PROCEDURE PaintArc (r: Rect; startAngle, arcAngle: INTEGER);

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER);

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);

PROCEDURE FillArc (r: Rect; startAngle, arcAngle: INTEGER: pat:
Pattern

PROCEDURE PtToAngle (r: Rect;)pt Point; VAR angle: INTEGER);

E-86

Pascal Rererence Marual QUickDraw

{ Polygon Routines }

FUNCTION OpenPoly: PolyHandle;

PROCEDURE ClosePoly.

PROCEDURE KillPoly (poly: PolyHandle);

PROCEDURE OffsetPoly (poly: PolyHandle; ch,dv: INTEGER);
PROCEDURE MapPoly (poly: PolyHandle; fromRect, toRect: Rect);
PROCEDURE FramePoly (poly: PolyHandle);

PROCEDURE PaintPoly (poly: PolyHandle),

PROCEDURE ErasePoly (poly: PolyHandle);

PROCEDURE InvertPoly (poly: PolyHandle);

PROCEDURE FillPoly = (poly: PolyHandle; pat: Pattern);

{ Region Calculations }

FUNCTION NewRgn: RgnHandle;

PROCEDURE DisposeRgn(rgn: RgnHandle);

PROCEDURE CopyRgn (SrcRgn, dstRgn: RgnHandle);

PROCEDURE SetEmptyRgn(rgn: RgnHandle);

PROCEDURE SetRectRgn(rgn: RgnHandle; left, top, right, bottom: INTEGER);
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

PROCEDURE OpenRgn;

PROCEDURE CloseRgn (dstRgn: RgnHandle):

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);
PROCEDURE MapRgn (rgn: RgnHandle; fromRect, toRect: Rect):
PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);
PROCEDURE SectRgn STCRONA, STCRONB, dstRgn: RgnHandle);
PROCEDURE UnionRgn (srcRgnA, srcRanB, dstRgn: RgnHandle);
PROCEDURE DiffRgn (SrcRgnA, SrcRgnB, dstRgn: RgnHandle);
PROCEDURE XorRgn ('SrcRgnA, srcRgnB, dstRgn: RgnHandle);
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOOLEAN:

FUNCTION EmptyRgn (ron: RgnHandle): BOOLEAN;

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): BOOLEAN;
FUNCTION RectInRgn (T: Rect; rgn: RgnHandle): BOOLEAN;

{ Graphical Operations on Regions }

PROCEDURE FrameRgn (rgn: RgnHandle):
PROCEDURE PaintRgn (rgn: RgnHandle);
PROCEDURE EraseRgn (rgn: RgnHandle):
PROCEDURE InvertRgn (rgn: RgnHandle);
PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

E-87

Pascal Reference Manual QuickDraw

{ Graphical Operations on BitMaps }

PROCEDURE ScrollRect(dstRect: Rect; dh,dv: INTEGER; updateRgn:
rgnHandle);

PROCEDURE CopyBits (srcBits,dstBits: BitMap;
srcRect, dstRect: Rect;
mode: INTEGER;

maskRgn: RgnHandle);
{ Picture Routines }

FUNCTION OpenPicture(picframe: Rect): PicHandle;

PROCEDURE ClosePicture;

PROCEDURE DrawPicture(myPicture: PicHandle; dstRect: Rect);
PROCEDURE PicComment(kind, dataSize: INTEGER; dataHandle: QDHandle);
PROCEDURE Ki11Picture(myPicture: PicHandle);

{ The Bottleneck Interface: }

PROCEDURE SetStdProcs(VAR procs: QDProcs);

PROCEDURE StdText (count: INTEGER; textAddr: QDPtr; numer,denom:
Point);

PROCEDURE StdLine (newPt: Point);

PROCEDURE StdRect (verb: GrafVerb; r: Rect);
PROCEDURE StdRRect (verb: GrafVerb; r: Rect; ovWd,ovHt: INTEGER):
PROCEDURE StdOval (verb: GrafVerb; r: Rect);
PROCEDURE StdArc (verb: Grafverb; r: Rect; startAngle,arcAngle:

INTEGER);
PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);
PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);
PROCEDURE StdBits (VAR srcBits: BitMap; VAR srcRect, dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);
PROCEDURE StdComment (kind,dataSize: INTEGER; dataHandle: QDHandle);
FUNCTION StdTxtteas (count: INTEGER; textAddr: QDPtr; VAR numer, denom:

Point; VAR info: FontInfo): INTEGER;
PROCEDURE StdGetPic (dataPtr: QDPtr:; byteCount: INTEGER):
PROCEDURE StdPutPic (dataPtr: QDPtr; byteCount: INTEGER);

E-88

" Pascal Reference Manal QuickOraw

{ Misc Utility Routines }

FUNCTION GetPixel (h,v: INTEGER): BOOLEAN;
FUNCTION Random: INTEGER:

PROCEDURE StuffHex (thingptr: QDPtr; s:Str2ss);
PROCEDURE ForeColor (color: LongInt);

PROCEDURE BackColor (color: LongInt);

PROCEDURE ColorBit (whichBit: INTEGER).

IMPLEMENTATION
{$I QuickDraw2.text }

{ QuickDraw2.text: Implementation part of QuickDraw }

{$S Graf }
TYPE FMOutPtr = “FMOuUtRec;
FMOutrec = PACKED RECORD
errNum: INTEGER; used only for GrafError

fontHandle: QDHandle;
bold: 0..255;
italic: 0..255;
uloffset: 0..255;
ulShadow: 0..255;

% handle to font
{
%
ulThick: 0..255; g
{
{

}
}
how much to smear horiz }
how much to shear }
pixels below baseline }
how big is the halo }
how thick is the underline }
0,1,2,0r 3 only }
}

}

}

}

}

}

}

shadou: 0..255;
extra: -128..127; extra white dots each char
ascent: 0..255; ascent measure for font

descent: 0..255; descent measure for font
widMax: 0..255; width of widest char
leading: -128..127; { leading between lines

unused: 0..255;

numer: Point; { use this modified scale to

denom: Point; { draw or measure text with
END;

E-89

Pascal Reference Manual

VAR wideOpen: RgnHandle;
videMaster: RgnPtr;

wideData: Region;
rgnBuf: QDHandle;
rgnIndex: INTEGER;
rgniax: INTEGER;
playPic: PicHandle;
playIndex: INTEGER;
thePoly: PolyHandle;
polytax: INTEGER:
patAlign: Point;
fontPtr: FHMOutPtr;
fontData: FMOutRec;

{ grafPort routines }

PROCEDURE InitGraf:
PROCEDURE OpenPort;
PROCEDURE InitPort;
PROCEDURE ClosePort;
PROCEDURE GrafDevice;
PROCEDURE SetPort;
PROCEDURE GetPort;
PROCEDURE SetPortBits;
PROCEDURE PortSize;
PROCEDURE MovePortTo;
PROCEDURE SetOrigin;
PROCEDURE SetClip;
PROCEDURE GetClip:
PROCEDURE ClipRect;
PROCEDURE BackPat;

{ cursor routines }

PROCEDURE InitCursor;
PROCEDURE SetCursor;
PROCEDURE HideCursor;
PROCEDURE ShowCursor;
PROCEDURE ObscureCursor;

QuickDraw

{ a dummy rectangular region, read-only }

{
{
{
{
{
{
{
{
{

po
cu
ma

EXTERNAL;

E-90

int saving buffer for OpenRgn
rrent bytes used in rgnBu
X bytes allocated so far to rgnBuf
used by StdGetPic

used by StdGetPic

the current polygon being defined
max bytes allocated so far to thePoly
to align pattern during DrawPicture
the last font used, used by DrauText

EXTERNAL -

}
}
}
}
}
}
}
}
}

Psascal Rererence Marnial QAUCKkDIraw

{ text routines }

PROCEDURE TextFont. EXTERNAL:
PROCEDURE TextFace: EXTERNAL;
PROCEDURE TextHode; EXTERNAL.
PROCEDURE TextSize; EXTERNAL;
PROCEDURE SpaceExtra; EXTERNAL,
PROCEDURE DrawChar; EXTERNAL;
PROCEDURE DrawString: EXTERNAL.;
PROCEDURE DrawText; EXTERNAL;
FUNCTION CharwWidth; EXTERNAL,
FUNCTION Stringwidth; EXTERNAL,
FUNCTION Textwidth; EXTERNAL;
PROCEDURE GetFontInfo; EXTERNAL;

{ 1ine routines }

PROCEDURE HidePen; EXTERNAL;
PROCEDURE ShowPen; EXTERNAL;
PROCEDURE GetPen; EXTERNAL.
PROCEDURE GetPenState; EXTERNAL
PROCEDURE SetPenState; EXTERNAL.
PROCEDURE PenSize; EXTERNAL ;
PROCEDURE Pentiode; EXTERNAL,
PROCEDURE PenPat; EXTERNAL;
PROCEDURE PenNormal; EXTERNAL
PROCEDURE MoveTo; EXTERNAL ;
PROCEDURE Move; EXTERNAL.
PROCEDURE LineTo; EXTERNAL;
PROCEDURE Line; EXTERNAL;

{ rectangle calculations }

PROCEDURE SetRect; EXTERNAL;
FUNCTION EqualRect; EXTERNAL.
FUNCTION EmptyRect; EXTERNAL;
PROCEDURE OffsetRect; EXTERNAL
PROCEDURE MapRect; EXTERNAL;
PROCEDURE InsetRect; EXTERNAL.
FUNCTION SectRect; EXTERNAL;
PROCEDURE UnionRect; EXTERNAL;
FUNCTION PtInRect; EXTERNAL;
PROCEDURE Pt2Rect; EXTERNAL;

E-91

Pascal Reference Manual QuickDraw

{ graphical operations on rectangles }

PROCEDURE FrameRect. EXTERNAL;
PROCEDURE PaintRect; EXTERNAL,
PROCEDURE EraseRect: EXTERNAL.
PROCEDURE InvertRect; EXTERNAL,;
PROCEDURE FillRect; EXTERNAL;

{ graphical operations on RoundRects }

PROCEDURE FrameRoundRect; EXTERNAL,
PROCEDURE PaintRoundRect; EXTERNAL,
PROCEDURE EraseRoundRect; EXTERNAL;
PROCEDURE InvertRoundRect; EXTERNAL.
PROCEDURE FillRoundRect; EXTERNAL,

{ graphical operations on Ovals }

PROCEDURE FrameQOval; EXTERNAL
PROCEDURE PaintOval; EXTERNAL ;
PROCEDURE EraseQval. EXTERNAL;
PROCEDURE InvertOval; EXTERNAL;
PROCEDURE FillOval; EXTERNAL

{ Arc routines }

PROCEDURE Framefrc; EXTERNAL.
PROCEDURE PaintArc: EXTERNAL.
PROCEDURE EraseArc; EXTERNAL,
PROCEDURE InvertArc: EXTERNAL.
PROCEDURE FillArc; EXTERNAL;
PROCEDURE PtToAngle; EXTERNAL.

Pascal Rererence Marxi! KickOraw

{ polygon routines }

FUNCTION OpenPoly: EXTERNAL
PROCEDURE ClosePoly; EXTERNAL;
PROCEDURE K111Poly: EXTERNAL.
PROCEDURE OffsetPoly; EXTERNAL;
PROCEDURE MapPoly; EXTERNAL;
PROCEDURE FramePoly: EXTERNAL;
PROCEDURE PaintPoly; EXTERNAL;
PROCEDURE ErasePoly: EXTERNAL;
PROCEDURE InvertPoly; EXTERNAL;
PROCEDURE FillPoly: EXTERNAL.

{ region calculations }

FUNCTION NewRgn; EXTERNAL;
PROCEDURE DisposeRgn; EXTERNAL ;
PROCEDURE OpenRgn; EXTERNAL;
PROCEDURE CloseRgn; EXTERNAL;
PROCEDURE OffsetRgn; EXTERNAL;
PROCEDURE MapRgn; EXTERNAL
PROCEDURE InsetRgn; EXTERNAL;
PROCEDURE SectRgn; EXTERNAL;
PROCEDURE CopyRgn; EXTERNAL;
PROCEDURE SetEmptyRgn; EXTERNAL
PROCEDURE SetRectRgn; EXTERNAL ;
PROCEDURE RectRgn; EXTERNAL;
PROCEDURE UnionRgn; EXTERNAL.
PROCEDURE DiffRgn; EXTERNAL;
PROCEDURE XOrRgn; EXTERNAL;
FUNCTION EqualRgn; EXTERNAL ;
FUNCTION EmptyRgn; EXTERNAL ;
FUNCTION PtInRgn; EXTERNAL
FUNCTION RectInRgn; EXTERNAL

{ graphical operations on Regions }

PROCEDURE FrameRgn; EXTERNAL.
PROCEDURE PaintRgn; EXTERNAL;
PROCEDURE EraseRgn; EXTERNAL.
PROCEDURE InvertRgn; EXTERNAL,;
PROCEDURE FillRgn; EXTERNAL.

E-93

Pascal Reference Marnual

{ BitMap routines }

PROCEDURE CopyBits:
PROCEDURE ScrollRect;

{ Picture routines }

FUNCTION OpenPicture;
PROCEDURE ClosePicture;
PROCEDURE KillPicture;
PROCEDURE DrawPicture;
PROCEDURE PicComment;

{ BottleNeck routines }

PROCEDURE StdText;
PROCEDURE StdLine;
PROCEDURE StoRect;
PROCEDURE StdRRect;
PROCEDURE StoOval;
PROCEDURE StoArc;
PROCEDURE StdPoly;
PROCEDURE StoRgn;
PROCEDURE StgBits;
PROCEDURE StaCorment;
FUNCTION StdTxtteas;
PROCEDURE StdGetPic;
PROCEDURE StdPutPic;

{ misc utility routines }

FUNCTION GetPixel:
FUNCTION Random;
PROCEDURE AddPt;
PROCEDURE SubPt;
PROCEDURE SetPt:
FUNCTION EqualPt;
PROCEDURE StuffHex;:
PROCEDURE LocalToGlobal;
PROCEDURE GlobalTolLocal;

EXTERNAL.
EXTERNAL ;

EXTERNAL.

'EXTERNAL;

EXTERNAL;
EXTERNAL;
EXTERNAL,

EXTERNAL.
EXTERNAL;

EXTERNHL'

EXTERNAL

E-94

QuickDraw

Pascal Rererence Maal Gk Diraw

PROCEDURE ScalePt; EXTERNAL.
PROCEDURE MapPt; EXTERNAL;
PROCEDURE ForeColor: EXTERNAL.
PROCEDURE BackColor; EXTERNAL ;
PROCEDURE ColorBit. EXTERNAL.
PROCEDURE SetStdProcs; EXTERNAL,

END. { of UNIT }

E.13 QuickDraw Sample Program
{coDsample

gQDSample

X#5: julinker
-P

ob j:HWIntL
obj:Unit6sk
obj:UnitStd
obj:UnitHz
ob j:FonthMgr
ob J:FM68K
obj:Storage
obj:QuickDraw
obj:GrafLib

obJ :QDSupport

1e
»jospaslib
QDSample '
{{ the above junk is an exec file to compile and run this program
PROGRAM QDSarple;
{su-}

USES {$U obj:QuickDraw } QuickDraw,
{$U obj:QDSupport } QDSupport;

E-95

Pascal Rererence Manual

TYPE IconData =

VAR heapBuf :

myPort:
icons:

errhNum:

QuickDraw

ARRAY[0..95] OF INTEGER;

ARRAY[0..10000] OF INTEGER:
GrafPort;

ARRAY[0..5] OF IconData;
INTEGER;

FUNCTION HeapFull(hz: QDPtr; bytesNeeded: INTEGER): INTEGER;

{ this function
BEGIN

WRITELN('The heap is full.

Halt;
END;

will be called if the heapZone runs out of space }
User Croak !! ');

PROCEDURE InitIcons;

{ Manually stuff some icons.

BEGIN
{ Lisa }

StuffHex(@icons|

StuffHex(@icons

StuffHex(@icons|

StuffHex(@icons

StuffHex(@icons|

StuffHex(@icons

StuffHex(@icons|

StuffHex(@icons
{ Printer }

StuffHex(@icons|
StuffHex(@icons|

StuffHex(@icons

StuffHex(@icons|
StuffHex(@icons|
StuffHex(@icons|
StuffHex(@icons|
StuffHex(@icons{

Normally we would read them from a file }

%,'0000000D000000D000000000DUOOOOUUOOOUOOIFFFFFFFFC');
, ' 0060000000060180000000080600000000130FFFFFFFFFA3"),
], 1800000000431 1FFFFF00023120000080F2312000008F 923");
1,'120000080F23120000080023120000080023120000080F23');

S8R0 o

, ' 12000008F923120000080F2312000008002311FFFFF00023");
0], '08000000004307FFFFFFFFA30100000000260FFFFFFFFE2C"),
2], *18000000013832AARAABASF 0655555515380C2ARRAB2ASE0"

84], ' 800000000980FFFFFFFFF300800000001600FFFFFFFFFCO0*

LLLLLLLL
~N o

»
)

], * 00");
., "00000000000000007FFFFF00000080000280000111514440°");
, *0002000008400004454510400004000017C00004A5151000°);
]. '0004000010000004A54510000004000017FEQCF4A5151003°),
], *0184000013870327FFFFF 10F 06400000021B0CFFFFFFFC37"),
], *18000000006B3000000000D7 7FFFFFFFFFABCO0000000356 °).
], ' 8000000001AC87F000000153841000CCC1B087F000CCC160");
], '8000000001C0OCO00000003807FFFFFFFFF0007800001E000°).

EREERVR o

Pascal Rerference Manual QuickDraw

{ Trash Can }

StuffHex(@icons[2, 0], '000001FC000000000EC600000000300300000000C0918000");
StuffHex(@icons[2, 12}, ' 00013849800000026C4980000004C0930000000861260000");
StuffHex(@icons(2, 24], ' 0010064FE0000031199830000020E6301800002418E00800");
StuffHex(@icons{2,36%,'0033E380100000180EU0200UOUOFFGUICCOUOOU47FFEDCOD');
StuffHex(@icons(2, 48], ' 000500004C000005259A4C000005250A4C00000525FA4C00")
StuffHex(@icons(2, 60], ' 000524024C00000524924C00600524924C0090E524924C7C ")
StuffHex(@icons{2, 72 ,'932524924082A445249240010885249240F100452&924009'g,

StuffHex(Ricons(2, 84], * 0784249258E70003049233100000E000E40800001FFFC3F0"),

o Ne N,

’

{ tray }

StuffHex(@icons[3, 0], '00°)
StuffHex(@icons(3, 12], *0000000000000000000000000000000000000007FFFFFFFQ")
StuffHex(@icons[3, 24], ' 000E00000018001A00000038003600000078006A00000008");
StuffHex(@1cons(3, 36], ' 00D7FFFFFFB801AC0000035803580000068807FCO00FFDS8");
StuffHex(@icons[3, 48], ' 040600180AB80403FFF 00DS8040000000AB3040000000058°);
StuffHex(@icons{3,60],‘040000000&8807FFFFFFFDS&OGHCU0000688055800000058');
StuffHex(@icons[3, 72]. * 068000000AB807FCO00FFD70040600180AE00403FFFO00CO"),
StuffHex(@icons[3,84],‘040000000880040000000F0004000000060007FFFFFFF000');

{ File Cabinet }

StuffHex(@icons{4, 0 ,'0007FFFFF000000800000000001000001000002000003400');
StuffHex(@iconsE4 12}, *004000006C0000F FFFFFD40000800000ACO000BFFFFED40C");
StuffHex(@icons|4 24], 00AC0002ACO000A07F02D40000A04102AC0000A07F02D400°"),
StuffHex(@icons[4, 36], ' 00A00002ACO000A08082040000A0FF82ACO000A000020400");
StuffHex(@icons(4, 48], ' 00A00002ACO000BFFFFED40000800000ACO000BFFFFED4AOD"),
StuffHex(@icons%4,60},'0Uﬁﬂ0002600000A07F02040000604102RCOOOOAU7F020400');
StuffHex(@icons| 4, 72], * 00A00002AC0000A08082040000A0FF82AC0000A00002D800 ");
StuffHex(@icons[4, 84], ‘ 00A00002B00000BFFFFEEDC000800000C00000FFFFFF8000");

{ draver }
StuffHex(@icons|
StuffHex(@icons{
StuffHex(@icons|
StuffHex(@icons(
StuffHex(@icons|
StuffHex(@icons|
StuffHex(@icons|
StuffHex(@icons|

,'00');
, *00°);
, *00 ");
* 001FFFFFFQ");
000038000030000068000070000008000000003FFFFFF180)
,'00200000135000200000168000201FE01050002010201680');
, '00201FE01560002000001AC0002000001580002020101800")
, ' 00203FF01600002000001C00002000001800003FFFFFF000");

nysnannan
zssgxﬁmc

END;

E-97

Pascal Rererence Msnual QuickOraw

PROCEDURE DrawIcon(whichIcon, h,v: INTEGER);
VAR srcBits: BitMap;
SrcRect, dstRect: Rect;
BEGIN
srcBits.baseAddr:=@icons[whichIcon];
srcBits.rowBytes:=6;
SetRect(srcBits.bounds, 0, 0, 48, 32);
srcRect:=srcBits.bounds;
dstRect:=srcRect;
OffsetRect(dstRect, h,v);
CopyBits(srcBits, thePort”.portBits, srcRect, dstRect, srcOr, Nil);
END;

PROCEDURE DrawStuff.
VAR 1: INTEGER;

tempRect: Rect;

myPoly: PolyHandle;

myRgn: RgnHandle;

myPattern: Pattern;
BEGIN

StuffHex(@myPattern, '8040200002040800");

tempRect := thePort”.portRect;
ClipRect(tempRect);
EraseRoundRect(tempRect, 30, 20);
FrameRoundRect (tempRect, 30, 20);

{ draw two horizontal lines across the top }
MoveTo(0, 18);

LineTo(719, 18);

noveTogﬁ, 20);

LineTo(719, 20);

{ draw divider lines }
MoveTo(0, 134);
LineTo(719, 134);
MoveTo(0, 248);
LineTo(719, 248);
MtoveTo(240,21);
LineTo(240, 363):
MoveTo(480,21);
LineTo(480, 363).

Pascal Reference Manual QuickDraw

{ draw title }

TextFont(0),

MoveTo(210, 14);

DrawString(°'Look what you can draw with QuickDraw');

{-———-- drav text samples --------- }
MoveTo(80,34); OrawString('Text');

TextFace([bold]);
MoveTo(70,55); DrawString('Bold');

TextFace([italic]);
MoveTo(70,70),; DrawString('Italic');

TextFace([underline]);
MoveTo(70, 85); DrawString('Underline’);

TextFace([outline]);
MoveTo(70, 100); OrawString('Outline’);

TextFace([shadow]);
MoveTo(70, 115); DrawString(‘Shadow’);

TextFace([]),; { restore to normal }

{ ~—--—-- draw line samples --------- }
MoveTo(330,34); DrawString(‘Lines');
MoveTo(280,25); Line(160, 40);

PenSize(3, 2);
MoveTo(280, 35); Line(160, 40);

PenSize(s6, 4);
MoveTo(280, 46); Line(160, 40);

E-99

Pascal Reference Menusl QuickDraw

PenSize(12,8);
PenPat(gray).;
MoveTo(280,61),; Line(160, 40);

PenSize(15, 10);
PenPat(myPattern);
MoveTo(280, 80); Line(160, 40);
PenNormal,

{ ~———-- draw rectangle samples --------- }
MoveTo(560, 34); DrawString(‘Rectangles’);

SetRect(tempRect, 510, 40, 570, 70).
FrameRect(tempRect);

OffsetRect(tempRect, 25, 15);
PenSize(3, 2);
EraseRect(tempRect);
FrameRect(tempRect);

OffsetRect(tempRect, 25, 15);
PaintRect(tempRect);

OffsetRect(tempRect, 25, 15);

PenNormal;

FillRect(tempRect, gray);

FrameRect(tempRect);

OffsetRect(tempRect, 25, 15);

FillRect(tempRect, myPattern);
FrameRect(tempRect)

{ ———m- draw roundRect samples --------- }
MoveTo(70, 148); DrawString('RoundRects');

SetRect(tempRect, 30, 150, 90, 180);
FrameRoundRect(tempRect, 30, 20);

E-100

Pascal Rererence Manal QuickDraw

OffsetRect(tempRect, 25, 15);
PenSize(3.2);

EraseRoundRect (tempRect, 30, 20);
FrameRoundRect (tempRect, 30, 20);

OffsetRect(tempRect, 25, 15);
PaintRoundRect(tempRect, 30, 20);

OffsetRect(tempRect, 25, 15);
PenNormal;

FillRoundRect(tempRect, 30, 20, gray);
FrameRoundRect(tempRect, 30, 20);

OffsetRect(tempRect, 25, 15);
FillRoundRect(tempRect, 30, 20, myPattern);
FrameRoundRect (tempRect, 30, 20);

{ ————- draw bitmap samples --------- }
MoveTo(320, 148); DrawString('BitMaps');

DrawIcon(0, 266, 156);
DrawIcon(1, 336, 156);
DrawIcon(2, 406, 156);
DrawIcon(3, 266, 196);
DrawIcon(4, 336, 196);
DrawIcon(s, 406, 196);

{ - draw ARC samples --------- }
MoveTo(570, 148); DrawString(‘Arcs');

SetRect(tempRect, 520, 153, 655, 243);
FillArc(tempRect, 135, 65, dkGray):
FillArc(tempRect, 200, 130, myPattern);
FillArc(tempRect, 330, 75, gray).
FrameArc(tempRect, 135, 270);
OffsetRect(tempRect, 20, 0);
PaintArc(tempRect, 45, 90);

E-101

Pascal Rerference Mearnual QUickDraw

{ - draw polygon samples --------- }
MoveTo(80,262); DrawString('Polygons');

myPoly:=OpenPoly;
MoveTo(30, 290);
LineTo(30, 280);
LineTo(50, 265);
LineTo(90, 265),
LineTo(80, 280);
LineTo(95, 290);
LineTo(30, 290);
ClosePoly; { end of definition }

FramePoly(myPoly);

OffsetPoly(myPoly, 25, 15);
PenSize(3,2);
ErasePoly(myPoly),;
FramePoly(myPoly).;

OffsetPoly(myPoly, 25, 15);
PaintPoly(myPoly);

OffsetPoly(myPoly, 25, 15);
PenNormal,

F111Poly(myPoly, gray);
FramePoly(myPoly).
OffsetPoly(myPoly, 25, 15);
Fil1Poly(myPoly, myPattern);
FramePoly(myPoly).;

KillPoly(myPoly).;

E-102

Pascal Rererence Manal QUIckOraw

{ - demonstrate region clipping --------- }
MoveTo(320,262); DrawString('Regions');

myRgn: =NewRgn;
OpenRgn,
ShowPen;

SetRect(tempRect, 260, 270, 460, 350);
FrameRoundRect(tempRect, 24, 16);

MoveTo(275,335); { define triangular hole }
LineTo(325, 285);
LineTo(375, 335);
LineTo(275, 335);

SetRect(tempRect, 365, 277, 445,325); { oval hole }
FrameOval(tempRect);

HidePen;
CloseRgn(myRgn), { end of definition }

SetClip(myRgn);
FOR 1:=0 TO 6 DO { draw stuff inside the clip region }
BEGIN
MoveTo(260, 280+12#1);
DrawString(‘Arbitrary Clipping Regions');
E -

’

ClipRect(thePort”.portRect);
DisposeRgn(myRgn);

{ ——--—- draw oval samples --------- }
MoveTo(580, 262); OrawString('Ovals');

SetRect(tempRect, 510, 264, 570, 294);
FrameOval(tempRect);

E-103

Pascal Reference Mol QuickDraw

OffsetRect(tempRect, 25, 15);
PenSize(3, 2):

EraseOval(tempRect);
FrameQval(tempRect);

OffsetRect(tempRect, 25, 15);
PaintOval(tempRect);

Of fsetRect(tempRect, 25, 15);
PenNormal,

Fil10Oval(tempRect, gray),
Framel)val(t:emRect?r

OffsetRect(tempRect, 25, 15);
FillOval(tempRect, myPattern);
FrameOval(tempRect).

END; { DrawStuff }

BEGIN { main program }
InitHeap(@heapBuf, éheapBuf[10000], @HeapFull),
InitGraf(@tnePort)
InitCursor;
HideCursor;
FMInit(errNum);
OpenPort(eémyPort);
PaintRect(thePort”.portRect);
InitIcons;
DrawStuff;

END.

E.14 Glossary
bit image: A collection of bits in memory which have a rectilinear

representation. The Lisascreen is a visible bit image.
bitMap: A pointer to a bit image, the row width of that image, and its boundary
rectangle.

rectangle: A rectangle defined as part of a bitMap, which encloses the
active area of the bit image and imposes a coordinate system on it. Its top left
comer is always aligned around the first bit in the bit image.

E-104

Pascal Rererence Marial QuickODraw

character style: A set of stylistic variations, such as bold, italic, and underline.
The empty set indicates normal text (no stylistic variations).

clipping: Limiting drawing to within the bounds of a particular area.
clipping region: Same as clipRan.
clipRgn: The region to which an application limits drawing in a grafPort.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid coordinates
are integers ranging from -32768 to +32767, and all grid lines are infinitely thin.

cursor: A 16-by-16-bit image that appears on the screen and is controlled by the
mouse.

cursor level: A value, initialized to 0 when the system is booted, that keeps track
of the number of times the cursor has been hidden.

empty: Containing no bits, as a shape defined by only one point.
font: The complete set of characters of one typeface, such as Century.
frame: To draw a shape by drawing an outline of it.

global coordinate system: The coordinate system based on the top left comer of
the bit image being at (0,0).

grafPort: Acomplete drawing environment, including such elements as a bitMap,
a subset of it in which to draw, a character font, patterns for drawing and erasing,
and other pen characteristics.

grafPtr: Apointer toagrafPort.

handle: A pointer to one master pointer to a dynamic, relocatable data structure
(such as aregion).

hotSpot: The point inacursor that is aligned with the mouse position.
kerr: To stretch part of a character back under the previous character.

local coordinate system: The coordinate system local to a grafPort, imposed by
the boundary rectangle defined in its bitMap.

missing symbol: A character to be drawn in case of a request to draw a character
that is missing from a particular font.

pattem: An 8-by-8-bit image, used to define a repeating design (such as stripes)
or tone (such as gray).

pattem transfer mode: One of eight transfer modes for drawing lines or shapes
withapattemn.

picture: A saved sequence of QuickDraw drawing commands (and, optionally.
picture comments) that you can play back later with a single procedure call; also,
the image resulting frorm these commands.

E-105

Pascal Rerference Manual QuickDraw

picture comments: Data stored in the definition of a picture which does not
affect the picture’s appearance but may be used to provide additional
information about the picture when it’s played back.

picture frame: A rectangle, defined as part of a picture, which surrounds the
picture and gives a frame of reference for scaling when the picture is drawn.

pixei: ;u:he visual representation of a bit on the screen (white if the bit is 0, black
ifit's1

point: The intersection of a horizontal grid line and a vertical grid line on the
coordinate plane, defined by a horizontal and a vertical coordinate.

polygore A sequence of connected lines, defined by QuickDraw line-drawing
commands.

port: Same as grafPort.
portBits: The bitMap of a grafPort.
portBits.bounds: The boundary rectangle of a grafPort's bitMap.

portRect: A rectangle, defined as part of a grafPort, which encloses a subset of
the bitMap for use by the grafPort.

region: An arbitrary area or set of areas on the coordinate plane. The outline of
aregion should be one or more closed 100ps.

row width: The number of bytes in each row of a bit image.
solid: Filled in with any pattem.

source transfer mode: One of eight transfer modes for drawing text or
transferring any bit image between two bitMaps.

style: See character style.
thePort: A global variable that points to the current grafPort.

transfer mode: A specification of which boolean operation QuickDraw should
perform when drawing or when transferring a bet image from one bitMap to
another.

visRgn: The region of a grafPort which is actually visible on the screen.

E-106

Pascal Reference Manual Haroware interface

Appendix F
HARDWARE INTERFACE
F.l THEMOUSE....cceceeecincecrecicessrncccsscscnssssssssscnssnssssassmsssssssasnnananne F-3
F.1.1 MOUSE LOCAION....ccciceieiaenciiiacneicecacnnessnsennesreeasanananas F-3
F.1.2 Mouse Update FIEQUENCY ...cc.ceeremereaceacaceocssrasenccsasanssnnseas F-3
F.1.3 MOUSE SCAIING....cuimieiiieiiiaaciemiiniseeinesnaceeeneeresaaeaneens F-3
F.14 MOUSE O0OMELLY ...eeeeeieeccieeneeeenacenaearancenasacecencecansseonsnane F-4
F.2 TRECUISOT ...eeeeececiececeanennescraessesscsnnsosssasssssassnssssasocsssnssssssssnans F-4
F.21 CUrsor/Mouse TIACKING ceeeeeeceeeermncecerercaceemaemocrascerecacsnoanes F-5
F.22 TREBUSY CUISOYceeeiiaoeaecneemsiaaaencosssmscssssssassesssessssassnsss F-5
F.3 TheDisplay SCIEMccccceecrseeciesncseceoccsraccscossocsanasencssssssssssnanas F-6
F.3.1 SCreen CoNtIastcceeceeeerenencaimasienssisessenccscesssnssesnscnnsoans F-6
F3.2 Automatic SCreen Fadingcecceeerumremineianinessnciocennasaccnnns F-6
F TRESPEAKEYcceeceaornsecseneoncoosoosassoscisasacssascasssrsssssssssssssssassnasse F-7
F5 TheKeyDOAID ...cccceceemeemeaeemcinencencsssmcnossacosscssssesessssnsssesssnsascnnns F-7
F.5.1 Keyboard Identificationc...cceeeecreemeniiemeeiinoiernaccieneans F-9
F.5.2 Keyboard Stalecc.ceeemeeeceaarrrceicnernercnrcarecesenscascnenaneas F-10
F.5.3 KeyDOArd EVENLScceeueereecimranesairescisroncsinssccnesassonnassanens F-10
F.5.4 Dead Key DIaCIUCAIS ..c..eeeueemeiaieaeceneassaerinenianccienaceassnnnan F-12
F.5.5 REPEALS ...eeereececieceeeniinnsacccerecseenscscosenosssncssanssenscsnnaons F-12
F.6 TheMICroseCond TIMEYcccecveeieemconmasicenceceioneacenosncssasccanancnns F-13
F.7 TheMIIHSecoNd TIMer cciee e ieiianicacenisssascosoccansencscassonsasssnoanas F-13
F.8 Dateand TiMe .ceeeiemeceececeeecemceieceiacaeeeseasessecacnsemmssssssanncenssannas F-1a4
F.9 TIME StamMP ..ceeeieereiiiieiinirececianeienianeessanesencsceessancssensssnsssnassnes F-14
F.10 Summary of the Hardware INLEIFaCEcceeeeeeceomeianecacnncomonennconnes F-15

Pascal Reference Mamual Haraware Interface

Pascal Reference Marnual Haroware interface

HARDWARE INTERFACE

The hardware interface software provides an interface for accessing and
controlling several parts of the Lisa hardware. The hardware/software
capabilities addressed include the mouse, the cursor, the display, the contrast
control, the speaker, both undecoded and decoded keyboard access, the
microsecond and millisecond timers and the hardware clock/calendar.

The documentation below contains interleaved text descriptions and Pascal
function and procedure declarations. Pascal type declarations and a summary of
the function and procedure declarations can be found in Section F.10, Summary
of the Hardware Interface.

F.1 The Mouse
F.1.1 Mouse Location
The mouse is a pointing device used to indicate screen locations. Procedure
Mouselocation retumns the location of the mouse. The X-coordinate can range
from 0 to 719, and the Y-coordinate from 0 to 363. The initial mouse location is
0,0.
procedure MouselLocation (var x: Pixels; var y: Pixels)

F.12 Mouse Update Frequency
Software knowledge of the mouse location is updated periodically, rather than
continuously. The frequency of these updates can be set by calling procedure
MouseUpdates. The time between updates can range from 0 milliseconds
(continuous updating) to 28 milliseconds, in intervals of 4 milliseconds. The
initial setting is 16 milliseconds.

procedure MouseUpdates (delay: MilliSeconds);

F.1.3 Mouse Scaling
The relationship between physical mouse movements and logical mouse
movements is not necessarily a fixed linear mapping. Three alternatives are
available: 1) unscaled, 2) scaled for fine movement and 3) scaled for coarse
movement. Initially mouse movements are unscaled.

when mouse movement is unscaled, a horizontal mouse movement of x units
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y units yields a change is the mouse Y-coordinate of y pixels. These
rules apply independent of the speed of the mouse movement.

when mouse movement is scaled, horizontal movements are magnified by 3/2
relative to vertical movements. This is intended to compensate for the 2/3
aspect ratio of pixels on the screen. when scaling is in effect, a distinction is
made between fine (small) movements and coarse (large) movements. Fine
movements are slightly reduced, while coarse movements are magnified. For

F-3

Pascal Reference Marxsagl Haraware Interfece

scaled fine movements, a horizontal mouse movement of X units yields a change
in the X-coordinate of x pixels, but a vertical movement of y units yields a
change of (2/3)*y pixels. For scaled coarse movements, a horizontal movement a
x units yields a change of (3/2)*x pixels, while a vertical movements of y units
yields achange of y pixels.

The distinction between fine movements and coarse movements is determined by
the sum of the x and y movements each time the mouse location is updated. If
this sum is at or below the ‘threshold’, the movement is considered to be a fine
movement. Values of the threshold range from 0 (which yields all coarse
rmovements) to 256 (which yields all fine movements). Given the default mouse
updating freguency, a threshold of about 8 (threshold's initial setting) gives a
comfortable transition between fine and coarse moverments.

Procedure MouseScaling enables and disables mouse scaling. Procedure
MouseThresh sets the threshold between fine and coarse movements.

procedure MouseScaling (scale:Boolean);
procedure MouseThresh (threshold: Pixels);

F.1.4 Mouse Odometer
In order to properly specify, design and test mice, it's important to estimate how
far a mouse moves during its lifetime. Function MouseOdometer returns the sum
of the X and Y movements of the mouse since boot time. The value returnedis in
(unscaled) pixels. There are 180 pixels per inch of mouse movement.

function MouseOdometer: ManyPixels:;

F2 The Cursor
The cursor is a small image that is displayed on the screen. Its shape is specified
by two bitmaps, called ‘data’ and ‘'mask’. These bitmaps are 16 bits wide and from
0 to 32 bits high. The rule used to combine the bits already on the screen with the
data and mask is

screen <- (screen and(not mask)) xor data.

The effect is that white areas of the screen are replaced with the cursor data.
Black areas of the screen are replaced with (not mask) xor data. If the dataand
mask bitmaps are identical, the effect is to ‘or’ the data onto the screen.

The cursor has both a location and a hotspot. The location is a position on the
screen, with X-coordinates of 0 to 719 and Y-coordinates of 0 to 363 . The
hotspot is a position within the cursor bitmaps, with X- and Y-coordinates
ranging from 0 to 16. The cursor is displayed on the screen with its hotspot at its
location. If the cursor’s location is near an edge of the screen, the cursor image
may be partially or completely off the screen.

Most cursor operations can be performed by calling procedures SetCursor,
HideCursor, ShowCursor, and ObscureCursor defined by QuickDraw (see Section

Pascal Reference Marnial raraware nterfece

E.9.2, Cursor-Handling Routines). Additional capabilities are provided by the
Hardware Interface routines described below.

Procedure Cursorlmage is used to specify the data bitamp, mask bitmap, height
and hotspot of the cursor. Initially the cursor data and mask bitmaps contain all
zeros, which yields ablank (invisible) cursor. The initial hotspot is 0,0.

procedure Cursorimage (hotX: Pixels: hotY: Pixels; height:
CursorHeight; proceduredata: CursorPtr; mask: CursorPtr);

F.21 Cursor/™Mouse T
Procedure CursorTracking enables and disables cursor tracking of the mouse.
when tracking is enabled the cursor location is changed to the mouse location
each time the mouse moves. Setting the cursor location will have no effect, the
cursor sticks with the mouse.

when tracking is disabled, the mouse location and cursor location are
independent. Setting the cursor location will move the cursor; moving the mouse
will not.

When tracking is first enabled (i.e. on each transition from disabled to enabled)
the mouse location is modified to equal the cursor location. Therefore, enabling
tracking does not move the cursor; it does modify the mouse location. Initially
tracking is enabled.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>