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Preface 

About This Manual 

Inside this manual 
This manual explains how to build Apple® A/UX® device drivers for the Apple 
Macintosh ® II computer. The manual is designed to be both a 9how-to• guide 'and a 
reference manual for someone writing device drivers. A/UX is Apple's version of the 
UNIX® operating system. 

To use this manual effectively, you should have a working knowledge of the C 
programming language and written device drivers in the past. You need some 
knowledge of the A/UX operating system, including the major parts of A/UX, 
although detailed knowledge of the kernel is not required. If you need to learn more 
about the A/UX operating system, see the bibliography in the back of this manual. 
You also need to know how to use system calls in a C program. 

An overview of what this manual covers is listed below: 

• 

• 

• 

• 

• 

Chapters 1 and 2 provide an overview of A/UX device drivers and the A/UX 
kernel programming environment You should read these sections before 
writing your driver. 

Chapter 3 describes drivers that buffer data through the kernel buffer cache . 
These drivers are called block device drivers. 

Chapter 4 describes drivers that use their own techniques to transfer data . 
These drivers are called character device drivers. 

Chapters 5 through 11 describe specific types of device drivers and interfaces . 
You need to read only those sections that apply to your device and driver. 

Chapter 12 describes the autoconfiguration process. This chapter tells you 
how to add a new device driver to the kernel. 
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• Chapter 13 tells you how to use the autoconfiguration process in a driver 
development environment This chapter takes you through all the steps 
necessary to add a device driver to your system by showing a specific example 
of adding a driver to the kernel. 

• Chapter 14 describes the ftles you need to include on the distribution floppy 
disk that your customers use to install your driver. 1be installation procedure 
that your customers need to follow to install your driver are also given. 

• Appendix A describes the driver interface· routines. 

• Appendix B describes kernel routines your driver can use. 

• Appendix C describes the slot library routines that slot device drivers can use. 

• Appendix D contains physical, user, and kernel memory maps. 

• Appendix E describes vnode kernel modifications. 

• Appendix F describes the differences between the System V Release 2.1 and 
System V Release 3 Streams implementation. 

• Appendix G contains a SCSI device driver listing. 

Conventions used in this manual 
Words that you must type exactly as shown or that would actually appear on the screen 
appear in Courier type. Words that you must replace with aaual values appear in 
italtcs (for example, the integer variable dev might have an aaual value of 2). An 
ellipsis (. .. ) follows an argument that may be repeated any number of times. Boldface 
type is used for new terms that are defined in the text; often these terms are listed in the 
glossary for this manual. 

Special keys on the keyboard appear in CAPS AND SMALL CAPS (for example, 
RETURN). 

Key combinations that you must pr~ simultaneously are connected with hyphens (for 
example, CONTROL-S). 

A file is enclosed in angled brackets, for example <sys /buf. h>, to indicate the 
parent directory is I us r I include. 

Syntax notation 
This manual uses the following conventions to represent command and routine 
syntax. A typical A/UX routine has the following form: 

type routine (a?i, ... ) 
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type arg; 

The elements have these meanings: 

type is the data type of the value returned from the routine (for 
example, int); type also specifies the data type of an 
argument to the routine. 

routine is the name of the routine. 

a'B is an argument to the routine. 

In the text, cmd(sect) indicates a cross-reference to an A/UX reference manual. cmd 
is the name of a command, program, system call, or other facility, and sect is the 
section number where the entry can be found For example, open(2) refers to the 
open system call, which is documented in section 2 of the AIUX Programmer's 
Reference. 

In the text, kernel routines are denoted by the name of the routine in Courier type 
followed by on open parentheses and a closed parentheses. For example, bi ow ai t ( ) 
refers to a kernel routine that you can use in your driver. 
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Chapter 1 

An Overview of A/UX Device 
Drivers 
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This chapter provides an overview of A/UX device drivers. Specifically, you'll learn 

• what the general funaions of the A/UX kernel are 

• how the kernel, device driver, and device interact 

• what a device driver is 

• what the basic structure of an A/UX device driver is 

• what hardware is part of the Macintosh.II 

• what steps to take to begin writing your driver 

First, this chapter briefly desaibes the A/UX kernel and input/output 0/0). 

An overview of the A/UX kernel 

The A/UX kernel is an operating system. Like most operating systems, the A/UX 
kernel performs file management, memory management, process management, and 
input and output. The kernel contains all the routines necessa.ry to accomplish .these 
functions. For example, when a program runs, the kernel is responsible for allocating 
enough memory to the process. 

Similarly, the kernel is responsible for managing and performing I/O. The kernel 
routines for doing I/O include both general routines and specific routines. The kernel 
uses general routines to manage I/O transfers in a deterministic and consistent 
manner. The specific routines that perform I/O to a particular piece of hardware are 
called device drhers. In addition, the A/UX kernel supplies a number of routines 
called managers. Managers perform a variety of I/0-related functions. Your device 
driver can call these manager routines to handle many hardware-related I/O tasks. 

Figure 1-1 shows a simplified oveJView of an 1/0 request. When a user process 
requests I/O, the appropriate routines within the kernel carry out the request. 
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Overview of kemel management routtnes 
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Performing 1/0 in A/UX 
A device driver provides a connection between a user request for VO and the hardware 
operation. This connection is aaually comprised of several components: 

• a user-level program 

• the A/UX kernel 

• the device driver code 

• a device 

A user-level program requests an VO operation by making a system call. System calls 
perform operations on behalf of the requesting user process. For example, you can 
use system calls to prepare a device for VO, to read from or write to a device, or.to 
perform control functions on a device. 

The system calls that you can use to perform VO are: 

• open (2) 

• close(2) 

• read(21 

• write(2) 

• ioctl (21 

• select (2) 

When a user program makes a system call requesting VO, the kernel calls the 
appropriate device driver. 1be device driver then takes the necessary actions to 
perform the aaual VO. Figure 1-2 shows the general flow of an VO request from the 
user process to the device. 

The kernel has a method of mapping a request to a particular device to the associated 
device driver that performs the 1/0. This mapping is established through device files 
and kernel data struaures called device switch tables. 

Every device must have a device file associated with it. A device file contains an index 
into the device switch table. Pointers to driver routines associated with that device are 
stored at this index. 
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Now that you have a general understanding of device files and device switch tables, the 
following paragraphs explain the VO proceM in greater detail. When a user process 
makes a system call on a device file or file descriptor associated with the device file, 
the kernel does initial prOceMing of the request. This initial processing includes 
prOceM management and file management functions. For example, on an open (2) 

call, the kernel first checks that the requesting user has the proper permissions to 
acceM the file. 

After this initial processing, the kernel uses the index from the device file to index into 
a device switch table. The kernel calls the corresponding driver routine stored at this 
index. 

The device driver performs the request and returns to the kernel. The kernel then 
returns to the user process. The return value of the system call indicates the sueceM or 
failure of the request 

What is a device driver? 
A device driver is a piece of code that handles all VO operations to or from a device. 
The kernel calls a device driver when a user p~ requests VO by making a system 
call. The device driver is responsible for carrying out the 1/0 request. 

Figure 1-3 illustrates that you can use many different devices for VO on the Macintosh 
II. Each piece of hardware connected to your computer needs supporting code to 
control it For example, if you have a video card installed in your computer and a 
monitor connected to that video card, you need the software to control that monitor 
and video card. Typically each type of device has a particular device driver associated 
with it For example, the floppy disk driver handles all requests to floppy disks. 

Apple Computer supplies certain device drivers as part of the A/UX kernel. These 
drivers include a device driver for SCSI disks, floppy disks, serial ports, the keyboard, 
the mouse, and the monitor or system console. 

Apple also supplies the low-level routines and managers that control the hardware 
interface to the system. These routines and managers include the code to control 
transfers over the NuBusTM, the Apple Desktop Bus TM (ADB), the Small Computer 
System Interface (SCSO, and the Serial Communications Controller (SCO. Your 
driver must use these low-level routines or managers to control transactions on the 
hardware interface that connects your device to the computer. These hardware 
interfaces are discussed in more detail in the section "An Overview of the Hardware" in 
this chapter. 

When you add a new device to the system, you must also add a device driver to control 
the device and to perform I/O to the device. If a device driver to control the device 
does not exist, then you must write a new device driver in order to perform VO to the 
device. 
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In A/UX, device drivers are part of the kernel. You can add or remove device drivers 
from the kernel using the autoconfig (2) utility. 

A device driver contains various routines used to perform I/0 on the device. The 
following section describes the name and purpose of each routine. In addition, these 
driver routines can call other kernel routines and make use of low-level routines and 
managers to assist in performing the VO operation. 1be following chapters describe 
these kernel routines and low-level routines and managers. 
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Various devices 1hat can be attached to a Macintosh II 
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The basic structure of an A/UX device driver 
A/UX uses two kinds of device drivers: block and character. Chapter 2 describes the 
differences between these two types of device drivers in greater detail. This section 
describes the various routines that make up a device driver. Both types of device 
drivers can supply a certain set of routines to the kernel. These routines correspond to 
the system calls used to perform VO. 

Block Device Drivers 
For each system call used to perform 1/0 using block device drivers, Table 1-1 lists the 
corresponding driver routine that the kernel invokes and the function of the driver 
routine. 

Table 1-1 

( System calls and the corresponding driver routines for block device drivers 

System call 

open(2) 

close(2) 

read(2) 

write(2) 

Driver routines 

drlvernpen 

drlverclose 

drlverstrategy 

drllastrategy 

PurpoM 

Open a device 

Close a device 

Schedule the 
transfer of 
data between 
the buffer 
cache and a 
device 

Schedule the 
transfer of 
data between 
the buffer 
cache and a 
device 
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You must name the driver routines according to the conventions shown in the table, 
where driver is the device prefix used in your driver. For example, if your device 
prefix is disk, then name your drlveropen routine diskopen. 

Block device drivers also provide a drlvePprint routine. This routine is not related to 
a system call. 

Block device drivers can aJso provide an optional routine to perform initialization 
functions. This routine is named drlverini t, where driver is the device prefix used in 
your driver. · 

Block device drivers also can provide an interrupt routine. This routine is named 
driver.Lot, where driver is the device prefix used in your driver. 

Character Device Drivers 
For each system call used to perform I/O using character device drivers, Table 1-2 lists 
the corresponding driver routine that the kernel invokes and the function of the driver 
routine. 

Table 1·2 
System calls and the corresponding dnver routines for character devlc:::e drtvers 

System call Driver rouflnes Purpo .. 

open (2) drlveropen Open a device 

close(2) drlverclose Close a device 

read(2) drlverread Read from the device 

write(2) drlverwrite Write to the device 

ioctl(2) drlverioctl Perform control 
operations on the device 

select(2) drlverselect Check a device for 1/0 

You must name the driver routines according to the conventions shown in the table, 
where driver is the device prefix used in your driver. For example, if your device 
prefix is mouse, then name your drlveropen routine mouseopen. 
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Character device drivers can also provide an interrupt routine. This routine is named 
driver.int, where driver is the device prefix used in your driver. Character device 
drivers can provide an optional routine to perform initialization functions. This 
routine is named drlver.i.ni t, where driver is the device prefix used in your driver. 

The following chapters descnbe each of these routines and how to write these routines 
for your driver. Appendix A also includes descriptions of these routines, including 
para.meters and return values. The following section discusses the various hardware 
interfaces on the Macintosh II, and gives examples of the structure of a typical device 
driver for each hardware interface. 

An overview of the hardware 
To understand the complete hardware path to your device, refer to Figure 1-4. This 
figure shows that the Macintosh II contains more than one bus or hardware interface 
that can be used for 1/0. These hardware interfaces include the NuBus, Small 
Computer System Interface (SCSI), Versatile Interface Adapters (VIA), Apple Desktop 
Bus (ADB), Integrated Woz Machine (IWM), Apple Sound Chip (ASC) and Serial 
Communications Controller (SCC). Each of these is discussed briefly in this section. 

The NuBus 

The NuBus is a 32-bit wide a~ and data bus based on a Texas Instruments 
specification. Six expansion slots are available for NuBus cards. Examples of cards 
that can go in NuBus slots are video cards, processor cards, network cards, and other 
1/0 cards. You can connect a wide variety of devices to various NuBus cards. 

The A/UX kernel supplies a set of routines called the Slot Library. Routines in the Slot 
Library can be used to assist in reading information from the slot ROM on your card. 
For example, if you are writing a slot device driver, you can use the Slot Library to read 
the resource directory from a slot ROM. 

To write a device driver for a NuBus card, you write the high-level code to perform the 
1/0 to the NuBus card, including any card and device specific code. Figure 1-5 
illustrates the structure of a device driver for a device connected to a NuBus card. To 
perform 1/0 to the device, a device driver must control the 1/0 from the kernel level, 
to the NuBus, to the NuBus card, and then to the device. 

Your driver can call Slot Library routines to assist in accessing slot ROM. This greatly 
simplifies the task of writing a device driver for a device on a NuBus card. The Slot 
Library is described in Chapter 9 and Appendix C. 
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Rgure 1·• 
overview of the Macintosh II architecture 

1-12 Chapter 1 : overview of A/UX Device Drivers 



( 

Rgure 1·5 
The structure of a typical NuBus slot device driver 
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The Small Computer System Interface (SCSI) 

The built-in SCSI port is used for high-speed parallel communications. The SCSI chip 
can communicate with up to seven SCSI devices, such as hard disks, streaming tapes, 
and high-speed printers. The SCSI Manager supports the NCR 5380 SCSI chip in 
software. The SCSI Manager takes care of the low-level hardware aspeas of controlling 
the SCSI bus. 

Figure 1-6 illustrates the structure of a device driver that controls a disk drive 
conneaed to the SCSI bus. To perform I/O to a device connected to the SCSI bus, a 
driver must control the I/O from the kernel level, to the SCSI bus, and to the SCSI 
device. A SCSI device driver contains the code to pr~ the data according to the 
requirements of the device, and calls routines in the SCSI Manager to initiate and 
control I/O transactions on the SCSI bus. 

The Versatlle Interface Adapters 

The Macintosh II uses two custom Apple Versatile Interface Adapter (VIA) chips, 
called VIAl and VIA2. VIAl is used mainly to provide control lines for the floppy disk 
drives and Serial Communications Chip, and to interface the Apple Desktop Bus to 
the system. VIA2 supports many features, including functions related to interrupts 
from the NuBus slots, SCSI, and Apple Sound Chip. 

The Apple Desktop Bus 

The Apple Desktop Bus CADB) is a serial communications bus designed to 
accommodate low-speed input devices. The ADB interfaces to the system through the 
VIAl chip. The A/UX kernel provides a set of routines called the ADB Manager. The 
ADB Manager controls the ADB bus and calls other kernel routines that control the 
VIAl chip. 

To perform I/O to a device connected to the ADB bus, a driver must control the I/O 
from the kernel level, to the ADB bus, and to the attached device. A device driver for 
a device connected to the ADB calls routines in the .ADB Manager to control 
transactions on the ADB bus. For example, the structure of the mouse driver is 
illustrated in Figure 1-7. The mouse driver calls .ADB routines to initiate read 
operations between the mouse and the .ADB. 
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Rgure 1·6 
1he strucllJ"e of a SCSI disk driver 
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Figure 1-7 
The structure of 1he mouse device driver 
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The Serial ConvnunlcaHons Controller 

Serial 1/0 is performed through two RS-422 serial 1/0 ports. The two serial ports are 
controlled by a Zilog Z8530 Serial Communications Controller (SCC) chip. The serial 
ports can be used for devices such as printers, modems, and other 1/0 devices. The 
sec chip is controlled in software by the eccio driver. 

The Apple Sound Chip 

The Apple Sound Chip CASO is used with the internal speaker. You can hook up an 
external mini-phono jack to the external sound conneaor. The ASC chip is controlled 

. in software by two low-level kernel routines, eound. c and eound. s. 

The Integrated Woz Machine 

The internal floppy disk drives are conneaed to the system through the Integrated Woz 
Machine (IWM). The floppy disk driver contains the low-level routines to control the 
IWM. The floppy disk driver uses these low-level routines to control the floppy disk 
drive. 

SUnvnay of softwme drivers and hardware 

Figure 1-8 illustrates how an 1/0 request from a user goes through the kernel, device 
drivers, low-level routines or managers to reach tilde aaual device. For example, a 
SCSI device driver calls routines in the SCSI manager to accomplish the 1/0 on the 
hardware. Figure 1-9 shows the hardware each device driver interfaces to in greater 
detail. For example, a SCSI device driver interfaces to the SCSI device through the 
SCSI bus. 

For more specific information on the various hardw.u:e interfaces in the Macintosh II, 
refer to the Maclntosb FamUy Hardware Reference. 
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Flgw• 1·1 
overview of an 1/0 request from a user program to the hardware 
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Figure 1·9 
overview of the hardware associated with each driver 
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Memory-mapped 1/0 

The Macintosh n uses memory-mapped I/O. This means that each device 
(peripheral) in the system is accessed by reading from or writing to specific locations 
in the address space of the computer. Parts of the Macintosh ll address space are 
reserved for performing memory-mapped I/O. Within this reserved address space, 
specific blocks (addresses) are devoted to each of the hardware interfaces within the 
computer. 

The address space within $5000 0000 to $5FFF FFFF is the area reserved for system I/O 
address space. All hardware interfaces (except NuBus) are mapped within this address 
space. The standard NuBus address space is within $F900 0000 to $FFFF FFFF. 

By reading from or writing to a location in the system I/O address space or the . 
standard NuBus address space, you are actually accessing (addressing) a particular 
device. 

Each device contains the logic to recogni7.e when it is being a~ You <:an use 
memory-mapped I/O to write to re~ters on a device or card. Typically only the 
lowest-level routines directly read from or write to the memory-mapped I/O address 
space. 

By reading or writing to a specific location in memory, you are actually accessing 
(addressing) a particular device. mustrations of the address space used in A/UX are 
shown in Appendix D. 

Interrupt handling by your driver 

How your device driver needs to handle interrupts depends on the hardware interface 
that your device conneas to. Apple supplies the low-level software that directly 
control the hardware interfaces. For a description of these hardware interfaces, refer 
to the previous section •An Overview of the Hardware". Also refer to Figure 1-4 for an 
illustration of the interrupt level of each hardware interface. 
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When a device interrupts, the low-level managers or low-level routines are invoked to 
handle the interrupt. The low-level routine or manager determines the type of 
interrupt and what action, if any, to take. For example, if more than one device is 
connected to that particular hardware interface, the low-level manager might have to 
poll the hardware to determine which device interrupted. 

1lle low-level routine or manager determines whether or not a higher-level of software 
(driver) needs to be notified when a device interrupts. Typically, a device generates an 
interrupt when the device has completed an I/O request. In this case, the higher-level 
driver responsible for the VO request needs to be notified that the I/0 has completed. 

The low-level routine or manager notifies the higher-level driver by calling the 
interrupt routine of the driver. O'be interrupt routine of a driver is also often referred 
to as the completion service routine.) The interrupt routine of the higher-level driver 
can then take whatever action is necessary to service the interrupt for the particular 
device. 

For example, if the interrupt is due to I/0 completion, the driver usually checks for 
any error conditions that might have occurred, and takes appropriate actions. A 
device driver's interrupt routine also typically notifies any user process waiting for the 
VO to complete. 1lle synchronization that must exist between higher-level driver 
routines and the interrupt routine of a driver is explained in detail in following . 
chapters. 

If you write a device driver for a SCSI device or ADB device, the driver you ~te will 
access your device through one of the low-level managers. Your driver calls a low­
level manager to control the hardware interface your device is conneded to. When an 
VO request completes on a device, the low-level manager is notified of the interrupt. 

If you write a slot device driver, the driver you create will access your device through 
memory-mapped VO. Your driver can also use the Slot Library to read from slot 
ROM. Your slot device driver must provide an interrupt routine that will be invoked by 
the kernel when your slot card generates an interrupt. 

As previously descnbed, the low-level routine or manager typically invokes the 
interrupt routines of higher-level drivers. This means that the low-level routine or 
manager must obtain a pointer to the interrupt routine of your driver. Before 
performing VO to your device, your driver mu~ inform the low-level manager or 
routine of the address of the interrupt routine of your driver. 

Typically drivers call a low-level routine for this purpose during initialization of the 
device, in either the drlverini t or drlveropen routines. The following paragraphs 
briefly desaibe how to provide the address of your interrupt routine to the SCSI 
Manager, ADB Manager, and low-level kernel code that manages interrupts from the 
NuBus. 
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Handling Interrupts from SCSI devices 

To perform I/O on a SCSI device, the driver calls a SCSI Manager routine. The driver 
passes two parameters to the SCSI Manager routine: the SCSI ID of the device, and a 
pointer to a request block data structure. 

The request block data struaure contains a pointer to the interrupt routine of the 
device driver making the request This pointer allows the SCSI Manager to as.sociate 
the driver interrupt routine with a particular SCSI ID. When the SCSI device completes 
the I/O transaction, the SCSI Manager calls the driver interrupt routine associated with 
this request on the SCSI ID. 

Handling Interrupts from ADI devices 

The ADB Manager requires that your driver provide the address of its interrupt 
routine before any hardware transactions are initiated on the ADB for your device. 
Your driver should call fdb _open () , including as parameters the address of your 
driver interrupt routine and the ADB acJdres,, of your device. 

The ADB Manager calls this interrupt routine at the end of each ADB transaaiop to 
pass back data and to notify the driver that the transaaion has completed The ADB 
manager also calls the interrupt routine when certain exception device polling 
conditions exist. 

Handling Interrupts from NuBus devices 

For NuBus slot card drivers, your driver must tell the kernel the address of the interrupt 
routine of your driver. You do this at the time your driver is linked into the kernel. To 
add your driver to the kernel, you create -a master script file that specifies how your 
driver snould be linked into the kemeL 1be master script file for your driver must 
contain the flags vs if your driver receives slot interrupts. 

The kernel contains an internal slot interrupt veaor table that is used to store 
addresses of the interrupt routines of each driver that controls a slot When you 
specify the flags vs in your master script file, the kernel fills in the appropriate entry 
of this table with the address of your drlverint routine. 

After receiving an interrupt from a slot card, the kernel indexes this table by slot 
number and calls the appropriate driver interrupt routine. 

1·22 Chapter 1: Overview of A/UX Device Drivers 



( 

Where to go from here 
After you determine what kind of device you have, the type of device driver to write, 
(block or c:hancter),. and the inlerf'ac:es you need, you are ready to read the rest of this 
manual. Which chapters you read next depenm on the type of device driver you are 
writing. 

Writing a block device drlv• 

If you are writing a block device driver read these chapters: 

Chapter2 

This chapter contains kernel programming information that you should read 
regardleu of the type of A/UX driver you are writing. 

This chapter desaibes the routines in a block device driver, data struaures used by 
the kernel and block device drivers, and the buffering the kernel performs for block 
device drivers. 

If you are writing a block device driver for a device that can also be accessed as a 
character device, read Chapter 4. Pay partiailar attention to the description of the 
phys io ( ) routine. 

Chapters9-11 

Of these chapters, read the one that desaibes the hardware interface you are using. 
These chapters disaiss using the NuBus; SCSI, and Apple Desktop Bus. 

Chc:IPN 12·1' 

These chapters desai"be how to add drivers to the kernel. Chapters 12 desm"bes the 
autoconfig(2) utility. Chapter 13 shows a specific example of how to add a device 
driver to the kernel. Chapter 14 desaibes how to prepare your driver for distribution 
to your aistomers. 

Appendixes A-G 

When writing your driver, use Appendixes A and B as references. Each contains a 
description, parameters, and error values for the driver and kernel routines disaissed 
in this manual. 
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Use the other appendixes as needed for your device. For example, Appendix D shows 
the memory-mapped 1/0 space used in A/UX. 

Writing a character device driver 

If you are writing a charaaer device driver, read these chapters: 

Chapter2 

This chapter contains kernel programming information that you should read 
regardless of the type of AIUX driver you are writing. 

Chapter4 

This chapter describes each of the routines a charaaer device driver can provide. The 
chapter also discusses various methods of buffering that you can implement in your 
driver. 

If you are writing a charaaer device driver that uses a strategy routine, then read 
Chapter 3, which covers block VO. Chapter 3 gives background on the use of strategy 
routines and using kernel buffers. 

Chapters 5-8 

Of these chapters, read the one that applies to the character device driver that you are 
writing. These chaptets discuss three specific implementations of charaaer device 
drivers: terminal, streams, and network device drivers. 

Chapter 5 

This chapter describes traditional terminal device drivers. The terminal device driver 
is a special type of charaaer device driver that provides an additional buffering layer 
to handle terminal VO operations. Streams terminal device drivers are desaibed in 
Chapter 7. 

Cbapter6 

This chapter describes streams drivers. The Streams device driver provides a flexible, 
modular interface for charaaer device drivers. Use Streams drivers in place of 
traditional character drivers whenever possible. 

Chapter 7 

This chapter desaibes streams terminal device drivers. 

Cbapter8 
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This chapter desaibes network device drivers. Network device drivers are used for 
devices that communicate with other machines. 

You are not limited to writing terminal, streams, and network character device 
drivers. You can write a character device driver for other VO devices, implementing 
the routines necessary for your device. 

Chapters 9· 11 

Of these chapters, read the one that desatbes the hardware interface you are using. 
1bese chapters discuss using the NuBus, SCSI, and Apple Desktop Bus. 

Chapters 12· 14 

1bese chapters describe how to add drivers to the kernel. Chapters 12 describes the 
autoconfig(2) utility. Chapter 13 shows a specific example of how to add a device 
driver to the kernel. Chapter 14 desatbes how to prepare your driver for distribution 
to your customers. 

Appendixes A·G 

When writing your driver, use Appendixes A and B as references. Each contains a 
description, parameters, and error values for the driver and kernel routines discussed 
in this manual. 

Use the other appendixes as needed for your device. For example, Appendix D shows 
the memory-mapped 1/0 space used in A/UX. 
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Chapter 2 

The Kernel Programming 
Environment 
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This chapter describes kernel features and utility routines of special interest to anyone 
writing A/UX device drivers. For an overview of A/UX, see the AIUX System 
OtJerv1ew. For an overview of the A/UX programming environment, see the AIUX 
Programming I.anguases and Tools, Volume I. 

How a typical 1/0 request goes through A/UX 
This section presents an example that shows the way an VO request might flow from 
the user through A/UX to a device. Many of the routines and data structures used in 
this example are described in detail in later sections. The purpose of this example is to 
give you an overview of how VO is accomplished in A/UX. 

For example, suppose you wanted to connect a high-speed printer to the SCSI port. 
You could write a device driver to control this SCSI printer. The following paragraphs 
describe one possible implementation of such a driver. 

The SCSI printer driver in this example is called prt. The prt driver has the 
responsibility of printing the user's data to the printer. This printing process involves 
copying the data to a temporary buffer, translating the data into a format and protocol 
acceptable for the printer, and controlling the hardware interface. 

The prt driver contains the code for high-level and device-specific functions, and 
then calls a SCSI Manager routine to handle the hardware-related tasks of controlling 
the transaction over the SCSI bus. 

Assume the prt drive·r provides the following high level routines accessible through 
the cdevsw table: prt_open, prt_close, prt_read, prt_write, and 
prt_ioctl. In addition the prt driver contains a interrupt routine called prt_int. 

Assume a user process has already opened this device. The following paragraphs trace 
a write ( 2) request on the example SCSI printer, from the user request, through the 
kernel and printer driver, to the device, and from the device back to the user process. 
Refer to Figure 2-1 for the following discussion. 

When a user process issues a write (2) on the device ftle associated with the prt 
driver, the kernel processes the request The kernel fills out a data structure related to 
the VO request For example, the kernel ftlls in the fields of the data structure with the 
number of bytes to transfer and a pointer to the user's buffer. 

The kernel uses the major number of the device ftle to index into the cdevsw table 
(because this file is a character device ftle). The kernel calls the routine stored at this 
index that corresponds to a write (2) system call. In this example, the kernel calls 
prt_write, passing the data structure and device number as parameters. 
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Trace of a wrtte(2) on the example prt driver 
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The kernel invokes prt_write with the device number and a data structure 
describing the VO request. prt_write uses a kernel macro to extract the minor 
number from the device number. prt_write checks the minor number to make sure 
this is a request to a valid device. 

The data structure passed to prt_write includes a pointer to the user's buffer. Thus, 
prt_write has direct access to the user's data. Because prt_write needs to 
manipulate the user's data, prt_write copies the user's data to a tempor.uy buffer. 

Next, prt_write processes the data, formatting the data according to the 
requirements of the printer. prt _write adds any device-specific protocol, then calls 
a SCSI Manager request routine to initiate the VO transaction. One of the parameters 
to the SCSI Manager routine is a data structure desoibing the I/0 request For 
example, this structure includes fields that specify the particular SCSI command, a 
pointer to the data to transfer, and a pointer to the interrupt routine of the driver 
making the request 

The SCSI Manager queues the request and returns toprt_write. prt_write waits 
for the VO to complete by issuing a call to sleep (). sleep () puts the user process to 
sleep until a corresponding call to wakeup () is issued. sleep () and wakeup () are 
kernel routines drivers can use to synchroni:ze 1/0. They are described in Appendix B. 

At this point, the 1/0 request has reached the hardware. When the hardware futishes 
the transaction (the requested data has been written to the printer), the SCSI Manager 
notes which request has completed The SCSI Manager maintains a data structure that 
.associates requests with higher-level drivers. The SCSI Manager calls the interrupt 
routine (prt_int in this example) of the driver associated with this request. 

prt_int is the completion service interrupt routine of the prt driver. The SCSI 
Manager calls prt_int when a request completes on the printer. The SCSI Manager 
passes an error code as one of the parameters to prt_int. This error code indicates 
the success or failure of the request If an error occurred, prt_int interprets the error 
code and decides how to handle the error. If the request was successfu~ prt_int 
updates the appropriate data structures accordingly and calls wakeup<> • 

The call to wakeup () issued by prt _int awakens the process that had been waiting 
on VO. The call to wakeup () will cause prt write to continue to execute from the 
statement following the call to sleep (). prt- write sets any error values then 
returns to the kernel. The kernel sets the return-value of the system call and returns to 
the user process. 

This example illustrates that a high-level driver routine is called as a result of a system 
call on a device file. The driver routine does any necessary processing of the request, 
and can call other kernel routines or other low-level routines to assist in performing 
the 1/0 operation. 

2-4 Chapter 2: Kernel Programming Environment 



( 

When the driver is ready to send the request to the hardware, the driver calls a low­
level manager routine to accomplish the 1/0 on the hardware. If the driver waits for 
the 1/0 to complete, the driver must provide an interrupt routine that the low-level 
manager can call when the request completes. When the request completes, the driver 
should return any data to the user and return a value indicating the success or failure of 
the 1/0 request to the kernel. The return value of the system call indicates the success 
or failure of the system call to the user process. 

A/UX block and character device drivers 
Before writing your device driver, you must first decide what type of device driver to 
write. The device itself and how it performs in the system will determine the type of 
device driver you write. The hardware that the device must gain access to will also 
determine how you write your device driver. 

In A/UX there are two types of devices drivers: block and character. A device driver 
is called a block or charaaer device driver according to the definitions given next. 
Also, in some instances, you can write a device driver to be both a block device driver 
and a character device driver. 

Devices can also be classiried into two categories: block and character. These 
classifications are based on historical definitions; many devices can be considered 
either a block or character device. Actually the device driver and not the device itself 
determines whether a device is referred to as a block or character device. 

Block device drivers make use of the kernel buffer cache when accessing a device. All 
data read from or written to a block device is buffered through the kernel buffer cache. 
Block device drivers are most often used for devices that can contain mounted file 
systems. The SCSI disk driver is an example of a block device driver. 

When a user process reads from a block device, the kernel first checks the buffers in the 
kernel buffer cache for the requested data. If the data is in the buffer cache, the kernel 
copies the data from the kernel buffer to the user's buffer. 

If the data is not in the buffer cache, the kernel calls the associated block device driver. 
The block device driver transfers the data from the device to a buffer in the kernel 
buffer cache. After the block device driver transfers the data to a buffer in the kernel 
buffer cache, the kernel copies the data to the user's buffer. 

When a user process writes to a block device, the kernel copies the data from the user's 
buffer to a buffer in the kernel buffer cache. Then the kernel invokes the associated 
block device driver. The block device driver schedules the transfer of data between the 
kernel buffer and the device,and then returns to the kernel. 
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Normally the kernel returns to the user, without waiting for the 1/0 to complete. Thus, 
write(2) requests are usually asynchronous. That is, when the kernel returns from a 
write(2) on a block device, you are not guaranteed that the data has actually reached 
the device. You are only guaranteed that the kernel has copied the data to the kernel 
buffer cache and that the block device driver has scheduled the data for 1/0. 

Character device drivers generally perform 1/0 asynchronously for a variable number 
of bytes. Character device drivers can buffer their data in any method as needed. The 
kernel does not buffer data in the kernel buffer cache for character device drivers as it 
does for block device drivers. However, because the operation of terminals is 
important to the system, the kernel does provide many data structures and routines 
that terminal device drivers can use. Chapter 5 describes terminal device drivers in 
more detail. 

There are functional differences between the various character device drivers. 
Character device drivers can provide a wide variety of functions and can support many 
different 1/0 devices. Examples of character device drivers are printer drivers, 
terminal drivers, tape drivers, and network drivers. 

Some drivers can be written to access the device as either a block or a character 
device. For example, the SCSI disk driver allows the disk to be accessed as a block or a 
character device. When the disk is accessed as a block device, data is buffered through 
the kernel buffer cache. Most 1/0 to data files access the disk in this manner. When 
the SCSI disk driver accesses the SCSI disk as a character device, the data is not 
buffered through the kernel buffer cache, but is transferred directly to the disk. The 
program fsck(l) uses this type of access to repair a damaged disk. 

When a block or character device driver directly transfers data between the user's 
buffer and the device, the driver is often said to be performing raw 1/0. 

Figure 2-2 illustrates various buffering techniques used by block and character device 
drivers. This figure shows that the kernel buffers data between the user process and the 
block device in the kernel buffer cache. The kernel is responsible for transferring the 
data between the user's data area and kernel buffers. Block device drivers are 
responsible for transferring data between a kernel buffer and the device. 

As shown in the figure, character device drivers can directly control the buffering 
between the user process and the device. The character device driver can implement 
any buffering techniques necessary to transfer the data to the device. This means the 
character device driver can either implement its own method of buffering or make 
use of special kernel data structures, such as tty structures, to assist in the buffering of 
the data. 

Remember that, in raw 1/0, character device drivers do not have to buffer the data at 
all. Character device drivers that perform raw 1/0 usually use a strategy routine similar 
to a strategy routine used by a block device driver. 

Chapter 3 describes block device drivers, and Chapter 4 discusses character device 
drivers in greater detail. 
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Methods of buffering data 
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Device files 
In A/UX there are three different types of files: regular files (also called ordinary files), 
device files (also called special files), and pipes. In A/UX, all VO is accomplished by 
reading or writing to one of these types of files. 

All types of files have an inode (inode refers to index node). Each file has an inode 
associated with it. In.odes are data structures used by the kernel to describe files. The 
inode of an ordinary file contains information about the file, such as file ownership, 
access permissions, siz.e of the file, and pointers to the data blocks associated with the 
file. 

The inode of a device file also indicates file ownership and access permissions, but 
does not contain pointers to any data blocks. This is because device files are used to 
access devices in A/UX. Instead of pointers to data blocks, the inode of a device file 
contains the device number associated with the device file. 

The device number contains the major number and minor number of the device 
flle. The device number is a 16-bit number. nie major number is stored in the upper 8 
bits and the minor number is stored in the lower 8 bits. 

The kernel uses the major number to associate a device with a particular device driver. 
The device driver uses the minor number to encode information specific to the 
device. For example, the disk driver uses the minor number to identify a specific 
logical unit and partition of the disk. 

A device file must exist for each device used to perform VO in the system. You read 
from or write to a device by reading from or writing to the device file associated with 
that device. For example, to read the current mouse location, first use open ( 2) , 

specifying I dev /mouse as the device flle, then issue your read (2) request 

Device files are usually stored in the I dev directory. As previously stated, to access a 
device the device must have a device file. You then use system calls to perform VO to 
the device. A device file can be either a block or a character device file. 

The A/UX system comes with a set of default device files in the I dev directory. You 
can use these device files to perform VO on various devices. Device files for new 
devices are usually created by the startup script of the device driver. The section 
"Writing Optional Init and Startup Scripts" in Chapter 12 describes how to create a 
startup script for your device driver. 

Newdevice files can be created with the mknod<ll command (You must be superuser 
to use this command.) For example, to create a character device file for a character 
device driver with major number 9 and minor number 0, the startup script of your 
driver could contain the following command: 
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mknod /dev/mydevice c 9 O 

This command aeates the device file /dev/mydevice with major number 9 and 
minor number O stored in its inode. You can verify the major and minor numbers for 
the device file with the ls -l command: 

' ls -1 /dev/mydevice 

crw-rw---- 1 root root 9, 0 February 29 15:23 mydevice 

Note the values in the permission field: the fust character is either b to indicate a block 
device file, c to indicate a character device file, d to indicate a direaory, or - to 
indicate an ordinary file. 1be read, write, and execute permissions are indicated next. 
Uke ordinary files, device files also have permissions associated with them. To read 
from or write to a device, you must have the proper read and write permissions 
indicated in the device file for that device. 

The superuser can deny access to certain devices by setting the permission field' 
appropriately. For example, the device file /dev/rdsk/c0d0s31 has the following 
permissions: 

' ls -1 /dev/rdsk/c0d0s31 

crw------- 1 root root 5, O February 29 15:25 c0d0s31 

Only the superuser or root is allowed to access this seaion of the disk as a character 
device. 

Device switch tables 
Device switch tables contain an array of device switch structures. Device switch (devsw 
- pronounced deu-SWUcb) structures contain pointers to driver routines that 
correspond to system calls. These pointers to driver routines are stored in the devsw 
struaure for that device driver. For a user process to perform VO to a device, the 
asaoc:iated device driver must have a devsw struaure in the devsw table. 

When a user process makes a system call, the kernel uses the major number of the 
device file to index into the devsw table. The kernel calls the corresponding routine 
from the devsw struaure stored at this index. 
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The kernel maintains two device switch tables, one for block device drivers and one for 
character device drivers. These two tables are called the bdevsw (bee-dev-switcb) and 
cdevsw (cee-dev-swttcb) tables. 

The device switch tables are created whenever a new kernel is generated. Whenever a 
new kernel is created, including a kernel created by the autoconfiq (lM) utility, 
information in the /etc/master .d directory is read. This information is used to 
create the bdevsw and cdevsw tables for the new kernel. 

To add your driver to the kernel, you need to write a master script ftJe for your 
device driver in the /etc/master.d directory. You provide certain information 
about your driver in this file: for example, whether your driver is a block or character 
device driver. The autoconfig ( lM) utility can then create the appropriate entries in 
the bdevsw or cdevsw structure for your device driver. 

The major number of your device driver is assigned by the autoconfiq ( lM) utility. 
You create the device file for your device in an init or startup script which you need to 
write for your device driver. Your init script and startup scripts are p:wed the major 
number of your device driver when they are invoked. You can then define the minor 
number for your device driver and use the major number passed to your init script or 
startup script to create a device file for your driver. Chapter 12 explains the 
autoconftguration proc.ess and describes how to create a master script file for yQur 
driver. 

A device driver that can be used as both a character and block device driver has encries 
in both the bdevsw and cdevsw tables.You choose which routines corresponding to 
entries in the device switch structure you need to provide for your device driver .. 

The kernel gives a device driver all the information it needs to perform an I/O request 
The kernel passes this information to the device driver in various parameters. 

For example, the kernel passes the device number as a parameter to almost all driver 
routines. The read and write routines of character device drivers are passed a data 
structure called a uio structure. This structure contains information about the I/O 
request Block device drivers receive similar information in a buf structure. Chapter 
4 discusses the uio structure, and Chapter 3 discusses the buf structure. 

The following sections describe the bdevsw and cdevsw tables in more detail. 

The block device switch table 
The block device switch table is an array of block device switch structures. The 
bdevsw structure contains pointers to block device driver routines that correspond to 
system calls. The bdevsw table is illustrated in Figure 2-3. 

The bdevsw table is ordered by the major number for the device. The kernel uses the 
major number to index into this table. When a user process makes a system call, the 
kernel calls the corresponding routine from the bdevsw structure stored at this index. 
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Each block device driver in the system has a bdevsw structure associated with it The 
addresses of the driver's open, close, strategy, and print routines are stored in the 
bdevsw structure for that device. 1be bdevsw structure is defined in 
/usr/include/conf .has follows: 

struct bdevsw { 

int (*d_open) (); 

int (*d_close) (); 

int (*d_strateqy) (); 

int (*d_print) (); 

bdevsw[J; 
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The *d open entry and other entries in the bdevsw structure are pointers to routines in 
the device driver. These routines are responsible for carrying out the VO request 
corresponding to the system call. The purposes of these routines are described in the 
following paragraphs. 

d _open is used to prepare the device for VO. The functions of this routine can include 
configuring the device, initializing data structures, or setting default settings. If the 
device does not exist or cannot be made available for VO, your d _open routine 
should return an error. 

d_close is used to release resources associated with the device. The functions of this 
routine can include releasing acquired memory, restoring the device to its initial state, 
or other device-dependent operations. 

d_strategy is used to schedule the VO request for reading or writing. Note that the 
strategy routine queues the VO request and then returns to the kernel. The strategy 
routine does not wait for the VO request to complete. 

d_print can be used to print error messages on the console. Your d_print routine 
can call the kernel's pr int f c > routine to disp~y the message. 

The d_open, d_close, d_strategy, and d_print routines should return a yaiue to 
the kernel indicating the success or failure of the VO request. Return values of driver 
routines are discussed in a following section entitled "Return Values of Driver 
Routines". 

Note: The d_open, d_close, d_print, and d_strategy routines are referred to as 
the drlveropen, ~lose, driverprint and drlverstrateqy routines 
throughout the rest of this manual. 

The autoconfiq utility initially fills in the bdevsw table with default entries. These 
default entries in the bdevsw structure can be a pointer to either of the two kernel 
routines nulldev < l or nodev ( l. The nulldev ( l routine does nothing, while nodev <) 

returns an error. 

If the bdevswentry contains nulldev () and the user process makes the 
corresponding system call for that entry, the user process does not receive an error. If 
the bdevsw entry contains nodev () and the user process makes the corresponding 
system call for that entry, the user process does receive an error. 

Refer to Chapters 12 and 13 for information on how autoconfiq(lM) creates and fills 
in the bdevsw struawe for your device. 

A sample bdevsw table is shown in Figure 2-4. 
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struct bdevsw bdevsw[J - { 
noclev, nulldev, nulldev, nulldev, /* 0 */ 
nodev, nulldev, nulldev, nulldev, /* 1 *I 
nodev, nulldev, nulldev, nulldev, I* 2 *I 
nodev, nulldev, nulldev, nulldev, /* 3 *I 
noclev, nulldev, nulldev, nulldev, /* 4 */ 
snopen,snclose, snstrateqy, snprint, /* 5 */ 
nodev, nulldev, nulldev, nulldev, /* 6 */ 
nodev, nulldev, nulldev, nulldev, /* 7 */ 
noclev, nulldev, nulldev, nulldev, /* 8 */ 
noclev, nulldev, nulldev, nulldev, I* 9 */ -
nodev, nulldev, nulldev, nulldev, /* 10 */ 
nodev, nulldev, nulldev, nulldev, /* 11 */ 
noclev, nulldev, nulldev, nulldev, I* 12 */ 
nodev, nulldev, nulldev, nulldev, /* 13 */ 
nodev, nulldev, nulldev, nulldev, /* 14 */ 
nodev, nulldev, nulldev, nulldev, /* 15 */ 
nodev, nulldev, nulldev, nulldev, I* 16 */ 
noclev, nulldev, nulldev, nulldev, I* 17 *I 
noclev, nulldev, nulldev, nulldev, /* 18 */ 
noclev, nulldev, nulldev, nulldev, /* 19 *I 
noclev, nulldev, nulldev, nulldev, /* 20 */ 
noclev, nulldev, nulldev, nulldev, /* 4!1 */ 
nodev, nulldev, nulldev, nulldev, I* 22 */ 
nodev, nulldev, nulldev, nulldev, I* 23 */ 
hdopen,hdclose, hdstrateqy, hdprint, /* 24 */ 
hdopen,hdclose, hdstrateqy, hdprint, /* 25 */ 
hdopen,hdclose, hdstrateqy, hdprint, /* 26 *I 
hdopen,hdclose, hdstrateqy, hdprint, /* 27 */ 
hdopen,hdclose, hdstrateqy, hdprint, /* 28 */ 
hdopen,hdclose, hdstrateqy, hdprint, /* 29 *I 
hdopen,hdclose, hdstrateqy, hdprint, /* 30 *I 
noclev, nulldev, nulldev, nulldev, /* 31 */ 

}; 

Rgure 2·• 
A sample bdevsw table 
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The character device switch table 
The character derice switch table is an array of character device switch structures. 
The cdevsw structure contains pointers to character device driver routines that 
correspond to system calls. The cdevsw table is illustrated in Figure 2-5. 

The cdevsw table is ordered by the major number for the device. The kernel uses the 
major number to index into this table. When a user process makes a system call, the 
kernel calls the corresponding routine from the cdevsw struaure stored at this index. 

Each character device driver in the system has a cdevsw structure associated with it 
The addresses of the driver's open, clo,,e, read, write, ioctl and selea routines are 
stored in the cdevsw struaure for that device. The cdevsw struaure is defined in 
/usr/include/conf .has follows: 

struct cdevsw 

int (*d_open) (); 

int C*d_close) (); · 

int (*d_read) (); 

int (*d_write) (); 

int (*d_ioctl) (); 

struct tty *d_ttys; 

int (*d_select) (); 

struct streamtab *d_str; 

}cdevsw []; 

The *d_open entry and other entries in the cdevsw structure are pointers to routines in 
the device driver. These routines are responsible for carrying out the 1/0 request 
corresponding to the system calls. The purposes of these routines are desaibed in the 
following paragraphs. 
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The cdevsw table 
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d_open is used to prepare the device for 1/0. The functions of this routine can include 
configuring the device, initializing data structures, or setting default settings, such as 
the baud rate of the device. If the device does not exist or cannot be made available for 
1/0, your d_open routine should return an error. 

d close is used to release resources associated with the device. The functions of this 
rootine can include releasing acquired memory, restoring the device to its initial state, 
or other device-dependent operations. 

d_read is used to read data from a device. 

d write is used to write data to a device. 

d _ ioct 1 is used to perform control operations on a device, to get status from the 
device, change the configuration of a device, or for other device and driver 
dependent functions. Driver ioctl routines are commonly used to perform 
miscellaneous activities, such as rewinding a tape or ejecting a floppy disk. 

d_select is used to check ifl/O has completed or if an exceptional condition has 
occurred. Select routines are often used to test if a device is ready for reading or 
writing. 

If your device is always ready for reading or writing, the d _select entry can point to 
the seltrue routine. seltrue is a kernel routine that returns TRUE when invoked as a 
result of select(2) on a device file. If your driver does not provide a d _select 
routine, autoconfig(lM) fills in this field of the cdevsw structure with seltrue as 
the default entry. 

The d_open, d_close, d_read, d_write, d_ioctl, and d_select routines 
should return a value to the kernel indicating the success or failure of the 1/0 request. 
Return values of driver routines are discussed in the following section entitled "Return 
Values of Driver Routines". 

Note: The d_open, d_close, d_read, d_write, d_ioctl, and d_select 
routines are referred to as the drlveropen, driverclose, drtverread, drlverwrite, 
driver.ioctl and drivenselect routines throughout the rest of this manual. 

In addition to the pointers to the device driver routines, the cdevsw structure has a 
field for a pointer to a tty structure and a field for a pointerto a streamtab structure. 

If your device driver uses or needs a tty structure, then you will want the entry for 
d _ttys defined in the cdevsw structure. Usually only terminal device drivers require a 
tty structure. 

If you want the entry ford ttys defined in the cdevsw structure for your device 
driver, then use the t option in your master script file. This instructs the kernel to 
allocate a tty structure and set up a pointer to it in the cdevsw structure for your 
device driver. 
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If your device driver uses or ~ a streamtab structure, then you will want the entry 
for d_str defined in the cdevsw structure. Usually only streams device drivers 
require a st re amt ab structure. 

If you want the entry for d _ str defined in the devsw structure for your device driver, 
then use the s option in your master script file. This instructs the kernel to allocate a 
streamtab structure and set up a pointer to it in the cdevsw structure for your device 
driver. 

The autoconfig utility initially fills in the cdevsw table with default entries. These 
default entries in the cdevsw structure can be a pointer to either of the two kernel 
routines nulldev () or nodev ( > • The nulldev < l routine does nothing. while nodev ( > 

returns an error. 

If the cdevsw entry contains nulldev () and the user process makes the 
corresponding system call for that entry, the user process does not receive an error. If 
the cdevsw entry contains nodev () and the user process makes the corresponding 
system call for that entry, the user process does receive an error. 

Refer to Chapters 12 and 13 for information on how autoconfig{lM) creates and fills 
in the cdevsw structure for your device. 

A sample cdevsw table is shown in Figure 2-6. 
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struct cdevsw cdevsw[J - { 
scopen, scclose, sere ad, scwrite, scioctl, 
sc_tty, ttselect, 0, I* 0 *I 
syopen, nulldev, syread, sywrite, syioctl, 
0, syselect, 0, /* 1 */ 
nulldev, nulldev, mmread, mmwrite, mmioctl, 
0, seltrue, 0, /* 2 *I 
erropen, errclose, err read, nulldev, nulldev, 
0, seltrue, 0, /* 3 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue, 0, /* 4 */ 
snopen, snclose, snread, snwrite, snioctl, 
0, seltrue, 0, I* 5 *I 
nulldev, nulldev, nulldev, nulldev, fpioctl, 
0, seltrue, 0, I* 6 *I 
nulldev, nulldev, nulldev, nulldev, nulldev, 
0, strselect, &disp_tab, /* 7 */ 
mouseopen,mouseclose,mouseread,mousewrite, 
mouseioctl, 0, seltrue, 0, I* 8 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
o, seltrue, o, /* 9 *I 
sxtopen, sxtclose, sxtread, sxtwrite, sxtioctl, 
O, sxtselect, 0, I* 10 */ 
nulldev, nul.ldev, prfread, prfwrite, pr:fioctl, 
0, seltrue, 0, /* 11 */ 

<: 
nulldev, nulldev, nulldev, nulldev, nulldev, 
0, strselect, &cloneinfo, (* 12 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
O, strselect, &shlin:fo, /* 13 *I 
nvram_open,nvram_close,nvram_read, 
nvram_write,nulldev, 0, seltrue, 0, /* 14 *I 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue, O, /* 15 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue, 0, I* 16 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue, 0, /* 17 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue O, /* 18 */ 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue, 0, /* 19 *I 
ptcopen, ptcclose, pt ere ad, ptcwrite, ptcioctl, 
0, ptcselect, 0, /* 20 */ 
ptsopen, ptsclose, ptsread, ptswrite, ptsioctl, 
0, ttselect, 0, I* 21 */ 
osmopen, nulldev, osmread, osmwrite, nulldev, 
0, seltrue, 0, I* 22 *I 
nodev, nulldev, nulldev, nulldev, nulldev, 
0, seltrue, 0, /* 23 */ 
hdopen, hdclose, hdread, hdwrite, hdioctl, 
0, seltrue, 0, /* 24 */ 
hdopen, hdclose, hdread, hdwrite, hdioctl, 
0, seltrue, 0, /* 25 */ 
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hdopen, hdclose, 
O, seitrue, O, 
hdopen, hdclose, 
O, seltrue, 0, 
hdopen, hdclose, 
O, seltrue, O, 
hdopen, hdclose, 
0, seltrue, O, 
hdopen, hdclose, 
O, seltrue, 0, 
nodev, nulldev, 
O, seltrue, O, 
nodev, nulldev, 
O, seltrue, 0, 

} ; 

Rgur• 2·6 
A sample cdevsw table 

hdread, 

hdread, 

hdread, 

hdread, 

hdread, 

nulldev, 

nulldev, 

Retum values of driver routines 

hdwrite, 

hdwrite, 

hdwrite, 

hdwrite, 

hdwrite, 

nulldev, 

nulldev, 

hdioctl, 
/* 26 */ 

hdioctl, 
I* 27 */ 

hdioctl, 
/* 28 */ 

hdioctl, 
/* 29 */ 

hdioctl, 
/* 30 */ 

nulldev, 
/* 31 */ 

nulldev, 
/* 32 */ 

Your driver routines should return a value to the kernel, indicating the success or 
failure of the I/O request. For successful requests, your driver routines should return 0 
(zero). For unsuccessful requests, your driver routines should return a nonzero · 
positive value that corresponds to an errno value. Values for errno are defined in 
the header file <sys/errno .h>. 

If your driver returns a zero to the kernel, the kernel returns a succes.mtl value to the 
user. The value and meaning of a successful value returned to the user depends on the 
system call For example, for successful open< 2} requests, the kernel returns a 
positive flle desaiptor. For successful read 12 l requests, the kernel returns the 
number of bytes read. 

If your driver returns a nonzero positive value to the kernel, the kernel returns -1 to the 
user and sets the global variable errno according to the value that your driver routine 
returned. 
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Process context and the user structure 
In A/tJX, a process is an instance of a program in exeaition. When exeaiting a 
process, the system is said to be executing in the context of the process. When the 
kernel needs to execute a neW process, it does a context switch, and the system 
exeaites in the context of the new process. When doing a context switch, the kernel 
saves enough information about the first process so that it can later switch back to the 
first process and resume its exeaition. 

Every process has an entry in the kernel proc table. 1be entry for an individual process 
is a data structure called the proc structure. The kernel uses proc struaures to describe 
the state of every active process in the system. 1be proc structure contains all 
information about the process that is needed while a process is swapped out 

The kernel also maintains information about a process in a data structure called the 
user structure (also called the u-dot). The user structure contains all process related 
information that does not need to be referenced while the user process is swapped out. 

One user structure exists for each process in the system. Some of the information kept 
in the user structure include the program counter (PC) and register values, the process 
memory management unit (MMU) maps, a pointer to the associated proc structure, 
and the arguments from system calls. The user structure is defined in the file 
<sys /user. h>. 

Whatever process is running at the moment has its user structure mapped at a known 
location in the kernel address space; processes that are not running have their user 
struaures mapped elsewhere in the kernel. Normally there is only one user structure in 
the kernel at a time-the process now running. This manual uses the term u-dot to refer 
to the user structure of the airrent process. 

A device driver should never modify values in the user structure. The kernel gives a 
device driver all the information it needs to perform an 1/0 request The kernel passes 
this information to the device driver in various parameters. 

For example, the kernel passes the device number as a parameter to almost all driver 
routines. The read and write routines of character device drivers are passed a data 
structure called a uio structure. This structure contains information about the 1/0 
request Block device drivers receive similar information in a buf structure. 
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Utility routines and macros 
The kernel prov~ a number of routines that you can use in your driver. This section 
describes routines that can be called from any device driver; you'll also find 
additional kernel routines for block device drivers in Chapter 3 and additional kernel 
routines for character device drivers in Chapters 4, 5, and 6. 

Use this section to get general information about kernel routines that can be called. 
Appendix B is a reference for kernel routines found in this manual. Appendix B 
provides specific information about the parameters passed to each routine and the 
error values returned for each routine. 

Setting processor levels 
Your driver can set the hardware priority level with the spin routine, which disables 
interrupts below a specified priority level n . Setting the priority level prevents 
unwanted interrupts from reaching the device. See the spln routine in Appendix B for 
specific values of n. 

To set the interrupt priority level back to its previous state use the splx:(s) routine, 
where sis a value returned by the previous spln call. 

Waiting for 1/0 to complete on an address or for an event to 
occur (sleep) 
sleep () is used to synchroniz.e VO by making a process wait (and allowing other 
processes to run) until a certain event occurs. The event is an address that the calling 
process passes as a parameter to sleep () . 

When a driver calls sleep (),the kernel changes the process state to "asleep" and 
removes the process from the run queue. When a process is removed from the run 
queue because of a call to sleep (), the process is often referred to as a "sleeping" 
process. 

When a process's state changes to asleep, a context switch occurs; thus, sleep() should 
always be called within the process's context 

After the driver calls sleep (),the sleeping process will continue to sleep until 
another routine calls wakeup () , using the same address as specified by the process 
that called sleep ( ) . 

The sleep () routine is passed an address, as just described, and a priority level. 
Priority levels range from 0 to 127, with 0 having the highest priority and 127 having 
the lowest priority. 
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Several processes can sleep on the same address. When more than one process calls 
sleep () with the same address, the priority level detennines which routine will 
execute first 

Signals cannot interrupt processes sleeping at a priority less than the parameter 
PZERO, although they can be swapped out PZERO and PCATCH are defined in 
<sys/param. h>. 

PCATCH is a bit set in the priority level argument to sleep () that is OR'ed into the 
priority field of the proc structure when a driver wants any signals that occur during 
sleep to be ignored and handled later (for example, page faults and streams 
proces&ng). If processes sleep at this priority level, sleep C) will return 0 if awakened 
or 1 if a signal occurred while sleeping. 

Waiting for 1/0 to complete on a buffer header (blowalt) 
The kemel or a driver uses biowai t c > when a process is waiting for a resource called a 
buffer header, or buf structure. The routine biowait < > is similar to sleep<>, except a 
buf structure is always passed as a parameter to biowai t c > • When a driver calls 
biowait < > , the kemel sets a flag in the buf structure and puts the process to sleep. The 
process continues to sleep until a corresponding call to biodone c > is made. · 

Notifying a process of 1/0 completion or an event occu"ed 
(wakeup) 
The kemel or a driver uses wakeup c > to notify all processes that are waiting for an event 
to occur that the event has ocairred or to notify all process that are waiting for J/O to 
complete that the J/O has completed. The event is an address that the calling routine 
passes as a parameter to the wakeup< l routine. 

All sleeping processes marked with the same address are removed from the sleeping 
processes queue, placed on a list of available processes, and the process state is 
changed from •asleep• to •ready to run.• 

Notifying a process 1/0 has completed on a but structure 
(bldone) 
The kemel or a driver uses biodone cl to notify a process that J/O has completed on 
the buf structure specmed in the call to biodone c > • All processes sleeping on the buf 
structure are removed from the sleeping processes queue and placed on the ready to 
run queue. 
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Reading from and writing to a user buffer 
If you are writing a character devic.e driver you can provide your own method for 
transferring data between a user buffer and a device. Optionally, you can use various 
routines provided by the kernel. You can use these kernel routines to copy a single 
character between the user buffer and a driver buffer, to copy blocks of information 
between the user buffer and the driver buffer, or to directly copy data between the user 
buffer and the devic.e. 

Your driver can use two routines to read and write a ·character to and from a user 
buffer: ureadc ( l and uwritec ( l. ureadc ( l delivers a character to a user buffer 
asociated with a read ( 2) system call. uwr itec cl retrieves a character from a user 
buffer asociated with a write ( 2) system call. 

Your driver can use the copyout < l, subyte ( l , and suword < l routines to transfer data 
from a driver buffer to a user buffer. copyout < > copies blocks of information from the 
driver buffer to the user buffer, subyte < J copies a single character from the driver 
buffer to the user buffer, and suword < l copies a single integer from the driver buffer to 
the user buffer. 

Your driver can use the copy in cl , fubyte < l , and fuword < > routines to copy data from 
a user buffer to a driver buffer. copy in < l copies blocks of information from the user 
buffer to the driver buffer, fubyte < l copies a single character from the user buffer to 
the driver buffer, and fuword < l copies a single integer from the user buffer to the 
driver buffer. 

Your driver can also use the uiomove <> routine in plac.e of copyin <> or copyout (l to 
copy data between a user buffer and a driver buffer. 

Your driver can use the kernel routine physio o to directly copy data between the user 
buffer and the devic.e. Chapter 4 describes this method of buffering in more detail . 

Gaining access to user address space 
To determine whether your driver can gain acc.ess to the current user address space 
memory, call the user ace < > routine. 

Finding the major number of your device 
Your driver can use the macro major to find the major number associated with your 
device. The macro major extracts the major number from the device number and 
returns the major number to the calling routine. 
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Finding the minor number of your device 
Your driver can use the maao minor to find the major number associated with your 
device. 1be macro minor extracts the minor number from the device number and 
returns the minor number to the calling routine. 

Encoding the maJor and minor numbers of your device 
You can use the kernel macro makedev to encode the major and minor numbers for 
your device. 

Setting a timeout (timeout) 
Your driver can use the timeout< l routine to set a timer for a minimum number of 
clock ticks. After the given time period has elapsed, the kernel calls the routine 
specified as a parameter to timeout () . Note that the routine is not called in process 
context. 

timeout () can be useful when yoo want to set a maximum amoont of time yoo are 
willing to wait for an event to occur. For example, you might want to wait only a certain 
number of seconds for a device to come online. By using the timeout < l routine, you 
could specify that your driver routine be called if the device did not respond after a 
certain amount of time. 

Removing a Timeout (untlmeout) 
The untimeout < l routine is used to remove a timeout previously set by timeout () . 

If your driver set a timer using the timeout () routine and if the timer exp~. 
indicating that the anticipated event did not occur, the routine specified in the call to 
timeout < > will be called. If the event does occur before the timer exp~. you must 
call untimeout o to cancel the preceding timeout request 

Delaying execution 
Your driver can call delay<) to make a process wait for a specific interval before 
resuming exerution. delay ( ) must be called in process context, because it suspends 
a process and puts it to sleep for a minimum number of clock ticks. For example, 
delay () is useful in routines that need to wait for a 3.5-inch disk drive to spin up to 
speed. 
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Sending a signal to a user process 
SlgDa)s infonn user processes of certain events that ocoJt. For example, your driver 
may need to send a signal when a modem carrier line drops. 1be kernel signal C) 
routine sends a specified signal to all processes in a process group. siqnal () can be 
called in any process context. 

Note The kernel signal O routine is not the same as the siqnal (2) routine, which 
specifies how the calling process handles signals that are received. 

To send a signal to a single process, your driver shoUld call psignal () • psignal () 
marks (in the proc structure) that the process should receive a signal and enables the 
job to run. When a signal is caught in a user process (for example, when the user types 
a break character), a context switch occurs and the process handles the signal. When a 
process is executing in the Berkeley signal environment, a signal is not always 
sufficient to awaken it (for example, if the process is stopped). 
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This chapter starts with a general discu~ion of block 1/0 device drivers and the rules 
for writing them Th.is chapter then describes data buffering structures, followed by 
detailed descriptions of the block device driver's open, close, strategy, and diagnostic 
print routines. The start and interrupt routines of a block device driver are also 
discussed. 

Overview 
Block device drivers make use of the kernel buffer cache when accessing a device. All 
data read from or written to a block device is buffered through the kernel buffer cache. 
Block device drivers are most often used for devices that can contain mounted file 
systems. The SCSI disk driver is an example of a block device driver. 

A block device driver maps logical device block numbers to physical device block 
numbers. A block 1/0 logical device is a device consisting of addressable secondary 
memory blocks. The size of each block is a multiple of the DEV_ BS IZE constant. On 
the past, logical devices have also been called partittons.) 

The block device driver recogniz.es the physical devices in the system. The driver's 
main job is to hide all aspects of the physical device from the kernel and present a 
logical device interface of n 512-byte blocks, which are numbered from 0 to n-1. Thus, 
to the A/UX operating system, logical devices and physical devices appear to be the 
same. 

Typically, any device with a block 1/0 driver interface also supports a character 1/0 
driver interface. 1bat is, the source file for the driver contains routines for both block 
device drivers and character device drivers. 

A block device driver can support more than one physical device. In turn, each 
physical device can contain more than one logical device. Typically, a single physical 
device, such as a 300-megabyte disk drive, will have a number of logical devices on it 
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Transferring data to and from a block device 
After the operating system mounts the file system and opens the device file for the 
device, a driver reads and writes to a block device in one of two ways: 

• indirectly through the kernel buffer cache 

• directly through a raw (character) interface 

Indirect data transfers take place using the kernel buffer cache. The A/UX kernel 
provides a cache of buffers to temporarily hold data being transferred between user 
data space and block 1/0 devices. Buffered I/O is described in the next section. 

Direct data transfers take place using raw I/O. All read and write operations using raw 
I/O perform input and output directly to and from the device without buffering data. 
Character device drivers are used to perform raw I/O. Raw I/O is discussed in a later 
section, and also in more detail in Chapter 4. 

Buffered 1/0 
Buffered I/O uses two important data structures: the buf structure (also called the 
buffer header) and the iobuf structure. Both structures are described in the following 
sections. 

The buf structure 
Each buffer in the buffer cache contains two parts: a buf structure and an associated 
buffer. 1be buf structure is a data structure that is used to store control and status 
information about the buffer. 1be buffer is a memory array containing disk data. The 
buf structure contains a field (b_un .b_addr) that points to the buffer associated with 
this buf structure. 

The buf structure is the sole argument to the strategy routine of a block device driver. 
The buf structure contains all the information needed to perform the data transfer. 
The kernel fills out fields of the buf structure and then invokes the drlverstrategy 
routine with a pointer to the buf structure. 

A driver can also use buf structures to perform unbuffered or physical 1/0, in which 
case the b _ un . b _ addr field of the buf structure points to a portion of user data 
space. 
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The buf structure is defined in <sys /buf • h> as follows: 

struct buf 

long b_flaqs; 

struct buf *b_forw, *b_back; 

struct buf *av_forw, *av_back; 

long b_bcount; 

long b_bufsize; 

short b_error; 

dev_t b_dev; 

union 

caddr_t b_addr; 

int *b_word; 

struct filsys *b_fs; 

struct dI-node *b_dino; 

struct fblk *b_fblk; 

daddr_t *b_daadr; 

struct svfsdirect *b_direct; 

} b_un; 

daddr_t b_blkno; 

long b_resid; 

struct proc *b_proc; 

int (*b_iodone) (); 

struct vnode *b_vp; 

time_t b_start; 

} ; 

A device driver may need to look at or set the following fields of the buf structure: 

• b_flags contains bits that indicate the status of the buffer (B_BUSY flag) and tell 
the driver whether the device is to be read from or written to (B _READ or B _WRITE 
flag). When the 1/0 transfer completes, the driver should set the B _ERROR flag if an 
error occurred. The complete list of flag descriptions is found in <sys/buf .h>. 
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• av_forw and av_back are a pair of pointers that maintain a doubly-linked list of 
•free" blocks (blocks that can be reallocated for another transaction). A driver can 
use these lists to link the buffer into driver buffer queues. 

• b _ bcount is the number of bytes to be transferred to or from the buffer. 

• b_dev holds the device number. 1be device number contains the major and minor 
numbers. Your driver can use the kernel macros major and minor to extract these 
numbers from the device number. 

• b blkno is the device offset (in byte blocks starting at block 0) to be accessed. The 
constant DEV _SIZE is the size of a block. 

• b _resid is the number of bytes not transferred after the VO request completes. 
Your driver should set this field to zero if all bytes were transferred. If an error 
occurred, your driver should set this field to the number of bytes that were not 
transferred. 

• b_error contains a value indicating the succeM or failure of the VO request. Your 
driver should set this field to an errno value if an error occurred. If the request was 
successful, your driver should set this field to 0. 

The lobuf structure 

The iobuf structure is a header for a queue of buf structures that are currently 
involved in VO operations. Your device driver must declare and initialize one iobuf 
structure for each physical device handled, even if several physical devices use the 
same device driver. Autoconfiguration can be used to allocate these iobuf structures 
(see Chapters 12 and 13 for details). 1be iobuf structure is defined in 
<sys/iobuf .h> as follows: 

struct iobuf 

int b_flaqs; 

struct buf *b_forw; 

struct buf *b_back; 

struct buf *b_actf; 

struct buf *b_actl; 

dev_t b_dev; 

char b_active; 

char b_errcnt; 

struct eblock *io_erec; 
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} ; 

int io_nreq; 

physadr io_addr; 

struct iostat *io_stp; 

time_t io_start; 

int 

int 

io_sl; 

io_s2; 

A device driver inreradS with these two fields of the iobuf structure: 

• b_actf is the first buf structure on the iobuf queue. 

• b active determines whether the device controlled by this iobuf is aaive. If the 
f..eid is set, an operation is occurring; if the field is 0, no operation is occurring. 

When the device is ready for an VO operation, the driver examines the first buffer on 
the active queue and sets the b_active field After the operation ends, the driver sets 
b_active to 0, removes the buffer from the active queue, and updates b_actf to 
point to the next buffer. 

The block device driver interface 
The following sections briefly desaibe the routines of the block device driver that are 
called through the bdevsw table. For a desaiption of how a block device VO operation 
oco.us, see "Trace of an VO Request on a Block Device Driver" later in this chapter. 
Appendix A also includes a desaiption of the parameters, calling sequence, and 
return values for each of the routines presented in the following sections. 

Opening a block device for 1/0 
The purpose of the block device driver's open routine is to make sure that the kernel's 
request to use the logical disk is valid; the drfvernpen routine does not actually open 
an A/UX file. The drfvernpen routine of a block device driver is called whenever a user 
process makes an open(2) system call on a block device file. 

The drlveropen routine 
The driven:>pen routine is used to get the device ready to perform VO. This process 
might include initializing data structures and setting the configuration of the device. A 
block device driver's open routine might also perform other functions: 
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• Check to see if the device number passed to it as an argument is valid for the 
physical device. The device number is composed of a major number and a minor 
number. Your driver can encode the minor number with device or driver specific 
infonnation. For example, the A/UX disk driver (hd. c) encodes the high-order 
bits of the minor number with the drive number, and uses the low-order bits to 
index into a table of logical disks for the physical drive. · 

• Call an optional timer funaion Of the device's open routine has not been called 
before) to periodically check the status of the device. For example, your driver 
could call a routine at specified times to determine if VO has ended and could reset 
the hardware if it appears that a hardware problem has oca.ured. 

• Set up addresses or request private data areas for use as long as the device is open. 
For example, error logging might require a data buffer that stores the number of 
retry operations. 

• Perform device-dependent initialization and status checks to enable the physical 
hardware to be used, such as waiting for a disk drive to spin up to speed and come 
on-line. 

• Remember that the block device driver can control more than one physical device. 
For example, a disk controller card may support several physical disk drives and 
each physical disk drive may have multiple logical disks on it The drlvert>pen 
routine must keep track of which physical drives have been previously initialiZed 
and opened. 

The driven:>pen routine is called as follows: 

int drlveropen (dev, jlag) 

dev_t elev; 
int jlag; 

where 

• elev is the device number. The device number contains the major and minor 
number of the device fJle. A character device driver should check to see that the 
minor number passed to it as an argument is valid for the device being called. If 
not, the driver should return an error. 

• flag corresponds to the oflall parameter specified by the user in the open(2) call. 
(See open(2) in the AIUX Programmer's Reference.) Specific values for the flag 
parameter are listed in the f _flag field of the fJle descriptor data struaure (in the 
header file <sys If i le . h> ). 

• driver is the device prefix. 
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The drlveropen routine is called with two parameters. The first parameter is the device 
number of the device file being opened. The drlveropen routine can use the kernel 
macro minor to extract the minor number from the device number. Your driver can 
encode the minor number with driver specific information. For example, when a 
driver is used to control more than one device, the minor number is usually encoded 
to indicate the device or id number of the device. 

Your driver can then use the minor number to identify the particular device to which 
the VO request is directed. Your driver can also set up arrays indexed by the minor 
number. Using the minor number in this way lets your driver keep track of which 
request is associated with a particular device. 

After you decide how to encode the minor number for your devia! and how your 
driver will use the minor number, remember to aeate the device file for your device in 
either an init or startup script.('Ibe init and startup saipts are used with 
autoconfig(lM) and are described in Chapter 12). For example, a driver might use 
a a!rtain bit in the minor number to select the physical device. Then you would need 
to create multiple device ftles in your init or startup saipt for each different physical 
device that can be selected. 

The flag parameter in the driveropen call corresponds to the ojlag parameter 
specified by the user in the open(2) call. The kernel translates the ojlag values of 
o _ XXXX into their corresponding flag values of F XXXX. For example, o _NDELAY 
becomes FNDELAY, and O_RDONLY, O_WRONLY and o_RDWR are translated into two 
flags, FREAD and FWRITE. The flags of interest to a driver are FREAD, FWRITE, and 
FNDELAY. The action your driver takes if any of these flags is set is driver dependent. 
However, your driver does not have to implement actions for any of these flag values. 
For example, the o _ NDELAY flag usually has meaning only for terminal devices. 

The block device drlveropen routine should report any errors to the kernel by 
returning a value that indicates the success or failure of the request to the kernel. Your 
driver should return a zero (0) if the open request was successful. If the open request 
was not successful, your driver should return a nonzero positive errno value to the 
kernel. 

If your driver returns a value indicating success, the kernel returns a file descriptor to 
the user. The kernel also maintains a count of the number of times this device file has 
been opened and inaements this counter on each successful open(2) call. The kernel 
uses this information to determine when to call the drlvercloae routine. 

If your driver returns an ermo value to the kernel, the kernel retums-1 to the user and 
sets the global variable errno to the errno value returned by your driver. 
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The drlverclose routine 
The kernel calls the drlt.1e1t:lose routine on the last close(2) of the block device. If 
several processes have opened a device, the drlt.1e1t:lose routine is called once when 
the last process that has opened the device closes it. 

The kernel maintains a count of the number of times the device file has been opened, 
and calls the drtven:lose routine only if this is the last close of the device file. 

Note that "called on the last close" actually means that the drlverclose routine is 
called only on the last close of a unique device number. Thus, for a disk that has 
different device numbers (device files) to represent different partitions on the disk, the 
drlt.1e1t:lose routine will be called each time a partition is closed. Your block device 
driver needs to make sure that all partitions on a single disk have been closed before 
performing any final driver close functions. 

The drtverclose routine is called as follows: 

void drlverclose (dev, flag) 
dev_t dev; 
int flag; 

where 

• dev is the device number. 

• flag corresponds to the flags from the ojlag field of the open system call. Specific 
values for the jlag parameter are listed in the f _flag field of the file descriptor 
data structure (in the header file <sys/file .h>). 

• driver is the device prefix. 

The drlve1t:lose routine is used to remove the connection between the user process 
and the device. The functions of a drlvett:lose routine might include reinitializing 
driver data structures and device hardware. The drlve1t:lose routine should do any 
necessary processing to make the device available to be opened later. 

Performing 1/0 (using the strategy routine) 
Block device drivers use the kernel buffer cache to move data to and from a physical 
device. Instead of providing separate read and write routines, a block device driver 
uses a single strategy routine to move data between the buffer cache and a device. 

The main functions of the drlverstrategy routine are to place the buf structure for 
the VO request onto the device's active VO request queue and to call a start routine to 
begin VO. 
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'The drlvmstrategy routine is invoked with a pointer to a buf structure. For block 
device drivers, the kernel fills out all fields in the buf structure with infonnation about 
the 1/0 request before calling the drlvenstrategy routine. 

'The dritJer.strateqy routine is called as follows: 

void drlvenstrateqy (bp) 

struct buf * bp; 

where 

• bp is a pointer to the buf structure containing infonnation about the 1/0 request 
'The b _ un. b _ addr field of the buf structure contains the acidreu of the buffer 
being read or written. 

• driver is the device prefix. 

Your tlrtvemtrategy routine uses infonnation in the buf structure to perform the 
1/0 request For example, the buf structure indicates the direction to transfer the 
data, the device the 1/0 request is direaed to, and the number of bytes to transfer. 

Your driverstrategy routine should schedule the 1/0. This scheduling often . 
involves calling another routine called the drlverstart routine. The drlverstart 
routine usually takes care of the low-level details of the 1/0 transfer, including 
managing the request queue of buffers waiting to send or receive data. 

After scheduling the 1/0, your driverstrateqy routine should return to the calling 
routine. Your driver.strategy routine must not issue a call to biowait () or 
sleep ( ) . 'The calling routine has the responsibility of determining whether or not to 
wait for the 1/0 request to finish. 

WrHing to a block device 

When a user process writes to a block device, the kernel copies the data from the user's 
buffer to a buffer in the kernel buffer cache. The kernel fills out a buf struC1Ure with 
infonnation about the 1/0 request 'Then the kernel invokes the associated block 
device drlverstrategy routine, passing a pointer to a buf structure as a parameter. The 
drlverstrategy routine schedules the transfer of data between the kernel buffer and the 
device, and then returns to the kernel. 

After scheduling the 1/0, your drlve7strategy routine should return to the calling 
routine. Your drlverstrategy routine must not issue a call to biowait () or sleep (). 
'The calling routine has the responsibility of determining whether or not to wait for the 
1/0 request to finish. 
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For write (2) requests, the kernel usually returns to the user without waiting for the 
1/0 to complete. Thus write (2) requests are typically asynchronous. That is, when 
the kernel returns from a write (2) on a block device, you are not guaranteed that the 
data has actually reached the device. You are only guaranteed that the kernel has 
copied the data to the kernel buffer cache and that the device driver has scheduled the 
data for 1/0. 

Reading from a block device 

When a user process reads from a block device, the kernel first checks the buffers in the 
kernel buffer cache for the requested data. If the data is in the buffer cache, the kernel 
copies the data from the kernel buffer to the user's buffer. 

If the data is not in the buffer cache, the kernel calls the associated block device 
drlverstrateqy routine. The drlvmstrateqy routine transfers the data from the 
device to a buffer in the kernel buffer cache. After the drivefstrateqy routine 
transfers the data to a buffer in the kernel buffer cache, the kernel copies the data to the 
user's buffer. 

After scheduling the 1/0, your drlverstrateqy routine should return to the calling 
routine. 1he calling routine has the responsibility or determining whether or not to 
wait for the 1/0 request to finish. 

When the kernel calls drlverstrateqy as the result or a read (2) on a block device 
me, the kernel usually does wait for the 1/0 to complete. 

1he drlverstrateqy routine can also be used to perform raw 1/0. I~ this case, the 
character device driver's drlverread and drlverwrite routines call the kernel routine 
phys io c >. Parameters to phys io () include a pointer to a buf structure, pointer to a 
uio structure, pointer to the drlvetstrateqy routine, the device number, and a 
read/write flag. 

Phys io c > fills out the buf structure passed to it with information specified from the 
other parameters in the call. Then physio c > invokes the drlverstrateqy routine, 
passing the buf structure as a parameter. Raw 1/0 is further desaibed in a following 
section. 

The block device start routine 

The driverstrateqy routine calls another routine provided by the driver called the 
drivmstart routine. 1be drlverstrateqy routine calls drivers tart to initiate the 
first 1/0 operation for a device. 
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The drlverstart routine locates the data on the device from the minor number and 
block number fields (b dev and b blkno) and uses the buffer address 
(b _ un 0 b _ addr) to ide~tify where-data shoUld be transferred 

The block device driver maintains a queue of buffers that are being processed for I/O. 
The drtverstart routine places the buf structure passed to it on the active I/O queue. 
If there are no pending requests, the drlvenstart routine calls lower-level routines to 
begin the 1/0 transfer for this buf structure. If there are pending requests on the 
device, drtverstart returns to the calling routine. 

You can also call the drlverstart routine from the driver interrupt routine. The 
driver interrupt routine is described in the next section. 

The block device lntenupt routine 

The interrupt routine of a block device driver handles the interrupt generated after the 
I/O operation is complete. The interrupt routine then calls the drlvtMtart routine to 
initiate I/O for the next buf on the active I/O queue. The interrupt routine continues 
to call the start routine to initiate I/O if there is a request to be acted upon and then 
returns. 

When all data is transferred, the driver interrupt routine calls biodone () or 
wakeup ( > to notify any processes waiting for the I/O to complete that the I/O request 
has finished. 

Trace of an 1/0 request on a block device driver 
Figure 3-1 summarizes the flow of control of an I/O request on a block device driver. 
The following paragraphs desaibe how a block device driver processes an I/O 
request. 
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Rgure 3·1 
Reading from or writing to a block device 
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Block device drivers use the kernel buffer cache to move data to and from a physical 
device. After a user process makes a read ( 2) or write (2) system call, a strategy 
routine is called to move data between the buffer cache and a device. The strategy 
routine locates the data on the device from the device number and block number 
fields (b_dev and b_blkno) of the buf structure and use5 the buffer address 
(b un . b addr) to identify where data should be transferred. - -
For read ( 2) requests, the kernel searches the buffer cache for the requested block. If 
the requested block is in the cache, the kernel returns the block immediately to the user 
program without physically reading the device. If the block is not in the cache, the 
kernel assigns the block a free buf structure and buffer, and then calls the 
driver.strategy routine to handle the data transfer. If no free buffers are available, 
the kernel puts the user process to sleep until a buffer is released from another process. 

The kernel fills in the buf structure with information about the VO request The 
b _flags field is set to B _READ or B _WRITE to indicate the direction to transfer data. 
The kernel sets the b _ dev field to the device number. The b _ un. b _ addr field is set 
to point to the kernel buffer to which data is to be transferred into or out of. 

The strategy routine first verifies that the block address (found in the buf structure) is 
valid for the logical device being read or written. If the physical device is divided into 
several logical ~vices, the strategy routine must check the requested block to see that 
it is in the partition specified by the minor number. 

The strategy routine places the VO request on the active queue. The strategy routine 
then checks to see if the device is busy. If the device is busy, the read must sleep until 
the device becomes available. An VO request may be placed in the queue in other · 
than first-in-first-out order. For instance, your driver can search the queue and place 
the VO request in an order that reduces disk arm movement. <:You can use the 
disksort () routine to order the queue in this manner.) 

For write ( 2) requests, the kernel informs the disk driver that it has a buffer whose 
contents should be written, and the disk driver then schedules the block for VO. If the 
disk driver finds a buffer that contains the data, the driver writes the data immediately. 
Otherwise, the least recently used buffer is reassigned to the write request and the write 
is performed by marking the buffer as •dirty.• 

After 1/0 is complete, the device sends an interrupt to the processor. The driver's 
interrupt routine is called to remove the buf structure from the active 1/0 queue, to 
check the queue for more requests, and to call the biodone () routine to wake up any 
sleeping processes. The buffer is placed back on the available list 

The interrupt routine then calls the start routine to start VO for the next buffer on the 
active VO queue. 1be start routine checks the status of the device, checks and marks 
the VO queue for active requests, selects the VO device, and then calls a command 
process routine to initiate the 1/0 process. This interrupt-start mechanism continues 
until all VO requests are processed. 
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Raw 1/0 
As previously desaibed, block 1/0 involves using the buffer cache to transfer data 
between the user space and the device. This process can be slow, because read and 
write operations are done a block at a time, and buffer operations such as transferring 
a block from one buffer to anorher and flushing out filled buffers must be done. 

Your device driver might need to provide the ability to perfonn raw 1/0. This means 
that data is transferred direaly between the device and user address space, without 
using the data cache. Raw 1/0 is very useful for backup and restore programs, because 
your driver can read or write more than one block at a time. For enmple,a driver can 
read tape drive files into memory quickly or write tape files onto a magnetic tape 
cartridge quickly, because the data is input or output in large •chunks.• 

Your device driver will need to provide entry points in the cxlevsw table for drlverread 
and drivenfrite routines in order to perfonn raw 1/0. 

Your drlverread and drlvenfrite routines can call the kernel routine physic<> to 
perform read and write operations for unbuffered 1/0. By using physio < l , you can 
use buf structures and the same strategy routine as used by a block device driver. 

Thus, as with buffered 1/0, the buf sttudllre's device number and block numbef fields 
identify where to find data on the disk, and the buf strudllre 's address field identifies 
where the data should be transferred. 

Disks are normally not handled as uue block devices. More commonly, they use both 
the block device and character device (raw 1/0) interfaces. For example, Figure_ 3-2 
shows the interface to a typical disk driver. As shown in the figure,the drlverread and 
drlvenfrite routines referenced by the aievsw structure are used to perfonn raw 1/0. 
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Rgur• 3·2 
Reading from or writing to a block device using raw 1/0 
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1be drlverread and drivenfrite routines call physio (),passing a buf structure, 
uio structure, pointer to the drlvenstrateqy routine, device number, and read/write 
flag as parameters. Physio () fills in fields of the buf structure. For example, 
physio () sets the b_un.b_addr field to point to the user's buffer. 

1ben physio c > calls the drlver'strateqy routine. The drlver'strateqy routine i$ 
usually the same strategy routine invoked as the result of a read (2) or write (2) on 
a block device file. The drlver'strateqy routine queues the request and calls the 
drlverstart routine to begin 1/0. · 

After the strategy routine returns to physio (), physio () waits for the 1/0 to 
complete by putting the user process to sleep. 

When the transfer completes, the driver interrupt routine awakens physio () by 
calling biodone (). Physio () then updates the uio structure and and returns to the 
drlverread or drlverwrite routine. 

The diagnostic print routine 
The diagnostic print routine of the block device driver can be used to print error. 
messages on the console when device errors occur. 

Performing initialization on a device driver 
Your driver can provide an initialiution routine called drlverini t, where driver is 
the device prefix for your driver. During autoconfiguration, the kernel searches the 
objea file of your driver for a routine with the name drlver.i.ni t. If the kernel finds 
such a routine, the kernel adds this infonnation to a list of drlverini t routines to call 
during bootup. . 

If the kernel does not find a drlver:i.nit routine for your driver, the kernel simply 
proceeds with initialization. You do not have to provide a drlverinit routine. 

If you do provide a drlverini t routine, the kernel will call your drlver.i.ni t routine 
during system initialization. However, you can tell the kernel at what stage in the 
stanup kernel code to invoke your drlver.i.ni t routine. 

You do this by using the p opt flag in your master saipt ftle. Some of the options to 
this command specify whether to call this routine with interrupts disabled or enabled. 
Refer to Chapter 12 for a complete desaiption of the various options to this 
parameter. 

Typical funaions performed in a drlver.i.nit routine include initializing hardware, 
performing diagnostics, and any other code that is needed to make your device 
available to be used by the system. 
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Kernel routines for block device drivers 
Th.is section briefly describes kernel routines that your block driver can call to perform 
speciali7.ed functions. See Appendix B for a reference section describing each 
routine's calling sequence and its parameters and return values. (In addition, 
Appendix B contains other kernel routines that you can use in a block device driver.) 

Waiting on 1/0 
The kernel provides two functions for suspending and resuming execution during block 
IIO uansfers: biowai t () and biodone () . (The iodone () and iowai t () 
routines are defined to refer to the biodone () and biowait () routines respectively, 
in <sys/buf .h>). 

Drivers that have allocated their own buffers and are waiting for data transfer to 
complete call biowait () , which puts the user process to sleep, waiting for I/O to 
complete on the buf structure. The kernel also calls biowait () to put the user 
process to sleep when waiting for read ( 2) requests to complete. 

The driver interrupt routine calls biodone () to wake up the process or proces5es 
waiting on the buf structure when the data transfer finishes. 

Buffer routines 
You can use these routines to manipulate a buffer in the cache: 

• clrbuf o-1be clrbuf maao 7.eroes the buffer and sets the b_residfield of the 
driver to 0. 

• qeteblk (>-The qeteblk () routine retrieves a buffer from the buffer cache and 
returns a pointer to the associated buf structure to the calling routine. If no buf 
struClUres are available, qeteblk < > puts the calling process to sleep until one 
becomes available. Thus, your driver should not call qeteblk ( ) during interrupt 
handling. 

• brelse <>-After your driver is finished using a buffer that was previously allocated 
by geteblk (), your driver must call brelse < > to return the buffer and buf 
structure to the kernel. brelse ( > returns the buf structure to the list of free buf 
structures and awakens any processes that might be sleeping on that buf structure, 
or which might be waiting for this buf structure. 
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This chapter describes how to write a basic character device driver. The chapter 
discusses the various character buffering and control structures first, and then 
describes the open, close, read, write, ioctl, select, and interrupt routines of 
character device drivers. For specific: information on terminal device drivers and 
Streams device drivers, see Chapters 5 and 6. 

Overview 
Character device drivers control the activity of all those devices that do not buffer 
their data in the kernel buffer cache. These devices form a Jarge and varied group, and 
the operations of different devices may require very different device drivers. 

You can think of character device drivers as having two or more layers, as illustrated in 
Figure 4-1. The uppermost layer are those routines accessed through the cdevsw table. 
These routines might call middle Jayer routines to handle common functions or to take 
care of device-specific operations. 

For example, a terminal and a printer might share a middle layer of code that 
performs functions common to both drivers. However, the terminal and printer 
driver may have different lower layers to handle device-specific operations such as 
setting the baud rate. 

A device driver is not required to have a middle layer of routines. The device driver 
can contain all the code necessary to pro~ the 1/0 request, then call low-level 
routines to initiate and control the hardware operations. 

The lowest layer routines are those routines or managers that control the hardware 
interfaces to the system. 

Whenever there is one hardware interface, a single piece of code is used to access all 
devices. This piece of code might be a manager or a driver. For example, one driver 
commoilly controls all of the serial ports, regardless of which devices are attached to 
them. 

Another example of code that controls a hardware interface is the SCSI Manager. The 
SCSI Manager controls all accesses to the SCSI port. Higher-level drivers interface to 
the SCSI Manager, allowing the SCSI Manager to take care of the low-level hardware 
aspects of controlling transactions on the SCSI bus. 

Terminal device drivers can Use the tty subsystem buffering structures and line 
discipline routines to handle data buffering in a consistent, structured way. Printers 
can also use the tty structures. These data buffering structures and routines are 
desaibed fully in Chapter 5, •Terminal Device Drivers." 
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Streams device drivers are a special implementation of character device drivers. You 
can implement a terminal device driver as a streams device driver. Streams device 
drivers also use certain kernel defined data structures. Streams device drivers are 
discussed in Chapter 6, and streams terminal device drivers are discussed in Chapter 
7. 

The rest of this chapter focuses on the character device drivers that are not terminal 
device drivers or streams device drivers. 
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The layers of a character device driver 
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The character device driver interface 
Each character device driver in the system must have a cdevsw structure associated 
with il Clbe cdevsw table is desaibed in •The Character Device Switch Table• seaion 
in Chapter 2.) The cdevsw structure contains pointers to driver routines that 
correspond to system calls. 

The cdevsw structures are stored in the cdevsw table. The kernel uses the major number 
to index into the cdevsw table and calls routines stored in the cdevsw structure at that 
index. The pointers to driver routines stored in the cdevsw structure are: 
• drlvernpen 

• driverclose 

• drlverread 

• drlverwrite 

• drlverioctl 

• drlverselect 

where driver is replaced by the device prefix for your driver. 

Your character device driver must provide routines for each entry in the cdevsw 
structure according to the needs of your device. For example, a printer device driver 
usually does not require a drlverread routine. Routines that your driver does not 
implement are assigned a default entry of either nulldev or nodev in the 
corresponding cdevsw structure entry by autoconfiq. 

In addition, your character device driver can provide two other entry points 
accessible by the kernel: 

• drlverint 

• drlver.i.nit 

The driver.int routine is used as an interrupt routine. The driven.nit routine is an 
optional routine your driver can provide to perform initialization funaions. These two 
routines are discussed in the seaions "Performing Initialization on a Device Driver" 
and "Handling Character Device Interrupts". 

The following sections desaibe the character device driver routines with entries in the 
cclevsw structure that correspond to system calls. Appendix A summarizes the 
interface each routine must supply, including parameters, calling sequence and return 
values. 
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Preparing a character device for 1/0 
The kernel calls the character device driver's open routine each time a user program 
makes an open ( 2) · system call on a character device file. The kernel extracts the 
major number from the device file and uses this number to index into the cdevsw 
table. The kernel calls the character device driver's open routine stored in the cdevsw 
structure at this index. 

The drlveropen routine 
The drivert)pen routine is used to get the device ready to perform VO. This 
preparation might include any initialization not performed by the drlver.i.ni t 
routine. Other functions are device dependent, but often include initializing data 
structures and setting the configuration of the device. 

The kernel calls the "'1vtm:>pen routine as follows: 

int driveropen (deu, flag, ndevp) 

dev_t dev,*ndevp; 
int flag; 

where 

• dev is the device number. The device number contains the major and minor 
number of the device file. A character device driver should check to see that the 
minor number passed to it as an argument is valid for the device being called. If 
not, the driver should return an error value to the kernel. 

• flag corresponds to the oflag parameter specified by the user in the open ( 2) call. 
(See open ( 2) in AIUX Programmer's Reference for a description of oflag 
values.) Specific values for the flag parameter are listed in the f _ f laq field of the 
file desaiptor data structure (in the header file <sys If ile. h> ). 

• ndevp is a pointer to a dev _ t, which is used in clone open operations for character 
devices. This parameter is used mainly by streams device drivers. 

• driver is the device prefix. 

The drlven:>pen routine is called with three parameters: dev, flag, and ndevp. The 
first parameter is the device number of the device me being opened. The drlveropen 
routine can use the kernel macro minor to extract the minor number from the device 
number. Your driver can encode the minor number with driver specific information. 
For example, when a driver is used to control more than one device, the minor 
number is usually encoded to indicate the device number or id number of the device. 
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Your driver can then use the minor number to identify the particular device to which 
the VO request is directed. Your driver can also set up arrays indexed by the minor 
number. Using the minor number in this way lets your driver keep track of which 
request is associated with a particular device. 

After you decide how to encode the minor number for your device and how your 
driver will use the minor number, remember to create the device file for your device in 
either an init script or startup script.CThe init and startup scripts are used with 
autoconfig(lM) and are described in Chapter 12). For example, a driver might use 
a certain bit in the minor number to allow the user to select the speed of the output 
device. Then you would need to create multiple device files in your init or startup 
script for each different speed setting. 

The flag parameter in the driveropen call corresponds to the ojlag parameter 
specified by the user in the open (2) call. 1be kernel translates the ojlagvalues of 
o_XXXXinto their corresponding flag values of FXXXX. For example, o_NDELAY 
becomes FNDELAY; O_RDONLY, O_WRONLY and O_RDWR are translated into two flags, 
FREAD and FWRITE. The flags of interest to a driver are FREAD, FWRITE, and 
FNDELAY. The action your driver takes if any of these flags are set is driver dependent. 
For example, if a user specifies o _ RDONLY, it is up to your driver to decide what a read 
only request means for your device. 

Your driver does not have to implement actions for any of these flag values. For 
example, the o _ NDELAY flag usually has meaning only for terminal type devices. 

When coding your driver, you need to decide whether you want your device fo be an 
exclusive open device or not. An exclusive open device means only one process is 
allowed to access the device at a time. For example, tape device drivers are usually 
exclusive open devices, in order to prevent the data of one user from becoming 
interwoven with that of another user. 

Typically exclusive open devices are implemented in the device driver by setting a 
flag, for example, DVROPEN. When the driveropen routine is called, the driver checks 
the value of this flag. If the flag is set, another process is using the device. In this case, 
the drtven:>pen routine refuses to grant access to the new request by returning an error. 

If the flag is not set, then another process is not using the device, so the driver sets 
DVROPEN. This process now has exclusive access to the device, until the flag is cleared. 
The flag is usually cleared by the driver in the drivelt:lose routine. 

After your driveropen routine performs any functions required by your device, return 
a value to the kernel indicating the success or failure of the open request. For example, 
if initialization did not succeed, you probably want to return an error and refuse to 
allow the user to gain access to the device. 

If your driver returns a nomero positive errno value to the kernel, the kernel returns a 
-1 to the user, and sets the global variable errno to the value returned by your driver. 
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If your driver returns zero indicating success to the kernel, the kernel marks the file as 
being open, and returns a ftle descriptor to the user process. The user process uses this 
file descriptor in subsequent read(2), write(2), close(2), ioctl(2), and 
select(2) calls on this device. 

The kernel also maintains a count of the number of times this device ftle has been 
opened, and increments this counter on each successful open(2) call. 

Closing a character device 
After a user process finishes all I/O requests on a device, the user process calls 
close ( 2) to relinquish access to the device. 

The kernel maintains a count of the number of times the file has been opened, and 
calls the driven: lose routine only if this is the last dose of the device file. The kernel 
implements this policy to prevent one user from d~ing a device while another user is 
still using the device. 

The driverclose routine 
The kernel calls drlvett:lose routine only on the last close of the device file; that is, if 
no other processes have the device open. 

The kernel calls the drtvm::lose routine as follows: 

void driverclose ( dev, flag) 
dev_t dev; 
int flag; 

where 

• dev is the device number. 

• flag corresponds to the flags from the oflag field of the open(2) system call. 
Specific values for the flag parameter are listed in the f flag field of the file 
descriptor data structure (in the header file <sys If il-;. h> ). 

• driver is the device prefix. 

The drtvm::lose routine is used to remove the connection between the user process 
and the device. The functions of a driverclose routine might include reinitializing 
driver data structures and device hardware. The drlven:::lose routine should do any 
necessary processing to make the device available to be opened later. 
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If the device is an exclusive open device, the drlven::lose routine typically clears any 
flags that were previously set to indicate the device was open. nus clearing of flags 
allows other processes to gain ac~ to the device. 

Reading from and writing to a character device 
The drlverread and drtverwr i te routines of character device drivers are called as a 
result of the read (2) and write (2) system calls respectively. 

The drlven:ead and drlverwrite routines of character device drivers have direct 
ac~ to the user's buffer. You decide what method of buffering to implement in your 
character device driver. 

The kernel passes two parameters to the drlverread and drlvenotrite routines: the 
device number and a data structure called the uio (user VO) structure. The uio 
structure describes the data transfer. 

Information in the uio structure includes a pointer to the user's buffer and the number 
of bytes to transfer. The kernel fills in the uio structure before calling the device 
driver. The uio structure is defined in <sys/uio. h> as follows: 

struct uio { 

struct iovec *uio-iov; 

int uio-iovcnt; 

int uio-offset; 

int uio-seg; 

int uio-resid; 

} ; 

where 

• uio-iov is a pointer to a buffer containing uio-iovcnt number of VO vectors. 
Each VO vector specifies the base (iov-base) and the length (iov-len) of one 
transfer. 

• uio-iovcnt is the number of VO vectors. 

• uio-offset is the current offset into the file. 

• uio-seg is a segmentation flag that can be either UIOSEG _USER (user space) or 
UIOSEG_KERNEL (kernel space). nus flag is only used by the kernel; your driver 
can ignore this flag. 

• uio-resid is initially set to the total si7.e of the transfer request. 

The iovec structure contains a pointer to the user's data and the number of bytes to 
transfer. The iovec structure is defined as follows: 
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struct iovec{ 

caddr_t iov-base; 

int iov-len; 

} ; 

where 

• icv-base is a pointer to the user's buffer associated with this VO veaor. 

• icv-len is the number of bytes to transfer forthe buffer pointed to by icv_base. 

Read(2) and write (2) requests use only one iovec struaure. An array of icvec 
struaures are only used in readv(2) and writev (2) system calls. The system calls 
readv (2) and writev (2) allow you to specify more than one buffer in a single read 
or write request. This pr~ is also referred to as scatter-gather VO. 

In scatter-gather 1/0, blocks of data to be written don't have to be contiguous in user 
memory. Also, when reading from a device into memory, the data comes from the 
device in a continuous stream, although it doesn't have to be placed in contiguous 
portions of user memory. A single icvec struaure is used to describe each contiguous 
area in memory. 

Your driver must keep the uic structure updated. Your driver can use uicmcve () to 
move data and to update the uic structure automatically. Or your driver can use 
physic ()to transfer data. Physic () also takes care of updating the uic structure for 
your driver. 

In addition, the kernel routines ureadc () and uwritec () can be called to move 
data one character at a time. If your driver doesn't use uicmcve (), physic () , 
urea de () or uwritec () , your driver must update the icvec and uic structures. 

The driverread routine 
The kernel calls the drlven:ead routine as a result of a read (2) on a charaaer device 
file. 

The drlverread routine is called as follows: 

int drlverread(dev, uto) 
dev_t dev; 
struct uic *uto; 

where 

• dev is the device number. 

• uio is a pointer to the uic struaure for the 1/0 request 
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• driver is the device prefix. 

The kernel invokes the drlven:ead routine with the device number and uio structure as 
parameters. The driver extracts the minor number from the device number (using the 
kernel macro minor) and typically uses this number to associate the request with a 
particular device. 

The uio structure contains all the information the driver needs to know about the 1/0 
request One of the fields in the uio structure contains a pointer to the user's buffer. So 
the driver can buffer the data according to the requirements of the device, or can 
directly transfer the data between the user's buffer and the device. 

The kernel provides two major routines to assist drivers in performing the I/O 
operation. Your driver can use the kernel routine physic () to directly transfer data 
between the user's buffer and the device. Your driver can use the kernel routine 
uiornove () to buffer data between the user's buffer and a device. These two routines 
are discussed in more detail in the sections "Data Transfers using physio ()"and 
"Data Transfers using uiornove () ". 

The driverwrite routine 
The kernel calls the drlverwrite routine as a result of a write(2) on a character 
device file. 

The drlvenirite routine is called as follows: 

int drlverwrite(dev, uto) 
dev_t dev; 
struct uio *uto; 

where 

• dev is the device number. 

• uto is a pointer to the uio structure for the 1/0 request 

• driver is the device prefix. 

The kernel calls the drlverwrite routine with the device number and uio structure as 
parameters. The driver extracts the minor number from the device number (using the 
kernel macro minor) and typically uses this number to associate the request with a 
particular device. 

The uio structure contains all the information the driver needs to know about the 1/0 
request. One of the fields in the uio structure contains a pointer to the user's buffer. So 
the driver can buffer the data according to the requirements of the device, or can 
directly transfer the data between the user's buffer and the device. 
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The kernel provides two major routines to assist drivers in performing the 1/0 
operation. The kernel routine physio () can be used by drivers that directly transfer 
data between the user's buffer and the device. The kernel routine uiomove () can be 
used by drivers which buffer data between the user's buffer and a device. These two 
routines are discussed in more detail in the following sections. 

Data transfers using physlo( ) 
Your character device driver can call the kernel routine physio () to perform raw 
VO (also referred to as physical 1/0). The term raw 1/0 or physical 1/0 is used to refer 
to a device driver that direaly transfers data between the user's buffer and the device. 

You call physio () from your drtverread or drlVenfrite routines. physio () takes 
care of many details of the 1/0 transfer, such as locking the user's buffer into memory, 
updating the uio structure, and unlocking the user's buffer when the transfer is 
complete. 

Your drlverread or drlVenfrite routines can call physio () with the following 
parameters: 

where 

physio (strat, bp, dev, ""' uto) 
int (*strat) O: 
struct buf *bp; 
dev_t dev; 
int nJJ; 

struct uio *uto; 

• strat is a pointer to the drlverstrateqy routine. This usually is the same 
drlverstrategy routine as used by the block device driver for this device. 

• bp is a pointer to a buf structure. The buf structure is described in detail in Chapter 
3. 

• dev is a device number that the drlverread or drlverwr i te routine was invoked 
with. 

• "" is a flag that indicates the direction to transfer the data. 

• uto is a pointer to the uio structure the drlverread or drlverwri te routine was 
invoked with. 
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physio () takes information from the uio structure, device number, and rw flag and 
translates it to equivalent information in the buf structure. physic ( ) locks the user's 
buffer in memory and calls drlverstrateqy, passing the buf structure as a 
parameter. Just as the uic structure fully specifies the VO request for the drlverread 
and drlverwrite routines, the buf structure contains all the information the 
drlverstrateqy routine needs to perform the VO. 

The drlverstrateqy routine can be the same routine as that used by a block device 
driver. Refer to Chapter 3 for more information on the functions of a drlverstrateqy 
routine. 

The drlverstrateqy routine simply schedules the VO and returns to the calling 
routine. The calling routine is the kernel when invoked as the result of a read ( 2) or 
write (2) on a block device fde. The calling routine is physic() when 
drlvemtrateqy is invoked as the result of a read (2) or write (2) on a charaaer 
device flle. 

The routine that calls drlverstrateqy has the responsibility of determining whether 
or not to wait for the VO request to complete. physic () always waits for the VO 
request to finish by calling bicwai t () . physic () passes the buf structure as a 
parameter to biowait ().The call to biowait () puts the user process to sleep until a 
corresponding call to biodcne () is made. Doing this means that when the VQ 
request completes and your driver interrupt routine is called, your interrupt routine 
mustwue a call to biodone () to awaken the user p~. 

When the transfer completes, your driver interrupt routine should set fields iii the bu f 
structure indicating information about the actual data transfer. Your driver interrupt 
routine should specifially set three fields in the buf structure: b error, b flags, 
and b_resid. - -

Your driver interrupt routine should set b_errcr to an errnc value and set B_ERROR 
in the b _ f laqs field if an error occurred in the VO transfer. Otherwise your driver 
should set b_error to 1.er0 to indicate the VO transfer was successful. 

The b_resid field should be set by your driver interrupt routine to the number of 
bytes not transferred for the VO request. If all bytes were transferred, set b _res id to 
zero. 

After setting appropriate fields in the buf structure, your driver interrupt routine 
should call bicdone () to awaken the user process; physic () will then continue to 
execute. physio () updates the uio structure according to information specified in 
the buf structure. If the uio structure indicates more data needs to be transferred 
(only true in the case ofa readv (2) or writev (2) system call), physic() again 
sets up the buf structure and invokes drlverstrateqy until all the VO vectors have 
been processed. 
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After the 1/0 transfer is complete, physio () updates the uio struaure and returns a 
value indicating the su~ or failure of the request phys io () returns whatever value 

· was specified in the b_error field of the buf structure.1bus you must be sure your 
driver interrupt routine sets this value properly. nus allows your drlverread or 
drlverwrite routine to check the retum value of physio () and interpret any error 
value accordingly. 

Using physlo( > to read from a device 

The following paragraphs present an example of the way a character device driver can 
use physio () to accomplish an 1/0 requesL Consider a SCSI tape driver called tc 
(for tape controller). Assume this driver provides the following high level routines 
accesslble through the c:devswtable: tc_open, tc_close, tc_read, 
tc write, and tc ioctl. In addition the tc driver contains an interrupt routine 
called t c _ ret. nus 'Parucular tape driver only allows one request per device. 

Assume a user process has already opened th.is device. nus example traces a read(2) 
request on the tape drive, from the user request, through the kemel and tape driver, to 
the device, and from the device back to the user process. ~ process is illustrated in 
Figure 4-2. 

When a user process issues a read ( 2) request to the tape, the kemel processes ihe 
request The kernel fills out the uio struaure related to the 1/0 request. For example, 
the kernel fills in the number of bytes to transfer and a pointer to the user's buffer. The 
kemel uses the major number to index into the cdevsw table and calls tc_read 

The kernel invokes tc_read wj.th the device number and a pointer to the uio 
struaure desaibing the 1/0 request tc_read checks the minor number to make sure 
this is a request to a valid device. 

tc_read uses a private buf structure. This data structure is the same buf struaure 
defined by the kernel, but note that th.is buf structure is not associated with the kemel 
buffer cache. nus buf structure belonp to the device driver. 

tc_read calls physio (),passing a pointer to tc_strateqy, a pointerto the uio 
struaure, the buf structure, the device number, and the rw (read/write) flag. 
physio () uses this information to fill in fields of the buf structure. For example, 
physio () fills in b dev with the device number, b flaqs with a value from the rw 
flag, b_un .b_acick with the ac::ldres,, of the user's tXifrer as specified in iov _base of 
the uio structure, and b _count with the length of the 1/0 transfer, as specified in 
iov_len of the uio struaure. physio () then calls tc_strategy. 

tc_strateqy is invoked with a pointer to the buf structure that describes the 1/0 
request. tc_strateqy uses information from the buf structure to build the 
appropriate SCSI command for the read request Then tc_strateqy calls a driver 
start routine,tc_start. 
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lhe ftow of a read(2) request on the example tc driver 
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tc start calls a SCSI Manager routine to start the 1/0 transaction. The SCSI Manager 
routine queues the request and reblrm to tc_start. tc_start then returns to 
tc_strateqy, which in bJm reblrm to physio (). 

physio () waits for the 1/0 to complete by issuing a call to biowai t () . biowai t () 
puts the user pr<><:e§ to sleep until a corresponding call to biodone 0 is issued. The 
kernel routines biowai t () and biodone () can be used by drivers to synchronize 
1/0, and are described in Appendix B. 

At this point, the 1/0 request has reached the hardware. After the I/O request has been 
accomplished (the requested data has been read from the tape drive), the SCSI 
Manager is notified. When the hardware finishes the transaction, the SCSI Manager 
notes which request has completed. The SCSI Manager maintains a data structure that 
associates requests with higher level drivers. The SCSI Manager calls the interrupt 
routine (tc_ret) of the higher driver associated with this request 

tc_ret is the interrupt routine of the tape driver. The SCSI Manager calls tc_ret 
when a request completes on the tape drive. The SCSI Manager passes an error code as 
one of the parameters to tc_ret. 11lis error code indicates the success or failure of 
the request If an error occurred, tc _ ret interprets the error code and decides how to 
handle the error. In this case, tc_ret sets b_error to an errno value, sets B_ERROR 
in b_flags, and sets b_resid accordingly. If the request was successful, tc_ret sets 
the b_error and b_resid fields in the buf structure accordingly. 

After setting fields in the buf structure, tc_ret calls biodoneO. The call to 
biodone () issued by tc_ret awakeM the ~that had been waiting on 1/0. 
physio () then continues to exewte and updates the uio structure from values set in 
the buf structure. physio () reblrm the value set in b error to tc read. tc read 
then flllishes any processing and reblms a value to the kernel indicating the success or 
failure of the 1/0 request The kernel then reb.lrm a value indicating the success or 
failure of the system call to the user. 

·Data transfers using ulomove( ) 
Your character device driver can call the kernel routine uiomove () to move data 
between the user's buffer pointed to by the uio strueblre and a private buffer used by 
your driver. uiomove () takes care of updating the uio structure, locking and 
unlocking the user's buffer in memory, and copying the data. 

Drivers that need to buffer the data transferred between the user's buffer and a device 
often call uiomove (). For example, a printer driver that needs to fonnat the data, 
expanding tabs and other characters, and adding device specific protocol, might call 
uiomove (). 
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Your driver can call uiomove () as follows: 

int uiomove (address, byte_count, flag, *Ulo) 

caddr_t add'feSs; 
int byte_count; 
int flag; 
struct uio •uto; 

where 

• address is the address of the buffer where data transfer will occur. 

• byte_ count is the number of byteS to transfer. 

• flag is either UIO _READ or UIO _WRITE, indicating whether to copy data into or out 
of the buffer specified by address. 

• uto is a pointer to the uio structure. 

If your driver calls uiomove ( ) , you must include as parameters the address of a 
private buffer belonging to your driver, the number of bytes to transfer, a pointer to 
the uio structure, and a flag indicating the direction to transfer the data. 

If your driver specifies UIO _READ in the flag parameter, data is copied from your 
driver's buffer to the user's buffer pointed to by the uio structure. 

If your driver specifies UIO_WRITE in the flag parameter, data is copied from the 
user's buffer pointed to by the uio structure into your driver's buffer. 

To use uiomove ( ) , your driver needs a private buffer into which to transfer data into 
or out of. You can allocate your own storage area in your driver, or you can call the 
kernel routine qeteblk ( ) to get a block of memory for your driver. 

Your driver can call qeteblk () , specifying the desired sii.e of memory to allocate. 
qeteblk () returns a pointer to a buf structure in the kernel buffer cache. The 
b _ un • b _ addr field of the buf structure contains a pointer to the base address of the 
requested sii.e of memory. 

Your driver can call qeteblk () as follows: 

struct buf* qeteblk(slze) 
int size; 

where 

• size is the requested sil.e of the buffer. 
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The memory allocated by geteblk () is actually a buffer from the kernel buffer cache. 
qeteblk () sets the B_BUSY flag in the b_flaqs field of the buf structure to indicate 
that the buffer is in use. Doing this gives your driver exclusive acceg to this buffer. 

When you call qeteblk () , you are really "borrowing" a buffer from the kernel buffer 
cache. For this reason, when your driver is finished using the buffer, your driver 
should return the buffer to the kernel buffer cache by calling brelse () . brelse () is 
a kernel routine that returns the buffer and buf struawe to the kernel buffer cache. 

Be aware that if no buf structures are available, geteblk () puts the calling process to 
sleep () until one becomes available. Thus, geteblk () must not be called in an 
interrupt handler. 

For a write (2), the "'*1erwrite routine first allocates a private driver buffer to hold 
the data. Most drivers call geteblk <) for this purpose. The driver then calls 
uiomove ( ) to copy the data from the user's buffer to the driver's buffer. If the driver 
called qeteblk () , the driver passes the address in the b _ un. b _addr field of the buf 
structure as one of the parameters to uiomove () . 1be driver then fonnats the data in 
the driver's buffer and sends the data from this buffer ti:> the hardware. 

After the hardware accomplishes the write request, the driver interrupt routine should 
call brelse () to return the buf struawe and buffer previously allocated by · 
qeteblk(). 

For a read (2) , the driver.read routine first makes a request to the hardware to read 
the desired number of bytes of data into the driver's private buffer. Most drivers call 
geteblk () to obtain a buffer to use for the 1/0 transfer. Then the a~ of this 
buffer is given to the hardware as the address to transfer data into. 

After the data has been transferred to the driver's buffer, the driver calls uiomove ( > 
to transfer the data from the driver's buffer to the user's buffer. After the data has been 
tr2mferred to the user's buffer, the driver should call brelse () to return the buf 
structure and buffer previously allocated by geteblk () . 

Performing control and miscellaneous functions on a 
device 
The ioctl (2) 0/0 controO system call provides a general entry point for device and 
driver specific commands. Your driver can use ioctl (2) to allow a process to set 
hardware device options, software driver options, or other driver dependent 
functions. 

The ioctl ( 2) system call is available for character device drivers only. Block device 
drivers do not provide a drlverioctl routine. 
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Parameters to the ioctl (2) system call are a file desaiptor, the command to be 
performed, and an argument to the command A user process invokes the ioctl (2) 
system call with the following parameters: 

where 

ioctl <ftldes, request, a'i> 
int fillies, request; 

• ftJdes is a file descriptor returned from a previous create (2), open (2), dup (2), 
or fen tl ( 2) system call. 

• request is a command that is driver dependent The value of this parameter often 
determines what the user should specify for the ~parameter. 

• Q18 is the address of an argument associated with the command The type and value 
of ~is driver dependent Most drivers pass an address of a structure, allowing 
various arguments to be specified in different fields of the structure. 

For example, to perform an ioctl ( 2) on the console to get the current tty state, you 
could use the following ioctl (2) command: 

ioctl(fd, TCGETA, &t); 

In this example, TCGETA is an ioct 1 ( 2) command supported by the driver, and & t 
is the address of a termio struaure. 

Refer to Section 7 of the AIUX System Adminstrator's Reference for a list of 
commands that individual drivers support in the request field of the ioctl ( 2) system 
call. You can also look in the header file <sys/ ioctl .h> for a list of various request 
parameters. 

To use the ioctl ( 2) system call in a user program, you must include the header file 
<sys/ ioctl. h> in the code for the user program. Remember that if you are defining 
new request parameters for your driver, you must include definitions of these values in 
a header fde. In addition, be sure to supply this header file to your users so they can 
perform ioctl ( 2) system calls on your device. 

The drlverioctl routine 
The drlver.i.octl routine is called as a result of a ioctl(2) on a character device file. 
You can use the drlver.i.octl routine to perform control operations on a device, to 
get status from the device, to change the configuration of a device, or for other device 
and driver dependent functions. Usually you use drlverioctl routines to perform 
miscellaneous activities such as rewinding a tape or ejecting a floppy disk. 

The kernel calls the drlverioctl routine as follows: 

Chapter 4: Character Device Drivers 4-19 



int driver.ioctl (dev, cmd, addr, mode) 
dev_t dev; 
int cmd, mode; 
caddr _ t addr: 

where 

• dev is the device number. 

• cmd is a command argument indicating the type of operation to be done. The value 
of cmd conesponds to what the user specified in the request parameter of the 
ioctl(2) system call. The specific value of cmd is driver dependent You define 
values for this parameter specific to your driver according to the directions given in 
a following paragraph. 

• addris the address of the arguments to the command. The kernel copies the 
argument specifted by the user into kernel memory and passes this address to the 
driver. This process allows the·driver to copy data freely into or out of the argument 
in kernel memory space. When the drlverioctl routine returns to the kernel, if 
any data is to be returned to the user in the arg parameter, the kernel copies the 
data from kernel memory to the user's buffer. 

The kernel is responsible for copying any data specified by the arg parameter 
bel.Ween the user's buffer and the driver in ioctl (2) system calls. This mean5 the 
driver does not have to invoke copy in ( ) or copyout () , although the driver may 
have to appropriately cast the address passed to it in the addr parameter ... 

• mode is an argument that contains values set when the device was opened. The 
driver can use mode to check whether the device was opened for reading or writing. 

• driver is the device prefix. 

The kernel invokes the drlverioctl routine with the device number, the mode, a 
command, and an argument that normally serves to pass parameters between a user 
program and a driver. The cmd parameter is defined as follows: 

tdefine cmd_name aa(x,y,t) 

where 

• cmd_name is the name of the command, such as TCGETA, I_PUSH, 
VIDEO_SIZE,orMOUSE_BUTTON. 

• aa is replaced by IO, IOR, IOW, or IOWR. The macros for IO, IOR, IOW, 
and_IOWRare fOOiidin-<sysfioctl.h>. The meanings for~val~es are as 
follows: 

_IO No arguments are passed between the 
user and the driver. 

_IOR The user ream information from the 
driver (the driver returns data to the 
user). 
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_IOW 

IOWR 

The user writes information to the 
driver (the user passes data to the 
driver). 

Data flows both from the user to the 
driver and also from the driver to the 
user. 

• xis a unique letter used by your driver to encode the 1/0 request 

• y is a number that distinguishes between various command parameters for your 
driver. 

• t indicates the type of the data structure that will be passed in the a'B parameter in 
the ioctl (2) system call. 

For example, the mouse driver encodes one of its cmd parameters as follows: 

#define MOUSE_BUTTON _IOR (M, 1, unsigned char) . 

This definition says that whenever a user specifies MOUSE_BUTTON in the request field 
of an ioctl (2) on the /dev/mouse device fde, the data structure in the arg 
parameter must be of type unsigned char. The _IOR indicates data is returned to 
the user in the a'B parameter (the mouse driver returns data). 

A user program could contain the following code to see whether the mouse button is up 
or down: 

tinclude <sys/ioctl.h> 
#include <sys/mouse.h> 
#include <fcntl.h> 
#include <errno.h> 

main() 
{ 

int fd, ret; 
unsigned char mousestate; 

if ((fd • open("/dev/mouse", O_RDONLY)) •• -ll 
{ 

printf("error in open,errno number: \d \n ",errno); 
exit (1); 

} 

if ((ret • ioctl(fd,MOUSE_BUTTON,&mousestate)) •• -1) 
{ 

printf(" error in ioctl,errno number: \d \n ",errno); 
exit(l); 
} 

if (mousestate •• 0) 
printf("the current mouse state is mouse up \n"); 
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if (mousestate •• 1) 
printf(" the current mouse state is mouse down \n"); 

} 

This program first performs an open(2) on the mouse device file" If the request is 
succes.sfuL the kernel returns a file desaiptor to the user" The user then performs an 
ioctl(2), passing the file desaiptor, the request name (MOUSE_BUTTON), and an 
argument as parameters" 1be mouse driver isinvoked with the device number, the 
command name (MOUSE BUTTON), and the address of the argument to the 
commando 

The address of the argument is actually a copy in kernel space of the argument 
specified by the usero This allows the driver to copy the state of the mouse button 
directly into this area of memory" After the mouse driver returns to the kernel, the 
kernel copies this data into the argument specified by the usero 

The user now has the 011Tentstate of the mouse button available inthemousestate 
variable" Ifmousestate is 0, the mouse button is down Ifmousestate is 1, the 
mouse button is up" Note that the state of the mouse button only applies to the moment 
when the mouse driver was invoked 

Checking a device for 1/0 (select) 
A/UX provides the select ( 2) system call to allow for synchronous VO 
multiplexing. A user process specifies which file desaiptors to check for their 
readiness to perform VO" 1be user process specifies whether to check each file 
descriptor for reading, for writing, or for exceptional conditions" 

Recall that the select (2) system call is invoked as follows: 

select (n/ds, read/ds, Wrllefds, exceptfds, timeout) 
int nfds, *read/ds, *Wrllefds, •exceptfds; 
struct timval *timeout; 

where 

read/ds, wrltefds, and exceptfds are bit masks where each file descriptor /is 
represented by the bit 1 <</. 
nfds is the number of file desaiptors checked, from the bits O through nfds-L 

timeout specifies whether the select (2) call should block or not" If the user 
specifies a non:zero pointer in this parameter, the pointer points to a timeval 
structure that indicates the maximum amount of time to wait for the selection to 
complete" If the user specifies the timeout as :zero, the select ( 2) call blocks 
indefinitely" 
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A file desaiptor is a value returned from a previous open ( 2) call, and corresponds to 
a particular device file. When a user calls select ( 2) , the kernel calls the 
dr1verselect routine associated with each file desaiptor. If two or more file 
desaiptors are associated with the same major number of a device, the kernel calls the 
drlvenselect routine multiple times, once for each file descriptor. 

In addition, if a file descriptor is being selected for more than one function,for 
example, for both reading and writing, the kernel calls the drlverselect routine is 
called twice: once specifying that the driver check the device for readiness to read, 
and again specifying that the driver check the device for readiness to write. 

Select (2) updates each file desaiptor mask (readfds, Wrlle/ds, exceptfds) to 
indicate which file desaiptors are ready, based on the value returned by each 
driverselect routine. 

The return value of select ( 2) indicates the total number of ready file desaiptors. If 
the time limit specified in timeout expires, select (2) returns zero. If an error occurs 
select (2) returm-1 to the user process. 

The drlverselect routine 
1be kernel calls the drlr.ienselect routine as follows: 

drlvenselect (deu, flag) 
dev_t dev; 
int jlag; 

where 

• deu is the device number. Your driver can use the minor macro to extract the 
minor number and determine which device the select request applies to. 

• flag specifies whether to check the deYice for readiness to read, write, or for an 
exceptional condition. The paramter flag is FREAD if the driver is to check if the 
device is ready for reading. Flag is !WRITE if the driver is to check if the device is 
ready for writing. Flag has the value 2Jero (0) if the driver is to check for an 
exceptional condition. 

If your device is always ready for reading or writing. you do not have to provide a 
dr1verselect routine. The cdevswentry for drlverselect can contain seltrue. If 
seltrue appears in the cx:levswentry for drlverselect, when a user invokes 
select (2) on the corresponding device, the kernel will return TRUE for that device, 
by setting the appropriate bit in the file desaiptor masks. 
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Performing initialization on a device driver 
Your driver can provide an initialization routine called drlverinit, where driver is 
the device prefix for your driver. During autoconfiguration, the kernel searches the 
object file of your driver for a routine with the name driver.I.nit. If the kernel finm 
such a routine, the kernel ack:W this information to a list of drlverinit routines to call. 

If the kemel does not find a drlverini t routine for your driver, the kernel simply 
procee& with initialization. You do not have to provide a drlverinit routine. 

If you do provide a drlverini t routine, the kernel will call your drlverini t routine 
during system initialization. However, you can specify to the kernel at what stage in the 
startup kernel code to invoke your drlverl.ni t routine. 

You do this by using the p opt flag in your master script file. Some of the options to 
this command specify whether to call this routine with interrupts disabled or enabled. 
Refer to Chapter 12 for a complete desaiption of the various options to this 
parameter. 

Typical functions performed in a drlverinit routine include initializing hardware, 
performing diagnostics, and any other code that is needed to make your device 
available to be used by the system. 

Handling character device Interrupts 
A driver must provide an interrupt routine for handling device interrupts. Exactly how 
and when interrupts are generated depends upon the device sending the intenupl For 
example, each slot device generates only one interrupt for all conditions. Thus, the 
way your driver handles interrupts also depends upon the device. 

How your driver handles interrupts also depends on the lower-level manager or low­
level code that your driver interfaces with. For example, to perform I/O on a SCSI 
device, your driver calls a SCSI Manager routine. One of the parameters to this routine 
is a pointer to a request block data structure. Your device driver must fill out one of the 
fields in this structure with a pointer to the interrupt routine of your device driver. 
1ben when the request completes on your device, the SCSI Manager can invoke your 
driver interrupt routine. 

Slot device drivers provide an interrupt routine called drlver.i.nt, where driver is 
replaced by the name of your driver. The interrupt routine of a slot device driver is 
defined during autoconfiguration. To add your driver to the kernel, you aeate a 
master saipt file. You specify the flags vs in the master saipt file to indicate that your 
driver is a slot device driver that receives interrupts. If you specify the flags vs in this 
.tile, autoconfiq(lM) will add the address of your slot device driver interrupt 
routine to the appropriate entry in the slot interrupt vector table. 
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When an interrupt occurs on your slot card, the kernel indexes the slot interrupt vector 
table and calls the routine stored at this address. The kernel passes a single parameter, 
called arqs (defined in <sys I req. h>) to slot device driver interrupt routines. The 
kernel fills out various fields of this struaure. In particular, the a_ dev field of the a rqs 
structure contains the slot number of the card that interrupted. This structure allows 
your driver to determine which of its slot arm interrupted. You can also use the slot 
number to determine the slot address space for the slot card. 

Refer to Chapter 12 for more information on the master saipt file and the 
autoconfiguration process. Refer to Chapter 9 for more information on slot device 
drivers. 
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Terminal devices are special types of character devices that accept, send, and process 
dara from an interactive terminal. They differ from other character drivers in that they 
perform semantic processing of dara and use special routines to buffer dara to and 
from a terminal device. 

The A/UX system provides a structured interface to many of the buffering structures 
and I/O operations of the terminal device driver . This chapter describes the dara 
structures that handle dara buffering and shows you how to write terminal device 
drivers that interface with these structures. 

You can also write terminal device drivers as streams device drivers. If you want to 
write a streams terminal driver, read Chapter 6, "Streams Device Drivers" and Chapter 
7, "Streams Terminal Drivers". This chapter foruses on traditional terminal device 
drivers that do not use streams. 

Buffering and control structures 
The buffering structures used to handle dara input and output t:J a terminal device are 
clists and cblocks, the ccblock structure, the tty structure, the line discipline, and 
the termio structure. 

The clist and cblock structures 
The basic terminal buffering structure is the cHst. A dist is the head of a linked list 
queue of character blocks called cblocks. Figure 5-1 shows the relationship between a 
dist and cblocks. 
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Rgure 5-1 
Cllst structure 
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The clist structure is as follows: 

struct clist { 

int c_cc; 

struct cblock *c_cf; 

struct cblock *c_cl; 

} ; 

where 

o c _cc is a count of all the characters in the dist. 

o c _cf is a pointer to the first cblocks in the dist 

o c _cl is a pointer to the last cblock in the dist 

The cblock structure is illustrated in Figure 5-2. Each cblock structure in the dist has the 
following form: 

struct cblock 

) j 

where 

struct cblock 

char 

char 

char 

*c_next; 

c_first; 

c_last; 

c_data[CLSIZE]; 

o c _next is a pointer to the next cblock on the dist 

o c_first is a pointer to the first character in the c_data array. 

o c_last is a pointer to the last character in the c_data array. 

o c _data is a 64 element character array that stores characters received from or 
sent to a terminal. 

Space for cblocks is allocated at boot time. 
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Figure 5·2 
Cblock structure 

Chapter 5 Terminal Device Drivers 5-5 



The ccblock structure 
The ccblock(character control block) structure points to a dist entry. The ccblock is 
defined as follows: 

struct ccblock 

caddr_t c_ptr; 

ushort c_count; 

ushort c_size; 

) ; 

where 

• c_ptr is a pointer to the character array (c_data) of the cblock. 

• c_count is the character count. 

• c_size is the size of the character array of the cblock. 

Both c_count and c_size are initially set to the size of the cblock character array. 
c_count is then decreased by the number of characters in the cblock character 
buffer. 1be number of characters in the buffer is the difference between c_size and 
c count. 

The tty structure 
Every terminal device in the system has one tty structure (defined in 
<sys It t y . h>) associated with it. This structure contains information needed to 
perform terminal VO. This information includes pointers to the raw, canonical, and 
output queues; and a pointer to a device driver command processing routine. The tty 
structure is as follows: 

idefine NCC 8 

struct tty { 

struct clist t_rawq; 

struct clist t_canq; 

struct clist t_outq; 

struct ccblock t_tbuf; 

struct ccblock t_rbuf; 
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} ; 

int ( * t _proc) () ; 

ushort t_iflag; 

ushort t_oflag; 

ushort t_cflag; 

ushort t_lflag; 

short t_state; 

short t_pqrp; 

char t_line; 

char t_delct; 

char t_term; 

char t_tmflag; 

char t_col; 

char t_row; 

char t_vrow; 

char t_lrow; 

char t _hqcnt; 

char t_dstat; 

short t_index; 

unsigned char t_cc[NCC]; 

struct proc *t_rsel; 

struct proc *t_wsel; 

struct ttychars t_chars; 

The first three structures, t_rawq, t_canq, and t_outq, are clists. The first clist 
structure, t_rawq, is the raw input queue. The t_rawq dist stores raw input data that 
the terminal's interrupt handler has caught and stored. The second dist structure, 
t_canq, is the canonical queue. This queue stores •cooked" input data, that is, data 
after the line discipline converts special characters in the raw dist (such as the erase 
and kill characters) into their canonical forms. These forms are called canonical 
because the input is processed in a predefined way before it reaches the queue. The 
third cliststructure, t _ outq, is the output queue used to store data that will be sent to 
the terminal. 
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t _ rbuf and t _ tbuf are ccblock structures. Both t _ rbuf and t _ tbuf contain 
pointers to clist entries.The t_rbuf, t_tbuf, t_rawq, t_canq, and t_outq 
struaures are comained in the tty structure, as shown in Figure 5-3. 
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Terminal . data structures 
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The tty strucn.ire fields that are important to someone writing a device driver are as 
follows: 

• t_rawq, t_canq, and t_outq are the raw, canonical, and output queues as just 
described .. 

• t_tbuf and t_rbuf are the device transmit and receive buffers, respectively. 

• t_proc is the address of the device driver's command processing routine (see 
•nie Driver Command Process Routine• given later in this chapter). 

• t_iflaq, t_oflaq, t_cflaq, and t_lflaq are the input, output, control, and 
line discipline modes, respectively (see termio(7) in the AIUX Programmer's 
Reference for definitions of these modes). 

• t state maintains the internal state of the device and the device driver. The state 
is a com~ite of one or more bits set in this 16-bit field The bit definitions are as 
follows: 

TIMEOUT A delay timeout is in progress. 

WOP EN The driver is waiting for an open to complete. 

ISOPEN The device is open. 

TBLOCK 1be driver has sent a control character to the terminal to block 
transmission from the terminal. 

CARR_ ON This is a software image of the carrier-present signal It is used with serial 
chips that supports modem control. For more about this bit, see •Modem 
Control• given later in this chapter. 

BUSY Output is in progress. 

OASLP The processes associated with the device should be awakened when output 
completes. 

IASLP The processes associated with the device should be awakened when input 
completes. 

TTSTOP Output has been stopped by a CONTROL-S character received from the 
terminal. 

EXTPROC A peripheral device is performing semantic processing of data. 

TACT 

CLE SC 

RTO 

TT I OW 

A timeout for the device is in progress. 

1be last character processed was an escape character {\). 

A timeout for a device operating in raw mode is in progress (An example 
would be if canonical processing is taking place). 

The process associated with the device is sleeping, waiting for the output to 
the terminal to complete. 
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TTXOFF Transmission to the terminal is suspended because a CONTROL-S was 
received from the terminal. 

TTXON Transmission to the terminal is enabled because a CONTROL-Q character 
was received from the terminal. 

• t _pqrp identifies the process group associated with the device. It is used to send 
signals to the process group. 

• t_line holds the line discipline type specified in the c_line element of the 
termio structure (a struaure that holds values used for ioctl (2) operations). 

• t_delct kee~ track of the number of delimiters found while performing semantic 
processing of data. 

• t_col records the current column position of the cursor on the terminal. 

• t _row records the current row position of the cursor on the terminal. 

• t_dstat can be used by the driver to record driver-defined states. 

• t_cc [NCC] is an array that holds the control characters specified in the c_cc 
member of the termio structure. 

The line discipline 
All character devices have a cdevsw struaure in the cdevsw table. The cdev5W struaure 
contains pointers to device driver routines corresponding to system calls. The kernel 
indexes into the cdevsw table and invokes the appropriate device driver routine stored 
in the character device driver's cdevsw struaure. 

A terminal device driver is invoked with the same parameters as other character 
drivers. Once invoked, however, terminal device drivers process the request in a 
different manner than other character device drivers. 

Terminal device drivers use the linesw struaure, which contains pointers to routines 
that manipulate character data and buffers. The routines in the linesw structure are 
collectively known as the line dJsdpline. After a terminal driver is invoked by the 
kernel, the terminal driver typically calls a line discipline routine to perform the 1/0 
request: 

The linesw structure is defined as follows: 

struct linesw ( 

int (*l_open) () ; 

int (*l_close) (); 

int (*l_read) () ; 

int (*l_write) (); 

int (*l_ioctl) () ; 
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int < * l_input l () ; 

int (*l_output) (); 

int (*l_mdint) (); 

} ; 

The linesw structure contains addresses of line discipline open, close, read, write, 
ioctl, input interrupt, output interrupt, and modem control routines. The line 
discipline routines maintain the clists, do input preprocessing and output character 
translation, and perform other terminal services (described in termio(7) in AIUX 
Programmer's Reference). The device driver only needs to control the 
communication line device, and to load and read the device registers. 

Line discipline 0 is the system default The routines for line discipline 0 are as follow: 

• ttopen 

• ttclose 

• ttread 

• ttwrite 

Open a terminal device 

Close a terminal device 

Read a terminal device 

Write to a tenninal device 

• ttioctl 

• ttin 

Perform device-dependent operations 

Handle terminal input interrupts 

• ttout Handle terminal output interrupts 

The t_line field of the tty structure contains the line discipline index into the line 
discipline switch table. This field can be a value other than 0 (for line discipline O) if 
you implement a protocol other than the system default. 

The termlo structure 
The termio structure (defined in <sys/termio .h>) holds values used for ioctl 
operations (such as when the stty command calls an ioctl routine to set terminal 
parameters). It has the following form: 

#define NCC 8 

struct termio{ 

unsiqned short c_iflaq; 

unsigned short c_oflaq; 

unsiqned short c_cflaq; 

unsigned short c_lflaq; 

char c_line; 

unsigned char c_cc[NCC]; 
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} ; 

where 

• c_iflaq is the input mode of the terminal. 

• c_oflaq is the output mode of the terminal. 

• c _ c fl aq is the hardware control mode of the terminal. 

• c_lflag is the local mode of the terminal. 

• c_cline is the line discipline for the terminal. 

• c_cc is an array of special control characters. 

For the specific values that can be set in these fields, see termio(7) in the~ 
Programmer's Reference. 

Reading from a terminal 
Reading characters from a terminal involves processes both at the user level and the 
hardware level. Figure 5-4 shows how a character is read from a terminal using the 
system default, line discipline 0. 
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Reading a character from a terminal 
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When the device hardware receives a character from a terminal, it interrupts the CPU, 
causing the device driver interrupt function to be entered. The character driver 
interrupt routine services the device hardware and transfers characters from the device 
to the receive buffer (t_rbuf) of the device's tty structure. Each character is checked 
for validity (parity), and start and stop characters (CONTROL-Q and CONTROL-S). If 
an invalid character is found, the read interrupt routine must take appropriate action, 
such as aborting the character transmission or asking for retransmission. It then calls 
the line discipline 0 input interrupt function, t tin, to transfer characters from the 
receive buffer to the raw queue (t_rawq). ttin also copies characters from the 
receive buffer into the transmit buffer (t_tbuf) and calls ttxput to echo them to the 
screen. 

If the number of characters in the raw queue exceeds a level called the high-water 
mark, t tin calls the device driver command process routine to send a stop 
character to the device to suspend input until the number of raw queue characters falls 
below a low-water mark. High-water marks vary according to the baud rate. (The 
ratio of the high-water mark to the low-water mark is roughly 9 to 1.) 

By suspending input, other processes can get blocks. When the raw queue character 
count exceeds 256 characters, ttin flushes the terminal input queues. If an stty 
character is found (see stty(l) for a description), ttin sends the appropriate signal 
to the process group associated with the device. If processes associated with the device 
are sleeping (during a call to ttread) and ttin finds a delimiter character, ttin 
awakens the sleeping processes.1be ttin function also takes care of echoing the 
characters input back to the terminal by putting them in the output queue as they 
arrive. 

When the terminal is operating in raw mode, the tty structure contains the number of 
characters needed and the amount of time waited before processes associated with the 
device are awakened. If the minimum character count has been met, t tin awakens 
processes associated with the terminal. If the character count has not been met and a 
time has not been specified, ttin calls timeout to awaken the sleeping process after 
the time period specified. 

After a user program calls the read(2) system call, the line discipline read routine, 
ttread, is called after a user has typed in a character. ttread first transfers the 
characters from the raw queue to the canonical queue and calls the canon routine to 
perform canonical processing of data as characters are transferred. If no characters 
are available, it sleeps on the address of the raw queue until characters become 
available. To do this, ttread checks if there are characters on the canonical queue. If 
no characters are found, ttread places characters from the raw queue onto the 
canonical queue. This process continues until the number of characters requested has 
been transferred (and if no errors occur). If a delimiter is found, the routine takes 
characters from the canonical queue and calls copyout () to move them to the user 
data space. 
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Before returning, t tread checks to see if input is blocked. If data transm.is.sion from 
the terminal has been blocked because the number of characters in the .raw input queue 
exceeded the high-water mark, and if the read has reduced the number of characters to 
below the low-water mark, t tread calls the device driver command process routine 
to resume transmission from the terminal. 

Writing to a terminal 
Writing characters to a terminal involves the output queue (t _ outq). A transmit buffer 
is used to buffer characters that will be written. Figure 5-5 shows how a character is 
written to a terminal using the system default, line discipline 0. 
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Writing a character to a terminal 
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After a user program makes a write(2) system call, the terminal driver write routine is 
ca.lled, which in tum calls the line discipline write routine. The line discipline 0 write 
routine is called ttwrite; this routine moves the characters to be sent to be output 
from the user data space to the output queue and calls t txput to output the contents 
of the transmit buffer to the terminal. If the output buffer is empty, the line discipline 
output routine is called to move characters from the output queue to the buffer. 

After a character is printed on the screen, an interrupt is generated that causes control 
to be passed to to the driver transmit interrupt handler. This interrupt indicates that 
the terminal is ready to accept another character for transmission. If the device 
doesn't generate transmit data interrupts, this routine should pause for as long as it 
takes a character to be transmitted between each character transmission. The driver 
write interrupt routine gets the characters from the transmit control buffer and places 
them into the device transmit register to output the next character. The driver then 
sends the next character in the transmit buffer to the device. The line discipline output 
interrupt routine is called to refill the transmit buffer with characters from the output 
queue. 

The parts of a terminal device driver 
The cdevsw routines found in other character device drivers are also found in a 
terminal device driver. (See Chapter 4 for general information about character device 
drivers). Unlike other character drivers, however, terminal drivers must provide 
pointers to line discipline routines that perform terminal-specific operations. These 
routines are described next. 

The open routtne 
1be open routine of the terminal device driver is invoked with two parameters: the 
device number and a flag value. Chapter 4 describes the general functions of a driver 
open routine. 

The terminal device driver open routine calls the following line discipline open 
routine: 

(*linesw[tp->t_line].l_open) (tp); 

tp->t_line is an index into the lineswtable.1be routine pointed to by the !_open 
entry in the linesw structure at this index is invoked. 

The line discipline routine establishes a connection between a process and a device, 
allocates a cblock for the receive buffer of the tty strucrure and calls a driver 
command process routine with arguments tp and T_INPUT. 

Chapter 5 Terminal Device Drivers 5-18 



( 

The close routine 
The cl~ routine of the terminal device driver is invoked with two parameters: the 
device number and a flag value.Chapter 4 describes the general functions of a driver 
close routine. 

The terminal device driver close routine calls the following line discipline close 
routine to close a device: 

(*linesw[tp->t_line].l_close) (tp); 

tp->t_line is an index into the linesw table. lbe routine pointed to by the !_close 
entry in the linesw structure at this index is invoked 

This line discipline routine transmits any characters in the transmit buffer (t_tbuf) 
to the terminal, clears all tty buffers and queues, resets the ISOPEN bit in the tty 
structure passed to it as an argument, and returns all used cblocks to the list of free 
cblocks. After calling the driver close routine, the terminal link disconnects and 
control returns to the calling program. 

The read routine 
The read routine of the terminal device driver is invoked with two parameters: the 
device number and the uio structure. lbe line discipline routines update the uio 
structure for the terminal driver, and take care of many other aspects of performing 
the 1/0. -

The terminal device driver read routine calls the following line discipline read 
routine: 

(*linesw[tp->t_line].l_read) (tp, uio); 

tp->t_line is an index into the linesw table. lbe routine pointed to by the !_read 
entry in the linesw structure at this index is invoked 

This line discipline routine performs canonical processing upon raw queue data, and 
then transfers the data to the canonical queue. After processing, data is transferred 
from the canonical queue to user data space. 

The write routine 
The write routine of the terminal device driver is invoked with two parameters: the 
device number and the uio structure. The line discipline routines update the uio 
structure for the terminal driver, and take care of many other aspects of performing 
the 1/0. 
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The terminal device driver write routine calls the following line discipline write 
routine: 

(*linesw[tp->t_line].l_write) (tp, uio); 

tp->t_line is an index into the linesw table. The routine pointed to by the l_write 
entry in the linesw struaure at this index is invoked 

This line discipline routine transfers characters from user data space to the output 
queue as long as the high-water mark isn't exceeded As characters are put on the 
output queue, processing is done to expand tabs, and add delays for newline, carriage 
return, and backspace characters. When the high-water mark is reached, the routine 
sleeps on the output queue a~. The line discipline write routine then calls the 
driver command process routine to initiate or resume output to the device. 

The Ioctl routine 
The device driver ioctl routine normally calls the line discipline routine ttiocom with 
the same arguments that the driver's ioctl function was called with.Driver ioctl routines 
set paramet~rs related to buffering and character processing. Two ioctl(2) · 
commands, TCGETA and TCSETA, are used to set up terminal characteristics in the 
termio structure and send these commands to the device. For example, your driver 
can enable the CONTROL-S and CONTROL-Q keys and set characters for erasing lines 
and interrupting programs. When your driver calls an ioctl routine, it is passed a 
pointer to a termio structure that the line discipline uses to read in the terminal 
parameters and to set up the terminal. 

The Input and output Interrupt routines 
After receiving an input interrupt, the device interrupt routine calls the line discipline 
input interrupt routine to process newlines, carriage returns, and uppercase characters 
(as specified in the tty structure); to place the converted characters in the raw queue; 
and to echo characters to the screen. The input interrupt routine also calls the driver 
process control routine to stop or restart input from the device, if necessary. 

The line discipline write routine calls the line discipline output interrupt routine to 
move characters from the output queue to the transmit buffer. This routine 
implements the actual timing delays needed during output. After detecting a delay in 
the output queue, the routine calls the kernel timeout () function to arrange for an 
entry after a specified time period has elapsed. This delayed entry invokes the driver 
command process routine to resume output 
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The modem Interrupt routine 
This routine is currently unsupported 

The driver command process routine 
The device driver must provide a command process routine (also called the proc 
routine) to process device-dependent operations. The t_proc member in the tty 
structure points to the command process routine for the line discipline routine that 
was initialized when the device was opened The command process routine has the 
following format: 

preftxproc(tp, cmd) 

struct tty *tp. 

int cmd; 

where 

• prefix is the device prefix. 

• tpis the address of the device's tty structure. 

f • cmd is an integer command, as described next. 

The commands are defined in <sys/tty. h>. For line discipline 0, cmdcan be one 
of the following: 

T_OUTPUT 

T TIME 

T SUSPEND 

Checks to see if the t _st ate member of the tty structure is busy or 
suspended. If so, T _OUTPUT does nothing. If t _state is not busy, 
the transmit control block is checked and, if empty, T_OUTPUT calls 
the line discipline output interrupt routine to move characters from 
the output queue to the transmit control block. A character is then 
output (if not done by the driver transmit interrupt routine) or 
t_state is set to BUSY. 

Notifies the driver that delay timing for a break, carriage return, or 
other character has completed. This command makes sure that a 
break signal is not sent to the device and falls through to T OUTPUT. 

Suspends output to the terminal (that is, a CONTROL-Q character has 
been received). T_SUSPEND sets the t_state member of the tty 
Structure to TTSTOP. T_SUSPEND is called when a user program 
invokes ioctl(2) with the command argument TCXON and the third 
argument equal to 0. 
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T RESUME 

T BLOCK 

T UNBLOCK 

T_RFLUSH 

T_WFLUSH 

T BREAK 

T_INPUT 

T PARAM 

Resumes output to the terminal. T _RESUME is called when a user 
program calls ioctl(2) with the command argument TCXON and the 
third argument equal to 1. Both T _RESUME and T _ WFLUSH fall 
through to T_OUTPUT. 

Blocks further inplt when the input queue reaches the high-water 
mark. T BLOCK turns off TTXON and turns on TTXOFF and TBLOCK 
in t_state. 

Allows further inplt when the input queue falls below the high-water 
mark. TTXOFF and TBLOCK are reset. 

Resets TTXOFF and TBLOCK if TBLOCK is set; otherwise, T_RFLUSH 
does nothing. The purpose ofT_RFLUSH is to flush pending input (if 
any). 

Clears all characters from the transmit buffer. 

Sends a 0.25 second break to the device. T_BREAK sets TIMEOUT in 
t state and calls timeout with a value of ttrstrt as the function 
USument. T _BREAK is called when a user calls ioctl{2) with 
TCSBRK as the command argument and 0 as the third argument. 

Prepares a device to receive input T_INPUT is called by the line 
discipline 0 ioctl routine when the line discipline changes. The 
conu:nand processing routine makes sure that the device can accept 
input. 

Notifies the driver that the device parameters have changed and that 
the parameter setting routine should be called to change hardware 
settings. 

Modem control 
Modem control is an optional feature that allows a driver to acknowledge signals on a 
serial line. Normal terminal operations occur on a direct connect line where the 
carrier signal is unimponant For modem operations, such as for a dial-in line, a 
driver must be able to detect changes in the carrier signal. 

For modem control to exist, the serial controller hardware must support the feature. If 
your system's serial board generates a modem control interrupt, a drop in the carrier 
detect is easily seen as a hang-up. For boards without modem control interrupts, the 
driver must use timeouts to poll the device for state changes. 

To accomplish modem control,the following ioctls are provided. Note that not all 
devices support any or all of them. UIOCTTSTAT is always supported for those devices 
that support modem control. 
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UIOCTTSTAT This ioctl returns 3 byteS. The first byte is 1 if UIOCMODEM is enabled 
and is 2 ifUIOCEMODEM is enabled. The second byte is 1 if 
UIOCDTRFLOW is enabled. The third byte is 1 if UIOCFLOW is 
enabled. 

The default is UIOCMODEM/UIOCNOFLOW. These ioctls are 
•remembered• when a device is closed,and then reopened. The 
following four ioctls are mutually exclusive. (Here DCD is the input 
and DTR is the output). 

UIOCMODEM Mcxlem control (DTRIDCD) is enabled. DCD is required before a 
device can be opened If removed, the device is •hung up•; upon 
opening, DTR is asserted. 

UIOCNOMODEM Modem control is not enabled. DTR is still asserted, but DCD is 
ignored and device open operations always complete without waiting. 

UIOCDTRFLOW DCD (on some printers this is the DTR line) is used for flow control. 
DCD must be asserted before charaaers can be transmitted. 

UIOCEMODEM European-style mcxlem control (DTR/DCD/RI) is enabled. OCD is 
required before a device can be opened. If removed, the devic;e is 
•hung-up•; upon opening the device, DTR is not asserted until an RI 
input is detected. 

The following ioctls are a1so included. In these ioctls, RTS iS the 
output and crs is the input They are mutually exclusive. 

UIOCNOFLOW Hardware flow control is disabled. RTS is asserted before transmitting 
data (or it is asserted continuously). crs is ignored. 

UIOCFLOW Hardware flow control is enabled. R'I'S is asserted before transmitting 
data. crs must be asserted by the other end before transmission can 
begin (which is required for every character). 
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In this chapter, you'll learn how a stream passes information from a user process to a 
device. You'll also learn about parts of a stream, Streams modules and drivers, and 
the data structures needed to operate in a Streams environment This chapter is not 
intended to be a complete reference for all Streams tools and facilities-rather, you 
should use it as an introduction to the most important features of streams drivers. 
Before you write a Streams device driver, you should read the Streams Programmer 
Gulde by AT&T. 

To help you write Streams-based tenninal drivers, A/UX provides the ttx library, a 
set of kernel support routines. With this library, writing a Streams terminal driver is 
similar to writing a traditional character device driver. You can find details about this 
library in Chapter 7. For a list of differences between AT&T's System V Release 3 
Streams and the version supported by A/UX (System V Release 2.1), see Appendix F. 

What is Streams? 
A stream is a full~uplex processing and data transfer path between a driver in kernel 
space and a process in user space. Streams is a c-0llection of system calls, keme,1 
resources, and kernel utility routines that can create, use, and dismantle a stream. 
Streams defines standard interfaces for character input/output within the kernel, and 
between the kernel and the rest of the A/UX system. To implement these interfaces, a 
set of system calls, kernel resources, and kernel routines are provided. 

By having a standard interface and mechanism, drivers can be modular and portable 
with easy integration of high-performance network services and their components. A 
set of library routines and facilities provides buffer management, flow control, 
scheduling, multiplexing, and asynchronous operations of streams and user 
processes. One advantage of Streams drivers is that you can insert modules into a 
stream to process data that passes between a user process and the driver. Streams is 
upwardly compatible with the character VO user interface; thus, it's better to write 
Streams drivers instead of standard character drivers. 
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Parts of a stream 
A stream has three parts: 

• a stream head 

• optional modules 

• a stream-end (which contains the driver) 

Data. in a stream is said to travel downstream from the stream head to the stream end 
or upstream from the stream end to the stream head Streams passes data through a 
stream in the form of messages, which are linked ~age blocks consisting of data. 
structures and a buffer block. 

A stream is shown in Figure 6-1. 
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View of a stream 
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The stream head provides the interface between the stream and the user process. Its 
main function is to process Streams-related user system calls. It is an integral part of 
the kernel. 

A moclu1e processes data that travels between the stream head and driver. A stream 
can contain 7.ero or more modules, each of which is associated with two queue 
structures (described later in this chapter). 

The stream end is the part of the stream closest to the external device interface. The 
stream end contains the Streams driver, which is a. special type of module. 

Building a stream 
A stream is initially constructed when a user proces.5 makes an open(2) system call 
referencing a Streams special ftle. This call causes a kernel resident driver to be 
connected with a stream head to form a stream. Subsequent ioctl(2) calls select 
kernel resident modules and cause them to be inserted into the stream. 

The first step in building a stream is creating a minimal stream containing a stream 
head and a Streams driver. This step takes place by allocating and initializing head and 
driver structures (which is done automatically when the Streams driver is opened, 
linking modules to form a stream and calling the driver open routine). The second 
step in building a stream is to add optional modules, if any, to the stream. (Another 
term for adding a module is push; removing a module is known as a pop.) Modules 
are added in last-in-first-out order. 

Streams modules and drivers 
A Streams module is a pair of queues that are used to perform intermediate 
proces&ng on messages flowing between the stream head and the driver. One queue is 
used to perform functions on messages passing upstream through the module, and the 
other queue is used to perform functions on messages pwing downstream through the 
module. A module can function as a communication protocol, a line discipline, or a 
data filter. 

A Streams driver is the stream end, which is the closest end to the external device 
interface. A Streams driver can be a device driver or a software driver called a pseudo­
devtce driver. Like a module, a driver is composed of two queues, but a driver has 
additional attributes in a stream and in the operating system. The principal functions 
of a device driver are device handling, and transforming data and information that 
pass between the external interface and a stream. 
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There are two significant differences between modules and drivers. First, a device 
driver must be accessible from an interrupt and from the stream. Second, a driver can 
have multiple streams connected to it Multiple connections occur when more than 
one minor device uses the same driver. Drivers occupy a file system node and can be 
opened like any other device. Modules, on the other hand, don't occupy a file system 
node, but are identified through a separate naming convention and are inserted into a 
stream in last-in-first-out order. Because modules aren't associated with processes, 
they can't gain access to infonnation in the u-dOL The only system calls that modules 
and drivers can interact with direaly are open{2) and close(2). 

Data structures 
The following data structures provide the Streams driver interface to the operating 
system: 

• streamtab 

• qinit 

• module_info 

These need to be set up o.qce for each driver (not once for each device). They refer to 
each other as well as to the routines that are called to perform the various stre~ 
functions. The streamtab data structure must be declared external because it is 
referenced externally and all the data structures are accessible from it. The other data 
structures are declared static. 

The streamtab structure contains pointers to the driver's read and write qini t 
structures. The qinit structure contains a pointer to the put, service, open, and close 
procedures. module_info contains a pointer to the processing procedures. 

Messages 
Streams passes data between a driver and the stream head in the form of messages. A 
.message consists of one or more message blocks. These message blocks can be linked 
and placed in a message queue. When several message blocks make up one message, 
the type of the first block detennines the message type and contains links to the 
preceding and next message blocks. · 
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Streams maintains its own message storage pool. Messages are allocated as single 
blocks, each of which contains a data buffer of a certain size. If processing causes the 
data in a message to exceed the buffer size, the procedure can allocate a new message 
containing a larger buffer for it, or it can allocate a new message that holds the new 
data and links the two messages together. Use the allocb utility to allocate message 
storage from the Streams pool. ('lbese utility routines are described in AT&T's 
Streams Programmer Gulde). This utility returns a message block containing a buffer 
of the size requested (or larger) or NULL, if the request fails. You can specify the level 
of message pool priority (BPRI_HI, BPRI_MED, and BPRI_LO) to let you better 
allocate Streams memory resources. 

When dealing with messages and message queues, a driver should always use the 
Streams utility routines described lacer in this chapcer. To make it easier to push 
modules arbitrarily on the stream, modules shouldn't require the data in an M _DATA 
message to follow a particular format, such as a specific alignment. A module 
shouldn't change the contents of a data block referenced by other modules. Use the 
copymsg utility to copy the data to a new block. 

Message types 
Each messages has a def med message type that identifies the contents of the message. 
The message type is a def med set of values identifying the contents of a message 
block and message. Modules and drivers can generate most of these message types. 
There are two levels of message queuing priority: priority and ordinary. When a 
message is queued, the putq utility places priority messages first-in-first-out at the 
head of the message queue. Priority messages are not subject to flow control, so their 
associated queue is always scheduled. Ordinary messages are placed in the message 
queue after priority messages. 

The most commonly used types are as follows: 

• M_DATA contains ordinary data. 

• M_PROTO contains incemal control information and associated data. 

• M_PCPROTO is like M_PROTO, except for priority differences and additional 
attributes . 

• M_IOCTL contains an ioctl request. 

• M_IOCACK andM_IOCNAK contain a reply from an ioctl. 

(For a complete list and descriptions of all the message types, see AT&T's Streams 
Programmer Guide.) 

M_DATA messages are generally sent bidirectionally on a stream, and their contents 
can be passed between a process and the Stream head. The allocb routine creates 
M_DATA messages by default. (For more information, see•utility Routines" given later 
in this chapter.) 
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M_PROTO and M_PCPROTO messages carry service interface information among 
modules, drivers, and user processes. These messages are sent bidirectionally on a 
stream and their messages can be passed between a process and the stream head An 
M_PROTO message block typically contains implementation-dependent control 
information. The contents of the first message block is the control part, and any 
followingM_DATA message blocks are the data part. M_PCPROTO has the same format 
and characteristics as M_PROTO, but is called a priority message and is not subjea to 
flow control. This means that when an M_PCPROTO message is placed on a queue, its 
service routine is enabled. Only one M_PCPROTO message can be in the read queue at 
a time; if another message arrives, it is discarded and its message blocks freed 

Proces$1ng message blocks 
A process sends and receives charaaers on a stream using wri te(2) and read(2) 
system calls. When user data enters the stream head or external data enters the driver, 
the data is placed into message blocks for transmission on the stream. For upstream 
processing, these message blocks are transferred to the stream head, which extracts 
and copies the contents of the message blocks to user space. For downstream 
processing, the stream head copies data from user space to message blocks, which are· 
sent to the driver. 

Message structures 
Two message structures are contained in a message block: 

• msgb, the message block 

• datab, the data block 

The msgb data structure links messages on a queue, links message blocks together, and 
manages read and write operations for the associated buffer (the data block). This 
struaure contains pointers used to locate the data currently contained in the buffer. 

The datab data structure points to the data block, which contains the message type, 
buffer limits, and control variables. This structure has pointers to the fixed beginning 
and end of the buffer. 

Queues 
A queue is a data structure that is associated with a statically compiled module. 
Queues always come in pairs-one queue is for upstream (read) processing and the 
other is for downstream (write) processing. Figure 6-2 shows two modules, each of 
which consists of two queues. 
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Upstream and downstream queues 
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Each of the two queues are operated on independently from the other, so each can 
have different processing functions and data. As shown by the directional arrows in 
Figure 6-2, queues have direct access to the adjacent queue in the direction of message 
flow. A queue also has access to its mate's ('lipWeam or downstream queue) messages 
and data. 

A queue can contain or point to messages, proces8ing procedures, or data. Messages 
are dynamically attached to the queue on a linked list as they pass through the module. 
A queue typically contains put and service routines (see 9'Ibe Put Routine• and "The 
Service Routine• in this chapter), a message queue, and a private data area. 1be read 
queues in a moduie also contain the open and close procedures for the module. A 
developer may choose to provide private data if required to perform message 
processing (for example, state information and translation tables). 

Three data strudWes form each queue: 

• queu~ _ t is the primary structure, which containS various modifiable values for the 
queue. Only the contents of q_ptr (pointer to a private data structure), q_minpsz 
(minimum packet si7.e accepted by this queue), q_hiwat (message queue high­
water mark), and q_ low at (message queue low-water mark) can be modifie<:l 

• qini t is a pointer to queue-processing procedures. A single common qini t 
structure pair is shared among all the queue pairs opened from the same cdevsw 
entry. All modules and drivers with the same streamtab (that is, fmodsw or 
cdevsw entry) point to the same upstream and downstream qini t structure or 
structures. This module is read-only. 

• module_info contains identification and limit values. All modules and drivers 
with the same streamtab point to the same upstream and downstream 
module_info structure or structures. This module is read-only; however, the four 
limit values are copied to queue_t, where they can be modified. 

Driver flow control 
Flow control is the Streams mechanism that regulates the flow of messages within a 
stream and the flow from user space into a stream. 

To control downstream (write) flow, you can set flow control values (mi_hiwat) and 
(mi_lowat) in the downstreammodule_info structure. Streams then copies this 
information into the q_hiwat and q_lowat fields in the queue structure of the queue 
to set high-water and low-water marks. \Vhen a message is passed to the downstream 
put procedure, this procedure determines whether the device is busy. If so, it calls 
putq to enqueue the message. putq checks to see if the enqueued character count 
exceeds the high-water limit and halts message transmission until the count falls below 
the low-water mark (q_lowat). 
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Upstream (read) flow control is done with the noenable and qenable utilities. 
noenable disables the driver read service procedure. Messages are sent if the driver 
input interrupt routine determines that messages can be sent upstream. Otherwise, the 
message is enqueued until the queue becomes unblocked. qenable allows a module 
or driver to be scheduled 

An example of how to use these two routines would be a buffer module that calls 
noenable to inhibit its service procedure and its put procedure to enqueue 
messages until a certain byte count or time has been reached. Then the module could 
call qenable to gather messages in its.message queue and forward them as a single, 
larger message. 

Utility routines 
Streams provides a number of utility routines that you can use to write your Streams 
driver. The following list describes the function of and arguments to each of these 
routines. For a complete description of each routine, including calling sequence and 
parameters, see AT&T's Streams Programmer Gulde. 

Utility Fune Hon 

allocb 

backq 

canput 

copyb 

copymsg 

dubp 

dupmsg 

flushq 

Allocate a message block. The arguments to this routine are the 
minimum size of the data buffer and the priority of the allocation 
request. 

Get a pointer to the previous queue. The argument to this routine is a 
pointer to the current queue. 

Test for room in a queue. The argument to this routine is a pointer to 
the queue to be searched. 

Copy a message block. The argument to this routine is a pointer to the 
message block to be copied 

Copy a message. The argument to this routine is a pointer to the 
message block to be copied 

Duplicate a message block descriptor. The argument to this routine is 
a pointer to the message block descriptor to be duplicated. 

Duplicate a message. The argument to this routine is a pointer to the 
message to be duplicated. 

flush a queue. The arguments to this routine are a pointer to the queue 
where meMage queue resides and a flag indicating what type of 
messages will be flushed. 
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freeb 

freemsg 

getq 

linkb 

msgdsize 

OTHERQ 

putbq 

putctl 

putctll 

put next 

putq 

qenable 

qreply 

qsize 

Free a message block. The argument to this routine is a pointer to the 
message block descriptor to be freed. 

Free all message blocks in a message. The :argument to this routine is a 
pointer to the message containing message blocks to be freed. 

Get a message from a queue. The argument to this routine is a pointer 
to the queue containing the message to be removed 

Concatenate two messages. The argument to this routine are pointers 
to the two messages to be concatenated. 

Get the number of data byteS in a message. The argument to this 
routine .is a pointer to the message containing data byteS to be 
returned. 

Get a pointer to the mate queue. The argument to this macro is a 
pointer to a queue (read or write) whose mate queue pointer is 
returned. 

Return a message to the beginning of a queue. The arguments to this 
routine are pointers to a queue where the message will be returned and 
to the message itself. 

Put a control me,,sage. The arguments to this routine are a pointer to a 
queue where the put procedure is located and the control message 
type. 

Put a control message with a 1-byte parameter. The arguments to this 
routine are a pointer to a queue where the put procedure is located, 
the message type, and a 1-byte parameter. 

Put a message to the next queue. The. arguments to this macro are a 
pointer to the calling queue and a pointer to the message to be 
passed. 

Put a message on a queue. The arguments to this routine are a pointer 
to the queue where the message queue is located and a pointer to the 
message to be put on the· queue: 

Enable a queue. The ar8ument to this routine is a pointer to the queue 
to be enabled. 

Send a message to a-stream in the reverse direction. The arguments to 
this routine are a pointer to the originating queue and a pointer to the 
message to be senL 

Find the number of messages in the queue. The argument to this 
routine is a pointer to the queue where the messages are located. 

Get a pointer to the read queue. The argument to this routine is a 
pointer to the write queue in the same module. 
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rmvb 

splstr 

unlinkb 

WR 

Remove a message block from a message. 1be argument to this 
routine are a pointer to the message block and a pointer to a message. 

Set processor level. There are no arguments to ~ routine. 

Remove a message block from the message head 1be argument to 
this routine is a pointer to the first message block. 

Get a pointer to the write queue. The argument to this routine is the 
read queue pointer. 

Streams device/module routines 
The following routines are found in every· Streams device driver or module. 

The open routine 
1be device o~ routine is called every time a process opens a device. This causes a 
kernel resident driver to be connected With a stream head to fonn a stream. A stream is 
created on the fust"open(2) system call made to a character special file corresponding 
to a Streams driver. A driver open routine has user context, so it can gain access to the 
u-dot and may call sleep () , although it must always return to the caller. In Streams 
open routines, all sleeps must be done with the PCATCH option (see sleep(kemel) in 
Appendix B). If the sleep returns, then the open routine should return failure. 

The close routine 
The last close ( 2) system call dismantles the stream and closes the file. Dismantling 
consists of popping any modules on the stream, and closing the driver and the file. 
The close routine can delay before popping any modules to allow any messages on the 
module's write message queue to be drained by module processing. On return from 
the driver close routine, any message left on the driver's message queues are freed, 
and the queue_ t and header structures are deallocated. Like the open routine the 
driver close routine has user context, so it can gain access to the u-dot and may call 
sleep, although it must always return to the caller. 

1be close routine doses a device. It is called when the last process that has the device 
open closes it. Note that this routine is called once, while the open routine is called 
many times. 

Note: Streams frees only the messages contained on a message queue. The driver close 
routine must free any messages used internally by the driver. 

Chapter 6: Streams Device Drivers 6-13 



The put routine 
A queue's put routine receives messages from the preceding queue. It provides the 
only entry point into one queue from a preceding queue. This routine first receives a 
message, does optional processing on it, then calls the putq utility. putq places the 
message on the tail of the message queue, schedules the queue for exea.ition, then calls 
the service routine. 

Put routines are generally required in pushable modules and there should be separate 
routines for upstream and downstream processing. Each queue must define a put 
routine in its qini t structure for passing messages between modules. A put routine 
must use the putq utility to enqueue a message on its own message queue. This is 
needed to maintain the fields of the queue_t structure consistendy. 

Put routines must never sleep because they have no user context. 

The service rO:uttne· 
A queue's optional service routine receives messages queued by the put routine. The 
main purpose of a service routine is delayed processing. It must be present for flow 
control. · 

The service rou~ gets the first message from the message queue with the getq utility, 
processes the message and passes it to the put procedure of the next queue with 
putnext. This processing continues in a first-in-first-out basis until the queue is empty 
or flow control blocks further processing, after which the service routine returns to the 
calling program. Service routines are optional. 1bey have no user context, so they 
must never call the kernel sleep routine. A service routine must return to the caller 
after execution. 

1be service routine must use the Streams getq utility to remove a message from its 
message queue. The. service routine should process all messages on its message queue 
unless the stream is blocked To process a message, a service routine must do the 
following: 

1. Remove the next message from the message queue using getq. If there is no 
message, return. 

2. If the canput utility, fails, this is not a priority message, and the message is to 
be put on the next queue, then go to step 3. Otherwise, go to step 4. 

3. Replace the message using putbq, and exit the service procedure. Flow 
control will back-enable the service procedure. Back-enable is desaibed later 
in this section. 

4. Process the message as necessary and return to step 1. 
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Queues have both high-water and low-water marks. The high-water mark is the 
maximum number of messages that can be put on a queue (say qf). The low-water 
mark is the level at which a queue can begin to schedule new messages. After the high­
water marlc for ql is reached, new ~ages are put on another queue (q2) and the 
canput routine retwn.s 0. This routine also sets a flag in ql so.when its low-water mark is 
reached, q2 will be scheduled for service. This process is known as a back-enable. 

The put and service procedures give your driver rapid response along with queueing 
functions. The put procedure allows rapid response.to certain data and events such as 
software echoing of input characters, because it is granted a higher priority than 
schedules service routines. Queueing defers processing of the service procedure until 
all queues are processed. Service routines allow p~ing time to be more evenly 
spread between multiple streams. 

Streams scheduling 
When a message is placed on an empty queue, it is scheduled. This means that its 
service routine will be called in the near future after all interrupts are serviced and the 
processor is running at processor level spl 0. Service routines have no process. 
context. Other ways to schedule a queue are by means of the qenable routine and by 
back-enabling from flow control. 

Cloned devices 
A cloned device is a Streams device that returns an unused minor device number when 
initially opened, rather than requiring the minor device number to be specified in the 
open(2) call Coned devices can be useful when a user p~ wants to connea a new 
stream to a driver, regardless of which minor device is opened. To help your driver 
open a cloned device, Streams provides the clone open facility. The clone driver (see 
clone(?)) is a system-dependent Streams pseudo-device driver. 

When an open(2) system call is made to a cloned device's Streams file, open causes a 
new stream to be opened to the clone driver and the open procedure in the clone to be 
called. 

A cloned device has a major number corresponding to the clone device driver and 
minor number corresponding to the major number of the target driver. 
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This chapter describes how to write a Streams-based terminal driver. In particular the 
chapter describes how to use a group of A/UX kernel routines called the t tx library. 
The purpose of these routines is to make Streams terminal drivers work like traditional 
character drivers. The main difference between traditional character drivers and 
Streams drivers is that Streams drivers deals with messages and queues, rather than 
cbloclcs and clists. 

if you wish, you can write your own Streams-based terminal driver. The advantage of 
using the t tx library package is that it provides almost all the Streams interfacing 
code, so it makes writing a Streams terminal driver that much easier. 

Note: The ttx library is not a generic part of a Streams driver. If you wish to write a 
driver that is portable to other systems, you must not use this subroutine library. For 
general information about writing standard Streams drivers, see Chapter 6. 

At the end of this chapter you'll find a skeleton Streams driver that you might want to 
use as a guide for writing your own driver. 

Streams line discipline 
Streams is a mechanism that provides a way of controlling how information is 
processed on its way to and from devices. For ITY-style devices (such as terminals), 
this controlling mechanism is normally done using the Streams module line, which is 
actually a line discipline. The line processes characters as they are sent to and from a 
terminal. It provides· functions such as: 

• echoing 

• erase and kill processing 

• flow control 

• ioctl(2) processing (see termio(7)) 

• character editing (for example, turning carriage returns into line feeds) 

In traditional character drivers, both the driver and the line discipline perform these 
functions. In Streams terminal drivers, however, the driver is specifically responsible 
for output flow control (recognizing XON/XOFF) and ioctls from termio(7) that 
directly affect the device (in particular, the parts that control things like baud rate, 
parity, number of stop bits, and character size). · 

The line discipline does the rest The two parts differ because the driver must be able 
to operate without the line discipline being present on the Stream. This structure 
allows greater efficiency in operations that don't require the line discipline. A 
Macintosh II device without a line discipline module pushed onto it is said to be 
operating in raw or uncooked mode. 
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Communicating with the line discipline is done by passing messages back and forth 
along the queue. Because the code to do this is the same for all charaaer devices, the 
t tx library has been written to make it easier to write a Streams driver. Thus, you don't 
have to know about Streams in order to write a Streams terminal driver-you just have 
to know how to use a basic skeleton driver. 

Data structures 
As mentioned in Chapter 6, the streamtab, qinit, and module_ info data 
structures provide the driver interface to the operating system. 'Ibey are set up once 
for each driver and reference each other, as well as the routines that perform various 
Streams functions. Remember that the following struaures must reference the Streams 
put and service routines: 

ttx_rsrvc 

ttx_wputp 

ttx_wsrvc 

Streams read service routine 

Streams write put routine 

Streams write service routine 

The reference to the Streams read put routine should be NULL. You must also add the 
addresses of your driver's open and close routines. 1he streamtab data structure 
must be declared extern because it is referenced externally and all the data structures 
are accessible from it. The other data structures shouJd be declared static. 

The open and close routines are the only ones that are ever called in process context. 
This means that they are the only ones that can reference the u-dot, copy data to and 
from processes, or call sleep. Because these routines are called from kernel routines 
that allocate dynamic data structures, they must always sleep with the PCA TCH signal 
set With PCATCH set, a signal is not delivered to wake the sleeping process until after 
the open or close is complete and the dynamic data structures (such as the queues and 
the stream head) are disposed of. 

Each Streams tty struaure must have a data structure allocated for it of type struct 
ttx. This data structure is normally called the ttz structure. It is referenced by the 
device's stream queue (via the q_pt r field) and contains most of the context that is 
needed for operating a terminal-style device. The t tx structure contains the following 
fields: 

t _ q Pointer to the read queue attached to this device 

t _rm Pointer to the current input buffer 

t _ xm Pointer to the current output buffer 

t _J:>roc Address of the device's command process routine (required) 

t_ioctl Address of the device's ioctl routine (optional) 
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t_dev Device ID (for user only); normally the minor number 

t_addr Device's address (for user oilly) 

t_count Number of bytes remaining in the input buffer 

t_size Si7.e of an empty input buffer (set from the si7.e parameter to ttxinit) 

t_iflag Input-processing modes from TCSETA (see teDni.0(7)) 

t_oflag Output-processing modes from TCSETA 

t_cflag Device modes from TCSETA 

t_lflag Line discipline modes from TCSETA 

t_state Current device state. The defmed flags for t_state are as follows: 

BUSY •Device is currently transmitting. 

TT STOP 

TTXOFF 

TTXON 

TB LOCK 

TIMEOUT 

XMT_DELAY 

OAS LP 

RCV_TIME 

WOP EN 

I SOP EN 

CARR_ON 

-Output is stopped. 

•Send an XOFF as soon as possible. 

-Send an XON as soon as possible. 

•input is blocked (via an XOFF). 

Device is sending a line break. 

Device has stopped transmitting because of delay 
(usually after a newline or other cursor motion 
character). • 

t tx library is waiting for output to drain so it can 
complete a close. 

Sys~m is out of buffers for receiving, so it's trying to 
obtain more. 

•one or more processes are waiting for carrier 
before they open the device. 

•At least one process has the device open. 

•earner line is turned on. 

Note: Only the values marked with as asterisk ~) can be changed; the others are used 
internally by the t tx hbrary. 

The Streams terminal driver routines 
The Streams terminal driver routines that you miJst write are listed below. In all cases, 
prefix is the device prefix used your driver. 
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• preftxini t initiali:zes the device. The kernel calls it once before interrupts are 
turned on. 

• pre/1Xx:Jpen opens a device. It is called every time the device is opened 

• preft»::,lose closes a device. It is called when the last process that has a device 
open closes it. 

• preftxioctl performs special functions. It is called whenever an unknown ioctl 
message from a process is received at the driver. 

• pre.ftxparam sets up hardware. It is called internally to set up device parameters 
such as baud rate. 

• preftxint handles interrupts. It is called as a result of a device interrupt. 

• preftxproc performs command processing. It is called internally and also by the 
t tx library whenever it wants something to be done .. 

Note: All of these routines except preftxint and preftxini t are normally declared 
static. This is because they either are internal routines that are never called externally 
or are referenced by a data structure such as the stream description (streamtab) or 
the t tx structure. 

( The open routine 
The streams device open routine is called every time a process opens a device. The 
streams device open routine has the following format: 

static int 

preftXXJpen(q, dev, flag, sjlag, err) 

queue_t•q; 

dev_t dev, 

int flag; 

int sflag; 

int •err; 

where 

• q is a pointer to the read queue for the device end of the stream. 

• dev is the device number of the device. 

• flag is the normal device open flags passed to the open routine. 

• sflag is the Streams flag. P~ible values for sflag are as follows: 

MODOPEN A module is being opened (pushed). 

DEVOPEN A normal device is being opened. 

Chapter 7: Streams Terminal Drivers 7-5 



CLONEOPEN A cloned device is being opened (if successful, the 
device's minor number is returned by the open 
routine). 

• err is a pointer to a location where any errors are stored if the open fails. 

Note. The open routine arguments are slightly different from normal Streams open 
routines. The vnode kernel requires an open routine to return errors to the caller 
rather than placing place them in u. u_error, as is done in other systems. 
Remember this when you port drivers to other Streams implementations. For more 
information on vnode kernel changes, see Appendix E of this manual. 

The close routine 
The streams close routine closes a device. It is called on the last close of a device. Note 
that this routine is called once, while the open routine is called many times. The 
streams close routine is called as follows: 

static int 

preflxclose(q, flag) 

queue_t •q; 

int flag; 

where 

• q is the read queue of the stream being dismantled 

• flag is the flag passed to the open routine. 

The lnltlallzatlon routine 
The initialization (or· In#) routine puts the device into a known state. The system 
invokes these routines once during system initialization. By using autoconfiguration, 
you have a choice of where such initialization occurs (see Chapter 12 for details). 
Normally, an initialization routine is called before interrupts are turned on. Here is 
the format of the initialization routine: 

int preftxinit () 

The parameter routine 
A device's parameter (or param) routine is called internally to set up registers in the 
device using values stored in the t tx structure passed to it. The format of the param 
routine is as follows: 
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static int 

preftxparam(tp) 

register struct ttx•~ 

where q.>is the device's ttx structure. 

The Ioctl routine 
The streams ioctl routine performs message handling. This routine referenced by the 
t ioctl field in the ttx strudllre, and is called when an ioctl message is received at 
~ device end of the stream that can't be handled by the t tx library. The streams 
ioctl routine has the following format: 

static int 

preflxioctl(tp, focbp, args) 

struct ttx •tp; 

struct iocblk•focbp; 

mblk_t •args; 

where 

• f.> is the device's ttx structure. 

• 1ocbp is a pointer to the ioctl message's control block (the first block in the 
message). 

• args is a pointer to the entire ioctl message. 

If the ioctl routine reruins a noru:ero result, the routine failed and the message is sent 
back to the stream head as an error (an error return may be placed in the VO control 
block, if desired). The ioctl routine is optional, but if not present, all unknown 
mes,,ages reblm an error value. If parameter(s) were sent to the ioctl call they appear 
in the second (and subsequ~ message block of the mes,,age referenced by args. You 
may need to allocate message blocks to hold data returned to a user program. 

The command process routine 
The command process (or proc) routine processes commands requested by the 
system and other parts of the driver. 1be t _proc field in the t tx structure contains 
the address of the command process routine. The t tx library calls this routine (and a 
driver calls it internally) whenever a driver must perform an action. 1be command 
process routine is required. 1be command.process routine has the following format: 

static int 
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preftxproc(tp, cmd) 

register struct ttx•q,; 

int cnu4 
where 

• tp is a pointer to the ttx structure that identifies the device. 

• cmd is a command requesting an action (or notifying the driver of a change). 

This routine should always disable device interrupts upon entry (as it can be called 
from a device interrupt routine), and return them to their previous state (using splx) 
upon exiL Most of what a command process routine does is the same from device to 
device, because the device-dependent parts are usually simple things like transmitting 
a charaaer or starting a line break. The reason for repeating much of this code is to 
support drivers for intelligent devices (for example, ones that can do OMA or that 
have large internal buffers). The following commands are passed when calling a 
device's command process routine: 

T_BREAK Start transmission of a line break. When this happens, ttx_break 
(see below) should be called so that a T_TIME call will be made later. 

T_TIME Complete transmission of a line break and resume normal outi:>ut 

T _ WFLUSH Discard any characters queued for output (some devices have internal 
queues that should also be flushed). 

T_RFLUSH Plush any characters waiting to be input 

T_RESUME Restart suspended output (usually by an XOFF or a user ioctl request). 

T _SUSPEND Suspend output until a RESUME occurs. On devices with large internal 
buffers, some special action may be required to stop output. 

T _OUTPUT Start output if p0551ble. This is usually done when a device transmitter 
interrupt occurs or a data message. arrives at the device's queue. 

T _BLOCK Block input (by sending an XOFF to the remote end). 

T _UNBLOCK Unblock input (by sending an XON to the remote end). 

T_PARM Call driver's parameter routine because the device's parameters On 
the t tx structure) have changed. 

T _INPUT A new input buffer is available. For simple devices, this is ignored 
For devices that do OMA directly into device buffers, T_INPUT is 
used to tell the devic:E about a new buffer. 

These commands are the same as those used in traditional character drivers. This is 
done so it's easier to transport old drivers to the new Streams style of driver writing. 
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The ttx library support routines 
Streams terminal drivers can call the t tx library support routines described in this 
section. 

The t txini t routine has three main purposes. First, it initializes the t tx structure 
passed to it Second, it associates the stream's queue and the device's t tx structure 
(by having them point to each other), so that the device is associated with the stream. 
Finally, it allocates a receive buffer for the driver using the size pas.5ed. If the size is 
zero, then no buffer is allocated. You might not want to allocate buffers for devices 
(such as printers) that can't receive characters, or for smart devices that may wish to 
manage their own receive buffering. 

A driver's open routine calls t txini t when a device is first opened. Before calling it, 
the t_ioctl field in the ttx structure field must point to your driver's command 
process routine. 1be ttxinit routine has the following format: 

int ttxinit(q, tp, sz) 

queue_t •q; 

struct ttx •t/>, 

int sz; 

where 

• q is the queiie pointer passed to the open routine. 

• tp is the t tx structure to be associated with the device. 

• sz is the size of the input buff er for this device. 

ttx_put 
Receive interrupt routines that have placed characters in the receive buffer (pointed to 
by the t tx field t _ rri) call the t tx _put routine to pass the message down the Stream 
and, if possible, to allocate a new buffer. The t tx _put routine returns a nonzero 
value if it can't allocate a buffer. Routines in the t tx library will continue to try to 
allocate a buffer until it succeeds. The ttx_put routine has the following format: 

int ttx_put(tp) 

struct ttx •tp; . 

where tp is the ttx structure to be associated with the device. 
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ttx_slghup 
The ttx siqhup routine notifies processes that have a device open that the driver 
has detected a hangup. The routine aJso flushes any queued input and output The 
ttx_siqhup routine has the following format: 

int ttx_sighup(tp) 

where tp is the t tx structure to be associated with the device. 

ttx_break 
A driver calls the t tx _break routine to hand.le break processing. The routine marks 
the t tx structure so that no output can occur during the break and starts a timeout to 
wake up the driver using T_TIME to stop the break. The ttx_break routine has the 
following format: 

int ttx_break(tp) 

struct ttx •tp. 

where tp is the t tx struaure to be associated with the device. 

ttx_close 
The t tx _close routine performs close operations as part of a device close. The 
ttx_close routine waits for output to drain, flushes input and output, discards 
buffers, and then breaks the connection between the queue and the device. The 
ttx_close routine has the following format: 

int ttx_close(tp) 

struct ttx •tp. 

where tp is the t tx structure to be associated with the device. 

A Skeleton Streams driver 
You can use the following example as a template for Streams terminal drivers. The 
comments marked with the string DEV should be replaced by device-dependent code 
that performs the actions described. Of course, not all devices are completely 
straightforward, so it may be nec~ary to make additional changes to the driver. 

tinclude "sys/Stream.h" 

tinclude "sys/tty.h" 
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finclude "sys/ttx.h" 

fdefine NDEVICES 4 /* the number of devices supported */ 

static struct ttx DEV_tty[NDEVICES]; 

extern int nulldev(); 

/* the per-device "ttx" structures */ 

I* externally defined routines */ 

extern int qenable(); 

/* 

* Locally declared routines that need to"be 

* declared before use 

*/ 

static 

static 

static 

static 

/* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

int DEVopen(); 

int DEVclose(); 

int DEVproc(); 

int DEVioctl(); 

The following four data structures °Collectively describe the 

interface to the Streams system. Note that they reference these 

ttx routines: 

ttx_rsrvc 

ttx_wputp 

ttx_wsrvc 

which intercept messages sent to the device and convert them into 

calls to the device's command process routine below. 

These routines must reference your driver's open and close 

routines. 

* The structure DEVinfo is the primary interface with the rest of 

* the kernel (it references the other three) • It, the interrupt 
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* routine DEVint, and the initialization routine DEVinit are the 

* only data structures that need to be declared and referenced 

* externally to this driver. 

* 
*/ 

static struct module_info DEV_info • {5321, "DEV", 0, 256, 256, 256}; 

static struct qinit DEV_rq • {NULL, ttx_rsrvc, DEVopen, DEVclose, 

nulldev, &DEV_info, NULL}; 

static struct qinit DEV_wq - (ttx_wputp, ttx_wsrvc, DEVopen, DEVclose, 

nulldev, &DEV_info, NULL}; 

struct Streamtab DEVinfo • {&DEV_rq, &DEV_wq, NULL, NULL}; 

/* 

* The initialization routine is called with interrupts disabl~d. Its 

* purpose is simply to put the device into a known, stable state. 

*I 

DEVinit () 

/* 

* 

* 

* 

* 

* 

* 

* 

7-12 

register int count; 

for (count - O; count < NDEVICES; count++) { 

I* DEV: Initialize the device referenced by count */ 

The device's open routine is called whenever the device is opened. 

When the device is first opened it must be prepared for use (for 

example, it should be set to its initial baud rate and its 

interrupts should be turned on) . Also when it is first turned on 

its corresponding ttx structure is initialized and ttxinit.O is 

called to complete this initialization and to allocate receive 

buffers for it. 
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* 

* Since Streams open and close routines are called from process 

* context (i.e., in the context of the process that is doinq the 

* open or close) they can sleep(). But because they are Streams open 

* routines they must sleep with the PCATCH flaq set. This is because 

* the stream open causes the Stream data structures to be built; if 

* an open fails because of a siqnal, the open routine must catch the 

* siqnal and return OPENFAIL. 

* 

* This example shows a driver that only supports modem control. 

* Note that only one process actually ever sleeps waitinq for 

* carrier presence, All others sleep waitinq for that process to 

* finish before proceedinq. This is because if the process that did 

* the initial open (the one that called ttxinit()) fails, it MUST 

* call ttx_close in order to free the buffer that was allocated for 

* input. 

* 

*I 

static 

DEVopen(q, dev, flaq, sflaq, err) 

queue_t *q; 

dev_t dev; 

int *err; 

reqister struct ttx *tp; 

struct device *device; 

dev • minor(dev); 

if (dev >• NDEVICES) 

*err - ENXIO; 

return; 

/* Check the device ID for */ 

/* validity */ 
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tp • 'DEV_tty[dev]; 

while (tp->t_state ' WOPENl { I* Sleep until other opens */ 

if (sleep((caddr_t),tp->t_q, TTOPRIIPCATCHJ) /*complete*/ 

return(OPENFAIL); 

if ((tp->t_state,(ISOPENIWOPENJ) -- 0) { /*If this is the first open: */ 

tp->t_proc • DEVproc; I* initialize the ttx */ 

tp->t_ioctl - DEVioctl; I* structure */ 

ttxinit(q, tp, 4); /* allocate a 4-byte rev */ 

I* buffer*/ 

I* DEV: Put the devices chip address in addr */ 

tp->t_addr • (caddr_t) (addr); 

tp->t_dev • dev; 

I* DEV: Assert the DTR line */ 

DEVparam (tp) ; I* Set up the device */ 

I* DEV: Put the state of the DCD line in dcd */ 

if (dcd) I* if carrier mark it */ 

tp->t_state I• CARR_ON; 

if (! (flaq' FNDELAY)) { I* Sleep until carrier*/ 

I* present*/ 

while ((tp->t_state 'CARR_ON) •• 0) { 

tp->t_state I• WOPEN; 

if (sleep((caddr_t),tp->t_q, TTOPRIIPCATCH)) { 

if (!(tp->t_state,ISOPEN)l 

ttx_close(tp); 

tp->t_state ,. -WOPEN; 

wakeup((caddr_t),tp->t_q); 

return(OPENFAIL); 
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I* a siqnal exit */ 

I* qracefully */ 

0 



( 

( 

I* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

*I 

tp->t_state ,_ -WOPEN; 

tp->t_state I- ISOPEN; 

return(l); 

/* Mark the device open */ 

/* Return success */ 

The close routine's main purpose is to call ttx_close to wait for 

output to drain and then recover the input buffers. After this, 

DTR is removed (if required) • 

It is only called when the last process has the device open closes 

it, i.e., just before the system dismantles the Stream data 

structures. 

Note: Close routines are also called from process context, 

so they can sleep (again they must use PCATCH) . However this 

is unusual. Close routines always succeed and so don't 

return status. 

/* ARGSUSED */ 

static 

DEVclose(q, flag) 

queue_t *q; 

int flag; 

register struct ttx *tp; 

int s; 

tp - (struct ttx *lq->q_ptr; 
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ttx_close (tp); 

if (tp->t_cf lag & HUPCL) { 

/* DEV: Hang up the device (remove DTR) */ 

/* 

* Interrupt service routines depend on the type of device being 

* used. This one assumes that there are three basic types of events 

* signalled by the device: transmit, receive and DCD change. 

*/ 

DEVint (ap) 

struct args *ap; 

int type, dev; 

/* DEV: Figure out from the a_dev field in ap and the device which 

device caused the interrupt and put it in dev */ 

/* DEV: Figure out the type of interrupt (receive/transmit/special 

condition) and put a code in type */ 

switch (type) 

case O: 

DEVrintr (dev) ; 

break; 

case l: 

DEVtintr (dev) ; 

break; 

case 2: 

DEVsintr (dev); 

break; 
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I* 

* Receive interrupt routines basically read a character and status, 

* process flow control, process errors and then pass the character 

* back to the queue by putting it into a message buffer and calling 

* ttx_put(). If no buffers are available, characters are discarded. 

*I 

static 

DEVrintr(dev) 

int dev; 

register mblk_t *m; 

register struct ttx *tp; 

register int c; 

int s, lent, flg; 

char ctmp; 

char lbuf[3]; 

sysinfo.rcvint++; 

tp - &DEV_tty[dev]; 

/* D~V: Read the device status register and put it in s */ 

I* DEV: Read the received character register and put it in c */ 

/* 

* If output software flow control is enabled and the character 

* is an XON/XOFF character then call the command process 

* routine to stop output of characters. Note: this happens 

* even if the input character was found to be in error. 

*I 

if (tp->t_iflag,IXON) ( 

ctmp • c & Ox7f; 

if (tp->t_state&TTSTOP) 

if (ctmp •• CSTART I I tp->t_iflag&IXANYl 
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DEVproc(tp, T_RESUME); 

) else 

if (ctmp -- CSTOP) 

DEVproc(tp, T_SUSPEND); 

if (ctmp -- CSTART I I ctmp == CSTOP) 

return; 

/* 

* If no buffers are available, throw the character away 

*/ 

if ((m • tp->t_rm) ••NULL) 

return; 

/* 

* Check for errors 

*/ 

lent = 1; 

flg = tp->t_iflag; 

I* 

* Decode the device-dependent errors 

*/ 

if (s ' (C_PERRIFRERRIROVRNIRA_Bll { /* These bits are device 

I* dependent */ 

if (s ' C_PERR) 

c I• PERROR; 

if (s ' FRERR) 

c I• FRERROR; 

if (s ' ROVRN) 

c I• OVERRUN; 

if (s ' RA_Bl 

( \ 

' 

./; 

7 • 18 Chapter 7: Streams Terminal Drivers 



( 

c • FRERROR; /* Clear c for break */ 

/* 

* Now do device-independent error processinq 

*I 

if (c,(FRERRORIPERRORIOVERRON)) 

if ( (c,Oxff) •• 0) { 

if (flqUGNBRK) 

return; 

if (flq&BRKINT) 

/*.A break was detected*/ 

/* Send a messaqe to the */ 

/* line discipline */ 

putctll(tp->t_q->q_next, M_CTL, L_BREAK); 

} else 

return; 

) else 

if (flqUGNPAR) 

return; 

if (flq,PARMRK) { 

·) else 

lbuf(2J • Oxff; 

lbuf[l] • O; 

lent • 3; 

c • O; 

if (flqUSTRIP) 

c &• Ox7f; 

else ( 

c ,. Oxff; 

/* Iqnore characters in error */ 

/* Pass back marked characters */ 

/* in error */ 

/* the normal case */ 
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I* 

* 

* 

* 

* 

*/ 

if (c •• Oxff '' flg,PARMRK) 

lbuf[l] • Oxff; 

lent • 2; 

Copy the characters out from the temporary buffer to 

the Streams buffer, then call ttx_put to send 

it to the line discipline when we are finished or 

the buffer is full. 

if (lent !• ll 

lbuf[OJ • c; 

while (lent) 

} else 

*m->b_wptr++ • lbuf[--lcnt]; 

if (--tp->t_count •• 0) 

if (ttx_put(tp)) 

return; 

if ((m • tp->t_rm) ••NULL) 

return; 

*m->b_wptr++ • c; 

tp->t_count--; 

if (m '' m->b_wptr !• m->b_rptr) 

(void) ttx_put(tp); 
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/* 

* The transmit interrupt routine clears the BUSY flag and then calls 

* the command process routine to send the next character. 

*/ 

static 

DEVtintr (dev) 

int dev; 

/* 

register struct ttx *tp; 

sysinfo.xmtint++; 

tp • &DEV_tty[dev]; 

tp->t_state &- -BUSY; 

DEVproc(tp, T_OUTPUT); 

* The external status change interrupt routine does two things: 

* 

* 

* 

* 

* 

* 

* 

*I 

static 

DEVsintr(dev) 

int dev; 

signals the presence of carrier (DCD) to any processes 

waiting for opens (see the open routine above for 

the other half of this handshake) 

detects the loss of carrier and calls ttx_sighup() to 

send this signal down the stream to waiting processes 

register struct ttx *tp; 

int dcd; 
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/* 

sysinfo.mdmint++; 

tp • 'DEV_tty[dev]; 

/* DEV: Assign the current value of the DCD line to dcd */ 

if (dcd) { 

} else 

if ((tp->t_state' CARR_ON) ·- 0) { 

tp->t_state I• CARR_ON; 

if (tp->t_state ' WOPEN) 

wakeup((caddr_t),tp->t_q); 

if (tp->t_state ' CARR_ON) { 

tp->t_state ,. -CARR_ON; 

ttx_sighup(tp); 

* This routine is for device-specific ioctls. The iocbp pointer 

* refers to the stream message header for the ioctl (see 

* <sys/Stream.h> for more info) • This contains the ioctl type and 

* who made it. If an ioctl succeeds you must return O from this. 

* Otherwise, you should return 1 for errors (and optionally fill in 

* the error field in the ioctl message) • This example shows no 

* actual ioctls. Often devices might use this to change device-

* dependent functions such as turning on or off modem control 

* or flow control. 

* 
* The ttx library intercepts most of the ioctls from termio(7) and 

* converts into calls to the· drivers command process and parameter 

* routines. 
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( 

*/ 

static 

DEVioctl(tp, iocbp, arqs) 

struct ttx *tp; 

struct iocblk *iocbp; 

mblk_t *arqs; 

/* 

* 

* 

* 

* 

* 
*/ 

return(l); 

The device's parameter routine is called whenever an ioctl is made 

that may have chanqed the device specific functions (such as baud 

rete, parity etc.). Care should be taken on some chips that 

require output to complete before such chanqes so that characters 

are sent without errors. 

static 

DEVparam (tp) 

register struct ttx *tp; 

reqister int s; 

register flaq; 

flaq - tp->t_cflaq; 

if ( (flaq&CBAUD) ·- 0) { 

I* DEV: Do device hangup (remove DTR) */ 

return; 

s • splstr () ; 

/* 

* DEV: Set up the followinq: 
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* 

* baud rate 

* number of bits per character 

* parity (on/off /odd/even) 

* nu~ber of stop bits 

* 
* from the ttx field t_cflaq (see tty.h for defines) 

I 

splx(s); 

/* 

* The command process routine is the place where device-dependent 

* actions are requested by the system and other part.'l of the d~iver. 

* Each call has a command that describes what is being requested. 

*/ 

static 

DE'Vproc(tp, cmd) 

register struct ttx *tp; 

register int s, c, x; 

register mblk_t *m, *ml; 

s • splstr(); 

switch (cmd) 

case T_TIME: 

/* 

* TIME 

* 
*/ 

Stop an output break condition and continue 

normal output. 

/* DEV: Clear break condition on device */ 

goto start; 
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case T_WFLOSH: 

I* 

* WFLUSH Request that any pendinq output should be 

* discarded 

*/ 

/* DEV: Flush any pendinq output characters from device */ 

if (tp->t_xm) 

freemsq(tp->t_xm); 

tp->t_xm • NULL; 

/* fall throuqh */ 

case T_RESUME: 

I* 

* RESUME Restart output after it beinq SUSPENDed 

*I 

tp->t_state ,. -TTSTOP; 

qoto start; 

case T_OOTPUT: 

I* 

* OOTPOT Send a character (if the device is not already 

* doinq something) • Also send XON/XOFF 

* characters when required. 

*I 

start: 

if (tp->t_state,(TIMEOUTITTSTOPIBUSYIXMT_DELAY) I I !tp->t_q) 

break; 

if (tp->t_state ' TTXON) 

c • CSTART; 

I* DEV: Transmit the character in c */ 

tp->t_state I• BUSY; 
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tp->t_state ,. -TTXON; 

break; 

} else if (tp->t_state ' TTXOFFl { 

c • CSTOP; 

/* DEV: Transmit the character in c */ 

tp->t_state ,_ BUSY; 

tp->t_state ,. -TTXOFF; 

break; 

m • tp->t_xm; 

if (m •• NULL) 

qenable(WR(tp->t_q)); 

break; 

I* If nothing to transmit, */ 

/* then wake up the */ 

/* Streams output handler */ 

c • *m->b_rptr++; /* Get a character */ 

/* DEV: transmit the character in c */ 

tp->t_state I• BUSY; 

while (m->b_rptr >• m->b_wptr) {/* Remove empty messages */ 

ml• unlinkb(m); /* from the output buffer*/ 

freeb(m); 

tp->t_xm • m • ml; 

if (m NULL) { /* If nothing is left then break */ 

break; 

break; 

case T_SUSPEND: 

I* 

* SUSPEND Stop output until it is RESUMEd 
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*I 

tp->t_state I- TTSTOP; 

break; 

case T_BLOCK: 

I* 

* BLOCK Send an XOFF to signal the other end not to 

* send any more 

*I 

tp->t_state I• (TBLOCKITTXOFF); 

tp->t_state ,. -TTXON; 

goto start; 

case T_RFLUSH: 

/* 

* RFLUSH Discard any received input 

*I 

if (m - tp->t_rm) { 

tp->t_count - tp->t_size; 

m->b_wptr • m->b_rptr; 

/* DEV: Flush any received characters from the device */ 

if (! (tp->t_state,TBLOCK)) 

break; 

case T_UNBLOCK: 

/* 

* UNBLOCK 

* 

*I 

Send an XON to signal the other end to 

resume its transmission 

tp->t_state ,. -CTTXOFFITBLOCK); 

tp->t_state I- TTXON; 

goto start; 
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case T_PARM: 

/* 

* 

*I 

PARM 

DEVparam (tp); 

break; 

case T_BREAK: 

/* 

Call the device's parameter routine to reflect 

chanqes in the device's attributes. 

* BREAK Start transmission of a line break 

*/ 

/* DEV: Start a break condition on the device */ 

ttx_ break (tp) ; 

break; 

splx(s); 
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B-NET network facilities provide a uniform user interface to networking within the 
A/UX operating system. If you're implementing new communication protocols and 
network services, B-NET's network communications structure promotes code sharing 
and minimizes implementation effort A major goal of the system is to provide a 
framework that makes it easier to support new protocols and hardware. 

For a description of the data structures, utility routines, and internal !ayers of t.~e B­
NET network system, see •Networking Implementation Notes• listed in this manual's 
bibliography. 

To illustrate how you could write a network driver, the rest of this chapter provides a 
sample network driver for Ethernet Version 1.0 and 2.0. The include file, if_ xx. h, is 
listed first, followed by the sample driver, if_ xx. c. 

Include file 
idefine NXX 6 

Hnclude <sys/via6522.h> 

idefine PHYS OxfOOOOOOO 

idefine XXMEMBASE(unit) ((unsiqned)PHYS+((SLOT_LO + (unit)) << 24)) 

I* 

* Ethernet software status per interface. 

* 

* Each interface is referenced by a network interface structure, 

* xx_if, which the routing code uses to locate the interface. This 

* structure contains hardware dependent addresses and status, the 

* interface address and error counts for the interface. 

*/ 

struct xx { 

struct arpcom xx_ac; I* common ethernet structures */ 

idefine xx_if xx_ac.ac_if /* network-visible interface */ 

idefine xx_enaddr xx_ac.ac_enaddr /* hardware Ethernet address */ 

short xx_oactive; /* output active flaq */ 

int xx_flaqs; /* flag bits */ 

I* hardware-dependent variables go here */ 
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} ; 

/* 

* bits in xx_f laqs 

*/ 

fde:fine 
running */ 

XX_TIMEOUTPENDING 

Sample driver 
tin elude <sys/types.h> 

tinclude <sys/reg.h> 

tinclude <sys/mbuf.h> 

tinclude <sys/socket.h> 

tinclude <sys/ioctl.h> 

tinclude <sys/var.h> 

tinclude <sys/errno.h> 

tinclude <net/if.h> 

tinclude <net/route.h> 

tinclude <net/netisr.h> 

tinclude <netinet/in.h> 

finclude <netinet/in_systm.h> 

finclude <netinet/ip.h> 

finclude <netinet/ip_var.h> 

fin elude <netinet/if_ether.h> 

finclude <vaxuba/ubavar.h> 

tinclude "if_xx.h" 

extern int xxcnt; 

extern int xxaddr[J; 

1 /* transmitter watchdog timer 

int xx_probe(), xx_init(), xx_attach(), xx_output(), xx_ioctl(), 

xxint(), xx_rint(), xx_tint(), xx_timeout(); 

struct mbuf *xx_get(); 
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int xx_trans[l6J; 

struct uba_device *xxinfo[NXX]; 

struct uba_driver xxdriver • { 

xx_probe, xx_attach, (u_sho.rt *) 0, xxinfo 

} ; 

static struct XK xx[NXX); 

extern struct ifnet loif; 

/* 

* 

* 

* 

* 

* 

* 

* 

Called from the network initialization code, this function is 

responsible for confirming the existence of the device described 

in ui. In the context of autoconfiguration, you need only check 

that the device's unit number Cui->ui_unit) is reasonable. 

Take this opportunity to call xx_map(), which s~ts up the mapping 

between unit number, slot number, and the interface's board RAM. 

* Return value: 1: interface exists 

* 0: interface does not exist 

*I 

static 

xx_probe(ui) 

struct uba_device *ui; 

struct xx *xxp • &xx[ui->ui_unit]; 

if (ui->ui_unit < xxcnt) 

xx_map(ui); 

return (l); 

else 

return (0); 
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/* 

* Record the correspondence between unit number, slot number, and 

* board RAM. On some systems, this function might arrange to map 

* in the interface's RAM at a well-known address. 

* Return value: none. 

*/ 

static 

xx_map(ui) 

/* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

struct uba_device *ui; 

struct xx *xxp - 'xx[ui->ui_unit]; 

int ind; 

ind• xxaddr[ui->ui_unit] - SLOT_LO; 

xx_trans[ind] - ui->ui_unit; 

I* Set up device-specific pointers */ 

If the interface's probe routine returns 1 (indicating that the 

interface exists) the network initialization code will then call 

the interface's attach routine. The conventional purpose of this 

function is to initialize the fields in the ifnet structure (i.e., 

the unit number interface name, maximum transmission unit, address 

family or families supported, and the device's initialization, I/0 

control and output routines) and call if_attach() to add itself to 

the system's list of known interfaces. Refer to section 5.3 of 

the Networking Implementation Notes for details on the ifnet 

structure. 

Return value: none. 
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*/ 

static 

xx_attach(ui) 

/* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

struct uba_device *ui; 

struct ifnet *ifp • 'xx[~i->ui_unitJ.xx_if; 

struct sockaddr_in *sin; 

ifp->if_unit • ui->ui_unit; 

ifp->if_name • "xx"; 

ifp->if_mtu • ETHERMTU; 

sin • (struct sockaddr_in *) 'ifp->if_addr; 

sin->sin_family • AF_INET; 

ifp->if_init • xx_init; 

ifp->if_ioctl • xx_ioctl; 

ifp->if_output • xx_output; 

if_attach(ifp); 

When the networking subsystem is ready to process packets or when 

the driver must reinitialize an interface, this function will be 

called. Nothing should be done until its address is.known. It 

should then: 

reset the hardware to begin receiving packets 

set the if_f lags fields to indicate that it is up 

and has resources allocated 

start output if there are packets on the send queue 

call if_rtinit() to indicate the interface is up 
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* and may have packets routed through it 

* 

* 

* 

call arpwhohas<>. to announce its Ethernet and Internet· 

addresses to the world 

* 

* Return value: none. 

*/ 

static 

xx_init(unitl 

int unit; 

/* 

* 

struct xx •xxp • 'xx[unit]; 

struct ifnet *ifp • 'xxp->xx_if; 

struct sockaddr_in *sin; 

int s; 

sin • (struct sockaddr_in *) 'ifp->if_addr; 

if (sin->sin_addr.s_addr •• 0) 

return; 

s • splimp O ; 

xxp->xx_oactive • O; 

I* Initialize the hardware to receive packets */ 

ifp->if_flaqs I• IFF_CP I IFF_RCNNING; 

if (ifp->if_snd.ifq_head) 

xx_start(unit); 

splx(s); 

if_rtinit(ifp, RTF_CP); 

arpwhohas(,xxp->xx_ac, 'sin->sin_addr); 

If the interface is not active, start output: 
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* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

dequeue a packet (a chain of mbuf s) from the send queue 

adjust the packet's length to ensure it is at least ETHERMIN 

bytes 

if necessary, copy the data from the mbuf chain into the 

interface's private memory 

free the mbuf chain 

poke the device to start transmission 

start a watchdcq timer to make sure we notice if a , 

transmission complete interrupt does not occur within a 

short time (in this case, two seconds) 

* Return value: none. 

*I 

static 

xx_ start (unit) 

int unit; 

int len; 

struct xx *xxp • 'xx[unit]; 

struct mbuf *m; 

if <xxp->xx_oactive -- 0) { 

IF_DEQOEOE(,xxp->xx_if.if_snd, m); 

if (m •• 0) { 

xxp->xx_oactive • O; 

return; 
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/* 

* 

* 

* 

len • /* packet length */ 

if (len < ETHERMIN + sizeof(struct ether_header)) 

len • ETHERMIN + sizeof(struct ether_header); 

/* Copy from m.bufs to interface memory (if necessary) */ 

m_freem(m); 

/* Do hardware-specific things to start packet transmission */ 

xxp->xx_oactive • l; 

xxp->xx_flags I= XX_TIMEOUTPENDING; 

timeout(xx_timeout, unit, v.v_hz << 2); 

The transmit interrupt we expected has not occurred. Reset the 

device. 

* Return value: none. 

*/ 

static 

xx_timeout(unit) 

int unit; 

/* 

struct xx *xxp - 'xx[unit]; 

static int timeoutcount = O; 

if (++timeoutcount > 100) 

printf("xx'd transmitter frozen -- resetting\n", unit); 

xxp->xx_flags ,_ -xx_TIMEOUTPENDING; 

xx_init (unit); 
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* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

Transmit the packet in the mbuf chain mo to dst using interface 

ifp. Part of the handling of the packet is dictated by the 

address family: 

For IP packets: 

compute the destination IP address 

call arpresolve() to discern the destination's Ethernet address. 

if arpresolve returns 0, the Ethernet address corresponding to 

IP address idst is unknown, but arpresolve has taken charge of 

the mbuf chain, so we indicate success. 

set the Ethernet's packet type to ETHERPOP_IPTYPE 

if this is a broadcast packet, and the interface is not capable 

of receiving its own broadcasts, make a copy of the mbuf chain 

so it can be passed to the loopback interface. 

For raw Ethernet packets: 

Then: 

the destination address is expected to be an ether_addr 

structure, containing the destination's Ethernet address 

and packet type 

set up the Ethernet header to be transmitted 

enqueue the mbuf chain.on the send queue; if the queue is full 

drop the packet and free the mbuf chain, returning an error 

if the transmitter is not currently active, start transmission 
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* 

* 

* 

* 

* 

* 

*/ 

static 

if there is a packet to be fed back to the loop interface (if 

mcopy is not NOLL), pass it to looutput 

Return value: if the packet was successfully enqueued on the 

interface's output queue (and the loopback interface's 

queue if this is a broadcast), O is returned. 

Otherwise, the appropriate UNIX error number (see 

<sys/errno.h>) is returned. 

xx_output(ifp, mO, dst) 

struct ifnet *ifp; 

struct mbuf *mO; 

struct sockaddr *dst; 

int type, s, error; 

struct ether_addr edst; 

struct in_addr idst; 

struct xx *xxp • 'xx[ifp->if_unit); 

struct mbuf *m • mo; 

struct mbuf *mcopy • (struct mbuf *) O; 

struct ether_header *e; 

switch (dst->sa_f amily) 

tifdef INET 

case AF_INET: 

idst • ((struct sockaddr_in *) dst)->sin_addr; 

if (!arpresolve(,xxp->xx_ac, m, &idst, &edst)) 

return (0); 

type • ETHERPUP_IPTYPE; 
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if (in_lnaof (idst) ... INADDR_ANY) 

mcopy • m_copy(m, 0, (int) M_COPYALL)·; 

goto gottype; 

hndif 

case AF_UNSPEC: 

e • (struct ether_header *)dst->sa_data; 

edst • e->ether_dhost; 

type • e->ether_type; 

qoto gottype; 

default: 

printf("xxtd: can't handle aftd\n", ifp->if_unit, dst->sa_family); 

error • EAFNOSUPPORT; 

goto bad; 

gottype: 

if (m->m_off > MMAXOFF I I MMINOFF + sizeof(struct ether_header) > m->m_off) 

m • m_get(M_DONTWAIT, MT_HEADER); • 

if (m •• 0) { 

error • ENOBUFS; 

qoto bad; 

m->m_next • mO; 

m->m_off • MMINOFF; 

m->m_len • sizeof(struct ether_header); 

} else 

m->m_off sizeof{struct ether_header); 

m->m_len +• sizeof(struct ether_header); 

e • mtod(m, struct ether_header *); 

e->ether_type • htons((u_short) type); 
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bad: 

/* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

e->ether_dhost - edst; 

e->ether_shost - xxp->xx_enaddr; 

s • splimp () ; 

if (IF_QFULL(,ifp->if_snd)) 

IF_DROP(,ifp->if_snd); 

splx(s); 

m_freem (m) ; 

return IENOBUFS); 

IF_ENQUEUEl,ifp->if_snd, m); 

if (xxp->xx_oactive -= 0) 

xx_start(ifp->if_unit); 

splx(s); 

return (mcopy? looutput(&loif, mcopy, dst) 0); 

m_freem(mO); 

if (mcopy) 

m_freem(mcopy); 

return (error); 

Interface interrupt routine. The argument is a structure one of 

whose members (a_dev) is the slot number of the interrupting 

interface. If this is a receive interrupt: 

if it was called by a receive error, increment the input 

error count 

otherwise, call the receive interrupt routine 

If this is a transmit interrupt: 
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* if it was called by a transmit error: 

increment the output error count 

* mark the interface inactive 

if there are packets on the send queue, restart output 

* 

* otherwise, call the transmit interrupt routine 

* 

* Return value: none. 

*/ 

xxint(args) 

struct args *args; 

int unit• xx_trans[args->a_dev - SLOT_LOJ; 

struct xx *xxp - &xx[unit]; 

struct ifnet *ifp e &xxp->xx_if; 

int s; 

if (unit >• NXX) { 

printf("xxint: interrupt from slot 'd\n", unit); 

panic ( "xxint") ; 

/*NOTREACHED*/ 

if (/* receive interrupt */) 

if (/* receive error */) 

/* reset hardware */ 

ifp->if_ierrors++; 

} else 

xx_rintr(unit); 

if (/* transmit interrupt */) 

if (/* transmit error */) 

/* reset hardware */ 
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I* 

* 

* 

* 

} else 

ifp->if_oerrors++; 

xxp->xx_oactive • O; 

s - splimp () ; 

if (xxp->xx_if. if_snd. ifq_head) 

xx_start(unit); 

splx(s); 

xx_xintr(unit); 

Transmit interrupt routine: 

increment the count of packets transmitted 

* if there was a transmit timeout pending, cancel it 

* 

* mark the interface inactive 

* 

* if there are packets on the send queue, restart output 

* 

* Return value: none. 

*/ 

static 

xx_xintr(unit) 

int unit; 

struct xx *xxp - 'xx[unit]; 

int s; 

if (xxp->xx_oactive •• 0) 

return; 

xxp->xx_if.if_opackets++; 
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/* 

if(xxp->xx_flags & XX_TIMEOUTPENDING) 

untimeout(xx_timeout, unit); 

xxp->xx_flags ,_ -xx_TIMEOUTPENDING; 

xxp->xx_oactive • O; 

s • splimp () ; 

if (xxp->xx_if.if_snd.ifq_head) 

xx_start(unit); 

splx(s); 

* Receiver interrupt routine: 

* increment the count of packets received 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

determine the Ethernet packet type and length, possibly 

dealing with ··trailer'' packets 

call xx_get() to copy the packet from the interface's RAM 

into an mbuf chain and return a pointer to the first mbuf 

pass the mbuf chain containing the packet to the appropriate 

input routine: 

for ARP packets, arpinput() 

for reverse ARP packets, revarpinput() 

for IP packets: 

schedule a network software interrupt 

if the input queue (ipintrq) is full, drop 

the packet and free the mbuf chain; otherwise, 

enqueue the packet on the IP input queue 
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* 
* Return value: none. 

*/ 

static 

xx_rintr(unit) 

int unit; 

short len; 

struct mbuf *m; 

struct ifqueue *inq; 

int s; 

u_short type; 

int Off; 

int resid; 

caddr_t addr; 

struct xx •xxp • 'xx(unit]; 

struct mbuf *xx_qet(); 

/* Check for a received packet */ 

xxp->xx_if.if_ipackets++; 

type• ntohs((u_short) /*packet type*/); 

len • /* packet lenqth */ 

if (len < ETHERMIN I I len > ETHERMTCJ) 

xxp->xx_if.if~ierrors++; 

return; 

addr • /* pointer to first byte in packet */ 

/* 

* 

* 

* 

Deal with trailer protocol: the ETHERTYPE_NTRAILER packet 

types startinq at ETHERTYPE_TRAIL have (type -

ETHERTYPE_TRAIL) * 512 
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tdefine 
<off l l ) l 

* bytes of data followed by an Ethernet type and then the 

* (variable-length) header 

*/ 

xx_dataaddr(addr, off, type) ((type) ( ( (caddr_tl ( (addr) + 1) + 

if ((type>• ETHERPUP_TRAIL) && 

} else 

(type< ETHERPUP TRAIL+ ETHERPUP_NTRAILER)) 

off • (type - ETHERPUP_TRAIL) * 512; 

if (off >• ETHERMTU) 

return; 

type• ntohs(*xx_dataaddr(addr, off, u_short *)); 

resid = ntohs(*(xx_dataaddr(addr, off+ 2, u short*))); 

if (off + resid > len) 

return; 

len • off + resid; 

off = O; 

tundef xx_dataaddr 

if (len •= 0) 

return; 

I* 

* Pull packet off interface. Off is nonzero if the packet has 

* a trailing header. Xx_get() will then force the header 

* information to be at the front, but we still have to drop 

* the type and length which are at the front of any trailer 

* data 

*/ 

m • xx_qet(len, addr, off); 

if <m •• 0) 

return; 

if (off) ( 

Chapter 8: Network Drivers 8-18 



tifdef 

tend if 

m->m_off +• 2 * sizeof (u_short); 

m->m_len 2 * sizeof (u_short); 

switch (type) { 

INET 

case ETHERPtJP_IPTYPE: 

schednetisr(NETISR_IP); 

inq • dpintrq; 

break; 

case ETHERPtJP_ARPTYPE: 

arpinput(,xxp->xx_ac, ml; 

return; 

case ETHERPtJP_REVARPTYPE: 

revarpinput(,xxp->xx_ac, 

return; 

default: 

m_freem(m); 

return; 

s • splimp () ; 

if (IF_QFULL(inq)) 

IF_DROP(inq); 

splx(s); 

m_freem (m); 

return; 

IF_ENQtJEtJE(inq, m); 

_ splx (s); 

return; 

m); 

Chapter 8: Network Drivers 8-19 



I* 

* Copy a packet of length totlen from the interface's RAM starting 

* at buf. OffO is nonzero if the packet is in ''trailer'' format. 

* 

* Return value: pointer to the first mbuf in the chain of mbufs 

* containing the packet. 

*/ 

struct mbuf * 

xx_get. (totlen, buf, offO) 

u_char *buf; 

int totlen, offO; 

register struct mbuf *m; 

struct mbuf *top - 0, **mp • &top; 

register int off • offO, len; 

register u_char *cp; 

cp • buf; 

totlen -· sizeof(struct ether_header); 

while (totlen > 0) { 

MGET(m, M_DONTWAIT, MT_DATA); 

if (m •• 0) 

goto bad; 

if (off) { 

len • totlen - off; 

cp • buf + off; 

} else 

len • totlen; 

if ( (len < MCLBYTES) 11 (mclget (ml •• 0)) I 

m->m_len • MIN(MLEN, len); 
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m->m_off - MMINOFF; 

bcopy(cp, mtod(m, caddr_t), m->m_len); 

cp +- m->m_len; 

*mp - m; 

mp - 'm->m_next; 

if (offO) ( 

off +- m->m_len; 

if (off -- totlen) 

cp • buf; 

off - O; 

totlen • offO; 

( ""' 

__ ,··" 

else 

totlen -- m->m_len; 

return (top); 

bad: 

if (top) 

m_freem (top) ; 

return (0); 

/* 

* Process an interface I/0 control request. The only request the 

* driver is currently expected to handle is SIOCSIFADDR (set 

* interface address) : 

* We expect the pointer (data) passed to us to be a pointer to a 

* sockaddr structure. We currently support two address families: 

* AF_INET and AF_UNSPEC. 
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* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

*I 

static 

If we are passed an Internet address, we: 

call if_rtinit() to delete the previous routing table entry 

for this interface 

call xx_setaddr() to set this interface's address 

call xx_init() to reinitialize the software and hardware (it's 

possible this is the first call to xx_init after the interface's 

address has been set) 

If we are passed a raw address (sa_family •a AF_ONSPEC), we expect 

it to be an Ethernet address (an ether_addr structure) and set the 

device's hardware address, then call xx_init to reinitialize the 

software and hardware. 

Return value: if the I/O control. is successfully completed, 0 is 

returned. Otherwise, a UNIX error number (see 

<sys/errno.h>) is returned. 

xx_ioctl(ifp, cmd, data) 

struct ifnet *ifp; 

int cmd; 

caddr_t data; 

struct xx *xxp • 'xx[ifp->if_unit); 

struct sockaddr •sa; 

struct sockaddr_in *sin; 

int s • splimp(), error• O; 
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/* 

switch (cmd) { 

case SIOCSIFADDR: 

sa • (struct sockaddr *) data; 

if (sa->sa_family •• AF_UNSPEC) 

if (sa->sa_data[OJ & ll { /* broad or multi-cast */ 

err.or • EINVAL; 

break; 

xxp->xx_enaddr • *(struct ether_addr *)sa->sa_data; 

xx_init(ifp->if_unit); 

break; 

sin • (struct sockaddr_in *)data; 

if (sin->sin_family != AF_INETl 

error • EINVAL; 

break; 

if (ifp->if_flaqs & IFF_RUNNING) 

if_rtinit(ifp, -1); 

xx_setaddr(ifp, sin); 

xx_init(ifp->if_unit); 

break; 

default: 

error • EINVAL; 

break; 

splx(s); 

return (error); 
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* Record the interface's Internet addresses in the ifnet structure. 

*/ 

static 

xx_setaddr(ifp, sin) 

struct ifnet *ifp; 

struct sockaddr_in *sin; 

ifp->if_addr • *(struct sockaddr *l sin; 

ifp->if_net • in_netof(sin->sin_addr); 

ifp->if_host[OJ • in_lnaof(sin->sin_addr); 

sin • (struct sockaddr_in *) &ifp->if_broadaddr; 

sin->sin_family • AF_INET; 

sin->sin_addr • if_makeaddr(ifp->if_net, J:NADDR_ANY); 

ifp->if_flaqs I• IFF_BROADCAST; 
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A/UX was developed to make it easy to add slot devices, add-on cards that plug into 
the Macintosh II's six expansion slots. These cards use the Apple implementation of 
theNuBus protocol. A/UX requires a device driver for each card, regardless of the 
number of functions that the card supports. (This requirement may be different from 
cards developed for other operating systems.) Specific information about how slot 
ROMs are configured for the Macint~h II is found in Developing Cards and Drivers for 
Maci'l".tosh II and Mac1ntosb SE. 

ROMs and autoconfiguration 
Every slot device installed in the Macint~h II requires on-board ROM that provides 
module-specific system facilities to the A/UX system. The ROM supports module­
specific resources residing in vendor-specified addressable NuBus memory, and 
presents a consistent interface to the running operating system or user programs. 

When a system is booted, autoconfiguration searches the slots for devices and, if 
found, reads information contained in their slot ROMs. Before autoconfiguration can 
load a slot device driver, certain data structures found in the slot ROMs must be 
initialized with device information. For more information about these data stru'aures 
and how to initialize them, see Developtng cards and Drivers for Macintosh n and 
Macintosh SE. Autoconfiguration is described in Chapter 12. 

Note: During driver development, you may ch~ to install and test your driver 
without slot ROMs being present. Details about how to run autoconfiguration in this 
way are given in Chapter 13. 

The Slot Library 
To make writing a slot device driver easier, A/UX supplies a set of routines called the 
Slot library. The Slot library provides a simple interface to the on-board ROM for 
each of the six Macint~h II slots. In Appendix C, you'll find descriptions of these 
routines, including the calling sequence, parameters, and return values. 

There are three types of hbrary routines: user routines, utility routines, and low-level 
routines. User routines can be called from user programs or kernel routines. Utility 
routines are used to gain access to slot ROM data structures, other resources, or other 
user programs. Low-level routines perform ROM access operations and operating 
system specific functions. 
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Mapping to processes 
1bere are two types of ROM base addresses: physical or virtual base. Slot ROM 
physical addresses are hexadecimal values having the following format: 

OxFsOFFOOOO 

where sis the NuBus slot number (9 to 14) of the board containing the ROM. 

Slot ROM logical addresses are th~ that have been mapped from physical memory 
into user memory via the phys(2) system call. For user programs that use logical 
addresses, the slot number is a virtual address that corresponds direaly to the 
physical address of the device. 

Interrupt service routines 
Each slot controller card can generate one interrupt 1be system then identifies the 
slot where the interrupt ocairred and jumps to the appropriate driver code. There are 
no differences in the slots: you should be able to plug a card into any slot and ~ve it 
work the same way. 

Your device driver must supply an interrupt routine to service interrupts from your slot 
card. You specify that your device driver is a slot device driver and that your driver has 
an interrupt routine by including the flags vs in your master script file. (Chapter 
12.descnbes the master script file.) 1bese fla~ instruct autoconfig to add your 
driver interrupt routine to the slot interrupt vector taqle. For each slot card in the 
system, this table contains the address of the driver interrupt routine that servic:eS 
interrupts generated from that slot card. 

When an interrupt occurs on your slot card; the kernel indexes the slot interrupt vector 
table and calls the rootine stored at this address. The kernel passes a single parameter, 
called args' (defined in <sys/reg.h>) to.slot device driver routines.1be kernel fills 
out various fields of this structure. In particular, the a dev field of the args structure 
contains the slot number of the card that intemipted~This allows your driver to 
determine which of its slot cards intemipted You can also use the slot number to 
determine the slot address space for the slot carci. 

The autoconfig utility aeates an integer variable preft:o::.nt, which is an integer 
value containing the number of slot cards installed in the system that are controlled by 
your device driver. 1be autoconfig utility also creates a variableprqi.xaddr, which 
is an array of integers containing preft:o::.nt elements. Each element of this array 
contains the slot number of a slot card installed in the system that is controlled by your 
driver. 
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See the chapter corresponding to your type of driver (Chapters 3 through 8) for 
details about how to write intem.Jpt routines. The following page provides a quick 
reference description of the driver.int routine of a slot device driver. 
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lnt(slot device driver) tnt(slot device driver) 

Name 
int-handle device interrupts from a slot device 

Synopsis 
void drtver.l.nt(~s) 

struct args •a'8s; 

where 

o args is a pointer to a_dev (the slot number). 1be args structure is defined in 
<sys I reg. h>. 

o driver is the device prefix. 

Description 
The interrupt routine of a slot device driver handles interrupts received from a slot 
device. 1be kernel passes a single parameter, the args parameter, to the interrupt 
routine of a slot device driver. You must give the kernel the address of your slot device 
driver interrupt routine during autoconfiguration. You do this by specifying the vs 
fla~ in your master saipt file. 

Note: An interrupt routine should not change any variables in the u-dot or call 
sleep(). 

Retum values 
None. 

See also 
For block drivers, see "The Block Device Interrupt Routine• in Chapter 2. 

For character drivers, see •Handling Character Device Interrupts• in Chapter 4. 

For information on the master saipt file,See •using Device Information" in Chapter 
12. 
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This chapter descnbes SCSI device drivers and how they gain access to a SCSI device. 
It assumes that you are familiar with the ANSI Small Computer System Interface (SCSI), 
the NCR 5380 SCSI chip,the Macintosh n architecture, and the A/UX device drivers 
described in this manual. For more information about the SCSI standard, see the 
Bibliography of this manual. 

This chapter describes the SCSI manager in the A/UX Release 1.0. This chapter does 
not cover any changes or updates to the SCSI manager in later releases. 

An overview of the SCSI manager 
The A/UX SCSI manager is a set of kernel software routines that device drivers use to 
gain access to the Macintosh II SCSI port. 1be main purpose of the SCSI manager is 
allow drivers to share the SCSI bus. In addition, the manager provides SCSI protocol 
handling and error notification. 1be SCSI manager simplifies programming of the 
chip and reduces the complexity of driver code. 

Rather than having device drivers making single requests for low-level SCSI activities 
such as selecting the bus or requesting a status byte, the device driver creates a · 
request block data structure that specifies the elements of a SCSI command, and 
passes this data structure to the SCSI manager. 

1be SCSI manager arbitrates for the SCSI bus and passes the request to the device via 
an NCR 5380 SCSI chip. 1be SCSI manager software performs 1/0 activity by reading 
and writing bytes during the various SCSI phases until the request has completed 
successfully or an error condition arises. The manager then notifies the device driver 
that the request is complete. Devices may discon.nea from the bus during processing, 
then reconnect when processing has completed. 

A SCSI device interaction is composed of three stages: a command, a read or write 
operation, and a completion sequence. The request block data structure contains 
pointers used during each of these operations. 

Note that the SCSI manager obtains sense information from the device as part of the 
SCSI manager request and returns this sense information to the driver in the 
sen.sebuf field of the request block data structure. This ensures that the error 
information reflects the state of the SCSI bus when the failed transaction occurred. 

Assumpflons and restrlcflons 
The SCSI manager operates in a single-initiator environment: there can be only one 
initiator, the Macintosh ll, on the SCSI bus. 1bere can be up to seven other SCSI 
devices, numbered from 0 through 6, and each device can have up to eight logical 
units attached to it 
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The A/UX operating system must enable interrupts before calling the SCSI manager. 
In particular, manager routines can't be called from driver routines that are invoked 
from a user-<iefined initialization routine. 

1be SCSI manager doesn't support devices that initiate messages when no request is 
outstanding. An unexpected ~age can't be passed to a device driver's attention 
routine. 

The system may switch from an arbitrating system protocol (as described in the ANSI 
standard) to a single initiator system by waiting for arbitrated 1/0 transaaions to 
complete. After arbitrated requests have stopped, single initiator requests can be 
issued. This is known as exclusWe : P in this document. 

Remember that the SCSI bus is shared. Avoid increasing the performance of a single 
device while decreasing systemwide performance. 

Request block data structure 

Drivers gain access to the SCSI manager by calling the routine scsirequest (), 
passing it two arguments: the SCSI ID of the device, and a pointer to a request block 
data structure. This data structure contains information about the request and allows 
the SCSI manager to process the request as a single aaion. The request block data 
structure is shown here: 

struct scsireq 

caddr_t cmdbuf; /* Buffer containing command block */ 

caddr_t databuf; /* Buffer containing data to move *I 

unsigned datalen; /* Length of the data buffer */ 

unsigned datasent; /* Length of data actually moved */ 

caddr_t sensebuf; /* Result from sense cmd on error *I 

int (*faddr) (); /* Address of completion function */ 

long driver; /* Private storage for.driver */ 

struct scsireq link; /* Link to next request */ 

u_char cmdlen; /* Length of command buffer */ 

u_char senselen; /* Length of sense buffer */ 

u_char sensesent; /* Length of sense data received *I 

u short flags; /* Request flag bits */ 

u char msg; /* Message byte from completion */ 

u_char stat; /* Completion status byte */ 
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u_char ret; /* Return code from SCSI manaqer */ 

u_char timeout; /* Maximum time for this request */ 

.}: 

The fields of this structure are as follows: 

• cmdbuf and cmdlen define the command to be sent to the device. 

• databuf and datalen specifies the data area to be read or written from the 
device. 

• datasent is where the SCSI manager returns the number of bytes actually 
transferred after the request has completed. 

• sensebuf and senslen are set to receive the sense data before initiating a 
request. 

• senseset is set to the actual number of bytes of sense data received, regardless of 
whether or not there is a buffer in the request to hold the data, if sense data is 
received. The driver should allocate memory space for all buffer areas and request 
data structures, since the SCSI manager does not perform memory allocation. 

• faddr specifies the address of the completion service routine called when tQe SCSI 
request has completed. You must supply a completion service routine for your 
device. The routine is passed one argument, the request block pointer. 

• driver is a 32-bit private storage area for the driver. 

• link specifies execution of linked commands. The decision to link commands is 
left up to the driver. The driver should set the necessary bits in its command frame 
to tell the device that a sequence of linked commands is on the way. The SCSI 
manager continues sending commands until the chain has completed. If the device 
drops BSY, the SCSI manager repeatedly arbitrates for the bus and selects the 
device. A single interrupt is received either after an error occurs, or after all 
requests are processed. The request pointer passed back to the driver's interrupt 
handler reflects either the error, or the last request in the chain. 

• flags controls aspects of the transfer. Bit values are OR'd together to fill this data 
field. Normally, it is data in or data out, but any 3-bit value can be specified. 
Possible uses for this field are discussed in •special Processing,• later in this 
chapter. Values for the flags field are as follows: 

fdefine SRQ_READ 1 

tdefine SRQ_EXCL 2 

tdefine PRISHIFT 4 

fdefine SQR_PRIMASK (3<<4)/ 

/* This request read data */ 

/* Exclusive SCSI use */ 

/* Left shift for priority field */ 

* Four priority levels */ 

I* The remainder of request bits are not implemented */ 

fdefine SRQ_START OxlOO /* Call driver before request */ 

tdefine SRQ_DATA Ox200 /* Call driver before data phase */ 
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fdefine 

fdefine 

SRQ_POST Ox400 

SRQ_NOSTAT OxBOO 

/* Call driver after data phase */ 

/* There will be no stat phase */ 

The SRQ READ bit indicates that the expected data direction for this command is 
from the device to the computer. If there is no data phase expected for a command, 
the setting of this bit has no meaning. The SRQ_ EXCL bit requests exclusive use of the 
SCSI bus for the next request All outstanding disconnected VO devices are allowed to 
reconnect and complete before the request is processed. There is a four-level priority 
scheme for requests, with jobs having numerically higher-priority levels being 
scheduled before lower priority levels. The SRQ_START, SRQ_DATA, and SRQ_POST 
bits request that the driver be notified at specific points during processing of the 
request (see •special Processing• later in this chapter for more information). 

• stat and m.sg return status and message bytes after normal completion of the 
request SCSI devices indicate that more error sense information is available by 
turning on bit 1 in the status byte, which makes the SCSI manager execute a sense 
command. 

• The ret field contains a return code from the SCSI manager, so it should be 
checked before the device status byte. The ret field reports request handling 
errors. Values for this field are as follows: 

fdefine SST_BSY 1 /* SCSI bus sta.yed busy */ 

tdefine SST_CMD 2 /* Error during command */ 

fdefine SST_COMP 3 /* Error during the status phase 

tdefine SST_SENSE 4 /* Error obtaining sense data */ 

tdefine SST_SEL 5 /* Nothing responded to ID */ 

*/ 

tdefine SST_ TIMEOUT 6 /* Idle is longer than timeout value 

tdefine SST_MULT 7 /* Multiple requests for this ID */ 

tdefine SST_PROT 8 /* A problem in the SCSI protocol */ 

tdefine SST_FATAL 

tdefine SST_MORE 9 /* More data than device expected */ 

tdefine SST_LESS 10 I* Less data than device expected */ 

tdefine SST_STAT 11 /* Error, sense command executed */ 

tdefine SST_AGAIN 12 /* Place request again */ 

Error codes less than or equal to SST_FATAL are unusual. For these errors, multiple 
retries are not recommended. 

Possible causes for error values of SST_TIMEOUT, SST_MULT, SST_MORE, 
SST_LESS, and SST_AGAIN include: 

*/ 

SST_TIMEOUT indicates that the driver disconnected, another device began a 
transaction and timed out, and the bus was reset to clear the other device. Thus, the 
device is left in an unknown state. 

Chapter 10: SCSI Device Drivers 10-5 



SST MULT indicates tha~ a second request was received for an ID that was currently 
processing a request. Remember that the device driver is responsible for 
coordinating multiple requests to a device. 

SST_MORE indicates that the device changed phase before the buffer count reached 
zero. 

SST_LESS indicates that the data count reached zero before the device changed 
phase. 

SST AGAIN indicates that another device has caused an error on the SCSI bus. 
You;-driver's device has received a RST pulse, but was not the active device at the 
time of the error. 

• timeout specifies the maximum number of seconds for the request 1be SCSI 
manager rounds this value up to ensure that at least two watchdog timer intervals 
elapse. Currently a timer interval is 2 seconds, and it is rounded to 4 seconds. The 
maximum value for the timeout is 255 seconds, which is treated as infinite. Devices 
should modify the timeout field for long running operations, such as disk 
formatting. 

Other entry points and data structures 
The following subsections describe the scsi_strings data structure and the 
scsigOcmd data structure. A following section describes the scsigOcmd routine. 

scsl_strlngs 

The global array scsi_strings (defined in <sys/ncr5380. h>) contains error 
message strings indexed by manager return code. For example, the null-terminated 
string "scsi_timeout,. is in position seven, indexed by SST_TIMEOUT. Use this 
array and the symbolic names for error codes to ensure that your driver can handle 
changes in error number assignments. 

scsigOcmd data structure 

The data structure scsigOcmd (defined in <sys/ncr5380. h>) contains the 
command descriptor block sent to the controller. This structure is filled with values 
from the scsirequest structure and follows the ANSI format for SCSI commands. 
The scsigOcmd data structure is defined as follows: 

struct scsigOcmd { 

u_char op; /* O: opcode */ 

u_char addrH; /* 1: logical address 2 and LON */ 

u_char addrM; /* 2: logical address byte 1 */ 
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u_char addrL; /* 3: loqical address byte O •/ 

u_char len; /* 4: number of blocks or bytes data */ 

u_char ctl; I* 5: control field •/ 

} ; 

where 

• op is the operation code. 

• addrH is the most significant byte of the logical block address(if required). 

• addrM is the logical block address (if required). 

• addrL is the least significant byte of the logical block address (if required). 

• len is the transfer length Of required). 

• ctl is the control byte. 

scsigOcmd routine 

The scsigOcmd routine fills the cmdbuf array referenced by a scsirequest 
structure with a SCSI group 7.ero command 1be scsigOcmd routine is called as 
follows: · 

int · scsiqOcmd(req, op, lun, addr, len, ct/) 

struct scsireq •req; 

where 

• req is the request parameter block. It must have a valid pointer to a cmdbuf data 
area that is at least six bytes long. 1be command is placed in this buffer and 
scsigOcmd sets the cmdlen data field to 6. 

• op is the 8-bit opcode placed in byte 0 (see the ANSI standard for opcodes). 

• lun is the logical unit number placed in the upper 3 bits of byte 1. 

• addris the 21-bit logical block address placed in bytes 1 through 3. 

• /en is the 8-bit transfer length placed in byte 4. 

• ctl is the 8-bit control byte placed iii byte 5. 

SCSI tasks 

Each SCSI ID is a potential task. 1bere is only one task outstanding per ID at any time, 
regardless of the number of logical units associated with an ID. 1be manager mantains 
a data structure for each ID indicating the task state, and a pointer to the current 
request for that ID. Each task is limited to having •1ega1• SCSI conversations (that is, 
those that follow the SCSI standard) with its device. These conversations have the 
following form: 
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selection command data-in data-out status 

selection indicates a SCSI connection in which the computer tells the device that it can 
disconnect from the computer later on, as well as how to reestablish communication 
with the computer. command, data-In, data-out, and status correspond to SCSI 
COMMAND, DATA IN, DATA Our, and STAnJS phases, respectively. The device 
may signal a message phase at any time. Messages are not part of the semantics of legal 
conversations. M°"t commonly, a message indicates that the device is going to 
disconnect from the SCSI bus. 

Special processing 
This section desaibes other entry points and methods of bypassing parts of the SCSI 
manager. Device-specific driver software can, under certain conditions, gain control 
prior to normal completion of processing. The request parameter block contains a 
pointer to a driver-specific interrupt function that will be called upon request 
completion. This function is not called from process context, so the contents of the 
kernel udot or upage data and stack area are undefmed M°"t importantly, a driver 
must not call sleep () during interrupt handling. 

Error handling 
A watchdog timeout routine is scheduled continually at specified intervals. An 8-bit 
timeout field is found in each request block, and this field contains the maximum time 
that a device may remain inactive while processing a request. Drivers should be coded 
with increased timeout values if multi-block transfers are given as a single command, 
because any requested value less than 10 seconds is automatically increased to 10 
seconds. 

Error recovery on a timeout depends upon the state of the task. If the device is 
disconnected, the device must contend for the bus and an abort message sent. If the 
device is conneaed, the manager attempts to use the A 1N line to send an abort 
message. If this doesn't work, match the device's phase and read junk values or write 
7.eroes. ATN is kept high while waiting for the device to ask for a message. The device 
has 5 seconds to get off the bus after an abort begins. If a connected device doesn't 
dtop BSY, or a disconnected device doesn't ask for a message, pulse the SCSI RESET 
line and notify the drivers. If in a data phase, the connected target receives an error 
saying that there was less data than the device expected, and all other targets also 
receive timeout errors. 
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If a disconnected device times out, other transactions are first allowed to complete, 
then the SCSI RESET line is asserted. If the active device times out, the manager 
asserts the A 1N line. The device should ask for a ~age after which the manager will 
send an abort ~age. If the device ignores the A 1N signal, the manager continues 
the transaction by reading ignored data or writing z.eros. 

SCSI disk drivers 
A typical SCSI disk driver can be divided into three layers. The top layer corresponds 
to routines called from the bdevsw table. The bdevsw routines typically check the 
minor number passed in the data structure describing the request with valid minor 
numbers for the device. Usually, the bdevsw routines take the parameters given to 
them, add a pointer to the device controller structure, and call generic routines, 
which comprise the middle layer. Generic disk software .is driven from data structures 
that define disk access routines. These generic routines schedule I/O transactions and 
expand high-level requests, such as ioctl(2) calls, into the sequence of basic read 
and write requests needed The generic routines often call device specific routines or 
low level routines to send the request to the actual hardware. The lowest layer 
implements simple, device-specific operations. They are sheltered from the details of 
processes, files, ioals, and buffers. 

The layers of a SCSI disk driver are illustrated in Figure 10-1. 
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Rgure 10-1 
SCSI disk driver 
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Each disk device has an associated data structure that describes its device and 
controller. This structure contains pointers to routines that perform simple functions 
such as reading, writing, or formatting. 

To write a SCSI disk driver, you must do the following: 

1 . Determine how your disk hardware differs from SCSI command standards. 

2. Replace those routines in the generic library with device-specific ones for your 
driver. 

3. Arrange for your driver to be autoconfigured into the A/UX kernel. 

Appendix G contains a listing of the source to an A/UX SCSI device driver. 

Device naming conventions 
Named file entries in the I dev Ids k directory contain SCSI entries labeled c ndns n 
where n is a decimal number assigning the controller, device, and slice. The 
controller number is the logical bus ID of the SCSI device (0-7), the drive number is a 
logical unit number (0-7), and the slice is the logical partition number (Oto 31): 

The device is named according to the convention used in the stand-alone code and 
the kernel, although device drivers actually recognize devices by their major and 
minor numbers. For SCSI disk devices, the major number determines the SCSI 
controller bus ID (eight consecutive major numbers correspond to SCSI IDs 0 to 7), 
and the minor number determines the logical unit number and partition, as oshown in 
Figure 10-2. 
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Minor number assignment 
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This scheme allows 32 partition numbers. Each partition is dynamically assigned by a 
partition map and hundreds of named partitions can be on a single disk. 

Disk partitioning 
The disk partition map data structure provides a 32-charaaer name for each partition. 
Named partitions are associated dynamically with numbered devices through 
ioctl(2) calls. Default values are assigned to the first 16 partitions at boot time. The 
first three partitions (0-2) are assigned to the default root, swap, and usr file system. If 
any of these three file systems are missing on the current disk, then the partition 
number is unassigned The next 13 file systems (3-15) are assigned in order of the file 
systems on the disk. If the aaive root, swap, or usr ftle systems are among the first 13 
partitions on the disk, the second occurrence of the file system is left as an unassigned 
partition. 

In addition to these assignments, the final partition, 31, always maps to the entire 
physical disk. Any user program may read from this partition (assuming an inode with 
the appropriate permissions is available), although the device driver only grant5 write 
access to this partition to programs running with superuser privileges. 

For details about the Macint~h II disk partitioning scheme, see Ins1de Macintosh, 
Volume 5. 

Typical 1/0 operation 
A typical I/O operation begins when a read or write call occurs in the context of a 
requesting process. Typically, the driver will be aaive and will schedule the request for 
a later time. When the request acb.lally runs, the operating system might be processing 
an interrupt outside the context of the requesting process. The sequence of device 
driver calls to place a request is shown in Figure 10-3. 
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Figure 10·3 
Initiation of typical 1/0 request 
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After the strategy routine places the 1/0 request into the device's queue, the generic 
start routine schedules the request, as shown in Figure 10-4. 
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Figure 10-4 
1/0 request processing ou1'1de process context 
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Only one outstanding request per controller is allowed. The external device interrupts 
the CPU to signal that the request has finished. The interrupt can call the device 
handler directly for a slot-based device, or the device handler may be called after the 
SCSI manager is initially called. Device-specific ccxie responds to the interrupt, 
determines if the transfer completed without error, and calls a request completion 
routine in the generic ccxie. The generic request completion routine informs the rest 
of the operating system that the request has completed. In standard drivers, no driver­
specific code is executed in process context while servicing an interrupt Generic code 
may, however, arrange for a sequence of sleeps and wakeups to read a partition map 
for an ioctl call, for example. Handling of specific calls is discussed in more detail in 
the section "Generic Routines". 

Data structures on disk 
A portion of the disk reserved for A/UX is defined by the disk partidon map entry 
(dpme) and block zero block data strucrures.All operating systems using the disk share 
Apple's disk partition map entry format, but a driver can gain access to partitions 
belonging to A/UX only. 

Note: The A/UX utility dp(le), which performs disk partitioning, can be used to create 
and change disk partition information.You can also use the utility Apple HD SC Setup 
2.0, which is documented in a preliminary note available through APDA. 

The dpme data structure contains fields defining the logical start address and the 
number of blocks, which define the area of a partition that contains a partition. 
Normally, the end of the partition (that is, past start address + number of blocks) 
contains an optional spare block area used for bad block handling. The fields of the 
dpme data structure are listed in dpme( 4). 

The dpme data structure reserves space for operating system specific information. For 
A/UX, this space is called the block 7.erO block (bzb) data structure. The driver 
modifies and updates several of these fields. The driver uses the bzb data structure to 
assign file partitions to eschatology clusters and to determine the position of the 
alternate block map. 

A single disk might have several root file systems. Each may be a cluster of file systems 
that contains its own root, usr, swap, and eschatology backup file systems. The generic 
driver code obtains the number of the default eschatology cluster from the Apple 
boot-up firmware, which makes sure that the default root, swap, and usr file systems 
are mapped as minor devices zero, one, and two. 

The alternate block map (abmh) data structure consists of a header, followed by a 
variable length list of block numbers, as shown here: 

struct abmh 

u32 abmh_magic 
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u32 abmh_len; 

} ; 

tdefine ABHH_MAGIC OxBABEEEE 

where 

• abmh_maqic is a magic number 

• abmh_len is the length of the block number 1iSt. 

The block number list is an array of long integers. Each indexed location in the array 
corresponds to a potential alternate block in the spare block area. 1be location in the 
alternate block array can contain either the number of a block in the data portion of 
the disk partition that will be remapped, or a flag value. Possible flag values are as 
follows: 

-1 Blocks available 

-2 Bad free block-do not use 

-3 Block allocated to alternate block map 

You cannot make any assumptions about the ordering of bad block information on 
the disk. . 

Warning: Never offset the logical data area of the partition from the start of the 
physical partition. Although driver code allows this, block numbers of blocks cached 
in core would then be incorrect. 

Kemel data structures 
Three levels of data structures desaibe disks: 

• conuoller 

• drive 

• partition 

Controller-level data structures define methods of accessing the disk and define the 
software that is called for each access. A controller corresponds to a SCSI ID and to a 
major device number and any given controller may be present on several IDs. 

Drive-level data structures descnbe drives connected to a controller. Several drives 
may be attached to a given SCSI controller. 
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Partition-level data structures descnbe partitions on a drive. A drive is divided into a 
number of minor devices. At any moment, a minor device may or may not be 
assigned to a partition on the disk. When a minor device is associated with a partition, 
there is a device partition map entry, bad block Wormation, and user data available. 
When a minor device is not associated with a partition, you can perform open(2), 
close(2), and some ioctl(2) calls, but performing read(2) and write(2) calls 
return errors. 

The generic driver_ open routine allocates these disk data structures as needed using the 
kmem_alloc memory manager routine. Controller data structures are never freed. 
The pointer to the controller data structure is not associated with the device switch 
Wormation for the device; the high-level device-specific code must keep track of the 
pointer. Dynamic allocation ensures that unused data structures do not consume 
space. 

Controller data structur• 

There is one controller data structure for each controller. All drives having the same 
major number use the same data structure. The controller data structure is shown next. 

struct gdctl { 
struct 
struct 
int 
struct 
struct 
struct 
int 
long 
int 

qenprocs *ctprocs; 
gentask *cttaskp; 

where 

int 
daddr_t 
daddr_t 
struct 
struct 
short 
char 
char 
short 
short 
short 
} ; 

ctflags; 
gddrive *ctdrive; 
qddrive *ctactive; 
gdctl *ctnextct; 

ctcmd; 
ctarg; 
(*ctdevctl) (); 
ctretval; 
ctsector; 
ctlbn; 
buf *ctbp; 
deverreg cterr[4]; 
cterrind; 

·ctrunning; 
ctpending; 
ctstate; 
ctretry; 
ctmajor; 

/* Controller data structure */ 
/* generic low level procs */ 
/* pointer to current task list */ 
/* flags for handling controller */ 
/* drive list */ 
/* currently active drive */ 
/* list of ctl structures */ 
I* Command associated with ctbp */ 
/* argument for current command */ 

/* function to be called for devctl */ 
I* return value of command */ 

/* private for generic code */ 
I* logical block for error msgs */ 
/* allocated scratch buffer */ 
/* Scratch for error messages */ 

I* index into error message storage */ 
/* True if start routine active */ 

/* True if any device has a request */ 
/* generic code private data */ 
/* retry counter for soft errors */ 
/* major device number from devsw */ 
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• ctprocs points to an array of entry point addresses for device-specific routines 
that perform specific tasks (see the qenprocs data structure described later)._ 

• cttaskp points to the current task data structure (see the qentask data structure 
described later). 

• ctflaqs holds various controller state flags. Possible states are 

NOPRINT If set, console error printingis supressed. 

CLOSING Set by generic code while device is closing. 

• ctdri ve is a list of drives associated with this controller (see the drive data 
structure descnbed later). 

• ctacti ve points to the currently active driver from the ctdri ve list 

• ctnextctis a linked list of all controllers in the system. 1be generic code uses this 
list to locate a controller associated with a given major device. 

• ctcmd is the command associated with the controller buffer. It contains a code for 
a currently queued ioctl (see •controller Data Structures• later in this chapter). 

• ctarq is an optional argument associated with the device-specific ioctls being 
passed from the high-level to the low-level device-specific code. 

• ct devctl is a device specific function that the generic routines call to initiare 
exclusive control functions. ctdevctl is responsible for calling qdrestart. 

• ctretval is used to return the completion status from device-specific routines to 
generic routines. 

• ctsector is a private location for generic routines. 

• ct.lbn is used by generic routines which place the block number in this in 
anticipation of diagnostics. 

• ctbp is a buffer from the buffer pool assigned to the controller when the drive is 
first opened. It remains assigned for the duration of A/UX execution. The buffer 
space is used to read partition information for device initialization and ioctl 
processing. The buffer header provides concurrency control for device ioctl 
processing. 

• cterr is a scratch location for qderr logging of error messages. 

• cterrind is a scratch location for qderr logging of error messages. 

• ct runninq is a flag which, if TRUE, indicates that there is an outstanding request 
for any drive on the controller. 

• ctpendinq is a flag which, if TRUE, indicates that a drive for this controller has a 
queued request This flag is cleared when the interrupt handler has finished 
handling requests. 

• ct state is a state variable for the controller that organizes activities across 
interrupts. For example, it could increment this field from one to four for a four­
step initialization sequence. 

• ct retry is a private counter for generic retrying of requests. 
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• ctmajor is the major number of the device. 

The genprocs data structure defines low-level device-specific procedures that are 
called to process specific requests. Each entry point is a pointer to a function. The 
specific entry points are described ~ detail in •tow-Level Device Routines", given 
later in this chapter. The data structure is created when the device is first opened, then 
is initialized by the generic cOde to point to SCSI routines. Device-specific code can 
then modify the entries.The genprocs data structure is shown here: 

struct genprocs { 

int ( *qpread) () ; /* Read into buffer */ 

int (*qpwrite) (); /* Output buffer to device *I 

int (*qpdriveinit) (); /* Initialize data structures *I 

int (*qpbadblock) (): /* Map bad block */ 

int ( *qpformat) () : I* Format drive */ 

int ( *qprecover) () : I* Recover following an error */ 

int (*qpshutdown) (); I* Stop processing or eject */ 

} : 

The task data structure, gentask, describes one VO operation. One data structure 
exists per controller, For more about this structure, see •1.ow-1.evel Device Routines", 
given later in this chapter. The gentask data structure is shown here: 

struct gentask { 

int (*gtretproc) (); 

struct gdctl *qtctp; I 

struct drqual *gtqual; 

caddr_t qtaddr; 

int gtnreq; 

int gtndone; 

daddr_t qtblock; 

short gtmaj; 

short gtd.num; 

} : 

/* Address of completion function */ 

* Pointer back to controller */ 

I* Device qualities pointer */ 

I* Address of buffer to fill */ 

I* Number of bytes requested */ 

/* Number of bytes read/written */ 

I* Block number to read or write */ 

/* Device major number */ 

/* Disk number */ 
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Drive data structures 

Drive data structures are created as needed wheh a drive is opened There is one or 
more drives associated with a controller and each drive is normally a single spindle. 
The space allocated is never released. The gddri ve data structure is shown here: 

struct gddrive /* description of a single spindle *I 
etruct gddrive *drmct; I* next drive on controller */ 
struct drqual *drqual; /* qualities of device */ 
short drstate; /* drive state from generic code 
short drpartnum; /* which partition are we working on 
int drcount; /* count for EOF calculation */ 
u_char drnum; /* device unit number */ 
struct iobuf drtab; I* I/0 queue header */ 
struct iostat driostat; I* I/O error handling */ 
struct gdpart *drpart[GD_MAXPART]; /* pointers to partition 
} ; 

where 

• drnxt is the next drive in the linked list of drives associated with this controller. 

• drqual is the device-qualities data structure describing this drive. The dr~al 
data struaureis described later in this section. 

• drstate is the drive state. Possible states are 

NOT I NIT 

REINIT 

STARTING 

NORMAL 

The drive has never been accessed. 

Must be initialired again on next access. 

The drive is in the process of being initialired. 

The drive is ready. 

• drpartnum is a partition number in the range 0 to 31. 

• drcount is the count used during end-of-file calculations. 

• drnum is the device number or SCSI logical unit number of the drive. This number 
is always the upper 3 bits of the 8-bit minor device number. 

• drtab is the A/UX VO queue header. 

• driostat is the 1/0 statistics and error handling data. 

• drpart is an array of 32 pointers to partition structures. 

Each drive has a group of qualities that define the drive. The data structure that defines 
these qualities is shared between the generic code and the device-specific code. The 
qualities data structure, drqual, is made available to the device-specific code on 
each VO operation. The drqual data structue is shown here: 

struct drqual { 

lonq dqdevp; 

int dqflags; 

/* device-specific storage */ 

/* Flaq values */ 
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u_lonq dqxfermax; /* Maximum number of blocks per transfer */ 

short dqcyl; /* Number of sectors per cylinder */ 

I* (negative for no cylinder boundaries) */ 

u_short dqblksize; /* Currently unused */ 

daddr_t dqmaxbn; /* Maximum block number for device */ 

} ; 

where 

• dqdevp is a location used for device-specific storage. Device driver routines may 
use it for any purpooe, becausethe generic code will never modify this location. 

• dqflags is a bit array of flags. 

• dqxfermax is the maximum transfer size, which is the largest number of bytes that 
should be sent to the device in a single request 1he generic code breaks large read 
requests into •chunks• no larger than this size. 

• dqcyl is the number of seaors per cylinder. This field is used for error messages. It 
is available to applications such as mkfs via an ioctl. If this number is positive, then 
long requests are broken on cylinder boundaries; if negative, dqcy 1 is the cylinder 
size, but requests are not broken on cylinder boundaries. 

• dqblksize is the physical block size of the device. 

• dqmaxbn is the maximum block number of the device. This number reflects the size 
of the device, ignoring disk partitioning or reserved areas. 

PatlHon data structures 

Each drive can support 32 active partitions at a time. Partition data struaures are 
created as needed, and the space they occupy is never released. 1he partition data 
struaure is shown here: 

struct qdpart { /* Description of a mounted partition */ 

lonq ptflags; /* Various flags */ 

daddr_t ptdpme; /* Disk address of dpme entry */ 

daddr_t ptoffset; /* Physical address of first block */ 

daadr_t ptlsize; /* Logical size of data partition */ 

daddr_t ptpsize; I* Total size of partition */ 

daddr_t ptastart; /* Location of alt block map */ 

int ptasize; /* Size of alt block map (in bytes) *I 

int ptaents; I* Number of entries in alt block (in bytes) */ 
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short ptstate; /* State information */ 

struct bbhdr *ptbm; /* Bad block bucket list for partition */ 

short ptbmask; /* Mask for bucket hashing */ 

char ptname [32); /*Name of partition*/ 

char pttype (32]; /*Name of partition*/ 

char ptcluster; /* Eschatology cluster of partition */ 

} ; 

where 

• ptflaqs is the flags from the set P~ible values are 

Partition flag values: 

NOALT 

USER.ALT 

ES CHO 

RONLY 

Partition type values: 

TYPHYS 

TYDEF 

TYDPME 

Alt block mapping is disabled for the partition. 

The mer has explicitly turned off alt block mapping. 

Partition is default autorecoverycluster. 

Read-only file system (for example, CD-ROM). 

Partition is whole device, not partition. 

Default partitioning was supplied. 

Partition assigned from DPME. 

Partition name values: 

NMNONE This number has no partition assigned. 

NMUSER The name/number assigned by user ioctl. 

NMDEF The name/number assigned by default 

• ptdpme is the disk address of the disk partition map entry for this partition. 

• ptoffset is the physical address of the first block of data. 

• ptsize is the s.i7.e of the data area of the partition. 

• pt state is the state information for the partition. Possible values are 

REINIT The partition information must be reinitializ.ed on the next 
read or write access. 'The read or write will fail unless the 
partition is assigned a name by default, or by an application's 
ioctl routine 

STARTING 

NORMAL 

NEEDALT 

ALTING 

The driver is in the process of initializing the partition. 

The partition is initializ.ed and ready. 

Alt block processing is required. 

Alt block processing is in progress. 
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• ptbm points to the beginning of the bad block hash list. 

• ptbrnask is the mask for locating bad blocks in the bad block hash list 

• ptname is the name of the partition set by Apple's administrative software. The 
name is a null-terminated. string. 

Bad block information is associated with each partition. See •Bad Block Handling~ in 
this chapter for more information. 

Generic routines 
The generic device driver routines provide a layer of subroutines between the code 
called from entries in the bdevsw structureand the device-specific code that gains 
access to the hardware. 1be high-level device-specific code is called directly from the 
bclevsw table and passes a request on to the generic routines. The generic routines, in 
tum, enqueue requests and pass them to the low-level device-specific routines. The 
generic disk driver implements open, close, strategy and ioctl services. In addition, 
the software maintains a disk partition map and alternate block mapping for a device. 
The generic driver is closely attuned to the .requirements of SCSI disks, but it can also 
be used with other controllers as well. 

The routines described next provide the interface to the generic driver. The generic 
open, close, strategy, and ioctl routines are described in this section. Note that there 
are no generic entry points for unbuffered reads or writes from character special 
drives. Normally, high-level disk read and write routines call physio with the address 
of the strategy routine. When using the generic disk driver, the strategy routine passed 
to physio is device-specific code, which in tum calls qdstrateqy. 

The qdopen routine is called as follows: 

qdopen (ctp, dev, flalP 
struct ctl •ctp, 

dev_t detJ, 

int flag, 

where 

• ctp is the controller data structure for this major number. 

• dev is the device number 

• fklB is a read/write flag. 
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The qdopen routine opens a drive. If the drive has never been opened, this routine 
creates the appropriate drive and partition structures. The device-specific code must 
have previously called qdinit on the first open of this major number. Opening a 
device doesn't check that the device is ready for access. In particular, you can open an 
improperly formatted drive and format it, which can result in delayed notification of 
common errors until the first read or write. 

The qdclose routine is called as follows: 

qdclose (ctp, dev) 

struct ctl •ctp; 

dev_t dev-, 

where 

• ctp is the controller data structure for this major number. 

• detJ is the device number. 

The qdclose routine closes a drive. Closing a device has very little effect The low­
level shutdown routine is called with an argument indicating that the device was 
closed Any partitions associated with the device remains associated with it on the next 
open. 

The qdstrategy routine is called as follows: 

qdstrateqy (ctp, bp) 

struct ctl •ctp; 

struct buf •bp-, 

where 

• ctp is the controller data structure for this major number. 

• bp is the buf structure that describes the I/O request. The buf structure contains the 
address of the buffer associated with the I/O request. 

The strategy routine places a buffer in the drive's queue for a later I/O operation. Each 
controller has a scratch buffer header, pointed to by ctbp, which is assigned on the 
first open. The controller buffer is used to schedule ioctl and other control 
operations. The ioctl routine waits for the controller buffer using the normal sleep and 
wakeup mechanisms. When this buffer becomes available, the controller data 
locations ctcmd and ctcmdarq aJso become available; only the process that has 
exclusive use of the controller buffer may write to these locations. The ioctl routine 
then passes the address of the controller buffer to gdstrategy which treats this buffer 
as a special case, and is placed at the end of the queue. When the start routine finds the 
command buffer at the head of the queue, it takes the necessary steps to process the 
ioctl. 
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The gdioctl routine is called as follows: 

gdioctl (ctp, dev, cmd, addr, flag) 

struct ctl •ctp-, 

dev_t deV', 

int cmd; 

caddr _ t addr, 

int flag, 

where 

• ctp is the controller data structure. 

• dev is the device number. 

• cmd is the ioctl command code (ibe command codes are documented in gd(7)). 

• addr is the address of the ioctl call arguments. 

• f1a8 contains the flags associated with the file. 

This routine implements the generic set of SCSI ioctl calls. It recognizes the ioctl 
number and performs the necessary actions. If it doesn't recognize the ioctl type, it 
returns an error to the user. The list of ioctls is found in gd(7). Also, you can use the 
gddevctl routine for extendable device-specific ioctls, as descnbed next 

The gddevctl routine is called as follows: 

gddevctl (ctp, dev, 4>roc, arg) 

struct ctl •ctp-, 

dev_t deV', 

int (•dproc)O; 

int at& 

where 

• ctp is the controller data structure for this major number 

• dev is the device number. 

• dproc is the ioctl process to schedule. 

• atg is the argument passed to the process. 
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This routine provides a method for your driver to perform hardware-specific ioctls. 
The high-level device-specific ioctl routine is called from the bdevsw table, where it 
is examined and either passed to the generic code or aaed on. If the driver-specific 
code must take action, the device code must wait until the hardware is not busy. 

When the device is ready to process the ioctl, the device-specific routine given as 
dproc js called with the arguments (*dproc) (major, unit, arj). dproc is not called 
from process context. It is able to pin access to use data spare, The high-level device­
specific ioctl routine is expected to sleep and arrange to be awakened so that it can 
carry data or status back to the user. Th.e high-level routine, in process context, and 
routines called from dproc can arrange via the buffer pool, to move data. dproc can 
call low-level device-specific routines, or arrange for hardware interrrupts as 
required. Until it relinquishes control, it has exclusive use of the hardware. When all 
processing for the ioctl has completed, the completion routine gdrestart should be 
called. · 

Service routines for device-specific code 
The routines desaibed in this section provide services for device-specific code. The 
device-sped.fie code is responstble for keeping track of a pointer to the controller data 
structure. 1be gdctlini t routine creates the controller data strucb.lre when the first 
access to it occurs. The qdctlini t routine is called with the following parameters: 

struct ctl • qdctlinit(major, minor) 

int major, ml~ 

where majorand minor are the A/UX major and minor numbers. 

The device-specific code must keep track of a pointer to the controller data structure. 
The gderr routine, shown here, creates the controller data structure on the first 
access. 

qderr(tasltp, str, num) 

struct qentask •tasltp; 

char •str, 

int num; 

where 

• tasltp is the request being serviced 

• str is the error message string. 

• num is the number associated with the error. 
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The gderr routine hides the data structures that interface to the error message 
handler. Low-level interrupt service routines can make repeated called to this routine. 
When the generic code's interrupt completion routine is called, a System V-style error 
message is formatted and passed to logberr. 

1be gdrestart routine is called as follows: 

qdrestart(major, rein#) 

where 

int major; 

int rein#; 

• major is the device to restart processing. 

• rein# is an integer flag that, if TRUE, tells the driver to set everything to 
reinitialization state. 

gdrestart is called after the processing of a device-specific 1/0 call initiated from 
gddevctl. It ends a period of exclusive use for the device. If the nnn# flag is TRUE, all 
drives and partitions associated with the controller will be set to REINIT. This will not 
disturb any recently queued 1/0. 

( Low-level device rouHnes 

( ----

---

The low-level routines (also called procs) perform simple haldware-depenclent 
operations. Most ~I disk devices use the same read and write routines, but vary in 
the way they handle options such as bad block handling. 1be low-level routines are 
sheltered from the exact details of controller, driver, and bad block handling. 

1be low-level routines are specified in the qenprocs data struaure (see "Kernel Data 
Structures"), which the generic code initiali7.eS to values appropriate for a generic SCSI 
disk. The high-level device-specific code can reset any of the values as needed. 

Upon completion of 1/0, the low-level routine calls the return address given in the 
gentask data structure. 1be return address varies depending upon the state of the 
generic device model. 1be callback function expeas two arguments: the task pointer 
and the return status. The return status values and what they indicate are as follows: 

GDR _OK The operation WU a success. 

GDR_AGAIN A correaable error OCQlrred, so you should perform the request 
again. Partial data in the buffer might be intact 1bere may be an 
error message data to log. 

GDR CORR A correctable error OCQlrred and has been corrected. There may be 
an error message to log. 
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GDR_FAILED '1be operation failed. Partial data in the buffer might be intaa. Your 
driver should have supplied an error message to log. 

The device qualities (drqual) data structure includes space where the device code can 
keep a pointer to private data structures that further desaibe the device. The same 
drqu·a1 data structure is presented each time a driver gains access to a given 
controller and drive. 

The entry points to the low-level device routines are given next. For each low-level 
routine, tasltp is a pointer to a task data structure. The entry point for the low-level read 
routine is shown here: 

d _ read(tasArp) 

This routine moves n bytes of data from the disk location indicated by gtblock to the 
buffer pointer to by the task pointer. The device routine updates the gtndone field of 
the task structure. · 

'1be entry point for the low-level write routine is shown here: 

d _ wr i te(tas/rp) 

This routine moves n bytes of data from the ~er pointer to by gtaddr to the block 
pointed to by gtblock. The routine updates the gtndone field 

The entry point for the low-level initialization routine is shown here: 

d_driveinit(tas)p) 

This routine initializes the device qualities data struC1Ure. The device-specific field of 
this data structure is NUU. if this is the first time d_qualinit has been called for this 
drive. A drive might be initialized repeatedly as part of error recovery, formatting, or 
other ioals. The address pointed to by the gtaddr field of the task pointer is the 
controller scratch buffer. 

The entry point for the low-level bad block handling routine is shown here: 

d_badblock(tadlp) 

This routine asks the device to mark the block taskp-> gtblock as bad The address 
pointed to by the gtaddr field of the task pointer is the controller scratch buffer. 

The entry point for the low-level formatting routine is shown here: 

d_format(tadlp) 

This routine formats the drive. The previous contents of the disk will be lost The 
address pointed to be the gtaddr field of the task pointer is the controller saatch 
buffer. 

The entry point for the low-level reset routine is shown here: 

d_reset(tadlp) 
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The generic code calls this routine following any uncorrected error. If this routine 
returns an.uncorrected error ccxle, the drive is marked as DOWN. The address 
pointed to by the gtaddr field of the task pointer is the controller scratch buffer. 

1be entry point for the low-level shutdown routine is shown here: 

d_shutdown(tasArp) 

taskp->gtnreq indicates that a shutdown value wasp~ from the user's ioctl. 
Only two values are amently defined 0 means that the device should retract its heads 
to prepare for shipping, and 1 means that a partition on the unit has just closed. 1be 
address pointed to by the gtaddr field of the task pointer is the controller scratch 
buffer. 
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If you're adding a device that uses the Apple Desktop Bus (A.DB), you should read this 
chapter before you begin. While ADB device drivers use the same interfaces to A/UX 
processes as other drivers do, special support is required to share the ADB with other 
drivers. In this chapter, the Apple Desktop Bus (formerly Front Desk Bus) routines, 
files, and commands use the prefix fdb. 

The Apple Desktop Bus (ADB) is a simple serial bus used to access peripheral devices 
such as keyboards and mouse devices t.liat are usually located en your desktop. The 
ADB takes multiple ADB requests from system software, sends them to their 
appropriate devices, and returns the results to the same software that requested them. 
It allows the system to poll individual devices for state changes and notify the system of 
such state changes. Because of the simple hardware, a single kernel interface is 
required that must do the following: 

• Seriali:ze ADB transactions, because only one transaction can be run at a time. 
Pending transactions are stored and run in a round-robin manner. 

• Support interrupts. Each ADB transaction encounters several hardware interrupts 
before the transaction is complete. The device driver only needs to make a request 
to receive a reply later-interrupts are handled transparently for the driver. 

• Support hardware polling. The ADB controller chip periodically repeats the last 
read transaction executed on the ADB bus. If such a hardware poll is successful, 
then the appropriate driver is notified of the successful poll and the data is 
returned. 

• Support software polling. When a device on the ADB requests service, the system is 
interrupted. Because the hardware provides no mechanism to determine which 
device is making the request ,the ADB support software asks each known device 
driver to poll its corresponding device to see if service is requested. If the service 
request is removed by one device driver's polling, any other outstanding software 
polls are canceled and their drivers are notified 

Transactions 
A transaction is the basic function requested of the ADB. A transaction consists of a 
request for the ADB software from a driver, an action, and a reply from the ADB 
software after the action has completed A transaction is always specific to a particular 
device (with a particular address on the ADB). A particular device may have only one 
transaction outstanding at a time. 

The ADB supports three basic types of transaction requests: 

flus h(devtce) This is used to instruct the device to flush itself (for example, to empty 
its internal buffers of stored keystrokes for a keyboard). 
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ta l k(dev1ce, register) This is used to read from a register on the device. This 
transaction is an instruction to the device to •taJk• to the system. A device contains 
four registers numbered 0 to 3. If a timeout does not ocrur, a talk request returns data 
read from the contents of the register. 

listen(dev1ce,regtster, data) This is used to write to a register on a device. This 
transaction is an instruction to the device to •listen• to the system. A listen command 
must include the data to be written. 

Driver service routines 
When the ADB first grants access to each driver, it must provide the ADB software with 
the address of an interrupt service routine (see •Initiate Transaction• in the next 
section). The ADB software calls this service routine at the end of each ADB 
transaction to pass back data and to notify the driver that the transaction is completed. 
This routine is also called when certain exception device polling conditions exist. 

A driver service routine is always called with three integer parameters. The first 
parameter is the ID number specified when the transaction was started The second 
parameter is a value that specifies what type of transaction has completed (called the 
command), and the third parameter (called the arg) is command specific. Symbols 
for the command values are found in the ftle <sys/fdb. h>. 

High-level driver routines 
High-level drivers can call the routines provided in the ADB kernel code to perform 
ADB transactions. This section describes these routines. 

Initiate transaction 
The fdb_open routine makes the first transaction to a device on the ADB. It is usually 
called once from a device driver's init routine (when the system is initialized).You can 
call the fdb_open routine as follows: 

fdb_open(addr, 1d, 1mi) 

where 

• addris the address of the device that is being accessed on the ADB (a number in the 
range 0-15). 

• Id is a number (usually the device's minor number) that is returned with the 
transaction's completion indicator. 
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• lnb'is the ~ of the device's interrupt service routine. The bus software calls 
this routine at the end of each ADB transaction to pass back data and to tell the 
driver that the transaction is completed. 1be device's interrupt seivice routine is 
also called when certain device polling exceptions occur. 

In addition, fdb _open () initiates an ADB transaction (aaually a talk to register 3 of 
the device) that determines if the device really exists. When this transaction 
completes, it always calls the service routine with the commandFDB_EXISTS. In this 
case, the atg parameter can have two possible values: 0 if the device really does exist 
on the ADB, or nonzero if a timeout occurred while trying to talk to the device, and the 
device is not present on the bus. 

Flushing a device 
1be fdb_flush routine flushes data from a device. You can call the fdb_flush 
routine as follows: 

fdb_flush(addr, Id) 

where 

• addr is the bus address of the device being flushed. 

• id is a number passed back to the driver with the service routine. 

When the flush transaction completes, the device's service routine is called with the 
command FDB _FLUSH. If the a'B is nonzero, then a timeout occurred and the device 
is not present on the bus. 

Talking to the ·system 
1be f db_ talk routine instructs a device to •taJk• to the system. You can call the 
fdh_talk routine as follows: 

fdb_talk(addr, id, register, datap) 

where: 

• addris the address of the device where the talk is initiated from. 

• id is a number to be passed back to the driver with the service routine. 

• register is the register being read (talking), and is a value between 0 and 3. 

• datap is the ~ of the buffer to contain the data being read 
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When the talk transaction is completed, the device's service routine is called with the 
command FOB_ TALK. If nom.ero, the arg indicates that the talk transaction timed 
out On most devices, some registers (usually register O) generate a timeout if they are 
talked to but nothing is available to read. Other registers (for example, register 3) can 
always be talked to if the device exists, without a timeout occwring. 

Listening to the system 
The fdb_listen routine instructs a device to •listen• to the system. You can call the 
fdb_listen routine as follows: 

fdb_listen(addr, U( register, dalap, count) 

where: 

• addr is the bus address of the device to be written Oistened to). 

• Id is a number that is pas,,ed back to the driver with the service routine. 

• register~ the register being written Oistened) to. This is a value between 0 and 3. 

• datap is the address of a buffer that will contain the data being written. 

• count is the number of bytes to be written. 

After completion, the device's service routine is called with the command 
FDB_LISTEN. As in other routines, the a'8 indicates if a timeout has occurred. 

Polling 
As noted earlier, the ADB hardware repeats the last talk transaction on the bus 
continuously if the bus is idle. H such a talk sue~ (that is, completes without 
timeout), then the processor is interrupced and the results of this talk are returned. 
Thus the device driver's service routine for that corresponding device will be called In 
this case, the command is FDB_POLL and argis the data returned from the successful 
talk. 

Also, when a device with its service requests enabled (via a listen to the device) makes a 
service request, software must poll all known active devices. When the ADB software 
wants drivers to poll their respective devices, it calls the device service routines 
passing the command FOB_ INT. 1be driver has the choice whether or not to initiate 
an ADB talk transaction to read from the device. If the driver chooses to, then it 
should return the value 1 from its service routine to indicate that a talk transaction has 
started. If for some reason the driver doesn't wish to start such a transaction (for 
example, it knows that it's device doesn't have service requests enabled, or that an 
ADB transaction is already in progress), then it returns 0. 
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If a service request is satisfied without polling all of the requested devices, then the 
service routines of those currently being polled are called with the command 
FDB_UNINT to indicate that their requests have been canceled. 

Drivers can use their service routines to implement a Finite State Machine (FSM). This 
FSM would normally be started by a call to f db_ open. Such a FSM has two parts. The 
first part initializes the device. 1be second part consists of responses to device. polls 
and is entered once the device is initialized 

Figure 11-1 shows the initialization states. 
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Figure 11-1. 

lnltlallzatlon finite state machine diagram 

( 
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Once in the idle state, the device driver respon~ to the polling requests as shown in 
Figure _11-2. 
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Polllng 11nlte state machine diagram 
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Note that the driver attempts to perform as many talks as possible until it receives a 
timeout Thus, the hardware polls the device that performed the latest talk transaction, 
because a moved device is usually moved again soon (such as a mouse). 

A sample driver 
The following is a sample skeleton interrupt routine for a device driver that 
implements the Finite State Machine just described. The comments marked with the 
string DEV should be replaced by the device prefix for your driver. Only the interface 
to the ADB driver is shown-the high-level interface could be to any type of A/UX 
device driver , such as a Streams or character device driver. 

#define NDEVICES 1 /* the number of devices */ 

#define HANDLER 1 I* the device handler id */ 

/* current state */ static int DEV_state[NDEVICES]; 

static int DEV_present[NDEVICES]; /* TRUE if there really */ 

I* is a DEV out there */ 

static short DEV_buff[NDEVICES); /* where the fdb data is */ 

I* read into */ 

static int DEV_intr(); 

tdefine STATE_INIT 0 /* not yet initialized */ 

idefine STATE_IDLE 1 /* device is in inactive state */ 

idefine STATE_REG3 2 I* register 3 listen in progress */ 

tdefine STATE_ACTIVE 3 /* register 0 talk in progress */ 

idefine FDB_DEV 5 /* the fdb address of the device*/ 

/* 

* called at sp17 

* for each device 

* initialize its global variables 

* call fdb_open to declare the ISR and 

* start the FSMs events 

*/ 
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DEV_init () 

/* 

register int i; 

for (i • O; i < NDEVICES;i++l 

DEV_state[i] • 

DEV_present[i] • 

STATE_INIT; 

O; 

fdb_open(FDB_DEV, i, DEV_intr); 

* The device service routine 

*/ 

static 

DEV_intr(id, cmd, tim) 

switch(cmdl { 

case FDB_ONINT: 

I* 

* A poll was canceled •••• mark the device as 

*I 

if (DEV_state[id] •• STATE_ACTIVE) 

DEV_state[id] • STATE_IDLE; 

break; 

case FDB_INT: 

I* 

* 

* 
*/ 

A poll is requested. If we are doing nothing 

then do a fdb_talk to do the poll. 

if (DEV_state[id] -~ STATE_IDLE) { 

fdb_talk(FDB_DEV, id, 0, 'DEV_buff[id]); 

inactive 
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DEV_state[id] • STATE_ACTIVE; 

return(l); 

return(O); 

case FDB_POLL: 

I* 

• 
• 
• 
• 
*I 

A hardware poll succeeded ••••• fake the 

timeout parameter and the DEV buffer to look 

as if a fdb_talk() succeded without timeout 

and fall throuqh into the FDB_TALK handler 

if (DEV_state[id] !• STATE_IDLE '' 

DEV_state[id] !• STATE_ACTIVE) 

break; 

DEV_buff[id] • tim; 

tim.• O; 

case FDB_TALK: 

I* 

• 
• 
• 
• 
• 
*I 

An ADB talk transaction completed.If it timed 

out mark the device as inactive and return. If 

it didn't pass the data read back to the user • 

If it wasn't a hardware poll start another 

transaction • 

if (tim - 0) { I* there is a messaqe */ 

I* 

• <- here pass the data back to the user 

*I 

if (cmd !• FDB_POLL){ 
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fdb_talk(FDB_DEV, id, 0, 'DEV_buff[id]); 

DEV_state[id) • STATE_ACTIVE; 

} else 

DEV_state[id] • STATE_IDLE; 

break; 

case FDB_LISTEN: 

I* 

* The listen to set the handler id and service 

* request enable has completed, now start a talk 

* to register O to start the first device read 

* transaction and to put the driver into 

* the normal state. 

*/ 

DEV_state[id] • STATE_ACTIVE; 

fdb_talk(FDB_DEV, id, 0, 'DEV_buff[id]); 

break; 

case FDB_EXISTS: 

/* 

* This is as a result from the fdb_open () in 

* DEV_init () above. If tim is nonzero then the 

* device does not exist. Tell any higher level 

* drivers. If it does then start a flush 

* transaction to clean out the device. 

*/ 

if (tim) 

DEV_state[id] • STATE_INIT; 

} else 
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break; 

DEV_present[id) • 1; 

fdb_flush(FDB_DEV, id); 

case FDB_FLUSH: 

I* 

* After the flush completes start a listen to 

* set the device's handler number and turn on 

* the service request interrupts 

*I 

DEV_state[id) • STATE_REG3; 

DEV_buff[id) - Ox2000 I (FDB_DEV<<8) I HANDLER; 

fdb_listen(FDB_DEV, id, 3, 'DEV_buff[id], 2); 

break; 

case FDB_RESET: 

return; 
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Autoconfiguration is an easy technique for adding, deleting, or replacing a device 
driver or software module in the A/UX kernet Autoconfiguration involves three main 
programs: the launch <Bl program, which loads the kernel into memory; the startup 
code of the kernel; and the autoconfiq < lMl utility. 

In addition, two other programs, finstall and /etc/newunix, are indirectly involved 
L11 the autoconfiguration process.Customers use finstall to initially install your 
software module onto their AIUX system, and /etc/newunix to prepare the files that 
autoconfiq uses to link your driver into the kernel. 

This chapter describes autoconfiguration with in-depth detail of the system activities 
that occur during the autoconfiguration process. This information is provided for 
completeness and to help you in adding your driver to the kernel. 

In this chapter, you'll learn how to do the following: 

• write your device driver using autoconfiguration guidelines 

• learn what system activities happen prior to and during bootup that affect your 
driver 

• create a master script file 

• write optional initialization scripts to run after autoconfig < lMl links your driver into 
the kernel 

• write optional startup scripts that run when the system is booted 

• write an install script that is used with I etc/newunix to create the files that 
autoconfig uses to add your driver to the kernel 

• run the autoconfig (lMl utility to add your driver to the kernel 

This chapter outlines the main steps involved in adding a device driver to the AIUX 
kernel on the Macintosh Il. Chapter 13 presents a specific example of using 
autoconfiguration in a driver development environment. After writing and 
successfully testing your driver, you should read Chapter 14 for details on how to 
prepare your driver and other files so that your customers can easily install your 
software. 

Introduction to the autoconfiguration process 
When you tum on your AIUX system disk and tum on power to your Macintosh II 
computer, a number of activities occur "behind the scenes• before AIUX is actually 
booted. First, the Standalone Shell (SASH) application is executed. SASH then 
invokes the launch application. 
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launch loads the kernel into memory. Then launch probes the hardware and builds a 
data struaure indicating which NuBus slots contain slot cards, recording the board id 
of each slot carci. launch compares the current hardware configuration (of cards in 
NuBus slots) with the software configuration of the kernel. 

If all software modules in the kernel that control slot cards have matching hardware, 
launch sets the AUI'O_OK flag. If any software mcxiule that controls a slot card does 
not have the matching hardware present, or if the -a option is specified on the launch 
command line, launch sets the AtrrO_RUN flag. 

The value of AUTO_RUN or AtrrO_OK is used later by autoconfig in determining 
whether a new kernel should be builL 

After this initial processing, launch transfers execution to the kernel. The kernel begins 
the bootup process, executing the ccxie in the pstart section of the kernel. Among 
other functions, the kernel begins setting up memory, and calls the drlver.i.nit 
routines at various stages of the bootup process. 

After this initial setup, the kernel executes the ini t process.· The ini t process 
executes the lines in /etc/inittab, which includes a line that runs /etc/ sysinitrc. 
Among other functions, /etc/sysinitrc executes /etc/autoconfig. 

autoconfig is the utility that is responsible for automatically generating a new kernel 
when you add new hardware or drivers to the system. 

The autoconfig utility is used in two ways. The kernel automatically executes 
a ut ocon fig at boot time, to ensure that the software configuration of the kernel 
matches the hardware configuration in slot cards. You can also execute autoconfig 
from a running A/UX system, to generate a new kernel that you can boot later. 

The autoconfig utility first determines if a new kernel should be built. If the AtrrO_OK 
flag was set by launch and if autoconfig was invoked with the -a option, autoconfig 

does not build a new kerne~ but immediately exits and the boot process continues. 

If the AUI'O_RUN flag was set by launch or if autoconfig was not invoked with the -a 
option, autoconf ig proceeds to build a new kernel. After linking a new kernel, if 
autoconfig was invoked with the -a or -I option, autoconfig executes all driver 
initialization scripts found in the I etc/ in it • d directory. 

After building a new kern~ if autoconfig was invoked with the -a option, autoconf ig 
reboots the system. Rebooting the kernel will cause autoconfig to be invoked again. 
This time, the rurrent hardware configuration matches the rurrent software 
configuration, so autoconfig exits, and the boot process continues. If you have 
supplied a startup script for your driver, the kernel executes that script at this time. 

After the system is booted and you see the login: prompt, you can log in and begin to 
use and test your driver. 
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The files involved In ·the autoconfiguration process 
A number of files are involved in the autoconfiguration process. The names and 
descriptions of the files related to the kernel that will be booted are as follows: 

/newunix 

/unix 

An A/UX kernel that contains only the minimum devices to 
boot an A/UX system. This is the original A/UX kernel 
shipped by Apple. 

The currently running A/UX kernel or an A/UX kernel 
created by autoconfiq to reflect customi7.ed changes to the 
kernel. By default, autoconfiq builds the new kernel as 
/unix. 

/nextunix A file that contains the name of an A/UX kernel. This file 
originally contains the name /unix. 

The following is a list of programs involved in the autoconfiguration process: 

launch A Macintosh application that resides on a small HFS 
partition on the A/UX system disk. The SASH application 
invokes launch , which probes the hardware for slot C:ards, 
loads an A/UX kernel into memory, and transfers 
execution to the kernel. 

I etc/ autocon f iq 1be program that builds a new kernel. The kernel exerutes 
autoconfiq automatically at boot time.You can also. 
execute autoconfiq from a running A/UX system to build a 
new kernel that you can boot later. 

/etc/newunix The script that installs (or uninstalls) appropriate scripts 
and driver object files needed by autoconfiq. The user 
exemtes this saipt to prepare to add new modules to the 
kernel. After executing /etc/newunix, the user should run 
autoconfig to create the new kernel. 

The following is a list of directories that /etc/newunix uses and the types of files 
stored in these directories: 

/etc/install.di* 

/etc/install.d/boot.d/* 

/etc/uninstall.d/* 

Installation scripts 

Driver object files 

Uninstallation saipts 

The following is a list of directories that autoconfiq uses and the types of files stored in 
these directories: 

/etc/master.di* 

/etc/boot.di* 

Master script files 

Driver object files 
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/etc/init.d/* 

/etc/startup.di* 

Device initialization scripts 

Startup scripts 

You need to supply certain information to autoconfiq in order to add your driver to 
the kernel. This information is contained in files that you aeate and store in specific 
directories. 1bese files and their contents are described in detail in the following 
sections. 

1be functions of autoconfiq are illustrated in Figure 12-1 and are briefly described 
here. When building a new kernel, autoconfiq uses /newunix to create the new kernel 
Every software module that is to be added to the kernel must have a master saipt file in 
the /etc/master. d directory. 1be master saipt file of a module controls how that 
module will be linked into the kemel. 1be object ftle of the module must be located in 
the /etc/boot .d directory. 

autoconfiq processes the master saipt ftle for each module, links the modules into the 
kernel, and builds the new kernel in /unix. When autoconfiq is run at boot time, 
autoconfiq runs the programs in /etc/init .d, and aeates the /etc/startup file. The 
/etc/startup r~ contains a list of the driver startup saipts that will be invoked at 
boot time. 

Depending on various command line options that were specified to 
autoconfiq,autoconfiq may or may not reboot the kernel. 
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Rgure 12-1 
lhe functions of autoconftg 
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You must create the files required by autoconfiq to add your driver to the kernel. After 
creating these files, you need to write an install script and uninstall script that can work 
with the /etc/newunix script. You should use the install script for your device to copy 
the object ftle, master script file, and other optional script files of your driver into the 
appropriate directories needed by autoconfiq. 

You must supply your users with the files required by /etc/newunix. You do this by 
putting these files on the same distribution disk as your driver. You can use finstall to 
copy the files from your distribution disk to specific directories of the A/UX system 
disk of your user. 1he fin stall program is described in Chapter 14 of this manual. 

The following section provides a quick reference guide to the steps involved in adding 
your driver to the kernel. Use this as a reference section only. Each step is explained in 
detail in later sections. Following the quick reference section,is a detailed explanation 
of launch and autoconfiq. These sections will give you a deeper understanding of the 
bootup process. Following this discussion, specific directions to add your driver to the 
kernel are given. 

The rest of this chapter uses the term module to describe a compiled object file 
suitable for linking with the kernel Each module must have a companion master script 
file. 1he master script file is described in a following section. 

The term driver is used to describe a piece of code that presents one of the A/UX block 
or character device interfaces to a user. 

Ten steps to add your driver to the kernel 
This section provides a quick overview of the steps involved in adding your driver to 
the kernel. Refer to following sections which give specific information for each step. 
The following steps use the driver name mydev1ce to illustrate specific examples. To 
follow these steps for your device, replace the name mydevtce with the name of your 
driver. 

1. Write your device driver. 

If you are writing a character device driver, your driver should contain the routines 
mydevlceopen, mydevlceclose, mydevlceread, mydevlcewrite, mydevlceioctl, 
and mydevlceselect, as appropriate for your device. 

If you are writing a block device driver, your driver should contain the routines 
mydevlceopen, mydevlceclose, mydevlcestrateqy, and mydevlceprint. 

In addition, both block and character device drivers can provide a mydevlceinit 
routine, to perform initialization functions. 
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Device drivers can also provide an interrupt routine. For slot device drivers, you must 
name this interrupt routine mydevtceint. Most other device drivers also follow this 
naming convention. 

2. Compile your device driver. llename the object 81e and copy the object file 
to the /etc/inatall.d/boot.d directory. 

After compiling your driver, rename the resulting objea file mydevtce.o to mydev1ce 
(dropping the .o suffix). Copy this file to the /etc/lnstall .d/boot .d direaory. 

Your install script (/etc/install.d/mydev1ce) invoked by /etc/newunix should copy 
your objea file /etc/install.d/boot .d!mydev1ce to /etc/boot .d/mydev1ce. 
autoconfiq looks in the /etc/boot .d directory for drivers or modules that need to 
be added to the kernel. 

/etc/newunix installs or uninstalls the appropriate scripts and driver object files 
needed by autoconfiq. /etc/newunix lets the user both determine the type of kernel 
to create and choose which of the available modules to include in the kernel. 

3. Create a ~ter script me for your device. 

autoconfiq uses information in the master script file to gain information on how to 
link your driver to the kernel. For example, the master script file tells autoconfig 
whether your driver is a block device driver, charaaer device driver, streams driver, 
or streams module; whether your driver will receive interrupts from a slot card; and 
whether to create certain data structures (such as a tty structure) for your driver. 

The master script file determines whether or not your driver gets included in the 
kernel. Your master script file must have an include statement or your driver must be 
included by another master script file to get included in the kernel.(See "Using module 
dependency information" for a description of the include statement.) 

The master script file for your driver should be named mydev1ce. Your install script 
(/etc/install .d/mydev1ce) invoked by /etc/newunix should create your mydev1ce 
master script file and place it in the /etc/master .d directory. 

Your install script can create a new file by using the cat or echo shell script 
command. 

4. Create an inldalfzadon script for your driver (opdonal). 

Initialization scripts are named mydevtceand located in the /etc/init.d directory. 
These scripts are executed after autoconfiq links your driver into the kernel, if 
autoconfiq was invoked with the-I or-a option. Initialization scripts are typically 
used to create device ftles for your device. 

Your install script C/etc/install.d/mydev1ce>, which is invoked by /etc/newunix, 
should create your mydev1ce initialization script file and place it in the /etc/ init. d 
directory. · 

s. Create a startup script for your driver (optional). 
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Startup scripts are named mydeviceand located in the /etc/startup.d directory. 
Scripts in/etc/startup.dare executed every time the system is booted. You typically 
use startup scripts to create device files for your device or to download code to a 
controller. 

Your install script (/etc/install.d/mydevice) invoked by /etc/newunix should 
create your mydevice startup script file and place it in the I etc/ start up. d directory. 

6. Create an Install script for your driver and place It in /etc/i.uata1l.d. Also 
create an unlnstall script and place it in I etc/uninatal.l. d. 

You should name the install script for your device mydevice and place this script in 
the /etc/install.d directory. You should name the uninstall script for your device 
no mydevice and place this script in the /etc/uninstall. d directory. 

Scripts in /etc/install .d and /etc/uninstall.d are used with the /etc/newunix 
script. Your mydevice install script should copy your driver object file 
/etc/install.d/boot.d/mydevice to /etc/boot.d/mydevice, create the 
/etc/master .d/mydev1ce file, and create optional scripts in /etc/init .d and 
/etc/startup.d as needed for your device. 

7. Modify /•tc/newunix 

Modify the /etc/newunix script so that it will accept the name of your driver as an 
argument, such as /etc/newunix mydevlce. Also modify the script so that the user can 
specify nomydevice to uninstall your driver. 

8. llun /etc/newunix •ydev.tc• 

/etc/newunix will run the mydevice install script Oocated in /etc/install.d). Your 
install script should make sure that all files that autocon fig needs to include your 
driver into the kernel are placed in the appropriate directories. 

Before running autoconfig or before rebooting the kernel, make sure you have backed 
up your currently running kernel. For example, execute the command cp /unix 
/oldunix. 

9. llun autoconfiq 

Run autoconfig to create a new kernel. If you provided the necessary files and 
information to autoconfig, autoconfig will link your driver or module into the new 
kernel. You must specify the -I option to autoconfig if you have supplied an 
initialization script and want autoconfig to execute it. You must specify the -s 
/etc/startup option if you have a startup script that you want added to the list of 
startup scripts in /etc/startup. 

If your hardware is already installed, then shutdown your system and reboot to begin 
running your new kernel. 
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If your hardware is not yet iMtal1ed, powerdown your A/UX system and tum off power 
to all devices connected to your system. Install your hardware according to the 
instructions for your device. After installing your hardware, turn on all devices 
connected to your system. Tum on your computer; the system should begin the 
bootup process. 

10. Perform 1/0 to your device (test/debug) 

After you tum on your computer or reboot your sy8tem, the SASH application begins. 
SASH invokes launch, which loads the kernel into memory. launch checks the 
hardware configuration, sets either the AUTO_RUN or AUTO_OK flag, and then 
transfers execution to the kernel. 

If your driver has a mydevicei.nit routine, the kernel will invoke it during the bootup 
process, before the scheduler executes init. The init process is then scheduled, and 
/etc/inittab executes /etc/sysinitrc. 

/etc/sysinitrc executes autoconfiq. If launch set the AUTO_RUN flag and if the -a 
option was specified to autoconfiq, autoconfiq reboots the new kernel. 

If you have installed your hardware and previously executed autoconfiq, when you 
power on the computer or reboot the system, the kernel should not require updating 
and autoconfiq will exit and the boot process continues. If you have supplied a startup 
saipt, the kernel will execute it during bootup. 

The kernel finishes rebooting and you should see the loqin: prompt You can now log 
in and perfonn 1/0 to your device. 

Background - the startup process 
Autoconfiguration is a sequence of events that happens automatically at boot time. 
This section and the following sections explain the launch program, the sequence of 
events that occur at boot time that affea your driver, and the functions of the 
autoconfiq utility. 

The purpose of the autoconfiguration process is to check the consistency between the 
hardware attached to your Macintosh n in NuBus slots and the infonnation in the 
kernel about software modules that control slot cards. If software configuration does 
not match the hardware configuration in slot cards, autoconfiq automatically builds 
and reboots a new kernel. · 

The autoconfiguration process allows you to change your hardware configuration 
without changing DIP switches or manually rebuilding the kernel. For slot cards, 
autoconfiguration proteas you against any problems caused by mismatched hardware 
and software. 
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The launch program 
launch is a Macintosh application that resides on a small HFS partition on the A/UX 
system disk. The three basic functions of launch are to load the kernel into memory, 
record which NuBus carm are installed in which NuBus slots, and transfer execution to 
the kernel. 

The launch command accepts various options that.can be specified in the command 
line. To examine or modify the launch command line, pull down the Preferences 
menu and then select Booting .... You can specify the command line options to 
launch by modifying the text in the box labeled Launch command: in the 
Booting ... dialog box. Figure 12-2 shows the Booting. .. dialog box . 
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Figure 12·2 
The launch command Une 
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launch uses certain rules in determining which kernel to boot. If the launch command 
line specifies the name of the kernel, launch boots the specified kernel. For example, 
to boot a kernel called /oldunix, type launch /oldunix in the launch command 
line. 

If launch is specified with the -a option, launch boots newunix as the kernel (for 
example, launch -a). 

Otherwise, launch uses "the first line of /nextunix" as the kernel to boot The first line 
of /nextunix usually contains /unix. In this case, launch boots /unix. If /nextunix 
doesn't exist, then launch boots newunix. 

Note that newunix, when specified without a leading slash (/), has special meaning to 
launch. Whenever launch boots newunix, launch sets the AUTO_RUN flag, 
indicating that autoconfig should build a new kernel. 

You can force launch to set the AUTO_OK flag by specifying the -n option on the 
launch command line. The -n option is useful when debugging a driver for a NuBus 
card that does not yet have the slot ROM installed.Refer to launch (8) in A/UX System 
Admintstator's Reference for more information on other command line options to 
launch. 

After loading the specified kernel into memory, launch checks the consistency 
between the hardware attached to your Macintosh II in NuBus slots and the 
information in the kernel about software modules that control slot cards. 

launch builds the board_id array and version_ id array in the auto_data kernel 
data structure. For each NuBus slot, launch checks if a card exists in that slot If so, 
launch reads the slot ROM to determine the board id and version id of the slot card, 
and stores this information in the auto_data structure.After cycling through the slots, 
the auto_data structure contains the board id and version number of each slot card 
that is present in a slot 

launch then determines if the hardware and software configuration matches by 
examining the MODULES section of the kernel. The MODULES section includes a data 
structure called module (defined in <sys/module.h>). For slot device drivers, the 
board id and version id fields of the module data structure contain the board id and 
version id of the slot card that the driver controls. The module structure also specifies 
what slot or slots the driver expects to find the card in. 

For each module structure that specifies a board id, launch examines the auto_data 
structure, looking for a slot card with a matching board id. If launch does not find a 
slot card with a matching board id in an acceptable slot, launch sets the AUTO_RUN 
flag, which indicates that autoconfiguration should be run. 

If all module structures that specify a board id have matching hardware (as indicated 
in the auto_data structure), launch sets the AUTO_OK flag, indicating that 
autoconfiguration does not need to take place. 
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The value of the AUTO_ OK and AUTO_RUN flag is used later by autoconfig to 
determine whether a new kernel should be builtAs previously desaibed, launch sets 
AUTO_OK or AUTO_RUN according to whether the software configuration matches 
the hardware configuration. 1bese settings can be overridden in the following 
situations: 

• If the kernel name was specified as newunix in the launch command line, launch 
sets AUTO_RUN. 

• If the launch -n option was specified in the launch command line, then launch sets 
the AUTO_OK flag. If the -n option is specified, launch sets AUTO_OK even if the 
hardware and software configuration doesn't match. 

• If the launch -a option was specified in the launch command line, then launch sets 
the AUTO_RUN flag. If the -a option is specified, launch sets AUTO_RUN even if 
the hardware and software configuration does match. 

Booting the kernel 
After launch finishes processing, launch transfers control to the kernel. The kernel 
begins the bootup process. This process includes setting up memory and calling 
drlver.init routines. After initial kernel processing, /etc/init (the "initial process") 
is executed. 

/etc/init is the fustA/UX process to run after booting the system. The init process 
runs before you enter single-user mode. /etc/init reads the lines in /etc/inittab 
and executes them. 

The first command in /etc/inittab is the /etc/sysinitrc shell program. 
/etc/sysinitrc performs basic functions before you see the single-user mode shell 
prompt For example, /etc/sysinitrc executes /etc/autoconfig, and then executes 
/etc/startup. 

/etc/sysinitrc contains the following line, which executes autoconfig: 

/etc/autoconfig -a -o /unix -s /etc/startup \ 
-M /etc/master tsystem configuration 

The -a option to autoconfig means that autoconfig should build a new kernel only if 
launch has set the AUTO_RUN flag. Otherwise, autoconfiq exits and the boot process 
continues. 

If the -a option is not specified to autoconfig, or if the -a option is specified and the 
AUTO_RUN flag is set, autoconfig relinks a new kernel with /newunix and the object 
modules in /etc/boot .d. If the kernel was relinked and the -a option was specified to 
autoconfig, then autoconfig reboots the system. /etc/sysinitrc runs again and calls 
autoconfig. This time the kernel should be up to date, so autoconfig exits. 
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After autoconfiq finishes execution, /etc/sysinitrc calls /etc/startup. 
/etc/startup runs the driver startup scripts for autoconfigured modules that are part 
of the kernel. 1be driver startup scripts are found in the /etc/startup.d direaory. 

The autoeonflg utlllty 
Autoconfiq ( lMl is a utility that runs automatically at boot time and checks the 
consistency between the hardware that is attached to your Macintosh n in NuBus slots 
and the infonnation in the kernel about slot cards. 

Recall that autoconfiq is used in two ways: at boot time, to automatically generate and 
reboot a new kernel (under certain conditions); and from a running A/UX system, to 
generate a neW kernel that can later be booted 

The autoconfiq utility accepts various command line options.Note that you must be 
superuser (root) to run the autoconfiq program. Refer to autoconfiq (lMl for a 
complete list of the command line options to autoconfiq. The -a option is illustrated 
in Figure 12-3. 

If you specify the -a option to autoconfiq, autoconfiq aeates a new kernel only· if 
launch has set the AUTO_RUN flag. If you specify the -a option and launch has set the 
AUTO_OK flag, autoconfiq exits and the boot process continues. 

If you do not specify the -a option to autoconfiq, autoconfiq proceeds with the entire 
configuration process and creates a new kernel, regardless of the value of the 
AUTO_OK or AUTO_RUN flag. 

If autoconfiq created a new kernel and if the -a option was specified, autoconfiq 
reboots the kernel. 

Note that autoconfiq is invoked with the -a option from the /etc/sysinitrc script 
When you use autoconfiq during driver development, you usually will not specify 
the -a option. By not specifying the -a option, you can acid other software modules to 
a new kernel that you can later boot from. 
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Figure 12·3 
An overview of autoconflg 
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autoconfiq begins to create a new kernel by making a list of the present modules in the 
kernel. autoconfiq then searches the /etc/master .d directory for master script files to 
process. autoconfiq processes each master script file. If the module is not already in 
the kernel, autoconfiq adds the module to a list of po~ible modules to be included. 

autoconfiq aeates a module data structure to desqibe each module to be included in 
the kernel. autoconfiq fills in the module structure with information contained in the 
master script files. For example, autoconfiq records if the module is a block device 
driver or character device driver, a streams driver or module, whether the module 
receives interrupts, and when the driver.Lnit routine should be called 

For each module represented by a master scriptftle, autoconfiq checks ifthe master 
script ftle defines a board id and version number. If the master script file defines a 
board id and version number, autoconfiq records this information in the module 
data structure. 

autoconf iq processes the master script ftle for any dependency statements. Each 
module is marked included or excluded from the kernel according to the evaluation of 
the dependency statements.If the master script file includes a dependency sta~ment 
that specifies that a particular module be included, autoconfiq looks for the object 
module in I etc/boot. d to include in the final link of the kernel. 

Next autoconfiq processes the last line of each master script file. This line contains the 
flags, number of interrupt vectors, driver prefix, major number, number of devices, 
and interrupt priority level for the module. autoconfiq records this information and 
takes various actions depending on the values specified on this line. 

Then autoconfiq verifies that each slot card has a module that controls it. For each 
card, autoconfiq gets the board id and version number of the card from either the 
auto_data structure or the loadfile. autoconfiq then searches the modules for a 
module with a matching board id and version number. 

Any module that has a corresponding slot card with a matching board id and version 
number is marked as to be included in the kernel. 

For a slot device driver, your master script file must tell autoconfiq the board id of the 
slot card your device driver controls. Doing this allows autoconfiq to check if the slot 
card really exists in the system. If the slot card is installed and the board id of the slot 
card matches the declared board id of a module, autoconfiq will link the driver into 
the kernel. If the slot card is not present, autoconfiq will not link the driver into the 
kernel. 

For any slot card that autoconfiq cannot find a module with a matching board id and 
version number, autoconfiq prints a warning message to the system console. For 
example, if autoconfiq cannot find the driver for the Etheflalk card, autoconfiq 
prints a message similar to the following: 



Warninq cannot find driver(s) for device ID 5 
Version 7.0 

After processing the master script ftles, autoconfiq prepares the new kernel for 
linking. This preparation includes allocating major numbers to new modules and 
setting up various kernel data structures, such as the cdevsw and bdevsw tables. 

autoconfiq also sets up die slot interrupt vector table. For slot device drivers, 
autoconfiq sets up the slot interrupt vector table entry for your card to contain the 
address of your interrupt routine. The interrupt routine of slot device drivers must be 
named driver.int, where driver is the device prefix specified in your master script file. 
Naming your interrupt routine drlveri.nt allows autoconfiq to set up the appropriate 
entry in the slot interrupt vector table to contain the address of your drlverint 
routine. 

autoconfiq runs /bin/ld to link the new mcx:iules and /newunix into the new kernel. 
The new kernel is created as /unix, unless otherwise specified in the autoconfiq 
command line. 

If autoconfiq was invoked with the -S file option, autoconf iq makes a list of the 
modules that have startup scripts or programs which the kernel is to call at boot time. 
autoconfiq puts this list of startup programs to call in the file specified on the 
command line (usually /etc/startup). When the kernel boots, the startup scripts of 
the modules listed in /etc/startup are executed. 

If autoconfiq was invoked with the -I option, then autoconfiq executes the driver init 
scripts found in /etc/init .d that correspond to modules in the new kernel. 

autoconf iq does final processing, including the writing of a summary of the 
autoconftguration results to the system console. If autoconfiq was invoked with the -a 
option, autoconfiq reboots the kernel. 

The /ete/newunlx script 
For autoconfiq to include ,your driver into the kerne~ you need to provide a master 
script f'de and the object file of your driver. You can also optionally provide a startup 
script and an init script for your driver. These files must be located in the following 
directories: 

/etc/master.d 

/etc/boot.d 

/etc/init.d 

/etc/startup.d 
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Once a master script fde is placed in /etc/master .d with a companion object file in 
/etc/boot.d, the next time autoconfiq is run (without the-a option), autoconfiq will 
create a new kernel, including the new module in the kernel. 

Rather than directly place these files in /etc/master .d and /etc/boot .d, you should 
let the user explicitly place the files in these directories by using /etc/newunix. You do 
this by writing an install saipt that can be invoked by /etc/newunix. 1be install script 
for your module should be located in /etc/install .d. Your install saipt should set up 
the mes autoconfiq nee& to include your driver into the kernel. 

The user specifies one or more arguments to /etc/newunix. Each argument 
corresponds to one or more modules that are to be included in the new kernel. 

I etc/ newunix lets the user determine the type of kernel to create and choose which of 
the available modules to include in the kernel. 1be user uses /etc/newunix to begin the 
process of configuring a new kernel. For each argument specified to /etc/newunix, 
/etc/newunix executes an install or uninstall script for that argumenL The install 
script for a particular argument installs the scripts and driver object fdes needed by 
autoconfiq to configure that module into the kernel The uninstall script for a 
particular argument removes the fdes used by autoconfiq for that module. 

The arguments specified to /etc/newunix depends on the type of kernel you want to 
create: basic networking (bnet), Network File System (nfs), A/UX toolbox (toolbox), 
non-networking (nonet), no toolbox capabilities (notoolbox). 

You must modify /etc/newunix to include processing of your install and uriinstall 
script. 

You should backup your current /etc/newunix file, then edit /etc/newunix. Add a case 
statement for the name of your driver. Inside the case statement add a line that 
executes your install saipL Also add a case statement that will execute your uninstall 
script. 

You should either provide this modified version of /etc/newunix to your customers 
on your distribution disk, or include directions for your customers to edit 
/etc/newunix so that they can make the changes themselves. 

Install scripts usually copy the fde in I etc/ install. d/boot . d/ mydevtce to 
/etc/boot. d/ mydev1ce. Most install scripts create the other mes (the master script 
file, startup scripts, and init scripts) by creating the file in-line by using either the 
echo or cat shell command 

The install script that you write for /etc/newunix should be called mydevlce, where 
mydevlceis the device prefix of your driver. Place this script in the /etc/install.d 
directory. Your install script should install the necessary files in the /etc/master .d, 
/etc/boot.d, /etc/init.d, and /etc/startup.d di.rectories. 
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The uninstall saipt that you write for /etc/newunix should be called nomydevtce, 
where mydevfce is the device prefix of your driver. Pbce this saipt in the 
I etc/uninstall. d directory. Your uninstall script should remove the necessary files in 
the /etc/master.d, /etc/boot.d, /etc/init.d, and /etc/startup.d direaories. 

The driver development proces5 
Figure 12-4 shows the stages in developing and installing a device driver using 
autoconfiguration .. 
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Once a master script file is placed in /etc/master .d with a companion object file in 
/etc/boot. d, the next time autoconfig is run (without the -a option), autoconf ig will 
create a new kernel, including the new module in the kernel. 

Rather than directly place these files in /etc/master .d and /etc/boot .d, you should 
let the user explicitly place the files in these direaories by using /etc/newunix. You do 
this by writing an install saipt that can be invoked by /etc/newunix. The install script 
for your module should be located in /etc/install .d. Your install script should set up 
the files autoconf ig needs to include your driver into the kernel. 

The user specifies one or more arguments to /etc/newunix. Each argument 
corresponds to one or more modules that are to be included in the new kernel. 

I etc/ newunix lets the user determine the type of kernel to create and choose which of 
the available modules to include in the kernel. 1be user uses /etc/newunix to begin the 
process of configuring a new kernel. For each argument specified to /etc/newunix, 
/etc/newunix executes an install oruninstall script for that argument. The install 
script for a particular argument installs the scripts and driver object files needed by 
autoconfig to configure th2t module into the kernel The uninstall script for a 
particular argument removes the files used by autoconf·ig for that module. 

The arguments specified to /etc/newunix depends on the type of kernel you want to 
create: basic networking (bnet), Network File System (nfs), A/UX toolbox (toolbox), 
non-networking (nonet), no toolbox capabilities (notoolbox). 

You must modify /etc/newunix to include processing of your install and unlnstall 
script. 

You should backup your current /etc/newunix file, then edit /etc/newunix. Add a case 
statement for the name of your driver. Inside the case statement add a line that 
executes your install script Also add a case statement that will execute your uninstall. 
script. 

You should either provide this modified version of /etc/newunix to your customers 
on your distribution disk, or include directions for your customers to edit 
/etc/newunix so that they can make the changes themselves. 

Install scripts usually copy the file in /etc/install.d/boot .d/mydev1ce to 
/etc/boot .d/ mydev1ce. Most install scripts create the other files (the master script 
file, startup scripts, and init scripts) by creating the file in-line by using either the 
echo or cat shell command. 

The install script th2t you write for /etc/newunix should be called mydevlce, where 
mydev1ce is the device prefix of your driver. Place this script in the /etc/install .d 
direaory. Your install script should install the necessary files in the /etc/master .d, 
/etc/boot .d, /etc/init .d, and /etc/startup.d direaories. 
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The uninstal1 saipt that you write for /etc/newunix should be called nomjdevtce, 
where mydeulce is the device prefix of your driver. Place this saipt in the 
/etc/uninstall. d directory. Your uninstall script should remove the necessary files in 
the /etc/master .d, /etc/boot .d, /etc/init .d, and /etc/startup.d directories. 

The driver development process 
Figure 12-4 shows the stages in developing and installing a device driver using 
autoconfiguration. 
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The following sections describe each step of the driver development process in detail. 

Writing and compiling your device driver 
Chapters 2 through 11 showed how to write a device driver. Refer to these chapters for 
detailed information about writing your driver. 

When you write your device driver, you should follow certain naming conventions. 
Remember that you should give your device driver routines a unique three to eight 
character prefix that is afftxed to a routine name. Valid characters are alphanumeric 
or an underline U. For example, if you use the preftx MYDEVICE, you should name 
the open routine for your driver MYDEVICEopen. 

Remember that since your driver will coexist with many other drivers, you should 
declare any data structures and routines that are not referenced outside of your driver 
as static. 

Table 12-1 shows a list of the names of routines for character device drivers. Your 
character device driver must follow these naming conventions. 

Table 12-2 shows a list of the names of routines for block device drivers. Your block 
device driver must follow these naming conventions. 

Table 12·1 
Routine naming conventions for character device drivers 

Routine name 

pref1xopen 

preftxc.lose 

pre/lxread 

preft:;:.,r i te 

preftxioctl 

preftxselect 

pre/lxinfo 

preflxtty 

pre/lxinit 

pre.flxint 

prefl.:x4r i ver 

preflxfork 

Descrlptton 

Character device open routine 

Character device close routine 

Character device read routine 

Character device write routine 

Character device ioctl routine 

Character device select routine 

Stream device interface structure 

tty structure for terminal device drivers 

Device initialization routine (optional) 

Device interrupt· routine( optional) 

B-NET network interface 

fork execution routine 

12-22 Chapter 12: Autoconflguratlon 



( 

( 

preflxexec 

pre/lxexit 

Table 12·2 

exec execution routine 

exit execution routine 

Routine naming conventions for block device drivers 

Routine name Description 

, 
pre/txopen Block device open routine 

pre~lose Block device close routine 

preftxstrateqy Block device strategy routine 

prefacpr int Block device print routine 

pre/txinit Device initialization routine (optional) 

preftxint Device interrupt routine(optional) 

prejf»J.r i ver B-NET network interface 

pre/lxfork fork execution routine 

pre/lxexec exec execution routine 

preflxex it exit execution routine 

After writing your driver, compile it using the -c flag to produce an object module. 
Rename this module giving it a name that uniquely identifies it, but without a • o 
ruename extension. 1ben, move the renamed module to the I etc/ inst all. d/boot . d 
directory. 

Creating the master script file 
After you write your device driver, you must prepare a maSter saipt file. A master 
script file contains information used during autoconfigura.tion. Your install script 
(/etc/install.d/mydevice) should create the master script file for your device in the 
/etc/master. d directory. 

The master script file for your driver can define driver characteristics, assign an 
identifying number to a slot card, or set up dependencies between modules. Give this 
file the same name that you chose for your renamed object module. A master script 
file can have three parts, as shown in Figure 12-5. 
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A sample master saipt flle forthe EtherTalk card, found in the ffie /etc/master .d/ae6 
is shown below: 

id 8 
if • include slots 
anvs 1 ae6 1 1 

I 

Of the information in this file, the first line contains a device identifier, which shows a 
board id of 8 for the Ethetralk card. 1be second line presents module dependency 
information. This information indicates that if the objea file for the current module 
(ae6) exists, then autoconfiq should include the slots module in the kernel. The 
third line shows device infonnation, which specifies,among other thin~1that the 
device uses a network interface. 

The following sections explain the information that you can specify in a master saipt 
file. 

Using a device Identifier with slot devices 
The device Identifier is optional information that is specified only for slot device 
drivers. 1be device identifier is used to specify a particular slot carci. The device 
identifier has the following syntax: 

id name serial 

where: 

name is an integer board ID, which is stored in the slot ROM. This number must have 
been obtained from Apple Technical Support. 

serial is optional information. If you use this field, autoconfiq compares the number 
you specify here with the slot card's version number. If the two numbers do not match, 
autoconfiq will not include the module in the kernel. If you do not fill in a value for 
this field, autoconfiq will not check the slot card's serial number for a match. In this 
case, if the board id's match, autoconfiq will include the module in the kernel. 

serial can be one of the following: 

number 

number-

The slot card's serial number. autoconfiq 
checks for an exaa match between number 
and the version number. 

A serial number greater or equal to number. 
autoconfiq checks if numberis greater than 
or equal to the version number. 
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- number 

number1-~ 

empty 

A serial number less than or equal to 
number. autoconfiq checks if number is 
less than or equal to the version number. 

A serial number greater than or equal to 
number1 and less than or equal to number2. 
autoconfig checks the Version number for a 
value in this range. 

If you do not specify the number, autoconfig 
does not check the version number. 

autoconfig searches a slot card's revision level string and attempts to create a version 
number from it. autoconfig first looks for substrings having the forms n.n or n, where 
n can be one or two decimal numbers. Then autoconfig creates a new number by 
placing the fU'St n in the hundreds place value and by appending the remaining digits 
to it (or zeros if no digits appear after the decimal point). For example, 

3.01 becomes 301 

3.1becomes301 

31becomes3100 

3.23 becomes 323 

autoconfig then compares this new integer with the version range from the master 
script file. If autoconfig does not find a number in the string,autoconfig 
assumes 0. 

Using module dependency Information 
Depending on your needs, your master script file can contain include statements and 
other dependency statements. 

When dependency processing begins, autoconfig reads and marks modules that are 
currently in /newunix (such as, the console driver and the root file system driver). 
These modules are marked as included. 

Next, autoconfig marks every module with a master script file that has a device 
identifier name and a version number that matches a card in the current hardware 
configuration as to be included. 

Next, autoconfig scans all driver master script files for any dependency statements. 
Each module is marked included or excluded according to the evaluation of the 
dependency statements. 

If your driver is not a slot device driver and if your driver does not depend on any 
other modules, or is not included by another module, you must include the statement 
"include . " in your master script file to include your driver in the kernel. 

12-26 Chapter 12: Autoconflguratlon 



( 

( 

Dependency statements have either this form 

verb name/1st 

or~form 

if ifexpr verb name/1st 

where 

verb is either include or exclude. The term include tells autoconfig to include the modules in 
namel1stin the kernel. 1be term exclude tells autoconfig to exclude the modules in namelistfrom 
the kernel. · 

ifexpr is a filename (use a period [.) for the current module) or an expression. If the 
filename exists or if the evaluation of the expression is true, then the modules specified 
in nameltst are included in or excluded from the kernel. The expression can be 
negated(!), AND'ed (&:) or OR'ed ( I ) to another expression. The symbol ! has the 
highest priority, followed by &:, and I . For example 

a I b&:c means a I (b&:c) not (a I b)&:c 

!a&:b means (!a)&:b not !(a&:b) 

To override this priority, use parentheses. 

name/1st can be one or more module names (or a period [.] for the current module) 
separated by commas. autoconfig scans the master script files, evaluates the ifdef 
statements , and adds other modules if necessary. 

Avoid circular dependencies. For example, suppose modules A, B, and C contain the 
following dependency statements: 

A if include B 

B if • include C 

C if include A 

Neither A, B, nor C will be included Note that the order in which the include 
statements appear does not matter. Also watch out for dependencies that contradict 
each other. For example, 

A include C 

B exclude C 

will include and then exclude C. Both of these types of errors generate error messages 
and terminate autoconfiguration. 
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Including device Information 
The device information is a required information line that tells autoconfiq how to 
place the device driver into the kernel. 'Ibis line contains the following six fields: 

flags nvec prefix soft dev1ces lpl 

where 

flags can contain a number of values.These values are described in detail later in this section. 

nvec is the number of interrupt vectors that a particular controller can generate. For 
drivers that receive slot interrupts this number is 1 (because each controller can 
generate only one interrupt). For software modules that do not directly receive 
interrupts, this value should be a hyphen(-). 

prefix is the prefix used in the driver's interface routines. The prefix must be between 
three and eight characters long. Valid characters are alphanumeric characters or an 
underline U. 
soft is a value used to assign the major number to your software driver. 'Ibis value 
should always be a hyphen (-).When you specify a hyphen in this field, autoconfi~ 
assigns the first available major number not already assigned in the kernel to your 
device. Doing this prevents your major number from being used by any other device 
driver in that A/UX kernel. Doing this allows flexibility and guarantees that your driver 
is assigned a unique major number. 

To create a device ftle for your driver, you need to know the major number for your 
device. Both the driver init scripts and driver startup scripts are passed a parameter 
that indicates the major number of your device. You should use the major number to 
create your device file at this ti.me. Driver initialization scripts and driver startup 
scripts are explained in the section "Writing Optional Init and Startup Scripts". 

devices is either a hyphen (-) for modules that aren't device drivers, or a nonrero 
integer for device drivers. The integer value is the number of devices that the 
controller supports. For example, if the controller supports only one device, this 
value should be 1. If the controller supports 8 4evices, this value should be 8. 'Ibis 
value is usually used with the a flag (descnbed in a following paragraph). 

lpl is the highest priority interrupt level used by the controller. For modules that don't 
receive interrupts, this value should be a hyphen(-). For slot-based devices (all of 
which interrupt at spll), this value should be 1. 

flags can be one or more of the following: 

a 'Ibis flag is used to create various data structures to be included in the kernel. In 
addition, you can use this flag with other flags to create data structures specific to 
terminal and block device drivers. 

When the flag a is specified, two data structures are created: 

preftxcnt 
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preflxaddr 

These data structures will be aeated and included in the final linked kernel. 
These data strucrures contain hardware configuration information and should be 
declared as extern in your driver. 

preflxcnt is initialized with the number of controllers associated with your device 
driver in the system (not the number of devices). For example, assume your 
device driver controls video cards, and there are two video cards, a coprocessor 
card, and a networking card in the system. Then pre.fi»=nt will have a value of 2 
for your driver. 

preflxaddr is an array (having preflxcnt entries) containing the address of each 
controller. For slot device drivers, this value is the number of the slot that the 
slot card is in. You can use this value to map slot numbers to logical units or 
instances of your driver. For example, assume your device driver controls video 
cards, and there are currently two video cards in the system. These two video 
cards are in slots 9 and 12. Then preftxcnt equals 2, and preflxaddr contains the 
following values: 

preftxaddr[OJ • 9 

preflxaddr[l) - 12 

You can use the values in preftxaddr to calculate the base of the slot space for 
each card installed in the given slot. 

For ADB and SCSI devices, preflxaddr contains the ADB or SCSI address. 

If you specify both the a and the t flag. an uninitialized array of type st ruct 
tty namedpre.fixtty is created with (pre.fi»=nt • preftxaddr) number of entries. 

If you specify both the a and the b flag. two arrays having the same dimensions 
are declared: 

struct iobuf preftxiobuf []; 

struct iostat preftxiostat (]; 

The number of elements in the preflxiobuf and preftxiostat arrays for your 
driver is equal to the number of devices times the number of controllers. 

b This flag is used to specify a block device driver. Entry points to the driver will be 
added to the block device switch table. autoconfig looks for the routines with the 
names preft.xopen, preftxclose, preftxstrategy, and pre/eq,rint. For each of 
these routines autoconfig finds, autoconfig fills in the corresponding bdevsw 
entry with a pointer to the routine. If autoconf ig does not find an entry for a 
bdevsw routine, the corresponding bdevsw entry will contain a default entry. 
The default entry is nodev or nulldev. · 
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c This flag is 'used to specify a character device driver. Entry points to the driver 
will be added to the character device switch table. autoconfig looks for the 
routines with the names preftxopen, preft».:lose, preflxread, preft:»write, 
preftxioctl and pre/ixselect. For each of these routines autoconfig finds, 
autoconfig fills in the corresponding cdevsw entry with a pointer to the routine. 
If autoconfig does not find an entry for a cdevsw routine, the corresponding 
cdevsw entry will contain a default entry. For example, if you do not supply a 
drlverselect routine, autoconfig fills in the drlt.ie1select entry in the cdevsw 
table for your device with the default entry sel true. For most other routines, the 
default entry is nodev or nulldev. 

l This flag is used to indicate that the module contains the line discipline code. 
autoconfig looks for routines namedpreftxopen, preft»::.lose, preflxread, 
preft»trite, preftxioctl, pre/ixinput, and preftxoutput and fills in the line 
discipline switch entry with a pointer to the corresponding routine. You can only 
use the p flag with the l flag. 

m This flag is used to indicate a Streams driver. autoconfig looks for a structure 
named preftxin fo and fills in the corresponding entry in the cdevsw table with a 
pointer to this struaure. 

n This flag is used to indicate that this device uses a network interface (TCP /tP). 

popt This flag lets you specify when a driver's initialization routine is called All device 
drivers can supply a routine named preflxinit. autoconfig will look for this 
routine in your driver. If autoconfig finds a routine named prefixinit, 
autoconfig records that your preftxinit routine should be called during 
bootup. 

If you want your preftxini t routine to be called at a particular time during system 
initialization and if you want to specify whether interrupts should be enabled or 
disabled, you can use the p flag with one of the following values for qi~ 

f Call preftxinit routine first, before any other initialization occurs. 
Interrupts are disabled 

s Call preftxinit routine second, after any pf modules are initialized. 
Interrupts are disabled 

n Call preftxinit routine normally, after pf and ps, but prior to enabling 
interrupts. This is the default if you do not specify any p <:pt flag. 

0 Call preftxinit routine after interrupts are enabled. 

1 Call preftxinit routine after system starts but before the kernel enters 
/etc/init. 

If your driver has a preftxinit routine and you do not specify the p opt flag, your 
preftxinit routine will be called as if you specified p n (normal). 
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s This flag is used to indicate a software module that is not linked to the system 
through the driver interface. It is used for modules such as subroutine libraries. 
You can only use the p flag with the s flag. 

t This flag is used to indicate a character device driver that has a tty structure 
associated with it autoconfiq creates a global pointer to the tty data 
structure. You must use the t flag in conjunction with the c flag. Each tty 
structure is named preft:x:tty and is indexed by using the device's minor 
number. 

vopt This flag instructs autoconfig to link your driver to the interrupt vector 
mechattism. Currently, the only value of cpt supported is s, which indicates that 
the kernel is to decode slot-based interrupts and to call the interrupt routine of 
this driver when the card generates an interrupt. 

If you specify vs, autoconfig adds your preflxint routine to the slot interrupt 
vector table. 

x This flag is used to specify a Streams module. You can only use the p flag with the 
x flag. 

L This flag specifies that this module is a COFF library. 

s opt This flag is used to define special applications-defined exit, fork, and exec 
routines. Values of cpt are as follows: 

e 1be module contains a routine prefboexit, which is called whenever a 
process exits. 

f The module contains the routine prejfxf.ork, which is called whenever 
a process forks. 

x The module contains the routine prefbl:xec, which is called whenever 
a process execs a new image. 

Sample master script files 

The following section shows four master script files for a device called MYDEVICE: the 
first one is for a character driver, the second one is for a block driver, and the last two 
are for a Streams driver and module. 
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A character device driver master script file 
Figure 12-6 presents an example of a sample character device driver master script file. 
In the example, the first line indicates that th.is driver controls a slot card with board id 
99. The second line indicates that th.is driver depends on the slots module, and 
iMtructs autoconfig to include the slots module in the kernel if the MYDEVICE module 
is also included in the kernel. 

In the third line, th.is script identifies a character terminal device (ct) whose interrupts 
are slot based (vs). Autoconfiguration will create two data structures for th.is module: 
MYDEVICEcnt, which contains the number of slot cards with board id 99 in the 
system, and MYDEVICEad.dr, which is an array initialized with the slot number of each 
slot card controlled by the driver. 

The 1 indicates that the module will receive one interrupt per controller (which is true 
for all slot devices). The rest of the line indicates that the device prefix is MYDEVICE, 
the software major number will be assigned by autoconfig (-),there are 8 devices per 
controller, and the device lpl (the interrupt level at which the device takes interrupts) is 
1. 
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Rgure 12-6 

A sample master script ftle for a character device driver 

( 
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A block device driver master script flle 
A sample master saipt file for a block device driver is illustrated below and explained in the following 
paragraphs. 

if • include SCSI 
bca MYDEVICE 2 1 

In this script, the if • include SCSI statement on the first line assumes that 
another module (the SCSI manager) must be in the kernel for the module to run. In the 
second line, the be indicates that the driver will be used as both a block and character 
device driver . autoconfiq will create entries in both the bdevsw and cdevsw table for 
this device driver. This device driver shares open and close routines between the two 
device drivers. The a flag instructs autoconfiq to create the MYDEVICEcnt and 
MYDEVICEaddr data structures. 

The first hyphen(-) indicates that this module does not receive interrupts directly, 
because this device receives interrupts via the SCSI manager. The device's prefix is 
MYDEVICE, and autoconfig will assign the software major number !->.There are 2 
devices per controller and the device interrupt 'lpl is 1. 

A streams driver master script file 
A sample master script file for a streams device driver is illustrated below and explained in the following 
paragraphs. · 

if . include STREAMS 
mvsa 1 MYDEVICE 2 1 

The fll'St line of the saipt includes the STREAMS module into the kernel. 

The second line of the script identifies a streams device (m) whose interrupts are slot 
based (vs). autoconfig will create the MYDEVICEcnt and MYDEVICEaddr data 
structures (a). The number of interrupt veaors the controller can generate is 1 
(because it is slot based), the device prefix is MYDEVICE, and the software major 
number is not used There are 2 devices per controller and the device 'lpl is 1. 

A streams module master script flle 
A sample master script file for a streams module is illustrated below and explained in the following 
paragraphs. 

include • 
x MYDEVICE 
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Because this module doesn't depend upon any other module in the system, it must be 
explicitly included with the include. statement This script first identifies a streams 
file W. The script then specifies that no interrupt vectors are received(-), MYDEVICE 
is the device prefix, the software major number is not :wigned (because this is a 
streams module), there are no devices per controller (because this module isn't a 
physical device), and the lpl is not applicable. 

Writtng optional lnit and startup scripts 
You might choose to writ.e two optional types of scripts: device initialization scripts 
that run immediat.ely after autoconfiguration, and startup saipts that run whenever the 
system boots or reboots an autoconfigured kernel. 

Your install script (/etc/install .d/m.ydeulce) should creat.e the init and startup 
scripts for your device. Your install saipt should place your init script in the 
/etc/init .d directory, and your startup saipt in the /etc/startup.d directory. 

If the -I or -a option is specified to autoconfig, autoconfig executes any ftles in 
/etc/init .dafter building a new kernel but prior to rebooting. 

Usually, these scripts create device files in the system's /dev directory. Naming 
conventions for device flies are listed in the following section. A number of special 
programs such as dev_kill<lMI, tty_kill !lM), and tty_add(lMI can be run. See 
AIUX System. Administrator's Reference for details about these programs. 

When you write init scripts, be careful about writing an init script that modifies the 
currently running environment while running the old kernel. You should place 
functions that could affect the currently running environment in your startup script 

Any files in /etc/startup.d whose names correspond to modules in the kernel are 
executed from /etc/sysinitrc (by the /etc/startup script) before entering single­
user mode. 

A list of these optional startup scripts is kept in the /etc/startup file, which is 
generated during autoconfiguration. When you run autoconfiq, you must specify the -
s /etc/startup option if you have a startupsaipt that you want added to the list of 
startup scripts in /etc/startup. Usually, these startup scripts or programs perform 
initialization functions, such as downloading code to an intelligent controller. 

The fust flag passed to a device initialization script is -d and the first flag passed to a 
device startup script is -s. These flag options are passed in the following order to all 
startup and initialization scripts: 

-M n The major number of this device type is n. Only block, character, and 
streams drivers are passed the major number flag. 

-C n There are n controllers :wociated with this module in the system. 
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-D n There are n devices per controller. associated with this module in the system. 

-s n 1bere is a controller for this device type in NuBus slot number n. n is a single 
hex digit from 0 to OxOF. See the v option in •1ncluding Device Information" 
given earlier in this chapter for information about specifying slot interrupts. 
1be -s flag is passed only if at least one controller for your device is actually 
installed in the system. 

If more than one slot card for your device driver is installed in the system, 
then your script will be passed more than one -s flag. where the number 
following each-sis the slot number of one of your slot cards. 

For example, the startup script of a slot device driver might be invoked as follows: 

/etc/startup.d/TEST -M 9 -c 1 -o 1 -s 11 

This line indicates that the TEST module has major number 9, one slot card associated 
with it in the system, one device per slot card, and is installed in slot 11. 

Device file naming conventtons 
You must create one or more device files in order to perform J/O to your device. 
Device files are typically created in the init or startup scripts of a driver. Recall that the 
init and startup scripts are passed the major number of the device. You can use this 
information to aeate your device files in these scripts. 

This section uses the following terms: 

card A card supporting one or more units (usually, but not always) of the same 
device type. A card is also often referred to as a controller. 

unit A single physical device that can be individually addressed For 
example, a unit could be one channel on a dual channel serial chip or 
one disk driver on a controller. 

1be device names in /dev and /etc/inittab should follow these naming 
conventions: 

Type Name 

Terminal devices /dev/ttySU 

Disks /dev/dsk/cmmsy 

/dev/rdsk/cmmsy 
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tty SU 



( 

c: 

( 

Printeril 

Other devices 

where 

s is the slot number. 

u is the unit number. 

where n is the SCSI ID of the Hard Disk SC, mis the 
number of the sub-Oriver at that SCSI ID (usually O), 
and y is the slice number associated with a particular 
partition. 

/dev/lpSU 

/dev/lpaxu 

/devtnameu 

I dev I name/ :xxx 

pa.xu 

pa.xu 

nameu 

nameu 

a is other bus type (either S for local SCSI buS or F for Apple DeskTop Bus). 

xis other bus index. 

name is the driver name. 

:x:xx is any letter or digit. 

Note: You can place special files in /dev subdirectories to make searching through the 
directory faster. ' 

Creating the install and uninstall scripts 
Once your driver, master script, and optional scripts are complete, you should write 
an install script for your device driver. 1bis script should install the device driver, 
master sajpt, and other files into the appropriate directories for autoconfig. 

The install script for your device should be named mydevlce and placed in the 
/etc/install .d directory. 1be uninstall script for your device should be named 
nomydevU;e and placed in the /etc/uninstall .d directory. 

Scripts in /etc/install .d and /etc/uninstall .dare used with the /etc/newunix 
script. Your mydev1ce install script should copy your driver object ftle 
/etc/install.d/boot .d/mydev1ce to /etc/boot.d/mydev1ce, create the 
/etc/master .d/mydevice ftle, and create optional scripts in /etc/init .d and 
I etc/ start up. d as needed for your device. 

Your uninstall script nomydevtce should remove the files related to mydevtce in the 
/etc/master .d, /etc/boot .d, /etc/init .d, and /etc/startup.d directories. 
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Modifying /etc/newunix 
Modify the /etc/ newunix saipt so that it will accept the name of your driver as an 
argument. An example of such an argument .is /etc/newunix mydevtce. Also modify 
the saipt so that the user can specify no mydevlce to uninstall your driver. 

Next you should run /etc/newunix mydevlce. After your mydevfce install saipt 
finishes execution. your driver object file, master saipt file, and optional scripts 
should be in the appropriate directories for autoconfiq. 

Running autoconflg 
Aft.er you run I etc/newunix, the files that autoconf iq needs to link your driver into the 
kemel should be in place. You can now run autoconfiq. Do not use the -a option. By 
not specifying the -a option. you tell autoconfiq to build a new kemel. 

If you provided the necessary files and information, autoconfiq will link your driver or 
module into the new kemel. If you run autoconfiq with the -I option. autoconfiq 
executes all initsaipts in the /etc/init.ddirectory. If you run autoconfiq with the 
-s /etc/ startup option. autoconfiq adds your startup saipt to the l.ist of startup 
scripts in /etc/startup. 

You cannowpowerdown your system and install your hardware. When you tum the 
system back on. your new kemel should boot and you can begin to perform VO to your 
device. 

If your hardware .is already installed, then shutdown the system and reboot. Your new 
kernel should boot and you can begin to perform VO to your device. 

Customer Installation of your driver 
Once you have successfully debugged and tested your driver, you are ready to 
distribute your driver to your customers. To install your driver, your customers should 
use the finstall utility. 

For information on how to install your driver from your distribution floppy to a 
custo~s A/UX system disk, see Chapter 14. Chapter 14 describes how your 
customers can use finstall to install your driver object file into 
/etc/install.d/boot .d, your install saipt into /etc/install.d. After your 
customers install your driver object file and install saipt onto their system, they can 
execute /etc/newunix, run autoconfiq, and then powerdown the system and install the 
hardware. When they tum the system back on, the new kemel should boot, and your 
customers can perform VO to your device. 
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For end users who buy and install a new device in the Macintosh n, the 
autoconfiguration process is used to link new drivers into the kernel This process 
includes using finstall, /etc/newunix, autoconfiq, and then rebooting the 
system. If you're developing device drivers, however, you may Want to automate the 
normal autoconfiguration sequence by using a makefile to install and test your driver. 

This chapter desaibes how you can use autoconfiguration in this way for developing 
drivers. This chapter uses a specific example to illustrate how to create the various 
saipt files used with your driver, and to illustrate how to wrire a makefile that allows you 
to recompile and add your driver to the kernel with one command Before you start, 
make sure that you have read Chapter 12 and understand how autoconfiguration works, 
and that you know what saipt files you must wrire. 

The sample TEST driver 
The sample driver used as an example in this chapter is named TEST. The ~driver is a character 
device driver that controls a slot card. The source code for the TEST driver is shown in this section. 
The following sections show the master saipt ftle, install script, uninstall script, startup script, 
modified /etc/newunix file, makefile, and loadfile that can be used with the TEST driver. 

finclude <sys/sysmacros.h> 
finclude <sys/req.h> 

extern int TESTcnt; 
extern int TESTaddr[]; 

TESTopen (dev,flaq) 

dev_t dev; 

{ 

int maj, min; 

maj • major(dev); 

min• minor(dev); 

printf(" in TESTopen now \n"); 

printf(" The major number is %d \n", maj); 

printf(" The minor number is %d \n", min); 

return(O); 
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TESTclose (dev) 

dev_t dev; 

printf(" in TESTclose now \n"); 

TESTinit () 

int i; 

printf ("in TESTinit \n"); 

/* Recall that if you specify the "a" flag in the Device Information 
line of the master script file, autoconfig creates the variables 
prefixcnt and prefixaddr. *I 

/* In this specifi:e; example, TESTcnt contains the number of slot 
cards with board id 99 in the system. TESTaddr[] contains the 
slot number of each slot card in the system that the TEST driver 
controls. */ 

for (i - 0; i<TESTcnt; i++) 

printf (" TESTaddr [%d] is in slot %d\n", i, TESTaddr[i]); 

TESTint (args) 

struct args *args; 

printf(" Slot card generating interrupt is in slot %d\n", args->a_dev); 

The TEST master script file 
You use the master script file to link the TEST driver into the kernel. The install script 
I etc/ install. d/TEST is used to create the master script file and to place the 
master script file in I etc/master. d. The master script file for the TEST driver is as 
follows: 
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id 99 1 
if • include slots 
acvs 1 TEST 2 1 

The first line of the TEST master saipt fde specifies the board id of the slot card (99), 
and the version number (1). When autoconfiq is run, autoconfiq looks for slot 
cards with board id 99 that might exist in the system. If any slot cards with board id 99 
exist in the system, autoconfiq will include the TEST module in the kernel. 

The second line instructs autoconfig to include the slots module in the kernel if the 
TEST module is included. Remember that for device drivers other than slot device 
drivers and device drivers that are not included by any other master script fde, this 
line must contain "include • "to include the module into the kernel. 

The third line instructs autoconfiq to aeate the TESTcnt and TESTaddr data 
structures (a), specifies that the TEST module is a character device driver(c), and 
specifies that TEST receives interrupts from a slot device (vs) . This line also instructs 
autoconfiq to set up the appropriate entry of the slot interrupt vector table to point 
to the TESTint routine. 

The third line also specifies that TEST receives one interrupt per controller, as do all 
slot device drivers. 1be driver prefix is TEST, so autoconfiq will look for routines 
with this prefix to aeate entry points in the cdevsw structure for this module. 

The software major number will be assigned by autoconfiq (-).The TEST module 
supports up to two deviO::S per slot card, and interrupts at priority level 1. 

The TEST startup script 
You can provide a startup saipt with your device to perform various functions at boot 
time. 1be install saipt /etc/install .-d/TEST is used to create the startup script 
fde and to place the master saipt file in /etc/startup.d 

You must run autoconfiq with the -s I etc/ startup option if you want 
autoconfiq to add your startup saipt to the list of startup programs in 
I etc/ startup. The startup saipt f.de for the TEST driver is as follows: 

t startup script for TEST 

· PATH•/bin: /usr/bin: /etc: /usr/etc 
scriptname•$0 

name•TEST 

t Your startup script is passed a number of flaqs 
t Refer to Chapter 12 for a description of these flaqs 

t Initialize the minor number, so that each device 
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f 
minor•O 

has a unique minor number 

while test -n $1 

do 

f 
f 

f 
f 

f 

f 
f 
f 

f 

esac 

shift 

case $1 in 

-M) 

-C) 

-D) 

-S) 

*) 

For -M flaq: Save the major number 
shift 

major•$1 
echo "The major number is $major" 
, , 

shift 

For -c flag: echo the number of cards for 
this driver in the system 

echo "$1 card(s) installed for TEST driver" .. , , 

shift 

For -o flag: echo the number of devices per 
card 

echo "$1 device(s) per card" .. , , 

shift 

For -s flag: Create the device file 

Each device file is named 
/dev/TESTslotnumber and 
is given a unique minor 
number. 

mknod /dev/TEST$1 c $major $minor 
minor•'expr $minor+ l' 
echo "There is a card in slot $1 for TEST" .. , , 

Print error for all other flags 

echo "$scriptname: Unexpected argument $1" 
exit 1 
; ; 
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done 

f End of TEST startup script 

The TEST install script 
The install script for the TEST device driver is located in /etc/install .d. You use 
the /etc/newunix command to execute the TEST install script The TEST install 
script copies the TEST object file from I etc/ install. d/boot. d/TEST to 
I etc/boot. d. The TEST install script also creates the TEST master script me, and 
creates a startup script. 

The TEST install script is as follows: 

f /etc/install.d/TEST 

PATH•/bin:/usr/bin:/etc:/usr/etc 

name-TEST 

f 
t Install the driver object file 
t 

f 

cp /etc/install.d/boot.d/$name /etc/boot.d 
chmod 644 /etc/boot.d/$name 

f Install the driver master script file 
f 

echo 'id 99 l' > /etc/master.d/$name 
echo 'if . include slots' >> /etc/master.d/$name 
echo 'acvs 1 TEST 2 1' >> /etc/master.d/$name 

chmod 644 /etc/master.d/$name 

end of TEST install script 

The TEST uninstall Script 
The uninstall script for the TEST device driver is located in /etc/uninstall. d You 
use the I etc I newunix command to execute the TEST uninstall script The TEST 
install script removes the files related to TEST in the directories used by 
autoconfig. 

The TEST uninstall script is as follows: 
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f /etc/uninstall.d/TEST 

PATH-/bin:/usr/bin:/etc:/usr/etc 

name-TEST 

f 
f Delete the driver object file 
f 

:rm -f /etc/boot.d/$name 

f 
f Delete the driver master script file 
f 

:rm -f /etc/master.d/$name 

f 
f Delete the driver startup file 
f 

:rm -f /etc/startup.d/$name 

f end of TEST uninstall script 

Modifying /etc/newunix 
Remember that you need to either supply your customers with a modified version of 
I etc I newunix, or give them direaions on how to modify the file themselves. 

The arguments currently available that a user can specify to /etc/newunix are: basic 
networking (bnet), Network File System (nfs), A/UX toolbox (toolbox), non­
networking (nonet), no toolbox capabilities (notoolbox). 

For each module specified in the command line,/etc/newunix invokes a script 
corresponding to that module. The scripts for individual modules are located in 
/etc/ install. d. 

The scripts in /etc/install.dsetup the files that autoconfiq needs in order to 
configure that module into the kernel. After the script exeOJtes, the appropriate files. 
have been placed in /etc/master.d, /etc/boot.d, /etc/startup.d, and 
/etc/init. d that autoconfiq will use to link the module into the kernel. 

You must modify I etc/ newunix to include p~ing of your install and uninstall 
scripts. Add a line to the case statement that will accept the name of your driver as a 
parameter. When this parameter is specified, you should exerute the install saipt for 
your driver. 
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You should also add a line that accepts the prefix no and the name of your driver (for 
example, noTEST). When this parameter is specified, you should execute the 
uninstall saipt for your driver. 

The following is a modified version of I etc/ newunix that works with the install and 
uninstall scriprs of TEST. 

t 
t Modified version of /etc/newunix that also accepts TEST as an 
t argument 

PATH•/bin:/usr/bin:/etc:/usr/etc 
case $1 in 

t 

nonet) /etc/uninstall.d/BNET 

bnet) 

/etc/uninstall.d/ae6 
/etc/uninstall.d/nfs 
, ' 

/etc/uninstall.d/nfs 
/etc/install.d/BNET 
/etc/insLall.d/ae6 
, , 

nfs) /etc/install.d/BNET 
/etc/install.d/ae6 
/etc/install.d/nfs .. , , 

toolbox) 
/etc/install.d/toolbox 
; ; 

notoolbox) 
/etc/uninstall.d/toolbox .. , , 

t Add a line that checks for your device name here 
t 

TEST) 
/etc/install.d/TEST 

, , 
NOTE ST) 

/etc/uninstall.d/TEST 
, , 

*) echo "Usage: $0 <system>" 
echo " where <system> is one of nonet, bnet, nfs, toolbox 

or no toolbox, TEST or noTEST" 
exit l 
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; ; 
esac 
f end of modified /etc/newunix 

Using makefiles 
After you write your driver, master script file, and optional script files, you can create 
and run a makefile. This fil& contains user-specified commands that are processed 
according to built-in rules found in the make utility. For more information about this 
utility, see •using make• in AIUX Programmtng Languages and Tools Volume 2, and 
make(l). 

Your makefile should contain four commands: 

• A command that compiles your driver. 

• A command that copies your driver into the I etc/ install. d/boot. d 
directory. 

• A command that executes the modified I etc I newunix command. 

• A command that executes the autoconfig ( lMl utility. 

In addition, you can create a loadftle to hold slot ROM information. From the 
autoconfig command in your makefile, you can specify whether or not this file will 
be read instead of the slot ROMs for your card 

Creating a loadflle 
During development of your driver, you should run autoconfig from the system 
directly to create a new kernel.During development of NuBus cards, you can test your 
slot device driver independently of your hardware. If your slot card is not ready for 
testing with your software driver, or if you have not yet installed the slot ROMs on your 
card, you can use a loadfile to begin testing your driver. In the place of slot ROMs, you 
must aeate a loadfile to hold slot ROM information. 

The loadfile is an ASCII me which contains the following information: 

slot-number board-ID verston-number 

For example, this loadfile 

11 99 1 

specifies slot 11, board ID 99, and version number 1. To use a loadftle, specify the -L 
lead.file option to autoconfig. When you specify this option,autoconfig reads 
the specified file for device information instead of reading the slot ROMs. 
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If you create a kernel using the -L Joa41ileoption to autoconfig, then you must use 
the -n option on the launch command line to boot this new kernel. The launch -n 
option forces launch to set the AUfO_OK flag, regardless of whether the slot card for 
your driver is present or not. Note that you should only use a loadfile and the launch 
-n option during driver development and testing of your software driver. When you 
are ready to test your software driver with yoor hardware, then you do not need to use a 
loadfile or the launch -n option. 

The sample TEST makefile 
You can create a makefile to automate the process of compiling and linking your driver to the kernel. 
The sample makefile used with the TEST driver is shown here: 

testunix: /newunix /etc/install.d/boot.d/TEST loadfile 

/etc/newunix TEST 

autoconfiq -L loadfile -I -s /etc/startup -o /testunix 

/etc/install.d/boot.d/TEST: TEST.o 

TEST.o: 

cp TEST.o /etc/install.d/boot.d/TEST 

/bin/cc -c TEST.c 

The rule testunix: checks for the /newunix file, the driver file TEST, and the 
loadftle, and if present, runs /etc/newunix and then autoconfiq. If the driver 
file TEST is not present in the /etc/install .d/boot .ddirectory, make executes 
the /etc/install. d/boot. d/TEST rule. 

The I etc/ install. d/boot. d/TEST rule depends on TEST. o. If TEST. o does not 
exist, the TEST. o rule is executed. If TEST. o does exist, make executes the 
command on the following line. This command copies TEST. o into the 
/etc/install.d/boot.d directory. 

The rule defined by TEST. o compiles the TEST. c driver code. 

After the /etc/install .d/boot .d/TEST file has been updated, make executes the 
next statement on the line following the test unix statement This line is a command 
to run I etc I newunix.Remember this must be a modified version of I etc I newunix 
that has been modified to accept the name of your driver as an argument 

TheTEST argument to /etc/newunix causes the /etc/install.d/TEST script to 
be executed. The TEST install script copies the driver object file 
I etc/ install. d/boot. d/TEST to I etc/boot. d. The TEST install script also 
creates the master script file I etc/master. d/TEST. 
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lhe make utility then executes autoconfig. The options to autoconfig are 
explained in the following paragraphs. 

The -L flag means that autoconfig reads the load.file instead of searching the slots 
for a device. If you do not specify a full pathname, autoconfig looks in the current 
working directory for the file named load.file. 

The -I flag instructs autoconfig to call the initscripts in /etc/init .d for all 
modules included in the new kernel 

The -s I etc/ startup option instructs autoconfig to create a list of startup scripts 
for modules in the new kernel. If you have supplied a startup script for your driver, the 
name of your startup script is put in the specified file (/etc/startup>. When the 
system is rebooted, your startup script will be executed. 

The -o flag changes the default output ftle from /unix to /testunix. 

Creating a new kemel that includes your driver 
Using the sample makefde in the previous section, you can create a new kernel that includes the TEST 
driver by typing · 

make testunix 

lhe make program executes the TEST makefile. Make outputs several on-screen 
messages, including error messages if make finds any errors in the makefile. Warning 
messages preceded by the string Expect a warning message can be ignored. 

If the TEST driver is succ:es,,fully added to the kernel, autoconfig prints a table of 
existing modules, which should now include the TEST driver. 

lhe file /testunix now contains the TEST driver. You should now back up /unix 
(for example, by using cp /unix I oldunix) ,and then move the new kernel to 
/unix (for example, by using mv /testunix /unix ). If your hardware is already 
installed , shut down the system and reboot. 

If your hardware is not yet installed, then you should power down the system and 
install the hardware at this time. 

After rebooting the system, the TEST driver is available to perform 1/0. 
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Performing 1/0 with the TEST driver 
After using the make process and rebooting the new keme~ you are ready to debug the TEST driver. A 
sample program that opens the TEST driver is shown below: 

tinclude <fcntl.h> 
tinclude <errno.h> 

main() 
( 

int fd; 

print£(" Begin testing driver \n"); 

if ((fd - open("/dev/TESTll", o_RDWR)) -- -1) 
{ 
perror(" Error in open, errno message"); 
exit(l); 
} 

close(fd); 

You aJso need to make sure the device file for your driver ftle has been aeated. 
Typically your driver init or startup script aeates this file. 1be TEST startup saipt 
aeated the /dev/TESTll device file. 

After compiling and executing this sample program, the following output is produced 
on the terminal: 

Begin testing driver 
In TESTopen now 
The major number is 9 
The minor number is 0 

This chapter showed how to aeate a simple character device driver for a slot card, by 
using the TEST driver as an example. 1be master saipt ftle, startup script, install 
saipt, uninstall script, modified /etc/newunix file, makefile, and loadfile for the 
TEST driver were aJso shown. 

You should now know how to begin writing the device driver for your device, and how 
to aeate the ftles used during autoconfiguration to add your driver to the kernel. 
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After writing and successfully testing your driver, you need a procedure your OJStomers 
can use to install your driver onto their A/UX system. In this chapter, you'll learn how 
to prepare your distribution floppy disk with the files needed to install the software for 
your device. 

Apple Computer has designed a standardi7.ed installation procedure to install third­
party software called £install. finstall is a Bourne shell script that you can use to 
install software from one or more floppy disks. The floppy disks should contain an 
A/UX mountable file system with various files on it, including a cpio archive 
containing files to be installed, and optional preinstall and postinstall shell 
scripts or executable programs. 

finstall is intended to provide a simple, common, and consistent user interface 
for installing software on an A/UX system.All third-party vendors should use 
finstall. Apple aJso uses finstall for A/UX software installation. 

A OJStomer can install your software by simply typing the finstall command at the 
shell prompt. £install prompts the user for cenain information, such as which 
drive (right hand or left hand) the floppy disk is inserted in. Each question has a 
standard default, so you can make the installation process completely automatic. 

Your OJStomer runs finstall to install your driver object file, install script, arid 
uninstall script into the appropriate directories of their A/UX system. 

After your customer runs f install, your driver object file should be located in the 
/etc/install .d/boot .d directoryoftheAIUXsystemdisk. In addition, your 
install script should be located in the I etc/ install. d directory, and your uninstall 
script in the /etc/uninstall .d directory. 

Your customer then needs to run /etc/newunix. Remember that you need to either 
supply a modified version of /etc/newunix for your customers, or give them 
directions on how to modify the file themselves. 

When your OJStomer runs your modified version of I etc/newunix,the customer 
must specify the name of your device as an argument /etc/newunix will then 
execute your install script. 

The install script for your device should copy the driver object file in 
/etc/install.d/boot.d into /etc/boot.d. Your install script should also create the 
master script file and other optional script files of your driver, and place these scripts 
in the appropriate directories that autoconfiq needs to link your driver into the kernel. 

After your customer runs your modified version of /etc/newunix, the appropriate 
files should now be in /etc/master.d, /etc/boot .d, /etc/startup.d, and 
/etc/init .d, which are the directories autoconfiquses when linking the module 
into the kernel. After making sure the current system has been backed up, then the 
customer should run autoconfiq. 
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Autoconfiq links your module into the new kernel, and puts the new kernel in /unix. 
Your customer should now powerdown the system and inst.all the hardware. After 
installing the hardware, your customer c.an blm the power to the system on. When the 
A/UX system begim initiali7.ation, the new kernel that includes your driver will be 
booted. Your customer c.an now perform VO to your device. 

Giving out finstall to your customers 
fins tall is a Bourne shell saipt that should be located in /usr /bin. Not all customers have 
finstall on their systems however, as finstall was notdistnbuted withA/UXRelease 1.0. 

Therefore, Apple is supplying a copy of finstall with the Device Drivers Kil You should include a 
copy of finstall on the distribution disk for your software. 

If finstall is not installed on the user's system, the message 

finstall: Command not found. 

will be displayed on the user's monitor. In this case the user needs to copy finstall from your software 
distribution disk to the I us r /bin di.rectory of their system. The user can use the following command to 
copy finstall to their system: 

cpio -icuvm /usr/bin/finstall < /dev/rfloppyO 

The user should get the message 

/usr/bin/finstall 

if finstall was successfully copied to the /usr/bin direaory. 

This listing shows the way a customer would install your software, using the A/UX Device Drivers Kit as 
an example. 

' finstall 

finstall: This is the finstall proqram. It installs software from a 
finstall: floppy disk onto your system. It will qive you a chance to 
finstall: see what software is beinq installed and how much disk 
finstall: space it will need before anythinq is installed. 

finstall: You may at anytime stop the finstall procedure by qivinq 
finstall: it an interrupt, which is normally the CTL-C key. 

finstall: Press RETURN when ready to proceed: (RETURN) 

finstall: Use the left or riqht floppy disk drive? [default: riqht] (RETURN) 
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finstall: Insert the installation floppy number 1 into the right hand drive. 
finstall: Press RETURN when ready to proceed: (insert floppy and press RETURN) 

finstall: Now mounting the installation floppy •••• 

finstall: Now checking that the required files are on the floppy .•. 

finstall: The software on this floppy is <Device Drivers> 
finstall: It is from <Apple Computer> 
finstall: And it is version <vl.O> 
finstall: The vendor has supplied the following description: 

(A short two paragraph description of the A/UX Device Drivers Kit is shown) 

finstall: Under what directory should the software be installed? [default: 
/usr/src/device_drivers] (RETURN) 

finstall: Now calculating the disk space needed to install the software. 

finstall: This may take a few minutes •••. 

finstall: You have 20160 blocks on the installation point <cs>. 
finstall: You will '.JSe 5200 blocks to install the software, 1-eaving 14960 
blocks free. 

finstall: Do you want to see what files will be installed .before they are 
actually installed? [default: yes] (RETURN) 

(fmst.all displays a list of all the ftles that will be installed) 

finstall: This is your last chance to stop before actually installing the software. 
finstall: Do you want to proceed with the installation? [default: yes) 
(RETURN) 

(fmst.all proceeds to install the files) 

An overview of finstall 
Your distribution floppy disk can contain a number of files as shown in Figure 14-1. 
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When the user executes finstall, finstall performs a number of functions. fins tall first checks 
whether the /etc If install re or • f installrc file exists on the customer's A/UX system. A user can 
control the default options for f install by using these two files. 

finstall also checks that the user is the superuser (root), then mounts the floppy disk and creates the 
following directories if they do not exist: 

/etc/finstall.d 
/etc/finstall.d/vendorname 
/etc/finstall.d/vendorname/softwarename 
/etc/finstall.d/vendorname/softwarename/versionname 

The vendorname, sojtwarename, and verstonname are taken from the names specified in their 
respective files on the distribution floppy disk. 

finstall uses the sequenceno and sequenceof files to determine if this floppy disk is part of a 
multi-floppy disk set. If so, f install verifies that the floppy disk has the correct sequence number 
specified in the sequenceno me. 

The installpoint file contains the default absolute pathname of where to~ the files in 
cpiodata or cpiodata. z. finstall prompts the user for a different installation point, allowing the 
user to override the default specified in installpoint if desired If you do not provide an 
installpoint file,finstall uses the current working directory as a default installation point. 

finstall calculates the amount of disk space needed to install the files, and if not enough space is 
available, lets the user decide whether to quit or continue. Just before copying the files from the 
cpiodata or cpiodata. z archive, finstall executes the preinstall script (if it exists) on the 
floppy disk. 

fins ta 11 also creates a list of the files installed from the cpio archive. fins ta 11 puts this list of 
installed files in the file /etc/ f install. d/ventiorname/ softwarename/ versionname/ installedf iles. 

finstall also copies either the absolute pathname specified by the installpoint file on the floppy 
disk or the installation point specified by the user to the 
/etc/finstall.d/vendorname/softwanmame/versionname/installpoint file. 

finstall then installs the files from the cpiodata or cpiodata. z archive. The files copied from 
the floppy disk are placed in either the current working directory or the directories indicated by the 
information from the installpoint and installedfiles files. 

If the software distribution is on more than one floppy disk, finstall continues with the installation 
procedure for the next floppy disk. After all files have been installed, finstall executes the 
post inst all script (if it exists) on the last floppy disk of the software distribution. If your 
postinstall script creates any files, then your post install script should update the 
/etc/finstall.d/vendorname/so.ftwarename/versionname/installedfiles file accordingly. 

You can set various default options for f install. For example, you can specify that f install prompt 
for an installation point, or specify that finstall use the current working directory as the installation 
point and not prompt for an installation point. These default options are listed in the following section. 
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Setting defaults for finstall on your A/UX system 
You can use the /etc/finstallrc and . finstallrc to specify default options used with 
£install, such as whether £install should prompt the user for certain information, or whether 
£install should use a default value. 

You can set these options by either placing them in the I etc/ f install re me or in • f im1tallrc in 
the current working directory. 11le options that you can specify are Bourne shell •set• type options. The 
default values set by f install are as follows: 

CON_ TRIES•5 
CTL_AUOWRC•l 
CTL_ASKDRIVE•l 
CTL_ASKINSTAU• 1 
CTL_CHECKSPACE• 1 
CTL_TAKEDEFAULT•O 

The settings of these options are explained in the following paragraphs. 

CON_TRIES 

CTL_ALLOWRC 

CTL ASKDRIVE 

CTL_ASKINSTALL 

This option specifies the number of tries a user is all~ during an attempt to 
give an acceptable amwer to a prompt. If a user uses all of the tries, £install 
quits. This number should be a positive integer value. 

This option specifies whether finstall should use the .finstallrc 
ftle in the working directory. CTL-: ALLOWRC can be set as follows: 

CTL _ ALLOWRC - 0 Do not use a .fmstallrc ftle iri the 
current working directory. 

CTL_ALLOWRC !• 0 Do use a .fmstallrc file in the current working 
directory if it exists. 

This option specifies whether £install should prompt for the drive 
that will be used to install the software from. CTL_ASKDRIVE can be 
set as follows: 

CTL_ASKDRIVE - 0 Don't ask which drive is to be 
used; assume that it is the right drive. 

CTL_ASKDRIVE ! - 0 Ask if the right or left drive is to be used. 

This option specifies whether £install should prompt for the installation 
point on the user's system where the software will be installed. 
CTL_ASKINSTALL can be set as follows: 

CTL ASKINSTALL -- 0 Don't ask for an installation point; assume 
current working directory. 
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CTL_CHECKSPACE 

CTL_TAKEDEFAULT 

CTL_ASKINSTALL !• 0 Ask for an installation point. 

This option specifies whether fins tall should check if there is enough 
space on the installation point to install the software. cn_CHECKSPACE 
can be set as follows: 

CTL _ CHECKSPACE -- 0 Do not check for space on the install point. 
CTL_CHECKSPACE ! • 0 Check that there is enough space on the ir...stall 

point to install. 

This option specifies whether finstall should use default answers. 
CTL_TAKEDEFAULT can be set as follows: 

CTL_TAKEDEFAULT -- 0 Whenever an answer is prompted for, 
read it from the controlling TIY device. 

CTL_TAKEDEFAULT ! • O Print the question on the screen, but do not 
wt for an answer. In this case, the default 
answer is used 

Files that are located on the finstall floppy disk 
This section describes the files involved in the finstall installation procedure. 

cpiodata 

cpiodata.z 

1he cpio archive that contains the files to be installed. You must create this archive 
with the -c option of cpio. For example, if you have two direaories containing 
various files that you wish to create, you can type the following command line: 

% find dirl dir2 -depth -print I sort I \ 
cpio -oc > cpiodata 

Note that you can use either cpiodata or cpiodata. z, but not both. 

This file is a packed version of cpiodata. To create the packed version, run the 
pack utility on the cpiodata file. An example of this is shown below: 

% find dirl dir2 -depth -print I sort I \ 
cpio -oc > cpiodata ; pack cpiodata 
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diskspaceneeds 

This fiJe contains simple ASOI text The text consists of a paragraph or two 
desaibing the software. Because this text will be displayed for the user, you should 
make the text as descriptive as possible. For example, the file may contain 
something like the following: 

This is the MARSH Corporation ~Ally Gator" video board 
driver installation software. When installed, this 
software will build a new A/UX kernel to support the 
Ally Gator video board. 

This file contains one line of ASOI text. This text contains three numbers that assist 
the finstall script in calculating how much disk space is needed for installing the 
software on this floppy disk. Normally, if this ftle is not present, f install 
calculates the disk space needed based on the si.7.e of the cpiodata ftle. If this file is 
present, finstall takes the siz.e of the cpiodata file and uses the numbers from 
this file to adjust the diskblocksneeded value. 

For multi-volume releases, each floppy disk can contain a diskspaceneeds file 
that represents the remaining data to install. For example, the diskspaceneeds 
file for the first floppy disk contains the si7.e of the entire package, and each 
following floppy disk contains a smaller value. 

Of the three numbers in the diskspaceneeds file, the first number is the number 
of disk blocks to add or subtract from the si.7.e calculated from the cpiodata file. A 
positive or unsigned number is added to the si7.e of the cpiodata fde, while a 
negative number is subtraaed. Leave this number as 0 if you do not wish to use it 

The second number is a percentage to increase or deaease the number of blocks 
needed, based again on the siz.e of the cpiodata file. For example, if the second 
number is 30, finstall inaeases the total number of blocks needed by 30%. If the 
number is -30, then finstall decreases the total number of blocks by 30%. Thus, 
if the si.7.e of the cpiodata fi1e is 100 blocks, and ifthe second number is 30, then 
the total siz.e required is 130 blocks. Leave this number as 0 if you do not wish to use 
it. 

You can use both the first and second numbers together. 

The third number, if not 7.ero, overrides the first and second numbers. The third 
number is the absolute number of blocks to use as the disk-space-required value. 
'The si.7.e of the cpiodata file is ignored in this case. Leave this number as 0 if you 
do not wish to use it 
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pre install 

post install 

sequenceno 

This file is an executable program or shell saipt that is executed right before the 
cpio utility installs the fdes. You might use the pre install script to save flies or 
directories that may be overwritten by the installation process. The preinstall 
saipt has five arguments passed to iL 1hese arguments are exactly the same as those 
passed to postinstall, and are as follows: 

argl 1be root mount point of the floppy disk. 

arg2 1be installation point of the software. 

arg3 1be full pathname of the version directory of the software. 1be version 
directory is a directory located under /etc/finstall. d It has this 
format: 

I etc If inst a 11. d/ vendomame/sojtwartename/verstonname. 

Files pertaining to the installation of this version of software are kept in the 
version directory. 

arg4 The full pathname of the filename of the installedfiles file under the 
~lonnamedirectory. The installedfiles file contains a list of files, 
one per line, that are installed. 1be files in the cpio archive are 
automatically placed in this file. If either the pre.:i,nstall or 
post install program or shell saipts install or aeate files, then those 
filenames should be placed in this ftle also. The basename of this file is 
always installedfiles. 

arg5 The full pathname of the filename of the installpoint file under the 
~ton directory. Files in the cpio archive can be either absolute 
pathnames or relative pathnames. The £install saipt asks the user for a 
pathname to install under (the default is the current working directory). 
This pathname is known as the install poinL This file contains the install 
point. 

This program or shell saipt should return 0. A nonzero return value causes 
£install to prompt the user for permission to continue. 

This file is an executable program or shell script that is executed right after the cpio 
utility has installed the files.You might use the post install saipt to create links 
or for other post-installation functions. The post install saipt has five 
arguments passed to iL These arguments are exactly the same as those passed to 
pre install. This program or shell script should return 0. A nonzero return value 
causes £install to prompt the user for permiSsion to continue. 

This file contains one line of ASCII text A number indicating the sequence number 
of the floppy disk in a multi-floppy disk set is the sole contents of the line. For single 
floppy disk installations, this file can be omitted. If this file is present, the 
sequenceof file must also be specified. 
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sequenceof 

vendorname 

softwarename 

versionname 

installpoint 
(floppy disk file) 

installpoint 
(system disk) 

This file contains one line of ASCII text. A number indicating the number of the 
floppies in a multi-floppy disk set is the sole contents of the line. For single floppy 
disk installations, this file can be omitted. If this file is present, the sequenceno 
file must also be specified. 

This me contains the name of the vendor of the software being installed. This name 
should be a System V UNIX directory name and must adhere to the naming 
conventions (14 characters or less, no embedded slashes). Embedded blanks are 
allowed - the f inst all script carefully quotes all use of the vendorname directory 
name. The vendornamedirectory is under the /etc/finstall .d directory, as 
shown below. 

/etc/finstall.d/vendorname 

:You should carefully chose your vendcrname name, and keep it consistent for all 
your software products. For example, software products from Apple Computer use 
the vendor name Apple Computer for all products. 

This file contains the name of the software being installed. This name should be a 
System V UNIX directory name and must adhere to the naming conventions (14 
characters or less, no embedded slashes). Embedded blanks are allowed - the 
f install script carefully quotes all use of the softwarename directory name. The 
softwarename directory is under the vendorname directory, as shown below. 

I etc/ f inst al 1. d/ vendorname/softwarename 

This is the version of the software being installed. This name 
should be a System V UNIX directory name and must adhere 
to the naming conventions (14 characters or less, no 
embedded slashes). Embedded blanks are allowed - the 
f install script carefully quotes all use of the verstonname 
directory name. 1be verslonname directory is under the 
vendorname and so.ftwarename directories, as shown 
below. 

I etc If inst a 11 • d/ vendorname/sojtwarenamelverstonname 

This file contains the default absolute pathname of the 
home directory from where the files will be installed. 

This file contains the acn.ial installation point used. 
This is either identical to the pathname specified by the 
installpoint file on the distribution floppy disk, or the 
pathname specified by the user. 
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installedf iles 
(system disk) 

This file contains the list of files that were installed. This file is 
not supplied on the distribution floppy disk. The 
installedfiles file is ~ated by £install in the file 

/etc/finstall .d/vendomame/softwarename/ver.stonname/installedfiles 

1he file names can be either absolute or relative path names. 
If relative pathnames are used, then you must provide the 
installpoint file also. 

If your post install saipt installs or ~at.es any files, your 
postinstall script should modify this file accordingly. 

14-12 Preparing Your Driver for Customer Distribution 



( 

Appendix A 

Driver Interface Routines 

( 

A· 1 



This appendix is a reference section for the driver routines that are invoked through 
the bdevsw and cdevsw tables. These routines provide the driver interface to the 
kernel. Some of these routines are found in both block and character device drivers; 
some are specific to only block device drivers or only character device drivers. Note 
that this appendix does not include desaiptions of the rouitnes used in streams device 
drivers. Refer to Chapter 6, "Streams Device Drivers", for a desaiption of the routines 
used by streams device drivers. 

The following routines are found in this appendix: 

o ~pen-prepares the device for 1/0. Both block and character device drivers 
supply a drlveropen routine. 

o drlverclose-performs device close operations. Both block and character device 
drivers supply a drlverclose routine. 

o driver.read-reads data from a device. Only character device drivers supply a 
drlverread routine. 

o drtverwri te-writes data to a device. Only character device drivers supply a 
drlver.rri te routine. 

o drlver.i.octl-perfonns control operations or other device-dependent operations 
on a device. Only character device drivers supply a driver.ioctl routine. · 

o drtverstrategy-schedules the transfer of data between the kernel buffer cache 
and a device. Only block device drivers supply a drtverstrategy routine that is 
directly invoked by the kernel. However, a character device driver can indirectly 
call a drlverstrategy routine by using the kernel routine physio () . 

o drtverprint-prints error messages to the user on the sysrem console. Only block 
device drivers supply a drlverprint routine. 

Drivers can also provide an initialization routine called drlverini t. The kernel calls 
drlver.i.ni t routines during system initialization. Ref er to the section "Including 
Device Infonnation" in Chapter 12 for more information on the drlver.ini t routine. 

Slot device drivers must provide an interrupt routine called driver.int. Chapter 9 
desaibes the drlver.i.nt routine for slot device drivers. Most other drivers also supply 
an interrupt routine. For information on how other drivers handle interrupts, refer to 
the section "Interrupt Handling by Your Driver" in Chapter 1. 

Retum values of driver Interface routines 
A/UX device driver open, read, write, and ioctl routines must return either 0 for 
success or an error number for failure. Error numbers referred to as errno are defined 
in the header file <sys/errno. h> and are listed in Appendix B. 
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A summary of the driver Interface routines 
The rest of this appendix desaibes the driver interface routines. Entries are listed in 
alphabetic order and contain the following: 

o the name of the routine 

o a synopsis of the routine 

o the arguments to the routine 

o a desaiption of what the routine does 

o the values returned from the routine 

o where to look for more infonnation 
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close( driver) 

Name 
dose-perform device close operations 

Synopsis 
void drlverclose(dev,jlag) 

dev_t dev; 

int flag, 

where 

o dev is the device number. 

close( driver) 

o flag is a flag from the oflag field of the open system call (see open(2) in the AIUX 
Programmer's Reference). 1bese flags correspond to the flag values in a file · 
descriptor data structure (the £_flag field in the header file <sys/file. h>). 

o driver is the device prefix. 

Description 
1be drtven:lose routine is used to remove the connection between the physical 
device and the driver. Typical functions of a driverclose routine include 
reinitializing driver data structures and device hardware. The kernel calls close only 
on the last close of the device; that is, if no other processes have the device open. The 
drivert:lose routine should take the appropriate actions to make the device available 
to be opened later. 

Retum values 
None. 

See also 
For block devices, see •Tue driverclose routine" in Chapter 3. 

For character devices, see •Tue driverclose routine" in Chapter 4. 
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For terminal devices, see •Tue close routine• in Chapter 5. 

For Streams devices, see •1be close routine• in Chapter 6. 

For Streams terminal devices, see •The close routine• in Chapter 7. 
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ioctl( driver) Ioctl( driver) 

Name 
ioctl-perform control operations and other device-dependent operations 

Synopsis 
int drlverioctl (dev, cmd, addr, mode) 

dev_t dev, 

int cmd, mode; 

caddr _ t addr, 

where 

o dev is the device number. 

o cmd is a command argument indicating the type of operation to be done. The value 
of cmdcorresponds to the reqparamerer specified by the user in the ioctl(2) 
system call. 1be value of cmd is driver dependent (see Seaion 7 of the A/(J)( 

System Administrator's Reference for ioctl command values of different drivers). 

o addr is a pointer to a buffer containing data copied in from the arg parameter 
specified by the user, or is a storage area to place data to be copied out to the user 
in the arg parameter. 

o mode is an argument that contains values set when the device was opened. The 
driver can use mode to check whether the device was opened for read or write. 

o driver is the device prefix. 

Description 
You can use a drlver.i.octl routine to perform device-specific or driver-specific 
commands. For example, you could use your drlverioctl routine to perform control 
operations on your device, to get status from your device, or to change the 
configuration of your device. Common uses of the driver.ioctl routine are to 
perform miscellaneous aaivities such as rewinding a tape or initializing a disk. Only 
character device drivers provide a driver.ioctl routine. 
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Retum values 
If your drlver:i.octl routine successfully perfonns the request, your driver.ioctl 
routine should return 7.ero to the kernel. If your drlverioctl routine is unable to 
successfully perform the request, your drlverioctl routine should return an errno 
value to the kernel, indicating the reason the request failed 

See also 
For character devices, see •perfonning Control and Miscellaneous Functions on a 
Device• in Chapter 4. 

For terminal devices, see -i'he ioctl routine• in Chapter 5 and termio(7) in the A/TJX 
System .Administrator's Reference. 

For streams terminal devices, see "The ioctl routine• in Chapter 7. 
I 

copyin(kemel) in Appendix B. 

copyout(kemel) in Appendix B. 
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open( driver) 

Name 
open--prepare the device for 1/0 

Synopsis 
int drlveropen(dev, flag, ndevp) 

dev _ t dev, -ndevp; 

int flag, 

where 

o dev is the device number. 

open( driver) 

o flag corresponds to the flag values in a file descriptor data struaure (the /Jlag field 
in the header rue <sys/file. h>). . 

o ndetJp is a pointer to a dev _ t, which is used in done open operations for character 
devices. Only character device drivers are passed the ndevp parameter .. 

o driver is the device prefix. 

Description · 
The driveropen routine is used to prepare the device for 1/0. Typical functions of a 
drtveropen routine include validating the device number, and performing device­
dependent open operations. The drlveropen routine should open the file according 
to the flag parameter and prepare the device for data transfer. 

Retum values 
If your drlveropen routine successfully opens the device, your drlveropen routine 
should return zero to the kernel. If your drlven:>pen routine fails to open the device, 
your drfveropen routine should return an errno value to the kernel, indicating the 
reason the request failed 
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See also 
For block devices, see -'The driveropen routine• in Chapter 3. 

For character devices, see -'The driveropen routine• in Chapter 4. 

For terminal devices, see "The open routine• in Chapter 5. 

For streams devices, see "The open routine• in Chapter 6. 

For streams terminal devices, see •The open routine• in Chapter 7. 
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prlnt(drlver) 

Name and purpose 
print-print error messages to the user on the system console 

Synopsis 
void drlve1print (dev,str) 

dev_t dev, 

char •str, 

where 

o dev is the device number. 

o str is a pointer to a ·string of characters to be printed. 

o driver is the device prefix. 

Description 

prlnt(drlver) 

Block 1/0 device drivers must provide a diagnostic print routine to print error 
messages on the console. Your driver can use the kernel's printf routine to output 
the message to the console. 

Retum values 
None. 

See also 
•The diagnostic print routine• in Chapter 3. 

printf(kemel) in Appendix B. 
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read( driver) 

Name 
read-read data from a device 

Synopsis 
int driverread(dev, ulo) 

dev_t dev, 

struct uio •uto; 

where 

o dev is the device number. 

read( driver) 

o ulo is a pointer to the ui o structure for the VO request 1he uio structure contains 
information about the VO request, including the number of bytes to transfer, md a 
pointer to the user's buffer. 

o driver is the device prefix. 

Description 
1he drlverread ro\itine of a character device driver reads data from a device when a 
user program issues a read(2) system call. 1he drlverread routine is invoked with a 
direct pointer to the user's buffer. This aUows the character device driver to buffer the 
data according to the needs of the device, or to directly transfer the data between the 
device and the user's buffer. 

Retum values 
If your drtverread routine successfully reads from the device, your drlven:ead 
routine should return rero to the kernel. If the read request fails, your driverread 
routine sho\ild return an errno value to the kernel, indicating the reason the request 
failed. 

See also 
•Reading From and Writing to a Character Device• in Chapter 4. 
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read(2) in the NUX Progn:immer's Reference. 

physio(kemel) in Appendix B. 
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strategy( driver) strategy( driver) 

Name 
strategy-6chedule the transfer of data between the kernel buffer cache and a device 

Synopsis 
void drlverstrateqy(bp) 

struct buf •bp; 

where 

o bp is the pointer to the buf structure involved in the 1/0 request. The buf structure 
contains infonnation about the 1/0 request, including the number of bytes to 
transfer, the ~ of the kernel buffer associated with this request, and a value 
indicating whether data should be transferred into or out of the kernel buffer: 

o driver is the device prefix. 

Description 
The kernel calls a drlverstrateqy routine of a block device driver to schedule the 
transfer of data between the buffer cache and a device. 

The drlven:ead or the driventrite routine' of a character device driver can invoke a 
drlverstrategy routine to transfer data directly between a device and the user's 
buffer. 

Return values 
None. 

See also 
•Performing 1/0 (using the strategy routine)• and -Tue buf structure• in Chapter 3. 

•Data Transfers using physio( )• in Chapter 4. 
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write( driver) 

Name and purpose 

write-write data to a device 

Synopsis 
int drlverwri te(dev, ulo) 

dev_t dev; 

st ruct uio •uto; 

where 

o dev is the device number. 

write( driver) 

o ulo is a pointer to the uio structure for the VO request 1be uio structure contains 
information about the VO request, including the number of byteS to transfer, and a 
point.er to the user's buffer. · 

o driver is the device prefix. 

Description 

1be drlverwri te routine of a character device driver writes data to a device when a 
user program issues a wri te(2) system call 1be drlverwri te routine is invoked with a 
direct pointer to the user's buffer. 1bis allows the character device driver to buffer the 
data according to the nee<h of the device, or to transfer the data directly between the 
user's buffer and the device. 

Retum values 

Hyour drivenfrite routine successfully writes to the device, your drivenfrite 
routine should return 7.ero to the kernel. Hthe write request fails, your drlverwrite 
routine should return an errno value to the kernel, indicating the reason the request 
failed. 
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See also 
"Reading From and Writing to a Character Device" in Chapter 4. 

write(2) in NUX Programmer's Reference. 

physio(kemel) in Appendix B. 
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'This appendix is a reference section for the kernel routines that a driver can call. The 
following routines are included in this appendix: 

o biodone ()-awakens processes waiting on the specified buffer 

o biowait ()-puts the calling process to sleep, until a corresponding call to 
biodone () is issued 

o brelse ()-returns a buf structure and an associated buffer to the kernel buffer 
cache 

o clrbuf ()-clears a buffer by filling it with zeroes 

o copy in ()-copies data from a user buffer to a driver buffer 

o copyout () -copies data from a driver buffer to a user buffer 

o delay() -delays execution 

o fubyte ()-copies a character from the user buffer to a driver buffer 

o fuword ()-copies an integer from the user buffer to a driver buffer 

o geteblk ()-gets a buf structure and associated buffer from the kernel buffer 
cache 

o major () -returns the major number 

o makedev ()-creates a device number from the specified major and minor 
number 

o minor ()-returns the minor number 

o physio ()-performs raw 1/0 

o print f ()-prints a message on the system console 

o psignal ()-sends a signal to a process 

o signal ()-sends a signal to a process group 

o sleep ()-puts a process to sleep 

o spl n ( ) -sets the processor interrupt level to priority level n 
o splx () -resets the processor interrupt level to a previous priority level 

o subyte ()-transfers a character from a driver buffer to the user buffer 

o suword ()-transfers an integer from a driver buffer to the user buffer 

o timeout ()-sets a timer and call a specified routine when the timer expires 

o uiomove ()-moves data to and from the user buffer pointed to by the uio 
structure 

o untimeout ()-cancels a timer that was set by a previous call to timeout () 

o ureadc ()-writes a character to the user buffer 

o use race ()-determines whether the driver can gain access to user address space 

o uwri tee ()-reads a character from the user buffer 
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o wakeup ()-wake ups processes waiting on the specified address 

Entries are listed in alphabetical order and contain the following: 

o the routine's name 

o a synopsis of the routine's declarations and arguments 

o a description of what the routine does 

o the values returned from the routine 

o places to look for more infonnation 

Values and descriptions of ermo 
The error numbers referred to as ermoin this appendix are listed in Table B-1, and 
are found in <sys/errno. h> and intro (2) of the AIUX Programmer's Reference. 
Your driver routines return ermoerror numbers to the kernel for unsuccessful 
requests. Also, the kernel routines that your driver can call often return zero to your 
driver for successful requests, and an ermo error number for unsuccessful requests. 

Table 1·1 
Kemel routine errno error numbers 

Number Name DeacrlpHon 

General error messages 

1 EPERM Not superuser 

2 ENO ENT No such ftle or directory 

3 ESRCH No such process 

4 EINTR Interrupted system call 

5 EIO VO error 

6 ENXIO No such device or address 

7 E2BIG Argument list is too long 

8 ENO EXEC Exec format error 

9 EBADF Bad ftle number 

10 ECHILD No children 

11 EA GAIN No more processes 

12 ENOMEM No enough core _ 

13 EACCES Permission denied 
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14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
37 

38 

39 

40 

41 

42 

43 

B-4 

EFAULT Bad address 

ENOTBLK Block device required 

EBUSY Mount device busy 

EEXIST File exists 

EXDEV Cross-device link 

ENODEV No such device 

ENOTDIR Not a directory 

EI SD IR Is a directory 

EINVAL Invalid argument 

ENFILE File table overflow 

EMF ILE Too many open ftles 

ENO TTY Not a typewriter 

ETXTBSY Text file busy 

EFBIG File too large 

ENOS PC No space left on device 

ESPIPE Illegal seek 

EROFS Read-only ftle system 

EMLINK Too many links 

EPIPE Broken pipe 

EDOM Math argument out of domain of function 

ERANGE Math result not representable 

ENOMSG No message of desired type 

EID RM Identifier removed 

ECHRNG Channelnumberoutofrange 

EL2NSYNC Level 2 not synchronized 

EL3HLT Level 3 halted 

EL3RST Level 4 reset 

ELNRNG Link number out of range 

EUNATCH Protocol driver not attached 

ENOCSI No CSI structure available 
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44 

45 

EL2HLT 

EOEADLK 

Network error messages 

Nonblocking and interrupt VO 

Level 2 halted 

Deadlock condition 

55 

56 

57 

EWOULDBLOCK Operation would block 

EINPROG:RESS Operation now in progress 

EALREADY Operation already in progress 

Argument errors 

58 ENOTSOCK Socket operation on nonsocket 

59 EDESTAOOR:REQ Destination address required 

6o EMSGSIZE Message too long 

61 EPROTOTYPE Protocol wrong type for socket 

62 ENOPROTOOPT Protocol not available 

63 EPROTONOSUPPORT Protocol not supported 

64 ESOCKTNOSUPPORT Socket type not supported 

65 EOPNOTSUPP Operation not supported on socket 

66 EPFNOSUPPORT Protocol family not supported 

67 EAFNOSUPPORT Address family not supported by protocol family 

68 EADDRINUSE Address already in use 

69 EADORNOTAVAIL Can't assign requested address 

Operational errors 

70 ENETOOWN NetWOJk ~down 

71 ENETUN:REACH Network ~unreachable 

72 ENET:RESET Network dropped connection on reset 

73 ECONNABORTED Softwawre caused connection abort 

74 ECONN:RESET Connection reset by peer 

75 ENOBUFS No buffer space available 

76 EISCONN Socket is already connected 

77 ENOTCONN Socket is not connected 

78 ESHUTDOWN Can't send after socket shutdown 
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79 ETOOMANYREFS Too many references; can't splice 

80 ETIMEDOUT Connection timed out 

81 ECONNREFUSED Connection refused 

82 ELOOP Too many levels of symbolic links 

83 ENAMETOOLONG Filename too long 

84 EHOSTDOWN Host is down 

85 EHOSTUNREACH No route to host 

86 ENOTEMPTY Direaory not empty 

Streams error messa1es 

87 ENOS TR Not a Stream _device 

88 ENODATA No data (for no delay VO) 

89 ET I ME Timer expired 

90 ENO SR Out of Streams resources 

Network File System error messa1es 

95 ES TALE Stale NFS ftle handle 

96 EREMOTE Too many levels of remote in path 

97 EPROCLIM Too many processes 

98 EUSERS Too many users 

99 EDQUOT Disk quota exceeded 

Other error messa1es 

100 EDEADLOCK Locking deadlock error 

A summary of the kemel routines 
The rest of this appendix desaibes the kernel routines that you can call in your 
driver.Entries are listed in alphabetical order and contain the following: 

o the routine's name 

o a synopsis of the routine's declarations and arguments 

o a desaiption of what the routine does 

o the values returned from the routine 

o places to look for more information 
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biodone(kernel) 

Name 
biodone-4.waken proces.ses waiting on the specified buf structure 

Synopsis 
tinclude <sys/types.h> 
tinclude <sys/buf.h> 

void biodone(bp) 

struct buf •bp; 

biodone(kernel) 

where bp is a pointer to the buf structure associated with the buffer where 1/0 
occurred. 

Description 
The biodone routine awakens the process or processes sleeping on the buf structure. 
A device driver should call biodone to wake up processes put to sleep by biowai t. 

Note: iodone and iowai t are defined in <sys /buf. h> to be equivalent to 
biowai t and biodone. 

Retum values 
None. 

See also 
"Kernel routines for block device drivers• in Chapter 3. 

bi owai t(kernel) 
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biowait(kemel) biowait(kemel) 

Name 
biowait-put the calling process to sleep, u.riti! a corresponding call to biowait is 

issued · · 

Synopsis 
#include <sys/types.h> 
#include <sys/buf.h> 

void biowait(bp) 

struct buf •bp, 

where bp is a po.inter to a buf structure associated with the buffer where data transfer 
will occur. 

Description 
The biowai t routine is used by drivers that are waiting for data transfer to complete 
on the buffer associated with the buf structure. biowai t puts the calling process to 
sleep on the address of the buf structure. The calling process is awakened by a 
corresponding call to biodone when the transfer completes. 

Note: iodone and iowait are defined in <sys/buf. h> and are equivalent to 
biowait and biodone. 

Return values 
None._ 

See also 
•Kernel routines for block device drivers• in Chapter 3. 

biodone(kemel) 
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brelse(kernel) brelse(kernel) 

Name 
brelse-retum buf structure and associated buffer to the kernel buffer cache 

Synopsis 
#include <sys/types.h> 
#include <sys/buf.h> 

void brelse(bp) 

struct buf •bp, 

where bp is a pointer to the buf structure being returned. 

Description 
brelse returns a buf structure and buffer (previously allocated by getblk, 
getebl k, or bread) to the kernel. brel se returns the buf structure to the list of free 
buffers and awakens any processes on that list that might be sleeping. 

Return values 
None. 

See also 
•Kernel routines for block device drivers• in Chapter 3. 

geteblk(kernel) 
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clrbuf(kernel) 

Name 
clrbuf-clear buffer 

Synopsis 
#include <sys/buf.h> 

void clrbuf(bp) 

struct buf •bp, 

where bp is the pointer to the buf structure. 

Description 

clrbuf(kernel) 

The cl rbuf -macro (defined in <sys /buf. h>) zeros the indicated buffer and sets the 
b_resid field of the buf structure to 0. 

Retum values 
None. 

See also 
•Tue buf structure• in Chapter 3. 
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copytn(lternel) 

Name 
copyin-<opy data from user buffer to driver buffer 

Synopsis 
int copyin (userbuf, drlverbuf, n) 

char •drtverbuf, •userbuf, 

int n; 

where 

o userbufis the address of the user buffer 

o drlverbufis the address of the driver buffer 

o n is the number of bytes to copy 

Description 
copy in copies data from a user buffer to a driver buffer. 

Return values 

~ Meanina 

0 Success 

errno Failure 

See also 
·utility Routines and Macr~· in Chapter 2. 

copyout(kemel) 

subyte(kemel) 

suword(kemel) 

fubyte(kemel) 

fuword(kemel) 

copytn(kernel) 
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copyout(kernel) 

Name and purpose 
copyout-copy data from d.."'iver buffer to user buffer 

Synopsis 
int copyout(drlverbuf. userbuf. n) 

char •drtverbuf. •userbuf. 

unsignedn; 

where 

o drlverbufis the address of the driver buffer. 

o userbufis the address of the user buffer. 

o n is the number of bytes to copy. 

Description 
copyout copies data from a driver buffer to a user buffer. 

Retum values 
~ Meanina 

0 Success 

errno Failure 

See Also 
•Reading from and writing to a user buffer" in Chapter 2. 

copyout(kemel) 

subyte(kemel) 

suword(kemel) 

fubyte(kemel) 
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fuword(kemel) 
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delay(kernel) 

Name 
delay-delay execution 

Synopsis 
void delay(tlcks) 

int ttcks; 

delay(kernel) 

where ticks is the number of clock cycles to delay (the variable v. v _ hz contains the 
number of clock cycles per second). 

Description 
delay makes a process wait for a specific time interval before resuming execution. 
delay puts the user process to sleep, so your driver must not call delay from within 
an interrupt routine. 

Retum values 
None. 

See also 
"Delaying Execution• in Chapter 2. 
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fubyte(kernel) 

Name 
fubyte-copy a character from the user buffer to a driver buffer 

Synopsis 
int fubyte(userbuj) 

char •userbuf, 

where userbujis the address of the user buffer. 

Description 

fubyte(kernel) 

fubyte copies a single character from the user buffer to the driver buffer. 

Retum values 
Ya.Iw:.. Meanina 

0-255 The ASCII value of the character succ~fully returned. 

-1 Failure 

See also 
•Reading from and writing to a user buffer- in Chapter 2. 

fuword(kemel) 

subyte(kemel) 

suword(kemel) 

copyin(kemel) 

copyout(kemel) 
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fuword(kemel) 

Name 
fuword-copy integer from the user buffer to a driver buffer 

Synopsis 
int fuword(userbsf/.) 

int •userbu/; 

where werbufis the address of the user buffer. 

Description 
fuword copies an integer from a user buffer to a driver buffer. 

Retum values 
Yah.l.c Meanina 

-1 Failure (see note below) 

Any other value Success 

fuword(kemel) 

Note: -1 is also returned when fuwotd fetches a OxFFFFFFFF from memory, even 
when no error condition exists. 

See also 
•Reading from and writing to a user buffer- in Chapter 2. 

fubyte(kemeO 

subyte(kemeO 

suword(kemeO 

copyin(kemeO 

copyout(kemeO 
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geteblk(kernel) geteblk(kernel) 

Name 
geteblk-get a buf structure and associated buffer from the kernel buffer cache. 

Synopsis 
#include <sys/types.h> 
#include <sys/buf.h> 

struct buf* geteblk(sae) 

int sir~ 

where size is the sire of the buffer. 

Description 
geteblk retrieves a buf structure and associated buffer of size bytes from the buffer 
cache. geteblk returns a pointer to the buf structure to the calling routine. If no 
buf structures are available, geteblk sleeps until one becomes available. Thus, your 
driver must not call geteblk from within an interrupt handler. 

When the device driver strategy routine receives a buffer header from the kernel the 
necessary fields are already initialized. However, when a device driver calls geteblk 
to allocate buffers, the device driver must set up some of the fields of the buffer header 
before calling the strategy routine. 

Important fields in the buffer header are as follows: 

o b _flags contains bits that indicates the status of the buffer (B _BUSY flag) and tells 
the driver whether the device is to be read from or written to (B _READ or B _WRITE 
flag). 

o av _forw and av _back are a pair of pointers that maintain a doubly linked list of 
•free• blocks (blocks that can be reallocated for another transaction). A driver can 
use these lists to link the buffer into driver worklists. 

o b_bcount is a count of the number of bytes to be transferred to or from the buffer. 

o b_error holds the error code to be assigned by the kernel to the u_error field of 
the user data structure. It is set in conjunction with the B _ERROR flag after an VO 
operation. 

o b _ dev holds the device number of the device being accessed. The high-order 8 
bits contain the major number and the low-order 8 bits contain the minor number. 
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o b un. b addr is the virtual addres,, of the buffer controlled by the buff 
suucture-:-oata is read from or written to this address to/from the device. 

o b_blkno is the device block to be accessed (the minor number determines this 
device). 

o b_resid is the rtumber of bytes not transferred if error has occurred. 

o b_start is the start time of the VO; it measures device response time. 

The only fields thata driver may change are b_flags, av_forw, av_back, 
b_error,and b_resid 

1be following list desaibes the states of some of the fields when geteblk receives 
them and how they must be initialized. 

CJ b_flags-1be B_BUSY flag in this field is set to indicate that the buffer is in use. 
1be driver must set the a_ READ or a_ WRITE flag to indicate the type of transfer 
being done. 

o b_bcount-This field is set to the number of bytes in the buffer. 

o b_blkno--qeteblk doesn't initiali7.e this field; thus, it must be initialized by your 
driver. 

The remaining fields in the buffer header can be used unchanged. 

Retum values 
geteblk returns a pointer to a buf structure that the driver can use. Your driver 
should call the brelse routine to return the buffer to the kernel. 

See also 
•Kernel Routines for block device drivers• in Chapter 3. 

•oata transfers using uiomove( )• in Chapter 4. 

uiomove(kemel) 
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major(llernel) 

Name 
ma jor-retum major number. 

Synopsis 
tinclude <sys/types.h> 
tinclude <sys/sysmacros.h> 

int major(dev) 

where dev is the device number. 

Description 

major(llernel) 

The major macro (from sysmacros. h) returns the major number when passed the 
external device number. 

Retum values 
major returns the high-order 8 bits of the device number. 

See also 
•Device Files• in Chapter 2. 

makedev(kernel) 

minor(kernel) 
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makedev(kernel) 

Name 
makedev-encode major and minor number. 

Synopsis 
int makedev (X,y) 

where 

o xis the major number. 

o y is the· minor number. 

Description 

makedev(kernel) 

The makedev macro (from sysmacros. h) encodes the major and minor numeers to 
create the external device number. 

Retum values 
When supplied the major and minor numbers, makedev returns the 16-bit device 
number. 

See also 
"Device Files" in Chapter 2. 

major(kernel) 

minor(kernel) 

B-20 Appendix B: Kernel Routines 



( 

mlnor(kernel) 

Name 
minor-return minor number. 

Synopsis 
tinclude <sys/types.h> 
tinclude <sys/sysmacros.h> 

int minor (derJ) 

where dev is the device number. 

Description 

mlnor(kernel) 

1be minor macro (from sysmacros. h) returns the minor number when passed the 
external device number. 

Retum values 
minor returns the low-order 8 bits of the device number. 

See also 
•Device Files• in Chapter 2. 

major(kernel) 

makedev(kernel) 
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physto(kernel) 

Name and purpose 
physio-perfonn raw 1/0 

Synopsis 
#include <sys/types.h> 
#include <sys/buf.h> 
#include <sys/uio.h> 

int physio (strat, bp, dev, nJJ, uto) 

int (*Strat) (); 

struct buf •bp; 

dev_t dev; 

int rw; 

struct uio *UIO; 

where 

o Stratis the address of the drlverstrategy routine. 

o bp is a pointer to a buf structure. 

physto(kernel) 

o devis a device number that is received as an argument from the drlverread or 
drlverw rite routine. 

o 1W is a flag that indicates whether the operation is a read or write. 

o uto is a pointer to the uio structure associated with this request 

Description 
physio sets up a buf structure describing the 1/0 request. For example, physio fills 
in b _ bcoun t with the number of bytes to transfer, sets B _READ or B _WRITE in the 
b_flags field to indicate the direction to transfer data, and sets b_un .b_addr to 
point to the user's buffer. physio then locks the user process in memory and calls the 
drlverstrategy routine, passing a pointer to the buf structure as a parameter. When 
the drlverstrategy routine returns, physio waits for the VO request to complete by 
calling biowai t. When the transfer completes, the driver interrupt routine awakens 
the user process by calling biodone. physio then updates information in the uio 
structure and returns to the drlverr:ead or drlVe1wri te routine. 
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Retum values 
~ Meanioa 

0 Success 

errno Failure 

See also 
•oata Transfers using physio( )• in Chapter 4. 

biodone(kemel) 
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printf(Jzernel) 

Name 
printf--print message on the system console 

Synopsis 
void printf (format[, arg .. .]) 

char *format; 

where 

printf(kernel) 

o format is a character string that contains two types of objects: plain characters, 
which are simply copied to the output stream, and conversion specifications, each 
of which results in fetching :r.ero or more args. 

o arg is an argument to be converted and output. 

Description 
The kernel printf routine prints characters to the console. Note that this is the 
kernel's printf routine, not the C library printf routine, although the two routines 
are very similar. printf(kemeO supports the following limited subset of printf(30 
conversion specifications: 

%d,%o,%u,%x The integer arg is converted to signed decimal (d), unsigned octal 
(o), decimal (u), or hexadecimal(x) notation. 

%c 

o/as 

The character arg is printed. 

The arg is taken to be a string (character pointer) and characters from 
the string are printed until a NULL character (\0) is encountered or 
the number of characters indicated by the precision specification is 
reached. 

Return value 
None. 
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See also 
•1be diagnostic print routine• in Chapter 3. 

print(driver) in Appendix A. 

printf(3S) 
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pslgnal(leernel) 

Name and purpose 
psiqnal--6elld a signal to a process 

Synopsis 
#include <sys/types.h> 
#include <sys/proc.h> 
#include <sys/siqnal.h> 
#include <sys/time.h> 
#include <sys/resource.h> 

void psiqnal (proc, slg) 

struct proc * proc; 

int s1g; 

where 

o proc is the pointer to the proc structure entry for the process. 

o s1g is the signal itself. 

Description 

pslgnal(leernel) 

psiqnal sends a signal to a particular process. The routine does this by marking in 
the proc structure that the process should receive a signal and then enabling the job to 
run. 

Return values 
None. 

See also 
•Process context and the user structure• in Chapter 2. 

•Sending a signal to a user process• in Chapter 2. 
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signal(2) in AIUX Programmer's Reference. 
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sfgnal(kernel) 

Name 
signal-send a signal to a process group 

Synopsis 
#include <sys/types.h> 
#include <sys/proc.h> 
#include <sys/signal.h> 
tinclude <sys/time.h> 
#include <sys/resource.h> 

void signal (pg'IJ, sfg) 

intpgrp, 

int s1g. 

where 

o pgrp is is the process group which will be sent a signal 

sfgnal(kernel) 

o sfg is the signal itself (see signal(2) in the A/UX Programmer's Reference for 
integer values). 

Description 
1be kernel signal routine sen& a signal to a sped.fled process group. Do not confuse 
this routine with signal(2), which specifies how the calling process handles signals 
that are received. 

Retum values 
None. 

See also 
•Sending a signal to a user process• in Chapter 2. 

psignal(kemel) 
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sigvec(3) 

( 
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sleep(leemel) 

Name and purpose 
sleep-put a user process to sleep 

Synopsis 
finclude <sys/param.h> 

int sleep (event, priority) 

caddr_t ~ 

int priority; 

where 

o event is the address of some data strudllre used by the driver. 

o priority is the priority level. 

Description 

sleep(leernel) 

sleep makes a process wait until a ~ event occurs. To the sleep routine, an 
event is an address that the sleeping process and the wakeup routine synchronize on. 
Other processes can run while a process is sleeping. The kernel marks the process state 
•asteep, • saves the sleep event and priority, and puts it into a hashed queue of 
sleeping processes. 

Sleep priorities range from 0 to 127, 0 having the highest priority and 127 the lowest 
priority. Processes sleeping at a priority less than the parameter P ZERO can't be 
interrupted by signals, although they can be swapped out For this reason, it is not a 
good idea to sleep with priority less than PZERO on an event that might never oCOJr. In 
general, sleeps at Ies,, than PZERO should only be made for fast events such as disk and 
tape 1/0. 

caut1on: Never call sleep in an interrupt routine, becausethe current process is 
probably not the one that should go to sleep. 
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Retum Values 
The PCATCH bit of priorlJy is OR'ed into the priority field of the proc structure when a 
driver wants any signals that occur during sleep to be ignored and handled later (for 
example, page faults and Streams processing). sleep returns the following values if 
PCATCH is set: 

~ Meanjog 

0 No signal occurred 

1 Signal occurred 

If PCATCH is not set, the return value to sleep has no meaning (0 is returned). 

Examples 
The first example shows many processes that are competing for a resource: 

fdef ine 

#define 

int x_flag; 

X_LOCK() 

while 

x_unlock () 

X_LOCK 

X_WANT 

(x_flag) ( 

1 

2 

x_flag I •X_WANT; 

sleep(&x_flag,PZERO); 

x_flag • X_LOCK; 

if(x_flag&X_WANT) 

wakeup (&x_lock); 

x_lock • 0; 

The second example shows synchronization using an interrupt: 
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int x_flaq; 

x_wait() 

spl6 () ; 

x_flaq • l; 

while (x_flaq) 

sleep ( &x _flag, P ZERO) 

spO 0; 

x_intr() 

if (x_flaq) 

wakeup (&x_flaq); 

x_flag • 0; 

See also 
•Notifying a process of 1/0 completion• in Chapter 2. 

•waiting for 1/0 to complete" in Chapter 2. 

wakeup(kemeO 
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spln(kemel) spln(kernel) 

Name 
spl n-set processor interrupt level 

Synopsis 
short int spl n0 

where n ~ the priority level (0-7), with 0 having the lowest priority and 7 the highest 
priority. 

Description 
spl n enables interruptS having priority levels greater than n. This routine prevents 
unwanted interruptS from reaching a device. · 

Important values of n for the Macintosh n are as follows: 

ti Dc~s::r.i'2tico 

7 Interrupt switch 

6 Power-on switch 

4 On-board SCCs 

2 Slots, SCSI disk 

1 Clock, ADB 

0 System running 

For example, spl2 disables priority levels 2, 1, and 0. 

Return values 
spl n returns the contents of the status register before the routine was called. 

See also 
•Setting Processor Levels• in Chapter 2. 
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splx(kernel) 
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spl:x(kernel) 

Name 
splx-reset processor interrupt priority level 

Synopsis 
void splx(s) 

int s; 

splx(kernel) 

where sis the value of the status register returned by the previous spin call. 

Description 
splx sets the interrupt priority level back to its previous state (before spl n was 
called). 

Retum values 
None. 

See also 
•Setting Processor Levels" in Chapter 2. 

spl P(kernel) 
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subyte(kernel) subyte(ltzernel) 

Name 
subyte--tramfer a charaaer from a driver buffer to a user buffer 

Synopsis 
int subyte ( userbuf, c) 

char •userbuf, e; 

where 

CJ userbufis the address of the user buffer 

CJ c is a charaaer to copy 

Description 
subyte transfers a charaaer from a driver buffer to a user buffer. 

Retum values 
~ Meanjoa 

0 Success 

-1 Failure 

See also 
•Reading From and Writing To a User Buffer- in Chapter 2. 

suword(kemel) 

fuword(kemel) 

fubyte(kemel) 

copyin(kemel) 

copyout(kemel) 
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suword~emel) 

Name 
suworci-tra.Mfer an integer from a driver buffer to a user buffer 

Synopsis 
int suword (userbuf, I) 

char *userbuf, 

int I; 

where 

o userbufis the address of the user buffer. 

o 1 is the integer to be copied. 

(c, Description 

suword transfers an integer from a driver buffer to a user buffer. 

Retum values 
~ Meanjna 

O Success 

-1 Failure 

See also 
•Reading From and Writing To a User Buffer- in Chapter 2. 

subyte(kemel) 

fuword(kemeO 

fubyte(kemeO 

copyin(kernel) 

suword~emel) 
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copyout(kemel) 
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tlmeout(llernel) ti meout(llernel) 

Name 
timeout-set a timer and when the timer expires call the specified routine 

Synopsis 
finclude <sys/types.h> 

void timeout <June, atg, Interval) 

int <*June> (); 
caddr_t arg; 

int lnterva~ 

where 

o June is the routine you want to call after the given interval. The specified June.is 
called at clock interrupt time, so the routine called by timeout must not call sleep. 

o arg is the argument to the function. 

o Interval is the time number of clock ticks to delay before calling June. This value is 
limited to ((2 .. 31)-1), since it must appear to be positive and since only a 
bounded number of timeouts can be occurring at any time. 

Description 
timeout sets a timer and calls the specified routine when the timer expires. This can 
be useful when you want a timeout to oca.u and oontrol to jump to another routine after 
a given time period. 

Timeouts are only guaranteed to happen after the time specified. This means that they 
may occur some time after the interval has expired. Call untimeout(kemel) to cancel 
a previous timeout request 

Retum values 
None. 
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See also 
•Setting a timeout• in Chapter 2. 

•Removing a timeout• in Chapter 2. 

untimeout(kemel) 
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uiomove(Memel) uiomove(Memel) 

Name 
uiomove-move data to and from the user's buffer specified by the uio structure 

Synopsis 
tinclude <sys/types.h> 
tinclude <sys/uio.h> 

int uiomove (address,byte_count, flag,-Uio) 

caddr_t address; 

int byte_count; 

int flag; 

struct uio *uto; 

where 

o address is the address of the buffer where data transfer will occur. 

o byte_ count is the number of byteS to tramfer. 

0 flag is either UIO_READ or UIO_WRITE. 

o ulo is the uio structure involved. 

Description 
uiomove moves data between an area described by a uio structure and a kernel 
address. 1be uio structure is updated automatically. 

Retum values 
Y.alw: Meanjna 

O Success 

errno Failure 
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See also 
•oata transfers using uiomove" in Chapter 2. 

geteblk(kemel) 
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unttmeout(kernel) 

Name 
untimeout-cancel timeout 

Synopsis 
#include <sys/types.h> 

void untimeout <June, atg) 

int ( *func) ( >; 

caddr_t a~ 

where 

o June is the routine your driver calls after the given time interval. 

o arg is the argument to that routine. 

Description 

unttmeout(kernel) 

untimeout cancels a previous timeout request Call untimeout after the"event 
awaited has happened. nus will prevent the process from timing out and jumping to 
June. 

Retum values 
None. 

See also 
"Setting a timeout• in Chapter 2. 

"Removing a timeout• in Chapter 2. 

timeout(kernel) 
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ureadc(kernel) 

Name and purpose 
ureadc-deliver a character to user's buffer 

Synopsis 
int ureadc (~UW) 

char c; 

struct uio *Uio; 

where 

o c is the character delivered. 

o uwis the uio structure for the operation. 

Description 

ureadc(kernel) 

ureadc delivers a character to a user's buffer when a read(2) system call is m.ade. 

Retum values 

~ Meanina 

0 Success 

errno Failure 

See also 
•Reading From and Writing To a User Buffer- in Chapter 2. 

uwritec(kemel) 

useracc(kemel) 
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useracc(kernel) useracc(kernel) 

Name 
useracc-detennine whether driver can access user address space 

Synopsis 
int useracc (addr, count, aceess) 

caddr_t addr, 

int count; 

int access; 

where 

o addr is the address to be accessed. 

o count is the number of bytes to be accessed. 

o access is the type of access. It can be either B _READ (read access) or B _WRITE 
(write access). 

Description 
use race determines whether your driver can gain access to a specified user address 
space. This routine must be called in user context. 

Retum values 
Yalw:. Meanioa 

1 Can access address space 

0 Can't access address space 

See also 
•Reading From and Writing To a User Buffer- in Chapter 2. 

ureadc(kemel) 
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uwritec{kemeD 
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uwntecC-.emel) uwntecC-.emel) 

Name and purpose 
uw ri tee-retrieve character from user buffer 

Synopsis 
int uwritec (U1o) 

where ulo is the uio structure for the 1/0 operation. 

Description 
uwri tee retrieves a character placed in a user's buffer by a wri te(2) system call. 

Retum values 
Yahl.c Meapin; 

0-255 Success-the ASCII value of the character retrieved is returned. 

-1 Error 

See also 
•Reading and Writing To and From a User Buffe( in Chapter 2. 

write(2) in NUX Progmmmer's Reference. 

ureadc(kemel) 

useracc(kernel) 
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wakeup(leemel) 

Name 
wakeup-wake up a sleeping proceu 

Synopsis 
tinclude <sys/param.h> 

void wakeup (event) 

caddr_t ~ 

walleup(leernel) 

where event is the addres,, of the data structure used by the driver in a previous call to 
sleep. 

Description 
wakeup awakem all user p~ sleeping on event wakeup changes the proc:es,, 
state from •as1eep• to •reac1y to run.• Sleeping processes (those that are marked 
•asleep") are removed from the sleeping processes queue, and are placed oii a list of 
processes that are able to run. 

Retum values 
None. 

See also 
•Notifying a process of I/O completion• in Chapter 2. 

-Waiting for I/O to complete• in Chapce~ 2. 

sleep(kemel) 
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Appendix C 

Slot Library Routines 

This appendix describes Slot ROM Library routines that a driver can call. The Slot 
ROM Library is designed to provide a simple interface to on-board ROM resources for 
each of the six expansion slots on the Macintosh Il. No knowledge of the ROM format 
or board addressing requirements is presumed. Before you use this library, you. 
should be familiar with slot data structures for the Macintosh II. For more information 
about them, see Developing cards and Drivers for Macintosh II and Macintosh SE. 

The Slot Library contains three types of routines: user, utility, and low-level. User 
routines can be called from user or kernel routines. Utility routines are used to gain 
access to slot ROM data structures, other resources, or other user programs. Low-level 
routines perform ROM access operations and operating-system-specific functions. 
For a summary of all routines in the library, see slots (3x) in the AIUX 
Programmer's Reference. 

User routines 
User routines perform simple functions such as reading information from a slot ROM 
and filling in slot data structures. The first parameter to user routines is the board's slot 
number, which can be one of the following: 

o the NuBus slot number (9 to 14) 

o the physical ROM base address of the slot ROM 

o the virtual base address of the slot ROM 

If the program that calls the library routine is part of the A/UX operating system, all of 
the system's resources are directly available to the program by using a physical 
address. Slot ROM physical addresses are hexadecimal values having the following 
format: 
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where sis the NuBus slot number of the board containing the ROM. 

Optional parameters to user routines are a pointer to a buffer and the length of the 
buffer. User routines that have only one parameter return their results directly. 

User library functions search the resource list from the resource directory for a desired 
resource (for exampie, the board resource list is searched for the board ID). To read 
the board ID, the RBL_BOARDID type is located in the resource list for the board 
resource, and the 16 bits of board ID is read into a user data structure. 

Utility routines 
Utility routines handle the access to slot ROM structures. The utility routine 
slot_directory reads the resource directory into a buffer. Other utility routines 
call slot_ directory to read the resource directory from ROM. When this directory 
is read into contiguous RAM, the calling routine locates the requested type of resource 
in the resource directory (for example, the board or the Ethernet resources). 

Although the A/UX kernel most commonly uses the utility routines to search for .a 
board resource, slot_data and slot_resource can be used to gain access to 
resources for other than boards and other user programs. Doing this allows you to 
read other vendor resource types from ROM. 

Note: Vendor resource types reserved for use by Apple Computer are values between 1 
and 127 (decimal); other vendor-defined types may be any value between 128 and 255 
(decimal). 

To read a subresource of the board resource list, the slot ROM user functions call 
slot_resource or slot_data with the ktndparameter set to RD_BOARD (which is 
defined as 1) and the request parameter set to the desired resource type (for example, 
RBL_BOARDID). The only user routine that doesn't search for the board resource is 
the user routine slot_ether_addr, which requests the Ethernet resource type 
RD_ETHER. 

Low-level routines 
Low-level routines read data from ROM and call operating-system-specific functions. 
slot_rom_data performs the actual read. slot_check_crc checks the ROM 
checksum and calls slot_bytelane to determine what slot address lines are being 
used by hardware. The slot_seq_violation, slot_ catch, and slot_iqnore 
routines are operating system specific and are used to detect ROM read failures. 

The library routines found in this appendix are listed next. 
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User routines 
User routines perform simple functions such as reading information from a slot ROM 
and filling in slot data structures. 1be user routines are listed here: 

slot_PRAM_init 

slot_board_f lags 

slot_board_id 

slot_board_name 

slot_board_type 

slot_ether_addr 

slot_primary_init 

slot_part_num 

slot_rev_level 

slot_serial_number 

slot_vendor_id 

Utility routines 
Utility routines handle the access to slot ROM structures and are listed here: 

slot_byte 

slot_data 

slot_directory 

slot_long 

slot_ resource 

slot_resource_list 

slot_structure 

slot_word 

Low-level routines 
Low-level routines read data from ROM and call operating-system-specific functions, and are listed 
here: 

slot_seg_violation 
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slot_catch 

slot_iqnore 

slot_address 

slot_byte lane 

slot_calc_pointer 

slot_rom_data 

slot_check_crc 

slot_header 

C-4 Appendix C: Slot ROM Utility Routines 



( 

slot_PRAM_tntt(slots 3x) slot_PRAM_tntt(slots 3x) 

Name 
slot_PRAM_init 

Synopsis 

where 

int slot_PRAM_init (slot, pp) 

int slot; 

struct PRAM *pp; 

o slot is a NuBus slot number or ROM base address for the board ROM. 

o pp is the address of a PRAM structure to be filled in by slot_PRAM_init. 

Description 
slot_PRAM_init fills in the PRAM structure referenced by the-parameter pp from 
slot ROM for the board located in slot. 

Retum values 
~ Meanjna 

0 Success 

-1 Failure 

Example 
int slot • 9; 

struct PRAM pram; 

if(slot_PRAM_init(slot, &pram) !• 0) { 

/*error ••• */ 
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else 

/* no problem, pram is now useable */ 
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slot_board.Jlags(slots 3x) slot_board.Jlags(slots 3x) 

Name 
slot_board_f lags 

Synopsis 
u16 slot_board_flags(slol) 

int slot; 

where slot is a NuBus slot number or a ROM base address for the board ROM. 

Description 
slot_board_flags reads and returns the board flag5 for the board located iri slot. 
Board flag bit definitions are found in <slots. h>. 

Retum values 
~ Meaoioi 

board flag btts Success 

OxFFFF Failure 

Example 
u16 boardflags; 

int slot; 

if((boardflags • slot_board_flags(slot)) •• OxFFFF) { 

I* error ••• */ 
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slot_board_ ld(slots 3x) 

Name 
slot_board_id 

Synopsis 
ul6 slot_board_id(slot) 

int slot; 

slot_board_id(slots 3x) 

where slot is a NuBus slot number or a ROM base a~ for the board ROM. 

Description 
slot_board_id returns the unique board number (assigned by Apple Computer) for 
the board found in slot. 

Retum values 
~ Meanjna 

board ID 

OxFFFF 

Example 
ul6 boardid; 

int slot; 

Success 

Failure 

if((boardid • slot_board_id(slot)) •• OxFFFF) { 

/*error .•• */ 
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slot_board_name(slots 3x) slot_board_name(slots 3x) 

Name 
slot_board_name 

Synopsis 
int slot_board_name(slot, data, stze) 

int slot; 

char •data; 

int stze; 

where 

CJ slot is a NuBus slot number or ROM base address for the board ROM. 

CJ data is a pointer to a character buffer to hold the board name string. 

CJ size is the number of characters that can be stored in the buffer pointed to. by data. 

Description 
slot_board_name reads the board name string from ROM located on the board in 
slot. 111is routine fails if slot is not a valid slot number. 

Retum values 
Yahlc. Meanina 

0 Success 

-1 Failure 

Example 
char strinq[BOJ; 

int slot • 9; 

if(slot_board_name(slot, 'strinq, sizeof(strinq)) •• -1) { 
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/*error ••• *I 
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slot_board_type(slots 3x) slot_board_type(slots 3x) 

Name 
slot_board_type 

Synopsis 
int slot_board_type(Slot, data) 

int slot; 

char *data; 

where slot is a NuBus slot number or a ROM base address for the board ROM. 

Description 
slot_board_type returns the unique board type, an unsigned 64-bit (8-byte) 
quantity for the board found in slot. The board type is a board class, such as network 
or memory. 

Retum values 
~ Meaoina 

0 Success (data is valid). · 

-1 Failure 

Example 
char boardtype[8); 

int slot; 

if(slot_board_type(slot, boardtype) -- -1) { 

/*error ••• */ 
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slot_etber_addr(slots 3x) slot_etber_addr(slots 3x) 

Name 
slot_ether_addr 

Synopsis 
int slot_ether_addr(slot, string) 

int slot; 

char •string; 

where 

o slot is a NuBus slot number or a ROM base address for the board ROM. 

o string is a pointer to a character buffer that holds six byteS of Ethernet address 
(which by defutition is six byteS long). 

Description 
slot_ether_addr reads the Ethernet address out of ROM (six byteS) on the board 
located in slot. slot_ether_addr fails if slot is not a valid slot number, if the board 
is not an Ethernet interface or if there is a ROM error. 

Retum values 
Yah.= Meanina 

0 Success 

-1 Failure 

Example 
char addrf6]; 

int slot • 9; 

if(slot_ether_addr(slot, 'addrl ..., -1) { 

/*error ••• *I 
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slot_prlmary_1nlt(slots 3x) slot_prlmary_tnlt(slots 3x) 

Name 
slot_primary_init 

Synopsis 
int slot_primary_init(slot, pp) 

int slot, 

struct prim •pp, 

where 

o slot is a NuBus slot number or a ROM base address for the board ROM. 

o pp is the address ofa primary structure to be filled in by slot_primacy_init. 

Description 
slot _primacy_ ini t fills in the primary structure pointed to by the parameter pp 
from the board's slot ROM that is located in slot. 

Retum values 
~ Meanina 

0 Success (the ROM read for slot succeeds and pp is left pointing 
to a valid primary structure. 

-1 Failure 

Example 
int slot • 9; 

struct prim primary; 

if(slot_primary_init(slot, 'Primary) !• 0) { 

I* error ••• */ 
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else 

/* no problem, primary is now useable */ 

( 
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slot_part_num(slots 3xJ slot_part_num(slots 3xJ 

Name 
slot_part_num 

Synopsis 
int slot_part_num(s/ot, data, size) 

int slot; 

char •data; 

int size; 

where 

o slot is a NuBus slot number or a ROM base address for the board ROM. 

o data is a pointer to a character buffer that holds the board part number string. 

o size is the number of characters that can be stored in the buffer pointed to by data. 

Description 
slot_part_num reads the board part number string out of ROM for the board 
located in slot. This routine fails if slot is not a valid slot number. 

Retum values 
YalJ.lc. Meanina 

0 Success 

-1 Failure 

Example 
char string[SOJ; 

int slot • 9; 

if (slot_part_num(slot, &string, sizeof (string)) •• -1) ( 
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I* error •.• *I 

( 
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slot_rev_level(slots 3x) slot_rev_level(slots 3x) 

Name 
slot_rev_level 

Synopsis 
int slot_rev_level(Slot, data, stze) 

int slot; 

char •data; 

int size; 

where 

o slot is a NuBus slot number or ROM base address for the board ROM. 

o data is a pointer to a character buffer to hold the board revision level string. 

o stze is the number of characters that can be stored in the buffer pointed to by data. 

Description 
slot_rev _level reads the board revision level string from ROM for the board 
located in slot. This routine fails if slot is not a valid slot number. 

Retum values 
·~ Meanjna 

0 Success 

-1 Failure 

Example 
char strinq[SOJ; 

int slot • 9; 

if(slot_rev_level(slot, &string, sizeof(strinq)) -~ -1) { 

C· 18 Appendix C: Slot ROM Utlllty Routines 



( 

/*error ••• *I 

( 

(~ 
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slot_serlal_number(slots 3xJ slot_serlal_number(slots 3xJ 

Name 
slot_serial_number 

Synopsis 
int slot_serial_number(slot, data, slZe) 

int slot; 

char •data; 

int slZe; 

where 

Cl slot is a NuBus slot number or ROM base address for the board ROM. 

CJ data is a pointer to a character buffer to hold the board serial number string. 

CJ slZe is the number of characters that can be stored in the buffer pointed to by data. 

Description 
slot_serial_number reads the board serial number string from ROM for the board 
located in slot. slot_serial_number fails if slot is not a valid slot number. 

Retum values 
~ Meanioa 

0 Success 

-1 Failure 

Example 
char strinq [80]; 

int slot - 9; 

if(slot_serial_number(slot, 'strinq, sizeof(strinq)) -· -1) ( 
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/*error •.• */ 

( 
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slot_vendor_td(slots 3x) slot_vendor_td(slots 3x) 

Name 
slot_vendor_id 

Synopsis 
int slot_vendor_id(slot, data, size) 

int slot; 

char •data; 

int stze, 

where 

o slot is a NuBus slot number or ROM base address for the board ROM. 

o data is a pointer to a character buffer that holds the board vendor identification 
string. 

o stze is the number of characters that can be stored in the buffer referenced by data. 

Description 
slot_ vendor_id reads the board vendor identification string from ROM for the 
board located in slot. slot_ vendor_id fails if slot is not a valid slot number. 

Return values 

~ Meanina 

0 Success 

-1 Failure 

Example 
char string[BOJ: 

int slot .. 9; 
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if(slot_vendor_id(slot, 'strinq, sizeof(strinq)) -- -11 { 

/*error ••. *I 

Appendix C: Slot ROM Utlllfy Routlnes C-23 



slot_board_vendor_tnfo(slots 3x) slot_board_vendor_tnfo(slots 3x) 

Name 
slot_board_vendor_info 

Synopsis 
int slot_board_vendor_info(kind, slot, data, size) 

int ktnd; 

int slot; 

char •data; 

int size; 

where 

o kind is the type of vendor information to be read out of the ROM. 

o slot is a NuBus slot number or ROM base address for the board ROM. 

o data is a pointer to a data buffer to hold the ROM data. 

o size is the number of byres available in the buffer pointed to by data. 

Description 
slot board vendor_info is a vendor information structure access routine. This 
structure contains a list of pointers to strings in ROM that contain vendor information 
such as the vendor ID, the board revision level, and the board serial and part number 
strings. All of the user routines call slot_board_vendor_info and pass in the 
appropriate kind constant for their function. For example, the user routine 
slot_part_num passes the constant B_PN (board part number) to 
slot_board_vendor_info and expects a maximum of sizebyteS of the boardpart­
number string to be returned in the buffer pointed to by data. 

slot_board_vendor_info calls the utility routine slot_resource to read the 
vendor list structure out of the board resource directory. If the call to 
slot_ resource fails, an error is returned to the caller immediately. 
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After slot· resource successfully reads the vendor information structure, 
slot_boa;d_:vendor_info searches the list for the requested type of vendor 
information. If found in the list, the information string is copied into the user buffer 
(up to sfzebytes), by calling slot_structure and returning the status of that call. If 
not found in the list, an error value is returned to the calling program. 

Retum values 
~ Meanina 

n Success (the number of bytes of information copied into the user buffer is 
returned. 

-1 Failure 

Example 
tinclude <slots.h> 

char strinq(80]; 

int slot • 9; 

if(slot_board_vendor_info(B_PN, slot, &strinq, sizeof(strinq)) •• -lJ { 

/*error ••• *I 
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slot_byte(slots 3:x) slot_byte(slots 3:x) 

Name 
slot_byte 

Synopsis 

char slot_byte(rbp) 

struct rsrc_byte rbp; 

where rbp is a structure that defines a 32-bit quantity in ROM. 

Description 
slot_ byte retwm the least significant byte of a 32-bit quantity contained in ROM 
that is part of the rsrc_byte structure (defined in slots. h). slot_byte is used 
when the resource type of data stored in ROM is a naked byte. 1bis routine, the · 
slot_long, the slot_word, and the slot_structure routines are used to access 
the four types of low-level ROM data types. 

Retum values 
~ Meanini 

cbar Success (the 8-bit character stored in rbp is returned). 

None All 8-bit values are legal. 

Example 
struct rsrc_byte rbp; 

char c; 

char *address; 

int j; 

struct rom_idoffset rd[20]; 

/* 

* Create a ROM base address. 

C-26 Appendix C: Slot ROM Utlllty Routines 



( 

( 

*/ 

if ((address • slot_address (i)) < OJ { 

/*Error ••• */ 

I* 

* Get the resource directory from ROM. 

*/ 

if (slot_directory (address, rd, 20) < OJ ( 

/*Error ••• */ 

/* 

* Find a resource of type BYTE, and read the value into 

* variable "c." 

*I 

for(j = 0; ((j < 20J && (rd[j].r_id !• RD_EOLIST)); j++) { 

if( rd[j).r_id -= RD_BYTEl { 

rbp - (struct rsrc_byte)rd[j]; 

c • slot_byte(rbp); 

break; 
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slot_data(sl-ots 3x) slot_data(slots 3x) 

Name 
slot_data 

Synopsis 
int slot_data(slot, letnd, request, datap, size) 

. int slot, 

int letnd; 

int request, 

int •rJatap; 

int size; 

where 

o slot is a NuBus slot number or a ROM base address for the board ROM. 

o letnd is the slot resource list type. 

o request is the resource type to be accessed. 

o data is a pointer to a data word that will hold the ROM data (if found). 

o size is the number of bits to be stored into the word pointed to by data. 

Description 
slot_data reads stzebits of data and places the information into a data word pointed 
to by the datap structure. The data is stored in a substructure of a resource list having 
type letnd. The data itself is a resource of type request The resource is a value up to 32 
bits wide, so it can be a byte, a word (16 bits), or a long (32 bits). 

Several other slot ltbrary routine call the low-level slot_ data access routine. 
slot_ data passes the parameter slot to the library routine slot_address to create 
the ROM base address from the slot number. The base address is then passed as one of 
the parameters to slot_resource_list to read the resource list of type letnd. 
slot_data scans the resource list returned by the previous call for the resource of 
type request. When the resource is found, the stze parameter determines which of the 
three possible data access routines will place the data into the user data word. An error 
return is immediately sent to the user if any of the routines called in slot_ data return 
an error. 
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Retum values 
Yalw:. Meapina 

0 Success 

-1 Failure 

Example 
int slot • 9; 

int data; 

/* 

* Read the board ID resource from the board resource list for 

* the board in slot 9. The board ID is 16 bits wide. 

*/ 

if(slot_data(slot, RD_BOARD, RBL_BOARDID, &data, 16) •• -1) { 

/*error ••• *I 

( .. 

/ 
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slot_dlrectory(slots 3x) slot_dtrectory(slots 3x) 

Name 
slot_directory 

Synopsis 
int slot_directory(slot, data, size) 

int slot; 

char •data; 

int size; 

where 

o slot is a NuBus slot number or a ROM base address for the board ROM. 

o data is a pointer to a buffer to hold the resource directory. 

o size is the number of rom_idoffset structures to be placed in the buffer pointed 
to by data. 

Description 
slot_ directory reads slzeentries of the resource directory for slot into the buffer 
pointed to by data. The resource directory is a structure containing all of the resources 
supported by the board for which the ROM was created. The resource directory is 
where all the searches for board resources in ROM begin. Each entry in the resource 
directory is a rom idoffset structure. This structure, defined in slots. h, consists 
of two fields: an 8-bit ID and a 24-bit offset 

The slot_directory routine uses slot_header to read the ROM header and 
create a ROM base address from the slot parameter. The base address and the 
resource directory 

offset from the ROM header are passed to slot_calc_pointer which creates a 
pointer to the resource directory in ROM. Using this pointer, the low-level library 
function slot_rom_data is called to read slzeentries of the resource directory into 
the buffer pointed to by data. 
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Jm values 
~ Meanina 

1 Success 

-1 Failure 

Example 
int i, j; 

unsigned address; 

struct rom_idoffset rd[20]; 

I* 

* Loop through all of the NuBus slots. 

*I 

for(i • 9; i < 14; i++) { 

/* 

* Read and print the resource directories for all the slots. 

* First print a header 

*I 

printf("Resource Directory for slot 'd:O, i); 

/* 

* Create a ROM base address. 

*/ 

if (address = slot_address Ci) < 0) { 

I* 

* This shouldn't happen since we are passing in valid slot 

* numbers. 

*/ 

exit Cl); 

if(slot_directory(address, rd, 20*sizeof(struct rom_idoffsetll < l) { 

printf("No directory foundO); 

Appendix C: Slot ROM Utlllty Routines C-31 



continue; 

for(j ~ O; ((j < 20)" (rd[j).r_id !- RD_EOLIST)); j++) { 

I* 

* Print the contents of the directory up to the End Of List 

* marker (or the maximum list size of 20) 

*/ 

printf(" td tx tXO, j, 
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slot_long(slots 3x) slot_long(slots 3x) 

Name 
slot_lonq 

Synopsis 
u32 slot_lonq(address, rdp) 

struct rom_idoff set rd/>, 

unsigned address; 

where 

o rdp is a structure defining a 32-bit quantity in ROM that contains a pointer to the 
long data to be read 

D addTess is the address in ROM of rdp. 

Description 
slot_long returns the long contained in ROM which is pointed to by rdp. address is 
the location in ROM of rdp. 

Pointers into ROM are calculated by adding the offset contained in the pointer to the 
ROM address. A resource data item of 32 bits can't be directly stored in the 
rom_idoffset structure (as both bytes and words can), so access to it must be 
granted indirectly. slot_long is used when the resource type of data stored in ROM 
is a 32-bitquantity. This routine as well as the slot_byte, the slot_word, and the 
slot_structure routines are used to access the four types oflow-level ROM data 
types. 

Retum values 
~ 

n 
None 

Meanina 

Success (the unsigned 32-bit value is returned). 

All values are legal. 
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Example 
u32 l; 

char *address; 

char *romp; 

int j; 

struct rom_idoffset rd(20]; 

/* 

* Create a ROM base address. 

*/ 

if ((address • slot_address (i)) < 0) { 

/*Error ••• */ 

I* 

* Get the resource directory from ROM. 

*/ 

if((romp • slot_directory(address, rd, 20)) •• 0) { 

/*Error ••• */ 

/* 

* Find a resource of type long, and read the value into variable "l." 

*/ 

for (j • O; ((j < 20) && (rd( j] .r_id !• RD_EOLIST)); j++) { 

if( rd[j).r_id •• RD_LONG) 

I* 

* Update the pointer to point to the location in ROM of the 

* long resource pointer. 

* 

if ((romp • 

slot_calc_pointer(romp, i*sizeof(struct rom_idoffset))) =• 0) { 

I* Error */ 
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l - slot_lonq(romp, rdp); 

break; 
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slot_resource(slots 3x) slot_resource(slots 3x) 

Name 
slot_resource 

Synopsis 
char *slot_resource(address, kind, request, data, size) 

char •aadress; 

int kind; 

int request; 

char •data; 

int size; 

where 

o address is base address for the slot ROM. 

o kind is the resource list to be searched to find the request resource. 

o request is the resource required by the calling process. 

o data is a pointer to a buffer to hold the resource list. 

o size is the number of rom idoffset structures that can be stored in the user 
buffer. -

Description 
slot_resource reads and returns up to size bytes of the structure associated with the 
resource of type request The requested resource must be located in the resource list of 
type kind The address parameter specifies the ROM base address to be read. 

A resource list is a sublist of the ROM resource directory. Resources are substructures 
of resource lists. slot_ resource reads the resource list of typektnd into local 
storage using the library function slot_resource_list. The resource list is 
searched for the requested resource request and, if found, the associated resource 
structure is read and its contents returned into the user buffer. To read the ROM data, 
slot_calc_pointer is called to create a pointer to the base of the resource structure 
to be read, and then slot structure is called to transfer the list from ROM to the 
user buffer. -
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Retum values 
YaWc Meanina 

potnter Success (a pointer to the resource structure in ROM is returned). 

0 Failure 

Example 
int slot • 9; 

struct PRAM *Pp; 

unsigned address; 

/* 

* Get the ROM base address 

*I 

if((address • slot_address(slot)) •• 0) { 

I* Error */ 

/* 

* Get the board resource list item of type RBL_PRAM from the 

* resource list of type RD_BOARD in the resource directory. 

*I 

if(slot_resource(address, RD_BOARD, RBL_PRAM, 

Pp, sizeof(struct PRAM)) •• 0) { 

/* Error */ 

Appendix C: Slot ROM Utlllfy Routines C-37 



slot_resource_llst(slots 3x) slot_resource_llst(slots 3x) 

Name 
slot_resource_list 

Synopsis 
char *slot_resource_list(address, ldnd, data, sU:e) 

char •address; 

int /dnd, 

char *data; 

int sU:e; 

where 

o address is base address for the slot ROM. 

o kind is the type of resource requested. 

o data is a pointer to a buffer that holds the resource list. 

o sU:eis the number of rom_idoffset structures that can be stored in the user 
buffer. 

Description 
slot_ resource_ list reads and returns up to size entries of the resource list 
associated with the resource of type kind 1be address parameter specifies the ba5e 
addre$ of the ROM to be read. 

A resource list is a sublist of the ROM resource directory. slot_resource_list 
reads the resource directory into local storage using the library function 
slot_directory. 1be directory is searched for the requested resource kind and, if 
found, the associated resource list is read and its contents are returned in the user's 
buffer. To read the ROM data, slot_calc_J>ointer is called to create a pointer to 
the base of the resource list to be read, and then slot rom data is called to transfer 
the list from ROM to the user buffer. - -
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Retum values 
Yaluc Meanins 

pointer Su~ (a pointer to the resource list in ROM is returned when the 
search and read of the resource list associated with the resource type 
lnnd is successfuO. 

0 Failure 

Example 
int slot • 9; 

unsigned address; 

struct rom_idoffset rl[LISTLENJ; 

char *romp; 

/* 

* Create a ROM base address. 

*/ 

if((address • slot_address(slot)) < Ol { 

/*Error ••• */ 

/* 

* Get the resource list for the resource of type RD_ETHER. 

* 

*/ 

if((romp • slot_resource_list(address, RD_ETHER, rl, LISTLENll •• 0) { 

/* Error */ 
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slot_structure(slots 3x) slot_stTUcture(slots 3x) 

Name 
slot_structure 

Synopsis 
int slot_structure(addre.ss, rdp, data, size) 

struct rom_idoff set r~ 

unsigned address, 

char •data; 

int size, 

where 

o rdp is a strucnire defmi.ng a 32-bit quantity in ROM that contains a pointer to the 
strucnire to be read. 

o address is the address in ROM of rdp. 

o data is a pointer to the user buffer to be filled with ROM data. 

o size is the size (in bytes) of the user buffer. 

Description 
slot_ structure copies size bytes found in ROM at address plus the offset contained 
in the rom_idoffset strucnire rdp into the buffer pointed to by data. 

Pointers into ROM are calculated by adding the offset contained in the pointer to the 
ROM address. slot_structure is used when the resource type of data stored in 
ROM is a structure or string of an unknown size. This routine, the slot_byte, the 
slot_word, and the slot_long routines are used to access the four typeS oflow­
level ROM data typeS. 

Retum values 
~ Meanina 

count Success (the number of bytes of structure data is returned). 
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-1 Failure 

Example 
char data[lOOJ; 

char *address; 

char *romp; 

int j; 

struct rom_idoffset rd[20); 

/* 

* Create a· ROM base address. 

*I 

if ((address • slot_address (i)) < 0) { 

/*Error ••• */ 

I* 

* Get the resource directory from ROM. 

*/ 

if((romp • slot_directory(address, rd, 20)) •• 0) { 

/*Error ••• */ 

I* 

* Find a resource of some user type, and read the structure. 

*/ 

for(j = O; ((j < 20) " (rd{j] .r_id !• RD_EOLIST)); j++) { 

if( rd(j].r_id •• RD_OSERJ 

/* 

* Opdate the pointer to point to the location in ROM of the 

* resource pointer. 

*/ 

if ((romp • 
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slot_eale_pointer(romp, i*sizeof(struet rom_idoffset))) •• 0) { 

/* Error */ 

l • slot_strueture(romp, rdp, data, sizeof(data)); 

break; 
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slot_word(slots 3x) slot_word(slots 3x) 

Name 
slot_word 

Synopsis 
ul6 slot_word(rwp) 

struct rsrc_word rwp; 

whereu.p is a suuaure that defines a 32-bit quantity in ROM. 

Description 
slot_word returns the 16-bit word contained in ROM that is part of the rsrc_word 
suuaure passed to the routine. The struaure rsrc_word is defined in slots .'h. The 
word returned contains the least significant 16 bits of a 32-bit quantity defined by the 
rsrc_wordstruaure.You use slot_word when the resource type of data stored in 
ROM is a unsigned 16-bit quantity. This routine, as well as the slot_long, the 
slot_byte, and the slot_structure routines are used to access the four types of 
low-level ROM data types. 

Retum values 
~ Meanjna 

data Success (the 16-bit word of dat.a stored in rwp is reb.lrned). 

None All values are legal. 

Example 
struct rsrc_word rwp; 

ul6 w; 

char *address; 

int j; 
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struct rom_idoffset rd(20J; 

I* 

* Create a ROH base address. 

*I 

if ((address • slot_address (i)) < 0) { 

/*Error ••• */ 

/* 

* Get the resource directory from ROM. 

*I 

if(slot_directory(address, rd, 201 < 01 ( 

I* Error ••• *I 

I* 

* Find a resource of type WORD, and read the value into variable c. 

*I 

for(j • O; ((j < 20)" (rd[j).r_id != RD_EOLIST)); j++) { 

if( rd[j].r_id -- RD_WORD) { 

rwp • (struct rsrc_word)rd[j]; 

w • slot_word(rbp); 

break; 
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slot_seg_vtolatton(slots 3x) slot_seg_vtolatton(slots 3x) 

Name 
slot_seq_violation 

Synopsis 
slot_seq_violation() 

Description 
slot_seg_violation protects the slot library functions from illegal ROM accesses. 
It·is passed to the slot_catch routine to catch user segmentation violations and to 
allow error recovery. 

slot_env is a initialized environment structure used with a UNIX longjmp call. 

Retum values 
There is no return; the program makes a longjmp call to a prearranged error­
handling routine. 

Example 
main() { 

char *romp; 

int slot • 9; 

/* 

* Create a ROM address. 

*I 

if ((romp • slot_address (i)) < 0) { 

I* Error .•• */ 
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/* 

* prepare for ROM access timeouts. First catch the segmentation 

* violation signal. 

*I 

slot_catch(SIGSEGV, slot_seg_violation); 

/* 

* Initialize slot_env and test to see how we got here. If true, 

* an error oecured. If false, then the initialization is 

* complete. 

*/ 

if(setjmp(slot_env)) 

I* 

* Error, caught a segmentation violation. Reset the signal 

* handler for segmentation violations then exit in error. 

*/ 

slot_ignore(SIGSEGV); 

exit (1); 

/* 

* Try reading the ROM pointed to by "romp." Errors will cause a 

* branch back to the setjmp. 

*I 

c • *romp & Oxf; 

I* 

* If the code gets to here, the ROM is readable. Reset the error 

* handler, and exit with good status. 

*/ 

slot_ignore(SIGSEGV); 

exit(Ol; 
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slot_catcb(slots 3:x) slot_catcb(slots 3:x) 

Name 
slot_catch 

Synopsis 
slot_catch(kj~ rout1ne) 

int kjnd; 

int •routine(); 

where 

o kjntJ is the signal type. 

o rout1ne is the error recovery handling routine that is called. 

Description 
slot_catch uses the signal system call to initali:ze nonstandard signal handling for 
a signal of type kjnd. 1be result of the signal call is that interrupts of type ktndcause 
the error recovery handling rout1ne to be called. 

slot_env is a preinitiali:zedenvironmentstructureused with a lonqjrnp call. 

Retum values 
None. 

Example 
main() { 

char *romp; 

int slot • 9; 

/* 

* Create a ROM address. 
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*/ 

if((romp • slot_address(i)) < 0) { 

/*Error ••• */ 

*prepare for ROM access·timeouts. First catch the segmentation 

* violation signal. 

*/ 

slot_catch(SIGSEGV, slot_seg_violation); 

/* 

* Initialize slot_env and test to see how we got here. If true, 

* an error occured. If false,then the initialization is complete. 

*I 

if(setjmp(slot_env)) 

/* 

* Error, caught a segmentation violation. Reset the signal 

* handler for segmentation violations then exit in error. 

*I 

slot_ignore(SIGSEGV); 

exit(!); 

/* 

* Try reading the ROM pointed to by "romp." Errors will cause a 

* branch back to the setjmp. 

*/ 

c • *romp & Oxf; 

I* 

* If the code gets to here, the ROM is readable. Reset the error 

* handler, and exit with good status. 

*/ 
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slot_iqnore(SIGSEGV); 

exit(O); 
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slot_tgnore(slots 3x) slot_tgnore(slots 3x) 

Name 
slot_iqnore 

Synopsis 
slot_iqnore(k1nd) 

int kind; 

where kind is the signal to restore to default handling. 

Description 
slot_ignore uses the signal routine to restore default signal handling for signals of 
type kind. 

Retum values 
None. 

Example 
main() { 

char *romp; 

int slot • 9; 

/* 

* Create a ROM address. 

*I 

if((romp • slot_address(i)) < 0) { 

I* Error ••• */ 

/* 
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* prepare for ROM access timeouts. First catch the segmentation 

* violation signal. 

*/ 

slot_catch(SIGSEGV, slot_seg_violation); 

/* 

* Initialize slot_env and test to see how we got here. If true, 

* an error occured. If false, then the initialization is 

* complete. 

*/ 

if(setjmp(slot_env)) 

/* 

* Error, caught a segmentation violation. Reset the signal 

* handler for segmentation violations then exit in error. 

*/ 

slot_ignore(SIGSEGV); 

exit(l); 

I* 

* Try reading the ROM pointed to by "romp." Errors will cause a 

* branch back to the setjmp. 

*I 

c = *romp ' Oxf; 

/* 

* If the code qets to here, the ROM is readable. Reset the error 

* handler, and exit with qood status. 

*/ 

slot_iqnore(SIGSEGV); 

exit (0); 
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slot_address(slots 3xJ slot_address(slots 3x) 

Name 
slot_address 

Synopsis 
char *slot_address(slot) 

int slot; 

where slot is either a slot number, a physical ROM base address, or a virtual ROM base 
address. 

Description 
slot_address checks slot for validity and type, and returns a valid ROM base 
address for slot .. Physical and virtual addresses are returned directly if the calling 
routine is valid. A slot input parameter is converted to a physical address, and the 
ROM at that address is made available to the user program by using the phys system 
call (which makes the ROM available on a A/UX page boundary). A page in the system 
is 4 megabytes, so phys is called to map the slot ROM to a virtual address of 4 
megabytes. 

Retum values 
None. 

Example 
main() { 

char *romp; 

int slot • 9; 

/* 

* Create a ROM address. 

*/ 
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if((romp - slot_address(i)) < 0) { 

/*Error ••• */ 

/* 

* prepare for ROM access timeouts. First catch the seqmentation 

* violation signal. 

*/ 

slot_catch(SIGSEGV, slot_seq_violation); 

I* 

* Initialize slot_env and test to see how we got here. If true, 

* an error occured. If false, then the initialization is 

* complete. 

*I 

if(setjmp(slot_env)) 

I* 

* Error, caught a segmentation violation. Reset the signal 

* handler for seqmentation violations then exit in error. 

*/ 

slot_ignore(SIGSEGV); 

exit(l); 

/* 

* Try reading the ROM pointed to by "romp." Errors will cause a 

* branch back to the setjmp. 

*/ 

c = *romp ' Oxf; 

/* 

* If the code gets to here, the ROM is readable. Reset the error 

* handler, and exit with good status. 

*/ 
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slot_iqnore(SIGSEGV); 

exit(O); 
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slot_byte_/ane(slots 3x) slot_byte_lane(slots 3x) 

Name 
slot_byte_lane 

Synopsis 
char *slot_byte_lane(address, Oyte lane) 

char •address; 

char •byte-lane, 

where 

o address is either a physical ROM base address or a virtual ROM base address. 

o llyte-lane is a pointer to a location that stores byte lane information from R<?M. 

Description 
slot_byte_lane searches ROM starting at address for the byte lane byte that should 
be located in the last byte in addressable ROM (such as. OxFssFFFFF, or address plus 
OxFFFF). 1be search continues backwards for up to 4 byteS to allow for the possible 
board addressing conventions. When a valid byte lane byte is located, that 
information is stored in the location pointed to by the parameter llyte lane, and the 
address in ROM of the byte lane byte is returned If no valid byte lane byte is found, an 
error is returned. 

A byte lane byte contains the valid addresses using NuBus addressing conventions for 
ROM data. The slot_byte_lane routine reverses the byte lane information (4 bits) 
before returning the data to the caller. because the Motorola 68ooo family uses an 
addressing convention that is reversed from the NuBus standard. 
slot_calcyointer uses the byte lane information to create valid ROM addresses. 
The format of the byte lane byte may be found in Developing <Ards and Drivers for 
Macintosh II and Macintosh SE . 

Retum values 
Yaiue. Meanina 

address Success (the address of the byte lane information in ROM is returned). 
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0 Failure 

Example 
char *curr, *base; 

char bl; 

/* 

* Get the byte lane byte usinq the slot_byte lane routine. 

* If no byte lane is available, you can't calculate the 

* pointer. 

*/ 

if((base • slot_byte lane(((unsiqned)curr' OxFFFFOOOOI, 'bl)) •• 0) { 

I* Error */ 

C-56 Appendix C: Slot ROM Uttllty Routines 

,~--, 

lJ 



( 

slot_calc_potnter(slots 3x) slot_calc_potnter(slots 3x) 

Name 
slot_calc_pointer 

Synopsis 
char *slot_calc_pointer(current, offse~ 

char •current; 

int offtet; 

where 

o current is the current ROM address. 

o offset is the offset, in bytes. 

Description 
slot_calc_pointer calculates the valid ROM address that is offset bytes from 
current. The address is a byte address in slot ROM for a board in one of the Macintosh 
II NuBus slots. slot_calc_pointer calls slot_byte_lane to get the byte lane 
information for the ROM pointed to by current Using the byte lane information, and 
adding offset to cumlnt, a new ROM address is created and returned to the user. 

The offset is a count of bytes •skipped• to get to the new ROM address. The count may 
be pmitive or negative. The bytes to be skipped are not necessarily in continuous 
memory (that is, a simple add of address and offset will skip offset •addresses") but if 
only one out of every four bytes is active, then only a quarter of the offset is fullfilled. 
In the active byte lanes, the offset must be multiplied by four to skip the full number of 
offset bytes. The simple addition of address and offset works when all byte lanes are 
active (not the common case). There is also a small calculation required to land on an 
active ROM address based on the value of CUm1nt, because offset may not be an even 
multiple of four. 

Retum values 
~ Meanjna 

address Success (the new ROM address is returned). 
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0 Failure 

Example 
char *romp; 

int offset • 10; 

int slot • 9; 

/* 

* Create a ROM address. 

*I 

if((romp • slot_address(i)) < 0) { 

/*Error ••• */ 

if((romp • slot_calc_pointer(romp, offset) •• 0) { 

/'* Error */ 

I* 

* ROMP is now offset bytes from the base of ROM. 

*I 
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slot_rom_data(slots 3x) slot_rom_data(slots 3x) 

Name 
slot_rom_data 

Synopsis 
char *slot_rom_data (address, widlh, data) 

char *address; 

int widlh; 

char *dala; 

where 

D address is a ROM address. 

o width is a positive or negative count of bytes to read. 

o data is a pointer to the user buffer to be filled. 

Description 
slot_rom_data fills the buffer pointed to by datawithwtdthbytes of data from ROM 
starting from address. 

slot_rom_data reads the byte Jane information using the slot_byte_lane 
routine. Reading only valid ROM addresses, slot_rom_data reads the data from 
ROM and stores it into the user buffer referenced by data. The direction of the read is 
determined by the value of width. A negative value causes the bytes to be read in 
reverse order from address to (address-width.), and a positive width causes a read of 
ROM data from address to (address + width). The positive count of bytes read from 
ROM is returned to the user. 

slot_env is a preinitializ.ed environment structure to use with a longjmp call. 

Return values 
~ MeaninK 

count Success (a non-negative count of bytes read is returned). 
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Example 
char *romp; 

struct format_header fhp; 

int slot • 9; 

/* 

* Create a ROM address. 

*/ 

if((romp • slot_address(il) < 0) { 

/*Error ••• */ 

if((romp • slot_byte lane(base, 'byte lane)) •• 0) { 

I* Error */ 

I* 

* Read the ROM format header, aqain errors cause a zero return. 

*/ 

if((count • slot_rom_data(romp,-aizeof(struct format_headerl,fhp)) < 0) { 

/* Error */ 
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slot_cbeck_crc(slots 3x) slot_cbeck_crc(slots 3x) 

Name 
slot_check_crc 

Synopsis 
char *slot_check_crc(top, jbp, byte lane) 

char •toP; 

struct format_header •fbP; 

char byte-lane; 

where 

o tqJ is the address of a byte lane byte in slot ROM. 

o fbp is a pointer to the format header structure from slot ROM. 

o byte-lane is the 4 bits of byte lane information from slot ROM. 

Description 
slot_ check_ ere computes and verifies the ROM checksum for the slot ROM ending 
at address top. 

slot_check_crc is called from slot~header, which reads and verifies both the 
the lowest level ROM structure and the ROM contents. The format header and byte 
lane information for the ROM to be checked are read by slot_header and then 
passed to the checksum routine. The format header contains the ROM length and the 
ROM checksum to be verified. The byte lane byte contains the addressing information 
used to read the ROM. 

slot_env is a preinitialized environment structure used with a longjmp call. 

Retum values 
~ Meanina 

0 Success (checksum is valid). 

1 Failure 
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Example 
struct format_header fhp; 

char *romp; 

char byte lane; 

int count; 

I* 

* Get the byte lane byte, and a pointer to 

* the location of the byte lane byte in ROM. 

*I 

romp• slot_byte lane(base, &byte lane); 

if(romp •• (char*) 0) { 

/* Error */ 

/* 

* Read the format header, again errors cause a zero return. 

*/ 

if((count • slot_rom_data(romp,-sizeof(struct format_header),&fhp)) < 0){ 

/* Error */ 

I* 

* Check that the format header contains valid information. 

*/ 

if((fhp->f_testpattern !• F_TESTPATTERN) I I (fhp->f_rev > F_REV) I I 

(fhp->f_format !• F_APPLE) I I (fhp->f_reserved !• OJ I I 

((fhp->f_diroffset & OxOOFFFFFF) 0) I I 

((fhp->f_diroffset' OxFFOOOOOO) !• 0)) 

return(O); 

I* 

* check the checksum. 

*I 
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if(slot_check_crc(romp, 'fhp, byte lane) !• 0) { 

/* Error */ 

( 
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slot_beader(slots 3:x) slot_beader(slots 3:xJ 

Name 
slot header 

Synopsis 
char *slot_header(address, jbp) 

char •address; 

struct format_header •fbp, 

where 

o address is either a physical ROM base address .or a virtual ROM base address. 

o fbp is a pointer to a format header structure. 

Description 
slot header reads and verifies the ROM header and ROM checksum, storing the 
inf orrmtion, if valid, ·in the buffer pointed to by jbp. address is the base address of the 
slot ROM. 

The ROM header describes the slot ROM. It contains a ROM checksum, the ROM 
length, a pointer the resource directory, and information words. 

Return values 
~ Meanina 

pointer Success (a pointer to the format header structure in ROM is returned). 

0 Failure 

Example 
struct format_header fh; 

char *romp; 

int slot .. 9; 
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/* 

* Create a ROM address. 

*/ 

if((romp • slot_address(i)) < 0) { 

/*Error ••• */ 

/* 

* Get the ROM header into "fh." 

*/ 

if((romp • slot_header(address, 'fh)) ·- 0) { 

/* Error */ 
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Appendix D 

Memory Maps 

This appendix contains memory maps for the Macintosh II and A!UX. Included are 
the memory maps for the physical address space, user address space, and kernel 
address space. 

Physical address space 

The physical address space for the Macintosh II is shown in Figure D-1. 
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Figure D·l 
Physical address space 
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User address space 
In AIUX, the user address space contains 512 megabytes. This means that the kernel 
keeps the entire user pr~ in the kernel address space. The user address space is 
shown in Figure D-2. 
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Figure D-2 
User address space 
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Kernel address space 
For A/UX device driver writers, the kernel address space is shown in Figure D-3. 
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Figure D-3 
Kamel address space 
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Appendix E 

Vnode Kernel Driver 
Modifications 

Although the A/UX kernel is based on AT&T's System V Release 2, the A/UX device 
driver interface is closer to that used in U.C. Berkeley's 4.2 BSD. This section notes 
some changes you should be aware of if you are familiar with the AT&T driver · 
interface. 

A/UX supports the vnode kernel. Because of this, device driver interfaces differ from 
those in other UNIX sys~. If you are familiar with UNIX device drivers in other 
systems or are porting a driver from another system to A/UX, be aware of the 
following A/UX driver changes. 

o Driver return values: a driver's open, read, write, and functions return error values 
differently. Berkeley-style drivetS require these routines to return either 0 for 
success or an error number (def"med in "sys/errno.h>) for failure. Nonnally, 
AT&T System V drivers set the global value u. u_error to indicate failure and 
nothing to indicate success. 

o Device read and write inrerfaces: the vnode kernel passes 1/0 paramerers in a uio 
structure. Other drivers use rdwr to initialize the values u. u_base, u. uoffset, 
and u. u_segflq before calling the device specific read or write function. For 
details about the uio data structure, see •Device React and Write Interfaces• in 
Chapter 2. 

o 1/0 control interface: 1/0 control in A/UX encodes infonnation about whether the 
1/0 request will copy data in or out of kernel memory (or both) and the amount of 
data that will be copied (if any). Thus, an ioctl(2) system call can do copy in or 
copyout itself, rather than passing to the device 1/0 control interface a pointer to 
a buffer in kernel memory. For details about this interface, see ·110 Control 
Interface• in Chapter 4. 
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o Disk performance monitoring: to monitor disk drives, several global variables have 
been provided to keep track of disk performance. See •Monitoring Disk 
Performance• in Chapter 3 for details. 
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Appendix F 

V.2 Streams Drivers 

This appendix lists the differences between AT&T's System V Release 3 and System V 
Release 2.1 Streams drivers supported by A/UX. Specifically, System V Release 2.1 
doesn't support the following System V Release 3 features: 

o input/output polling 

o asynchronous input/output 

o multiplexed streams 

o putmsq and qetmsq routines 

o services interfaces and messages 

o bufcall,enableok,datamsq,insq,noenable,pullupmsq,rmvq,and 
testb utility routines 

D NSTREVENT,MAXSEPGCNT,NSTRPUSH,STRMSGSZ,STRCTLSZ,STRLOFRAC, 
and s TRMEDFRAC system parameters 

In addition, the following enhancements have been added to the A/UX Streams 
implementation. 

o t tx data structure: A/UX uses the t tx data structure to hold terminal infonnation. 

o t tx library: to make it easier to write tenninal drivers, A/UX provides the t tx 
library, a collection of Streams support routines. 

o line: the streams line discipline for tenninals. 

o select: A/UX provides support for the select(2) BSD system call. 

o FIO ... ioctl(s) are supported. See st reams(7) in the NUX System Administrator's 
Reference for details. 
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Appendix G 

SCSI Device Driver 

This appendix contains a SCSI driver source listing for a hard disk. The driver consists 
of two main parts: the generic disk driver and the SCSI manager. The SCSI driver files 
included in this appendix are illustrated in Figure G-1. 

See Chapter 10 for detailed descriptions of specific generic disk driver and SCSI 
manager routines, including parameters and calling sequences. 
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Figure G-1 
The SCSI Driver 
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Generic disk driver files 
1be generic disk driver consists of the following files: 

o hd. c-the high-level driver interface to the generic disk driver 

o gdis k. c-the generic disk driver routines 

o gdisksubr. c-f:be generic disk driver subroutines 

The hd. c file contains the driver interface to the kernel. These are the routines called 
through the bdevsw table. The rouines in hd. c, in tum call the gdisk. c routines, 
which interface to the generic disk driver functions based on a Finite State Machine 
Oocated in the file gdisksubr. c). The machine coordinates general VO tasks as 
generic state sequences. 11lis results in function calls to routines in the file sdisk. c, 
which contains low-level SCSI routines. 

Note: If you're writing a NuBus disk driver, your driver can interface to the generic disk 
driver files in the same way as a SCSI disk driver. You nrust, however, write different 
device-specific bdevsw and low-level routines to replace hd. c, sdisk. c, and 
scsi. c. 

SCSI manager files 
The SCSI manager is contained in these two files: 

o sdisk.c 

o scsi.c 

The sdisk. c and scsi .c files fonn the lower level of the driver-specific portion of 
the driver. sdisk. c contains the low-level device-specific interface between the 
generic disk driver and the SCSI manager. It contains the routines sdread, sdwri te, 
sddriveinit,sdbadblock,sdformat,sdrecover,andsdshutdown,which 
are described in •tow-level Device Routines• in Chapter 10.The scsi. c code 
contains the low-level routines that implement the SCSI manager functions (as another 
Finite State Machine), as well as routines that drive the NCR5380 chip. 

Other files 
In addition to the generic disk driver and SCSI manager files just listed, you may find 
the following files useful while writing your driver: 
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o ncr5380 .h NCR register definitions 

o via6522. h NCR interrupt decoding information 

via.c 

o qdisk. h Disk task blocks definitions 
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The hd.c source code 
The following pages list the source code for hd.c. 

( 
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The gdisk.c source code 
The following pages list the souice code for gdisk.c. 
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The gdisksubr .c source code 
The following pages list the source code for gdisksubr.c. 
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The sdisk.c source code 

The following pages list the source code for sdisk.c. 
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The scsi.c source code 

The following pages U..t the source code for scsi.c. 
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Glossary 

autoconflguradon: A technique for adding, 
deleting, or replacing a device driver in the A/UX 
kernel. 

back.enable: A method of scheduling a Streams 
queue for service by preventing new messages 
from being scheduled after a high water mark is 
reached and allowing new mes.sages to be 
scheduled only after the number of messages on a 
queue have dropped below a low water mark 

block clerices: Devices that access data blocks, 
which permits them to contain mounted file 
systems. Reading and writing to block devices are 
handled through a cache of buffers that minimiz.e 
physical access to the device. 

character devices: Devices that generally 
perform 1/0 asynchronously for a variable 
number of bytes. 

cblock: A data structure used to buffer terminal 
data. Cblocks are linked together to form a dist 
queue. A cblock contains an array to hold data, 
pointers to the first and last characters in the 
array, and a pointer to the next cblock on the 
queue. 

clist: The basic terminal buffering structure. A dist 
is the head of a linked list queue of cblocks. 

device class: A class of device that share data 
access characteristics. In A/UX possible devices 
classes are block, character, or network. 

clerice driver: A portion of the kernel that 
handles 1/0 operations to and from a physical 
device in the system. 

device interface: In AIUX, the device driver's 
interface to the device itself. Possible interface 
types include NuBus, SCSI, and ADB. 

device type: A specific kind of A/UX device. With 
a device class, there can be several different 
device types. 

driver interface: The A/UX kernel's interface to a 
device driver. Possible interface types include 
block, character, terminal, streams, and network. 

high-water mark: For terminal 1/0, the 
maximum number of characters that can be in the 
raw queue before input is temporarily suspended. 
For Streams 1/0, it is used along with the low water 
mark to schedule a queue. 

line dJscipline: A data structure containing 
pointers to a terminal's open, close, read, write, 
ioctl, input interrupt, and output interrupt 
routines. 

Joadfile: A file needed to run autoconfiguration in 
a driver development environment. It contains 
slot ROM information normally found in the 
system's slot ROMs. 

low-water mark: For terminal 1/0, the number 
of characters in the raw queue must drop below this 
level before additional characters can be added to 
the queue. For Streams 1/0, it is used along with 
the high water mark to schedule a queue. 

makefile: A file containing user-specified 
commands that are processed according to built­
in rules contained in the make(l) utility. 

· master script file: A file that contains 
information used during autoconfiguration. 

module: In Streams, a pair of queues that process 
data traveling between the stream head and the 
Streams driver. 
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network derica: Devices that handle data 
communication between machines. 

proceaa In A/UX, an instance of a program in 
executiqn. 

queue: In Streams, a data structure that is 
associated with a statically compiled module. 
Queues are always found in pairs-one for 
upstream processing and one for dowmtream 
processing. 

raw interface: A character interface that handles 
reading and writing to a device directly, without 
buffering data. Block devices use both a raw and a 
buffered interface. 

request block data structure: A data struaure 
that specifies the elements of a SCSI command. 
Instead of sending a SCSI command directly to the 
controller, the request block struClW'e is filled and 
passed to the SCSI manager for processing. 

stream: A full duplex processing and data transfer 
path between a driver in kernel space and a 
process in user space. 

Streams: A collection of system calls, kernel 
resources, and kernel utility routines that can 
create, use, and dismantle a stream. Streams 
provides a convenient mechanism for writing an 
A/UX terminal driver. 

Streams driven A part of the stream end that 
performs device handling and also transforms 
data and information that passes between the 
external interface and a stream. 

Streams module line: A line discipline used in 
Streams terminal drivers to perform such 
functions as echoing characters, providing erase 
and kill processing, flow control, ioctl processing, 
and character editing. 

Stram end: 1be part of a stream closest to the 
external device interface. 1be stream end contains 
the Streams driver. 

Stram head: The part of a stream that provides 
the interface between the stream and the user 
process. 

Streams masages: The form in which blocks of 
data are linked together and ~ through a 
stream. Each message block consists of data 
structures and a buffer block. 

tramactloo: 1be most basic function that a driver 
requests of the ADB. It consists of a request for the 
ADB, an.ADB operation, and a reply from the 
ADB after the transaction has completed. 

ux structure: A data structure used in A/UX 
Streams terminal drivers that contains 
information needed for terminal 1/0. 

tty structure: A data structure containing 
information needed to perform terminal I/O. This 
includes pointers to raw, canonical, and output 
queues; and a pointer to a device driver command 
processing routine. 

u-dot: A data structure containing information 
and pointers unique to a process. The u-dot is also 
called the user structure. 

uJo structure: A data structure that describes a 
data transfer. The uio structure, an argument to 
several routines, contains read and write 
parameters. 
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