A/UX® Local System Administration

Production draft 1/1/89 Linda Kinnier Developer Technical Publications

This Document contains preliminary information.

It does not include:

- table of contents
- •final technical information
- final editorial corrections
- final art
- a glossary

★ APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple's suppliers, with all rights reserved. Under the copyright laws, this manual may not be copied, in whole or in part, without the written consent of Apple Computer, Inc. This exception does not allow copies to be made for others, whether or not sold, but all of the material purchased may be sold, given, or lent to another person. Under the law, copying includes translating into another language.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws.

© Apple Computer, Inc., 1988 20525 Mariani Avenue Cupertino, CA 95014 (408) 996-1010

Apple, the Apple logo, LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc.

ITC Avant Garde Gothic, ITC Garamond, and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

POSTSCRIPT is a registered trademark of Adobe Systems Incorporated.

Varityper is a registered trademark, and VT600 is a trademark, of AM International, Inc.

Simultaneously published in the United States and Canada.

9/12/88

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on which a software product is distributed, Apple will replace the media or manuals at no charge to you, provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged software media and manuals for as long as the software product is included in Apple's Media Exchange Program. While not an upgrade or update method, this program offers additional protection for up to two years or more from the date of your original purchase. See your authorized Apple dealer for program coverage and details. In some countries the replacement period may be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED WARRANTIES OF MERCHANT-ABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTIC-ULAR PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU THE PURCHASER ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no liability for any programs or data stored in or used with Apple products, including the costs of recovering such programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

9/12/88

- (3) •

A/UX Local System Administration

Contents

Preface	Conventions Used in This Manual
Chapter 1	Managing the A/UX System—An Introduction
Chapter 2	System Startup and Shutdown
Chapter 3	User and Group Administration
Chapter 4	Backing Up Your System
Chapter 5	Preparing an Apple HD SC for A/UX
Chapter 6	Managing Disks
Chapter 7	Managing Other Peripheral Devices
Chapter 8	Checking the A/UX File System: fsck
Chapter 9	System Accounting Package
Chapter 10	System Activity Package
Appendix A	The UUCP System
Notes	
Index	er i de la companya d

BLANK PAGE

Preface

Conventions Used in This Manual

A/UX® manuals follow certain conventions regarding presentation of information. Words or terms that require special emphasis appear in specific fonts within the text of the manual. The following sections explain the conventions used in this manual.

Significant fonts

Words that you see on the screen or that you must type exactly as shown appear in Courier font. For example, when you begin an A/UX work session, you see the following on the screen:

login:

The text shows login: in Courier typeface to indicate that it appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you must type in the word. Words that you must replace with a value appropriate to a particular set of circumstances appear in *italics*. Using the example just described, if the next step in the manual is

login: username

you type in your name—Laura, for example— so the screen shows:

login: Laura

New terminology appears in **boldface**. Common A/UX terms are defined in the glossary of Getting Started with A/UX.

Key presses

Certain keys are identified with names on the keyboard. These modifier and character keys perform functions, often in combination with other keys. In the manuals, the names of these keys appear in the format of an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN

DELETE

SHIFT

ESCAPE

OPTION

CAPS LOCK

CONTROL

For example, if you enter

Applee

instead of

Apple

you would position the cursor to the right of the word and press the DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a specific function, the keynames are shown connected with hyphens. For example, if you see

Press Control-C

you must press CONTROL and C simultaneously (CONTROL-C normally cancels the execution of the current command).

Terminology

In A/UX manuals, a certain term can represent a specific set of actions. For example, the word *Enter* indicates that you type in an entry and press the RETURN key. If you were to see

Enter the following command: who ami

you would type who ami and press the RETURN key. The system would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

expand tab (:); lw(1i)fB lw(3i)fB lfB 1. _ Term:Action _ T{ Enter T}:T{ Type in the entry and press the RETURN key T}

Press:T{ Press a single letter or key without pressing the RETURN key T}

Type:T{ Type in the letter or letters without pressing the RETURN key T}

expand tab (:); lw(1i)fB lw(3i)fB lfB 1. _ Term:Action _ Click:T{ Press and then immediately release the mouse button T}

Select: T{ Position the pointer on an item and click the mouse button T}

Drag:T{ Position the pointer on an icon, press and hold down the mouse button while moving the mouse. Release the mouse button when you reach the desired position. T}

Choose:T{ Activate a command title in the menu bar. While holding down the mouse button, drag the pointer to a command name in the menu and then release the mouse button. An example is to drag the File menu down until the command name Open appears highlighted and then release the mouse button. T}

Syntax notation

A/UX commands follow a specific order of entry. A typical A/UX command has this form:

command [flag-option] [argument]...

The elements of a command have the following meanings.

expand tab (:); lw(1i)fB lw(3i)fB 11. _ Element: Description _ command: Is the command name.

flag-option:T[Is one or more optional arguments that modify the command. Most flag-options have the form

[-opt...]

where opt is a letter representing an option. Commands can take one or more options. T

argument: T{ Is a modification or specification of the command; usually a filename or symbols representing one or more filenames. T}

brackets ([]):T{ Surround an optional item—that is, an item that you do not need to include for the command to execute. T} ellipses (...):T{ Follow an argument that may be repeated any number of times. T}

expand tab (:); lw(1i)fB lw(3i)fB 11. _ Element: Description _

For example, the command to list the contents of a directory (1s) is followed below by its possible flag options and the optional argument names.

You can enter

ls -a /users

to list all entries of the directory /users, where

1s Represents the command name

-a Indicates that all entries of the directory be listed

/users Names which directory is to be listed

Command reference notation

The manuals A/UX Command Reference, A/UX Programmer's Reference, and A/UX System Administrator's Reference contain references for commands, programs, and other related information. Reference material is organized within these manuals by section numbers. The standard A/UX cross-reference notation is

cmd(sect)

where *cmd* is the name of the command, file, or other facility; *sect* is the section number where the entry resides.

- ☐ Commands followed by section numbers (1M), (7), or (8) are listed in A/UX System Administrator's Reference.
- ☐ Commands followed by section numbers (1), (1C), (1G), (1N), and (6) are listed in A/UX Command Reference.
- □ Commands followed by section numbers (2), (3), (4), and (5) are listed in A/UX Programmer's Reference.

For example,

cat(1)

refers to the command cat, which is described in Section 1 of A/UX Command Reference.

References can be also called up on the screen. The man or apropos command displays pages from reference manuals directly on the screen. For example, enter the command

man cat.

In this example, the manual page for the cat command, including its description, syntax, options, examples and other pertinent information, appears on the screen. To exit, continue pressing the space bar until you see your command prompt or press Q at any time to return immediately to your command prompt.

An A/UX manual often refers to information discussed in another manual in the suite. The format for this type of reference is "Chapter Title," Name of Manual.

PLACE TAB HERE

INTRODUCTION

BACK OF TAB

Chapter 1 Managing the A/UX System An Introduction

Contents

1.	The system administrator	•	•	•	•	•	•	•	•	•	•	•	1
2.	A/UX system administration	ma	nua	ıls	•		•	•	•	•	•	•	:
3.	For the new system administr	ato	r	•	•	•	•	•	•	•	•	•	2
4.	Administrative logins on the	-		•									4
	4.1 Administrative groups	•	•	•	•	•	•	•	•	•	•	•	(
5.	The complete contents of A/L	ЛХ			•	•	•						(

BLANK PAGE

Chapter 1

Managing the A/UX System

An Introduction

1. The system administrator

This book is for the A/UX® system administrator. The system administrator is responsible for making sure that the system runs smoothly. The administrator typically performs the following functions:

- starting up and shutting down the system
- adding, modifying, and removing user accounts
- backing up the system
- adding and managing peripheral devices
- locating and resolving inconsistencies in the file system
- · monitoring system activity
- monitoring user activity
- setting up and maintaining communication channels with other computer systems

With the exception of communicating with other systems, all of these procedures affect a single computer and are considered local system administration. These procedures are described in this manual. For information on setting up and administering networks, see A/UX Network System Administration.

2. A/UX system administration manuals

The information you need for managing single (not networked) A/UX systems is presented in two manuals:

 A/UX Local System Administration (which you are currently reading) contains ten chapters. This chapter is an introduction and overview, and the remaining nine chapters are devoted to the topics in the preceding bulleted list. These chapters include step-by-step instructions that guide you through routine procedures as well as background information about the A/UX environment. The background information is useful for analyzing and handling unexpected situations or error conditions. First-time administrators should read these chapters in sequence.

A/UX System Administrator's Reference contains details and variations on the standard commands and procedures. It summarizes the main system administration commands but does not contain introductory or overview material. It is recommended that you read A/UX Local System Administration first and use A/UX System Administrator's Reference for quick reference once you understand how a command works. The commands documented in A/UX System Administrator's Reference are cited as command-name(1M). You will also find references to commands cited as command-name(1). These are contained in A/UX Command Reference.

3. For the new system administrator

This book combines theory and practice to help you understand what to do as well as why. If you are not an experienced system administrator, note the following suggestions before you begin:

- Log in as the root user (root, rootcsh, or rootksh) only
 when absolutely necessary. The root user has special privileges,
 and you can perform functions as the root user that you can't
 perform if you are logged in as a normal user. Thus, as a normal
 user you have some protection against making mistakes that
 might affect the operation of your system. If you make mistakes
 as the root user, you can crash (or damage) your system.
- While you're logged in as the root user, record everything you do
 in a system administrator's log. This log should contain an exact
 description of what you do, why you do it, when you do it, and
 what effect it had.

 Make backups of all important system files before you change them. For example, if you are about to modify the /etc/inittab file, first enter the command

cp /etc/inittab /etc/inittab.old

Then, if your modifications prove unworkable, it is an easy matter to return the system to its prior state:

mv /etc/inittab.old /etc/inittab

- Use cron to automate routine system administration duties or to remind yourself to do these duties. See Chapter 6, "Managing Disks," Chapter 9, "System Accounting Package," and Chapter 10, "System Activity Package." Also see cron(1M) in A/UX System Administrator's Reference and crontab(1) in A/UX Command Reference.
- Use find to locate large and dormant files and directories.

 Large, unused files are often not needed and consume valuable storage space. When you find such files, you can either remove them (for example, if they are core images of crashed programs), truncate them to zero length (if they are log files), transfer them to tape or diskette archive (if you are even remotely likely to want to use them again in the future), or compress them to a smaller size. See Chapter 4, "Backing Up Your System," or refer to find(1) in A/UX Command Reference.
- Watch for files that grow (in general, any file containing the letters log or LOG as part of its name). The system appends information to these files, and they can grow to excessive size. You should regularly delete or truncate these files after backing them up. See Chapter 6, "Managing Disks."
- Make frequent backups of your files. Backups are your insurance if something should go wrong. How often you perform backups depends on how much activity there is on your system and how much work you're willing to lose. See Chapter 4, "Backing Up Your System."
- If you are administering a multi-user system, choose low-activity times to perform potentially disruptive tasks. Early morning and late evening are good choices. Check to see who is logged in

before you begin; if anyone is actively running processes, notify them with the wall command. See wall(1M) in A/UX System Administrator's Reference.

• If a catastrophe occurs:

- 1. Think carefully about what happened.
- 2. Plan your next action before actually doing it.
- 3. Anticipate the consequences of implementing your plan.
- 4. Act
- 5. Write down in your system log what happened, what you did, and how the system responded.

One of the worst things you can do in the event of a system catastrophe (such as a loss of important data) is to act without first considering the consequences of your actions.

4. Administrative logins on the A/UX system

The standard distribution of the A/UX system contains one normal user login account, start, whose home directory is /users/start. This login account is provided to give new users a place to store files used in the introductory tutorials; see Getting Started with A/UX.

All other logins on the standard distribution are administrative logins, login accounts that are used by system administrators or by A/UX programs to perform specialized system tasks. The administrative logins are as follows:

rootcsh rootksh

Logins for the root user. These logins have identical permissions in the A/UX system; they differ only with regard to the startup program, which is, respectively, the Bourne shell, the C shell, and the Korn shell. The home directory for all three logins is the root directory, /.

daemon

The owner of certain noninteractive, background processes that handle persistent system services, such as network communication.

- bin The owner of most normal A/UX commands and the system directories in which those commands are stored.
- The owner of certain A/UX system files, such as /etc/zoneinfo and the files used by autorecovery.
- adm The owner of most system accounting programs and directories, in particular /usr/adm. See Chapter 9, "System Accounting Package."

nuucp

The login assigned to incoming UUCP requests is nuucp. See Appendix A, "The UUCP System," for further information.

uucp

The owner of programs and directories associated with the UUCP communications package.

- 1p The owner of commands and processes associated with the 1p spooling and printing package. See "Setting Up a Printer" in Chapter 7, "Managing Other Peripheral Devices," for more information on the 1p system and the 1p login.
- ftp The owner of files and directories associated with ftp, a file transfer program. See A/UX Communications User's Guide for a description of the ftp command.

nobody

A login assigned as the default login for remote root access under NFS. See A/UX Network System Administration for further information.

who A login that allows users who do not have accounts on a system to see who is currently logged into the system. There is no password for this login. The startup program is simply /bin/who.

4.1 Administrative groups

Like administrative logins, administrative groups help you perform specialized system tasks and are provided in the standard distribution of A/UX. An administrative group lets you avoid running a program as the root user by instead running it with the group ID of the group provided for this special purpose. This reduces the security risk inherent in running programs as the root user.

The administrative groups provided in A/UX are sys, bin, and root.

5. The complete contents of A/UX

A/UX consists of an enormous number of files. If you wonder exactly what those files are, you can find the answer in the complete list of distributed A/UX files. This list is provided in a file called /FILES, which gives the full pathname of every A/UX system file along with a short description of its use. The list is a valuable resource when you want to quickly look up the purpose of a particular system file.

PLACE TAB HERE

STARTUP AND SHUTDOWN

BACK OF TAB

Chapter 2 System Startup and Shutdown

Contents

	CONTRACTOR OF THE CONTRACTOR O					
1.	Introduction	•	•	•	•	1
	1.1 What is the Stand-Alone Shell?	•	•	•	•	1
	1.2 Invoking sash	•	•	•	•	2
	1.3 What else can sash do?	•	•	•	•	2
2.	Starting up the A/UX system		•	•	•	3
	2.1 The default booting sequence	•	•			3
	2.2 When the system automatically reboots .		•			5
	2.2.1 When fsck automatically reboots the	;				
	system	•	•	•	•	5
	2.2.2 When autoconfig automatically re	bo	ots 1	the		
	system	•	•	•	•	6
3.	Changing the startup device and application .					7
	3.1 Steps to change the startup device		•			7
	3.2 Technical details				•	10
	3.2.1 The natural order of startup devices			•		10
	3.2.2 How A/UX boots from a hard disk .					10
	3.3 Changing the startup application	•	•	•		11
4.	Setting system-specific details					12
	4.1 Setting the system time					12
	4.1.1 Time in A/UX and the Macintosh OS		•	•	•	12
	4.1.2 Resetting after a hardware problem.			•		17
	4.1.3 Resetting after moving a system to a d	iffe	eren	t	•	
	time zone					17
	4.1.4 Resetting for Daylight Savings Time					19
	4.1.5 Overriding the default time zone .					20
	4.2 Changing the message of the day	•		•	•	20
	4.3 Renaming the system	•	•		•	21
	4.4 About single-user mode	•		•	•	21

4.5 Entering multi-user mode	
time	
memory	·
5. Shutting down the A/UX system	
Figures	
Figure 2-1. The Control Panel 8	
Figure 2-2. General dialog box 9	Example .
Figure 2-3. GMT biases	

e (**4**+ %

Chapter 2

System Startup and Shutdown

1. Introduction

This chapter describes how to start up and shut down the A/UX operating system. These procedures are largely automatic, but they do require supervision and possible intervention by the system administrator. These procedures may also be customized to suit local needs.

This chapter also briefly describes the Stand-Alone Shell (sash). The Stand-Alone Shell is a Macintosh® program that is invoked to boot A/UX. Like other shells, sash is a command interpreter with a command language and environment similar to (but simpler than) that of the Bourne shell. You will use sash primarily to startup the A/UX system. This is described in "The Default Booting Sequence" in this chapter. Additionally, you use sash to run the autorecovery facility, and key stand-alone versions of A/UX utilities when you troubleshoot A/UX. See "The Stand-Alone Shell" and sash(8) in A/UX System Administrator's Reference.

1.1 What is the Stand-Alone Shell?

The Stand-Alone Shell (sash) is merely a Macintosh Operating System (OS) program. The Macintosh computers always come up under the Macintosh OS. It is sash's job to hand over control of the machine from the Macintosh OS to A/UX. If you don't suspect that you'll want to be able to boot A/UX from a disk, then there is no need for the disk to contain sash.

The small distinction in names might be confusing, but sash (the Macintosh program) resides in a small Macintosh partition (called SASH) on a disk containing A/UX. To remember the differences, keep in mind that sash is a part of SASH.

A partition is a portion of a disk set aside for a specific use. Its value is in separating subsets of information for easier management, much as a file system does. By definition, different operating systems must occupy different partitions. For the Macintosh and A/UX operating systems to reside on the same disk, they must occupy separate partitions. Because sash is a Macintosh program to start up A/UX, sash resides in a small Macintosh partition (called SASH) on a disk that typically is otherwise taken up by A/UX.

1.2 Invoking sash

If you are running A/UX, invoke sash by rebooting the computer as described under "Shutting Down the A/UX System." If you are running the Macintosh OS, invoke sash by double-clicking the A/UX sash icon. When the automatic startup screen appears and begins counting down to zero, click Cancel or press the keystroke sequence COMMAND-SHIFT-. (Command-Shift-period). This places you in the Stand-Alone Shell window, and you see the shell prompt:

sash#

You can change the prompt to any other string you like by redefining the shell variable PS1. For example, if you want the sash prompt to be hello: , enter

PS1='hello: '

1.3 What else can sash do?

The bilateral makeup of sash is evident when it is open on the screen. The pull-down menus above the sash window offer Macintosh-style interaction with the machine, and simultaneously the command-line prompt sits in the sash window, allowing you to give a subset of A/UX commands.

The sash program is called a stand-alone shell because it is very similiar to the A/UX shells, yet it is not A/UX. It is a command interpreter and has a command language with shell variables, comments, input and output redirection, and built-in commands. Programs run from sash can be read from either a Macintosh or an A/UX file system.

The following is a list of the commands you can run in sash. Remember, these are not the A/UX commands, but rather special, functionally identical, stand-alone versions of the A/UX commands, written for use in sash.

cat	chgrp	chmod
ср	date	dd
ed	esch	fsck
kconfig	launch	ls
mkdir	mkfs	mknod
od ·	pname	rm

These programs let you work on the A/UX file system without running it. These programs are especially useful to troubleshoot A/UX. For example, you might edit /etc/inittab without running A/UX if you suspect that that file is causing you problems at boot time. You can list the contents of the A/UX root directory, by entering

ls -CF /

Similarly, the command

ls -CF /users/start

lists the contents of the /users/start directory.

To boot A/UX from the Stand-Alone Shell, enter

boot

For more information on the Stand-Alone Shell, see sash(8) in A/UX System Administrator's Reference.

2. Starting up the A/UX system

This section assumes you have already followed the instructions for setting up your Macintosh workstation given in A/UX Installation Guide. Once the computer is set up, you are ready to start up (boot) the A/UX operating system.

Both the default booting sequence and the procedure to change the startup device if you have more than one hard disk are described in the following sections.

2.1 The default booting sequence

This section describes the normal booting sequence for an A/UX system. By default, the computer starts up from the hard disk with the highest SCSI ID number. If your system has more than one hard disk, the sequence can vary only slightly. That variance is explained in the later section, "The Natural Order of Startup Devices."

You turn on power to the computer by pressing the Power-On key on the keyboard. The location of the key varies among keyboard models, but on all the keyboards the Power-On key is marked with a triangle pointing left.

A few seconds after you turn the power on, the screen should light up, the Welcome to Macintosh message should appear briefly, and if you followed the instructions in A/UX Installation Guide to set sash as the startup application, the Stand-Alone Shell displays the automatic startup screen. This sequence signals that the machine started up from a hard disk and then the Macintosh Operating System on that disk started up the startup application, which normally is sash on an A/UX system. In turn, sash began to launch A/UX by presenting the A/UX automatic startup screen.

Unless you click Cancel, the automatic startup screen counts down to zero, then launches A/UX. To speed things up, press RETURN or click Go once, and A/UX is launched immediately. When launching starts, the Stand-Alone Shell causes A/UX to take control of the computer.

After five seconds or so, the screen blinks, A/UX copyright and Release ID information is displayed, and the following prompt appears:

Do you want to check the root file system? (y or n) [default: n]

Answer yes by entering

Y

This invokes the fack (file system checking) program. This is always the safe thing to do when you start up A/UX. The fack program checks the A/UX root file system in several phases. This takes a couple of minutes, and at each phase fack displays a message on your screen. If fack finds any inconsistencies in the file system, it either automatically fixes them or prompts for your input (see Chapter 8, "Checking the A/UX File System: fack" for further information).

If fack has made any corrections to the file system, A/UX automatically reboots. Then fack asks again if you want to check the root file system. It is prudent to respond y to this prompt to check the root file system again.

Next, autoconfig is invoked. This program may cause a few messages to be displayed, which vary according to your hardware configuration.

Now you are in single-user mode. The screen shows

INIT: SINGLE USER MODE

and the message of the day appears, followed by this message:

TERM = (mac2)

Press RETURN after this prompt to set the terminal type to Macintosh II.

If you already set your host name during the installation process (see "Renaming the System," later in this chapter, for the steps you take to change the host name), that host name is used by the shell prompt. The shell prompt also displays the name of the user, which in this example is root. For example, if your system's name is linda you will see this prompt:

linda.root#

That completes the booting sequence. A/UX defaults to single-user mode because this is most useful when you are first setting up your system. The next sections, "Changing the Startup Device" and "Setting System-Specific Details" describe, among other things, changes you can make to the booting sequence. If you want bypass single-user mode and bring the system into multi-user mode automatically, see the following section, "Entering Multi-User Mode Automatically at Boot Time."

2.2 When the system automatically reboots

A/UX automatically reboots in two situations. It reboots when fsck checks the file system and finds the system needs rebooting to correct a file system problem. And it reboots when autoconfig finds an inconsistency between the cards in the expansion slots and the device drivers in the kernel and determines the system needs a new kernel to correct the problem. The following subsections describe these situations.

2.2.1 When fack automatically reboots the system

The fack program runs after the system boots and before the system enters single-user mode. The purpose of fack is to find problems in

System Startup and Shutdown 030-5595-B

the file system and correct them before they spread to other parts of the disk. If fack makes any corrections to the file system, fack reboots the system.

2.2.2 When autoconfig automatically reboots the system The system runs autoconfig before entering single-user mode. The autoconfig program checks the consistency between the hardware in the expansion slots and the information contained in the kernel regarding software slot device drivers. The autoconfig program ensures that the information between the two are consistent. For example, if you had a Tape Backup 40SC unit attached to your system, and removed it between this and your last session at the computer, autoconfig would detect the change, remove the tape device driver from the kernel, and reboot the system with the new kernel. On the other hand, if the information is consistent between the expansion slots and the slot device drivers, autoconfig exits without rebooting the kernel.

If the kernel contains a device driver and the matching expansion card is not present, autoconfig rebuilds the kernel by removing the device driver from the kernel and booting the new kernel. This protects you from performing input and output operations to a non-existent card. But it also means that if you add a device driver for an expansion card but then forget to add the actual card, autoconfig will remove the device driver when the system boots. When you later add the matching card, you will need to build a new kernel using the launch newunix command from sash.

If the kernel contains a slot device driver and the matching slot card is present in a different slot than the kernel expected, autoconfig makes the appropriate changes to the kernel and reboots the new kernel. This lets you install a slot card in any slot; autoconfig automatically makes the appropriate changes to the kernel.

Note that if the system contains a slot card for which the kernel does not contain a driver, autoconfig does not build a new kernel. In this case, autoconfig prints a warning message and continues. This allows you to add the appropriate software driver at a later time.

3. Changing the startup device and application If you have more than one hard disk, you have the option of configuring any one of them to boot the system at startup time. For instance, you might want to change the startup device if one hard disk is devoted to the Macintosh Operating System and another is devoted to A/UX.

Note: If an A/UX disk is to be the startup device, it must contain sash and a Macintosh system folder.

Much as you can set the operating system that is automatically booted, you can set which application the system automatically runs upon system startup. Any Macintosh application can be the startup application, including sash. The capability to boot automatically into the application of choice is provided for convenience, allowing a user simply to press the Power On key to have his or her favorite application open on screen.

3.1 Steps to change the startup device

Initially, A/UX is configured to boot from the hard disk with the highest SCSI ID number. You can change this to have the system boot from any device, from SCSI ID 0 through 6. The procedure to change the startup device involves two main steps.

- 1. Selecting the correct device on the Control Panel Desk Accessory to let the system know where to start.
- 2. Identifying the startup device on the Preferences menu, a menu available from sash, by entering the SCSI ID number.

The procedure to carry out these steps is as follows:

- Turn on the computer and enter the Macintosh Operating System. This means canceling the A/UX boot if the A/UX automatic startup screen appears.
- 2. Open the Control Panel desk accessory.

You reach the desk accessories from the Apple® symbol in the upper left of the screen.

•

Your system will now boot from the disk configured as the startup device.

3.2 Technical details

The steps the Macintosh follows when looking for startup files and the technical details of the algorithm used to boot A/UX from a disk are given in the following section for those who need this information.

3.2.1 The natural order of startup devices

When the computer starts up, it looks for a Macintosh system folder on each device, in a specific order and in specific places. This information may be of interest when you consider changing the Startup Device. The computer looks in the following places in the following order:

- Internal 3.5-inch disk drive number 0
- 2. Internal 3.5-inch disk drive number 1
- 3. The internal hard disk
- 4. The hard disk with the highest SCSI ID number

You can override the natural order by setting the hard disk from which you want to start as the startup device.

3.2.2 How A/UX boots from a hard disk

A/UX is designed to be booted from any SCSI disk, from SCSI ID 0 through SCSI ID 6. The A/UX kernel accepts boot device information from sash. This design is unlike many other UNIX® kernels, which frequently have the boot device hardwired into the kernel and require use of adb or similar programs to patch in boot device changes.

The A/UX kernel requires two pieces of information about the disk that it will be running from: the root file system and the swap area. The A/UX kernel does not know about disks in general. Rather, it knows that it can call one of several block device drivers (by using the major

number to select one of the block device drivers), and that it can pass to that block device driver a parameter (the minor number) indicating just where to look.

When the sash application is launched, it finds the A/UX kernel (from one of several possible places) and loads it into main memory. It leaves in main memory a set of major and minor numbers for A/UX to use for the root file system and swap area. You can change these major and minor numbers by pulling down the Preferences menu and choosing General from sash.

3.3 Changing the startup application

The startup application is the program that appears on screen after you turn on the computer. Having a startup application is a feature of the Macintosh OS, so you choose a startup application from the Macintosh Finder. You can make any application your startup application. For example, if you use MacDraw® in most of your sessions with the computer, it makes sense to set MacDraw as the startup application.

By default, sash is the startup application on A/UX systems. As such, sash causes the A/UX automatic startup screen to display as part of the default booting sequence.

You can change the startup application at any time. Follow these steps to do so:

 In the Macintosh Operating System, with the Macintosh Finder displayed, select the application you want to make the startup application.

This application will now be listed as an option when you complete the next step.

2. Choose Set Startup... from the Special menu.

The dialog box lists the options for the startup application.

Note: In the dialog box, both Finder and MultiFinder are shown as selectable options. However, of the two, Finder is more compatible with A/UX.

3. Click OK to accept the selected application as the startup application, or click Cancel if you want to reconsider your choice

and leave the startup application as it was before you opened this dialog box.

4. Select Restart from the Execute menu for the changes to take effect.

4. Setting system-specific details

You can set the following for your system:

- the time zone
- the name of your system
- the message of the day
- the mode your system automatically boots into (single- or multiuser mode)

Setting the time is not a mere detail. You must set the time if you are affected by Daylight Savings Time or if you move your machine to a different time zone.

4.1 Setting the system time

Both the A/UX and Macintosh operating systems normally keep track of the correct time without intervention. However, you need to intervene if one of the following events occur:

- Daylight Savings Time begins or ends.
- You move the system to a new time zone.
- A user logs in from a different time zone.
- A hardware problem modifies the system clock.

4.1.1 Time in A/UX and the Macintosh OS

The two operating systems keep the time quite differently but share a single hardware clock. You can set the time either in A/UX (with the date command) or in the Macintosh OS (on the Control Panel) and have it take effect in either operating system. However, adjustments for Daylight Savings Time need to be entered in both operating systems. A/UX stores the local time as an offset from Greenwich Mean Time (GMT) and so has the facility to adjust automatically for Daylight Savings Time. However, the Macintosh Operating System (OS) stores "wrist watch" time and so cannot adjust automatically when Daylight

Savings Time begins or ends. Since the two share a single hardware clock, the sophisticated means by which A/UX keeps time and adjusts for Daylight Savings Time is lost by the Macintosh OS's simplistic approach.

It is important that the A/UX system have the correct time. A/UX uses the time and date to monitor or control a number of activities. Specifically, without the correct time, A/UX cannot properly:

- log system events, such as mail activity and logins
- record file activity, such as the creation, modification, or accessing of a file
- track file status with utilities such as make
- schedule system and user tasks, such as removing core files and making file backups

A/UX stores the date and time as an offset of Greenwich Mean Time. This offset is called the GMT bias. When you give the date command to display the date and time, A/UX calculates your local time by using the GMT bias. You need to tell A/UX the GMT bias for your time zone.

As the system administrator, you must inform both operating systems of the correct time so that they maintain the correct date and time. In general, these are the procedures. Step-by-step instructions are contained in the following sections.

- 1. First, inform the Macintosh OS of the local time. This sets the hardware clock shared by the two operating systems.
- 2. Next, give the sash utility your GMT bias, which is the offset in minutes between Greenwich Mean Time and your time zone. (Figure 2-3 is a map with the GMT biases for the various time zones.) This allows A/UX to calculate the correct GMT values from the local time you supplied in the first procedure.
- 3. Last, tell the A/UX system which time zone to use for the system, and if Daylight Savings Time must be observed.

•

this page is also a place holder

System Startup and Shutdown 030-5595-B

2-15

Follow. This

this page is also a place holder

2-16

A/UX Local System Administration 030-5595-8

101-1 1. 1.79

4.1.2 Resetting after a hardware problem.

If a hardware problem fouls up the hardware clock, you need to reset the time from either operating system. To reset the clock from A/UX, use the date command. For example, reset the clock to May 15, 1989 at 11:59 A.M., by entering

date 0515115989

For more information, see date(1) in A/UX Command Reference.

Be sure to enter the local date and time; A/UX can then calculate the GMT value for its internal use.

4.1.3 Resetting after moving a system to a different time zone

If you move the computer to a different time zone, you need to adjust the GMT bias. This is done from the Preferences menu, as follows:

- 1. Open sash. You do this by clicking Cancel when the A/UX automatic startup screen appears.
- 2. Choose General from the Preferences menu.
- 3. Enter the GMT bias, which is the number of minutes between your time zone and Greenwich Mean Time. Figure 2-3 shows the GMT biases around the world. However, if Daylight Savings Time is in effect, you must adjust the bias accordingly. For example, the eastern United States has a bias of -300 during Easter Standard Time, and -240 during Daylight Savings Time.

Now you need to inform A/UX of your time zone.

4. Close the General dialog box and launch A/UX by selecting Launch from the Execute menu or by typing autolaunch at the sash prompt.

After the boot is completed, inform A/UX of your time zone by modifying the files /etc/zoneinfo/localtime and /etc/TIMEZONE, as described in the next step.

5. To change the time zone, begin by entering

cd /etc/zoneinfo

To examine the list of time zones, enter

ls -CF

In response, a list of time zone files appears. The time zones are named in various ways, some by common abbreviations and others by country name. The four time zones in the continental United States are also shown with a notation such as PST8PDT. In addition, all time zones are listed as the number of hours off of Greenwich Mean Time. For example, the time zone for the eastern United States can be entered as US/East, EST5EDT, and GMT-5 during Eastern Standard Time and GMT-4 during Daylight Savings Time.

Some time zone listings automatically allow A/UX to manage Daylight Savings Time. They are the US time zones with notations such as EST8EDT, and the ones in the US directory (except, of course, the time zones in that directory that do not observe Daylight Savings Time). If you enter one of these time zone names and you do not care whether the clock in the Macintosh OS maintains correct time but only that the time in A/UX is correct, then entering one of these time zone names will save you from making adjustments for Daylight Savings Time.

Many time zones are listed as part of a directory, for example, Australia/. You list the subchoices in a directory by entering, for example,

ls -CF Australia

Make a note of the name of your time zone file, for example, Japan or Australia/Tasmania, so you can enter it in a following step.

6. Remove the file localtime (which is really a link to a time zone information file) so that a new one can be made. Type

rm localtime

Now create the new localtime link, and specify your time zone file. For example, if your time zone is Tasmania in Australia, type

ln Australia/Tasmania localtime

- 7. Now open the file /etc/TIMEZONE and add the name of your time zone. This is the name of a time zone you made note of in a previous step.
- 8. Finally, to have this change take effect, exit and log in again.

The time zone is now set. Check the result by entering

date

This command should cause the proper date and time to be displayed. If it does not, check that you chose the correct time zone and that the Control Panel in the Macintosh OS shows the correct time.

4.1.4 Resetting for Daylight Savings Time

Because of the shared hardware clock, you need to reset the time when Daylight Savings Time begins or ends. Whereas A/UX is capable of handling changes to and from Daylight Savings Time, the Macintosh OS is not. Consequently, when Daylight Savings Time begins or ends, you need to reset the time to have both operating systems display the correct time.

- 1. Reset the GMT bias on the Preferences menu in sash.
 - See "Resetting After Moving a System to a Different Time Zone" for the complete steps to change the GMT bias.
- Reset the time in the Macintosh OS on the Control Panel desk accessory.

This prevents the Macintosh OS from changing the time back after you changed the GMT bias in the Preferences menu. See "Resetting After a Hardware Problem" for the complete steps to change the clock on the Control Panel.

3. Reboot the system to have the newly entered time take effect.

Resetting the time when Daylight Savings Time begins or ends is unnecessary in one situation: if your time zone file accounts for Daylight Savings Time automatically, and you don't mind that the Macintosh OS shows incorrect time. See "Resetting After Moving a

System to a Different Time Zone" for a description of the time zone files that account for Daylight Savings Time automatically.

4.1.5 Overriding the default time zone

If a user wishes to display a time and date different from that used by the system, this can be easily accomplished by changing the TZ environment variable. A common reason for wanting to do this is logging in from a terminal in a different time zone, and thus wanting the system to use the time and date of that time zone. This is accomplished slightly differently depending on the command shell the user works in. For example, a user logging in from Iceland and working in the C shell, which normally stores environment variables in the user's .login file would enter

setenv TZ Iceland

A user logging in from Iceland and working in the Bourne or Korn shells, which normally store environment variables in the user's

TZ=Iceland

4.2 Changing the message of the day

If you log in as the root user, the /etc/profile system startup script executes several commands, including

cat /etc/motd

In response, the system displays a message contained in the file /etc/motd (for "message of the day"). In the standard A/UX distribution, this file contains

*
WELCOME TO A/UX *
*

You can change the contents of /etc/motd to anything you like by editing this file with a text editor. The new text you enter will take the place of the Welcome to A/UX message next time you bring the system down to single-user mode, reboot, or log in.

4.3 Renaming the system

To assign a name to your system or to change the system's name, use a text editor to open the /etc/HOSTNAME file. This file should contain two fields separated by spaces or a tab. The name of your system is the word in the first field of this file. Change the first field and save the file. This change will take effect the next time you shut the system down and reboot. See "Shutting Down the A/UX System."

4.4 About single-user mode

Single-user mode is one of several run levels available on the A/UX system. As the name implies, in single-user mode, only one person has access to the computer because the terminal ports are disabled. This quiet state of the machine is necessary for the performance of administrative tasks, such as checking the file system.

In single-user mode, you have all the privileges of the root user. You can create or destroy anything on the system—files, directories, or processes—in just a few keystrokes. This level of power is necessary to perform most administrative tasks, but you need to use it selectively. As shipped from the factory, A/UX is configured to boot into single-user mode automatically in anticipation of your needing this run level to take care of initial administrative tasks, such as adding user accounts and peripheral devices. But unless you need the power and privilege of single-user mode, run A/UX in multi-user mode. This good habit will decrease the potential of your making a mistake that damages the system and deters system abusers from sneaking in and wreaking havoc on the system.

4.5 Entering multi-user mode

The general run level for A/UX is multi-user mode. This run level is recommended even if you are the only user on a machine, because it guards against inadvertent system damage. In multi-user mode, most daemons are enabled, as well as all ports designated in the /etc/inittab file to permit user logins (see "Initial Processes: /etc/inittab," in this chapter).

When you start multi-user mode, the system performs the commands stored in the files /etc/bchecker, /etc/brc, and /etc/rc. In general, low-level processes such as daemons are started when the system enters multi-user mode.

You can manually move into multi-user mode when your tasks are completed by entering the command

init 2

Or, you can change the default setting so that the system moves into multi-user mode automatically upon system startup. Both of these ways to move from single- to multi-user mode are described in the next two sections.

If your system has one or just a few users, the two basic run levels, single-user and multi-user, will probably suffice for normal operation. If you have a system with many users and perhaps many modems, you may be interested in A/UX's more complex run-level capabilities, described in this chapter under Changing Run Levels.

4.5.1 Entering multi-user mode manually

1. To enter multi-user mode from single-user mode, enter

init 2

You will now see

You are asked if you want to check the file systems. Currently, the standard A/UX distribution provides only one user-accessible file system, which is the root file system. If you have not added more file systems (for example, on an external hard disk or 3.5-inch disk) you can press RETURN at this prompt, and A/UX will proceed without performing additional file system checks.

As the system enters multi-user mode, commands in /etc/inittab, /etc/rc, /etc/brc, and /etc/bcheckrc are executed (see "Initial Processes: /etc/inittab," later in this chapter). When this process is complete, you should again see the message of the day followed by the login banner:

Apple Computer, Inc. A/UX

login:

2. The system is now running in multi-user mode, and you may log in. After you log in, you see

TERM = (mac2)

- 3. Press RETURN to set your terminal type to the Macintosh II.
- 4.5.2 Entering multi-user mode automatically at boot time The system defaults to single-user mode because this is most useful when you are first working with A/UX, looking around the system, and setting things up. After you have set up your system, you might wish to bypass single-user mode and automatically boot into multi-user mode.

To boot A/UX into multi-user mode automatically, edit the file /etc/inittab. Change the line

is:s:initdefault

to

is:2:initdefault

When you next boot the system it will proceed as in the default booting sequence and then you'll see the prompt:

Do you want to check the file systems? (y or n) [default: n]

As distributed, A/UX has one file system, root. If you have not created other file systems, press n in response to this prompt. (If you press y, fsck repeats a check of the root file system.) If you have file systems other than root and want fsck to check those file systems, press y in answer to this prompt. For fsck to carry out this check, a few conditions must be met. The steps to meet those conditions are provided in "Multiple File Systems and fsck" in Chapter 8.

To have the system automatically check the file systems 5-seconds after entering multi-user mode, rather than prompting you about it, edit the files /etc/bcheckrc and /etc/sysinitrc. In both files, change the line

reply="'/etc/query'"

to

reply="'/etc/query -t 5'"

When you next boot the system, it should come up in multi-user mode and display this prompt:

Apple Computer, Inc. A/UX login:

4.6 Changing kernel parameters

As shipped from the factory, A/UX is configured optimally for a system with 2 megabytes (MB) of main memory. If your system contains more than 2 MB of memory, you might be able to improve performance by changing some kernel parameters. If your system has 2 MB of main memory, skip this section, because changing the kernel parameters on such systems is not recommended.

4.6.1 Systems with 4 or more megabytes of main memory
There are two reasons to change kernel parameters to improve
performance. The first is to take advantage of your system's abundance
of main memory by increasing the RAM cache. This is accomplished
by increasing the NBUF parameter. The second reason is a need to
exceed the kernel-configured limits on your system. Such limits are
evident from the error messages that appear. It is best not to change
kernel parameters (except NBUF to increase the RAM cache) unless
you see one of these screen messages:

Error Message	Parameter Requiring an Increase							
m_expand returning 0	NBUF							
inode: table is full	NINODE							
file: file table is full	NFILE							
proc: table is full	NPROC							

To improve performance on a system with 4 MB or 5 MB of main memory, do the following. If you aren't already in single-user mode, get there by running the shutdown program. To do so, bring the system into single-user mode by entering init 1 or init s. Then enter the following commands to reset these kernel parameters and

have autoconfig build them into a new kernel:

```
kconfig -n /newunix
NBUF=1000
NINODE=100
NFILE=100
NPROC=100
autoconfig -IuS /etc/startup
Control-d
sync
sync
sync
reboot
```

NBUF should not exceed 1000 unless you have 8 MB of main memory, in which case you can increase NBUF to 2500. It is safe to double other parameters (NINODE, NPROC, and NFILE), each time you run into the kernel-configured limits that initially caused you to increase these parameters.

You must reboot to put the new parameters into effect because kconfig changes the kernel file and not the currently running kernel. See kconfig(1) for an explanation of these parameters.

4.7 Initial processes: /etc/inittab

The system's topmost program is init ("initial process"). It is the first process to run after you boot the system. The init program makes shells and spawns processes. It gets all its process information from the file /etc/inittab.

The first command init executes is the /etc/sysinitrc shell program, which performs such basic functions as setting the system's clock and running /etc/fsck before you see the single-user mode shell prompt.

The second line in /etc/inittab specifies the default initial run level:

```
is:s:initdefault: #First Init State
```

The run level in the /etc/inittab file is specified in the second field of each entry, in this case s for "single-user." Once the initial run level is determined, init processes only those /etc/inittab

System Startup and Shutdown 030-5595-B

entries whose run-level field is the same as the run level currently in effect. When you enter multi-user mode by typing

init 2

you invoke the init process with a run level of 2. In this case, init reads /etc/inittab and invokes every command that specifies a run level of 2.

If you check the contents of /etc/inittab on your system, you will see the processes invoked by init. For example, the following processes are in /etc/inittab. (However, the process names are preceded by an *id* and a *run-level*, as discussed in the next section.)

/etc/bcheckrc

A startup script that runs fack on the remaining file systems. /etc/brc

A startup script that sets the permissions on pseudo-ttys. /etc/rc

A startup script that mounts the file systems (if applicable) and performs some general housekeeping.

/etc/getty

A process that enables logins on serial ports. See Chapter 3, "User and Group Administration," and Chapter 7, "Managing Other Peripheral Devices."

4.7.1 /etc/inittab entry format

Each line in /etc/inittab is an entry containing four fields separated by colons and followed by an optional number sign (#) and an optional comment. The format of each entry is

id: run-level: action: command

where

id

unique entry identification

run-level

run level where the entry is processed

action

action to be taken with next field

command

command to be executed

The following two lines are in the /etc/inittab file distributed with the standard A/UX system:

co::respawn:/etc/getty console co_9600

00:2:off:/etc/getty tty0 at 9600

These lines are followed, respectively, by these comments:

- # Console port
- # Port tty0 (modem), set to "respawn"

In /etc/inittab, comments about the line are preceded by a number sign (#). These comments indicate that the first line above is the console port. Because the *run-level* field is empty, the console port is enabled at all run levels, including single-user. The second line is the modem port, tty0. If you change the *action* field from off to respawn, this port will be enabled in multi-user mode. This is explained in more detail in the following discussion of the *action* field.

The *id* field is an arbitrary identifier of one to four characters that makes the entry unique. Although the identifier is arbitrary, convention dictates that the identifier for an entry that affects a port be the corresponding port number. In the *id* field of the first of the preceding lines, co refers to the console port.

The run-level field tells init whether to process the entry. The run-level field can be any number from 0 to 6 (2, for multi-user, is the most common) or the character S or s (for single-user). If the run-level field is empty, init processes the entry at all run levels.

The action field specifies how to execute the command field if the entry's run-level field matches the system's run level.

respawn

Specifies the system to run this command when the designated run level is entered. If the command terminates for any reason, the system should run it again. If you specify respawn as the run-level field, the command runs whenever the run level matches the run-level of the entry. If you leave the run-level field empty, the process runs at all times and all run levels.

off

Specifies the system to turn off this command for this run level.

System Startup and Shutdown 630-5595-B

This ensures that the command does not run as long as the specified run level matches the *run-level* field of the entry in question.

once

Specifies the system to turn on this command for this run level. If the command is not executed for any reason, no furthur action is taken.

wait

Specifies the system to wait until the current command is completed before init goes to the next line. The wait parameter is very important when you mount devices or file systems that require the current command to be completed before the next is begun.

The fourth field is the command to be executed. When the run level of each of the entries matches the default run level, the command named in the fourth field is executed. In the preceding example, the command /etc/getty would be executed for each entry, as modified by the action field.

4.8 Changing run levels: init

Once the system is started and running at the default run level, you can change the run level. Log in as the root user and enter

init run-level

where run-level is an argument to init that may be either a value from 0 to 6 or the letters s or S. See init(1M) in A/UX System Administrator's Reference.

When you enter this command, init (or telinit, because the two commands are linked) scans /etc/inittab again and activates those entries whose run-level value is the same as that of the new run level, leaving all other processes untouched.

For instance, if the following lines appear in /etc/inittab

```
01:23:respawn:/etc/getty tty1 at_9600 02:2:respawn:/etc/getty tty2 at_9600
```

both ports tty1 and tty2 are running a getty command when the system is at run level 2. But if you later type

init 3

the getty running to tty2 is terminated, whereas the one running to tty1 continues because both run level 2 and run level 3 are specified for that port.

The only way to modify how a process runs at a new run level is to specify it in /etc/inittab. In theory, you should specify every process that affects, for instance, a port, with reference to every single possible run level. In practice, you do that only for those processes that you may want to turn on and off for certain specific run levels. See Chapter 7, "Managing Other Peripheral Devices," for examples.

If you introduce a change in /etc/inittab, enter

init Q

to make the change known to the system without restarting it. This command forces init to reread /etc/inittab. However, some of the processes controlled by init spawn child processes, and these child processes are not terminated by the init Q command. You can terminate these processes individually by specifying their process ID number to the kill command, or by shutting down the system and rebooting.

The general functioning of your system, then, is determined by the current run level. The current run level is determined at startup by the default entry in /etc/inittab, and it can be changed via the init command. The current run level determines which commands (in the command field of /etc/inittab entries) are activated.

When running init, you should be careful not to bring about any changes that would disrupt the activities-of users currently logged in. For instance, init could disrupt an operating modem if a getty command were sent to that port. Know your run states and make sure that changing them will not disrupt user activity.

5. Shutting down the A/UX system

The aim of shutdown is to bring the system to an almost inactive status before you turn off its power. No files should be open, no processes should be running in the background, and everything should be written to disk. Only then can you turn the power off to the system

with no danger of corrupting the file system.

The shutdown program automatically does the following:

- brings the system down to single-user mode (init s)
- unmounts the file systems, if you have multiple file systems (for example, if you have an external hard disk)
- terminates all processes (killall)
- flushes the file system buffers (sync)

5.1 Using the shutdown program

The shutdown program automates all the preceding steps to bring down A/UX and warns all other users on the system that the system is going down.

To use shutdown:

- Log in as the root user on the system console. (Because the shutdown program moves the system from multi- to singleuser mode, it must be run from the system console rather than another terminal.)
- 2. Enter

cd / shutdown

The system responds by printing a banner and the date

SHUTDOWN PROGRAM
Wed Oct 28 12:11:50 PST 1987

followed by a shutdown delay (the interval the system will wait before beginning the file system shutdown):

Do you wish to enter your own delay to shutdown? Default is 1 minute (y or n):

3. If a one-minute delay is satisfactory, just press RETURN. If you want more time (for example, if important processes are still running or if you need to notify other users that you are shutting down the system) or less time (to proceed directly with the shutdown because no other users running are processes and no

background jobs remain undone) enter

У

In this case, you see this prompt:

Enter your delay in minutes (0-60)
(No warning messages will be sent if input is 0):

To proceed directly, type 0. To delay the shutdown, type another number. For example, for a two-minute delay enter

2

4. In this case, shutdown asks if want to send a message.

Do you wish to enter your own message (y or n):

To print the default message, enter n (no). The following message is broadcast to all users:

Broadcast message from root (console)
Wed Oct 28 12:21:46 PST 1987
SYSTEM BEING BROUGHT DOWN FOR SYSTEM MAINTENANCE

Minutes to SHUTDOWN :2

To enter your own message, enter y (yes); shutdown will prompt you for a message. Enter whatever text you want to send and then send an *eof* (usually CONTROL-D).

5. After waiting the specified time interval minus 30 seconds, shutdown prints

Broadcast message from root (console)
Wed Oct 28 12:25:11 PST 1987
SHUTDOWN IN 30 SECS
LAST CHANCE TO LOGOUT

- 6. After 30 seconds, the shutdown program performs the following actions:
 - stops all daemons and kills all remaining processes
 - executes sync a number of times to flush the write buffers
 - unmounts the file systems

- executes sync again
- executes the init s command to bring the system to single-user mode

As these actions occur, you will see messages like these:

Mounted devices are:
/dev/dsk/c0d0s0 on / type 5.2 (rw)
Unmounting file systems
/dev/dsk/c0d0s0 on / type 5.2 (rw)

**** SYSCON CHANGED TO /dev/console ****
Killing all processes

INIT: New run level: S

INIT: SINGLE USER MODE

This is followed by the message of the day and

TERM = (mac2)

Press RETURN to set your terminal type to Macintosh II.

☐ The system is now running in single-user mode, and the shutdown program has exited. To reboot, enter

reboot

This starts the boot sequence over again.

☐ To turn off the computer, enter

powerdown

In this case, switch off any external disks.

5.2 Shutting down the A/UX system manually

The shutdown program provides the safest, easiest means to shut down A/UX, and, as such, is the recommended method. Shutting down A/UX by hand is the other option. This second option is not recommended because it is subject to problems caused by typing mistakes, deleted steps, or any other operator error.

To shut down the system by hand:

- 1. Log in as the root user (root, rootcsh, or rootksh).
- 2. If necessary, move to the root directory.
- 3. If necessary, warn your users that you're shutting down the system by entering the command

wall
enter your message here
eof (usually CONTROL-D)

4. Wait a few minutes, then bring the system to single-user mode by issuing the command

init s

You should see the message

*** SYSCON CHANGED TO /dev/console ****

followed by the shell prompt. However, you should not type anything at this point. Wait until you see the screen message

INIT: New run level: s
INIT: SINGLE USER MODE

followed by the message of the day and

TERM = (mac2)

Press RETURN to set your terminal type to Macintosh II.

5. Terminate all remaining processes by entering the command

killall

6. Update the disk to include changes made in the buffer cache by entering the command line

sync; sync; sync

7. If you have an external hard disk or 3.5-inch disk with a mounted file system, enter the command

umount file-system

where file-system is the name of any file system other than the

System Startup and Shutdown 030-5595-B

root file system. If the unmounted file system is on a 3.5-inch disk, eject the diskette by typing

eject

as necessary.

8. Update the root file system with any final changes made in the buffer cache by entering the command line

sync; sync; sync

☐ Then, to reboot, enter

reboot

This starts the boot sequence over again.

☐ To turn off the computer, enter

powerdown

After giving the powerdown command, switch off any external disks.

5.3 If your system hangs

If your system hangs for some reason and you are unable to invoke a command, you can bring down the system by pressing the power switch at the rear of the unit, or by using the programmer's switch. This is not recommended because it can introduce inconsistencies in the file system. If you bring the system down this way, make sure to run fack on the root file system when you boot up again (see Chapter 8, "Checking the A/UX File System: fack".)

PLACE TAB HERE

USER AND GROUP ADMINISTRATION

BACK OF TAB

Chapter 3 User and Group Administration

Contents

1.	The user's working environment	•	•	•		•	1
	1.1 Components of a user's environment .						1
	1.2 Files that determine a user's environment	•		•		•	4
	1.2.1 The /etc/passwd file	•	•	•	•	•	4
	1.2.2 The /etc/group file	•	•	•	•	•	5
	1.2.3 The profile startup scripts .						8
	1.2.4 The kshrc startup script						8
	1.2.5 The cshrc and login startup scr						8
	1.3 How A/UX establishes the environment						9
	•			•	•		-
2.	File permissions			•	•	•	10
	2.1 File access permissions						10
	2.2 Directory permissions	•	•	•	•	•	12
	2.3 Modifying a file's permissions						13
	2.3.1 Symbolic terms						13
	2.3.2 Numeric terms	•	•	. •	•	•	14
	2.4 umask and file permissions	•	•	•	•	•	16
	2.5 The administrator's role in assigning						
	permissions						17
	2.6 setuid and setgid commands						17
_							
٤.	Adding a user			•	•	•	18
	3.1 Planning the user's working environment						19
	3.2 Specifying a user's working environment	•	•	•	•	•	22
4.	Modifying a user's working environment						25
••	4.1 System file permissions					•	26
	4.2 Moving a user	•	•	•	•	•	26
	4.2.1 Moving a directory			•	•	•	26
	4.2.2 Using tar to move a user across fi						-
	systems						26

	4.2.3 Using	cp	io	to	mo	ve	a u	ser :	acr	oss	file	;				
	system	S					•		•	•		•	•	•		28
4.3	Changing a	use	r's	sta	rtup	pr	ogī	am	•	•	•	•	•	•	•	29
5. Remo	ving a user		•	•	•		•	•	•	•	•	•	٠.	•	•	30
5.1	Gentle delet	ion		•	•	•	•	•	•			•	•	• .	•	30
5.2	Backup and	sel	ecti	ive	del	etic	n	•	•	•	•	•	•	•	•	31
6. Troub	leshooting	•	•	•	•	•	•	•	•	•	•	•	•	•	•	31
Figures	3															
Figure :	3-1. Acces	s cl	250	202	ı.											11

. . .

Chapter 3

User and Group Administration

1. The user's working environment

Within the A/UX system, each user has a working environment that is analogous to an office worker's work space. Each user's working environment provides the following features:

- A secure place to work: When users want to work with the A/UX system, they must first enter their login names and secret passwords. After logging in, they are automatically located in their own home directories. This permits a private environment where each user has control over who has access to his or her work.
- The ability to share tools and data: The A/UX system also provides a mechanism by which users can share their work with other users. This is done mainly through the formation of groups of users with common tasks. Through the prudent use of groups, you can set up environments that permit the appropriate mix of security and sharing of resources.
- The ability to customize: Users can, in most cases, modify many features of their working environments, by making changes to specific files located in their home directories. This gives them the power to personalize their environment, just as workers can set up their own work space in an office. Although users often modify their own working environments, the system administrator is responsible for the initial setup and certain kinds of modifications.

This chapter describes procedures and concepts that assist you in establishing, modifying, and removing users' working environments.

1.1 Components of a user's environment

A number of factors determine the interpretation and operation of commands given by a user logged into an A/UX system. This manual

refers to the collection of these factors as the "user's working environment" or more simply as the "environment"; this is a broader use of this term than that defined, for instance, in environ(5).

The following are the components of a user's working environment:

- Permissions: Every file in the A/UX system is associated with permissions (or modes) that determine who can do what with the file. Three kinds of action can be performed on files, each associated with a corresponding type of permission: write, read, and execute. These three types of permission can be set differently for three types of users: the owner of the file, users belonging to the same group as the owner of the file, and other users, regardless of group membership. Users can execute programs or have access to data files only if their user IDs or group IDs are set appropriately for each program and data file. See "File Permissions" and "System File Permissions."
- Login name and password: Before users can gain access to the system, they must enter their login name and password. These are defined in the /etc/passwd file; see "Files That Determine a User's Environment."
- User ID: Each user login name is associated with a unique user ID (uid) that identifies the user. This is defined in the /etc/passwd file; see "Files That Determine a User's Environment." When a user attempts to use a command on some data, this number is compared to the user ID associated with both the command and the data file. If there is a match in either case, the files are checked to see how the permissions are set for the owner of the file. If there is no match for either file, the user's group ID is compared to the group ID associated with the files.
- Group ID: Each user login name is associated with at least one group ID (gid). This is defined in the /etc/passwd file; see "Files That Determine a User's Environment." The group ID numbers indicate the groups to which the user belongs at the time of login. Group membership is a security feature that permits some users access to files, while denying this access to other users. This inclusion and exclusion can be total or partial.

- Home directory: Each login name is associated with a home directory; this is defined in the /etc/passwd file (see "Files That Determine a User's Environment"). When users log in to the system, their startup programs use the home directory as the home base for creating and using files. In addition, the user can modify special files residing in this directory to tailor his or her environment further.
- Current directory: This is the directory where the user is located at the present time. Every time the user changes to a new directory, the new directory becomes the current directory. When a user specifies a relative filename (a filename that does not start with a /), the current directory is searched for a file of that name.
- Startup program: After logging in, the user needs some way of communicating with the A/UX system. The startup program is the program that automatically greets the user after a successful login. This is defined in the /etc/passwd file; see "Files That Determine a User's Environment." The startup program is usually defined as the Bourne shell, C shell, or Korn shell. If it is not specifically assigned in the /etc/passwd file, the default startup program is the Bourne shell. You can use any of the three A/UX command interpreters as the startup program. Sometimes the startup program is a more restricted and restrictive program than the A/UX shells. See "Changing a User's Startup Program" for more information.
- Other environment variables: The user's shell provides a number of environment variables that can be assigned different values to alter the environment. Some environment variables are automatically assigned values from the /etc/passwd entry for each user; these include LOGNAME (login name), HOME (home directory), and SHELL (startup program). Other variables are assigned values at the shell prompt or in files such as .profile in each user's home directory. One such variable that affects the user's working environment is the PATH variable. The value assigned to a user's PATH variable determines which directories,

and in what order, the shell will search for the file corresponding to a command issued by the user. For other environment variables, see A/UX User Interface.

1.2 Files that determine a user's environment

The user's environment is normally establihed at login time from information stored in a number of system files. See "How A/UX Establishes the Environment," earlier in this chapter, for a description of the order in which this is done. This section describes each of these files along with its format and content.

1.2.1 The /etc/passwd file

A user's working environment is specified largely by a single entry in the /etc/passwd file. You must be logged in as the root user to modify this file.

The /etc/passwd file distributed with A/UX has several administrative logins and a user login named start. See "Administrative Logins on the A/UX System" in Chapter 1 for a description of the administrative logins.

Each entry consists of one line with seven fields separated by colons. The form of an entry is

login-name: password: uid: gid: misc: home-directory: startup-program where the fields are interpreted as follows:

login-name

The name the user must use when logging in. It must be unique in the /etc/passwd file.

password

An encrypted version of the actual password the user must use when logging in. The encryption is done automatically when the password is first assigned and whenever it is changed. Having the password encrypted makes it possible to have the /etc/passwd file open for reading by everybody.

- uid A unique user ID number for each user.
- gid The user's default group membership. If the user is not listed in the /etc/group file (see the next section, "The /etc/group File"), the user belongs by default to the group

whose number appears in the user's gid field in the /etc/passwd file.

misc Miscellaneous information about the user, such as full name, address, and telephone number. For other uses of the miscellaneous field, as well as for the exact specifications of the password field, see passwd(1) in A/UX Command Reference and passwd(4) in A/UX Programmer's Reference.

home-directory

The name of an existing directory whose permissions, ownership, and group membership are such that the user can have access to it. Whenever the user logs in to the system, this is the directory where he or he is initially located.

startup-program

The name of an executable program, usually one of the A/UX shells, that permits the user to communicate with the A/UX system.

The following is a typical /etc/passwd entry:

joe:AxhlmzGfp:56:100:Joe Doe:/users/joe:/bin/sh

1.2.2 The /etc/group file

The gid field of a user's entry in the /etc/passwd file establihes a single default group for the user. The /etc/group file is used to establish multiple group memberships for a user.

The /etc/group file contains entries with four fields separated by colons. The form of each entry is

group-name: password: gid: list

where the fields are interpreted as follows:

group-name

The group name. Group names are arbitrary, but by convention their meanings should be self-evident (for instance, acctg rather than xyz24).

password

An encrypted version of the group's password. Although the password field can be set for each group, it is common practice

User and Group Administration 030-5595-B

to disable group password checking by filling the password field with the words VOID or NONE, or with asterisks (*). The reason for thus disabling password checking (as would otherwise occur, for example, when the newgrp command is given) is that in practice people feel freer giving away group passwords than individual passwords. Disabling the password field prevents this common security breach.

- An arbitrary number closely associated with the group name. For each group ID there is only one group name, and vice versa. The actual group ID numbers that exist in the /etc/group file are the only numbers that should be entered in the gid field of /etc/passwd entries. The group ID entered for each user in /etc/passwd should coincide with the group ownership of that user's home directory.
- list A list of the login names of the members of the group. The login names must be separated by commas. Entering a user's login name in the group's list field is optional for those users who belong to only one group. In this case, their group membership is determined by the value assigned in the gid field of their /etc/passwd entry.

The following is a typical /etc/group partial listing:

```
acctg:****:101:paul, john, peter
legal:***:102:rose, paul, john, peter
```

By convention, group names are arbitrary though self-evident. The groups themselves, though, should not be arbitrary. As system administrator, you should divide users into groups according to their assigned activities, and you should allow users to belong to different groups only when there is some overlapping of activities. If a user belongs to too many groups, you should ask yourself whether the group distribution you have established is the best one.

As an example of the use of the /etc/group file to establish multiple group memberships for a user, look again at the preceding partial listing of an /etc/group file. You will notice that Paul is listed both in acctg and in legal. If the group ownership of his home directory is acctg, then every file he creates and every directory he makes below her home directory will also belong to acctg. For various

reasons, Paul might want some of the files he creates to belong to the group legal. There are two ways he can accomplish this:

- He can create a file having group ownership acctg and then change its group membership to legal after the fact.
- He can make a directory having group ownership acctg and then change the group membership of the directory to legal; every file created within that directory will also belong to legal.

In both cases, Paul can change a file's or a directory's group membership by giving the command chgrp. For example, if Paul creates a file named suits in his home directory (group membership acctg), a long listing of the file (1s -1) will show

-rw-rw-r-- 1 paul acctg 19900 Oct 3 17:51 suits
To change the file's group membership, Paul has to enter

chgrp legal suits

After this command, a long listing would show the new group:

-rw-rw-r-- 1 paul legal 19900 Oct 3 17:51 suits

Note that the file permissions are not changed by the chgrp command, but now they apply relative to the group to which the file belongs.

Note that the way A/UX handles groups is derived from the method used by the Berkeley version of the UNIX operating system, and this method differs from the way System V, Version 2.2 of the UNIX operating system handles groups. (In the System V version, the user is allowed to be in only one group at a time.) In A/UX, a user can be in a maximum of eight groups. The system administrator enters the groups to which a user belongs into the file /etc/group. To list one's group memberships, enter groups. If a user belongs to eight groups and temporarily needs to be in yet another group, enter newgroup groupname. This causes groupname to replace the first group listed in /etc/group for the duration of the login session. Note that a user's group membership is still restricted to eight groups. The newgroup command temporarily substitutes the new group in place of the first group in /etc/group.

Now suppose Paul wants to create a new file court/notes. Before creating the file, the system checks to ensure he has the appropriate permissions. First, his uid is checked. If his uid matches that of his parent directory, the file is created. This requirement would be met if Paul was trying to create the file /users/paul/court/notes. If his uid does not match the uid of the parent directory, the gid is checked. If the directory's group is a valid group for his account, the file can be created. Paul would satisfy this condition when creating the file /legal/court/notes (because Paul is a member of the group legal). If neither of these conditions is met, the permissions of the parent directory are checked to see if all users are permitted to create files. If any of these conditions are met, the file is created. The file is assigned Paul's uid and the gid of the parent directory.

1.2.3 The profile startup scripts

When a user logs in and the Bourne shell or Korn shell is specified as the startup program in /etc/passwd, the system automatically runs several shell scripts before giving the user a prompt. One of these scripts is the file /etc/profile. Like each \$HOME/.profile file, this is a script of shell commands, which typically exports certain shell variables and sets a file creation mask. This file is readable by all users but cannot be modified by normal users.

The /etc/profile file, if it exists, is run before the file .profile in the user's home directory and thus serves as a default .profile. A user can override any actions performed in the execution of /etc/profile by including the appropriate commands in his or her own .profile.

1.2.4 The kshrc startup script

When a user logs in and the Korn shell is specified as the startup program in /etc/passwd, the system runs the /etc/profile and \$HOME/.profile files described in the preceding section. If one of these files sets the ENV variable to any filename (\$HOME/.kshrc in the standard A/UX distribution), the system also reads the contents of the named file.

1.2.5 The cshrc and login startup scripts

When a user logs in and the C shell is specified as the startup program in /etc/passwd, the system automatically runs several shell scripts before giving the user a prompt. One of these scripts is the file

/etc/cshrc. Like each ~/.cshrc file, this is a script of shell commands, which typically exports certain shell variables and sets a file creation mask. This file is readable by all users but cannot be modified by normal users.

The /etc/cshrc file, if it exists, is run before the file .cshrc in the user's home directory and thus serves as a default .cshrc. A user can override any actions performed in the execution of /etc/cshrc by including the appropriate commands in his or her own .cshrc.

The .login script is run after .cshrc. It is typically used to set up terminal defaults and environment variables.

1.3 How A/UX establishes the environment

A close look at a successful login will help you understand how all the elements mentioned to this point interact in determining a user's environment.

- 1. Upon a successful login, the login program reads the user's uid, gid, and home-directory fields in the /etc/passwd file.

 Next it invokes the initgroups program, which reads each line of the /etc/group file, looking for a match between the user's login name and the login-name field in this file. For each match, initgroups assigns to the user the corresponding group specified in the gid field. The login program then executes the command named as the user's startup program in the command field of the /etc/passwd entry. This command inherits the user's user ID, group ID(s), and home directory from the login process.
- 2. Usually, the startup program is a shell and its initial invocation is known as the login shell. Login shells look for and (if it exists) read a startup file in the directory /etc. This file is known as the default startup file. If the startup program is the Bourne shell or the Korn shell, this file is called /etc/profile; if it is the C shell, the file is called /etc/cshrc. In this file, the system administrator can modify certain aspects of all the users' working environments, such as PATH, HOME, TERM, and EXINIT, as well as set other features such as aliases in the C

- shell and functions in the Bourne shell. See sh(1), ksh(1), and csh(1) in A/UX Command Reference.
- 3. After reading the default startup file, the shell looks for and (if it exists) reads an initializing file in the directory named in the home-directory field of the /etc/passwd file. If the startup program is the Bourne shell or the Korn shell, this file is called .profile; if it is the C shell, there are actually two files, .cshrc and .login. In this file, the user can modify certain aspects of his or her working environment, such as PATH, HOME, TERM, and EXINIT, as well as set other features such as aliases in the C shell and functions in the Bourne shell.
- 4. Once the startup environment has been thus establihed, the startup program prompts the user for input.

2. File permissions

Permissions determine who can and cannot have access to and use a particular file or directory. For example, if a file grants read-write permission to all users on the system, anyone on the system can get into the file and permanently change it. If a file grants read-only permission to all users on the system, all users can read the file, but no one except the user can make any changes to the file.

2.1 File access permissions

A user can set the following permissions on the files he or she owns:

- r Read permission. Allows designated users to read a file or to copy its contents.
- w Write permission. Allows designated users to modify a file.
- Execute permission. Allows designated users to execute a file (that is, to run it as a command).

Note that these permissions apply to regular files. For directory permissions, see the following section, "Directory Permissions."

These permissions can be set for users in three classifications called access classes. An access class is a category of user which may be user, group, or other. Each access class is represented by three characters; the order of characters is r, w, x, indicating the access permission granted to that category of user. If a hyphen appears

instead of an r, w, or x, permission to perform that action is denied to that category of user.

Ten characters are used to represent a file and its permissions; the first character indicates the type of file, and the next nine characters indicate the permissions of the three access classes as shown in Figure 3-1.

The file access permissions described below would appear on the screen as

-rwxrw-r--

- rwx rw- r-type user group other

Figure 3-1. Access classes

The first character represents the file type. The type is not an access class, but type is an essential part of file permissions. In Figure 3-1, the file is a regular file (represented by -). Other file types are d (directory), c (character device), b (block device), p (FIFO or named pipe), s (socket), and 1 (symbolic link).

The next three characters in Figure 3-1, rwx, represent the file access permission of the owner of the file, known as the user. The owner has permission to read, write, or execute the file.) When used with chmod and chgrp, user is represented by u. See "Symbolic Terms."

The next three characters in Figure 3-1, rw-, represent the group's permissions. any user in the same group as the owner of the file has permission to read and write (change) the file. Permission to execute the file is left as a hyphen, meaning that the file is not executable by the group. When used with chmod and chgrp, group is represented by g. See "Symbolic Terms."

User and Group Administration 030-5595-8

other The last three characters represent the permissions for all other system users. In Figure 3-1, only r appears, meaning that others (who do not belong to the group) can only read the contents of the file. When used with chmod and chgrp, other is represented by o. See "Symbolic Terms."

Permissions have to be set for the three access classes for each file. They can be modified manually at any time, or they can be set automatically to be the same every time a file is created.

2.2 Directory permissions

Directory permissions work a little differently from file permissions. Here is a list of directory access permissions and their meanings:

- r Filenames can be read from the directory.
- w Directory entries can be added or deleted.
- x The directory can be searched or made the current directory.

When you set permissions on a directory, you define who may list that directory's contents, add or delete files in that directory, or move into that directory. Note that setting permissions on a directory affects only the directory itself and does not change the permissions settings of any of the directory's files or subdirectories.

Directory permissions are one of the most important and neglected aspects of the user's environment. For example, file permissions that protect against reading or writing by other users are not enough to protect the file from being deleted if the directory permissions allow other users write permission. Similarly, if the directory grants the group read permission, its files can be listed by a group member even if the files themselves deny group read permission.

Group membership is an important consideration for the administrator setting up directory permissions. The default group membership of a file or directory is the same as the group membership of the directory in which the file is created. This allows for the creation of hierarchies of directories according to their group membership.

Additionally, directory permissions can affect the accessing of a file. If a wildcard (such as '*' or '?') is used in the path specification, read permission will also be required for the affected directory. This is a result of the wildcard causing the shell to read the directory (on the user's behalf) to find the requested file. Removal of read permission from directories can thus be used to prevent snooping while allowing access to specific files.

2.3 Modifying a file's permissions

Only the owner of a file, or the superuser, can change that file's permissions. This is also called changing a file's mode. The command used for this purpose is chmod. Anything that chmod can do to a file's permissions it can do to a directory's permissions as well, because A/UX treats a directory as a file. See the preceding section, "Directory Permissions."

2.3.1 Symbolic terms

The chmod command can be invoked with either symbolic or numeric terms. Symbolic terms are straightforward: u stands for user (that is, owner) of the file, g stands for group, and o stands for others; + represents granting permission, and - represents denying permission.

The format for invoking chmod with symbolic terms is

chmod access-class operator permission filename-list

(Note that there are no spaces separating access-class, operator, and permission.)

The arguments are:

access-class

One or more of the three access classes—user (u), group (g), or other (o)—described under "File Access Permissions," earlier in this chapter. Also, the access class all (a) lets you grant or deny permissions to all three access classes simultaneously.

operator

Grant access permission (the + operator) or deny it (the - operator). You can't both grant and deny permissions in a single command. You must grant permissions to one access class in one command, then deny it to another access class in a second command.

User and Group Administration 030-5595-8

permissions

Read permission (x), write permission (w), and execute permission (x). You can grant (or deny) more than one type of permission at the same time, but you can't grant and deny permission at the same time.

filename-list

The file(s) whose permissions are to be changed. You may use absolute or relative pathnames.

To change the permissions of a file from

-rw-rw-rwx

to

-IMXIM-I--

the sequence of commands is as follows.

1. To grant execute permission to the user:

chmod u+x filename

2. And then, to deny write and execute permissions to all others:

chmod o-wx filename

2.3.2 Numeric terms

Numeric or absolute terms are based on the combinations allowed by octal numbers where, for each access class, the mode of the file is set as follows:

- 0 grants no permission
- 1 grants execute permission
- 2 grants write permission
- 4 grants read permission

These numbers can in turn be combined in the following way:

- 3 (1 + 2) grants execute and write permission
- 5 (1+4) grants execute and read permission
- 6 (2 + 4) grants read and write permission
- 7 (1+2+4) grants all permissions

The format for invoking chmod with numeric terms is

chmod permission filename-list

where permission is a composite of the three access classes.

The file permissions

-rw-rw-rw-

are represented numerically as

666

Using numeric terms, you give this command to make the file readable, writeable, and executable by the owner and group, and inaccessable to others:

chmod 770 filename

The first 7 represents rwx for the user, the second 7 represents rwx for the group, and the 0 represents no access permission for all others. The permissions of the file would then be

-IWXIWX---

Turning on the set-id or set-gid bits is very useful with very specific and restricted files, for example, the passwd program. You can read about the set-id and set-gid bits and how they are used in the following section, "setuid and setgid Commands."

The command to turn on the set-gid bit on a file with read, write, and execute permissions for all (mode 777) is

chmod 2777 filename

The command to turn on the set-id bit on a file with read, write, and execute permissions for the owner, read and execute permissions for the group, and no permissions for all others (mode 750) is

chmod 4750 filename

The permissions field in the output of the 1s -1 command in the first case is

-IWXIWSIWX

where the s in the group execution field represents the set-gid bit.

User and Group Administration 030-5595-8

The permissions field in the ouptut of the 1s -1 command in the second case is

-rwsr-x---

where the s in the owner execution field represents the set-id bit.

You can combine the setting of the set-id bit and the set-gid bit, as you can with all other numeric terms, so that

chmod 6755 filename

will result in

-rwsr-sr-x

2.4 umask and file permissions

The environment variable umask defines the permissions for each file created by a user. You can set this variable for all users in the /etc/profile or /etc/cshrc files, or you can set it individually for each user in his or her .profile or .login or .cshrc file. See "How A/UX Establihes the Environment." The value assigned to umask in the individual files .profile, .login, or .cshrc overrides the values set in /etc/profile or /etc/cshrc.

The umask variable, like the permissions associated with chmod, can be assigned a numeric value of three octal numbers. The value of each specified digit is subtracted from the corresponding digit specified by the system for the creation of files.

For example, to ensure that all files created by a user have the permissions

-rw-rw-rw-

you must set the umask for that user as

umask 111

so that, when the 111 is subtracted from 777, the files' permissions are 666.

Similarly, to ensure that all files created by a user have the permissions

-IM-I----

you must set the umask for that user as

umask 137

so that, when 137 is subtracted from 777, the files' permissions are 640.

The notation

umask 77

is shorthand for

umask 077

That is, leading zeros can be eliminated from the notation.

Note that changing a user's umask does not affect the permissions on existing files.

2.5 The administrator's role in assigning permissions

The A/UX system administrator needs to provide adequate security for the users and projects on the machine. Initial security for accounts should thus prevent other users from reading or writing to a new user's area. Individual users may, of course, override this initial setup, but relaxation of security should be an option, not the default.

To do this, the administrator must set up appropriate entries in /etc/passwd and /etc/group. It is just as critical for the user and group ownerships and permissions on the user's home directory to be correct. Finally, it may be appropriate to set the umask in the system-wide shell initialization files.

When you set up common areas for group activity, it is often useful to create a user name for the project itself. Certain privileged users can then log in to that account and perform administrative tasks not allowed to all members of the project's group.

2.6 setuid and setgid commands

It is possible, under A/UX, to set up commands that act as if they were being invoked by a specified user, or by a member of a specified group. The mechanism for this is simple: a setuid command takes on the user ID of its owner (the owner of the file being executed). The setgid commands function similarly but take on the group ID of the executed file.

For example, a user might wish to change his or her password in the /etc/passwd file. It would normally be quite insecure to allow every user to modify the file in question, so a setuid program, passwd, is used. When invoked, passwd takes on the identity of the root user for the time needed to edit /etc/passwd.

Of the two, setgid commands tend to be safer, since group membership typically confers less power. Both should be treated with respect, however. Some variants of UNIX allow shell scripts to be made setuid or setgid. This is not a secure practice, though, and should generally be avoided. (There are many ways in which shell scripts can be made to act as "Trojan horses.")

In any case, it may be desirable to have a setuid program that can only be run by a selected set of users. This can be accomplished by putting the set of users into the same group to which the program belongs and giving execute permission to group members. These users can then run the program, performing the action as if they were the owner of the executable file.

You can use chmod to turn on the set-uid bit or set-gid bit for a file. You use the fourth field of the chmod command for this. The meaning of the numbers corresponding to this field is

- set sticky bit (not used by A/UX)
- 2 set gid bit on execution
- 4 set uid bit on execution

In swapping systems, the sticky bit indicates that the file should remain in main memory once it has been loaded in; this can shorten initialization time for frequently used programs at the cost of tying up a portion of main memory indefinitely. Because A/UX is a paging system, however, the sticky bit has no effect. For additional information see Chapter 10, "System Activity Package." Note that neither set user ID or set group ID modes apply to directories or other nonexecutable files.

3. Adding a user

Adding a user to your system is a process with two distinct steps: planning the new user's working environment and then specifying it.

These steps are equally important. Skipping the planning stage can lead to a very inefficient use of the system.

3.1 Planning the user's working environment

If at this point you do not have an actual user to add to your system but want to practice, you can use the examples listed below. If you are about to add a real user, follow the steps below but provide your own specifications.

Before you begin, you should have a clear idea of who the user is, what his or her tasks will be, what group or groups are currently engaged in similar activities, what parts of the system you want the user to have access to, whether a new group should be created, and where in the system the new user should be located.

In other words, the new user should belong to a group whose members have similar tasks (accounting, legal, programming, documentation, and so on) or to more than one group if the user will have a variety of tasks

Follow these steps in planning a user's working environment:

 Keep a hard-copy record of data about the new user. The record should include information like that listed in the form below. This form simplifies adding a new user's working environment and is a useful record to keep.

User's real full name
Date (year/month/day)
User's telephone number
User's login name
User identification number
Group identification number
Group name
Full pathname of the user's home directory
Full pathname of the user's startup program

2. Pick a login name for the user. Login names normally consist of lowercase alphabetic characters only. To make sure that the new user's login name is a new name, enter the command

grep login-name /etc/passwd

This command searches the /etc/passwd file to see if a user already has the login name you have chosen. If you see a line starting with the login name you have chosen, pick another login name and invoke grep again with the new name. If you see only the shell prompt and no line starting with the name, no one is using that login name. Enter the new login name on the form in step 1. If you are practicing, enter the name dummy.

3. Before selecting a new user identification number, you must find one that is not being used. One method for selecting the lowest unused number is to enter the command

cut -f3 -d: /etc/passwd | sort -n

This displays the current user ID numbers in the /etc/passwd file. Pick a number that is not being used, and write this number in the space labeled "User identification number" on the form in step 1. By convention, ID numbers under 100 are reserved for special uses, such as for programs or system operators.

- 4. Select a group identification number. If you are practicing, use 100; otherwise, see "The /etc/group File," earlier in this chapter, for information about selecting and specifying group membership. Write the number in the space labeled "User's group identification number."
- 5. Select a home directory. Use /dir/login-name, where dir is the directory where you are going to put the new user accounts and login-name is the user's login name on the form. If you are practicing, use /users/dummy. Think carefully. You may want to use a pathname like

/dir/gm/login-name

where gm represents a directory above the user's home directory. This gm directory should have the same group membership as the user's home directory, but the user should not have write permission on it. All users belonging to the same group should then have their home directories at the same level, that is, under gm. This way, the owner of the gm directory can be the group manager. Who should be the group manager is also a matter for thought. Once you have decided, write down the full pathname in the home directory space on the form. If you have a second disk it might be useful to create a file system to hold user accounts.

6. Select a startup program, such as /bin/sh or /bin/csh. If you are practicing, choose /bin/sh. Otherwise, you may also ask for the user's preference. Write down the full pathname in the startup program space on the form. See "Changing a User's

Startup Program' for information about using different command interpreters as a user's startup program.

3.2 Specifying a user's working environment Now that you have made your choices and have written down al

Now that you have made your choices and have written down all the information, you can proceed with the practical steps involved in adding the user.

- 1. If you are not already the superuser, log in as the root user.
- 2. Make a copy of /etc/passwd. For instance,

cp /etc/passwd /etc/passwd.old

This copy is your backup in case you accidentally destroy this critical file.

3. Next, use the vipw command to edit the /etc/passwd file. You should have all the pieces of information in front of you.

Note: The /etc/passwd file is set as "read-only." The vipw editor copies the contents of the password file into a temporary file (/etc/ptmp). After you edit and write the file, the editor copies the changes back to the /etc/passwd file. The vipw editor locks passwd so that it can't be edited with passwd (1) while the—copy is in use.

See vipw(1M) in A/UX System Administrator's Reference for more information about using vipw to edit /etc/passwd.

4. Enter the following line as the last line in the file, replacing each italicized word with the new user's information from the form you just completed. Be careful while you modify this file. It is essential to your users' and your own ability to gain access to the system.

login-name: *: uid: gid:: home-directory: startup-program

Enter * in the second field for now. It will be filled by an encrypted version of the user's password in a few moments. The fifth field, which is also blank in the preceding line, is for any miscellaneous information you care to enter (for example, the

user's real name if it differs from the login name, phone number and address, and so on). Remember to use full pathnames for the user's home directory and startup program. If you want to play it safe, enter the following line:

dummy::50:100:nice guy:/users/dummy:/bin/sh

- 5. Write the file and quit the editor.
- 6. Now enter the command

passwd login-name

where login-name is the name you filled in on the form in the space labeled "User's login name." You are asked to enter the new user's secret password. The passwd program asks you to enter the password twice. If you do not type the same password two times, it asks you to try again. If the word is too short (fewer than six characters), it asks you to enter a different word (see passwd(1)). Write the password down and give it only to the new user. The new user should log in and set a new password as seon as possible.

7. Create the user's home directory, using the full pathname from the form, with the command

mkdir home-directory

If you are practicing, enter

mkdir /users/dummy

8. If you have a standard .profile file, use this command to give the user a copy of it:

cp profile-standard home-directory/.profile

Replace the words profile-standard and home-directory with the name of the standard .profile file and the user's home directory as entered on the form. Note that the A/UX standard distribution supplies basic copies of suggested login and environment files needed for each of the A/UX shells. These are located in /usr/adm.

If the user's login shell is the Bourne shell (sh(1)), you can use the command

cp /usr/adm/sh.profile home-directory/.profile

If the user's login shell is the Korn shell (ksh(1)), use the commands

- cp /usr/adm/ksh.profile home-directory/.profile
- cp /usr/adm/ksh.kshrc home-directory/.kshrc

If the user's login shell is the C shell (csh(1)), use the commands

- cp /usr/adm/csh.login home-directory/.login
- cp /usr/adm/csh.cshrc home-directory/.cshrc

If you are practicing, use the .profile file from the start account (used in Getting Started with A/UX) with the command

- cp /users/start/.profile /users/start/dummy
- Now you can change the ownership of the user's home directory and login or environment file(s). Again, replace each of the italicized words with the information on the form. Enter the commands

chown login-name home-directory chown login-name home-directory/login-files

where login-files are the files you copied from /usr/adm.

If you are practicing, change the ownership as follows:

```
chown dummy /users/dummy
chown dummy /users/dummy/.profile
```

10. Next, change the group membership of the user's home directory by entering the command

chgrp group-name home-directory

where group-name is the name (as listed in /etc/group) of the group ID specified in the gid field of the user's entry in the /etc/passwd file. If you are practicing, enter

chgrp project /users/dummy

11. Now use these commands to change the permissions associated with the user's home directory and .profile file:

```
chmod 750 home-directory
chmod 640 home-directory/.profile
```

The 750 grants the user write, read, and execute permissions, grants members of the group read and execute permissions, and denies all permissions to other users. The number 640 grants the user write and read permissions, grants members of the group read permission, and denies all permissions to other users.

If you're practicing, change the permissions with the commands

```
chmod 740 /users/dummy
chmod 640 /users/dummy/.profile
```

For more information about the command lines in steps 8, 9, and 10, see "File Permissions," earlier in this chapter, and chown(1) and chmod(1) in A/UX Command Reference.

- 12. Now log out and log back in using the new user's login name and password. Create a new file in the working environment you just establihed. If you have any trouble, see "Troubleshooting."
- 4. Modifying a user's working environment

A/UX provides great flexibility in establishing and modifying a user's working environment. The following are several of the more important parameters that can be modified:

- a particular user's ability to have access to the commands and data stored on the system
- the accessibility of a user's files and directories to other users
- the location or name of any user's home directory
- the command that the user employs as the shell

4.1 System file permissions

The system administrator can change the permissions of system command and data files so that no users, some users, or all users can have access to them. This is a responsibility that should be exercised with extreme caution, because giving write permission to all users on a file like /etc/passwd can have disastrous consequences.

Users can change the permissions associated with their own files. For a discussion on how to do this and what effects these changes have on users' ability to have access to the files, see "File Permissions," earlier in this chapter, and chmod(1) in A/UX Command Reference.

4.2 Moving a user

Sometimes it is necessary to move a user's working environment. There are a few ways of doing this, and the method you choose depends on the characteristics of the move. If you do move a user's files, remember to change his or her home directory in /etc/passwd.

4.2.1 Moving a directory

The simplest move is the one that involves moving a user's directory to another place in the same file system. The command line

mv old-dir new-dir

moves the *old-dir* directory (including all its files, any subdirectories associated with it, and all of their files) to *new-dir*.

4.2.2 Using tar to move a user across file systems
While mv works only within the current file system, the tar command can be used to copy directories from one file system to another.

Note: In the standard A/UX distribution on a Macintosh II with an 80 MB hard disk, the disk contains only one user-accessible file system. The entire A/UX directory hierarchy and any specific hierarchy (such as /usr) are available on the root file system.

If you have created a new file system (for example, named /users2) on an external hard disk or diskette, you can copy all files and subdirectories contained in the directory /users to a directory

/users2/john on the other file system. To do so, use the command

cd /users

tar cf - john | (cd /users2; tar xf -)

The parts of this command line are as follows:

tar Command name.

- Creates a new tar image.
- f Stores the image under the filename (or directory name) that appears next in the line.
- When used with f, directs the image to the standard output.

john

Name of the directory to start copying from.

- Connects or "pipes" standard output of the previous command to standard input of the next command.
- (...)

 Parentheses enclose commands to be executed in a subshell.
- cd /users2

Changes the subshell's current directory to /users2.

; Command separator.

tar Command name.

- Extracts file(s) from the just-created tar image on tape or disk.

 The tar command does so file by file; if the file is a directory, it is extracted recursively (that is, until it is exhausted of files and subdirectories).
- f Extracts the image from the following file.
- When used with f, takes the image from the standard input.
 When stands for a filename, tar uses the standard output as a file with the x or t options.

This moves a copy of the user's files to a new directory. You can delete the original files once you are sure that the move was successful.

Please keep in mind that this example shows how to move the user and is not a lesson on tar; see tar(1) in A/UX Command Reference.

Remember that when you move the user's files you should also change the user's home-directory field in /etc/passwd and any other references to his or her home directory in files such as .profile.

4.2.3 Using cpio to move a user across file systems
With cpio, a directory containing files and subdirectories can be
copied elsewhere on the system, with all files maintaining their original
ownership, permissions, and modification time.

Note: In the standard A/UX distribution on a Macintosh II with an 80 MB hard disk, the disk contains only one user-accessible file system. The entire A/UX directory hierarchy and any specific hierarchy (such as /usr) are available on the root file system.

If you have created a new file system (for example, named /users2) on an external hard disk or diskette, you can copy all files (except for dot files) and subdirectories contained in the directory /users/john to a directory /users2/john on the other file system. To do so, use the command

cd /users

find john -depth -print | cpio -pdm /users2

The parts of this command line are as follows:

find

Name of the command that gathers the filenames to pass to

john

Name of the directory to start the search from.

-depth

Forces a depth-first search of the directory, to control the order in which files are copied.

-print

Prints each file or directory name found.

Connects standard output of the previous command to standard input of the next command.

cpio

Name of the command that does the actual copying.

- Character signaling that options follow.
- p Copies ("passes") the named files to a named directory.
- d Creates new subdirectories as needed.
- m Retains the original file's modification times.

/users2

New directory in which to place the files.

This moves a copy of the user's files to a new directory. You can delete the original files once you are sure that the move was successful.

Please keep in mind that this example shows how to move the user and is not a lesson on cpio; see cpio(1) in A/UX Command Reference. Remember also that when you move the user's files you should also change the user's home-directory field in /etc/passwd and any other references to his or her home directory in files such as .profile.

4.3 Changing a user's startup program

The last field in the /etc/passwd file determines a user's startup program. Typically the field is /bin/sh, /bin/ksh, or /bin/csh (for the Bourne shell, the C shell, or the Kom shell, respectively). To change a user's startup program, all you have to do is change this field. Other modifications to the user's working environment may be necessary, however, particularly with regard to shell startup files in the user's home directory; see "Files That Determine a User's Environment," earlier in this chapter.

Any program at all can serve as the startup program. For instance, the last field of the /etc/passwd file can be a program such as who. If who is the startup program, the user is able to log in but sees only the output of the program who before being logged out, without ever getting a shell. Although who is not a very useful working environment, other programs, such as rsh(1), are. The rsh program

allows a user full use of a shell within the home directory but allows no directory changes.

5. Removing a user

Removing a user from your system may be as simple as inserting a word such as VOID in that user's encrypted password field in /etc/passwd. However, if the user has created many files that must be saved, you may need to find all files owned by the user, back them up, examine each of them, determine who else uses the files, change the ownership of shared files, remove links, and finally delete the user's password entry.

This section introduces the most moderate form of user removal first and then discusses additional steps that make the removal more extreme.

5.1 Gentle deletion

The first step in removing a user from your system is to deny the user access to it. The cleanest way to do this is to edit the user's /etc/passwd entry and enter the word VOID in the encrypted password field. This makes it impossible for anyone to log in as that user (although that user's files remain unaffected).

Note: Do not leave the password field blank. A blank password is a serious security breach because anybody can then log in to the system with that login name and no password.

Do not delete the whole /etc/passwd entry for that user yet. If you do, you will not only deny the user access to the system but also affect the files owned by that user. Commands that use login names as arguments (for example, chown and find) or print information relating to login names (for example, 1s -1) check the /etc/passwd file for the user names and/or numbers. If there is no login name for a file's owner, it is replaced by a number (when you enter 1s -1, for instance). If you delete a few /etc/passwd entries, you will probably get confused about which files belong to which ex-user.

5.2 Backup and selective deletion

You need to be careful when deleting a user's files. In general, it is a good idea to back up a user's files before deleting them, for two reasons:

- These files may contain information that you may need later.
- These files may be used by other users on your system.

To locate all the files owned by the user and not below his or her home directory, follow these steps:

- 1. Void the user's password; see the preceding section, "Gentle Deletion."
- 2. Find all the files belonging to the user, regardless of their location, with the command

find / -user login-name -print > somefile

- 3. Back up the files using either tar or cpio; see the information on partial backups in Chapter 4.
- 4. Delete the user's files. Before you do so, it is a good idea to find out if anyone is currently executing any commands or using any data files owned by that user. Inquire personally or through mail, or use the acctom command (see Chapter 9, "System Accounting Package") to see whether any others regularly use files created by that user. If they do, change the ownership of those files. If a file is linked to that user, remove the link. Then delete the files.

6. Troubleshooting

Most user administration problems can be traced back to ownership and group membership questions or to erroneous entries in the /etc/passwd and /etc/group files.

The following are error messages and other potential problems, with suggestions for responding.

No home directory

If you see this error message at login time, check that the entry for that user in the /etc/passwd file is correct. Typically, if the home-directory field is empty but surrounded by colons, the

message at login time is

unable to change directory to ""

No login will occur. If the home-directory field is missing (that is, if the startup-program field appears directly after the gid field), then the message is

unable to change directory to "program"

where program stands for the entry in the last field of the /etc/passwd file.

Can't create files '.not found'

Check that the home directory, or the current directory, has the appropriate permissions, ownership, and group membership.

Can't list a directory

The user is in a directory whose group membership is not one of the user's current groups, or the directory's permissions are wrong.

Can't read mail

Check that the file /usr/mail/login-name, where login-name stands for the user's login name, has the appropriate permissions, ownership, and group membership.

Files owned by other user

It is very important to make sure that no two users have the same user ID in the third field of their /etc/passwd entries. If this happens, some programs get confused.

One such program is 1s. The information which is stored about a file does not contain the name of the user to which that file belongs; it contains only the user ID. Before 1s can print the user name when it is invoked with the -1 flag option, 1s must go to the /etc/passwd file to associate that user ID with a login name. Two users with the same user ID unavoidably confuse 1s.

PLACE TAB HERE

BACKUPS

BACK OF TAB

Chapter 4 Backing Up Your System

Contents

1.	Overv	riew .			•					•					•	1
	1.1	Backu	p mediu	ms	•										•	2
	1.2		rsus pai		icku	IDS										2
	1.3	A com														2
	1.4		ing to de					file	na	me	S					4
	1.5	Mount														6
		The ba									•		-	•		7
		1.6.1 c	•		•				•	•	•	•	•	•	•	7
		1.6.2 t	-		•				•	•	•	•	• .,		•	8
		1.6.3 d							•	•	•	•	•	•	•	9
		The Ta								•	•	•	•	•	•	10
	1.7	THE 12	the par	kup =	ΝC	201	LW	al C	•	•	•	•	•	•	•	10
2.	When	to use 3	3.5-inch	disks	•	•	•	•			•		•	•	•	11
	2.1	Prepar	ing 3.5-	inch d	isks	foi	r us	e							•	11
		2.1.1 Ir	nitializir	ıg a di	sk v	vith	the	e M	aci	nto	sh					
		0					•									11
		2.1.2 Ir	nitializir	ig a di	sk v											11
		2.1.3 E					•	•	•					·		12
_		•			·	•		•	•	•	•	•	·	•	·	·
3.		to use 1		• •	•	•	•	•	•	•	•	•	•	•	•	12
		Prepar								•	•	•	•	•	•	13
		3.1.1 F	ormattir	ig a ta	pe c	arti	ridg	ge ir	1 th	e N	lac	into	osh			
		0	S.		•		•	•	•	•		•	•	•		13
		3.1.2 F	ormattir	ig a ta	pe i	n A	√ U.	X				•				14
A				_	-											
4.		cbio	• •	• •	•	•	•	•	•	•	•.	•	•	•	•	15
		cbio								•	•	•	•	•	•	16
	4.2		ng all fil	es in a	dir	ecu	огу	tree	e to	a c	lisk	or				
		tape .	• •	• •	•	•	•	•	•	•	•	•	•	•	•	16
	4.3		ng selec			.ps	•	•	٠.	•	•	•	•	•	•	17
	4.4	Creatin	ng full b	ackup	S											17

4. 4. 4.	 Creating incremental base Listing a table of contermontal Recovering all files on a Recovering selected file In the event of hard I/O 	nts for a disk or tape. a disk or tape. es from a disk or tape	• • •	18 19 19 20 21		
5. 5. 5. 5. 5.	ing tar	altiple volumes tory to a disk		21 22 22 23 24 24		
5. 5.	tape	e		25 25 26 26 27		
6.	e dump.bsd and restor 1 Dump levels 6.1.1 Using dump levels strategy 6.1.2 Restoring from models 2 Using dump.bsd 6.2.1 dump.bsd keys 3 Using restore 6.3.1 Interactive models 6.3.2 restore keys 6.3.3 restore options	s in a monthly backup ultiple dump levels for restore		33 34		``
7. Ve	rifying data on backed-up d			38	•	
8.	ing the Apple Tape Backup 1 Hints on backing up vo 2 Restoring partitions 8.2.1 Hints on restoring partitions	lumes and partitions		38 43 43		
	• .					
		- 11 -			•	·

Figures

Figure 4-1.	A common backup scheme	•	•	•	•	•	•	3
Figure 4-2.	Format Cartridge status screen	1	•	•	•	•	•	14
Figure 4-3.	Backup Volumes and Partitions screen	s s	eled •	ctio	n •	•	•	40
Figure 4-4.	Selecting partitions for back up)	•	•	•	•	•	41
Figure 4-5.	Backup Volumes and Partitions screen	s si	atu	ıs •	•	•		42
Figure 4-6.	Restore Volumes and Partition box	dia •	alog	3	•	•	•	45
Figure 4-7.	Selecting a destination for a parestore				•	•	<u>.</u> -	46

BLANK PAGE

Chapter 4 Backing Up Your System

1. Overview

Making regular backup copies of files and file systems is one of the most important duties of the A/UX system administrator. Computer data that is stored on disk can be damaged by hardware failure, or users may accidentally remove it. If you make regular backups, you can restore any data that is damaged, lost, or destroyed.

A backup is data stored on a hard disk copied to an alternate medium, such as a 3.5-inch disk or magnetic tape.

It is a good idea to store backups in a safe place, off-site if necessary. It is also wise to maintain a backup log as a written record of what was backed up, for use in an emergency.

There are many ways to back up data. To decide on the best technique, you should compare the time it takes to complete a backup with the time it may take to restore a backup. You should also consider how often your data is changed, how valuable the data is, and how many people use the system. The safest scheme is to devise an overlapping strategy, combining two or three backup techniques. Generally, if you use a regular schedule for full backups and supplement those with one or two partial backups, you can be assured that you will be able to rebuild your system in the event of a disaster. You may want to customize backup commands in a shell script to keep all backups consistent.

You may also use the A/UX backup utilities to store directories no longer needed on the system. By storing unused data on 3.5-inch disks or tape cartridge, you free the system disk for use and improve performance.

Backing up and restoring are mutually dependent activities, that is, if you backup with tar, you can use only tar to retrieve the data.

The backup and restore utilities available on the A/UX system include cpio, tar, and dump.bsd. The backup utility under the Macintosh Operating System provides an easy way to make full backups onto a 40 MB tape cartridge.

1.1 Backup mediums

You can make backups on a variety of medium. Currently you can back up A/UX files onto 3.5-inch disks, cartridge tapes (using the Apple Tape Backup 40SC), or nine-track magnetic tape. This chapter explains how to back up onto disks and tape cartridges.

1.2 Full versus partial backups

There are two main strategies for creating backups. The first is a full backup, during which all the data on each file system is copied; it is a time-consuming process. Full backups copy a system in such a way that you can reload it if your disk is completely erased.

The second strategy is a partial backup, during which only part of the system is backed up. This is less time consuming and more useful for most types of everyday work. Depending on which utility you use, you may do either a selective or an incremental partial backup.

To make a selective backup, you specify the files and directories according to your needs, such as specific filenames, or by user or group ownership. Generally, you use tar or cpio to back up specific data.

To make an incremental backup the system uses the modification dates on files to automatically copy all newly created files and all files modified since the date of the last backup. Although you can use both tar and cpio to make incremental backups, the dump. bsd and restore utilities are generally preferred. During incremental backups, the system saves its most recently modified files and routinely backs up files that are changed often, such as /etc/passwd and /etc/groups. One of the main problems with incremental backups is that it can take a lot of time to locate a file and restore it if you don't know the file's last modification date.

1.3 A common backup scheme

A commonly used A/UX backup scheme is illustrated in Figure 4-1. The figure shows four levels of backup and the approriate utilities for making those backups.

This scheme ensures that your data is adequately backed up at all times but is not overly cumbersome or time consuming.

Figure 4-1. A common backup scheme

Quarterly backups

Make a full system backup when you first start using the system and again at the end of each quarter. You can either store the quarterly backups off site or create duplicate backup media, storing one set on site and another set off site. Quarterly backup media should be stored for an indefinite period of time. Be sure to verify that full backups are readable. See "Verifying Data on Backed-Up Disks," or, if you are using cartridge tape, see "Using the Apple Tape Backup 40SC Software," both in this chapter.

Monthly backups

Make an incremental backup at the end of each month. You should also store these backups in a safe place for 3 to 6 months,

Backing Up Your System 030-5595-B

depending on your site's needs and the relative importance of your data. Once you have a monthly backup, you no longer need the previous month's weekly backups, and so you can recycle those media. Be sure to verify that new backups are readable before recycling disks or tapes containing old weekly backups.

Weekly backups

Make an incremental backup at the end of each week to capture all files modified or created during the week. Store these backups in a safe place, and reuse them for the monthly backup at the end of the current month. Once you have a weekly backup, you no longer need the previous week's daily backups, so you can recycle those media. Be sure to verify that new backups are readable before recycling disks or tapes containing old daily backups.

Daily backups

Make an incremental backup at the end of each weekday to copy all newly created files or modified files. Set aside one formatted backup medium (or more if needed) for each day. Then, at the beginning of each new week, copy over the previous week's backup media; on Monday, copy over the previous Monday's backup; on Tuesday, copy over the previous Tuesday's; and so forth.

You can recycle the tapes or disks used for backups once they are no longer useful. Typically a backup is considered useful for two units of time beyond its creation date. For example, Monday's daily backup disk can be recycled Wednesday evening, keeping Tuesday's backup in reserve in case Wednesday's is damaged in some way. Remember that 3.5-inch disks, cartridge tapes, streaming tapes, and certain other backup media can be used only a finite number of times; check the manufacturer's specifications to determine how many times you can safely recycle your backup media.

1.4 Referring to devices by device file names

When you use most backup utilities, you need to specify where the files you want to back up are, and where the backups should be recorded. In A/UX, all peripherals (hard disk drives, 3.5-inch disk drives, tape units, terminals, and so on) are known to the system through device files located in the /dev directory. ("Device" is a synonym for peripheral.) When a backup utility reads or writes to such a file, that

information is read (or written) to the peripheral corresponding to the device file.

There are two varieties of device file: block devices and character devices (also known as "raw" devices). Whether you access the device as a block device or as a raw device depends on the requirements of the utility you are using. The following table lists the names of the device files that are standard for the Macintosh II.

Device File Name	Peripheral	Туре
/dev/floppy0	floppy drive #0	block
/dev/rfloppy0	floppy drive #0	char
/dev/floppy1	optional floppy drive #1	block
/dev/rfloppyl	optional floppy drive #1	char
/dev/dsk/c8d0s0	synonym: floppy drive #0	block
/dev/rdsk/c8d0s0	synonym: floppy drive #0	char
/dev/dsk/c0d0s0	built-in hard disk	block
/dev/rdsk/c0d0s0	built-in hard disk	char
/dev/rmt/tcl	tape backup	block

Note: A user (especially the root user) should never attempt to write data directly using the name of a device file that accesses a disk or tape drive. These filenames should be used only on backup utility command lines. Also note that all examples in this chapter use the floppy drive #0, although floppy drive #1 (if this option is present) would work as well.

As shown in Table 4-1, you can use the synonym /dev/dsk/c8d0s0 for floppy drive #0. This synonym reflects the SCSI naming scheme, in which devices are named in the /dev/dsk and /dev/rdsk directories according to their controller, drive, and slice number. For example, /dev/dsk/c8d0s0 signifies SCSI ID 8, the first drive, and the first parition. An external hard disk installed, for example, in slot 5 would be /dev/dsk/c5d0s0. See gd(7) in A/UX System Administrator's Reference for more information on the SCSI naming scheme.

1.5 Mounted versus unmounted file systems

A file system exists on a logical portion of a physical device. This logical portion is called a partition and is accessed through the device files explained in the previous section. A file system that is accessible to users is called a mounted file system. With the exception of the root file system, which is always mounted, file systems must be explicitly mounted and unmounted with the mount and umount commands.

Note: Currently the only user-accessible file system on the built-in hard disk is the root file system, which is permanently mounted.

A file system is made accessible by mounting it on a directory of any other mounted file system. This directory can be any ordinary A/UX directory and is called the mount point of the file system. When you change your current directory to the mount point, you may traverse the directory tree of this file system as if it were an ordinary branch of the root file system.

If you want to create a file system on a 3.5-inch disk, place a formatted disk in the drive and enter the following command:

```
mkfs /dev/rfloppy0 1600
```

To use this file system, issue the mkdir command to create an empty directory on the root file system (we suggest a name such as /f0) and then use the mount command to mount the file system. The command sequence is

```
mkdir /f0
mount /dev/floppy0 /f0
```

Any files and directories you then create in /f0 appear as ordinary files and directories, even though they reside on the 3.5-inch disk drive.

To remove the file system disk, enter the commands

```
umount /dev/floppy0 = eject
```

Warning: Removing the disk before issuing the umount command can damage the file system because A/UX may still have file system data stored in memory.

The error message

/f0: Device busy

means that you or other users are accessing files or directories on the file system mounted on /f0. If you are in single-user mode, simply change your current directory to a directory that is not on this file system and reenter the umount command. If other users are accessing this file system, ask them to finish their work and change their current directory to another so that you can unmount the file system.

1.6 The backup utilities

The A/UX backup utilities fall into two categories, archival and copy utilities. This chapter describes archival utilities, which copy data and reference information pertinent to the data. Archival utilities are designed specifically to move files and directories between media; the reference information is used to reconstruct the original data structure.

The A/UX copy utilities copy data only; they operate on a single file at a time and disregard any structure that that file may have (for instance, the file may be an entire file system). For information on these programs, see dd(1) in A/UX Command Reference and volcopy(1M) in A/UX System Administrator's Reference.

The A/UX archival backup utilities include cpio, tar, and dump.bsd. The Tape Backup 40SC software also backs up A/UX partitions and is described in this chapter.

1.6.1 cpio

The utility cpio, which stands for "copy input to output," is used to back up and restore an entire file system or individual files.

The advantages of using cpio include:

- It is a convenient way to copy numerous files that you select by individual name, perhaps because they reside in various directories.
- It is useful for copying a directory and its contents, while leaving out the contents of the subdirectories.

- It not only rebuilds the directory for you when retrieving backed up data but also saves the file permissions, ownerships, and groups.
- It can copy device files, meaning everything stored in /dev, whereas tar cannot.

The disadvantages of using cpio include:

- It is slow, operating at about the same speed as tar.
- Its syntax is somewhat irregular.
- It is not convenient for copying the entire contents of a directory tree.
- The backup copies are not transferable between computer systems unless you use the -c option.

1.6.2 tar

The utility tar, which stands for "tape archiver" is used to back up a directory or individual files in a file system. The tar command is the best utility to use for transferring files from one system to another, for example, transferring ASCII files between BSD systems and System III- or System V-based systems (such as A/UX). Of course, both systems must have the tar utility.

The advantages of using tar include:

- You can back up and retrieve individual files, directories, and file systems, or any combination of these three.
- You can reliably transfer files between computer systems, such as between a Macintosh II and a VAX®.
- It accepts a blocking factor (with the b option) that lets you
 match the block size of the output files with the block size of the
 output device, such as 8K blocks for the Apple Tape Backup
 40SC.

The disadvantages of using tar include:

- It is the slowest way to copy and retrieve data.
- If you think your backup might not fit on one tape, disk, or other backup medium, you must specify the maximum number of

blocks the medium can hold. For instance, if you do not specify blocks and the copy runs off the end of the tape, you have to start the backup over again.

• It can copy only regular files and not directories or device files.

1.6.3 dump.bsd and restore

The dump.bsd utility is used for incremental or full file system backups. The utility supports "dump levels"; these levels range from 0 to 9, where 0 represents a full backup of the entire system and the other numbers are used for incremental backups.

The restore program is dump.bsd's companion utility. It retrieves files and directories from a backup medium created with dump.bsd. You recover single files from the backup medium by using the -x option for the restore program (see "Using restore"). When using restore, you must be careful not to replace the current file system with an older version of itself.

The advantages of using dump . bsd and restore include:

- These utilities are reasonably fast. Although dump.bsd does not make backups as fast as the Tape Backup 40SC software makes an image dump, it is generally faster than tar and cpio.
- You can make full backups (of the entire file system) or incremental backups (of specific files).
- They allow you to back up only those files modified or created after a certain date. The utility does this by keeping a record of the last full dump date. Thus, it knows what files to back up when you request an incremental dump.
- They typically require only one 800K disk for a daily backup because of their ability to back up only files that have changed.

The disadvantages of using dump. bad and restore include:

- They are more difficult to use than the other backup utilities.
- They operate on file systems. As distributed, A/UX has only one file system, and so this is not a drawback. However, if you add one or more file systems, your use of these backup utilities

becomes that much more complicated because you have to track the file systems individually.

- Backing up a disk that is full or well over 75% full requires more
 disks or tapes than making an image dump with the Tape Backup
 40SC software does. This is due to the overhead information
 dump.bsd puts in an archive.
- You must be sure the system's date and time are always correct, or you are likely to lose files when restoring from an incremental backup.
- Using the -c option you can transfer backups made with tar and -cpio among different computers; that is, a backup made with tar on a Macintosh II can be restored with the tar command on a VAX. The same is not true for backups made with dump.bsd.

1.7 The Tape Backup 40SC software

The advantages of using the Tape Backup 40SC software include:

- It is an easy way to make a full backup because it prompts you
 through the process with dialog boxes, and because it calculates
 and lets you know in advance how many tapes and minutes are
 required to complete the backup.
- It can restore your A/UX disk in the event it fails entirely, because it restores from the Macintosh OS rather than A/UX.
 This advantage is unique among the backup utilities for A/UX.
- It is faster than dump . bsd when making a monthly backup.

The disadvantages of using the Tape Backup 40SC include:

- A partition is the minimum amount of data you can retrieve.
- You need to exit A/UX to use the utility. This may be inconvenient, especially if others want to be using A/UX through attached terminals.
- It makes an image backup, which copies everything on the disk, including blank spaces. As such, it tends to require more tapes than dump. bad does when backing up a disk that is less than half full.

Note: You should generally perform backups (and all major administrative tasks) while the system is running in single-user mode. If you make a backup of a mounted file system that is being altered by frequent writes, you risk backing up an outdated and inconsistent file system.

2. When to use 3.5-inch disks

Use 3.5-inch disks to store backups when:

- backing up a small amount of data, such as several data files
- making a daily backup, that is, backing up files changed that day

2.1 Preparing 3.5-inch disks for use

Before you can copy files to a 3.5-inch disk, the disk must be initialized; otherwise, you'll see an error message. The initialization process is also called formatting. Formatting can be done in either the Macintosh OS or in A/UX. The Macintosh method has proven more reliable and so is recommended over disk formatting in A/UX.

2.1.1 Initializing a disk with the Macintosh OS

Place the disk into the disk drive (or into the rightmost drive if you have two drives). Since the disk is not initialized, you're informed of this and given three initialization choices: one-sided format, two-sided format, and eject without initializing. In the dialog box, click Two-Sided (A/UX cannot read from single-sided disks). Type a name for the disk, and the disk will be initialized in a few seconds.

If you're initializing a used disk (that is, one containing information) you need to erase the disk first. From the Special menu click Erase Disk. This option erases everything on the disk (after appropriate warnings) and gives you the same choices you have if you are initializing a new disk.

2.1.2 Initializing a disk with A/UX

When initializing a disk with A/UX, be sure the disk contains no valuable information: A/UX initializes without reminding you that all information on the disk will be erased.

To format a 3.5-inch disk, place the disk into the disk drive (or into the rightmost drive if your system has two 3.5-inch drives). Then type

diskformat /dev/rfloppy0

You will be asked to confirm your request to format the disk; press RETURN to start formatting or type an *interrupt* to abort the operation. When the shell prompt returns, your disk is formatted.

Note: 'Under normal use, you need to format a disk only once. If A/UX prints messages about read and/or write errors while using backup utilities, you can try formatting the disk again. If the error messages persist, use a new disk. Note also that formatting erases any information that was previously stored on the disk.

You can also instruct A/UX to format a disk when copying data out to a disk with the cpio command. You specify formatting with the -F option to the cpio command. Here is an example:

ls | cpio -oF > /dev/rfloppy0

You can only use the formatting option to cpio when copying to an 800K disk in an 800K disk drive.

2.1.3 Ejecting disks

To eject a disk from the floppy drive 0, by default the rightmost drive, enter

eject

or enter

eject 0

To eject a disk from the floppy drive 1, enter

eject 1

3. When to use tape

A cartridge used by the Apple Tape Backup 40SC holds approximately 38 MB of data, whereas a 3.5-inch disk holds 800K. Therefore, use tape cartridges when you back up large amounts of data, for example, when you make a full backup to safeguard against a system crash. Use tape cartridges when:

- making weekly or monthly backups
- backing up large amounts of data, such as an entire file system

You can use cpio, tar, dump.bsd, and the Tape Backup 40SC software to make backups on cartridge tape.

Complete information on the Apple Tape Backup 40SC, from how to install the unit, prepare cartridges for data, and care for the machine to how to correct problems you might run into in the course of making backups, is provided in *Apple Tape Backup 40SC Owner's Guide*, which is delivered with the unit. Refer to that guide for information not provided in this book.

3.1 Preparing a tape cartridge for use

Formatting a tape cartridge prepares it to receive, store, and transmit data. Apple tape cartridges are preformatted for you, but other brands may not be. You can format tapes in either the Macintosh OS or in A/UX, whichever is convenient.

It is a good idea to format all unformatted tape cartridges as soon as you purchase them. Each tape cartridge stores up to 38.5 MB of data. You'll need more than one tape cartridge to back up a 40 MB hard disk that is completely full.

- 3.1.1 Formatting a tape cartridge in the Macintosh OS
 To format a tape cartridge, follow these steps. The process lasts about
 40 minutes and must not be interrupted.
 - 1. From the Macintosh OS, open the Apple Tape Backup 40SC application.
 - 2. Choose Format Cartridge from the pull-down File menu.
 - Warning: Never eject the tape cartridge while the red activity light is on or flashing.
 - 3. Follow instructions in the dialog boxes to direct the Format Cartridge operation.

When you insert the tape cartridge, make sure that the record-lock switch is in the unlocked position (to the left).

Push firmly until the tape cartridge is inside the Tape Backup 40SC.

	•						
							-
					•		K.
			•				Jr. 0. No.
							<i>(</i>
							Brown .
		•					
						•	
P							
				•			
							1
							•
		•					
	•						

2. Type

mt format

and press RETURN.

Formatting requires about 30 minutes. After formatting is complete, the tape is ready to receive data.

4. Using cpio

The cpio utility copies files to or from the device or location you specify. For example, you can copy files to a disk or to a file system with equal ease.

You cannot give filenames as arguments to cpio as you can with tar. Instead, cpio takes its input from other utilities. The utilities most commonly used to give input to cpio are 1s and find. Because cpio restores files relative to the current directory, never use an initial '/' when creating a backup with cpio. Instead, move to the directory you want to copy from and then give the cpio command.

When using 1s to provide input to cpio, do not use options to 1s because cpio must receive files one per line.

These are the most important options used withopio:

- -o Copies out files to a device or location you specify, such as disk, tape, or file.
- -p Copies (passes) to another directory or file system you specify.
- -i Copies in files from a device or location you specify, such as disk, tape, or file.

You will notice in later examples that, when cpio is used to copy to a 3.5-inch disk, the disk drive is referred to as a raw device rather than a block device. For example, you'll see cpio -ov > /dev/floppy0 rather than cpio -ov > /dev/floppy0. The cpio utility has been modified to take fuller advantage of the Macintosh disk drive and as a result performs more reliably as a raw device than a block device.

4.1 cpio and the Tape Backup 40SC

When you use cpic to copy to tape, cpic does not know how to recognize the end of the tape. For this reason, the cpic command fails when it attempts to copy more files than will fit on one tape (38.5 MB). If the command fails for this reason, you will see the following error message:

No such device or address

Despite the wording of the error message, you need to reenter the command and specify fewer files to complete the backup successfully.

The tape unit requires that you send the data in 8K blocks. When you use cpic to copy to tape, use the tcb filter to block the data. The sole purpose of the filter is to block data in 8K blocks.

Here's an example:

ls | cpio -ov | tcb > /dev/rmt/tc1

The components of this command are as follows:

1s

The 1s command lists the files in the current directory and sends them through a pipe as input to the cpio command.

cpio -ov

The cpio command, with options that copy out files (o), display the filenames on the screen (v).

| tcb

Piping the files through the tcb filter, which blocks the data in 8K blocks so the tape unit can read it.

> /dev/rmt/tcl

The output device, in this case the tape controller for an Apple Tape Backup 40 SC at (tc) SCSI ID 1.

4.2 Copying all files in a directory tree to a disk or tape

You may often need to copy all the files in a directory tree to a 3.5-inch disk or tape. The simplest way to do this is with the following command:

find directory name -print | cpio -o > /dev/backupmedium

If you are copying to tape, remember to pipe the cpio output through the tcb filter to block the data in 8K blocks. See the preceding section, "cpio and the Tape Backup 40SC," for further information.

4.3 Creating selective backups

To create selective backups, that is, to back up only those files that fall into a specified category, enter

```
find directory-name -user user-name\
-print | cpio -ovB > /dev/rfloppy0
```

(This command line has been wrapped onto two lines by placing a backslash at the end of the first line; this is not necessary to the command.)

The components of this command are as follows:

find directory-name -user user-name -print

The find command searches the specified directory name to obtain the files of the specified user-name and passes the pathnames of the user's files to cpio.

| cpio -ovB

The cpio command, with options to copy out files (o), display the name of every file copied on the screen (v), and block output (B) 5120 bytes per record.

> /dev/rfloppy0

The output medium, in this example the (raw) disk.

You can use other find options to select files by other characteristics, such as group ownership or age of the file. See "Creating Incremental Backups," later in this chapter, and find(1) in A/UX Command Reference.

4.4 Creating full backups

To create a full backup of your entire system, enter

```
find / -print | cpio -ov | tcb > /dev/rmt/tcl
```

The components of this command are as follows:

find / -print

The find command, beginning at the root directory (/), passes the file pathnames to cpio.

| cpio -ov

The cpio command, with options that copy out files (o) and display the name of every file copied on the screen (v).

I tcb

Piping the files through the tcb filter to block the data in 8K blocks.

> /dev/rmt/tcl

The output medium, in this example the tape controller for an Apple Tape Backup 40 SC at SCSI ID 1.

If the backup will not fit on one tape (38.5 MB), you'll see the error message:

No such device or address

Despite the wording of the message, you need to reenter the command but specify fewer files to copy, that is, by sending it files from a lower point in the file system.

4.5 Creating incremental backups

To create incremental backups, that is, to back up only files that have been modified or created since a certain time, enter

```
find / -mtime -1 \
-print | cpio -ovB > /dev/rfloppy0
```

(This command line has been wrapped onto two lines by placing a backslash at the end of the first line; this is not necessary to the command.)

The components of these commands are as follows:

find /

The find command, beginning at the root directory (/), passes the file pathnames to cpio.

-mtime -1 -print

Select files modified (-mtime) since the last day (-1) and pass the file pathnames to cpio. Use -1 for daily incremental backups and -7 for weekly incremental backups.

| cpio -ovB

The cpio command, with options that copy out files (o), print the name every file copied on the screen (v), and block output (B) 5120 bytes per record.

> /dev/rfloppy0

The output medium, in this example, the disk.

4.6 Listing a table of contents for a disk or tape

To list the table of contents for a 3.5-inch disk or a tape made with cpio, enter

cpio -it < /dev/backupmedium</pre>

The components of these commands are:

cpio -it

The cpio command with the -i and -t flag options. The -i flag option specifies that input filenames should be extracted, and the -t option generates a table of contents.

< /dev/backupmedium

Use the files on the backup medium as input to the cpio command.

4.7 Recovering all files on a disk or tape

To recover all files from a disk or tape created with cpio, enter

cpio -ivdmu < /dev/backupmedium

The components of these commands are as follows:

cpio -ivdmu

The cpio command with flag options. The i option extracts files from the 3.5-inch disk, the v option prints the filename on the screen after it has been extracted, the d option creates any directories needed to extract the files, the m option preserves the file's modification date, and the u option extracts files from the archive unconditionally. (Normally, cpio will not extract a file

that is older than an existing file with the same pathname.) See cpio(1) in A/UX Command Reference for additional information.

< /dev/backupmedium

Use the files on the backup medium as input to the cpio command.

4.8 Recovering selected files from a disk or tape To recover only certain files from a disk or tape created with cpio, first obtain a list of the full pathnames for files on the disk or tape,

first obtain a list of the full pathnames for files on the disk or taguing cpio with the -i and -t options:

cpio -it < /dev/backupmedium

Now select the files you want to extract, and enter

cpio -ivdmu filename... < /dev/backupmedium

The components of these commands are as follows:

cpio -ivdmu

The cpio command with flag options. The -i option extracts files from the 3.5-inch disk or the tape, the v option prints the filename on the screen after it has been extracted, the -d option creates any directories needed to extract the files, the m option preserves the file's modification date, and the u option extracts files from the archive unconditionally. (Normally, cpio will not extract a file that is older than an existing file with the same pathname.) See cpio(1) in A/UX Command Reference for additional information.

filename

The name of the file(s) to be extracted.

Note: You can use file expansion characters such as * and?, but these characters must be quoted (enclosed in single or double quotes or preceded by a backslash) to prevent the shell from interpreting them before they are passed to cpio.

< /dev/backupmedium

Use the files on the backup medium as input to the cpio command.

4.9 In the event of hard I/O errors

When you're checking data after you have created backups, you must restart the entire procedure if a hard I/O error occurs while the data is being read. However, before beginning the procedure anew, try reinserting the problem disk or tape; often, the system can read it the second time. If it can't, then you need to start the procedure from the beginning, using a fresh disk or tape.

You cannot interrupt cpio to allow formatting for additional disks or tapes. The process must be aborted, fresh disks formatted, and the procedure started again.

5. Using tar

The tar command copies a single file or groups of files to or from a disk. The files are copied sequentially, and no directory structure is created. Give either full or relative pathnames of the files you want to copy if you will be restoring the files to the same account. If you might be restoring the files to an account other than the one from which you copied them (for example to someone else's account on another computer), then be sure to use relative pathnames. In general, relative pathnames are safer.

You can use tar to extract files copied with tar from the disk or tape. When retrieving files the files are put into the current directory and maintain the directory structure with which you copied them. For example, if you change to the directory /user/linda and copy the file /user/linda/stories/nickname by giving the relative pathname stories/nickname), when you retrieve this file, it will be copied into the current directory as stories/nickname.

The tar command gives the capability of adding to files already on the backup media. The tar command also displays a table of contents for the files archived on a particular disk or tape.

Options used with tar control its actions. Some options are required when copying to the Apple Tape Backup 40SC.

5.1 When copying to tape

By default, tar copies data out in 512-byte blocks. This works fine when copying to 3.5-inch disk, because the disks store information in blocks of that size. However, when copying to the Apple Tape Backup 40SC, data must be sent in 8K blocks, and this size must be specified. Here's an example:

tar cbf 16 /dev/rmt/tcl usr/lib

The components of this command are as follows:

tar cbf 16

The tar command with the option cbf. The c option creates a new backup, writing at the beginning of the tape. The b option alerts tar to use the next argument as the block size for sending out the files. The block size for the tape can be any multiple of 512 bytes. Common multipltes used are 8K and 16K. In this example, 16 is used because blocks of 16K are copied faster than blocks of 8K, yet 16K blocks are not so large as to cause a large part at the end of the tape to be left blank because a block couldn't fit. The f option alerts tar to use the next argument, in this case /dev/rmt/tcl, as the place in which to copy the files.

/dev/rmt/tcl usr/lib

The device to copy to, in this case the tape unit with SCSI ID 1, and the files to copy, in this example the directory usr/lib.

5.2 If a backup requires multiple volumes

When copying to the Apple Tape Backup 40SC or to a 3.5-inch disk, tar does not recognize the end of the medium. It runs past the end of the tape or disk and generates an error message, forcing you to begin copying again. This is understandable since tar was designed for use with a nine-track tape, and thus its default length is 2300 feet. To protect against this annoyance, let tar know the holding capacity of your backup medium when you suspect your backup might require more than one tape or disk. Adding this argument to your command line is a small price to pay for the assurance of completing your copy successfully.

Here's an example of how to let tar know the holding capacity of a cartridge tape:

tar cbBf 16 4500 /dev/rmt/tcl usr/lib

The b option alerts tar to use the argument 16 as the blocking factor. The B option alerts tar that 4500 is the maximum number of blocks the tape can hold.

The exact number of blocks a tape can hold varies, depending on the number of potentially bad blocks on the tape. It is safe to use 4500 blocks as the maximum tape capacity because this figure allows for the maximum number of bad blocks. (This figure also allows for the space required to store the tape's formatting information.) When a tape is formatted, potentially bad blocks are eliminated from the tape's usable space. If you want to know the exact capacity of a formatted tape, use the mt command.

Here's an example of using the me command to discover the exact number of usable blocks on a tape:

mt -f /dev/rmt/tcl status

The command returns a report that includes a line showing the number of available 8K-byte blocks on the tape, as shown in the following:

total 4844 blocks (39682048 bytes) avail this cartridge

If you are copying to a double-sided, 800K disk, the holding capacity is 1600K. For a single-sided disk, it is 800K.

5.3 Copying an entire directory to a disk

When copying a directory, tar copies all its contents, including the contents of its subdirectories.

To copy all files in the usr/lib directory, change to the / directory and enter the command

tar cf /dev/backupmedium usr/lib

The components of this command are as follows:

tar cf /dev/backupmedium

The tar command with option cf. The c option creates a new backup, writing at the beginning of the disk. The f option uses the argument /dev/backupmedium to archive the files.

usr/lib

The relative pathname of the directory to be copied.

Note: If your plan is to place these files into a location other than the one you copied them from, be sure to change to the directory / and then enter usr/lib. Otherwise, if you use the absolute pathname, the files will retain that pathname and will not be retrievable from the new location.

5.4 Copying specific files

You will often need to save files that hold important data. Such files include /etc/passwd and /etc/group. Because these files are crucial to the operation of the system, and because they are frequently modified, they are vulnerable to corruption or even loss.

To copy /etc/passwd and /etc/group, change to the / directory and enter

tar cf /dev/backupmedium etc/passwd etc/group

The components of this command are as follows:

tar cf /dev/backupmedium

The tar command with option cf. The c option creates a new backup, writing at the beginning of the disk. The f option uses the argument /dev/backupmedium to archive the files.

etc/passwd etc/group

Copy the files etc/passwd and etc/group.

5.5 Appending a file to a disk

You can append a file or files to an archive already on a 3.5-inch disk (but not to a tape archive). To copy the file mvusr from the current directory (./) and append it to the files on a disk, enter

tar rf /dev/rfloppy0 ./mvusr

The components of this command are as follows:

tar rf /dev/rfloppy0

The tar command with options rf. The r option appends the file to the disk. The f option uses the argument /dev/rfloppy0 as a destination for the files.

./mvusr

Write the contents of myusr file from the current directory.

5.6 Adding a later version of a file to a disk or tape To add a later version of the file curses.mail from the current directory (./) to a disk or tape, enter

tar uvf /dev/backupmedium ./curses.mail

The components of this command are as follows:

tar uvf /dev/backupmedium

The tar command with options uvf. The u option adds the named files to the disk or tape if they are not there or if they are modified. The v option displays the file size and filename. The f option uses the argument /dev/backupmedium to archive the files.

./curses.mail

Copy the file curses . mail in the current directory.

The tar command responds with the message

a ./curses.mail 3 blocks

If the file has been modified, it is then copied. The a indicates that the file has been added to the archive. No message is printed if the file is identical to the copy in the archive.

5.7 Extracting a specific file

To recover a specific file from a 3.5-inch disk created with tar, use the following command. In this example, you are recovering chapter8.

tar xf /dev/backupmedium chapter8

The components of this command are as follows:

tar xf /dev/backupmedium

The tar command with option xf. The x option extracts the specified files from the disk. The f option uses the argument /dev/backupmedium to archive the files.

chapter8

The file to be extracted.

Backing Up Your System 80-5595-8

When you use tar to extract a file, change directories to the target directory and specify the name as it appears in the tar table of contents.

5.8 Creating a table of contents from a tar archive To list the files on a disk or tape created with tar, enter

```
tar tvf /dev/backupmedium
```

The components of this command are as follows:

tar tvf

The tar command with options tvf. The t option displays a table of contents for the files on the disk. The v option displays the file size and filename. The f option uses the argument /dev/backupmedium to archive the files.

/dev/backupmedium

The output medium holding the archive, which could be 3.5-inch disk or tape.

The tar command then displays the files with their permissions, ownerships, and dates:

```
rwxr-xr-x102/202 978 Feb 1 14:16 1984 ./envelope
rwxr-xr-x102/202 211 Apr 16 11:29 1984 ./proofread
rwxr-xr-x102/202 978 May 10 10:34 1984 ./envelope
```

The same filename can appear more than once; tar allows multiple copies of a file on the same disk.

5.9 Recovering the latest version of a file

To recover the latest version of a file, in this example the file curses.mail, enter

```
tar xvf /dev/rfloppy0 ./curses.mail
```

The components of this command are as follows:

tar xvf

The tar command with options xvf. The x option extracts the named files. The v option displays verbose confirmation that the file was extracted, giving the size and name of the file. The f option uses the argument /dev/rfloppy0 to archive the files.

/dev/rfloppy0

The output medium, in this example the disk.

./curses.mail

The file to be extracted from the current directory.

The tar command then responds with the message

x ./curses.mail, 1135 bytes, 3 tape blocks

In this example, the x at the beginning of the line indicates that the file has been extracted.

5.10 Recovering a particular version of a file

To recover a particular version of a file, determine which version is needed by using the t option to display the contents of the disk or tape. See "Creating a Table of Contents from a tar Archive," earlier in this chapter.

Once you determine which file you want to extract, use the w option with tar. When using the w option, you must confirm the action you tell the system to take. For example, to extract the May 10 version of mvusr, enter

tar xvwf /dev/backupmedium ./mvusr

The components of this command are as follows:

tar xvwf /dev/backupmedium

The tar command with the options xvwf. The x option extracts the file from the disk, the v option displays the file size and filename, the w option causes the system to wait for user confirmation before extracting the file, and the f option uses /dev/backupmedium as the archive file.

./mvusr

The file to be extracted in the current directory.

When tar displays the correct filename, type y, as shown here:

```
x rwxr-xr-x 0/1 140 May 4 18:14 1984 ./mvusr:
x rwxr-xr-x 0/1 162 May 10 10:46 1984 ./mvusr: y
x ./mvusr,
162 bytes, 1 tape blocks
x rwxr-xr-x 0/1 140 May 10 10:48 1984 ./mvusr:
```

A y (yes) indicates that the file should be extracted.

Other responses include n and RETURN, both indicating a "no" response.

6. The dump.bsd and restore utilities

The dump.bsd and restore backup utilities are recommended for multi-user installations. When you use dump.bsd to create a backup, you must use restore to recall a file, directory, or file system.

Note: The /etc/dumpdates file must exist or dump.bsd prints the error message

/etc/dumpdates: No such file or directory

Therefore, before you run dump.bsd for the first time on your system, create an empty file with the command

touch /etc/dumpdates

You will not need to enter the above command again unless /etc/dumpdates is removed by mistake.

6.1 Dump levels

When you use the dump. bad command, you specify an incremental backup using dump levels, which are integers that can range from 0 through 9. Instead of specifying a date to indicate that you want to back up everything that has been created or modified since that date, you specify a dump level to indicate that you want to back up everything that has been created or modified since you made a backup with a lower dump level.

For example, a level 7 dump .bsd backs up all files modified since the most recent backup at dump level 6 or lower. Thus, dump level 0 represents a full backup.

6.1.1 Using dump levels in a monthly backup strategyMost multi-user installations use a dump strategy based on once-amonth full dumps, as described below:

- Every month do a full dump (level 0): dump.bsd OuF
- At the end of each week do a weekly dump (level 4):
 dump.bsd 4uF
- At the end of each working day do a daily dump (level 7): dump.bsd 7uF

The F on the command line tells dump.bsd to write the backup to the floppy drive (/dev/rfloppy0). By default, dump.bsd reads the files to back up from the built-in hard disk (/dev/rdsk/c0d0s0). Many keys can alter the default operation of the dump.bsd utility. See dump.bsd(1M) in A/UX System Administrator's Reference.

The level numbers mnemonically represent weeks (4 weeks in a month) and days (7 days in a week). In this strategy, the weekly dump backs up all files modified since the last monthly backup, and daily dumps back up files modified since the last weekly dump.

For the daily and weekly dumps, you can reuse the same backup disks or tapes, overwriting your previous backups. For monthly (level 0) dumps, use a set of fresh disks or tapes and save them for an extended period (generally, 6 months to a year).

6.1.2 Restoring from multiple dump levels

In the following example, the root() file system is restored after it was accidentally removed.

To restore the file system to the state in which it existed at the beginning of the month, place the first disk from the current month's level 0 dump disk in the floppy disk drive, and enter the command

restore r

Note: If the backup archive is comprised of more than one disk (the usual case), restore will prompt you when it is ready for you to insert the next disk in the series.

When the level 0 restoration is complete, place the first disk from the current week's level 4 dump disk in the drive and enter

restore r

If the level 4 backup archive is comprised of more than one disk, restore will prompt you when it is ready for you to insert the next disk in the series. When the level 4 restoration is complete, the file system is restored to its state at the beginning of the week.

To complete the restoration, remove the disk from the 3.5-inch drive, place the first disk of yesterday's level 7 dump disk in the drive, and enter

restore r

When the level 7 restoration is complete, the file system is restored to its state at the time of the most recent backup (last night).

As this example shows, with this scheme for routine backups you need to use only three dump levels to restore an entire file system to its current status.

6.2 Using dump.bad

The dump.bsd command operates on the file system mounted on the specified disk partition. It copies all files modified after a certain date to a 3.5-inch disk (or other backup medium).

Because many disks are used to create backups, dump. bad sets a checkpoint for itself at the beginning of each disk. If some error occurs during writing to a disk, dump. bad waits until you have removed the old disk and inserted a new one, then (after prompting with a question) restarts itself from the checkpoint.

The dump bed utility prompts with questions when any of the following occurs:

- It reaches the end of a disk.
- It reaches the end of a dump.
- A hard I/O error occurs.

You must answer either yes (press y) or no (press n) to any of dump.bsd's questions.

The following example shows the basic format of a dump.bsd.command:

dump.bsd OuF

This command backs up the file system on /dev/rdsk/c0d0s0 (the built-in hard disk). The keys OuF have these meainings: 0 represents a complete backup (not incremental), u updates the system file /etc/dumpdates with the time of this backup, and F tells dump.bsd to write the dump on the 3.5-inch disk drive (/dev/rfloppy0).

6.2.1 dump.bsd keys

You use keys to control the operations of the dump.bsd command. Unless you specify at least one key, dump.bsd will not work. Keys are similar to flag options, except that one must be specified. These are the keys:

F Specifies that the dump is to be written to the disk in the 3.5-inch disk drive.

Note: Unless you are writing to an external hard disk or other external device, you should always specify this option.

0-9 Specifies the dump level. The dump.bsd utility uses this number and the system file /etc/dumpdates to determine when the file system was last dumped (at a dump level lower than the number specified) and which files have been modified since.

dump.bsd 0F dump.bsd 4F

In these examples, level 0 represents a full backup, whereas level 4 backs up only those files modified since a level 3 or lower-level backup.

Writes the date of the beginning of the dump to the file /etc/dumpdates. The file records a separate date for each file system and each dump level.

dump.bsd 7uF

Note that /etc/dumpdates must exist or dump.bsd will print an error message. Therefore, before you run dump.bsd for the first time on your system, create an empty file with the command

touch /etc/dumpdates

You will not need to enter the above command again unless /etc/dumpdates is removed by mistake.

f filename

Backs up data to the specified device or file, other than the default disk. If the filename is -, dump. bsd writes to the standard output, in which case it can be used as part of a pipeline.

dump.bsd 4uf /dev/rdsk/c5d0s0 /dev/rdsk/c0d0s0

In this example, the contents of /dev/rdsk/c0d0s0 (the root file system on the internal hard disk) are written to /dev/rdsk/c5d0s0 (in this case, an external disk).

Note: Be very careful not to transpose the name of file being written (the first filename argument) and the name of file being read (the second filename argument). An empty file system is the likely result of such an action.

W Displays the file system that needs to be dumped. The information is gathered from the files /etc/dumpdates and /etc/mtab.

When using W, dump. bad displays the most recent dump date and level for each file system in /etc/dumpdates. The file systems that need to be dumped are highlighted.

All other options are ignored when W is used, and dump.bsd exits immediately.

```
dump.bsd W
```

```
Last dump(s) done (Dump '>' file systems):

> /dev/rdsk/c0d0s0 ( /)

Last dump: Level 5,

Date Sun Nov 23 16:21

/dev/rdsk/c0d0s2 ( /usr)

Last dump: Level 0,

Date Sun Nov 30 22:01
```

In this example, the file system to be dumped is preceded by the > symbol and not highlighted.

W Similar to W, but displays only those file systems that need to be dumped.

```
dump.bsd w
```

```
Dump these file systems:
  /dev/rdsk/c0d0s0 ( /)
    Last dump: Level 5,
    Date Sun Nov 23 16:21
```

n Notifies all operators in the group operator that dump.bsd requires attention.

```
dump.bsd Oun /dev/dsk/c0d0s0
```

```
DUMP: NEEDS ATTENTION: Do you want to abort dump?:
("yes" or "no") yes
DUMP: The ENTIRE dump is aborted.
```

6.3 Using restore

The restore command reads the backup media created with the dump.bsd command. The following example illustrates the basic form of the restore command:

```
restore r
```

This command reads the default disk drive (/dev/rfloppy0) and expects to find a disk containing a previously recorded dump.bsd

archive. If the archive spans multiple disks (the usual case), restore expects to read the first disk of the archive.

The r key tells restore to load the entire contents of the archive into the current directory. (The restore command will recreate the entire file and directory hierarchy of the archive beginning with the current directory.)

Note: The r key should be used only to restore a complete dump.bsd archive onto an empty hierarchy or to restore an incremental dump.bsd archive after a full level 0 restore. Be very careful about where you are in the file system when you use the r key. If you start restore r from the top of a full hierarchy, you will replace current files with older versions.

Like the dump.bsd command, the restore command requires keys to control its actions and accepts other arguments to specify files or directories to be restored. See "restore Keys" for more information.

6.3.1 Interactive mode for restore

The restore command features an interactive mode for extracting files from a dumped disk. You can use i with restore, as in:

restore i

When you use restore in the interactive mode, it reads the directory information from the disk and then creates a shell-like interface complete with the following prompt:

restore >

This interface lets you move around the directory tree, selecting files to be extracted. The interface also supports commands that aid in locating files.

The commands are described here. If a command needs an argument and one is not provided, the current directory is used by default.

1s [arg]

Displays the contents of the current directory or the specified directory used as its argument. In the display output,

- Directory names are appended with a slash (/).
- Entries selected for extraction are prefixed with an asterisk (*).
- If the v key (verbose) is set, the inode number for each entry is also displayed.

cd are

Changes the current working directory to the directory specified as its argument.

pwd

Displays the full pathname for the current working directory.

add [arg]

Adds the current directory or specified directory to the list of files to be extracted. If a directory is used as an argument, it is recursively extracted, unless the h option is used in the restore command line.

delete [arg]

Deletes the current directory or specified directory from the list of files to be extracted. If a directory is used as an argument, it is recursively extracted, unless the h option is used in the restore command line.

The easiest way to extract most files from a directory is to add the directory to the extraction list and then delete those files not needed.

extract

Extracts all the files on the extraction list from the dumped disk. Then, restore asks which volume you want to mount. The quickest way to extract a few files is to start with the last disk and work toward the first.

setmodes

In all directories added to the extraction list, the owner, modes, and times are set. If a restore is prematurely aborted, this option preserves directories' ownership, modes, and times. Nothing is extracted from the backup medium.

verbose

The 1s command displays the inode number of all entries. The

restore command also displays information for each file extracted.

help

Displays a list of all available commands in the interactive mode.

quit

Immediately terminates the restore program, even if all files or directories are not extracted.

6.3.2 restore keys

These are the keys most commonly used with the restore command. Examples illustrate how to use the keys.

r Reads and loads the contents of the disk to the current directory.

This key should be used only to restore a complete dump tape onto a clear file system, or to restore an incremental dump tape after a full level 0 dump.

Note: Be very careful about where you are in the file system when you use the r key. If you start restore r from the top of a full hierarchy, you will replace current files with older versions.

R Used when a restore has been interrupted. It requests a particular disk from a multivolume disk set to restart a full restoration.

restore R

x [arg]

Specifies files to be extracted from the disk.

If no file or directory is specified, restore begins recursively extracting from the root directory; the entire file system is extracted. If a directory name is specified, it also is recursively extracted, unless the h option is used.

The quickest way to extract a few files is to begin with the last disk and work toward the first. For example, if you use the command

restore x filename

only the file represented by *filename* is extracted from the backup medium. The command

restore xh directory-name

extracts files from the directory represented by *directory-name*. The command

restore x directory-name

recursively extracts the entire directory hierarchy represented by directory-name.

t [arg]

Lists the contents of the backup medium. If a filename or directory name is used as an argument, the corresponding files that reside on the disk are listed. As with the x option, a directory is recursively listed, unless the h option is also used.

6.3.3 restore options

The restore command can also be used with options that accompany keys. These are the options, along with examples illustrating how to use them.

f filename

Counterpart of the f option to the dump command. The f option used with a filename argument restores data from the file instead of the disk. If - is used as the filename, restore restores from the standard input, allowing restore to be used as part of a pipeline.

restore rf /tmp/save.level4

v Stands for "verbose." During a restore, the filename and file type are displayed on the standard output.

restore rv

y Causes restore to display a prompt asking whether to abort the restoration if a hard I/O error occurs. Otherwise, restore tries to skip a bad disk block and continues.

restore ry

In the event of a hard I/O error, the restore command responds with the message

Should I abort restore? yes or no

h Extracts the actual directory and not the files that it references.

This prevents hierarchical restoration of complete subtrees from the disk. You restore complete subtrees with the x key, described in the previous section, "restore Keys."

restore rh directory-name

7. Verifying data on backed-up disks

The dd command is used for all backup methods to find hard I/O errors. After that, the appropriate option for each backup method is used to display a table of contents.

For example, for 3.5-inch disks, insert each disk and enter

dd if=/dev/rfloppy0 of=/dev/null bs=90b

The components of this command are as follows:

dd

command name

if=

input filename

/dev/rfloppy0

input file (floppy disk)

of=

output filename

/dev/null

output file (special file used to discard output)

bs=90b

sets both input and output block size to 90

blocks

If the data is successfully read, messages like the following appear:

17+1 blocks in 17+1 blocks out

If messages appear indicating hard I/O errors on any of the disks, you need to restart the entire backup, using newly formatted disks to replace the faulty ones.

8. Using the Apple Tape Backup 40SC software

You can use any of the A/UX backup utilites—tar, cpio, and dump.bsd—to make backups on the Apple Tape Backup 40SC tape unit. You can also use the Apple Tape Backup 40SC software. The Apple Tape Backup 40SC tape unit and software are explained in detail

in Apple Tape Backup 40SC Owner's Guide. For your convenience, the information from that book on backing up A/UX partitions is provided here.

You can use the Backup/Restore menu of the Apple Tape Backup 40SC to make a full or "image" backup. Everything in the partition that you select is copied, even blank spaces on the disk. You cannot use this utility to back up anything smaller than a partition; the Backup Files and Restore Files commands on the menu are available to back up only Macintosh files, not A/UX files.

Each of the Backup/Restore commands prompts you with dialog boxes. A dialog box also alerts you if you are about to do something that could cause you to lose information on the tape and gives you a chance either to cancel what you were about to do or to switch cartridges.

The Backup Volumes and Partitions operation copies partitions to a tape cartridge, or to several cartridges if the partition exceeds 38.5 MB. Partitions are divisions of a disk for use with different operating systems or file systems. They are explained in Chapter 5, "Preparing an Apple HD SC for A/UX." A disk may have one or more partitions. You can select any combination of partitions to back up. The application copies all information from each selected partition onto a tape cartridge in one process. You can use the tape cartridge copy to restore the data at any time.

Follow these steps to back up a partition:

- 1. Be sure to have enough formatted tape cartridges on hand to complete the backup. For information on formatting a tape, see "Preparing a Tape Cartridge for Use," earlier in this chapter.
- 2. Shut down A/UX and reboot the system from the Tape Backup 40SC 3.5-inch disk.
- 3. Open the Apple Tape Backup 40SC application.
- 4. Choose the Backup Volumes and Partitions command from the Backup/Restore menu.

• Backup Volumes and Partitions operation, the application checks whether or not the tape cartridge contains data. If the tape cartridge contains information, the application displays a warning and allows you either to switch the tape cartridge or to cancel the operation.

You can cancel the Backup Volumes and Partitions operation in midstream, if necessary. All the volumes and partitions copied before you canceled the operation remain copied onto the tape cartridge and can be restored on the hard disk.

8.1 Hints on backing up volumes and partitions
Plan to start the backup operation when you won't need the computer
for at least 30 minutes. You can set up the computer to carry out the
backup operation while you eat lunch, or at night after you go home (as
long as you don't need to insert more tape cartridges).

If your partition contains more than 38.5 MB of data, you'll need more than one cartridge.

After you copy information from your hard disk onto a tape cartridge, you may want to slide the record-lock switch to the locked position to guard against copying over information by accident.

8.2 Restoring partitions

The Restore Volumes and Partitions operation writes all the data from a tape cartridge copy of a partition to your hard disk. The partition you are restoring from tape should be the same size as the disk partition into which you are restoring.

Note: If the partition you are restoring from tape is smaller than the disk partition into which you are restoring, you stand to lose disk space because the disk partition takes on the size of the partition on tape. The maximum disk space you can lose in such a situation is 4 MB. The application will warn you of the potential loss of disk space and give you a chance to cancel the operation. You can then repartition the disk before restoring the tape cartridge copy. You need to cancel the restore

operation and create a partition of the correct size by using HD SC Setup. See Chapter 5, "Preparing an Apple HD SC for A/UX," for further instructions on creating partitions.

Follow these steps to restore a volume.

If your hard disk suffered damage so severe that you have had to reinitialize the disk, use HD SC Setup version 2.0 or later to repartition your disk. (HD SC Setup version 2.0 is included on the Tape Backup 40SC 3.5-inch disks and described in Chapter 5 of this manual.)

- 1. Shut down A/UX.
- 2. Reboot from the Tape Backup 40SC 3.5-inch disk.

When planning to restore a partition, you always need to start up from the Tape Backup 40SC 3.5-inch disk. The Tape Backup 40SC program won't allow you to restore over the system file or the application file in use on your hard disk. For this reason, the Tape Backup 40SC 3.5-inch disk contains a system folder so that you can use it as a startup disk.

- 3. Open the Apple Tape Backup 40SC application from the 3.5-inch disk icon.
- 4. Insert the first tape cartridge of your backup into the tape drive.
- 5. Choose the Restore Volumes and Partitions command from the Backup/Restore menu.

A dialog box like the one in Figure 4-6 appears, showing you the volumes and partitions available for the Restore Volumes and Partitions operation. You see a list of destinations to which the copied information can be restored. For a disk with multiple partitions, the dialog box displays each partition as a separate choice. The screen identifies each source partition (the tape cartridge copy you made by using the Backup Volumes and Partitions operation) by displaying its partition name and partition size.

- 8. Click Restore to begin the restore operation.
- 9. Follow the instructions in the dialog boxes to direct the volume restore operation.
- 10. When the restore operation is complete, click OK in the completion message to end the volume restore operation.
- 11. Eject the tape cartridge.
- 12. Restart A/UX.

You can cancel the Restore Volumes and Partitions operation in midstream, if necessary. When you cancel the Restore Volumes and Partitions operation, the partition being restored on the hard disk becomes useless. (Partitions already restored during this restoration session are unaffected by the cancel.) Canceling the Restore Volumes and Partitions operation does not alter the tape cartridge copy. You can still restore it to your hard disk. You may have to re-initialize the hard disk and try the Restore Volumes and Partitions command again.

8.2.1 Hints on restoring volumes and partitions

Use the restore operation to reconstruct your hard disk if you have a catastrophe that ruins the data on your hard disk (and your day). The Restore Volumes and Partitions operation writes the contents of a hard disk from a tape cartridge back onto a hard disk.

If your hard disk crashes, you may need to re-initialize the hard disk and then start up from the Tape Backup 40SC 3.5-inch disk to perform the restore operation. See "When Reconfiguring Partitions" in Chapter 5, or your hard disk owner's guide for more information.

During the restore operation, the Tape Backup 40SC reads from the tape cartridge and then writes data onto the hard disk. The restore operation writes over any data that is currently on the hard disk. Dialog boxes warn you of the potential data loss and give you a chance to cancel the operation.

BLANK PAGE

PLACE TAB HERE

PREPARING A HARD DISK

BACK OF TAB

Chapter 5 Preparing an Apple HD SC for A/UX

Contents

What this chapter includes			•	•	1
1.1 Why disk subdivisions are beneficial		•		•	2
1.2 Benefits of using the HD SC Setup					2
· · · · · ·	_				3
•			Ĭ.	•	4
1.4 Imagement considerations octore you obgut	•	•	•	•	•
Background on HD SC Setup	•	•	•	•	5
Background on A/UX file systems					7
		•	•		9
	•	•	•	•	-
					10
	•	•	•	•	11
	•	•	•	•	•
					14
	•	•	•	•	16
•	•	•	•	•	17
5.5 Can't partition administration commands	•	•	•	•	1/
The general steps in creating A/UX file systems					18
					18
					19
	•	•	•	•	
					19
,	•	•	•	•	
How to create an A/UX file system of maximum s	ize	;			
• • • • • • • • • • • • • •	•	•	•	•	20
About creating custom partitions					32
	•	•	•	•	33
or non welcaw a custom partition	•	•	•	••	23
Subprocedures for creating custom partitions .			•	•	34
7.1 To semana a marristan					34
	1.2 Benefits of using the HD SC Setup 1.3 Ensuring Apple HD SC compatibility with A/UX 1.4 Hardware considerations before you begin Background on HD SC Setup Background on A/UX file systems 3.1 The three steps of a file access 3.1.1 Making partitions A/UX-specific: slice numbers 3.1.2 A user's perception of slice numbers 3.1.3 The administrator's role with slice numbers 3.1.4 The methods of choosing a partition 3.5 Using partition administration commands The general steps in creating A/UX file systems 4.1 What mkfs writes onto a partition 4.2 When reconfiguring partitions 4.2.1 When re-initializing an error-prone disk 4.5 How to create an A/UX file system of maximum should be creating custom partitions About creating custom partitions 5.1 To approve a partition should be considered.	1.1 Why disk subdivisions are beneficial 1.2 Benefits of using the HD SC Setup 1.3 Ensuring Apple HD SC compatibility with A/UX 1.4 Hardware considerations before you begin Background on HD SC Setup Background on A/UX file systems 3.1 The three steps of a file access 3.1.1 Making partitions A/UX-specific: slice numbers 3.1.2 A user's perception of slice numbers 3.1.3 The administrator's role with slice numbers 3.1 The methods of choosing a partition 3.3 Using partition administration commands The general steps in creating A/UX file systems 4.1 What mkfs writes onto a partition 4.2 When reconfiguring partitions 4.2.1 When re-initializing an error-prone disk 4.5 Whom to create an A/UX file system of maximum size About creating custom partitions 6.1 How to create a custom partition Subprocedures for creating custom partitions	1.1 Why disk subdivisions are beneficial 1.2 Benefits of using the HD SC Setup 1.3 Ensuring Apple HD SC compatibility with A/UX 1.4 Hardware considerations before you begin Background on HD SC Setup Background on A/UX file systems 3.1 The three steps of a file access 3.1.1 Making partitions A/UX-specific: slice numbers 3.1.2 A user's perception of slice numbers 3.1.3 The administrator's role with slice numbers 3.2 The methods of choosing a partition 3.3 Using partition administration commands The general steps in creating A/UX file systems 4.1 What mkfs writes onto a partition 4.2 When reconfiguring partitions 4.2.1 When re-initializing an error-prone disk How to create an A/UX file system of maximum size About creating custom partitions 6.1 How to create a custom partition Subprocedures for creating custom partitions	1.1 Why disk subdivisions are beneficial 1.2 Benefits of using the HD SC Setup 1.3 Ensuring Apple HD SC compatibility with A/UX 1.4 Hardware considerations before you begin Background on HD SC Setup Background on A/UX file systems 3.1 The three steps of a file access 3.1.1 Making partitions A/UX-specific: slice numbers 3.1.2 A user's perception of slice numbers 3.1.3 The administrator's role with slice numbers 3.1 The methods of choosing a partition 3.3 Using partition administration commands The general steps in creating A/UX file systems 4.1 What mkfs writes onto a partition 4.2 When reconfiguring partitions 4.2.1 When re-initializing an error-prone disk How to create an A/UX file system of maximum size About creating custom partitions 6.1 How to create a custom partitions Subprocedures for creating custom partitions	1.1 Why disk subdivisions are beneficial 1.2 Benefits of using the HD SC Setup 1.3 Ensuring Apple HD SC compatibility with A/UX 1.4 Hardware considerations before you begin Background on HD SC Setup Background on A/UX file systems 3.1 The three steps of a file access 3.1.1 Making partitions A/UX-specific: slice numbers 3.1.2 A user's perception of slice numbers 3.1.3 The administrator's role with slice numbers 3.1.4 The methods of choosing a partition 3.5 Using partition administration commands The general steps in creating A/UX file systems 4.1 What mkfs writes onto a partition 4.2 When reconfiguring partitions 4.2.1 When re-initializing an error-prone disk How to create an A/UX file system of maximum size About creating custom partitions 6.1 How to create a custom partition

	7.3 To gro 7.4 To mo	d a partition oup partitions ove a partition ow your parti	n.	•	•	•	•	•	•	•	•	•	•	35 37 38 38
8.	Quitting H	ID SC Setup	•			•			•					40
9.	9.1 Makir	n A/UX file syng and mount	ing an	A/			• sy	ste	m	•	•	•	•	40 40 46
10	Adding sw		- CLINES	•	•	•	•	•	•	•	•	•	•	51
10.	variant 2 M	rati stare	• •	•	•	•	•	•	•	•	•	•	•	J1
Fiç	gures													
F	igure 5-1.	The main A box	pple l	HD •	sc	: S	etuļ •	o d	ialo	og	•	•	•	4
F	gure 5-2.	Creating dis	sk pai	titic	ons		•					•	•	7
	_	Logical file hardware	•				s •	•	•		•	•	•	. 9
F	igure 5-4.	File access	sequ	ene	ce f	or .	Α⁄U	X	•		•			10
F	gure 5-5.	The mounti	ing of	file	sys	ste	ms		•	•		•	•	13
F	gure 5-6.	Relating a	ile to	ап	nou	nt	poi	nt		•			•	14
F	gure 5-7.	SCSI ID se indicator	lector	SW.	ritch •	n ai	nd •	•	•	•	•	•	•	21
F	gure 5-8.	The Partition	n dia	log	box	<		•	•	•		•		23
F	gure 5-9.	The Custor	n Pari	titic	n d	iald	og I	202	(•	•	•		. 24
Fig	ure 5-10.	Adding a pa	artitio	n	•		•	•	•	•	•	•		26
		The Partition			diale	og i	box	ζ.	.•					28
_		The Details partition	• •						igh •	ted	•	•	•	39
Fig	jure 5-13.	Interpreting	the p	art	itio	n ir	ifor	ma	tio	n fr	om	1		52

-

Tables	
---------------	--

Table 5-1.	A/UX partition types available	•	•	•	•	•	36	

BLANK PAGE

Chapter 5 Preparing an Apple HD SC for A/UX

1. What this chapter includes

This chapter describes how to prepare an Apple hard disk (HD) SC to receive an A/UX file system. (If you have a non-Apple hard disk, see the manual accompanying the disk for instructions on preparing it for use.) Preparing a hard disk simply means partitioning the disk to hold distinct types of data. Partitioning a disk is a formal way to prepare the disk to store and retrieve similiar types of data and files from the same place on the disk. In nearly all cases, partitioning an SC hard disk is done with the Apple HD SC Setup program. The SC in the name comes from the interface that connects hard disks to Apple computers; the interface is called SCSI (Small Computer System Interface).

There are a number of ways to partition a disk for A/UX, depending on what you want to put on the disk. This chapter describes all the various ways to partition an Apple HD SC, including the easiest way to prepare one for A/UX.

This chapter describes how to:

- ensure compatibility between Apple hard disk SCs, and between the disks and A/UX (see "Ensuring Apple HD SC Compatibility with A/UX")
- partition an auxiliary disk to contain only one A/UX partition of maximum size (see "How to Create an A/UX File System of Maximum Size")
- partition an auxiliary disk to contain multiple partitions (see "How to Create Custom Partitions")
- recover from disk data errors by using HD SC Setup (see "When Reconfiguring Partitions")
- change the partitioning scheme of an Apple HD SC that already contains data (see "When Reconfiguring Partitions"

- use an auxilary hard disk partition for additional swap space (see "Adding Swap Space")
- use dp and pname as necessary to make A/UX recognize certain partitions created using HD SC Setup (see "Using dp and pname")

1.1 Why disk subdivisions are beneficial

With HD SC Setup 2.0, you can subdivide a hard disk into logical sections, called partitions. Partitions allow a disk to accommodate multiple file systems and even multiple operating systems. For example, the A/UX distribution disk contains a partition for the A/UX root file system and a partition for the Macintosh Operating System.

Storing data in separate partitions saves you time and memory space when you make backups. By putting system files in one partition and data files in another, you can easily manage them separately. When making backups, you can concentrate on backing up the partition holding the data files, which change often and thus need backing up frequently. You can ignore the partition that holds the system files, which seldom change and thus seldom need backing up. In general, backups can often be administered more efficiently when files are thoughtfully distributed among disk partitions.

Multiple A/UX partitions can exist on one hard disk or on several hard disks if you have them. If you have an additional hard disk, you can place your data files in a separate partition on the auxiliary disk. It is not advisable to repartition your distribution disk.

1.2 Benefits of using the HD SC Setup

The benefits of the HD SC Setup include the following:

- It allows you to create an unlimited variety of partitioning schemes to subdivide your disk.
- It enables the use of the Tape Backup 40 SC software to back up and restore A/UX partitions.
- It performs all of the arithmetic tasks necessary to arrive at the correct starting disk block for each partition, making it easier to use and more reliable than the corresponding A/UX programs.

• It alters the setup information recorded on the drive to ensure compatibility between A/UX and all levels of Apple HD SC hardware currently available.

Although you can perform all partitioning and initialization functions from within A/UX, only the use of this version of HD SC Setup will ensure the correct operation of A/UX with all Apple HD SC hardware.

1.3 Ensuring Apple HD SC compatibility with A/UX The following steps describe how to use HD SC Setup to ensure compatability between A/UX and all levels of Apple HD SC hardware.

Note that you need to perform this procedure only when you do not plan to follow any of the other procedures in this chapter. For example, suppose you have stored data on an Apple hard disk and you do not want to change the partitioning of the disk. In this case, you should still complete this short procedure to eliminate the possibility that A/UX is incompatible with the disk.

- Start or restart your computer after inserting the Apple HD SC Setup disk in the 3.5-inch disk drive.
- 2. Open the HD SC Setup application by double-clicking its icon, or by clicking its icon to highlight it, and then choosing Open from the File menu.

A dialog box appears, as shown in Figure 5-1.

•

the Macintosh OS. You may also want to refer to Chapter 4, "Bridging A/UX and the Macintosh Operating System" in *Getting Started with A/UX*. There you will find instructions on switching back and forth between the two operating systems.

For disks other than the Apple hard disk SCs, refer to the manufacturer's instructions. Note that HD SC Setup 2.0 is intended for use with Apple HD SCs only.

2. Background on HD SC Setup

The HD SC Setup program is primarily used to initialize and partition disks. It was created for use with the Macintosh OS. When it is used with A/UX, many more partitioning possibilities are available.

HD SC Setup creates a partition by storing specific information in a specially reserved area on the disk called a partition map. To be accessible, each partition on a disk must have an entry in the disk partition map (DPM). A DPM entry includes the starting block, length, and name of each partition on the disk.

If the HD SC Setup program cannot find a valid disk partition map at the outset, it will not allow you to perform partitioning operations only the Initialize option will be enabled for use at the opening dialog.

The HD SC Setup program offers you a variety of functions from the opening dialog, including disk initialization and disk partitioning. When you choose disk initialization, the system tests the disk by writing various data patterns to all locations on the disk and verifying them. This initialization erases all the information previously on the disk. Additionally, the system builds a bad block table, flagging any defective areas found on the disk so that they won't be used.

After that, HD SC Setup builds a tentative partition map, indicating that one Macintosh partition of maximum size is desired.

Next, HD SC Setup asks you to provide a name for the Macintosh partition it has automatically created. It does this despite the fact that many A/UX users will not want such a partition. If you do not select the partitioning function at this point and instead click Quit, this tentative partition map is written in the partition map on the disk. Figure 5-2 represents this process with arrows leading from HD SC Setup to the partition map fields labeled Name1, Name2, Type1,

Type2, and so on (the partition map actually includes many more fields than those shown, as described in dpme(4)). As shown in Figure 5-2, the offset stored in the partition map corresponds to the absolute starting disk block: Offset1 is 4000, and the A/UX root partition is likewise shown to start at that location.

Note that, during partitioning, you do not access the partitions themselves. You only need alter the partition map, and this in turn changes the configuration of partitions.

Another way to alter the partition map is with the dp utility. Use this method only to change some noncritical component of the partition map, such as a partition name. Otherwise, using dp can easily disrupt the partition map, for instance, by creating overlapping, unreliable partitions. See "Using dp and pname" for information about using dp to make small changes to a partition map.

When you alter the partition map by resizing or rearranging any of the partitions, the Macintosh and A/UX operating systems lose their ability to locate the start of the old partitions and any files within them. In effect, you lose all the old files. This will become clearer when you learn more about the details of an A/UX disk access in the following section.

. . .

worthwhile to partition a given disk with more than one Macintosh partition, although HD SC Setup lets you do so.

Only the administrator responsible for maintaining these configurations must know about the special A/UX file system administration commands. Other users can interact with the file systems transparently and need not know what hardware or logical partitions the operating system is accessing during a standard file access. This feature of A/UX is illustrated in Figure 5-3. As the figure shows, file systems A and B could reside together on one disk or separately on two disks.

A/UX supports access to files as long as they are part of an A/UX file system. A file system is a regular data structure that can contain files and directories. A file system is just one type of structure that may be placed inside of a partition. For an A/UX file system to be useful, the beginning of the file system must coincide with the beginning of a partition. Then, the starting offset block of the partition can be interpreted as the first block of the file system superblock. This process is illustrated in Figure 5-4 as step 2 of the file access sequence.

been identified for A/UX use. A/UX locates the partitions that contain valid A/UX nie systems by first reading the partition map.

A/UX slice numbers allow for mulitiple, simultaneously active, and user-configurable file systems that can be accessed through a much simpler user interface.

A partition that has been identified for A/UX use is assigned a slice number. The slice numbers are A/UX-specific: A/UX performs the service of translating slice numbers into the associated partition locations on the disk. Sometimes you must use special A/UX programs to force A/UX to associate a slice number with an otherwise unrecognized partition.

Many UNIX® systems employ the term slice in place of partition. It is not entirely correct to say that A/UX employs slice numbers to distinguish partitions. Partitions always exist. Slice numbers exist for a partition only if the partition has been recognized for A/UX use (slice numbers are never associated with Macintosh partitions). Because there is no one-to-one correspondence between a slice and a partition, calling a partition a slice can create confusion. A partition that has an associated slice number is more meaningful because it brings the partition into the context of UNIX.

A slice number alone is insufficient to reference a partition. For this reason, the SCSI ID number is also used, and both are made a part of a filename construct that really represents a logical disk device, as described in the section "Using Partition Administration Commands." Only selected administrative commands require you to reference a partition by slice numbers, since this kind of access is profoundly different from the kind that is moderated through a mount point.

When a partition contains an A/UX file system, you can use mount(1M) to enable normal (simplified) access to the file system. However, a slice number must be associated with the partition first.

3.1.2 A user's perception of slice numbers

The user's view of a file system is highly regular, since most of the exceptional details about it are disguised to appear as something more familiar. This is a common occurrence within A/UX. For example, a terminal can be accessed from what appears to be a filename. A filename such as this is one of those "exceptional" objects (a terminal)

that is represented as a more familiar object (a file). It not only appears as the more familiar object but also can be acted upon with many of the same commands that apply to the more familiar object.

Likewise, the directory that is the start point for another file system is treated like any other directory. A directory is analogous to a Macintosh folder, a structure that can contain other nested directories and files.

From the user's point of view, an A/UX file system is a collection of directories and files that are all subordinate to a directory that is used in a special way, called a mount point. By just looking at it, you cannot tell that a directory is a mount point. When a mount point appears in a listing (see 1s(1)), it seems like any other directory.

Figure 5-5 illustrates the use of mount point, in this case /groups and /users. The curved lines with arrowheads represent the mounting process. Before file systems are mounted on them, the /groups and /users directories would typically be empty.

great regularity, it soon becomes the name identifying the file system.

As a practical matter, the mount point is what the user needs to know to gain access to the files in the file system. Even though the mount point is a symbolic name for the file system, it is the name that the user must remember. Certainly, remembering the name is easier than remembering the slice number. However, the system administrator can't completely forget the slice number.

As the system administrator, you control the symbolic name for a file system simply by using the normal file renaming command, mv(1), but this works only while the file system is unmounted.

But, the symbolic way of referencing a file system is available only after you mount the file system by using the mount(1M) command. Before that, you must use alternate ways of referencing the file system. Without a doubt, these alternate methods require greater understanding of partitions, slice numbers, file systems, and mount points. You need to know how all these provisions interrelate.

The mounting process is the platform that bridges the partition-referencing slice numbers and the file-system referencing mount point. The existence of a mount table entry for the mount point acknowledges that the starting block offset to a partition is known and that it should also be interpreted as the first block in a valid A/UX file system. The association of a slice number with a partition acknowledges that the starting block of a partition is known and that it is available for A/UX use. Then certain "partition-level" or "file-system-level" operations can be performed upon the associated partition (see "Using Partition Administration Commands").

It is not hard to imagine some error conditions that would foul up operations considerably. If A/UX has no business poking around in a Macintosh partition, then such a partition should never be allowed to become associated with an A/UX slice number. Similarly, a partition that does not contain an A/UX file system (such as swap space) should never be allowed to become associated with a mount point. The programs that govern these resources (mkfs, mount, umount, and pname) must work to avoid invalid associations such as these.

3.2 The methods of choosing a partition

The remainder of this chapter makes extensive reference to the A/UX device filenames used to identify the HD SCs and the partitions within them. This is because the commands available to manipulate file systems (mkfs, mount, and others) must be able to access file systems without going through the mount table.

For the administration of disks within A/UX, you must use the slice number and the SCSI ID number to reference a partition on a particular disk. Since these are placed in what appears to be just a normal A/UX pathname, you will need to know the format of that pathname as described in "Using Partition Administration Commands."

The good news is that A/UX tries to correlate partitions to slice numbers according to some simple rules. A/UX automatically gives fixed slice numbers to partitions created within HD SC Setup, as long as they are selected to be certain A/UX types of partitions (as shown in Table 5-1, later in this chapter). However, if a partition is not yet associated with a slice number, you need to use pname or dp to create this association. Until a slice number identifies the partition, you cannot perform any partition administration tasks, such as creating or mounting a file system partition. Of course, if there is no slice number, you must use pname and dp to reference partitions.

Within HD SC Setup, referencing a partition is not much of an issue for several reasons. The user need only click a screen graphic that represents all of the partitions available. From a system viewpoint, HD SC Setup does not actually have to make disk accesses into the partitions to create them, since the program merely updates the partition map at a known disk location.

Because HD SC Setup and A/UX use different partition referencing methods, you need to know how they relate to correlate the partitions of one to those of the other.

Thus, you may sometimes be forced to use the dp and pname utilities to make A/UX recognize a partition by its slice number. The difficulty of doing this is compounded because these A/UX utilities use the partition name and the partition index number to reference partitions. Unfortunately, HD SC Setup does not automatically show you the index number or the partition name to help you correlate what you see

in HD SC Setup with what you see when you use dp and pname. However, HD SC Setup does show you the partition type, which is very similar to the partition name—enough so that the partition name can be of great help when you must use dp and pname to force A/UX to recognize a partition (a procedure for this is included in "Using dp and pname").

3.3 Using partition administration commands

Most of the commands you use to administer partitions require you to specify a partition. By constructing the appropriate pathname, you specify which disk partition is the object of the administrative operation (such as mkfs, mount, or fsck). Certain components of this pathname vary, since the SCSI device number and a slice number are parts of the pathname.

For most administrative purposes, you reference a particular partition on particular HD SCs according to the following pathname format:

/dev/dsk/cndmsy

The directory /dev lists all of the devices under A/UX. The subdirectory dsk lists the block devices that you can mount as A/UX file systems, for instance, the HD SCs.

The value of n after c is the SCSI ID of the HD SC; the value of m after d is the number of the subdrive at that SCSI ID; and the value y after s is the slice number associated with a particular disk partition.

Some controller boards support multiple disk drives from one SCSI ID, and m selects that second drive. However, all of the HD SCs that you connect to the Macintosh II through its built-in SCSI port have separate SCSI ID numbers; none will be identified as subdrives. For example, the internal hard disk on a Macintosh II is identified by the device name /dev/dsk/c0d0sy; the first external HD SC—when given SCSI ID number 5, as is the convention—is identified as /dev/dsk/c5d0sy. The following is a short list of conventions that Apple currently employs:

Slice 31 always refers to the entire disk.

- For the boot drive, slice 0 always refers to the root partition.
- For the boot drive, slice 1 is used for the swap partition.

4. The general steps in creating A/UX file systems The complete procedure for creating custom-size A/UX file systems involves two main steps:

- 1. Boot the Macintosh operating system and use HD SC Setup 2.0 to allocate A/UX partitions.
- 2. Boot A/UX and use mkfs to create a file system for each A/UX partition in which you want an A/UX file system.

4.1 What mkfs writes onto a partition

The mkfs program creates file systems by placing the correct initial values into a superblock and storing them at the starting block offset for the associated partition.

To run mkfs, you must supply a slice number and SCSI ID numbers as part of a special filename construct. This construct identifies the partition and disk to receive the file system (see "Using Partition Administration Commands," earlier in this chapter).

The file system initially created by mkfs has no files. All the blocks available for data storage are placed on the free list.

One of the optional parameters you can supply when you run mkfs is the number of inodes you wish to create.

An inode is another data structure nested inside the superblock, which includes a list of pointers to blocks. Some of these pointers are used to point directly to the first few blocks allocated to the associated file. The remaining pointers are known as indirect pointers; they point to supplemental blocks, the contents of which are interpreted as additional direct or indirect pointers.

By specifying the number of inodes on the mkfs command line, you can override the more conservative number of inodes that mkfs calculates for you otherwise. You can even request 65,535 inodes, creating a superblock large enough to support the maximum number of files that one file system can contain. (The du command can be used

to determine how many inodes and blocks are free.) This can be useful if you know your application will require great numbers of small files (so that partition space is not likely to run out before superblock inode storage runs out).

You may need to create A/UX file systems when you normalize a partition or reconfigure your partitions by resizing, adding, or deleting partitions.

4.2 When reconfiguring partitions

The following is a list of overall steps you should complete to reconfigure partitions or to normalize them:

- 1. Make backups of your existing file systems.
- 2. If you know you are going to create file systems of the same size when you partition the disk over again, you can use a file system utility such as dump.bsd(1M). (This utility creates a backup that, when it is restored, overwrites the old superblock as well as the old files.) Otherwise, use a file-oriented backup utility such as tar(1) or cpio(1). These two utilities are more flexible, since they allow restoration of individual files or all the files onto any valid A/UX file system with enough space.
- 3. Use either the procedures in "How to Create an A/UX File System of Maximum Size" or the procedures in "How to Create Custom Partitions."
- 4. Restore the original contents of the file system using the appropriate utility.

4.2.1 When re-initializing an error-prone disk

Another possible context in which you may need to create an A/UX file system is when, after trying all the less drastic efforts to correct disk errors, you resort to HD SC Setup to re-initialize an error-prone disk. When you normalize partitions (recreating them under HD SC Setup 2.0) you can use the Tape Backup 40 SC hardware to make tape backups of A/UX data as well as Macintosh data. The following is a list of overall steps you take to re-initialize an error-prone disk.

1. Use the short procedure described in "Ensuring Apple HD Compatibility with A/UX."

- ☐ If you don't recover normal operations after the first try, then you don't need to repeat it. Otherwise, if you no longer experience errors, this action alone must have been successful in restoring normal disk operation. In that case, do not perform any of the subsequent steps.
- 2. If you are still experiencing disk troubles, use the file system consistency check, fsck(1M).

Normally, fack can fix most data storage inconsistencies on the disk, but you may have to run it few times before it no longer reports errors.

- 3. If you are still experiencing disk troubles, you may have no choice but to re-initialize the disk. Use either the procedures in "How to Create an A/UX File System of Maximum Size" or the procedures in "How to Create Custom Partitions." Take care to make file systems large enough to recover your file systems in their entirety (consult your previous hard-copy records for your old file system sizes).
- 4. Restore the original contents of each of the file systems using the most recent backups available.

5. How to create an A/UX file system of maximum size

The following procedure lists the steps you take to create an A/UX file system of maximum size within an Apple hard disk SC. This procedure erases any data stored on the disk. If you are using a disk that already contains data, refer to "The General Steps in Creating A/UX File Systems" for important instructions. The disk you are preparing should already be installed physically, along with the associated cables and the SCSI cable terminator: The power should be switched on.

- 1. Start or restart your Macintosh II after inserting your Utilities Disk in the floppy drive.
- 2. Open the Utilities Disk by double-clicking its icon, or by clicking its icon to highlight it, and then choosing Open from the File menu.

drive does not appear, the drive may be switched off or incorrectly connected. Check your power switch and connections.

5. Click Initialize if the disk has not been initialized before.

A dialog box appears, reminding you that initializing erases all of the information on the hard disk. To continue, click Init.

Messages appear in the HD SC Setup dialog box, explaining the progress of the initialization. Initialization takes several minutes, depending on the size of your hard disk.

In addition to preparing the disk, HD SC Setup's Initialize command automatically tests the disk, installs the driver, and installs one large Macintosh partition.

If you see a message that the hard disk failed to initialize properly, try again. If you are still unable to initialize, there may be a hardware problem. Check that the cable and power cord are properly connected and also that a terminator is properly installed. If the disk still fails to initialize, see your authorized Apple dealer or representative.

6. If necessary, name the disk.

Unless the disk is already named, the program prompts for a name. You can type up to 27 characters, and you can use any keyboard character except the colon (:). Then press RETURN or click OK. After the disk has a name, a message tells you that initializion was successful.

The disk name appears with the hard disk icon as long as you leave a Macintosh partition on the disk. If you place A/UX partitions exclusively on the auxiliary hard disks, no hard disk icons appear on the desktop when you start the system with a system disk (or when you start the system from the A/UX distribution disk, but quit the sash application rather than launch A/UX).

7. Click Partition.

The Partition dialog box appears. See Figure 5-8.

		Click Remove.
		An alert box asks you to confirm that you want to erase the information in the partition.
		Click OK.
		When you remove a partition, the space it occupied becomes gray to represent free space.
10.	Add a	n A/UX partition.
		Drag the pointer to the gray rectangle representing free space and click in that space.

•

To create one large partition, adjust the brackets so that they engulf the entire length of the gray free space area. If you move the pointer to the left or the right of the rectangle, the brackets disappear.

The size, in kilobytes, is shown on the left. You don't need to be exactly at the maximum size at this point. You still have a chance to change it.

Apple HD SC Setup immediately presents the Partition Type dialog box, as shown previously in Figure 5-11. You use the left side to select a partition type for the custom partition you are creating, and the right side to adjust its size, if necessary.

- ☐ Select Root or Root&Usr as the partition type by clicking on it in the list at the left of the screen. The default slice number will be 0.
- ☐ If the Adjust Size box shows that your partition is not at the maximum size, double-click the Adjust Size box and enter the maximum size, which is displayed underneath this box.
- ☐ Write down the maximum size parameter.

Doubling this number gives you the number of 512-byte disk blocks that this partition consumes, which will be needed in a subsequent step.

☐ Click OK.

· ·

The mkfs utility constructs a file system on a device such as an HD SC. The format of the mkfs command you will enter is

mkfs /dev/rdsk/cnd0s0 number-of-blocks

The variables in this command for which you must supply values are as follows:

n The SCSI ID number of the disk. This number is normally 5 for the first external HD SC, or 6 for the second.

number-of-blocks The number of physical blocks partitioned on the disk. Calculate this number by doubling the number of kilobytes that HD SC Setup reported as the maximum partition size in step 10.

☐ Replacing the correct values for the variables in

mkfs /dev/rdsk/cnd0s0 number-of-blocks

enter the mkfs command. For example, suppose that the SCSI ID number for the disk you are preparing is 6, and you had noted 42099K as the number of physical blocks available for the partition. If so, after doubling the number of blocks you would enter the following command:

mkfs /dev/rdsk/c6d0s0 42099

The following message appears:

Mkfs:/dev/dsk/c6d0s0?

(interrupt if wrong)

You have 10 seconds to signal an interrupt to cancel the mkfs command. Unless you have made a typing error, don't interrupt the command. The mkfs command begins constructing a file system on the partition of your external HD SC. When mkfs is finished, it reports the total number of logical blocks and inodes created on the disk and returns your command prompt. This may take a few minutes.

15. Run fack on the new file system partition.

To ensure the consistency of the file system you just made, run the fack utility and enter the following command, but be sure to substitute the hard disk's SCSI ID number for n.

fsck -y /dev/rdsk/cnd0s0

For example, if the SCSI ID number of your new external HD SC is 6, use the following command:

fsck -y /dev/rdsk/c6d0s0

If there are any inconsistencies, fack automatically repairs them for you. If you prefer to see the inconsistencies and confirm repair, do not use the -y flag.

16. Decide on a mount point for the new file system.

You attach an A/UX file system to the rest of the directory hierarchy at a mount point. You can use any directory for a mount point. However, it is usually best to use an empty directory, because the mounted file system overlays any files in the directory, making them inaccessible during that time. The empty directory /mnt was shipped on your A/UX distribution disk as a convenient mount point. However, you may want to reserve /mnt for temporary file systems; for example, you may wish to use /mnt for mounting file systems on removable 3.5-inch disks.

To create the directory intended for use as a mount point, enter:

mkdir /mount-point

For the example in the next few steps, slice 0 of your external HD SC with SCSI ID number 6 is assumed to be dedicated to hold documentation. In that case, the following command line makes a descriptive mount point:

mkdir /pubs

This directory / pubs is the mount point where you could attach the newly created file system.

17. Mount the new file system.

Replacing the SCSI ID number of the HD SC for n, and replacing the partition slice for y, enter the following command:

mount -v /dev/dsk/cnd0sy /mount-point

The command returns a message informing you that your new file system is now mounted at mount-point.

For the example cited earlier, you would enter

mount -v /dev/dsk/c6d0s0 /pubs

- 18. Create a lost+found directory for the new file system.
 - ☐ Change the directory to the mount point of the new file system.

cd /mount-point

For the example cited earlier, enter the command

cd /pubs

☐ Type the following command to create a lost+found directory on the new file system:

mklost+found

This command reports its progress as it creates a lost+found directory in the top directory of the new file system, and creates and removes empty files to make slots available for future use.

In the future, when you run fack on this file system after a system crash, and the files have become unconnected in its directory structure, fack will place the files in this lost+found directory. Files connected to lost+found are named by their inode number instead of their original filenames. You can use the ls-l command to determine who the owners are, and then tell the owners

to copy the files back to their directories under their original filenames.

19. Test the file system.

To verify that your new file system is accessible, try writing to it and reading from it with the following commands:

cp /etc/passwd /mount-point/mount.test
cat /mount-point/mount.test

Your system's password file should scroll across your screen. Enter the command

rm /mount-point/mount.test

to remove the test file.

If the password file did not appear, reenter the commands in this step and make sure you type them correctly. If the password file still does not appear, start over at step 14.

20. Update the mount entries in /etc/fstab.

You'll also want to update the file system table in /etc/fstab.

When changing an important system file like this, it is always a good idea to first make a copy of it. That way, if something goes wrong, you can always reinstate the copy to its original name and restore your system to its previous state. After copying /etc/fstab, edit the file to include the line

/dev/dsk/cnd0s0 mountpoint 5.2 rw 0 2

For an explanation of the fields in /etc/fstab, see Figure 8-8, "A Description of Sample Entries in /etc/fstab." See the section "Multiple File Systems and fsck" in Chapter 8 for more information on the relevance of these fields. You can also see fstab(4) in A/UX Programmer's Reference.

6. About creating custom partitions

HD SC Setup may be used with any Apple SCSI hard disk—such as the Apple HD 20SC, the HD 40SC, or the Apple HD 80SC—that's

connected internally or externally to a Macintosh computer. HD SC Setup provides A/UX users with an easy way to allocate space for custom-size A/UX partitions.

The following procedure leads you through the use of HD SC Setup to create a custom disk partitioning scheme, which is recorded in the disk's partition map (see "Why Disk Subdivisions Are Beneficial" for details).

At step 4 of this procedure, you are instructed to initialize the disk if necessary. This will destroy any existing information on the disk. If the disk contains data, the disk is already initialized, and you need not reinitialize it. Likewise, the partitioning that you do after initialization will render the old data unreadable (unless the new partitioning scheme is exactly the same as the old one and you used the same version of HD SC Setup you used to create the new and original partitions). If you are using a disk that already contains data, refer to "When Reconfiguring a Partition" for important instructions. The only time you should reinitialize is when the information on your disk has become unreadable, and only after you have made repeated attempts to fix it using fsck(1M) and HD SC Setup as described in "When Reconfiguring a Partition."

The sequence of steps you take to create a custom partition scheme flows predictably until the final step of "How to Create a Custom Partition." Then the course of action you take depends on the partitioning scheme you are trying to create.

6.1 How to create a custom partition

Follow steps 1-8 in "How to Create an A/UX File System of Maximum Size." Then follow these steps to create custom partitions:

9. Use the subprocedures in "Subprocedures for Creating Custom Partitions" as necessary to create the desired partitions.

At this step, you must decide what subprocedures detailed in "Subprocedures for Creating Custom Partitions" are necessary to arrive at the desired number of partitions and desired sizes. These additional instructions lead you through the use of the Details, Remove, and Group buttons. There are also instructions for the addition of a new partition, which is invoked by clicking in the gray area representing free space.

If there is no free space in which to create new partitions (there is no gray area), you may need to remove a partition, such as the Macintosh partition that is automatically created when you initialize the disk. You can start adding custom-size partitions in this newly gained space.

To resize an existing partition, you must first remove it, then recreate it at the desired size (see "To Remove a Partition" and "To Add a Partition").

10. When you have created the desired partitioning scheme, turn to "Quitting HD SC Setup."

7. Subprocedures for creating custom partitions

From "How to Create Custom Partitions," you were directed to proceed to the subprocedures that follow. At this point, you can proceed in various ways, depending on the number and sizes of the partitions you wish to create. The subprocedures that you may need are those for removing, adding, grouping, moving, and viewing partitions. Each of these subprocedures is described in a separate section.

After you have created the custom partitions you desire, turn to "Quitting HD SC Setup."

7.1 To remove a partition

You remove existing partitions to make space for new custom partitions. Working in the Custom Partition dialog box, you can remove any partition from your hard disk.

The following steps lead you through the removal of a partition. Before you can use this subprocedure, you must have on the screen the Custom Partition dialog box shown previously in Figure 5-9.

Important: Don't remove the driver partition unless you have a special reason. Without the driver partition, you won't be able to use your disk after restarting your Macintosh.

1. Select the partition you wish to remove by clicking anywhere in its rectangle.

The name of that partition is highlighted to show that it has been selected.

2. Click Remove.

An alert box asks you to confirm that you want to erase the information in the partition.

3. Click OK.

Click Cancel if you decide not to remove the partition.

When you remove a partition, the space it occupied becomes gray to represent free space. If another area of free space is adjacent, the two rectangles are combined.

7.2 To add a partition

Before you can add a new partition, there must be a section of free space large enough to hold your new partition. If there is insufficient free space, remove one or more partitions. (For more information, see the preceding section, "To Remove a Partition.")

If the free space is divided into sections by existing partitions, with no single section large enough to hold your new partition, you need to remove a partition or combine the sections of free space by *grouping* the partitions. (For more information, see the next section, "To Group Partitions.")

The following steps lead you through the addition of a new partition. Before using this subprocedure, you must be at the Custom Partition dialog box shown in Figure 5-9.

1. Drag the pointer to a gray rectangle representing free space, and click in that space.

As shown previously in Figure 5-10, HD SC Setup draws two brackets representing the new partition. If you place the pointer in the upper half of the free space rectangle, the brackets start at the top of the free space; if you place the pointer in the lower half of the free space rectangle, the brackets start at the bottom of the free space.

2. Drag the pointer up or down to adjust the size of the new partition.

If you move the pointer to the left or the right of the rectangle, the brackets disappear.

The size, in kilobytes, is shown on the left.

3. Release the mouse button when you are satisfied with the size of the new partition.

You don't need to be exact. You still have a chance to change it.

Apple HD SC Setup immediately presents the Partition Type dialog box, as shown previously in Figure 5-11. You use the left side to select a partition type for the custom partition you are creating. You use the right side to adjust its size.

4. Select the partition type by clicking in the list on the left.

You have several choices for A/UX partitions, some of which are automatically assigned a slice number for use under A/UX, as Table 5-1 shows.

Table 5-1. A/UX partition types available

A/UX Partition Type ·	A/UX Slice Number
Eschatology, Eschatology2	(none)
Misc A/UX	(none)
Root, Root&User	Ŏ
Swap	1
Usr	2

Note that three of the A/UX partitions are not automatically mapped into a slice number. They are Eschatology, Escahtology2, and Misc A/UX. To associate these partitions with slice numbers, you must use the A/UX pname(1M) utility (see "Using dp and pname").

5. If you wish to change the size of the partition, double-click the Adjust Size box and enter the correct size in kilobytes.

You can enter the partition size to a precision of a half-kilobyte (0.5K). HD SC Setup will not allow other fractions.

You can change the size by typing a new number for the size of the partition.

The maximum possible size is shown below the Adjust Size box; if you've selected a partition type, the minimum possible size is also shown.

6. Click OK.

The HD SC Setup program creates the new partition and again presents the Custom Partition dialog box, where the new partition is shown.

You can create another custom partition as long as you have sufficient free space, but you can select only a listed partition type.

Click Cancel in the Partition Type dialog box if you wish to return to the Custom Partition dialog box without creating a new partition.

7. Click Done in the Custom Partition dialog box to return to the main HD SC Setup dialog box.

7.3 To group partitions

If you have created two or more partitions on your disk, and free space separates them, you may eventually end up with multiple free space areas that could be consolidated into one large free space area. Grouping partitions combines the free space on your disk.

Sometimes this function is not available, for instance, when there are no free space areas remaining. At such times the Group button is dimmed.

Before you can use this subprocedure, the Custom Partition dialog box, shown in Figure 5-9, must be on the screen.

1. Click Group.

HD SC Setup presents an alert box, warning that moving information from one portion of your disk to another will take time. Because grouping usually means that a large amount of information is being moved, HD SC Setup also warns that some information might be lost.

2. Click OK.

All partitions are grouped together on the disk, and they are shown together at the top of the Custom Partition display.

Click Cancel if you decide not to group the partitions.

7.4 To move a partition

You can also use the mouse to move a partition into adjacent free space or into any free space larger than the partition.

Before you can use this subprocedure, the Custom Partition dialog box, shown in Figure 5-9, must be on the screen.

- 1. Click the partition to be moved.
- 2. Drag the partition to its new position.

HD SC Setup won't let you move a partition "just a little bit" into an adjacent free space. You must drag the partition more than half way.

When you release the mouse button, HD SC Setup presents an alert box, warning that moving information from one portion of your disk to another will take time. HD SC Setup also warns that some information might be lost in the process.

Click OK to confirm.

Click Cancel if you decide not to move the partition.

7.5 To view your partitions

Before you can use this subprocedure, the Custom Partition dialog box, shown in Figure 5-9, must be on the screen.

Follow these steps to see the size of your partitions:

1. Click the Details button.

Select Restart from the Special menu. Do not reinsert the Utilities disk. Rather, let the system boot from your installed version of A/UX. The sash startup application should boot A/UX to single-user mode.

2. Use mkfs to make a file system inside an existing partition.

The mkfs utility constructs a file system on a block device such as an HD SC. The format of the mkfs command you will enter is

mkfs /dev/dsk/cnd0sy number-of-blocks

The variables for which you must supply values in this command are:

- n The SCSI ID number of the disk. This number is normally 5 for the first external HD SC, or 6 for the second.
- y The A/UX disk slice number, which identifies a particular partition.

number-of-blocks The number of physical blocks that mkfs should reserve for the new file system. You can arrive at this number by doubling the number of kilobytes that were allocated for the corresponding partition within HD SC Setup, or by noting the number of physical blocks reported for each partition name after entering

echo P | dp -q /dev/dsk/cnd0s31 | egrep "NameiPhy"

The resulting report shows the name and size of each partition, for example,

2. Click OK to close the Details window and return to the Custom Partition dialog box.

8. Quitting HD SC Setup

 Click Done in the Custom Partition dialog box to return to the main HD SC Setup dialog box.

When you are satisfied with the partitioning scheme you have obtained using the subprocedures, click Done.

2. Click Quit to return to the desktop.

No icon will show on the desktop for the new disk unless a Macintosh partition was created somewhere on the disk.

Proceed to the section, "Making an A/UX File System Partition."

9. Making an A/UX file system partition

You probably want to store files and programs in the partitions created by HD SC Setup. To do so, you first need to create the A/UX file system structures that support them. Another possible use for partition space is as an A/UX swap area, as described in "Adding Swap Space." Before proceeding with an A/UX file system partition, you should know how A/UX references partitions.

9.1 Making and mounting an A/UX file system

After partitioning your disk with HD SC Setup, you can make A/UX file systems for those partitions in which you intend to store files and programs. For each such file system, perform the following steps.

Note: Some partition configurations cannot take advantage of the automatic slice number mapping. Table 5-1 shows how A/UX attempts to map the various partition types to unique slice numbers. Until you associate these partitions with slice numbers manually, you cannot use them in the following procedure. Refer to the next section, "Using dp and pname," as necessary before continuing.

1. Boot A/UX to single-user mode.

that the SCSI ID number for the disk you are preparing is 6, you created a root partition at slice 0, and the dp utility reported that your disk has 156353 physical blocks available for the partition. If so, you would enter the following command:

mkfs /dev/dsk/c6d0s0 156353

The following message appears:

Mkfs:/dev/dsk/c6d0s0?

(interrupt if wrong)

- ☐ You have 10 seconds in which to signal an interrupt to cancel the mkfs command. Unless you have made a typing error, don't interrupt the command. The mkfs command begins constructing a file system on the partition of your external HD SC. When mkfs is finished, it reports the total number of logical blocks and inodes created on the disk and returns your command prompt.
- 3. Run fack on the new file system partition.

To ensure the consistency of the file system you just made, run the fack utility by entering the following command, but be sure to substitute the SCSI ID number of the HD SC for n and to substitute the slice number of the partition for y.

fsck -y /dev/dsk/cnd0sy

For example, if your new external HD SC has SCSI ID number 6 and the slice number of the partition is 0, enter the command

fsck -y /dev/dsk/c6d0s0

Name: "Swap", Type: "Apple_UNIX_SVR2"

Physical: 19606 @ 108532, Logical: 19606 @ 0

You can associate these physical sizes with the correct slice number through the partition names. Thus, you can associate the swap partition reported previously with the line identified as the swap partition by entering

pname -p

Each line reported by pname includes the partition name and type, followed by three numbers separated by colons. The last of these numbers is the slice number. (These three numbers correspond to the variables in the pathname /dev/dsk/cndmsy.)

A/UX Root:Apple_UNIX_SVR2:0:0:0

Swap:Apple UNIX SVR2:0:0:1

For the sample output shown in the preceding examples, you can see that a partition named Swap is slice 1 of disk 0, and that its size is 19606 physical disk blocks.

Note: If the report created with pname -p does not include a partition that you made with HD SC Setup, you can still associate it with an A/UX slice number in one of two ways: (1) If the partition type is Root (or Root&Usr), Swap, or Usr, use slice numbers 0, 1, or 2, respectively. (2) Otherwise, use dp and pname to force A/UX to recognize the partition and provide it with a slice number, as described in the next section, "Using dp and pname." The latter method is also necessary when you have more than one partition of the same type, such as two swap partitions. It is also necessary when you have more than one partition of either Root or Root&Usr type.

☐ Replacing the correct values for the variables in mkfs /dev/dsk/cnd0sy number-of-blocks enter the mkfs command. For example, suppose

 If any inconsistencies exist, fack automatically repairs them for you.

4. Make a mount point for the new file system.

You attach an A/UX file system to the rest of the directory hierarchy at a mount point. You can use any directory for a mount point, but any files in the directory will be obscured for the duration of the mount. For example, the empty directory /mnt was shipped on your A/UX distribution disk as a convenient mount point. However, you may want to reserve /mnt for temporary file systems; for example, you may wish to use /mnt for mounting file systems on removable 3.5-inch disks.

To create the directory intended for use as a mount point, enter

mkdir mount-point

For the example in the next few steps, slice 0 of your external HD SC with SCSI ID number 6 is assumed to be dedicated to hold documentation. In that case, the following command line makes a descriptive mount point:

mkdir /pubs

This directory / pubs is the mount point where you could attach the newly created file system.

5. Mount the new file system.

Replacing the SCSI ID number of the HD SC for n, and replacing the partition slice for y, enter the following command:

mount -v /dev/dsk/cnd0sy mount-point

The command returns a message informing you that your new file system is now mounted at mount-point.

For the example cited earlier, you would enter

mount -v /dev/dsk/c6d0s0 /pubs

- 6. Create a lost+found directory for the new file system.
 - ☐ Change the directory to the mount point of the new file system.

cd mount-point

For the example cited earlier, enter the command

cd /pubs

☐ Enter the following command to create a lost+found directory on the new file system:

mklost+found

This command reports its progress as it creates a lost+found directory in the top directory of the new file system, and creates and removes empty files to make slots available for future use.

In the future, when you run fack on this file system after a system crash, and files have become unconnected in its directory structure, fack will place the files in this lost+found directory. Files connected to lost+found are named by their inode number instead of their original filenames. You can use the ls-l command to determine who the owners are, and then tell the owners to copy the files back to their directories under their original filenames.

7. Test the file system.

To verify that your new file system is accessible, try writing to it and reading from it by giving the following commands:

cp /etc/passwd mount-point/mount.test
cat mount-point/mount.test

Your system's password file should scroll across your screen. Enter the command

rm /mount-point/mount.test

to remove the test file.

If the password file did not appear, reenter the commands in this step and make sure you type them correctly. If the password file still does not appear, start over at step 1 of this section and repeat all of the steps.

8. Update the mount entries in /etc/fstab.

You'll also want to update the file system table in /etc/fstab.

When you change an important system file like this, it is always a good idea to make a copy of it first. That way, if something goes wrong, you can always reinstate the copy to its original name and restore your system to its previous state. After copying /etc/fstab, edit the file to include the line:

/dev/dsk/cnd0s0 mountpoint 5.2 rw 0 2

For an explanation of the fields in /etc/fstab, see Figure 8-8, "A Description of Sample Entries in /etc/fstab." See the section "Multiple File Systems and fsck" in Chapter 8 for more information on the relevance of these fields. You can also see fstab(4) in A/UX Programmer's Reference.

9.2 Using dp and pname

Perform the following procedure if you have made a partition configuration that:

 includes any partitions of type Eschatology, Eschatology2, or Misc A/UX includes two or more partitions that map to the same slice number (For example, Root and Root&Usr both map to slice 0.)

These kinds of partitioning configurations cannot take advantage of the automatic slice number mapping. (Table 5-1 shows how A/UX attempts to map the various partition types to unique slice numbers.)

Until you associate these partitions with slice numbers, you cannot use them for A/UX purposes, such as for creating, mounting, and checking file systems.

The following procedure leads you through the necessary steps to locate partitions with non-unique slice numbers or missing slice numbers, and to make any necessary changes. First, you should have already created and mounted file systems with automatically mapped slice numbers.

- 1. Boot A/UX to single-user mode, if you have not done so already.
 - Select Restart from the Special menu. Do not reinsert the Utilities disk. Rather, let the system boot from your installed version of A/UX. The startup application should boot A/UX to single-user mode.
- 2. Use the dp utility to obtain the index numbers for any partitions with identical names, and if present, change the duplicates to unique names.
 - ☐ Replacing the drive number n with the SCSI ID number of the desired disk, enter the following command:

echo P i dp -q /dev/rdsk/cnd0s31 i egrep "Index/Name"

The fstab file includes all the old mount points. The dp utility responds with a report showing the index number and name of each partition allocated on that disk using the Apple HD SC Setup program. Note these values. You will use them in a susbsequent step.

The names shown by dp are usually very close to the partition types you saw in HD SC Setup. One exception is that the Misc A/UX partition type is named Random A/UX fs under dp.

If duplicate names exist, you must assign unique names by using the editing capabilities of dp. If no duplicates exist, proceed to step 4.

☐ Replacing the drive number n with the SCSI ID number of the new HD SC, enter the following command:

dp /dev/rdsk/cnd0s31

The dp utility then prompts you for a command. For example, if you are partitioning a disk with SCSI ID number 6, the following message appears:

"/dev/dsk/c6d0s31" m partitions, m allocated [unknown sizes]
Command?

Note: If you get a different response, press the lowercase q to quit dp. Reenter the dp command just given, making sure that you specify the correct SCSI ID and that you type the command correctly.

- ☐ Repeat the following series of substeps as many times as necessary to eliminate duplicate partition names.
 - Replacing the value x with the index number of one of the identically named partitions, enter

cx

You are prompted to identify the attribute field that you wish to change.

DPME Field?

• Enter

n

to begin changing the partition's *name* field. Now you're prompted for a name for the partition.

Name [Old-name]:

 Give the partition a name that is unique and that does not contain any embedded spaces. If A/UX_Partition has not already been used, then you can enter

A/UX Partition

Again you're prompted for the attribute field that you wish to change.

DPME Field?

Enter

q

to return to the dp utility's first menu level. You will see the Command? prompt.

Command?

☐ If you have no more non-unique partition names, you should save all the accumulative changes and quit dp by entering:

¥

a

The root command prompt should reappear on your screen.

Otherwise, if you still have any remaining partitions without unique names, return to the substep in which you enter the index number (cx).

 If you have partitions named other than Swap, Root or Root&User, or Usr, then use pname to associate slice numbers with these unmapped partitions.
 Using the -a flag causes pname to write the selected slice to the file /etc/ptab. Once this is done, the appropriate

association will be made each time you boot A/UX.

☐ Replacing the drive number n with the SCSI device number of the disk, and Name with the name of a remaining unmapped partition, enter

pname -a -cn "Name"

at the root command prompt. The pname utility responds with the A/UX pathname by which that partition can now be referenced for general use. Note that pname has assigned a slice number for the partition, and so the partition is no longer unmapped.

- ☐ If you have no remaining unmapped partitions, proceed to the next step; otherwise, repeat the pname command for every unmapped partition.
- 4. If you have both a Root and a Root&User partition, their automatically mapped slice numbers won't be unique. Use pname to give one a new slice number.
 - ☐ To discover which of the two conflicting partitions is currently recognized, enter

pname -p

· at the root command prompt.

☐ Next, let pname assign a new slice number to the currently unrecognized partition. Enter the name of the partition not yet recognized.

pname -a -cn "Name"

The pname utility responds with the A/UX pathname by which that partition can now be referenced for general use.

5. If you want to run file system consistency checks against the new partitions each time you reboot, then the startup files need to be altered. See "Multiple File Systems and fsck" in Chapter 8.

10. Adding swap space

You can use the space allocated for a partition not only to create file systems but also to increase the A/UX swap area. The partition that you wish to use for swap space must already be associated with a unique slice number. Refer to the previous section, "Using dp and pname," to determine whether you need to perform any additional steps and what those steps are. These A/UX requirements for disk access are explained in detail in "The Three Steps of a File Access."

Two steps are involved in using a partition as additional swap space. The first is to obtain the information you will need to specify in the /etc/swap command line. Once you know these details, the next step is to enter the appropriate command request containing those details.

 To start, obtain the starting disk block where the partition begins and the length of the partition in disk blocks.
 Replacing the SCSI device number n with the correct value, enter

```
echo P | dp -q /dev/dsk/cmd0s31 | egrep "Name/Phys"
```

Note the statistics provided for the partition you wish to be used as swap space. For example, if the partition name is swap, the block offset to it is 108532, and its size is 19606, the following two lines of information will appear somewhere in the output of the preceding command:

Name: "Swap", Type: "Apple_UNIX_SVR2"
Physical: 19606 @ 108532, Logical: 19606 @ 0

pname -cn "Name"

If you run the preceding pname command, a pathname is returned. It shows what slice number is associated with the partition in terms of the standard pathname format /dev/dsk/cnd0sy (where y is the slice number).

Otherwise, if you did not have to map in a slice number yourself, the slice number is reported as the last of the three digits at the end of each line of output from the orginal pname command. The first of the three digits is the SCSI device number, which can help you identify the correct partition when you have two partitions with identical names on different disks. For example, assume the desired swap partition is on SCSI device 5. Then the following sample output shows that the correct slice number is 4:

Swap:Apple_UNIX_SVR2:0:0:1

Swap:Apple_UNIX_SVR2:5:0:4

4. Now you have all the important information you need for actually increasing your swap space. Replacing the SCSI device number for n, slice number for y, the offset for offset (108532 for the example cited earlier), and the physical size for length, enter

/etc/swap -a /dev/dsk/cnd0sy offset length

To confirm that you have done what you set out to do, obtain a report of the swap spaces currently in use by entering

/etc/swap -1

One-line descriptions of the swap areas are reported for each swap area currently recognized.

PLACE TAB HERE

MANAGING DISKS

BACK OF TAB

BLANK PAGE

Chapter 6 Managing Disks

Contents

_						_
1.	Introduction	•	•	•	•	1
2.	About autorecovery				•	1
	2.1 Overview		•		•	2
	2.2 Using autorecovery					2
	2.3 How autorecovery works					2
	2.4 autorecovery administration					4
	2.4.1 The eu utility	-		•	_	4
	2.4.2 The escher utility	•			•	5
	2.4.3 The eupdate utility	•	•	•	•	5
	2.4.4 Administration guidelines	•	•	•	•	6
	2.4.5 Troubleshooting	•	•	•	•	6
	2.4.5 Housieshooming	•	•	•	•	O
3.	Reclaiming disk space				•	12
	3.1 Trimming files that grow					12
	3.2 Serving read-only files via NFS					14
	3.3 Compressing infrequently used files					15
	3.4 Usage notes					16
	3.4.1 Extensions to names of compressed	•	•	•		
	files					16
	3.4.2 Compressing an archive of files	•	•	•	•	16
	3.5 Automating system administration with	•	•	•	•	10
	Cron					17
	Cron	•	•	•	•	17
4.	AppleCD-ROM and A/UX					18
	4.1 Mounting a CD-ROM as an A/UX file system	ì				19
	4.2 Mounting remotely					20

				,
	-			
·				

Chapter 6

Managing Disks

1. Introduction

Many sizes and makes of hard disks are available for use with A/UX. Regardless of make or size, any disk can become full, requiring you to provide more disk space. Also, any disk may fail, requiring you to recover data rather than lose it. This chapter gives suggestions on various means to free up space on disks to make room for user files. This chapter also describes autorecovery, a feature unique to A/UX. If you engage in periodic maintenance, you can use autorecovery to rebuild your system after a system crash. This chapter details the steps you take to use autorecovery successfuly.

You can install an Apple compact disc read-only memory (CD-ROM) under A/UX, thereby increasing storage capacity greatly. This chapter tells you how to install Apple's CD-ROM both on a single system and over a network.

2. About autorecovery

The autorecovery program is designed to ensure that an A/UX system can be brought to multi-user mode, capable of operating as part of a network. Before the system is booted, autorecovery identifies and compensates for bad disk blocks, file-system inconsistencies, and missing or damaged files. The autorecovery program is designed to protect you from sudden, catastrophic loss of data and to minimize the need for a technical expert to diagnose and repair system problems.

The autorecovery program does have limitations: It is concerned only with critical system files, and it does not restore damaged or missing user files. You must keep backup copies of your own files in case you need to restore them.

Although most of autorecovery's operation is automatic, you must perform some administration tasks to keep autorecovery running smoothly. This section describes the administration tasks.

2.1 Overview

The terms autorecovery and eschatology refer to the same A/UX feature. The term autorecovery refers to both the procedure that checks and repairs the A/UX file systems and to the special disk file systems used by this procedure. Eschatology is used in filenames and command names and in the arguments to commands.

Two areas on the A/UX disk are reserved for autorecovery. Each area is a distinct A/UX file system that contains copies of key system files and other information about A/UX. If a key system file is damaged or destroyed, autorecovery copies the file from one of these file systems to the A/UX root file system.

The autorecovery program uses a list of key system files known as the configuration master list, or CML. The CML appears in the A/UX root file system in the file

/etc/eschatology/init2files. A copy of this file appears in each autorecovery file system.

At boot time, autorecovery verifies the physical condition of the disk and then checks each file in the CML. The autorecovery program uses rules stored in the CML to check file attributes, such as size, ownership, permissions, type, modification time, version, and checksum. If any attributes do not match, autorecovery corrects the file attributes, if possible. If autorecovery cannot make these corrections, it replaces the file.

Because autorecovery depends on the CML, you must keep the CML up to date. When you add or change key system files, you must add new entries to the CML and update the files in the autorecovery file systems, using the autorecovery utilities eu and escher. The autorecovery program cannot function well unless a conscientious system administrator keeps the CML and autorecovery file systems updated.

2.2 Using autorecovery

The autorecovery program is run from the stand-alone shell (sash) when the system is booted. (See Chapter 2 of this book, "System Startup and Shutdown," and sash(8) in A/UX System Administrator's Reference for information on sash.) You can either run autorecovery manually each time you boot or set it up to run

automatically. To run autorecovery manually from sash, enter the command

esch -v -b

For a detailed explanation of the esch command and its options, see esch (8) in A/UX System Administrator's Reference. To set up the system to run autorecovery each time you boot, follow these steps:

- 1. Select the Cancel option from the sash window.
- 2. Select the Booting option from the Preferences menu.
- 3. Enter this command in the Autorecovery box:

esch -v -b

4. Click OK.

To suppress the automatic running of autorecovery, follow the same steps, but instead of entering the each command in the Autorecovery box, enter echo no autorecovery.

2.3 How autorecovery works

The autorecovery program proceeds through several phases. First, it examines the system information in its own file systems to verify that a system failure did not interrupt the previous invocation of autorecovery. If the autorecovery file systems are suspect, autorecovery cannot use them to restore damaged or missing files in the A/UX root file system. If autorecovery detects that an autorecovery file system was being updated when the system failed, it does not use that file system. If both autorecovery file systems are suspect, autorecovery does not continue.

After checking its own file systems, autorecovery checks each A/UX file system individually, verifying that all blocks are readable. It marks bad blocks so that they will not be used.

The autorecovery program then uses a version of fsck to check the A/UX root file system and each autorecovery file system for consistency. It attempts to correct any errors it finds. If a file system is not reparable, autorecovery remakes it as a last resort. When autorecovery remakes a file system, all data in the file system is lost and must be restored from backups.

After all file systems have been checked, autorecovery verifies the A/UX key system files listed in the CML, checking the attributes of each file against the rules specified in the CML. If autorecovery finds inconsistencies, it corrects the file, if possible, or replaces it with a copy from the autorecovery file systems.

The entire autorecovery process takes from 45 minutes to an hour. Most of this time is spent verifying each disk block. You can skip this phase by using the -b option of the each command.

Without this phase, autorecovery typically takes about 5 minutes, unless major system damage has occurred. See Chapter 8, "Checking the A/UX File System: fsck" for a description of the file system checking routine (fsck).

2.4 autorecovery administration

You must perform two key autorecovery administration tasks:

- Update the CML when key system files change.
- Update the autorecovery copies of key system files when they change.

You perform these tasks with the escher, eu, and eupdate utilities, described in this section.

The utilities escher and eu perform similar functions: both update the CML and the autorecovery file systems, but they use slightly different procedures. The eupdate utility copies the system files typically updated by autoconfiguration to the autorecovery file systems and updates the CML entries for these files. Each utility is described next and in A/UX System Administrator's Reference.

2.4.1 The eu utility

The eu utility updates the CML and copies a specified file to the autorecovery file systems. The eu utility operates on only one file at a time. To run eu, enter the command

eu pathname

where pathname is the complete pathname of the file to be copied. A

complete pathname always begins with a slash (/).

The eu utility has no interactive mode. As a rule, you should use eu to update the CML, because it creates entries with a checksum rule. The eu utility updates the CML even if the CML already contains an entry for the specified file.

You must be the root user to run eu.

2.4.2 The escher utility

The escher utility also adds new entries to the CML and copies the file to the autorecovery file systems. To run escher, enter the command

escher pathname

where pathname is the complete pathname of the file to be added. A complete pathname always begins with a slash (/).

The escher utility examines the specified file and adds information about the file to the CML. As discussed in escher(1M)'s man page, escher does not use all possible CML rules when creating an entry; in particular, entries created with escher do not have a checksum rule. If you want a checksum rule, use eu. When the CML entry has been created, escher copies the file to both autorecovery file systems.

You can also run escher interactively. In this mode, escher reads the CML and determines which files have been modified more recently than the copies in the autorecovery file systems. For each file that escher finds, it prompts you to decide whether the file should be copied to each of the two autorecovery file systems. When the escher run is complete, the autorecovery file systems are current with respect to the given files.

You must be the root user to run escher.

2.4.3 The eupdate utility

The eupdate utility updates the CML entries for the files typically modified when you set your system up for networking. To run eupdate, enter the command

eupdate

The A/UX kernel (/unix) and other files necessary for multi-user

Managing Disks 030-5595-B

network operation are copied to the autorecovery file systems. The CML entries for these files are also updated. You must be the root user to run eupdate.

2.4.4 Administration guidelines

To keep your autorecovery file systems current, follow these guidelines:

- Run escher -m often, to obtain a list of files that may need to be updated in the autorecovery file systems. You can schedule regular executions of escher -m with a crontab(1) entry.
- Whenever a key file is added to the system, use the eu or escher utility to update the CML. The autorecovery program cannot recover files that do not appear in the CML. The file system used for autorecovery has severely limited disk space so be sure files you add are in fact vital to autorecovery's performance.
- Run eu or eupdate as soon as key system files change. For
 example, if you run the autoconfig command to build a new
 kernel, you should run eupdate as soon as you verify the
 operation of the new kernel.

You can use the escher and eu utilities to add entries to the CML. Currently, no utility is available to delete CML entries. Use a text editor for this task. Consult the manual page cml(4) before attempting to update the CML manually.

2.4.5 Troubleshooting

This section discusses problems that occasionally occur when you run autorecovery. Although autorecovery is fairly robust, it errs on the side of caution: autorecovery will not replace damaged or missing files if the copies on the autorecovery file systems or the autorecovery file systems themselves are suspect. This section presents the procedures to use when manual intervention is required to correct the operation of autorecovery.

Note: The procedures outlined here are for emergency use only. Normally, only autorecovery has access to the autorecovery file systems. Manual intervention should be

kept to a minimum. The procedures recommended here use the pname utility. Users unfamiliar with this utility should consult the manual page for pname(1M) in A/UX System Administrator's Reference before continuing.

This section is organized by symptom. Error messages or warning messages may appear as part of the problem description. When appropriate, they are included here.

The following messages may appear when autorecovery is run from the sash partition.

Symptom	Message			
One or both	Warning.			
autorecovery file	Inconsistent			
systems have	mount times in			
inconsistent mount times	bzb.			
Autorecovery fails	esch: no			
during boot	consistent type			
	FSTEFSBZB			
	(ES_BZBS_FSTEFS)			
	[error occurred			
	in Block Zero			
	Block module]			

Occasionally, autorecovery may be unable to restore damaged or missing files, usually because autorecovery file systems were left mounted when the system was halted. After detecting this condition, autorecovery does not restore files from any autorecovery file systems that were left mounted when the system was interrupted. The autorecovery program does not use these file systems because the integrity of the data is not guaranteed. If both autorecovery file systems were mounted when the system was halted, autorecovery cannot proceed.

The most obvious sign that autorecovery has been interrupted is the message just listed. The autorecovery program verifies that

the unmount time is later than the mount time for each autorecovery file system. If an autorecovery file system has been left mounted, this test will fail, resulting in the warning message. The autorecovery file systems that were left mounted when the system was halted must be checked for integrity. Use the following procedure to check the offending file system or systems.

- 1. Launch /unix from sash by entering
 - launch /unix
- 2. When the system prompts you to check the root file system, enter y.
- 3. Bring the system to single-user mode.
- 4. At the root prompt, enter the command (assuming your root file system has SCSI ID 0)

pname -s3 "Eschatology 1"

5. At the root prompt, enter the command

fsck /dev/dsk/c0d0s3

The system will check one autorecovery file system for consistency.

6. At the root prompt, enter the command

mount /dev/dsk/c0d0s3 /mnt

7. Enter the command

umount /mnt

8. Enter the command

pname -u /dev/dsk/c0d0s3

9. Enter the command

pname -s4 "Eschatology 2"

10. Enter the command

fsck /dev/dsk/c0d0s4

The system will check the second autorecovery file system for consistency.

11. Enter the command

mount /dev/dsk/c0d0s4 /mnt

12. Enter the command

umount /mnt

13. Enter the command

pname -u /dev/dsk/c0d0s4

14. Enter the command

sync; sync; reboot

The system will restart. The autorecovery program should now be operational.

The following messages are produced when both escher and eu are preparing to update the CML at the same time.

Symptom	Message				
escher or eu will	Can't lock cml file.				
not run.					

eu: Can't lock the fcml. Try again later.

The two utilities cannot be run at the same time, because each must have exclusive access to the CML. Users who receive this message should verify that either escher or eu is running, but not both. If neither is running, the file /etc/eschatology/FCML.lock may be present. After verifying that no processes are attempting to update the CML, you may remove this file.

The following messages are produced when at least one device is still associated with an autorecovery file system.

Symptom	Message
escher will not run.	/dev/dsk/cXXdYYsZZ previously pnamed
	/dev/rdsk/cXXdYYsZZ previously pnamed

To remove the association, use the pname command by following these steps:

1. Enter the command

pname

The system will produce a display something like this:

/dev/dsk/c0d0s0: "A/UX Root" "Apple_UNIX_SVR2"

[not in ptab file]

/dev/dsk/c0d0s3: "Eschatology 1" "Apple_UNIX_SVR2"

[not in ptab file]

/dev/dsk/c0d0s4: "Eschatology 2" "Apple_UNIX_SVR2"
[not in ptab file]

/dev/dsk/c0d0s31: "Entire Disk" "Apple_UNIX_SVR2"

[not in ptab file]

2. For each device associated with an autorecovery file system, issue the command

pname -u device-name

For example, with the example just given, you enter the commands

```
pname -u /dev/dsk/c0d0s3
pname -u /dev/dsk/c0d0s4
```

3. Verify that no devices are currently associated with autorecovery file systems by entering

pname

at boot time.

```
again. The system produces a display something like this:

/dev/dsk/c0d0s0: "A/UX Root" "Apple_UNIX_SVR2"

[not in ptab file]

/dev/dsk/c0d0s31: "Entire Disk" "Apple_UNIX_SVR2"

[not in ptab file]

The escher utility should now run normally.
```

The following messages are produced when autorecovery is run

Symptom	Message			
"Replaced" files	filename was not			
missing after	replaceable			
autorecovery runs.				

When autorecovery determines that a file is invalid, it attempts to replace it with a valid copy from the autorecovery file systems. If the autorecovery file systems do not contain a valid copy of the file, it will not be replaced. Instead, autorecovery will remove it, because it has been identified as invalid. This situation is very unlikely, however, since it means that the CML contains an entry for the file, but the file has never been copied to either of the autorecovery file systems. Alternatively, the file may exist on the autorecovery file systems but fail the rules specified in the CML. Consistent use of the eupdate, eu, and escher utilities should prevent this problem from occurring.

The autorecovery program removes invalid files before attempting to replace them by design. Since autorecovery is concerned only with key system files, damage to these files could pose a security risk, especially in a network environment. For this reason,

autorecovery removes files identified as invalid, whether or not a suitable replacement is available.

When run interactively, escher produces the following message.

Symptom	Message			
Some files cannot be	Ignoring			
copied to autorecovery	filename -			
file systems.	cmlfile entry			
·	incorrect			

The escher utility complains when the CML entry for the file to be copied contains an invalid rule specification, or when the CML fields are not separated by the correct number of tab characters. Manual editing of the CML is the most frequent cause of this condition.

To recover, first make a backup copy of the CML. Then delete the offending entry from the CML with an editor. Use eacher or eu to restore the entry to the CML and copy the file to the autorecovery file systems.

3. Reclaiming disk space

A/UX includes all the files needed to run A/UX locally. It also includes many added features, plus the source files for an array of public domain software. However, single-disk systems do not have much room available for user data. You can make more room on your disk in several ways. You can remove software that you do not use, for example, the public domain software and the games. If you're on a network, you can place read-only files, such as the on-line manual pages, on a server and remove them from the client machines. You can also condense infrequently used files to reduce the space required for storing them on the disk, and expand them again on demand. It is also prudent for system administrators to trim files (for example, log files) that tend to grow over time.

3.1 Trimming files that grow

As A/UX runs, it creates and adds to assorted log and data files. If no corrective action is taken, these files can easily grow to substantial size. Fortunately, it is easy to monitor the growth of these files, and you can use cron to automate much of the task of reducing their size.

Different techniques are needed for different files, however. Some files, such as core files, are produced by isolated system events. Once any needed information has been gained from such files, they should be removed. A one-week "cooling-off" period is usually sufficient to ensure that such a file is no longer of interest.

Other files are produced by the system to log events of administrative interest. These files should normally be trimmed of their earlier entries. The tail utility is particularly handy for this task.

Finally, some files must be present, but can be truncated to zero length periodically. For instance, the command cp /dev/null foo truncates file foo. Note that some log files are written into only if they exist. Removing such files causes no error condition but disables the logging activity.

Here is a short list of system files that may need occasional action:

- /core memory images from aborted programs (remove)
- /etc/wtmp record of spawned shells (trim)
- /dev/* accidentally written data files (remove)
- /lost+found/* unlinked files, salvaged by fsck (remove)
- /mnt/* misdirected files because of an unmounted file system (remove)
- /usr/adm/acct/* output from accounting daemon (trim)
- /usr/adm/lpd-errs output from syslog daemon (truncate)
- /usr/adm/messages output from syslog daemon (truncate)
- /usr/adm/sulog record of logs, moved to OLD* at reboot (trim)
- /usr/lib/cronlog record of cron activity, moved to OLD* at reboot (trim)
- /usr/mail/* undelivered mail (remove)

- /usr/preserve/* files from aborted ex/vi sessions (remove)
- /usr/spool/lp/log output from lp (truncate)
- /usr/spool/lp/oldlog output from lp (truncate)
- /usr/spool/mqueue/syslog output from syslog daemon (trim)
- /usr/spool/uucp/LOGFILE record of UUCP transactions (trim)

3.2 Serving read-only files via NFS

The manual pages, font files, and even binary executables can be served over NFS, saving substantial amounts of disk space. One danger of this approach, however, is that several client machines can be adversely affected by a problem on a single server. In addition, the interactive response time of the server may be increased by the duties it performs for other machines.

In any case, before you set up a directory for shared access, you need to resolve several questions:

- Does the directory contain only shared files?
- Does the directory pose any unusual security considerations?
- Can a client system boot without access to the directory?
- Will client system responsiveness be adversely affected by network delays in accessing the files involved?
- Is the server system expected to be continuously available?
- Is use of the directory so frequent as to constitute an unreasonable drain on the server or the network itself?

Not all of these issues are absolute, and the use of multiple servers can help to share the workload, reducing the impact of a failed server. Take care, however, not to diminish the overall reliability and performance of the network unduly.

Once the decision has been made to serve a directory, the actual procedure is simple.

- 1. Put the directory into the client's /etc/fstab file.
- 2. Put the directory into the server's /etc/exports file.
- 3. Try the configuration to make sure that everything is working properly.
- 4. Back up the contents of the directory onto disks or tapes.
- 5. Unmount the served directory.
- 6. Remove all files and directories under the mount point(s) of the client(s).
- 7. Remount the served directory.

Caution: If the served directory contains binary executables, those commands will become unavailable after the client copies are removed. They will become available again only when the served copies are remounted. Therefore, make sure you have spare copies of any needed commands that will be affected by this procedure.

3.3 Compressing infrequently used files

The tools available under A/UX for compressing files are compact, compress, and pack. These tools reduce the size of files, saving disk space. The amount of disk storage that you can gain from such compression can be substantial, but it takes longer and is relatively more difficult to access the compressed versions than to access noncompressed files.

Thus, only large and infrequently used data files are suitable candidates for compression. For example, in A/UX, the manual page files are shipped in compressed form, saving several megabytes of storage. The man command has been specially written to deal with compressed files; however, the execution time of the command is relatively longer than that of other commands.

All of these compression tools reduce the size of text files by about 50%. Their performance on binary files is poorer, however. The

compress utility saves about 40%, and the other two programs save only about 25% of the original storage. Consequently, compress should be used when binary or mixed files are involved.

There are also differences in the time the utilities take to run. On text files, pack is slightly faster than compress. On binary files, however, compress is slightly faster. In both cases, however, compact takes about ten times as long as the faster of the other two. Clearly, compact should be used only when compatibility with another machine requires it.

3.4 Usage notes

All three programs remove their input files during the compression process. The companion decompression programs (uncompact, uncompress, and unpack) do the same. The user should therefore make a copy before compression (or decompression), if the original version is to be retained.

Alternatively, the appropriate "snapshot" decompression program (ccat, zcat, or pcat, respectively) can be used. These tools are analogous to the cat command in displaying the uncompressed version of the data on the screen, while leaving the compressed file in place. The man command thus uses pcat for compressed manual pages, and cat for uncompressed ones.

3.4.1 Extensions to names of compressed files

A word on file naming is in order at this point. The compression programs append a two-character suffix to the names of their output files. For example, the compress utility converts the file sample into the compressed file sample. Z.

This renaming can occasionally cause unexpected and even dangerous results, however. If the input file name exceeds 12 characters, the added characters will cause the new name to exceed 14 characters. A/UX will truncate any characters past the first 14, possibly overwriting the input file.

3.4.2 Compressing an archive of files

You may sometimes need to compress a collection of small files. You can achieve a substantial savings in storage by first producing a cpio or tar archive, then compressing the archive. Each A/UX file contains an average of half a block of dead storage, because only whole

blocks are allocated by the file system. The archive utilities eliminate this waste, saving considerable storage space. Note, however, that the same archiving utility will be needed during the decompression process.

3.5 Automating system administration with cron A variety of A/UX system administration tasks need to be done on a periodic basis. Some of these tasks, such as backups onto removable media, may require manual intervention. Most, however, can be run automatically by the A/UX cron utility.

There are several benefits of using cron. For example, cron cannot forget to perform its functions, as a human might, it never goes on vacation or takes sick leave, and it is quite willing to do things at awkward times, such as 2 A.M.. Also, cron can do things very frequently; as often as once a minute.

Once an activity has been chosen for automation via cron, the system administrator must decide who is to perform the action. The cron utility accords a command the same privileges of the user running the command. Since the root user has so few restrictions, cron should typically be run from some less powerful account.

1. The administrator must ensure that the chosen account is able to use cron. The file /usr/lib/cron/cron.allow lists the names of the users allowed to run cron. Users can be either personal accounts, such as joe, or administrative logins, such as lp. You enter the names of the users into this file to give them access to cron. If this file is empty or absent because you've deleted it, then the system checks a file called cron.deny. This file lists users who are denied access to cron, and again, you enter names into the file. It is your choice whether to use cron.allow or cron.deny to control access to cron. There is little reason to use both. If neither file exists, only the root user is allowed to use cron.

In general, using the cron.allow file is more secure than using cron.deny, since the administrator must actively approve each user who might wish to use cron. It is more convenient, however, to use cron.deny, and an administrator who feels a site's security needs are low might choose this

option. Lack of both files is seldom appropriate, since all cron commands must then be invoked as if by the root account.

2. Now test the desired command, using a fresh login session. Give the substitute user command (su) for the account that cron will emulate.

su lp

3. Attempt to execute the desired command just as it will appear in the user's cron control file. This will ensure that the permissions, command format, and user environment will be the same as that used by cron. (Collect multiple commands into single shell scripts, if they need to be run at the same time.)

```
nightly lp1 lp2 lp3
```

4. Use the crontab(1) command to install the new command into the crontab file. Use crontab -1 > snapshot to get a copy of the current file.

```
0 2 * * 0 weekly lp1 lp2 lp3
```

5. Use crontab snapshot to edit the resulting file and then the system copy.

```
0 2 * * 1-6 nightly lp1 lp2 lp3
0 2 * * 0 weekly lp1 lp2 lp3
```

Monitor the results of a few executions of the automated activity to make sure the system is working smoothly.

4. AppleCD-ROM and A/UX

A/UX supports CD-ROMs on the AppleCD SC®, if they contain A/UX file systems. This lets A/UX users take advantage of the large storage capacity of CD-ROM. A CD-ROM might contain a large number of database files, source code files, or documentation.

You can use a CD-ROM already containing an A/UX file system, or you can put an A/UX file system on a CD-ROM. Putting an A/UX file system on a CD-ROM requires copying certain information onto it. See AppleCD SC Developer's Guide for more information on creating information for a CD-ROM.

Note that A/UX does not provide support of audio CD-ROMs or CD-ROMs that use the High Sierra format. (The Macintosh OS does provide support for audio CD-ROMs and CD-ROM discs that use the High Sierra format.)

Follow these steps to install an AppleCD SC:

- 1. Install your AppleCD SC according to the directions in AppleCD SC Owner's Guide.
- Bring your system up in single-user or multi-user mode.
 You can now access your CD-ROM just as you access a standard hard disk.

4.1 Mounting a CD-ROM as an A/UX file system. If you have a CD-ROM that contains an A/UX file system, you can mount the CD-ROM just like any other read-only file system. For example, if your AppleCD SC has SCSI ID 4, then you can insert a CD-ROM containing an A/UX file system into the drive and enter

mount /dev/dsk/c4d0s0 /cdrom

You can read files on a CD-ROM just as you do those on any other disk. After mounting the CD-ROM, for example, enter

ls -R /cdrom

and you might see a listing like this:

./mammals: cats lions dogs mice elephants tigers giraffes squirrels hippos zebras ./programs progl.c prog6.c prog2.c prog7.c prog3.c prog8.c prog4.c prog9.c prog5.c proga.c

4.2 Mounting remotely

You might want to do a remote mount of the file system on the CD-ROM, making this file system available to everyone on your network. (You must have an NFS or NFS with Yellow Pages kernel to mount a file system remotely. See AIUX Network System Administration for information on setting up a network.) To allow others to do a remote mount of the A/UX file system that is on the AppleCD SC, create a mount directory for the file system, and modify /etc/fstab and /etc/exports. Create a mount directory for the CD-ROM, giving it a name that will be meaningful to users on other machines, for example,

mkdir /cdrom

To mount the file system automatically when you enter multi-user mode, add a line for the new file system to /etc/fstab on the NFS server, for example,

```
/dev/dsk/c0d0s0 / ignore rw 1 1 /dev/dsk/c4d0s0 /cdrom 5.2 ro 2 2
```

The second line specifies the device with SCSI ID 4 as an A/UX file system that will be mounted under /cdrom.

Modify your /etc/exports file to export this file system, for example,

```
/cdrom #export to everyone on the network
```

Check that the file system is available to others by giving the command

showmount -e

You should see a line similar to

```
export list for hostnamel: /cdrom everyone
```

To mount the file system from another machine, put an entry in /etc/fstab for this file system or use the mount command. For example, to mount the file system remotely from an NFS client machine using the mount command, enter

mount -o nfs, soft, ro hostnamel:/cdrom /mnt

After remotely mounting the file system, you can access and read the files just as you would the files on any hard disk.

BLANK PAGE

PLACE TAB HERE

CTHER PERIPHERAL DEVICES

BACK OF TAB

Chapter 7 Managing Other Peripheral Devices

C	onte	nts															
1	Tama	da.:a															1
1.		duction Ports.	• •	•	• .	•	•	•	•	•	•	•	•	•	•	•	_
	1.1	Ports.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2.	Using autoconfig to add a device requiring kernel																
	modi	ification			•	•	•		•	•	•	•	•	•	•	•	3
	2.1	Using /	etc/	neı	run	iz	•	•	•	•		•	•	•	•	•	4
	2.2	Adding	new o	ievio	ces	•	•	•	•			•	•	•		•	5
3.	Cani	ng up a te	i.	~1													5
									•		•	•	•	•	•	•	<i>5</i>
		The /et														•	3 7
	3.2	The /et	cc/g	330	you	eis	2 III	E	•:-	1	.•	•	•	•	•	•	8
																•	9
	3.4	Attachir	ng a N	12011	nws	n P	ius	as a	ı tei	mu	пац	•	•	•	•	•	9
4.	Setti	ng up a n	noden	ı .			•	•	•								12
	4.1	Dial-out	t acce	SS				•	•								12
	4.2	Dial-in	access	3.					•								15
	4.3	The mo	dem a	sad	lial-						de	vice	,				16
	4.4	Setting	up an	App	le p	ers	ona	l m	ode	m				•			17
_		_	-		•												
3.		ng up a p			•	•	•	•	•	•	•	•	•	•	•	•	18
		Definition														•	19
	5.2	lp com													•	•	20
		5.2.1 C													•	•	21
		5.2.2 C														•	21
		Determi														•	22
	5.4	The 1p	sched	uler	•	•	•	•		•		•	•	•			23
		5.4.1 In	ıstallir	ng th	e so	he	iule	x	•	•			•	•			23
		5.4.2 St	toppin	g an	id si	arti	ng	the	sch	edu	ıler	•					23
	5.5	Configu	ring tl	ne 1	P SY	/ste	m							•			25
		5.5.1 In															26
		552 14											•		-	•	

	5.5.3 Altering the system default destination			•	•	29
	5.5.4 Removing destinations				•	30
5.6	Setting up an Imagewriter or Laserwriter					
Ţ	orinter		•		•	31
•	5.6.1 Adding an ImageWriter II printer .					31
	5.6.2 Adding a LaserWriter printer					33
	5.6.3 If you are connecting a LaserWriter II	NT	or			
	NTX					36
	5.6.4 Changing from a LaserWriter to an	•	•	•		
	ImageWriter				_	37
	5.6.5 Setting up other printers	•	•	•	•	39
5.7	Writing printer interface programs	•	•	•	•	41
	Using the 1p system	•	•	•	•	43
J.0	5.8.1 Allowing and refusing requests	•	•	•	•	45
	5.8.2 Allowing and inhibiting printing .	•	•	•	•	46
	5.8.3 Moving requests between destinations	•	•	•	•	47
		•	•	•	•	48
5 0	•	•	•	•	•	
3.9	1p system troubleshooting	•	•	•	•	48
	5.9.1 Problems starting lpsched	•	•	•	•	48
	5.9.2 Restarting lpsched	•	•	•	•	49
	5.9.3 Repairing a damaged output file	•	•	•	•	50
	5.9.4 1p system files	•	•	•	•	50
	5.9.5 1p system command permissions .	•	•	•	•	52
	· · ·					
					•	

•

1

.

Chapter 7

Managing Other Peripheral Devices

1. Introduction

This chapter discusses management of all peripheral devices except hard disks, which are discussed in the previous chapter. Managing peripheral devices involves connecting devices such as terminals, modems, and printers to your computer; maintaining them; and, when necessary, disconnecting them. This chapter helps make these tasks as painless as possible.

Besides this introduction, this chapter consists of four main sections. Section 2 discusses the universal procedure to connect a device requiring kernel modification. Sections 3 and 4 discuss how to connect a terminal and a modem. Section 5 describes how to connect a printer and administer its spooler program, which holds print jobs when the printer is busy.

Peripheral devices that you connect to your machine fall into two categories: those that require adding a device driver to the A/UX kernel and those that don't. A device driver is the software interface between A/UX and the peripheral device. All A/UX peripheral devices require a device driver. The reason for the two categories is that the A/UX kernel has the drivers already built in for commonly used Macintosh peripherals, whereas you must add device drivers for other, less commonly used or third-party devices. It is not readily apparent into which category a particular device falls. In general, if adding the device involves adding an expansion card (such as an Ethernet® card) to the computer, you also need to add a device driver.

You might want to connect another computer to your A/UX system. You can do this in at least two different ways. You can connect both computers to a standard network, such as Ethernet. This is known as networking, and it is explained in A/UX Network System Administration. Alternatively, you can connect a computer through a serial port to the Macintosh II, and it will act as a peripheral device of

the Macintosh II. This method is discussed here under "Setting Up a Terminal."

To understand some sections in this chapter, you need to be familiar with the file /etc/inittab. This file is discussed in Chapter 2, "System Startup and Shutdown" and inittab(4) in A/UX Programmer's Reference. See also "Changing Run Levels: init" in Chapter 2, because incautious use of the init command may affect other users.

1.1 Ports

It is important that you understand the concept of a port when you are working with peripheral devices. A computer communicates with other equipment through a port. You can attach peripheral devices such as printers and additional terminals by connecting them (via cables or connectors) to the ports.

There are two aspects to a peripheral connection: the hardware that connects the device to the computer and the software that enables the two to communicate. This chapter concentrates primarily on the software. For the hardware aspect of connecting a device, refer to the manual that comes with the hardware.

For now, look at the back of your computer and find the two serial ports. They are round and about half an inch in diameter. Each port has eight holes. The port identified by the phone icon on the back of the Macintosh II computer has the A/UX device name /dev/tty0; it is also called /dev/modem. The port identified by the printer icon has the A/UX device name /dev/tty1 and is also called /dev/printer. You will be connecting your devices to these serial ports. (Note that these ports can be switched if desired; you can attach a modem to port tty1 and a printer to port tty0.)

In addition to physically connecting a device to the computer, which in most cases is a rather simple operation, you must let the computer know what type of device is attached to which port and what the computer must do in each case. This is more involved but not difficult.

2. Using autoconfig to add a device requiring kernel modification

One feature unique to A/UX is the autoconfig program. This program serves two purposes. When A/UX is booted, autoconfig automatically checks for consistency between the cards in the expansion slots and the software in the kernel. If a discrepancy exists between the two, autoconfig corrects it and reboots the system. This feature of autoconfig is explained fully in Chapter 2 of this book.

The second purpose of autoconfig is sparing you the tedium and potential pitfalls of adding a new peripheral device. The autoconfig program configures the device driver and any software modules into the kernel for you.

Note: You do not need to use autoconfig to add terminals, printers, or modems to the A/UX system. Support for these devices is already built into the standard A/UX kernel. You do need it to add an Apple Tape Backup 40SC to the A/UX system.

1. To add a new software module or driver to the kernel, first run the script /etc/newunix. The /etc/newunix program installs the files autoconfig needs to add a software module to the kernel. You specify the device driver or software module you want to add to the kernel as a parameter to /etc/newunix. For example, the command

/etc/newunix tc

installs the device driver for the Apple Tape Backup 40SC.

2. After running /etc/newunix, use autoconfig to create the new kernel containing the new software modules. For example, the command

autoconfig -v -u -I -S /etc/startup gives a verbose account of the actions performed by

autoconfig, places a list of startup programs to run at boot time in the /etc/startup file, and creates a new kernel in /unix.

 Now you must reboot the new kernel before using the newly added device or the new software module. Shut down the system and reboot the new kernel by following the directions in Chapter 2 of this book.

2.1 Using /etc/newunix

You use /etc/newunix to install the files for a particular software module into the directories required by autoconfig. By default, autoconfig builds a new kernel based on the information in /newunix, the object modules in /etc/boot.d, and the files in /etc/master.d. Once you have added a new software module or driver to your system, it is always included when autoconfig builds a new kernel, unless you explicitly remove it.

☐ To see which modules are currently configured in the kernel, enter the command

ls /etc/master.d

If you see a result similar to

BNET ae6 nfs slots toolbox to

then the current kernel is configured for B-NET (BNET) and NFS (nfs), for an EtherTalk® card (ae6), for slots support (slots), A/UX toolbox support (toolbox), and for Apple Tape Backup 40SC support (tc).

☐ You can also use /etc/newunix to remove software modules from the kernel. For example, to remove the software driver for the Apple Tape Backup 40SC, enter

/etc/newunix notc

Now enter

ls /etc/master.d

You should see a result similar to

BNET ae6 nfs slots toolbox

Note that the to object module has been removed from the /etc/boot.d directory. Run

autoconfig -v -S /etc/startup

to create a new kernel that does not include the tc driver. The autoconfig program builds a new kernel based on the object modules in /etc/boot.d. Because the tc module is not in this directory, the tc module is not included in the new kernel. Shut down your system and reboot to begin using the new kernel.

2.2 Adding new devices

When you add a new device, you must run the installation scripts provided with that device. An installation script typically installs files for that device in /etc/install.d. Follow the instructions provided with your device to install any software modules into the kernel. Typically, after you run the installation script for the new device, you will need to run /etc/newunix, then autoconfig, and then reboot your system, as described in the previous section.

3. Setting up a terminal

When you set up your computer and start running A/UX, you'll have at least one terminal working. This first terminal is referred to as the console. You can add additional terminals as you need them.

Before the computer can communicate with a peripheral device, it has to know what is expected of it at each port. To do this, the computer uses the system initialization instructions found in the /etc/inittab file and the TTY definitions (gettydefs) found in the /etc/gettydefs file.

The /etc/gettydefs file contains information used by the /etc/getty program (the process that waits for a user to log in) to determine settings of a getty at a given port. The login prompt for each port is also set in this file.

3.1 The /etc/inittab file

The first step in telling the system about a new terminal is to change the /etc/inittab file. The init program uses this file to decide which processes to run when the system comes up; see Chapter 2,

"System Startup and Shutdown." It is a good idea to make a copy of the /etc/inittab file before you make any changes. This provides protection against errors when you're modifying the file.

1. Change to the /etc directory and enter

```
cp inittab inittab.old
```

 Now open the /etc/inittab file using a text editor (for example, vi). Three of the lines in the file should look like these, though not necessarily in this order:

```
co::respawn:/etc/getty console co_9600
00:2:respawn:/etc/getty tty0 at_9600
01:2:respawn:/etc/getty tty1 at_1200
```

These lines are each followed by comments documenting what the entry represents and (if applicable) how to enable it. These comments, respectively, are

- # Console port
- # Port tty0 (modem); set to "respawn"
- # Port ttyl (print); set to "respawn"

Each of these entries is for a given port. The entries are divided into fields, separated by colons, with the form

id:run-level:action:command

The following is a typical entry:

```
00:2:respawn:/etc/getty tty0 at_9600  # port tty0
```

In this case, /etc/getty accepts two arguments. The first, tty0, specifies the port on which the command should run. The second, at_9600, is a label. It tells init to read the /etc/gettydefs file and use the information contained in the entry beginning with at_9600 to set up communications with port tty0.

The action field in /etc/inittab entries for terminals should be respawn. If there is anything other than respawn in the action field and you want to allow people to log in at that terminal, correct the action field and close the file.

3.2 The /etc/gettydefs file

Another file that is very important in peripheral management is /etc/gettydefs. This file is composed of individual entries, each with five fields separated by a number sign (*). Note that each entry is separated from the others by a blank line. Except for the prompt field, you may insert whitespace (blanks or tabs) between the fields for readability. The entries are of the form

label * initial-flags * final-flags * flow-control * prompt * next-label where the fields are interpreted as follows:

label

String that getty tries to match so that it can use the entry. If the second argument to /etc/getty in an /etc/inittab entry is, for example, co_9600, the entry that starts with this string is used.

initial-flags

Used to decide how the terminal is set up before log in. The only critical flag at this point is the B flag, which is used to decide the communications baud (speed). In the example below, the flag is set to 9600, but it could be any valid baud.

final-flags

Take effect when login is executed. Again, speed (for instance, B9600) is critical. SANE is a composite setting; it takes care of other important terminal settings without your having to set them individually. TAB3 specifies that tabs will be sent to the terminal as spaces. HUPCL specifies that the line should hang up on closing the connection. This is generally set for terminals that use a phone line through a modem. To subtract a particular attribute from a setting, prefix it with a tilde (-). Thus, SANE -PARENB sets the terminal to have all the attributes of SANE with the exception of PARENB (parity). For more information on these flags, see termio(7) in A/UX System Administrator's Reference and gettydefs(4) in A/UX Programmer's Reference.

flow-control

Specifies the type of flow control to be used on the line. The settings can be APPLE, DTR, MODEM, and FLOW. Again, you

can subtract a setting by prefixing it with a tilde (*).

prompt

Login prompt that will appear at the terminals.

next-label

Label for getty to try in case the current entry causes a failure. If getty cannot read the keyboard input using the current definitions, it tries the gettydef specified in this field. For instance, if the user logs in at a terminal set up to communicate at 4800 baud but the getty being sent to that terminal specifies 9600 baud, the getty would not accept the input. When this happens, getty looks at this field for an alternative setting. It tries entries in sequence until it finds one expecting input at 4800 baud.

Enter

more /etc/gettydefs

Two of the entries that scroll on the screen after you use this command should look something like the following, although the whole file may be several pages long.

co_9600# B9600 # B9600 SANE TAB3 # "MODEM "DTR "FLOW
\r\n\nApple Computer Inc. A/UX\r\n\nlogin: # co_4800

tt_9600# B9600 # B9600 SANE TAB3 ~MODEM ~DTR ~FLOW # \r\n\nApple Computer Inc. A/UX\r\n\nlogin: # tt_4800

Note: In the this example, output lines have been wrapped onto two lines. When a line in the file has more characters than will fit on a single terminal line, the line will wrap onto the next screen line even though there is only one corresponding file line.

3.3 Using another computer as a terminal

It is possible to connect another computer to an A/UX system just as a terminal is attached, through a serial line. For example, you can treat a Macintosh computer running MacTerminal® exactly like a terminal. As long as the files /etc/inittab and /etc/gettydefs are configured to allow logins on the appropriate port, successful communication can take place, even though the A/UX system has no

way of knowing that it is communicating with a computer and not merely a terminal.

There are numerous advantages to replacing a terminal with a personal computer that emulates a terminal. Some of these advantages include the abilities to scroll back through output and to transfer files between the computers.

3.4 Attaching a Macintosh Plus as a terminal

Attaching a terminal to your Macintosh II allows a second user to access A/UX while you or someone else is logged in at the console. This section describes how to attach a Macintosh Plus, running a terminal-emulator application such as MacTerminal, to your Macintosh II. (These instructions apply to a Macintosh SE as well as a Macintosh Plus.)

To connect a Macintosh Plus as a terminal, you need an Apple system cable, such as a Macintosh Plus-to-ImageWriter® II cable (part 590-0552 or M0187), with mini-8 connectors at both ends.

1. Configure your terminal-emulator application on the Macintosh Plus.

Start your terminal-emulator application on the Macintosh Plus. Consult the user's guide for your application to set the terminal characteristics shown below. (If you are using MacTerminal, for example, you configure the application by selecting Terminal and Compatibility from the Settings menu.)

- terminal type: VT100 (The VT100, a popular terminal manufactured by Digital Equipment Corporation, is emulated by nearly all communications programs. The VT100 is the terminal A/UX expects by default to find at /dev/tty0. See ttytype (4) in A/UX Programmer's Reference for more information about how A/UX is configured for default terminals.)
- line width: 80 columns
- mode: ANSI
- baud: 9600
- bits per character: 8
- parity: none
- connection port: modem

- connection: to another computer (that is, instead of to a modem)
- handshake: XON/XOFF
- 2. Plug one end of the cable's circular connector into the modem port on the back of the Macintosh II. The modem port is identified by the symbol of a telephone handset.
- Connect the free end of the cable to the modem port on the Macintosh Plus. The modem port is located on the back of the Macintosh Plus and is identified by the same symbol as the modem port on the Macintosh II.
- 4. Bring A/UX up to multi-user mode if it isn't already. If the login: prompt appears on your console, then your system is already in multi-user mode. If your system is in single-user mode, or if the root user's command prompt appears on your console and you're not sure if the system's in multi-user mode, enter the command

init 2

This ensures that A/UX is in multi-user mode. If you're prompted to check the file systems, enter n.

5. From the Macintosh II console, log in to A/UX as the root user.

If the root user's command prompt appears on the console, you're already logged in as the root user.

However, if the login: prompt appears instead, enter root. Provide your password when prompted and press RETURN to accept the mac2 terminal type. You need root privileges to make the system configurations explained in later steps.

6. Make a copy of /etc/inittab.

When you receive the root user's command prompt after finishing step 5, type

cp /etc/inittab /etc/inittab.old

and press RETURN. When you change an important system file like this, it is always a good idea to save a copy in case you make a mistake. You can then copy the old file back over the changed version and return your system to its previous state.

Note: After entering this command, you should immediately see the root user's command prompt again. If the system returned any additional messages, you've entered the command incorrectly—in this case, reenter the command more carefully.

7. Use your favorite text editor to edit /etc/inittab. Change the line for tty0 to replace off with respawn so that the beginning of the line looks like this:

00:2:respawn:/etc/getty tty0

8. At the command line prompt enter init q to effect the changes in /etc/inittab.

Type

init q

and press RETURN.

9. Verify that the getty process is running.

Type

ps -ef | grep getty

and press RETURN.

A line similar to the one below should appear on your screen:
root 82 1 0 11:43:37 0 0:01 /etc/getty tty0
at_9600

The numbers in your output will be be different, but a 0 should appear after tty, showing that a getty process has successfully spawned at /dev/tty0 (the modem port). This is the process that will serve the terminal.

Note: Do you see different output? If you receive no output from the command, or if a number other than 0 appears in the third column, enter the following command:

cp /etc/inittab.old /etc/inittab

After entering this command, begin these instructions over again at step 7.

10. Log in to A/UX from the Macintosh Plus.

You should now have a login prompt on the Macintosh Plus. Log in as the root user or any other valid user to test the connection. Enter your password when prompted, and press RETURN to accept the VT100 terminal type. Your Macintosh Plus is now serving as a functioning terminal for A/UX.

Note: You don't get a login prompt? If you don't get a login prompt on the Macintosh Plus, check the cable connection or your settings on the terminal-emulation application. If the command in step 9 was successful, then the problem is not likely to be related to A/UX.

4. Setting up a modem

A modem can function in incoming or outgoing mode. On the A/UX system, however, it cannot do both at one time. You can switch between these modes using multiple run levels; see init(1M) in A/UX System Administrator's Reference and Chapter 2, "System Startup and Shutdown." Or, you can set up a dial-out modem on one port and a dial-in modem on the other port. This section uses the examples of a terminal on port tty0 and a modem on port tty1. This is arbitrary. If you want, you can have a modem on port tty1 and a printer on port tty0, even though the the hardware ports have a modem icon at /dev/tty0 and a printer icon at /dev/tty1.

4.1 Dial-out access

Suppose /etc/inittab file has the following entries

```
co::respawn:/etc/getty console co_9600 # Console port
00:2:respawn:/etc/getty tty0 at_9600 # Port tty0
01:2:respawn:/etc/getty tty1 at_9600 # Port tty1
```

and you want the modem on port tty0 to work as an outgoing device.

1. Find the line

00:2:respawn:/etc/getty tty0 at_1200 # Port tty0
and change it to

00:2:off:/etc/getty tty0 at_1200

Port tty0

You can also change it to

00:2:off:/etc/getty tty0 mo_1200 #Port tty0 dialout making sure there is a mo_1200 entry in /etc/gettydefs. This change is optional, but it makes the /etc/inittab file easier to read.

Because the third field contains off, the line now says that, at run level 2, no getty is present on port tty0. (See Chapter 2, "System Startup and Shutdown," for a discussion of run levels.) In this condition, the modem functions as an outgoing device only.

2. You have to modify one more file. Change to the directory /usr/lib/uucp

Most computer communications programs are located in this directory.

- 3. Make a copy of the file L-devices and tuck it away somewhere for safety's sake.
- 4. Now open the file with a text editor and add the following lines at the bottom:

DIR tty0 tty0 1200 DIR tty0 tty0 300

These two lines tell the system that port tty0 is connected physically via a cable to another computer and that this cable can be used for transmission speeds of either 300 or 1200 baud. If 1200 baud is not the speed you want (either because you want to transmit at 300 baud or because the other computer receives at 300 baud), you can select 300 baud. For more information about the L-devices file, see cu(1C) and uucp(1C) in A/UX Command Reference and Appendix A, "The UUCP System."

- 5. Now that you've made the necessary preparations, you're probably eager to use your modem. To enable outgoing calls, reboot your system (see "Using the shutdown Program" in Chapter 2). When the system is in multi-user mode, the new entry in /etc/inittab will take effect, and your modem will function in outgoing mode.
- 6. To make a call, you need to know the phone number of a modem attached to another computer set up to receive calls. Once you have a number, you can use the cu command (among others) to get your modem to talk to other computers. This is the command used in this manual for testing purposes.

Most modems operate at 300 or 1200 baud (or higher). Using a modem at 300 baud can be extremely slow. If you can, operate the modem at 1200 baud. You can do this using the cu flag option -s:

cu -s[speed]

In this case.

cu -s1200

Another key to getting cu to work is the -1 option. The -1 option stands for "line" and tells cu which port the modem is on. The command line that allows you to dial out is

Type this line and press RETURN. The word Connected should appear. This means you are connected to the modem. If you have any problem at this stage, or later, check that the ownership of /dev/tty0 is the same as the ownership of /usr/bin/cu.

7. The next sequence works only if you are using a Hayes-compatible modem, but the principle is the same in all cases: Once you are connected to the modem, there is a specific way of communicating with it and making it do what you want. If your modem is not Hayes compatible, your modem owner's manual will have information on how to communicate with it.

Type the command that tells your modem to dial a phone number. If your modem is Hayes compatible, try this:

ATDT phone-number

The phone-number field must be the number of a computer ready to receive a call. If you are in an office and must request an external line by dialing a number, say 9, before the phone number, then the command to try is

ATDT 9, phone-number

This tells the modem to dial 9, wait, and then dial the phone number.

- 8. Once you are connected to the other computer, you will see that computer's login prompt appear on your screen. You can now log in and treat this remote computer as if you were sitting at a terminal in front of it. See cu(1C) in A/UX Command Reference.
- 9. When you are ready to break the connection with the other computer, you must log out.
- 10. Once you are logged out, wait one second, then type +++ and wait another second. Your modem answers OK on your screen.
- 11. Enter ATH. This tells your modem to hang up. Again, if your modem is not Hayes compatible, the manual that comes with it describes how to disconnect from a remote computer. The modem responds with OK.
- 12. Type the two-character sequence "tilde-dot":

This terminates the session with cu. The word Disconnected appears, and you are back at your own computer.

4.2 Dial-in access

It's often to your advantage to allow other people or other computers to use your system via dial-in access. Once your A/UX system is set up to receive calls, anyone dialing your system can use it as if he or she were connected directly to your computer via a terminal.

Managing Other Peripheral Devices 630-5595-8

1. To make your modem work as an incoming device, find this line in /etc/inittab

00:2:off:/etc/getty tty0 mo_1200 # Port tty0 dialout and change it to

00:2:respawn:/etc/getty tty0 mo_1200 # Port tty0 dialup

This line now tells the system to expect a getty on port tty0 at run level 2. This allows the modem on port tty0 to function as an incoming device only.

- To enable incoming calls, reboot your system (see "Using the shutdown Program" in Chapter 2). When the system is in multi-user mode, the new entry in /etc/inittab will take effect and your modem will function in incoming mode. You might also have to instruct your modem to auto-answer; consult the modem manual for details.
- 4.3 The modem as a dial-in and a dial-out device Under A/UX, the modem cannot operate as a dial-in device and a dial-out device at the same time. The presence of a getty prevents dial-out access. Similarly, the absence of a getty prevents dial-in access.

Using multiple run levels can make switching the modem from a dialout device to a dial-in device and back again an easy process. A few changes are required for this.

- To initiate these changes, use a text editor to edit the file /etc/inittab. Find the line referring to tty0. Change it to do:2:off:/etc/getty tty0 mo_1200 # Port tty0 dialout Note that you should change the id field on this entry before you add the next line.
- 2. Add the following line, which also refers to tty0:

du:3:respawn:/etc/getty tty0 mo_1200 # Port tty0 dialup

These two lines mean that at run level 2 there will be no getty at port tty0 and that there will be a getty at run level 3. Therefore, at run level 2 the modern attached to port tty0 can dial out, and at run level 3 it can be called up. If the *id* field is

not unique for each entry, you will see an error message when you change to run level 3.

3. Now you can enter from the shell

init 2

to enable dial-out mode. Conversely, you can enter the command

init 3

to enable dial-in mode. Once again, you may need to instruct the modem to enter auto-answer mode.

4. When you set up things this way in /etc/inittab, you must also make sure that all other processes set up to run at run level 2 continue running at run level 3. For instance, if your printer is set up to run at run level 2, you probably also want it to run when your modem is in dial-in mode. For example, if your printer is connected to port tty1, change the printer entry in /etc/inittab to

```
01:23:off:/etc/getty ttyl at_9600 # Port ttyl (print)
```

Notice the entry in the *run-level* field. It is now 23, to signify that the entry applies to run levels 2 and 3.

At this point, some of the entries in /etc/inittab should look like this:

```
co::respawn:/etc/getty console co_9600 # Console port
do:2:off:/etc/getty tty0 mo_1200 # Port tty0 dialout
du:3:respawn:/etc/getty tty0 mo_1200 # Port tty0 dialup
01:23:off:/etc/getty tty1 at_9600 # Port tty1 (print)
```

4.4 Setting up an Apple personal modem

Setting up an Apple Personal Modem requires setting the baud rate and running a program that sets the modem for auto-answer dial-in. Both modifications are accomplished with changes to /etc/inittab. To set the Apple Personal Modem for auto-answer and dial-in, and set the baud rate, change the /etc/inittab entry from

00:2:off:/etc/getty tty0 at_9600

to

00:2:respawn/etc/apm_getty tty0 mo_1200

For dial-in lines, /etc/apm_getty needs to run instead of /etc/getty. The /etc/apm_getty program sends the control sequences that enable auto-answer to the modem and then executes the /etc/getty.

5. Setting up a printer

A variety of printers can be used with A/UX. The exact steps you take when setting up an Apple ImageWriter® or LaserWriter® printer are given in this section. In addition, the section covers procedures and concerns related to setting up any printer with A/UX, although you will need to supplement that information with details from the owner's guide accompanying your printer.

Note: A/UX supports the LaserWriter II NT and the LaserWriter II NTX but not the LaserWriter II SC.

You can also print on a printer shared with other computers by using the AppleTalk® network. For further information, see the A/UX Network System Administration Guide.

This section also introduces the commands necessary to use the 1p system. The 1p system is a program that solves the first problem you run into when administering a printer on a system with more than one user: how to prevent two people from using one printer at the same time. The 1p system is a collection of programs and files used to manage a printer's operations. (The historical acronym "lp" stands for "line printer.")

Note: If you or your users are accustomed to BSD systems, you may be pleased to know you can continue using the lpr command to use the lp system; the A/UX version of lpr is a shell script designed to emulate the functionality of the BSD lpr.

The 1p system is composed of two subsystems: the spooler and the administrative system. The spooler intercepts print requests, schedules them for printing on a specified printer, or class of printers, and then selects the appropriate interface for the printer. The administrative system is a series of commands you use to configure and maintain the entire 1p system.

When configuring the spooler, the system administrator assigns each printer a unique name by which the spooler will identify the printer. After naming the printer, you may assign the printer to a particular named class of printers. A name or class of printers is also known as a destination.

The spooler maintains a list of user print requests organized by printer name and printer class. Implementing printer classes is not required but is strongly recommended if you have multiple printers.

Classes allow a user to print a job on the first available printer in the class rather than wait for a particular printer. It's usually best to organize printer classes along the lines of printer types. For example, a class named "Laser" might contain only laser printers, and a class named "Matrix" might contain only dot-matrix printers.

The 1p system is controlled and managed through a set of commands that

- queue or cancel requests
- query the status of requests or of the 1p system itself
- prevent or allow queuing requests to specific printers
- start or stop the 1p system
- change the printer configuration

5.1 Definitions

This section defines the important terms used throughout this chapter.

- A request is a print job submitted to the 1p system using the 1p command.
- A printer is a unique name by which the the 1p system identifies a specific printer

- A class is a name used to identify a defined list of printers. Each printer may be a member of zero or more classes.
- A destination is a printer or a class. Output is normally routed to the system default destination unless the user explicitly requests a particular printer or printer class on the 1p command line. See 1p(1) in A/UX Command Reference.
- A device is a piece of hardware such as a printer or modem that can be connected to the computer through a port.
- A device file is a file in the A/UX /dev directory that is associated with a particular device. For example, /dev/iw2 is the device file that represents an ImageWriter II. Each RS-232 port on the back panel of your computer is associated with one device file. When the 1p system writes to the device file, output is sent to the port. The 1p system maintains information necessary to associate each printer with a particular device.
- The 1p scheduler, called 1psched, schedules print requests received from the 1p command. The 1psched scheduler runs continuously in the background and is usually started by the init(1M) process when A/UX enters multi-user mode. See 1psched(1M) and init(1M) in A/UX System Administrator's Reference.
- Each printer is controlled by an interface program, which may
 be shared by more than one printer. Interface programs perform
 such tasks as setting port speed, selecting printer options,
 printing banners, and perhaps filtering certain characters a
 particular printer may not know how to handle. The 1p system
 maintains the information necessary to select the proper interface
 for a given printer.

5.2 lp commands

The commands used to administer the 1p system can be divided into two categories: those that any user can use, and those that only the 1p administrator can use. This section gives a short description of what each command does.

5.2.1 Commands for general use

lp

Submits a print request to the 1p system. The request is printed on the default system destination or optionally routed to a specified printer or printer class. A successful request prints a message on the user's terminal similar to

request id is dest-sequo (1 file)

where dest is the name of a printer or printer class and seqno is a number unique across the entire 1p system. See 1p in A/UX Command Reference.

cancel

Cancels requests by printer name or request ID number (dest-seqno supplied by 1p). Specifying the printer name cancels the job currently printing. See 1p(1) in A/UX Command Reference.

lpstat

Gives certain status information about the 1p system. Also see 1pstat(1) in A/UX Command Reference.

disable

Prevents 1psched from routing output requests to specified printers.

enable

Allows lpsched to route output requests to printers. See enable(1) in A/UX Command Reference.

5.2.2 Commands for 1p administrators

In each 1p system, a person or persons must be designated as 1p administrator to perform the restricted functions listed below. The 1p login (provided with the standard A/UX distribution) owns all the files and commands associated with the 1p system. Either the superuser or any user logged into the A/UX system as 1p qualifies as the 1p administrator.

The following commands are described in more detail later in this chapter.

lpadmin

Modifies the 1p configuration. Many features of this command

Managing Other Peripheral Devices 80-5595-8

cannot be used when lpsched is running. Also see lpadmin(1M) in A/UX System Administrator's Reference.

lpsched

Routes user print requests to interface programs, which do the printing on devices. Also see lpsched(1M) in A/UX System Administrator's Reference.

lpshut

Stops a running lpsched. All printing activity is halted, but other lp commands may still be used. Also see lpsched(1M) in A/UX System Administrator's Reference.

accept

Allows 1p to accept output requests for destinations. Also see accept (1M) in A/UX System Administrator's Reference.

reject

Prevents 1p from accepting requests for particular destinations. Also see reject(1M) in A/UX System Administrator's Reference.

1pmove

Moves output requests from one destination to another. Whole destinations may be moved at one time. This command cannot be used when lpsched is running. Also see lpmove(1M) in A/UX System Administrator's Reference.

5.3 Determining 1p system status

The lpstat command displays on the screen the status of printing requests, destinations, and the scheduler (lpsched). Also see lpstat(1) in A/UX Command Reference.

Common uses of the lpstat command are to:

• List the status of all currently printing and pending requests you have made:

lpstat

• List all currently printing and pending requests of all users:

lpstat -o

The status information for a request includes the request ID, the

login name of the user, the total number of characters to be printed, and the date and time the request was made.

• Determine whether a printer is available to print requests:

Before a request can be printed, the scheduler (lpsched) must be running and the particular printer must be enabled and accepting requests. This command produces the necessary information for all printers. See accept(1M) in A/UX System Administrator's Reference and enable(1) in A/UX Command Reference.

5.4 The 1p scheduler

The lpsched program routes the output requests (made with lp) through the appropriate printer interface programs to the printers. As noted previously, before a request can be printed, the scheduler (lpsched) must be running and the particular printer must be enabled and accepting requests.

5.4.1 Installing the scheduler

To install 1psched, make sure the following line in the /etc/rc file is not "commented out" with number signs (*) at the start of the line:

Also be sure that the following line appears in /etc/inittab:

lp:2:once:/usr/lib/lpsched >/dev/syscon 2>&1

This starts the 1p scheduler each time the A/UX system enters run level 2.

5.4.2 Stopping and starting the scheduler

Each time the scheduler routes a request to an interface program, it records an entry in the log file, /usr/spool/lp/log. This entry contains the login name of the user who made the request, the request ID, the name of the printer on which the request is being printed, and the date and time that printing first started. If a request has been restarted, more than one entry in the log file may refer to the request. The scheduler also records error messages in the log file. When lpsched is started, it renames /usr/spool/lp/log as /usr/spool/lp/oldlog and starts a new log file.

Note: The log files can grow substantially and eventually occupy an enormous amount of disk space. You should inspect these files periodically and, if necessary, truncate them to zero length by giving the commands

```
cp /dev/null /usr/spool/lp/oldlog
cp /dev/null /usr/spool/lp/log
```

As mentioned earlier, the 1p system won't perform any printing unless 1psched is running. Use the command

```
lpstat -r
```

to find the status of the 1p scheduler.

The scheduler normally begins running when the init(1M) process executes the entry in the /etc/inittab file (described previously in "Installing the Scheduler") and continues to run until the A/UX system is shut down.

The scheduler operates in the /usr/spool/lp directory. When the scheduler starts running, it checks whether a file called SCHEDLOCK exists; if it does, lpsched exists immediately. Otherwise, lpsched creates SCHEDLOCK to prevent more than one scheduler from running at the same time.

Occasionally, it is necessary to shut down the scheduler to reconfigure the 1p software. To stop the scheduler, give the command

```
/usr/lib/lpshut
```

This stops lpsched, removes the SCHEDLOCK file, and terminates all printing. All requests that were in the middle of printing will be reprinted in their entirety when you restart the scheduler.

To restart the 1p scheduler, use the command

```
/usr/lib/lpsched
```

Shortly after you enter this command, you can use the lpstat -r command to determine whether the scheduler is running. If not, it is possible that A/UX crashed or was halted improperly, leaving SCHEDLOCK in the /usr/spool/lp directory.

Use the command

ls /usr/spool/lp/SCHEDLOCK

to determine if SCHEDLOCK exists. If it does, enter the commands

```
rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
```

Wait about 15 seconds and then use the lpstat -r command to determine if the scheduler is running.

5.5 Configuring the 1p system

The 1p system configuration is determined by a set of data files in the /usr/spool/lp directory. Some of these files are ordinary text files, and others contain binary data.

Note: Although it is possible to change the text files with a text editor, don't! Altering these files by hand while lpsched is running may cause strange spooler behavior. The lpadmin command is designed with these conditions in mind and will not allow certain configuration changes to take place until you terminate lpsched. Always use the lpadmin command to reconfigure the lp system.

The lpadmin command is used to change the content of these files. The lpadmin command can have one of the following forms:

```
lpadmin -pprinter [-vdevice] [options]
lpadmin -xdest
lpadmin -d[dest]
```

The three flag options -p, -x, and -d are mutually exclusive. Also, lpadmin will not attempt to alter the lp configuration when lpsched is running, except as explicitly noted in the remainder of this section.

The rest of the section is devoted to a series of examples that illustrate possible invocations of the commands in the 1p system.

As you read, you should get a clear idea (perhaps in the form of a diagram you draw as you read) of which printer classes the examples establish, which printers belong to which classes, what models apply to what printers, and so on.

5.5.1 Introducing new destinations

You can add a new printer by giving the command

lpadmin -pprinter [-vdevice] [options]

where the fields are interpreted as follows:

printer Arbitrary name that must:

- contain no more than 14 characters
- contain only alphanumeric characters and underscores
- not be the name of an existing 1p destination (whether a printer or a class)

device Pathname of a hard-wired printer or other file that is writable by lp, for example, /dev/printer.

options Any of the following:

-c class

Inserts the specified *printer* into the class class. The class will be created if it does not already exist.

-e printer-to-copy

Copies the interface program for *printer-to-copy* as the new interface program for *printer*.

- Indicates that the device associated with printer is hard-wired (plugged directly in to the computer). This option is always assumed, unless the -1 option is selected.
- -i interface

Establishes the program found in *interface* as the new interface program for *printer*.

-1 Indicates that the device associated with *printer* is a login terminal.

-m model

Selects *model* as the model interface program for *printer*. (See "Writing Printer Interface Programs," later in this chapter.)

-r class

Removes printer printer from the specified class. If the specified printer is the last member of the class, the class will also be removed.

-v device

Associate a new device device with the printer printer. The device must be a pathname of a file that is writable by 1p.

When adding a new printer to the 1p system, you must select the printer interface program. You may specify this in one of three ways:

- You may select it from a list of model interfaces supplied with lp in the /usr/spool/lp/model directory (-m model).
- It may be the same interface that an existing printer uses (-e printer-to-copy).
- It may be a program supplied by the 1p administrator (-i interface).

You may add the new printer to an existing class or to a new class (-c class). New class names must conform to the rules that govern new printer names.

Here are some examples of how printers might be named:

• Create a printer called pr1 whose device is /dev/printer and whose interface program is the model hp interface:

/usr/lib/lpadmin -pprl -v/dev/printer -mhp

• Add a printer called pr2 whose device is /dev/tty1 and whose interface is a variation of the model prx interface:

cp /usr/spool/lp/model/prx newint
edit newint and introduce variations
/usr/lib/lpadmin -ppr2 -v/dev/tty1 -inewint

• Create a printer called pr3 whose device is /dev/tty1.

Printer pr3 will be added to a new class called cl1 and will use the same interface as printer pr2:

/usr/lib/lpadmin -ppr3 -v/dev/tty1 -epr2 -ccl1

5.5.2 Modifying existing destinations

You can use lpadmin to modify existing destinations. Always make modifications with respect to a printer name (-pprinter). The form of the command is

lpadmin -pprinter options

These are the options available for modifying existing destinations:

-c class

Add the printer to a new or existing class.

-e printer-to-copy

Change the printer interface program.

-i interface

Change the printer interface program.

-m model

Change the printer interface program.

-r class

Remove the printer from an existing class. Removing the last remaining member of a class causes the class to be deleted. A destination cannot be removed if there are pending requests to that destination. In that case, you should use 1pmove or cancel to move or delete the pending requests.

-v device

Change the device for the printer. If this is the only modification, then this may be done even while lpsched is running.

These examples are based on the 1p configurations created in previous examples:

Add printer pr2 to class c11:

```
/usr/lib/lpadmin -ppr2 -ccl1
```

 Change the interface program of the pr2 to the model prx interface, change its device to /dev/tty0, and add it to a new class called c12:

```
/usr/lib/lpadmin -ppr2 -mprx -v/dev/tty0 -ccl2
```

Note that printers pr2 and pr3 now use different interface programs even though pr3 was originally created with the same interface as pr2. Printer pr2 is now a member of two classes.

• Add printer pr1 to class c12:

```
/usr/lib/lpadmin -ppr1 -ccl2
```

The members of class c12 are now pr2 and pr1, in that order. Requests routed to class c12 will be serviced by pr2 if both pr2 and pr1 are ready to print; otherwise, they will be printed by whichever one is next ready to print.

• Remove printers pr2 and pr3 from class c11:

```
/usr/lib/lpadmin -ppr2 -rcl1
/usr/lib/lpadmin -ppr3 -rcl1
```

Because pr3 was the last remaining member of class c11, the class is removed.

• Add pr3 to a new class called c13:

```
/usr/lib/lpadmin -ppr3 -ccl3
```

5.5.3 Altering the system default destination

You can change or specify the system default destination even when lpsched is running. You can do this using the lpadmin command with the -d flag option. The form of the command is

```
lpadmin -d[dest]
```

The destination dest may be omitted; if so, then no destination is established as the system default.

Here are some examples of how default destinations may be specified:

• Establish class cl1 as the system default destination:

/usr/lib/lpadmin -dcl1

• Establish no default destination:

/usr/lib/lpadmin -d

5.5.4 Removing destinations

You can use lpadmin to remove classes and printers only if there are no pending requests routed to them. You must either use cancel to cancel pending requests or use lpmove to move pending requests to other destinations before you can remove destinations. If the removed destination is the system default destination, the system will have no default destination until you specify a new default destination. When the last remaining member of a class is removed, the class is also removed. In contrast, removing a class never implies removing printers (see the third example, following).

The form of the lpadmin command used to remove destinations is

lpadmin -xdest

The destination being removed must be specified, and no other options are allowed.

Here are some examples of how printer destinations may be removed:

• Make printer pr1 the system default destination:

/usr/lib/lpadmin -dpr1

Then remove printer pr1:

/usr/lib/lpadmin -xpr1

Now there is no system default destination.

• Remove printer pr2:

/usr/lib/lpadmin -xpr2

Class c12 is also removed because pr2 was its only member.

• Remove class c13:

/usr/lib/lpadmin -xcl3

Class c13 is removed, but printer pr3 remains.

5.6 Setting up an Imagewriter or Laserwriter printer

The steps you take to add an Imagewriter or Laserwriter printer to your system are given here. In addition, an example of setting up a printer in general is provided so that you can set up other printers.

5.6.1 Adding an imageWriter II printer

A/UX is already set up to use an Apple ImageWriter or an ImageWriter II as a line printer. All you have to do is connect the printer to the computer printer port and use the 1p utility to spool and print your files. This short section describes how.

If you have any questions about unpacking or setting up your printer, refer to the owner's guide that came with it.

Printer name: The default printer name is iw2. See lpadmin (1M) in A/UX System Administrator's Reference for information about using or changing the printer name.

1. Connect the computer to your printer with the appropriate cable.

For the ImageWriter II, this requires a Macintosh Plus-to-ImageWriter II cable (use part 590-0552, 590-0340, or M0187). Plug one end of the printer cable to the serial interface socket at the back of the ImageWriter II, and plug the other end into the printer port identified by the printer icon on the back of the Macintosh II.

Adding an ImageWriter: If you're attaching the older ImageWriter model printer, you won't be able to use a Macintosh Plus-to-ImageWriter II cable. Instead, make a printer cable by connecting a Macintosh Plus adapter cable (part M0189 or 590-0341) to an ImageWriter cable (part M0150 or 590-0169). That is, attach the DB-9 connector of the ImageWriter cable to the DB-9 connector of the Macintosh Plus adapter cable. Then plug the DB-25 connector of the ImageWriter cable into the serial interface socket on the ImageWriter. Finally, plug the mini-8 connector of the Macintosh Plus adapter cable into the printer port on the Macintosh II. The rest of the instructions in this section apply to the earlier ImageWriter model as well as to the ImageWriter II.

2. Turn the printer on and make sure its green Select light is on.

Paper must be loaded into the printer before the Select light turns on. Because A/UX prints a cover page with each job, you should use either the forms tractor with fanfold paper or a cut-sheet feeder for separate sheets of paper. Otherwise, you'll need to feed at least two pages through the printer by hand for each print job spooled by the 1p utility.

3. Bring A/UX up to multi-user mode if it isn't already.

If the login: prompt appears on your console, then your system is already in multi-user mode. If your system is in single-user mode, or if the root user's command prompt appears on your console and you're not sure if the system is in multi-user mode, type the command

init 2

and press RETURN. This ensures that A/UX is in multi-user mode. If you're prompted to check the file systems, enter n.

4. Log in as the root user.

Provide your password when prompted and press RETURN to accept the mac2 terminal type.

5. Start the printer scheduler running by entering

/usr/lib/lpsched

6. Enter the command 1p /etc/motd to test the printer.

Enter

lp /etc/motd

and press RETURN. A/UX should display its command prompt, and within a minute the ImageWriter II should print a cover page and then the file /etc/motd, the message-of-the-day login banner that users normally see when they log in. If this doesn't happen, check the printer and the earlier section "Stopping and Starting the Scheduler" to verify that the scheduler is running properly.

7. Edit the file /etc/inittab so that the scheduler is started automatically each time the system enters multi-user mode.

Change

lp:2:off:/usr/lib/lpsched >/dev/syscon 2>&1

to

lp:2:once:/usr/lib/lpsched >/dev/syscon 2>&1

5.6.2 Adding a LaserWriter printer

Apple LaserWriter printers can be used as intelligent printers for producing near-typeset quality text and graphics. (See A/UX Text Processing Tools for details.)

If you have any questions about unpacking or setting up your particular LaserWriter, refer to the owner's guide that came with your printer.

1. Put together a printer cable.

Currently, A/UX supports LaserWriters as serial devices. If you have a LaserWriter I, you will connect the printer to the Macintosh II using either the printer's 9-pin socket or its 25-pin socket. If you have a LaserWriter II, you must use its only socket, the 25-pin socket, so follow the instructions for putting together a cable for that socket.

Put together either of these cables:

- ☐ To connect to the 25-pin socket of a LaserWriter I or II, make a cable by connecting a Macintosh Plus adapter cable (part 590-0341 or M0189) to an ImageWriter cable (part 590-0169 or M0150); that is, attach the DB-9 connector of the ImageWriter cable to the DB-9 connector on the Macintosh Plus adapter cable.
- ☐ To connect to the 9-pin socket of a LaserWriter, make a cable by connecting a Macintosh Plus adapter cable (part 590-0341 or M0189) to a Modem cable (part 590-0197 or M0170); that is, attach the DB-9 connector of the Modem cable to the DB-9 connector of the Macintosh Plus adapter cable.

If you have a LaserWriter II NT or NTX, connect your cable's mini-8 connector to the printer port on the Macintosh II.

Plug the cable's circular connector into the Macintosh II printer port.

- 2. If you have a LaserWriter II NTX, you must also attach a SCSI cable between the printer's SCSI port and a SCSI port on the Macintosh II. See your printer owner's manual if you need further instructions on this.
- 3. With your LaserWriter switched off, connect the free end of your cable to the 25-pin or 9-pin socket of the printer.

Turn off the power to your LaserWriter. If you made your cable with a DB-25 connector, plug that connector into the printer's 25-pin socket. If you made a cable with a DB-9 connector, plug the connector into the printer's 9-pin socket.

4. Change the printer's mode switch to 9600 baud.

Refer to your printer's owner's guide for instructions on changing the LaserWriter from its preset AppleTalk communication mode to its 9600-baud mode.

5. Turn the printer on and make sure the green Ready light is on.

When you turn it on, the LaserWriter prints a test page if it's running correctly. Your printer's owner's guide contains more information about this self-test.

6. Bring A/UX up to multi-user mode if it isn't already.

If the login: prompt appears on your console, then your system is already in multi-user mode. If your system is in single-user mode, or if the root user's command prompt appears on your console and you're not sure if the system is in multi-user mode, type the command

init 2

and press RETURN. This ensures that A/UX is in multi-user mode. If you're prompted to check the file systems, enter n.

7. Log in to A/UX as the root user.

If the root user's command prompt appears on the console, you're already logged in as the root user.

However, if the login: prompt appears instead, type root and press RETURN. Provide your password when prompted and press RETURN to accept the mac2 terminal type. The A/UX printer spooler is initially configured to print to an ImageWriter II. You need root privileges to change A/UX to print to a LaserWriter.

8. Start the printer scheduler running by entering

/usr/lib/lpsched

9. Edit the file /etc/inittab so that the scheduler is started automatically each time the system enters multi-user mode.

Change

lp:2:off:/usr/lib/lpsched >/dev/syscon 2>&1

to

lp:2:once:/usr/lib/lpsched >/dev/syscon 2>&1

10. Enter the following commands to configure A/UX to your LaserWriter.

The following command sequence reflects the assumption that you've kept the default printer name of iw2 for your ImageWriter II. If you've used a different name, change iw2 in the command line (RM_PR iw2) to your own printer name. (If you are unsure of your printer name, enter the command lpstat -t to determine it. See A/UX Command Reference for detailed information on lpstat(1).)

The command line ADD_LW laser tty2 gives your LaserWriter the printer name laser. You may enter a different name if you wish. See lpadmin(1M) in A/UX System Administrator's Reference for further information about using or changing the printer name.

Type

cd /usr/spool/lp

and press RETURN. When the root user's command prompt reappears, enter

RM_PR iw2

A/UX returns several status messages regarding the progress of this command. When the root user's command prompt appears again, enter

ADD_LW laser tty1

A/UX returns messages about the progress of this command, too.

11. Enter the command lp /etc/motd to test the printer.

Type

lp /etc/motd

and press RETURN. A/UX should display its command prompt, and within a minute the LaserWriter should print a cover page, then the file /etc/motd, the message-of-the-day login banner that users normally see when they log in.

5.6.3 If you are connecting a LaserWriter II NT or NTX

The LaserWriter II NT and NTX produce pages face-down in the paper tray, in contrast to the LaserWriter which places them face-up. This difference requires the two printers to print pages and files in different orders: the LaserWriter II NT and NTX need to print both the pages within a file, and a series of print requests they receive, in ascending order, and the LaserWriter needs to print in descending order. The printing system is set up to handle the LaserWriter. If you have a LaserWriter II NT or NTX, you need to change a variable in the printer interface file.

Here are the steps to adjust the software for a LaserWriter II NT and NTX.

1. Use a text editor to open the file /user/spool/lp/model/psinterface.

- 2. Find the variable REVERSE.
- 3. Set the variable REVERSE to the value 0 by changing the line to REVERSE=0

Now the printer will print pages and files in ascending order.

5.6.4 Changing from a LaserWriter to an ImageWriter
If you've already followed the steps in the previous section, "Adding a
LaserWriter Printer," and you want to change back to using an
ImageWriter or ImageWriter II, follow these instructions:

- 1. Disconnect the printer cable from the LaserWriter and the Macintosh II.
- 2. Connect the Macintosh II to your ImageWriter II printer with the appropriate cable.

For an ImageWriter II you need a Macintosh Plus-to-ImageWriter II cable (part 590-0552 or M0187). Connect one end of the printer cable to the serial interface socket at the back of the ImageWriter II and the other end to the printer port on the Macintosh II.

Adding an ImageWriter: If you're attaching the older ImageWriter model printer, you won't be able to use a Macintosh Plus-to-ImageWriter II cable. Instead, make a printer cable by connecting a Macintosh Plus adapter cable (part M0189 or 590-0341) to an ImageWriter cable (part M0150 or 590-0169). That is, attach the DB-9 connector of the ImageWriter cable to the DB-9 connector of the Macintosh Plus adapter cable. (You may already have made this cable for attaching your LaserWriter.) Plug the DB-25 connector of the ImageWriter cable into the serial interface socket on the ImageWriter. Finally, plug the mini-8 connector of the Macintosh Plus adapter cable into the printer port on the Macintosh II. The rest of the instructions in this section apply to the earlier ImageWriter model as well as to the ImageWriter II.

3. Turn the printer on and make sure its green Select light is on.

Paper must be loaded into the printer before the Select light turns on. Because A/UX prints a cover page with each job, you should

use either the forms tractor with fanfold paper or a cut-sheet feeder for separate sheets of paper. Otherwise, you'll need to feed at least two pages through the printer by hand for each print job spooled by the 1p utility.

4. Bring A/UX up to multi-user mode if it isn't already.

If the login: prompt appears on your console, then your system is already in multi-user mode. If your system is in single-user mode, or if the root user's command prompt appears on your console and you're not sure if the system is in multi-user mode, type the command

init 2

and press RETURN. This ensures that A/UX is in multi-user mode. If you're prompted to check the file systems, enter n.

5. Log in to A/UX as the root user.

If the the root user's command prompt appears on the console, you're already logged in as the root user.

However, if the login: prompt appears instead, type root and press RETURN. Type your password when prompted and press RETURN to accept the mac2 terminal type. You'll need root privileges to use several of the following commands.

6. Enter the following commands to reconfigure A/UX to print to your ImageWriter II.

The following command sequence reflects the assumption that the printer name of your LaserWriter is laser. If you've used a different name, change laser in the command line RM_PR laser to your own printer name. (If you are unsure of your printer name, enter the command lpstat -t to determine it. See A/UX Command Reference for detailed information on lpstat(1).)

The command line ADD_IW iw2 printer gives your ImageWriter II the printer name of iw2. You may enter a different name if you wish. See lpadmin(1M) in A/UX System Administrator's Reference for further information about using or changing the printer name.

Enter

cd /usr/spool/lp

When the root user's command prompt reappears, enter

RM_PR laser

A/UX returns several status messages regarding the progress of this command. When the root user's command prompt appears again, enter

ADD IW iw2 printer

A/UX returns messages about the progress of this command, too.

7. Enter the command lp /etc/motd to test the printer.

When the root user's command prompt reappears, type

lp /etc/motd

and press RETURN. A/UX should display its command prompt, and within a minute the ImageWriter II should print a cover page, then the file /etc/motd, the message-of-the-day login banner that users normally see when they log in.

5.6.5 Setting up other printers

As an example of how to set up a hard-wired device for use as an 1p printer, consider using tty0 as printer iw2, assuming that the printer is an ImageWriter II. As the root user, do the following:

1. Avoid unwanted output from non-lp processes and ensure that lp can write to the device, as follows:

chown lp /dev/tty0
chgrp lp /dev/tty0
chmod 600 /dev/tty0

2. Change the file /etc/inittab so that tty0 is not a login terminal. In other words, ensure that /etc/getty is not trying to log users in at this terminal. Change the entry for tty0, as follows:

00:2:off:/etc/getty tty0 at_9600

Enter the command

init Q

to tell the init(1M) process to reread the /etc/inittab file and remove the getty(1M) process from the port.

3. Check the status of lpsched. Enter the command

lpstat -r

If you see the message

scheduler is running

enter the command

/usr/lib/lpshut

4. Now introduce the printer iw2 to 1p. The notation iw2 is the name of the interface program that configures the ImageWriter II. The interface programs for other printers you can use are listed in /usr/spool/lp/model. To introduce printer iw2 to 1p, enter

/usr/lib/lpadmin -piw2 -v/dev/tty0 -miw

5. If you are going to use at least two printers, you might consider creating at least a class of printers. To do this at the same time as you introduce iw2, replace the line in step 4 with

/usr/lib/lpadmin -piw2 -v/dev/tty0 -cclass1 -miw

Otherwise, if iw2 has already been introduced, enter

/usr/lib/lpadmin -piw2 -cclass1

6. You can now let 1psched run. Enter

/usr/lib/lpsched

7. When iw2 is created, it is initially disabled, and 1p rejects requests routed to it. Allow 1p to accept requests for iw2 by entering the following:

/usr/lib/accept iw2

This allows the queuing of printing requests to iw2 when iw2 is enabled.

8. Before printing, be sure that the printer is ready to receive output, that the top of the form has been adjusted, and that the printer is online. To enable printing on iw2, give the command

enable iw2

When requests have been routed to iw2, they will begin printing.

9. You can now print. As a test, print the message-of-the-day (motd) file.

lp /etc/motd

In a few seconds, you should get a message with the destination and the request number from 1p. A few seconds later, the file should start printing.

5.7 Writing printer Interface programs

Every 1p printer must have an interface program that does the actual printing on the device that is currently associated with the printer. Interface programs may be Bourne shell procedures, C programs, or any other executable program.

This section is intended to provide very general guidelines for writing printer interface programs. It assumes that you have a working knowledge of Bourne shell or C language programming principles. As with all programming, the best way to learn it to study examples of code that works. The 1p model interfaces supplied with A/UX are all written as Bourne shell procedures and can be found in the /usr/spool/1p/model directory. This directory contains interface programs for various printer models.

The home directory of lpsched is /usr/spool/lp. When lpsched is ready to print a user request on the printer printer, it invokes the appropriate interface program with a command line of the form

interface/printer id login-name title copies options file(s) where the fields are interpreted as follows:

printer name of the interface program in /usr/spool/lp/interface directory

id request ID returned by 1p

login-name login name of the user who made the request

title optional title specified by the user

copies number of copies requested by the user

options blank-separated list of class- or printer-dependent options

specified by the user

file(s) full pathname(s) of file(s) to be printed

To print a request, the 1p scheduler, 1psched, invokes a printer interface program. The command line argument to the program is based on the spooler configuration and information contained in the 1p command line entered by the user. The following example assumes a user named Smith and a system default printer called iw2.

The command

causes 1psched to invoke the iw2 interface program with the line

interface/iw2 iw2-52 smith "passwords" 5 "a b"
 /etc/passwd /etc/group

Each of these commands should appear on one long line. They are broken here because the page does not accommodate the long measure. You can now write a simple routine to have your interface program interpret the arguments and process the print request appropriately.

When the interface program is invoked, its standard input is /dev/null, and both the standard output and standard error output are directed to the printer's device. Devices are opened for reading as well as writing when file modes permit. When a device is a regular file, all output is appended to the end of the file.

Given the command line arguments and the output directed to a device, interface programs may format their output in any way you choose. Interface programs must ensure that the proper stry modes (terminal characteristics such as baud rate and output options) are in effect on the

output device. This may be done in a shell interface only if the device is opened for reading, as follows:

stty mode... <&1

In other words, take the standard input for the stty command from the device.

When printing is complete, the interface program should exit with a code indicating the success or failure of the print job. The lpsched scheduler interprets the exit codes generated by the Bourne shell exit (n) and the C statement exit (n) as follows:

The print job has been completed successfully.

1 to 127

A problem was encountered in printing this request (for example, too many nonprintable characters). The problem will not affect future print jobs. The lpsched scheduler mails the user a letter stating that there was an error in printing the request. The letter contains the error exit code.

greater than 127

These codes are reserved for internal use by lpsched. Interface programs must not exit with codes in this range. As before, lpsched uses mail to notify the user of the abnormal exit and exit code.

When problems occur that are likely to affect future print jobs (for example, a device filter program is missing), your interface program should be written to disable printers (with the disable command) so that print requests are not lost.

5.8 Using the 1p system

Once 1p destinations have been created, users may route output to a destination by using the 1p command. The basic form of the 1p command is

1p [options] files

Various options are available with the 1p command; see 1p(1) in A/UX Command Reference. You can use the request ID returned by 1p to see if the request has been printed or to cancel the request.

The 1p program determines the destination of a request by checking the following list in order:

- If the user specifies -ddest on the command line, the request is routed to dest.
- If the environment variable LPDEST is set, the request is routed to the value of LPDEST.
- If there is a system default destination, the request is routed there
- Otherwise, the request is rejected.

Here are some examples of using the 1p command.

• There are at least four ways to print the a file on the system default destination:

```
lp filename
lp < filename
cat filename | lp
lp -c filename</pre>
```

In the first method, the file is printed directly; in the last three, the file is printed indirectly. If you use the first command, the file is modified between the time the request is made and the time it is actually printed; the changes will be reflected in the output.

 Print two copies of file abc on printer iw2 and title the output myfile:

```
pr abc | lp -diw2 -n2 -t"myfile"
```

 Print file abc on a Diablo 1640 printer called jerry in 12 pitch, and write the file to the user's terminal when printing is completed:

lp -djerry -o12 -w abc

In this example, 12 is a command to the model Diablo 1640 interface program to print output in 12-pitch mode. Other models may require different options. See lpadmin(1M) in A/UX System Administrator's Reference.

Note: The 1p command runs with an effective user ID (EUID) of 1p. In other words, A/UX behaves as if a user named 1p is reading the files to be printed. Therefore, any files to be printed with a command of the form

1p [options] files

must have read permission set for others. If this poses a security problem, you can use the 1p command in a pipe (1) or with the shell input redirect character (<). These two methods work because the user is feeding input to the 1p command via the standard input. Here are two examples:

lp < /etc/passwd
pr abc | lp</pre>

5.8.1 Allowing and refusing requests

When a new destination is created, 1p at first rejects requests that are routed to it. When you are sure that the new destination is set up correctly, you should use the accept command to allow 1p to accept requests for that destination. See accept(1M) in A/UX System Administrator's Reference.

Sometimes it is necessary to prevent 1p from routing requests to destinations. If printers have been removed or are waiting to be repaired, or if too many requests are in queue for printers, you may want to have 1p reject requests for those destinations. The reject command performs this function; see reject(1M) in A/UX System Administrator's Reference. After the condition has been remedied, you should use the accept command to allow requests to be taken again.

The acceptance status of destinations is reported by the -a option of lpstat.

Here are some examples of how to reject and accept requests:

• Have 1p reject requests for destination iw2:

/usr/lib/reject -r"printer iw2 needs repair" iw2
Any users who try to route requests to iw2 will see the following message

Allow 1p to accept requests routed to destination iw2:

/usr/lib/accept iw2

5.8.2 Allowing and inhibiting printing

The enable command allows the 1p scheduler to print requests on printers. The scheduler routes requests only to the interface programs of enabled printers. By issuing the appropriate enable and reject commands, you can enable a printer and at the same time prevent further requests from being routed to it. This can be useful for testing purposes.

The disable command reverses the effects of the enable command. It prevents the scheduler from routing requests to printers, regardless of whether 1p is allowing them to accept requests. Printers may be disabled for several reasons, including malfunctioning hardware, paper jams, and end-of-day shutdowns. If a printer is printing a request at the time it is disabled, the request will be reprinted in its entirety either on another printer (if the request was originally routed to a class of printers) or on the same one when the printer is enabled once again.

The -c option cancels the currently printing requests on busy printers in addition to disabling the printers. This is useful if strange output is causing a printer to behave abnormally.

Here are some examples of how to enable and disable a printer:

• Disable printer iw2 because of a paper jam:

```
disable -r"paper jam" iw2
printer "iw2" now disabled
```

• Find the status of printer iw2:

• Re-enable iw2:

```
enable iw2
printer "iw2" now enabled
```

5.8.3 Moving requests between destinations

Occasionally, 1p administrators find it useful to move output requests between destinations. For instance, when a printer is down for repairs, you may want to move all of its pending requests to a working printer. This is one use of the 1pmove command. The other use of this command is moving specific requests to a different destination. The 1pmove command will not move requests while the 1p scheduler is running.

Here are some examples of how to move requests between destinations:

• Move all requests for printer abc to printer bobby:

```
/usr/lib/lpshut
/usr/lib/lpmove abc bobby
/usr/lib/lpsched
```

The names of all the moved requests are changed from abcnnn to bobby-nnn. As a side effect, destination abc will not accept further requests.

• Move requests jerry-543 and abc-1200 to printer bobby:

```
/usr/lib/lpshut
/usr/lib/lpmove jerry-543 abc-1200 bobby
/usr/lib/lpsched
```

The two requests are now renamed bobby-543 and bobby-1200 and will be printed on bobby.

5.8.4 Canceling requests

To cancel 1p requests, use the cancel command. The cancel command can take two types of arguments: request IDs and printer names. Requests identified by request IDs are canceled. If you use a printer name as the argument to cancel, all jobs currently printing on the named printers are canceled. Both types of arguments may be intermixed. See 1p(1) in A/UX Command Reference.

Here is an example of how to cancel printing:

• Cancel the request that is now printing on printer bobby:

cancel bobby

If the user who cancels a request is not the user who made it, mail is sent to the owner of the request. The 1p scheduler allows any user to cancel requests, thus eliminating the need for users to find 1p administrators when unusual output should be stopped.

5.9 1p system troubleshooting

The 1p system problems encountered most frequently are explained here, along with their solutions.

5.9.1 Problems starting lpsched

The lpsched scheduler is usually invoked by the init(1M) process when A/UX enters multi-user mode. The invocation is a two-step process:

- The /etc/rc script runs rm to remove the SCHEDLOCK file in the /usr/spool/lp directory.
- The init process invokes lpsched.

The purpose of the SCHEDLOCK file is to prevent more than one invocation of lpsched from running simultaneously. If two (or more) copies of lpsched are running at the same time, there is contention over system resources, resulting in confused spooler behavior and failure to print files.

When lpsched finds something wrong in the lp system, it attempts to mail an error message to the root user and make an entry in the

/usr/spool/lp/log file. The SCHEDLOCK file is not removed under these conditions, because invoking lpsched again without clearing the trouble is likely to produce the same error conditions.

5.9.2 Restarting lpsched

1.	When lpsched stops due to error conditions:
	☐ Check the root user's mail for correspondence from 1p.
	☐ Check /usr/spool/lp/log for error messages.
	☐ Use lpstat -t to check the spooler status for additional messages about individual printers.
	☐ Use the ps -ulp command to determine if multiple copies of lpsched are running. (The status command lpstat will not report multiple copies of lpsched.) Write down the process ID of each lpsched you find.
2.	Clear the error conditions:
	☐ If lpsched's messages indicate damaged spooler configuration files (see "lp System Files"), use the lpadmin command to remake the lp system (see "Configuring the lp System," earlier in this chapter).
	☐ Use the kill(1) command to kill all of the lpsched processes. (See kill(1) in A/UX Command Reference.)
	 Clear any other error conditions indicated by the error messages.
3.	Restart 1psched with the commands
	rm /usr/spool/lp/SCHEDLOCK /usr/lib/lpsched
	Use the lpstat -t command to check the status of the entire lp system.
4.	If everything appears normal in the lpstat report, perform the

ultimate test: print a file.

5.9.3 Repairing a damaged output q file

The 1p system keeps all queue data in the binary file /usr/spool/lp/outputq. If this file is damaged, the spooler does not run correctly, and old job files remain in the subdirectories of /usr/spool/lp/request. To correct this condition:

- 1. Use the fack utility to check the file system. (See Chapter 8, "Checking the A/UX File System: fack.")
- 2. Use the /usr/lib/lpshut command to stop the lp spooler.
- 3. Remove the contents of the directories under /usr/spool/lp/request, but do not remove the directories themselves. Use the rm ./* command, but with caution! Use pwd to be sure you are in the directory you think you are in!
- Nullify the corrupted output file with the command cp /dev/null /usr/spool/lp/outputq
- 5. Use the /usr/lib/lpsched command to restart the spooler.

5.9.4 1p system files

This section describes the system files used by 1p.

/usr/spool/lp/class

A directory containing one text file for each printer class. The filename corresponds to the class. Each class file contains the names of the printers belonging to the class.

/usr/spool/lp/default

A text file containing the name of the system default printer; empty if there is no default printer or destination.

/usr/spool/lp/log

A text file containing a record of all printing requests.

/usr/spool/lp/FIFO

A named pipe, readable and writable only by 1p. Any 1p command may write to this file, but only 1psched may read it.

/usr/spool/lp/interface/printer

The printer field is the name of a particular printer interface program in the /usr/spool/lp/interface directory. All files in this directory should be executable by 1p only.

/usr/spool/lp/log, /usr/spool/lp/oldlog
The file /usr/spool/lp/log is a record of printing
requests made during each run of lpsched. Each time
lpsched is started, it copies /usr/spool/lp/log to
/usr/spool/lp/oldlog. Then it truncates
/usr/spool/lp/log.

/usr/spool/lp/member

A directory containing one text file for each printer. The file name corresponds to the printer name. The file contains the name of the device file in the /dev directory that corresponds to the printer.

/usr/spool/lp/model

A directory containing sample printer interface programs (Bourne shell scripts).

/usr/spool/lp/outputq

A binary data file that holds the 1p request queue information.

/usr/spool/lp/pstatus

A binary data file that contains status information (whether a printer is enabled or disabled) for each printer.

/usr/spool/lp/qstatus

A binary data file that contains the acceptance status (whether a printer is accepting or rejecting requests) for each printer.

/usr/spool/lp/request

A directory containing subdirectories named for each destination (class or printer) known to the 1p system. The subdirectories are used for temporary storage of spooler commands and print requests (text).

/usr/spool/lp/SCHEDLOCK

A file designed to prevent more than one invocation of lpsched from running simultaneously. See "Stopping and Starting the Scheduler," earlier in this chapter.

/usr/spool/lp/seqfile

A text file containing the sequence number assigned to the last request printed. The number always is in the range 1-9999.

/usr/spool/lp/OUTQLOCK

/usr/spool/lp/PSTATLOCK

/usr/spool/lp/QSTATLOCK

/usr/spool/lp/SEQLOCK

Various lock files for preventing 1p system commands from modifying data in the data files described above. Each file has an expiration time, after which any 1p system command may remove the lock file and then modify the previously locked data file. These lock files and SCHEDLOCK operate according to similar principles.

5.9.5 1p system command permissions

All 1p system utilities with the exception of 1psched should be owned by 1p with the set user ID (SUID) bit turned on (see chmod(1) and chown(1) in A/UX Command Reference). The 1psched scheduler may be owned either by the root user or by 1p.

PLACE TAB HERE

CHECKING THE FILE SYSTEM

BACK OF TAB

Chapter 8 Checking the A/UX File System: fsck

Contents

1.	Introd	uction t	o fsc	k	•	•		•	•	•	•	•	•	•	•	•	1
2.	Overv	iew of	the A/	UX fi	le s	yst	em										2
	2.1	Partitio	ons, fil	e sys	tem	s, a	and	hie	rarc	chie	s						2
	2.2	Bytes,	block	s, and	l dis	k a	illo	cati	on					•			3
	2.3	Inodes														•	3
	2.4																5
	2.5	More o	on ino	ies													7
	2.6										•					•	9
		Inode											•			•	10
		The su															11
			The su						ree		-	-					11
	:		The i-			•		•			•	•	•				13
	2.9	Block	I/O .	•				•				•		•			14
	2.10	The bu		ache											•	•	14
		Specia					B V (•		•	15
		2.11.1								•				•	•	•	16
_											•	•	•	٠	٠	•	
3.		esck w		•	•	•	•	•	•	•	•	•	•	•	•	•	17
	3.1	•		-			-		•		•	•	•	•	•	•	18
	3.2												•	•	•	•	21
		3.2.1									S	•	•	•	•	•	21
		3.2.2									•	•	•		•	•	21
		3.2.3										•	•			•	21
	;	3.2.4	Phase	4: ch	eck	re	fere	nce	co	uni	S						21
	;	3.2.5	Phase	5: ch	eck	fre	e li	st		•							21
	:	3.2.6	Phase	6: sa	lvag	ge f	ree	list							•		22
4.	Using	fsck						•									22
•	4.1	When	to use	fac	k	•	•	•	•	•	•	•	•	•	•	•	22
	4.2	fsck				•	•	•	•	•	•	•	•	•	•	•	23
	7.4		OPHOLI		•	•	•	•	•	•	•	•	•	•		_	4.3

	4.3	fsck	: a sampl	e inter	action	1						•			25
	4.4	Multip	ole file sy	stems	and £	sc	c	•	•	•	• 1	•	•	•	26
5.	fsck	messag	zes .			•									29
			initializa	tion pl	hase r	ness	age	S							29
			fsck of	-			_								29
			Memory												30
			Errors in												30
			File statu	-	_										30
		5.1.5	File syst	em siz	e and	ino	ie li	ist s	ize						31
		5.1.6	Scratch i	file erre	ors	•		•		•		•		•	31
		5.1.7	Interacti	ve mes	sages	3							•		31
	5.2	Phase	1: check	block	s and	size	S								33
		5.2.1	Inode ty	ре епто	rs .										33
			Zero-lini	•											34
		5.2.3	Bad or d	uplica	te blo	cks				٠		•			34
			Inode siz									•			37
		5.2.5	Inode fo	rmat e	rrors	•							•		38
	5.3	Phase	1B: resc	an for	more	dup	lica	ites							39
	5.4	Phase	2: check	pathn	ames	•	•	•		•				•	39
		5.4.1	Root inc	de mo	de an	d sta	atus	еп	ors			•	•	•	39
		5.4.2	Director	y inod	e poir	iters	rar	ige	епт	ors			•		40
		5.4.3	Director	y entri	es po	intir	ig to	o ba	ıd						
			inodes	•		•	•								40
	5.5	Phase	3: check	conne	ctivit	y									42
			Unrefere								• .				42
	5.6	Phase	4: check	refere	nce c	oun	ts	•	•	•	•		•		43
		5.6.1	Unrefere	enced i	files	•								•	43
		5.6.2	lost+	ound	direc	tory	en	rors	;						43
			Incorrec												44
		5.6.4	Unrefere	enced	files/d	lirec	tori	es							45
		5.6.5	Bad and							nd					
			directori												46
	5.7	Phase	5: check	free l											47
			6: salva				•				•		•		49
	5.0		•••	J		-	•	•	•	•	•	•	•	•	50

Figures

Figure 8-1.	I-number r	elationsl	nips	•	•	•	•	•	•		•	4
Figure 8-2.	Indirect blo	cks .		•			•					6
Figure 8-3.	Additional	informat	ion in	an	ino	de		•			•	8
Figure 8-4,	File-directorinodes	•	ection		•	_		•	•	•		9
Figure 8-5.	I-numbers	and ino	de loca	atio	ns			•	•		•	10
Figure 8-6.	The superi	olock an	d the f	ree	lis	t		•		•		13
Figure 8-7.												
	system	• • •	• •	•	•	•	•	•	•	•	•	27
Figure 8-8.	A descripti		•				_		_			28

BLANK PAGE

Chapter 8

Checking the A/UX File System: fsck

1. Introduction to fack

The fsck program (for "file system check") locates and resolves inconsistencies within a file system. It is intended for use during normal booting procedures and at any other time that the system administrator suspects inconsistencies within the file system (such as immediately following a system crash).

The A/UX operating system treats almost everything in its environment as a file. To operate on a file in the A/UX environment, you need only refer to it by name. The general function of the A/UX file system is to

- support the seemingly simple interface on A/UX mass-storage media (disks, tapes, and tape cartridges)
- permit the kernel to find data on the disk
- load the data into main memory
- periodically update the disk with the modifications performed on the data in main memory

Sometimes this updating fails, usually because of power failures or improper system shutdown, and inconsistencies within the file system result. Fortunately, in most cases you can resolve these inconsistencies by using the A/UX fack program.

The fsck program checks the location of files on disk and uses redundancies and known parameters to resolve inconsistencies. A known parameter is information about the file system that does not change, such as the number of characters per block or the number of blocks in a disk. A redundancy is information that the system maintains in more than one place, such as the size of each file and the number of blocks not currently in use.

In many cases, fack can fix the damage. Sometimes, however, fack can only report cryptic messages about the damage that has been done.

In these cases, a system administrator who knows the structure and functioning of the file system must resolve the problem. The goal of this chapter is to provide you with this knowledge.

Section 2 of this chapter describes the structure of the A/UX file handling system. Section 3 discusses how fack operates and when you should run it. Section 4 discusses how to use fack. Section 5 describes fack's phases and error messages.

Before you begin this chapter you should know how to use the commands 1s, rm, cp, mv, cd, and 1n (for more information about these commands, refer to Chapter 4, "The A/UX File System," in Getting Started with A/UX). You should also be able to bring the system to single-user or multi-user status (see Chapter 2, "System Startup and Shutdown," for more information).

2. Overview of the A/UX file system

It is important to understand the organization of the A/UX file system and some of the commands that manipulate this organization before you begin to work with fsck. This section gives you a brief overview of the relevant file and directory information.

2.1 Partitions, file systems, and hierarchies

The A/UX file-handling system is the complete set of data structures, commands, and subroutines used to manipulate data stored on a physical device. On the A/UX system, a physical storage device (usually a disk) is divided into logical devices called partitions, each of which may contain an A/UX file system. You can use the dp command to establish or remove partitions; see dp(1M) and gd(7) in A/UX System Administrator's Reference, and bzb(4) and dpme(4) in A/UX Programmer's Reference.

A file system is a logical device that contains the data structures (directories, files, and inodes, among others) that implement all or part of the A/UX directory hierarchy. The A/UX directory hierarchy is simply the collection of all files currently available to the system. This coincides with the collection of all files on currently mounted file systems; see mount(1M) in A/UX System Administrator's Reference. From the user's point of view, the directory hierarchy resembles an inverted tree, branching out from the root directory (/).

The general term *hierarchy* is used for the collection of files and subdirectories of a given directory; for instance, the /usr hierarchy means all files and directories under the /usr directory. A hierarchy coincides with the A/UX directory hierarchy only when the directory under consideration is the root directory.

2.2 Bytes, blocks, and disk allocation

A file system is divided up into units called blocks. A block on the disk is called a physical block and is a contiguous sequence of 512 bytes (characters). To speed up the disk I/O operations, A/UX handles two physical blocks at once (1024 bytes); this is called a logical block. A logical block is two contiguous 512-byte blocks. Each character in a file is represented by a byte of information, and each byte resides in a block.

A file smaller than one logical block, also called a data block, resides in one location of the disk. A file larger than this resides in different portions of the disk. Ideally, the data blocks of a file should be as near to one another as possible to optimize disk I/O operations. However, in reality, as the disk is used and files are deleted, data blocks become increasingly scattered. To handle this, inodes are made to point to each block of the file in sequence.

2.3 Inodes

Inodes contain information about files, the most important of which is a list of locations on the disk where the file's contents are to be found. Note that the inode does not point to a single location on the disk, but to several discrete locations (see the next section, "Direct and Indirect Blocks"). Figure 8-1 illustrates the relationship between the directory /users/demo, a file in that directory named letter, the i-number and inode associated with letter, and the disk locations where the contents of letter are stored.

•					
					Jane and
					in the second
		•	•		
•					
					•
·		* * * * * * * * * * * * * * * * * * *			
	•			•	
				*	

file with 1025 characters occupies two logical blocks.

2.4 Direct and indirect blocks

The inode contains 13 disk addresses. The first 10 addresses point to the first 20 physical blocks of the file. These blocks are the direct data blocks. The first 1024 characters of a file reside in the block located at the first address to which the inode points. If a file has more than 1024 characters, it continues at the second address to which the inode points. If it has more than 2048 characters, it continues at the third address, and so on, until the first 10 addresses (10240 characters) have been used.

If a file has more than 10240 characters, the 11th address given in the inode is then taken into consideration. The 11th disk address points to an indirect block. An indirect block contains the addresses for the next 256 logical blocks that the file can use. Figure 8-2 illustrates these connections.

If the file is larger than 138 blocks (10 blocks for the first 10 addresses, 256 for the 11th), it continues at the 12th address given in the inode. The 12th address points to a **double indirect block**, which refers to up to 256 indirect blocks that the file can use. This gives a total of 33,690,624 bytes of storage: 10 from the first 10 addresses + 256 from the 11th address + (256 * 256) from the 12th address * 512 (per block) = 33,690,624 bytes.

• ·

refers to up to 256 indirect blocks, and so on. Now you have 8,623,625,216 bytes:

(10 + 256 + (256 * 256) + (256 * 256 * 256) * 512 = 8,623,625,216

This is the maximum size a file can be in a file system that has 1024-byte logical blocks. A system with a larger bytes-per-block value could have a much larger theoretical limit. But because the file size is represented in an inode by a signed 32-bit quantity, a file can never get larger, in practice, than about 2 gigabytes. A file can never be this big because the physical storage device imposes a ceiling on the maximum file size.

2.5 More on inodes

Inodes contain information about the location of the data blocks that make up a file. Figure 8-3 illustrates the other important information that inodes contain about a file.

2.8 The superblock and the I-list

The system keeps track of all free inodes and all active inodes in a twofold way. First, it uses the second block in the file system (address 1) to store information about the file system itself. This block is called the superblock. (Address 0, the first block, is used to maintain disk information.) Second, it uses a list called the i-list, discussed later.

2.8.1 The superblock and the free list

Among other things, the superblock contains information about the size (in blocks) of the i-list (explained in the next section), the size (in blocks) of the entire file system, the total number of free blocks, and, most importantly, the free inode list and the total number of free inodes.

The superblock also contains the beginning of a linked list that maintains information about the free blocks. This list is called the free list. The free list is a list of addresses of all the free blocks in the file system. The free list is maintained in discrete chunks, in the following way. The first 50 addresses in the free list are contained within the superblock; this is usually referred to as the superblock free list. Forty-nine of these addresses are simply the addresses of the 49 next free blocks. The 50th address is the address of a block containing 50 more addresses. There is no standard name for this block of 50 addresses; the name free list link block is used here.

Each free list link block contains 49 direct addresses and 1 indirect address, until the end of the free list is reached. (A link block could, in theory, hold as many as 128 addresses, but only 50 are stored in a free list link block so that a link block can be read entirely into the superblock when the addresses it contains are needed.) The beginnings of a free list are illustrated in Figure 8-6.

, file inodes. Each inode is a 64-byte structure containing information about the physical location of the file associated with it.

The important thing is that the superblock and the i-list are located not only on disk but also in main memory, and the main memory versions are the updated ones. This is important when it comes to the interaction between main and secondary memory.

2.9 Block I/O

It would be both risky and expensive to keep all data in main memory (also called primary memory, in-core memory, or RAM). Instead, most files are kept in secondary memory (for example, a disk), and the system brings them into main memory as necessary. If you modify files, the system writes the modified version back into secondary memory for future use.

When a program reads data from or writes data to a tape or a disk, the system extracts blocks of 1024 bytes and brings them into main memory. It would be impractical and even unsafe to bring data into main memory without imposing limits and some degree of organization on the amount of data transferred. It would also be highly inefficient to do physical I/O operations whenever data is transferred from primary to secondary memory and vice versa. For that reason, the system maintains a list of buffers for each device. This buffer pool is said to constitute a data cache for the device in question.

2.10 The buffer cache

When a program asks the system to read data from a file, the system first searches the cache for the desired block.

If the block is found (when, for instance, the system opens a file that is already open), the data is made available to the requesting process without a physical I/O read operation. If the data is not found in the cache, the buffer that has been unused for the greatest period of time is renamed, and data is transferred into it from the disk and made available.

When a process writes a file, the operation occurs in reverse order. A write request first writes data to the buffer cache. Things are written to disk only when the cache is full. Therefore, information about bad

writes refers generally to unusual bad writes to the buffer, and bad disk writes are generally reported too late to prevent the file system from being corrupted.

2.11 Special files and the /dev directory

There are several types of files in A/UX: regular files, directories, special files (device files), sockets, symbolic links, and named pipes. In the beginning days of UNIX, only three types of files existed: regular files, directories, and devices. In this context, device files were special and were given the name "special" files. The addition of other file types makes the name no longer appropriate, yet the name holds.

When you use the 1s -1 command to list your files, the system response looks like this:

```
-rw-rw--- 1 groupname 13 Sep 25 11:28 file
drwxrwx--- 2 groupname 32 Sep 25 11:28 directory
```

For regular files, such as the first one listed in the example, the first character in the permissions field is -. In the case of directories, this character is always d. However, suppose you list /dev/rdsk/c0d0s0 and /dev/dsk/c0d0s0 by giving the command

```
ls -l /dev/rdsk/c0d0s0 /dev/dsk/c0d0s0
```

In response, the system displays

```
crw----- 2 bin 24, 0 May 25 1987 /dev/rdsk/c0d0s0
brw----- 2 bin 24, 0 May 25 1987 /dev/dsk/c0d0s0
```

The first character in the permissions field of /dev/rdsk/c0d0s0 is c, and the first character in the permissions field of /dev/dsk/c0d0s0 is b. Either a b or a c in this position indicates a special (device) file.

Now suppose you list /usr/spool/lp/FIFO by giving the command

```
ls -l /usr/spool/lp/FIFO
```

The p in the first field tells you that the file is a pipe.

```
prw----- 1 lp lp 0 Oct 21 1987 /usr/spool/lp/FIF0
```

The other two types of file have their own symbols: 1 (symbolic links) and s (sockets).

2.11.1 The contents of device inodes

The files in the /dev directory are all special files that the system uses to select a device driver for performing physical I/O.

These files are actually just names and inodes with no associated data on disk (and thus a size of zero bytes). Instead of storing information about the number of bytes in a file, these inodes contain a major and minor number for each special file. These are the numbers you see displayed after you give the 1s -1 command shown in the previous section, "Special Files and the /dev Directory."

A device driver is a program that controls the actual physical I/O to the devices listed in the /dev directory. However, the device driver itself doesn't reside in the /dev directory; rather, it is compiled directly into the kernel.

There is a different device driver for each kind of device (disk, tape, and so on). The system uses the major number to access the correct device driver. The minor number is passed to the driver, which uses this argument to select the correct physical device.

In summary, the system takes the following steps in response to requests to open special files (such as fack may make):

- looks in /dev directory for a file with the requested name
- gets the i-number associated with the filename
- finds the inode specified by the i-number
- gets the major number stored in the inode
- uses this number to select the appropriate device driver
- passes the minor number to the device driver

The driver then uses the minor number to select the correct physical device (the proper partition, in the case of the disk device).

As you may have already guessed, devices (and therefore device drivers and their corresponding special files) come in two forms, b (block) and c (character)—hence the b and c in the 1s -1 listing.

These names refer to the method of I/O used with each type of device.

Block devices such as disks use the block I/O buffer cache mentioned previously and are thus written to, and read from, one block at a time. Character devices such as terminals, line printers, and modems are written to, and read from, one character at a time. Another name for character devices is *raw* devices.

Disk partitions are peculiar beasts because each partition is associated with both a character and a block device driver and thus with two special files in the /dev directory. For this reason, you can access disk partitions in two ways. They're normally accessed as block devices through the A/UX directory hierarchy. But certain programs that access disks, such as dump.bsd, dd, volcopy, and fsck, run faster when accessing the disk as a character device. For example,

```
fsck /dev/rdsk/c0d0s0
```

is faster than

```
fsck /dev/dsk/c0d0s0)
```

The listing

```
crw----- 1 bin 24, 0 May 25 1987 /dev/rdsk/c0d0s0
brw----- 1 bin 24, 0 May 25 1987 /dev/dsk/c0d0s0
```

is clearly a listing of a character (raw) device and a block device. The first has a c and the second a b as the first entry in the permissions field. Thus, the same device can have two different interfaces.

3. How fack works

As you open, create, and modify files, the system keeps track of all pertinent information about them. This information—including block sizes, their i-numbers, active and free inodes in the file system, and total number of active, used, and free blocks—is maintained and updated in main memory. If the system crashes or becomes corrupt for any reason, the various file systems will probably become inconsistent. This inconsistency arises because the information in the main memory superblock was not written to disk before the problem, whereas the table of active inodes probably was, since the table occurred is written to disk whenever a file is released.

A system crash is not the only cause of file system corruption. Time and normal wear and tear produce inconsistencies that must be detected and corrected.

The fsck program works by comparing one or more items of information to one or more items of equivalent information. For instance, it compares the number of free blocks available to the number of total blocks in the file system minus the number of blocks in use. If the two numbers are not equal, fsck generates an error message. This kind of error is due to an inconsistent update or one that was performed out of order. To understand the problems fsck is designed to solve, you need to understand these updates.

3.1 File system updates

This section describes the various file system updates the system performs every time you create, modify, or remove a file. There are five types of file system updates:

Superblock

Contains information about the size of the file system and inode list, part of the free list, a count of free blocks, a count of free inodes, and part of the free inode list.

A mounted file system's superblock is written to disk whenever the file system is unmounted or a sync(1M) command is issued. The exception to this is that the root file system is always mounted.

The superblock of a file system is prone to inconsistency because every change to the blocks or inodes of the file system modifies the superblock.

Inode

Contains information about the inode's type (which may be directory, data, or special), the number of directory entries linked to it, the list of blocks claimed by the inode, and the inode's size. An inode is written to disk when the file associated with it is closed. In fact, all in-core blocks are also written to disk when a sync system call is issued; thus, the period of danger when inconsistencies can appear is reduced to that between sync calls.

Indirect blocks

Can be one of three types: single-indirect, double-indirect, or triple-indirect.

Indirect blocks, as well as the first 10 blocks of a file, are written to disk whenever they have been modified or released by the operating system. More precisely, they are queued in the buffer cache for eventual writing. Physical I/O is deferred until the A/UX operating system needs the buffer or a sync command is issued.

Inconsistencies in an indirect block directly affect the inode that owns it.

You can check the following inconsistencies: blocks already claimed by another inode and block numbers outside the range of the file system.

Data block

Written to disk whenever it has been modified.

There are two types of data blocks: plain and directory. Plain data blocks contain the information stored in a file. Directory data blocks contain directory entries.

The fsck program does not attempt to check the validity of the contents of a plain data block.

In contrast, fack checks each directory data block for inconsistencies involving the following:

- directory inode numbers pointing to unallocated inodes
- directory inode numbers greater than the number of inodes in the file system
- incorrect directory inode numbers for the dot files (.) and (..)
- directories disconnected from the file system

If a directory entry inode number (that is, a file's inode) points to an unallocated inode, fsck may remove that directory entry, depending on how fsck was invoked. (For instance, it removes the entry if invoked with the y flag option.) See "fsck Messages." This condition might occur when the data blocks

containing the directory entries are modified and written out while the inode is not yet written out.

If a directory entry inode number points beyond the end of the inode list, fsck may remove that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for the dot file. should be the first entry in the directory data block. Its value should be equal to the inode number for the directory data block.

The directory inode number entry for the dot file . . should be the second entry in the directory data block. Its value should be equal to the inode number for the parent of the directory entry (or the inode number of the directory data block if the directory is the root directory).

If the directory inode numbers are incorrect, fsck may replace them with the correct values.

The fsck program checks the general connectivity of the file system. If directories are found not to be linked into the file system, fsck links the directory back into the file system's lost+found directory. This condition can be caused if inodes are written to disk but the corresponding directory data blocks are not.

Free list

The system updates the free list when a file has been deleted or when a file has been enlarged past a block boundary. As described previously (see Figure 8-6), the free list begins in the superblock, which contains 49 addresses of blocks available for data storage plus the address of the next free list link block. When the first 49 addresses are used up, the kernel uses the address of the next free list link block to re-initialize the free list in the superblock. As long as disk storage is available, this new list will contain the addresses of the next 49 available free blocks plus the address of the next free list link block.

Free list link blocks are chained from the superblock. Therefore, inconsistencies in free list link blocks ultimately affect the superblock.

You can check the following inconsistencies: a list count

outside of range, block numbers outside of range, and blocks already associated with the file system.

3.2 fsck phases

There are six file system check phases in fsck (one of which is generally optional) as well as an initialization phase. Each phase of the fsck program passes through the whole file system. If you invoke fsck without a device name in the command line, fsck repeats all its phases for all devices.

3.2.1 Phase 1: check blocks and sizes

The fsck program checks the inode list. In this phase, fsck may discover error conditions that result from checking inode types, setting up the zero-link-count table, checking inode block numbers for bad or duplicate blocks, checking inode size, and checking inode format. Phase 1B runs only if any duplicate blocks (that is, blocks that belong to multiple inodes) are found.

3.2.2 Phase 2: check pathnames

The fsck program removes directory entries pointing to inodes that have error conditions from phase 1 and phase 1B. In this phase, fsck may discover error conditions that result from root inode mode and status, directory inode pointers out of range, and directory entries pointing to bad inodes.

3.2.3 Phase 3: check connectivity

The fsck program checks the directory connectivity seen in phase 2. In this phase, fsck may discover error conditions that result from unreferenced directories and missing or full lost+found directories.

3.2.4 Phase 4: check reference counts

The fack program reports messages that result from unreferenced files; a missing or full lost+found directory; incorrect link counts for files, directories, or special files; unreferenced files and directories; bad and duplicate blocks in files and directories; and incorrect total free inode counts.

3.2.5 Phase 5: check free list

The fsck program checks each free list link block for a list count out of range, for block numbers out of range, and for blocks already allocated within the file system. A check is made to see that all the blocks in the file system were found.

3.2.6 Phase 6: salvage free list

The fsck program concerns itself with the reconstruction of the free list. It lists error conditions resulting from the blocks-to-skip and blocks-per-cylinder values.

4. Using fack

You can use several options with the fack utility, depending on whether you want to check the root file system or auxiliary file systems.

4.1 When to use fack

Any file system inconsistency will be made worse if you continue to use the file sytem (thus modifying it further) without running fsck. Because it is so important to keep your file systems consistent, the fsck program is programmed into the system startup procedure (see Chapter 2, "System Startup and Shutdown") and is automatically run each time you start up A/UX, providing you respond yes to the prompt regarding checking the file system.

You can also invoke fack at any time during a session by bringing the system down to single-user mode and entering

fsck [options] [file-systems]

You can specify options to direct fack to run in a different way; see fack(1M) in A/UX System Administrator's Reference for a complete list of options. You can specify file-systems to run fack on a different file system. File system names are defined in the file /etc/fstab; see fstab(4) in A/UX Programmer's Reference for details. If you enter fack without options or file system names, it will run on all file systems.

Note that the file system on which fack is running should be unmounted, or at least no writes should occur while fack is running. This is important because fack performs more than one pass on the file system. If the system is modified from pass to pass, the results are unpredictable.

When fack finds an inconsistency in a file system, it informs you with a message such as

/dev/dsk/c0d0s0 POSSIBLE FILE SIZE ERROR I=2405

The message can also look like this:

/dev/dsk/c0d0s0 FREE INODE COUNT WRONG IN SUPERBLK FIX?

The second message illustrates one of fsck's interactive error messages. The program performs the corrective action only if you type y to confirm that it should do so. Otherwise, it will either continue or terminate, depending on the nature of the problem encountered.

4.2 fsck options

You can specify the following flag options on the fack command line:

- -y Automatic yes. The y flag option automatically provides a yes response to all questions that fack asks.
- -n Automatic no. The n flag option automatically provides a no response to all questions that fack asks. The file system is not opened for writing.
- -f Fast check. This causes fsck to check blocks and sizes (phase 1) and check the free list (phase 5). The free list is reconstructed (phase 6) if necessary.

-p [pass-to-start]

Automatic fix. If you give the p flag option, fack automatically fixes those file system inconsistencies that it can fix without your assistance. The optional pass-to-start argument specifies the starting pass number. You cannot give fack a starting pass number except as an argument to p. The starting pass number limits which file systems fack checks; fack looks in the /etc/fstab file and checks those file systems with pass numbers equal to or greater than the pass-to-start argument. If you don't specify a pass number, the default is 1.

- -q Quiet fsck. If you give the q option, fsck does not print size-check messages in phase 1. Unreferenced FIFO's are silently removed. If fsck requires it, counts in the superblock are automatically fixed, and the free list is salvaged.
- -s x

Unconditional reconstruction of the free list. The s option causes fack to ignore the actual free list and (unconditionally)

reconstruct a new one by rewriting the super-block of the file system. The file system should be unmounted while this is done; if this is not possible, you should be careful that the system is quiescent and that it is rebooted immediately afterward. This precaution is necessary so that the old, bad in-core copy of the superblock will not continue to be used or written on the file system.

The s x flag option allows you to create an optimal free-list organization. The option has the following form:

-s blocks-per-cylinder: blocks-to-skip

If x is not given, fack uses the values specified when the file system was created. If these values were not specified, then the value 400:7 is used.

-S x

Conditional reconstruction of the free list. This flag option is like s.x, except that the free list is rebuilt only if no discrepancies were discovered in the file system. Using S forces a no response to all questions that fsck asks. This flag option is useful for forcing free-list reorganization on uncontaminated file systems.

-t file

Named scratch file. If fack cannot obtain enough memory to keep its tables, it uses a scratch file. If the t option is specified, the file named in the next argument is used as the scratch file, if needed. Without the t flag, fack prompts the operator for the name of the scratch file. The file chosen should not be on the file system being checked. If the scratch file is not a special file or did not already exist, fack removes it at the end of the run.

-D [options]

Options. If the options argument is missing, fack merely checks directories for bad blocks. The options argument may be any of the following:

- B Check for and clear parity bits in filenames.
- C Check whether all trailing characters in the filename are null.

CZ Check and write nulls in all trailing characters in the filename.

4.3 fsck: a sample interaction

If you bring the system down to single-user mode and enter

```
fsck -n
```

fack starts running. Because you didn't specify a file system, fack reads the file /etc/fstab, which contains a list of the files to be checked in this case. Also, because you invoked fack with the n option, fack assumes you're always answering no to its prompts and thus doesn't open the file system for writing. In other words, you are safe.

Note: Unless you know exactly what you're doing, always invoke fack a first time with the n option. Read the messages and decide in advance the course of action to take before you invoke it a second time without the n option.

For each file system checked, you will see a screen message similar to this one:

```
/dev/dsk/c0d0s0 (NO WRITE)
File System: root Volume: 001
** lhase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
402 files 12374 blocks 950 free
```

The fsck program makes five passes (sometimes six) and lets you know at what phase and in what file system (in this example, /dev/dsk/c0d0s0) it is at any given time. Different and separate file systems are discussed in the next section, "Multiple File Systems and fsck."

The preceding example illustrates a routine check during which no problems or inconsistencies were found. If fack finds a problem, you will see a screen message similar to this one:

```
/dev/rdsk/c0d0s1 (NO WRITE)
File System: usr Volume: 003

** phase 1 - Check blocks and sizes
POSSIBLE FILE SIZE ERROR I=1147

POSSIBLE FILE SIZE ERROR I=1195

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Free List
1350 files 20582 blocks 18686 free
```

However, the messages can be more obscure and require some action on your part. See "fsck Messages," later in this chapter.

You can also invoke fsck with the sx or the Sx flag options discussed earlier. The sx flag option unconditionally makes a new free list, discarding the present one; the Sx flag option does the same only if nothing is wrong in the free list. The immediate result of these options is speeding up disk operations in busy file systems, because a new free list is likely to have more contiguous portions of free space.

The D flag option is useful for doing extra consistency checks on directories, and it does not prolong the process significantly. It is included in your startup fack procedures. For more information about these and other options, see fack(1M) in A/UX System Administrator's Reference.

4.4 Multiple file systems and fack

File system checks occur when the system goes from single- to multiuser mode. You need to take a few steps to make sure that fsck automatically checks file systems other than the root file system when you respond yes to the prompt, "Do you want to check the file systems?"

Two factors determine whether a file system is checked: options given to the fsck command and two fields in the /etc/fstab file. As shipped, the system runs fsck during startup. The determinant fields in /etc/fstab file are the type of the file system and the passnumber. Figure 8-7 shows how fsck uses its options and these two fields to decide whether to check a file system.

fsck file-systems

5. fsck messages

When fack detects an inconsistency, it reports the error condition in a message. If a response is required, fack waits for it. This section explains the possible messages in each phase, the meaning of each message, the possible responses, and the related error conditions. The messages are organized by the fack phase in which they can occur.

5.1 fsck initialization phase messages

Before a file system check can be performed, certain tables have to be set up in memory, and certain files have to be opened. This is the "initialization phase" of fsck.

During this phase, fack may discover error conditions that result from errors in command line options, memory requests, file opening, file status, file system size checks, and scratch file creation.

5.1.1 fsck option errors

The following messages may occur when you specify the fsck command line incorrectly. See fsck(1M) in A/UX System Administrator's Reference for further details.

c option?

c stands for any character that is not a legal flag option to fsck. Legal options are y, n, s, S, q, D, and t; fsck terminates on this error condition.

Bad -t option

The t option was not followed by a filename; fsck terminates on this error condition.

Invalid -s argument, defaults assumed

This is only a warning. The s option was not followed by 3, 4, or blocks-per-cylinder: blocks-to-skip. The fsck program assumes a default value of 400 blocks per cylinder and 9 blocks to skip.

Incompatible options: -n and -s

It's not possible to salvage the free list without modifying the file system; fack terminates on this error condition.

5.1.2 Memory request errors

The following messages may occur when fack detects errors in memory allocations requests. These messages may indicate a serious problem that you may not be able to solve without technical assistance.

can't fstat standard input

The attempt to use fstat as standard input failed; fsck terminates on this error condition.

can't get memory

The fsck program can't find the memory space it needs for its virtual memory tables; fsck terminates on this error condition.

5.1.3 Errors in opening files

The following messages may occur when fack cannot open a file or file system.

can't open: f

The default file system check file f(/etc/fstab) cannot be opened for reading; fsck terminates on this error condition. Check the access modes of f and modify accordingly.

can't open f.

The file system f cannot be opened for reading. The fack program ignores this file system and continues checking the next file system given. Check the access modes of f and modify accordingly.

f is not a block or character device

The fsck program has been given a regular filename by mistake; fsck ignores this file system and continues checking the next file system given. Check the file type of f and modify accordingly.

5.1.4 File status errors

The following messages may occur when fsck cannot obtain a file's status. These errors may indicate a serious problem that you may not be able to solve without technical assistance.

can't stat root

The fack program request for statistics about the root directory (/) failed; fack terminates on this error condition.

can't stat f

The fsck program request for statistics about the file system f failed. It ignores this file system and continues checking the next file system given. Check the access modes of f.

5.1.5 File system size and inode list size

The file system size and inode list size are critical pieces of information to the fsck program. Although fsck can't actually check these sizes, it can check if they're within reasonable bounds. The file system size must be larger than the number of blocks used by the superblock and the number of blocks used by the list of inodes. The number of inodes must be less than 65,535. All other file system checks depend on the correctness of these sizes.

You may see the following message when fack detects an inconsistency in the file system size.

Size check: fsize x isize y

More blocks are used for the inode list y than there are blocks in the file system x, or there are more than 65,535 inodes in the file system. The fsck program ignores this file system and continues checking the next file system.

5.1.6 Scratch file errors

A scratch file is a temporary file that fack creates when you invoke fack with the t flag option. This option might be necessary if there is not enough core memory to hold fack's tables. You may see this message if fack cannot create its own scratch file for a particular file system.

can't create f

This message means that fack's request to create a scratch file f failed. It ignores this file system and continues checking the next file system given. Check access modes of f.

5.1.7 Interactive messages

These messages require your yes or no response to the CONTINUE? prompt. "Yes" may be Y or y, and "no" may be N or n; these are shown in uppercase here. These messages may indicate a serious problem because the file system cannot be completely checked. You

may need to obtain additional technical assistance.

CANNOT SEEK: BLK b
CONTINUE?

A request to move to a specified block number b in the file system failed.

Possible responses to the CONTINUE? prompt are

- Attempt to continue to run the file system check. If the problem persists, run fsck a second time to recheck this file system. If the block b was part of the virtual memory buffer cache, fsck will terminate with the message Fatal I/O error.
- N Terminate fack.

CANNOT READ: BLK b
CONTINUE?

The fsck program request for reading a specified block number b in the file system failed.

Possible responses to the CONTINUE? prompt are:

- Y Attempt to continue to run the file system check. Try a second run of fsck. If the block b was part of the virtual memory buffer cache, fsck terminates with the message Fatal I/O error.
- N Terminate fsck.

CANNOT WRITE: BLK b
CONTINUE?

The fack program request for writing a specified block number b in the file system failed. The disk is write-protected.

Possible responses to the CONTINUE? prompt are:

Attempt to continue to run the file system check. A second run of fack should be made to recheck this file system. If

the block b was part of the virtual memory buffer cache, fsck terminates with the message Fatal I/O error.

N Terminate fsck.

5.2 Phase 1: check blocks and sizes

During this phase of execution, fack checks the inode list. In this phase, fack may discover error conditions that result from checking inode types, setting up the zero-link-count table, checking inode block numbers for bad or duplicate blocks, checking inode size, and checking inode format.

Although each individual inode has a small chance of becoming inconsistent, there are so many of them that it's almost as likely that an inconsistency will occur in the inode list as in the superblock.

The list of inodes is checked sequentially, starting with inode 1 (there is no inode 0) and going to the last inode in the file system. Each inode can be checked for inconsistencies involving format and type, link count, duplicate blocks, bad blocks, and inode size.

5.2.1 Inode type errors

Each inode contains a mode word that describes the type and state of the inode.

Inodes may be one of five types: regular, directory, special block, special character, or FIFO, according to the file involved. If an inode is not one of these types, it is of an illegal type. Tell fack to clear the inode.

UNKNOWN FILE TYPE I=i CLEAR?

The mode word of the inode i indicates that the inode is not a recognized A/UX file type. The problem is usually caused by a strange occurrence with the mode bits.

Possible responses to the CLEAR? prompt are:

- Y Deallocate inode *i* by zeroing its contents. This always invokes the UNALLOCATED error condition in phase 2 for each directory entry pointing to this inode.
- N Ignore this error condition.

5.2.2 Zero-link-count table errors

Each inode contains a stored count of the total number of directory entries linked to the inode. The fsck program verifies the link count of each inode by traversing down the total directory structure, starting from the root directory, and calculating an actual link count for each inode.

If the stored link count is nonzero and the actual link count is zero, no directory entry appears for the inode. If the stored and actual link counts are nonzero and unequal, a directory entry may have been added or removed without the inode being updated.

If the stored link count is nonzero and the actual link count is zero, fsck can link the disconnected file to the lost+found directory (at your direction). If the stored and actual link counts are nonzero and unequal, fsck can replace the stored link count by the actual link count.

LINK COUNT TABLE OVERFLOW CONTINUE?

An internal table for fsck has no more room. This is a rare error. Contact your Apple representative for assistance.

Possible responses to the CONTINUE? prompt are:

- Y Continue with the program. This error condition makes a complete check of the file system impossible. You should make a second run of fack to recheck this file system. If another allocated inode with a zero link count is found, this error condition is repeated.
- N Terminate fack.

5.2.3 Bad or duplicate blocks

Each inode contains a list of pointers to lists (indirect blocks) of all the blocks claimed by the inode.

The fsck program checks each block number claimed by an inode for a value lower than that of the first data block or greater than that of the last block in the file system. If the block number is outside this range, it is a bad block number. If an indirect block was not written to disk, an inode may contain many bad blocks. In this case, fsck clears both inodes (at your direction).

The fsck program compares each block number claimed by an inode to a list of already allocated blocks. If a block number is already claimed by another inode, the block number is added to a list of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block number. If there are any duplicate blocks, fsck makes a partial second pass of the inode list to find the inode of the duplicated block. This is necessary because without examining the files associated with these inodes for correct content, fsck does not have enough information to decide which inode is corrupted and should be cleared. Usually, the inode with the earliest modify time is incorrect and should be cleared. This condition may be the result of a file system containing blocks claimed by both the free list and other parts of the file system.

A large number of duplicate blocks in an inode may be due to an indirect block not being written to disk. In this case, fack clears both inodes (at your direction).

b BAD I=i

The variable i stands for the actual number on your screen. Inode i contains block number b, which is lower than the number of the first data block in the file system or greater than the number of the last block in the file system.

This error condition may invoke the EXCESSIVE BAD BLKS error condition in phase 1 if inode i has too many block numbers outside the file system range.

This error condition always invokes the BAD/DUP error condition in phase 2 and phase 4.

EXCESSIVE BAD BLKS I=i CONTINUE?

As before, i stands for the actual number on your screen. The number of blocks with a number lower than the number of the first data block in the file system or greater than the number of the last block in the file system associated with inode i is too high to be acceptable. Usually, 10 is the cutoff point.

Possible responses to the CONTINUE? prompt are:

- Ignore the rest of the blocks in this inode and continue checking with next inode in the file system. This error condition makes a complete check of the file system impossible. A second run of fack should be made to recheck this file system.
- N Terminate fsck.

b DUP I=i

Inode i contains block number b, which is already claimed by another inode.

This error condition may invoke the EXCESSIVE DUP BLKS error condition in phase 1 if inode i has too many block numbers claimed by other inodes.

This error condition always invokes phase 1B and the BAD/DUP error condition in phase 2 and phase 4.

EXCESSIVE DUP BLKS I=i CONTINUE?

As before, i stands for the actual number on your screen. The number of blocks claimed by other inodes is too high to be acceptable. Usually, 10 is the cutoff point.

Possible responses to the CONTINUE? prompt are:

- Ignore the rest of the blocks in this inode and continue checking with the next inode in the file system. This error condition will not allow a complete check of the file system. A second run of fack should be made to recheck this file system.
- N Terminate fack.

DUP TABLE OVERFLOW CONTINUE?

An internal table in fsck, containing duplicate block numbers, has no more room. Possible responses to the CONTINUE? prompt are:

- Y Continue with file system check. This error condition makes a complete check of the file system impossible. Try a second run of fsck. If another duplicate block is found, this error condition repeats.
- N Terminate fsck.

5.2.4 inode size errors

Each inode contains a 32-bit (4-byte) field. This size indicates the number of characters in the file associated with the inode. This size can be checked for inconsistencies; for example, directory sizes are not a multiple of 16 characters, or the number of blocks actually used does not match the number indicated by the inode size.

A directory inode within the file system has the directory bit on in the inode mode word. The directory size must be a multiple of 16 because a directory entry contains 16 bytes (2 bytes for the inode number and 14 bytes for the file or directory name).

The fsck program warns of such directory misalignment. This is only a warning because not enough information can be gathered to correct the misalignment.

A rough check of an inode's size field consistency can be performed by computing from the size field the number of blocks that should be associated with the inode and comparing that number to the actual number of blocks claimed by the inode.

The fack program calculates the number of blocks by dividing the number of characters in an inode by the number of characters per block and rounding up. The fack program adds one block for each indirect block associated with the inode. If the actual number of blocks does not match the computed number of blocks, fack warns of a possible file-size error. This is only a warning because the system does not fill in blocks in files created in random order.

Note: These messages are only warnings. If you use the q option on the fack command line, these messages are not printed.

POSSIBLE FILE SIZE ERROR I=i

Again, i stands for the actual number on your screen. The inode size does not match the actual number of blocks used by the inode. If this error occurs, write down the inode number. When fack finishes, continue in single-user mode, mount the file system in which the error occurred, and get its corresponding filename in the following way: Enter the command

ncheck -i i fs

where i is the number of the inode as provided by the POSSIBLE FILE SIZE ERROR message, and fs stands for the name of the file system in which the message occurred. Be sure to use the full pathname of the device, for example /dev/dsk/c2d0s0, and not the mount point of the file system. The ncheck command prints the name of the file on the screen. Copy it into a temporary name and run sync. Examine the file and, if you want to retain it, remove the original and give the temporary file its original name. Note that just using mv would not do the job.

DIRECTORY MISALIGNED I=i

Again, i stands for the actual number on your screen. The size of a directory inode is not a multiple of the size of a directory entry (usually 16). It should be cleared.

5.2.5 Inode format errors

Each inode contains a mode word that describes the type and state of the inode. Inodes may be found in one of three states: unallocated, allocated, and neither unallocated nor allocated. This last state indicates an incorrectly formatted inode. An inode can get in this state if bad data is written into the inode list, a possible result of a hardware failure. The only corrective action is for fack to clear the inode.

PARTIALLY ALLOCATED INODE I=i
CLEAR?

Inode i is neither allocated nor unallocated.

Possible responses to the CLEAR? prompt are:

- Y Deallocate inode i by zeroing its contents.
- N Ignore this error condition.

5.3 Phase 1B: rescan for more duplicates

When a duplicate block is found in the file system, the file system is rescanned to find the inode that previously claimed that block. If the duplicate block is found, the following error condition occurs.

b DUP I=i

Inode i contains block number b, which is already claimed by another inode.

This error condition always invokes the DUPS/BAD error condition in phase 2.

Inodes with overlapping blocks may be determined by examining this error condition and the DUP error condition in phase 1.

5.4 Phase 2: check pathnames

This phase removes directory entries pointing to inodes that had error conditions from phase 1 and phase 1B. In this phase, fack may discover error conditions that result from root inode mode and status, directory inode pointers out of range, and directory entries pointing to bad inodes.

5.4.1 Root inode mode and status errors

ROOT INODE UNALLOCATED. TERMINATING

The root inode (always inode number 2) has no allocated mode bits. This error condition indicates a serious problem that you may not be able to solve without technical assistance. The program will terminate.

ROOT INODE NOT DIRECTORY FIX?

The root inode (usually inode number 2) is not of the directory type.

Checking the A/UX File System: fsck 030-5595-B

Possible responses to FIX? prompt are:

- Y Make the root inode a directory. If the root inode's data blocks are not directory blocks, a very large number of error conditions will result.
- N Terminate fsck.

DUPS/BAD IN ROOT INODE CONTINUE?

During phase 1 or phase 1B, fsck found duplicate blocks or bad blocks in the root inode (usually inode number 2) for the file system.

Possible responses to the CONTINUE? prompt are

- Y Ignore DUPS/BAD error condition in the root inode and attempt to continue to run the file system check. If the root inode is not correct, then a large number of other error conditions may result.
- N Terminate fsck.

5.4.2 Directory inode pointers range errors

I OUT OF RANGE I=i NAME=f REMOVE?

A directory entry f has an inode number i greater than the end of the inode list

Possible responses to the REMOVE? prompt are:

- Y Remove the directory entry f.
- N Ignore this error condition.

5.4.3 Directory entries pointing to bad inodes

UNALLOCATED I-i OWNER-0 MODE-m SIZE-s MTIME-t NAME-f REMOVE?

A directory entry f has an inode i without allocated mode bits. The owner o, mode m, size s, modify time t, and filename f are printed.

If the file system is not mounted and the n option wasn't specified, the entry is removed automatically if the inode it points to contains size 0.

Possible responses to REMOVE? prompt are:

- Y Remove the directory entry f.
- N Ignore this error condition.

DUPS/BAD I=i OWNER=o MODE=m SIZE=s MTIME=t DIR=f REMOVE?

During phase 1 or phase 1B, fack has found duplicate blocks or bad blocks associated with directory entry f, directory inode i. The owner o, mode m, size s, modify time t, and directory name f are printed.

Possible responses to REMOVE? prompt are:

- Y Remove the directory entry f.
- N Ignore this error condition.

DUPS/BAD I=i OWNER=o MODE=m SIZE=s MTIME=t FILE=f REMOVE?

During phase 1 or phase 1B, fack has found duplicate blocks or bad blocks associated with directory entry f, inode i. The owner o, mode m, size s, modify time t, and filename f are printed.

Possible responses to the REMOVE? prompt are:

- Y Remove the directory entry f.
- N Ignore this error condition.

BAD BLK b IN DIR I=i OWNER=o MODE=m SIZE=s MTIME=t

This message occurs only when the q option is used. It means that a bad block was found in inode i.

The fsck program checks directory blocks for nonzero padded entries, inconsistent. and . . entries, and embedded slashes in the name field. This error message indicates that, at a later time, you should either remove the directory inode if the entire block looks bad or change (or remove) those directory entries that look bad.

5.5 Phase 3: check connectivity

During phase 3, fsck checks the directory connectivity seen in phase 2. In this phase, fsck may discover error conditions that result from unreferenced directories and missing or full lost+found directories.

5.5.1 Unreferenced directories

UNREF DIR I=i OWNER=o MODE=m SIZE=s MTIME=t RECONNECT?

The directory inode i was not connected to a directory entry when the file system was traversed. The owner o, mode m, size s, and modify time t of directory inode i are printed. The fack forces the reconnection of a nonempty directory.

Possible responses to the RECONNECT? prompt are:

- Reconnect the directory inode *i* to the file system in the directory for lost files (usually lost+found). This may invoke lost+found error conditions (described later) if there are problems connecting directory inode *i* to lost+found. This may also invoke the CONNECTED message (described later) if the link was successful.
- N Ignore this error condition. This will always invoke the UNREF error condition (described later).

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system. In this case, fack ignores the request to link a directory in lost+found. This will always invoke the UNREF error condition (described later). If lost+found exists, check its access modes. See fack(1M) and mklost+found(1M) in A/UX System Administrator's Reference for further details.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space in the lost+found directory to add another entry; fsck ignores the request to link a directory in lost+found. This will always invoke the UNREF error condition (described later). Clean out unnecessary entries in the lost+found directory or make it larger. See fsck(1M) in A/UX System Administrator's Reference for further details.

DIR I=i CONNECTED. PARENT WAS I=j

This is an advisory message indicating that a directory inode i was successfully connected to the lost+found directory. The parent inode j of the directory inode i is replaced by the inode number of the lost+found directory.

5.6 Phase 4: check reference counts

During phase 4, fsck checks the directory connectivity seen in phase 2 and phase 3.

In phase 4, fsck reports errors that result from unreferenced files; a missing or full lost+found directory; incorrect link counts for files, directories, or special files; unreferenced files and directories; bad and duplicate blocks in files and directories; and incorrect total free inode counts.

5.6.1 Unreferenced files

UNREF FILE I=i OWNER=o MODE=m SIZE=s MTIME=t RECONNECT?

Inode i was not connected to a directory entry when the file system was traversed. The owner o, mode m, size s, and modify time t of inode i are printed. If the Option is not set and the file system is not mounted, empty files are not reconnected and are cleared automatically.

Possible responses to the RECONNECT? prompt are:

- Y Reconnect inode i to the file system in the directory for lost files (usually lost+found). This may invoke a lost+found error condition (described later) if there are problems connecting inode i to lost+found.
- N Ignore this error condition. This will always invoke the CLEAR? error condition (described later).

5.6.2 lost+found directory errors

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the request to link a file in lost+found. This will always invoke CLEAR? error condition (described later).

Check the access modes of lost+found. Also see mklost+found(1M) in A/UX System Administrator's Reference.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the file system; fsck ignores the request to link the file. This will always invoke the CLEAR? error condition (described next). Check the size and contents of lost+found.

CLEAR?

The inode mentioned in the immediately preceding error condition cannot be reconnected.

Possible responses to the CLEAR? prompt are:

- Y Deallocate the inode mentioned in the immediately preceding error condition by zeroing its contents.
- N Ignore this error condition.

5.6.3 Incorrect free inode counts

The superblock contains a count of the total number of free inodes in the file system. The fack program compares this count to the number of inodes it found free in the file system. If the counts do not agree, fack may replace the count in the superblock with the actual free inode count.

LINK COUNT FILE I=i OWNER=o MODE=m SIZE=s
MTIME=t COUNT=x SHOULD BE y
ADJUST?

The link count for inode i, which is a file, is x but should be y. The owner o, mode m, size s, and modify time t are printed.

Possible responses to the ADJUST? prompt are:

- Y Replace the link count of file inode i with y.
- N Ignore this error condition.

LINK COUNT DIR I=i OWNER=o MODE=m SIZE=s MTIME=t COUNT=x SHOULD BE y ADJUST?

The link count for inode i, which is a directory, is x but should be y. The owner o, mode m, size s, and modify time t of directory inode i are printed.

Possible responses to the ADJUST? prompt are:

- Y Replace the link count of directory inode i with y.
- N Ignore this error condition.

LINK COUNT F I=i OWNER=o MODE=m SIZE=s
TIME=t COUNT=x SHOULD BE y
ADJUST?

The link count for file f inode i is x but should be y. The filename f, owner o, mode m, size s, and modify time t are printed.

Possible responses to the ADJUST? prompt are:

- Y Replace the link count of inode i with y.
- N Ignore this error condition.

5.6.4 Unreferenced files/directories

UNREF FILE I=i OWNER=o MODE=m SIZE=s MTIME=t CLEAR?

Inode i, which is a file, was not connected to a directory entry when the file system was traversed. The owner o, mode m, size s, and modify time t of inode i are printed. If you don't set the n option and the file system is not mounted, empty files are cleared automatically.

Possible responses to CLEAR? prompt are:

- Y Deallocate inode i by zeroing its contents.
- N . Ignore this error condition.

UNREF DIR I=i OWNER=o MODE=m SIZE=s MTIME=t CLEAR?

Checking the A/UX File System: fsck 030-5595-8

Inode i, which is a directory, was not connected to a directory entry when the file system was traversed. The owner o, mode m, size s, and modify time t of inode i are printed. If you don't set the -n option and the file system is not mounted, empty directories are cleared automatically. Nonempty directories are not cleared.

Possible responses to the CLEAR? prompt are:

- YES Deallocate inode i by zeroing its contents.
- NO Ignore this error condition.

5.6.5 Bad and duplicate blocks in files and directories

BAD/DUP FILE I=i OWNER=o MODE=m SIZE=s MTIME=t CLEAR?

During phase 1 or phase 1B, fsck has found duplicate blocks or bad blocks associated with file inode i. The owner o, mode m, size s, and modify time t of inode i are printed.

Possible responses to the CLEAR? prompt are:

- Y Deallocate inode i by zeroing its contents.
- N Ignore this error condition.

BAD/DUP DIR I=i OWNER=o MODE=m SIZE=s MTIME=t CLEAR?

During phase 1 or phase 1B, fack has found duplicate blocks or bad blocks associated with directory inode i. The owner o, mode m, size s, and modify time t of inode i are printed.

Possible responses to the CLEAR? prompt are:

- Y Deallocate inode i by zeroing its contents.
- N Ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK FIX?

The actual count of the free inodes doesn't match the count in the superblock of the file system. If you specify the q option, the count is fixed automatically in the superblock.

Possible responses to the FIX? prompt are:

- Y Replace the count in superblock by the actual count.
- N Ignore this error condition.

5.7 Phase 5: check free list

The free list starts in the superblock and continues through the free list link blocks of the file system.

Each free list link block can be checked for a list count out of range, for block numbers out of range, and for blocks already allocated within the file system. A check is made to see that all the blocks in the file system were found.

The free list check begins in the superblock. The fsck program checks the list count for a value of less than 0 or greater than 50. It also checks each block number for a value of less than the first data block in the file system or greater than the last block in the file system. Then it compares each block number to a list of already allocated blocks. If the free list link block pointer is nonzero, fsck reads in the next free list link block and repeats the process.

When all the blocks have been accounted for, fsck checks whether the number of blocks used by the free list plus the number of blocks claimed by the inodes equal the total number of blocks in the file system.

If anything is wrong with the free list, fack may rebuild the list, excluding all blocks in the list of allocated blocks.

The superblock also contains a count of the total number of free blocks in the file system. The fack program compares this count to the number of blocks it found free in the file system. If the counts do not agree, fack may replace the count in the superblock with the actual free block count.

During phase 5, fsck lists error conditions resulting from bad blocks in the free list, bad free-block count, duplicate blocks in the free list, unused blocks from the file system not in the free list, and incorrect total free-block count.

EXCESSIVE BAD BLKS IN FREE LIST CONTINUE?

The free list contains more than a tolerable number (usually 10) of blocks with a value less than the first data block in the file system or greater than the last block in the file system.

Possible responses to the CONTINUE? prompt are:

- Y Ignore the rest of the free list and continue execution of fsck. This error condition always invokes the BAD BLKS IN FREE LIST error condition in phase 5.
- N Terminate fsck.

EXCESSIVE DUP BLKS IN FREE LIST CONTINUE?

The free list contains more than a tolerable number (usually 10) of blocks claimed by inodes or earlier parts of the free list.

Possible responses to the CONTINUE? prompt are:

- Y Ignore the rest of the free list and continue execution of fsck. This error condition always invokes the DUP BLKS IN FREE LIST error condition in phase 5.
- N Terminate fsck.

BAD FREEBLK COUNT

The count of free blocks in a free list link block is greater than 50 or less than 0. This error condition always invokes the BAD FREE LIST condition in phase 5.

x BAD BLKS IN FREE LIST

The free list contains x blocks with a block number lower than the first data block in the file system or greater than the last block in the file system. This error condition always invokes the BAD FREE LIST condition in phase 5.

x DUP BLKS IN FREE LIST

The free list contains x blocks claimed by inodes or earlier parts of the free list. This error condition always invokes the BAD FREE LIST condition in phase 5.

x BLK(S) MISSING

The free list does not contain x blocks unused by the file system. This error condition always invokes the BAD FREE LIST condition in phase 5.

FREE BLK COUNT WRONG IN SUPERBLK FIX?

The actual count of free blocks does not match the count in the superblock of the file system.

Possible responses to the FIX? prompt are:

- Y Replace the count in the superblock with the actual count.
- N Ignore this error condition.

BAD FREE LIST SALVAGE?

During phase 5, fack has found bad blocks in the free list, duplicate blocks in the free list, or blocks missing from the file system. If the q option is specified, the free list is salvaged automatically.

Possible responses to the SALVAGE? prompt are:

- Y Replace the actual free list with a new free list. The new free list is ordered to shorten the time spent waiting for the disk to rotate into position.
- N Ignore this error condition.

5.8 Phase 6: salvage free list

This phase concerns itself with the free list reconstruction. During this phase, fack lists error conditions resulting from the blocks-to-skip and blocks-per-cylinder values.

Default free list spacing assumed

This is an advisory message indicating the blocks-to-skip value is greater than the blocks-per-cylinder value, the blocks-to-skip value is less than 1, the blocks-per-cylinder value is less than 1, or the blocks-per-cylinder value is greater than 500. The default values of 9 blocks-to-skip and 400 blocks-per-cylinder are used. See fsck(1M) in A/UX System Administrator's Reference for further details.

5.9 Cleanup

Once a file system has been checked, a few cleanup functions are performed. The fsck program lists advisory messages about the file system and its modify status.

x files y blocks z free

This is an advisory message indicating that the file system checked contained x files using y blocks leaving z blocks free in the file system.

***** Fixed root filesystem, rebooting A/UX! *****

This message indicates that fack has modified the root file system to fix inconsistencies it found. The fack program forces a reboot because it can fix the file system image only on the disk but not in memory. Since A/UX periodically issues a sync(1) call to update the file system from memory, the forced reboot of the system prevents the file system repair from being undone by the automatic sync call.

***** FILE SYSTEM WAS MODIFIED *****

This advisory message indicates that fack has modified a non-root file system to fix the inconsistencies it found. A/UX continues to run.

PLACE TAB HERE

SYSTENI ACCOUNTING

BACK OF TAB

Chapter 9 System Accounting Package

Contents

l.	Intro	duction	n.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	Rout	ine acc	ount	ing p	roc	edu	ıres						•			•		1
	2.1	The c	ron	file		•							•		•	•		3
	2.2	Updai	ing l	holid	ays										•			4
	2.3	Daily	oper	ration	1													5
		2.3.1	-			ct	pro	ced	ure		•			•				6
		2.3.2		_			-			_				•			•	6
		2.3.3				•				ure	•	•	•	•	•		•	7
		2.3.4									_	•	•	•	•	•		7
		2.3.5					-				•	•	•	•	•	•	•	12
	24	Resta		_		_	_	•			•	•	•	•	•	•	•	12
	2.4		_					•	•	•	•	•	•	•	•	•	•	
		2.4.1	In c	ase r	un	ac	ct i	ail	S	•	•	•	•	•	•	•	•	13
		2.4.2	Епто	or me	ssag	ges												15
		2.4.3						es			_		_	_	_	_	_	17
		2.4.4							•	•	٠	•	•	٠	٠	٠	•	17
									•	•	•	•	•	•	•	•	•	
		2.4.5							•	•	•	•	•	•	•	•	•	17
		2.4.6	The	mon	ac	ct	pro	ced	ure		•	•	•	•	•	•	•	18
3.	Speci	ial acc	ounti	ing p	roce	du	res:	ac	ct	co	m		_			_	_	18
•		The a						_				•	•	•	•	•	•	
	J.1	THE T	CCT	COM	COL	um	aи		•	•	•	•	•	•	•	•	•	19

BLANK PAGE

Chapter 9

System Accounting Package

1. Introduction

Two packages provided with your A/UX system allow you to keep track of the details of system operation and usage:

- The system accounting package collects information and generates reports on buffer activity, CPU utilization in general, device activity, and so on. This chapter discusses the system accounting package.
- The system activity package permits you to keep track of all low-level activity in your system. For information on the system activity package, see Chapter 10, "System Activity Package."

The system accounting package collects detailed information on system usage and allows you to generate a comprehensive system usage report on a daily and monthly basis. (Note that the report provides information on overall system usage, not on individual users.) This report function, for the most part, is automatic and is described in the next section, "Routine Accounting Procedures." You can also produce customized reports by issuing accounting commands; these are described in "Special Accounting Procedures: acctom."

2. Routine accounting procedures

The system uses routine accounting procedures to generate information describing what a user is doing and how often the user invokes a specific command. It also generates information on overall system usage, frequency of usage, and system resource allocation.

Take these steps to turn on system accounting and automate its operation:

1. Log in as the root user.

 Make sure the following lines are in the /etc/rc file and are not commented out (if they are preceded by a number sign (#), remove it):

/bin/su adm -c /usr/lib/acct/startup
echo process accounting started

The first line is a command that activates the accounting system when the system is brought up. The second line prints "process accounting started" when the accounting system starts up.

- 3. Make sure that the following lines in the /usr/spool/cron/crontabs/adm file are not commented out (if they are preceded by a number sign (*), remove it):

 - 15 5 1 * * /usr/lib/acct/monacct 0 * * * 0,6 /usr/lib/sa/sal
 - 0 18-7 * * 1-5 /usr/lib/sa/sa1 0 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3
 - 0 20 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd

Note: The first two lines and the last two lines in the example must appear as one line in the adm file. These lines are broken here only because the book page does not accommodate the long measure.

The adm file instructs ciron to run the daily accounting automatically. The line

15 5 1 * * /usr/lib/acct/monacct

uses the monacct file to clean up all daily reports and daily total accounting files. The adm file also deposits one monthly total report and one monthly total accounting file in the fiscal directory after runacct has completed the last day's entries.

By default, monacct uses the current month's date as the suffix for the filenames.

4. Make sure that the following line is in the /usr/adm/.profile file:

PATH=/usr/lib/acct:/bin:/usr/bin

This ensures that the operating system has access to all the necessary files and scripts to process the accounting system automatically.

2.1 The cron file

Although you don't need to understand how the cron file works to use the accounting package, knowing how the entries are written and what they do makes it easy to modify entries if you need to. This section is a quick introduction to cron.

The eron program performs specified functions at specified times. These functions and times are specified in the file /usr/spool/cron/crontabs/adm, which is read and acted on by eron. Each line of text in this file is a small script consisting of six fields that together specify a process to be executed at a certain time. The fields are separated by spaces or tabs. The first five fields specify a time. They specify, in order,

minute Time in minutes (0-59)

hour Time in hours (0-23)

day-of-month Day of the month (1-31)

month-of-year Month of the year (1-12)

day-of-week Day of the week (0-6, with 0 as Sunday)

Each of these may be either an asterisk (which means ignore all cases) or a list of elements separated by commas (which specify specific cases to be activated). An element may be one number or two numbers separated by a hyphen (meaning an inclusive range).

You specify days in two fields: day-of-month and day-of-week. If you specify both, both are used. To specify days using only one field, set the other to *.

The sixth field is the process to be executed. A percent sign in this field (unless masked by \) is translated as the signal for a new line. The shell executes only the first line (up to the % or the end of the line).

In this example, the line

15 5 1 * * /usr/lib/acct/monacct

means this: at the 15th minute of the fifth hour on the first day of each month, run the monacct program, which is located in the /usr/lib/acct directory. The asterisks in the month-of-year and the day-of-week fields tell the system to ignore these fields.

You can change the field entries in the file /usr/spool/cron/crontabs/acm and run the crontab command on it, for instance, to run the accounting procedures more frequently or even print a weekly report instead of a monthly one.

2.2 Updating holidays

The file /usr/lib/acct/holidays contains the prime/nonprime table, which gives the start of prime time and the start of nonprime time for your operating system, using a 24-hour system (0100 to 2400 hours). Note that the hour 2400 automatically converts to 0000. Information on changing the prime/nonprime table to reflect individual preferences is given in this section. For example, during normal business operation, prime time is considered to be from 8:30 A.M. to 5:30 P.M. The table also contains the holiday schedule for the year, which you can adjust to include additional holidays.

The format of the holidays file includes:

Comment lines

Comment lines can appear anywhere in the file but they *must* be preceded by an asterisk so that the system won't read them.

Year designation line

The year designation line *must* be the first data line in the file and can appear only once in the file. It consists of three fields of four digits each:

yyyy hhmm hhmm (number of spaces irrelevant)

• The first field is the current year. Be sure to set it correctly, because an incorrect year entry affects the holiday entries.

- The second field is the start of prime time, in 24-hour time. Prime time refers to the peak activity period for your system. In most businesses, for example, prime time starts at 8:30 A.M. (0830 in a 24-hour system) to coincide with the start of the business day.
- The third field is the start of nonprime time, in 24-hour time. This field represents the end of peak activity for the operating system, usually 5:30 P.M. (or 1730).
- Your system may be set to start prime time at 0800 and nonprime time at 1700 (5:00 P.M.). If your company begins work at 8:00 P.M., for example, you may want to change the start of prime time to 2000 to reflect this. You would also change the nonprime time to reflect the close of business, say 2:00 A.M., as 0200.

Note: The hour 2400 automatically converts to 0000.

Company holiday lines

You can make entries for national and local holidays on the line following the year designation line. The format is

day-of-year month day description-of-holiday

The day-of-year is a number from 1 to 366, indicating the day for the corresponding holiday. The other three fields are not used by A/UX and are provided for commentary only.

Note: Remember to separate all entries with tabs and not with spaces.

2.3 Daily operation

The lines of text you enter in the /usr/spool/cron/crontabs file cause the system to automatically run the startup, ckpact, turnacct, dodisk, runacct, and monacct procedures. Each of these six procedures is described in this section. Only some of the procedures are available. Other procedures—including acctcom—are also described. If you add these others to the /usr/spool/cron/crontabs/adm file and run the crontab command on the edited file, they are processed automatically. For

example, acctcom is discussed in "Special Accounting Procedures: acctcom."

When you bring the system into multi-user mode,
/usr/lib/acct/startup is executed. This program has three
effects:

- The acctwtmp program records a boot in the /etc/wtmp file.
 It uses your system name as the login name in the file.
- Turnacct begins the process accounting. The accton program is executed, and the collected data is stored in the /usr/adm/pacct file. This file is later read by the reporting function and summarized in the daily and monthly reports.
- The remove shell procedure is executed. This procedure cleans up the saved pacet and wtmp files that runacet creates.

2.3.1 The ckpacct procedure

After process accounting has begun, cron executes the ckpacct procedure every hour. This procedure checks the size of the pacct file. The ckpacct procedure begins the process of creating multiple pacct files when the file grows to 1000 blocks. It executes the turnacct command with the switch option (which turns the process accounting off), moves the current /usr/adm/pacct data to /usr/adm/pacct/incr (where incr is a number that starts with 1 and increases by one for each additional pacct file turnacct creates), and then turns the process accounting back on. This limits the pacct files to a reasonable size. If you ever need to restart runacct, the smaller file size makes the job easier.

2.3.2 The dodisk procedure

The cron program invokes the dodisk procedure to perform the disk accounting functions. The command is structured as follows:

/usr/lib/acct/dodisk [-o][file1...]

If you specify no options (the default), the procedure performs disk accounting on the files in /etc/fstab and /etc/inittab, which is a list of all file systems in the disk partition.

If you use the -o flag, a slower version of disk accounting by login directory is done.

The file1 specifies the name(s) of the file system(s) where the disk accounting is done. If you use the files argument, disk accounting will be done on these file systems only. If you use the -o flag, files should be the names of the directories on which the file systems are mounted. If you omit the -o flag, files should be the special filenames of mountable file systems.

2.3.3 The chargefee procedure

You can invoke the chargefee shell procedure to charge a number of units to a login name. The command syntax is

/usr/lib/acct/chargefee login-name number

For example, you charge login name john for two units (\$2.00) for his system usage. This information is then written to /usr/adm/fee and merged with the other accounting records during the night. This information then appears in the FEE column in the daily report generated by runacct.

2.3.4 The runacet procedure

The main daily accounting procedure is runacct. This section covers the runacct command itself, the error messages it generates, and the way to recover if the procedure fails.

The runacct command has the following form:

/usr/lib/acct/runacct [mmdd][mmdd state]

You can use the options to restart runacet after a failure. They are explained later in the section.

The entries made to the /usr/spool/cron/crontabs/adm file initiate the runacet procedure during nonprime hours. The runacet procedure automatically processes the connect, fee, disk, and process accounting files and prepares daily and cumulative summary files, which are then read by prdaily or used for billing purposes. When you run monacet, these daily reports are summarized into a monthly report.

To read the daily report, type

/usr/lib/acct/prdaily | more

The prdaily reporting function is covered in more detail later in this chapter. The preceding command prints a report generated by the runacet procedure. The report consists of a header and five parts.

The header displays the dates of the current reporting period, for example:

Oct 26 10:04 1987 DAILY REPORT FOR A/UX Page 1

```
from Tue Oct 20 04:00:13 1987 to Tue Oct 20 04:00:13 1987
```

Following the date is a listing of the /etc/wtmp entries generated by the acctwtmp program. This listing includes any reboots, shutdowns, power failure recoveries, date changes, and so on, that occurred during the reporting period, for example,

2 date changes

Commands used to produce the report are displayed, for example,

- 1 runacct
- 1 acctcon1

The first part of the report describes the connect accounting information on terminal usage, the number of sessions (logins, logouts), and the amount of time each terminal was used. The fields in this part of the report are as follows:

TOTAL DURATION

The amount of time the system was in multi-user mode.

LINE

The terminal line or access port used.

MINUTES

The amount of time the line was in use during the reporting period.

PERCENT

The value of MINUTES divided by TOTAL DURATION.

SESS. # ON

These columns give the number of logins on the line during the reporting period. This report is helpful in finding which lines

have been logged on, but not off.

OFF

Not only the number of logoffs, but also the number of interrupts on the line. If the # OFF exceeds the # ON by a large factor, it is possible that there is a bad connection or that the multiplexer, modem, or cable is going bad. You should monitor the /etc/wtmp file. If it grows rapidly, execute acctcon1 to see which TTY line is the noisiest. A large number of interrupts can affect the system adversely.

The next part of the report is a breakdown of system resource utilization by user. It does not give specific information on what each user was doing but provides information on the CPU time and connect time for each user. To charge users for system usage, see the information in the FEE column and the "The chargefee Procedure," earlier in this chapter.

UID The user ID (uid) for each login. For more information on uid, see Chapter 3, "User and Group Administration."

LOGIN NAME

The actual user login name. This column lets you differentiate the activities of users with the same uid. The next column gives CPU usage. This figure is broken down into two amounts: prime-time and nonprime-time usage.

KCORE-MINS

A cumulative measure of the amount of memory a process uses. It is measured in kilobytes per minute and is broken down into prime-time and nonprime-time usage.

CONNECT (MINS)

The amount of time a user was logged in. It is measured in "real time" and is broken down into prime-time and nonprime-time usage. If this number is high, and the number in the # OF PROCS column is low, the user probably logs in first thing in the morning and then hardly uses the terminal.

DISK BLOCKS

An accounting of the disk usage by user as it is calculated by the acctdusg program. The # OF PROCS column gives the

number of processes used. A very high number might indicate a shell process gone wild. The # OF SESS column tells you how many times each user logged in.

DISK SAMPLES

The number of times the acctdusg ran to obtain the information in the DISK BLOCKS column.

FEE A record of disk charges to each user ID. This information is written to /usr/adm/fee and merged with the other accounting records during the night. It then appears in the FEE column in the daily report.

The next two parts of the report, the DAILY COMMAND SUMMARY and MONTHLY COMMAND SUMMARY, summarize command usage over the report period. The report period is specified in the number argument to the monacct command; if it is not specified, the default is the current month. These parts are identical in format. The daily report summarizes the command usage for the report period, and the monthly report summarizes the command usage from the beginning of the month through the current period. Entries may appear in the monthly command name column that do not appear in the daily report. These are commands that were used sometime during the current month but not during the current reporting period. You can fine-tune the system by making commonly used commands more accessible.

The columns and their output are defined as follows:

DAILY, MONTHLY, and TOTAL KCOREMIN

Both the DAILY and MONTHLY command summaries are sorted by the TOTAL KCOREMIN column. This provides the total amount of memory a process uses per minute, measured in kilobytes.

COMMAND NAME

Self-explanatory. All shell commands, however, are lumped under the entry sh. For example, the command cd won't appear in the report; it is included in the sh column.

It is important to note that entries such as a .out, core, or mysterious command names indicate errors in compiled programs. If a compiled program is not named, it appears in the report under the default name a .out. The name core indicates errors in the execution of a compiled program. You can use acctoom to tell you who used a suspicious command, perhaps an alias, or who has been exercising superuser privileges. See "Special Accounting Procedures," later in this chapter, for more information.

NUMBER CMNDS

Total number of times a command was executed.

TOTAL CPU-MIN

Total processing time dedicated to a command.

TOTAL REAL-MIN

Time it takes to process the command in real time, including the real-time usage of background processes as well.

MEAN SIZE-K

Calculated as TOTAL KCOREMIN over NUMBER CMNDS.

MEAN CPU-MIN

Calculated as NUMBER CMNDS over the TOTAL CPU-MIN used to execute the commands.

HOG FACTOR

The ratio of system availability to system utilization. It is calculated by dividing the total CPU time by the elapsed time. It provides a relative measure of the CPU time the process used during its execution.

CHARS TRNSFD

The total number of characters transferred by the read and write system calls. The number of characters is calculated command by command. It can be a negative number; the reads may outnumber the writes, for example.

BLOCKS READ

A total count of the physical block reads and writes that a process performs.

The last part of the accounting report is a compilation of all the logins on the system and the last date they logged in. The report looks like this:

```
Sep 29 04:05 1986 LAST LOGIN Page 1
86-09-25 apple
86-09-27 alice
```

00-00-00 phil

00-00-00 sys

86-09-29 john

The first column gives the date of the last login in yy-mm-dd format. The second column gives the login name itself. As you can see from the example, the date information can be blank. If the system is shut down for any reason, the last login date for all users who have not logged on since the shutdown is 00-00-00. You can use this part of the report to determine which users are no longer active. These users (excluding those who may have logged on prior to a crash, but not since) may be candidates for removal.

Of course, if your system date is set incorrectly, or the battery dies, all the information is potentially wrong.

2.3.5 The prdaily procedure

The script prdaily generates a printout of the runacct process. The report resides in /usr/adm/acct/sum/rprtmmdd. The command syntax is

/usr/lib/acct/prdaily [-1][-c][mmdd]

The notation *mmdd* indicates the month and day of the report. You can generate previous daily reports using this option, specifying the month and day of the data you wish to see. Note that the report generated on 0611, for example, is actually the report on usage for 0610. Remember, the daily information is no longer available after monacct is run. The -1 flag prints a report of exceptional usage by login identification for a date specified with *mmdd*. The -c flag prints a report of exceptional resource usage by command. You can use it on the current day's accounting data only. These values are considered to signal exceptional usage: CPU > 80, KCORE > 500, and CONNECT > 120.

2.4 Restarting runacct

The runacct procedure is designed to recognize possible errors and give warnings before terminating the process. During processing,

messages are written in the /usr/adm/acct/nite/active file to inform the operator of successful completion of the various phases of the procedure.

Diagnostics are written into the fd2log (all runacet files are located in the /usr/adm/acet/nite directory unless otherwise specified). The runacet procedure informs you if lock or lock1 exists. To prevent generation of more than one report per day, the lastday file keeps a record of the month and day the program was last run.

The runacet procedure does not damage active accounting or summary files. It records its progress by writing messages into the file /usr/adm/acct/nite/active. When it detects an error, it writes a message to the console, sends mail to root and adm, and then terminates.

The runacet procedure uses a series of lock files to prevent reinvocation of the accounting process until the errors have been corrected. It uses the files lock and lock1 to prevent simultaneous invocation; the file lastdate prevents more than one invocation per day.

2.4.1 In case runacet fails

If you must restart runacct after a failure, begin by following these steps:

- 1. Check for diagnostic error messages in the active mmdd file located in the /usr/adm/acct/nite directory. If this file contains error messages and the lock files exist, check the fd2log for unusual messages.
- 2. Fix up any corrupted data files, such as pacet or wtmp.
- 3. Remove the lock, lock1, and lastdate files if they are present.

If runacet cannot complete the procedure for any reason (lock file encountered, error encountered, or the like), a message is written to the console (with copies sent via mail to root and adm), locks are removed, diagnostic files are saved, and the process is terminated. If you review the messages in the active file and at the console or in mail, you can determine at which point the process was stopped and why.

You can then restart the process at the appropriate location and let it finish.

To make it easier to recover from errors, runacct is broken down into separate, restartable states. Under ordinary circumstances, the state's name is written into statefile as each state is completed. The runacct procedure then checks statefile to determine what has been done and what state to process next. States are executed in the following order:

SETUP

Moves active accounting files into working files.

WTMPFIX

Verifies the integrity of the wtmp file and corrects date changes if necessary.

CONNECT1

Produces connect session records in ctmp.h format.

CONNECT2

Converts ctmp.h format files into tacct.h format.

PROCESS

Converts process accounting records into tacct. h format.

MERGE

Merges the connect and process accounting records.

FEES

Converts the output of chargefee into tacct. h format and merges it with the connect and process accounting records.

DISK

Merges the disk accounting records with connect, process, and fee accounting records.

MERGETACCT

Merges the daily total accounting records in daytacct with the summary total accounting records in /usr/adm/acct/sum/tacct.

CMS

Produces the command summaries.

USEREXIT

You can include customized accounting procedures here.

CLEANUP

Cleans up the temporary files and exits. COMPLETE appears in this file when runact is finished.

The runacet procedure begins processing with the next state in statefile. If you want to begin processing at another state, include the desired state on the command line to designate where processing should begin. You must also include the argument *mmdd*, specifying the month and day for which runacet should rerun the accounting process.

For example,

nohup runacct 0601 2>>/usr/adm/acct/nite/fd2log& restarts the accounting process for June 1 (reporting data for May 31) at the next state in statefile. If you enter

nohup runacet 0601 MERGE 2 >>/usr/adm/acet/nite/fd2log@runacet restarts on June 1 at the merge state.

Normally it is not a good idea to restart runacct in the setup state. Instead, run SETUP manually and restart by giving the command

runacct mmdd WTMPFIX

If runacct failed in the process state, be sure to remove the last ptacct file because it will not be complete.

2.4.2 Error messages

The acctems -a command produces a core file in /usr/adm/acct each day that system accounting runs.

The runacet program produces a core dump in /usr/adm/acet if given file names contain a period or an underscore.

If runacet is terminated, error messages are written into the active mmdd file in the /usr/adm/acct/nite directory. If this file and the lock files exist, check fd2log for unusual messages.

The following are some common error messages and possible solutions. The list is by no means complete.

System Accounting Package 830-5595-8

ERROR: locks found, run aborted

The files lock and lock1 were found. You must remove them
to restart runacct.

ERROR: acctg already run for date: check
 /usr/adm/acct/nite/lastdate

Today's date is the same as the last entry in lastdate; remove the last entry in lastdate.

ERROR: turnacct switch returned rc=? Check the integrity of turnacct and accton.

Note: The accton program must be owned by root and have the setuid bit set.

ERROR: Spacet?.mmdd already exists

File setups probably have already been run. Check the status of files and run setups manually.

ERROR: /usr/adm/acct/nite/wtmp.mmdd already exists. Run setups manually.

File setups have probably already been run. Check the status of files and run setups manually.

ERROR: wtmpfix errors see
 /usr/adm/act/nite/wtmperror

The wtmp file is corrupted. Use fwtmp to correct it.

ERROR: connect acctg failed: check
 /usr/adm/acct/nite/log

The acctoon1 program encountered a bad wtmp file. Use fwtmp to correct it.

ERROR: Invalid state, check
/usr/adm/acct/nite/active

The statefile is probably corrupted. Check it and read the active file before restarting.

2.4.3 Fixing corrupted files

When it is necessary to restart runacct, you may need to recreate some of the files before proceeding. You can ignore some, and you can restore others from backups. Some files, however, *must* be fixed.

2.4.4 Fixing wtmp errors

If the date is changed while the system is in multi-user mode, a set of date change records is written into /etc/wtmp. The wtmpfix program is designed to modify the time stamps in the wtmp files when this happens. If there has been a combination of date changes and reboots, the wtmpfix program might not work, causing accton1 to fail.

If this happens, you should make the following adjustment:

cd /usr/adm/acct/nite
fwtmp < wtmp.mmdd > xwtmp
ed xwtmp
 delete corrupted records or
 delete all records from beginning up to date change
fwtmp -ic < xwtmp > wtmp.mmdd

If you can't fix the wtmp file, create a null wtmp file, which will prevent connect time from being charged incorrectly. The actpro1 procedure is not able to determine which login used a specific process; it will charge the process to the first login in that user's password file.

2.4.5 Fixing tacct errors

If you are using the accounting system to charge users for system usage, you must maintain the integrity of the tacct file in the /usr/adm/acct/sum directory.

If tacct records have negative numbers, duplicate user IDs, or a user ID of 65,535, the file may be corrupted. First, check sum/tacctprev with prtacct. If it looks all right, patch up the latest sum/tacct. mmdd, then recreate sum/tacct.

A sample patchup follows:

cd /usr/adm/acct/sum
acctmerg -v < tacct.mmdd > xtacct
ed xtacct
 remove the bad records
 write duplicate uid records to another file
acctmerg -i < xtacct > tacct.mmdd
acctmerg tacctprev < tacct.mmdd > tacct

Note: You can recreate sum/tacct by merging all the tacct. mmdd files (the monacct procedure does this).

2.4.6 The monacct procedure

The monthly accounting summary is another automated procedure in the accounting package. You should invoke monacct once each month or once each accounting period. The line in the cron file

15 5 1 * * /usr/lib/acct/monacct

causes monacct to be invoked once per month (see "The cron File," earlier in this chapter.)

When run from the command line, the form of the monacct command is

/usr/lib/acct/monacct [number]

where number indicates a month or period. You can specify the week (01-52), the month (01-12), or the fiscal period, such as quarters (01-04). If you don't specify an argument, monacct uses the current month as the default. The monacct procedure creates summary files in /usr/adm/acct/fiscal and restarts summary files in /usr/adm/acct/sum.

3. Special accounting procedures: acctcom
Besides the user information you can get from the automated
procedures, additional information about users is available. For
example, the automated procedure does not tell you who is doing what,
or when. One way to gather this information is by implementing
additional accounting commands supplied with your system.

One such command is the acctom command, described in the next section.

3.1 The acctcom command

The acctom command is the most useful accounting command supplied with your system. It reports what processes are associated with a particular terminal, user, or group of users.

The command syntax of acctcom is

acctcom [options][file]

The acctoom command reads a specified file, the standard input, or /usr/adm/pacct, and writes the selected records to the standard output. Each record represents the execution of one process.

If you don't specify a file, and standard input is associated with a terminal, /usr/adm/pacct is read. If this isn't the case, the standard input is read. If file arguments are given, they are read in the order given. Each individual file is read in chronological order by process completion time. The /usr/adm/pacct file is usually the current file to be examined. A busy system, however, may have several pacct files to be processed.

The output generated by this command is similar in format to the report generated by runacct. It includes the following column headings:

COMMAND NAME

The command name is preceded by a number sign (*) if the command was executed with superuser privileges. By using the -n option of the command, you can find out which users (selected with the -u option) are executing the commands.

USER NAME

The login name of the user.

TTY NAME

The terminal device associated with the process. If a process is not associated with a known terminal, a period (.) appears in this column.

START TIME

The time the process began.

System Accounting Package 630-5595-8

END TIME

The time the process terminated.

REAL (SEC)

The elapsed real time the process took to complete.

CPU (SEC)

The elapsed CPU time the process took to complete.

MEAN SIZE (K)

The average amount of memory (in kilobytes) used by a process over the number of invocations of the process.

The following information appears in the output if certain options are used with runacct. The options are explained next.

STAT

The system exit status.

HOG FACTOR

Ratio of system availability to system utilization. It is calculated as total CPU time over elapsed time.

KCORE MIN

The amount of kilobyte segments of memory used by a process.

CPU FACTOR

A measurement of user time over system time plus user time.

CHARS TRNSFD

The number of characters transferred by the read and write commands.

BLOCKS READ

A total count of the physical block reads and writes that a process performed.

The acctom command can be used with several options. Here is a list of options with a brief explanation of what each does. Try a few to find out which ones are best suited to your purposes. Pay particular attention to the -u option, which describes user usage of the system. For a full listing of all the options, see acctom(1M) in A/UX System Administrator's Reference.

- -a The main acctom option. In addition to printing the column headings in the preceding list, it prints some average statistics about the processes selected at the end of the report.
- -f Prints a report with columns showing the number of fork/exec flags and the system exit status.
- -h Displays the fraction of total available CPU time consumed by the process during its execution in a column titled HOG FACTOR.
- -1 This option is not extremely useful, given the state of tty information. You specify the option, and you always get information for all terminals.
- -u Gives you a report of all system usage by a particular login name. The option requires the argument *user*, which specifies the login name about which you wish to generate a report. You can use it in conjunction with the -s, -e, -S, and -E options to limit the search to a specific time period. If you specify an incorrect login name, -u generates an error message and then produces the entire report anyway.
- -g Similar to the -u option. Instead of printing system usage by user, however, it prints usage by the group. It requires the argument group, which may be either the group name or group ID. The /etc/group file, of course, must be correct for this option to work properly.
- -s, -S, -e, -E

Limit the reported information to processes that occur by a specified time. These options can be used with the other options to specify a range of time to which the report of activities will apply. These options require the argument

hr[:min[:sec]]

-s selects processes existing at or after time.

- -S selects processes starting at or after time.
- -e selects processes existing at or before time.
- -E selects processes ending at or before time.

PLACE TAB HERE

SYSTERI ACTIVITY

BACK OF TAB

Chapter 10 System Activity Package

Contents

1.	Introduction	•	•	•	•	•	•	•	•	1
2.	The system activity counters	•	•	•	•	•	•	•	•	1
3.	The system activity data collector .	•			•		•	•	•	2
	3.1 The sade command		•						•	2
	3.2 The sal and sa2 commands		•	•	•	•	•	•	•	3
4.	Setting up the system activity function	ns	•	•	•			•		3
5.	The system activity report commands	;	•		•			•		4
	5.1 The sar command				•					5
	5.2 The sar command options .									7
	5.2.1 The -u option				Ī			Ĭ.		7
	5.2.2 The -b option	•	•	•	•	•	•	•	•	8
	5.2.3 The -d option	•	•	•	•	•	•	•	•	9
		•	•	•	•	•	•	•	• .	
	5.2.4 The -w option	•	•	•	•	•	•	•	•	11
	5.2.5 The -c option	•	•	•	•	•	•	•	•	12
	5.2.6 The -a option	•	•	•	•	•			•	13
	5.2.7 The -q option									14
	5.2.8 The -▼ option	_								14
	5.2.9 The -m option	•		į		•			Ī	15
	5.3 The sag command	•	•	•	•	•	•	•	•	15
	_	•	•	•	•	•	•	•	•	
	5.4 The timex command									16

BLANK PAGE

Chapter 10 System Activity Package

1. Introduction

Two packages provided with your A/UX system allow you to keep track of the details of system operation and usage:

- The system accounting package collects information and generates reports on buffer activity, CPU utilization in general, device activity, and so on. For information on the system accounting package, see Chapter 9, "System Accounting Package."
- The system activity package permits you to keep track of all low-level activity in your system. This chapter discusses the system activity package.

The system activity package provides features for collecting data about the low-level functioning of your system. You can use commands to get information on low-level system activity and to generate reports that summarize this activity. This is accomplished by using various counters to monitor kernel activity. The counters are sampled regularly, and the data is saved in binary format. This data is then used to generate ASCII reports. The information can help you to determine if and where the system may need fine-tuning. You can view the output from these commands immediately or redirect it to a file for future use.

The system activity commands rely on a series of activity counters to gather and sample data and generate a report on system activity. These counters will be described in conjunction with the commands that use them to generate reports.

2. The system activity counters

A series of system activity counters must be working to determine what processes are being run at any given time. These counters, which are located in the operating system kernel, record various activities at

System Activity Package 030-5595-8

selected times. For example, you can set them to record all processes used at 8:00 A.M. Monday and store the information in a file for review later.

There are several types of counters. Each counter generates various pieces of information, but the same counter may be used by different commands to provide different information. The CPU counter, for instance, reports the prime- and nonprime-time usage in minutes in the accounting report (see Chapter 9, "System Accounting Package"), whereas in the activity report the same counter reports the state(s) the CPU is in: idle, user, kernel, or wait.

In this chapter, each type of counter is explained as it first occurs in relation to the system command that invokes it. Most are explained in relation to the sar command, because this is the most useful system activity command. Particular emphasis is placed on those counters that you can use to troubleshoot or fine-tune your system.

If you would like more detailed information about the counters, keep the following in mind:

- The data structure for most counters is defined in the sysinfo structure in /usr/include/sys/sysinfo.h.
- The system table overflow counters are kept in the _syserr structure.
- The device activity counters come from the device status tables.

3. The system activity data collector

The system activity data collector (sade) is the automated data collection feature supplied with your system. Two shell scripts, sal and sa2, assemble the data for the reporting functions.

3.1 The sade command

The sade command is used to collect system activity information at regular intervals. It is an executable program that reads the system counters located in /dev/kmem and records them in binary format in a file for later sampling by the system activity reporting functions.

The command sade can be used alone or with arguments. It has the format

/usr/lib/sa/sadc [t n] [file]

When used without arguments, sade sets the startup time. It creates a special record that tells the system to reset the system counters to zero. The same thing occurs when the system is rebooted. When the arguments t and n are used, sade samples the counters n times every t seconds and writes the data in binary format to the named file or, by default, to the standard output, /usr/adm/sa/sadd, where dd stands for a given day.

3.2 The sal and sa2 commands

The sal and sal commands supply the default parameters for the operation of sadc and sar.

The sal command invokes sade to enter the information gathered by the system counters at the intervals specified in the /usr/lib/cron/crontab file into the daily data file /usr/adm/sa/sadd. This information is in binary format.

The sa2 command is a variation of the sar command. It reads the data file created by sa1 and uses it to generate a report in ASCII format. This report is stored in the /usr/adm/sa directory in the files named sardd. Again, dd stands for the day of the report. You can use the sar options with the sa2 command. For a complete explanation of these options, see "The sar Command Options," later in this chapter.

4. Setting up the system activity functions

It is a good idea to monitor and record system activity routinely in a standard way for historical analysis. Each of the previous commands initiates activity observations. For these observations to occur, you must first initiate the data collection functions. By automating these functions, you can generate regular system activity reports.

Your system can automatically sample the activity counters and store the information in a file for later reporting. To do this, edit the following lines in /usr/spool/cron/crontabs/adm so that they are "commented out" (which is done by placing a number sign before each line):

```
0 * * * 0,6 /usr/lib/sa/sal
0 18-7 * * 1-5 /usr/lib/sa/sal
0 8-17 * * 1-5 /usr/lib/sa/sal 1200 3
```

Next, run the crontab command on this newly modified file. This produces records every 20 minutes during working hours and hourly otherwise.

You can generate hourly records during working hours by substituting

```
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i3600 -A for
```

```
0 18-7 * * 1-5 /usr/lib/sa/sal
```

These entries will cause the collection functions to operate. They will not, however, generate reports automatically. It is still the responsibility of the system administrator to check the desired reporting function regularly and to generate the report for current and later review.

5. The system activity report commands

The three commands sar, sag, and timex generate system activity reports.

You can use these commands to observe system activity during

- normal operations
- a controlled stand-alone test of a large system
- an uncontrolled run of a program to observe the operating environment

The sar command generates system activity reports in real time and saves the output in a file.

The sag command displays system activity in graph form.

The timex command is a modified time command that reports how long a given command takes to execute and how much user and system time was spent in execution of the command.

These commands and their options and applications are discussed in detail in the next three sections.

5.1 The sar command

The system activity reporter command is sar. You can use the sar command alone or with a series of options. If you enter

sar

a report on today's CPU activity scrolls across the screen. The output should look like this:

00:00:03	%usr	%sys	%wio	%idle
01:00:03	1	1	0	98
02:00:03	1	1	0	98
14:39:12	41	12	4	42
14:59:12	3	5	3	89
15:20:04	14	12	4	70
15:40:04	11	8	3	78
Average	5	5	1	89

If you type

sar > sar.output

the output from sar is stored in the file sar.output and doesn't scroll across your screen.

By typing sar with the options discussed in the next section, you can sample various counters to view activity at specific times and intervals. By redirecting the output to a file, you can save the information for later review.

The full sar command syntax is written in one of these two ways:

The first word is the command itself; the letters within the brackets are flag options that sample different counters. The remaining options allow you to sample certain counters at specified times and save the result for later viewing.

In the command syntax

```
sar [-u] [-b] [-d] [-w] [-c] [-a] [-q] [-v] [-m] [-A] [-ofile] t [n]
```

sar extracts the data from a previously recorded file (which you specify with the -f file option) or, by default, the standard system activity daily data file /usr/adm/sa/sadd, where dd stands for a given day. This file appears unreadable when you view it because it is stored in the internal format used by the system reporting functions to prepare reports. The reports themselves are in a readable format.

You can specify the starting and ending times of the report by invoking the -s time and -e time options, using the format hh[:mm[:ss]].

The -i option selects records at sec second intervals. Otherwise, all intervals found in the data file are reported. For example,

```
sar -s8:00 -e18:01 -i3600
```

will sample activity at intervals of 3600 seconds, that is, every hour starting at 8:00 A.M. and ending at 6:01 P.M.

In the command syntax,

```
sar [-u] [-b] [-d] [-w] [-c] [-a] [-q] [-v] [-m] [-A] [-stime] [-etime] [-isec] [-ffile]
```

sar invokes the data collection program sadc to sample the system activity counters every t seconds for n intervals and generates a system activity report.

If you specify the -o option, sar saves the output in binary format into file.

If you supply no frequency arguments, sar generates system activity reports for the time interval specified in the existing data file. On this system, that time period is from 8:00 to 18:00, and the data is sampled every hour (see "Setting Up the System Activity Functions," earlier in this chapter). Unless you redirect the output to a file, it scrolls across the screen.

Note: All reports you generate with the options listed print a time stamp for each entry. This time stamp appears in the first column of each report section in the format hh: mm: ss.

When used without options, the sar command generates a report about CPU activity only. This is the same report you receive if you enter

sar -u

The system activity package automatically generates a report containing all of the options listed in the following sections. The report is stored in the /usr/adm/sa directory, in the files listed as sardd. These files are the binary representations of the sar reports. You can get the same report by typing

sar -A

This generates the same information as

sar -udqbwcayvm

but takes fewer keystrokes.

5.2 The sar command options

The options you can use with the sar command are listed in the following subsections.

5.2.1 The -u option

Use the -u option to get a report on CPU utilization. This is the default option, the option the system selects if none is specified. If you enter

sar -u

a report similar to the following one is displayed:

07:00:02	tusr	% sys	%wio	%idle
08:00:04	0	1	0	99
09:00:02	10	7	3	80
11:00:07	8	8	4	81
12:00:05	15	10	4	71
13:00:03	12	10	2	76
15:00:08	31	16	4	48
16:00:06	39	15	4	43
18:00:02	1	1	0	97
19:00:02	0	1	0	99
Average	12	8	2	78

The column headings display the following:

tusramount of time running in user modetaysamount of time running in system modetwioidle time with process waiting for block I/Otidleidle time

Fidle idle time
Average daily averages

All of the information under these headings is sampled each hour to produce the report. The headings correspond to the four CPU counters: user, kernel, wait for I/O completion, and idle. These counters are increased by one (incremented) each time the clock calls for an interrupt (a count on the system), which occurs 60 times per second.

5.2.2 The -b option

The -b option reports buffer activity. This option works by accessing three sets of read and write counters.

- lread and lwrite (logical read, logical write)
- bread and bwrite (block read, block write)
- phread and phwrite (physical read, physical write) If you enter

sar -b

the system generates a report organized in columns as follows:

bread/s, brwrit/s

Samples the bread and brwrite counters, giving the transfers

of data per second between the system buffers and the disk.

lread/s, lwrit/s

Samples the lread and lwrite counters, giving the number of times the system buffers are accessed.

phread/s, phwrit/s

Samples the phread and phwrite counters, giving the number of data transfers via raw devices.

%rcache, %wcache

Gives the ratio of buffer reads (bread) to logical reads (lread) and buffer writes (bwrit) to logical writes (lwrit) in what is called the cache hit ratio. The cache hit ratio reports if files are being accessed from the buffers or if the information has to be retrieved from the disk itself. A low ratio might suggest that more efficient buffering could increase system response time in a certain area.

5.2.3 The -d option

The -d option reports device activity. This option is unreliable, and the information it provides is usually inaccurate. When you select this option, you can view information on block devices, such as the disk or tape drives.

If you enter

sar -d

the system generates a report organized in columns as follows:

Device

The device being sampled.

%busy

Samples the device counters and displays the time, expressed as a percentage of total report time, during which the device was engaged in transferring data.

avoue

Displays the average number of requests waiting to be processed.

r+w/s

Displays the number of data transfers to or from the disk or tape drive.

blks/s

Displays the number of bytes transferred and counted in blocksized units.

avwait

Displays the number of milliseconds that transfer requests have to wait in the queue before being processed.

avserv

Displays the average time it takes to service the request.

The figures in these columns represent a sampling of a combination of I/O activity counters and character counters. The %busy column, for example, represents a sampling of the io_ops counters and the io_act counters. The blks/s column represents a sampling of the io_bent counters. In addition, the avserv and avwait columns represent a sampling of the io_act and io_resp counters. These counters are explained in greater detail later in this section, and some suggestions for fine-tuning are given.

Each disk or tape device has four counters to record activity. The activity information is kept in the device status table. Whenever an I/O request occurs, io_ops (I/O operations) is incremented. It keeps track of block I/O, swap I/O, and physical I/O.

Transfers between the device (particular disk or tape drive) and memory are recorded in 512-byte blocks by io_bcnt (I/O block counters). The io_act and io_resp are particularly useful I/O counters. By time ticks, they measure the time it takes a device to receive, process, and transmit a request, summed over all I/O requests for the device. The io_act counter measures the active time, which is the time during which the device is actively engaged in seeking, rotating, and transferring data (all measured by different counters and combined into one active count).

The io_resp counter measures the total elapsed time between the time the request is received in the queue and the time it is completed. By looking at the ratio between active time and response time, you can

determine if the disk and tape devices are being put to their best use. For example, if one device is so heavily used that response time is significantly increased, perhaps you can shorten system reaction time by transferring some frequently used information to another, less used device. Also, if the active time counter for a device is high compared with the number of requests on the system, perhaps you could load the file systems on the device differently for more effective access.

5.2.4 The -w option

The -w option reports swapping and switching activity. This option uses the swapin and swapout counters. (The column headings that appear in the report, swpin and swapot, are abbreviations.) These counters are incremented each time the system receives a request initiating a transfer to or from the swap device. The swap device is a disk partition used as a "holding area" for processes that are not currently running. When main memory is full, processes that are not currently running are swapped out (transferred) to the swap device. When the CPU is ready to work on a process that is in the swap device, the process is swapped back into memory.

The amount of data swapped in and out is measured in blocks and counted by the bawapin and bawapout counters. The data collected by these counters is displayed in the column headings bawin and bawot.

The figures for swpin are usually higher than those for swpot. This peculiar asymmetry arises from programs with the "sticky bit" set, which keeps a program on a contiguous area of the swap device. Therefore, moving the program back and forth between memory and the swap device is more efficient if the sticky bit were not set.

If you enter

sar -w

the system generates a report organized in columns as follows:

swpin/s

Reports the number of transfers from the swap area on disk to main memory.

swpot/s

Reports the number of transfers from memory to the swap area.

System Activity Package 030-5595-8

bswin/s, bswot/s

Reports the number of bytes transferred.

pswch/s

Reports the number of process switches that have occurred.

5.2.5 The -c option

The -c option reports system calls. This option accesses the pswitch and syscall counters. These counters are related to the management of multiprogramming. This occurs when one process, the parent process, calls (forks and executes) another program, the child process. While the parent waits, the child performs its task, terminates, and reinvokes the parent process, which continues.

The syscall counter is incremented every time a system call occurs. Certain system calls — the read, write, fork, and exec calls — are counted individually in sysread, syswrite, sysfork, and sysexec.

The pswitch counter keeps tracks of the number of times the switcher was invoked. The switcher is invoked when the program running could not complete its intended process.

The following situations cause pswitch to be incremented:

- · a system call that resulted in a roadblock
- an interrupt that caused the awakening of a higher-priority process
- a 1-second clock interrupt

To check the number of system calls, type

sar -c

The first five columns of the resulting output give information on the number of system calls made. The first column (scall/s) gives the total number of system calls; the next four columns give the number of specific system calls for read (sread/s), write (swrite/s), fork (fork/s), and execute (exec/s) system calls, respectively. The last two columns give the number of characters transferred by the read (rchar/s) and write (wchar/s) system calls, respectively.

5.2.6 The -a option

The -a option reports on use of file access system routines. Avoid using this option because this information is usually inaccurate. This option of sar checks the following:

- the number of times a file's inode number is requested
- the number of file path searches
- the number of directory blocks read by the system

If you enter

sar -a

the system samples the file access counters and generates a report showing the number of times each of the file access routines was performed. The report is organized into columns as follows:

iget/s

Measures the number of requests for the inode number that corresponds to a particular file. The iget routine is used to locate the inode entry (i-number) of a file. See Chapter 8, "Checking the A/UX File System: fsck," for an explanation of i-numbers and inodes. The iget routine first searches the incore (main memory) inode table. If the inode entry is not in the table, iget gets the inode from the file system where the file resides and makes an entry in the inode table.

namei/s

Measures the number of requests for a file system path search. The name i routine performs file system path searches. It searches the various directory files to get the associated i-number of a file corresponding to a special path. Like other file access routines, name i calls iget to find the i-number of the file it is searching for. Therefore, counter iget is always greater than counter name i.

dirblk/s

Measures and records the number of directory block read requests issued by the system. Dividing the directory blocks read by the number of name i calls results in an estimate of the average path length of files. A long path length may indicate a

significant number of subdirectories. Rearranging the file structure to move the more commonly accessed files higher up the path would correct this problem.

Each time one of these routines is called, the respective counter is incremented.

5.2.7 The -q option

The -q reports on queue activity. At every one-second interval, the clock routine examines the process table to see whether any processes are queued and ready. If so, the counter runocc is incremented and the number of processes waiting is added to the runque counter. While this is happening, the clock routine also checks the process status of the swapper. If the swap queue is occupied, the counter swapocc (swap occupied) is incremented and the number of processes waiting in the queue is added to the swapque counter.

If you enter

sar -q

the system reports on the average time a process is queued before it is acted on. The report lists the average queue length while the queue is occupied (the columns ending in -sz) and the percentage of time the queue is occupied (the columns beginning with %). It is broken down into two main parts: the run queue (the runq columns), which lists the processes in memory and runnable; and the swap queue (the swp columns), which lists the processes swapped out but ready to run.

5.2.8 The -v option

The -v option reports the status of text, process, inode, and file tables. The information provided is usually inaccurate. When an overflow occurs in any of the inode, file, text, or process tables, the corresponding counter (inodeovf, fileovf, textovf, or procovf) is incremented. These indicate resource problems with tables or the size of memory.

You can use the -v option of the sar command to discover the size of tables and any table overflows.

If you enter

sar -v

the system produces a report in which the first five columns show the number of used and available entries in each table. This information is typically given for one-hour intervals. The measurement is taken once at the sampling point. The last four columns give the number of overflows that occur between the sampling points.

5.2.9 The -m option

The -m option reports message and semaphore activities. This option of the sar command reports which processes requested the operating system to send information directly to another process.

If you enter

sar -m

the system generates a report on message and semaphore activity. The message and semaphore columns (msg/s and sema/s) reflect the most basic input/output operations of the system. These "primitives" (for example, read and write) are called by other programs, which use them as building blocks to complete their processes. The message primitives keep track of interprocess communications; that is, the number of times one process asks the operating system to send information directly to another process. The semaphore primitives synchronize the actions of various processes and facilitate the use of shared resources.

5.3 The sag command

The system activity graph command is sag. It displays the system activity data that was created by a previous run of the sar command and stored in binary format.

You can plot the graph using any single column or combination of columns. It can prepare cross-plots or time plots.

A graphics package that can invoke the graphics and tplot commands must reside on the system for you to print a system activity graph. Unfortunately, very few terminals are supported. The Macintosh II and common emulators such as the VT100 are not among those supported. See sag(1G) in A/UX Command Reference.

5.4 The timex command

The timex command is an extension of the time command; see time(1) and timex(1) in A/UX Command Reference. It times a command and reports process data and system activity. The command you are tracking is executed, and the elapsed time, user time, and system time spent in execution are reported in seconds.

The options available with sar are also available with timex. However, timex tracks one command, whereas sar tracks all commands. The output of the timex command is easier to understand than the output of sar, and it is also generally more reliable.

Normally, you use the timex command to measure a single command. If you want to measure multiple commands, combine the commands in an executable file and time the file. You can also do this by entering

```
timex sh -c "cmdl; cmd2;...;"
```

This allows timex to measure the user and system times consumed by all the commands as if they were one single command. See sh(1) in A/UX Command Reference.

Because process records associated with a command are selected from the accounting file /usr/adm/pacet, background processes that have the same user ID, terminal ID, and execution time window are included in the totals given.

You can specify options to list or summarize process accounting data for the command and its children and to report the total system activity during the execution interval. If you don't specify any options, timex behaves exactly as the time command does.

The syntax for the timex command is

```
timex [-pos] command
```

The timex command options are as follows:

- -p Lists the process accounting records for the specified command.

 This option has six suboptions:
 - f Prints the fork/exec flag and system exit status.
 - h Reports the fraction of total available CPU time the process consumes during its execution and suppresses reporting of the mean memory size.

- k Reports the total kcore-minutes and suppresses reporting of memory size.
- m Reports the mean core size.
- r Reports the fractional representation of CPU factor (user time) over system time plus user time.
- t Reports separate system and user CPU times.
- -o Reports the total number of blocks read or written and total characters transferred by the command selected and all its children.
- -s Reports the total system activity during the execution interval of the command, not just the activity resulting from the command specified. All the data items listed in sar are reported.

BLANK PAGE

PLACE TAB HERE uucp

BACK OF TAB

Appendix A The UUCP System

C	onten	ts													•		
1.	Introd	uction	•	• (•	•	•	•		•	•	•	•	•	•	1
2.	The co	ompone	nts of	f UT	JCP		•	•	•			•				•	2
	2.1	Directo	ories	,		•			•				•	•		•	3
	2.2	Execut	able	files		•		•	•					•		•	4
	2.3	Script:	files			•			•	•				•		•	5
	2.4	A/UX	syste	m fi	les			•				•		•			6
	2.5	UUCP	syste	m i	iles					•			•	•		•	7
		Statisti				•		•	•			•		•		•	10
	2.7	Sequer	nce fi	les							•						11
		Log fil															11
		Audit i															12
		Spool i															12
		Lock f															12
	2.12	Status	files					•		•		٠				•	13
	2.13	Tempo	rary	files													13
		Backu				•	•	•	•	•	•	•	•	•	•	•	14
3.	Setting	g up the	L-d	ev:	ice	s a	nd 1	L.s	ys	file	es		•	•	•		14
	3.1	The /t	ısr/	111	b/u	ucj	p/I	i-d	ev.	ice	35	file					14
	3.2	The /t	ısr/	141	b/u	uc	p/I	. s	ys	file			•	٠.	•	•	15
4.	Interac	ctive file	e tran	sfei		•	•	•	•	•	•	•		•	•	•	18
5.	Autom	natic file	tran	sfer		•	•		•	•				•	•		20

20

20

20

21

21

5.1 Preparing the systems

5.2 Receiving mail and files5.3 Sending mail or files

5.1.1 The system node name

5.1.2 Dial-in and dialout ports . .

5.1.3 Generic uucp logins . .

5.1.4 System-specific uucp logins

	5.4	Cleaning up		•	•	•	•		•	•		•	•	24
6.	Secur	ty and other tips .				•								26
	6.1	Controlling logins	and f	ile s	yst	em	acc	ess	;	•		•		. 26
	6.2	Conversation coun	t che	ckin	g			•				•		27
	6.3	Controlling file for	ward	ing	_					•				28
	6.4	Controlling remote	com	mai	nd e	xec	uti	on		•				28
	6.5	File permissions .								•		•		28
	6.6	The nuucp login of	envir	onm	ent			•		•		•		30
	6.7	Suggested links .												32
	6.8	Troubleshooting u	ucp		•	•	•	•	•	•	•	•	•	32
Tá	ables	•												
Ta	ible A	-1. Expect-send str	ings 1	ior t	he /	Д рр	le l	Per:	son	al •	•	•	•	18

•

•

Appendix A The UUCP System

1. Introduction

One of the most important features of A/UX is its ability to transfer information among A/UX systems (and among other systems derived from UNIX). The standard A/UX communication package, called UUCP (for "UNIX to UNIX copy"), is the mechanism generally used for this function. The UUCP package permits mail, command execution, and file transfers among A/UX computers. These functions are useful whenever related pieces of information and/or users are located on separate computers. For example, mail can be used to communicate with other companies, file transfer can be used to copy programs directly from one computer to another, and remote command execution can be used to print documents on a remote computer that has an attached laser printer.

When two or more computers can communicate, the computers and the communication channels (for instance, telephone lines) between them are considered parts of a computer network. Each computer is a node in the network; the communication channels are network links. Communication between nodes can take place using one of two primary methods: interactive or automated. Interactive communication requires a user to log in to the remote system and issue commands to initiate command execution and file transfer. Automated communication requires some method by which the local computer can communicate with the remote computer(s) without user intervention.

This appendix describes the many commands, scripts, and spooling directories involved in UUCP and then introduces a step-by-step procedure for setting up UUCP to handle interactive logins and file transfer between UNIX nodes. Next, the procedure for setting up mail to a remote UNIX node is described. The appendix concludes with hints for modifying, expanding, and tightening the security of UUCP on your system.

The UUCP System 630-5595-B

2. The components of UUCP

This section discusses the user files and directories used in the running of UUCP and the system files and directories used in the administration of UUCP.

The files can be grouped into the following categories:

- binary: binary executable files used by UUCP
- script: shell scripts used as commands and for system maintenance
- A/UX system: A/UX system files also used by UUCP
- uucp system: files used by UUCP for system configuration
- statistical: files used by UUCP for storage of statistical information
- sequence: files used for storing sequential number information
- log: files used for logging information on requests and connections
- audit: files used for storing debugging information
- spool: files used to spool requests
- lock: files used to lock UUCP system files and prevent simultaneous updating or accessing.
- status: files used to store status of connections to specific systems
- temporary: files used for temporary storage of information
- backup: files used for keeping backups of recent log files

After a discussion of the directories involved, this section focuses on each of these categories and the files that constitute them.

2.1 Directories

The following directories are used exclusively by uucp:

/usr/lib/uucp

Used for storage of UUCP system files that are not temporary in nature. This includes script files run by eron and executable binary files that are forked by UUCP processes.

/usr/spool/uucp

Used for storage of UUCP files that are temporary in nature. This includes log files and spool files.

/usr/spool/uucp/.XQTDIR

Used by uuxqt for temporary storage of files used in remote command execution by uux.

/usr/spool/uucppublic

The directory reserved for public usage when files are sent from one system to another. The directory grants read, write, and execute permission to every user of the system (and for this reason is said to be for public usage). All files that are to be sent to the computer should be sent to this directory. Some subdirectories are used for specific purposes.

/usr/spool/uucppublic/user

Where user is a specific user name, used by the system to place files that could not otherwise be transferred because of permission problems.

/usr/spool/uucppublic/receive

Along with all of its subdirectories, used exclusively by the programs uuto and uupick.

/usr/spool/uucppublic/receive/user

Where user is a known user on the system, used to build directories for files from other systems sent by uuto.

/usr/spool/uucppublic/receive/user/system

Where user is a known user on the computer and system is a remote computer, used to store files sent from system to user with uuto. This is the directory where uupick will find files.

2.2 Executable files

The following files are the binary executable files used by UUCP for common usage and administration:

/usr/bin/uucp

The user command that copies files from system to system. Forwarding may be allowed through intermediate nodes. See uucp(1C) in A/UX Command Reference.

/usr/bin/uulog

May be used as a user command or a system maintenance command. As a user command, it presents logged information about uucp or uux requests by either system name or user name. As a maintenance command, it appends any temporary log files to the permanent log file. See uucp(1C) in A/UX Command Reference.

/usr/bin/uuname

A user command whose output is either the local node name or a list of the node names of all computers with which the system can communicate. See uucp(1C) in A/UX Command Reference.

/usr/bin/uustat

May be used to display the status of uucp jobs or connections and can be used to cancel certain jobs. See uustat(1C) in A/UX Command Reference.

/usr/bin/uusub

May be used as a user command or a system maintenance command. As a user command, it displays the statistics on uucp connections or traffic. As a maintenance command, it flushes the statistics files, adds new systems for statistics gathering, or calls other systems. See uusub(1M) in A/UX System Administrator's Reference.

/usr/bin/uux

A user command that executes commands on a remote system and takes care of transferring all files necessary for the command. See uux(1C) in A/UX Command Reference.

/usr/lib/uucp/uucico

Forked by uucp or uux to call other systems and do all the

work. It may be called directly from shell scripts started by cron to scan for work needing to be done. It is also executed directly when a remote system logs in.

/usr/lib/uucp/uuclean

A system maintenance command usually called from shell scripts started by eron to remove old files from uncp directories. See unclean(1M) in A/UX System Administrator's Reference.

/usr/lib/uucp/uuxqt

Forked by uux or uucico to execute the scripts that uux sets up to perform remote command execution.

2.3 Script files

The following are script files used as normal commands and files used for system maintenance:

/usr/bin/uupick

A user shell script used to pick up files that have been sent to a user from another system via uuto. The appropriate public subdirectories are searched, and the user may accept or reject files for copying to another directory. See uuto(1C) in A/UX Command Reference.

/usr/bin/uuto

A user shell script that sends files or entire directories via uucp to a user on another system. In the case of directories, entire subtrees are sent by calling uucp repeatedly. See uuto(1C) in A/UX Command Reference.

/usr/lib/uucp/uushell

A login shell script used to set the time zone environment variable before executing uucico. This will cause log file entries to show the correct time for remotely initiated requests and connections. It should be the login shell for all uucp connections.

/usr/lib/uucp/uudemon.day

A maintenance shell script started by cron every night to perform UUCP maintenance. It is normally used to remove old files from UUCP directories and trim status and statistics files, that is, to eliminate old entries and thus prevent the files from growing too large.

/usr/lib/uucp/uudemon.hr

A maintenance shell script started by cron every hour to perform UUCP maintenance. It is normally used to append temporary log files to permanent log files and to check for spooled work.

/usr/lib/uucp/uudemon.wk

A maintenance shell script started by cron every week to perform uucp maintenance. It is normally used to store weekold log files and remove two-week-old log files.

The descriptions of the undemon scripts are intended to demonstrate their typical uses. You decide when each of these scripts is actually run via its respective crontab entry. You can also easily change what these scripts actually do by editing the script files.

2.4 A/UX system files

The following system files are used by UUCP:

/etc/group

Keeps track of group IDs for user names. UUCP uses these user names to allow remote systems to log in. See Chapter 3, "User Administration."

/etc/inittab

Generates gettys for ports. These gettys must be enabled for dial-in ports and disabled for dialout ports. See "Dial-in and Dialout Ports," later in this appendix.

/etc/passwd

Keeps track of user names and passwords. UUCP uses these to allow remote systems to log in and transfer files. Both the home directory and the login shell are specified for each user name. See Chapter 3, "User Administration."

/usr/spool/cron/crontabs/uucp

Tells the eron process when to schedule the execution of programs. UUCP uses this to schedule hourly, daily, and weekly shell scripts to perform maintenance. See Chapter 9, "System Accounting Package."

2.5 UUCP system files

UUCP uses the following system files for configuration:

/usr/lib/uucp/ADMIN

Stores additional information about each system that appears in the L.sys file. You can display this description along with the system names by using the command unname -v.

/usr/lib/uucp/FWDFILE

Stores a list of system names to which files may be forwarded. These are a subset of the L.sys system names and do not restrict the final destination, just the next system in the path. Each line in this file takes the form

system[, user, user]

where system is the name of a system to which a communication can be forwarded, and the optional list of users separated by commas represents the login names of users in the system to which the communication can be forwarded.

/usr/lib/uucp/L-devices

Stores the names of the ports that are connected to modems or directly to other systems. The file contains the attributes, such as baud rate, of each of these ports. Each line in this file takes the form

type line device speed [protocol]

where

can be either DIR, indicating that the line is directly connected to another system (this includes modem

connected to another system (this includes modem connections), or ACU, indicating that the line uses an

automatic calling unit

line is the device name of the line (for instance tty0 if the

modem is connected to port /dev/tty0)

device is the device name of the ACU if one is specified in the

type field (otherwise, a placeholder [0] must be used in

this field)

speed is the line speed for the connection, as measured in baud

protocol is an optional field that needs to be filled only if the connection is for a protocol other than the default protocol

Here is a typical entry in the L-devices file:

DIR tty0 0 1200

/usr/lib/uucp/L-dialcodes

Stores dial-code abbreviations for L.sys. Each abbreviation is associated with a dial sequence of numbers (typically an area code). Each line in this file takes the form

abbreviation dial-ing-sequence

where abbreviation stands for an arbitrary abbreviation of an area code or telephone exchange number, and dial-ing-sequence stands for the telephone number that should be dialed after the abbreviation.

Here is a typical entry in this file:

sfba 415

The abbreviation sfba stands for San Francisco Bay Area, and 415 is the area code.

/usr/lib/uucp/L.cmds

Stores a list of command names that uux is permitted to execute. If a command name (including rmail) is not listed in this file, it cannot be used for remote execution. Each line in this file takes the form

cmd

where *cmd* is the name of any command you want uux to be able to execute in your system.

/usr/lib/uucp/L.sys

Stores information on connecting to remote systems. Each line represents a way to connect to another system. If more than one

line exists for a particular system, each line is tried sequentially until a connection is made. Each line in this file takes the form

system time device class phone login

where

system is the name of the remote system;

time is the time(s) at which that system can be called;

device is either the name of the port (if it is a DIR connection)

or the keyword ACU;

class is the speed of the connection in baud;

phone is the phone number to be called, expressed either in an

all-numeric sequence or as an alphabetic abbreviation,

and specified in a corresponding line in the L-

dialcodes file;

login is an expect-send-expect sequence as specified in

"Automatic File Transfer," later in this appendix.

Here is a typical entry in this file:

doosy Any tty0 1200 tty0 ** ATDTsfba5551212^M ogin:-@-ogin:-EOT-ogin:-BREAK-ogin:U mickey ssword:mouse

/usr/lib/uucp/ORIGFILE

Stores a list of system names and users from which files may be forwarded. Each entry refers to the system that was the originator of the request and not the most recent system in the path. Each line in this file takes the form

system[, user, user]

where system is the name of a system whose communication the system is willing to forward, and the optional list of users separated by commas represents the login names of users in that system whose communication can be forwarded. Note that system represents the name of the system that originated the communication, not the name of the last system that forwarded the communication.

/usr/lib/uucp/USERFILE

Stores access permissions. These include pathname prefixes that are accessible by local users and remote systems. Remote system login names must appear here with an optional call-back facility. Each line in this file takes the form

[login], system [c] path [path]

where *login* is the login name of a user or a remote computer; system is the system name of a remote computer; c is an optional flag that, as a security measure, requires that the remote computer be called back before any further communication takes place; and path is a pathname prefix constraining file access to only those files preceded by the prefix. If the *login* field is empty (a null login), any user can access the specified path.

For an example, the lines

root, /
, /usr/spool/uucppublic

permit any user at any remote computer to transfer any files from /usr/spool/uucppublic, but only a user with the login name of root can transfer any file, because all filenames ultimately begin with /.

2.6 Statistical files

UUCP uses the following files to store status and statistical information:

/usr/lib/uucp/L_stat

Stores the latest connection status of each remote system. You can display this information using the uustat command.

/usr/lib/uucp/L sub

Stores connection statistics for each remote system. You can display this information using the uusub command.

/usr/lib/uucp/R_stat

Stores the status of each uncp request. You can display this information using the unstat command.

/usr/lib/uucp/R_sub

Stores traffic statistics for each remote system. You can display this information using the uusub command.

2.7 Sequence files

UUCP uses the following files for storing sequence information:

/usr/lib/uucp/SEQF

Stores the sequence number, which is incremented by one for each uucp request. This is a four-digit number used in generating the names of the spooled files.

/usr/lib/uucp/SQFILE

Stores a conversation count for remote systems. These systems will be a subset of the systems in L.sys. The remote system must also have an entry for your system in its SQFILE. If a connection is made but the counts in the two files do not agree, the login attempt fails.

/usr/lib/uucp/SQTMP

Temporarily stores the SQFILE used by uucico.

2.8 Log files

UUCP uses the following files for logging information on UUCP requests and connections:

/usr/spool/uucp/ERRLOG

Logs uucp errors generated when uucico fails on a file transfer. If the -x option is used with uucico, the errors do not appear in this file.

/usr/spool/uucp/LOGDEL

Used by uuclean to log files that have been removed.

/usr/spool/uucp/LOGFILE

Logs the status of calls and uucp requests. During execution of uucp requests, log information is normally appended to the file. If more than one uucp process is active at a time, the information is logged to temporary files. You can use the uulog command to display portions of this file as well as append temporary versions to it.

/usr/spool/uucp/SYSLOG

Logs the number of bytes sent and received during each connection and the duration of the connection in seconds.

2.9 Audit files

UUCP uses the following files to store debugging information:

/usr/spool/uucp/AUDIT

Stores debugging information from the remote uucico process. It is created every time uucico is run as a login shell.

/usr/spool/uucp/AUDIT.system

Where system is the name of a remote computer, stores debugging information when the remote computer calls with uucico and the -x option.

2.10 Spool files

UUCP uses the following files to spool requests for work to be done:

/usr/spool/uucp/C.systemxxdddd

Stores information for uucico on which system to connect and which source and destination filename to transfer. It is created whenever uucp or uux is executed.

/usr/spool/uucp/D.systemxxdddd

Stores data files for transfer. This file is created when you use the -c option with uucp.

/usr/spool/uucp/X.systemxxdddd

Stores information used to execute remote commands. This file is created prior to running uuxqt, which reads it.

In these filenames, system is the name of the remote computer, xx are two ASCII characters representing the priority of the work, and dddd is the sequence number from SEQF.

2.11 Lock files

UUCP uses the following as lock files to prevent simultaneous update of UUCP system files:

/usr/spool/uucp/LCK..system

Where system is the name of a remote computer, prevents more than one simultaneous connection to that computer. Notice the

two dots (...) in the name. These are an integral part of the filename.

/usr/spool/uucp/LCK..ttynn

Where *ttynn* is the name of a port used for dialout or direct connection, prevents more than one uucico process from using the port at the same time. Notice the two dots (..) in the name. These are an integral part of the filename.

/usr/spool/uucp/LCK.LOG
Prevents simultaneous update of the log files.

/usr/spool/uucp/LCK.LSTAT

Prevents simultaneous update of L_stat.

/usr/spool/uucp/LCK.LSUB

Prevents simultaneous update of L sub.

/usr/spool/uucp/LCK.RSTAT

Prevents simultaneous update of R_stat.

/usr/spool/uucp/LCK.RSUB
Prevents simultaneous update of R sub.

/usr/spool/uucp/LCK.SQ
Prevents simultaneous update of SQFILE.

/usr/spool/uucp/LCK.SEQL
Prevents simultaneous update of SEQF.

/usr/spool/uucp/LCK.XQT
Prevents simultaneous remote command execution by uuxqt
(see "Executable Files," earlier in this appendix).

2.12 Status files

UUCP uses the following file to store the status of connections to specific systems:

/usr/spool/uucp/STST.system

Where system is the name of a remote computer, used to store the status of a connection that fails.

2.13 Temporary files

UUCP uses the following files for temporary storage:

The UUCP System 030-5595-B

/usr/spool/uucp/LTMP.pid

Used to store LOGFILE entries temporarily when more than one uucp process is executing; *pid* is the process ID. Use the uulog command to append these files to LOGFILE.

/usr/spool/uucp/TM.pid.ddd

Temporarily stores these data files until the transfer is complete; pid is the process ID, and ddd is the number of this file in the current transfer. If the transfer is successful, the file is moved to the correct destination; otherwise, it is removed.

2.14 Backup files

UUCP maintenance scripts create the following files to keep backups of recent log files:

/usr/spool/uucp/Log-WEEK

Stores the LOGFILE entries for the current week to date. The shell script uudemon. day appends the current LOGFILE to Log-WEEK every night.

/usr/spool/uucp/o.Log-WEEK

Stores the LOGFILE entries for the entire previous week.

Between Log-WEEK and o. Log-WEEK, the system will have a backup of one to two weeks of LOGFILE entries.

/usr/spool/uucp/o.SYSLOG

Stores the SYSLOG entries for the entire previous week.

3. Setting up the L-devices and L.sys files

You will become familiar with many files as you work with the UUCP system. Two are of particular importance because they affect both interactive and automated file transfers.

3.1 The /usr/lib/uucp/L-devices file

The L-devices file contains information about what devices the computer can use to communicate with the outside world (modem, automatic calling unit, and so on). If you already have a modem on your system, the file should contain information about what port it is attached to. If you don't have a modem attached, you will have to attach one to communicate with other computers. See Chapter 7, "Managing Other Peripheral Devices" and "Dial-in and Dialout Ports," later in this appendix, for a review of how to attach a modem.

Each line in the L-devices file has the form

type line device speed [protocol]

where

can be either DIR, indicating that the line is directly connected to another system (this includes modem connections), or ACU, indicating that the line uses an automatic calling unit

line is the device name of the line (for instance tty0 if the modern is connected to port /dev/tty0)

device is the device name of the ACU if one is specified in the type field (otherwise, a placeholder [0] must be used in this field)

speed is the line speed for the connection, as measured in baud

protocol is an optional field that needs to be filled only if the connection is for a protocol other than the default protocol

Consider this entry from an L-devices file:

DIR tty0 0 1200

tty0 is the name of the port to which the modem is attached. If your modem is attached to another port, you should substitute its name for tty0.

1200 is the speed, in baud, at which the modern will communicate. If you have a 300/1200 selectable modern, you should have two lines like these in your L-devices file:

DIR tty0 0 1200 DIR tty0 0 300

3.2 The /usr/lib/uucp/L.sys file

The L. sys file contains information that your system uses to call other computers.

Note: The L. sys file contains information vital to the security of your neighboring UUCP sites. Keep its permissions closed to reading by unauthorized parties.

Here is a typical L.sys file entry:

doosy Any tty0 200 tty01 "" ATDT5551212^M\
ogin:-@-ogin:-EOT-ogin:-BREAK-ogin:U_mickey ssword:mouse

In this entry, doosy is the name of the system this entry allows you to call. Every system has a name that identifies it.

Any indicates that your system can call doosy at any time. You will find out how to restrict these times later. Once again, tty0 is the port to which the modern is attached, and 1200 is the speed at which the modern will communicate. The second tty0 is a placeholder for a telephone number.

The rest of the line has the form

expect-send-expect-send

where expect is what your computer expects the other computer to transmit, and send is what your computer will transmit to the remote site. The "" in the example is a null string that will expect nothing. ATDT5551212 M is sent to the modem, telling it to dial 555-1212. (This assumes that you are using a Hayes-compatible modem. For any other type, you would substitute whatever command would cause the modem to dial the number. See the modem owner's manual.)

Note: ^M is CONTROL-M. It is not enough to press CONTROL-M. To enter ^M into a file when using the vi editor, press CONTROL-V. Then press CONTROL-M. This tells the computer to send a carriage return. This is not the same as typing ^m (caret-m) or UP ARROW-m.

The second expect field is then broken up into

expect-send-expect-send-expect

In other words, the simplest form of expect-send-expect-send for the rest of the line would be ogin: U_mickey ssword: mouse. This tells uucp to expect a prompt ending with ogin:. When it gets the prompt, it sends U_mickey. Then it expects ssword and replies with mouse. The strings ogin: and ssword: are used because most computers send a string ending in either Login: or login: to

each port. After you enter a login, most computers respond with either Password or password. Unfortunately, things are not so simple. For instance, this confusing expect string

ogin:-@-ogin:-EOT-ogin:-BREAK-ogin:

is of this form

expect-send-expect-send-expect

It means this: expect "ogin:"; if that does not happen, wait (that's what the @ means) and expect "ogin:". If that does not happen, send EOT, and so on.

Why the login Umickey? The U_ is an ad hoc convention for uucp logins, but you need not adhere to it. This login name can be any name on which you and the remote system administrator agree, and it is often the name of the remote system.

While A/UX supports dial-ing on assorted modems via the /etc/remote and /etc/phones files, (see remote(4) and phones(4) in A/UX Programmer's Reference), you may wish to dial an unsupported modem.

The following L. sys entry shows how to accomplished this, using the Apple Personal Modem (APM) as an example:

foo Any tty0 1200 tty0 "" atdt1234567\r 1200 \r ogin:-BREAK-ogin: Umine ssword: passwd4foo

Note: Although these lines have been wrapped onto two lines here, they must appear on a single line in the A/UX L.sys file.

This entry means that machine foo may be called using tty0 at 1200 bits per second, at any time. UUCP is told to expect and send the following strings:

Table A-1. Expect-send strings for the Apple Personal Modem

expect	send	Comments
11 17		Don't wait for anything.
	atdt1234567\r	Send APM command line.
1200		Wait for "CONNECT 1200".
	/t	Send a carriage return.
ogin:-BREAK-ogin:		Wait for login.
		Send a break, if necessary.
	Ubar	foo knows us as Ubar.
ssword:		Wait for password:.
	passwd4foo	Send the password

4. Interactive file transfer

At this point you can already start transferring files to and from another system, provided that the other system is set up so that you can log into it.

To dial out, you must make sure that the modem port does not have a getty running on it, that is, that it is not working as an incoming modem. To do so, you must establish your modem either as an outgoing modem only or as both a dialout and a dial-in modem. See Chapter 7, "Managing Other Peripheral Devices." To call up the other computer, you can use the cu command (see Chapter 5, "Using cu," in AIUX Communications User's Guide). You can, for instance, enter.

cu -lline dir

where *line* is the name of the port to which the modem is attached and dir ensures that cu uses that line. In this case, cu looks in the L-devices file for the appropriate speed at which to communicate.

Once cu finds that speed, it informs you by printing the message

Connected

on the screen. This means that you are connected to the modem, and you can now instruct the modem to dial out, for instance,

ATDT5551212

if your modem is Hayes-compatible. If the computer at the other end

of the line is available and a connection with it can be established, the familiar login prompt will appear on your screen, and you will be able to log in to the other computer.

You can also call up the other system, specifying the speed of the connection. For this, enter

cu -lline -sspeed

Once again, cu looks in the L-devices file, this time to check that the requested speed for the requested line is available. If it is, the

Connected

message appears on your screen as before, and you can log in to the other computer.

Finally, you can also use cu without specifying either line or speed, but using system-name as found in the L. sys file. For instance,

cu doosy

calls the system doosy and goes through the login procedure as specified in the L. sys file.

Once you are logged in, you can transfer files, one by one, from your local machine to your remote machine by entering

- *put infile [outfile]

where *infile* is the name of the file you are transferring and *outfile* is the name you want it to have in the remote computer. If you do not specify *outfile*, the file transferred will have the same name as in the local computer.

You can also transfer files from the remote computer to your local one by entering

"%take infile [outfile]

This works exactly as put does, but in the reverse direction.

Although cu is the simplest method for file transfer between two computers, it has the disadvantage of not providing any error checking.

5. Automatic file transfer

The UUCP system also provides for an automatic file transfer capability between two computers. Other files, apart from the L-devices and L.sys files, have to be adjusted to permit this automatic transfer to operate properly. The remote computer must be set up to recognize your computer, login name, and password. Also to receive files from the remote computer, the local computer must be able to recognize the remote one as well.

5.1 Preparing the systems

5.1.1 The system node name

You must decide on a node name for your system. This is the name other people will put in their L.sys file to allow them to call your computer. If you want to change the node name from the current host name for your system, use a text editor to open the /etc/HOSTNAME file and change the first field in that file to the new name. When you reboot your system, the new node name will be in effect.

5.1.2 Dial-in and dialout ports

You need to modify the /etc/inittab file to enable gettys for dial-in ports and disable them for dialout ports. Depending on your exact needs, you might need a range of differing /etc/inittab lines. Here is a sampling that covers most normal cases:

• Outgoing calls only, at 9600 bits per second:

```
do:2:off:/etc/getty tty0 at_9600  # Port tty0
```

• Incoming calls only, at 1200 bits per second:

du:2:respawn:/etc/getty tty0 tt_1200 # Port tty0

• Calls in both directions, over an Apple Personal Modem.

```
do:2:wait:/etc/apm_getty tty0 # Set up port
du:2:respawn:/etc/getty tty0 mo_1200 # Port tty0
```

This last case deals with the fact that the Apple Personal Modem (APM) powers up with answering disabled. The apm_getty program forces the modem into answering mode.

5.1.3 Generic uucp logins

Your system comes configured with two generic uucp logins:

Note that the first login has been wrapped onto two lines with the second line indented; this must appear as one long line in the /etc/passwd file.

Both of these uucp logins should be assigned passwords. Note that both generic logins have the same user and group IDs. See "The nuucp Login Environment," later in this appendix, for more information.

The nuucp login is for administrative use; when you are working on uucp you should log in as nuucp. Your home directory will be /usr/lib/uucp, and the permissions will be the same as on the uucp login. See "The nuucp Login Environment," later in this appendix, for information on using this login.

The other generic uucp login is uucp. The startup program for this login is /usr/lib/uucp/uushell, a script that establishes the time zone (TZ) variable and calls the uucico program. The startup program for any uucp login except the administrative login nuucp should be uushell.

5.1.4 System-specific uucp logins

It is not a good idea to allow other systems to log in as nuucp. Instead, you can setup a unique entry in /etc/passwd and USERFILE for each remote computer that will be calling your system. This allows you to control the access from each of these computers independently. For instance, if the password for one of these is inadvertently disclosed, you can change the password for that system's login and not have to inform the administrators of every computer with which your system connects. Likewise, if one computer calls at the wrong times or ties up the phone line, you can temporarily change the password to stop the problem until you contact the administrator of the problem system.

The conventional name for a system-specific uucp account is Uxxx, where xxx is the calling machine. For example, a typical set of entries in /etc/passwd might be:

uucp:SkQs1q/3e1NMo:5:5:UUCP:

/usr/spool/uucppublic:/usr/lib/uucp/uushell nuucp:GpBTy2Ls/upXk:5:5:UUCP admin:/usr/lib/uucp: Ufoo:avxoVAFxOzBTU:wid:5:UUCP for Foo:

/usr/spool/uucppublic:/usr/lib/uucp/uushell Ubar:4vpPMIds1ZpHk:wid:5:UUCP for Bar:

/usr/spool/uucppublic:/usr/lib/uucp/uushell

Note: Three of the sample entries have been wrapped onto two lines with the second line indented. Each of these entries must appear on one long line in /etc/passwd.

Note that each system-specific uucp account should have a unique UID and the same GID as the generic uucp login.

If you have separate entries in /etc/passwd, you must have separate entries in USERFILE. When a remote system logs in, USERFILE is searched for the user name from /etc/passwd that was used to log in. The system name in the same entry must either match the system name of the remote computer or be null. See "Controlling Logins and File System Access," later in this appendix.

5.2 Receiving mail and files

You now want to make sure that users on the doosy system can send mail or files to users on your system. It is assumed that at least one modem port is a dial-in port, or that your one modem can serve as both dialout and dial-in modem. All you have to do is add an entry in the /etc/passwd file on your own system for the system doosy. The entry should look like this:

Udoosy::uid:5:UUCP for Doosy:/usr/spool/uucppublic: /usr/lib/uucp/uushell Note: This entry has been wrapped onto two lines with the second line indented. It must appear on one long line in /etc/passwd.

A machine that logs in as Udoosy will not get a normal shell but start up the uucp process directly with the program uushell, which in turn calls /usr/lib/uucp/uucico (UNIX-to-UNIX copy in copy out). Make sure that the user ID (uid in the example) is unique in the system and that the group ID is the same as the number in /etc/group in the entry for uucp (5 in the standard A/UX distribution). For more information on UIDs and GIDs, see Chapter 3, "User and Group Administration."

Next you must assign a password for the user Udoosy. While logged in as the root user, enter

passwd Udoosy

(You will be asked to enter the password twice, as usual for password changes.)

To give remote users access to parts of your file system, you must modify /usr/lib/uucp/USERFILE. A conservative security measure is to force all files to be copied in and out of /usr/spool/uucppublic. Note that the permissions on /usr/spool/uucppublic must be left open to all users (777), for example,

drwxrwxrwx 2 uucp uucp 944 Sep 24 08:49 uucppublic

Adding the following line to this file will allow all users on the system doosy to send you files on /usr/spool/uucppublic and to use the mail facility:

Udoosy, doosy '/usr/spool/uucppublic

You must add a specific entry to /usr/lib/uucp/USERFILE for each system that is to have to have uucp access to /usr/spool/uucppublic on your system. Before your system can send mail and files to the remote computer, the same procedure must be followed on that system to allow your system access permission. See "Controlling Logins and File System Access," later

in this appendix for procedures that allow access to specific users or to other directories on your system.

5.3 Sending mail or files

To dial out, you must make sure that the modem port does not have a getty running on it, that is, that it is not working as an incoming modem. To do so, you must establish your modem either as an outgoing modem only or as both a dialout and a dial-in modem. See Chapter 7, "Managing Other Peripheral Devices."

Once the modem is able to dial out, you should be able to send mail to a user on the doosy system using the syntax

```
mail doosy!user
```

(When you are using the C shell, a backslash (\) must precede the exclamation point.)

When sending files using the C shell, you can use the notation -uucp as shorthand for /usr/spool/uucppublic. For example, to send a file named my.file to the uucppublic directory on a system named doosy, a user would enter the following commands from the C shell:

```
cp ./my.file /usr/spool/uucppublic
cd /usr/spool/uucppublic; chmod ugo+r my.file
uucp my.file doosy\!~uucp
```

See "Controlling Logins and File System Access," later in this appendix for procedures that allow access to specific users or to other directories on your system.

5.4 Cleaning up

If mail is sent from your computer to doosy and from doosy to your computer, you must make sure that uucp cleans up after itself; that is, that log files do not grow to enormous lengths, and that work spooled but not executed within a certain time (such as a few days or a week), is purged from the spooler. Three shell scripts are provided to do this work:

```
/usr/lib/uucp/uudemon.hr
/usr/lib/uucp/uudemon.day
/usr/lib/uucp/uudemon.wk
```

The /etc/cron utility runs these scripts on a regular basis; see cron(1M) in A/UX System Administrator's Reference. The cron utility starts when the system boots; see Chapter 9, "System Accounting Package." It checks the file /usr/spool/cron/crontabs/uucp (which you must create) once every minute to see if it has changed; see crontab(1) in A/UX Command Reference. Create

/usr/spool/cron/crontabs/uucp as follows:

```
56 **** /bin/su uucp -c
    "/usr/lib/uucp/uudemon.hr > /dev/null"
0 4 *** /bin/su uucp -c
    "/usr/lib/uucp/uudemon.day > /dev/null"
30 5 ** 1 /bin/su uucp -c
    "/usr/lib/uucp/uudemon.wk > /dev/null"
```

Note: In this example, output lines have been wrapped onto two lines with the second line indented. These lines will each appear as one long line on the screen.

If you no longer want to run uucp, this file must be removed or renamed.

At this point, if all has gone well, you have a functioning remote mail system that cleans up after itself. Not only mail but also uucp and uux should work, because both these utilities use less of the uucp system than mail does. To confirm that everything is working, not just uucp and uux, establish a link with an actual computer. Next, send mail to a user on the other system, requesting that person to send you a reply. If you receive mail from the person on the remote system, everything is working properly.

If you do not receive a reply within a reasonable time, you should do a few things to find out where the problem lies. First test that the modem connections between the two sites are working correctly. For this, use cu to call up the other system, and ask the other person to call up your system with cu. Then, if the cu connection is working properly, check

whether the other person received your mail message and whether a response was actually sent back. Finally, you may have to go back through all the steps described in the subsections of "Automatic File Transfer" to check that everything was done properly, both at your end and at the other system's end.

6. Security and other tips

This section details the security features of uucp, some further administrative procedures, and the steps in debugging an improperly functioning UUCP link.

6.1 Controlling logins and file system access

If you have separate entries in /etc/passwd for each remote computer that will be calling your system (see "System-Specific uucp Logins," earlier), you must also have separate entries in /usr/spool/uucp/USERFILE. When a remote system logs in, USERFILE is searched for the user name from /etc/passwd that was used to log in. The system name in the same entry must either match the system name of the remote computer or be null. Null system names are not recommended.

An important security feature of USERFILE is its ability to restrict access to portions of the file system. For each line in USERFILE you can list directories for which remote systems will have access. Remote systems are then given access only to files in the listed directories. By default, remote systems have access to

/usr/spool/uucppublic. The following example shows how you add for the remote system doosy, access to the directory /usr/doosy.

Udoosy, doosy /usr/spool/uucppublic,/usr/doosy

To give other users access to parts of your file system, you must modify /usr/lib/uucp/USERFILE. The following line in this file will allow all local users to send files and use the mail facility:

/usr/spool/uucppublic

Notice the comma in the preceding line; this is a required part of the

syntax. The general format for entries in the USERFILE file is

[system], [login] directory

where system and login specify access permission to the named system and login names. When no system or user is mentioned, access is granted to all, but the comma that separates them in the general format must remain in place.

As an added security feature of USERFILE, you can use the c flag to force a call back to the remote computer instead of allowing it to log in to your computer. To use this feature, insert the letter c between the first and second entry on the line, for example,

Udoosy, doosy c /usr/spool/uucppublic, /usr/doosy

6.2 Conversation count checking

To improve security further, you can require a conversation count check every time a system calls. In other words, both systems must record the number of times they communicate with each other and check whether these counts coincide, as explained below. The file used for this purpose is /usr/lib/uucp/SQFILE. Each line in this file contains the name of a system for which you will require the check. To initiate the checking, you need only enter the remote system name into the file as a separate line. The administrator of the remote system will have to add your computer's name to the SQFILE on that system. After the first call, the line might be

doosy 1 10/15-10:15

where doosy is the name of the other computer, 1 is the conversation count, 10/15 is the date, and 10:15 is the time of the conversation.

From that point on, the conversation count will be incremented on these corresponding lines every time these two computers are connected via uucp. If these counts do not match during an attempted call, the conversation will fail. Thus, to impersonate another computer you would need to know not only the login name and password but also the conversation count. If a call attempt ever fails because this file is corrupted on one of the two systems, all you have to do is reinitialize the lines (on both systems) so that they contain the system names only.

6.3 Controlling file forwarding

The uucp utility can forward files through intermediate nodes to get them to another system. If you plan to allow forwarding through your system (that is, make your system a node in the forwarding chain), and you want some control over this, you have to make entries in /usr/lib/uucp/FWDFILE and /usr/lib/uucp/ORIGFILE. The first file, FWDFILE, contains a list of systems to which you are willing to forward files via uucp. For instance, if you are willing to forward files to the computer doosy from other systems, just add a new line with the name doosy to the file. The second file, ORIGFILE, contains a list of systems and users from which you are willing to forward files. Thus, if you are willing to forward files originated in the doosy system by users mark and marian, you would add the following line to the file:

doosy, mark, marian

If these files do not exist, no restriction applies to forwarding on your system. This means that if you do not have a FWDFILE, you will allow forwarding to all systems to which you connect. Similarly, if you do not have an ORIGFILE, you will allow forwarding to originate on any system. To disable forwarding to any other system, create a FWDFILE with no contents (no forwarding permitted to any system). Similarly, you can create an ORIGFILE without any contents to prevent any other computers from using your system to forward files.

6.4 Controlling remote command execution

Another security feature of uucp is its capability to restrict the execution of remote commands. For uucp to execute remote commands, the names of these commands must be listed in the file /usr/lib/uucp/L.cmds, one command name per line. If you want maximum security, you should include a single line in this file with the command rmail, and no other line, so that no other remote commands can be executed. Without the rmail line, local users will not be able to get mail from remote systems.

6.5 File permissions

The last security feature is not part of uucp itself but involves the file permissions for the UUCP directories, executable files, and administrative files.

In general, the public should be denied read permission for most administrative files, especially /usr/lib/uucp/L.sys. This in turn requires that the owner of uucp's executable files be the same as the owner of the administrative files, which be given setuid permission in order to access them. See Chapter 3, "User and Group Administration." Thus, it is recommended that all these files be owned by uucp and that all the binary executables have the setuid bit set, as shown in the recommendations in this section.

The following modes are recommended for directories:

```
755 /usr/lib/uucp
755 /usr/spool/uucp
777 /usr/spool/uucp/.XQTDIR
777 /usr/spool/uucppublic
777 /usr/spool/uucppublic/receive
```

The following modes are recommended for binary files (notice the setuid permissions):

```
4111
              /bin/uucp
4111
              /bin/uulog
4111
              /bin/uuname
4111
              /bin/uustat
4111
              /bin/uusub
4111
              /bin/uux
              /usr/lib/uucp/uucico
4111
4111
              /usr/lib/uucp/uuclean
4111
              /usr/lib/uucp/uuxqt
```

The following modes are recommended for script files:

```
755 /usr/bin/uupick
755 /usr/bin/uuto
400 /usr/lib/uucp/uudemon.day
400 /usr/lib/uucp/uudemon.hr
400 /usr/lib/uucp/uudemon.wk
755 /usr/lib/uucp/uushell
```

The following modes are recommended for uucp system files:

```
444
             /usr/lib/uucp/ADMIN
444
             /usr/lib/uucp/FWDFILE
444
             /usr/lib/uucp/L-devices
444
             /usr/lib/uucp/L-dialcodes
444
             /usr/lib/uucp/L.cmds
400
             /usr/lib/uucp/L.sys
444
             /usr/lib/uucp/ORIGFILE
400
             /usr/lib/uucp/SQFILE
400
             /usr/lib/uucp/USERFILE
```

6.6 The nuce login environment

A user login for nuucp is set up in the /etc/passwd file in the A/UX standard distribution. You should always log in as nuucp to do UUCP administrative work, because working as the root user can be dangerous and is unnecessary when you deal with UUCP system files.

The administrative login entry in /etc/passwd is set up as follows:

```
nuucp::5:5:UUCP admin:/usr/lib/uucp:
```

Note that the directory /usr/lib/uucp has been chosen as the home directory and that the default /bin/sh is the startup shell. If the startup shell were /bin/csh or /bin/ksh, this would appear as the last field on the line. Note also that the nuucp login has the same user and group ID as the uucp login. Because the uucp login occurs first in this file, all files created by the nuucp administrative login will be owned by uucp. This is recommended.

You should assign a password to the nuucp login, and you may also create a .profile file in nuucp's home directory with some helpful shell procedures as follows:

```
cdlib () { cd /usr/lib/uucp; }
cdpub () { cd /usr/spool/uucppublic; }
cdspl () { cd /usr/spool/uucp; }
poll () { /usr/lib/uucp/uucico -r1 -s$1 &; }
pollx () { /usr/lib/uucp/uucico -r1 -s$1 -x4 &; }
rmstat () { rm -f /usr/spool/uucp/ST*; }
taillog () { tail -f /usr/spool/uucp/LOGFILE; }
```

As you get to know UUCP, you will find out how helpful these procedures can be.

The file /usr/lib/uucp/ADMIN consists of a list of systems and their descriptions separated by a tab. The entry for the system doosy might look like this:

```
doosy 1234 University Avenue, Sometown, CA
```

Now when you run uuname with the -v option, the description will also be displayed for doosy.

Three UUCP commands are for administrative as well as general use:

```
/bin/uulog
/bin/uustat
/bin/uusub
```

You can use the uulog command to display selected portions of /usr/spool/uucp/LOGFILE. You may request lines for either a specific system name or a user. For example, to check what has happened with the system doosy, issue the command

```
uulog -sdoosy
```

You can use the uustat command to find the job number of a UUCP request and also to cancel a UUCP request. It is recommended that you use this method to terminate UUCP jobs if at all possible. For example, if, during a transfer, you discover that you have requested the wrong file, you first run the following command to get the job number:

```
uustat -sdoosy
```

The status of requests is displayed in reverse chronological order, and so your request is near the top. If the job number is 1234, you run the following command to cancel the request:

```
uustat -k1234
```

You can use the unsub command to collect and display statistics for the systems with which your system communicates. Before statistics can be collected for a system, uusub must first recognize it by adding it to its list. The command to do this is

```
uusub -adoosy
```

You can also use uusub to connect to a system. This is usually scheduled by cron. If you want to call the doosy system every hour on the half hour, the /usr/spool/cron/crontabs/uucp entry should look like this:

30 **** /bin/su uucp -c "/bin/uusub -cdoosy > /dev/null"

See Chapter 9, "System Accounting Package," for a thorough discussion of the format of cron entries.

6.7 Suggested links

The last issue concerning administration is purely conventional. Instead of using names such as tty0 in the files L.sys and L-devices, it is easier to make links in the /dev directory to provide alternate names for ports. The naming convention is used for ports that either have direct links to other computers or have modems attached. For instance, if tty0 is connected to a modem and tty5 is connected directly to doosy, make the following links:

```
ln /dev/tty0 /dev/acu.hayes
ln /dev/tty5 /dev/dir.doosy
```

Then use acu. hayes instead of tty0 in the administrative files and dir.doosy instead of tty5. This also makes it easier to use cu because you don't have to remember the number of the port. See Chapter 5, "Using cu" in A/UX Communications User's Guide. If the connection is changed to another port, all you have to do is remove the link to the old port and link the name to the new port. None of the uucp administrative files need be modified.

6.8 Troubleshooting uucp

There are several things you can do if uucp is not working properly on your system.

If you have no information, such as status files or log files, and you have to figure out why uucp is not working and fix it, the first thing to do is to make sure the port, modem, and phone line are working. You can use the cu utility to determine this. See Chapter 5, "Using cu" in

A/UX Communications User's Guide. The command to check tty0 would be as follows:

cu -ltty0 dir

If you cannot even get the Connected message from cu, the port probably has the wrong permissions. To correct this, enter the following command:

chmod 666 /dev/tty0

At this point you should be able to communicate with the modem and have it dial up the other system. When you get the login and password prompts, use the login and password in L.sys. The remote system should respond with something like this:

Shere=doosy

This means you have reached the uucico shell on the remote system and you can do no more using cu. Otherwise, contact the administrator of the remote system and explain that your uucp login is not working.

Once you have established that the port, modem, and phone line are working, test the connection with the following command:

/usr/lib/uucp/uucico -r1 -sdoosy -x4 &

Note: You should always run this command in the background so you can kill it if it hangs. Do not use the -9 option of kill because uucp will not catch the signal and clean up after itself. Instead, use kill with no options.

To save the debug output in a file, use the script program:

script /usr/lib/uucp/uucico -r1 -sdoosy -x4 &

By comparing the debugging output of this command with the expectsend sequence in the L.sys file, you can usually tell if something is wrong. For instance, if an entry in the L.sys file specifies that the password is foo but the password that appears in the debugging output is fee, you can then modify L.sys and keep testing until it works. By running the uucico command with the -x9 options, you may

The UUCP System 030-5595-B

generate a lot more debugging output.

A typical problem is finding strange times in the log files. This generally happens because the time zone environment variable is not set correctly. You can avoid this by making sure that /usr/lib/uucp/uushell is the startup script for all uucp logins. The contents of this script are

exec env TZ=PST8PDT /usr/lib/uucp/uucico

Make sure that the setting for TZ corresponds to your own time zone.

Most problems with uucp occur because of incorrect permissions on files. You should always check this if uucp starts working improperly. See "File Permissions," for specific recommendations about the appropriate permissions for the files used by the UUCP system, and Chapter 3, "User Administration," for a general overview of file permissions.

PLACE TAB HERE

NOTES

Back of Tab

Place Tab Here

.INDEX

Back of Tab