
c

MacintoshTM Building A/UX®
Device Drivers

C Apple Computer, Inc. 1988

, I .n

'·
.:"

(

(
Copyright are registered trademarks of

Apple Computer, Inc.

This material contains trade Motorola is a trademark of
secrets and proprietary Motorola, Inc.
information of Apple
Computer Inc., and Unisoft NuBus is a trademark of Texas
Corporation. Use_ of this Instruments.
copyright notice is

Apple Desktop Bus and precautionary only and does
not imply publication. Erher'I'alk are a trademarks of

Apple Computer, Inc.

Copyright C 1985, 1986, 1987, UNIX is a registered trademark
1988, Apple Computer Inc., of AT&:T Information Systems.
and Unisoft Corporation. All
rights resei:ved Portions of B-NET is a trademark ofUnisoft
this document have been Corporation.
previously copyrighted by

Ethernet is a registered AT&:T Information Systems,
trademark of Xerox the Regents of the University of
Corporation. California, Adobe Systems,

Inc., and Sun Microsystems, ITC Avant Garde Gothic, ITC
Inc., and are reproduced with Garamond, and ITC Zapf
permission. Under the Dingbats are registered trade-
copyright laws, this manual or marks of International
the software may not be Typeface Corporation.
copied, in whole or in part,

Microsoft is a registered trade-without written CX>nsent of
Apple or Unisoft, except in the mark of Miaosoft

(~ normal use of the software or Corporation.
to make a backup CX>py of the POSTSCRIPT is a registered
software. The same trademark of Adobe Systems
proprietary and copyright Incorporated.
notices must be aft1x:ed to any
permitted copies as were Varityper is a registered trade-
afftxed to the original. This mark, and vr6oo is a
exception does not allow trademark, of AM
copies to be made for others, International, Inc.
whether or not sold, but all of

Simultaneously published in the material purchased (with
all backup a>pies) may be the United States and Canada.
sold, given, or loaned to
another person. Under the
law, copying includes
translating into another
language or format You may
use the software on any
computer owned by you, but
extra copies cannon be made
for this purpose.

C Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

(" Apple, the Apple logo, A/UX,
LaserWriter, and Macintosh

(_' •.

Preface

About This Manual

Inside this manual
This manual explains how to build Apple® A/UX® device drivers for the Apple
Macintosh ® II computer. The manual is designed to be both a 9how-to• guide 'and a
reference manual for someone writing device drivers. A/UX is Apple's version of the
UNIX® operating system.

To use this manual effectively, you should have a working knowledge of the C
programming language and written device drivers in the past. You need some
knowledge of the A/UX operating system, including the major parts of A/UX,
although detailed knowledge of the kernel is not required. If you need to learn more
about the A/UX operating system, see the bibliography in the back of this manual.
You also need to know how to use system calls in a C program.

An overview of what this manual covers is listed below:

•

•

•

•

•

Chapters 1 and 2 provide an overview of A/UX device drivers and the A/UX
kernel programming environment You should read these sections before
writing your driver.

Chapter 3 describes drivers that buffer data through the kernel buffer cache .
These drivers are called block device drivers.

Chapter 4 describes drivers that use their own techniques to transfer data .
These drivers are called character device drivers.

Chapters 5 through 11 describe specific types of device drivers and interfaces .
You need to read only those sections that apply to your device and driver.

Chapter 12 describes the autoconfiguration process. This chapter tells you
how to add a new device driver to the kernel.

Preface: About this Manual

• Chapter 13 tells you how to use the autoconfiguration process in a driver
development environment This chapter takes you through all the steps
necessary to add a device driver to your system by showing a specific example
of adding a driver to the kernel.

• Chapter 14 describes the ftles you need to include on the distribution floppy
disk that your customers use to install your driver. 1be installation procedure
that your customers need to follow to install your driver are also given.

• Appendix A describes the driver interface· routines.

• Appendix B describes kernel routines your driver can use.

• Appendix C describes the slot library routines that slot device drivers can use.

• Appendix D contains physical, user, and kernel memory maps.

• Appendix E describes vnode kernel modifications.

• Appendix F describes the differences between the System V Release 2.1 and
System V Release 3 Streams implementation.

• Appendix G contains a SCSI device driver listing.

Conventions used in this manual
Words that you must type exactly as shown or that would actually appear on the screen
appear in Courier type. Words that you must replace with aaual values appear in
italtcs (for example, the integer variable dev might have an aaual value of 2). An
ellipsis (. ..) follows an argument that may be repeated any number of times. Boldface
type is used for new terms that are defined in the text; often these terms are listed in the
glossary for this manual.

Special keys on the keyboard appear in CAPS AND SMALL CAPS (for example,
RETURN).

Key combinations that you must pr~ simultaneously are connected with hyphens (for
example, CONTROL-S).

A file is enclosed in angled brackets, for example <sys /buf. h>, to indicate the
parent directory is I us r I include.

Syntax notation
This manual uses the following conventions to represent command and routine
syntax. A typical A/UX routine has the following form:

type routine (a?i, ...)

Preface: About this Manual Ii

(

(

type arg;

The elements have these meanings:

type is the data type of the value returned from the routine (for
example, int); type also specifies the data type of an
argument to the routine.

routine is the name of the routine.

a'B is an argument to the routine.

In the text, cmd(sect) indicates a cross-reference to an A/UX reference manual. cmd
is the name of a command, program, system call, or other facility, and sect is the
section number where the entry can be found For example, open(2) refers to the
open system call, which is documented in section 2 of the AIUX Programmer's
Reference.

In the text, kernel routines are denoted by the name of the routine in Courier type
followed by on open parentheses and a closed parentheses. For example, bi ow ai t ()
refers to a kernel routine that you can use in your driver.

ill Preface: About this Manual

0

(

Ill

Contents

Figures and tabl• xx

Radio and television Interference xx

Pref ace About This Manual xx

Introduction xx

Chapter 1

Conventions used in this manual xx

An Overview of A/UX Device Drivers 1-1

An overview of the A/UX kernel 1-2
Performing 1/0 in A/UX 1-4
What is a device driver? 1-6

The basic structure of an A/UX device driver 1-9
Block device drivers 1-9
Character device drivers 1-10

An overview of the hardware 1-11
The NuBus 1-11
The Small Computer System Interface (SCSI) 1-14
The Versatile Interface Adapters 1-14
The Apple Desktop Bus 1-14
The Serial Communications Controller 1-17
The Apple Sound Chip 1-17
The Integrated Woz Machine 1-17
Summary of software drivers and hardware 1-17

Memory-mapped I/O 1-20
Interrupt handling by your driver 1-20

Handling interrupts from SCSI devices 1-22
Handling interrupts from ADB devices 1-22
Handling interrupts from NuBus devices 1-22

Where to go from here 1-23
Writing a block device driver 1-23
Writing a character device driver 1-24

Contents

Contents

Chapter 2 The Kernel Programming Environment 2-1

How a typical 1/0 request goes through A/UX 2-2
A/UX block and character device drivers 2-5
Device ftles 2-8
Device switch tables 2-9

The block device switch table 2-10
The character device switch table 2-15

Return values of driver routines 2-20
Process context and the user structure 2-21
Utility routines and maaos 2-22

Setting processor levels 2-22
Waiting for 1/0 to complete on an address or for an event to

ocrur (sleep) 2-22
Waiting for 1/0 to complete on a buffer header (biowait) 2-23
Notifying a process of 1/0 completion or an event occured

(wakeup) 2-23
Notifying a process 1/0 has completed on a buf structure

(bidone) 2-23
Reading from and writing to a user buffer 2-24
Gaining access to user address space 2-24
Finding the major number of your device 2-24
Finding the minor number of your device 2-25
Encoding the major and minor numbers of your device 2-25
Setting a Timeout (timeout,) 2-25
Removing a Tuneout (untimeout) 2-25
Delaying exerution 2-25
Sending a Signal to a user process 2-26

Chapter 3 Block 1/0 Device Drtve11 3-1

Overview 3-2
Transferring Data to and from a block device 3-3
Buffered 1/0 3--3

The buf structure 3-3
The iobuf structure 3-5

The block device driver interface 3-6
Opening a block device driver for 1/0 3-6

The driveropen routine 3-6
The driverclose routine 3-9

Performing 1/0 (using the strategy routine) 3-9
Writing to a block device 3-10
Reading from a block device 3-11
The block device start routine 3-11
The block device interrupt routine 3-12
Trace of an VO request on a block device driver 3-12

Iv

(

(

v

Chapter4

Raw VO 3-15
The diagnostic print routine 3-16
Performing initialization on a device driver 3-16
Kernel routines for block device drivers 3-17

Waiting on 1/0 3-17
Buffer routines 3-17

Character Device Drivers A-1

Overview 4-2
The character device driver interface 4-5
Preparing a character device for 1/0 4-6

The driveropen routine 4-6
Closing a character device 4-8

The driverdose routine 4-8
Reading from and writing to a character device 4-9

The driverread routine 4-10
The driverwrite routine 4-11
Data transfers using physic() 4-12

Using physic() to read from a device 4-14
Data transfers using uiomove() 4-16

Performing control and miscellaneous funtions on a device 4-18
The driverioctl routine 4-19

Checking a device for VO (select) 4-22
The driverselect routine 4-23

Performing initialization on a device 4-24
Handling character device interrupts 4-24

Chapter 5 Tennlnal Device Drivers S-1

Buffering and control structures 5-2
Clists and cblocks 5-2
The ccblock structure 5-6
The tty structure 5-6
The line discipline 5-10
The termio structure 5-11

Reading from a terminal 5-12
Writing to a terminal 5-15
Parts of a terminal device driver 5-17

The open routine 5-17
The dose routine 5-18
The read routine 5-18
The write routine 5-18
The ioctl routine 5-19
The input and output interrupt routines 5-19

Contents

Contents

The modem interrupt routine 5-20
The driver command process routine 5-20

Modem control 5-21 ·

Chapter 6 Stream1 Device DriYen 6· 1

What is Streams? 6-2
Parts of a stream 6-3
Building a stream 6-5

Streams modules and drivers 6-5
Data structures 6-6
Messages 6-6

Message types 6-7
Processing message blocks 6-8
Message structures 6-8

Queues 6-8
Driver flow control 6-10
Utility routines 6-11
Streams device/module routines 6-13

The open routine 6-13
The dose routine 6-13
The put routine 6-14
The service routine 6-14

Streams scheduling 6-15
Cloned devices 6-15

Chapter 7 Streams Terminal Devices 7·1

Streams line disciplines 7-2
Data structures 7-3
Streams terminal driver routines 7-4

The open routine 7-5
The close routine 7-6
The initialization routine 7-6
The parameter routine 7-6
The ioctl routine 7-7

The command process routine 7-7
ttx library support routines 7-9

ttxinit 7-9
ttx_put 7-9
ttx_sighup 7-10
ttx_break 7-10
ttx_dose 7-10

Skeleton Streams driver 7-10

vi

(

(

vii

Chapter 8 Network Drivers I· 1

Include ftle 8-2
Sample driver 8-3

Slot Device Drivers 9· 1

ROMs and Autoconfiguration xx
The Slot Library xx
Mapping to processes xx
Interrupt service routines xx
Name
Synopsis
Description
Return Values

Chapter 10 SCSI Device Drivers 10-1

Overview of SCSI Manager 10-2
Assumptions and restrictions 10-2
Request block data structure 10-3
Other enuy points and data structures 10-6

Scsi_strings 10-6
ScsigOcmd data structure 10-6
ScsigOand routine 10-7
Scsi tasks 10-7

Special processingv 10-8
Error handling 10-8
SCSI disk drivers 10-9

Device naming conventions 10-11
-Disk partitioning 10-13
Typical 1/0 operation 10-13
Data struaures on disk 10-17

Kernel data structures 10-18
Controller data structures 10-19
Drive data structures 10-22
Partition data structures 10-23

Generic routines 10-25
Service routines for device-specific code 10-28
Low-level device routines 10-29

Apple DetkTop lus Device Drivers 11·1

Transactions 11-2
Driver service routines 11-3
High-level driver routines 11-3

Contents

Contents

Initiate transaction 11-3
Flushing a device 11-3
Talking to the system 11-4
Listening to the system 11-5

Polling 11-5
Sample driver 11-10

Chapter 12 Autoconflguratlon 12· 1

Introduction to the Autoconfiguration Process 12-2
The files involved in the autoconfiguration process 12-4
Ten Ste?5 to add your driver to the kernel 12-7
Background - the startup process 12-10

The launch program 12-11
Booting the kernel 12-14
The autoconfig utility 12-15
The /etc/newunix saipt 12-18

The driver development process 12-20
Writing and compiling your device driver 12-22
Creating the master saipt file 12-23 .

Using a device identifier with slot devices 12-24
Using module dependency information 12-25
Using device information 12-27
Sample master saipt files 12-30

A character device driver master saipt file 12-31
A block device driver master saipt file 12-33
A Streams driver master script file 12-33
A Streams module master script file 12-33

Writing optional init and startup scripts 12-34
.Device file naming conventions 12-35

Creating the install and uninstall saipts 12-36
Modifying /etc/newunix 12-37
Running autoconfig 12-37
Customer installation of your driver 12-37

Chapter 13 Using Autoconftguratlon 13-1

The sample TEST driver 13-2
The TEST master saipt file 13-3
The TEST startup script 13-4
The TEST Install Saipt 13-6
The TEST Install Script 13-6
Modifying /etc/newunix 13-7
Using makefiles 13-9 ·

Creating a load.file 13-9

viii

Ix

The Sample TFST makefile 13-10
Creating a new kernel that includes your driver 13-11
Performing 1/0 with the TEST driver 13-12

Chapter 14 Preparing Your Driver for C~torner DlstrlbuHon 14· 1

Giving out finstall to your customers 14-3
An overview of ftnstall 14-4
Setting defaults for ftnstall on your A/UX system 14-7
Files that are located on the fmstall floppy disk 14-8

Appendix A Driver Interface RouHn" A-1

Return values of driver interface routines A-2
Summary of driver interface routines A-3

Appendix B Kernel Routines 8-1

Values and descriptions of ermo B-3
Summary of kernel routines B-6

Appendx C Slot Ubrary Routines C· 1

User routines C-1

Appendix D Memory Maps D· 1

User addreM space D-3
Kernel address space D-5

Appendx E Vnode Kernel Modifications E-1

Appendix F V.2 Streams Drivers F· 1

Appendix G SCSI Device Driver G· 1

Generic disk driver files G-2
SCSI manager files G-2
Other files G-2

Glouary xx
Index xx
Bibliography xx

Contents

Contents x

(

(

Figures and tables

An Overview of A/UX Device Drivers 1-1

Figure 1-1
Figure 1-2
Figure 1-3

Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

Figure 1-9

Table 1-1

Table 1-2

Overview of kernel management routines xx
1be flow of VO from a user process to a device xx
Various devices that can be attached to a Macintosh
n xx
Overview of the Macintosh II architecture xx
The structure of a typical NuBus slot driver xx
The structure of a SCSI disk driver xx
The structure of the ADB mouse driver xx
Overview of an VO request from a user program to
the hardware xx
Overview of the hardware associated with each
driver xx
System calls and corresponding driver routines for
Block device drivers xx
System calls and corresponding driver routines for
Character device drivers xx

Chapter 2 Th• Kernel Programming Environment 2-1

Figure 2-1 Trace of a write(2) on the example prt driver xx
Figure 2-2 Methods of buffering data xx
Figure 2-3 1be bdevsw table xx
Figure 2-4 A sample bdevsw table xx
Figure 2-5 1be cdevsw table xx
Figure 2-6 A sample cdevsw table xx

Chapter 3 Block 1/0 Device Drivers 3-1

Figure 3-1 Reading from or writing to a block device xx
Figure 3-2 Reading from or writing to a block device using raw

VO xx

Chapter 4 Character Device Drivers •-1
Figure 4-1 The layers of a character device driver xx
Figure 4-2 The flow of read(2) request on the example tc

driver xx

Chapter 5 Terminal Device Drivers 5· 1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5

Clist structure xx
Cblock structure xx
Terminal data structures xx
Reading a character from a terminal xx
Writing a character to a terminal xx

Chapter 6 Streams Device Drtv.,. 6-1

Figure 6-1 View of a stream xx
Figure 6-2 Upstream and downstream queues xx

Chapter 7 Streams Terminal Drivers 7-1

Chapter 8 Network Drivers 8· 1

Chapter 9 Slot Device Drivers 9· 1

Chapter 10 SCSI Device Drivers 10-1

Figure 10-1 SCSI disk driver xx
Figure 10-2 Minor number assignment xx
Figure 10-3 Initiation of typical 1/0 request xx
Figure 10-4 1/0 request processing outside process context xx

Chapter 11 Apple Desktop I.a Device Drivers xx

Figure 11-1 Initialization finite state machine diagram xx
Figure 11-2 Polling finite state machine diagram xx

Chapter 12 Autoconflguratton 12· 1

Figure 12-1 1be functions of autoconfig xx
Figure 12-2 The launch command line xx
Figure 12-3 An oveiview of autoconfig xx
Figure 12-4 Developing~ installing a device driver xx
Figure 12-5 The master script file xx
Figure 12-6 A sample master script file for a character device

driver xx
Table 12-1 Routine naming conventions for Character Device

Drivers xx
Table 12-2 Routine naming conventions for Block Device

Drivers xx

(
Chapter 13 Using Autoconftguratlon 13· 1

Appendix A Driver Interface Routln• A· 1

Appendix B Kernel Routln• I· 1

Table B-1 Kernel routine ermo error numbers xx

AppendxC Slot Ubrary Routln• C· 1

Appendix D Memory Mas» D· 1

Figure 0-1 Physical address space
Figure 0-2 User address space xx
Figure D-3 User address space xx

Appenclx E Vnode Kemel Modifications E· 1

Appendix F V .2 Streams Drivers F· 1

(
Appendix G SCSI Device Driver Q-1

FigureG-1 The SCSI driverxx

(

(

(

Chapter 1

An Overview of A/UX Device
Drivers

1-1

This chapter provides an overview of A/UX device drivers. Specifically, you'll learn

• what the general funaions of the A/UX kernel are

• how the kernel, device driver, and device interact

• what a device driver is

• what the basic structure of an A/UX device driver is

• what hardware is part of the Macintosh.II

• what steps to take to begin writing your driver

First, this chapter briefly desaibes the A/UX kernel and input/output 0/0).

An overview of the A/UX kernel

The A/UX kernel is an operating system. Like most operating systems, the A/UX
kernel performs file management, memory management, process management, and
input and output. The kernel contains all the routines necessa.ry to accomplish .these
functions. For example, when a program runs, the kernel is responsible for allocating
enough memory to the process.

Similarly, the kernel is responsible for managing and performing I/O. The kernel
routines for doing I/O include both general routines and specific routines. The kernel
uses general routines to manage I/O transfers in a deterministic and consistent
manner. The specific routines that perform I/O to a particular piece of hardware are
called device drhers. In addition, the A/UX kernel supplies a number of routines
called managers. Managers perform a variety of I/0-related functions. Your device
driver can call these manager routines to handle many hardware-related I/O tasks.

Figure 1-1 shows a simplified oveJView of an 1/0 request. When a user process
requests I/O, the appropriate routines within the kernel carry out the request.

1-2 Chapter 1 : Oveivlew of A/UX Device Drtvers

(

Rgure 1·1

Overview of kemel management routtnes

Chapter 1: Overview of A/UX Device Drivers 1-3

Performing 1/0 in A/UX
A device driver provides a connection between a user request for VO and the hardware
operation. This connection is aaually comprised of several components:

• a user-level program

• the A/UX kernel

• the device driver code

• a device

A user-level program requests an VO operation by making a system call. System calls
perform operations on behalf of the requesting user process. For example, you can
use system calls to prepare a device for VO, to read from or write to a device, or.to
perform control functions on a device.

The system calls that you can use to perform VO are:

• open (2)

• close(2)

• read(21

• write(2)

• ioctl (21

• select (2)

When a user program makes a system call requesting VO, the kernel calls the
appropriate device driver. 1be device driver then takes the necessary actions to
perform the aaual VO. Figure 1-2 shows the general flow of an VO request from the
user process to the device.

The kernel has a method of mapping a request to a particular device to the associated
device driver that performs the 1/0. This mapping is established through device files
and kernel data struaures called device switch tables.

Every device must have a device file associated with it. A device file contains an index
into the device switch table. Pointers to driver routines associated with that device are
stored at this index.

1-4 Chapter l : Overview of A/UX Device Drivers

\~

(

Rgure 1·2
The flow of 1/0 from a user process to a device

(

(
Chapter 1 : Overview of A/UX Device Drivers 1-5

Now that you have a general understanding of device files and device switch tables, the
following paragraphs explain the VO proceM in greater detail. When a user process
makes a system call on a device file or file descriptor associated with the device file,
the kernel does initial prOceMing of the request. This initial processing includes
prOceM management and file management functions. For example, on an open (2)

call, the kernel first checks that the requesting user has the proper permissions to
acceM the file.

After this initial processing, the kernel uses the index from the device file to index into
a device switch table. The kernel calls the corresponding driver routine stored at this
index.

The device driver performs the request and returns to the kernel. The kernel then
returns to the user process. The return value of the system call indicates the sueceM or
failure of the request

What is a device driver?
A device driver is a piece of code that handles all VO operations to or from a device.
The kernel calls a device driver when a user p~ requests VO by making a system
call. The device driver is responsible for carrying out the 1/0 request.

Figure 1-3 illustrates that you can use many different devices for VO on the Macintosh
II. Each piece of hardware connected to your computer needs supporting code to
control it For example, if you have a video card installed in your computer and a
monitor connected to that video card, you need the software to control that monitor
and video card. Typically each type of device has a particular device driver associated
with it For example, the floppy disk driver handles all requests to floppy disks.

Apple Computer supplies certain device drivers as part of the A/UX kernel. These
drivers include a device driver for SCSI disks, floppy disks, serial ports, the keyboard,
the mouse, and the monitor or system console.

Apple also supplies the low-level routines and managers that control the hardware
interface to the system. These routines and managers include the code to control
transfers over the NuBusTM, the Apple Desktop Bus TM (ADB), the Small Computer
System Interface (SCSO, and the Serial Communications Controller (SCO. Your
driver must use these low-level routines or managers to control transactions on the
hardware interface that connects your device to the computer. These hardware
interfaces are discussed in more detail in the section "An Overview of the Hardware" in
this chapter.

When you add a new device to the system, you must also add a device driver to control
the device and to perform I/O to the device. If a device driver to control the device
does not exist, then you must write a new device driver in order to perform VO to the
device.

l-6 Chapter 1: Overview of A/UX Device 011vers
c

In A/UX, device drivers are part of the kernel. You can add or remove device drivers
from the kernel using the autoconfig (2) utility.

A device driver contains various routines used to perform I/0 on the device. The
following section describes the name and purpose of each routine. In addition, these
driver routines can call other kernel routines and make use of low-level routines and
managers to assist in performing the VO operation. 1be following chapters describe
these kernel routines and low-level routines and managers.

Chapter 1: Overview of A/UX Device Drivers 1-7

Rgure 1·3
Various devices 1hat can be attached to a Macintosh II

1-8 Chapter l : Overview of A/UX Device Drivers

(

The basic structure of an A/UX device driver
A/UX uses two kinds of device drivers: block and character. Chapter 2 describes the
differences between these two types of device drivers in greater detail. This section
describes the various routines that make up a device driver. Both types of device
drivers can supply a certain set of routines to the kernel. These routines correspond to
the system calls used to perform VO.

Block Device Drivers
For each system call used to perform 1/0 using block device drivers, Table 1-1 lists the
corresponding driver routine that the kernel invokes and the function of the driver
routine.

Table 1-1

(System calls and the corresponding driver routines for block device drivers

System call

open(2)

close(2)

read(2)

write(2)

Driver routines

drlvernpen

drlverclose

drlverstrategy

drllastrategy

PurpoM

Open a device

Close a device

Schedule the
transfer of
data between
the buffer
cache and a
device

Schedule the
transfer of
data between
the buffer
cache and a
device

Chapter 1: Overview of A/UX Device Drivers 1-9

You must name the driver routines according to the conventions shown in the table,
where driver is the device prefix used in your driver. For example, if your device
prefix is disk, then name your drlveropen routine diskopen.

Block device drivers also provide a drlvePprint routine. This routine is not related to
a system call.

Block device drivers can aJso provide an optional routine to perform initialization
functions. This routine is named drlverini t, where driver is the device prefix used in
your driver. ·

Block device drivers also can provide an interrupt routine. This routine is named
driver.Lot, where driver is the device prefix used in your driver.

Character Device Drivers
For each system call used to perform I/O using character device drivers, Table 1-2 lists
the corresponding driver routine that the kernel invokes and the function of the driver
routine.

Table 1·2
System calls and the corresponding dnver routines for character devlc:::e drtvers

System call Driver rouflnes Purpo ..

open (2) drlveropen Open a device

close(2) drlverclose Close a device

read(2) drlverread Read from the device

write(2) drlverwrite Write to the device

ioctl(2) drlverioctl Perform control
operations on the device

select(2) drlverselect Check a device for 1/0

You must name the driver routines according to the conventions shown in the table,
where driver is the device prefix used in your driver. For example, if your device
prefix is mouse, then name your drlveropen routine mouseopen.

1-1 O Chapter 1 : overview of A/UX Device Dnvers

(

(

Character device drivers can also provide an interrupt routine. This routine is named
driver.int, where driver is the device prefix used in your driver. Character device
drivers can provide an optional routine to perform initialization functions. This
routine is named drlver.i.ni t, where driver is the device prefix used in your driver.

The following chapters descnbe each of these routines and how to write these routines
for your driver. Appendix A also includes descriptions of these routines, including
para.meters and return values. The following section discusses the various hardware
interfaces on the Macintosh II, and gives examples of the structure of a typical device
driver for each hardware interface.

An overview of the hardware
To understand the complete hardware path to your device, refer to Figure 1-4. This
figure shows that the Macintosh II contains more than one bus or hardware interface
that can be used for 1/0. These hardware interfaces include the NuBus, Small
Computer System Interface (SCSI), Versatile Interface Adapters (VIA), Apple Desktop
Bus (ADB), Integrated Woz Machine (IWM), Apple Sound Chip (ASC) and Serial
Communications Controller (SCC). Each of these is discussed briefly in this section.

The NuBus

The NuBus is a 32-bit wide a~ and data bus based on a Texas Instruments
specification. Six expansion slots are available for NuBus cards. Examples of cards
that can go in NuBus slots are video cards, processor cards, network cards, and other
1/0 cards. You can connect a wide variety of devices to various NuBus cards.

The A/UX kernel supplies a set of routines called the Slot Library. Routines in the Slot
Library can be used to assist in reading information from the slot ROM on your card.
For example, if you are writing a slot device driver, you can use the Slot Library to read
the resource directory from a slot ROM.

To write a device driver for a NuBus card, you write the high-level code to perform the
1/0 to the NuBus card, including any card and device specific code. Figure 1-5
illustrates the structure of a device driver for a device connected to a NuBus card. To
perform 1/0 to the device, a device driver must control the 1/0 from the kernel level,
to the NuBus, to the NuBus card, and then to the device.

Your driver can call Slot Library routines to assist in accessing slot ROM. This greatly
simplifies the task of writing a device driver for a device on a NuBus card. The Slot
Library is described in Chapter 9 and Appendix C.

Chapter 1: Overview of A/UX Device Drivers 1- 11

Rgure 1·•
overview of the Macintosh II architecture

1-12 Chapter 1 : overview of A/UX Device Drivers

(

Rgure 1·5
The structure of a typical NuBus slot device driver

(

Chapter 1: Overview of A/UX Device Drivers 1-13

:.:- -

The Small Computer System Interface (SCSI)

The built-in SCSI port is used for high-speed parallel communications. The SCSI chip
can communicate with up to seven SCSI devices, such as hard disks, streaming tapes,
and high-speed printers. The SCSI Manager supports the NCR 5380 SCSI chip in
software. The SCSI Manager takes care of the low-level hardware aspeas of controlling
the SCSI bus.

Figure 1-6 illustrates the structure of a device driver that controls a disk drive
conneaed to the SCSI bus. To perform I/O to a device connected to the SCSI bus, a
driver must control the I/O from the kernel level, to the SCSI bus, and to the SCSI
device. A SCSI device driver contains the code to pr~ the data according to the
requirements of the device, and calls routines in the SCSI Manager to initiate and
control I/O transactions on the SCSI bus.

The Versatlle Interface Adapters

The Macintosh II uses two custom Apple Versatile Interface Adapter (VIA) chips,
called VIAl and VIA2. VIAl is used mainly to provide control lines for the floppy disk
drives and Serial Communications Chip, and to interface the Apple Desktop Bus to
the system. VIA2 supports many features, including functions related to interrupts
from the NuBus slots, SCSI, and Apple Sound Chip.

The Apple Desktop Bus

The Apple Desktop Bus CADB) is a serial communications bus designed to
accommodate low-speed input devices. The ADB interfaces to the system through the
VIAl chip. The A/UX kernel provides a set of routines called the ADB Manager. The
ADB Manager controls the ADB bus and calls other kernel routines that control the
VIAl chip.

To perform I/O to a device connected to the ADB bus, a driver must control the I/O
from the kernel level, to the ADB bus, and to the attached device. A device driver for
a device connected to the ADB calls routines in the .ADB Manager to control
transactions on the ADB bus. For example, the structure of the mouse driver is
illustrated in Figure 1-7. The mouse driver calls .ADB routines to initiate read
operations between the mouse and the .ADB.

1-14 Chapter 1: Overview of A/UX Device Drivers
C
~,

'

(

Rgure 1·6
1he strucllJ"e of a SCSI disk driver

(.. ·

Chapter 1: Overview of A/UX Device Drivers 1-15

Figure 1-7
The structure of 1he mouse device driver

1-16 Chapter 1: Overview of A/UX Device Drivers

(

The Serial ConvnunlcaHons Controller

Serial 1/0 is performed through two RS-422 serial 1/0 ports. The two serial ports are
controlled by a Zilog Z8530 Serial Communications Controller (SCC) chip. The serial
ports can be used for devices such as printers, modems, and other 1/0 devices. The
sec chip is controlled in software by the eccio driver.

The Apple Sound Chip

The Apple Sound Chip CASO is used with the internal speaker. You can hook up an
external mini-phono jack to the external sound conneaor. The ASC chip is controlled

. in software by two low-level kernel routines, eound. c and eound. s.

The Integrated Woz Machine

The internal floppy disk drives are conneaed to the system through the Integrated Woz
Machine (IWM). The floppy disk driver contains the low-level routines to control the
IWM. The floppy disk driver uses these low-level routines to control the floppy disk
drive.

SUnvnay of softwme drivers and hardware

Figure 1-8 illustrates how an 1/0 request from a user goes through the kernel, device
drivers, low-level routines or managers to reach tilde aaual device. For example, a
SCSI device driver calls routines in the SCSI manager to accomplish the 1/0 on the
hardware. Figure 1-9 shows the hardware each device driver interfaces to in greater
detail. For example, a SCSI device driver interfaces to the SCSI device through the
SCSI bus.

For more specific information on the various hardw.u:e interfaces in the Macintosh II,
refer to the Maclntosb FamUy Hardware Reference.

Chapter 1: overview of A/UX Device Drivers 1-17

Flgw• 1·1
overview of an 1/0 request from a user program to the hardware

l • 18 Chapter 1: overview of A/UX Device Drivers

(

Figure 1·9
overview of the hardware associated with each driver

(

Chapter 1: overview of A/UX Device Drivers 1-19

Memory-mapped 1/0

The Macintosh n uses memory-mapped I/O. This means that each device
(peripheral) in the system is accessed by reading from or writing to specific locations
in the address space of the computer. Parts of the Macintosh ll address space are
reserved for performing memory-mapped I/O. Within this reserved address space,
specific blocks (addresses) are devoted to each of the hardware interfaces within the
computer.

The address space within $5000 0000 to $5FFF FFFF is the area reserved for system I/O
address space. All hardware interfaces (except NuBus) are mapped within this address
space. The standard NuBus address space is within $F900 0000 to $FFFF FFFF.

By reading from or writing to a location in the system I/O address space or the .
standard NuBus address space, you are actually accessing (addressing) a particular
device.

Each device contains the logic to recogni7.e when it is being a~ You <:an use
memory-mapped I/O to write to re~ters on a device or card. Typically only the
lowest-level routines directly read from or write to the memory-mapped I/O address
space.

By reading or writing to a specific location in memory, you are actually accessing
(addressing) a particular device. mustrations of the address space used in A/UX are
shown in Appendix D.

Interrupt handling by your driver

How your device driver needs to handle interrupts depends on the hardware interface
that your device conneas to. Apple supplies the low-level software that directly
control the hardware interfaces. For a description of these hardware interfaces, refer
to the previous section •An Overview of the Hardware". Also refer to Figure 1-4 for an
illustration of the interrupt level of each hardware interface.

1-20 Chapter 1: Overview of A/UX Device Drivers

(

(

When a device interrupts, the low-level managers or low-level routines are invoked to
handle the interrupt. The low-level routine or manager determines the type of
interrupt and what action, if any, to take. For example, if more than one device is
connected to that particular hardware interface, the low-level manager might have to
poll the hardware to determine which device interrupted.

1lle low-level routine or manager determines whether or not a higher-level of software
(driver) needs to be notified when a device interrupts. Typically, a device generates an
interrupt when the device has completed an I/O request. In this case, the higher-level
driver responsible for the VO request needs to be notified that the I/0 has completed.

The low-level routine or manager notifies the higher-level driver by calling the
interrupt routine of the driver. O'be interrupt routine of a driver is also often referred
to as the completion service routine.) The interrupt routine of the higher-level driver
can then take whatever action is necessary to service the interrupt for the particular
device.

For example, if the interrupt is due to I/0 completion, the driver usually checks for
any error conditions that might have occurred, and takes appropriate actions. A
device driver's interrupt routine also typically notifies any user process waiting for the
VO to complete. 1lle synchronization that must exist between higher-level driver
routines and the interrupt routine of a driver is explained in detail in following .
chapters.

If you write a device driver for a SCSI device or ADB device, the driver you ~te will
access your device through one of the low-level managers. Your driver calls a low­
level manager to control the hardware interface your device is conneded to. When an
VO request completes on a device, the low-level manager is notified of the interrupt.

If you write a slot device driver, the driver you create will access your device through
memory-mapped VO. Your driver can also use the Slot Library to read from slot
ROM. Your slot device driver must provide an interrupt routine that will be invoked by
the kernel when your slot card generates an interrupt.

As previously descnbed, the low-level routine or manager typically invokes the
interrupt routines of higher-level drivers. This means that the low-level routine or
manager must obtain a pointer to the interrupt routine of your driver. Before
performing VO to your device, your driver mu~ inform the low-level manager or
routine of the address of the interrupt routine of your driver.

Typically drivers call a low-level routine for this purpose during initialization of the
device, in either the drlverini t or drlveropen routines. The following paragraphs
briefly desaibe how to provide the address of your interrupt routine to the SCSI
Manager, ADB Manager, and low-level kernel code that manages interrupts from the
NuBus.

Chapter 1: Overview of A/UX Device Drivers 1-21

Handling Interrupts from SCSI devices

To perform I/O on a SCSI device, the driver calls a SCSI Manager routine. The driver
passes two parameters to the SCSI Manager routine: the SCSI ID of the device, and a
pointer to a request block data structure.

The request block data struaure contains a pointer to the interrupt routine of the
device driver making the request This pointer allows the SCSI Manager to as.sociate
the driver interrupt routine with a particular SCSI ID. When the SCSI device completes
the I/O transaction, the SCSI Manager calls the driver interrupt routine associated with
this request on the SCSI ID.

Handling Interrupts from ADI devices

The ADB Manager requires that your driver provide the address of its interrupt
routine before any hardware transactions are initiated on the ADB for your device.
Your driver should call fdb _open () , including as parameters the address of your
driver interrupt routine and the ADB acJdres,, of your device.

The ADB Manager calls this interrupt routine at the end of each ADB transaaiop to
pass back data and to notify the driver that the transaaion has completed The ADB
manager also calls the interrupt routine when certain exception device polling
conditions exist.

Handling Interrupts from NuBus devices

For NuBus slot card drivers, your driver must tell the kernel the address of the interrupt
routine of your driver. You do this at the time your driver is linked into the kernel. To
add your driver to the kernel, you create -a master script file that specifies how your
driver snould be linked into the kemeL 1be master script file for your driver must
contain the flags vs if your driver receives slot interrupts.

The kernel contains an internal slot interrupt veaor table that is used to store
addresses of the interrupt routines of each driver that controls a slot When you
specify the flags vs in your master script file, the kernel fills in the appropriate entry
of this table with the address of your drlverint routine.

After receiving an interrupt from a slot card, the kernel indexes this table by slot
number and calls the appropriate driver interrupt routine.

1·22 Chapter 1: Overview of A/UX Device Drivers

(

Where to go from here
After you determine what kind of device you have, the type of device driver to write,
(block or c:hancter),. and the inlerf'ac:es you need, you are ready to read the rest of this
manual. Which chapters you read next depenm on the type of device driver you are
writing.

Writing a block device drlv•

If you are writing a block device driver read these chapters:

Chapter2

This chapter contains kernel programming information that you should read
regardleu of the type of A/UX driver you are writing.

This chapter desaibes the routines in a block device driver, data struaures used by
the kernel and block device drivers, and the buffering the kernel performs for block
device drivers.

If you are writing a block device driver for a device that can also be accessed as a
character device, read Chapter 4. Pay partiailar attention to the description of the
phys io () routine.

Chapters9-11

Of these chapters, read the one that desaibes the hardware interface you are using.
These chapters disaiss using the NuBus; SCSI, and Apple Desktop Bus.

Chc:IPN 12·1'

These chapters desai"be how to add drivers to the kernel. Chapters 12 desm"bes the
autoconfig(2) utility. Chapter 13 shows a specific example of how to add a device
driver to the kernel. Chapter 14 desaibes how to prepare your driver for distribution
to your aistomers.

Appendixes A-G

When writing your driver, use Appendixes A and B as references. Each contains a
description, parameters, and error values for the driver and kernel routines disaissed
in this manual.

Chapter 1: overview of A/UX Device Drivers 1-23

Use the other appendixes as needed for your device. For example, Appendix D shows
the memory-mapped 1/0 space used in A/UX.

Writing a character device driver

If you are writing a charaaer device driver, read these chapters:

Chapter2

This chapter contains kernel programming information that you should read
regardless of the type of AIUX driver you are writing.

Chapter4

This chapter describes each of the routines a charaaer device driver can provide. The
chapter also discusses various methods of buffering that you can implement in your
driver.

If you are writing a charaaer device driver that uses a strategy routine, then read
Chapter 3, which covers block VO. Chapter 3 gives background on the use of strategy
routines and using kernel buffers.

Chapters 5-8

Of these chapters, read the one that applies to the character device driver that you are
writing. These chaptets discuss three specific implementations of charaaer device
drivers: terminal, streams, and network device drivers.

Chapter 5

This chapter describes traditional terminal device drivers. The terminal device driver
is a special type of charaaer device driver that provides an additional buffering layer
to handle terminal VO operations. Streams terminal device drivers are desaibed in
Chapter 7.

Cbapter6

This chapter describes streams drivers. The Streams device driver provides a flexible,
modular interface for charaaer device drivers. Use Streams drivers in place of
traditional character drivers whenever possible.

Chapter 7

This chapter desaibes streams terminal device drivers.

Cbapter8

1-24 Chapter 1: Overview of A/UX Device Drivers

(

(

This chapter desaibes network device drivers. Network device drivers are used for
devices that communicate with other machines.

You are not limited to writing terminal, streams, and network character device
drivers. You can write a character device driver for other VO devices, implementing
the routines necessary for your device.

Chapters 9· 11

Of these chapters, read the one that desatbes the hardware interface you are using.
1bese chapters discuss using the NuBus, SCSI, and Apple Desktop Bus.

Chapters 12· 14

1bese chapters describe how to add drivers to the kernel. Chapters 12 describes the
autoconfig(2) utility. Chapter 13 shows a specific example of how to add a device
driver to the kernel. Chapter 14 desatbes how to prepare your driver for distribution
to your customers.

Appendixes A·G

When writing your driver, use Appendixes A and B as references. Each contains a
description, parameters, and error values for the driver and kernel routines discussed
in this manual.

Use the other appendixes as needed for your device. For example, Appendix D shows
the memory-mapped 1/0 space used in A/UX.

Chapter 1: Overview of A/UX Device Drivers 1-25

Chapter 2

The Kernel Programming
Environment

2-1

This chapter describes kernel features and utility routines of special interest to anyone
writing A/UX device drivers. For an overview of A/UX, see the AIUX System
OtJerv1ew. For an overview of the A/UX programming environment, see the AIUX
Programming I.anguases and Tools, Volume I.

How a typical 1/0 request goes through A/UX
This section presents an example that shows the way an VO request might flow from
the user through A/UX to a device. Many of the routines and data structures used in
this example are described in detail in later sections. The purpose of this example is to
give you an overview of how VO is accomplished in A/UX.

For example, suppose you wanted to connect a high-speed printer to the SCSI port.
You could write a device driver to control this SCSI printer. The following paragraphs
describe one possible implementation of such a driver.

The SCSI printer driver in this example is called prt. The prt driver has the
responsibility of printing the user's data to the printer. This printing process involves
copying the data to a temporary buffer, translating the data into a format and protocol
acceptable for the printer, and controlling the hardware interface.

The prt driver contains the code for high-level and device-specific functions, and
then calls a SCSI Manager routine to handle the hardware-related tasks of controlling
the transaction over the SCSI bus.

Assume the prt drive·r provides the following high level routines accessible through
the cdevsw table: prt_open, prt_close, prt_read, prt_write, and
prt_ioctl. In addition the prt driver contains a interrupt routine called prt_int.

Assume a user process has already opened this device. The following paragraphs trace
a write (2) request on the example SCSI printer, from the user request, through the
kernel and printer driver, to the device, and from the device back to the user process.
Refer to Figure 2-1 for the following discussion.

When a user process issues a write (2) on the device ftle associated with the prt
driver, the kernel processes the request The kernel fills out a data structure related to
the VO request For example, the kernel ftlls in the fields of the data structure with the
number of bytes to transfer and a pointer to the user's buffer.

The kernel uses the major number of the device ftle to index into the cdevsw table
(because this file is a character device ftle). The kernel calls the routine stored at this
index that corresponds to a write (2) system call. In this example, the kernel calls
prt_write, passing the data structure and device number as parameters.

2-2 Chapter 2: Kernel Programming Environment

(

Rgure 2·1
Trace of a wrtte(2) on the example prt driver

(

Chapter 2: Kernel Programming Environment 2~3

The kernel invokes prt_write with the device number and a data structure
describing the VO request. prt_write uses a kernel macro to extract the minor
number from the device number. prt_write checks the minor number to make sure
this is a request to a valid device.

The data structure passed to prt_write includes a pointer to the user's buffer. Thus,
prt_write has direct access to the user's data. Because prt_write needs to
manipulate the user's data, prt_write copies the user's data to a tempor.uy buffer.

Next, prt_write processes the data, formatting the data according to the
requirements of the printer. prt _write adds any device-specific protocol, then calls
a SCSI Manager request routine to initiate the VO transaction. One of the parameters
to the SCSI Manager routine is a data structure desoibing the I/0 request For
example, this structure includes fields that specify the particular SCSI command, a
pointer to the data to transfer, and a pointer to the interrupt routine of the driver
making the request

The SCSI Manager queues the request and returns toprt_write. prt_write waits
for the VO to complete by issuing a call to sleep (). sleep () puts the user process to
sleep until a corresponding call to wakeup () is issued. sleep () and wakeup () are
kernel routines drivers can use to synchroni:ze 1/0. They are described in Appendix B.

At this point, the 1/0 request has reached the hardware. When the hardware futishes
the transaction (the requested data has been written to the printer), the SCSI Manager
notes which request has completed The SCSI Manager maintains a data structure that
.associates requests with higher-level drivers. The SCSI Manager calls the interrupt
routine (prt_int in this example) of the driver associated with this request.

prt_int is the completion service interrupt routine of the prt driver. The SCSI
Manager calls prt_int when a request completes on the printer. The SCSI Manager
passes an error code as one of the parameters to prt_int. This error code indicates
the success or failure of the request If an error occurred, prt_int interprets the error
code and decides how to handle the error. If the request was successfu~ prt_int
updates the appropriate data structures accordingly and calls wakeup<> •

The call to wakeup () issued by prt _int awakens the process that had been waiting
on VO. The call to wakeup () will cause prt write to continue to execute from the
statement following the call to sleep (). prt- write sets any error values then
returns to the kernel. The kernel sets the return-value of the system call and returns to
the user process.

This example illustrates that a high-level driver routine is called as a result of a system
call on a device file. The driver routine does any necessary processing of the request,
and can call other kernel routines or other low-level routines to assist in performing
the 1/0 operation.

2-4 Chapter 2: Kernel Programming Environment

(

When the driver is ready to send the request to the hardware, the driver calls a low­
level manager routine to accomplish the 1/0 on the hardware. If the driver waits for
the 1/0 to complete, the driver must provide an interrupt routine that the low-level
manager can call when the request completes. When the request completes, the driver
should return any data to the user and return a value indicating the success or failure of
the 1/0 request to the kernel. The return value of the system call indicates the success
or failure of the system call to the user process.

A/UX block and character device drivers
Before writing your device driver, you must first decide what type of device driver to
write. The device itself and how it performs in the system will determine the type of
device driver you write. The hardware that the device must gain access to will also
determine how you write your device driver.

In A/UX there are two types of devices drivers: block and character. A device driver
is called a block or charaaer device driver according to the definitions given next.
Also, in some instances, you can write a device driver to be both a block device driver
and a character device driver.

Devices can also be classiried into two categories: block and character. These
classifications are based on historical definitions; many devices can be considered
either a block or character device. Actually the device driver and not the device itself
determines whether a device is referred to as a block or character device.

Block device drivers make use of the kernel buffer cache when accessing a device. All
data read from or written to a block device is buffered through the kernel buffer cache.
Block device drivers are most often used for devices that can contain mounted file
systems. The SCSI disk driver is an example of a block device driver.

When a user process reads from a block device, the kernel first checks the buffers in the
kernel buffer cache for the requested data. If the data is in the buffer cache, the kernel
copies the data from the kernel buffer to the user's buffer.

If the data is not in the buffer cache, the kernel calls the associated block device driver.
The block device driver transfers the data from the device to a buffer in the kernel
buffer cache. After the block device driver transfers the data to a buffer in the kernel
buffer cache, the kernel copies the data to the user's buffer.

When a user process writes to a block device, the kernel copies the data from the user's
buffer to a buffer in the kernel buffer cache. Then the kernel invokes the associated
block device driver. The block device driver schedules the transfer of data between the
kernel buffer and the device,and then returns to the kernel.

Chapter 2: Kernel Programming Environment 2-5

Normally the kernel returns to the user, without waiting for the 1/0 to complete. Thus,
write(2) requests are usually asynchronous. That is, when the kernel returns from a
write(2) on a block device, you are not guaranteed that the data has actually reached
the device. You are only guaranteed that the kernel has copied the data to the kernel
buffer cache and that the block device driver has scheduled the data for 1/0.

Character device drivers generally perform 1/0 asynchronously for a variable number
of bytes. Character device drivers can buffer their data in any method as needed. The
kernel does not buffer data in the kernel buffer cache for character device drivers as it
does for block device drivers. However, because the operation of terminals is
important to the system, the kernel does provide many data structures and routines
that terminal device drivers can use. Chapter 5 describes terminal device drivers in
more detail.

There are functional differences between the various character device drivers.
Character device drivers can provide a wide variety of functions and can support many
different 1/0 devices. Examples of character device drivers are printer drivers,
terminal drivers, tape drivers, and network drivers.

Some drivers can be written to access the device as either a block or a character
device. For example, the SCSI disk driver allows the disk to be accessed as a block or a
character device. When the disk is accessed as a block device, data is buffered through
the kernel buffer cache. Most 1/0 to data files access the disk in this manner. When
the SCSI disk driver accesses the SCSI disk as a character device, the data is not
buffered through the kernel buffer cache, but is transferred directly to the disk. The
program fsck(l) uses this type of access to repair a damaged disk.

When a block or character device driver directly transfers data between the user's
buffer and the device, the driver is often said to be performing raw 1/0.

Figure 2-2 illustrates various buffering techniques used by block and character device
drivers. This figure shows that the kernel buffers data between the user process and the
block device in the kernel buffer cache. The kernel is responsible for transferring the
data between the user's data area and kernel buffers. Block device drivers are
responsible for transferring data between a kernel buffer and the device.

As shown in the figure, character device drivers can directly control the buffering
between the user process and the device. The character device driver can implement
any buffering techniques necessary to transfer the data to the device. This means the
character device driver can either implement its own method of buffering or make
use of special kernel data structures, such as tty structures, to assist in the buffering of
the data.

Remember that, in raw 1/0, character device drivers do not have to buffer the data at
all. Character device drivers that perform raw 1/0 usually use a strategy routine similar
to a strategy routine used by a block device driver.

Chapter 3 describes block device drivers, and Chapter 4 discusses character device
drivers in greater detail.

2-6 Chapter 2: Kernel Programming Environment

(

Rgure 2·2
Methods of buffering data

(

Chapter 2: Kernel Programming Environment 2-7

Device files
In A/UX there are three different types of files: regular files (also called ordinary files),
device files (also called special files), and pipes. In A/UX, all VO is accomplished by
reading or writing to one of these types of files.

All types of files have an inode (inode refers to index node). Each file has an inode
associated with it. In.odes are data structures used by the kernel to describe files. The
inode of an ordinary file contains information about the file, such as file ownership,
access permissions, siz.e of the file, and pointers to the data blocks associated with the
file.

The inode of a device file also indicates file ownership and access permissions, but
does not contain pointers to any data blocks. This is because device files are used to
access devices in A/UX. Instead of pointers to data blocks, the inode of a device file
contains the device number associated with the device file.

The device number contains the major number and minor number of the device
flle. The device number is a 16-bit number. nie major number is stored in the upper 8
bits and the minor number is stored in the lower 8 bits.

The kernel uses the major number to associate a device with a particular device driver.
The device driver uses the minor number to encode information specific to the
device. For example, the disk driver uses the minor number to identify a specific
logical unit and partition of the disk.

A device file must exist for each device used to perform VO in the system. You read
from or write to a device by reading from or writing to the device file associated with
that device. For example, to read the current mouse location, first use open (2) ,

specifying I dev /mouse as the device flle, then issue your read (2) request

Device files are usually stored in the I dev directory. As previously stated, to access a
device the device must have a device file. You then use system calls to perform VO to
the device. A device file can be either a block or a character device file.

The A/UX system comes with a set of default device files in the I dev directory. You
can use these device files to perform VO on various devices. Device files for new
devices are usually created by the startup script of the device driver. The section
"Writing Optional Init and Startup Scripts" in Chapter 12 describes how to create a
startup script for your device driver.

Newdevice files can be created with the mknod<ll command (You must be superuser
to use this command.) For example, to create a character device file for a character
device driver with major number 9 and minor number 0, the startup script of your
driver could contain the following command:

2-8 Chapter 2: Kernel Programming Environment

(-

(

mknod /dev/mydevice c 9 O

This command aeates the device file /dev/mydevice with major number 9 and
minor number O stored in its inode. You can verify the major and minor numbers for
the device file with the ls -l command:

' ls -1 /dev/mydevice

crw-rw---- 1 root root 9, 0 February 29 15:23 mydevice

Note the values in the permission field: the fust character is either b to indicate a block
device file, c to indicate a character device file, d to indicate a direaory, or - to
indicate an ordinary file. 1be read, write, and execute permissions are indicated next.
Uke ordinary files, device files also have permissions associated with them. To read
from or write to a device, you must have the proper read and write permissions
indicated in the device file for that device.

The superuser can deny access to certain devices by setting the permission field'
appropriately. For example, the device file /dev/rdsk/c0d0s31 has the following
permissions:

' ls -1 /dev/rdsk/c0d0s31

crw------- 1 root root 5, O February 29 15:25 c0d0s31

Only the superuser or root is allowed to access this seaion of the disk as a character
device.

Device switch tables
Device switch tables contain an array of device switch structures. Device switch (devsw
- pronounced deu-SWUcb) structures contain pointers to driver routines that
correspond to system calls. These pointers to driver routines are stored in the devsw
struaure for that device driver. For a user process to perform VO to a device, the
asaoc:iated device driver must have a devsw struaure in the devsw table.

When a user process makes a system call, the kernel uses the major number of the
device file to index into the devsw table. The kernel calls the corresponding routine
from the devsw struaure stored at this index.

Chapter 2: Kemel Programming Environment 2-9

The kernel maintains two device switch tables, one for block device drivers and one for
character device drivers. These two tables are called the bdevsw (bee-dev-switcb) and
cdevsw (cee-dev-swttcb) tables.

The device switch tables are created whenever a new kernel is generated. Whenever a
new kernel is created, including a kernel created by the autoconfiq (lM) utility,
information in the /etc/master .d directory is read. This information is used to
create the bdevsw and cdevsw tables for the new kernel.

To add your driver to the kernel, you need to write a master script ftJe for your
device driver in the /etc/master.d directory. You provide certain information
about your driver in this file: for example, whether your driver is a block or character
device driver. The autoconfig (lM) utility can then create the appropriate entries in
the bdevsw or cdevsw structure for your device driver.

The major number of your device driver is assigned by the autoconfiq (lM) utility.
You create the device file for your device in an init or startup script which you need to
write for your device driver. Your init script and startup scripts are p:wed the major
number of your device driver when they are invoked. You can then define the minor
number for your device driver and use the major number passed to your init script or
startup script to create a device file for your driver. Chapter 12 explains the
autoconftguration proc.ess and describes how to create a master script file for yQur
driver.

A device driver that can be used as both a character and block device driver has encries
in both the bdevsw and cdevsw tables.You choose which routines corresponding to
entries in the device switch structure you need to provide for your device driver ..

The kernel gives a device driver all the information it needs to perform an I/O request
The kernel passes this information to the device driver in various parameters.

For example, the kernel passes the device number as a parameter to almost all driver
routines. The read and write routines of character device drivers are passed a data
structure called a uio structure. This structure contains information about the I/O
request Block device drivers receive similar information in a buf structure. Chapter
4 discusses the uio structure, and Chapter 3 discusses the buf structure.

The following sections describe the bdevsw and cdevsw tables in more detail.

The block device switch table
The block device switch table is an array of block device switch structures. The
bdevsw structure contains pointers to block device driver routines that correspond to
system calls. The bdevsw table is illustrated in Figure 2-3.

The bdevsw table is ordered by the major number for the device. The kernel uses the
major number to index into this table. When a user process makes a system call, the
kernel calls the corresponding routine from the bdevsw structure stored at this index.

2-1 O Chapter 2: Kernel Programming Environment

(

(

c

Each block device driver in the system has a bdevsw structure associated with it The
addresses of the driver's open, close, strategy, and print routines are stored in the
bdevsw structure for that device. 1be bdevsw structure is defined in
/usr/include/conf .has follows:

struct bdevsw {

int (*d_open) ();

int (*d_close) ();

int (*d_strateqy) ();

int (*d_print) ();

bdevsw[J;

Chapter 2: Kernel Programming Environment 2-11

Ffgur• 2-3
The bdevsw table

2-12 Chapter 2: Kernel Programming Environment

!{

lv/

The *d open entry and other entries in the bdevsw structure are pointers to routines in
the device driver. These routines are responsible for carrying out the VO request
corresponding to the system call. The purposes of these routines are described in the
following paragraphs.

d _open is used to prepare the device for VO. The functions of this routine can include
configuring the device, initializing data structures, or setting default settings. If the
device does not exist or cannot be made available for VO, your d _open routine
should return an error.

d_close is used to release resources associated with the device. The functions of this
routine can include releasing acquired memory, restoring the device to its initial state,
or other device-dependent operations.

d_strategy is used to schedule the VO request for reading or writing. Note that the
strategy routine queues the VO request and then returns to the kernel. The strategy
routine does not wait for the VO request to complete.

d_print can be used to print error messages on the console. Your d_print routine
can call the kernel's pr int f c > routine to disp~y the message.

The d_open, d_close, d_strategy, and d_print routines should return a yaiue to
the kernel indicating the success or failure of the VO request. Return values of driver
routines are discussed in a following section entitled "Return Values of Driver
Routines".

Note: The d_open, d_close, d_print, and d_strategy routines are referred to as
the drlveropen, ~lose, driverprint and drlverstrateqy routines
throughout the rest of this manual.

The autoconfiq utility initially fills in the bdevsw table with default entries. These
default entries in the bdevsw structure can be a pointer to either of the two kernel
routines nulldev < l or nodev (l. The nulldev (l routine does nothing, while nodev <)

returns an error.

If the bdevswentry contains nulldev () and the user process makes the
corresponding system call for that entry, the user process does not receive an error. If
the bdevsw entry contains nodev () and the user process makes the corresponding
system call for that entry, the user process does receive an error.

Refer to Chapters 12 and 13 for information on how autoconfiq(lM) creates and fills
in the bdevsw struawe for your device.

A sample bdevsw table is shown in Figure 2-4.

Chapter 2: Kernel Programming Environment 2-13

struct bdevsw bdevsw[J - {
noclev, nulldev, nulldev, nulldev, /* 0 */
nodev, nulldev, nulldev, nulldev, /* 1 *I
nodev, nulldev, nulldev, nulldev, I* 2 *I
nodev, nulldev, nulldev, nulldev, /* 3 *I
noclev, nulldev, nulldev, nulldev, /* 4 */
snopen,snclose, snstrateqy, snprint, /* 5 */
nodev, nulldev, nulldev, nulldev, /* 6 */
nodev, nulldev, nulldev, nulldev, /* 7 */
noclev, nulldev, nulldev, nulldev, /* 8 */
noclev, nulldev, nulldev, nulldev, I* 9 */ -
nodev, nulldev, nulldev, nulldev, /* 10 */
nodev, nulldev, nulldev, nulldev, /* 11 */
noclev, nulldev, nulldev, nulldev, I* 12 */
nodev, nulldev, nulldev, nulldev, /* 13 */
nodev, nulldev, nulldev, nulldev, /* 14 */
nodev, nulldev, nulldev, nulldev, /* 15 */
nodev, nulldev, nulldev, nulldev, I* 16 */
noclev, nulldev, nulldev, nulldev, I* 17 *I
noclev, nulldev, nulldev, nulldev, /* 18 */
noclev, nulldev, nulldev, nulldev, /* 19 *I
noclev, nulldev, nulldev, nulldev, /* 20 */
noclev, nulldev, nulldev, nulldev, /* 4!1 */
nodev, nulldev, nulldev, nulldev, I* 22 */
nodev, nulldev, nulldev, nulldev, I* 23 */
hdopen,hdclose, hdstrateqy, hdprint, /* 24 */
hdopen,hdclose, hdstrateqy, hdprint, /* 25 */
hdopen,hdclose, hdstrateqy, hdprint, /* 26 *I
hdopen,hdclose, hdstrateqy, hdprint, /* 27 */
hdopen,hdclose, hdstrateqy, hdprint, /* 28 */
hdopen,hdclose, hdstrateqy, hdprint, /* 29 *I
hdopen,hdclose, hdstrateqy, hdprint, /* 30 *I
noclev, nulldev, nulldev, nulldev, /* 31 */

};

Rgure 2·•
A sample bdevsw table

2·14 Chapter 2: Kernel Programming Environment

(_

The character device switch table
The character derice switch table is an array of character device switch structures.
The cdevsw structure contains pointers to character device driver routines that
correspond to system calls. The cdevsw table is illustrated in Figure 2-5.

The cdevsw table is ordered by the major number for the device. The kernel uses the
major number to index into this table. When a user process makes a system call, the
kernel calls the corresponding routine from the cdevsw struaure stored at this index.

Each character device driver in the system has a cdevsw structure associated with it
The addresses of the driver's open, clo,,e, read, write, ioctl and selea routines are
stored in the cdevsw struaure for that device. The cdevsw struaure is defined in
/usr/include/conf .has follows:

struct cdevsw

int (*d_open) ();

int C*d_close) (); ·

int (*d_read) ();

int (*d_write) ();

int (*d_ioctl) ();

struct tty *d_ttys;

int (*d_select) ();

struct streamtab *d_str;

}cdevsw [];

The *d_open entry and other entries in the cdevsw structure are pointers to routines in
the device driver. These routines are responsible for carrying out the 1/0 request
corresponding to the system calls. The purposes of these routines are desaibed in the
following paragraphs.

Chapter 2: Kernel Programming Environment 2· 15

Figure 2-5
The cdevsw table

2-16 Chapter 2: Kernel Programming Environment

d_open is used to prepare the device for 1/0. The functions of this routine can include
configuring the device, initializing data structures, or setting default settings, such as
the baud rate of the device. If the device does not exist or cannot be made available for
1/0, your d_open routine should return an error.

d close is used to release resources associated with the device. The functions of this
rootine can include releasing acquired memory, restoring the device to its initial state,
or other device-dependent operations.

d_read is used to read data from a device.

d write is used to write data to a device.

d _ ioct 1 is used to perform control operations on a device, to get status from the
device, change the configuration of a device, or for other device and driver
dependent functions. Driver ioctl routines are commonly used to perform
miscellaneous activities, such as rewinding a tape or ejecting a floppy disk.

d_select is used to check ifl/O has completed or if an exceptional condition has
occurred. Select routines are often used to test if a device is ready for reading or
writing.

If your device is always ready for reading or writing, the d _select entry can point to
the seltrue routine. seltrue is a kernel routine that returns TRUE when invoked as a
result of select(2) on a device file. If your driver does not provide a d _select
routine, autoconfig(lM) fills in this field of the cdevsw structure with seltrue as
the default entry.

The d_open, d_close, d_read, d_write, d_ioctl, and d_select routines
should return a value to the kernel indicating the success or failure of the 1/0 request.
Return values of driver routines are discussed in the following section entitled "Return
Values of Driver Routines".

Note: The d_open, d_close, d_read, d_write, d_ioctl, and d_select
routines are referred to as the drlveropen, driverclose, drtverread, drlverwrite,
driver.ioctl and drivenselect routines throughout the rest of this manual.

In addition to the pointers to the device driver routines, the cdevsw structure has a
field for a pointer to a tty structure and a field for a pointerto a streamtab structure.

If your device driver uses or needs a tty structure, then you will want the entry for
d _ttys defined in the cdevsw structure. Usually only terminal device drivers require a
tty structure.

If you want the entry ford ttys defined in the cdevsw structure for your device
driver, then use the t option in your master script file. This instructs the kernel to
allocate a tty structure and set up a pointer to it in the cdevsw structure for your
device driver.

Chapter 2: Kernel Programming Environment 2-17

If your device driver uses or ~ a streamtab structure, then you will want the entry
for d_str defined in the cdevsw structure. Usually only streams device drivers
require a st re amt ab structure.

If you want the entry for d _ str defined in the devsw structure for your device driver,
then use the s option in your master script file. This instructs the kernel to allocate a
streamtab structure and set up a pointer to it in the cdevsw structure for your device
driver.

The autoconfig utility initially fills in the cdevsw table with default entries. These
default entries in the cdevsw structure can be a pointer to either of the two kernel
routines nulldev () or nodev (> • The nulldev < l routine does nothing. while nodev (>

returns an error.

If the cdevsw entry contains nulldev () and the user process makes the
corresponding system call for that entry, the user process does not receive an error. If
the cdevsw entry contains nodev () and the user process makes the corresponding
system call for that entry, the user process does receive an error.

Refer to Chapters 12 and 13 for information on how autoconfig{lM) creates and fills
in the cdevsw structure for your device.

A sample cdevsw table is shown in Figure 2-6.

2-18 Chapter 2: Kernel Programming Environment

(,

struct cdevsw cdevsw[J - {
scopen, scclose, sere ad, scwrite, scioctl,
sc_tty, ttselect, 0, I* 0 *I
syopen, nulldev, syread, sywrite, syioctl,
0, syselect, 0, /* 1 */
nulldev, nulldev, mmread, mmwrite, mmioctl,
0, seltrue, 0, /* 2 *I
erropen, errclose, err read, nulldev, nulldev,
0, seltrue, 0, /* 3 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, 0, /* 4 */
snopen, snclose, snread, snwrite, snioctl,
0, seltrue, 0, I* 5 *I
nulldev, nulldev, nulldev, nulldev, fpioctl,
0, seltrue, 0, I* 6 *I
nulldev, nulldev, nulldev, nulldev, nulldev,
0, strselect, &disp_tab, /* 7 */
mouseopen,mouseclose,mouseread,mousewrite,
mouseioctl, 0, seltrue, 0, I* 8 */
nodev, nulldev, nulldev, nulldev, nulldev,
o, seltrue, o, /* 9 *I
sxtopen, sxtclose, sxtread, sxtwrite, sxtioctl,
O, sxtselect, 0, I* 10 */
nulldev, nul.ldev, prfread, prfwrite, pr:fioctl,
0, seltrue, 0, /* 11 */

<:
nulldev, nulldev, nulldev, nulldev, nulldev,
0, strselect, &cloneinfo, (* 12 */
nodev, nulldev, nulldev, nulldev, nulldev,
O, strselect, &shlin:fo, /* 13 *I
nvram_open,nvram_close,nvram_read,
nvram_write,nulldev, 0, seltrue, 0, /* 14 *I
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, O, /* 15 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, 0, I* 16 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, 0, /* 17 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue O, /* 18 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, 0, /* 19 *I
ptcopen, ptcclose, pt ere ad, ptcwrite, ptcioctl,
0, ptcselect, 0, /* 20 */
ptsopen, ptsclose, ptsread, ptswrite, ptsioctl,
0, ttselect, 0, I* 21 */
osmopen, nulldev, osmread, osmwrite, nulldev,
0, seltrue, 0, I* 22 *I
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, 0, /* 23 */
hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, 0, /* 24 */
hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, 0, /* 25 */

(~' Chapter 2: Kernel Programming Environment 2-19

hdopen, hdclose,
O, seitrue, O,
hdopen, hdclose,
O, seltrue, 0,
hdopen, hdclose,
O, seltrue, O,
hdopen, hdclose,
0, seltrue, O,
hdopen, hdclose,
O, seltrue, 0,
nodev, nulldev,
O, seltrue, O,
nodev, nulldev,
O, seltrue, 0,

} ;

Rgur• 2·6
A sample cdevsw table

hdread,

hdread,

hdread,

hdread,

hdread,

nulldev,

nulldev,

Retum values of driver routines

hdwrite,

hdwrite,

hdwrite,

hdwrite,

hdwrite,

nulldev,

nulldev,

hdioctl,
/* 26 */

hdioctl,
I* 27 */

hdioctl,
/* 28 */

hdioctl,
/* 29 */

hdioctl,
/* 30 */

nulldev,
/* 31 */

nulldev,
/* 32 */

Your driver routines should return a value to the kernel, indicating the success or
failure of the I/O request. For successful requests, your driver routines should return 0
(zero). For unsuccessful requests, your driver routines should return a nonzero ·
positive value that corresponds to an errno value. Values for errno are defined in
the header file <sys/errno .h>.

If your driver returns a zero to the kernel, the kernel returns a succes.mtl value to the
user. The value and meaning of a successful value returned to the user depends on the
system call For example, for successful open< 2} requests, the kernel returns a
positive flle desaiptor. For successful read 12 l requests, the kernel returns the
number of bytes read.

If your driver returns a nonzero positive value to the kernel, the kernel returns -1 to the
user and sets the global variable errno according to the value that your driver routine
returned.

2·20 Chapter 2: Kernel Programming Environment

£'\ \J

C
~ .

'

i

Process context and the user structure
In A/tJX, a process is an instance of a program in exeaition. When exeaiting a
process, the system is said to be executing in the context of the process. When the
kernel needs to execute a neW process, it does a context switch, and the system
exeaites in the context of the new process. When doing a context switch, the kernel
saves enough information about the first process so that it can later switch back to the
first process and resume its exeaition.

Every process has an entry in the kernel proc table. 1be entry for an individual process
is a data structure called the proc structure. The kernel uses proc struaures to describe
the state of every active process in the system. 1be proc structure contains all
information about the process that is needed while a process is swapped out

The kernel also maintains information about a process in a data structure called the
user structure (also called the u-dot). The user structure contains all process related
information that does not need to be referenced while the user process is swapped out.

One user structure exists for each process in the system. Some of the information kept
in the user structure include the program counter (PC) and register values, the process
memory management unit (MMU) maps, a pointer to the associated proc structure,
and the arguments from system calls. The user structure is defined in the file
<sys /user. h>.

Whatever process is running at the moment has its user structure mapped at a known
location in the kernel address space; processes that are not running have their user
struaures mapped elsewhere in the kernel. Normally there is only one user structure in
the kernel at a time-the process now running. This manual uses the term u-dot to refer
to the user structure of the airrent process.

A device driver should never modify values in the user structure. The kernel gives a
device driver all the information it needs to perform an 1/0 request The kernel passes
this information to the device driver in various parameters.

For example, the kernel passes the device number as a parameter to almost all driver
routines. The read and write routines of character device drivers are passed a data
structure called a uio structure. This structure contains information about the 1/0
request Block device drivers receive similar information in a buf structure.

Chapter 2: Kernel Programming Environment 2-21

Utility routines and macros
The kernel prov~ a number of routines that you can use in your driver. This section
describes routines that can be called from any device driver; you'll also find
additional kernel routines for block device drivers in Chapter 3 and additional kernel
routines for character device drivers in Chapters 4, 5, and 6.

Use this section to get general information about kernel routines that can be called.
Appendix B is a reference for kernel routines found in this manual. Appendix B
provides specific information about the parameters passed to each routine and the
error values returned for each routine.

Setting processor levels
Your driver can set the hardware priority level with the spin routine, which disables
interrupts below a specified priority level n . Setting the priority level prevents
unwanted interrupts from reaching the device. See the spln routine in Appendix B for
specific values of n.

To set the interrupt priority level back to its previous state use the splx:(s) routine,
where sis a value returned by the previous spln call.

Waiting for 1/0 to complete on an address or for an event to
occur (sleep)
sleep () is used to synchroniz.e VO by making a process wait (and allowing other
processes to run) until a certain event occurs. The event is an address that the calling
process passes as a parameter to sleep () .

When a driver calls sleep (),the kernel changes the process state to "asleep" and
removes the process from the run queue. When a process is removed from the run
queue because of a call to sleep (), the process is often referred to as a "sleeping"
process.

When a process's state changes to asleep, a context switch occurs; thus, sleep() should
always be called within the process's context

After the driver calls sleep (),the sleeping process will continue to sleep until
another routine calls wakeup () , using the same address as specified by the process
that called sleep () .

The sleep () routine is passed an address, as just described, and a priority level.
Priority levels range from 0 to 127, with 0 having the highest priority and 127 having
the lowest priority.

2-22 Chapter 2: Kernel Programming Environment

(

Several processes can sleep on the same address. When more than one process calls
sleep () with the same address, the priority level detennines which routine will
execute first

Signals cannot interrupt processes sleeping at a priority less than the parameter
PZERO, although they can be swapped out PZERO and PCATCH are defined in
<sys/param. h>.

PCATCH is a bit set in the priority level argument to sleep () that is OR'ed into the
priority field of the proc structure when a driver wants any signals that occur during
sleep to be ignored and handled later (for example, page faults and streams
proces&ng). If processes sleep at this priority level, sleep C) will return 0 if awakened
or 1 if a signal occurred while sleeping.

Waiting for 1/0 to complete on a buffer header (blowalt)
The kemel or a driver uses biowai t c > when a process is waiting for a resource called a
buffer header, or buf structure. The routine biowait < > is similar to sleep<>, except a
buf structure is always passed as a parameter to biowai t c > • When a driver calls
biowait < > , the kemel sets a flag in the buf structure and puts the process to sleep. The
process continues to sleep until a corresponding call to biodone c > is made. ·

Notifying a process of 1/0 completion or an event occu"ed
(wakeup)
The kemel or a driver uses wakeup c > to notify all processes that are waiting for an event
to occur that the event has ocairred or to notify all process that are waiting for J/O to
complete that the J/O has completed. The event is an address that the calling routine
passes as a parameter to the wakeup< l routine.

All sleeping processes marked with the same address are removed from the sleeping
processes queue, placed on a list of available processes, and the process state is
changed from •asleep• to •ready to run.•

Notifying a process 1/0 has completed on a but structure
(bldone)
The kemel or a driver uses biodone cl to notify a process that J/O has completed on
the buf structure specmed in the call to biodone c > • All processes sleeping on the buf
structure are removed from the sleeping processes queue and placed on the ready to
run queue.

Chapter 2: Kernel Programming Environment 2-23

Reading from and writing to a user buffer
If you are writing a character devic.e driver you can provide your own method for
transferring data between a user buffer and a device. Optionally, you can use various
routines provided by the kernel. You can use these kernel routines to copy a single
character between the user buffer and a driver buffer, to copy blocks of information
between the user buffer and the driver buffer, or to directly copy data between the user
buffer and the devic.e.

Your driver can use two routines to read and write a ·character to and from a user
buffer: ureadc (l and uwritec (l. ureadc (l delivers a character to a user buffer
asociated with a read (2) system call. uwr itec cl retrieves a character from a user
buffer asociated with a write (2) system call.

Your driver can use the copyout < l, subyte (l , and suword < l routines to transfer data
from a driver buffer to a user buffer. copyout < > copies blocks of information from the
driver buffer to the user buffer, subyte < J copies a single character from the driver
buffer to the user buffer, and suword < l copies a single integer from the driver buffer to
the user buffer.

Your driver can use the copy in cl , fubyte < l , and fuword < > routines to copy data from
a user buffer to a driver buffer. copy in < l copies blocks of information from the user
buffer to the driver buffer, fubyte < l copies a single character from the user buffer to
the driver buffer, and fuword < l copies a single integer from the user buffer to the
driver buffer.

Your driver can also use the uiomove <> routine in plac.e of copyin <> or copyout (l to
copy data between a user buffer and a driver buffer.

Your driver can use the kernel routine physio o to directly copy data between the user
buffer and the devic.e. Chapter 4 describes this method of buffering in more detail .

Gaining access to user address space
To determine whether your driver can gain acc.ess to the current user address space
memory, call the user ace < > routine.

Finding the major number of your device
Your driver can use the macro major to find the major number associated with your
device. The macro major extracts the major number from the device number and
returns the major number to the calling routine.

2-24 Chapter 2: Kernel Programming Environment

(,

(''

Finding the minor number of your device
Your driver can use the maao minor to find the major number associated with your
device. 1be macro minor extracts the minor number from the device number and
returns the minor number to the calling routine.

Encoding the maJor and minor numbers of your device
You can use the kernel macro makedev to encode the major and minor numbers for
your device.

Setting a timeout (timeout)
Your driver can use the timeout< l routine to set a timer for a minimum number of
clock ticks. After the given time period has elapsed, the kernel calls the routine
specified as a parameter to timeout () . Note that the routine is not called in process
context.

timeout () can be useful when yoo want to set a maximum amoont of time yoo are
willing to wait for an event to occur. For example, you might want to wait only a certain
number of seconds for a device to come online. By using the timeout < l routine, you
could specify that your driver routine be called if the device did not respond after a
certain amount of time.

Removing a Timeout (untlmeout)
The untimeout < l routine is used to remove a timeout previously set by timeout () .

If your driver set a timer using the timeout () routine and if the timer exp~.
indicating that the anticipated event did not occur, the routine specified in the call to
timeout < > will be called. If the event does occur before the timer exp~. you must
call untimeout o to cancel the preceding timeout request

Delaying execution
Your driver can call delay<) to make a process wait for a specific interval before
resuming exerution. delay () must be called in process context, because it suspends
a process and puts it to sleep for a minimum number of clock ticks. For example,
delay () is useful in routines that need to wait for a 3.5-inch disk drive to spin up to
speed.

Chapter 2: Kernel Programming Environment 2-25

Sending a signal to a user process
SlgDa)s infonn user processes of certain events that ocoJt. For example, your driver
may need to send a signal when a modem carrier line drops. 1be kernel signal C)
routine sends a specified signal to all processes in a process group. siqnal () can be
called in any process context.

Note The kernel signal O routine is not the same as the siqnal (2) routine, which
specifies how the calling process handles signals that are received.

To send a signal to a single process, your driver shoUld call psignal () • psignal ()
marks (in the proc structure) that the process should receive a signal and enables the
job to run. When a signal is caught in a user process (for example, when the user types
a break character), a context switch occurs and the process handles the signal. When a
process is executing in the Berkeley signal environment, a signal is not always
sufficient to awaken it (for example, if the process is stopped).

2·26 Chapter 2: Kernel Programming Environment

t0····· ~)

Chapter 3

Block Device Drivers

3-1

This chapter starts with a general discu~ion of block 1/0 device drivers and the rules
for writing them Th.is chapter then describes data buffering structures, followed by
detailed descriptions of the block device driver's open, close, strategy, and diagnostic
print routines. The start and interrupt routines of a block device driver are also
discussed.

Overview
Block device drivers make use of the kernel buffer cache when accessing a device. All
data read from or written to a block device is buffered through the kernel buffer cache.
Block device drivers are most often used for devices that can contain mounted file
systems. The SCSI disk driver is an example of a block device driver.

A block device driver maps logical device block numbers to physical device block
numbers. A block 1/0 logical device is a device consisting of addressable secondary
memory blocks. The size of each block is a multiple of the DEV_ BS IZE constant. On
the past, logical devices have also been called partittons.)

The block device driver recogniz.es the physical devices in the system. The driver's
main job is to hide all aspects of the physical device from the kernel and present a
logical device interface of n 512-byte blocks, which are numbered from 0 to n-1. Thus,
to the A/UX operating system, logical devices and physical devices appear to be the
same.

Typically, any device with a block 1/0 driver interface also supports a character 1/0
driver interface. 1bat is, the source file for the driver contains routines for both block
device drivers and character device drivers.

A block device driver can support more than one physical device. In turn, each
physical device can contain more than one logical device. Typically, a single physical
device, such as a 300-megabyte disk drive, will have a number of logical devices on it

Chapter 3: Block Device Drivers 3-2

(

(

Transferring data to and from a block device
After the operating system mounts the file system and opens the device file for the
device, a driver reads and writes to a block device in one of two ways:

• indirectly through the kernel buffer cache

• directly through a raw (character) interface

Indirect data transfers take place using the kernel buffer cache. The A/UX kernel
provides a cache of buffers to temporarily hold data being transferred between user
data space and block 1/0 devices. Buffered I/O is described in the next section.

Direct data transfers take place using raw I/O. All read and write operations using raw
I/O perform input and output directly to and from the device without buffering data.
Character device drivers are used to perform raw I/O. Raw I/O is discussed in a later
section, and also in more detail in Chapter 4.

Buffered 1/0
Buffered I/O uses two important data structures: the buf structure (also called the
buffer header) and the iobuf structure. Both structures are described in the following
sections.

The buf structure
Each buffer in the buffer cache contains two parts: a buf structure and an associated
buffer. 1be buf structure is a data structure that is used to store control and status
information about the buffer. 1be buffer is a memory array containing disk data. The
buf structure contains a field (b_un .b_addr) that points to the buffer associated with
this buf structure.

The buf structure is the sole argument to the strategy routine of a block device driver.
The buf structure contains all the information needed to perform the data transfer.
The kernel fills out fields of the buf structure and then invokes the drlverstrategy
routine with a pointer to the buf structure.

A driver can also use buf structures to perform unbuffered or physical 1/0, in which
case the b _ un . b _ addr field of the buf structure points to a portion of user data
space.

Chapter 3: Block Device Dr1vers 3-3

The buf structure is defined in <sys /buf • h> as follows:

struct buf

long b_flaqs;

struct buf *b_forw, *b_back;

struct buf *av_forw, *av_back;

long b_bcount;

long b_bufsize;

short b_error;

dev_t b_dev;

union

caddr_t b_addr;

int *b_word;

struct filsys *b_fs;

struct dI-node *b_dino;

struct fblk *b_fblk;

daddr_t *b_daadr;

struct svfsdirect *b_direct;

} b_un;

daddr_t b_blkno;

long b_resid;

struct proc *b_proc;

int (*b_iodone) ();

struct vnode *b_vp;

time_t b_start;

} ;

A device driver may need to look at or set the following fields of the buf structure:

• b_flags contains bits that indicate the status of the buffer (B_BUSY flag) and tell
the driver whether the device is to be read from or written to (B _READ or B _WRITE
flag). When the 1/0 transfer completes, the driver should set the B _ERROR flag if an
error occurred. The complete list of flag descriptions is found in <sys/buf .h>.

Chapter 3: Block Device Drivers 3-4

(

• av_forw and av_back are a pair of pointers that maintain a doubly-linked list of
•free" blocks (blocks that can be reallocated for another transaction). A driver can
use these lists to link the buffer into driver buffer queues.

• b _ bcount is the number of bytes to be transferred to or from the buffer.

• b_dev holds the device number. 1be device number contains the major and minor
numbers. Your driver can use the kernel macros major and minor to extract these
numbers from the device number.

• b blkno is the device offset (in byte blocks starting at block 0) to be accessed. The
constant DEV _SIZE is the size of a block.

• b _resid is the number of bytes not transferred after the VO request completes.
Your driver should set this field to zero if all bytes were transferred. If an error
occurred, your driver should set this field to the number of bytes that were not
transferred.

• b_error contains a value indicating the succeM or failure of the VO request. Your
driver should set this field to an errno value if an error occurred. If the request was
successful, your driver should set this field to 0.

The lobuf structure

The iobuf structure is a header for a queue of buf structures that are currently
involved in VO operations. Your device driver must declare and initialize one iobuf
structure for each physical device handled, even if several physical devices use the
same device driver. Autoconfiguration can be used to allocate these iobuf structures
(see Chapters 12 and 13 for details). 1be iobuf structure is defined in
<sys/iobuf .h> as follows:

struct iobuf

int b_flaqs;

struct buf *b_forw;

struct buf *b_back;

struct buf *b_actf;

struct buf *b_actl;

dev_t b_dev;

char b_active;

char b_errcnt;

struct eblock *io_erec;

Chapter 3: Block Device Drivers 3.5

} ;

int io_nreq;

physadr io_addr;

struct iostat *io_stp;

time_t io_start;

int

int

io_sl;

io_s2;

A device driver inreradS with these two fields of the iobuf structure:

• b_actf is the first buf structure on the iobuf queue.

• b active determines whether the device controlled by this iobuf is aaive. If the
f..eid is set, an operation is occurring; if the field is 0, no operation is occurring.

When the device is ready for an VO operation, the driver examines the first buffer on
the active queue and sets the b_active field After the operation ends, the driver sets
b_active to 0, removes the buffer from the active queue, and updates b_actf to
point to the next buffer.

The block device driver interface
The following sections briefly desaibe the routines of the block device driver that are
called through the bdevsw table. For a desaiption of how a block device VO operation
oco.us, see "Trace of an VO Request on a Block Device Driver" later in this chapter.
Appendix A also includes a desaiption of the parameters, calling sequence, and
return values for each of the routines presented in the following sections.

Opening a block device for 1/0
The purpose of the block device driver's open routine is to make sure that the kernel's
request to use the logical disk is valid; the drfvernpen routine does not actually open
an A/UX file. The drfvernpen routine of a block device driver is called whenever a user
process makes an open(2) system call on a block device file.

The drlveropen routine
The driven:>pen routine is used to get the device ready to perform VO. This process
might include initializing data structures and setting the configuration of the device. A
block device driver's open routine might also perform other functions:

Chapter 3: Block Device Drivers 3-6 c

• Check to see if the device number passed to it as an argument is valid for the
physical device. The device number is composed of a major number and a minor
number. Your driver can encode the minor number with device or driver specific
infonnation. For example, the A/UX disk driver (hd. c) encodes the high-order
bits of the minor number with the drive number, and uses the low-order bits to
index into a table of logical disks for the physical drive. ·

• Call an optional timer funaion Of the device's open routine has not been called
before) to periodically check the status of the device. For example, your driver
could call a routine at specified times to determine if VO has ended and could reset
the hardware if it appears that a hardware problem has oca.ured.

• Set up addresses or request private data areas for use as long as the device is open.
For example, error logging might require a data buffer that stores the number of
retry operations.

• Perform device-dependent initialization and status checks to enable the physical
hardware to be used, such as waiting for a disk drive to spin up to speed and come
on-line.

• Remember that the block device driver can control more than one physical device.
For example, a disk controller card may support several physical disk drives and
each physical disk drive may have multiple logical disks on it The drlvert>pen
routine must keep track of which physical drives have been previously initialiZed
and opened.

The driven:>pen routine is called as follows:

int drlveropen (dev, jlag)

dev_t elev;
int jlag;

where

• elev is the device number. The device number contains the major and minor
number of the device fJle. A character device driver should check to see that the
minor number passed to it as an argument is valid for the device being called. If
not, the driver should return an error.

• flag corresponds to the oflall parameter specified by the user in the open(2) call.
(See open(2) in the AIUX Programmer's Reference.) Specific values for the flag
parameter are listed in the f _flag field of the fJle descriptor data struaure (in the
header file <sys If i le . h>).

• driver is the device prefix.

Chapter 3: Block Device Drivers 3-7

The drlveropen routine is called with two parameters. The first parameter is the device
number of the device file being opened. The drlveropen routine can use the kernel
macro minor to extract the minor number from the device number. Your driver can
encode the minor number with driver specific information. For example, when a
driver is used to control more than one device, the minor number is usually encoded
to indicate the device or id number of the device.

Your driver can then use the minor number to identify the particular device to which
the VO request is directed. Your driver can also set up arrays indexed by the minor
number. Using the minor number in this way lets your driver keep track of which
request is associated with a particular device.

After you decide how to encode the minor number for your devia! and how your
driver will use the minor number, remember to aeate the device file for your device in
either an init or startup script.('Ibe init and startup saipts are used with
autoconfig(lM) and are described in Chapter 12). For example, a driver might use
a a!rtain bit in the minor number to select the physical device. Then you would need
to create multiple device ftles in your init or startup saipt for each different physical
device that can be selected.

The flag parameter in the driveropen call corresponds to the ojlag parameter
specified by the user in the open(2) call. The kernel translates the ojlag values of
o _ XXXX into their corresponding flag values of F XXXX. For example, o _NDELAY
becomes FNDELAY, and O_RDONLY, O_WRONLY and o_RDWR are translated into two
flags, FREAD and FWRITE. The flags of interest to a driver are FREAD, FWRITE, and
FNDELAY. The action your driver takes if any of these flags is set is driver dependent.
However, your driver does not have to implement actions for any of these flag values.
For example, the o _ NDELAY flag usually has meaning only for terminal devices.

The block device drlveropen routine should report any errors to the kernel by
returning a value that indicates the success or failure of the request to the kernel. Your
driver should return a zero (0) if the open request was successful. If the open request
was not successful, your driver should return a nonzero positive errno value to the
kernel.

If your driver returns a value indicating success, the kernel returns a file descriptor to
the user. The kernel also maintains a count of the number of times this device file has
been opened and inaements this counter on each successful open(2) call. The kernel
uses this information to determine when to call the drlvercloae routine.

If your driver returns an ermo value to the kernel, the kernel retums-1 to the user and
sets the global variable errno to the errno value returned by your driver.

Chapter 3: Block Device Drivers 3-8

(

The drlverclose routine
The kernel calls the drlt.1e1t:lose routine on the last close(2) of the block device. If
several processes have opened a device, the drlt.1e1t:lose routine is called once when
the last process that has opened the device closes it.

The kernel maintains a count of the number of times the device file has been opened,
and calls the drtven:lose routine only if this is the last close of the device file.

Note that "called on the last close" actually means that the drlverclose routine is
called only on the last close of a unique device number. Thus, for a disk that has
different device numbers (device files) to represent different partitions on the disk, the
drlt.1e1t:lose routine will be called each time a partition is closed. Your block device
driver needs to make sure that all partitions on a single disk have been closed before
performing any final driver close functions.

The drtverclose routine is called as follows:

void drlverclose (dev, flag)
dev_t dev;
int flag;

where

• dev is the device number.

• flag corresponds to the flags from the ojlag field of the open system call. Specific
values for the jlag parameter are listed in the f _flag field of the file descriptor
data structure (in the header file <sys/file .h>).

• driver is the device prefix.

The drlve1t:lose routine is used to remove the connection between the user process
and the device. The functions of a drlvett:lose routine might include reinitializing
driver data structures and device hardware. The drlve1t:lose routine should do any
necessary processing to make the device available to be opened later.

Performing 1/0 (using the strategy routine)
Block device drivers use the kernel buffer cache to move data to and from a physical
device. Instead of providing separate read and write routines, a block device driver
uses a single strategy routine to move data between the buffer cache and a device.

The main functions of the drlverstrategy routine are to place the buf structure for
the VO request onto the device's active VO request queue and to call a start routine to
begin VO.

Chapter 3: Block Device Drivers 3-9

'The drlvmstrategy routine is invoked with a pointer to a buf structure. For block
device drivers, the kernel fills out all fields in the buf structure with infonnation about
the 1/0 request before calling the drlvenstrategy routine.

'The dritJer.strateqy routine is called as follows:

void drlvenstrateqy (bp)

struct buf * bp;

where

• bp is a pointer to the buf structure containing infonnation about the 1/0 request
'The b _ un. b _ addr field of the buf structure contains the acidreu of the buffer
being read or written.

• driver is the device prefix.

Your tlrtvemtrategy routine uses infonnation in the buf structure to perform the
1/0 request For example, the buf structure indicates the direction to transfer the
data, the device the 1/0 request is direaed to, and the number of bytes to transfer.

Your driverstrategy routine should schedule the 1/0. This scheduling often .
involves calling another routine called the drlverstart routine. The drlverstart
routine usually takes care of the low-level details of the 1/0 transfer, including
managing the request queue of buffers waiting to send or receive data.

After scheduling the 1/0, your driverstrateqy routine should return to the calling
routine. Your driver.strategy routine must not issue a call to biowait () or
sleep () . 'The calling routine has the responsibility of determining whether or not to
wait for the 1/0 request to finish.

WrHing to a block device

When a user process writes to a block device, the kernel copies the data from the user's
buffer to a buffer in the kernel buffer cache. The kernel fills out a buf struC1Ure with
infonnation about the 1/0 request 'Then the kernel invokes the associated block
device drlverstrategy routine, passing a pointer to a buf structure as a parameter. The
drlverstrategy routine schedules the transfer of data between the kernel buffer and the
device, and then returns to the kernel.

After scheduling the 1/0, your drlve7strategy routine should return to the calling
routine. Your drlverstrategy routine must not issue a call to biowait () or sleep ().
'The calling routine has the responsibility of determining whether or not to wait for the
1/0 request to finish.

Chapter 3: Block Device Drivers 3-10

For write (2) requests, the kernel usually returns to the user without waiting for the
1/0 to complete. Thus write (2) requests are typically asynchronous. That is, when
the kernel returns from a write (2) on a block device, you are not guaranteed that the
data has actually reached the device. You are only guaranteed that the kernel has
copied the data to the kernel buffer cache and that the device driver has scheduled the
data for 1/0.

Reading from a block device

When a user process reads from a block device, the kernel first checks the buffers in the
kernel buffer cache for the requested data. If the data is in the buffer cache, the kernel
copies the data from the kernel buffer to the user's buffer.

If the data is not in the buffer cache, the kernel calls the associated block device
drlverstrateqy routine. The drlvmstrateqy routine transfers the data from the
device to a buffer in the kernel buffer cache. After the drivefstrateqy routine
transfers the data to a buffer in the kernel buffer cache, the kernel copies the data to the
user's buffer.

After scheduling the 1/0, your drlverstrateqy routine should return to the calling
routine. 1he calling routine has the responsibility or determining whether or not to
wait for the 1/0 request to finish.

When the kernel calls drlverstrateqy as the result or a read (2) on a block device
me, the kernel usually does wait for the 1/0 to complete.

1he drlverstrateqy routine can also be used to perform raw 1/0. I~ this case, the
character device driver's drlverread and drlverwrite routines call the kernel routine
phys io c >. Parameters to phys io () include a pointer to a buf structure, pointer to a
uio structure, pointer to the drlvetstrateqy routine, the device number, and a
read/write flag.

Phys io c > fills out the buf structure passed to it with information specified from the
other parameters in the call. Then physio c > invokes the drlverstrateqy routine,
passing the buf structure as a parameter. Raw 1/0 is further desaibed in a following
section.

The block device start routine

The driverstrateqy routine calls another routine provided by the driver called the
drivmstart routine. 1be drlverstrateqy routine calls drivers tart to initiate the
first 1/0 operation for a device.

Chapter 3: Block Device Drivers 3-11

The drlverstart routine locates the data on the device from the minor number and
block number fields (b dev and b blkno) and uses the buffer address
(b _ un 0 b _ addr) to ide~tify where-data shoUld be transferred

The block device driver maintains a queue of buffers that are being processed for I/O.
The drtverstart routine places the buf structure passed to it on the active I/O queue.
If there are no pending requests, the drlvenstart routine calls lower-level routines to
begin the 1/0 transfer for this buf structure. If there are pending requests on the
device, drtverstart returns to the calling routine.

You can also call the drlverstart routine from the driver interrupt routine. The
driver interrupt routine is described in the next section.

The block device lntenupt routine

The interrupt routine of a block device driver handles the interrupt generated after the
I/O operation is complete. The interrupt routine then calls the drlvtMtart routine to
initiate I/O for the next buf on the active I/O queue. The interrupt routine continues
to call the start routine to initiate I/O if there is a request to be acted upon and then
returns.

When all data is transferred, the driver interrupt routine calls biodone () or
wakeup (> to notify any processes waiting for the I/O to complete that the I/O request
has finished.

Trace of an 1/0 request on a block device driver
Figure 3-1 summarizes the flow of control of an I/O request on a block device driver.
The following paragraphs desaibe how a block device driver processes an I/O
request.

Chapter 3: Block Device Drivers 3-12

(

Rgure 3·1
Reading from or writing to a block device

<~ Chapter 3: Block Device Drivers 3-13

Block device drivers use the kernel buffer cache to move data to and from a physical
device. After a user process makes a read (2) or write (2) system call, a strategy
routine is called to move data between the buffer cache and a device. The strategy
routine locates the data on the device from the device number and block number
fields (b_dev and b_blkno) of the buf structure and use5 the buffer address
(b un . b addr) to identify where data should be transferred. - -
For read (2) requests, the kernel searches the buffer cache for the requested block. If
the requested block is in the cache, the kernel returns the block immediately to the user
program without physically reading the device. If the block is not in the cache, the
kernel assigns the block a free buf structure and buffer, and then calls the
driver.strategy routine to handle the data transfer. If no free buffers are available,
the kernel puts the user process to sleep until a buffer is released from another process.

The kernel fills in the buf structure with information about the VO request The
b _flags field is set to B _READ or B _WRITE to indicate the direction to transfer data.
The kernel sets the b _ dev field to the device number. The b _ un. b _ addr field is set
to point to the kernel buffer to which data is to be transferred into or out of.

The strategy routine first verifies that the block address (found in the buf structure) is
valid for the logical device being read or written. If the physical device is divided into
several logical ~vices, the strategy routine must check the requested block to see that
it is in the partition specified by the minor number.

The strategy routine places the VO request on the active queue. The strategy routine
then checks to see if the device is busy. If the device is busy, the read must sleep until
the device becomes available. An VO request may be placed in the queue in other ·
than first-in-first-out order. For instance, your driver can search the queue and place
the VO request in an order that reduces disk arm movement. <:You can use the
disksort () routine to order the queue in this manner.)

For write (2) requests, the kernel informs the disk driver that it has a buffer whose
contents should be written, and the disk driver then schedules the block for VO. If the
disk driver finds a buffer that contains the data, the driver writes the data immediately.
Otherwise, the least recently used buffer is reassigned to the write request and the write
is performed by marking the buffer as •dirty.•

After 1/0 is complete, the device sends an interrupt to the processor. The driver's
interrupt routine is called to remove the buf structure from the active 1/0 queue, to
check the queue for more requests, and to call the biodone () routine to wake up any
sleeping processes. The buffer is placed back on the available list

The interrupt routine then calls the start routine to start VO for the next buffer on the
active VO queue. 1be start routine checks the status of the device, checks and marks
the VO queue for active requests, selects the VO device, and then calls a command
process routine to initiate the 1/0 process. This interrupt-start mechanism continues
until all VO requests are processed.

Chapter 3: Block Device Drivers 3-14

Raw 1/0
As previously desaibed, block 1/0 involves using the buffer cache to transfer data
between the user space and the device. This process can be slow, because read and
write operations are done a block at a time, and buffer operations such as transferring
a block from one buffer to anorher and flushing out filled buffers must be done.

Your device driver might need to provide the ability to perfonn raw 1/0. This means
that data is transferred direaly between the device and user address space, without
using the data cache. Raw 1/0 is very useful for backup and restore programs, because
your driver can read or write more than one block at a time. For enmple,a driver can
read tape drive files into memory quickly or write tape files onto a magnetic tape
cartridge quickly, because the data is input or output in large •chunks.•

Your device driver will need to provide entry points in the cxlevsw table for drlverread
and drivenfrite routines in order to perfonn raw 1/0.

Your drlverread and drlvenfrite routines can call the kernel routine physic<> to
perform read and write operations for unbuffered 1/0. By using physio < l , you can
use buf structures and the same strategy routine as used by a block device driver.

Thus, as with buffered 1/0, the buf sttudllre's device number and block numbef fields
identify where to find data on the disk, and the buf strudllre 's address field identifies
where the data should be transferred.

Disks are normally not handled as uue block devices. More commonly, they use both
the block device and character device (raw 1/0) interfaces. For example, Figure_ 3-2
shows the interface to a typical disk driver. As shown in the figure,the drlverread and
drlvenfrite routines referenced by the aievsw structure are used to perfonn raw 1/0.

Chapter 3: Block Device Drivers 3-15

Rgur• 3·2
Reading from or writing to a block device using raw 1/0

Chapter 3: Block Device Drivers 3-16

(

(:'

1be drlverread and drivenfrite routines call physio (),passing a buf structure,
uio structure, pointer to the drlvenstrateqy routine, device number, and read/write
flag as parameters. Physio () fills in fields of the buf structure. For example,
physio () sets the b_un.b_addr field to point to the user's buffer.

1ben physio c > calls the drlver'strateqy routine. The drlver'strateqy routine i$
usually the same strategy routine invoked as the result of a read (2) or write (2) on
a block device file. The drlver'strateqy routine queues the request and calls the
drlverstart routine to begin 1/0. ·

After the strategy routine returns to physio (), physio () waits for the 1/0 to
complete by putting the user process to sleep.

When the transfer completes, the driver interrupt routine awakens physio () by
calling biodone (). Physio () then updates the uio structure and and returns to the
drlverread or drlverwrite routine.

The diagnostic print routine
The diagnostic print routine of the block device driver can be used to print error.
messages on the console when device errors occur.

Performing initialization on a device driver
Your driver can provide an initialiution routine called drlverini t, where driver is
the device prefix for your driver. During autoconfiguration, the kernel searches the
objea file of your driver for a routine with the name drlver.i.ni t. If the kernel finds
such a routine, the kernel adds this infonnation to a list of drlverini t routines to call
during bootup. .

If the kernel does not find a drlver:i.nit routine for your driver, the kernel simply
proceeds with initialization. You do not have to provide a drlverinit routine.

If you do provide a drlverini t routine, the kernel will call your drlver.i.ni t routine
during system initialization. However, you can tell the kernel at what stage in the
stanup kernel code to invoke your drlver.i.ni t routine.

You do this by using the p opt flag in your master saipt ftle. Some of the options to
this command specify whether to call this routine with interrupts disabled or enabled.
Refer to Chapter 12 for a complete desaiption of the various options to this
parameter.

Typical funaions performed in a drlver.i.nit routine include initializing hardware,
performing diagnostics, and any other code that is needed to make your device
available to be used by the system.

Chapter 3: Block Device Drivers 3-17

Kernel routines for block device drivers
Th.is section briefly describes kernel routines that your block driver can call to perform
speciali7.ed functions. See Appendix B for a reference section describing each
routine's calling sequence and its parameters and return values. (In addition,
Appendix B contains other kernel routines that you can use in a block device driver.)

Waiting on 1/0
The kernel provides two functions for suspending and resuming execution during block
IIO uansfers: biowai t () and biodone () . (The iodone () and iowai t ()
routines are defined to refer to the biodone () and biowait () routines respectively,
in <sys/buf .h>).

Drivers that have allocated their own buffers and are waiting for data transfer to
complete call biowait () , which puts the user process to sleep, waiting for I/O to
complete on the buf structure. The kernel also calls biowait () to put the user
process to sleep when waiting for read (2) requests to complete.

The driver interrupt routine calls biodone () to wake up the process or proces5es
waiting on the buf structure when the data transfer finishes.

Buffer routines
You can use these routines to manipulate a buffer in the cache:

• clrbuf o-1be clrbuf maao 7.eroes the buffer and sets the b_residfield of the
driver to 0.

• qeteblk (>-The qeteblk () routine retrieves a buffer from the buffer cache and
returns a pointer to the associated buf structure to the calling routine. If no buf
struClUres are available, qeteblk < > puts the calling process to sleep until one
becomes available. Thus, your driver should not call qeteblk () during interrupt
handling.

• brelse <>-After your driver is finished using a buffer that was previously allocated
by geteblk (), your driver must call brelse < > to return the buffer and buf
structure to the kernel. brelse (> returns the buf structure to the list of free buf
structures and awakens any processes that might be sleeping on that buf structure,
or which might be waiting for this buf structure.

Chapter 3: Block Device Drivers 3·18

Chapter 4

Character Device Drivers

4-1

This chapter describes how to write a basic character device driver. The chapter
discusses the various character buffering and control structures first, and then
describes the open, close, read, write, ioctl, select, and interrupt routines of
character device drivers. For specific: information on terminal device drivers and
Streams device drivers, see Chapters 5 and 6.

Overview
Character device drivers control the activity of all those devices that do not buffer
their data in the kernel buffer cache. These devices form a Jarge and varied group, and
the operations of different devices may require very different device drivers.

You can think of character device drivers as having two or more layers, as illustrated in
Figure 4-1. The uppermost layer are those routines accessed through the cdevsw table.
These routines might call middle Jayer routines to handle common functions or to take
care of device-specific operations.

For example, a terminal and a printer might share a middle layer of code that
performs functions common to both drivers. However, the terminal and printer
driver may have different lower layers to handle device-specific operations such as
setting the baud rate.

A device driver is not required to have a middle layer of routines. The device driver
can contain all the code necessary to pro~ the 1/0 request, then call low-level
routines to initiate and control the hardware operations.

The lowest layer routines are those routines or managers that control the hardware
interfaces to the system.

Whenever there is one hardware interface, a single piece of code is used to access all
devices. This piece of code might be a manager or a driver. For example, one driver
commoilly controls all of the serial ports, regardless of which devices are attached to
them.

Another example of code that controls a hardware interface is the SCSI Manager. The
SCSI Manager controls all accesses to the SCSI port. Higher-level drivers interface to
the SCSI Manager, allowing the SCSI Manager to take care of the low-level hardware
aspects of controlling transactions on the SCSI bus.

Terminal device drivers can Use the tty subsystem buffering structures and line
discipline routines to handle data buffering in a consistent, structured way. Printers
can also use the tty structures. These data buffering structures and routines are
desaibed fully in Chapter 5, •Terminal Device Drivers."

Chapter 4: Character Device Drivers 4-2

(

Streams device drivers are a special implementation of character device drivers. You
can implement a terminal device driver as a streams device driver. Streams device
drivers also use certain kernel defined data structures. Streams device drivers are
discussed in Chapter 6, and streams terminal device drivers are discussed in Chapter
7.

The rest of this chapter focuses on the character device drivers that are not terminal
device drivers or streams device drivers.

Chapter 4: Character Device Drivers 4-3

Rgure 4-1
The layers of a character device driver

Chapter 4: Character Device Drtvers 4-4

(~.·.·,

The character device driver interface
Each character device driver in the system must have a cdevsw structure associated
with il Clbe cdevsw table is desaibed in •The Character Device Switch Table• seaion
in Chapter 2.) The cdevsw structure contains pointers to driver routines that
correspond to system calls.

The cdevsw structures are stored in the cdevsw table. The kernel uses the major number
to index into the cdevsw table and calls routines stored in the cdevsw structure at that
index. The pointers to driver routines stored in the cdevsw structure are:
• drlvernpen

• driverclose

• drlverread

• drlverwrite

• drlverioctl

• drlverselect

where driver is replaced by the device prefix for your driver.

Your character device driver must provide routines for each entry in the cdevsw
structure according to the needs of your device. For example, a printer device driver
usually does not require a drlverread routine. Routines that your driver does not
implement are assigned a default entry of either nulldev or nodev in the
corresponding cdevsw structure entry by autoconfiq.

In addition, your character device driver can provide two other entry points
accessible by the kernel:

• drlverint

• drlver.i.nit

The driver.int routine is used as an interrupt routine. The driven.nit routine is an
optional routine your driver can provide to perform initialization funaions. These two
routines are discussed in the seaions "Performing Initialization on a Device Driver"
and "Handling Character Device Interrupts".

The following sections desaibe the character device driver routines with entries in the
cclevsw structure that correspond to system calls. Appendix A summarizes the
interface each routine must supply, including parameters, calling sequence and return
values.

Chapter 4: Character Device Drivers 4-5

Preparing a character device for 1/0
The kernel calls the character device driver's open routine each time a user program
makes an open (2) · system call on a character device file. The kernel extracts the
major number from the device file and uses this number to index into the cdevsw
table. The kernel calls the character device driver's open routine stored in the cdevsw
structure at this index.

The drlveropen routine
The drivert)pen routine is used to get the device ready to perform VO. This
preparation might include any initialization not performed by the drlver.i.ni t
routine. Other functions are device dependent, but often include initializing data
structures and setting the configuration of the device.

The kernel calls the "'1vtm:>pen routine as follows:

int driveropen (deu, flag, ndevp)

dev_t dev,*ndevp;
int flag;

where

• dev is the device number. The device number contains the major and minor
number of the device file. A character device driver should check to see that the
minor number passed to it as an argument is valid for the device being called. If
not, the driver should return an error value to the kernel.

• flag corresponds to the oflag parameter specified by the user in the open (2) call.
(See open (2) in AIUX Programmer's Reference for a description of oflag
values.) Specific values for the flag parameter are listed in the f _ f laq field of the
file desaiptor data structure (in the header file <sys If ile. h>).

• ndevp is a pointer to a dev _ t, which is used in clone open operations for character
devices. This parameter is used mainly by streams device drivers.

• driver is the device prefix.

The drlven:>pen routine is called with three parameters: dev, flag, and ndevp. The
first parameter is the device number of the device me being opened. The drlveropen
routine can use the kernel macro minor to extract the minor number from the device
number. Your driver can encode the minor number with driver specific information.
For example, when a driver is used to control more than one device, the minor
number is usually encoded to indicate the device number or id number of the device.

Chapter 4: Character Device Drivers 4-6

(

Your driver can then use the minor number to identify the particular device to which
the VO request is directed. Your driver can also set up arrays indexed by the minor
number. Using the minor number in this way lets your driver keep track of which
request is associated with a particular device.

After you decide how to encode the minor number for your device and how your
driver will use the minor number, remember to create the device file for your device in
either an init script or startup script.CThe init and startup scripts are used with
autoconfig(lM) and are described in Chapter 12). For example, a driver might use
a certain bit in the minor number to allow the user to select the speed of the output
device. Then you would need to create multiple device files in your init or startup
script for each different speed setting.

The flag parameter in the driveropen call corresponds to the ojlag parameter
specified by the user in the open (2) call. 1be kernel translates the ojlagvalues of
o_XXXXinto their corresponding flag values of FXXXX. For example, o_NDELAY
becomes FNDELAY; O_RDONLY, O_WRONLY and O_RDWR are translated into two flags,
FREAD and FWRITE. The flags of interest to a driver are FREAD, FWRITE, and
FNDELAY. The action your driver takes if any of these flags are set is driver dependent.
For example, if a user specifies o _ RDONLY, it is up to your driver to decide what a read
only request means for your device.

Your driver does not have to implement actions for any of these flag values. For
example, the o _ NDELAY flag usually has meaning only for terminal type devices.

When coding your driver, you need to decide whether you want your device fo be an
exclusive open device or not. An exclusive open device means only one process is
allowed to access the device at a time. For example, tape device drivers are usually
exclusive open devices, in order to prevent the data of one user from becoming
interwoven with that of another user.

Typically exclusive open devices are implemented in the device driver by setting a
flag, for example, DVROPEN. When the driveropen routine is called, the driver checks
the value of this flag. If the flag is set, another process is using the device. In this case,
the drtven:>pen routine refuses to grant access to the new request by returning an error.

If the flag is not set, then another process is not using the device, so the driver sets
DVROPEN. This process now has exclusive access to the device, until the flag is cleared.
The flag is usually cleared by the driver in the drivelt:lose routine.

After your driveropen routine performs any functions required by your device, return
a value to the kernel indicating the success or failure of the open request. For example,
if initialization did not succeed, you probably want to return an error and refuse to
allow the user to gain access to the device.

If your driver returns a nomero positive errno value to the kernel, the kernel returns a
-1 to the user, and sets the global variable errno to the value returned by your driver.

Chapter 4: Character Device Drivers 4· 7

If your driver returns zero indicating success to the kernel, the kernel marks the file as
being open, and returns a ftle descriptor to the user process. The user process uses this
file descriptor in subsequent read(2), write(2), close(2), ioctl(2), and
select(2) calls on this device.

The kernel also maintains a count of the number of times this device ftle has been
opened, and increments this counter on each successful open(2) call.

Closing a character device
After a user process finishes all I/O requests on a device, the user process calls
close (2) to relinquish access to the device.

The kernel maintains a count of the number of times the file has been opened, and
calls the driven: lose routine only if this is the last dose of the device file. The kernel
implements this policy to prevent one user from d~ing a device while another user is
still using the device.

The driverclose routine
The kernel calls drlvett:lose routine only on the last close of the device file; that is, if
no other processes have the device open.

The kernel calls the drtvm::lose routine as follows:

void driverclose (dev, flag)
dev_t dev;
int flag;

where

• dev is the device number.

• flag corresponds to the flags from the oflag field of the open(2) system call.
Specific values for the flag parameter are listed in the f flag field of the file
descriptor data structure (in the header file <sys If il-;. h>).

• driver is the device prefix.

The drtvm::lose routine is used to remove the connection between the user process
and the device. The functions of a driverclose routine might include reinitializing
driver data structures and device hardware. The drlven:::lose routine should do any
necessary processing to make the device available to be opened later.

Chapter 4: Character Device Drivers 4-8

(

("

(

If the device is an exclusive open device, the drlven::lose routine typically clears any
flags that were previously set to indicate the device was open. nus clearing of flags
allows other processes to gain ac~ to the device.

Reading from and writing to a character device
The drlverread and drtverwr i te routines of character device drivers are called as a
result of the read (2) and write (2) system calls respectively.

The drlven:ead and drlverwrite routines of character device drivers have direct
ac~ to the user's buffer. You decide what method of buffering to implement in your
character device driver.

The kernel passes two parameters to the drlverread and drlvenotrite routines: the
device number and a data structure called the uio (user VO) structure. The uio
structure describes the data transfer.

Information in the uio structure includes a pointer to the user's buffer and the number
of bytes to transfer. The kernel fills in the uio structure before calling the device
driver. The uio structure is defined in <sys/uio. h> as follows:

struct uio {

struct iovec *uio-iov;

int uio-iovcnt;

int uio-offset;

int uio-seg;

int uio-resid;

} ;

where

• uio-iov is a pointer to a buffer containing uio-iovcnt number of VO vectors.
Each VO vector specifies the base (iov-base) and the length (iov-len) of one
transfer.

• uio-iovcnt is the number of VO vectors.

• uio-offset is the current offset into the file.

• uio-seg is a segmentation flag that can be either UIOSEG _USER (user space) or
UIOSEG_KERNEL (kernel space). nus flag is only used by the kernel; your driver
can ignore this flag.

• uio-resid is initially set to the total si7.e of the transfer request.

The iovec structure contains a pointer to the user's data and the number of bytes to
transfer. The iovec structure is defined as follows:

Chapter 4: Character Device Drivers 4-9

struct iovec{

caddr_t iov-base;

int iov-len;

} ;

where

• icv-base is a pointer to the user's buffer associated with this VO veaor.

• icv-len is the number of bytes to transfer forthe buffer pointed to by icv_base.

Read(2) and write (2) requests use only one iovec struaure. An array of icvec
struaures are only used in readv(2) and writev (2) system calls. The system calls
readv (2) and writev (2) allow you to specify more than one buffer in a single read
or write request. This pr~ is also referred to as scatter-gather VO.

In scatter-gather 1/0, blocks of data to be written don't have to be contiguous in user
memory. Also, when reading from a device into memory, the data comes from the
device in a continuous stream, although it doesn't have to be placed in contiguous
portions of user memory. A single icvec struaure is used to describe each contiguous
area in memory.

Your driver must keep the uic structure updated. Your driver can use uicmcve () to
move data and to update the uic structure automatically. Or your driver can use
physic ()to transfer data. Physic () also takes care of updating the uic structure for
your driver.

In addition, the kernel routines ureadc () and uwritec () can be called to move
data one character at a time. If your driver doesn't use uicmcve (), physic () ,
urea de () or uwritec () , your driver must update the icvec and uic structures.

The driverread routine
The kernel calls the drlven:ead routine as a result of a read (2) on a charaaer device
file.

The drlverread routine is called as follows:

int drlverread(dev, uto)
dev_t dev;
struct uic *uto;

where

• dev is the device number.

• uio is a pointer to the uic struaure for the 1/0 request

Chapter 4: Character Device Drivers 4-1 o

;r'

(

(

• driver is the device prefix.

The kernel invokes the drlven:ead routine with the device number and uio structure as
parameters. The driver extracts the minor number from the device number (using the
kernel macro minor) and typically uses this number to associate the request with a
particular device.

The uio structure contains all the information the driver needs to know about the 1/0
request One of the fields in the uio structure contains a pointer to the user's buffer. So
the driver can buffer the data according to the requirements of the device, or can
directly transfer the data between the user's buffer and the device.

The kernel provides two major routines to assist drivers in performing the I/O
operation. Your driver can use the kernel routine physic () to directly transfer data
between the user's buffer and the device. Your driver can use the kernel routine
uiornove () to buffer data between the user's buffer and a device. These two routines
are discussed in more detail in the sections "Data Transfers using physio ()"and
"Data Transfers using uiornove () ".

The driverwrite routine
The kernel calls the drlverwrite routine as a result of a write(2) on a character
device file.

The drlvenirite routine is called as follows:

int drlverwrite(dev, uto)
dev_t dev;
struct uio *uto;

where

• dev is the device number.

• uto is a pointer to the uio structure for the 1/0 request

• driver is the device prefix.

The kernel calls the drlverwrite routine with the device number and uio structure as
parameters. The driver extracts the minor number from the device number (using the
kernel macro minor) and typically uses this number to associate the request with a
particular device.

The uio structure contains all the information the driver needs to know about the 1/0
request. One of the fields in the uio structure contains a pointer to the user's buffer. So
the driver can buffer the data according to the requirements of the device, or can
directly transfer the data between the user's buffer and the device.

Chapter 4: Character Device Drivers 4- 11

The kernel provides two major routines to assist drivers in performing the 1/0
operation. The kernel routine physio () can be used by drivers that directly transfer
data between the user's buffer and the device. The kernel routine uiomove () can be
used by drivers which buffer data between the user's buffer and a device. These two
routines are discussed in more detail in the following sections.

Data transfers using physlo()
Your character device driver can call the kernel routine physio () to perform raw
VO (also referred to as physical 1/0). The term raw 1/0 or physical 1/0 is used to refer
to a device driver that direaly transfers data between the user's buffer and the device.

You call physio () from your drtverread or drlVenfrite routines. physio () takes
care of many details of the 1/0 transfer, such as locking the user's buffer into memory,
updating the uio structure, and unlocking the user's buffer when the transfer is
complete.

Your drlverread or drlVenfrite routines can call physio () with the following
parameters:

where

physio (strat, bp, dev, ""' uto)
int (*strat) O:
struct buf *bp;
dev_t dev;
int nJJ;

struct uio *uto;

• strat is a pointer to the drlverstrateqy routine. This usually is the same
drlverstrategy routine as used by the block device driver for this device.

• bp is a pointer to a buf structure. The buf structure is described in detail in Chapter
3.

• dev is a device number that the drlverread or drlverwr i te routine was invoked
with.

• "" is a flag that indicates the direction to transfer the data.

• uto is a pointer to the uio structure the drlverread or drlverwri te routine was
invoked with.

Chapter 4: Character Device Drivers 4· 12

('

physio () takes information from the uio structure, device number, and rw flag and
translates it to equivalent information in the buf structure. physic () locks the user's
buffer in memory and calls drlverstrateqy, passing the buf structure as a
parameter. Just as the uic structure fully specifies the VO request for the drlverread
and drlverwrite routines, the buf structure contains all the information the
drlverstrateqy routine needs to perform the VO.

The drlverstrateqy routine can be the same routine as that used by a block device
driver. Refer to Chapter 3 for more information on the functions of a drlverstrateqy
routine.

The drlverstrateqy routine simply schedules the VO and returns to the calling
routine. The calling routine is the kernel when invoked as the result of a read (2) or
write (2) on a block device fde. The calling routine is physic() when
drlvemtrateqy is invoked as the result of a read (2) or write (2) on a charaaer
device flle.

The routine that calls drlverstrateqy has the responsibility of determining whether
or not to wait for the VO request to complete. physic () always waits for the VO
request to finish by calling bicwai t () . physic () passes the buf structure as a
parameter to biowait ().The call to biowait () puts the user process to sleep until a
corresponding call to biodcne () is made. Doing this means that when the VQ
request completes and your driver interrupt routine is called, your interrupt routine
mustwue a call to biodone () to awaken the user p~.

When the transfer completes, your driver interrupt routine should set fields iii the bu f
structure indicating information about the actual data transfer. Your driver interrupt
routine should specifially set three fields in the buf structure: b error, b flags,
and b_resid. - -

Your driver interrupt routine should set b_errcr to an errnc value and set B_ERROR
in the b _ f laqs field if an error occurred in the VO transfer. Otherwise your driver
should set b_error to 1.er0 to indicate the VO transfer was successful.

The b_resid field should be set by your driver interrupt routine to the number of
bytes not transferred for the VO request. If all bytes were transferred, set b _res id to
zero.

After setting appropriate fields in the buf structure, your driver interrupt routine
should call bicdone () to awaken the user process; physic () will then continue to
execute. physio () updates the uio structure according to information specified in
the buf structure. If the uio structure indicates more data needs to be transferred
(only true in the case ofa readv (2) or writev (2) system call), physic() again
sets up the buf structure and invokes drlverstrateqy until all the VO vectors have
been processed.

Chapter 4: Character Device Drivers 4-13

After the 1/0 transfer is complete, physio () updates the uio struaure and returns a
value indicating the su~ or failure of the request phys io () returns whatever value

· was specified in the b_error field of the buf structure.1bus you must be sure your
driver interrupt routine sets this value properly. nus allows your drlverread or
drlverwrite routine to check the retum value of physio () and interpret any error
value accordingly.

Using physlo(> to read from a device

The following paragraphs present an example of the way a character device driver can
use physio () to accomplish an 1/0 requesL Consider a SCSI tape driver called tc
(for tape controller). Assume this driver provides the following high level routines
accesslble through the c:devswtable: tc_open, tc_close, tc_read,
tc write, and tc ioctl. In addition the tc driver contains an interrupt routine
called t c _ ret. nus 'Parucular tape driver only allows one request per device.

Assume a user process has already opened th.is device. nus example traces a read(2)
request on the tape drive, from the user request, through the kemel and tape driver, to
the device, and from the device back to the user process. ~ process is illustrated in
Figure 4-2.

When a user process issues a read (2) request to the tape, the kemel processes ihe
request The kernel fills out the uio struaure related to the 1/0 request. For example,
the kernel fills in the number of bytes to transfer and a pointer to the user's buffer. The
kemel uses the major number to index into the cdevsw table and calls tc_read

The kernel invokes tc_read wj.th the device number and a pointer to the uio
struaure desaibing the 1/0 request tc_read checks the minor number to make sure
this is a request to a valid device.

tc_read uses a private buf structure. This data structure is the same buf struaure
defined by the kernel, but note that th.is buf structure is not associated with the kemel
buffer cache. nus buf structure belonp to the device driver.

tc_read calls physio (),passing a pointer to tc_strateqy, a pointerto the uio
struaure, the buf structure, the device number, and the rw (read/write) flag.
physio () uses this information to fill in fields of the buf structure. For example,
physio () fills in b dev with the device number, b flaqs with a value from the rw
flag, b_un .b_acick with the ac::ldres,, of the user's tXifrer as specified in iov _base of
the uio structure, and b _count with the length of the 1/0 transfer, as specified in
iov_len of the uio struaure. physio () then calls tc_strategy.

tc_strateqy is invoked with a pointer to the buf structure that describes the 1/0
request. tc_strateqy uses information from the buf structure to build the
appropriate SCSI command for the read request Then tc_strateqy calls a driver
start routine,tc_start.

Chapter 4: Character Device Ortvers 4· 14

Fl;ur• •-2
lhe ftow of a read(2) request on the example tc driver

Chapter 4: Character Device Drivers 4-15

tc start calls a SCSI Manager routine to start the 1/0 transaction. The SCSI Manager
routine queues the request and reblrm to tc_start. tc_start then returns to
tc_strateqy, which in bJm reblrm to physio ().

physio () waits for the 1/0 to complete by issuing a call to biowai t () . biowai t ()
puts the user pr<><:e§ to sleep until a corresponding call to biodone 0 is issued. The
kernel routines biowai t () and biodone () can be used by drivers to synchronize
1/0, and are described in Appendix B.

At this point, the 1/0 request has reached the hardware. After the I/O request has been
accomplished (the requested data has been read from the tape drive), the SCSI
Manager is notified. When the hardware finishes the transaction, the SCSI Manager
notes which request has completed. The SCSI Manager maintains a data structure that
associates requests with higher level drivers. The SCSI Manager calls the interrupt
routine (tc_ret) of the higher driver associated with this request

tc_ret is the interrupt routine of the tape driver. The SCSI Manager calls tc_ret
when a request completes on the tape drive. The SCSI Manager passes an error code as
one of the parameters to tc_ret. 11lis error code indicates the success or failure of
the request If an error occurred, tc _ ret interprets the error code and decides how to
handle the error. In this case, tc_ret sets b_error to an errno value, sets B_ERROR
in b_flags, and sets b_resid accordingly. If the request was successful, tc_ret sets
the b_error and b_resid fields in the buf structure accordingly.

After setting fields in the buf structure, tc_ret calls biodoneO. The call to
biodone () issued by tc_ret awakeM the ~that had been waiting on 1/0.
physio () then continues to exewte and updates the uio structure from values set in
the buf structure. physio () reblrm the value set in b error to tc read. tc read
then flllishes any processing and reblms a value to the kernel indicating the success or
failure of the 1/0 request The kernel then reb.lrm a value indicating the success or
failure of the system call to the user.

·Data transfers using ulomove()
Your character device driver can call the kernel routine uiomove () to move data
between the user's buffer pointed to by the uio strueblre and a private buffer used by
your driver. uiomove () takes care of updating the uio structure, locking and
unlocking the user's buffer in memory, and copying the data.

Drivers that need to buffer the data transferred between the user's buffer and a device
often call uiomove (). For example, a printer driver that needs to fonnat the data,
expanding tabs and other characters, and adding device specific protocol, might call
uiomove ().

Chapter 4: Character Device Drivers 4-16

0

('

Your driver can call uiomove () as follows:

int uiomove (address, byte_count, flag, *Ulo)

caddr_t add'feSs;
int byte_count;
int flag;
struct uio •uto;

where

• address is the address of the buffer where data transfer will occur.

• byte_ count is the number of byteS to transfer.

• flag is either UIO _READ or UIO _WRITE, indicating whether to copy data into or out
of the buffer specified by address.

• uto is a pointer to the uio structure.

If your driver calls uiomove () , you must include as parameters the address of a
private buffer belonging to your driver, the number of bytes to transfer, a pointer to
the uio structure, and a flag indicating the direction to transfer the data.

If your driver specifies UIO _READ in the flag parameter, data is copied from your
driver's buffer to the user's buffer pointed to by the uio structure.

If your driver specifies UIO_WRITE in the flag parameter, data is copied from the
user's buffer pointed to by the uio structure into your driver's buffer.

To use uiomove () , your driver needs a private buffer into which to transfer data into
or out of. You can allocate your own storage area in your driver, or you can call the
kernel routine qeteblk () to get a block of memory for your driver.

Your driver can call qeteblk () , specifying the desired sii.e of memory to allocate.
qeteblk () returns a pointer to a buf structure in the kernel buffer cache. The
b _ un • b _ addr field of the buf structure contains a pointer to the base address of the
requested sii.e of memory.

Your driver can call qeteblk () as follows:

struct buf* qeteblk(slze)
int size;

where

• size is the requested sil.e of the buffer.

Chapter 4: Character Device Drivers 4-17

The memory allocated by geteblk () is actually a buffer from the kernel buffer cache.
qeteblk () sets the B_BUSY flag in the b_flaqs field of the buf structure to indicate
that the buffer is in use. Doing this gives your driver exclusive acceg to this buffer.

When you call qeteblk () , you are really "borrowing" a buffer from the kernel buffer
cache. For this reason, when your driver is finished using the buffer, your driver
should return the buffer to the kernel buffer cache by calling brelse () . brelse () is
a kernel routine that returns the buffer and buf struawe to the kernel buffer cache.

Be aware that if no buf structures are available, geteblk () puts the calling process to
sleep () until one becomes available. Thus, geteblk () must not be called in an
interrupt handler.

For a write (2), the "'*1erwrite routine first allocates a private driver buffer to hold
the data. Most drivers call geteblk <) for this purpose. The driver then calls
uiomove () to copy the data from the user's buffer to the driver's buffer. If the driver
called qeteblk () , the driver passes the address in the b _ un. b _addr field of the buf
structure as one of the parameters to uiomove () . 1be driver then fonnats the data in
the driver's buffer and sends the data from this buffer ti:> the hardware.

After the hardware accomplishes the write request, the driver interrupt routine should
call brelse () to return the buf struawe and buffer previously allocated by ·
qeteblk().

For a read (2) , the driver.read routine first makes a request to the hardware to read
the desired number of bytes of data into the driver's private buffer. Most drivers call
geteblk () to obtain a buffer to use for the 1/0 transfer. Then the a~ of this
buffer is given to the hardware as the address to transfer data into.

After the data has been transferred to the driver's buffer, the driver calls uiomove (>
to transfer the data from the driver's buffer to the user's buffer. After the data has been
tr2mferred to the user's buffer, the driver should call brelse () to return the buf
structure and buffer previously allocated by geteblk () .

Performing control and miscellaneous functions on a
device
The ioctl (2) 0/0 controO system call provides a general entry point for device and
driver specific commands. Your driver can use ioctl (2) to allow a process to set
hardware device options, software driver options, or other driver dependent
functions.

The ioctl (2) system call is available for character device drivers only. Block device
drivers do not provide a drlverioctl routine.

Chapter 4: Character Device Drivers 4· 18

Parameters to the ioctl (2) system call are a file desaiptor, the command to be
performed, and an argument to the command A user process invokes the ioctl (2)
system call with the following parameters:

where

ioctl <ftldes, request, a'i>
int fillies, request;

• ftJdes is a file descriptor returned from a previous create (2), open (2), dup (2),
or fen tl (2) system call.

• request is a command that is driver dependent The value of this parameter often
determines what the user should specify for the ~parameter.

• Q18 is the address of an argument associated with the command The type and value
of ~is driver dependent Most drivers pass an address of a structure, allowing
various arguments to be specified in different fields of the structure.

For example, to perform an ioctl (2) on the console to get the current tty state, you
could use the following ioctl (2) command:

ioctl(fd, TCGETA, &t);

In this example, TCGETA is an ioct 1 (2) command supported by the driver, and & t
is the address of a termio struaure.

Refer to Section 7 of the AIUX System Adminstrator's Reference for a list of
commands that individual drivers support in the request field of the ioctl (2) system
call. You can also look in the header file <sys/ ioctl .h> for a list of various request
parameters.

To use the ioctl (2) system call in a user program, you must include the header file
<sys/ ioctl. h> in the code for the user program. Remember that if you are defining
new request parameters for your driver, you must include definitions of these values in
a header fde. In addition, be sure to supply this header file to your users so they can
perform ioctl (2) system calls on your device.

The drlverioctl routine
The drlver.i.octl routine is called as a result of a ioctl(2) on a character device file.
You can use the drlver.i.octl routine to perform control operations on a device, to
get status from the device, to change the configuration of a device, or for other device
and driver dependent functions. Usually you use drlverioctl routines to perform
miscellaneous activities such as rewinding a tape or ejecting a floppy disk.

The kernel calls the drlverioctl routine as follows:

Chapter 4: Character Device Drivers 4-19

int driver.ioctl (dev, cmd, addr, mode)
dev_t dev;
int cmd, mode;
caddr _ t addr:

where

• dev is the device number.

• cmd is a command argument indicating the type of operation to be done. The value
of cmd conesponds to what the user specified in the request parameter of the
ioctl(2) system call. The specific value of cmd is driver dependent You define
values for this parameter specific to your driver according to the directions given in
a following paragraph.

• addris the address of the arguments to the command. The kernel copies the
argument specifted by the user into kernel memory and passes this address to the
driver. This process allows the·driver to copy data freely into or out of the argument
in kernel memory space. When the drlverioctl routine returns to the kernel, if
any data is to be returned to the user in the arg parameter, the kernel copies the
data from kernel memory to the user's buffer.

The kernel is responsible for copying any data specified by the arg parameter
bel.Ween the user's buffer and the driver in ioctl (2) system calls. This mean5 the
driver does not have to invoke copy in () or copyout () , although the driver may
have to appropriately cast the address passed to it in the addr parameter ...

• mode is an argument that contains values set when the device was opened. The
driver can use mode to check whether the device was opened for reading or writing.

• driver is the device prefix.

The kernel invokes the drlverioctl routine with the device number, the mode, a
command, and an argument that normally serves to pass parameters between a user
program and a driver. The cmd parameter is defined as follows:

tdefine cmd_name aa(x,y,t)

where

• cmd_name is the name of the command, such as TCGETA, I_PUSH,
VIDEO_SIZE,orMOUSE_BUTTON.

• aa is replaced by IO, IOR, IOW, or IOWR. The macros for IO, IOR, IOW,
and_IOWRare fOOiidin-<sysfioctl.h>. The meanings for~val~es are as
follows:

_IO No arguments are passed between the
user and the driver.

_IOR The user ream information from the
driver (the driver returns data to the
user).

Chapter 4: Character Device Drivers 4-20 0

(

_IOW

IOWR

The user writes information to the
driver (the user passes data to the
driver).

Data flows both from the user to the
driver and also from the driver to the
user.

• xis a unique letter used by your driver to encode the 1/0 request

• y is a number that distinguishes between various command parameters for your
driver.

• t indicates the type of the data structure that will be passed in the a'B parameter in
the ioctl (2) system call.

For example, the mouse driver encodes one of its cmd parameters as follows:

#define MOUSE_BUTTON _IOR (M, 1, unsigned char) .

This definition says that whenever a user specifies MOUSE_BUTTON in the request field
of an ioctl (2) on the /dev/mouse device fde, the data structure in the arg
parameter must be of type unsigned char. The _IOR indicates data is returned to
the user in the a'B parameter (the mouse driver returns data).

A user program could contain the following code to see whether the mouse button is up
or down:

tinclude <sys/ioctl.h>
#include <sys/mouse.h>
#include <fcntl.h>
#include <errno.h>

main()
{

int fd, ret;
unsigned char mousestate;

if ((fd • open("/dev/mouse", O_RDONLY)) •• -ll
{

printf("error in open,errno number: \d \n ",errno);
exit (1);

}

if ((ret • ioctl(fd,MOUSE_BUTTON,&mousestate)) •• -1)
{

printf(" error in ioctl,errno number: \d \n ",errno);
exit(l);
}

if (mousestate •• 0)
printf("the current mouse state is mouse up \n");

Chapter 4: Character Device Drivers 4-21

if (mousestate •• 1)
printf(" the current mouse state is mouse down \n");

}

This program first performs an open(2) on the mouse device file" If the request is
succes.sfuL the kernel returns a file desaiptor to the user" The user then performs an
ioctl(2), passing the file desaiptor, the request name (MOUSE_BUTTON), and an
argument as parameters" 1be mouse driver isinvoked with the device number, the
command name (MOUSE BUTTON), and the address of the argument to the
commando

The address of the argument is actually a copy in kernel space of the argument
specified by the usero This allows the driver to copy the state of the mouse button
directly into this area of memory" After the mouse driver returns to the kernel, the
kernel copies this data into the argument specified by the usero

The user now has the 011Tentstate of the mouse button available inthemousestate
variable" Ifmousestate is 0, the mouse button is down Ifmousestate is 1, the
mouse button is up" Note that the state of the mouse button only applies to the moment
when the mouse driver was invoked

Checking a device for 1/0 (select)
A/UX provides the select (2) system call to allow for synchronous VO
multiplexing. A user process specifies which file desaiptors to check for their
readiness to perform VO" 1be user process specifies whether to check each file
descriptor for reading, for writing, or for exceptional conditions"

Recall that the select (2) system call is invoked as follows:

select (n/ds, read/ds, Wrllefds, exceptfds, timeout)
int nfds, *read/ds, *Wrllefds, •exceptfds;
struct timval *timeout;

where

read/ds, wrltefds, and exceptfds are bit masks where each file descriptor /is
represented by the bit 1 <</.
nfds is the number of file desaiptors checked, from the bits O through nfds-L

timeout specifies whether the select (2) call should block or not" If the user
specifies a non:zero pointer in this parameter, the pointer points to a timeval
structure that indicates the maximum amount of time to wait for the selection to
complete" If the user specifies the timeout as :zero, the select (2) call blocks
indefinitely"

Chapter 4: Character Device Drivers 4-22

A file desaiptor is a value returned from a previous open (2) call, and corresponds to
a particular device file. When a user calls select (2) , the kernel calls the
dr1verselect routine associated with each file desaiptor. If two or more file
desaiptors are associated with the same major number of a device, the kernel calls the
drlvenselect routine multiple times, once for each file descriptor.

In addition, if a file descriptor is being selected for more than one function,for
example, for both reading and writing, the kernel calls the drlverselect routine is
called twice: once specifying that the driver check the device for readiness to read,
and again specifying that the driver check the device for readiness to write.

Select (2) updates each file desaiptor mask (readfds, Wrlle/ds, exceptfds) to
indicate which file desaiptors are ready, based on the value returned by each
driverselect routine.

The return value of select (2) indicates the total number of ready file desaiptors. If
the time limit specified in timeout expires, select (2) returns zero. If an error occurs
select (2) returm-1 to the user process.

The drlverselect routine
1be kernel calls the drlr.ienselect routine as follows:

drlvenselect (deu, flag)
dev_t dev;
int jlag;

where

• deu is the device number. Your driver can use the minor macro to extract the
minor number and determine which device the select request applies to.

• flag specifies whether to check the deYice for readiness to read, write, or for an
exceptional condition. The paramter flag is FREAD if the driver is to check if the
device is ready for reading. Flag is !WRITE if the driver is to check if the device is
ready for writing. Flag has the value 2Jero (0) if the driver is to check for an
exceptional condition.

If your device is always ready for reading or writing. you do not have to provide a
dr1verselect routine. The cdevswentry for drlverselect can contain seltrue. If
seltrue appears in the cx:levswentry for drlverselect, when a user invokes
select (2) on the corresponding device, the kernel will return TRUE for that device,
by setting the appropriate bit in the file desaiptor masks.

Chapter 4: Character Device Drivers 4-23

Performing initialization on a device driver
Your driver can provide an initialization routine called drlverinit, where driver is
the device prefix for your driver. During autoconfiguration, the kernel searches the
object file of your driver for a routine with the name driver.I.nit. If the kernel finm
such a routine, the kernel ack:W this information to a list of drlverinit routines to call.

If the kemel does not find a drlverini t routine for your driver, the kernel simply
procee& with initialization. You do not have to provide a drlverinit routine.

If you do provide a drlverini t routine, the kernel will call your drlverini t routine
during system initialization. However, you can specify to the kernel at what stage in the
startup kernel code to invoke your drlverl.ni t routine.

You do this by using the p opt flag in your master script file. Some of the options to
this command specify whether to call this routine with interrupts disabled or enabled.
Refer to Chapter 12 for a complete desaiption of the various options to this
parameter.

Typical functions performed in a drlverinit routine include initializing hardware,
performing diagnostics, and any other code that is needed to make your device
available to be used by the system.

Handling character device Interrupts
A driver must provide an interrupt routine for handling device interrupts. Exactly how
and when interrupts are generated depends upon the device sending the intenupl For
example, each slot device generates only one interrupt for all conditions. Thus, the
way your driver handles interrupts also depends upon the device.

How your driver handles interrupts also depends on the lower-level manager or low­
level code that your driver interfaces with. For example, to perform I/O on a SCSI
device, your driver calls a SCSI Manager routine. One of the parameters to this routine
is a pointer to a request block data structure. Your device driver must fill out one of the
fields in this structure with a pointer to the interrupt routine of your device driver.
1ben when the request completes on your device, the SCSI Manager can invoke your
driver interrupt routine.

Slot device drivers provide an interrupt routine called drlver.i.nt, where driver is
replaced by the name of your driver. The interrupt routine of a slot device driver is
defined during autoconfiguration. To add your driver to the kernel, you aeate a
master saipt file. You specify the flags vs in the master saipt file to indicate that your
driver is a slot device driver that receives interrupts. If you specify the flags vs in this
.tile, autoconfiq(lM) will add the address of your slot device driver interrupt
routine to the appropriate entry in the slot interrupt vector table.

Chapter 4: Character Device Olivers 4-24
,0. "-j

("

When an interrupt occurs on your slot card, the kernel indexes the slot interrupt vector
table and calls the routine stored at this address. The kernel passes a single parameter,
called arqs (defined in <sys I req. h>) to slot device driver interrupt routines. The
kernel fills out various fields of this struaure. In particular, the a_ dev field of the a rqs
structure contains the slot number of the card that interrupted. This structure allows
your driver to determine which of its slot arm interrupted. You can also use the slot
number to determine the slot address space for the slot card.

Refer to Chapter 12 for more information on the master saipt file and the
autoconfiguration process. Refer to Chapter 9 for more information on slot device
drivers.

Chapter 4: Character Device Drivers 4-25

c

Chapter 5

Terminal Device Drivers

(

5-1

Terminal devices are special types of character devices that accept, send, and process
dara from an interactive terminal. They differ from other character drivers in that they
perform semantic processing of dara and use special routines to buffer dara to and
from a terminal device.

The A/UX system provides a structured interface to many of the buffering structures
and I/O operations of the terminal device driver . This chapter describes the dara
structures that handle dara buffering and shows you how to write terminal device
drivers that interface with these structures.

You can also write terminal device drivers as streams device drivers. If you want to
write a streams terminal driver, read Chapter 6, "Streams Device Drivers" and Chapter
7, "Streams Terminal Drivers". This chapter foruses on traditional terminal device
drivers that do not use streams.

Buffering and control structures
The buffering structures used to handle dara input and output t:J a terminal device are
clists and cblocks, the ccblock structure, the tty structure, the line discipline, and
the termio structure.

The clist and cblock structures
The basic terminal buffering structure is the cHst. A dist is the head of a linked list
queue of character blocks called cblocks. Figure 5-1 shows the relationship between a
dist and cblocks.

Chapter 5 Terminal Device Drivers 5-2

(

Rgure 5-1
Cllst structure

Chapter 5 Terminal Device Drivers 5-3

The clist structure is as follows:

struct clist {

int c_cc;

struct cblock *c_cf;

struct cblock *c_cl;

} ;

where

o c _cc is a count of all the characters in the dist.

o c _cf is a pointer to the first cblocks in the dist

o c _cl is a pointer to the last cblock in the dist

The cblock structure is illustrated in Figure 5-2. Each cblock structure in the dist has the
following form:

struct cblock

) j

where

struct cblock

char

char

char

*c_next;

c_first;

c_last;

c_data[CLSIZE];

o c _next is a pointer to the next cblock on the dist

o c_first is a pointer to the first character in the c_data array.

o c_last is a pointer to the last character in the c_data array.

o c _data is a 64 element character array that stores characters received from or
sent to a terminal.

Space for cblocks is allocated at boot time.

Chapter 5 Terminal Device Drivers 5-4

Figure 5·2
Cblock structure

Chapter 5 Terminal Device Drivers 5-5

The ccblock structure
The ccblock(character control block) structure points to a dist entry. The ccblock is
defined as follows:

struct ccblock

caddr_t c_ptr;

ushort c_count;

ushort c_size;

) ;

where

• c_ptr is a pointer to the character array (c_data) of the cblock.

• c_count is the character count.

• c_size is the size of the character array of the cblock.

Both c_count and c_size are initially set to the size of the cblock character array.
c_count is then decreased by the number of characters in the cblock character
buffer. 1be number of characters in the buffer is the difference between c_size and
c count.

The tty structure
Every terminal device in the system has one tty structure (defined in
<sys It t y . h>) associated with it. This structure contains information needed to
perform terminal VO. This information includes pointers to the raw, canonical, and
output queues; and a pointer to a device driver command processing routine. The tty
structure is as follows:

idefine NCC 8

struct tty {

struct clist t_rawq;

struct clist t_canq;

struct clist t_outq;

struct ccblock t_tbuf;

struct ccblock t_rbuf;

Chapter 5 Terminal Device Drivers 5-6

(

(

} ;

int (* t _proc) () ;

ushort t_iflag;

ushort t_oflag;

ushort t_cflag;

ushort t_lflag;

short t_state;

short t_pqrp;

char t_line;

char t_delct;

char t_term;

char t_tmflag;

char t_col;

char t_row;

char t_vrow;

char t_lrow;

char t _hqcnt;

char t_dstat;

short t_index;

unsigned char t_cc[NCC];

struct proc *t_rsel;

struct proc *t_wsel;

struct ttychars t_chars;

The first three structures, t_rawq, t_canq, and t_outq, are clists. The first clist
structure, t_rawq, is the raw input queue. The t_rawq dist stores raw input data that
the terminal's interrupt handler has caught and stored. The second dist structure,
t_canq, is the canonical queue. This queue stores •cooked" input data, that is, data
after the line discipline converts special characters in the raw dist (such as the erase
and kill characters) into their canonical forms. These forms are called canonical
because the input is processed in a predefined way before it reaches the queue. The
third cliststructure, t _ outq, is the output queue used to store data that will be sent to
the terminal.

Chapter 5 Terminal Device Drivers 5-7

t _ rbuf and t _ tbuf are ccblock structures. Both t _ rbuf and t _ tbuf contain
pointers to clist entries.The t_rbuf, t_tbuf, t_rawq, t_canq, and t_outq
struaures are comained in the tty structure, as shown in Figure 5-3.

Chapter 5 Terminal Device Drivers 5-8
0

(

Rgure 5-3
Terminal . data structures

(

Chapter 5 Terminal Device Drivers 5-9

The tty strucn.ire fields that are important to someone writing a device driver are as
follows:

• t_rawq, t_canq, and t_outq are the raw, canonical, and output queues as just
described ..

• t_tbuf and t_rbuf are the device transmit and receive buffers, respectively.

• t_proc is the address of the device driver's command processing routine (see
•nie Driver Command Process Routine• given later in this chapter).

• t_iflaq, t_oflaq, t_cflaq, and t_lflaq are the input, output, control, and
line discipline modes, respectively (see termio(7) in the AIUX Programmer's
Reference for definitions of these modes).

• t state maintains the internal state of the device and the device driver. The state
is a com~ite of one or more bits set in this 16-bit field The bit definitions are as
follows:

TIMEOUT A delay timeout is in progress.

WOP EN The driver is waiting for an open to complete.

ISOPEN The device is open.

TBLOCK 1be driver has sent a control character to the terminal to block
transmission from the terminal.

CARR_ ON This is a software image of the carrier-present signal It is used with serial
chips that supports modem control. For more about this bit, see •Modem
Control• given later in this chapter.

BUSY Output is in progress.

OASLP The processes associated with the device should be awakened when output
completes.

IASLP The processes associated with the device should be awakened when input
completes.

TTSTOP Output has been stopped by a CONTROL-S character received from the
terminal.

EXTPROC A peripheral device is performing semantic processing of data.

TACT

CLE SC

RTO

TT I OW

A timeout for the device is in progress.

1be last character processed was an escape character {\).

A timeout for a device operating in raw mode is in progress (An example
would be if canonical processing is taking place).

The process associated with the device is sleeping, waiting for the output to
the terminal to complete.

Chapter 5 Terminal Device Drivers 5-10

(

(

TTXOFF Transmission to the terminal is suspended because a CONTROL-S was
received from the terminal.

TTXON Transmission to the terminal is enabled because a CONTROL-Q character
was received from the terminal.

• t _pqrp identifies the process group associated with the device. It is used to send
signals to the process group.

• t_line holds the line discipline type specified in the c_line element of the
termio structure (a struaure that holds values used for ioctl (2) operations).

• t_delct kee~ track of the number of delimiters found while performing semantic
processing of data.

• t_col records the current column position of the cursor on the terminal.

• t _row records the current row position of the cursor on the terminal.

• t_dstat can be used by the driver to record driver-defined states.

• t_cc [NCC] is an array that holds the control characters specified in the c_cc
member of the termio structure.

The line discipline
All character devices have a cdevsw struaure in the cdevsw table. The cdev5W struaure
contains pointers to device driver routines corresponding to system calls. The kernel
indexes into the cdevsw table and invokes the appropriate device driver routine stored
in the character device driver's cdevsw struaure.

A terminal device driver is invoked with the same parameters as other character
drivers. Once invoked, however, terminal device drivers process the request in a
different manner than other character device drivers.

Terminal device drivers use the linesw struaure, which contains pointers to routines
that manipulate character data and buffers. The routines in the linesw structure are
collectively known as the line dJsdpline. After a terminal driver is invoked by the
kernel, the terminal driver typically calls a line discipline routine to perform the 1/0
request:

The linesw structure is defined as follows:

struct linesw (

int (*l_open) () ;

int (*l_close) ();

int (*l_read) () ;

int (*l_write) ();

int (*l_ioctl) () ;

Chapter 5 Terminal Device Drivers 5-11

int < * l_input l () ;

int (*l_output) ();

int (*l_mdint) ();

} ;

The linesw structure contains addresses of line discipline open, close, read, write,
ioctl, input interrupt, output interrupt, and modem control routines. The line
discipline routines maintain the clists, do input preprocessing and output character
translation, and perform other terminal services (described in termio(7) in AIUX
Programmer's Reference). The device driver only needs to control the
communication line device, and to load and read the device registers.

Line discipline 0 is the system default The routines for line discipline 0 are as follow:

• ttopen

• ttclose

• ttread

• ttwrite

Open a terminal device

Close a terminal device

Read a terminal device

Write to a tenninal device

• ttioctl

• ttin

Perform device-dependent operations

Handle terminal input interrupts

• ttout Handle terminal output interrupts

The t_line field of the tty structure contains the line discipline index into the line
discipline switch table. This field can be a value other than 0 (for line discipline O) if
you implement a protocol other than the system default.

The termlo structure
The termio structure (defined in <sys/termio .h>) holds values used for ioctl
operations (such as when the stty command calls an ioctl routine to set terminal
parameters). It has the following form:

#define NCC 8

struct termio{

unsiqned short c_iflaq;

unsigned short c_oflaq;

unsiqned short c_cflaq;

unsigned short c_lflaq;

char c_line;

unsigned char c_cc[NCC];

Chapter 5 Terminal Device Drivers 5-12

(

} ;

where

• c_iflaq is the input mode of the terminal.

• c_oflaq is the output mode of the terminal.

• c _ c fl aq is the hardware control mode of the terminal.

• c_lflag is the local mode of the terminal.

• c_cline is the line discipline for the terminal.

• c_cc is an array of special control characters.

For the specific values that can be set in these fields, see termio(7) in the~
Programmer's Reference.

Reading from a terminal
Reading characters from a terminal involves processes both at the user level and the
hardware level. Figure 5-4 shows how a character is read from a terminal using the
system default, line discipline 0.

Chapter 5 Terminal Device Drivers 5-13

Rgwe 5-4
Reading a character from a terminal

Chapter 5 Tennlnal Device .Drivers 5-14

a\
\ __ ,/

r'\ u

(

(

When the device hardware receives a character from a terminal, it interrupts the CPU,
causing the device driver interrupt function to be entered. The character driver
interrupt routine services the device hardware and transfers characters from the device
to the receive buffer (t_rbuf) of the device's tty structure. Each character is checked
for validity (parity), and start and stop characters (CONTROL-Q and CONTROL-S). If
an invalid character is found, the read interrupt routine must take appropriate action,
such as aborting the character transmission or asking for retransmission. It then calls
the line discipline 0 input interrupt function, t tin, to transfer characters from the
receive buffer to the raw queue (t_rawq). ttin also copies characters from the
receive buffer into the transmit buffer (t_tbuf) and calls ttxput to echo them to the
screen.

If the number of characters in the raw queue exceeds a level called the high-water
mark, t tin calls the device driver command process routine to send a stop
character to the device to suspend input until the number of raw queue characters falls
below a low-water mark. High-water marks vary according to the baud rate. (The
ratio of the high-water mark to the low-water mark is roughly 9 to 1.)

By suspending input, other processes can get blocks. When the raw queue character
count exceeds 256 characters, ttin flushes the terminal input queues. If an stty
character is found (see stty(l) for a description), ttin sends the appropriate signal
to the process group associated with the device. If processes associated with the device
are sleeping (during a call to ttread) and ttin finds a delimiter character, ttin
awakens the sleeping processes.1be ttin function also takes care of echoing the
characters input back to the terminal by putting them in the output queue as they
arrive.

When the terminal is operating in raw mode, the tty structure contains the number of
characters needed and the amount of time waited before processes associated with the
device are awakened. If the minimum character count has been met, t tin awakens
processes associated with the terminal. If the character count has not been met and a
time has not been specified, ttin calls timeout to awaken the sleeping process after
the time period specified.

After a user program calls the read(2) system call, the line discipline read routine,
ttread, is called after a user has typed in a character. ttread first transfers the
characters from the raw queue to the canonical queue and calls the canon routine to
perform canonical processing of data as characters are transferred. If no characters
are available, it sleeps on the address of the raw queue until characters become
available. To do this, ttread checks if there are characters on the canonical queue. If
no characters are found, ttread places characters from the raw queue onto the
canonical queue. This process continues until the number of characters requested has
been transferred (and if no errors occur). If a delimiter is found, the routine takes
characters from the canonical queue and calls copyout () to move them to the user
data space.

Chapter 5 Terminal Device Drivers 5-15

Before returning, t tread checks to see if input is blocked. If data transm.is.sion from
the terminal has been blocked because the number of characters in the .raw input queue
exceeded the high-water mark, and if the read has reduced the number of characters to
below the low-water mark, t tread calls the device driver command process routine
to resume transmission from the terminal.

Writing to a terminal
Writing characters to a terminal involves the output queue (t _ outq). A transmit buffer
is used to buffer characters that will be written. Figure 5-5 shows how a character is
written to a terminal using the system default, line discipline 0.

Chapter 5 Terminal Device Drivers 5-16

(

Rgure 5·5
Writing a character to a terminal

Chapter 5 Terminal Device Drivers 5-17

After a user program makes a write(2) system call, the terminal driver write routine is
ca.lled, which in tum calls the line discipline write routine. The line discipline 0 write
routine is called ttwrite; this routine moves the characters to be sent to be output
from the user data space to the output queue and calls t txput to output the contents
of the transmit buffer to the terminal. If the output buffer is empty, the line discipline
output routine is called to move characters from the output queue to the buffer.

After a character is printed on the screen, an interrupt is generated that causes control
to be passed to to the driver transmit interrupt handler. This interrupt indicates that
the terminal is ready to accept another character for transmission. If the device
doesn't generate transmit data interrupts, this routine should pause for as long as it
takes a character to be transmitted between each character transmission. The driver
write interrupt routine gets the characters from the transmit control buffer and places
them into the device transmit register to output the next character. The driver then
sends the next character in the transmit buffer to the device. The line discipline output
interrupt routine is called to refill the transmit buffer with characters from the output
queue.

The parts of a terminal device driver
The cdevsw routines found in other character device drivers are also found in a
terminal device driver. (See Chapter 4 for general information about character device
drivers). Unlike other character drivers, however, terminal drivers must provide
pointers to line discipline routines that perform terminal-specific operations. These
routines are described next.

The open routtne
1be open routine of the terminal device driver is invoked with two parameters: the
device number and a flag value. Chapter 4 describes the general functions of a driver
open routine.

The terminal device driver open routine calls the following line discipline open
routine:

(*linesw[tp->t_line].l_open) (tp);

tp->t_line is an index into the lineswtable.1be routine pointed to by the !_open
entry in the linesw structure at this index is invoked.

The line discipline routine establishes a connection between a process and a device,
allocates a cblock for the receive buffer of the tty strucrure and calls a driver
command process routine with arguments tp and T_INPUT.

Chapter 5 Terminal Device Drivers 5-18

(

The close routine
The cl~ routine of the terminal device driver is invoked with two parameters: the
device number and a flag value.Chapter 4 describes the general functions of a driver
close routine.

The terminal device driver close routine calls the following line discipline close
routine to close a device:

(*linesw[tp->t_line].l_close) (tp);

tp->t_line is an index into the linesw table. lbe routine pointed to by the !_close
entry in the linesw structure at this index is invoked

This line discipline routine transmits any characters in the transmit buffer (t_tbuf)
to the terminal, clears all tty buffers and queues, resets the ISOPEN bit in the tty
structure passed to it as an argument, and returns all used cblocks to the list of free
cblocks. After calling the driver close routine, the terminal link disconnects and
control returns to the calling program.

The read routine
The read routine of the terminal device driver is invoked with two parameters: the
device number and the uio structure. lbe line discipline routines update the uio
structure for the terminal driver, and take care of many other aspects of performing
the 1/0. -

The terminal device driver read routine calls the following line discipline read
routine:

(*linesw[tp->t_line].l_read) (tp, uio);

tp->t_line is an index into the linesw table. lbe routine pointed to by the !_read
entry in the linesw structure at this index is invoked

This line discipline routine performs canonical processing upon raw queue data, and
then transfers the data to the canonical queue. After processing, data is transferred
from the canonical queue to user data space.

The write routine
The write routine of the terminal device driver is invoked with two parameters: the
device number and the uio structure. The line discipline routines update the uio
structure for the terminal driver, and take care of many other aspects of performing
the 1/0.

Chapter 5 Terminal Device Drivers 5-19

The terminal device driver write routine calls the following line discipline write
routine:

(*linesw[tp->t_line].l_write) (tp, uio);

tp->t_line is an index into the linesw table. The routine pointed to by the l_write
entry in the linesw struaure at this index is invoked

This line discipline routine transfers characters from user data space to the output
queue as long as the high-water mark isn't exceeded As characters are put on the
output queue, processing is done to expand tabs, and add delays for newline, carriage
return, and backspace characters. When the high-water mark is reached, the routine
sleeps on the output queue a~. The line discipline write routine then calls the
driver command process routine to initiate or resume output to the device.

The Ioctl routine
The device driver ioctl routine normally calls the line discipline routine ttiocom with
the same arguments that the driver's ioctl function was called with.Driver ioctl routines
set paramet~rs related to buffering and character processing. Two ioctl(2) ·
commands, TCGETA and TCSETA, are used to set up terminal characteristics in the
termio structure and send these commands to the device. For example, your driver
can enable the CONTROL-S and CONTROL-Q keys and set characters for erasing lines
and interrupting programs. When your driver calls an ioctl routine, it is passed a
pointer to a termio structure that the line discipline uses to read in the terminal
parameters and to set up the terminal.

The Input and output Interrupt routines
After receiving an input interrupt, the device interrupt routine calls the line discipline
input interrupt routine to process newlines, carriage returns, and uppercase characters
(as specified in the tty structure); to place the converted characters in the raw queue;
and to echo characters to the screen. The input interrupt routine also calls the driver
process control routine to stop or restart input from the device, if necessary.

The line discipline write routine calls the line discipline output interrupt routine to
move characters from the output queue to the transmit buffer. This routine
implements the actual timing delays needed during output. After detecting a delay in
the output queue, the routine calls the kernel timeout () function to arrange for an
entry after a specified time period has elapsed. This delayed entry invokes the driver
command process routine to resume output

Chapter 5 Terminal Device Drivers 5-20

-{---,_

_j

(

The modem Interrupt routine
This routine is currently unsupported

The driver command process routine
The device driver must provide a command process routine (also called the proc
routine) to process device-dependent operations. The t_proc member in the tty
structure points to the command process routine for the line discipline routine that
was initialized when the device was opened The command process routine has the
following format:

preftxproc(tp, cmd)

struct tty *tp.

int cmd;

where

• prefix is the device prefix.

• tpis the address of the device's tty structure.

f • cmd is an integer command, as described next.

The commands are defined in <sys/tty. h>. For line discipline 0, cmdcan be one
of the following:

T_OUTPUT

T TIME

T SUSPEND

Checks to see if the t _st ate member of the tty structure is busy or
suspended. If so, T _OUTPUT does nothing. If t _state is not busy,
the transmit control block is checked and, if empty, T_OUTPUT calls
the line discipline output interrupt routine to move characters from
the output queue to the transmit control block. A character is then
output (if not done by the driver transmit interrupt routine) or
t_state is set to BUSY.

Notifies the driver that delay timing for a break, carriage return, or
other character has completed. This command makes sure that a
break signal is not sent to the device and falls through to T OUTPUT.

Suspends output to the terminal (that is, a CONTROL-Q character has
been received). T_SUSPEND sets the t_state member of the tty
Structure to TTSTOP. T_SUSPEND is called when a user program
invokes ioctl(2) with the command argument TCXON and the third
argument equal to 0.

Chapter 5 Terminal Device Drivers 5-21

T RESUME

T BLOCK

T UNBLOCK

T_RFLUSH

T_WFLUSH

T BREAK

T_INPUT

T PARAM

Resumes output to the terminal. T _RESUME is called when a user
program calls ioctl(2) with the command argument TCXON and the
third argument equal to 1. Both T _RESUME and T _ WFLUSH fall
through to T_OUTPUT.

Blocks further inplt when the input queue reaches the high-water
mark. T BLOCK turns off TTXON and turns on TTXOFF and TBLOCK
in t_state.

Allows further inplt when the input queue falls below the high-water
mark. TTXOFF and TBLOCK are reset.

Resets TTXOFF and TBLOCK if TBLOCK is set; otherwise, T_RFLUSH
does nothing. The purpose ofT_RFLUSH is to flush pending input (if
any).

Clears all characters from the transmit buffer.

Sends a 0.25 second break to the device. T_BREAK sets TIMEOUT in
t state and calls timeout with a value of ttrstrt as the function
USument. T _BREAK is called when a user calls ioctl{2) with
TCSBRK as the command argument and 0 as the third argument.

Prepares a device to receive input T_INPUT is called by the line
discipline 0 ioctl routine when the line discipline changes. The
conu:nand processing routine makes sure that the device can accept
input.

Notifies the driver that the device parameters have changed and that
the parameter setting routine should be called to change hardware
settings.

Modem control
Modem control is an optional feature that allows a driver to acknowledge signals on a
serial line. Normal terminal operations occur on a direct connect line where the
carrier signal is unimponant For modem operations, such as for a dial-in line, a
driver must be able to detect changes in the carrier signal.

For modem control to exist, the serial controller hardware must support the feature. If
your system's serial board generates a modem control interrupt, a drop in the carrier
detect is easily seen as a hang-up. For boards without modem control interrupts, the
driver must use timeouts to poll the device for state changes.

To accomplish modem control,the following ioctls are provided. Note that not all
devices support any or all of them. UIOCTTSTAT is always supported for those devices
that support modem control.

Chapter 5 Terminal Device Drivers 5-22

(

UIOCTTSTAT This ioctl returns 3 byteS. The first byte is 1 if UIOCMODEM is enabled
and is 2 ifUIOCEMODEM is enabled. The second byte is 1 if
UIOCDTRFLOW is enabled. The third byte is 1 if UIOCFLOW is
enabled.

The default is UIOCMODEM/UIOCNOFLOW. These ioctls are
•remembered• when a device is closed,and then reopened. The
following four ioctls are mutually exclusive. (Here DCD is the input
and DTR is the output).

UIOCMODEM Mcxlem control (DTRIDCD) is enabled. DCD is required before a
device can be opened If removed, the device is •hung up•; upon
opening, DTR is asserted.

UIOCNOMODEM Modem control is not enabled. DTR is still asserted, but DCD is
ignored and device open operations always complete without waiting.

UIOCDTRFLOW DCD (on some printers this is the DTR line) is used for flow control.
DCD must be asserted before charaaers can be transmitted.

UIOCEMODEM European-style mcxlem control (DTR/DCD/RI) is enabled. OCD is
required before a device can be opened. If removed, the devic;e is
•hung-up•; upon opening the device, DTR is not asserted until an RI
input is detected.

The following ioctls are a1so included. In these ioctls, RTS iS the
output and crs is the input They are mutually exclusive.

UIOCNOFLOW Hardware flow control is disabled. RTS is asserted before transmitting
data (or it is asserted continuously). crs is ignored.

UIOCFLOW Hardware flow control is enabled. R'I'S is asserted before transmitting
data. crs must be asserted by the other end before transmission can
begin (which is required for every character).

Chapter 5 Terminal Device Drivers 5-23

0

0

Chapter 6

Streams Device Drivers

('·····

(~.
6-1

In this chapter, you'll learn how a stream passes information from a user process to a
device. You'll also learn about parts of a stream, Streams modules and drivers, and
the data structures needed to operate in a Streams environment This chapter is not
intended to be a complete reference for all Streams tools and facilities-rather, you
should use it as an introduction to the most important features of streams drivers.
Before you write a Streams device driver, you should read the Streams Programmer
Gulde by AT&T.

To help you write Streams-based tenninal drivers, A/UX provides the ttx library, a
set of kernel support routines. With this library, writing a Streams terminal driver is
similar to writing a traditional character device driver. You can find details about this
library in Chapter 7. For a list of differences between AT&T's System V Release 3
Streams and the version supported by A/UX (System V Release 2.1), see Appendix F.

What is Streams?
A stream is a full~uplex processing and data transfer path between a driver in kernel
space and a process in user space. Streams is a c-0llection of system calls, keme,1
resources, and kernel utility routines that can create, use, and dismantle a stream.
Streams defines standard interfaces for character input/output within the kernel, and
between the kernel and the rest of the A/UX system. To implement these interfaces, a
set of system calls, kernel resources, and kernel routines are provided.

By having a standard interface and mechanism, drivers can be modular and portable
with easy integration of high-performance network services and their components. A
set of library routines and facilities provides buffer management, flow control,
scheduling, multiplexing, and asynchronous operations of streams and user
processes. One advantage of Streams drivers is that you can insert modules into a
stream to process data that passes between a user process and the driver. Streams is
upwardly compatible with the character VO user interface; thus, it's better to write
Streams drivers instead of standard character drivers.

Chapter 6: Streams Device Drivers 6-2

(''

Parts of a stream
A stream has three parts:

• a stream head

• optional modules

• a stream-end (which contains the driver)

Data. in a stream is said to travel downstream from the stream head to the stream end
or upstream from the stream end to the stream head Streams passes data through a
stream in the form of messages, which are linked ~age blocks consisting of data.
structures and a buffer block.

A stream is shown in Figure 6-1.

Chapter 6: Streams Device Drivers 6-3

Rgur• 6·1
View of a stream

Chapter 6: Streams Device Drivers 6-4

(

The stream head provides the interface between the stream and the user process. Its
main function is to process Streams-related user system calls. It is an integral part of
the kernel.

A moclu1e processes data that travels between the stream head and driver. A stream
can contain 7.ero or more modules, each of which is associated with two queue
structures (described later in this chapter).

The stream end is the part of the stream closest to the external device interface. The
stream end contains the Streams driver, which is a. special type of module.

Building a stream
A stream is initially constructed when a user proces.5 makes an open(2) system call
referencing a Streams special ftle. This call causes a kernel resident driver to be
connected with a stream head to form a stream. Subsequent ioctl(2) calls select
kernel resident modules and cause them to be inserted into the stream.

The first step in building a stream is creating a minimal stream containing a stream
head and a Streams driver. This step takes place by allocating and initializing head and
driver structures (which is done automatically when the Streams driver is opened,
linking modules to form a stream and calling the driver open routine). The second
step in building a stream is to add optional modules, if any, to the stream. (Another
term for adding a module is push; removing a module is known as a pop.) Modules
are added in last-in-first-out order.

Streams modules and drivers
A Streams module is a pair of queues that are used to perform intermediate
proces&ng on messages flowing between the stream head and the driver. One queue is
used to perform functions on messages passing upstream through the module, and the
other queue is used to perform functions on messages pwing downstream through the
module. A module can function as a communication protocol, a line discipline, or a
data filter.

A Streams driver is the stream end, which is the closest end to the external device
interface. A Streams driver can be a device driver or a software driver called a pseudo­
devtce driver. Like a module, a driver is composed of two queues, but a driver has
additional attributes in a stream and in the operating system. The principal functions
of a device driver are device handling, and transforming data and information that
pass between the external interface and a stream.

Chapter 6: Streams Device Drivers 6-5

There are two significant differences between modules and drivers. First, a device
driver must be accessible from an interrupt and from the stream. Second, a driver can
have multiple streams connected to it Multiple connections occur when more than
one minor device uses the same driver. Drivers occupy a file system node and can be
opened like any other device. Modules, on the other hand, don't occupy a file system
node, but are identified through a separate naming convention and are inserted into a
stream in last-in-first-out order. Because modules aren't associated with processes,
they can't gain access to infonnation in the u-dOL The only system calls that modules
and drivers can interact with direaly are open{2) and close(2).

Data structures
The following data structures provide the Streams driver interface to the operating
system:

• streamtab

• qinit

• module_info

These need to be set up o.qce for each driver (not once for each device). They refer to
each other as well as to the routines that are called to perform the various stre~
functions. The streamtab data structure must be declared external because it is
referenced externally and all the data structures are accessible from it. The other data
structures are declared static.

The streamtab structure contains pointers to the driver's read and write qini t
structures. The qinit structure contains a pointer to the put, service, open, and close
procedures. module_info contains a pointer to the processing procedures.

Messages
Streams passes data between a driver and the stream head in the form of messages. A
.message consists of one or more message blocks. These message blocks can be linked
and placed in a message queue. When several message blocks make up one message,
the type of the first block detennines the message type and contains links to the
preceding and next message blocks. ·

Chapter 6: Streams Device Drivers 6-6
0 '

(

(

(

Streams maintains its own message storage pool. Messages are allocated as single
blocks, each of which contains a data buffer of a certain size. If processing causes the
data in a message to exceed the buffer size, the procedure can allocate a new message
containing a larger buffer for it, or it can allocate a new message that holds the new
data and links the two messages together. Use the allocb utility to allocate message
storage from the Streams pool. ('lbese utility routines are described in AT&T's
Streams Programmer Gulde). This utility returns a message block containing a buffer
of the size requested (or larger) or NULL, if the request fails. You can specify the level
of message pool priority (BPRI_HI, BPRI_MED, and BPRI_LO) to let you better
allocate Streams memory resources.

When dealing with messages and message queues, a driver should always use the
Streams utility routines described lacer in this chapcer. To make it easier to push
modules arbitrarily on the stream, modules shouldn't require the data in an M _DATA
message to follow a particular format, such as a specific alignment. A module
shouldn't change the contents of a data block referenced by other modules. Use the
copymsg utility to copy the data to a new block.

Message types
Each messages has a def med message type that identifies the contents of the message.
The message type is a def med set of values identifying the contents of a message
block and message. Modules and drivers can generate most of these message types.
There are two levels of message queuing priority: priority and ordinary. When a
message is queued, the putq utility places priority messages first-in-first-out at the
head of the message queue. Priority messages are not subject to flow control, so their
associated queue is always scheduled. Ordinary messages are placed in the message
queue after priority messages.

The most commonly used types are as follows:

• M_DATA contains ordinary data.

• M_PROTO contains incemal control information and associated data.

• M_PCPROTO is like M_PROTO, except for priority differences and additional
attributes .

• M_IOCTL contains an ioctl request.

• M_IOCACK andM_IOCNAK contain a reply from an ioctl.

(For a complete list and descriptions of all the message types, see AT&T's Streams
Programmer Guide.)

M_DATA messages are generally sent bidirectionally on a stream, and their contents
can be passed between a process and the Stream head. The allocb routine creates
M_DATA messages by default. (For more information, see•utility Routines" given later
in this chapter.)

Chapter 6: S1Teams Device Drivers 6-7

M_PROTO and M_PCPROTO messages carry service interface information among
modules, drivers, and user processes. These messages are sent bidirectionally on a
stream and their messages can be passed between a process and the stream head An
M_PROTO message block typically contains implementation-dependent control
information. The contents of the first message block is the control part, and any
followingM_DATA message blocks are the data part. M_PCPROTO has the same format
and characteristics as M_PROTO, but is called a priority message and is not subjea to
flow control. This means that when an M_PCPROTO message is placed on a queue, its
service routine is enabled. Only one M_PCPROTO message can be in the read queue at
a time; if another message arrives, it is discarded and its message blocks freed

Proces$1ng message blocks
A process sends and receives charaaers on a stream using wri te(2) and read(2)
system calls. When user data enters the stream head or external data enters the driver,
the data is placed into message blocks for transmission on the stream. For upstream
processing, these message blocks are transferred to the stream head, which extracts
and copies the contents of the message blocks to user space. For downstream
processing, the stream head copies data from user space to message blocks, which are·
sent to the driver.

Message structures
Two message structures are contained in a message block:

• msgb, the message block

• datab, the data block

The msgb data structure links messages on a queue, links message blocks together, and
manages read and write operations for the associated buffer (the data block). This
struaure contains pointers used to locate the data currently contained in the buffer.

The datab data structure points to the data block, which contains the message type,
buffer limits, and control variables. This structure has pointers to the fixed beginning
and end of the buffer.

Queues
A queue is a data structure that is associated with a statically compiled module.
Queues always come in pairs-one queue is for upstream (read) processing and the
other is for downstream (write) processing. Figure 6-2 shows two modules, each of
which consists of two queues.

Chapter 6: Streams Device Drivers 6-8

Fl;ur• 6-2
Upstream and downstream queues

Chapter 6: Streams Device Drivers 6-9

Each of the two queues are operated on independently from the other, so each can
have different processing functions and data. As shown by the directional arrows in
Figure 6-2, queues have direct access to the adjacent queue in the direction of message
flow. A queue also has access to its mate's ('lipWeam or downstream queue) messages
and data.

A queue can contain or point to messages, proces8ing procedures, or data. Messages
are dynamically attached to the queue on a linked list as they pass through the module.
A queue typically contains put and service routines (see 9'Ibe Put Routine• and "The
Service Routine• in this chapter), a message queue, and a private data area. 1be read
queues in a moduie also contain the open and close procedures for the module. A
developer may choose to provide private data if required to perform message
processing (for example, state information and translation tables).

Three data strudWes form each queue:

• queu~ _ t is the primary structure, which containS various modifiable values for the
queue. Only the contents of q_ptr (pointer to a private data structure), q_minpsz
(minimum packet si7.e accepted by this queue), q_hiwat (message queue high­
water mark), and q_ low at (message queue low-water mark) can be modifie<:l

• qini t is a pointer to queue-processing procedures. A single common qini t
structure pair is shared among all the queue pairs opened from the same cdevsw
entry. All modules and drivers with the same streamtab (that is, fmodsw or
cdevsw entry) point to the same upstream and downstream qini t structure or
structures. This module is read-only.

• module_info contains identification and limit values. All modules and drivers
with the same streamtab point to the same upstream and downstream
module_info structure or structures. This module is read-only; however, the four
limit values are copied to queue_t, where they can be modified.

Driver flow control
Flow control is the Streams mechanism that regulates the flow of messages within a
stream and the flow from user space into a stream.

To control downstream (write) flow, you can set flow control values (mi_hiwat) and
(mi_lowat) in the downstreammodule_info structure. Streams then copies this
information into the q_hiwat and q_lowat fields in the queue structure of the queue
to set high-water and low-water marks. \Vhen a message is passed to the downstream
put procedure, this procedure determines whether the device is busy. If so, it calls
putq to enqueue the message. putq checks to see if the enqueued character count
exceeds the high-water limit and halts message transmission until the count falls below
the low-water mark (q_lowat).

Chapter 6: Streams Device Drivers 6-1 O
0

(

(

Upstream (read) flow control is done with the noenable and qenable utilities.
noenable disables the driver read service procedure. Messages are sent if the driver
input interrupt routine determines that messages can be sent upstream. Otherwise, the
message is enqueued until the queue becomes unblocked. qenable allows a module
or driver to be scheduled

An example of how to use these two routines would be a buffer module that calls
noenable to inhibit its service procedure and its put procedure to enqueue
messages until a certain byte count or time has been reached. Then the module could
call qenable to gather messages in its.message queue and forward them as a single,
larger message.

Utility routines
Streams provides a number of utility routines that you can use to write your Streams
driver. The following list describes the function of and arguments to each of these
routines. For a complete description of each routine, including calling sequence and
parameters, see AT&T's Streams Programmer Gulde.

Utility Fune Hon

allocb

backq

canput

copyb

copymsg

dubp

dupmsg

flushq

Allocate a message block. The arguments to this routine are the
minimum size of the data buffer and the priority of the allocation
request.

Get a pointer to the previous queue. The argument to this routine is a
pointer to the current queue.

Test for room in a queue. The argument to this routine is a pointer to
the queue to be searched.

Copy a message block. The argument to this routine is a pointer to the
message block to be copied

Copy a message. The argument to this routine is a pointer to the
message block to be copied

Duplicate a message block descriptor. The argument to this routine is
a pointer to the message block descriptor to be duplicated.

Duplicate a message. The argument to this routine is a pointer to the
message to be duplicated.

flush a queue. The arguments to this routine are a pointer to the queue
where meMage queue resides and a flag indicating what type of
messages will be flushed.

Chapter 6: Streams Device Drivers

freeb

freemsg

getq

linkb

msgdsize

OTHERQ

putbq

putctl

putctll

put next

putq

qenable

qreply

qsize

Free a message block. The argument to this routine is a pointer to the
message block descriptor to be freed.

Free all message blocks in a message. The :argument to this routine is a
pointer to the message containing message blocks to be freed.

Get a message from a queue. The argument to this routine is a pointer
to the queue containing the message to be removed

Concatenate two messages. The argument to this routine are pointers
to the two messages to be concatenated.

Get the number of data byteS in a message. The argument to this
routine .is a pointer to the message containing data byteS to be
returned.

Get a pointer to the mate queue. The argument to this macro is a
pointer to a queue (read or write) whose mate queue pointer is
returned.

Return a message to the beginning of a queue. The arguments to this
routine are pointers to a queue where the message will be returned and
to the message itself.

Put a control me,,sage. The arguments to this routine are a pointer to a
queue where the put procedure is located and the control message
type.

Put a control message with a 1-byte parameter. The arguments to this
routine are a pointer to a queue where the put procedure is located,
the message type, and a 1-byte parameter.

Put a message to the next queue. The. arguments to this macro are a
pointer to the calling queue and a pointer to the message to be
passed.

Put a message on a queue. The arguments to this routine are a pointer
to the queue where the message queue is located and a pointer to the
message to be put on the· queue:

Enable a queue. The ar8ument to this routine is a pointer to the queue
to be enabled.

Send a message to a-stream in the reverse direction. The arguments to
this routine are a pointer to the originating queue and a pointer to the
message to be senL

Find the number of messages in the queue. The argument to this
routine is a pointer to the queue where the messages are located.

Get a pointer to the read queue. The argument to this routine is a
pointer to the write queue in the same module.

Chapter 6: streams Device Drivers 6-12

c:

rmvb

splstr

unlinkb

WR

Remove a message block from a message. 1be argument to this
routine are a pointer to the message block and a pointer to a message.

Set processor level. There are no arguments to ~ routine.

Remove a message block from the message head 1be argument to
this routine is a pointer to the first message block.

Get a pointer to the write queue. The argument to this routine is the
read queue pointer.

Streams device/module routines
The following routines are found in every· Streams device driver or module.

The open routine
1be device o~ routine is called every time a process opens a device. This causes a
kernel resident driver to be connected With a stream head to fonn a stream. A stream is
created on the fust"open(2) system call made to a character special file corresponding
to a Streams driver. A driver open routine has user context, so it can gain access to the
u-dot and may call sleep () , although it must always return to the caller. In Streams
open routines, all sleeps must be done with the PCATCH option (see sleep(kemel) in
Appendix B). If the sleep returns, then the open routine should return failure.

The close routine
The last close (2) system call dismantles the stream and closes the file. Dismantling
consists of popping any modules on the stream, and closing the driver and the file.
The close routine can delay before popping any modules to allow any messages on the
module's write message queue to be drained by module processing. On return from
the driver close routine, any message left on the driver's message queues are freed,
and the queue_ t and header structures are deallocated. Like the open routine the
driver close routine has user context, so it can gain access to the u-dot and may call
sleep, although it must always return to the caller.

1be close routine doses a device. It is called when the last process that has the device
open closes it. Note that this routine is called once, while the open routine is called
many times.

Note: Streams frees only the messages contained on a message queue. The driver close
routine must free any messages used internally by the driver.

Chapter 6: Streams Device Drivers 6-13

The put routine
A queue's put routine receives messages from the preceding queue. It provides the
only entry point into one queue from a preceding queue. This routine first receives a
message, does optional processing on it, then calls the putq utility. putq places the
message on the tail of the message queue, schedules the queue for exea.ition, then calls
the service routine.

Put routines are generally required in pushable modules and there should be separate
routines for upstream and downstream processing. Each queue must define a put
routine in its qini t structure for passing messages between modules. A put routine
must use the putq utility to enqueue a message on its own message queue. This is
needed to maintain the fields of the queue_t structure consistendy.

Put routines must never sleep because they have no user context.

The service rO:uttne·
A queue's optional service routine receives messages queued by the put routine. The
main purpose of a service routine is delayed processing. It must be present for flow
control. ·

The service rou~ gets the first message from the message queue with the getq utility,
processes the message and passes it to the put procedure of the next queue with
putnext. This processing continues in a first-in-first-out basis until the queue is empty
or flow control blocks further processing, after which the service routine returns to the
calling program. Service routines are optional. 1bey have no user context, so they
must never call the kernel sleep routine. A service routine must return to the caller
after execution.

1be service routine must use the Streams getq utility to remove a message from its
message queue. The. service routine should process all messages on its message queue
unless the stream is blocked To process a message, a service routine must do the
following:

1. Remove the next message from the message queue using getq. If there is no
message, return.

2. If the canput utility, fails, this is not a priority message, and the message is to
be put on the next queue, then go to step 3. Otherwise, go to step 4.

3. Replace the message using putbq, and exit the service procedure. Flow
control will back-enable the service procedure. Back-enable is desaibed later
in this section.

4. Process the message as necessary and return to step 1.

Chapter 6: streams Device Drivers 6-14 c

(

(

Queues have both high-water and low-water marks. The high-water mark is the
maximum number of messages that can be put on a queue (say qf). The low-water
mark is the level at which a queue can begin to schedule new messages. After the high­
water marlc for ql is reached, new ~ages are put on another queue (q2) and the
canput routine retwn.s 0. This routine also sets a flag in ql so.when its low-water mark is
reached, q2 will be scheduled for service. This process is known as a back-enable.

The put and service procedures give your driver rapid response along with queueing
functions. The put procedure allows rapid response.to certain data and events such as
software echoing of input characters, because it is granted a higher priority than
schedules service routines. Queueing defers processing of the service procedure until
all queues are processed. Service routines allow p~ing time to be more evenly
spread between multiple streams.

Streams scheduling
When a message is placed on an empty queue, it is scheduled. This means that its
service routine will be called in the near future after all interrupts are serviced and the
processor is running at processor level spl 0. Service routines have no process.
context. Other ways to schedule a queue are by means of the qenable routine and by
back-enabling from flow control.

Cloned devices
A cloned device is a Streams device that returns an unused minor device number when
initially opened, rather than requiring the minor device number to be specified in the
open(2) call Coned devices can be useful when a user p~ wants to connea a new
stream to a driver, regardless of which minor device is opened. To help your driver
open a cloned device, Streams provides the clone open facility. The clone driver (see
clone(?)) is a system-dependent Streams pseudo-device driver.

When an open(2) system call is made to a cloned device's Streams file, open causes a
new stream to be opened to the clone driver and the open procedure in the clone to be
called.

A cloned device has a major number corresponding to the clone device driver and
minor number corresponding to the major number of the target driver.

Chapter 6: Streams Device Drivers 6-15

;f.
~;i

(

Chapter 7

Streams Terminal Drivers

..

7-1

This chapter describes how to write a Streams-based terminal driver. In particular the
chapter describes how to use a group of A/UX kernel routines called the t tx library.
The purpose of these routines is to make Streams terminal drivers work like traditional
character drivers. The main difference between traditional character drivers and
Streams drivers is that Streams drivers deals with messages and queues, rather than
cbloclcs and clists.

if you wish, you can write your own Streams-based terminal driver. The advantage of
using the t tx library package is that it provides almost all the Streams interfacing
code, so it makes writing a Streams terminal driver that much easier.

Note: The ttx library is not a generic part of a Streams driver. If you wish to write a
driver that is portable to other systems, you must not use this subroutine library. For
general information about writing standard Streams drivers, see Chapter 6.

At the end of this chapter you'll find a skeleton Streams driver that you might want to
use as a guide for writing your own driver.

Streams line discipline
Streams is a mechanism that provides a way of controlling how information is
processed on its way to and from devices. For ITY-style devices (such as terminals),
this controlling mechanism is normally done using the Streams module line, which is
actually a line discipline. The line processes characters as they are sent to and from a
terminal. It provides· functions such as:

• echoing

• erase and kill processing

• flow control

• ioctl(2) processing (see termio(7))

• character editing (for example, turning carriage returns into line feeds)

In traditional character drivers, both the driver and the line discipline perform these
functions. In Streams terminal drivers, however, the driver is specifically responsible
for output flow control (recognizing XON/XOFF) and ioctls from termio(7) that
directly affect the device (in particular, the parts that control things like baud rate,
parity, number of stop bits, and character size). ·

The line discipline does the rest The two parts differ because the driver must be able
to operate without the line discipline being present on the Stream. This structure
allows greater efficiency in operations that don't require the line discipline. A
Macintosh II device without a line discipline module pushed onto it is said to be
operating in raw or uncooked mode.

7-2 Chapter 7: Streorm Terminal Drivers

i(..

~/

(_

('_

c·

Communicating with the line discipline is done by passing messages back and forth
along the queue. Because the code to do this is the same for all charaaer devices, the
t tx library has been written to make it easier to write a Streams driver. Thus, you don't
have to know about Streams in order to write a Streams terminal driver-you just have
to know how to use a basic skeleton driver.

Data structures
As mentioned in Chapter 6, the streamtab, qinit, and module_ info data
structures provide the driver interface to the operating system. 'Ibey are set up once
for each driver and reference each other, as well as the routines that perform various
Streams functions. Remember that the following struaures must reference the Streams
put and service routines:

ttx_rsrvc

ttx_wputp

ttx_wsrvc

Streams read service routine

Streams write put routine

Streams write service routine

The reference to the Streams read put routine should be NULL. You must also add the
addresses of your driver's open and close routines. 1he streamtab data structure
must be declared extern because it is referenced externally and all the data structures
are accessible from it. The other data structures shouJd be declared static.

The open and close routines are the only ones that are ever called in process context.
This means that they are the only ones that can reference the u-dot, copy data to and
from processes, or call sleep. Because these routines are called from kernel routines
that allocate dynamic data structures, they must always sleep with the PCA TCH signal
set With PCATCH set, a signal is not delivered to wake the sleeping process until after
the open or close is complete and the dynamic data structures (such as the queues and
the stream head) are disposed of.

Each Streams tty struaure must have a data structure allocated for it of type struct
ttx. This data structure is normally called the ttz structure. It is referenced by the
device's stream queue (via the q_pt r field) and contains most of the context that is
needed for operating a terminal-style device. The t tx structure contains the following
fields:

t _ q Pointer to the read queue attached to this device

t _rm Pointer to the current input buffer

t _ xm Pointer to the current output buffer

t _J:>roc Address of the device's command process routine (required)

t_ioctl Address of the device's ioctl routine (optional)

Chapter 7: Streams Terminal Drivers 7-3

t_dev Device ID (for user only); normally the minor number

t_addr Device's address (for user oilly)

t_count Number of bytes remaining in the input buffer

t_size Si7.e of an empty input buffer (set from the si7.e parameter to ttxinit)

t_iflag Input-processing modes from TCSETA (see teDni.0(7))

t_oflag Output-processing modes from TCSETA

t_cflag Device modes from TCSETA

t_lflag Line discipline modes from TCSETA

t_state Current device state. The defmed flags for t_state are as follows:

BUSY •Device is currently transmitting.

TT STOP

TTXOFF

TTXON

TB LOCK

TIMEOUT

XMT_DELAY

OAS LP

RCV_TIME

WOP EN

I SOP EN

CARR_ON

-Output is stopped.

•Send an XOFF as soon as possible.

-Send an XON as soon as possible.

•input is blocked (via an XOFF).

Device is sending a line break.

Device has stopped transmitting because of delay
(usually after a newline or other cursor motion
character). •

t tx library is waiting for output to drain so it can
complete a close.

Sys~m is out of buffers for receiving, so it's trying to
obtain more.

•one or more processes are waiting for carrier
before they open the device.

•At least one process has the device open.

•earner line is turned on.

Note: Only the values marked with as asterisk ~) can be changed; the others are used
internally by the t tx hbrary.

The Streams terminal driver routines
The Streams terminal driver routines that you miJst write are listed below. In all cases,
prefix is the device prefix used your driver.

7-4 Chapter 7: Streams Terminal Drivers

0

• preftxini t initiali:zes the device. The kernel calls it once before interrupts are
turned on.

• pre/1Xx:Jpen opens a device. It is called every time the device is opened

• preft»::,lose closes a device. It is called when the last process that has a device
open closes it.

• preftxioctl performs special functions. It is called whenever an unknown ioctl
message from a process is received at the driver.

• pre.ftxparam sets up hardware. It is called internally to set up device parameters
such as baud rate.

• preftxint handles interrupts. It is called as a result of a device interrupt.

• preftxproc performs command processing. It is called internally and also by the
t tx library whenever it wants something to be done ..

Note: All of these routines except preftxint and preftxini t are normally declared
static. This is because they either are internal routines that are never called externally
or are referenced by a data structure such as the stream description (streamtab) or
the t tx structure.

(The open routine
The streams device open routine is called every time a process opens a device. The
streams device open routine has the following format:

static int

preftXXJpen(q, dev, flag, sjlag, err)

queue_t•q;

dev_t dev,

int flag;

int sflag;

int •err;

where

• q is a pointer to the read queue for the device end of the stream.

• dev is the device number of the device.

• flag is the normal device open flags passed to the open routine.

• sflag is the Streams flag. P~ible values for sflag are as follows:

MODOPEN A module is being opened (pushed).

DEVOPEN A normal device is being opened.

Chapter 7: Streams Terminal Drivers 7-5

CLONEOPEN A cloned device is being opened (if successful, the
device's minor number is returned by the open
routine).

• err is a pointer to a location where any errors are stored if the open fails.

Note. The open routine arguments are slightly different from normal Streams open
routines. The vnode kernel requires an open routine to return errors to the caller
rather than placing place them in u. u_error, as is done in other systems.
Remember this when you port drivers to other Streams implementations. For more
information on vnode kernel changes, see Appendix E of this manual.

The close routine
The streams close routine closes a device. It is called on the last close of a device. Note
that this routine is called once, while the open routine is called many times. The
streams close routine is called as follows:

static int

preflxclose(q, flag)

queue_t •q;

int flag;

where

• q is the read queue of the stream being dismantled

• flag is the flag passed to the open routine.

The lnltlallzatlon routine
The initialization (or· In#) routine puts the device into a known state. The system
invokes these routines once during system initialization. By using autoconfiguration,
you have a choice of where such initialization occurs (see Chapter 12 for details).
Normally, an initialization routine is called before interrupts are turned on. Here is
the format of the initialization routine:

int preftxinit ()

The parameter routine
A device's parameter (or param) routine is called internally to set up registers in the
device using values stored in the t tx structure passed to it. The format of the param
routine is as follows:

7-6 Chapter 7: Streams Terminal Drivers

(

static int

preftxparam(tp)

register struct ttx•~

where q.>is the device's ttx structure.

The Ioctl routine
The streams ioctl routine performs message handling. This routine referenced by the
t ioctl field in the ttx strudllre, and is called when an ioctl message is received at
~ device end of the stream that can't be handled by the t tx library. The streams
ioctl routine has the following format:

static int

preflxioctl(tp, focbp, args)

struct ttx •tp;

struct iocblk•focbp;

mblk_t •args;

where

• f.> is the device's ttx structure.

• 1ocbp is a pointer to the ioctl message's control block (the first block in the
message).

• args is a pointer to the entire ioctl message.

If the ioctl routine reruins a noru:ero result, the routine failed and the message is sent
back to the stream head as an error (an error return may be placed in the VO control
block, if desired). The ioctl routine is optional, but if not present, all unknown
mes,,ages reblm an error value. If parameter(s) were sent to the ioctl call they appear
in the second (and subsequ~ message block of the mes,,age referenced by args. You
may need to allocate message blocks to hold data returned to a user program.

The command process routine
The command process (or proc) routine processes commands requested by the
system and other parts of the driver. 1be t _proc field in the t tx structure contains
the address of the command process routine. The t tx library calls this routine (and a
driver calls it internally) whenever a driver must perform an action. 1be command
process routine is required. 1be command.process routine has the following format:

static int

Chapter 7: Streams Terminal Drivers 7 • 7

preftxproc(tp, cmd)

register struct ttx•q,;

int cnu4
where

• tp is a pointer to the ttx structure that identifies the device.

• cmd is a command requesting an action (or notifying the driver of a change).

This routine should always disable device interrupts upon entry (as it can be called
from a device interrupt routine), and return them to their previous state (using splx)
upon exiL Most of what a command process routine does is the same from device to
device, because the device-dependent parts are usually simple things like transmitting
a charaaer or starting a line break. The reason for repeating much of this code is to
support drivers for intelligent devices (for example, ones that can do OMA or that
have large internal buffers). The following commands are passed when calling a
device's command process routine:

T_BREAK Start transmission of a line break. When this happens, ttx_break
(see below) should be called so that a T_TIME call will be made later.

T_TIME Complete transmission of a line break and resume normal outi:>ut

T _ WFLUSH Discard any characters queued for output (some devices have internal
queues that should also be flushed).

T_RFLUSH Plush any characters waiting to be input

T_RESUME Restart suspended output (usually by an XOFF or a user ioctl request).

T _SUSPEND Suspend output until a RESUME occurs. On devices with large internal
buffers, some special action may be required to stop output.

T _OUTPUT Start output if p0551ble. This is usually done when a device transmitter
interrupt occurs or a data message. arrives at the device's queue.

T _BLOCK Block input (by sending an XOFF to the remote end).

T _UNBLOCK Unblock input (by sending an XON to the remote end).

T_PARM Call driver's parameter routine because the device's parameters On
the t tx structure) have changed.

T _INPUT A new input buffer is available. For simple devices, this is ignored
For devices that do OMA directly into device buffers, T_INPUT is
used to tell the devic:E about a new buffer.

These commands are the same as those used in traditional character drivers. This is
done so it's easier to transport old drivers to the new Streams style of driver writing.

7-8 Chapter 7: Streams Terminal Drivers

0

0

(

(

The ttx library support routines
Streams terminal drivers can call the t tx library support routines described in this
section.

The t txini t routine has three main purposes. First, it initializes the t tx structure
passed to it Second, it associates the stream's queue and the device's t tx structure
(by having them point to each other), so that the device is associated with the stream.
Finally, it allocates a receive buffer for the driver using the size pas.5ed. If the size is
zero, then no buffer is allocated. You might not want to allocate buffers for devices
(such as printers) that can't receive characters, or for smart devices that may wish to
manage their own receive buffering.

A driver's open routine calls t txini t when a device is first opened. Before calling it,
the t_ioctl field in the ttx structure field must point to your driver's command
process routine. 1be ttxinit routine has the following format:

int ttxinit(q, tp, sz)

queue_t •q;

struct ttx •t/>,

int sz;

where

• q is the queiie pointer passed to the open routine.

• tp is the t tx structure to be associated with the device.

• sz is the size of the input buff er for this device.

ttx_put
Receive interrupt routines that have placed characters in the receive buffer (pointed to
by the t tx field t _ rri) call the t tx _put routine to pass the message down the Stream
and, if possible, to allocate a new buffer. The t tx _put routine returns a nonzero
value if it can't allocate a buffer. Routines in the t tx library will continue to try to
allocate a buffer until it succeeds. The ttx_put routine has the following format:

int ttx_put(tp)

struct ttx •tp; .

where tp is the ttx structure to be associated with the device.

Chapter 7: Streams Terminal Drivers 7-9

ttx_slghup
The ttx siqhup routine notifies processes that have a device open that the driver
has detected a hangup. The routine aJso flushes any queued input and output The
ttx_siqhup routine has the following format:

int ttx_sighup(tp)

where tp is the t tx structure to be associated with the device.

ttx_break
A driver calls the t tx _break routine to hand.le break processing. The routine marks
the t tx structure so that no output can occur during the break and starts a timeout to
wake up the driver using T_TIME to stop the break. The ttx_break routine has the
following format:

int ttx_break(tp)

struct ttx •tp.

where tp is the t tx struaure to be associated with the device.

ttx_close
The t tx _close routine performs close operations as part of a device close. The
ttx_close routine waits for output to drain, flushes input and output, discards
buffers, and then breaks the connection between the queue and the device. The
ttx_close routine has the following format:

int ttx_close(tp)

struct ttx •tp.

where tp is the t tx structure to be associated with the device.

A Skeleton Streams driver
You can use the following example as a template for Streams terminal drivers. The
comments marked with the string DEV should be replaced by device-dependent code
that performs the actions described. Of course, not all devices are completely
straightforward, so it may be nec~ary to make additional changes to the driver.

tinclude "sys/Stream.h"

tinclude "sys/tty.h"

7-10 Chapter 7: Streams Terminal Drivers

(

finclude "sys/ttx.h"

fdefine NDEVICES 4 /* the number of devices supported */

static struct ttx DEV_tty[NDEVICES];

extern int nulldev();

/* the per-device "ttx" structures */

I* externally defined routines */

extern int qenable();

/*

* Locally declared routines that need to"be

* declared before use

*/

static

static

static

static

/*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

int DEVopen();

int DEVclose();

int DEVproc();

int DEVioctl();

The following four data structures °Collectively describe the

interface to the Streams system. Note that they reference these

ttx routines:

ttx_rsrvc

ttx_wputp

ttx_wsrvc

which intercept messages sent to the device and convert them into

calls to the device's command process routine below.

These routines must reference your driver's open and close

routines.

* The structure DEVinfo is the primary interface with the rest of

* the kernel (it references the other three) • It, the interrupt

Chapter 7: Streams Terminal Drivers 7-11

* routine DEVint, and the initialization routine DEVinit are the

* only data structures that need to be declared and referenced

* externally to this driver.

*
*/

static struct module_info DEV_info • {5321, "DEV", 0, 256, 256, 256};

static struct qinit DEV_rq • {NULL, ttx_rsrvc, DEVopen, DEVclose,

nulldev, &DEV_info, NULL};

static struct qinit DEV_wq - (ttx_wputp, ttx_wsrvc, DEVopen, DEVclose,

nulldev, &DEV_info, NULL};

struct Streamtab DEVinfo • {&DEV_rq, &DEV_wq, NULL, NULL};

/*

* The initialization routine is called with interrupts disabl~d. Its

* purpose is simply to put the device into a known, stable state.

*I

DEVinit ()

/*

*

*

*

*

*

*

*

7-12

register int count;

for (count - O; count < NDEVICES; count++) {

I* DEV: Initialize the device referenced by count */

The device's open routine is called whenever the device is opened.

When the device is first opened it must be prepared for use (for

example, it should be set to its initial baud rate and its

interrupts should be turned on) . Also when it is first turned on

its corresponding ttx structure is initialized and ttxinit.O is

called to complete this initialization and to allocate receive

buffers for it.

Chapter 7: Streams Terminal Drivers

(

(

(
~-

,,r'

*

* Since Streams open and close routines are called from process

* context (i.e., in the context of the process that is doinq the

* open or close) they can sleep(). But because they are Streams open

* routines they must sleep with the PCATCH flaq set. This is because

* the stream open causes the Stream data structures to be built; if

* an open fails because of a siqnal, the open routine must catch the

* siqnal and return OPENFAIL.

*

* This example shows a driver that only supports modem control.

* Note that only one process actually ever sleeps waitinq for

* carrier presence, All others sleep waitinq for that process to

* finish before proceedinq. This is because if the process that did

* the initial open (the one that called ttxinit()) fails, it MUST

* call ttx_close in order to free the buffer that was allocated for

* input.

*

*I

static

DEVopen(q, dev, flaq, sflaq, err)

queue_t *q;

dev_t dev;

int *err;

reqister struct ttx *tp;

struct device *device;

dev • minor(dev);

if (dev >• NDEVICES)

*err - ENXIO;

return;

/* Check the device ID for */

/* validity */

Chapter 7: Streams Terminal Drivers 7-13

tp • 'DEV_tty[dev];

while (tp->t_state ' WOPENl { I* Sleep until other opens */

if (sleep((caddr_t),tp->t_q, TTOPRIIPCATCHJ) /*complete*/

return(OPENFAIL);

if ((tp->t_state,(ISOPENIWOPENJ) -- 0) { /*If this is the first open: */

tp->t_proc • DEVproc; I* initialize the ttx */

tp->t_ioctl - DEVioctl; I* structure */

ttxinit(q, tp, 4); /* allocate a 4-byte rev */

I* buffer*/

I* DEV: Put the devices chip address in addr */

tp->t_addr • (caddr_t) (addr);

tp->t_dev • dev;

I* DEV: Assert the DTR line */

DEVparam (tp) ; I* Set up the device */

I* DEV: Put the state of the DCD line in dcd */

if (dcd) I* if carrier mark it */

tp->t_state I• CARR_ON;

if (! (flaq' FNDELAY)) { I* Sleep until carrier*/

I* present*/

while ((tp->t_state 'CARR_ON) •• 0) {

tp->t_state I• WOPEN;

if (sleep((caddr_t),tp->t_q, TTOPRIIPCATCH)) {

if (!(tp->t_state,ISOPEN)l

ttx_close(tp);

tp->t_state ,. -WOPEN;

wakeup((caddr_t),tp->t_q);

return(OPENFAIL);

7-14 Chapter 7: Streams Terminal Drivers

/* If interrupted */

I* a siqnal exit */

I* qracefully */

0

(

(

I*

*

*

*

*

*

*

*

*

*

*

*

*

*I

tp->t_state ,_ -WOPEN;

tp->t_state I- ISOPEN;

return(l);

/* Mark the device open */

/* Return success */

The close routine's main purpose is to call ttx_close to wait for

output to drain and then recover the input buffers. After this,

DTR is removed (if required) •

It is only called when the last process has the device open closes

it, i.e., just before the system dismantles the Stream data

structures.

Note: Close routines are also called from process context,

so they can sleep (again they must use PCATCH) . However this

is unusual. Close routines always succeed and so don't

return status.

/* ARGSUSED */

static

DEVclose(q, flag)

queue_t *q;

int flag;

register struct ttx *tp;

int s;

tp - (struct ttx *lq->q_ptr;

Chapter 7: Streams Terminal Drivers 7-15

ttx_close (tp);

if (tp->t_cf lag & HUPCL) {

/* DEV: Hang up the device (remove DTR) */

/*

* Interrupt service routines depend on the type of device being

* used. This one assumes that there are three basic types of events

* signalled by the device: transmit, receive and DCD change.

*/

DEVint (ap)

struct args *ap;

int type, dev;

/* DEV: Figure out from the a_dev field in ap and the device which

device caused the interrupt and put it in dev */

/* DEV: Figure out the type of interrupt (receive/transmit/special

condition) and put a code in type */

switch (type)

case O:

DEVrintr (dev) ;

break;

case l:

DEVtintr (dev) ;

break;

case 2:

DEVsintr (dev);

break;

7-16 Chapter 7: Streams Terminal Drivers

(~

I*

* Receive interrupt routines basically read a character and status,

* process flow control, process errors and then pass the character

* back to the queue by putting it into a message buffer and calling

* ttx_put(). If no buffers are available, characters are discarded.

*I

static

DEVrintr(dev)

int dev;

register mblk_t *m;

register struct ttx *tp;

register int c;

int s, lent, flg;

char ctmp;

char lbuf[3];

sysinfo.rcvint++;

tp - &DEV_tty[dev];

/* D~V: Read the device status register and put it in s */

I* DEV: Read the received character register and put it in c */

/*

* If output software flow control is enabled and the character

* is an XON/XOFF character then call the command process

* routine to stop output of characters. Note: this happens

* even if the input character was found to be in error.

*I

if (tp->t_iflag,IXON) (

ctmp • c & Ox7f;

if (tp->t_state&TTSTOP)

if (ctmp •• CSTART I I tp->t_iflag&IXANYl

Chapter 7: Streams Terminal Drivers 7-17

DEVproc(tp, T_RESUME);

) else

if (ctmp -- CSTOP)

DEVproc(tp, T_SUSPEND);

if (ctmp -- CSTART I I ctmp == CSTOP)

return;

/*

* If no buffers are available, throw the character away

*/

if ((m • tp->t_rm) ••NULL)

return;

/*

* Check for errors

*/

lent = 1;

flg = tp->t_iflag;

I*

* Decode the device-dependent errors

*/

if (s ' (C_PERRIFRERRIROVRNIRA_Bll { /* These bits are device

I* dependent */

if (s ' C_PERR)

c I• PERROR;

if (s ' FRERR)

c I• FRERROR;

if (s ' ROVRN)

c I• OVERRUN;

if (s ' RA_Bl

(\

'

./;

7 • 18 Chapter 7: Streams Terminal Drivers

(

c • FRERROR; /* Clear c for break */

/*

* Now do device-independent error processinq

*I

if (c,(FRERRORIPERRORIOVERRON))

if ((c,Oxff) •• 0) {

if (flqUGNBRK)

return;

if (flq&BRKINT)

/*.A break was detected*/

/* Send a messaqe to the */

/* line discipline */

putctll(tp->t_q->q_next, M_CTL, L_BREAK);

} else

return;

) else

if (flqUGNPAR)

return;

if (flq,PARMRK) {

·) else

lbuf(2J • Oxff;

lbuf[l] • O;

lent • 3;

c • O;

if (flqUSTRIP)

c &• Ox7f;

else (

c ,. Oxff;

/* Iqnore characters in error */

/* Pass back marked characters */

/* in error */

/* the normal case */

Chapter 7: Streams Terminal Drivers 7-19

I*

*

*

*

*

*/

if (c •• Oxff '' flg,PARMRK)

lbuf[l] • Oxff;

lent • 2;

Copy the characters out from the temporary buffer to

the Streams buffer, then call ttx_put to send

it to the line discipline when we are finished or

the buffer is full.

if (lent !• ll

lbuf[OJ • c;

while (lent)

} else

*m->b_wptr++ • lbuf[--lcnt];

if (--tp->t_count •• 0)

if (ttx_put(tp))

return;

if ((m • tp->t_rm) ••NULL)

return;

*m->b_wptr++ • c;

tp->t_count--;

if (m '' m->b_wptr !• m->b_rptr)

(void) ttx_put(tp);

7-20 Chapter 7: Streams Terminal Drivers

(

/*

* The transmit interrupt routine clears the BUSY flag and then calls

* the command process routine to send the next character.

*/

static

DEVtintr (dev)

int dev;

/*

register struct ttx *tp;

sysinfo.xmtint++;

tp • &DEV_tty[dev];

tp->t_state &- -BUSY;

DEVproc(tp, T_OUTPUT);

* The external status change interrupt routine does two things:

*

*

*

*

*

*

*

*I

static

DEVsintr(dev)

int dev;

signals the presence of carrier (DCD) to any processes

waiting for opens (see the open routine above for

the other half of this handshake)

detects the loss of carrier and calls ttx_sighup() to

send this signal down the stream to waiting processes

register struct ttx *tp;

int dcd;

Chapter 7: Streams Terminal Drivers 7-21

/*

sysinfo.mdmint++;

tp • 'DEV_tty[dev];

/* DEV: Assign the current value of the DCD line to dcd */

if (dcd) {

} else

if ((tp->t_state' CARR_ON) ·- 0) {

tp->t_state I• CARR_ON;

if (tp->t_state ' WOPEN)

wakeup((caddr_t),tp->t_q);

if (tp->t_state ' CARR_ON) {

tp->t_state ,. -CARR_ON;

ttx_sighup(tp);

* This routine is for device-specific ioctls. The iocbp pointer

* refers to the stream message header for the ioctl (see

* <sys/Stream.h> for more info) • This contains the ioctl type and

* who made it. If an ioctl succeeds you must return O from this.

* Otherwise, you should return 1 for errors (and optionally fill in

* the error field in the ioctl message) • This example shows no

* actual ioctls. Often devices might use this to change device-

* dependent functions such as turning on or off modem control

* or flow control.

*
* The ttx library intercepts most of the ioctls from termio(7) and

* converts into calls to the· drivers command process and parameter

* routines.

7-22 Chapter 7: Streams Terminal Drivers

(

(

*/

static

DEVioctl(tp, iocbp, arqs)

struct ttx *tp;

struct iocblk *iocbp;

mblk_t *arqs;

/*

*

*

*

*

*
*/

return(l);

The device's parameter routine is called whenever an ioctl is made

that may have chanqed the device specific functions (such as baud

rete, parity etc.). Care should be taken on some chips that

require output to complete before such chanqes so that characters

are sent without errors.

static

DEVparam (tp)

register struct ttx *tp;

reqister int s;

register flaq;

flaq - tp->t_cflaq;

if ((flaq&CBAUD) ·- 0) {

I* DEV: Do device hangup (remove DTR) */

return;

s • splstr () ;

/*

* DEV: Set up the followinq:

Chapter 7: Streams Terminal Drivers 7-23

*

* baud rate

* number of bits per character

* parity (on/off /odd/even)

* nu~ber of stop bits

*
* from the ttx field t_cflaq (see tty.h for defines)

I

splx(s);

/*

* The command process routine is the place where device-dependent

* actions are requested by the system and other part.'l of the d~iver.

* Each call has a command that describes what is being requested.

*/

static

DE'Vproc(tp, cmd)

register struct ttx *tp;

register int s, c, x;

register mblk_t *m, *ml;

s • splstr();

switch (cmd)

case T_TIME:

/*

* TIME

*
*/

Stop an output break condition and continue

normal output.

/* DEV: Clear break condition on device */

goto start;

7·24 Chapter 7: Streams Terminal Drivers

(

case T_WFLOSH:

I*

* WFLUSH Request that any pendinq output should be

* discarded

*/

/* DEV: Flush any pendinq output characters from device */

if (tp->t_xm)

freemsq(tp->t_xm);

tp->t_xm • NULL;

/* fall throuqh */

case T_RESUME:

I*

* RESUME Restart output after it beinq SUSPENDed

*I

tp->t_state ,. -TTSTOP;

qoto start;

case T_OOTPUT:

I*

* OOTPOT Send a character (if the device is not already

* doinq something) • Also send XON/XOFF

* characters when required.

*I

start:

if (tp->t_state,(TIMEOUTITTSTOPIBUSYIXMT_DELAY) I I !tp->t_q)

break;

if (tp->t_state ' TTXON)

c • CSTART;

I* DEV: Transmit the character in c */

tp->t_state I• BUSY;

Chapter 7: Streams Terminal Drivers 7-25

tp->t_state ,. -TTXON;

break;

} else if (tp->t_state ' TTXOFFl {

c • CSTOP;

/* DEV: Transmit the character in c */

tp->t_state ,_ BUSY;

tp->t_state ,. -TTXOFF;

break;

m • tp->t_xm;

if (m •• NULL)

qenable(WR(tp->t_q));

break;

I* If nothing to transmit, */

/* then wake up the */

/* Streams output handler */

c • *m->b_rptr++; /* Get a character */

/* DEV: transmit the character in c */

tp->t_state I• BUSY;

while (m->b_rptr >• m->b_wptr) {/* Remove empty messages */

ml• unlinkb(m); /* from the output buffer*/

freeb(m);

tp->t_xm • m • ml;

if (m NULL) { /* If nothing is left then break */

break;

break;

case T_SUSPEND:

I*

* SUSPEND Stop output until it is RESUMEd

7-26 Chapter 7: Streams Terminal Drivers

(

(

*I

tp->t_state I- TTSTOP;

break;

case T_BLOCK:

I*

* BLOCK Send an XOFF to signal the other end not to

* send any more

*I

tp->t_state I• (TBLOCKITTXOFF);

tp->t_state ,. -TTXON;

goto start;

case T_RFLUSH:

/*

* RFLUSH Discard any received input

*I

if (m - tp->t_rm) {

tp->t_count - tp->t_size;

m->b_wptr • m->b_rptr;

/* DEV: Flush any received characters from the device */

if (! (tp->t_state,TBLOCK))

break;

case T_UNBLOCK:

/*

* UNBLOCK

*

*I

Send an XON to signal the other end to

resume its transmission

tp->t_state ,. -CTTXOFFITBLOCK);

tp->t_state I- TTXON;

goto start;

Chapter 7: Streams Terminal Drivers 7-27

case T_PARM:

/*

*

*I

PARM

DEVparam (tp);

break;

case T_BREAK:

/*

Call the device's parameter routine to reflect

chanqes in the device's attributes.

* BREAK Start transmission of a line break

*/

/* DEV: Start a break condition on the device */

ttx_ break (tp) ;

break;

splx(s);

7-28 Chapter 7: Streams Terminal Drivers

(

Chapter 8

Network Drivers

(

8-1

B-NET network facilities provide a uniform user interface to networking within the
A/UX operating system. If you're implementing new communication protocols and
network services, B-NET's network communications structure promotes code sharing
and minimizes implementation effort A major goal of the system is to provide a
framework that makes it easier to support new protocols and hardware.

For a description of the data structures, utility routines, and internal !ayers of t.~e B­
NET network system, see •Networking Implementation Notes• listed in this manual's
bibliography.

To illustrate how you could write a network driver, the rest of this chapter provides a
sample network driver for Ethernet Version 1.0 and 2.0. The include file, if_ xx. h, is
listed first, followed by the sample driver, if_ xx. c.

Include file
idefine NXX 6

Hnclude <sys/via6522.h>

idefine PHYS OxfOOOOOOO

idefine XXMEMBASE(unit) ((unsiqned)PHYS+((SLOT_LO + (unit)) << 24))

I*

* Ethernet software status per interface.

*

* Each interface is referenced by a network interface structure,

* xx_if, which the routing code uses to locate the interface. This

* structure contains hardware dependent addresses and status, the

* interface address and error counts for the interface.

*/

struct xx {

struct arpcom xx_ac; I* common ethernet structures */

idefine xx_if xx_ac.ac_if /* network-visible interface */

idefine xx_enaddr xx_ac.ac_enaddr /* hardware Ethernet address */

short xx_oactive; /* output active flaq */

int xx_flaqs; /* flag bits */

I* hardware-dependent variables go here */

Chapter 8: Network Drivers 8-2

{'

L 1

} ;

/*

* bits in xx_f laqs

*/

fde:fine
running */

XX_TIMEOUTPENDING

Sample driver
tin elude <sys/types.h>

tinclude <sys/reg.h>

tinclude <sys/mbuf.h>

tinclude <sys/socket.h>

tinclude <sys/ioctl.h>

tinclude <sys/var.h>

tinclude <sys/errno.h>

tinclude <net/if.h>

tinclude <net/route.h>

tinclude <net/netisr.h>

tinclude <netinet/in.h>

finclude <netinet/in_systm.h>

finclude <netinet/ip.h>

finclude <netinet/ip_var.h>

fin elude <netinet/if_ether.h>

finclude <vaxuba/ubavar.h>

tinclude "if_xx.h"

extern int xxcnt;

extern int xxaddr[J;

1 /* transmitter watchdog timer

int xx_probe(), xx_init(), xx_attach(), xx_output(), xx_ioctl(),

xxint(), xx_rint(), xx_tint(), xx_timeout();

struct mbuf *xx_get();

Chapter 8: Network Drivers 8-3

int xx_trans[l6J;

struct uba_device *xxinfo[NXX];

struct uba_driver xxdriver • {

xx_probe, xx_attach, (u_sho.rt *) 0, xxinfo

} ;

static struct XK xx[NXX);

extern struct ifnet loif;

/*

*

*

*

*

*

*

*

Called from the network initialization code, this function is

responsible for confirming the existence of the device described

in ui. In the context of autoconfiguration, you need only check

that the device's unit number Cui->ui_unit) is reasonable.

Take this opportunity to call xx_map(), which s~ts up the mapping

between unit number, slot number, and the interface's board RAM.

* Return value: 1: interface exists

* 0: interface does not exist

*I

static

xx_probe(ui)

struct uba_device *ui;

struct xx *xxp • &xx[ui->ui_unit];

if (ui->ui_unit < xxcnt)

xx_map(ui);

return (l);

else

return (0);

Chapter 8: Network Drivers 8e4

(~:

/*

* Record the correspondence between unit number, slot number, and

* board RAM. On some systems, this function might arrange to map

* in the interface's RAM at a well-known address.

* Return value: none.

*/

static

xx_map(ui)

/*

*

*

*

*

*

*

*

*

*

*

*

*

struct uba_device *ui;

struct xx *xxp - 'xx[ui->ui_unit];

int ind;

ind• xxaddr[ui->ui_unit] - SLOT_LO;

xx_trans[ind] - ui->ui_unit;

I* Set up device-specific pointers */

If the interface's probe routine returns 1 (indicating that the

interface exists) the network initialization code will then call

the interface's attach routine. The conventional purpose of this

function is to initialize the fields in the ifnet structure (i.e.,

the unit number interface name, maximum transmission unit, address

family or families supported, and the device's initialization, I/0

control and output routines) and call if_attach() to add itself to

the system's list of known interfaces. Refer to section 5.3 of

the Networking Implementation Notes for details on the ifnet

structure.

Return value: none.

Chapter 8: Network Drivers 8-5

*/

static

xx_attach(ui)

/*

*

*

*

*

*

*

*

*

*

*

*

*

struct uba_device *ui;

struct ifnet *ifp • 'xx[~i->ui_unitJ.xx_if;

struct sockaddr_in *sin;

ifp->if_unit • ui->ui_unit;

ifp->if_name • "xx";

ifp->if_mtu • ETHERMTU;

sin • (struct sockaddr_in *) 'ifp->if_addr;

sin->sin_family • AF_INET;

ifp->if_init • xx_init;

ifp->if_ioctl • xx_ioctl;

ifp->if_output • xx_output;

if_attach(ifp);

When the networking subsystem is ready to process packets or when

the driver must reinitialize an interface, this function will be

called. Nothing should be done until its address is.known. It

should then:

reset the hardware to begin receiving packets

set the if_f lags fields to indicate that it is up

and has resources allocated

start output if there are packets on the send queue

call if_rtinit() to indicate the interface is up

Chapter 8: Network Drivers 8·6
0

* and may have packets routed through it

*

*

*

call arpwhohas<>. to announce its Ethernet and Internet·

addresses to the world

*

* Return value: none.

*/

static

xx_init(unitl

int unit;

/*

*

struct xx •xxp • 'xx[unit];

struct ifnet *ifp • 'xxp->xx_if;

struct sockaddr_in *sin;

int s;

sin • (struct sockaddr_in *) 'ifp->if_addr;

if (sin->sin_addr.s_addr •• 0)

return;

s • splimp O ;

xxp->xx_oactive • O;

I* Initialize the hardware to receive packets */

ifp->if_flaqs I• IFF_CP I IFF_RCNNING;

if (ifp->if_snd.ifq_head)

xx_start(unit);

splx(s);

if_rtinit(ifp, RTF_CP);

arpwhohas(,xxp->xx_ac, 'sin->sin_addr);

If the interface is not active, start output:

Chapter 8: Network Drivers 8-7

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

dequeue a packet (a chain of mbuf s) from the send queue

adjust the packet's length to ensure it is at least ETHERMIN

bytes

if necessary, copy the data from the mbuf chain into the

interface's private memory

free the mbuf chain

poke the device to start transmission

start a watchdcq timer to make sure we notice if a ,

transmission complete interrupt does not occur within a

short time (in this case, two seconds)

* Return value: none.

*I

static

xx_ start (unit)

int unit;

int len;

struct xx *xxp • 'xx[unit];

struct mbuf *m;

if <xxp->xx_oactive -- 0) {

IF_DEQOEOE(,xxp->xx_if.if_snd, m);

if (m •• 0) {

xxp->xx_oactive • O;

return;

Chapter 8: Network Drivers 8-8

0

0

(

(

/*

*

*

*

len • /* packet length */

if (len < ETHERMIN + sizeof(struct ether_header))

len • ETHERMIN + sizeof(struct ether_header);

/* Copy from m.bufs to interface memory (if necessary) */

m_freem(m);

/* Do hardware-specific things to start packet transmission */

xxp->xx_oactive • l;

xxp->xx_flags I= XX_TIMEOUTPENDING;

timeout(xx_timeout, unit, v.v_hz << 2);

The transmit interrupt we expected has not occurred. Reset the

device.

* Return value: none.

*/

static

xx_timeout(unit)

int unit;

/*

struct xx *xxp - 'xx[unit];

static int timeoutcount = O;

if (++timeoutcount > 100)

printf("xx'd transmitter frozen -- resetting\n", unit);

xxp->xx_flags ,_ -xx_TIMEOUTPENDING;

xx_init (unit);

Chapter 8: Network Drivers 8-9

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Transmit the packet in the mbuf chain mo to dst using interface

ifp. Part of the handling of the packet is dictated by the

address family:

For IP packets:

compute the destination IP address

call arpresolve() to discern the destination's Ethernet address.

if arpresolve returns 0, the Ethernet address corresponding to

IP address idst is unknown, but arpresolve has taken charge of

the mbuf chain, so we indicate success.

set the Ethernet's packet type to ETHERPOP_IPTYPE

if this is a broadcast packet, and the interface is not capable

of receiving its own broadcasts, make a copy of the mbuf chain

so it can be passed to the loopback interface.

For raw Ethernet packets:

Then:

the destination address is expected to be an ether_addr

structure, containing the destination's Ethernet address

and packet type

set up the Ethernet header to be transmitted

enqueue the mbuf chain.on the send queue; if the queue is full

drop the packet and free the mbuf chain, returning an error

if the transmitter is not currently active, start transmission

Chapter 8: Network Drivers 8-10

(

(

*

*

*

*

*

*

*

*

*

*/

static

if there is a packet to be fed back to the loop interface (if

mcopy is not NOLL), pass it to looutput

Return value: if the packet was successfully enqueued on the

interface's output queue (and the loopback interface's

queue if this is a broadcast), O is returned.

Otherwise, the appropriate UNIX error number (see

<sys/errno.h>) is returned.

xx_output(ifp, mO, dst)

struct ifnet *ifp;

struct mbuf *mO;

struct sockaddr *dst;

int type, s, error;

struct ether_addr edst;

struct in_addr idst;

struct xx *xxp • 'xx[ifp->if_unit);

struct mbuf *m • mo;

struct mbuf *mcopy • (struct mbuf *) O;

struct ether_header *e;

switch (dst->sa_f amily)

tifdef INET

case AF_INET:

idst • ((struct sockaddr_in *) dst)->sin_addr;

if (!arpresolve(,xxp->xx_ac, m, &idst, &edst))

return (0);

type • ETHERPUP_IPTYPE;

Chapter 8: Network Drivers 8-11

if (in_lnaof (idst) ... INADDR_ANY)

mcopy • m_copy(m, 0, (int) M_COPYALL)·;

goto gottype;

hndif

case AF_UNSPEC:

e • (struct ether_header *)dst->sa_data;

edst • e->ether_dhost;

type • e->ether_type;

qoto gottype;

default:

printf("xxtd: can't handle aftd\n", ifp->if_unit, dst->sa_family);

error • EAFNOSUPPORT;

goto bad;

gottype:

if (m->m_off > MMAXOFF I I MMINOFF + sizeof(struct ether_header) > m->m_off)

m • m_get(M_DONTWAIT, MT_HEADER); •

if (m •• 0) {

error • ENOBUFS;

qoto bad;

m->m_next • mO;

m->m_off • MMINOFF;

m->m_len • sizeof(struct ether_header);

} else

m->m_off sizeof{struct ether_header);

m->m_len +• sizeof(struct ether_header);

e • mtod(m, struct ether_header *);

e->ether_type • htons((u_short) type);

Chapter 8: Network Drivers 8-12

(

bad:

/*

*

*

*

*

*

*

*

*

*

e->ether_dhost - edst;

e->ether_shost - xxp->xx_enaddr;

s • splimp () ;

if (IF_QFULL(,ifp->if_snd))

IF_DROP(,ifp->if_snd);

splx(s);

m_freem (m) ;

return IENOBUFS);

IF_ENQUEUEl,ifp->if_snd, m);

if (xxp->xx_oactive -= 0)

xx_start(ifp->if_unit);

splx(s);

return (mcopy? looutput(&loif, mcopy, dst) 0);

m_freem(mO);

if (mcopy)

m_freem(mcopy);

return (error);

Interface interrupt routine. The argument is a structure one of

whose members (a_dev) is the slot number of the interrupting

interface. If this is a receive interrupt:

if it was called by a receive error, increment the input

error count

otherwise, call the receive interrupt routine

If this is a transmit interrupt:

Chapter 8: Network Drivers 8-13

* if it was called by a transmit error:

increment the output error count

* mark the interface inactive

if there are packets on the send queue, restart output

*

* otherwise, call the transmit interrupt routine

*

* Return value: none.

*/

xxint(args)

struct args *args;

int unit• xx_trans[args->a_dev - SLOT_LOJ;

struct xx *xxp - &xx[unit];

struct ifnet *ifp e &xxp->xx_if;

int s;

if (unit >• NXX) {

printf("xxint: interrupt from slot 'd\n", unit);

panic ("xxint") ;

/*NOTREACHED*/

if (/* receive interrupt */)

if (/* receive error */)

/* reset hardware */

ifp->if_ierrors++;

} else

xx_rintr(unit);

if (/* transmit interrupt */)

if (/* transmit error */)

/* reset hardware */

Chapter 8: Network Drivers 8-14

i(

Li

(

(

I*

*

*

*

} else

ifp->if_oerrors++;

xxp->xx_oactive • O;

s - splimp () ;

if (xxp->xx_if. if_snd. ifq_head)

xx_start(unit);

splx(s);

xx_xintr(unit);

Transmit interrupt routine:

increment the count of packets transmitted

* if there was a transmit timeout pending, cancel it

*

* mark the interface inactive

*

* if there are packets on the send queue, restart output

*

* Return value: none.

*/

static

xx_xintr(unit)

int unit;

struct xx *xxp - 'xx[unit];

int s;

if (xxp->xx_oactive •• 0)

return;

xxp->xx_if.if_opackets++;

Chapter 8: Network Drivers 8-15

/*

if(xxp->xx_flags & XX_TIMEOUTPENDING)

untimeout(xx_timeout, unit);

xxp->xx_flags ,_ -xx_TIMEOUTPENDING;

xxp->xx_oactive • O;

s • splimp () ;

if (xxp->xx_if.if_snd.ifq_head)

xx_start(unit);

splx(s);

* Receiver interrupt routine:

* increment the count of packets received

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

determine the Ethernet packet type and length, possibly

dealing with ··trailer'' packets

call xx_get() to copy the packet from the interface's RAM

into an mbuf chain and return a pointer to the first mbuf

pass the mbuf chain containing the packet to the appropriate

input routine:

for ARP packets, arpinput()

for reverse ARP packets, revarpinput()

for IP packets:

schedule a network software interrupt

if the input queue (ipintrq) is full, drop

the packet and free the mbuf chain; otherwise,

enqueue the packet on the IP input queue

Chapter 8: Network Drivers 8-16

('

*
* Return value: none.

*/

static

xx_rintr(unit)

int unit;

short len;

struct mbuf *m;

struct ifqueue *inq;

int s;

u_short type;

int Off;

int resid;

caddr_t addr;

struct xx •xxp • 'xx(unit];

struct mbuf *xx_qet();

/* Check for a received packet */

xxp->xx_if.if_ipackets++;

type• ntohs((u_short) /*packet type*/);

len • /* packet lenqth */

if (len < ETHERMIN I I len > ETHERMTCJ)

xxp->xx_if.if~ierrors++;

return;

addr • /* pointer to first byte in packet */

/*

*

*

*

Deal with trailer protocol: the ETHERTYPE_NTRAILER packet

types startinq at ETHERTYPE_TRAIL have (type -

ETHERTYPE_TRAIL) * 512

Chapter 8: Network Drivers 8-17

tdefine
<off l l) l

* bytes of data followed by an Ethernet type and then the

* (variable-length) header

*/

xx_dataaddr(addr, off, type) ((type) (((caddr_tl ((addr) + 1) +

if ((type>• ETHERPUP_TRAIL) &&

} else

(type< ETHERPUP TRAIL+ ETHERPUP_NTRAILER))

off • (type - ETHERPUP_TRAIL) * 512;

if (off >• ETHERMTU)

return;

type• ntohs(*xx_dataaddr(addr, off, u_short *));

resid = ntohs(*(xx_dataaddr(addr, off+ 2, u short*)));

if (off + resid > len)

return;

len • off + resid;

off = O;

tundef xx_dataaddr

if (len •= 0)

return;

I*

* Pull packet off interface. Off is nonzero if the packet has

* a trailing header. Xx_get() will then force the header

* information to be at the front, but we still have to drop

* the type and length which are at the front of any trailer

* data

*/

m • xx_qet(len, addr, off);

if <m •• 0)

return;

if (off) (

Chapter 8: Network Drivers 8-18

tifdef

tend if

m->m_off +• 2 * sizeof (u_short);

m->m_len 2 * sizeof (u_short);

switch (type) {

INET

case ETHERPtJP_IPTYPE:

schednetisr(NETISR_IP);

inq • dpintrq;

break;

case ETHERPtJP_ARPTYPE:

arpinput(,xxp->xx_ac, ml;

return;

case ETHERPtJP_REVARPTYPE:

revarpinput(,xxp->xx_ac,

return;

default:

m_freem(m);

return;

s • splimp () ;

if (IF_QFULL(inq))

IF_DROP(inq);

splx(s);

m_freem (m);

return;

IF_ENQtJEtJE(inq, m);

_ splx (s);

return;

m);

Chapter 8: Network Drivers 8-19

I*

* Copy a packet of length totlen from the interface's RAM starting

* at buf. OffO is nonzero if the packet is in ''trailer'' format.

*

* Return value: pointer to the first mbuf in the chain of mbufs

* containing the packet.

*/

struct mbuf *

xx_get. (totlen, buf, offO)

u_char *buf;

int totlen, offO;

register struct mbuf *m;

struct mbuf *top - 0, **mp • ⊤

register int off • offO, len;

register u_char *cp;

cp • buf;

totlen -· sizeof(struct ether_header);

while (totlen > 0) {

MGET(m, M_DONTWAIT, MT_DATA);

if (m •• 0)

goto bad;

if (off) {

len • totlen - off;

cp • buf + off;

} else

len • totlen;

if ((len < MCLBYTES) 11 (mclget (ml •• 0)) I

m->m_len • MIN(MLEN, len);

Chapter 8: Network Drivers 8-20

m->m_off - MMINOFF;

bcopy(cp, mtod(m, caddr_t), m->m_len);

cp +- m->m_len;

*mp - m;

mp - 'm->m_next;

if (offO) (

off +- m->m_len;

if (off -- totlen)

cp • buf;

off - O;

totlen • offO;

(""'

__ ,··"

else

totlen -- m->m_len;

return (top);

bad:

if (top)

m_freem (top) ;

return (0);

/*

* Process an interface I/0 control request. The only request the

* driver is currently expected to handle is SIOCSIFADDR (set

* interface address) :

* We expect the pointer (data) passed to us to be a pointer to a

* sockaddr structure. We currently support two address families:

* AF_INET and AF_UNSPEC.

Chapter 8: Network Drivers 8-21

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*I

static

If we are passed an Internet address, we:

call if_rtinit() to delete the previous routing table entry

for this interface

call xx_setaddr() to set this interface's address

call xx_init() to reinitialize the software and hardware (it's

possible this is the first call to xx_init after the interface's

address has been set)

If we are passed a raw address (sa_family •a AF_ONSPEC), we expect

it to be an Ethernet address (an ether_addr structure) and set the

device's hardware address, then call xx_init to reinitialize the

software and hardware.

Return value: if the I/O control. is successfully completed, 0 is

returned. Otherwise, a UNIX error number (see

<sys/errno.h>) is returned.

xx_ioctl(ifp, cmd, data)

struct ifnet *ifp;

int cmd;

caddr_t data;

struct xx *xxp • 'xx[ifp->if_unit);

struct sockaddr •sa;

struct sockaddr_in *sin;

int s • splimp(), error• O;

Chapter 8: Network Drivers 8-22

(

/*

switch (cmd) {

case SIOCSIFADDR:

sa • (struct sockaddr *) data;

if (sa->sa_family •• AF_UNSPEC)

if (sa->sa_data[OJ & ll { /* broad or multi-cast */

err.or • EINVAL;

break;

xxp->xx_enaddr • *(struct ether_addr *)sa->sa_data;

xx_init(ifp->if_unit);

break;

sin • (struct sockaddr_in *)data;

if (sin->sin_family != AF_INETl

error • EINVAL;

break;

if (ifp->if_flaqs & IFF_RUNNING)

if_rtinit(ifp, -1);

xx_setaddr(ifp, sin);

xx_init(ifp->if_unit);

break;

default:

error • EINVAL;

break;

splx(s);

return (error);

Chapter 8: Network Drivers 8-23

* Record the interface's Internet addresses in the ifnet structure.

*/

static

xx_setaddr(ifp, sin)

struct ifnet *ifp;

struct sockaddr_in *sin;

ifp->if_addr • *(struct sockaddr *l sin;

ifp->if_net • in_netof(sin->sin_addr);

ifp->if_host[OJ • in_lnaof(sin->sin_addr);

sin • (struct sockaddr_in *) &ifp->if_broadaddr;

sin->sin_family • AF_INET;

sin->sin_addr • if_makeaddr(ifp->if_net, J:NADDR_ANY);

ifp->if_flaqs I• IFF_BROADCAST;

Chapter 8:. Network Drivers 8·24

c

(·.·.

Chapter 9

Slot Device Drivers

9-1

A/UX was developed to make it easy to add slot devices, add-on cards that plug into
the Macintosh II's six expansion slots. These cards use the Apple implementation of
theNuBus protocol. A/UX requires a device driver for each card, regardless of the
number of functions that the card supports. (This requirement may be different from
cards developed for other operating systems.) Specific information about how slot
ROMs are configured for the Macint~h II is found in Developing Cards and Drivers for
Maci'l".tosh II and Mac1ntosb SE.

ROMs and autoconfiguration
Every slot device installed in the Macint~h II requires on-board ROM that provides
module-specific system facilities to the A/UX system. The ROM supports module­
specific resources residing in vendor-specified addressable NuBus memory, and
presents a consistent interface to the running operating system or user programs.

When a system is booted, autoconfiguration searches the slots for devices and, if
found, reads information contained in their slot ROMs. Before autoconfiguration can
load a slot device driver, certain data structures found in the slot ROMs must be
initialized with device information. For more information about these data stru'aures
and how to initialize them, see Developtng cards and Drivers for Macintosh n and
Macintosh SE. Autoconfiguration is described in Chapter 12.

Note: During driver development, you may ch~ to install and test your driver
without slot ROMs being present. Details about how to run autoconfiguration in this
way are given in Chapter 13.

The Slot Library
To make writing a slot device driver easier, A/UX supplies a set of routines called the
Slot library. The Slot library provides a simple interface to the on-board ROM for
each of the six Macint~h II slots. In Appendix C, you'll find descriptions of these
routines, including the calling sequence, parameters, and return values.

There are three types of hbrary routines: user routines, utility routines, and low-level
routines. User routines can be called from user programs or kernel routines. Utility
routines are used to gain access to slot ROM data structures, other resources, or other
user programs. Low-level routines perform ROM access operations and operating
system specific functions.

9-2 Chapter 9: Slot Device Drivers

(

Mapping to processes
1bere are two types of ROM base addresses: physical or virtual base. Slot ROM
physical addresses are hexadecimal values having the following format:

OxFsOFFOOOO

where sis the NuBus slot number (9 to 14) of the board containing the ROM.

Slot ROM logical addresses are th~ that have been mapped from physical memory
into user memory via the phys(2) system call. For user programs that use logical
addresses, the slot number is a virtual address that corresponds direaly to the
physical address of the device.

Interrupt service routines
Each slot controller card can generate one interrupt 1be system then identifies the
slot where the interrupt ocairred and jumps to the appropriate driver code. There are
no differences in the slots: you should be able to plug a card into any slot and ~ve it
work the same way.

Your device driver must supply an interrupt routine to service interrupts from your slot
card. You specify that your device driver is a slot device driver and that your driver has
an interrupt routine by including the flags vs in your master script file. (Chapter
12.descnbes the master script file.) 1bese fla~ instruct autoconfig to add your
driver interrupt routine to the slot interrupt vector taqle. For each slot card in the
system, this table contains the address of the driver interrupt routine that servic:eS
interrupts generated from that slot card.

When an interrupt occurs on your slot card; the kernel indexes the slot interrupt vector
table and calls the rootine stored at this address. The kernel passes a single parameter,
called args' (defined in <sys/reg.h>) to.slot device driver routines.1be kernel fills
out various fields of this structure. In particular, the a dev field of the args structure
contains the slot number of the card that intemipted~This allows your driver to
determine which of its slot cards intemipted You can also use the slot number to
determine the slot address space for the slot carci.

The autoconfig utility aeates an integer variable preft:o::.nt, which is an integer
value containing the number of slot cards installed in the system that are controlled by
your device driver. 1be autoconfig utility also creates a variableprqi.xaddr, which
is an array of integers containing preft:o::.nt elements. Each element of this array
contains the slot number of a slot card installed in the system that is controlled by your
driver.

Chapter 9: Slot Device Drivers 9-3

See the chapter corresponding to your type of driver (Chapters 3 through 8) for
details about how to write intem.Jpt routines. The following page provides a quick
reference description of the driver.int routine of a slot device driver.

9-4 Chapter 9: Slot Device Drivers

(

lnt(slot device driver) tnt(slot device driver)

Name
int-handle device interrupts from a slot device

Synopsis
void drtver.l.nt(~s)

struct args •a'8s;

where

o args is a pointer to a_dev (the slot number). 1be args structure is defined in
<sys I reg. h>.

o driver is the device prefix.

Description
The interrupt routine of a slot device driver handles interrupts received from a slot
device. 1be kernel passes a single parameter, the args parameter, to the interrupt
routine of a slot device driver. You must give the kernel the address of your slot device
driver interrupt routine during autoconfiguration. You do this by specifying the vs
fla~ in your master saipt file.

Note: An interrupt routine should not change any variables in the u-dot or call
sleep().

Retum values
None.

See also
For block drivers, see "The Block Device Interrupt Routine• in Chapter 2.

For character drivers, see •Handling Character Device Interrupts• in Chapter 4.

For information on the master saipt file,See •using Device Information" in Chapter
12.

Chapter 9: Slot Device Drivers 9-5

9-6 Chapter 9: Slot Device Drivers

.cf
_j

Chapter 10

SCSI Device Drivers

10-1

This chapter descnbes SCSI device drivers and how they gain access to a SCSI device.
It assumes that you are familiar with the ANSI Small Computer System Interface (SCSI),
the NCR 5380 SCSI chip,the Macintosh n architecture, and the A/UX device drivers
described in this manual. For more information about the SCSI standard, see the
Bibliography of this manual.

This chapter describes the SCSI manager in the A/UX Release 1.0. This chapter does
not cover any changes or updates to the SCSI manager in later releases.

An overview of the SCSI manager
The A/UX SCSI manager is a set of kernel software routines that device drivers use to
gain access to the Macintosh II SCSI port. 1be main purpose of the SCSI manager is
allow drivers to share the SCSI bus. In addition, the manager provides SCSI protocol
handling and error notification. 1be SCSI manager simplifies programming of the
chip and reduces the complexity of driver code.

Rather than having device drivers making single requests for low-level SCSI activities
such as selecting the bus or requesting a status byte, the device driver creates a ·
request block data structure that specifies the elements of a SCSI command, and
passes this data structure to the SCSI manager.

1be SCSI manager arbitrates for the SCSI bus and passes the request to the device via
an NCR 5380 SCSI chip. 1be SCSI manager software performs 1/0 activity by reading
and writing bytes during the various SCSI phases until the request has completed
successfully or an error condition arises. The manager then notifies the device driver
that the request is complete. Devices may discon.nea from the bus during processing,
then reconnect when processing has completed.

A SCSI device interaction is composed of three stages: a command, a read or write
operation, and a completion sequence. The request block data structure contains
pointers used during each of these operations.

Note that the SCSI manager obtains sense information from the device as part of the
SCSI manager request and returns this sense information to the driver in the
sen.sebuf field of the request block data structure. This ensures that the error
information reflects the state of the SCSI bus when the failed transaction occurred.

Assumpflons and restrlcflons
The SCSI manager operates in a single-initiator environment: there can be only one
initiator, the Macintosh ll, on the SCSI bus. 1bere can be up to seven other SCSI
devices, numbered from 0 through 6, and each device can have up to eight logical
units attached to it

10-2 Chapter 10: SCSI Devtce Drivers
0

(

(~

The A/UX operating system must enable interrupts before calling the SCSI manager.
In particular, manager routines can't be called from driver routines that are invoked
from a user-<iefined initialization routine.

1be SCSI manager doesn't support devices that initiate messages when no request is
outstanding. An unexpected ~age can't be passed to a device driver's attention
routine.

The system may switch from an arbitrating system protocol (as described in the ANSI
standard) to a single initiator system by waiting for arbitrated 1/0 transaaions to
complete. After arbitrated requests have stopped, single initiator requests can be
issued. This is known as exclusWe : P in this document.

Remember that the SCSI bus is shared. Avoid increasing the performance of a single
device while decreasing systemwide performance.

Request block data structure

Drivers gain access to the SCSI manager by calling the routine scsirequest (),
passing it two arguments: the SCSI ID of the device, and a pointer to a request block
data structure. This data structure contains information about the request and allows
the SCSI manager to process the request as a single aaion. The request block data
structure is shown here:

struct scsireq

caddr_t cmdbuf; /* Buffer containing command block */

caddr_t databuf; /* Buffer containing data to move *I

unsigned datalen; /* Length of the data buffer */

unsigned datasent; /* Length of data actually moved */

caddr_t sensebuf; /* Result from sense cmd on error *I

int (*faddr) (); /* Address of completion function */

long driver; /* Private storage for.driver */

struct scsireq link; /* Link to next request */

u_char cmdlen; /* Length of command buffer */

u_char senselen; /* Length of sense buffer */

u_char sensesent; /* Length of sense data received *I

u short flags; /* Request flag bits */

u char msg; /* Message byte from completion */

u_char stat; /* Completion status byte */

Chapter 10: SCSI Device Drivers 10-3

':.;-"'

u_char ret; /* Return code from SCSI manaqer */

u_char timeout; /* Maximum time for this request */

.}:

The fields of this structure are as follows:

• cmdbuf and cmdlen define the command to be sent to the device.

• databuf and datalen specifies the data area to be read or written from the
device.

• datasent is where the SCSI manager returns the number of bytes actually
transferred after the request has completed.

• sensebuf and senslen are set to receive the sense data before initiating a
request.

• senseset is set to the actual number of bytes of sense data received, regardless of
whether or not there is a buffer in the request to hold the data, if sense data is
received. The driver should allocate memory space for all buffer areas and request
data structures, since the SCSI manager does not perform memory allocation.

• faddr specifies the address of the completion service routine called when tQe SCSI
request has completed. You must supply a completion service routine for your
device. The routine is passed one argument, the request block pointer.

• driver is a 32-bit private storage area for the driver.

• link specifies execution of linked commands. The decision to link commands is
left up to the driver. The driver should set the necessary bits in its command frame
to tell the device that a sequence of linked commands is on the way. The SCSI
manager continues sending commands until the chain has completed. If the device
drops BSY, the SCSI manager repeatedly arbitrates for the bus and selects the
device. A single interrupt is received either after an error occurs, or after all
requests are processed. The request pointer passed back to the driver's interrupt
handler reflects either the error, or the last request in the chain.

• flags controls aspects of the transfer. Bit values are OR'd together to fill this data
field. Normally, it is data in or data out, but any 3-bit value can be specified.
Possible uses for this field are discussed in •special Processing,• later in this
chapter. Values for the flags field are as follows:

fdefine SRQ_READ 1

tdefine SRQ_EXCL 2

tdefine PRISHIFT 4

fdefine SQR_PRIMASK (3<<4)/

/* This request read data */

/* Exclusive SCSI use */

/* Left shift for priority field */

* Four priority levels */

I* The remainder of request bits are not implemented */

fdefine SRQ_START OxlOO /* Call driver before request */

tdefine SRQ_DATA Ox200 /* Call driver before data phase */

10-4 Chapter 1 O: SCSI Device Drivers
c

(

(

fdefine

fdefine

SRQ_POST Ox400

SRQ_NOSTAT OxBOO

/* Call driver after data phase */

/* There will be no stat phase */

The SRQ READ bit indicates that the expected data direction for this command is
from the device to the computer. If there is no data phase expected for a command,
the setting of this bit has no meaning. The SRQ_ EXCL bit requests exclusive use of the
SCSI bus for the next request All outstanding disconnected VO devices are allowed to
reconnect and complete before the request is processed. There is a four-level priority
scheme for requests, with jobs having numerically higher-priority levels being
scheduled before lower priority levels. The SRQ_START, SRQ_DATA, and SRQ_POST
bits request that the driver be notified at specific points during processing of the
request (see •special Processing• later in this chapter for more information).

• stat and m.sg return status and message bytes after normal completion of the
request SCSI devices indicate that more error sense information is available by
turning on bit 1 in the status byte, which makes the SCSI manager execute a sense
command.

• The ret field contains a return code from the SCSI manager, so it should be
checked before the device status byte. The ret field reports request handling
errors. Values for this field are as follows:

fdefine SST_BSY 1 /* SCSI bus sta.yed busy */

tdefine SST_CMD 2 /* Error during command */

fdefine SST_COMP 3 /* Error during the status phase

tdefine SST_SENSE 4 /* Error obtaining sense data */

tdefine SST_SEL 5 /* Nothing responded to ID */

*/

tdefine SST_ TIMEOUT 6 /* Idle is longer than timeout value

tdefine SST_MULT 7 /* Multiple requests for this ID */

tdefine SST_PROT 8 /* A problem in the SCSI protocol */

tdefine SST_FATAL

tdefine SST_MORE 9 /* More data than device expected */

tdefine SST_LESS 10 I* Less data than device expected */

tdefine SST_STAT 11 /* Error, sense command executed */

tdefine SST_AGAIN 12 /* Place request again */

Error codes less than or equal to SST_FATAL are unusual. For these errors, multiple
retries are not recommended.

Possible causes for error values of SST_TIMEOUT, SST_MULT, SST_MORE,
SST_LESS, and SST_AGAIN include:

*/

SST_TIMEOUT indicates that the driver disconnected, another device began a
transaction and timed out, and the bus was reset to clear the other device. Thus, the
device is left in an unknown state.

Chapter 10: SCSI Device Drivers 10-5

SST MULT indicates tha~ a second request was received for an ID that was currently
processing a request. Remember that the device driver is responsible for
coordinating multiple requests to a device.

SST_MORE indicates that the device changed phase before the buffer count reached
zero.

SST_LESS indicates that the data count reached zero before the device changed
phase.

SST AGAIN indicates that another device has caused an error on the SCSI bus.
You;-driver's device has received a RST pulse, but was not the active device at the
time of the error.

• timeout specifies the maximum number of seconds for the request 1be SCSI
manager rounds this value up to ensure that at least two watchdog timer intervals
elapse. Currently a timer interval is 2 seconds, and it is rounded to 4 seconds. The
maximum value for the timeout is 255 seconds, which is treated as infinite. Devices
should modify the timeout field for long running operations, such as disk
formatting.

Other entry points and data structures
The following subsections describe the scsi_strings data structure and the
scsigOcmd data structure. A following section describes the scsigOcmd routine.

scsl_strlngs

The global array scsi_strings (defined in <sys/ncr5380. h>) contains error
message strings indexed by manager return code. For example, the null-terminated
string "scsi_timeout,. is in position seven, indexed by SST_TIMEOUT. Use this
array and the symbolic names for error codes to ensure that your driver can handle
changes in error number assignments.

scsigOcmd data structure

The data structure scsigOcmd (defined in <sys/ncr5380. h>) contains the
command descriptor block sent to the controller. This structure is filled with values
from the scsirequest structure and follows the ANSI format for SCSI commands.
The scsigOcmd data structure is defined as follows:

struct scsigOcmd {

u_char op; /* O: opcode */

u_char addrH; /* 1: logical address 2 and LON */

u_char addrM; /* 2: logical address byte 1 */

10-6 Chapter 10: SCSI Device Drivers

(
u_char addrL; /* 3: loqical address byte O •/

u_char len; /* 4: number of blocks or bytes data */

u_char ctl; I* 5: control field •/

} ;

where

• op is the operation code.

• addrH is the most significant byte of the logical block address(if required).

• addrM is the logical block address (if required).

• addrL is the least significant byte of the logical block address (if required).

• len is the transfer length Of required).

• ctl is the control byte.

scsigOcmd routine

The scsigOcmd routine fills the cmdbuf array referenced by a scsirequest
structure with a SCSI group 7.ero command 1be scsigOcmd routine is called as
follows: ·

int · scsiqOcmd(req, op, lun, addr, len, ct/)

struct scsireq •req;

where

• req is the request parameter block. It must have a valid pointer to a cmdbuf data
area that is at least six bytes long. 1be command is placed in this buffer and
scsigOcmd sets the cmdlen data field to 6.

• op is the 8-bit opcode placed in byte 0 (see the ANSI standard for opcodes).

• lun is the logical unit number placed in the upper 3 bits of byte 1.

• addris the 21-bit logical block address placed in bytes 1 through 3.

• /en is the 8-bit transfer length placed in byte 4.

• ctl is the 8-bit control byte placed iii byte 5.

SCSI tasks

Each SCSI ID is a potential task. 1bere is only one task outstanding per ID at any time,
regardless of the number of logical units associated with an ID. 1be manager mantains
a data structure for each ID indicating the task state, and a pointer to the current
request for that ID. Each task is limited to having •1ega1• SCSI conversations (that is,
those that follow the SCSI standard) with its device. These conversations have the
following form:

Chapter 10: SCSI Device Drivers 10-7

selection command data-in data-out status

selection indicates a SCSI connection in which the computer tells the device that it can
disconnect from the computer later on, as well as how to reestablish communication
with the computer. command, data-In, data-out, and status correspond to SCSI
COMMAND, DATA IN, DATA Our, and STAnJS phases, respectively. The device
may signal a message phase at any time. Messages are not part of the semantics of legal
conversations. M°"t commonly, a message indicates that the device is going to
disconnect from the SCSI bus.

Special processing
This section desaibes other entry points and methods of bypassing parts of the SCSI
manager. Device-specific driver software can, under certain conditions, gain control
prior to normal completion of processing. The request parameter block contains a
pointer to a driver-specific interrupt function that will be called upon request
completion. This function is not called from process context, so the contents of the
kernel udot or upage data and stack area are undefmed M°"t importantly, a driver
must not call sleep () during interrupt handling.

Error handling
A watchdog timeout routine is scheduled continually at specified intervals. An 8-bit
timeout field is found in each request block, and this field contains the maximum time
that a device may remain inactive while processing a request. Drivers should be coded
with increased timeout values if multi-block transfers are given as a single command,
because any requested value less than 10 seconds is automatically increased to 10
seconds.

Error recovery on a timeout depends upon the state of the task. If the device is
disconnected, the device must contend for the bus and an abort message sent. If the
device is conneaed, the manager attempts to use the A 1N line to send an abort
message. If this doesn't work, match the device's phase and read junk values or write
7.eroes. ATN is kept high while waiting for the device to ask for a message. The device
has 5 seconds to get off the bus after an abort begins. If a connected device doesn't
dtop BSY, or a disconnected device doesn't ask for a message, pulse the SCSI RESET
line and notify the drivers. If in a data phase, the connected target receives an error
saying that there was less data than the device expected, and all other targets also
receive timeout errors.

10-8 Chapter 10: SCSI Device Driver$

(

If a disconnected device times out, other transactions are first allowed to complete,
then the SCSI RESET line is asserted. If the active device times out, the manager
asserts the A 1N line. The device should ask for a ~age after which the manager will
send an abort ~age. If the device ignores the A 1N signal, the manager continues
the transaction by reading ignored data or writing z.eros.

SCSI disk drivers
A typical SCSI disk driver can be divided into three layers. The top layer corresponds
to routines called from the bdevsw table. The bdevsw routines typically check the
minor number passed in the data structure describing the request with valid minor
numbers for the device. Usually, the bdevsw routines take the parameters given to
them, add a pointer to the device controller structure, and call generic routines,
which comprise the middle layer. Generic disk software .is driven from data structures
that define disk access routines. These generic routines schedule I/O transactions and
expand high-level requests, such as ioctl(2) calls, into the sequence of basic read
and write requests needed The generic routines often call device specific routines or
low level routines to send the request to the actual hardware. The lowest layer
implements simple, device-specific operations. They are sheltered from the details of
processes, files, ioals, and buffers.

The layers of a SCSI disk driver are illustrated in Figure 10-1.

Chapter 10: SCSI Device Drivers 10-9

Rgure 10-1
SCSI disk driver

10-10 Chapter 10: SCSI Device Drivers
c

(

(

(

Each disk device has an associated data structure that describes its device and
controller. This structure contains pointers to routines that perform simple functions
such as reading, writing, or formatting.

To write a SCSI disk driver, you must do the following:

1 . Determine how your disk hardware differs from SCSI command standards.

2. Replace those routines in the generic library with device-specific ones for your
driver.

3. Arrange for your driver to be autoconfigured into the A/UX kernel.

Appendix G contains a listing of the source to an A/UX SCSI device driver.

Device naming conventions
Named file entries in the I dev Ids k directory contain SCSI entries labeled c ndns n
where n is a decimal number assigning the controller, device, and slice. The
controller number is the logical bus ID of the SCSI device (0-7), the drive number is a
logical unit number (0-7), and the slice is the logical partition number (Oto 31):

The device is named according to the convention used in the stand-alone code and
the kernel, although device drivers actually recognize devices by their major and
minor numbers. For SCSI disk devices, the major number determines the SCSI
controller bus ID (eight consecutive major numbers correspond to SCSI IDs 0 to 7),
and the minor number determines the logical unit number and partition, as oshown in
Figure 10-2.

Chapter 10: SCSI Device Drivers 10-11

Rgure 10·2
Minor number assignment

10-12 Chapter 10: SCSI Device Drivers

(

(

This scheme allows 32 partition numbers. Each partition is dynamically assigned by a
partition map and hundreds of named partitions can be on a single disk.

Disk partitioning
The disk partition map data structure provides a 32-charaaer name for each partition.
Named partitions are associated dynamically with numbered devices through
ioctl(2) calls. Default values are assigned to the first 16 partitions at boot time. The
first three partitions (0-2) are assigned to the default root, swap, and usr file system. If
any of these three file systems are missing on the current disk, then the partition
number is unassigned The next 13 file systems (3-15) are assigned in order of the file
systems on the disk. If the aaive root, swap, or usr ftle systems are among the first 13
partitions on the disk, the second occurrence of the file system is left as an unassigned
partition.

In addition to these assignments, the final partition, 31, always maps to the entire
physical disk. Any user program may read from this partition (assuming an inode with
the appropriate permissions is available), although the device driver only grant5 write
access to this partition to programs running with superuser privileges.

For details about the Macint~h II disk partitioning scheme, see Ins1de Macintosh,
Volume 5.

Typical 1/0 operation
A typical I/O operation begins when a read or write call occurs in the context of a
requesting process. Typically, the driver will be aaive and will schedule the request for
a later time. When the request acb.lally runs, the operating system might be processing
an interrupt outside the context of the requesting process. The sequence of device
driver calls to place a request is shown in Figure 10-3.

Chapter 10: SCSI Device Drivers 10-13

,~ : .

Figure 10·3
Initiation of typical 1/0 request

10-14 Chapter 1 O: SCSI Device Drivers

(

(

("- - -

After the strategy routine places the 1/0 request into the device's queue, the generic
start routine schedules the request, as shown in Figure 10-4.

Chapter 10: SCSI Device Drivers 10-15

Figure 10-4
1/0 request processing ou1'1de process context

10-16 Chapter 10: SCSI Device Drivers

(

(

Only one outstanding request per controller is allowed. The external device interrupts
the CPU to signal that the request has finished. The interrupt can call the device
handler directly for a slot-based device, or the device handler may be called after the
SCSI manager is initially called. Device-specific ccxie responds to the interrupt,
determines if the transfer completed without error, and calls a request completion
routine in the generic ccxie. The generic request completion routine informs the rest
of the operating system that the request has completed. In standard drivers, no driver­
specific code is executed in process context while servicing an interrupt Generic code
may, however, arrange for a sequence of sleeps and wakeups to read a partition map
for an ioctl call, for example. Handling of specific calls is discussed in more detail in
the section "Generic Routines".

Data structures on disk
A portion of the disk reserved for A/UX is defined by the disk partidon map entry
(dpme) and block zero block data strucrures.All operating systems using the disk share
Apple's disk partition map entry format, but a driver can gain access to partitions
belonging to A/UX only.

Note: The A/UX utility dp(le), which performs disk partitioning, can be used to create
and change disk partition information.You can also use the utility Apple HD SC Setup
2.0, which is documented in a preliminary note available through APDA.

The dpme data structure contains fields defining the logical start address and the
number of blocks, which define the area of a partition that contains a partition.
Normally, the end of the partition (that is, past start address + number of blocks)
contains an optional spare block area used for bad block handling. The fields of the
dpme data structure are listed in dpme(4).

The dpme data structure reserves space for operating system specific information. For
A/UX, this space is called the block 7.erO block (bzb) data structure. The driver
modifies and updates several of these fields. The driver uses the bzb data structure to
assign file partitions to eschatology clusters and to determine the position of the
alternate block map.

A single disk might have several root file systems. Each may be a cluster of file systems
that contains its own root, usr, swap, and eschatology backup file systems. The generic
driver code obtains the number of the default eschatology cluster from the Apple
boot-up firmware, which makes sure that the default root, swap, and usr file systems
are mapped as minor devices zero, one, and two.

The alternate block map (abmh) data structure consists of a header, followed by a
variable length list of block numbers, as shown here:

struct abmh

u32 abmh_magic

Chapter 10: SCSI Device Drivers 10-17

u32 abmh_len;

} ;

tdefine ABHH_MAGIC OxBABEEEE

where

• abmh_maqic is a magic number

• abmh_len is the length of the block number 1iSt.

The block number list is an array of long integers. Each indexed location in the array
corresponds to a potential alternate block in the spare block area. 1be location in the
alternate block array can contain either the number of a block in the data portion of
the disk partition that will be remapped, or a flag value. Possible flag values are as
follows:

-1 Blocks available

-2 Bad free block-do not use

-3 Block allocated to alternate block map

You cannot make any assumptions about the ordering of bad block information on
the disk. .

Warning: Never offset the logical data area of the partition from the start of the
physical partition. Although driver code allows this, block numbers of blocks cached
in core would then be incorrect.

Kemel data structures
Three levels of data structures desaibe disks:

• conuoller

• drive

• partition

Controller-level data structures define methods of accessing the disk and define the
software that is called for each access. A controller corresponds to a SCSI ID and to a
major device number and any given controller may be present on several IDs.

Drive-level data structures descnbe drives connected to a controller. Several drives
may be attached to a given SCSI controller.

10-18 Chapter 10: SCSI Device Drivers

(

Partition-level data structures descnbe partitions on a drive. A drive is divided into a
number of minor devices. At any moment, a minor device may or may not be
assigned to a partition on the disk. When a minor device is associated with a partition,
there is a device partition map entry, bad block Wormation, and user data available.
When a minor device is not associated with a partition, you can perform open(2),
close(2), and some ioctl(2) calls, but performing read(2) and write(2) calls
return errors.

The generic driver_ open routine allocates these disk data structures as needed using the
kmem_alloc memory manager routine. Controller data structures are never freed.
The pointer to the controller data structure is not associated with the device switch
Wormation for the device; the high-level device-specific code must keep track of the
pointer. Dynamic allocation ensures that unused data structures do not consume
space.

Controller data structur•

There is one controller data structure for each controller. All drives having the same
major number use the same data structure. The controller data structure is shown next.

struct gdctl {
struct
struct
int
struct
struct
struct
int
long
int

qenprocs *ctprocs;
gentask *cttaskp;

where

int
daddr_t
daddr_t
struct
struct
short
char
char
short
short
short
} ;

ctflags;
gddrive *ctdrive;
qddrive *ctactive;
gdctl *ctnextct;

ctcmd;
ctarg;
(*ctdevctl) ();
ctretval;
ctsector;
ctlbn;
buf *ctbp;
deverreg cterr[4];
cterrind;

·ctrunning;
ctpending;
ctstate;
ctretry;
ctmajor;

/* Controller data structure */
/* generic low level procs */
/* pointer to current task list */
/* flags for handling controller */
/* drive list */
/* currently active drive */
/* list of ctl structures */
I* Command associated with ctbp */
/* argument for current command */

/* function to be called for devctl */
I* return value of command */

/* private for generic code */
I* logical block for error msgs */
/* allocated scratch buffer */
/* Scratch for error messages */

I* index into error message storage */
/* True if start routine active */

/* True if any device has a request */
/* generic code private data */
/* retry counter for soft errors */
/* major device number from devsw */

Chapter 10: SCSI Device Drivers 10-19

• ctprocs points to an array of entry point addresses for device-specific routines
that perform specific tasks (see the qenprocs data structure described later)._

• cttaskp points to the current task data structure (see the qentask data structure
described later).

• ctflaqs holds various controller state flags. Possible states are

NOPRINT If set, console error printingis supressed.

CLOSING Set by generic code while device is closing.

• ctdri ve is a list of drives associated with this controller (see the drive data
structure descnbed later).

• ctacti ve points to the currently active driver from the ctdri ve list

• ctnextctis a linked list of all controllers in the system. 1be generic code uses this
list to locate a controller associated with a given major device.

• ctcmd is the command associated with the controller buffer. It contains a code for
a currently queued ioctl (see •controller Data Structures• later in this chapter).

• ctarq is an optional argument associated with the device-specific ioctls being
passed from the high-level to the low-level device-specific code.

• ct devctl is a device specific function that the generic routines call to initiare
exclusive control functions. ctdevctl is responsible for calling qdrestart.

• ctretval is used to return the completion status from device-specific routines to
generic routines.

• ctsector is a private location for generic routines.

• ct.lbn is used by generic routines which place the block number in this in
anticipation of diagnostics.

• ctbp is a buffer from the buffer pool assigned to the controller when the drive is
first opened. It remains assigned for the duration of A/UX execution. The buffer
space is used to read partition information for device initialization and ioctl
processing. The buffer header provides concurrency control for device ioctl
processing.

• cterr is a scratch location for qderr logging of error messages.

• cterrind is a scratch location for qderr logging of error messages.

• ct runninq is a flag which, if TRUE, indicates that there is an outstanding request
for any drive on the controller.

• ctpendinq is a flag which, if TRUE, indicates that a drive for this controller has a
queued request This flag is cleared when the interrupt handler has finished
handling requests.

• ct state is a state variable for the controller that organizes activities across
interrupts. For example, it could increment this field from one to four for a four­
step initialization sequence.

• ct retry is a private counter for generic retrying of requests.

10-20 Chapter 10: SCSI Device Drivers

(

(

(

• ctmajor is the major number of the device.

The genprocs data structure defines low-level device-specific procedures that are
called to process specific requests. Each entry point is a pointer to a function. The
specific entry points are described ~ detail in •tow-Level Device Routines", given
later in this chapter. The data structure is created when the device is first opened, then
is initialized by the generic cOde to point to SCSI routines. Device-specific code can
then modify the entries.The genprocs data structure is shown here:

struct genprocs {

int (*qpread) () ; /* Read into buffer */

int (*qpwrite) (); /* Output buffer to device *I

int (*qpdriveinit) (); /* Initialize data structures *I

int (*qpbadblock) (): /* Map bad block */

int (*qpformat) () : I* Format drive */

int (*qprecover) () : I* Recover following an error */

int (*qpshutdown) (); I* Stop processing or eject */

} :

The task data structure, gentask, describes one VO operation. One data structure
exists per controller, For more about this structure, see •1.ow-1.evel Device Routines",
given later in this chapter. The gentask data structure is shown here:

struct gentask {

int (*gtretproc) ();

struct gdctl *qtctp; I

struct drqual *gtqual;

caddr_t qtaddr;

int gtnreq;

int gtndone;

daddr_t qtblock;

short gtmaj;

short gtd.num;

} :

/* Address of completion function */

* Pointer back to controller */

I* Device qualities pointer */

I* Address of buffer to fill */

I* Number of bytes requested */

/* Number of bytes read/written */

I* Block number to read or write */

/* Device major number */

/* Disk number */

Chapter 1 O: SCSI Device Drivers l 0-21

Drive data structures

Drive data structures are created as needed wheh a drive is opened There is one or
more drives associated with a controller and each drive is normally a single spindle.
The space allocated is never released. The gddri ve data structure is shown here:

struct gddrive /* description of a single spindle *I
etruct gddrive *drmct; I* next drive on controller */
struct drqual *drqual; /* qualities of device */
short drstate; /* drive state from generic code
short drpartnum; /* which partition are we working on
int drcount; /* count for EOF calculation */
u_char drnum; /* device unit number */
struct iobuf drtab; I* I/0 queue header */
struct iostat driostat; I* I/O error handling */
struct gdpart *drpart[GD_MAXPART]; /* pointers to partition
} ;

where

• drnxt is the next drive in the linked list of drives associated with this controller.

• drqual is the device-qualities data structure describing this drive. The dr~al
data struaureis described later in this section.

• drstate is the drive state. Possible states are

NOT I NIT

REINIT

STARTING

NORMAL

The drive has never been accessed.

Must be initialired again on next access.

The drive is in the process of being initialired.

The drive is ready.

• drpartnum is a partition number in the range 0 to 31.

• drcount is the count used during end-of-file calculations.

• drnum is the device number or SCSI logical unit number of the drive. This number
is always the upper 3 bits of the 8-bit minor device number.

• drtab is the A/UX VO queue header.

• driostat is the 1/0 statistics and error handling data.

• drpart is an array of 32 pointers to partition structures.

Each drive has a group of qualities that define the drive. The data structure that defines
these qualities is shared between the generic code and the device-specific code. The
qualities data structure, drqual, is made available to the device-specific code on
each VO operation. The drqual data structue is shown here:

struct drqual {

lonq dqdevp;

int dqflags;

/* device-specific storage */

/* Flaq values */

10-22 Chapter 10: SCSI Device Drivers

info

*/
*I

*I

(

(

u_lonq dqxfermax; /* Maximum number of blocks per transfer */

short dqcyl; /* Number of sectors per cylinder */

I* (negative for no cylinder boundaries) */

u_short dqblksize; /* Currently unused */

daddr_t dqmaxbn; /* Maximum block number for device */

} ;

where

• dqdevp is a location used for device-specific storage. Device driver routines may
use it for any purpooe, becausethe generic code will never modify this location.

• dqflags is a bit array of flags.

• dqxfermax is the maximum transfer size, which is the largest number of bytes that
should be sent to the device in a single request 1he generic code breaks large read
requests into •chunks• no larger than this size.

• dqcyl is the number of seaors per cylinder. This field is used for error messages. It
is available to applications such as mkfs via an ioctl. If this number is positive, then
long requests are broken on cylinder boundaries; if negative, dqcy 1 is the cylinder
size, but requests are not broken on cylinder boundaries.

• dqblksize is the physical block size of the device.

• dqmaxbn is the maximum block number of the device. This number reflects the size
of the device, ignoring disk partitioning or reserved areas.

PatlHon data structures

Each drive can support 32 active partitions at a time. Partition data struaures are
created as needed, and the space they occupy is never released. 1he partition data
struaure is shown here:

struct qdpart { /* Description of a mounted partition */

lonq ptflags; /* Various flags */

daddr_t ptdpme; /* Disk address of dpme entry */

daddr_t ptoffset; /* Physical address of first block */

daadr_t ptlsize; /* Logical size of data partition */

daddr_t ptpsize; I* Total size of partition */

daddr_t ptastart; /* Location of alt block map */

int ptasize; /* Size of alt block map (in bytes) *I

int ptaents; I* Number of entries in alt block (in bytes) */

Chapter 10: SCSI Device Drivers 10-23

short ptstate; /* State information */

struct bbhdr *ptbm; /* Bad block bucket list for partition */

short ptbmask; /* Mask for bucket hashing */

char ptname [32); /*Name of partition*/

char pttype (32]; /*Name of partition*/

char ptcluster; /* Eschatology cluster of partition */

} ;

where

• ptflaqs is the flags from the set P~ible values are

Partition flag values:

NOALT

USER.ALT

ES CHO

RONLY

Partition type values:

TYPHYS

TYDEF

TYDPME

Alt block mapping is disabled for the partition.

The mer has explicitly turned off alt block mapping.

Partition is default autorecoverycluster.

Read-only file system (for example, CD-ROM).

Partition is whole device, not partition.

Default partitioning was supplied.

Partition assigned from DPME.

Partition name values:

NMNONE This number has no partition assigned.

NMUSER The name/number assigned by user ioctl.

NMDEF The name/number assigned by default

• ptdpme is the disk address of the disk partition map entry for this partition.

• ptoffset is the physical address of the first block of data.

• ptsize is the s.i7.e of the data area of the partition.

• pt state is the state information for the partition. Possible values are

REINIT The partition information must be reinitializ.ed on the next
read or write access. 'The read or write will fail unless the
partition is assigned a name by default, or by an application's
ioctl routine

STARTING

NORMAL

NEEDALT

ALTING

The driver is in the process of initializing the partition.

The partition is initializ.ed and ready.

Alt block processing is required.

Alt block processing is in progress.

10-24 Chapter 10: SCSI Device Drivers

(

• ptbm points to the beginning of the bad block hash list.

• ptbrnask is the mask for locating bad blocks in the bad block hash list

• ptname is the name of the partition set by Apple's administrative software. The
name is a null-terminated. string.

Bad block information is associated with each partition. See •Bad Block Handling~ in
this chapter for more information.

Generic routines
The generic device driver routines provide a layer of subroutines between the code
called from entries in the bdevsw structureand the device-specific code that gains
access to the hardware. 1be high-level device-specific code is called directly from the
bclevsw table and passes a request on to the generic routines. The generic routines, in
tum, enqueue requests and pass them to the low-level device-specific routines. The
generic disk driver implements open, close, strategy and ioctl services. In addition,
the software maintains a disk partition map and alternate block mapping for a device.
The generic driver is closely attuned to the .requirements of SCSI disks, but it can also
be used with other controllers as well.

The routines described next provide the interface to the generic driver. The generic
open, close, strategy, and ioctl routines are described in this section. Note that there
are no generic entry points for unbuffered reads or writes from character special
drives. Normally, high-level disk read and write routines call physio with the address
of the strategy routine. When using the generic disk driver, the strategy routine passed
to physio is device-specific code, which in tum calls qdstrateqy.

The qdopen routine is called as follows:

qdopen (ctp, dev, flalP
struct ctl •ctp,

dev_t detJ,

int flag,

where

• ctp is the controller data structure for this major number.

• dev is the device number

• fklB is a read/write flag.

Chapter 10: SCSI Device Drivers 10-25

The qdopen routine opens a drive. If the drive has never been opened, this routine
creates the appropriate drive and partition structures. The device-specific code must
have previously called qdinit on the first open of this major number. Opening a
device doesn't check that the device is ready for access. In particular, you can open an
improperly formatted drive and format it, which can result in delayed notification of
common errors until the first read or write.

The qdclose routine is called as follows:

qdclose (ctp, dev)

struct ctl •ctp;

dev_t dev-,

where

• ctp is the controller data structure for this major number.

• detJ is the device number.

The qdclose routine closes a drive. Closing a device has very little effect The low­
level shutdown routine is called with an argument indicating that the device was
closed Any partitions associated with the device remains associated with it on the next
open.

The qdstrategy routine is called as follows:

qdstrateqy (ctp, bp)

struct ctl •ctp;

struct buf •bp-,

where

• ctp is the controller data structure for this major number.

• bp is the buf structure that describes the I/O request. The buf structure contains the
address of the buffer associated with the I/O request.

The strategy routine places a buffer in the drive's queue for a later I/O operation. Each
controller has a scratch buffer header, pointed to by ctbp, which is assigned on the
first open. The controller buffer is used to schedule ioctl and other control
operations. The ioctl routine waits for the controller buffer using the normal sleep and
wakeup mechanisms. When this buffer becomes available, the controller data
locations ctcmd and ctcmdarq aJso become available; only the process that has
exclusive use of the controller buffer may write to these locations. The ioctl routine
then passes the address of the controller buffer to gdstrategy which treats this buffer
as a special case, and is placed at the end of the queue. When the start routine finds the
command buffer at the head of the queue, it takes the necessary steps to process the
ioctl.

10-26 Chapter 10: SCSI Device Drivers

(

(

The gdioctl routine is called as follows:

gdioctl (ctp, dev, cmd, addr, flag)

struct ctl •ctp-,

dev_t deV',

int cmd;

caddr _ t addr,

int flag,

where

• ctp is the controller data structure.

• dev is the device number.

• cmd is the ioctl command code (ibe command codes are documented in gd(7)).

• addr is the address of the ioctl call arguments.

• f1a8 contains the flags associated with the file.

This routine implements the generic set of SCSI ioctl calls. It recognizes the ioctl
number and performs the necessary actions. If it doesn't recognize the ioctl type, it
returns an error to the user. The list of ioctls is found in gd(7). Also, you can use the
gddevctl routine for extendable device-specific ioctls, as descnbed next

The gddevctl routine is called as follows:

gddevctl (ctp, dev, 4>roc, arg)

struct ctl •ctp-,

dev_t deV',

int (•dproc)O;

int at&

where

• ctp is the controller data structure for this major number

• dev is the device number.

• dproc is the ioctl process to schedule.

• atg is the argument passed to the process.

Chapter 10: SCSI Device Drivers 10-27

This routine provides a method for your driver to perform hardware-specific ioctls.
The high-level device-specific ioctl routine is called from the bdevsw table, where it
is examined and either passed to the generic code or aaed on. If the driver-specific
code must take action, the device code must wait until the hardware is not busy.

When the device is ready to process the ioctl, the device-specific routine given as
dproc js called with the arguments (*dproc) (major, unit, arj). dproc is not called
from process context. It is able to pin access to use data spare, The high-level device­
specific ioctl routine is expected to sleep and arrange to be awakened so that it can
carry data or status back to the user. Th.e high-level routine, in process context, and
routines called from dproc can arrange via the buffer pool, to move data. dproc can
call low-level device-specific routines, or arrange for hardware interrrupts as
required. Until it relinquishes control, it has exclusive use of the hardware. When all
processing for the ioctl has completed, the completion routine gdrestart should be
called. ·

Service routines for device-specific code
The routines desaibed in this section provide services for device-specific code. The
device-sped.fie code is responstble for keeping track of a pointer to the controller data
structure. 1be gdctlini t routine creates the controller data strucb.lre when the first
access to it occurs. The qdctlini t routine is called with the following parameters:

struct ctl • qdctlinit(major, minor)

int major, ml~

where majorand minor are the A/UX major and minor numbers.

The device-specific code must keep track of a pointer to the controller data structure.
The gderr routine, shown here, creates the controller data structure on the first
access.

qderr(tasltp, str, num)

struct qentask •tasltp;

char •str,

int num;

where

• tasltp is the request being serviced

• str is the error message string.

• num is the number associated with the error.

10-28 Chapter 10: SCSI Device Drivers

_(

The gderr routine hides the data structures that interface to the error message
handler. Low-level interrupt service routines can make repeated called to this routine.
When the generic code's interrupt completion routine is called, a System V-style error
message is formatted and passed to logberr.

1be gdrestart routine is called as follows:

qdrestart(major, rein#)

where

int major;

int rein#;

• major is the device to restart processing.

• rein# is an integer flag that, if TRUE, tells the driver to set everything to
reinitialization state.

gdrestart is called after the processing of a device-specific 1/0 call initiated from
gddevctl. It ends a period of exclusive use for the device. If the nnn# flag is TRUE, all
drives and partitions associated with the controller will be set to REINIT. This will not
disturb any recently queued 1/0.

(Low-level device rouHnes

(----

The low-level routines (also called procs) perform simple haldware-depenclent
operations. Most ~I disk devices use the same read and write routines, but vary in
the way they handle options such as bad block handling. 1be low-level routines are
sheltered from the exact details of controller, driver, and bad block handling.

1be low-level routines are specified in the qenprocs data struaure (see "Kernel Data
Structures"), which the generic code initiali7.eS to values appropriate for a generic SCSI
disk. The high-level device-specific code can reset any of the values as needed.

Upon completion of 1/0, the low-level routine calls the return address given in the
gentask data structure. 1be return address varies depending upon the state of the
generic device model. 1be callback function expeas two arguments: the task pointer
and the return status. The return status values and what they indicate are as follows:

GDR _OK The operation WU a success.

GDR_AGAIN A correaable error OCQlrred, so you should perform the request
again. Partial data in the buffer might be intact 1bere may be an
error message data to log.

GDR CORR A correctable error OCQlrred and has been corrected. There may be
an error message to log.

Chapter 10: SCSI Device Drivers 10-29

GDR_FAILED '1be operation failed. Partial data in the buffer might be intaa. Your
driver should have supplied an error message to log.

The device qualities (drqual) data structure includes space where the device code can
keep a pointer to private data structures that further desaibe the device. The same
drqu·a1 data structure is presented each time a driver gains access to a given
controller and drive.

The entry points to the low-level device routines are given next. For each low-level
routine, tasltp is a pointer to a task data structure. The entry point for the low-level read
routine is shown here:

d _ read(tasArp)

This routine moves n bytes of data from the disk location indicated by gtblock to the
buffer pointer to by the task pointer. The device routine updates the gtndone field of
the task structure. ·

'1be entry point for the low-level write routine is shown here:

d _ wr i te(tas/rp)

This routine moves n bytes of data from the ~er pointer to by gtaddr to the block
pointed to by gtblock. The routine updates the gtndone field

The entry point for the low-level initialization routine is shown here:

d_driveinit(tas)p)

This routine initializes the device qualities data struC1Ure. The device-specific field of
this data structure is NUU. if this is the first time d_qualinit has been called for this
drive. A drive might be initialized repeatedly as part of error recovery, formatting, or
other ioals. The address pointed to by the gtaddr field of the task pointer is the
controller scratch buffer.

The entry point for the low-level bad block handling routine is shown here:

d_badblock(tadlp)

This routine asks the device to mark the block taskp-> gtblock as bad The address
pointed to by the gtaddr field of the task pointer is the controller scratch buffer.

The entry point for the low-level formatting routine is shown here:

d_format(tadlp)

This routine formats the drive. The previous contents of the disk will be lost The
address pointed to be the gtaddr field of the task pointer is the controller saatch
buffer.

The entry point for the low-level reset routine is shown here:

d_reset(tadlp)

1 <>-30 Chapter 10: SCSI Device Drivers

__ .,,, . ./

(

(

The generic code calls this routine following any uncorrected error. If this routine
returns an.uncorrected error ccxle, the drive is marked as DOWN. The address
pointed to by the gtaddr field of the task pointer is the controller scratch buffer.

1be entry point for the low-level shutdown routine is shown here:

d_shutdown(tasArp)

taskp->gtnreq indicates that a shutdown value wasp~ from the user's ioctl.
Only two values are amently defined 0 means that the device should retract its heads
to prepare for shipping, and 1 means that a partition on the unit has just closed. 1be
address pointed to by the gtaddr field of the task pointer is the controller scratch
buffer.

Chapter 10: SCSI Device Drivers 10-31

Chapter 11

Apple Desktop Bus Drivers

(.·

11-1

If you're adding a device that uses the Apple Desktop Bus (A.DB), you should read this
chapter before you begin. While ADB device drivers use the same interfaces to A/UX
processes as other drivers do, special support is required to share the ADB with other
drivers. In this chapter, the Apple Desktop Bus (formerly Front Desk Bus) routines,
files, and commands use the prefix fdb.

The Apple Desktop Bus (ADB) is a simple serial bus used to access peripheral devices
such as keyboards and mouse devices t.liat are usually located en your desktop. The
ADB takes multiple ADB requests from system software, sends them to their
appropriate devices, and returns the results to the same software that requested them.
It allows the system to poll individual devices for state changes and notify the system of
such state changes. Because of the simple hardware, a single kernel interface is
required that must do the following:

• Seriali:ze ADB transactions, because only one transaction can be run at a time.
Pending transactions are stored and run in a round-robin manner.

• Support interrupts. Each ADB transaction encounters several hardware interrupts
before the transaction is complete. The device driver only needs to make a request
to receive a reply later-interrupts are handled transparently for the driver.

• Support hardware polling. The ADB controller chip periodically repeats the last
read transaction executed on the ADB bus. If such a hardware poll is successful,
then the appropriate driver is notified of the successful poll and the data is
returned.

• Support software polling. When a device on the ADB requests service, the system is
interrupted. Because the hardware provides no mechanism to determine which
device is making the request ,the ADB support software asks each known device
driver to poll its corresponding device to see if service is requested. If the service
request is removed by one device driver's polling, any other outstanding software
polls are canceled and their drivers are notified

Transactions
A transaction is the basic function requested of the ADB. A transaction consists of a
request for the ADB software from a driver, an action, and a reply from the ADB
software after the action has completed A transaction is always specific to a particular
device (with a particular address on the ADB). A particular device may have only one
transaction outstanding at a time.

The ADB supports three basic types of transaction requests:

flus h(devtce) This is used to instruct the device to flush itself (for example, to empty
its internal buffers of stored keystrokes for a keyboard).

11-2 Chapter 11: Apple Desktop Bus Drivers

ta l k(dev1ce, register) This is used to read from a register on the device. This
transaction is an instruction to the device to •taJk• to the system. A device contains
four registers numbered 0 to 3. If a timeout does not ocrur, a talk request returns data
read from the contents of the register.

listen(dev1ce,regtster, data) This is used to write to a register on a device. This
transaction is an instruction to the device to •listen• to the system. A listen command
must include the data to be written.

Driver service routines
When the ADB first grants access to each driver, it must provide the ADB software with
the address of an interrupt service routine (see •Initiate Transaction• in the next
section). The ADB software calls this service routine at the end of each ADB
transaction to pass back data and to notify the driver that the transaction is completed.
This routine is also called when certain exception device polling conditions exist.

A driver service routine is always called with three integer parameters. The first
parameter is the ID number specified when the transaction was started The second
parameter is a value that specifies what type of transaction has completed (called the
command), and the third parameter (called the arg) is command specific. Symbols
for the command values are found in the ftle <sys/fdb. h>.

High-level driver routines
High-level drivers can call the routines provided in the ADB kernel code to perform
ADB transactions. This section describes these routines.

Initiate transaction
The fdb_open routine makes the first transaction to a device on the ADB. It is usually
called once from a device driver's init routine (when the system is initialized).You can
call the fdb_open routine as follows:

fdb_open(addr, 1d, 1mi)

where

• addris the address of the device that is being accessed on the ADB (a number in the
range 0-15).

• Id is a number (usually the device's minor number) that is returned with the
transaction's completion indicator.

Chapter 11: Apple Desktop Bus Drivers 11-3

• lnb'is the ~ of the device's interrupt service routine. The bus software calls
this routine at the end of each ADB transaction to pass back data and to tell the
driver that the transaction is completed. 1be device's interrupt seivice routine is
also called when certain device polling exceptions occur.

In addition, fdb _open () initiates an ADB transaction (aaually a talk to register 3 of
the device) that determines if the device really exists. When this transaction
completes, it always calls the service routine with the commandFDB_EXISTS. In this
case, the atg parameter can have two possible values: 0 if the device really does exist
on the ADB, or nonzero if a timeout occurred while trying to talk to the device, and the
device is not present on the bus.

Flushing a device
1be fdb_flush routine flushes data from a device. You can call the fdb_flush
routine as follows:

fdb_flush(addr, Id)

where

• addr is the bus address of the device being flushed.

• id is a number passed back to the driver with the service routine.

When the flush transaction completes, the device's service routine is called with the
command FDB _FLUSH. If the a'B is nonzero, then a timeout occurred and the device
is not present on the bus.

Talking to the ·system
1be f db_ talk routine instructs a device to •taJk• to the system. You can call the
fdh_talk routine as follows:

fdb_talk(addr, id, register, datap)

where:

• addris the address of the device where the talk is initiated from.

• id is a number to be passed back to the driver with the service routine.

• register is the register being read (talking), and is a value between 0 and 3.

• datap is the ~ of the buffer to contain the data being read

11-4 Chapter 11: Apple Desktop Bus Drivers

/'~>

\ j ,_.,...,,

(

(

When the talk transaction is completed, the device's service routine is called with the
command FOB_ TALK. If nom.ero, the arg indicates that the talk transaction timed
out On most devices, some registers (usually register O) generate a timeout if they are
talked to but nothing is available to read. Other registers (for example, register 3) can
always be talked to if the device exists, without a timeout occwring.

Listening to the system
The fdb_listen routine instructs a device to •listen• to the system. You can call the
fdb_listen routine as follows:

fdb_listen(addr, U(register, dalap, count)

where:

• addr is the bus address of the device to be written Oistened to).

• Id is a number that is pas,,ed back to the driver with the service routine.

• register~ the register being written Oistened) to. This is a value between 0 and 3.

• datap is the address of a buffer that will contain the data being written.

• count is the number of bytes to be written.

After completion, the device's service routine is called with the command
FDB_LISTEN. As in other routines, the a'8 indicates if a timeout has occurred.

Polling
As noted earlier, the ADB hardware repeats the last talk transaction on the bus
continuously if the bus is idle. H such a talk sue~ (that is, completes without
timeout), then the processor is interrupced and the results of this talk are returned.
Thus the device driver's service routine for that corresponding device will be called In
this case, the command is FDB_POLL and argis the data returned from the successful
talk.

Also, when a device with its service requests enabled (via a listen to the device) makes a
service request, software must poll all known active devices. When the ADB software
wants drivers to poll their respective devices, it calls the device service routines
passing the command FOB_ INT. 1be driver has the choice whether or not to initiate
an ADB talk transaction to read from the device. If the driver chooses to, then it
should return the value 1 from its service routine to indicate that a talk transaction has
started. If for some reason the driver doesn't wish to start such a transaction (for
example, it knows that it's device doesn't have service requests enabled, or that an
ADB transaction is already in progress), then it returns 0.

Chapter 11: Apple Desktop Bus Drivers 11-5

If a service request is satisfied without polling all of the requested devices, then the
service routines of those currently being polled are called with the command
FDB_UNINT to indicate that their requests have been canceled.

Drivers can use their service routines to implement a Finite State Machine (FSM). This
FSM would normally be started by a call to f db_ open. Such a FSM has two parts. The
first part initializes the device. 1be second part consists of responses to device. polls
and is entered once the device is initialized

Figure 11-1 shows the initialization states.

11-6 Chapter 11: Apple Desktop Bus Drivers

(

Figure 11-1.

lnltlallzatlon finite state machine diagram

(

Chapter 11: Apple Desktop Bus Drivers 11-7

Once in the idle state, the device driver respon~ to the polling requests as shown in
Figure _11-2.

11-8 Chapter 11: Apple Desktop Bus Drivers

Figure 11 ·2.

Polllng 11nlte state machine diagram

(

Chapter 11: Apple Desktop Bus Drivers 11-9

Note that the driver attempts to perform as many talks as possible until it receives a
timeout Thus, the hardware polls the device that performed the latest talk transaction,
because a moved device is usually moved again soon (such as a mouse).

A sample driver
The following is a sample skeleton interrupt routine for a device driver that
implements the Finite State Machine just described. The comments marked with the
string DEV should be replaced by the device prefix for your driver. Only the interface
to the ADB driver is shown-the high-level interface could be to any type of A/UX
device driver , such as a Streams or character device driver.

#define NDEVICES 1 /* the number of devices */

#define HANDLER 1 I* the device handler id */

/* current state */ static int DEV_state[NDEVICES];

static int DEV_present[NDEVICES]; /* TRUE if there really */

I* is a DEV out there */

static short DEV_buff[NDEVICES); /* where the fdb data is */

I* read into */

static int DEV_intr();

tdefine STATE_INIT 0 /* not yet initialized */

idefine STATE_IDLE 1 /* device is in inactive state */

idefine STATE_REG3 2 I* register 3 listen in progress */

tdefine STATE_ACTIVE 3 /* register 0 talk in progress */

idefine FDB_DEV 5 /* the fdb address of the device*/

/*

* called at sp17

* for each device

* initialize its global variables

* call fdb_open to declare the ISR and

* start the FSMs events

*/

11-1 O Chapter 11: Apple Desktop Bus Drivers

(

DEV_init ()

/*

register int i;

for (i • O; i < NDEVICES;i++l

DEV_state[i] •

DEV_present[i] •

STATE_INIT;

O;

fdb_open(FDB_DEV, i, DEV_intr);

* The device service routine

*/

static

DEV_intr(id, cmd, tim)

switch(cmdl {

case FDB_ONINT:

I*

* A poll was canceled •••• mark the device as

*I

if (DEV_state[id] •• STATE_ACTIVE)

DEV_state[id] • STATE_IDLE;

break;

case FDB_INT:

I*

*

*
*/

A poll is requested. If we are doing nothing

then do a fdb_talk to do the poll.

if (DEV_state[id] -~ STATE_IDLE) {

fdb_talk(FDB_DEV, id, 0, 'DEV_buff[id]);

inactive

Chapter 11: Apple Desktop Bus Drivers 11-11

DEV_state[id] • STATE_ACTIVE;

return(l);

return(O);

case FDB_POLL:

I*

•
•
•
•
*I

A hardware poll succeeded ••••• fake the

timeout parameter and the DEV buffer to look

as if a fdb_talk() succeded without timeout

and fall throuqh into the FDB_TALK handler

if (DEV_state[id] !• STATE_IDLE ''

DEV_state[id] !• STATE_ACTIVE)

break;

DEV_buff[id] • tim;

tim.• O;

case FDB_TALK:

I*

•
•
•
•
•
*I

An ADB talk transaction completed.If it timed

out mark the device as inactive and return. If

it didn't pass the data read back to the user •

If it wasn't a hardware poll start another

transaction •

if (tim - 0) { I* there is a messaqe */

I*

• <- here pass the data back to the user

*I

if (cmd !• FDB_POLL){

11-12 Chapter 11: Apple Desktop Bus Drivers

(

(

fdb_talk(FDB_DEV, id, 0, 'DEV_buff[id]);

DEV_state[id) • STATE_ACTIVE;

} else

DEV_state[id] • STATE_IDLE;

break;

case FDB_LISTEN:

I*

* The listen to set the handler id and service

* request enable has completed, now start a talk

* to register O to start the first device read

* transaction and to put the driver into

* the normal state.

*/

DEV_state[id] • STATE_ACTIVE;

fdb_talk(FDB_DEV, id, 0, 'DEV_buff[id]);

break;

case FDB_EXISTS:

/*

* This is as a result from the fdb_open () in

* DEV_init () above. If tim is nonzero then the

* device does not exist. Tell any higher level

* drivers. If it does then start a flush

* transaction to clean out the device.

*/

if (tim)

DEV_state[id] • STATE_INIT;

} else

Chapter 11: Apple Desktop Bus Drivers 11-13

break;

DEV_present[id) • 1;

fdb_flush(FDB_DEV, id);

case FDB_FLUSH:

I*

* After the flush completes start a listen to

* set the device's handler number and turn on

* the service request interrupts

*I

DEV_state[id) • STATE_REG3;

DEV_buff[id) - Ox2000 I (FDB_DEV<<8) I HANDLER;

fdb_listen(FDB_DEV, id, 3, 'DEV_buff[id], 2);

break;

case FDB_RESET:

return;

11-14 Chapter 11: Apple Desktop Bus Drivers

/,~~~-.....".\

10

(

Chapter 12

Autoconfiguration

12-1

Autoconfiguration is an easy technique for adding, deleting, or replacing a device
driver or software module in the A/UX kernet Autoconfiguration involves three main
programs: the launch <Bl program, which loads the kernel into memory; the startup
code of the kernel; and the autoconfiq < lMl utility.

In addition, two other programs, finstall and /etc/newunix, are indirectly involved
L11 the autoconfiguration process.Customers use finstall to initially install your
software module onto their AIUX system, and /etc/newunix to prepare the files that
autoconfiq uses to link your driver into the kernel.

This chapter describes autoconfiguration with in-depth detail of the system activities
that occur during the autoconfiguration process. This information is provided for
completeness and to help you in adding your driver to the kernel.

In this chapter, you'll learn how to do the following:

• write your device driver using autoconfiguration guidelines

• learn what system activities happen prior to and during bootup that affect your
driver

• create a master script file

• write optional initialization scripts to run after autoconfig < lMl links your driver into
the kernel

• write optional startup scripts that run when the system is booted

• write an install script that is used with I etc/newunix to create the files that
autoconfig uses to add your driver to the kernel

• run the autoconfig (lMl utility to add your driver to the kernel

This chapter outlines the main steps involved in adding a device driver to the AIUX
kernel on the Macintosh Il. Chapter 13 presents a specific example of using
autoconfiguration in a driver development environment. After writing and
successfully testing your driver, you should read Chapter 14 for details on how to
prepare your driver and other files so that your customers can easily install your
software.

Introduction to the autoconfiguration process
When you tum on your AIUX system disk and tum on power to your Macintosh II
computer, a number of activities occur "behind the scenes• before AIUX is actually
booted. First, the Standalone Shell (SASH) application is executed. SASH then
invokes the launch application.

12-2 Chapter 12: Autoconflguraflon

(

(~

launch loads the kernel into memory. Then launch probes the hardware and builds a
data struaure indicating which NuBus slots contain slot cards, recording the board id
of each slot carci. launch compares the current hardware configuration (of cards in
NuBus slots) with the software configuration of the kernel.

If all software modules in the kernel that control slot cards have matching hardware,
launch sets the AUI'O_OK flag. If any software mcxiule that controls a slot card does
not have the matching hardware present, or if the -a option is specified on the launch
command line, launch sets the AtrrO_RUN flag.

The value of AUTO_RUN or AtrrO_OK is used later by autoconfig in determining
whether a new kernel should be builL

After this initial processing, launch transfers execution to the kernel. The kernel begins
the bootup process, executing the ccxie in the pstart section of the kernel. Among
other functions, the kernel begins setting up memory, and calls the drlver.i.nit
routines at various stages of the bootup process.

After this initial setup, the kernel executes the ini t process.· The ini t process
executes the lines in /etc/inittab, which includes a line that runs /etc/ sysinitrc.
Among other functions, /etc/sysinitrc executes /etc/autoconfig.

autoconfig is the utility that is responsible for automatically generating a new kernel
when you add new hardware or drivers to the system.

The autoconfig utility is used in two ways. The kernel automatically executes
a ut ocon fig at boot time, to ensure that the software configuration of the kernel
matches the hardware configuration in slot cards. You can also execute autoconfig
from a running A/UX system, to generate a new kernel that you can boot later.

The autoconfig utility first determines if a new kernel should be built. If the AtrrO_OK
flag was set by launch and if autoconfig was invoked with the -a option, autoconfig

does not build a new kerne~ but immediately exits and the boot process continues.

If the AUI'O_RUN flag was set by launch or if autoconfig was not invoked with the -a
option, autoconf ig proceeds to build a new kernel. After linking a new kernel, if
autoconfig was invoked with the -a or -I option, autoconfig executes all driver
initialization scripts found in the I etc/ in it • d directory.

After building a new kern~ if autoconfig was invoked with the -a option, autoconf ig
reboots the system. Rebooting the kernel will cause autoconfig to be invoked again.
This time, the rurrent hardware configuration matches the rurrent software
configuration, so autoconfig exits, and the boot process continues. If you have
supplied a startup script for your driver, the kernel executes that script at this time.

After the system is booted and you see the login: prompt, you can log in and begin to
use and test your driver.

Chapter 12: Autoconflguratlon 12-3

The files involved In ·the autoconfiguration process
A number of files are involved in the autoconfiguration process. The names and
descriptions of the files related to the kernel that will be booted are as follows:

/newunix

/unix

An A/UX kernel that contains only the minimum devices to
boot an A/UX system. This is the original A/UX kernel
shipped by Apple.

The currently running A/UX kernel or an A/UX kernel
created by autoconfiq to reflect customi7.ed changes to the
kernel. By default, autoconfiq builds the new kernel as
/unix.

/nextunix A file that contains the name of an A/UX kernel. This file
originally contains the name /unix.

The following is a list of programs involved in the autoconfiguration process:

launch A Macintosh application that resides on a small HFS
partition on the A/UX system disk. The SASH application
invokes launch , which probes the hardware for slot C:ards,
loads an A/UX kernel into memory, and transfers
execution to the kernel.

I etc/ autocon f iq 1be program that builds a new kernel. The kernel exerutes
autoconfiq automatically at boot time.You can also.
execute autoconfiq from a running A/UX system to build a
new kernel that you can boot later.

/etc/newunix The script that installs (or uninstalls) appropriate scripts
and driver object files needed by autoconfiq. The user
exemtes this saipt to prepare to add new modules to the
kernel. After executing /etc/newunix, the user should run
autoconfig to create the new kernel.

The following is a list of directories that /etc/newunix uses and the types of files
stored in these directories:

/etc/install.di*

/etc/install.d/boot.d/*

/etc/uninstall.d/*

Installation scripts

Driver object files

Uninstallation saipts

The following is a list of directories that autoconfiq uses and the types of files stored in
these directories:

/etc/master.di*

/etc/boot.di*

Master script files

Driver object files

12-4 Chapter 12: Autoconflguratlon

(

/etc/init.d/*

/etc/startup.di*

Device initialization scripts

Startup scripts

You need to supply certain information to autoconfiq in order to add your driver to
the kernel. This information is contained in files that you aeate and store in specific
directories. 1bese files and their contents are described in detail in the following
sections.

1be functions of autoconfiq are illustrated in Figure 12-1 and are briefly described
here. When building a new kernel, autoconfiq uses /newunix to create the new kernel
Every software module that is to be added to the kernel must have a master saipt file in
the /etc/master. d directory. 1be master saipt file of a module controls how that
module will be linked into the kemel. 1be object ftle of the module must be located in
the /etc/boot .d directory.

autoconfiq processes the master saipt ftle for each module, links the modules into the
kernel, and builds the new kernel in /unix. When autoconfiq is run at boot time,
autoconfiq runs the programs in /etc/init .d, and aeates the /etc/startup file. The
/etc/startup r~ contains a list of the driver startup saipts that will be invoked at
boot time.

Depending on various command line options that were specified to
autoconfiq,autoconfiq may or may not reboot the kernel.

Chapter 12: Autoconftgura11on 12-5

Rgure 12-1
lhe functions of autoconftg

12-6 Chapter 12: Autoconflgurat1on

(

(

You must create the files required by autoconfiq to add your driver to the kernel. After
creating these files, you need to write an install script and uninstall script that can work
with the /etc/newunix script. You should use the install script for your device to copy
the object ftle, master script file, and other optional script files of your driver into the
appropriate directories needed by autoconfiq.

You must supply your users with the files required by /etc/newunix. You do this by
putting these files on the same distribution disk as your driver. You can use finstall to
copy the files from your distribution disk to specific directories of the A/UX system
disk of your user. 1he fin stall program is described in Chapter 14 of this manual.

The following section provides a quick reference guide to the steps involved in adding
your driver to the kernel. Use this as a reference section only. Each step is explained in
detail in later sections. Following the quick reference section,is a detailed explanation
of launch and autoconfiq. These sections will give you a deeper understanding of the
bootup process. Following this discussion, specific directions to add your driver to the
kernel are given.

The rest of this chapter uses the term module to describe a compiled object file
suitable for linking with the kernel Each module must have a companion master script
file. 1he master script file is described in a following section.

The term driver is used to describe a piece of code that presents one of the A/UX block
or character device interfaces to a user.

Ten steps to add your driver to the kernel
This section provides a quick overview of the steps involved in adding your driver to
the kernel. Refer to following sections which give specific information for each step.
The following steps use the driver name mydev1ce to illustrate specific examples. To
follow these steps for your device, replace the name mydevtce with the name of your
driver.

1. Write your device driver.

If you are writing a character device driver, your driver should contain the routines
mydevlceopen, mydevlceclose, mydevlceread, mydevlcewrite, mydevlceioctl,
and mydevlceselect, as appropriate for your device.

If you are writing a block device driver, your driver should contain the routines
mydevlceopen, mydevlceclose, mydevlcestrateqy, and mydevlceprint.

In addition, both block and character device drivers can provide a mydevlceinit
routine, to perform initialization functions.

Chapter 12: Autoconflguratlon 12-7

Device drivers can also provide an interrupt routine. For slot device drivers, you must
name this interrupt routine mydevtceint. Most other device drivers also follow this
naming convention.

2. Compile your device driver. llename the object 81e and copy the object file
to the /etc/inatall.d/boot.d directory.

After compiling your driver, rename the resulting objea file mydevtce.o to mydev1ce
(dropping the .o suffix). Copy this file to the /etc/lnstall .d/boot .d direaory.

Your install script (/etc/install.d/mydev1ce) invoked by /etc/newunix should copy
your objea file /etc/install.d/boot .d!mydev1ce to /etc/boot .d/mydev1ce.
autoconfiq looks in the /etc/boot .d directory for drivers or modules that need to
be added to the kernel.

/etc/newunix installs or uninstalls the appropriate scripts and driver object files
needed by autoconfiq. /etc/newunix lets the user both determine the type of kernel
to create and choose which of the available modules to include in the kernel.

3. Create a ~ter script me for your device.

autoconfiq uses information in the master script file to gain information on how to
link your driver to the kernel. For example, the master script file tells autoconfig
whether your driver is a block device driver, charaaer device driver, streams driver,
or streams module; whether your driver will receive interrupts from a slot card; and
whether to create certain data structures (such as a tty structure) for your driver.

The master script file determines whether or not your driver gets included in the
kernel. Your master script file must have an include statement or your driver must be
included by another master script file to get included in the kernel.(See "Using module
dependency information" for a description of the include statement.)

The master script file for your driver should be named mydev1ce. Your install script
(/etc/install .d/mydev1ce) invoked by /etc/newunix should create your mydev1ce
master script file and place it in the /etc/master .d directory.

Your install script can create a new file by using the cat or echo shell script
command.

4. Create an inldalfzadon script for your driver (opdonal).

Initialization scripts are named mydevtceand located in the /etc/init.d directory.
These scripts are executed after autoconfiq links your driver into the kernel, if
autoconfiq was invoked with the-I or-a option. Initialization scripts are typically
used to create device ftles for your device.

Your install script C/etc/install.d/mydev1ce>, which is invoked by /etc/newunix,
should create your mydev1ce initialization script file and place it in the /etc/ init. d
directory. ·

s. Create a startup script for your driver (optional).

12-8 Chapter 12: Autoconflguratlon

(

(

Startup scripts are named mydeviceand located in the /etc/startup.d directory.
Scripts in/etc/startup.dare executed every time the system is booted. You typically
use startup scripts to create device files for your device or to download code to a
controller.

Your install script (/etc/install.d/mydevice) invoked by /etc/newunix should
create your mydevice startup script file and place it in the I etc/ start up. d directory.

6. Create an Install script for your driver and place It in /etc/i.uata1l.d. Also
create an unlnstall script and place it in I etc/uninatal.l. d.

You should name the install script for your device mydevice and place this script in
the /etc/install.d directory. You should name the uninstall script for your device
no mydevice and place this script in the /etc/uninstall. d directory.

Scripts in /etc/install .d and /etc/uninstall.d are used with the /etc/newunix
script. Your mydevice install script should copy your driver object file
/etc/install.d/boot.d/mydevice to /etc/boot.d/mydevice, create the
/etc/master .d/mydev1ce file, and create optional scripts in /etc/init .d and
/etc/startup.d as needed for your device.

7. Modify /•tc/newunix

Modify the /etc/newunix script so that it will accept the name of your driver as an
argument, such as /etc/newunix mydevlce. Also modify the script so that the user can
specify nomydevice to uninstall your driver.

8. llun /etc/newunix •ydev.tc•

/etc/newunix will run the mydevice install script Oocated in /etc/install.d). Your
install script should make sure that all files that autocon fig needs to include your
driver into the kernel are placed in the appropriate directories.

Before running autoconfig or before rebooting the kernel, make sure you have backed
up your currently running kernel. For example, execute the command cp /unix
/oldunix.

9. llun autoconfiq

Run autoconfig to create a new kernel. If you provided the necessary files and
information to autoconfig, autoconfig will link your driver or module into the new
kernel. You must specify the -I option to autoconfig if you have supplied an
initialization script and want autoconfig to execute it. You must specify the -s
/etc/startup option if you have a startup script that you want added to the list of
startup scripts in /etc/startup.

If your hardware is already installed, then shutdown your system and reboot to begin
running your new kernel.

Chapter 12: Autoconftguratton 12-9

If your hardware is not yet iMtal1ed, powerdown your A/UX system and tum off power
to all devices connected to your system. Install your hardware according to the
instructions for your device. After installing your hardware, turn on all devices
connected to your system. Tum on your computer; the system should begin the
bootup process.

10. Perform 1/0 to your device (test/debug)

After you tum on your computer or reboot your sy8tem, the SASH application begins.
SASH invokes launch, which loads the kernel into memory. launch checks the
hardware configuration, sets either the AUTO_RUN or AUTO_OK flag, and then
transfers execution to the kernel.

If your driver has a mydevicei.nit routine, the kernel will invoke it during the bootup
process, before the scheduler executes init. The init process is then scheduled, and
/etc/inittab executes /etc/sysinitrc.

/etc/sysinitrc executes autoconfiq. If launch set the AUTO_RUN flag and if the -a
option was specified to autoconfiq, autoconfiq reboots the new kernel.

If you have installed your hardware and previously executed autoconfiq, when you
power on the computer or reboot the system, the kernel should not require updating
and autoconfiq will exit and the boot process continues. If you have supplied a startup
saipt, the kernel will execute it during bootup.

The kernel finishes rebooting and you should see the loqin: prompt You can now log
in and perfonn 1/0 to your device.

Background - the startup process
Autoconfiguration is a sequence of events that happens automatically at boot time.
This section and the following sections explain the launch program, the sequence of
events that occur at boot time that affea your driver, and the functions of the
autoconfiq utility.

The purpose of the autoconfiguration process is to check the consistency between the
hardware attached to your Macintosh n in NuBus slots and the infonnation in the
kernel about software modules that control slot cards. If software configuration does
not match the hardware configuration in slot cards, autoconfiq automatically builds
and reboots a new kernel. ·

The autoconfiguration process allows you to change your hardware configuration
without changing DIP switches or manually rebuilding the kernel. For slot cards,
autoconfiguration proteas you against any problems caused by mismatched hardware
and software.

12-1 o Chapter 12: Autoconftguratton

(

The launch program
launch is a Macintosh application that resides on a small HFS partition on the A/UX
system disk. The three basic functions of launch are to load the kernel into memory,
record which NuBus carm are installed in which NuBus slots, and transfer execution to
the kernel.

The launch command accepts various options that.can be specified in the command
line. To examine or modify the launch command line, pull down the Preferences
menu and then select Booting You can specify the command line options to
launch by modifying the text in the box labeled Launch command: in the
Booting ... dialog box. Figure 12-2 shows the Booting. .. dialog box .

Chapter 12: Autoconflguratlon 12-11

Figure 12·2
The launch command Une

12-12 Chapter 12: Autoconflguratlon

(

(

launch uses certain rules in determining which kernel to boot. If the launch command
line specifies the name of the kernel, launch boots the specified kernel. For example,
to boot a kernel called /oldunix, type launch /oldunix in the launch command
line.

If launch is specified with the -a option, launch boots newunix as the kernel (for
example, launch -a).

Otherwise, launch uses "the first line of /nextunix" as the kernel to boot The first line
of /nextunix usually contains /unix. In this case, launch boots /unix. If /nextunix
doesn't exist, then launch boots newunix.

Note that newunix, when specified without a leading slash (/), has special meaning to
launch. Whenever launch boots newunix, launch sets the AUTO_RUN flag,
indicating that autoconfig should build a new kernel.

You can force launch to set the AUTO_OK flag by specifying the -n option on the
launch command line. The -n option is useful when debugging a driver for a NuBus
card that does not yet have the slot ROM installed.Refer to launch (8) in A/UX System
Admintstator's Reference for more information on other command line options to
launch.

After loading the specified kernel into memory, launch checks the consistency
between the hardware attached to your Macintosh II in NuBus slots and the
information in the kernel about software modules that control slot cards.

launch builds the board_id array and version_ id array in the auto_data kernel
data structure. For each NuBus slot, launch checks if a card exists in that slot If so,
launch reads the slot ROM to determine the board id and version id of the slot card,
and stores this information in the auto_data structure.After cycling through the slots,
the auto_data structure contains the board id and version number of each slot card
that is present in a slot

launch then determines if the hardware and software configuration matches by
examining the MODULES section of the kernel. The MODULES section includes a data
structure called module (defined in <sys/module.h>). For slot device drivers, the
board id and version id fields of the module data structure contain the board id and
version id of the slot card that the driver controls. The module structure also specifies
what slot or slots the driver expects to find the card in.

For each module structure that specifies a board id, launch examines the auto_data
structure, looking for a slot card with a matching board id. If launch does not find a
slot card with a matching board id in an acceptable slot, launch sets the AUTO_RUN
flag, which indicates that autoconfiguration should be run.

If all module structures that specify a board id have matching hardware (as indicated
in the auto_data structure), launch sets the AUTO_OK flag, indicating that
autoconfiguration does not need to take place.

Chapter 12: Autoconflguratton 12-13

The value of the AUTO_ OK and AUTO_RUN flag is used later by autoconfig to
determine whether a new kernel should be builtAs previously desaibed, launch sets
AUTO_OK or AUTO_RUN according to whether the software configuration matches
the hardware configuration. 1bese settings can be overridden in the following
situations:

• If the kernel name was specified as newunix in the launch command line, launch
sets AUTO_RUN.

• If the launch -n option was specified in the launch command line, then launch sets
the AUTO_OK flag. If the -n option is specified, launch sets AUTO_OK even if the
hardware and software configuration doesn't match.

• If the launch -a option was specified in the launch command line, then launch sets
the AUTO_RUN flag. If the -a option is specified, launch sets AUTO_RUN even if
the hardware and software configuration does match.

Booting the kernel
After launch finishes processing, launch transfers control to the kernel. The kernel
begins the bootup process. This process includes setting up memory and calling
drlver.init routines. After initial kernel processing, /etc/init (the "initial process")
is executed.

/etc/init is the fustA/UX process to run after booting the system. The init process
runs before you enter single-user mode. /etc/init reads the lines in /etc/inittab
and executes them.

The first command in /etc/inittab is the /etc/sysinitrc shell program.
/etc/sysinitrc performs basic functions before you see the single-user mode shell
prompt For example, /etc/sysinitrc executes /etc/autoconfig, and then executes
/etc/startup.

/etc/sysinitrc contains the following line, which executes autoconfig:

/etc/autoconfig -a -o /unix -s /etc/startup \
-M /etc/master tsystem configuration

The -a option to autoconfig means that autoconfig should build a new kernel only if
launch has set the AUTO_RUN flag. Otherwise, autoconfiq exits and the boot process
continues.

If the -a option is not specified to autoconfig, or if the -a option is specified and the
AUTO_RUN flag is set, autoconfig relinks a new kernel with /newunix and the object
modules in /etc/boot .d. If the kernel was relinked and the -a option was specified to
autoconfig, then autoconfig reboots the system. /etc/sysinitrc runs again and calls
autoconfig. This time the kernel should be up to date, so autoconfig exits.

12-14 Chapter 12: Autoconflguratlon

if'-~--\

'-.j

(

After autoconfiq finishes execution, /etc/sysinitrc calls /etc/startup.
/etc/startup runs the driver startup scripts for autoconfigured modules that are part
of the kernel. 1be driver startup scripts are found in the /etc/startup.d direaory.

The autoeonflg utlllty
Autoconfiq (lMl is a utility that runs automatically at boot time and checks the
consistency between the hardware that is attached to your Macintosh n in NuBus slots
and the infonnation in the kernel about slot cards.

Recall that autoconfiq is used in two ways: at boot time, to automatically generate and
reboot a new kernel (under certain conditions); and from a running A/UX system, to
generate a neW kernel that can later be booted

The autoconfiq utility accepts various command line options.Note that you must be
superuser (root) to run the autoconfiq program. Refer to autoconfiq (lMl for a
complete list of the command line options to autoconfiq. The -a option is illustrated
in Figure 12-3.

If you specify the -a option to autoconfiq, autoconfiq aeates a new kernel only· if
launch has set the AUTO_RUN flag. If you specify the -a option and launch has set the
AUTO_OK flag, autoconfiq exits and the boot process continues.

If you do not specify the -a option to autoconfiq, autoconfiq proceeds with the entire
configuration process and creates a new kernel, regardless of the value of the
AUTO_OK or AUTO_RUN flag.

If autoconfiq created a new kernel and if the -a option was specified, autoconfiq
reboots the kernel.

Note that autoconfiq is invoked with the -a option from the /etc/sysinitrc script
When you use autoconfiq during driver development, you usually will not specify
the -a option. By not specifying the -a option, you can acid other software modules to
a new kernel that you can later boot from.

Chapter 12: Autoconflguratton 12-15

Figure 12·3
An overview of autoconflg

12· 16 Chapter 12: Autoconflguratlon

(

(

(_'

autoconfiq begins to create a new kernel by making a list of the present modules in the
kernel. autoconfiq then searches the /etc/master .d directory for master script files to
process. autoconfiq processes each master script file. If the module is not already in
the kernel, autoconfiq adds the module to a list of po~ible modules to be included.

autoconfiq aeates a module data structure to desqibe each module to be included in
the kernel. autoconfiq fills in the module structure with information contained in the
master script files. For example, autoconfiq records if the module is a block device
driver or character device driver, a streams driver or module, whether the module
receives interrupts, and when the driver.Lnit routine should be called

For each module represented by a master scriptftle, autoconfiq checks ifthe master
script ftle defines a board id and version number. If the master script file defines a
board id and version number, autoconfiq records this information in the module
data structure.

autoconf iq processes the master script ftle for any dependency statements. Each
module is marked included or excluded from the kernel according to the evaluation of
the dependency statements.If the master script file includes a dependency sta~ment
that specifies that a particular module be included, autoconfiq looks for the object
module in I etc/boot. d to include in the final link of the kernel.

Next autoconfiq processes the last line of each master script file. This line contains the
flags, number of interrupt vectors, driver prefix, major number, number of devices,
and interrupt priority level for the module. autoconfiq records this information and
takes various actions depending on the values specified on this line.

Then autoconfiq verifies that each slot card has a module that controls it. For each
card, autoconfiq gets the board id and version number of the card from either the
auto_data structure or the loadfile. autoconfiq then searches the modules for a
module with a matching board id and version number.

Any module that has a corresponding slot card with a matching board id and version
number is marked as to be included in the kernel.

For a slot device driver, your master script file must tell autoconfiq the board id of the
slot card your device driver controls. Doing this allows autoconfiq to check if the slot
card really exists in the system. If the slot card is installed and the board id of the slot
card matches the declared board id of a module, autoconfiq will link the driver into
the kernel. If the slot card is not present, autoconfiq will not link the driver into the
kernel.

For any slot card that autoconfiq cannot find a module with a matching board id and
version number, autoconfiq prints a warning message to the system console. For
example, if autoconfiq cannot find the driver for the Etheflalk card, autoconfiq
prints a message similar to the following:

Warninq cannot find driver(s) for device ID 5
Version 7.0

After processing the master script ftles, autoconfiq prepares the new kernel for
linking. This preparation includes allocating major numbers to new modules and
setting up various kernel data structures, such as the cdevsw and bdevsw tables.

autoconfiq also sets up die slot interrupt vector table. For slot device drivers,
autoconfiq sets up the slot interrupt vector table entry for your card to contain the
address of your interrupt routine. The interrupt routine of slot device drivers must be
named driver.int, where driver is the device prefix specified in your master script file.
Naming your interrupt routine drlveri.nt allows autoconfiq to set up the appropriate
entry in the slot interrupt vector table to contain the address of your drlverint
routine.

autoconfiq runs /bin/ld to link the new mcx:iules and /newunix into the new kernel.
The new kernel is created as /unix, unless otherwise specified in the autoconfiq
command line.

If autoconfiq was invoked with the -S file option, autoconf iq makes a list of the
modules that have startup scripts or programs which the kernel is to call at boot time.
autoconfiq puts this list of startup programs to call in the file specified on the
command line (usually /etc/startup). When the kernel boots, the startup scripts of
the modules listed in /etc/startup are executed.

If autoconfiq was invoked with the -I option, then autoconfiq executes the driver init
scripts found in /etc/init .d that correspond to modules in the new kernel.

autoconf iq does final processing, including the writing of a summary of the
autoconftguration results to the system console. If autoconfiq was invoked with the -a
option, autoconfiq reboots the kernel.

The /ete/newunlx script
For autoconfiq to include ,your driver into the kerne~ you need to provide a master
script f'de and the object file of your driver. You can also optionally provide a startup
script and an init script for your driver. These files must be located in the following
directories:

/etc/master.d

/etc/boot.d

/etc/init.d

/etc/startup.d

12-18 Chapter 12: Autoconflguratlon

(

(

Once a master script fde is placed in /etc/master .d with a companion object file in
/etc/boot.d, the next time autoconfiq is run (without the-a option), autoconfiq will
create a new kernel, including the new module in the kernel.

Rather than directly place these files in /etc/master .d and /etc/boot .d, you should
let the user explicitly place the files in these directories by using /etc/newunix. You do
this by writing an install saipt that can be invoked by /etc/newunix. 1be install script
for your module should be located in /etc/install .d. Your install saipt should set up
the mes autoconfiq nee& to include your driver into the kernel.

The user specifies one or more arguments to /etc/newunix. Each argument
corresponds to one or more modules that are to be included in the new kernel.

I etc/ newunix lets the user determine the type of kernel to create and choose which of
the available modules to include in the kernel. 1be user uses /etc/newunix to begin the
process of configuring a new kernel. For each argument specified to /etc/newunix,
/etc/newunix executes an install or uninstall script for that argumenL The install
script for a particular argument installs the scripts and driver object fdes needed by
autoconfiq to configure that module into the kernel The uninstall script for a
particular argument removes the fdes used by autoconfiq for that module.

The arguments specified to /etc/newunix depends on the type of kernel you want to
create: basic networking (bnet), Network File System (nfs), A/UX toolbox (toolbox),
non-networking (nonet), no toolbox capabilities (notoolbox).

You must modify /etc/newunix to include processing of your install and uriinstall
script.

You should backup your current /etc/newunix file, then edit /etc/newunix. Add a case
statement for the name of your driver. Inside the case statement add a line that
executes your install saipL Also add a case statement that will execute your uninstall
script.

You should either provide this modified version of /etc/newunix to your customers
on your distribution disk, or include directions for your customers to edit
/etc/newunix so that they can make the changes themselves.

Install scripts usually copy the fde in I etc/ install. d/boot . d/ mydevtce to
/etc/boot. d/ mydev1ce. Most install scripts create the other mes (the master script
file, startup scripts, and init scripts) by creating the file in-line by using either the
echo or cat shell command

The install script that you write for /etc/newunix should be called mydevlce, where
mydevlceis the device prefix of your driver. Place this script in the /etc/install.d
directory. Your install script should install the necessary files in the /etc/master .d,
/etc/boot.d, /etc/init.d, and /etc/startup.d di.rectories.

Chapter 12: Autoconflguratlon 12-19

The uninstall saipt that you write for /etc/newunix should be called nomydevtce,
where mydevfce is the device prefix of your driver. Pbce this saipt in the
I etc/uninstall. d directory. Your uninstall script should remove the necessary files in
the /etc/master.d, /etc/boot.d, /etc/init.d, and /etc/startup.d direaories.

The driver development proces5
Figure 12-4 shows the stages in developing and installing a device driver using
autoconfiguration ..

12-20 Chapter 12: Autoconflguratton

(

Once a master script file is placed in /etc/master .d with a companion object file in
/etc/boot. d, the next time autoconfig is run (without the -a option), autoconf ig will
create a new kernel, including the new module in the kernel.

Rather than directly place these files in /etc/master .d and /etc/boot .d, you should
let the user explicitly place the files in these direaories by using /etc/newunix. You do
this by writing an install saipt that can be invoked by /etc/newunix. The install script
for your module should be located in /etc/install .d. Your install script should set up
the files autoconf ig needs to include your driver into the kernel.

The user specifies one or more arguments to /etc/newunix. Each argument
corresponds to one or more modules that are to be included in the new kernel.

I etc/ newunix lets the user determine the type of kernel to create and choose which of
the available modules to include in the kernel. 1be user uses /etc/newunix to begin the
process of configuring a new kernel. For each argument specified to /etc/newunix,
/etc/newunix executes an install oruninstall script for that argument. The install
script for a particular argument installs the scripts and driver object files needed by
autoconfig to configure th2t module into the kernel The uninstall script for a
particular argument removes the files used by autoconf·ig for that module.

The arguments specified to /etc/newunix depends on the type of kernel you want to
create: basic networking (bnet), Network File System (nfs), A/UX toolbox (toolbox),
non-networking (nonet), no toolbox capabilities (notoolbox).

You must modify /etc/newunix to include processing of your install and unlnstall
script.

You should backup your current /etc/newunix file, then edit /etc/newunix. Add a case
statement for the name of your driver. Inside the case statement add a line that
executes your install script Also add a case statement that will execute your uninstall.
script.

You should either provide this modified version of /etc/newunix to your customers
on your distribution disk, or include directions for your customers to edit
/etc/newunix so that they can make the changes themselves.

Install scripts usually copy the file in /etc/install.d/boot .d/mydev1ce to
/etc/boot .d/ mydev1ce. Most install scripts create the other files (the master script
file, startup scripts, and init scripts) by creating the file in-line by using either the
echo or cat shell command.

The install script th2t you write for /etc/newunix should be called mydevlce, where
mydev1ce is the device prefix of your driver. Place this script in the /etc/install .d
direaory. Your install script should install the necessary files in the /etc/master .d,
/etc/boot .d, /etc/init .d, and /etc/startup.d direaories.

Chapter 12: Autoconflguratfon 12-19

The uninstal1 saipt that you write for /etc/newunix should be called nomjdevtce,
where mydeulce is the device prefix of your driver. Place this saipt in the
/etc/uninstall. d directory. Your uninstall script should remove the necessary files in
the /etc/master .d, /etc/boot .d, /etc/init .d, and /etc/startup.d directories.

The driver development process
Figure 12-4 shows the stages in developing and installing a device driver using
autoconfiguration.

12-20 Chapter 12: Autoconflguratlon

Rgure 12-.t
Developing and lnstalllng a device driver

(

Chapter 12: Autoconflguratlon 12-21

The following sections describe each step of the driver development process in detail.

Writing and compiling your device driver
Chapters 2 through 11 showed how to write a device driver. Refer to these chapters for
detailed information about writing your driver.

When you write your device driver, you should follow certain naming conventions.
Remember that you should give your device driver routines a unique three to eight
character prefix that is afftxed to a routine name. Valid characters are alphanumeric
or an underline U. For example, if you use the preftx MYDEVICE, you should name
the open routine for your driver MYDEVICEopen.

Remember that since your driver will coexist with many other drivers, you should
declare any data structures and routines that are not referenced outside of your driver
as static.

Table 12-1 shows a list of the names of routines for character device drivers. Your
character device driver must follow these naming conventions.

Table 12-2 shows a list of the names of routines for block device drivers. Your block
device driver must follow these naming conventions.

Table 12·1
Routine naming conventions for character device drivers

Routine name

pref1xopen

preftxc.lose

pre/lxread

preft:;:.,r i te

preftxioctl

preftxselect

pre/lxinfo

preflxtty

pre/lxinit

pre.flxint

prefl.:x4r i ver

preflxfork

Descrlptton

Character device open routine

Character device close routine

Character device read routine

Character device write routine

Character device ioctl routine

Character device select routine

Stream device interface structure

tty structure for terminal device drivers

Device initialization routine (optional)

Device interrupt· routine(optional)

B-NET network interface

fork execution routine

12-22 Chapter 12: Autoconflguratlon

(

(

preflxexec

pre/lxexit

Table 12·2

exec execution routine

exit execution routine

Routine naming conventions for block device drivers

Routine name Description

,
pre/txopen Block device open routine

pre~lose Block device close routine

preftxstrateqy Block device strategy routine

prefacpr int Block device print routine

pre/txinit Device initialization routine (optional)

preftxint Device interrupt routine(optional)

prejf»J.r i ver B-NET network interface

pre/lxfork fork execution routine

pre/lxexec exec execution routine

preflxex it exit execution routine

After writing your driver, compile it using the -c flag to produce an object module.
Rename this module giving it a name that uniquely identifies it, but without a • o
ruename extension. 1ben, move the renamed module to the I etc/ inst all. d/boot . d
directory.

Creating the master script file
After you write your device driver, you must prepare a maSter saipt file. A master
script file contains information used during autoconfigura.tion. Your install script
(/etc/install.d/mydevice) should create the master script file for your device in the
/etc/master. d directory.

The master script file for your driver can define driver characteristics, assign an
identifying number to a slot card, or set up dependencies between modules. Give this
file the same name that you chose for your renamed object module. A master script
file can have three parts, as shown in Figure 12-5.

Chapter 12: Autoconflguratlon 12-23

Rgure 12-5 ·
lhe master script ftle

12-24 Chapter 12: Autoconflguratton

(

A sample master saipt flle forthe EtherTalk card, found in the ffie /etc/master .d/ae6
is shown below:

id 8
if • include slots
anvs 1 ae6 1 1

I

Of the information in this file, the first line contains a device identifier, which shows a
board id of 8 for the Ethetralk card. 1be second line presents module dependency
information. This information indicates that if the objea file for the current module
(ae6) exists, then autoconfiq should include the slots module in the kernel. The
third line shows device infonnation, which specifies,among other thin~1that the
device uses a network interface.

The following sections explain the information that you can specify in a master saipt
file.

Using a device Identifier with slot devices
The device Identifier is optional information that is specified only for slot device
drivers. 1be device identifier is used to specify a particular slot carci. The device
identifier has the following syntax:

id name serial

where:

name is an integer board ID, which is stored in the slot ROM. This number must have
been obtained from Apple Technical Support.

serial is optional information. If you use this field, autoconfiq compares the number
you specify here with the slot card's version number. If the two numbers do not match,
autoconfiq will not include the module in the kernel. If you do not fill in a value for
this field, autoconfiq will not check the slot card's serial number for a match. In this
case, if the board id's match, autoconfiq will include the module in the kernel.

serial can be one of the following:

number

number-

The slot card's serial number. autoconfiq
checks for an exaa match between number
and the version number.

A serial number greater or equal to number.
autoconfiq checks if numberis greater than
or equal to the version number.

Chapter 12: Autoconflguratlon 12-25

- number

number1-~

empty

A serial number less than or equal to
number. autoconfiq checks if number is
less than or equal to the version number.

A serial number greater than or equal to
number1 and less than or equal to number2.
autoconfig checks the Version number for a
value in this range.

If you do not specify the number, autoconfig
does not check the version number.

autoconfig searches a slot card's revision level string and attempts to create a version
number from it. autoconfig first looks for substrings having the forms n.n or n, where
n can be one or two decimal numbers. Then autoconfig creates a new number by
placing the fU'St n in the hundreds place value and by appending the remaining digits
to it (or zeros if no digits appear after the decimal point). For example,

3.01 becomes 301

3.1becomes301

31becomes3100

3.23 becomes 323

autoconfig then compares this new integer with the version range from the master
script file. If autoconfig does not find a number in the string,autoconfig
assumes 0.

Using module dependency Information
Depending on your needs, your master script file can contain include statements and
other dependency statements.

When dependency processing begins, autoconfig reads and marks modules that are
currently in /newunix (such as, the console driver and the root file system driver).
These modules are marked as included.

Next, autoconfig marks every module with a master script file that has a device
identifier name and a version number that matches a card in the current hardware
configuration as to be included.

Next, autoconfig scans all driver master script files for any dependency statements.
Each module is marked included or excluded according to the evaluation of the
dependency statements.

If your driver is not a slot device driver and if your driver does not depend on any
other modules, or is not included by another module, you must include the statement
"include . " in your master script file to include your driver in the kernel.

12-26 Chapter 12: Autoconflguratlon

(

(

Dependency statements have either this form

verb name/1st

or~form

if ifexpr verb name/1st

where

verb is either include or exclude. The term include tells autoconfig to include the modules in
namel1stin the kernel. 1be term exclude tells autoconfig to exclude the modules in namelistfrom
the kernel. ·

ifexpr is a filename (use a period [.) for the current module) or an expression. If the
filename exists or if the evaluation of the expression is true, then the modules specified
in nameltst are included in or excluded from the kernel. The expression can be
negated(!), AND'ed (&:) or OR'ed (I) to another expression. The symbol ! has the
highest priority, followed by &:, and I . For example

a I b&:c means a I (b&:c) not (a I b)&:c

!a&:b means (!a)&:b not !(a&:b)

To override this priority, use parentheses.

name/1st can be one or more module names (or a period [.] for the current module)
separated by commas. autoconfig scans the master script files, evaluates the ifdef
statements , and adds other modules if necessary.

Avoid circular dependencies. For example, suppose modules A, B, and C contain the
following dependency statements:

A if include B

B if • include C

C if include A

Neither A, B, nor C will be included Note that the order in which the include
statements appear does not matter. Also watch out for dependencies that contradict
each other. For example,

A include C

B exclude C

will include and then exclude C. Both of these types of errors generate error messages
and terminate autoconfiguration.

Chapter 12: Autoconflguratton 12-27

Including device Information
The device information is a required information line that tells autoconfiq how to
place the device driver into the kernel. 'Ibis line contains the following six fields:

flags nvec prefix soft dev1ces lpl

where

flags can contain a number of values.These values are described in detail later in this section.

nvec is the number of interrupt vectors that a particular controller can generate. For
drivers that receive slot interrupts this number is 1 (because each controller can
generate only one interrupt). For software modules that do not directly receive
interrupts, this value should be a hyphen(-).

prefix is the prefix used in the driver's interface routines. The prefix must be between
three and eight characters long. Valid characters are alphanumeric characters or an
underline U.
soft is a value used to assign the major number to your software driver. 'Ibis value
should always be a hyphen (-).When you specify a hyphen in this field, autoconfi~
assigns the first available major number not already assigned in the kernel to your
device. Doing this prevents your major number from being used by any other device
driver in that A/UX kernel. Doing this allows flexibility and guarantees that your driver
is assigned a unique major number.

To create a device ftle for your driver, you need to know the major number for your
device. Both the driver init scripts and driver startup scripts are passed a parameter
that indicates the major number of your device. You should use the major number to
create your device file at this ti.me. Driver initialization scripts and driver startup
scripts are explained in the section "Writing Optional Init and Startup Scripts".

devices is either a hyphen (-) for modules that aren't device drivers, or a nonrero
integer for device drivers. The integer value is the number of devices that the
controller supports. For example, if the controller supports only one device, this
value should be 1. If the controller supports 8 4evices, this value should be 8. 'Ibis
value is usually used with the a flag (descnbed in a following paragraph).

lpl is the highest priority interrupt level used by the controller. For modules that don't
receive interrupts, this value should be a hyphen(-). For slot-based devices (all of
which interrupt at spll), this value should be 1.

flags can be one or more of the following:

a 'Ibis flag is used to create various data structures to be included in the kernel. In
addition, you can use this flag with other flags to create data structures specific to
terminal and block device drivers.

When the flag a is specified, two data structures are created:

preftxcnt

12-28 Chapter 12: Autoconflguratlon

(

preflxaddr

These data structures will be aeated and included in the final linked kernel.
These data strucrures contain hardware configuration information and should be
declared as extern in your driver.

preflxcnt is initialized with the number of controllers associated with your device
driver in the system (not the number of devices). For example, assume your
device driver controls video cards, and there are two video cards, a coprocessor
card, and a networking card in the system. Then pre.fi»=nt will have a value of 2
for your driver.

preflxaddr is an array (having preflxcnt entries) containing the address of each
controller. For slot device drivers, this value is the number of the slot that the
slot card is in. You can use this value to map slot numbers to logical units or
instances of your driver. For example, assume your device driver controls video
cards, and there are currently two video cards in the system. These two video
cards are in slots 9 and 12. Then preftxcnt equals 2, and preflxaddr contains the
following values:

preftxaddr[OJ • 9

preflxaddr[l) - 12

You can use the values in preftxaddr to calculate the base of the slot space for
each card installed in the given slot.

For ADB and SCSI devices, preflxaddr contains the ADB or SCSI address.

If you specify both the a and the t flag. an uninitialized array of type st ruct
tty namedpre.fixtty is created with (pre.fi»=nt • preftxaddr) number of entries.

If you specify both the a and the b flag. two arrays having the same dimensions
are declared:

struct iobuf preftxiobuf [];

struct iostat preftxiostat (];

The number of elements in the preflxiobuf and preftxiostat arrays for your
driver is equal to the number of devices times the number of controllers.

b This flag is used to specify a block device driver. Entry points to the driver will be
added to the block device switch table. autoconfig looks for the routines with the
names preft.xopen, preftxclose, preftxstrategy, and pre/eq,rint. For each of
these routines autoconfig finds, autoconfig fills in the corresponding bdevsw
entry with a pointer to the routine. If autoconf ig does not find an entry for a
bdevsw routine, the corresponding bdevsw entry will contain a default entry.
The default entry is nodev or nulldev. ·

Chapter 12: Autoconflguratlon 12-29

c This flag is 'used to specify a character device driver. Entry points to the driver
will be added to the character device switch table. autoconfig looks for the
routines with the names preftxopen, preft».:lose, preflxread, preft:»write,
preftxioctl and pre/ixselect. For each of these routines autoconfig finds,
autoconfig fills in the corresponding cdevsw entry with a pointer to the routine.
If autoconfig does not find an entry for a cdevsw routine, the corresponding
cdevsw entry will contain a default entry. For example, if you do not supply a
drlverselect routine, autoconfig fills in the drlt.ie1select entry in the cdevsw
table for your device with the default entry sel true. For most other routines, the
default entry is nodev or nulldev.

l This flag is used to indicate that the module contains the line discipline code.
autoconfig looks for routines namedpreftxopen, preft»::.lose, preflxread,
preft»trite, preftxioctl, pre/ixinput, and preftxoutput and fills in the line
discipline switch entry with a pointer to the corresponding routine. You can only
use the p flag with the l flag.

m This flag is used to indicate a Streams driver. autoconfig looks for a structure
named preftxin fo and fills in the corresponding entry in the cdevsw table with a
pointer to this struaure.

n This flag is used to indicate that this device uses a network interface (TCP /tP).

popt This flag lets you specify when a driver's initialization routine is called All device
drivers can supply a routine named preflxinit. autoconfig will look for this
routine in your driver. If autoconfig finds a routine named prefixinit,
autoconfig records that your preftxinit routine should be called during
bootup.

If you want your preftxini t routine to be called at a particular time during system
initialization and if you want to specify whether interrupts should be enabled or
disabled, you can use the p flag with one of the following values for qi~

f Call preftxinit routine first, before any other initialization occurs.
Interrupts are disabled

s Call preftxinit routine second, after any pf modules are initialized.
Interrupts are disabled

n Call preftxinit routine normally, after pf and ps, but prior to enabling
interrupts. This is the default if you do not specify any p <:pt flag.

0 Call preftxinit routine after interrupts are enabled.

1 Call preftxinit routine after system starts but before the kernel enters
/etc/init.

If your driver has a preftxinit routine and you do not specify the p opt flag, your
preftxinit routine will be called as if you specified p n (normal).

12-30 Chapter 12: Autoconflguratlon

(

(

s This flag is used to indicate a software module that is not linked to the system
through the driver interface. It is used for modules such as subroutine libraries.
You can only use the p flag with the s flag.

t This flag is used to indicate a character device driver that has a tty structure
associated with it autoconfiq creates a global pointer to the tty data
structure. You must use the t flag in conjunction with the c flag. Each tty
structure is named preft:x:tty and is indexed by using the device's minor
number.

vopt This flag instructs autoconfig to link your driver to the interrupt vector
mechattism. Currently, the only value of cpt supported is s, which indicates that
the kernel is to decode slot-based interrupts and to call the interrupt routine of
this driver when the card generates an interrupt.

If you specify vs, autoconfig adds your preflxint routine to the slot interrupt
vector table.

x This flag is used to specify a Streams module. You can only use the p flag with the
x flag.

L This flag specifies that this module is a COFF library.

s opt This flag is used to define special applications-defined exit, fork, and exec
routines. Values of cpt are as follows:

e 1be module contains a routine prefboexit, which is called whenever a
process exits.

f The module contains the routine prejfxf.ork, which is called whenever
a process forks.

x The module contains the routine prefbl:xec, which is called whenever
a process execs a new image.

Sample master script files

The following section shows four master script files for a device called MYDEVICE: the
first one is for a character driver, the second one is for a block driver, and the last two
are for a Streams driver and module.

Chapter 12: Autoconflguratlon 12-31

A character device driver master script file
Figure 12-6 presents an example of a sample character device driver master script file.
In the example, the first line indicates that th.is driver controls a slot card with board id
99. The second line indicates that th.is driver depends on the slots module, and
iMtructs autoconfig to include the slots module in the kernel if the MYDEVICE module
is also included in the kernel.

In the third line, th.is script identifies a character terminal device (ct) whose interrupts
are slot based (vs). Autoconfiguration will create two data structures for th.is module:
MYDEVICEcnt, which contains the number of slot cards with board id 99 in the
system, and MYDEVICEad.dr, which is an array initialized with the slot number of each
slot card controlled by the driver.

The 1 indicates that the module will receive one interrupt per controller (which is true
for all slot devices). The rest of the line indicates that the device prefix is MYDEVICE,
the software major number will be assigned by autoconfig (-),there are 8 devices per
controller, and the device lpl (the interrupt level at which the device takes interrupts) is
1.

12-32 Chapter 12: Autoconflguratlon

(

Rgure 12-6

A sample master script ftle for a character device driver

(

(
Chapter 12: Autoconflguratlon 12-33

A block device driver master script flle
A sample master saipt file for a block device driver is illustrated below and explained in the following
paragraphs.

if • include SCSI
bca MYDEVICE 2 1

In this script, the if • include SCSI statement on the first line assumes that
another module (the SCSI manager) must be in the kernel for the module to run. In the
second line, the be indicates that the driver will be used as both a block and character
device driver . autoconfiq will create entries in both the bdevsw and cdevsw table for
this device driver. This device driver shares open and close routines between the two
device drivers. The a flag instructs autoconfiq to create the MYDEVICEcnt and
MYDEVICEaddr data structures.

The first hyphen(-) indicates that this module does not receive interrupts directly,
because this device receives interrupts via the SCSI manager. The device's prefix is
MYDEVICE, and autoconfig will assign the software major number !->.There are 2
devices per controller and the device interrupt 'lpl is 1.

A streams driver master script file
A sample master script file for a streams device driver is illustrated below and explained in the following
paragraphs. ·

if . include STREAMS
mvsa 1 MYDEVICE 2 1

The fll'St line of the saipt includes the STREAMS module into the kernel.

The second line of the script identifies a streams device (m) whose interrupts are slot
based (vs). autoconfig will create the MYDEVICEcnt and MYDEVICEaddr data
structures (a). The number of interrupt veaors the controller can generate is 1
(because it is slot based), the device prefix is MYDEVICE, and the software major
number is not used There are 2 devices per controller and the device 'lpl is 1.

A streams module master script flle
A sample master script file for a streams module is illustrated below and explained in the following
paragraphs.

include •
x MYDEVICE

12-34 Chapter 12: Autoconflgurotlon

(

(

Because this module doesn't depend upon any other module in the system, it must be
explicitly included with the include. statement This script first identifies a streams
file W. The script then specifies that no interrupt vectors are received(-), MYDEVICE
is the device prefix, the software major number is not :wigned (because this is a
streams module), there are no devices per controller (because this module isn't a
physical device), and the lpl is not applicable.

Writtng optional lnit and startup scripts
You might choose to writ.e two optional types of scripts: device initialization scripts
that run immediat.ely after autoconfiguration, and startup saipts that run whenever the
system boots or reboots an autoconfigured kernel.

Your install script (/etc/install .d/m.ydeulce) should creat.e the init and startup
scripts for your device. Your install saipt should place your init script in the
/etc/init .d directory, and your startup saipt in the /etc/startup.d directory.

If the -I or -a option is specified to autoconfig, autoconfig executes any ftles in
/etc/init .dafter building a new kernel but prior to rebooting.

Usually, these scripts create device files in the system's /dev directory. Naming
conventions for device flies are listed in the following section. A number of special
programs such as dev_kill<lMI, tty_kill !lM), and tty_add(lMI can be run. See
AIUX System. Administrator's Reference for details about these programs.

When you write init scripts, be careful about writing an init script that modifies the
currently running environment while running the old kernel. You should place
functions that could affect the currently running environment in your startup script

Any files in /etc/startup.d whose names correspond to modules in the kernel are
executed from /etc/sysinitrc (by the /etc/startup script) before entering single­
user mode.

A list of these optional startup scripts is kept in the /etc/startup file, which is
generated during autoconfiguration. When you run autoconfiq, you must specify the -
s /etc/startup option if you have a startupsaipt that you want added to the list of
startup scripts in /etc/startup. Usually, these startup scripts or programs perform
initialization functions, such as downloading code to an intelligent controller.

The fust flag passed to a device initialization script is -d and the first flag passed to a
device startup script is -s. These flag options are passed in the following order to all
startup and initialization scripts:

-M n The major number of this device type is n. Only block, character, and
streams drivers are passed the major number flag.

-C n There are n controllers :wociated with this module in the system.

Chapter 12: Autoconflguratlon 12-35

-D n There are n devices per controller. associated with this module in the system.

-s n 1bere is a controller for this device type in NuBus slot number n. n is a single
hex digit from 0 to OxOF. See the v option in •1ncluding Device Information"
given earlier in this chapter for information about specifying slot interrupts.
1be -s flag is passed only if at least one controller for your device is actually
installed in the system.

If more than one slot card for your device driver is installed in the system,
then your script will be passed more than one -s flag. where the number
following each-sis the slot number of one of your slot cards.

For example, the startup script of a slot device driver might be invoked as follows:

/etc/startup.d/TEST -M 9 -c 1 -o 1 -s 11

This line indicates that the TEST module has major number 9, one slot card associated
with it in the system, one device per slot card, and is installed in slot 11.

Device file naming conventtons
You must create one or more device files in order to perform J/O to your device.
Device files are typically created in the init or startup scripts of a driver. Recall that the
init and startup scripts are passed the major number of the device. You can use this
information to aeate your device files in these scripts.

This section uses the following terms:

card A card supporting one or more units (usually, but not always) of the same
device type. A card is also often referred to as a controller.

unit A single physical device that can be individually addressed For
example, a unit could be one channel on a dual channel serial chip or
one disk driver on a controller.

1be device names in /dev and /etc/inittab should follow these naming
conventions:

Type Name

Terminal devices /dev/ttySU

Disks /dev/dsk/cmmsy

/dev/rdsk/cmmsy

12-36 Chapter 12: Autoconftgurat10n

/etc/inittab
label

tty SU

(

c:

(

Printeril

Other devices

where

s is the slot number.

u is the unit number.

where n is the SCSI ID of the Hard Disk SC, mis the
number of the sub-Oriver at that SCSI ID (usually O),
and y is the slice number associated with a particular
partition.

/dev/lpSU

/dev/lpaxu

/devtnameu

I dev I name/ :xxx

pa.xu

pa.xu

nameu

nameu

a is other bus type (either S for local SCSI buS or F for Apple DeskTop Bus).

xis other bus index.

name is the driver name.

:x:xx is any letter or digit.

Note: You can place special files in /dev subdirectories to make searching through the
directory faster. '

Creating the install and uninstall scripts
Once your driver, master script, and optional scripts are complete, you should write
an install script for your device driver. 1bis script should install the device driver,
master sajpt, and other files into the appropriate directories for autoconfig.

The install script for your device should be named mydevlce and placed in the
/etc/install .d directory. 1be uninstall script for your device should be named
nomydevU;e and placed in the /etc/uninstall .d directory.

Scripts in /etc/install .d and /etc/uninstall .dare used with the /etc/newunix
script. Your mydev1ce install script should copy your driver object ftle
/etc/install.d/boot .d/mydev1ce to /etc/boot.d/mydev1ce, create the
/etc/master .d/mydevice ftle, and create optional scripts in /etc/init .d and
I etc/ start up. d as needed for your device.

Your uninstall script nomydevtce should remove the files related to mydevtce in the
/etc/master .d, /etc/boot .d, /etc/init .d, and /etc/startup.d directories.

Chapter 12: Autoconflguratlon 12-37

Modifying /etc/newunix
Modify the /etc/ newunix saipt so that it will accept the name of your driver as an
argument. An example of such an argument .is /etc/newunix mydevtce. Also modify
the saipt so that the user can specify no mydevlce to uninstall your driver.

Next you should run /etc/newunix mydevlce. After your mydevfce install saipt
finishes execution. your driver object file, master saipt file, and optional scripts
should be in the appropriate directories for autoconfiq.

Running autoconflg
Aft.er you run I etc/newunix, the files that autoconf iq needs to link your driver into the
kemel should be in place. You can now run autoconfiq. Do not use the -a option. By
not specifying the -a option. you tell autoconfiq to build a new kemel.

If you provided the necessary files and information, autoconfiq will link your driver or
module into the new kemel. If you run autoconfiq with the -I option. autoconfiq
executes all initsaipts in the /etc/init.ddirectory. If you run autoconfiq with the
-s /etc/ startup option. autoconfiq adds your startup saipt to the l.ist of startup
scripts in /etc/startup.

You cannowpowerdown your system and install your hardware. When you tum the
system back on. your new kemel should boot and you can begin to perform VO to your
device.

If your hardware .is already installed, then shutdown the system and reboot. Your new
kernel should boot and you can begin to perform VO to your device.

Customer Installation of your driver
Once you have successfully debugged and tested your driver, you are ready to
distribute your driver to your customers. To install your driver, your customers should
use the finstall utility.

For information on how to install your driver from your distribution floppy to a
custo~s A/UX system disk, see Chapter 14. Chapter 14 describes how your
customers can use finstall to install your driver object file into
/etc/install.d/boot .d, your install saipt into /etc/install.d. After your
customers install your driver object file and install saipt onto their system, they can
execute /etc/newunix, run autoconfiq, and then powerdown the system and install the
hardware. When they tum the system back on, the new kemel should boot, and your
customers can perform VO to your device.

12-38 Chapter 12: Autoconflguratlon

,,.-,
((~;

(

Chapter 13

Using Autoconfiguration

13-1

For end users who buy and install a new device in the Macintosh n, the
autoconfiguration process is used to link new drivers into the kernel This process
includes using finstall, /etc/newunix, autoconfiq, and then rebooting the
system. If you're developing device drivers, however, you may Want to automate the
normal autoconfiguration sequence by using a makefile to install and test your driver.

This chapter desaibes how you can use autoconfiguration in this way for developing
drivers. This chapter uses a specific example to illustrate how to create the various
saipt files used with your driver, and to illustrate how to wrire a makefile that allows you
to recompile and add your driver to the kernel with one command Before you start,
make sure that you have read Chapter 12 and understand how autoconfiguration works,
and that you know what saipt files you must wrire.

The sample TEST driver
The sample driver used as an example in this chapter is named TEST. The ~driver is a character
device driver that controls a slot card. The source code for the TEST driver is shown in this section.
The following sections show the master saipt ftle, install script, uninstall script, startup script,
modified /etc/newunix file, makefile, and loadfile that can be used with the TEST driver.

finclude <sys/sysmacros.h>
finclude <sys/req.h>

extern int TESTcnt;
extern int TESTaddr[];

TESTopen (dev,flaq)

dev_t dev;

{

int maj, min;

maj • major(dev);

min• minor(dev);

printf(" in TESTopen now \n");

printf(" The major number is %d \n", maj);

printf(" The minor number is %d \n", min);

return(O);

13-2 Chapter 13: Using Autoconftguratlon

(

(

(

TESTclose (dev)

dev_t dev;

printf(" in TESTclose now \n");

TESTinit ()

int i;

printf ("in TESTinit \n");

/* Recall that if you specify the "a" flag in the Device Information
line of the master script file, autoconfig creates the variables
prefixcnt and prefixaddr. *I

/* In this specifi:e; example, TESTcnt contains the number of slot
cards with board id 99 in the system. TESTaddr[] contains the
slot number of each slot card in the system that the TEST driver
controls. */

for (i - 0; i<TESTcnt; i++)

printf (" TESTaddr [%d] is in slot %d\n", i, TESTaddr[i]);

TESTint (args)

struct args *args;

printf(" Slot card generating interrupt is in slot %d\n", args->a_dev);

The TEST master script file
You use the master script file to link the TEST driver into the kernel. The install script
I etc/ install. d/TEST is used to create the master script file and to place the
master script file in I etc/master. d. The master script file for the TEST driver is as
follows:

Chapter 13: Using Autoconflguratlon 13-3

id 99 1
if • include slots
acvs 1 TEST 2 1

The first line of the TEST master saipt fde specifies the board id of the slot card (99),
and the version number (1). When autoconfiq is run, autoconfiq looks for slot
cards with board id 99 that might exist in the system. If any slot cards with board id 99
exist in the system, autoconfiq will include the TEST module in the kernel.

The second line instructs autoconfig to include the slots module in the kernel if the
TEST module is included. Remember that for device drivers other than slot device
drivers and device drivers that are not included by any other master script fde, this
line must contain "include • "to include the module into the kernel.

The third line instructs autoconfiq to aeate the TESTcnt and TESTaddr data
structures (a), specifies that the TEST module is a character device driver(c), and
specifies that TEST receives interrupts from a slot device (vs) . This line also instructs
autoconfiq to set up the appropriate entry of the slot interrupt vector table to point
to the TESTint routine.

The third line also specifies that TEST receives one interrupt per controller, as do all
slot device drivers. 1be driver prefix is TEST, so autoconfiq will look for routines
with this prefix to aeate entry points in the cdevsw structure for this module.

The software major number will be assigned by autoconfiq (-).The TEST module
supports up to two deviO::S per slot card, and interrupts at priority level 1.

The TEST startup script
You can provide a startup saipt with your device to perform various functions at boot
time. 1be install saipt /etc/install .-d/TEST is used to create the startup script
fde and to place the master saipt file in /etc/startup.d

You must run autoconfiq with the -s I etc/ startup option if you want
autoconfiq to add your startup saipt to the list of startup programs in
I etc/ startup. The startup saipt f.de for the TEST driver is as follows:

t startup script for TEST

· PATH•/bin: /usr/bin: /etc: /usr/etc
scriptname•$0

name•TEST

t Your startup script is passed a number of flaqs
t Refer to Chapter 12 for a description of these flaqs

t Initialize the minor number, so that each device

13-4 Chapter 13: Using Autoconflguratlon

(

(

f
minor•O

has a unique minor number

while test -n $1

do

f
f

f
f

f

f
f
f

f

esac

shift

case $1 in

-M)

-C)

-D)

-S)

*)

For -M flaq: Save the major number
shift

major•$1
echo "The major number is $major"
, ,

shift

For -c flag: echo the number of cards for
this driver in the system

echo "$1 card(s) installed for TEST driver" .. , ,

shift

For -o flag: echo the number of devices per
card

echo "$1 device(s) per card" .. , ,

shift

For -s flag: Create the device file

Each device file is named
/dev/TESTslotnumber and
is given a unique minor
number.

mknod /dev/TEST$1 c $major $minor
minor•'expr $minor+ l'
echo "There is a card in slot $1 for TEST" .. , ,

Print error for all other flags

echo "$scriptname: Unexpected argument $1"
exit 1
; ;

Chapter 13: Using Autoconflguratlon 13-5

done

f End of TEST startup script

The TEST install script
The install script for the TEST device driver is located in /etc/install .d. You use
the /etc/newunix command to execute the TEST install script The TEST install
script copies the TEST object file from I etc/ install. d/boot. d/TEST to
I etc/boot. d. The TEST install script also creates the TEST master script me, and
creates a startup script.

The TEST install script is as follows:

f /etc/install.d/TEST

PATH•/bin:/usr/bin:/etc:/usr/etc

name-TEST

f
t Install the driver object file
t

f

cp /etc/install.d/boot.d/$name /etc/boot.d
chmod 644 /etc/boot.d/$name

f Install the driver master script file
f

echo 'id 99 l' > /etc/master.d/$name
echo 'if . include slots' >> /etc/master.d/$name
echo 'acvs 1 TEST 2 1' >> /etc/master.d/$name

chmod 644 /etc/master.d/$name

end of TEST install script

The TEST uninstall Script
The uninstall script for the TEST device driver is located in /etc/uninstall. d You
use the I etc I newunix command to execute the TEST uninstall script The TEST
install script removes the files related to TEST in the directories used by
autoconfig.

The TEST uninstall script is as follows:

13-6 Chapter 13: Using Autoconflguratlon

(

(

f /etc/uninstall.d/TEST

PATH-/bin:/usr/bin:/etc:/usr/etc

name-TEST

f
f Delete the driver object file
f

:rm -f /etc/boot.d/$name

f
f Delete the driver master script file
f

:rm -f /etc/master.d/$name

f
f Delete the driver startup file
f

:rm -f /etc/startup.d/$name

f end of TEST uninstall script

Modifying /etc/newunix
Remember that you need to either supply your customers with a modified version of
I etc I newunix, or give them direaions on how to modify the file themselves.

The arguments currently available that a user can specify to /etc/newunix are: basic
networking (bnet), Network File System (nfs), A/UX toolbox (toolbox), non­
networking (nonet), no toolbox capabilities (notoolbox).

For each module specified in the command line,/etc/newunix invokes a script
corresponding to that module. The scripts for individual modules are located in
/etc/ install. d.

The scripts in /etc/install.dsetup the files that autoconfiq needs in order to
configure that module into the kernel. After the script exeOJtes, the appropriate files.
have been placed in /etc/master.d, /etc/boot.d, /etc/startup.d, and
/etc/init. d that autoconfiq will use to link the module into the kernel.

You must modify I etc/ newunix to include p~ing of your install and uninstall
scripts. Add a line to the case statement that will accept the name of your driver as a
parameter. When this parameter is specified, you should exerute the install saipt for
your driver.

Chapter 13: Using Autoconflguratlon 13-7

You should also add a line that accepts the prefix no and the name of your driver (for
example, noTEST). When this parameter is specified, you should execute the
uninstall saipt for your driver.

The following is a modified version of I etc/ newunix that works with the install and
uninstall scriprs of TEST.

t
t Modified version of /etc/newunix that also accepts TEST as an
t argument

PATH•/bin:/usr/bin:/etc:/usr/etc
case $1 in

t

nonet) /etc/uninstall.d/BNET

bnet)

/etc/uninstall.d/ae6
/etc/uninstall.d/nfs
, '

/etc/uninstall.d/nfs
/etc/install.d/BNET
/etc/insLall.d/ae6
, ,

nfs) /etc/install.d/BNET
/etc/install.d/ae6
/etc/install.d/nfs .. , ,

toolbox)
/etc/install.d/toolbox
; ;

notoolbox)
/etc/uninstall.d/toolbox .. , ,

t Add a line that checks for your device name here
t

TEST)
/etc/install.d/TEST

, ,
NOTE ST)

/etc/uninstall.d/TEST
, ,

*) echo "Usage: $0 <system>"
echo " where <system> is one of nonet, bnet, nfs, toolbox

or no toolbox, TEST or noTEST"
exit l

13-8 Chapter 13: Using Autoconflguratlon

(

; ;
esac
f end of modified /etc/newunix

Using makefiles
After you write your driver, master script file, and optional script files, you can create
and run a makefile. This fil& contains user-specified commands that are processed
according to built-in rules found in the make utility. For more information about this
utility, see •using make• in AIUX Programmtng Languages and Tools Volume 2, and
make(l).

Your makefile should contain four commands:

• A command that compiles your driver.

• A command that copies your driver into the I etc/ install. d/boot. d
directory.

• A command that executes the modified I etc I newunix command.

• A command that executes the autoconfig (lMl utility.

In addition, you can create a loadftle to hold slot ROM information. From the
autoconfig command in your makefile, you can specify whether or not this file will
be read instead of the slot ROMs for your card

Creating a loadflle
During development of your driver, you should run autoconfig from the system
directly to create a new kernel.During development of NuBus cards, you can test your
slot device driver independently of your hardware. If your slot card is not ready for
testing with your software driver, or if you have not yet installed the slot ROMs on your
card, you can use a loadfile to begin testing your driver. In the place of slot ROMs, you
must aeate a loadfile to hold slot ROM information.

The loadfile is an ASCII me which contains the following information:

slot-number board-ID verston-number

For example, this loadfile

11 99 1

specifies slot 11, board ID 99, and version number 1. To use a loadftle, specify the -L
lead.file option to autoconfig. When you specify this option,autoconfig reads
the specified file for device information instead of reading the slot ROMs.

Chapter 13: Using Autoconflguratlon 13-9

If you create a kernel using the -L Joa41ileoption to autoconfig, then you must use
the -n option on the launch command line to boot this new kernel. The launch -n
option forces launch to set the AUfO_OK flag, regardless of whether the slot card for
your driver is present or not. Note that you should only use a loadfile and the launch
-n option during driver development and testing of your software driver. When you
are ready to test your software driver with yoor hardware, then you do not need to use a
loadfile or the launch -n option.

The sample TEST makefile
You can create a makefile to automate the process of compiling and linking your driver to the kernel.
The sample makefile used with the TEST driver is shown here:

testunix: /newunix /etc/install.d/boot.d/TEST loadfile

/etc/newunix TEST

autoconfiq -L loadfile -I -s /etc/startup -o /testunix

/etc/install.d/boot.d/TEST: TEST.o

TEST.o:

cp TEST.o /etc/install.d/boot.d/TEST

/bin/cc -c TEST.c

The rule testunix: checks for the /newunix file, the driver file TEST, and the
loadftle, and if present, runs /etc/newunix and then autoconfiq. If the driver
file TEST is not present in the /etc/install .d/boot .ddirectory, make executes
the /etc/install. d/boot. d/TEST rule.

The I etc/ install. d/boot. d/TEST rule depends on TEST. o. If TEST. o does not
exist, the TEST. o rule is executed. If TEST. o does exist, make executes the
command on the following line. This command copies TEST. o into the
/etc/install.d/boot.d directory.

The rule defined by TEST. o compiles the TEST. c driver code.

After the /etc/install .d/boot .d/TEST file has been updated, make executes the
next statement on the line following the test unix statement This line is a command
to run I etc I newunix.Remember this must be a modified version of I etc I newunix
that has been modified to accept the name of your driver as an argument

TheTEST argument to /etc/newunix causes the /etc/install.d/TEST script to
be executed. The TEST install script copies the driver object file
I etc/ install. d/boot. d/TEST to I etc/boot. d. The TEST install script also
creates the master script file I etc/master. d/TEST.

13-10 Chapter 13: Using Autocontlguratlon

(

(

lhe make utility then executes autoconfig. The options to autoconfig are
explained in the following paragraphs.

The -L flag means that autoconfig reads the load.file instead of searching the slots
for a device. If you do not specify a full pathname, autoconfig looks in the current
working directory for the file named load.file.

The -I flag instructs autoconfig to call the initscripts in /etc/init .d for all
modules included in the new kernel

The -s I etc/ startup option instructs autoconfig to create a list of startup scripts
for modules in the new kernel. If you have supplied a startup script for your driver, the
name of your startup script is put in the specified file (/etc/startup>. When the
system is rebooted, your startup script will be executed.

The -o flag changes the default output ftle from /unix to /testunix.

Creating a new kemel that includes your driver
Using the sample makefde in the previous section, you can create a new kernel that includes the TEST
driver by typing ·

make testunix

lhe make program executes the TEST makefile. Make outputs several on-screen
messages, including error messages if make finds any errors in the makefile. Warning
messages preceded by the string Expect a warning message can be ignored.

If the TEST driver is succ:es,,fully added to the kernel, autoconfig prints a table of
existing modules, which should now include the TEST driver.

lhe file /testunix now contains the TEST driver. You should now back up /unix
(for example, by using cp /unix I oldunix) ,and then move the new kernel to
/unix (for example, by using mv /testunix /unix). If your hardware is already
installed , shut down the system and reboot.

If your hardware is not yet installed, then you should power down the system and
install the hardware at this time.

After rebooting the system, the TEST driver is available to perform 1/0.

Chapter 13: Using Autoconflguratlon 13-11

Performing 1/0 with the TEST driver
After using the make process and rebooting the new keme~ you are ready to debug the TEST driver. A
sample program that opens the TEST driver is shown below:

tinclude <fcntl.h>
tinclude <errno.h>

main()
(

int fd;

print£(" Begin testing driver \n");

if ((fd - open("/dev/TESTll", o_RDWR)) -- -1)
{
perror(" Error in open, errno message");
exit(l);
}

close(fd);

You aJso need to make sure the device file for your driver ftle has been aeated.
Typically your driver init or startup script aeates this file. 1be TEST startup saipt
aeated the /dev/TESTll device file.

After compiling and executing this sample program, the following output is produced
on the terminal:

Begin testing driver
In TESTopen now
The major number is 9
The minor number is 0

This chapter showed how to aeate a simple character device driver for a slot card, by
using the TEST driver as an example. 1be master saipt ftle, startup script, install
saipt, uninstall script, modified /etc/newunix file, makefile, and loadfile for the
TEST driver were aJso shown.

You should now know how to begin writing the device driver for your device, and how
to aeate the ftles used during autoconfiguration to add your driver to the kernel.

13-12 Chapter 13: Using Autoeonftguratton

;r-\
!0

r('' "\

It_"')

(

Chapter 14

Preparing Your Driver For
Customer Distribution

14-1

After writing and successfully testing your driver, you need a procedure your OJStomers
can use to install your driver onto their A/UX system. In this chapter, you'll learn how
to prepare your distribution floppy disk with the files needed to install the software for
your device.

Apple Computer has designed a standardi7.ed installation procedure to install third­
party software called £install. finstall is a Bourne shell script that you can use to
install software from one or more floppy disks. The floppy disks should contain an
A/UX mountable file system with various files on it, including a cpio archive
containing files to be installed, and optional preinstall and postinstall shell
scripts or executable programs.

finstall is intended to provide a simple, common, and consistent user interface
for installing software on an A/UX system.All third-party vendors should use
finstall. Apple aJso uses finstall for A/UX software installation.

A OJStomer can install your software by simply typing the finstall command at the
shell prompt. £install prompts the user for cenain information, such as which
drive (right hand or left hand) the floppy disk is inserted in. Each question has a
standard default, so you can make the installation process completely automatic.

Your OJStomer runs finstall to install your driver object file, install script, arid
uninstall script into the appropriate directories of their A/UX system.

After your customer runs f install, your driver object file should be located in the
/etc/install .d/boot .d directoryoftheAIUXsystemdisk. In addition, your
install script should be located in the I etc/ install. d directory, and your uninstall
script in the /etc/uninstall .d directory.

Your customer then needs to run /etc/newunix. Remember that you need to either
supply a modified version of /etc/newunix for your customers, or give them
directions on how to modify the file themselves.

When your OJStomer runs your modified version of I etc/newunix,the customer
must specify the name of your device as an argument /etc/newunix will then
execute your install script.

The install script for your device should copy the driver object file in
/etc/install.d/boot.d into /etc/boot.d. Your install script should also create the
master script file and other optional script files of your driver, and place these scripts
in the appropriate directories that autoconfiq needs to link your driver into the kernel.

After your customer runs your modified version of /etc/newunix, the appropriate
files should now be in /etc/master.d, /etc/boot .d, /etc/startup.d, and
/etc/init .d, which are the directories autoconfiquses when linking the module
into the kernel. After making sure the current system has been backed up, then the
customer should run autoconfiq.

14-2 Preparing Your Driver for Customer Distribution

(

(

Autoconfiq links your module into the new kernel, and puts the new kernel in /unix.
Your customer should now powerdown the system and inst.all the hardware. After
installing the hardware, your customer c.an blm the power to the system on. When the
A/UX system begim initiali7.ation, the new kernel that includes your driver will be
booted. Your customer c.an now perform VO to your device.

Giving out finstall to your customers
fins tall is a Bourne shell saipt that should be located in /usr /bin. Not all customers have
finstall on their systems however, as finstall was notdistnbuted withA/UXRelease 1.0.

Therefore, Apple is supplying a copy of finstall with the Device Drivers Kil You should include a
copy of finstall on the distribution disk for your software.

If finstall is not installed on the user's system, the message

finstall: Command not found.

will be displayed on the user's monitor. In this case the user needs to copy finstall from your software
distribution disk to the I us r /bin di.rectory of their system. The user can use the following command to
copy finstall to their system:

cpio -icuvm /usr/bin/finstall < /dev/rfloppyO

The user should get the message

/usr/bin/finstall

if finstall was successfully copied to the /usr/bin direaory.

This listing shows the way a customer would install your software, using the A/UX Device Drivers Kit as
an example.

' finstall

finstall: This is the finstall proqram. It installs software from a
finstall: floppy disk onto your system. It will qive you a chance to
finstall: see what software is beinq installed and how much disk
finstall: space it will need before anythinq is installed.

finstall: You may at anytime stop the finstall procedure by qivinq
finstall: it an interrupt, which is normally the CTL-C key.

finstall: Press RETURN when ready to proceed: (RETURN)

finstall: Use the left or riqht floppy disk drive? [default: riqht] (RETURN)

Ries that are Located on the Flnstall Floppy 14-3

finstall: Insert the installation floppy number 1 into the right hand drive.
finstall: Press RETURN when ready to proceed: (insert floppy and press RETURN)

finstall: Now mounting the installation floppy ••••

finstall: Now checking that the required files are on the floppy .•.

finstall: The software on this floppy is <Device Drivers>
finstall: It is from <Apple Computer>
finstall: And it is version <vl.O>
finstall: The vendor has supplied the following description:

(A short two paragraph description of the A/UX Device Drivers Kit is shown)

finstall: Under what directory should the software be installed? [default:
/usr/src/device_drivers] (RETURN)

finstall: Now calculating the disk space needed to install the software.

finstall: This may take a few minutes •••.

finstall: You have 20160 blocks on the installation point <cs>.
finstall: You will '.JSe 5200 blocks to install the software, 1-eaving 14960
blocks free.

finstall: Do you want to see what files will be installed .before they are
actually installed? [default: yes] (RETURN)

(fmst.all displays a list of all the ftles that will be installed)

finstall: This is your last chance to stop before actually installing the software.
finstall: Do you want to proceed with the installation? [default: yes)
(RETURN)

(fmst.all proceeds to install the files)

An overview of finstall
Your distribution floppy disk can contain a number of files as shown in Figure 14-1.

14-4 Preparing Your Driver for Customer Distribution

Rgure 14-1.
Flies on the distribution ftoppy disk

(

Ries that ore located on the Flnstoll Floppy 14-5

When the user executes finstall, finstall performs a number of functions. fins tall first checks
whether the /etc If install re or • f installrc file exists on the customer's A/UX system. A user can
control the default options for f install by using these two files.

finstall also checks that the user is the superuser (root), then mounts the floppy disk and creates the
following directories if they do not exist:

/etc/finstall.d
/etc/finstall.d/vendorname
/etc/finstall.d/vendorname/softwarename
/etc/finstall.d/vendorname/softwarename/versionname

The vendorname, sojtwarename, and verstonname are taken from the names specified in their
respective files on the distribution floppy disk.

finstall uses the sequenceno and sequenceof files to determine if this floppy disk is part of a
multi-floppy disk set. If so, f install verifies that the floppy disk has the correct sequence number
specified in the sequenceno me.

The installpoint file contains the default absolute pathname of where to~ the files in
cpiodata or cpiodata. z. finstall prompts the user for a different installation point, allowing the
user to override the default specified in installpoint if desired If you do not provide an
installpoint file,finstall uses the current working directory as a default installation point.

finstall calculates the amount of disk space needed to install the files, and if not enough space is
available, lets the user decide whether to quit or continue. Just before copying the files from the
cpiodata or cpiodata. z archive, finstall executes the preinstall script (if it exists) on the
floppy disk.

fins ta 11 also creates a list of the files installed from the cpio archive. fins ta 11 puts this list of
installed files in the file /etc/ f install. d/ventiorname/ softwarename/ versionname/ installedf iles.

finstall also copies either the absolute pathname specified by the installpoint file on the floppy
disk or the installation point specified by the user to the
/etc/finstall.d/vendorname/softwanmame/versionname/installpoint file.

finstall then installs the files from the cpiodata or cpiodata. z archive. The files copied from
the floppy disk are placed in either the current working directory or the directories indicated by the
information from the installpoint and installedfiles files.

If the software distribution is on more than one floppy disk, finstall continues with the installation
procedure for the next floppy disk. After all files have been installed, finstall executes the
post inst all script (if it exists) on the last floppy disk of the software distribution. If your
postinstall script creates any files, then your post install script should update the
/etc/finstall.d/vendorname/so.ftwarename/versionname/installedfiles file accordingly.

You can set various default options for f install. For example, you can specify that f install prompt
for an installation point, or specify that finstall use the current working directory as the installation
point and not prompt for an installation point. These default options are listed in the following section.

14-6 Preparing Your Driver for Customer Distribution

(

(
c-.· ..•

___ ,.,'

Setting defaults for finstall on your A/UX system
You can use the /etc/finstallrc and . finstallrc to specify default options used with
£install, such as whether £install should prompt the user for certain information, or whether
£install should use a default value.

You can set these options by either placing them in the I etc/ f install re me or in • f im1tallrc in
the current working directory. 11le options that you can specify are Bourne shell •set• type options. The
default values set by f install are as follows:

CON_ TRIES•5
CTL_AUOWRC•l
CTL_ASKDRIVE•l
CTL_ASKINSTAU• 1
CTL_CHECKSPACE• 1
CTL_TAKEDEFAULT•O

The settings of these options are explained in the following paragraphs.

CON_TRIES

CTL_ALLOWRC

CTL ASKDRIVE

CTL_ASKINSTALL

This option specifies the number of tries a user is all~ during an attempt to
give an acceptable amwer to a prompt. If a user uses all of the tries, £install
quits. This number should be a positive integer value.

This option specifies whether finstall should use the .finstallrc
ftle in the working directory. CTL-: ALLOWRC can be set as follows:

CTL _ ALLOWRC - 0 Do not use a .fmstallrc ftle iri the
current working directory.

CTL_ALLOWRC !• 0 Do use a .fmstallrc file in the current working
directory if it exists.

This option specifies whether £install should prompt for the drive
that will be used to install the software from. CTL_ASKDRIVE can be
set as follows:

CTL_ASKDRIVE - 0 Don't ask which drive is to be
used; assume that it is the right drive.

CTL_ASKDRIVE ! - 0 Ask if the right or left drive is to be used.

This option specifies whether £install should prompt for the installation
point on the user's system where the software will be installed.
CTL_ASKINSTALL can be set as follows:

CTL ASKINSTALL -- 0 Don't ask for an installation point; assume
current working directory.

Ries that are Located on the Flnstall Floppy 14-7

CTL_CHECKSPACE

CTL_TAKEDEFAULT

CTL_ASKINSTALL !• 0 Ask for an installation point.

This option specifies whether fins tall should check if there is enough
space on the installation point to install the software. cn_CHECKSPACE
can be set as follows:

CTL _ CHECKSPACE -- 0 Do not check for space on the install point.
CTL_CHECKSPACE ! • 0 Check that there is enough space on the ir...stall

point to install.

This option specifies whether finstall should use default answers.
CTL_TAKEDEFAULT can be set as follows:

CTL_TAKEDEFAULT -- 0 Whenever an answer is prompted for,
read it from the controlling TIY device.

CTL_TAKEDEFAULT ! • O Print the question on the screen, but do not
wt for an answer. In this case, the default
answer is used

Files that are located on the finstall floppy disk
This section describes the files involved in the finstall installation procedure.

cpiodata

cpiodata.z

1he cpio archive that contains the files to be installed. You must create this archive
with the -c option of cpio. For example, if you have two direaories containing
various files that you wish to create, you can type the following command line:

% find dirl dir2 -depth -print I sort I \
cpio -oc > cpiodata

Note that you can use either cpiodata or cpiodata. z, but not both.

This file is a packed version of cpiodata. To create the packed version, run the
pack utility on the cpiodata file. An example of this is shown below:

% find dirl dir2 -depth -print I sort I \
cpio -oc > cpiodata ; pack cpiodata

14-8 Preparing Your Driver for Customer Distribution

description

diskspaceneeds

This fiJe contains simple ASOI text The text consists of a paragraph or two
desaibing the software. Because this text will be displayed for the user, you should
make the text as descriptive as possible. For example, the file may contain
something like the following:

This is the MARSH Corporation ~Ally Gator" video board
driver installation software. When installed, this
software will build a new A/UX kernel to support the
Ally Gator video board.

This file contains one line of ASOI text. This text contains three numbers that assist
the finstall script in calculating how much disk space is needed for installing the
software on this floppy disk. Normally, if this ftle is not present, f install
calculates the disk space needed based on the si.7.e of the cpiodata ftle. If this file is
present, finstall takes the siz.e of the cpiodata file and uses the numbers from
this file to adjust the diskblocksneeded value.

For multi-volume releases, each floppy disk can contain a diskspaceneeds file
that represents the remaining data to install. For example, the diskspaceneeds
file for the first floppy disk contains the si7.e of the entire package, and each
following floppy disk contains a smaller value.

Of the three numbers in the diskspaceneeds file, the first number is the number
of disk blocks to add or subtract from the si.7.e calculated from the cpiodata file. A
positive or unsigned number is added to the si7.e of the cpiodata fde, while a
negative number is subtraaed. Leave this number as 0 if you do not wish to use it

The second number is a percentage to increase or deaease the number of blocks
needed, based again on the siz.e of the cpiodata file. For example, if the second
number is 30, finstall inaeases the total number of blocks needed by 30%. If the
number is -30, then finstall decreases the total number of blocks by 30%. Thus,
if the si.7.e of the cpiodata fi1e is 100 blocks, and ifthe second number is 30, then
the total siz.e required is 130 blocks. Leave this number as 0 if you do not wish to use
it.

You can use both the first and second numbers together.

The third number, if not 7.ero, overrides the first and second numbers. The third
number is the absolute number of blocks to use as the disk-space-required value.
'The si.7.e of the cpiodata file is ignored in this case. Leave this number as 0 if you
do not wish to use it

Ales that are Loeated on the Flnstall Floppy 14-9

pre install

post install

sequenceno

This file is an executable program or shell saipt that is executed right before the
cpio utility installs the fdes. You might use the pre install script to save flies or
directories that may be overwritten by the installation process. The preinstall
saipt has five arguments passed to iL 1hese arguments are exactly the same as those
passed to postinstall, and are as follows:

argl 1be root mount point of the floppy disk.

arg2 1be installation point of the software.

arg3 1be full pathname of the version directory of the software. 1be version
directory is a directory located under /etc/finstall. d It has this
format:

I etc If inst a 11. d/ vendomame/sojtwartename/verstonname.

Files pertaining to the installation of this version of software are kept in the
version directory.

arg4 The full pathname of the filename of the installedfiles file under the
~lonnamedirectory. The installedfiles file contains a list of files,
one per line, that are installed. 1be files in the cpio archive are
automatically placed in this file. If either the pre.:i,nstall or
post install program or shell saipts install or aeate files, then those
filenames should be placed in this ftle also. The basename of this file is
always installedfiles.

arg5 The full pathname of the filename of the installpoint file under the
~ton directory. Files in the cpio archive can be either absolute
pathnames or relative pathnames. The £install saipt asks the user for a
pathname to install under (the default is the current working directory).
This pathname is known as the install poinL This file contains the install
point.

This program or shell saipt should return 0. A nonzero return value causes
£install to prompt the user for permission to continue.

This file is an executable program or shell script that is executed right after the cpio
utility has installed the files.You might use the post install saipt to create links
or for other post-installation functions. The post install saipt has five
arguments passed to iL These arguments are exactly the same as those passed to
pre install. This program or shell script should return 0. A nonzero return value
causes £install to prompt the user for permiSsion to continue.

This file contains one line of ASCII text A number indicating the sequence number
of the floppy disk in a multi-floppy disk set is the sole contents of the line. For single
floppy disk installations, this file can be omitted. If this file is present, the
sequenceof file must also be specified.

14-1 O Preparing Your Driver for Customer Distribution

ti--'-,
~./

(

(

sequenceof

vendorname

softwarename

versionname

installpoint
(floppy disk file)

installpoint
(system disk)

This file contains one line of ASCII text. A number indicating the number of the
floppies in a multi-floppy disk set is the sole contents of the line. For single floppy
disk installations, this file can be omitted. If this file is present, the sequenceno
file must also be specified.

This me contains the name of the vendor of the software being installed. This name
should be a System V UNIX directory name and must adhere to the naming
conventions (14 characters or less, no embedded slashes). Embedded blanks are
allowed - the f inst all script carefully quotes all use of the vendorname directory
name. The vendornamedirectory is under the /etc/finstall .d directory, as
shown below.

/etc/finstall.d/vendorname

:You should carefully chose your vendcrname name, and keep it consistent for all
your software products. For example, software products from Apple Computer use
the vendor name Apple Computer for all products.

This file contains the name of the software being installed. This name should be a
System V UNIX directory name and must adhere to the naming conventions (14
characters or less, no embedded slashes). Embedded blanks are allowed - the
f install script carefully quotes all use of the softwarename directory name. The
softwarename directory is under the vendorname directory, as shown below.

I etc/ f inst al 1. d/ vendorname/softwarename

This is the version of the software being installed. This name
should be a System V UNIX directory name and must adhere
to the naming conventions (14 characters or less, no
embedded slashes). Embedded blanks are allowed - the
f install script carefully quotes all use of the verstonname
directory name. 1be verslonname directory is under the
vendorname and so.ftwarename directories, as shown
below.

I etc If inst a 11 • d/ vendorname/sojtwarenamelverstonname

This file contains the default absolute pathname of the
home directory from where the files will be installed.

This file contains the acn.ial installation point used.
This is either identical to the pathname specified by the
installpoint file on the distribution floppy disk, or the
pathname specified by the user.

Flies that are Located on the Flnstall Floppy 14-11

installedf iles
(system disk)

This file contains the list of files that were installed. This file is
not supplied on the distribution floppy disk. The
installedfiles file is ~ated by £install in the file

/etc/finstall .d/vendomame/softwarename/ver.stonname/installedfiles

1he file names can be either absolute or relative path names.
If relative pathnames are used, then you must provide the
installpoint file also.

If your post install saipt installs or ~at.es any files, your
postinstall script should modify this file accordingly.

14-12 Preparing Your Driver for Customer Distribution

(

Appendix A

Driver Interface Routines

(

A· 1

This appendix is a reference section for the driver routines that are invoked through
the bdevsw and cdevsw tables. These routines provide the driver interface to the
kernel. Some of these routines are found in both block and character device drivers;
some are specific to only block device drivers or only character device drivers. Note
that this appendix does not include desaiptions of the rouitnes used in streams device
drivers. Refer to Chapter 6, "Streams Device Drivers", for a desaiption of the routines
used by streams device drivers.

The following routines are found in this appendix:

o ~pen-prepares the device for 1/0. Both block and character device drivers
supply a drlveropen routine.

o drlverclose-performs device close operations. Both block and character device
drivers supply a drlverclose routine.

o driver.read-reads data from a device. Only character device drivers supply a
drlverread routine.

o drtverwri te-writes data to a device. Only character device drivers supply a
drlver.rri te routine.

o drlver.i.octl-perfonns control operations or other device-dependent operations
on a device. Only character device drivers supply a driver.ioctl routine. ·

o drtverstrategy-schedules the transfer of data between the kernel buffer cache
and a device. Only block device drivers supply a drtverstrategy routine that is
directly invoked by the kernel. However, a character device driver can indirectly
call a drlverstrategy routine by using the kernel routine physio () .

o drtverprint-prints error messages to the user on the sysrem console. Only block
device drivers supply a drlverprint routine.

Drivers can also provide an initialization routine called drlverini t. The kernel calls
drlver.i.ni t routines during system initialization. Ref er to the section "Including
Device Infonnation" in Chapter 12 for more information on the drlver.ini t routine.

Slot device drivers must provide an interrupt routine called driver.int. Chapter 9
desaibes the drlver.i.nt routine for slot device drivers. Most other drivers also supply
an interrupt routine. For information on how other drivers handle interrupts, refer to
the section "Interrupt Handling by Your Driver" in Chapter 1.

Retum values of driver Interface routines
A/UX device driver open, read, write, and ioctl routines must return either 0 for
success or an error number for failure. Error numbers referred to as errno are defined
in the header file <sys/errno. h> and are listed in Appendix B.

A-2 Appendix A: Driver Interface Routines

(

(

(_··

A summary of the driver Interface routines
The rest of this appendix desaibes the driver interface routines. Entries are listed in
alphabetic order and contain the following:

o the name of the routine

o a synopsis of the routine

o the arguments to the routine

o a desaiption of what the routine does

o the values returned from the routine

o where to look for more infonnation

Appendix A: Driver Interface Routines A-3

close(driver)

Name
dose-perform device close operations

Synopsis
void drlverclose(dev,jlag)

dev_t dev;

int flag,

where

o dev is the device number.

close(driver)

o flag is a flag from the oflag field of the open system call (see open(2) in the AIUX
Programmer's Reference). 1bese flags correspond to the flag values in a file ·
descriptor data structure (the £_flag field in the header file <sys/file. h>).

o driver is the device prefix.

Description
1be drtven:lose routine is used to remove the connection between the physical
device and the driver. Typical functions of a driverclose routine include
reinitializing driver data structures and device hardware. The kernel calls close only
on the last close of the device; that is, if no other processes have the device open. The
drivert:lose routine should take the appropriate actions to make the device available
to be opened later.

Retum values
None.

See also
For block devices, see •Tue driverclose routine" in Chapter 3.

For character devices, see •Tue driverclose routine" in Chapter 4.

A·4 Appendix A: Driver Interface Routines

(

(

(

For terminal devices, see •Tue close routine• in Chapter 5.

For Streams devices, see •1be close routine• in Chapter 6.

For Streams terminal devices, see •The close routine• in Chapter 7.

Appendix A: Driver Interface Routines A-5

ioctl(driver) Ioctl(driver)

Name
ioctl-perform control operations and other device-dependent operations

Synopsis
int drlverioctl (dev, cmd, addr, mode)

dev_t dev,

int cmd, mode;

caddr _ t addr,

where

o dev is the device number.

o cmd is a command argument indicating the type of operation to be done. The value
of cmdcorresponds to the reqparamerer specified by the user in the ioctl(2)
system call. 1be value of cmd is driver dependent (see Seaion 7 of the A/(J)(

System Administrator's Reference for ioctl command values of different drivers).

o addr is a pointer to a buffer containing data copied in from the arg parameter
specified by the user, or is a storage area to place data to be copied out to the user
in the arg parameter.

o mode is an argument that contains values set when the device was opened. The
driver can use mode to check whether the device was opened for read or write.

o driver is the device prefix.

Description
You can use a drlver.i.octl routine to perform device-specific or driver-specific
commands. For example, you could use your drlverioctl routine to perform control
operations on your device, to get status from your device, or to change the
configuration of your device. Common uses of the driver.ioctl routine are to
perform miscellaneous aaivities such as rewinding a tape or initializing a disk. Only
character device drivers provide a driver.ioctl routine.

A-6 Appendix A: Drtver Interface Routines

(

(

Retum values
If your drlver:i.octl routine successfully perfonns the request, your driver.ioctl
routine should return 7.ero to the kernel. If your drlverioctl routine is unable to
successfully perform the request, your drlverioctl routine should return an errno
value to the kernel, indicating the reason the request failed

See also
For character devices, see •perfonning Control and Miscellaneous Functions on a
Device• in Chapter 4.

For terminal devices, see -i'he ioctl routine• in Chapter 5 and termio(7) in the A/TJX
System .Administrator's Reference.

For streams terminal devices, see "The ioctl routine• in Chapter 7.
I

copyin(kemel) in Appendix B.

copyout(kemel) in Appendix B.

Appendix A: Driver Interface Routines A-7

-.
'·

open(driver)

Name
open--prepare the device for 1/0

Synopsis
int drlveropen(dev, flag, ndevp)

dev _ t dev, -ndevp;

int flag,

where

o dev is the device number.

open(driver)

o flag corresponds to the flag values in a file descriptor data struaure (the /Jlag field
in the header rue <sys/file. h>). .

o ndetJp is a pointer to a dev _ t, which is used in done open operations for character
devices. Only character device drivers are passed the ndevp parameter ..

o driver is the device prefix.

Description ·
The driveropen routine is used to prepare the device for 1/0. Typical functions of a
drtveropen routine include validating the device number, and performing device­
dependent open operations. The drlveropen routine should open the file according
to the flag parameter and prepare the device for data transfer.

Retum values
If your drlveropen routine successfully opens the device, your drlveropen routine
should return zero to the kernel. If your drlven:>pen routine fails to open the device,
your drfveropen routine should return an errno value to the kernel, indicating the
reason the request failed

A-8 Appendix A: Driver Interface Routines c

(

('

See also
For block devices, see -'The driveropen routine• in Chapter 3.

For character devices, see -'The driveropen routine• in Chapter 4.

For terminal devices, see "The open routine• in Chapter 5.

For streams devices, see "The open routine• in Chapter 6.

For streams terminal devices, see •The open routine• in Chapter 7.

Appendix A: Driver Interface Routines A-9

-..

prlnt(drlver)

Name and purpose
print-print error messages to the user on the system console

Synopsis
void drlve1print (dev,str)

dev_t dev,

char •str,

where

o dev is the device number.

o str is a pointer to a ·string of characters to be printed.

o driver is the device prefix.

Description

prlnt(drlver)

Block 1/0 device drivers must provide a diagnostic print routine to print error
messages on the console. Your driver can use the kernel's printf routine to output
the message to the console.

Retum values
None.

See also
•The diagnostic print routine• in Chapter 3.

printf(kemel) in Appendix B.

A· 10 Appendix A: Driver Interface Routines

(

(

('

read(driver)

Name
read-read data from a device

Synopsis
int driverread(dev, ulo)

dev_t dev,

struct uio •uto;

where

o dev is the device number.

read(driver)

o ulo is a pointer to the ui o structure for the VO request 1he uio structure contains
information about the VO request, including the number of bytes to transfer, md a
pointer to the user's buffer.

o driver is the device prefix.

Description
1he drlverread ro\itine of a character device driver reads data from a device when a
user program issues a read(2) system call. 1he drlverread routine is invoked with a
direct pointer to the user's buffer. This aUows the character device driver to buffer the
data according to the needs of the device, or to directly transfer the data between the
device and the user's buffer.

Retum values
If your drtverread routine successfully reads from the device, your drlven:ead
routine should return rero to the kernel. If the read request fails, your driverread
routine sho\ild return an errno value to the kernel, indicating the reason the request
failed.

See also
•Reading From and Writing to a Character Device• in Chapter 4.

Appendix A: Driver Interface Rou11nes A-11

:... ... ,.

read(2) in the NUX Progn:immer's Reference.

physio(kemel) in Appendix B.

A-12 Appendix A: Driver Interface Routines

"'···

[\
'__,)

(

strategy(driver) strategy(driver)

Name
strategy-6chedule the transfer of data between the kernel buffer cache and a device

Synopsis
void drlverstrateqy(bp)

struct buf •bp;

where

o bp is the pointer to the buf structure involved in the 1/0 request. The buf structure
contains infonnation about the 1/0 request, including the number of bytes to
transfer, the ~ of the kernel buffer associated with this request, and a value
indicating whether data should be transferred into or out of the kernel buffer:

o driver is the device prefix.

Description
The kernel calls a drlverstrateqy routine of a block device driver to schedule the
transfer of data between the buffer cache and a device.

The drlven:ead or the driventrite routine' of a character device driver can invoke a
drlverstrategy routine to transfer data directly between a device and the user's
buffer.

Return values
None.

See also
•Performing 1/0 (using the strategy routine)• and -Tue buf structure• in Chapter 3.

•Data Transfers using physio()• in Chapter 4.

Appendix A: Driver Interface Routines A-13

write(driver)

Name and purpose

write-write data to a device

Synopsis
int drlverwri te(dev, ulo)

dev_t dev;

st ruct uio •uto;

where

o dev is the device number.

write(driver)

o ulo is a pointer to the uio structure for the VO request 1be uio structure contains
information about the VO request, including the number of byteS to transfer, and a
point.er to the user's buffer. ·

o driver is the device prefix.

Description

1be drlverwri te routine of a character device driver writes data to a device when a
user program issues a wri te(2) system call 1be drlverwri te routine is invoked with a
direct pointer to the user's buffer. 1bis allows the character device driver to buffer the
data according to the nee<h of the device, or to transfer the data directly between the
user's buffer and the device.

Retum values

Hyour drivenfrite routine successfully writes to the device, your drivenfrite
routine should return 7.ero to the kernel. Hthe write request fails, your drlverwrite
routine should return an errno value to the kernel, indicating the reason the request
failed.

A-14 Appendix A: Drtver Interface Routines

(

(

See also
"Reading From and Writing to a Character Device" in Chapter 4.

write(2) in NUX Programmer's Reference.

physio(kemel) in Appendix B.

Appendix A: Driver Interface Routines A-15

(

(

(

Appendix B

Kernel Routines

B-1

'This appendix is a reference section for the kernel routines that a driver can call. The
following routines are included in this appendix:

o biodone ()-awakens processes waiting on the specified buffer

o biowait ()-puts the calling process to sleep, until a corresponding call to
biodone () is issued

o brelse ()-returns a buf structure and an associated buffer to the kernel buffer
cache

o clrbuf ()-clears a buffer by filling it with zeroes

o copy in ()-copies data from a user buffer to a driver buffer

o copyout () -copies data from a driver buffer to a user buffer

o delay() -delays execution

o fubyte ()-copies a character from the user buffer to a driver buffer

o fuword ()-copies an integer from the user buffer to a driver buffer

o geteblk ()-gets a buf structure and associated buffer from the kernel buffer
cache

o major () -returns the major number

o makedev ()-creates a device number from the specified major and minor
number

o minor ()-returns the minor number

o physio ()-performs raw 1/0

o print f ()-prints a message on the system console

o psignal ()-sends a signal to a process

o signal ()-sends a signal to a process group

o sleep ()-puts a process to sleep

o spl n () -sets the processor interrupt level to priority level n
o splx () -resets the processor interrupt level to a previous priority level

o subyte ()-transfers a character from a driver buffer to the user buffer

o suword ()-transfers an integer from a driver buffer to the user buffer

o timeout ()-sets a timer and call a specified routine when the timer expires

o uiomove ()-moves data to and from the user buffer pointed to by the uio
structure

o untimeout ()-cancels a timer that was set by a previous call to timeout ()

o ureadc ()-writes a character to the user buffer

o use race ()-determines whether the driver can gain access to user address space

o uwri tee ()-reads a character from the user buffer

B-2 Appendix B: Kernel Routines

'· '·.

(

c·. -

o wakeup ()-wake ups processes waiting on the specified address

Entries are listed in alphabetical order and contain the following:

o the routine's name

o a synopsis of the routine's declarations and arguments

o a description of what the routine does

o the values returned from the routine

o places to look for more infonnation

Values and descriptions of ermo
The error numbers referred to as ermoin this appendix are listed in Table B-1, and
are found in <sys/errno. h> and intro (2) of the AIUX Programmer's Reference.
Your driver routines return ermoerror numbers to the kernel for unsuccessful
requests. Also, the kernel routines that your driver can call often return zero to your
driver for successful requests, and an ermo error number for unsuccessful requests.

Table 1·1
Kemel routine errno error numbers

Number Name DeacrlpHon

General error messages

1 EPERM Not superuser

2 ENO ENT No such ftle or directory

3 ESRCH No such process

4 EINTR Interrupted system call

5 EIO VO error

6 ENXIO No such device or address

7 E2BIG Argument list is too long

8 ENO EXEC Exec format error

9 EBADF Bad ftle number

10 ECHILD No children

11 EA GAIN No more processes

12 ENOMEM No enough core _

13 EACCES Permission denied

Appendix B: Kernel Routines B-3

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

B-4

EFAULT Bad address

ENOTBLK Block device required

EBUSY Mount device busy

EEXIST File exists

EXDEV Cross-device link

ENODEV No such device

ENOTDIR Not a directory

EI SD IR Is a directory

EINVAL Invalid argument

ENFILE File table overflow

EMF ILE Too many open ftles

ENO TTY Not a typewriter

ETXTBSY Text file busy

EFBIG File too large

ENOS PC No space left on device

ESPIPE Illegal seek

EROFS Read-only ftle system

EMLINK Too many links

EPIPE Broken pipe

EDOM Math argument out of domain of function

ERANGE Math result not representable

ENOMSG No message of desired type

EID RM Identifier removed

ECHRNG Channelnumberoutofrange

EL2NSYNC Level 2 not synchronized

EL3HLT Level 3 halted

EL3RST Level 4 reset

ELNRNG Link number out of range

EUNATCH Protocol driver not attached

ENOCSI No CSI structure available

Appendix B: Kernel Routines

"4. '.' -~-

r--\
\0

(

('~

44

45

EL2HLT

EOEADLK

Network error messages

Nonblocking and interrupt VO

Level 2 halted

Deadlock condition

55

56

57

EWOULDBLOCK Operation would block

EINPROG:RESS Operation now in progress

EALREADY Operation already in progress

Argument errors

58 ENOTSOCK Socket operation on nonsocket

59 EDESTAOOR:REQ Destination address required

6o EMSGSIZE Message too long

61 EPROTOTYPE Protocol wrong type for socket

62 ENOPROTOOPT Protocol not available

63 EPROTONOSUPPORT Protocol not supported

64 ESOCKTNOSUPPORT Socket type not supported

65 EOPNOTSUPP Operation not supported on socket

66 EPFNOSUPPORT Protocol family not supported

67 EAFNOSUPPORT Address family not supported by protocol family

68 EADDRINUSE Address already in use

69 EADORNOTAVAIL Can't assign requested address

Operational errors

70 ENETOOWN NetWOJk ~down

71 ENETUN:REACH Network ~unreachable

72 ENET:RESET Network dropped connection on reset

73 ECONNABORTED Softwawre caused connection abort

74 ECONN:RESET Connection reset by peer

75 ENOBUFS No buffer space available

76 EISCONN Socket is already connected

77 ENOTCONN Socket is not connected

78 ESHUTDOWN Can't send after socket shutdown

Appendix B: Kernel Routines B-5

79 ETOOMANYREFS Too many references; can't splice

80 ETIMEDOUT Connection timed out

81 ECONNREFUSED Connection refused

82 ELOOP Too many levels of symbolic links

83 ENAMETOOLONG Filename too long

84 EHOSTDOWN Host is down

85 EHOSTUNREACH No route to host

86 ENOTEMPTY Direaory not empty

Streams error messa1es

87 ENOS TR Not a Stream _device

88 ENODATA No data (for no delay VO)

89 ET I ME Timer expired

90 ENO SR Out of Streams resources

Network File System error messa1es

95 ES TALE Stale NFS ftle handle

96 EREMOTE Too many levels of remote in path

97 EPROCLIM Too many processes

98 EUSERS Too many users

99 EDQUOT Disk quota exceeded

Other error messa1es

100 EDEADLOCK Locking deadlock error

A summary of the kemel routines
The rest of this appendix desaibes the kernel routines that you can call in your
driver.Entries are listed in alphabetical order and contain the following:

o the routine's name

o a synopsis of the routine's declarations and arguments

o a desaiption of what the routine does

o the values returned from the routine

o places to look for more information

8-6 Appendix B: Kernel Rou11nes

.-.. ~.

7

(

(

biodone(kernel)

Name
biodone-4.waken proces.ses waiting on the specified buf structure

Synopsis
tinclude <sys/types.h>
tinclude <sys/buf.h>

void biodone(bp)

struct buf •bp;

biodone(kernel)

where bp is a pointer to the buf structure associated with the buffer where 1/0
occurred.

Description
The biodone routine awakens the process or processes sleeping on the buf structure.
A device driver should call biodone to wake up processes put to sleep by biowai t.

Note: iodone and iowai t are defined in <sys /buf. h> to be equivalent to
biowai t and biodone.

Retum values
None.

See also
"Kernel routines for block device drivers• in Chapter 3.

bi owai t(kernel)

Appendix B: Kemel Routines B-7

biowait(kemel) biowait(kemel)

Name
biowait-put the calling process to sleep, u.riti! a corresponding call to biowait is

issued · ·

Synopsis
#include <sys/types.h>
#include <sys/buf.h>

void biowait(bp)

struct buf •bp,

where bp is a po.inter to a buf structure associated with the buffer where data transfer
will occur.

Description
The biowai t routine is used by drivers that are waiting for data transfer to complete
on the buffer associated with the buf structure. biowai t puts the calling process to
sleep on the address of the buf structure. The calling process is awakened by a
corresponding call to biodone when the transfer completes.

Note: iodone and iowait are defined in <sys/buf. h> and are equivalent to
biowait and biodone.

Return values
None._

See also
•Kernel routines for block device drivers• in Chapter 3.

biodone(kemel)

B-8 Appendix B: Kernel Routines

~. ,. • ..

ir".
\J

(

brelse(kernel) brelse(kernel)

Name
brelse-retum buf structure and associated buffer to the kernel buffer cache

Synopsis
#include <sys/types.h>
#include <sys/buf.h>

void brelse(bp)

struct buf •bp,

where bp is a pointer to the buf structure being returned.

Description
brelse returns a buf structure and buffer (previously allocated by getblk,
getebl k, or bread) to the kernel. brel se returns the buf structure to the list of free
buffers and awakens any processes on that list that might be sleeping.

Return values
None.

See also
•Kernel routines for block device drivers• in Chapter 3.

geteblk(kernel)

Appendix B: Kernel Routines B-9

clrbuf(kernel)

Name
clrbuf-clear buffer

Synopsis
#include <sys/buf.h>

void clrbuf(bp)

struct buf •bp,

where bp is the pointer to the buf structure.

Description

clrbuf(kernel)

The cl rbuf -macro (defined in <sys /buf. h>) zeros the indicated buffer and sets the
b_resid field of the buf structure to 0.

Retum values
None.

See also
•Tue buf structure• in Chapter 3.

B-10 Appendix B: Kernel Routines

:, ; ~··-

(

(

copytn(lternel)

Name
copyin-<opy data from user buffer to driver buffer

Synopsis
int copyin (userbuf, drlverbuf, n)

char •drtverbuf, •userbuf,

int n;

where

o userbufis the address of the user buffer

o drlverbufis the address of the driver buffer

o n is the number of bytes to copy

Description
copy in copies data from a user buffer to a driver buffer.

Return values

~ Meanina

0 Success

errno Failure

See also
·utility Routines and Macr~· in Chapter 2.

copyout(kemel)

subyte(kemel)

suword(kemel)

fubyte(kemel)

fuword(kemel)

copytn(kernel)

Appendix B: Kernel Routines B-11

copyout(kernel)

Name and purpose
copyout-copy data from d.."'iver buffer to user buffer

Synopsis
int copyout(drlverbuf. userbuf. n)

char •drtverbuf. •userbuf.

unsignedn;

where

o drlverbufis the address of the driver buffer.

o userbufis the address of the user buffer.

o n is the number of bytes to copy.

Description
copyout copies data from a driver buffer to a user buffer.

Retum values
~ Meanina

0 Success

errno Failure

See Also
•Reading from and writing to a user buffer" in Chapter 2.

copyout(kemel)

subyte(kemel)

suword(kemel)

fubyte(kemel)

8-12 Appendix B: Kernel Routines

copyout(kernel)

(

fuword(kemel)

Appendix 8: Kernel Routines B-13

delay(kernel)

Name
delay-delay execution

Synopsis
void delay(tlcks)

int ttcks;

delay(kernel)

where ticks is the number of clock cycles to delay (the variable v. v _ hz contains the
number of clock cycles per second).

Description
delay makes a process wait for a specific time interval before resuming execution.
delay puts the user process to sleep, so your driver must not call delay from within
an interrupt routine.

Retum values
None.

See also
"Delaying Execution• in Chapter 2.

B-14 Appendix B: Kernel Routines

fubyte(kernel)

Name
fubyte-copy a character from the user buffer to a driver buffer

Synopsis
int fubyte(userbuj)

char •userbuf,

where userbujis the address of the user buffer.

Description

fubyte(kernel)

fubyte copies a single character from the user buffer to the driver buffer.

Retum values
Ya.Iw:.. Meanina

0-255 The ASCII value of the character succ~fully returned.

-1 Failure

See also
•Reading from and writing to a user buffer- in Chapter 2.

fuword(kemel)

subyte(kemel)

suword(kemel)

copyin(kemel)

copyout(kemel)

Appendix B: Kernel Routines B-15

fuword(kemel)

Name
fuword-copy integer from the user buffer to a driver buffer

Synopsis
int fuword(userbsf/.)

int •userbu/;

where werbufis the address of the user buffer.

Description
fuword copies an integer from a user buffer to a driver buffer.

Retum values
Yah.l.c Meanina

-1 Failure (see note below)

Any other value Success

fuword(kemel)

Note: -1 is also returned when fuwotd fetches a OxFFFFFFFF from memory, even
when no error condition exists.

See also
•Reading from and writing to a user buffer- in Chapter 2.

fubyte(kemeO

subyte(kemeO

suword(kemeO

copyin(kemeO

copyout(kemeO

B-16 Appendix B: Kernel Rou11nes

0

0

(

geteblk(kernel) geteblk(kernel)

Name
geteblk-get a buf structure and associated buffer from the kernel buffer cache.

Synopsis
#include <sys/types.h>
#include <sys/buf.h>

struct buf* geteblk(sae)

int sir~

where size is the sire of the buffer.

Description
geteblk retrieves a buf structure and associated buffer of size bytes from the buffer
cache. geteblk returns a pointer to the buf structure to the calling routine. If no
buf structures are available, geteblk sleeps until one becomes available. Thus, your
driver must not call geteblk from within an interrupt handler.

When the device driver strategy routine receives a buffer header from the kernel the
necessary fields are already initialized. However, when a device driver calls geteblk
to allocate buffers, the device driver must set up some of the fields of the buffer header
before calling the strategy routine.

Important fields in the buffer header are as follows:

o b _flags contains bits that indicates the status of the buffer (B _BUSY flag) and tells
the driver whether the device is to be read from or written to (B _READ or B _WRITE
flag).

o av _forw and av _back are a pair of pointers that maintain a doubly linked list of
•free• blocks (blocks that can be reallocated for another transaction). A driver can
use these lists to link the buffer into driver worklists.

o b_bcount is a count of the number of bytes to be transferred to or from the buffer.

o b_error holds the error code to be assigned by the kernel to the u_error field of
the user data structure. It is set in conjunction with the B _ERROR flag after an VO
operation.

o b _ dev holds the device number of the device being accessed. The high-order 8
bits contain the major number and the low-order 8 bits contain the minor number.

Appendix B: Kernel Routines B-17

o b un. b addr is the virtual addres,, of the buffer controlled by the buff
suucture-:-oata is read from or written to this address to/from the device.

o b_blkno is the device block to be accessed (the minor number determines this
device).

o b_resid is the rtumber of bytes not transferred if error has occurred.

o b_start is the start time of the VO; it measures device response time.

The only fields thata driver may change are b_flags, av_forw, av_back,
b_error,and b_resid

1be following list desaibes the states of some of the fields when geteblk receives
them and how they must be initialized.

CJ b_flags-1be B_BUSY flag in this field is set to indicate that the buffer is in use.
1be driver must set the a_ READ or a_ WRITE flag to indicate the type of transfer
being done.

o b_bcount-This field is set to the number of bytes in the buffer.

o b_blkno--qeteblk doesn't initiali7.e this field; thus, it must be initialized by your
driver.

The remaining fields in the buffer header can be used unchanged.

Retum values
geteblk returns a pointer to a buf structure that the driver can use. Your driver
should call the brelse routine to return the buffer to the kernel.

See also
•Kernel Routines for block device drivers• in Chapter 3.

•oata transfers using uiomove()• in Chapter 4.

uiomove(kemel)

B-18 Appendix B: Kernel Rouflnes

: ,.~ ..

c:

major(llernel)

Name
ma jor-retum major number.

Synopsis
tinclude <sys/types.h>
tinclude <sys/sysmacros.h>

int major(dev)

where dev is the device number.

Description

major(llernel)

The major macro (from sysmacros. h) returns the major number when passed the
external device number.

Retum values
major returns the high-order 8 bits of the device number.

See also
•Device Files• in Chapter 2.

makedev(kernel)

minor(kernel)

Appendix B: Kernel Routines B-19

makedev(kernel)

Name
makedev-encode major and minor number.

Synopsis
int makedev (X,y)

where

o xis the major number.

o y is the· minor number.

Description

makedev(kernel)

The makedev macro (from sysmacros. h) encodes the major and minor numeers to
create the external device number.

Retum values
When supplied the major and minor numbers, makedev returns the 16-bit device
number.

See also
"Device Files" in Chapter 2.

major(kernel)

minor(kernel)

B-20 Appendix B: Kernel Routines

(

mlnor(kernel)

Name
minor-return minor number.

Synopsis
tinclude <sys/types.h>
tinclude <sys/sysmacros.h>

int minor (derJ)

where dev is the device number.

Description

mlnor(kernel)

1be minor macro (from sysmacros. h) returns the minor number when passed the
external device number.

Retum values
minor returns the low-order 8 bits of the device number.

See also
•Device Files• in Chapter 2.

major(kernel)

makedev(kernel)

Appendix B: Kernel Routines B-21

physto(kernel)

Name and purpose
physio-perfonn raw 1/0

Synopsis
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>

int physio (strat, bp, dev, nJJ, uto)

int (*Strat) ();

struct buf •bp;

dev_t dev;

int rw;

struct uio *UIO;

where

o Stratis the address of the drlverstrategy routine.

o bp is a pointer to a buf structure.

physto(kernel)

o devis a device number that is received as an argument from the drlverread or
drlverw rite routine.

o 1W is a flag that indicates whether the operation is a read or write.

o uto is a pointer to the uio structure associated with this request

Description
physio sets up a buf structure describing the 1/0 request. For example, physio fills
in b _ bcoun t with the number of bytes to transfer, sets B _READ or B _WRITE in the
b_flags field to indicate the direction to transfer data, and sets b_un .b_addr to
point to the user's buffer. physio then locks the user process in memory and calls the
drlverstrategy routine, passing a pointer to the buf structure as a parameter. When
the drlverstrategy routine returns, physio waits for the VO request to complete by
calling biowai t. When the transfer completes, the driver interrupt routine awakens
the user process by calling biodone. physio then updates information in the uio
structure and returns to the drlverr:ead or drlVe1wri te routine.

8-22 Appendix 8: Kernel Routines

(

(

Retum values
~ Meanioa

0 Success

errno Failure

See also
•oata Transfers using physio()• in Chapter 4.

biodone(kemel)

Appendix B: Kernel Routines B-23

printf(Jzernel)

Name
printf--print message on the system console

Synopsis
void printf (format[, arg .. .])

char *format;

where

printf(kernel)

o format is a character string that contains two types of objects: plain characters,
which are simply copied to the output stream, and conversion specifications, each
of which results in fetching :r.ero or more args.

o arg is an argument to be converted and output.

Description
The kernel printf routine prints characters to the console. Note that this is the
kernel's printf routine, not the C library printf routine, although the two routines
are very similar. printf(kemeO supports the following limited subset of printf(30
conversion specifications:

%d,%o,%u,%x The integer arg is converted to signed decimal (d), unsigned octal
(o), decimal (u), or hexadecimal(x) notation.

%c

o/as

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from
the string are printed until a NULL character (\0) is encountered or
the number of characters indicated by the precision specification is
reached.

Return value
None.

B-24 Appendix B: Kernel RouHnes

(

See also
•1be diagnostic print routine• in Chapter 3.

print(driver) in Appendix A.

printf(3S)

Appendix B: Kernel Routines B-25

pslgnal(leernel)

Name and purpose
psiqnal--6elld a signal to a process

Synopsis
#include <sys/types.h>
#include <sys/proc.h>
#include <sys/siqnal.h>
#include <sys/time.h>
#include <sys/resource.h>

void psiqnal (proc, slg)

struct proc * proc;

int s1g;

where

o proc is the pointer to the proc structure entry for the process.

o s1g is the signal itself.

Description

pslgnal(leernel)

psiqnal sends a signal to a particular process. The routine does this by marking in
the proc structure that the process should receive a signal and then enabling the job to
run.

Return values
None.

See also
•Process context and the user structure• in Chapter 2.

•Sending a signal to a user process• in Chapter 2.

B-26 Appendix B: Kernel Routines

:... '

signal(2) in AIUX Programmer's Reference.

Appendix B: Kernel Routines B-27

sfgnal(kernel)

Name
signal-send a signal to a process group

Synopsis
#include <sys/types.h>
#include <sys/proc.h>
#include <sys/signal.h>
tinclude <sys/time.h>
#include <sys/resource.h>

void signal (pg'IJ, sfg)

intpgrp,

int s1g.

where

o pgrp is is the process group which will be sent a signal

sfgnal(kernel)

o sfg is the signal itself (see signal(2) in the A/UX Programmer's Reference for
integer values).

Description
1be kernel signal routine sen& a signal to a sped.fled process group. Do not confuse
this routine with signal(2), which specifies how the calling process handles signals
that are received.

Retum values
None.

See also
•Sending a signal to a user process• in Chapter 2.

psignal(kemel)

B-28 Appendix B: Kernel Routines c ;

-..

(

sigvec(3)

(

Appendix B: Kernel Routines B-29

sleep(leemel)

Name and purpose
sleep-put a user process to sleep

Synopsis
finclude <sys/param.h>

int sleep (event, priority)

caddr_t ~

int priority;

where

o event is the address of some data strudllre used by the driver.

o priority is the priority level.

Description

sleep(leernel)

sleep makes a process wait until a ~ event occurs. To the sleep routine, an
event is an address that the sleeping process and the wakeup routine synchronize on.
Other processes can run while a process is sleeping. The kernel marks the process state
•asteep, • saves the sleep event and priority, and puts it into a hashed queue of
sleeping processes.

Sleep priorities range from 0 to 127, 0 having the highest priority and 127 the lowest
priority. Processes sleeping at a priority less than the parameter P ZERO can't be
interrupted by signals, although they can be swapped out For this reason, it is not a
good idea to sleep with priority less than PZERO on an event that might never oCOJr. In
general, sleeps at Ies,, than PZERO should only be made for fast events such as disk and
tape 1/0.

caut1on: Never call sleep in an interrupt routine, becausethe current process is
probably not the one that should go to sleep.

8·30 Appendix B: Kernel Routines

(

Retum Values
The PCATCH bit of priorlJy is OR'ed into the priority field of the proc structure when a
driver wants any signals that occur during sleep to be ignored and handled later (for
example, page faults and Streams processing). sleep returns the following values if
PCATCH is set:

~ Meanjog

0 No signal occurred

1 Signal occurred

If PCATCH is not set, the return value to sleep has no meaning (0 is returned).

Examples
The first example shows many processes that are competing for a resource:

fdef ine

#define

int x_flag;

X_LOCK()

while

x_unlock ()

X_LOCK

X_WANT

(x_flag) (

1

2

x_flag I •X_WANT;

sleep(&x_flag,PZERO);

x_flag • X_LOCK;

if(x_flag&X_WANT)

wakeup (&x_lock);

x_lock • 0;

The second example shows synchronization using an interrupt:

Appendix B: Kernel Routines B-31

int x_flaq;

x_wait()

spl6 () ;

x_flaq • l;

while (x_flaq)

sleep (&x _flag, P ZERO)

spO 0;

x_intr()

if (x_flaq)

wakeup (&x_flaq);

x_flag • 0;

See also
•Notifying a process of 1/0 completion• in Chapter 2.

•waiting for 1/0 to complete" in Chapter 2.

wakeup(kemeO

B-32 Appendix B: Kernel Routines

spln(kemel) spln(kernel)

Name
spl n-set processor interrupt level

Synopsis
short int spl n0

where n ~ the priority level (0-7), with 0 having the lowest priority and 7 the highest
priority.

Description
spl n enables interruptS having priority levels greater than n. This routine prevents
unwanted interruptS from reaching a device. ·

Important values of n for the Macintosh n are as follows:

ti Dc~s::r.i'2tico

7 Interrupt switch

6 Power-on switch

4 On-board SCCs

2 Slots, SCSI disk

1 Clock, ADB

0 System running

For example, spl2 disables priority levels 2, 1, and 0.

Return values
spl n returns the contents of the status register before the routine was called.

See also
•Setting Processor Levels• in Chapter 2.

Appendix B: Kernel Routines B-33

splx(kernel)

B-34 Appendix B: Kernel Rout1nes

(

(

spl:x(kernel)

Name
splx-reset processor interrupt priority level

Synopsis
void splx(s)

int s;

splx(kernel)

where sis the value of the status register returned by the previous spin call.

Description
splx sets the interrupt priority level back to its previous state (before spl n was
called).

Retum values
None.

See also
•Setting Processor Levels" in Chapter 2.

spl P(kernel)

Appendix B: Kernel Routines B-35

subyte(kernel) subyte(ltzernel)

Name
subyte--tramfer a charaaer from a driver buffer to a user buffer

Synopsis
int subyte (userbuf, c)

char •userbuf, e;

where

CJ userbufis the address of the user buffer

CJ c is a charaaer to copy

Description
subyte transfers a charaaer from a driver buffer to a user buffer.

Retum values
~ Meanjoa

0 Success

-1 Failure

See also
•Reading From and Writing To a User Buffer- in Chapter 2.

suword(kemel)

fuword(kemel)

fubyte(kemel)

copyin(kemel)

copyout(kemel)

B-36 Appendix B: Kernel Routines

0

0

·- '

(

suword~emel)

Name
suworci-tra.Mfer an integer from a driver buffer to a user buffer

Synopsis
int suword (userbuf, I)

char *userbuf,

int I;

where

o userbufis the address of the user buffer.

o 1 is the integer to be copied.

(c, Description

suword transfers an integer from a driver buffer to a user buffer.

Retum values
~ Meanjna

O Success

-1 Failure

See also
•Reading From and Writing To a User Buffer- in Chapter 2.

subyte(kemel)

fuword(kemeO

fubyte(kemeO

copyin(kernel)

suword~emel)

Appendix B: Kernel Routines B-37

copyout(kemel)

8-38 APpendlx B: Kernel Routines

(

tlmeout(llernel) ti meout(llernel)

Name
timeout-set a timer and when the timer expires call the specified routine

Synopsis
finclude <sys/types.h>

void timeout <June, atg, Interval)

int <*June> ();
caddr_t arg;

int lnterva~

where

o June is the routine you want to call after the given interval. The specified June.is
called at clock interrupt time, so the routine called by timeout must not call sleep.

o arg is the argument to the function.

o Interval is the time number of clock ticks to delay before calling June. This value is
limited to ((2 .. 31)-1), since it must appear to be positive and since only a
bounded number of timeouts can be occurring at any time.

Description
timeout sets a timer and calls the specified routine when the timer expires. This can
be useful when you want a timeout to oca.u and oontrol to jump to another routine after
a given time period.

Timeouts are only guaranteed to happen after the time specified. This means that they
may occur some time after the interval has expired. Call untimeout(kemel) to cancel
a previous timeout request

Retum values
None.

Appendix B: Kernel Routines B-39

See also
•Setting a timeout• in Chapter 2.

•Removing a timeout• in Chapter 2.

untimeout(kemel)

8·40 Appendix B: Kernel Routines 0 (

(

(-

uiomove(Memel) uiomove(Memel)

Name
uiomove-move data to and from the user's buffer specified by the uio structure

Synopsis
tinclude <sys/types.h>
tinclude <sys/uio.h>

int uiomove (address,byte_count, flag,-Uio)

caddr_t address;

int byte_count;

int flag;

struct uio *uto;

where

o address is the address of the buffer where data transfer will occur.

o byte_ count is the number of byteS to tramfer.

0 flag is either UIO_READ or UIO_WRITE.

o ulo is the uio structure involved.

Description
uiomove moves data between an area described by a uio structure and a kernel
address. 1be uio structure is updated automatically.

Retum values
Y.alw: Meanjna

O Success

errno Failure

(~, Appendix B: Kernel Routines B-41

See also
•oata transfers using uiomove" in Chapter 2.

geteblk(kemel)

B-42 Appendix B: Kernel Routines

(

unttmeout(kernel)

Name
untimeout-cancel timeout

Synopsis
#include <sys/types.h>

void untimeout <June, atg)

int (*func) (>;

caddr_t a~

where

o June is the routine your driver calls after the given time interval.

o arg is the argument to that routine.

Description

unttmeout(kernel)

untimeout cancels a previous timeout request Call untimeout after the"event
awaited has happened. nus will prevent the process from timing out and jumping to
June.

Retum values
None.

See also
"Setting a timeout• in Chapter 2.

"Removing a timeout• in Chapter 2.

timeout(kernel)

Appendix B: Kernel Routtnes B-43

ureadc(kernel)

Name and purpose
ureadc-deliver a character to user's buffer

Synopsis
int ureadc (~UW)

char c;

struct uio *Uio;

where

o c is the character delivered.

o uwis the uio structure for the operation.

Description

ureadc(kernel)

ureadc delivers a character to a user's buffer when a read(2) system call is m.ade.

Retum values

~ Meanina

0 Success

errno Failure

See also
•Reading From and Writing To a User Buffer- in Chapter 2.

uwritec(kemel)

useracc(kemel)

B-44 Appendix B: Kernel Routines

(

useracc(kernel) useracc(kernel)

Name
useracc-detennine whether driver can access user address space

Synopsis
int useracc (addr, count, aceess)

caddr_t addr,

int count;

int access;

where

o addr is the address to be accessed.

o count is the number of bytes to be accessed.

o access is the type of access. It can be either B _READ (read access) or B _WRITE
(write access).

Description
use race determines whether your driver can gain access to a specified user address
space. This routine must be called in user context.

Retum values
Yalw:. Meanioa

1 Can access address space

0 Can't access address space

See also
•Reading From and Writing To a User Buffer- in Chapter 2.

ureadc(kemel)

Appendix B: Kernel Routines B-45

uwritec{kemeD

B-46 Appendix B: Kernel Routines

(

(

uwntecC-.emel) uwntecC-.emel)

Name and purpose
uw ri tee-retrieve character from user buffer

Synopsis
int uwritec (U1o)

where ulo is the uio structure for the 1/0 operation.

Description
uwri tee retrieves a character placed in a user's buffer by a wri te(2) system call.

Retum values
Yahl.c Meapin;

0-255 Success-the ASCII value of the character retrieved is returned.

-1 Error

See also
•Reading and Writing To and From a User Buffe(in Chapter 2.

write(2) in NUX Progmmmer's Reference.

ureadc(kemel)

useracc(kernel)

Appendix B: Kernel Routines B-47

wakeup(leemel)

Name
wakeup-wake up a sleeping proceu

Synopsis
tinclude <sys/param.h>

void wakeup (event)

caddr_t ~

walleup(leernel)

where event is the addres,, of the data structure used by the driver in a previous call to
sleep.

Description
wakeup awakem all user p~ sleeping on event wakeup changes the proc:es,,
state from •as1eep• to •reac1y to run.• Sleeping processes (those that are marked
•asleep") are removed from the sleeping processes queue, and are placed oii a list of
processes that are able to run.

Retum values
None.

See also
•Notifying a process of I/O completion• in Chapter 2.

-Waiting for I/O to complete• in Chapce~ 2.

sleep(kemel)

B-48 Appendix B: Kernel Routines f'\
il\._J)

(~

(

Appendix C

Slot Library Routines

This appendix describes Slot ROM Library routines that a driver can call. The Slot
ROM Library is designed to provide a simple interface to on-board ROM resources for
each of the six expansion slots on the Macintosh Il. No knowledge of the ROM format
or board addressing requirements is presumed. Before you use this library, you.
should be familiar with slot data structures for the Macintosh II. For more information
about them, see Developing cards and Drivers for Macintosh II and Macintosh SE.

The Slot Library contains three types of routines: user, utility, and low-level. User
routines can be called from user or kernel routines. Utility routines are used to gain
access to slot ROM data structures, other resources, or other user programs. Low-level
routines perform ROM access operations and operating-system-specific functions.
For a summary of all routines in the library, see slots (3x) in the AIUX
Programmer's Reference.

User routines
User routines perform simple functions such as reading information from a slot ROM
and filling in slot data structures. The first parameter to user routines is the board's slot
number, which can be one of the following:

o the NuBus slot number (9 to 14)

o the physical ROM base address of the slot ROM

o the virtual base address of the slot ROM

If the program that calls the library routine is part of the A/UX operating system, all of
the system's resources are directly available to the program by using a physical
address. Slot ROM physical addresses are hexadecimal values having the following
format:

Appendix C: Slot ROM Utility Routines C- l

OxFsOFFOOOO

where sis the NuBus slot number of the board containing the ROM.

Optional parameters to user routines are a pointer to a buffer and the length of the
buffer. User routines that have only one parameter return their results directly.

User library functions search the resource list from the resource directory for a desired
resource (for exampie, the board resource list is searched for the board ID). To read
the board ID, the RBL_BOARDID type is located in the resource list for the board
resource, and the 16 bits of board ID is read into a user data structure.

Utility routines
Utility routines handle the access to slot ROM structures. The utility routine
slot_directory reads the resource directory into a buffer. Other utility routines
call slot_ directory to read the resource directory from ROM. When this directory
is read into contiguous RAM, the calling routine locates the requested type of resource
in the resource directory (for example, the board or the Ethernet resources).

Although the A/UX kernel most commonly uses the utility routines to search for .a
board resource, slot_data and slot_resource can be used to gain access to
resources for other than boards and other user programs. Doing this allows you to
read other vendor resource types from ROM.

Note: Vendor resource types reserved for use by Apple Computer are values between 1
and 127 (decimal); other vendor-defined types may be any value between 128 and 255
(decimal).

To read a subresource of the board resource list, the slot ROM user functions call
slot_resource or slot_data with the ktndparameter set to RD_BOARD (which is
defined as 1) and the request parameter set to the desired resource type (for example,
RBL_BOARDID). The only user routine that doesn't search for the board resource is
the user routine slot_ether_addr, which requests the Ethernet resource type
RD_ETHER.

Low-level routines
Low-level routines read data from ROM and call operating-system-specific functions.
slot_rom_data performs the actual read. slot_check_crc checks the ROM
checksum and calls slot_bytelane to determine what slot address lines are being
used by hardware. The slot_seq_violation, slot_ catch, and slot_iqnore
routines are operating system specific and are used to detect ROM read failures.

The library routines found in this appendix are listed next.

C-2 Appendix C: Slot ROM Utlllty Routines

(

(

User routines
User routines perform simple functions such as reading information from a slot ROM
and filling in slot data structures. 1be user routines are listed here:

slot_PRAM_init

slot_board_f lags

slot_board_id

slot_board_name

slot_board_type

slot_ether_addr

slot_primary_init

slot_part_num

slot_rev_level

slot_serial_number

slot_vendor_id

Utility routines
Utility routines handle the access to slot ROM structures and are listed here:

slot_byte

slot_data

slot_directory

slot_long

slot_ resource

slot_resource_list

slot_structure

slot_word

Low-level routines
Low-level routines read data from ROM and call operating-system-specific functions, and are listed
here:

slot_seg_violation

Appendix C: Slot ROM Utlll1y Routines C-3

slot_catch

slot_iqnore

slot_address

slot_byte lane

slot_calc_pointer

slot_rom_data

slot_check_crc

slot_header

C-4 Appendix C: Slot ROM Utility Routines

(

slot_PRAM_tntt(slots 3x) slot_PRAM_tntt(slots 3x)

Name
slot_PRAM_init

Synopsis

where

int slot_PRAM_init (slot, pp)

int slot;

struct PRAM *pp;

o slot is a NuBus slot number or ROM base address for the board ROM.

o pp is the address of a PRAM structure to be filled in by slot_PRAM_init.

Description
slot_PRAM_init fills in the PRAM structure referenced by the-parameter pp from
slot ROM for the board located in slot.

Retum values
~ Meanjna

0 Success

-1 Failure

Example
int slot • 9;

struct PRAM pram;

if(slot_PRAM_init(slot, &pram) !• 0) {

/*error ••• */

Appendix C: Slot ROM Utility Routines C-5

else

/* no problem, pram is now useable */

C-6 Appendix C: Slot ROM Utlllty Routines

(

(

slot_board.Jlags(slots 3x) slot_board.Jlags(slots 3x)

Name
slot_board_f lags

Synopsis
u16 slot_board_flags(slol)

int slot;

where slot is a NuBus slot number or a ROM base address for the board ROM.

Description
slot_board_flags reads and returns the board flag5 for the board located iri slot.
Board flag bit definitions are found in <slots. h>.

Retum values
~ Meaoioi

board flag btts Success

OxFFFF Failure

Example
u16 boardflags;

int slot;

if((boardflags • slot_board_flags(slot)) •• OxFFFF) {

I* error ••• */

Appendix C: Slot ROM Uttllty Routines C-7

slot_board_ ld(slots 3x)

Name
slot_board_id

Synopsis
ul6 slot_board_id(slot)

int slot;

slot_board_id(slots 3x)

where slot is a NuBus slot number or a ROM base a~ for the board ROM.

Description
slot_board_id returns the unique board number (assigned by Apple Computer) for
the board found in slot.

Retum values
~ Meanjna

board ID

OxFFFF

Example
ul6 boardid;

int slot;

Success

Failure

if((boardid • slot_board_id(slot)) •• OxFFFF) {

/*error .•• */

C-8 Appendix C: Slot ROM Utlllty Routines

(

(

slot_board_name(slots 3x) slot_board_name(slots 3x)

Name
slot_board_name

Synopsis
int slot_board_name(slot, data, stze)

int slot;

char •data;

int stze;

where

CJ slot is a NuBus slot number or ROM base address for the board ROM.

CJ data is a pointer to a character buffer to hold the board name string.

CJ size is the number of characters that can be stored in the buffer pointed to. by data.

Description
slot_board_name reads the board name string from ROM located on the board in
slot. 111is routine fails if slot is not a valid slot number.

Retum values
Yahlc. Meanina

0 Success

-1 Failure

Example
char strinq[BOJ;

int slot • 9;

if(slot_board_name(slot, 'strinq, sizeof(strinq)) •• -1) {

AppendlX C: Slot ROM Ut111ty Routines C-9

/*error ••• *I

C-10 Appendix C: Slot ROM Utility Routines

(--

(

slot_board_type(slots 3x) slot_board_type(slots 3x)

Name
slot_board_type

Synopsis
int slot_board_type(Slot, data)

int slot;

char *data;

where slot is a NuBus slot number or a ROM base address for the board ROM.

Description
slot_board_type returns the unique board type, an unsigned 64-bit (8-byte)
quantity for the board found in slot. The board type is a board class, such as network
or memory.

Retum values
~ Meaoina

0 Success (data is valid). ·

-1 Failure

Example
char boardtype[8);

int slot;

if(slot_board_type(slot, boardtype) -- -1) {

/*error ••• */

Appendix C: Slot ROM Utility Routines C-11

slot_etber_addr(slots 3x) slot_etber_addr(slots 3x)

Name
slot_ether_addr

Synopsis
int slot_ether_addr(slot, string)

int slot;

char •string;

where

o slot is a NuBus slot number or a ROM base address for the board ROM.

o string is a pointer to a character buffer that holds six byteS of Ethernet address
(which by defutition is six byteS long).

Description
slot_ether_addr reads the Ethernet address out of ROM (six byteS) on the board
located in slot. slot_ether_addr fails if slot is not a valid slot number, if the board
is not an Ethernet interface or if there is a ROM error.

Retum values
Yah.= Meanina

0 Success

-1 Failure

Example
char addrf6];

int slot • 9;

if(slot_ether_addr(slot, 'addrl ..., -1) {

/*error ••• *I

C-12 Appendix C: Slot ROM Utlllty Routines

(

Appendix C: Slot ROM Utlllty Routines C-13

slot_prlmary_1nlt(slots 3x) slot_prlmary_tnlt(slots 3x)

Name
slot_primary_init

Synopsis
int slot_primary_init(slot, pp)

int slot,

struct prim •pp,

where

o slot is a NuBus slot number or a ROM base address for the board ROM.

o pp is the address ofa primary structure to be filled in by slot_primacy_init.

Description
slot _primacy_ ini t fills in the primary structure pointed to by the parameter pp
from the board's slot ROM that is located in slot.

Retum values
~ Meanina

0 Success (the ROM read for slot succeeds and pp is left pointing
to a valid primary structure.

-1 Failure

Example
int slot • 9;

struct prim primary;

if(slot_primary_init(slot, 'Primary) !• 0) {

I* error ••• */

C-14 Appendix C: Slot ROM Utility Routines

-

(

else

/* no problem, primary is now useable */

(

Appendix C: Slot ROM Utlllty Routines C-15

slot_part_num(slots 3xJ slot_part_num(slots 3xJ

Name
slot_part_num

Synopsis
int slot_part_num(s/ot, data, size)

int slot;

char •data;

int size;

where

o slot is a NuBus slot number or a ROM base address for the board ROM.

o data is a pointer to a character buffer that holds the board part number string.

o size is the number of characters that can be stored in the buffer pointed to by data.

Description
slot_part_num reads the board part number string out of ROM for the board
located in slot. This routine fails if slot is not a valid slot number.

Retum values
YalJ.lc. Meanina

0 Success

-1 Failure

Example
char string[SOJ;

int slot • 9;

if (slot_part_num(slot, &string, sizeof (string)) •• -1) (

C-16 Appendix C: Slot ROM Utility Routines

('

I* error •.• *I

(

Appendix C: Slot ROM Uflllty Rouflnes C-17

slot_rev_level(slots 3x) slot_rev_level(slots 3x)

Name
slot_rev_level

Synopsis
int slot_rev_level(Slot, data, stze)

int slot;

char •data;

int size;

where

o slot is a NuBus slot number or ROM base address for the board ROM.

o data is a pointer to a character buffer to hold the board revision level string.

o stze is the number of characters that can be stored in the buffer pointed to by data.

Description
slot_rev _level reads the board revision level string from ROM for the board
located in slot. This routine fails if slot is not a valid slot number.

Retum values
·~ Meanjna

0 Success

-1 Failure

Example
char strinq[SOJ;

int slot • 9;

if(slot_rev_level(slot, &string, sizeof(strinq)) -~ -1) {

C· 18 Appendix C: Slot ROM Utlllty Routines

(

/*error ••• *I

(

(~
Appendix C: Slot ROM Uttllty Routines C-19

slot_serlal_number(slots 3xJ slot_serlal_number(slots 3xJ

Name
slot_serial_number

Synopsis
int slot_serial_number(slot, data, slZe)

int slot;

char •data;

int slZe;

where

Cl slot is a NuBus slot number or ROM base address for the board ROM.

CJ data is a pointer to a character buffer to hold the board serial number string.

CJ slZe is the number of characters that can be stored in the buffer pointed to by data.

Description
slot_serial_number reads the board serial number string from ROM for the board
located in slot. slot_serial_number fails if slot is not a valid slot number.

Retum values
~ Meanioa

0 Success

-1 Failure

Example
char strinq [80];

int slot - 9;

if(slot_serial_number(slot, 'strinq, sizeof(strinq)) -· -1) (

C-20 Appendix C: Slot ROM Uflllty Routines

1:<-"'-,

\~,/

(

/*error •.• */

(

Appendix C: Slot ROM Utlllty Routines C-21

slot_vendor_td(slots 3x) slot_vendor_td(slots 3x)

Name
slot_vendor_id

Synopsis
int slot_vendor_id(slot, data, size)

int slot;

char •data;

int stze,

where

o slot is a NuBus slot number or ROM base address for the board ROM.

o data is a pointer to a character buffer that holds the board vendor identification
string.

o stze is the number of characters that can be stored in the buffer referenced by data.

Description
slot_ vendor_id reads the board vendor identification string from ROM for the
board located in slot. slot_ vendor_id fails if slot is not a valid slot number.

Return values

~ Meanina

0 Success

-1 Failure

Example
char string[BOJ:

int slot .. 9;

C-22 Appendix C: Slot ROM Utlllty Routines

if(slot_vendor_id(slot, 'strinq, sizeof(strinq)) -- -11 {

/*error ••. *I

Appendix C: Slot ROM Utlllfy Routlnes C-23

slot_board_vendor_tnfo(slots 3x) slot_board_vendor_tnfo(slots 3x)

Name
slot_board_vendor_info

Synopsis
int slot_board_vendor_info(kind, slot, data, size)

int ktnd;

int slot;

char •data;

int size;

where

o kind is the type of vendor information to be read out of the ROM.

o slot is a NuBus slot number or ROM base address for the board ROM.

o data is a pointer to a data buffer to hold the ROM data.

o size is the number of byres available in the buffer pointed to by data.

Description
slot board vendor_info is a vendor information structure access routine. This
structure contains a list of pointers to strings in ROM that contain vendor information
such as the vendor ID, the board revision level, and the board serial and part number
strings. All of the user routines call slot_board_vendor_info and pass in the
appropriate kind constant for their function. For example, the user routine
slot_part_num passes the constant B_PN (board part number) to
slot_board_vendor_info and expects a maximum of sizebyteS of the boardpart­
number string to be returned in the buffer pointed to by data.

slot_board_vendor_info calls the utility routine slot_resource to read the
vendor list structure out of the board resource directory. If the call to
slot_ resource fails, an error is returned to the caller immediately.

C-24 Appendix C: Slot ROM Utility Routines

After slot· resource successfully reads the vendor information structure,
slot_boa;d_:vendor_info searches the list for the requested type of vendor
information. If found in the list, the information string is copied into the user buffer
(up to sfzebytes), by calling slot_structure and returning the status of that call. If
not found in the list, an error value is returned to the calling program.

Retum values
~ Meanina

n Success (the number of bytes of information copied into the user buffer is
returned.

-1 Failure

Example
tinclude <slots.h>

char strinq(80];

int slot • 9;

if(slot_board_vendor_info(B_PN, slot, &strinq, sizeof(strinq)) •• -lJ {

/*error ••• *I

Appendix C: Slot ROM Utility Routines C-25

slot_byte(slots 3:x) slot_byte(slots 3:x)

Name
slot_byte

Synopsis

char slot_byte(rbp)

struct rsrc_byte rbp;

where rbp is a structure that defines a 32-bit quantity in ROM.

Description
slot_ byte retwm the least significant byte of a 32-bit quantity contained in ROM
that is part of the rsrc_byte structure (defined in slots. h). slot_byte is used
when the resource type of data stored in ROM is a naked byte. 1bis routine, the ·
slot_long, the slot_word, and the slot_structure routines are used to access
the four types of low-level ROM data types.

Retum values
~ Meanini

cbar Success (the 8-bit character stored in rbp is returned).

None All 8-bit values are legal.

Example
struct rsrc_byte rbp;

char c;

char *address;

int j;

struct rom_idoffset rd[20];

/*

* Create a ROM base address.

C-26 Appendix C: Slot ROM Utlllty Routines

(

(

*/

if ((address • slot_address (i)) < OJ {

/*Error ••• */

I*

* Get the resource directory from ROM.

*/

if (slot_directory (address, rd, 20) < OJ (

/*Error ••• */

/*

* Find a resource of type BYTE, and read the value into

* variable "c."

*I

for(j = 0; ((j < 20J && (rd[j].r_id !• RD_EOLIST)); j++) {

if(rd[j).r_id -= RD_BYTEl {

rbp - (struct rsrc_byte)rd[j];

c • slot_byte(rbp);

break;

Appendix C: Slot ROM Utility Routines C-27

slot_data(sl-ots 3x) slot_data(slots 3x)

Name
slot_data

Synopsis
int slot_data(slot, letnd, request, datap, size)

. int slot,

int letnd;

int request,

int •rJatap;

int size;

where

o slot is a NuBus slot number or a ROM base address for the board ROM.

o letnd is the slot resource list type.

o request is the resource type to be accessed.

o data is a pointer to a data word that will hold the ROM data (if found).

o size is the number of bits to be stored into the word pointed to by data.

Description
slot_data reads stzebits of data and places the information into a data word pointed
to by the datap structure. The data is stored in a substructure of a resource list having
type letnd. The data itself is a resource of type request The resource is a value up to 32
bits wide, so it can be a byte, a word (16 bits), or a long (32 bits).

Several other slot ltbrary routine call the low-level slot_ data access routine.
slot_ data passes the parameter slot to the library routine slot_address to create
the ROM base address from the slot number. The base address is then passed as one of
the parameters to slot_resource_list to read the resource list of type letnd.
slot_data scans the resource list returned by the previous call for the resource of
type request. When the resource is found, the stze parameter determines which of the
three possible data access routines will place the data into the user data word. An error
return is immediately sent to the user if any of the routines called in slot_ data return
an error.

C-28 Appendix C: Slot ROM Utility Routines

(

Retum values
Yalw:. Meapina

0 Success

-1 Failure

Example
int slot • 9;

int data;

/*

* Read the board ID resource from the board resource list for

* the board in slot 9. The board ID is 16 bits wide.

*/

if(slot_data(slot, RD_BOARD, RBL_BOARDID, &data, 16) •• -1) {

/*error ••• *I

(..

/

Appendix C: Slot ROM Utility Routln~s C-29

slot_dlrectory(slots 3x) slot_dtrectory(slots 3x)

Name
slot_directory

Synopsis
int slot_directory(slot, data, size)

int slot;

char •data;

int size;

where

o slot is a NuBus slot number or a ROM base address for the board ROM.

o data is a pointer to a buffer to hold the resource directory.

o size is the number of rom_idoffset structures to be placed in the buffer pointed
to by data.

Description
slot_ directory reads slzeentries of the resource directory for slot into the buffer
pointed to by data. The resource directory is a structure containing all of the resources
supported by the board for which the ROM was created. The resource directory is
where all the searches for board resources in ROM begin. Each entry in the resource
directory is a rom idoffset structure. This structure, defined in slots. h, consists
of two fields: an 8-bit ID and a 24-bit offset

The slot_directory routine uses slot_header to read the ROM header and
create a ROM base address from the slot parameter. The base address and the
resource directory

offset from the ROM header are passed to slot_calc_pointer which creates a
pointer to the resource directory in ROM. Using this pointer, the low-level library
function slot_rom_data is called to read slzeentries of the resource directory into
the buffer pointed to by data.

C-30 Appendix C: Slot ROM Utility Routines

(

(

Jm values
~ Meanina

1 Success

-1 Failure

Example
int i, j;

unsigned address;

struct rom_idoffset rd[20];

I*

* Loop through all of the NuBus slots.

*I

for(i • 9; i < 14; i++) {

/*

* Read and print the resource directories for all the slots.

* First print a header

*I

printf("Resource Directory for slot 'd:O, i);

/*

* Create a ROM base address.

*/

if (address = slot_address Ci) < 0) {

I*

* This shouldn't happen since we are passing in valid slot

* numbers.

*/

exit Cl);

if(slot_directory(address, rd, 20*sizeof(struct rom_idoffsetll < l) {

printf("No directory foundO);

Appendix C: Slot ROM Utlllty Routines C-31

continue;

for(j ~ O; ((j < 20)" (rd[j).r_id !- RD_EOLIST)); j++) {

I*

* Print the contents of the directory up to the End Of List

* marker (or the maximum list size of 20)

*/

printf(" td tx tXO, j,

C-32 Appendix C: Slot ROM Uttllty Routines

(·.

-·

slot_long(slots 3x) slot_long(slots 3x)

Name
slot_lonq

Synopsis
u32 slot_lonq(address, rdp)

struct rom_idoff set rd/>,

unsigned address;

where

o rdp is a structure defining a 32-bit quantity in ROM that contains a pointer to the
long data to be read

D addTess is the address in ROM of rdp.

Description
slot_long returns the long contained in ROM which is pointed to by rdp. address is
the location in ROM of rdp.

Pointers into ROM are calculated by adding the offset contained in the pointer to the
ROM address. A resource data item of 32 bits can't be directly stored in the
rom_idoffset structure (as both bytes and words can), so access to it must be
granted indirectly. slot_long is used when the resource type of data stored in ROM
is a 32-bitquantity. This routine as well as the slot_byte, the slot_word, and the
slot_structure routines are used to access the four types oflow-level ROM data
types.

Retum values
~

n
None

Meanina

Success (the unsigned 32-bit value is returned).

All values are legal.

Appendix C: Slot ROM Utlllfy Routines C-33

Example
u32 l;

char *address;

char *romp;

int j;

struct rom_idoffset rd(20];

/*

* Create a ROM base address.

*/

if ((address • slot_address (i)) < 0) {

/*Error ••• */

I*

* Get the resource directory from ROM.

*/

if((romp • slot_directory(address, rd, 20)) •• 0) {

/*Error ••• */

/*

* Find a resource of type long, and read the value into variable "l."

*/

for (j • O; ((j < 20) && (rd(j] .r_id !• RD_EOLIST)); j++) {

if(rd[j).r_id •• RD_LONG)

I*

* Update the pointer to point to the location in ROM of the

* long resource pointer.

*

if ((romp •

slot_calc_pointer(romp, i*sizeof(struct rom_idoffset))) =• 0) {

I* Error */

C-34 Appendix C: Slot ROM Utlllty Routines

(

(

(,,,

l - slot_lonq(romp, rdp);

break;

Appendix C: Slot ROM Utlll1y Routines C-35

slot_resource(slots 3x) slot_resource(slots 3x)

Name
slot_resource

Synopsis
char *slot_resource(address, kind, request, data, size)

char •aadress;

int kind;

int request;

char •data;

int size;

where

o address is base address for the slot ROM.

o kind is the resource list to be searched to find the request resource.

o request is the resource required by the calling process.

o data is a pointer to a buffer to hold the resource list.

o size is the number of rom idoffset structures that can be stored in the user
buffer. -

Description
slot_resource reads and returns up to size bytes of the structure associated with the
resource of type request The requested resource must be located in the resource list of
type kind The address parameter specifies the ROM base address to be read.

A resource list is a sublist of the ROM resource directory. Resources are substructures
of resource lists. slot_ resource reads the resource list of typektnd into local
storage using the library function slot_resource_list. The resource list is
searched for the requested resource request and, if found, the associated resource
structure is read and its contents returned into the user buffer. To read the ROM data,
slot_calc_pointer is called to create a pointer to the base of the resource structure
to be read, and then slot structure is called to transfer the list from ROM to the
user buffer. -

C-36 Appendix C: Slot ROM Utility Routines

(

(

Retum values
YaWc Meanina

potnter Success (a pointer to the resource structure in ROM is returned).

0 Failure

Example
int slot • 9;

struct PRAM *Pp;

unsigned address;

/*

* Get the ROM base address

*I

if((address • slot_address(slot)) •• 0) {

I* Error */

/*

* Get the board resource list item of type RBL_PRAM from the

* resource list of type RD_BOARD in the resource directory.

*I

if(slot_resource(address, RD_BOARD, RBL_PRAM,

Pp, sizeof(struct PRAM)) •• 0) {

/* Error */

Appendix C: Slot ROM Utlllfy Routines C-37

slot_resource_llst(slots 3x) slot_resource_llst(slots 3x)

Name
slot_resource_list

Synopsis
char *slot_resource_list(address, ldnd, data, sU:e)

char •address;

int /dnd,

char *data;

int sU:e;

where

o address is base address for the slot ROM.

o kind is the type of resource requested.

o data is a pointer to a buffer that holds the resource list.

o sU:eis the number of rom_idoffset structures that can be stored in the user
buffer.

Description
slot_ resource_ list reads and returns up to size entries of the resource list
associated with the resource of type kind 1be address parameter specifies the ba5e
addre$ of the ROM to be read.

A resource list is a sublist of the ROM resource directory. slot_resource_list
reads the resource directory into local storage using the library function
slot_directory. 1be directory is searched for the requested resource kind and, if
found, the associated resource list is read and its contents are returned in the user's
buffer. To read the ROM data, slot_calc_J>ointer is called to create a pointer to
the base of the resource list to be read, and then slot rom data is called to transfer
the list from ROM to the user buffer. - -

C-38 Appendix C: Slot ROM Utility Routines

Retum values
Yaluc Meanins

pointer Su~ (a pointer to the resource list in ROM is returned when the
search and read of the resource list associated with the resource type
lnnd is successfuO.

0 Failure

Example
int slot • 9;

unsigned address;

struct rom_idoffset rl[LISTLENJ;

char *romp;

/*

* Create a ROM base address.

*/

if((address • slot_address(slot)) < Ol {

/*Error ••• */

/*

* Get the resource list for the resource of type RD_ETHER.

*

*/

if((romp • slot_resource_list(address, RD_ETHER, rl, LISTLENll •• 0) {

/* Error */

Appendix C: Slot ROM Utlll1y Routines C-39

slot_structure(slots 3x) slot_stTUcture(slots 3x)

Name
slot_structure

Synopsis
int slot_structure(addre.ss, rdp, data, size)

struct rom_idoff set r~

unsigned address,

char •data;

int size,

where

o rdp is a strucnire defmi.ng a 32-bit quantity in ROM that contains a pointer to the
strucnire to be read.

o address is the address in ROM of rdp.

o data is a pointer to the user buffer to be filled with ROM data.

o size is the size (in bytes) of the user buffer.

Description
slot_ structure copies size bytes found in ROM at address plus the offset contained
in the rom_idoffset strucnire rdp into the buffer pointed to by data.

Pointers into ROM are calculated by adding the offset contained in the pointer to the
ROM address. slot_structure is used when the resource type of data stored in
ROM is a structure or string of an unknown size. This routine, the slot_byte, the
slot_word, and the slot_long routines are used to access the four typeS oflow­
level ROM data typeS.

Retum values
~ Meanina

count Success (the number of bytes of structure data is returned).

C-40 Appendix C: Slot ROM Utility Routines

(

-1 Failure

Example
char data[lOOJ;

char *address;

char *romp;

int j;

struct rom_idoffset rd[20);

/*

* Create a· ROM base address.

*I

if ((address • slot_address (i)) < 0) {

/*Error ••• */

I*

* Get the resource directory from ROM.

*/

if((romp • slot_directory(address, rd, 20)) •• 0) {

/*Error ••• */

I*

* Find a resource of some user type, and read the structure.

*/

for(j = O; ((j < 20) " (rd{j] .r_id !• RD_EOLIST)); j++) {

if(rd(j].r_id •• RD_OSERJ

/*

* Opdate the pointer to point to the location in ROM of the

* resource pointer.

*/

if ((romp •

Appendix C: Slot ROM Utility Routines C-41

slot_eale_pointer(romp, i*sizeof(struet rom_idoffset))) •• 0) {

/* Error */

l • slot_strueture(romp, rdp, data, sizeof(data));

break;

C-42 Appendix C: Slot ROM Utlllty Routines

!'~

"t~j

(

(

slot_word(slots 3x) slot_word(slots 3x)

Name
slot_word

Synopsis
ul6 slot_word(rwp)

struct rsrc_word rwp;

whereu.p is a suuaure that defines a 32-bit quantity in ROM.

Description
slot_word returns the 16-bit word contained in ROM that is part of the rsrc_word
suuaure passed to the routine. The struaure rsrc_word is defined in slots .'h. The
word returned contains the least significant 16 bits of a 32-bit quantity defined by the
rsrc_wordstruaure.You use slot_word when the resource type of data stored in
ROM is a unsigned 16-bit quantity. This routine, as well as the slot_long, the
slot_byte, and the slot_structure routines are used to access the four types of
low-level ROM data types.

Retum values
~ Meanjna

data Success (the 16-bit word of dat.a stored in rwp is reb.lrned).

None All values are legal.

Example
struct rsrc_word rwp;

ul6 w;

char *address;

int j;

Appendix C: Slot ROM Utility Routines C-43

struct rom_idoffset rd(20J;

I*

* Create a ROH base address.

*I

if ((address • slot_address (i)) < 0) {

/*Error ••• */

/*

* Get the resource directory from ROM.

*I

if(slot_directory(address, rd, 201 < 01 (

I* Error ••• *I

I*

* Find a resource of type WORD, and read the value into variable c.

*I

for(j • O; ((j < 20)" (rd[j).r_id != RD_EOLIST)); j++) {

if(rd[j].r_id -- RD_WORD) {

rwp • (struct rsrc_word)rd[j];

w • slot_word(rbp);

break;

C-44 Appendix C: Slot ROM Utlllty Routines

(

slot_seg_vtolatton(slots 3x) slot_seg_vtolatton(slots 3x)

Name
slot_seq_violation

Synopsis
slot_seq_violation()

Description
slot_seg_violation protects the slot library functions from illegal ROM accesses.
It·is passed to the slot_catch routine to catch user segmentation violations and to
allow error recovery.

slot_env is a initialized environment structure used with a UNIX longjmp call.

Retum values
There is no return; the program makes a longjmp call to a prearranged error­
handling routine.

Example
main() {

char *romp;

int slot • 9;

/*

* Create a ROM address.

*I

if ((romp • slot_address (i)) < 0) {

I* Error .•• */

Appendix C: Slot ROM Utility Routines C-45

/*

* prepare for ROM access timeouts. First catch the segmentation

* violation signal.

*I

slot_catch(SIGSEGV, slot_seg_violation);

/*

* Initialize slot_env and test to see how we got here. If true,

* an error oecured. If false, then the initialization is

* complete.

*/

if(setjmp(slot_env))

I*

* Error, caught a segmentation violation. Reset the signal

* handler for segmentation violations then exit in error.

*/

slot_ignore(SIGSEGV);

exit (1);

/*

* Try reading the ROM pointed to by "romp." Errors will cause a

* branch back to the setjmp.

*I

c • *romp & Oxf;

I*

* If the code gets to here, the ROM is readable. Reset the error

* handler, and exit with good status.

*/

slot_ignore(SIGSEGV);

exit(Ol;

C-46 Appendix C: Slot ROM Utlllty Routines

(

('" .,

slot_catcb(slots 3:x) slot_catcb(slots 3:x)

Name
slot_catch

Synopsis
slot_catch(kj~ rout1ne)

int kjnd;

int •routine();

where

o kjntJ is the signal type.

o rout1ne is the error recovery handling routine that is called.

Description
slot_catch uses the signal system call to initali:ze nonstandard signal handling for
a signal of type kjnd. 1be result of the signal call is that interrupts of type ktndcause
the error recovery handling rout1ne to be called.

slot_env is a preinitiali:zedenvironmentstructureused with a lonqjrnp call.

Retum values
None.

Example
main() {

char *romp;

int slot • 9;

/*

* Create a ROM address.

Appendix C: Slot ROM Utility Routines C-4 7

*/

if((romp • slot_address(i)) < 0) {

/*Error ••• */

*prepare for ROM access·timeouts. First catch the segmentation

* violation signal.

*/

slot_catch(SIGSEGV, slot_seg_violation);

/*

* Initialize slot_env and test to see how we got here. If true,

* an error occured. If false,then the initialization is complete.

*I

if(setjmp(slot_env))

/*

* Error, caught a segmentation violation. Reset the signal

* handler for segmentation violations then exit in error.

*I

slot_ignore(SIGSEGV);

exit(!);

/*

* Try reading the ROM pointed to by "romp." Errors will cause a

* branch back to the setjmp.

*/

c • *romp & Oxf;

I*

* If the code gets to here, the ROM is readable. Reset the error

* handler, and exit with good status.

*/

C-48 Appendix C: Slot ROM Utility Routines

(

(

slot_iqnore(SIGSEGV);

exit(O);

Appendix C: Slot ROM Uttllty Routtnes C-49

slot_tgnore(slots 3x) slot_tgnore(slots 3x)

Name
slot_iqnore

Synopsis
slot_iqnore(k1nd)

int kind;

where kind is the signal to restore to default handling.

Description
slot_ignore uses the signal routine to restore default signal handling for signals of
type kind.

Retum values
None.

Example
main() {

char *romp;

int slot • 9;

/*

* Create a ROM address.

*I

if((romp • slot_address(i)) < 0) {

I* Error ••• */

/*

C-50 Appendix C: Slot ROM Uttllty Routines

(

* prepare for ROM access timeouts. First catch the segmentation

* violation signal.

*/

slot_catch(SIGSEGV, slot_seg_violation);

/*

* Initialize slot_env and test to see how we got here. If true,

* an error occured. If false, then the initialization is

* complete.

*/

if(setjmp(slot_env))

/*

* Error, caught a segmentation violation. Reset the signal

* handler for segmentation violations then exit in error.

*/

slot_ignore(SIGSEGV);

exit(l);

I*

* Try reading the ROM pointed to by "romp." Errors will cause a

* branch back to the setjmp.

*I

c = *romp ' Oxf;

/*

* If the code qets to here, the ROM is readable. Reset the error

* handler, and exit with qood status.

*/

slot_iqnore(SIGSEGV);

exit (0);

Appendix C: Slot ROM Utility Routines C-51

slot_address(slots 3xJ slot_address(slots 3x)

Name
slot_address

Synopsis
char *slot_address(slot)

int slot;

where slot is either a slot number, a physical ROM base address, or a virtual ROM base
address.

Description
slot_address checks slot for validity and type, and returns a valid ROM base
address for slot .. Physical and virtual addresses are returned directly if the calling
routine is valid. A slot input parameter is converted to a physical address, and the
ROM at that address is made available to the user program by using the phys system
call (which makes the ROM available on a A/UX page boundary). A page in the system
is 4 megabytes, so phys is called to map the slot ROM to a virtual address of 4
megabytes.

Retum values
None.

Example
main() {

char *romp;

int slot • 9;

/*

* Create a ROM address.

*/

C-52 Appendix C: Slot ROM Utlllty Routines

if((romp - slot_address(i)) < 0) {

/*Error ••• */

/*

* prepare for ROM access timeouts. First catch the seqmentation

* violation signal.

*/

slot_catch(SIGSEGV, slot_seq_violation);

I*

* Initialize slot_env and test to see how we got here. If true,

* an error occured. If false, then the initialization is

* complete.

*I

if(setjmp(slot_env))

I*

* Error, caught a segmentation violation. Reset the signal

* handler for seqmentation violations then exit in error.

*/

slot_ignore(SIGSEGV);

exit(l);

/*

* Try reading the ROM pointed to by "romp." Errors will cause a

* branch back to the setjmp.

*/

c = *romp ' Oxf;

/*

* If the code gets to here, the ROM is readable. Reset the error

* handler, and exit with good status.

*/

Appendix C: Slot ROM Utlllty Routines C-53

slot_iqnore(SIGSEGV);

exit(O);

C-54 Appendix C: Slot ROM Utility Routines

(

(

slot_byte_/ane(slots 3x) slot_byte_lane(slots 3x)

Name
slot_byte_lane

Synopsis
char *slot_byte_lane(address, Oyte lane)

char •address;

char •byte-lane,

where

o address is either a physical ROM base address or a virtual ROM base address.

o llyte-lane is a pointer to a location that stores byte lane information from R<?M.

Description
slot_byte_lane searches ROM starting at address for the byte lane byte that should
be located in the last byte in addressable ROM (such as. OxFssFFFFF, or address plus
OxFFFF). 1be search continues backwards for up to 4 byteS to allow for the possible
board addressing conventions. When a valid byte lane byte is located, that
information is stored in the location pointed to by the parameter llyte lane, and the
address in ROM of the byte lane byte is returned If no valid byte lane byte is found, an
error is returned.

A byte lane byte contains the valid addresses using NuBus addressing conventions for
ROM data. The slot_byte_lane routine reverses the byte lane information (4 bits)
before returning the data to the caller. because the Motorola 68ooo family uses an
addressing convention that is reversed from the NuBus standard.
slot_calcyointer uses the byte lane information to create valid ROM addresses.
The format of the byte lane byte may be found in Developing <Ards and Drivers for
Macintosh II and Macintosh SE .

Retum values
Yaiue. Meanina

address Success (the address of the byte lane information in ROM is returned).

Appendix C: Slot ROM Ut111ty Routines C-55

0 Failure

Example
char *curr, *base;

char bl;

/*

* Get the byte lane byte usinq the slot_byte lane routine.

* If no byte lane is available, you can't calculate the

* pointer.

*/

if((base • slot_byte lane(((unsiqned)curr' OxFFFFOOOOI, 'bl)) •• 0) {

I* Error */

C-56 Appendix C: Slot ROM Uttllty Routines

,~--,

lJ

(

slot_calc_potnter(slots 3x) slot_calc_potnter(slots 3x)

Name
slot_calc_pointer

Synopsis
char *slot_calc_pointer(current, offse~

char •current;

int offtet;

where

o current is the current ROM address.

o offset is the offset, in bytes.

Description
slot_calc_pointer calculates the valid ROM address that is offset bytes from
current. The address is a byte address in slot ROM for a board in one of the Macintosh
II NuBus slots. slot_calc_pointer calls slot_byte_lane to get the byte lane
information for the ROM pointed to by current Using the byte lane information, and
adding offset to cumlnt, a new ROM address is created and returned to the user.

The offset is a count of bytes •skipped• to get to the new ROM address. The count may
be pmitive or negative. The bytes to be skipped are not necessarily in continuous
memory (that is, a simple add of address and offset will skip offset •addresses") but if
only one out of every four bytes is active, then only a quarter of the offset is fullfilled.
In the active byte lanes, the offset must be multiplied by four to skip the full number of
offset bytes. The simple addition of address and offset works when all byte lanes are
active (not the common case). There is also a small calculation required to land on an
active ROM address based on the value of CUm1nt, because offset may not be an even
multiple of four.

Retum values
~ Meanjna

address Success (the new ROM address is returned).

Appendix C: Slot ROM Uttllty Routtnes C-57

0 Failure

Example
char *romp;

int offset • 10;

int slot • 9;

/*

* Create a ROM address.

*I

if((romp • slot_address(i)) < 0) {

/*Error ••• */

if((romp • slot_calc_pointer(romp, offset) •• 0) {

/'* Error */

I*

* ROMP is now offset bytes from the base of ROM.

*I

C-58 Appendix C: Slot ROM Utlllty Routines

slot_rom_data(slots 3x) slot_rom_data(slots 3x)

Name
slot_rom_data

Synopsis
char *slot_rom_data (address, widlh, data)

char *address;

int widlh;

char *dala;

where

D address is a ROM address.

o width is a positive or negative count of bytes to read.

o data is a pointer to the user buffer to be filled.

Description
slot_rom_data fills the buffer pointed to by datawithwtdthbytes of data from ROM
starting from address.

slot_rom_data reads the byte Jane information using the slot_byte_lane
routine. Reading only valid ROM addresses, slot_rom_data reads the data from
ROM and stores it into the user buffer referenced by data. The direction of the read is
determined by the value of width. A negative value causes the bytes to be read in
reverse order from address to (address-width.), and a positive width causes a read of
ROM data from address to (address + width). The positive count of bytes read from
ROM is returned to the user.

slot_env is a preinitializ.ed environment structure to use with a longjmp call.

Return values
~ MeaninK

count Success (a non-negative count of bytes read is returned).

Appendix C: Slot ROM Utility Routines C-59

-1 Failure

Example
char *romp;

struct format_header fhp;

int slot • 9;

/*

* Create a ROM address.

*/

if((romp • slot_address(il) < 0) {

/*Error ••• */

if((romp • slot_byte lane(base, 'byte lane)) •• 0) {

I* Error */

I*

* Read the ROM format header, aqain errors cause a zero return.

*/

if((count • slot_rom_data(romp,-aizeof(struct format_headerl,fhp)) < 0) {

/* Error */

C-60 Appendix C: Slot ROM U1111ty Routines

slot_cbeck_crc(slots 3x) slot_cbeck_crc(slots 3x)

Name
slot_check_crc

Synopsis
char *slot_check_crc(top, jbp, byte lane)

char •toP;

struct format_header •fbP;

char byte-lane;

where

o tqJ is the address of a byte lane byte in slot ROM.

o fbp is a pointer to the format header structure from slot ROM.

o byte-lane is the 4 bits of byte lane information from slot ROM.

Description
slot_ check_ ere computes and verifies the ROM checksum for the slot ROM ending
at address top.

slot_check_crc is called from slot~header, which reads and verifies both the
the lowest level ROM structure and the ROM contents. The format header and byte
lane information for the ROM to be checked are read by slot_header and then
passed to the checksum routine. The format header contains the ROM length and the
ROM checksum to be verified. The byte lane byte contains the addressing information
used to read the ROM.

slot_env is a preinitialized environment structure used with a longjmp call.

Retum values
~ Meanina

0 Success (checksum is valid).

1 Failure

Appendix C: Slot ROM Utlllty Routines C-61

Example
struct format_header fhp;

char *romp;

char byte lane;

int count;

I*

* Get the byte lane byte, and a pointer to

* the location of the byte lane byte in ROM.

*I

romp• slot_byte lane(base, &byte lane);

if(romp •• (char*) 0) {

/* Error */

/*

* Read the format header, again errors cause a zero return.

*/

if((count • slot_rom_data(romp,-sizeof(struct format_header),&fhp)) < 0){

/* Error */

I*

* Check that the format header contains valid information.

*/

if((fhp->f_testpattern !• F_TESTPATTERN) I I (fhp->f_rev > F_REV) I I

(fhp->f_format !• F_APPLE) I I (fhp->f_reserved !• OJ I I

((fhp->f_diroffset & OxOOFFFFFF) 0) I I

((fhp->f_diroffset' OxFFOOOOOO) !• 0))

return(O);

I*

* check the checksum.

*I

C-62 Appendix C: Slot ROM U1111ty Routines

(

if(slot_check_crc(romp, 'fhp, byte lane) !• 0) {

/* Error */

(

Appendix C: Slot ROM Utility Routines C-63

slot_beader(slots 3:x) slot_beader(slots 3:xJ

Name
slot header

Synopsis
char *slot_header(address, jbp)

char •address;

struct format_header •fbp,

where

o address is either a physical ROM base address .or a virtual ROM base address.

o fbp is a pointer to a format header structure.

Description
slot header reads and verifies the ROM header and ROM checksum, storing the
inf orrmtion, if valid, ·in the buffer pointed to by jbp. address is the base address of the
slot ROM.

The ROM header describes the slot ROM. It contains a ROM checksum, the ROM
length, a pointer the resource directory, and information words.

Return values
~ Meanina

pointer Success (a pointer to the format header structure in ROM is returned).

0 Failure

Example
struct format_header fh;

char *romp;

int slot .. 9;

C-64 Appendix C: Slot ROM Utility Routines

(

(

/*

* Create a ROM address.

*/

if((romp • slot_address(i)) < 0) {

/*Error ••• */

/*

* Get the ROM header into "fh."

*/

if((romp • slot_header(address, 'fh)) ·- 0) {

/* Error */

Appendix C: Slot ROM Utility Routines C-65

(

(

Appendix D

Memory Maps

This appendix contains memory maps for the Macintosh II and A!UX. Included are
the memory maps for the physical address space, user address space, and kernel
address space.

Physical address space

The physical address space for the Macintosh II is shown in Figure D-1.

Appendix D: Memory Maps D-1

Figure D·l
Physical address space

0·2 Appendix D: Memory Maps

(

(

User address space
In AIUX, the user address space contains 512 megabytes. This means that the kernel
keeps the entire user pr~ in the kernel address space. The user address space is
shown in Figure D-2.

Appendix D: Memory Maps 0-3

Figure D-2
User address space

D-4 Appendix D: Memory Maps

(

Kernel address space
For A/UX device driver writers, the kernel address space is shown in Figure D-3.

Appendix D: Memory Maps 0-5

Figure D-3
Kamel address space

0-6 Appendix D: Memory Mops

(

(

Appendix E

Vnode Kernel Driver
Modifications

Although the A/UX kernel is based on AT&T's System V Release 2, the A/UX device
driver interface is closer to that used in U.C. Berkeley's 4.2 BSD. This section notes
some changes you should be aware of if you are familiar with the AT&T driver ·
interface.

A/UX supports the vnode kernel. Because of this, device driver interfaces differ from
those in other UNIX sys~. If you are familiar with UNIX device drivers in other
systems or are porting a driver from another system to A/UX, be aware of the
following A/UX driver changes.

o Driver return values: a driver's open, read, write, and functions return error values
differently. Berkeley-style drivetS require these routines to return either 0 for
success or an error number (def"med in "sys/errno.h>) for failure. Nonnally,
AT&T System V drivers set the global value u. u_error to indicate failure and
nothing to indicate success.

o Device read and write inrerfaces: the vnode kernel passes 1/0 paramerers in a uio
structure. Other drivers use rdwr to initialize the values u. u_base, u. uoffset,
and u. u_segflq before calling the device specific read or write function. For
details about the uio data structure, see •Device React and Write Interfaces• in
Chapter 2.

o 1/0 control interface: 1/0 control in A/UX encodes infonnation about whether the
1/0 request will copy data in or out of kernel memory (or both) and the amount of
data that will be copied (if any). Thus, an ioctl(2) system call can do copy in or
copyout itself, rather than passing to the device 1/0 control interface a pointer to
a buffer in kernel memory. For details about this interface, see ·110 Control
Interface• in Chapter 4.

Appendix E: Vnode Kernel Driver Modlftcatlons E-1

o Disk performance monitoring: to monitor disk drives, several global variables have
been provided to keep track of disk performance. See •Monitoring Disk
Performance• in Chapter 3 for details.

EQ2 Appendix E: Vnode Kernel Driver Modl11catlons

(

Appendix F

V.2 Streams Drivers

This appendix lists the differences between AT&T's System V Release 3 and System V
Release 2.1 Streams drivers supported by A/UX. Specifically, System V Release 2.1
doesn't support the following System V Release 3 features:

o input/output polling

o asynchronous input/output

o multiplexed streams

o putmsq and qetmsq routines

o services interfaces and messages

o bufcall,enableok,datamsq,insq,noenable,pullupmsq,rmvq,and
testb utility routines

D NSTREVENT,MAXSEPGCNT,NSTRPUSH,STRMSGSZ,STRCTLSZ,STRLOFRAC,
and s TRMEDFRAC system parameters

In addition, the following enhancements have been added to the A/UX Streams
implementation.

o t tx data structure: A/UX uses the t tx data structure to hold terminal infonnation.

o t tx library: to make it easier to write tenninal drivers, A/UX provides the t tx
library, a collection of Streams support routines.

o line: the streams line discipline for tenninals.

o select: A/UX provides support for the select(2) BSD system call.

o FIO ... ioctl(s) are supported. See st reams(7) in the NUX System Administrator's
Reference for details.

Appendix F: V.2 S1reams Drivers F-1

(

(

Appendix G

SCSI Device Driver

This appendix contains a SCSI driver source listing for a hard disk. The driver consists
of two main parts: the generic disk driver and the SCSI manager. The SCSI driver files
included in this appendix are illustrated in Figure G-1.

See Chapter 10 for detailed descriptions of specific generic disk driver and SCSI
manager routines, including parameters and calling sequences.

Appendix G: SCSI Device Driver G-1

Figure G-1
The SCSI Driver

G-2 Appendix G: SCSI Device Driver(

(

(:

Generic disk driver files
1be generic disk driver consists of the following files:

o hd. c-the high-level driver interface to the generic disk driver

o gdis k. c-the generic disk driver routines

o gdisksubr. c-f:be generic disk driver subroutines

The hd. c file contains the driver interface to the kernel. These are the routines called
through the bdevsw table. The rouines in hd. c, in tum call the gdisk. c routines,
which interface to the generic disk driver functions based on a Finite State Machine
Oocated in the file gdisksubr. c). The machine coordinates general VO tasks as
generic state sequences. 11lis results in function calls to routines in the file sdisk. c,
which contains low-level SCSI routines.

Note: If you're writing a NuBus disk driver, your driver can interface to the generic disk
driver files in the same way as a SCSI disk driver. You nrust, however, write different
device-specific bdevsw and low-level routines to replace hd. c, sdisk. c, and
scsi. c.

SCSI manager files
The SCSI manager is contained in these two files:

o sdisk.c

o scsi.c

The sdisk. c and scsi .c files fonn the lower level of the driver-specific portion of
the driver. sdisk. c contains the low-level device-specific interface between the
generic disk driver and the SCSI manager. It contains the routines sdread, sdwri te,
sddriveinit,sdbadblock,sdformat,sdrecover,andsdshutdown,which
are described in •tow-level Device Routines• in Chapter 10.The scsi. c code
contains the low-level routines that implement the SCSI manager functions (as another
Finite State Machine), as well as routines that drive the NCR5380 chip.

Other files
In addition to the generic disk driver and SCSI manager files just listed, you may find
the following files useful while writing your driver:

Appendix G: SCSI Device Driver G-3

o ncr5380 .h NCR register definitions

o via6522. h NCR interrupt decoding information

via.c

o qdisk. h Disk task blocks definitions

G-4 Appendix G: SCSI Device Driver(

;<"'\
~~j

(

The hd.c source code
The following pages list the source code for hd.c.

(

Appendix G: SCSI Device Driver G-5

The gdisk.c source code
The following pages list the souice code for gdisk.c.

G-6 Appendix G: SCSI Device Driver(

.;:["'\

\.'--/

(

The gdisksubr .c source code
The following pages list the source code for gdisksubr.c.

Appendix G: SCSI Device Driver G-7

r'\.
\ ___ _,/

The sdisk.c source code

The following pages list the source code for sdisk.c.

,,r~·.\

G-8 Appendix G: SCSI Device Driver(
~)

.... '.

The scsi.c source code

The following pages U..t the source code for scsi.c.

(

-, ('.·

Appendix G: SCSI Device Driver G-9

Glossary

autoconflguradon: A technique for adding,
deleting, or replacing a device driver in the A/UX
kernel.

back.enable: A method of scheduling a Streams
queue for service by preventing new messages
from being scheduled after a high water mark is
reached and allowing new mes.sages to be
scheduled only after the number of messages on a
queue have dropped below a low water mark

block clerices: Devices that access data blocks,
which permits them to contain mounted file
systems. Reading and writing to block devices are
handled through a cache of buffers that minimiz.e
physical access to the device.

character devices: Devices that generally
perform 1/0 asynchronously for a variable
number of bytes.

cblock: A data structure used to buffer terminal
data. Cblocks are linked together to form a dist
queue. A cblock contains an array to hold data,
pointers to the first and last characters in the
array, and a pointer to the next cblock on the
queue.

clist: The basic terminal buffering structure. A dist
is the head of a linked list queue of cblocks.

device class: A class of device that share data
access characteristics. In A/UX possible devices
classes are block, character, or network.

clerice driver: A portion of the kernel that
handles 1/0 operations to and from a physical
device in the system.

device interface: In AIUX, the device driver's
interface to the device itself. Possible interface
types include NuBus, SCSI, and ADB.

device type: A specific kind of A/UX device. With
a device class, there can be several different
device types.

driver interface: The A/UX kernel's interface to a
device driver. Possible interface types include
block, character, terminal, streams, and network.

high-water mark: For terminal 1/0, the
maximum number of characters that can be in the
raw queue before input is temporarily suspended.
For Streams 1/0, it is used along with the low water
mark to schedule a queue.

line dJscipline: A data structure containing
pointers to a terminal's open, close, read, write,
ioctl, input interrupt, and output interrupt
routines.

Joadfile: A file needed to run autoconfiguration in
a driver development environment. It contains
slot ROM information normally found in the
system's slot ROMs.

low-water mark: For terminal 1/0, the number
of characters in the raw queue must drop below this
level before additional characters can be added to
the queue. For Streams 1/0, it is used along with
the high water mark to schedule a queue.

makefile: A file containing user-specified
commands that are processed according to built­
in rules contained in the make(l) utility.

· master script file: A file that contains
information used during autoconfiguration.

module: In Streams, a pair of queues that process
data traveling between the stream head and the
Streams driver.

(

(

(

network derica: Devices that handle data
communication between machines.

proceaa In A/UX, an instance of a program in
executiqn.

queue: In Streams, a data structure that is
associated with a statically compiled module.
Queues are always found in pairs-one for
upstream processing and one for dowmtream
processing.

raw interface: A character interface that handles
reading and writing to a device directly, without
buffering data. Block devices use both a raw and a
buffered interface.

request block data structure: A data struaure
that specifies the elements of a SCSI command.
Instead of sending a SCSI command directly to the
controller, the request block struClW'e is filled and
passed to the SCSI manager for processing.

stream: A full duplex processing and data transfer
path between a driver in kernel space and a
process in user space.

Streams: A collection of system calls, kernel
resources, and kernel utility routines that can
create, use, and dismantle a stream. Streams
provides a convenient mechanism for writing an
A/UX terminal driver.

Streams driven A part of the stream end that
performs device handling and also transforms
data and information that passes between the
external interface and a stream.

Streams module line: A line discipline used in
Streams terminal drivers to perform such
functions as echoing characters, providing erase
and kill processing, flow control, ioctl processing,
and character editing.

Stram end: 1be part of a stream closest to the
external device interface. 1be stream end contains
the Streams driver.

Stram head: The part of a stream that provides
the interface between the stream and the user
process.

Streams masages: The form in which blocks of
data are linked together and ~ through a
stream. Each message block consists of data
structures and a buffer block.

tramactloo: 1be most basic function that a driver
requests of the ADB. It consists of a request for the
ADB, an.ADB operation, and a reply from the
ADB after the transaction has completed.

ux structure: A data structure used in A/UX
Streams terminal drivers that contains
information needed for terminal 1/0.

tty structure: A data structure containing
information needed to perform terminal I/O. This
includes pointers to raw, canonical, and output
queues; and a pointer to a device driver command
processing routine.

u-dot: A data structure containing information
and pointers unique to a process. The u-dot is also
called the user structure.

uJo structure: A data structure that describes a
data transfer. The uio structure, an argument to
several routines, contains read and write
parameters.

Building AIUX Device Drivers

Bibliography

The following reading list contains additional documents that you might find useful when
writing an AU/X device driver. Documents are listed according to the topic they cover.

General Information
Bach, Maurice J., The Design of the UNIX Operating System. Englewood Cliffs: Prentice­

Hall, 1986. This book describes the major elements of the UNIX operating system from a
programmer's perspective. Chapter 10 describes the device driver interfaces, with special
attention paid to terminal and disk drivers.

Motorola Corporation. MC68020 32-Bit Microprocessor User's Manual, 2nd. ed.,
Englewood Cliffs: Prentice-Hall, 1985. This book describes the operating features of the
MC68020 microprocessor.

Motorola Corporation. MC68881 Floating-Point Coprocessor User's Manual. Englewood
Cliffs: Prentice-Hall, 1985. This book describes the operating features of the MC68881
floating-point coprocessor.

Motorola Corporation. MC678851 Paged Memory Management Unit User's Manual.
Englewood Cliffs: Prentice-Hall, 1986. This book describes the ~perating features of the
MC68881 paged memory management unit.

SCSI device drivers
X3T9 .2 Small Computer System Interface, Revision 17B, 1985. This paper describes the

Small Computer System Interface· (SCSI).

ANSI Standards Committee. Common Command Set of the Small Computer System
Interface, Revision 4.A This paper describes the common command set of the SCSI
interface.

NCR Micro Electronics Division, NCR 5380 SCSI Interface Chip Design Manual.
Colorado Springs: NCR Microelectronics Division, 1985. This book describes the design
features of the NCR 5380 SCSI interface chip.

Streams device drivers
AT&T Corporation. STREAMS Programmer's Guide. 1986. This book contains

comprehensive infonnation about Sreams utilities and functions. It should be read before
attempting to write a Streams device driver.

AT&T Corporation. STREAMS Primer. 1986. This book defines and gives a brief
overview of Streams.

Biblio-1

(

(

{

Building AIUX Device Drivers

Network device drivers
Leffler, Samuel J., Robert S.Fabry, and William N. Joy. "Networking Implementation

Notes." University of California, Berkeley. This paper describes the internal structure of
4.2BSD-style networking facilities.

Other A/UX documents
Apple Computer, Inc. AIUX Programmer's Reference: 1987. This manual is a quick

reference guide to all library routines and related information required by programmers,
as well as miscellaneous facilities.

Apple Computer, Inc. AIUX System Administrator's Reference: 1987. This manual is a
quick reference guide to privileged commands and utitlity programs that would be used
by the system administrator.

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishinl system using
Apple Macintosh computers
and Microsoft* Word. Proof
pages were created on the Apple
LaserWriter* Plus. Final pages
were created on the Varityper*
vr600n1. POSTSCRIPT*, the
LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.
Some of the illustrations were
created using Adobe
Illustrator Tiii.

Text type is ITC Garamond*
(a downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde Gothic•.
Bullets are ITC Zapf Dingbats*.
Some elements, such as program
listings, are set in Apple Courier,
a fixed-width font

2/21/88

note: add IllustratorTM to the
list of credits on the
copyright page.

