€. Macintosh. Building A/UXe
Device Drivers

© Apple Computer, Inc. 1938

Copyright

This material contains trade
secrets and proprietary
information of Apple
Computer Inc., and Unisoft
Corporation. Use of this
copyright notice is
precautionary only and does
not imply publication.

Copyright © 1985, 1986, 1987,
1988, Apple Computer Inc.,
and Unisoft Corporation. All
rights reserved. Portions of
this document have been
previously copyrighted by
AT&T Information Systems,
the Regents of the University of
California, Adobe Systems,
Inc., and Sun Microsystems,
Inc., and are reproduced with
permission. Under the
copyright laws, this manual or
the software may not be
copied, in whole or in part,
without written consent of
Apple or Unisoft, except in the
normal use of the software or
to make a backup copy of the
software. The same
proprietary and copyright
notices must be affixed to any
permitted copies as were
affixed to the original. This
exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with
all backup copies) may be
sold, given, or loaned to
another person. Under the
law, copying includes
translating into another
language or format. You may
use the software on any
computer owned by you, but
extra copies cannon be made

for this purpose.

© Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo, A/UX,
LaserWriter, and Macintosh

are registered trademarks of
Apple Computer, Inc.

Motorola is a trademark of
Motorola, Inc.

NuBus is a trademark of Texas
Instruments.

Apple Desktop Bus and
EtherTalk are a trademarks of
Apple Computer, Inc.

UNIX is a registered trademark
of AT&T Information Systems.

B-NET is a trademark of Unisoft
Corporation.

Ethernet is a registered
trademark of Xerox
Corporation.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade-
marks of International
Typeface Corporation.

Microsoft is a registered trade-
mark of Microsoft
Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Varityper is a registered trade-
mark, and VT600 is a
trademark, of AM
International, Inc.

Simultaneously published in
the United States and Canada.

Preface

About This Manual

Inside this manual

This manual explains how to build Apple® A/UX® device drivers for the Apple
Macintosh ® II computer. The manual is designed to be both a *how-to” guide 'and a
reference manual for someone writing device drivers. A/UX i is Apple's version of the
UNIX® operating system.

To use this manual effectively, you should have a working knowledge of the C
programming language and written device drivers in the past. You need some
knowledge of the A/UX operating system, including the major parts of A/UX,
although detailed knowledge of the kernel is not required. If you need to learn more
about the A/UX operating system, see the bibliography in the back of this manual.
You also need to know how to use system calls in a C program.

An overview of what this manual covers is listed below:

. Chapters 1 and 2 provide an overview of A/UX device drivers and the A/UX
kernel programming environment. You should read these sections before

writing your driver.

. Chapter 3 describes drivers that buffer data through the kernel buffer cache.
These drivers are called block device drivers.

. Chapter 4 describes drivers that use their own techniques to transfer data.
These drivers are called character device drivers.

o Chapters 5 through 11 describe specific types of device drivers and interfaces.

You need to read only those sections that apply to your device and driver.

. Chapter 12 describes the autoconfiguration process. This chapter tells you
how to add a new device driver to the kernel.

i Preface: About this Manual

. Chapter 13 tells you how to use the autoconfiguration process in a driver
development environment. This chapter takes you through all the steps
necessary to add a device driver to your system by showing a specific example
of adding a driver to the kernel.

. Chapter 14 describes the files you need to include on the distribution floppy
disk that your customers use to install your driver. The installation procedure
that your customers need to follow to install your driver are also given.

. Appendix A describes the driver interface routines.

. Appendix B describes kernel routines your driver can use.

J Appendix C describes the slot library routines that slot device drivers can use.
. Apbendix D contains physical, user, and kernel memory maps.

. Appendix E describes vnode kernel modifications.

o Appendix F describes the differences between the System V Release 2.1 and

System V Release 3 Streams implementation.
. Appendix G contains a SCSI device driver listing.

Conventions used in this manual

Words that you must type exactly as shown or that would actually appear on the screen
appear in Courier type. Words that you must replace with actual values appear in
#talics (for example, the integer variable dev might have an actual value of 2). An
ellipsis (...) follows an argument that may be repeated any number of times. Boldface
type is used for new terms that are defined in the text; ofien these terms are listed in the
glossary for this manual.

Special keys on the keyboard appear in CAPS AND SMALL CAPS (for example,
RETURN).

Key combinations that you must press simultaneously are connected with hyphens (for
example, CONTROL-S).

A file is enclosed in angled brackets, for example <sys/buf . h>, to indicate the
parent directory is /usr/include.

Syntax notation

This manual uses the following conventions to represent command and routine
syntax. A typical A/UX routine has the following form:

type routine (arg, ...)

Preface: About this Manual I {J‘

type arg;
The elements have these meanings: , :
bpeis the data type of the value returned from the routine (for

example, int); fHpe also specifies the data type of an
argument to the routine.

routine is the name of the routine.
arg is an argument to the routine.

In the text, cmd(sect) indicates a cross-reference to an A/UX reference manual. cmd
is the name of a command, program, system call, or other facility, and sect is the
section number where the entry can be found. For example, open(2) refers to the
open system call, which is documented in section 2 of the A/UX Programmer's
Reference.

In the text, kernel routines are denoted by the name of the routine in Courier type
followed by on open parentheses and a closed parentheses. For example, biowait ()
refers to a kernel routine that you can use in your driver.

1] Preface: About this Manual

Preface

Chapter 1

Contents

Figures and tables xx
Radio and television Interference xx

About This Manual xx

Introduction xx
Conventions used in this manual xx

An Overview of A/UX Device Drivers 1-1

An overview of the A/UX kernel 1-2
Performing I/O in A/UX 14
What is a device driver? 1-6
The basic structure of an A/UX device driver 1-9
Block device drivers 1-9
Character device drivers 1-10
An overview of the hardware 1-11
The NuBus 1-11
The Small Computer System Interface (SCSD) 1-14
The Versatile Interface Adapters 1-14
The Apple Desktop Bus 1-14
The Serial Communications Controller 1-17
The Apple Sound Chip 1-17
The Integrated Woz Machine 1-17
Summary of software drivers and hardware 1-17

Memory-mapped I/O 1-20

Interrupt handling by your driver 1-20
Handling interrupts from SCSI devices 1-22
Handling interrupts from ADB devices 1-22
Handling interrupts from NuBus devices 1-22
Where to go from here 1-23
Writing a block device driver 1-23
Writing a character device driver 1-24

Contents

Contents

Chapter 2

Chapter 3

The Kermnel Programming Environment 2-1

How a typical I/O request goes through A/UX 2-2
A/UX block and character device drivers 2-5
Device files 2-8
Device switch tables 2-9

The block device switch table 2-10

The character device switch table 2-15
Return values of driver routines 2-20
Process context and the user structure 2-21
Utility routines and macros 2-22

Setting processor levels 2-22

Waiting for I/O to complete on an address or for an event to
occur (sleep) 2-22

Waiting for I/0 to complete on a buffer header (biowait) 2-23

Notifying a process of I/O completion or an event occured
(wakeup) 2-23

Notifying a process 1/O has completed on a buf structure
(bidone) 2-23

Reading from and writing to a user buffer 2-24

Gaining access to user address space 2-24

Finding the major number of your device 2-24

Finding the minor number of your device 2-25

Encoding the major and minor numbers of your device 2-25

Setting a Timeout (timecut) 2-25

Removing a Timeout (untimeout) 2-25

Delaying execution 2-25

Sending a Signal to a user process 2-26

Block 1/0O Device Drivers 3-1

Overview 3-2
Transferring Data to and from a block device 3-3
Buffered /O 3-3
The buf structure 3-3
The iobuf structure 3-5
The block device driver interface 3-6
Opening a block device driver for I/O 3-6
The driveropen routine 3-6
The driverclose routine 3-9
Performing 1/O (using the strategy routine) 3-9
Writing to a block device 3-10
Reading from a block device 3-11
The block device start routine 3-11
The block device interrupt routine 3-12

Trace of an I/O request on a block device driver 3-12

Raw /O 3-15
The diagnostic print routine 3-16
Performing initialization on a device driver 3-16
Kernel routines for block device drivers 3-17
Waiting on 1/0 3-17
Buffer routines 3-17

Chapter4 Character Device Drivers 4-1

Overview 4-2
The character device driver interface 4-5
Preparing a character device for 1/0 4-6
The driveropen routine 4-6
Closing a character device 4-8
The driverclose routine 4-8
Reading from and writing to a character device 4-9
The driverread routine 4-10
The driverwrite routine 4-11
Data transfers using physio() 4-12
Using physio() to read from a device 4-14
Data transfers using uiomove() 4-16
Performing control and miscellaneous funtions on a device 4-18
The driverioctl routine 4-19
Checking a device for I/O (select) 4-22
The driverselect routine 4-23
Performing initialization on a device 4-24
Handling character device interrupts 4-24

Chapter5 Temminal Device Drivers 5-1

Buffering and control structures 5-2

Clists and cblocks 5-2

The ccblock structure 5-6

The tty structure 5-6

The line discipline 5-10

The termio structure 5-11
Reading from a terminal 5-12
Writing to a terminal 5-15
Parts of a terminal device driver 5-17

The open routine 5-17

The close routine 5-18

The read routine 5-18

The write routine 5-18

The ioctl routine 5-19

The input and output interrupt routines 5-19

Contents

Contents

Chapter

Chapter 7

The modem interrupt routine 5-20

The driver command process routine 5-20

Modem control 5-21

Streams Device Drivers 6-1

What is Streams? 6-2
Parts of a stream 6-3
Building a stream 6-5
Streams modules and drivers 6-S
Data structures 6-6
Messages 6-6
Message types 6-7
Processing message blocks 6-8
Message structures 6-8
Queues 6-8
Driver flow control 6-10
Utility routines 6-11
Streams device/module routines 6-13
The open routine 6-13
The close routine 6-13
The put routine 6-14
The service routine 6-14
Streams scheduling 6-15
Cloned devices 6-15

Streams Terminal Devices 7-1

Streams line disciplines 7-2
Data structures 7-3
Streams terminal driver routines 7-4
The open routine 7-5
The close routine 7-6
The initialization routine 7-6
The parameter routine 7-6
The ioctl routine 7-7
The command process routine 7-7
tx library support routines 7-9
ttxinit 7-9
ttx_put 7-9
ttx_sighup 7-10
ttx_break 7-10
ttx_close 7-10
Skeleton Streams driver 7-10

vi

A
'

vil

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Network Drivers 8-1

Include file 8-2
Sample driver 8-3

Siot Device Drivers 9-1

ROMs and Autoconfiguration xx
The Slot Library xx

Mapping to processes xx
Interrupt service routines xx
Name

Synopsis

Description

Return Values

SCS| Device Drivers 10-1

Overview of SCSI Manager 10-2
Assumptions and restrictions 10-2
Request block data structure 10-3 .
Other entry points and data structures 10-6

Scsi_strings 10-6

Scsigdcmd data structure 10-6
Scsig0cmd routine 10-7

Scsi tasks 10-7

Special processingv 10-8

Error handling 10-8

SCSI disk drivers 10-9
Device naming conventions 10-11
Disk partitioning 10-13
Typical I/O operation 10-13
Data structures on disk 10-17

Kernel data structures 10-18

Controller data structures 10-19

Drive data structures 10-22

Partition data structures 10-23
Generic routines 10-25
Service routines for device-specific code 10-28
Low-level device routines 10-29

Apple DeskTop Bus Device Drivers 11-1

Transactions 11-2
Driver service routines 11-3
High-level driver routines 11-3

Contents

Contents

Chapter 12

Chapter 13

Initiate transaction 11-3
Flushing a device 11-3
Talking to the system 114
Listening to the system 11-5
Polling 11-5
Sample driver 11-10

Autoconfiguration 12-1

Introduction to the Autoconfiguration Process 12-2
The files involved in the autoconfiguration process 12-4
Ten steps to add your driver to the kernel 12-7
Background - the startup process 12-10
The launch program 12-11
Booting the kernel 12-14
The autoconfig utility 12-15
The /etc/newunix script 12-18
The driver development process 12-20
Writing and compiling your device driver 12-22
Creating the master script file 12-23 .
Using a device identifier with slot devices 12-24
Using module dependency information 12-25
Using device information 12-27 .
Sample master script files 12-30
A character device driver master script file 12-31
A block device driver master script file 12-33
A Streams driver master script file 12-33
A Streams module master script file 12-33
Writing optional init and startup scripts 12-34
Device file naming conventions 12-35
Creating the install and uninstall scripts 12-36
Modifying /etc/newunix 12-37
Running autoconfig 12-37
Customer installation of your driver 12-37

Using Autoconfiguration 13-1

The sample TEST driver 13-2
The TEST master script file 13-3
The TEST startup script 13-4
The TEST Install Script 13-6
The TEST Install Script 136
Modifying /etc/newunix 13-7
Using makefiles 13-9 ’
Creating a loadfile 13-9

vili

Chapter 14

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

The Sample TEST makefile 13-10
Creating a new kernel that includes your driver 13-11
Performing I/O with the TEST driver 13-12

Preparing Your Driver for Customer Distribution 14-1

Giving out finstall to your customers 14-3

An overview of finstall 14-4

Setting defaults for finstall on your A/UX system 14-7
Files that are located on the finstall floppy disk 14-8

Driver Interface Routines A-1

Return values of driver interface routines A-2
Summary of driver interface routines A-3

Kernel Routines B-1

Values and descriptions of errno B-3
Summary of kernel routines B-6

Slot Library Routines C-1
User routines C-1

Memory Maps D-1
User address space D-3
Kernel address space D-5

Vnode Kernel Modifications E-1
V.2 Streams Drivers F-1

SCSI Device Driver G-1

Generic disk driver files G-2
SCSI manager files G-2
Other files G-2

Glossary xx

- Index xx

Bibliography xx

Contents

Contents

z{m ‘
L

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures and tables

An Overview of A/UX Device Drivers 1-1

Figure 1-1 Overview of kernel management routines xx

Figure 1-2 The flow of I/O from a user process to a device xx

Figure 1-3 = Various devices that can be attached to a Macintosh
oI xx

Figure 14 Overview of the Macintosh II architecture xx

Figure 1-5 The structure of a typical NuBus slot driver xx

Figure 16 The structure of a SCSI disk driver xx

Figure 1-7 The structure of the ADB mouse driver xx

Figure 1-8 Overview of an I/O request from a user program to

the hardware xx

Figure 1-9 Overview of the hardware associated with each
driver xx .

Table 1-1 System calls and corresponding driver routines for

Block device drivers xx
Table 1-2 System calls and corresponding driver routines for
Character device drivers xx

The Kernel Programming Environment 2-1

Figure 2-1 Trace of a write(2) on the example prt driver xx
Figure 2-2 Methods of buffering data xx

Figure 2-3 The bdevsw table xx

Figure 24 A sample bdevsw table xx

Figure 2-5 The cdevsw table xx

Figure 2-6 A sample cdevsw table xx

Block 1/0 Device Drivers 3-1

Figure 3-1 Reading from or writing to a block device xx
Figure 3-2 Reading from or writing to a block device using raw
/0 xx

Character Device Drivers 4-1

Figure 4-1 The layers of a character device driver xx
Figure 4-2 The flow of read(2) request on the example tc
driver xx

Chapter 5

Chapter 7

Chopter 8

Chapter 9

Chapter 10

Chapter 11

Chapler 12

Terminal Device Drivers 5-1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 54
Figure 5-5

Clist structure xx

Cblock structure xx

Terminal data structures xx

Reading a character from a terminal xx
Writing a character to a terminal xx

Streams Device Drivers 6-1

Figure 6-1
Figure 6-2

View of a stream xx
Upstream and downstream queues xx

Streams Terminal Drivers 7-1

Network Drivers 8-1

Siot Device Drivers 9-1

SCS| Device Drivers 10-1

Figure 10-1
Figure 10-2
Figure 10-3
Figure 104

SCSI disk driver xx : S
Minor number assignment xx

Initiation of typical I/O request xx

I/O request processing outside process context xx

Apple DeskTop Bus Device Drivers xx

Figure 11-1
Figure 11-2

Initialization finite state machine diagram xx
Polling finite state machine diagram xx

Autoconfiguration 12-1

Figure 12-1
Figure 12-2
Figure 12-3
Figure 124
Figure 12-5
Figure 126

Table 12-1

Table 12-2

The functions of autoconfig xx

The launch command line xx

An overview of autoconfig xx

Developing and installing a device driver xx
The master script file xx

A sample master script file for a character device
driver xx

Routine naming conventions for Character Device
Drivers xx

Routine naming conventions for Block Device
Drivers xx

Chapter 13
Appendix A

Appendix B

Appendix C

Appendix D

Appendix E
Appendix F

Appendix G

Using Autoconfiguration 13-1
Driver interface Routines A-1

Kemel Routines B-1
Table B-1 Kernel routine ermmo error numbers xx

siot Ubrary Routines C-1

Memory Maps D-1

Figure D-1 Physical address space
Figure D-2 User address space xx
Figure D-3 User address space xx

Vnode Kemel Modifications E-1
V.2 Streams Drivers F-1

SCSI Device Driver G-1
Figure G-1 The SCSI driverxx

Chapter 1

An Overview of A/UX Device
Drivers

1-1

This chapter provides an overview of A/UX device drivers. Specifically, you'll learn

what the general functions of the A/UX kernel are
how the kemel, device driver, and device interact
what a device driver is

what the basic structure of an A/UX device driver is
what hardware is part of the Macintosh II

what steps to take to begin writing your driver

First, this chapter briefly describes the A/UX kernel and input/output (/0).

An overview of the A/UX kernel

The A/UX kemel is an operating system. Like most operating systems, the A/UX

kernel performs file management, memory management, process management, and

input and output. The kernel contains all the routines necessary to accomplish these

functions. For example, when a program runs, the kernel is responsible for allocating

enough memory to the process. PR

Similarly, the kernel is responsible for managing and performing I/O. The kerel e
routines for doing I/O include both general routines and specific routines. The kernel

uses general routines to manage I/O transfers in a deterministic and consistent

manner. The specific routines that perform 1/O to a particular piece of hardware are

called device drivers. In addition, the A/UX kernel supplies a number of routines

called managers. Managers perform a variety of I/O-related functions. Your device

driver can call these manager routines to handle many hardware-related 1/O tasks.

Figure 1-1 shows a simplified overview of an I/O request. When a user process
requests 1/0, the appropriate routines within the kernel carry out the request.

1-2 Chapter 1: Overview of A/UX Device Drivers L

Figure 1-1

Overview of kemel management routines

Chapter 1: Overview of A/UX Device Drivers 1-3

Performing I/0O in A/UX

A device driver provides a connection between a user request for I/O and the hardware
operation. This connection is actually comprised of several components:

a user-level program
the A/UX kernel

the device driver code
e adevice

A user-level program requests an 1/0O operation by making a system call. System calls
perform operations on behalf of the requesting user process. For example, you can
use system calls to prepare a device for I/O, to read from or write to a device, or.to
perform control functions on a device.

The system calls that you can use to perform 1/O are:

® open(2)

® close(2)

® read(2)

® write(2)
® joctl(2)
® select(2)

When a user program makes a system call requesting 1/0O, the kernel calls the
appropriate device driver. The device driver then takes the necessary actions to
perform the actual I/O. Figure 1-2 shows the general flow of an I/O request from the
user process to the device.

The kernel has a method of mapping a request to a particular device to the associated
device driver that performs the I/O. This mapping is established through device files
and kernel data structures called device switch tables.

Every device must have a device file associated with it. A device file contains an index
into the device switch table. Pointers to driver routines associated with that device are
stored at this index.

*ﬂx

1-4 Chapter 1: Overview of A/UX Device Drivers R

Figure 1-2
The flow of I/O from a user process to a device

Chapter 1: Overview of A/UX Device Drivers 1-5

Now that you have a general understanding of device files and device switch tables, the
following paragraphs explain the I/O process in greater detail. When a user process
makes a system call on a device file or file descriptor associated with the device file,
the kemel does initial processing of the request. This initial processing includes
process management and file management functions. For example, on an open (2)
call, the kernel first checks that the requesting user has the proper permissions to
access the file.

After this initial processing, the kernel uses the index from the device file to index into
a device switch table. The kernel calls the corresponding driver routine stored at this
index.

The device driver performs the request and returns to the kemnel. The kernel then
returns to the user process. The return value of the system call indicates the success or
failure of the request.

What is a device driver?

A device driver is a piece of code that handles all I/O operations to or from a device.
The kernel calls a device driver when a user process requests /O by making a system
call. The device driver is responsible for carrying out the I/O request.

Figure 1-3 illustrates that you can use many different devices for I/O on the Macintosh
II. Each piece of hardware connected to your computer needs supporting code to
control it. For example, if you have a video card installed in your computer and a
monitor connected to that video card, you need the software to control that monitor
and video card. Typically each type of device has a particular device driver associated
with it For example, the floppy disk driver handles all requests to floppy disks.

Apple Computer supplies certain device drivers as part of the A/UX kernel. These
drivers include a device driver for SCSI disks, floppy disks, serial ports, the keyboard,
the mouse, and the monitor or system console.

Apple also supplies the low-level routines and managers that control the hardware
interface to the system. These routines and managers include the code to control
transfers over the NuBus™, the Apple Desktop Bus™ (ADB), the Small Computer
System Interface (SCSI), and the Serial Communications Controller (SCC). Your
driver must use these low-level routines or managers to control transactions on the
hardware interface that connects your device to the computer. These hardware

interfaces are discussed in more detail in the section "An Overview of the Hardware" in
this chapter.

When you add a new device to the system, you must also add a device driver to control
the device and to perform I/O to the device. If a device driver to control the device

does not exist, then you must write 2 new device driver in order to perform I/O to the
device.

R

1-6 Chapter 1: Overview of A/UX Device Drivers

In A/UX, device drivers are part of the kernel. You can add or remove device drivers
from the kernel using the autoconfig (2) utility.

A device driver contains various routines used to perform I/O on the device. The
following section describes the name and purpose of each routine. In addition, these
driver routines can call other kernel routines and make use of low-level routines and
managers to assist in performing the I/O operation. The following chapters describe
these kernel routines and low-level routines and managers.

Chapter 1: Overview of A/UX Device Drivers 1-7

Figure 1-3
Various devices that can be attached to a Macintosh i

1-8 Chapter 1: Overview of A/UX Device Drvers

The basic structure of an A/UX device driver

A/UX uses two kinds of device drivers: block and character. Chapter 2 describes the
differences between these two types of device drivers in greater detail. This section
describes the various routines that make up a device driver. Both types of device
drivers can supply a certain set of routines to the kernel. These routines correspond to
the system calls used to perform I/O.

Block Device Drivers

For each system call used to perform I/O using block device drivers, Table 1-1 lists the
corresponding driver routine that the kernel invokes and the function of the driver
routine.

Table 1-1
System calls and the corresponding driver routines for block device drivers

System call Driver routines Purpose

open (2) driveropen Open a device
close(2) driverclose Close a device

read(2) driverstrategy Schedule the
transfer of
data between
the buffer
cacheanda
device

write(2) driverstrategy Schedule the
transfer of
data between
the buffer
cacheanda
device

Chapter 1: Overview of A/UX Device Drivers

You must name the driver routines according to the conventions shown in the table,
where driver is the device prefix used in your driver. For example, if your device
prefix is disk, then name your driveropen routine diskopen.

Block device drivers also provide a driverprint routine. This routine is not related to
a system call.

Block device drivers can also provide an optional routine to perform initialization
functions. This routine is named driverinit, where driver is the device prefix used in
your driver. '

Block device drivers also can provide an interrupt routine. This routine is named
driverint, where driver is the device prefix used in your driver.

Character Device Drivers

For each system call used to perform 1/O using character device drivers, Table 1-2 lists
the corresponding driver routine that the kernel invokes and the function of the driver
routine.

Table 1-2 .
System calls and the corresponding driver routines for character device drivers

System call Driver routines Purpose

open (2) driveropen Open a device

close(2) driverclose : Close a device

read(2) driverread Read from the device

write(2) driverarite Write to the device

ioctl(2) driverioctl Perform control
operations on the device

select (2) driverselect Check a device for I/O

You must name the driver routines according to the conventions shown in the table,
where driver is the device prefix used in your driver. For example, if your device
prefix is mouse, then name your driveropen routine mouseopen.

1-10 Chapter 1: Overview of A/UX Device Drivers 9

Character device drivers can also provide an interrupt routine. This routine is named
driverint, where driver is the device prefix used in your driver. Character device
drivers can provide an optional routine to perform initialization functions. This
routine is named driverinit, where driver is the device prefix used in your driver.

The following chapters describe each of these routines and how to write these routines
for your driver. Appendix A also includes descriptions of these routines, including
parameters and return values. The following section discusses the various hardware
interfaces on the Macintosh II, and gives examples of the structure of a typical device
driver for each hardware interface.

An overview of the hardware

To understand the complete hardware path to your device, refer to Figure 1-4. This
figure shows that the Macintosh II contains more than one bus or hardware interface
that can be used for I/O. These hardware interfaces include the NuBus, Small
Computer System Interface (SCSD), Versatile Interface Adapters (VIA), Apple Desktop
Bus (ADB), Integrated Woz Machine TWM), Apple Sound Chip (ASC) and Serial
Communications Controller (SCC). Each of these is discussed briefly in this section.

The NuBus

-

The NuBus is a 32-bit wide address and data bus based on a Texas Instruments
specification. Six expansion slots are available for NuBus cards. Examples of cards
that can go in NuBus slots are video cards, processor cards, network cards, and other
I/O cards. You can connect a wide variety of devices to various NuBus cards.

The A/UX kermnel supplies a set of routines called the Slot Library. Routines in the Slot
Library can be used to assist in reading information from the slot ROM on your card.
For example, if you are writing a slot device driver, you can use the Slot Library to read
the resource directory from a slot ROM.

To write a device driver for a NuBus card, you write the high-level code to perform the
I/O to the NuBus card, including any card and device specific code. Figure 1-5
illustrates the structure of a device driver for a device connected to a NuBus card. To
perform I/O to the device, a device driver must control the I/O from the kernel level,
to the NuBus, to the NuBus card, and then to the device.

Your driver can call Slot Library routines to assist in accessing slot ROM. This greatly
simplifies the task of writing a device driver for a device on a NuBus card. The Slot
Library is described in Chapter 9 and Appendix C.

Chapter 1: Overview of A/UX Device Drivers

Fgure 1-4
Overview of the Macintosh Il architecture

1-12 Chapter 1: Overview of A/UX Device Drivers

Figure 1-5
The structure of a typlcal NuBus siot device driver

Chapter 1: Overview of A/UX Device Drivers 1-13

The Small Computer System Interface (SCSI)

The built-in SCSI port is used for high-speed parallel communications. The SCSI chip
can communicate with up to seven SCSI devices, such as hard disks, streaming tapes,
and high-speed printers. The SCSI Manager supports the NCR 5380 SCSI chip in
software. The SCSI Manager takes care of the low-level hardware aspects of controlling
the SCSI bus.

Figure 1-6 illustrates the structure of a device driver that controls a disk drive
connected to the SCSI bus. To perform I/0 to a device connected to the SCSI bus, a
driver must control the I/O from the kernel level, to the SCSI bus, and to the SCSI
device. A SCSI device driver contains the code to process the data according to the
requirements of the device, and calls routines in the SCSI Manager to initiate and
control 1/0 transactions on the SCSI bus.

The Versadtile Interface Adapters

The Macintosh II uses two custom Apple Versatile Interface Adapter (VIA) chips, 7
called VIA1 and VIA2. VIA1 is used mainly to provide control lines for the floppy disk
drives and Serial Communications Chip, and to interface the Apple Desktop Bus to
the system. VIA2 supports many features, including functions related to mnerrupts
from the NuBus slots, SCSI, and Apple Sound Chip.

The Apple Deskiop Bus

The Apple Desktop Bus (ADB) is a serial communications bus designed to
accommodate low-speed input devices. The ADB interfaces to the system through the
VIA1 chip. The A/UX kernel provides a set of routines called the ADB Manager. The

ADB Manager controls the ADB bus and calls other kernel routines that control the
VIA1 chip.

To perform I/O to a device connected to the ADB bus, a driver must control the /O
from the kernel level, to the ADB bus, and to the attached device. A device driver for
a device connected to the ADB calls routines in the ADB Manager to control
transactions on the ADB bus. For example, the structure of the mouse driver is
illustrated in Figure 1-7. The mouse driver calls ADB routines to initiate read
operations between the mouse and the ADB.

1-14 Chapter 1: Overview of A/UX Device Drivers '

Agure 1-6
The structure of a SCSI disk driver

Chapter 1: Overview of A/UX Device Drivers 1-15

Figure 1-7 ,
The structure of the mouse device driver

1-16 Chapter 1: Overview of A/UX Device Drivers

7

.

The Serial Communications Controller

Serial I/O is performed through two RS-422 serial I/O ports. The two serial ports are
controlled by a Zilog Z8530 Serial Communications Controller (SCC) chip. The serial
ports can be used for devices such as printers, modems, and other I/O devices. The
SCC chip is controlled in software by the sccio driver.

The Apple Sound Chip

The Apple Sound Chip (ASC) is used with the intemal speaker. You can hook up an
external mini-phono jack to the external sound connector. The ASC chip is controlled
. in software by two low-level kemel routines, sound.c and sound. s.

The Integrated Woz Machine

The internal floppy disk drives are connected to the system through the Integrated Woz
Machine OWM). The floppy disk driver contains the low-level routines to control the
IWM. The floppy disk driver uses these low-level routines to control the floppy disk
drive. .

Summary of software drivers and hardware

Figure 1-8 illustrates how an I/O request from a user goes through the kernel, device
drivers, low-level routines or managers to reach the actual device. For example, a
SCSI device driver calls routines in the SCSI manager to accomplish the I/O on the
hardware. Figure 1-9 shows the hardware each device driver interfaces to in greater

detail. For example, a SCSI device driver interfaces to the SCSI device through the
SCSI bus.

For more specific information on the various hardware interfaces in the Macintosh II,
refer to the Macintosh Family Hardware Reference.

Chapter 1: Overview of A/UX Device Drivers

Agure 1-8
Overview of an |/O request from a user program to the hardware

1-18 Chapter 1: Overview of A/UX Device Drivers

Figure 1-9
Overview of the hardware associated with each driver

Chapter 1: Overview of A/UX Device Drivers 1-19

Memory-mapped I/O

The Macintosh II uses memory-mapped I/O. This means that each device
(peripheral) in the system is accessed by reading from or writing to specific locations
in the address space of the computer. Parts of the Macintosh II address space are
reserved for performing memory-mapped I/O. Within this reserved address space,
specific blocks (addresses) are devoted to each of the hardware interfaces within the
computer.

The address space within $5000 0000 to $5FFF FFFF is the area reserved for system /O
address space. All hardware interfaces (except NuBus) are mapped within this address
space. The standard NuBus address space is within $F900 0000 to $FFFF FFFF.

By reading from or writing to a location in the system 1/O address space or the

standard NuBus address space, you are actually accessing (addressing) a particular
device.

Each device contains the logic to recognize when it is being addressed. You canuse
memory-mapped 1/O to write to registers on a device or card. Typically only the
lowest-level routines directly read from or write to the memory-mapped 1/O address
space.

By reading or writing to a specific location in memory, you are actually accessing
(addressing) a particular device. Illustrations of the address space used in A/UX are
shown in Appendix D.

Interrupt handling by your driver

How your device driver needs to handle interrupts depends on the hardware interface
that your device connects to. Apple supplies the low-level software that directly
control the hardware interfaces. For a description of these hardware interfaces, refer
to the previous section "An Overview of the Hardware". Also refer to Figure 1-4 for an
illustration of the interrupt level of each hardware interface.

1-20 Chapter 1: Overview of A/UX Device Drvers

When a device interrupts, the low-level managers or low-level routines are invoked to
handle the interrupt. The low-level routine or manager determines the type of
interrupt and what action, if any, to take. For example, if more than one device is
connected to that particular hardware interface, the low-level manager might have to
poll the hardware to determine which device interrupted.

The low-level routine or manager determines whether or not a higher-level of software
(driver) needs to be notified when a device interrupts. Typically, a device generates an
interrupt when the device has completed an 1/0 request. In this case, the higher-level

driver responsible for the I/O request needs to be notified that the I/0 has completed.

The low-level routine or manager notifies the higher-level driver by calling the
interrupt routine of the driver. (The interrupt routine of a driver is also often referred
to as the completion service routine.) The interrupt routine of the higher-level driver
can then take whatever action is necessary to service the interrupt for the particular
device.

For example, if the interrupt is due to I/O completion, the driver usually checks for
any error conditions that might have occurred, and takes appropriate actions. A
device driver's interrupt routine also typically notifies any user process waiting for the
I/O to complete. The synchronization that must exist between higher-level driver
routines and the interrupt routine of a driver is explained in detail in following .
chapters.

If you write a device driver for a SCSI device or ADB device, the driver you create will
access your device through one of the low-level managers. Your driver calls a low-
level manager to control the hardware interface your device is connected to. When an
I/O request completes on a device, the low-level manager is notified of the interrupt.

If you write a slot device driver, the driver you create will access your device through
memory-mapped I/O. Your driver can also use the Slot Library to read from slot
ROM. Your slot device driver must provide an interrupt routine that will be invoked by
the kernel when your slot card generates an interrupt.

As previously described, the low-level routine or manager typically invokes the
interrupt routines of higher-level drivers. This means that the low-level routine or
manager must obtain a pointer to the interrupt routine of your driver. Before
performing 1/O to your device, your driver must inform the low-level manager or
routine of the address of the interrupt routine of your driver.

Typically drivers call a low-level routine for this purpose during initialization of the
device, in either the driverinit or driveropen routines. The following paragraphs
briefly describe how to provide the address of your interrupt routine to the SCSI

Manager, ADB Manager, and low-level kernel code that manages interrupts from the
NuBus.

Chapter 1: Overview of A/UX Device Drivers

1-21

;\‘,_WM/

Handling interrupts from SCSI devices

To perform /O on a SCSI device, the driver calls a SCSI Manager routine. The driver
passes two parameters to the SCSI Manager routine: the SCSI ID of the device, and 2
pointer to a request block data structure.

The request block data structure contains a pointer to the interrupt routine of the
device driver making the request. This pointer allows the SCSI Manager to associate
the driver interrupt routine with a particular SCSI ID. When the SCSI device completes
the I/O transaction, the SCSI Manager calls the driver interrupt routine associated with
this request on the SCSI ID.

Hondling interrupts from ADB devices

The ADB Manager requires that your driver provide the address of its interrupt
routine before any hardware transactions are initiated on the ADB for your device.
Your driver should call £db_open (), including as parameters the address of your
driver interrupt routine and the ADB address of your device.

The ADB Manager calls this interrupt routine at the end of each ADB transaction to
pass back data and to notify the driver that the transaction has completed. The ADB
manager also calls the interrupt routine when certain exception device pollin
conditions exist. :

Handling interrupts from NuBus devices

For NuBus slot card drivers, your driver must tell the kernel the address of the interrupt
routine of your driver. You do this at the time your driver is linked into the kernel. To
add your driver to the kemnel, you create a master script file that specifies how your
driver should be linked into the kernel. The master script file for your driver must
contain the flags vs if your driver receives slot interrupts.

The kernel contains an internal slot interrupt vector table that is used to store
addresses of the interrupt routines of each driver that controls a slot. When you
specify the flags vs in your master script file, the kernel fills in the appropriate entry
of this table with the address of your driverint routine.

After receiving an interrupt from a slot card, the kemel indexes this table by slot
number and calls the appropriate driver interrupt routine.

- A
1-22 Chapter 1: Overview of A/UX Device Drivers L

Where to go from here

After you determine what kind of device you have, the type of device driver to write,
(block or character), and the interfaces you need, you are ready to read the rest of this
manual. Which chapters you read next depends on the type of device driver you are
writing. ' :

Wiriting a block device driver
If you are writing a block device driver read these chapters:

Chapter 2

This chapter contains kernel programming information that you should read
regardless of the type of A/UX driver you are writing.

Chaopter 3

This chapter describes the routines in a block device driver, data structures used by
the kemel and block device drivers, and the buffering the kernel performs for block
device drivers. .

If you are writing a block device driver for a device that can also be accessed as a
character device, read Chapter 4. Pay particular attention to the description of the
physio () routine.

Chapters 9-11

Of these chapters, read the one that describes the hardware interface you are using.
These chapters discuss using the NuBus, SCSI, and Apple Desktop Bus.

Chaplers 12-14

These chapters describe how to add drivers to the kernel. Chapters 12 describes the
autoconfig(2) utility. Chapter 13 shows a specific example of how to add a device
driver to the kernel. Chapter 14 describes how to prepare your driver for distribution
to your customers.

Appendixes A-G

When writing your driver, use Appendixes A and B as references. Each contains a
description, parameters, and error values for the driver and kernel routines discussed
in this manual.

Chapter 1: Overview of A/UX Device Drivers

1-23

Use the other appendixes as needed for your device. For example, Appendix D shows
the memory-mapped 1/O space used in A/UX.

writing a character device diiver
If you are writing a character device driver, read these chapters:

Chapler 2

This chapter contains kernel programming information that you should read
regardless of the type of A/UX driver you are writing.

Chapter 4

This chapter describes each of the routines a character device driver can provide. The
chapter also discusses various methods of buffering that you can implement in your
driver.

If you are writing a character device driver that uses a strategy routine, then read
Chapter 3, which covers block I/O. Chapter 3 gives background on the use of strategy
routines and using kernel buffers.

Chapters 5-8

Of these chapters, read the one that applies to the character device driver that you are
writing. These chapters discuss three specific implementations of character device
drivers: terminal, streams, and network device drivers.

Chapter 5

This chapter describes traditional terminal device drivers. The terminal device driver
is a special type of character device driver that provides an additional buffering layer
to handle terminal I/O operations. Streams terminal device drivers are described in
Chapter 7.

Chapter 6

This chapter describes streams drivers. The Streams device driver provides a flexible,
modular interface for character device drivers. Use Streams drivers in place of
traditional character drivers whenever possible.

Chapter 7
This chapter describes streams terminal device drivers.
Chapter 8 '

1-24 Chapter 1: Overview of A/UX Device Drvers

4/’{4 -

NS

This chapter describes network device drivers. Network device drivers are used for
devices that communicate with other machines.

You are not limited to writing terminal, streams, and network character device
drivers. You can write a character device driver for other I/O devices, implementing
the routines necessary for your device.

Chapters 9-11

Of these chapters, read the one that describes the hardware interface you are using.
These chapters discuss using the NuBus, SCSI, and Apple Desktop Bus.

Chapters 12-14

These chapters describe how to add drivers to the kernel. Chapters 12 describes the
autoconfig(2) utility. Chapter 13 shows a specific example of how to add a device

driver to the kernel. Chapter 14 describes how to prepare your driver for distribution
to your customers.

Appendixes A-G

When writing your driver, use Appendixes A and B as references. Each contains a

description, parameters, and error values for the driver and kemel routines. discussed
in this manual.

Use the other appendixes as needed for your device. For example, Appendix D shows
the memory-mapped I/O space used in A/UX.

Chapter 1: Overview of A/UX Device Drivers

1-25

Chapter 2

The Kernel Programming
Environment

2-1

This chapter describes kernel features and utility routines of special interest to anyone
writing A/UX device drivers. For an overview of A/UX, see the A/UX System
Overview. For an overview of the A/UX programming environment, see the A/UX
Programming Languages and Tools, Volume 1.

How a typical I/0 request goes through A/UX

This section presents an example that shows the way an 1/O request might flow from
the user through A/UX to a device. Many of the routines and data structures used in
this example are described in detail in later sections. The purpose of this example is to
give you an overview of how I/O is accomplished in A/UX.

For example, suppose you wanted to connect a high-gpeed printer to the SCSI port. A
You could write a device driver to control this SCSI printer. The following paragraphs
describe one possible implementation of such a driver.

The SCSI printer driver in this example is called prt. The prt driver has the
responsibility of printing the user's data to the printer. This printing process involves
copying the data to a temporary buffer, translating the data into a format and protocol
acceptable for the printer, and controlling the hardware interface.

The prt driver contains the code for high-level and device-specific functions, and ‘, ,
then calls a SCSI Manager routine to handle the hardware-related tasks of controlling P
the transaction over the SCSI bus.

Assume the prt driver provides the following high level routines accessible through
the cdevsw Lable: prt_open, prt_close, prt_read, prt_write, and
prt_ioctl. Inaddition the prt driver contains a interrupt routine called prt_int.

Assume a user process has already opened this device. The following paragraphs trace
awrite (2) request on the example SCSI printer, from the user request, through the
kernel and printer driver, to the device, and from the device back to the user process.
Refer to Figure 2-1 for the following discussion.

‘When a user process issues a write (2) on the device file associated with the prt
driver, the kernel processes the request. The kernel fills out a data structure related to
the I/O request. For example, the kemnel fills in the fields of the data structure with the
number of bytes to transfer and a pointer to the user's buffer.

The kemnel uses the major number of the device file to index into the cdevsw table
(because this file is a character device file). The kernel calls the routine stored at this
index that corresponds to 2 write (2) system call. In this example, the kernel calls
prt_write, passing the data structure and device number as parameters.

2-2 Chapter 2: Kernel Programming Environment qw ,/"

FAgure 2-1
Trace of a write(2) on the example prt driver

Chapter 2: Kemel Programming Environment 2-3

The kemel invokes prt_write with the device number and a data structure
describing the I/O request. prt_write uses a kernel macro to extract the minor
number from the device number. prt_write checks the minor number to make sure
this is a request to a valid device.

The data structure passed to prt_write includes a pointer to the user's buffer. Thus,
prt_write has direct access to the user's data. Because prt_write needs to
manipulate the user's data, prt_write copies the user's data to a temporary buffer.

Next, prt_write processes the data, formatting the data according to the
requirements of the printer. prt_write adds any device-specific protocol, then calls
a SCSI Manager request routine to initiate the I/O transaction. One of the parameters
to the SCSI Manager routine is a data structure describing the 1/0 request. For

example, this structure includes fields that specify the particular SCSI command, a
pointer to the data to transfer, and a pointer to the interrupt routine of the driver
making the request.

The SCSI Manager queues the request and retumns to prt_write. prt_write waits
for the 1/0 to complete by issuing a call to sleep (). sleep () puts the user process to
sleep until 2 corresponding call to wakeup () is issued. sleep () and wakeup () are
kernel routines drivers can use to synchronize 1/0O. They are described in Appendix B.

At this point, the I/O request has reached the hardware. When the hardware finishes

the transaction (the requested data has been written to the printer), the SCSI Manager oo
notes which request has completed. The SCSI Manager maintains a data structure that R
.associates requests with higher-level drivers. The SCSI Manager calls the interrupt

routine (prt_int in this example) of the driver associated with this request.

prt_int is the completion service interrupt routine of the prt driver. The SCSI
Manager calls prt_int when a request completes on the printer. The SCSI Manager
passes an error code as one of the parameters to prt_int. This error code indicates
the success or failure of the request. If an error occurred, prt_int interprets the error
code and decides how to handle the error. If the request was successful, prt_int
updates the appropriate data structures accordingly and calls wakeup ().

The call to wakeup () issued by prt_int awakens the process that had been waiting
on I/O. The call to wakeup () will cause prt_write to continue to execute from the
statement following the call to sleep (). prt_write sets any error values then
returns to the kemel. The kemel sets the return value of the system call and returns to
the user process.

This example illustrates that a high-level driver routine is called as a result of a system
call on a device file. The driver routine does any necessary processing of the request,
and can call other kernel routines or other low-level routines to assist in performing
the 1/0 operation.

2-4 Chapter 2: Kemel Programming Environment ‘(wf’\

When the driver is ready to send the request to the hardware, the driver calls a low-
level manager routine to accomplish the I/O on the hardware. If the driver waits for
the I/O to complete, the driver must provide an interrupt routine that the low-level
manager can call when the request completes. When the request completes, the driver
should return any data to the user and return a value indicating the success or failure of
the I/O request to the kernel. The return value of the system call indicates the success
or failure of the system call to the user process.

A/UX block and character device drivers

Before writing your device driver, you must first decide what type of device driver to
write. The device itself and how it performs in the system will determine the type of
device driver you write. The hardware that the device must gain access to will also
determine how you write your device driver.

In A/UX there are two types of devices drivers: block and character. A device driver
is called a block or character device driver according to the definitions given next.
Also, in some instances, you can write a device driver to be both a block device driver
and a character device driver.)

Devices can also be classified into two categories: block and character. These
classifications are based on historical definitions; many devices can be considered
either a block or character device. Actually the device driver and not the device itself
determines whether a device is referred to as a block or character device.

Block device drivers make use of the kemel buffer cache when accessing a device. All
data read from or written to a block device is buffered through the kernel buffer cache.
Block device drivers are most often used for devices that can contain mounted file
systems. The SCSI disk driver is an example of a block device driver.

When a user process reads from a block device, the kemel first checks the buffers in the
kernel buffer cache for the requested data. If the data is in the buffer cache, the kernel
copies the data from the kernel buffer to the user's buffer.

If the data is not in the buffer cache, the kemel calls the associated block device driver.
The block device driver transfers the data from the device to a buffer in the kernel
buffer cache. After the block device driver transfers the data to a buffer in the kernel
buffer cache, the kernel copies the data to the user's buffer.

When a user process writes to a block device, the kemel copies the data from the user's
buffer to a buffer in the kernel buffer cache. Then the kernel invokes the associated
block device driver. The block device driver schedules the transfer of data between the
kernel buffer and the device,and then returns to the kernel.

Chapter 2: Kemel Programming Environment

2-5

:ﬁ(“ \'\\,

Normally the kernel returns to the user, without waiting for the I/O to complete. Thus,
write(2) requests are usually asynchronous. That is, when the kernel returns from a
write(2) on a block device, you are not guaranteed that the data has actually reached
the device. You are only guaranteed that the kernel has copied the data to the kernel
buffer cache and that the block device driver has scheduled the data for I/O.

Character device drivers generally perform I/O asynchronously for a variable number
of bytes. Character device drivers can buffer their data in any method as needed. The
kernel does not buffer data in the kemel buffer cache for character device drivers as it
does for block device drivers. However, because the operation of terminals is
important to the system, the kemel does provide many data structures and routines
that terminal device drivers can use. Chapter 5 describes terminal device drivers in
more detail.

There are functional differences between the various character device drivers.
Character device drivers can provide a wide variety of functions and can support many
different 1/O devices. Examples of character device drivers are printer drivers,
terminal drivers, tape drivers, and network drivers.

Some drivers can be written to access the device as either a block or a character

device. For example, the SCSI disk driver allows the disk to be accessed as a block or a

character device. When the disk is accessed as a block device, data is buffered through

the kernel buffer cache. Most I/O to data files access the disk in this manner. When

the SCSI disk driver accesses the SCSI disk as a character device, the data is not N
buffered through the kernel buffer cache, but is transferred directly to the disk. The
program £sck(1) uses this type of access to repair a damaged disk. o

When a block or character device driver directly transfers data between the user's
buffer and the device, the driver is often said to be performing raw I/O.

Figure 2-2 illustrates various buffering techniques used by block and character device
drivers. This figure shows that the kernel buffers data between the user process and the
block device in the kernel buffer cache. The kemel is responsible for transferring the
data between the user's data area and kemel buffers. Block device drivers are
responsible for transferring data between a kernel buffer and the device.

As shown in the figure, character device drivers can directly control the buffering
between the user process and the device. The character device driver can implement
any buffering techniques necessary to transfer the data to the device. This means the
character device driver can either implement its own method of buffering or make

use of special kernel data structures, such as tty structures, to assist in the buffering of
the data. ’

Remember that, in raw I/O, character device drivers do not have to buffer the data at
all. Character device drivers that perform raw I/O usually use a strategy routine similar
to a strategy routine used by a block device driver.

Chapter 3 describes block device drivers, and Chapter 4 discusses character device
drivers in greater detail.

2-6 Chapter 2: Kermel Programming Environment E“kx

Figure 2-2
Methods of buffering data

Chapter 2: Kemel Programming Environment 2-7

Device files

In A/UX there are three different types of files: regular files (also called ordinary files),
device files (also called special files), and pipes. In A/UX, all I/O is accomplished by
reading or writing to one of these types of files.

All types of files have an inode (inode refers to index node). Each file has an inode
associated with it. Inodes are data structures used by the kernel to describe files. The
inode of an ordinary file contains information about the file, such as file ownership,
access permissions, size of the file, and pointers to the data blocks associated with the
file.

The inode of a device file also indicates file ownership and access permissions, but

does not contain pointers to any data blocks. This is because device files are used to
access devices in A/UX. Instead of pointers to data blocks, the inode of a device file
contains the device number associated with the device file.

The device number contains the major number and minor number of the device
file. The device number is a 16-bit number. The major number is stored in the upper 8
bits and the minor number is stored in the lower 8 bits.

The kernel uses the major number to associate a device with a particular device driver.
The device driver uses the minor number to encode information specific to the
device. For example, the disk driver uses the minor number to identify a specific
logical unit and partition of the disk.

A device file must exist for each device used to perform 1/O in the system. You read
from or write to a device by reading from or writing to the device file associated with
that device. For example, to read the current mouse location, first use open (2),
specifying /dev/mouse as the device file, then issue your read (2) request.

Device files are usually stored in the /dev directory. As previously stated, to access a
device the device must have a device file. You then use system calls to perform I/O to
the device. A device file can be either a block or a character device file.

The A/UX system comes with a set of default device files in the /dev directory. You
can use these device files to perform I/O on various devices. Device files for new
devices are usually created by the startup script of the device driver. The section
"Writing Optional Init and Startup Scripts” in Chapter 12 describes how to create a
startup script for your device driver.

New device files can be created with the mknod (1) command. (You must be superuser
to use this command.) For example, to create a character device file for a character
device driver with major number 9 and minor number 0, the startup script of your
driver could contain the following command:

2-8 Chapter 2: Kernel Programming Environment

mknod /dev/mydevice ¢ 9 0

This command creates the device file /dev/mydevice with major number 9 and
minor number 0 stored in its inode. You can verify the major and minor numbers for
the device file with the 1s -1 command:

% 1s -1 /dev/mydevice

crw-rw---- 1 root root 9, 0 February 29 15:23 mydevice

Note the values in the permission field: the first character is either b to indicate a block
device file, ¢ to indicate a character device file, d to indicate a directory, or -~ to
indicate an ordinary file. The read, write, and execute permissions are indicated next.
Like ordinary files, device files also have permissions associated with them. To read
from or write to a device, you must have the proper read and write permissions
indicated in the device file for that device.

The superuser can deny access to certain devices by setting the permission field

-appropriately. For example, the device file /dev/rdsk/c0d0s31 has the following

permissions:

% 1s -1 /dev/rdsk/c0d0s31

[o 1 root root S5, O February 29 15:25 c0d0s31

Only the superuser or root is allowed to access this section of the disk as a character
device.

Device switch tables

Device switch tables contain an array of device switch structures. Device switch (devsw
— pronounced dev-switch) structures contain pointers to driver routines that
correspond to system calls. These pointers to driver routines are stored in the devsw
structure for that device driver. For a user process to perform I/O to a device, the
associated device driver must have a devsw structure in the devsw table.

When a user process makes a system call, the kemel uses the major number of the
device file to index into the devsw table. The kernel calls the corresponding routine
from the devsw structure stored at this index.

Chapter 2: Kemel Programming Environment 2-9

The kerel maintains two devicé switch tables, one for block device drivers and one for
character device drivers. These two tables are called the bdevsw (bee-dev-switch) and
cdevsw (cee-dev-switch) tables.

The device switch tables are created whenever a new kernel is generated. Whenevera
new kemnel is created, including a kernel created by the autoconfig (1M) utility,
information in the /etc/master .d directory is read. This information is used to
create the bdevsw and cdevsw tables for the new kernel.

To add your driver to the kernel, you need to write 2 master script file for your
device driver in the /etc/master.d directory. You provide certain information
about your driver in this file: for example, whether your driver is a block or character
device driver. The autoconfig (1M) utility can then create the appropriate entries in
the bdevsw or cdevsw structure for your device driver.

The major number of your device driver is assigned by the autoconfig (1M) utility.
You create the device file for your device in an init or startup script which you need to
write for your device driver. Your init script and startup scripts are passed the major
number of your device driver when they are invoked. You can then define the minor
number for your device driver and use the major number passed to your init script or
startup script to create a device file for your driver. Chapter 12 explains the
autoconfiguration process and describes how to create a master script file for your
driver.

A device driver that can be used as both a character and block device driver has entries
in both the bdevsw and cdevsw tables.You choose which routines corresponding to
entries in the device switch structure you need to provide for your device driver.

The kernel gives a device driver all the information it needs to perform an I/O request.
The kernel passes this information to the device driver in various parameters.

For example, the kernel passes the device number as a parameter to almost all driver
routines. The read and write routines of character device drivers are passed a data
structure called a uio structure. This structure contains information about the I/O
request. Block device drivers receive similar information in a buf structure. Chapter
4 discusses the uio structure, and Chapter 3 discusses the buf structure.

The following sections describe the bdevsw and cdevsw tables in more detail.

The block device switch table

The block device switch table is an array of block device switch structures. The
bdevsw structure contains pointers to block device driver routines that correspond to
system calls. The bdevsw table is illustrated in Figure 2-3.

The bdevsw table is ordered by the major number for the device. The kernel uses the
major number to index into this table. When a user process makes a system call, the
kernel calls the corresponding routine from the bdevsw structure stored at this index.

2-10 Chapter 2: Kernel Programming Environment

L

Each block device driver in the system has a bdevsw structure associated with it. The
addresses of the driver's open, close, strategy, and print routines are stored in the
bdevsw structure for that device. The bdevsw structure is defined in
/usr/include/conf .h as follows:

struct bdevsw {
int (*d_open) ():
int (*d_close) ():
int (*d_strategy) ();
int (*d_print) (:

} bdevsw(];

Chapter 2: Kemel Programming Environment 2-11

Figure 2-3
The bdevsw table

2-12 Chapter 2: Kemel Programming Environment

The *d_open entry and other entries in the bdevsw structure are pointers to routines in
the device driver. These routines are responsible for carrying out the I/O request
corresponding to the system call. The purposes of these routines are described in the
following paragraphs.

d_open is used to prepare the device for I/O. The functions of this routine can include
configuring the device, initializing data structures, or setting default settings. If the
device does not exist or cannot be made available for I/O, your d_open routine
should return an error.

d_close is used to release resources associated with the device. The functions of this
routine can include releasing acquired memory, restoring the device to its initial state,
or other device-dependent operations.

d_strategy is used to schedule the I/O request for reading or writing. Note that the
strategy routine queues the I/O request and then returns to the kernel. The strategy
routine does not wait for the I/O request to complete.

d_print can be used to print error messages on the console. Your d_print routine
can call the kernel's print £ () routine to display the message.

Thed_open,d_close,d_strategy,andd_print routines should return a value to
the kernel indicating the success or failure of the I/O request. Return values of driver
routines are discussed in a following section entitled "Return Values of Driver
Routines".

Note: The d_open, d_close, d_print, and d_strategy routines are referred to as
the driveropen, driverclose, driverprint and driverstrategy routines
throughout the rest of this manual.

The autoconfig utility initially fills in the bdevsw table with default entries. These
default entries in the bdevsw structure can be a pointer to either of the two kernel
routines nulldev () Or nodev (). The nulldev() routine does nothing, while nodev ()
returns an error.

If the bdevsw entry contains nulldev () and the user process makes the
corresponding system call for that entry, the user process does not receive an error. If
the bdevsw entry contains nodev () and the user process makes the corresponding
system call for that entry, the user process does receive an error.

Refer to Chapters 12 and 13 for information on how aut ocon£ig(1M) creates and fills
in the bdevsw structure for your device.

A sample bdevsw table is shown in Figure 2-4.

Chapter 2: Kernel Programming Environment 2-13

struct bdevsw bdevsw(] = {

nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
snopen, snclose,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
nodev, nulldev,
hdopen, hdclose,
hdopen, hdclose,
hdopen, hdclose,
hdopen, hdclose,
hdopen, hdclose,
hdopen, hdclose,
hdopen, hdclose,
nodev, nulldev,

}:

Fgure 2-4
A sample bdevsw table

2-14

nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
snstrategy,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
hdstrategy,
hdstrategy,
hdstrategy,
hdstrategy,
hdstrategy,
hdstrategy,

hdstrategy,

nulldev,

nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
snprint,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
nulldev,
hdprint,
hdprint,
hdprint,
hdprint,
hdprint,
hdprint,
hdprint,
nulldev,

Chapter 2: Kemel! Programming Environment

/*
/t
/*
/t
/*
/t
/t
/i’
/*
/t
/t
/*
/*
/t
/t
/*
/t
/*
/t
/t

/* <

/*
/*
/*‘
/'k
/*
/*
/*
/*
/t
/*

WO o e wWwN+-=O

The character device switch table

The character device switch table is an array of character device switch structures.
The cdevsw structure contains pointers to character device driver routines that
correspond to system calls. The cdevsw table is illustrated in Figure 2-5.

The cdevsw table is ordered by the major number for the device. The kernel uses the
major number to index into this table. When a user process makes a system call, the
kernel calls the corresponding routine from the cdevsw structure stored at this index.

Each character device driver in the system has a cdevsw structure associated with it.
The addresses of the driver's open, close, read, write, ioctl and select routines are
stored in the cdevsw structure for that device. The cdevsw structure is defined in
/usr/include/conf .h as follows:

struct cdevsw

int (*d_open) () ;
int (*d_close) (), -
int (*d_read) () ;
int (*d_write) ();
int (*d_ioctl) ()

struct tty *d_ttys;
int (*d_select) () ;
struct streamtab *d_str;
}cdevsw [];
The *d_open entry and other entries in the cdevsw structure are pointers to routines in

the device driver. These routines are responsible for carrying out the I/O request

corresponding to the system calls. The purposes of these routines are described in the
following paragraphs. '

Chapter 2: Kernel Programming Environment

2-15

Figure 2-5
The cdevsw table

2-16 Chapter 2: Kemel Programming Environment

d_open is used to prepare the device for I/O. The functions of this routine can include
configuring the device, initializing data structures, or setting default settings, such as
the baud rate of the device. If the device does not exist or cannot be made available for
I/0, your d_open routine should return an error.

d_close is used to release resources associated with the device. The functions of this
routine can include releasing acquired memory, restoring the device to its initial state,
or other device-dependent operations.

d_read is used to read data from a device.
d_write is used to write data to a device.

d_ioctl is used to perform control operations on a device, to get status from the
device, change the configuration of a device, or for other device and driver
dependent functions. Driver ioctl routines are commonly used to perform
miscellaneous activities, such as rewinding a tape or ejecting a floppy disk.

d_select is used to check if I/O has completed or if an exceptional condition has
occurred. Select routines are often used to test if a device is ready for reading or
writing. .

If your device is always ready for reading or writing, the d_select entry can point to
the seltrue routine. seltrue is a kernel routine that returns TRUE when invoked as a
result of select(2) on a device file. If your driver does not provide a d_select

routine, aut oconfig(1M) fills in this field of the cdevsw structure with seltrue as
the default entry.

The d_open, d_close,d_read,d_write,d_ioctl,andd_select routines
should return a value to the kernel indicating the success or failure of the I/O request.
Return values of driver routines are discussed in the following section entitled "Return
Values of Driver Routines”.

Note: The d_open, d_close,d_read,d_write,d_ioctl,andd_select
routines are referred to as the driveropen, driverclose, driverread, driverwrite,
driverioctl and driverselect routines throughout the rest of this manual.

In addition to the pointers to the device driver routines, the cdevsw structure has a
field for a pointer to a tty structure and a field for a pointer to a st reamt ab structure.

If your device driver uses or needs a tty structure, then you will want the entry for

d_ttys defined in the cdevsw structure. Usually only terminal device drivers require a
tty structure.

If you want the entry ford_ttys defined in the cdevsw structure for your device
driver, then use the t option in your master script file. This instructs the kernel to

allocate a tty structure and set up a pointer to it in the cdevsw structure for your
device driver.

Chapter 2: Kermel Programming Environment

If your device driver uses or needs a st reamt ab structure, then you will want the entry
ford_str defined in the cdevsw structure. Usually only streams device drivers
require a st reamt ab structure.

If you want the entry for d_str defined in the devsw structure for your device driver,
then use the s option in your master script file. This instructs the kernel to allocate a
streamtab structure and set up a pointer to it in the cdevsw structure for your device
driver.

The autoconfig utility initially fills in the cdevsw table with default entries. These
default entries in the cdevsw structure can be a pointer to either of the two kernel
routines nulldev () oOr nodev(). The nulldev() routine does nothing, while nodev ()
returns an error.

If the cdevsw entry contains nulldev () and the user process makes the
corresponding system call for that entry, the user process does not receive an error. If
the cdevsw entry contains nodev () and the user process makes the corresponding
system call for that entry, the user process does receive an error.

Refer to Chapters 12 and 13 for information on how autoconfig(1M) creates and fills
in the cdevsw structure for your device.

A sample cdevsw table is shown in Figure 2-6.

ay

2-18 Chapter 2: Kemel Programming Environment

struct cdevsw cdevsw(] = {
scopen, scclose, scread, scwrite, scioctl,

sc_tty, ttselect, O, /* 0 %/
syopen, nulldev, syread, sywrite, syioctl,

0, syselect, O, /* 1 */
nulldev, nulldev, mmread, mmwrite, mmioctl,

0, seltrue, O, /* 2 */
erropen, errclose, errread, nulldev, nulldev,

0, seltrue, O, /* 3 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue, O, /* 4 */
snopen, snclose, snread, snwrite, snioctl,

0, seltrue, O, /* 5 */
nulldev, nulldev, nulldev, nulldev, fpioctl,

0, seltrue, O, /* 6 */
nulldev, nulldev, nulldev, nulldev, nulldev,

0, strselect, &disp_tab, /* 7 */
mouseopen, mouseclose, mouseread, mousewrite,

mouseioctl, O, seltrue, O, /* 8 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue, O, /* 9 */
sxtopen, sxtclose, sxtread, sxtwrite, sxtioctl,

0, sxtselect, O, /* 10 */
nulldev, nulldev, prfread, prfwrite, prfioctl, .

0, seltrue, O, /* 11 */
nulldev, nulldev, nulldev, nulldev, nulldev,

0, strselect, &cloneinfo, /* 12 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, strselect, &shlinfo, /* 13 */
nvram_open,nvram_close,nvram_read,

nvram_write,nulldev, 0, seltrue, O, /* 14 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue, O, /* 15 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue, O, /* 16 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue, O, /* 17 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue O, /* 18 */
nodev, nulldev, nulldev, nulldev, nulldev,

0, seltrue, O, /* 19 */
ptcopen, ptcclose, ptcread, ptcwrite, ptcioctl,

0, ptcselect, O, /* 20 */
ptsopen, ptsclose, ptsread, ptswrite, ptsioctl,

0, ttselect, O, /* 21 */
osmopen, nulldev, osmread, osmwrite, nulldev,

0, seltrue, O, /* 22 */
nodev, nulldev, nulldev, nulldev, nulldev,

o, seltrue, 0, /* 23 */
hdopen, hdclose, hdread, hdwrite, hdioctl,

0, seltrue, O, /* 24 */
hdopen, hdclose, hdread, hdwrite, hdioctl,

o, seltrue, 0, /* 25 */

Chapter 2: Kernel Programming Environment 2-19

hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, O, /* 26 */
hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, O, /* 27 */
hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, O, /* 28 */
hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, O, /* 29 */
hdopen, hdclose, hdread, hdwrite, hdioctl,
0, seltrue, O, /* 30 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, O, /* 31 */
nodev, nulldev, nulldev, nulldev, nulldev,
0, seltrue, O, /* 32 %/
}:

Figure 2-6

A sample cdevsw table

Retum values of driver routines

Your driver routines should return a value to the kernel, indicating the success or P
failure of the 1/O request. For successful requests, your driver routines should return 0 et
(zero). For unsuccessful requests, your driver routines should return a nonzero -

positive value that corresponds to an errno value. Values for errno are defined in

the header file <sys/errno.h>.

If your driver returns a zero to the kernel, the kermel returns a successful value to the
user. The value and meaning of a successful value returned to the user depends on the
system call. For example, for successful open (2) requests, the kernel returns a
positive file descriptor. For successful read (2) requests, the kernel returns the
number of bytes read.

If your driver returns a nonzero positive value to the kernel, the kernel returns -1 to the
user and sets the global variable errno according to the value that your driver routine
returned.

2-20 Chapter 2: Kemel Programming Environment " ‘ i

Process context and the user structure

In A/UX, a process is an instance of a program in execution. When executing a
process, the system is said to be executing in the context of the process. When the
kernel needs to execute a new process, it does a context switch, and the system
executes in the context of the new process. When doing a context switch, the kernel
saves enough information about the first process so that it can later switch back to the
first process and resume its execution.

Every process has an entry in the kernel proc table. The entry for an individual process
is a data structure called the proc structure. The kernel uses proc structures to describe
the state of every active process in the system. The proc structure contains all
information about the process that is needed while a process is swapped out.

The kernel also maintains information about a process in a data structure called the
user structure (also called the u-do#). The user structure contains all process related
information that does not need to be referenced while the user process is swapped out.

One user structure exists for each process in the system. Some of the information kept
in the user structure include the program counter (PC) and register values, the process
memory management unit (MMU) maps, a pointer to the associated proc structure,
and the arguments from system calls. The user structure is defined in the file
<sys/user.h>.

Whatever process is running at the moment has its user structure mapped at a known
location in the kernel address space; processes that are not running have their user
structures mapped elsewhere in the kernel. Normally there is only one user structure in
the kernel at 2 time—the process now running. This manual uses the term u-dot to refer
to the user structure of the current process.

A device driver should never modify values in the user structure. The kernel gives a
device driver all the information it needs to perform an 1/O request. The kemel passes
this information to the device driver in various parameters.

For example, the kernel passes the device number as a parameter to almost all driver
routines. The read and write routines of character device drivers are passed a data
structure called a uio structure. This structure contains information about the I/O
request. Block device drivers receive similar information in a buf structure.

Chapter 2: Kernel Programming Environment

2-21

Utility routines and macros

The kernel provides a number of routines that you can use in your driver. This section
describes routines that can be called from any device driver; you'll also find
additional kernel routines for block device drivers in Chapter 3 and additional kernel
routines for character device drivers in Chapters 4, 5, and 6.

Use this section to get general information about kernel routines that can be called.
Appendix B is a reference for kernel routines found in this manual. Appendix B
provides specific information about the parameters passed to each routine and the
error values returned for each routine.

Sefting processor levels

Your driver can set the hardware priority level with the spl#n routine, which disables
interrupts below a specified priority level 7. Setting the priority level prevents
unwanted interrupts from reaching the device. See the spln routine in Appendix B for
specific values of n

To set the interrupt priority level back to its previous state use the splx(s) routine,
where s is a value retumned by the previous spln call.

Waiting for 1/0 to complete on an address or for an event to
occur (sleep) ‘

sleep () is used to synchronize I/O by making a process wait (and allowing other
processes to run) until a certain event occurs. The event is an address that the calling
process passes as a parameter {c sleep ().

When a driver calls sleep (), the kernel changes the process state to “asleep” and
removes the process from the run queue. When a process is removed from the run

queue because of a call to sleep (), the process is often referred to as a "sleeping"
process.

When a process's state changes to asleep, a context switch occurs; thus, sleep() should
always be called within the process’s context.

After the driver calls sleep (), the sleeping process will continue to sleep until

another routine calls wakeup (), using the same address as specified by the process
that called sleep ().

The sleep() routine is passed an address, as just described, and a priority level.

Priority levels range from 0 to 127, with 0 having the highest priority and 127 having
the lowest priority.

2-22 Chapter 2: Kemel Programming Environment

Several processes can sleep on the same address. When more than one process calls
sleep () with the same address, the priority level determines which routine will
execute first.

Signals cannot interrupt processes sleeping at a priority less than the parameter
PZEROQ, although they can be swapped out. PZERO and PCATCH are defined in
<sys/param.h>.

PCATCH is a bit set in the priority level argument to s1eep () that is OR'ed into the
priority field of the proc structure when a driver wants any signals that occur during
sleep to be ignored and handled later (for example, page faults and streams
processing). If processes sleep at this priority level, sleep () will return 0 if awakened
or 1 if a signal occurred while sleeping.

Waiting for 1/0 to complete on a buffer header (biowait)

The kemel or a driver uses biowait () when a process is waiting for a resource called a
buffer header, or buf structure. The routine biowait () is similar to sleep(), excepta
buf structure is always passed as a parameter to biowait (). When a driver calls
biowait (), the kemel sets a flag in the buf structure and puts the process to sleep. The
process continues to sleep until a corresponding call to biodone () ismade.

Notitying a prdcess of 1/0 completion or an event occurred
(wakeup)

The kernel or a driver uses wakeup () to notify all processes that are waiting for an event
to occur that the event has occurred or to notify all process that are waiting for I/O to
complete that the I/O has completed. The event is an address that the calling routine
passes as a parameter to the wakeup () routine.

All sleeping processes marked with the same address are removed from the sleeping
processes queue, placed on a list of available processes, and the process state is
changed from “asleep” to “ready to run.”

Notifying a process I/0 has completed on a buf structure
(bidone)

The kemel or a driver uses biodone() to notify a process that I/O has completed on
the buf structure specified in the call to bicdone (). All processes sleeping on the buf

structure are removed from the sleeping processes queue and placed on the ready to
run queue.

Chapter 2: Kernel Programming Environment

2-23

Reading from and writing to a user buffer

If you are writing a character device driver you can provide your own method for
transferring data between a user buffer and a device. Optionally, you can use various
routines provided by the kernel. You can use these kernel routines 1o copy a single
character between the user buffer and a driver buffer, to copy blocks of information
between the user buffer and the driver buffer, or to directly copy data between the user
buffer and the device.

Your driver can use two routines to read and write a character to and from a user
buffer: ureadc () and uwritec(). ureadc () delivers a character to a user buffer
associated with a read (2) system call. uwritec() retrieves a character from a user
buffer associated with a write (2) system call.

Your driver can use the copyout (), subyte (), and suword () routines to transfer data
from a driver buffer to a user buffer. copyout () copies blocks of information from the
driver buffer to the user buffer, subyte (} copies a single character from the driver
buffer to the user buffer, and suword () copies a single integer from the driver buffer to
the user buffer.

Your driver can use the copyin (), fubyte (), and fuword() routines to copy data from
a user buffer to a driver buffer. copyin () copies blocks of information from the user
buffer to the driver buffer, fubyte () copies a single character from the user buffér to
the driver buffer, and fuword () copies a single integer from the user buffer to the
driver buffer.

Your driver can also use the uiomove () routine in place of copyin () or copyout () to
copy data between a user buffer and a driver buffer.

Your driver can use the kemnel routine physio () to directly copy data between the user
buffer and the device. Chapter 4 describes this method of buffering in more detail .

Gaining access to user address space

To determine whether your driver can gain access to the current user address space
memory, call the useracc () routine.

Finding the major number of your device

Your driver can use the macro ma jor to find the major number assodated with your
device. The macro major extracts the major number from the device number and
returns the major number to the calling routine.

2-24 Chapter 2: Kemel Programming Environment

Finding the minor number of your device

Your driver can use the macro minor to find the major number associated with your
device. The macro minor extracts the minor number from the device number and
returns the minor number to the calling routine.

Encoding the major and minor numbers of your device

You can use the kernel macro makedev to encode the major and minor numbers for
your device.

Setting a timeout (timeout)

Your driver can use the timeout () routine to set a timer for a minimum number of
clock ticks. After the given time period has elapsed, the kernel calls the routine
specified as a parameter to t imeout (). Note that the routine is not called in process
context.

timeout () can be useful when you want to set 2 maximym amount of time you are
willing to wait for an event to occur. For example, you might want to wait only a certain
number of seconds for a device to come online. By using the t imeout () routine, you
could specify that your driver routine be called if the device did not respond after a
certain amount of time.

Removing a Timeout (untimeout)
The untimeout () routine is used to remove a timeout previously set by t imeout ().

If your driver set a timer using the t imeout () routine and if the timer expires,
indicating that the anticipated event did not occur, the routine specified in the call to
timeout () will be called. If the event does occur before the timer expires, you must
call unt imeout () to cancel the preceding timeout request.

Delaying execution

Your driver can call delay () to make a process wait for a specific interval before
resuming execution. delay () must be called in process context, because it suspends
a process and puts it to sleep for a minimum number of clock ticks. For example,
delay () is useful in routines that need to wait for a 3.5-inch disk drive to spin up to
speed.

Chapter 2: Kemel Programming Environment

2-25

Sending a signal to a user process

Signals inform user processes of certain events that occur. For example, your driver
may need to send a signal when a modem carrier line drops. The kernel signal ()
routine sends a specified signal to all processes in a process group. signal () canbe
called in any process context.

Note The kemel signal () routine is not the same as the signal (2) routine, which
specifies how the calling process handles signals that are received.

To send a signal to a single process, your driver should call psignal() . psignal ()
marks (in the proc structure) that the process should receive a signal and enables the
job to run. When a signal is caught in a user process (for example, when the user types
a break character), a context switch occurs and the process handles the signal. When a
process is executing in the Berkeley signal environment, a signal is not always
sufficient to awaken it (for example, if the process is stopped).

2-26 Chapter 2: Kemel Programming Environment

Chapter 3

Block Device Drivers

3-1

This chapter starts with a general discussion of block I/O device drivers and the rules
for writing them. This chapter then describes data buffering structures, followed by
detailed descriptions of the block device driver’s open, close, strategy, and diagnostic
print routines. The start and interrupt routines of a block device driver are also
discussed.

Overview

Block device drivers make use of the kemel buffer cache when accessing a device. All
data read from or written to a block device is buffered through the kernel buffer cache.
Block device drivers are most often used for devices that can contain mounted file
systems. The SCSI disk driver is an example of a block device driver.

A block device driver maps logical device block numbers to physical device block
numbers. A block I/0 logical device is a device consisting of addressable secondary
memory blocks. The size of each block is a multiple of the DEV_BSIZE constant. (In
the past, logical devices have also been called partitions.)

The block device driver recognizes the physical devices in the system. The driver's
main job is to hide all aspects of the physical device from the kernel and present a
logical device interface of 7 512-byte blocks, which are numbered from 0 to #»-1. Thus,
to the A/UX operating system, logical devices and physical devices appear to be the
same.

Typically, any device with a block I/O driver interface also supports a character /O
driver interface. That is, the source file for the driver contains routines for both block
device drivers and character device drivers.

A block device driver can support more than one physical device. In turn, each
physical device can contain more than one logical device. Typically, a single physical
device, such as a 300-megabyte disk drive, will have a number of logical devices on it.

Chapter 3: Block Device Drivers 3-2

S

“;&

Transferring data to and from a block device

After the operating system mounts the file system and opens the device file for the
device, a driver reads and writes to a block device in one of two ways:

¢ indirectly through the kernel buffer cache
e directly through a raw (character) interface

Indirect data transfers take place using the kernel buffer cache. The A/UX kernel
provides a cache of buffers to temporarily hold data being transferred between user
data space and block 1/0O devices. Buffered 1/O is described in the next section.

Direct data transfers take place using raw I/O. All read and write operations using raw
I/O perform input and output directly to and from the device without buffering data.
Character device drivers are used to perform raw 1/O. Raw 1/O is discussed in a later
section, and also in more detail in Chapter 4.

Buffered 1/0

Buffered I/O uses two important data structures: the buf structure (also called the
buffer header) and the iobuf structure. Both structures are described in the following
sections.

The buf structure

Each buffer in the buffer cache contains two parts: a buf structure and an associated
buffer. The buf structure is a data structure that is used to store control and status
information about the buffer. The buffer is a memory array containing disk data. The
buf structure contains a field (b_un .b_addr) that points to the buffer associated with
this buf structure.

The buf structure is the sole argument to the strategy routine of a block device driver.
The buf structure contains all the information needed to perform the data transfer.
The kernel fills out fields of the buf structure and then invokes the driverst rategy
routine with a pointer to the buf structure.

A driver can also use buf structures to perform unbuffered or physical 1/0, in which
case the b_un.b_addr field of the buf structure points to a portion of user data
space.

Chapter 3: Block Device Drivers

3-3

7
A

The buf structure is defined in <sys/buf . h> as follows:
struct buf
{
long b_flags; ,
struct buf *b_forw, *b_back:
struct buf *av_forw, *av_back;
long b_bcount;
long b_bufsize;
short b_error;
dev_t b_dev;
union {
caddr_t b_addr;
int *b_word;
struct filsys *b_fs; .
struct dI-node *b_dino; -
struct fblk *b_fblk: N
daddr_t *b_déadr; .
struct svfsdirect *b_direct;
} b_un;
daddr_t b_blkno;
long b_resid;
struct proc *b_proc;
int (*b_iodone) () ;
struct vnode *b_vp;
time_t b_start;
}i
A device driver may need to look at or set the following fields of the buf structure:
® b_flags contains bits that indicate the status of the buffer (B_BUSY flag) and tell
the driver whether the device is to be read from or written to (B_READ or B_WRITE
flag). When the 1/O transfer completes, the driver should set the B_ERROR flag if an
error occurred. The complete list of flag descriptions is found in <sys/buf.h>.

AN
£

Chapter 3: Block Device Drivers ~ 3-4)

e av_forwand av_back are a pair of pointers that maintain a doubly-linked list of
“free” blocks (blocks that can be reallocated for another transaction). A driver can

use these lists to link the buffer into driver buffer queues.

¢ b_bcount is the number of bytes to be transferred to or from the buffer.

¢ b_dev holds the device number. The device number contains the major and minor
numbers. Your driver can use the kermnel macros ma jor and minor to extract these
numbers from the device number.

* b_blkno is the device offset (in byte blocks starting at block 0) to be accessed. The

constant DEV_SIZE is the size of a block.

e b_resid is the number of bytes not transferred after the I/O request completes.
Your driver should set this field to zero if all bytes were transferred. If an error
occurred, your driver should set this field to the number of bytes that were not

transferred.

* b_error contains a value indicating the success or failure of the I/O request. Your
driver should set this field to an errno value if an error occurred. If the request was

successful, your driver should set this field to 0.

The iobuf structure

The iobuf structure is a header for a2 queue of buf structures that are currently
involved in I/O operations. Your device driver must declare and initialize one iobuf
structure for each physical device handled, even if several physical devices use the
same device driver. Autoconfiguration can be used to allocate these iobuf structures
(see Chapters 12 and 13 for details). The iobuf structure is defined in
<sys/iobuf.h> as follows:

struct iobuf

{
int
struct
struct
struct
struct
dev_t
char
char

struct

buf
buf
buf

buf

b_flags;
*b_forw;
*b_back;
*b_actf;
*b_actl;

b_dev;

b_active;

b_errcnt;

eblock *io_erec;

Chapter 3: Block Device Drivers

3-5

int io_nreg;
physadr io_addr;
struct iostat *io_stp;
time_t io_start;
int io_s1;
int io_s2;
}bi
A device driver interacts with these two fields of the iobuf structure:
¢ b_actf is the first buf structure on the iobuf queue.
e b_active determines whether the device controlled by this iobuf is active. If the
field is set, an operation is occurring; if the field is 0, no operation is occurring.

When the device is ready for an I/O operation, the driver examines the first buffer on
the active queue and sets the b_act ive field. After the operation ends, the driver sets
b_active to 0, removes the buffer from the active queue, and updatesb_actf to
point to the next buffer.

The block device driver interface

The following sections briefly describe the routines of the block device driver that are
called through the bdevsw table. For a description of how a block device I/O operation
occurs, see “Trace of an I/O Request on a Block Device Driver” later in this chapter.
Appendix A also includes a description of the parameters, calling sequence, and
return values for each of the routines presented in the following sections.

Opening a block device for |/O

The purpose of the block device driver’s open routine is to make sure that the kernel's
request to use the logical disk is valid; the driveropen routine does not actually open
an A/UX file. The driveropen routine of a block device driver is called whenever a user
process makes an open(2) system call on a block device file.

The driveropen routine

The driveropen routine is used to get the device ready to perform I/O. This process
might include initializing data structures and setting the configuration of the device. A
block device driver’s open routine might also perform other functions:

Chapter 3: Block Device Drivers 3-6

e Check to see if the device number passed to it as an argument is valid for the
physical device. The device number is composed of a major number and a minor
number. Your driver can encode the minor number with device or driver specific
information. For example, the A/UX disk driver (hd.c) encodes the high-order
bits of the minor number with the drive number, and uses the low-order bits to
index into a table of logical disks for the physical drive.

e Call an optional timer function (if the device’s open routine has not been called
before) to periodically check the status of the device. For example, your driver
could call a routine at specified times to determine if I/O has ended and could reset
the hardware if it appears that 2 hardware problem has occurred.

¢ Set up addresses or request private data areas for use as long as the device is open.
For example, error logging might require a data buffer that stores the number of
retry operations.

¢ Perform device-dependent initialization and status checks to enable the physical
hardware to be used, such as waiting for a disk drive to spin up to speed and come
on-line.

* Remember that the block device driver can control more than one physical device.
For example, a disk controller card may support several physical disk drives and
each physical disk drive may have multiple logical disks on it. The driveropen
routine must keep track of which physical drives have been previously initialized
and opened.

The driveropen routine is called as follows:
int driveropen (dev, flag)

dev_t dev;
int flag;

where

¢ dev is the device number. The device number contains the major and minor
number of the device file. A character device driver should check to see that the
minor number passed to it as an argument is valid for the device being called. If
not, the driver should return an error.

* flag corresponds to the oflag parameter specified by the user in the open(2) call.
(See open(2) in the A/UX Programmer’s Reference.) Specific values for the flag
parameter are listed in the £_£1ag field of the file descriptor data structure (in the
header file <sys/file.h>).

e driver is the device prefix.

Chapter 3: Block Device Drivers

The driveropen routine is called with two parameters. The first parameter is the device
number of the device file being opened. The driveropen routine can use the kernel
macro minor to extract the minor number from the device number. Your driver can
encode the minor number with driver specific information. For example, when a
driver is used to control more than one device, the minor number is usually encoded
to indicate the device or id number of the device.

Your driver can then use the minor number to identify the particular device to which
the I/O request is directed. Your driver can also set up arrays indexed by the minor
number. Using the minor number in this way lets your driver keep track of which
request is associated with a particular device.

After you decide how to encode the minor number for your device and how your
driver will use the minor number, remember to create the device file for your device in
either an init or startup script.(The init and startup scripts are used with
autoconfig(1M) and are described in Chapter 12). For example, a driver might use
a certain bit in the minor number to select the physical device. Then you would need
to create multiple device files in your init or startup script for each different physical
device that can be selected.

The flag parameter in the driveropen call corresponds to the oflag parameter

specified by the user in the open(2) call. The kernel translates the oflag values of

O_XXXX into their corresponding flag values of FXXXX. For example, O_NDELAY

becomes FNDELAY, and O_RDONLY, O_WRONLY and O_RDWR are translated into two s
flags, FREAD and FWRITE. The flags of interest 1o a driver are FREAD, FWRITE, and
FNDELAY. The action your driver takes if any of these flags is set is driver dependent.
However, your driver does not have to implement actions for any of these flag values.
For example, the O_NDELAY flag usually has meaning only for terminal devices.

The block device driveropen routine should report any errors to the kernel by
returning a value that indicates the success or failure of the request to the kernel. Your
driver should return a zero (0) if the open request was successful. If the open request

was not successful, your driver should return a nonzero positive errno value to the
kernel.

If your driver returns a value indicating success, the kernel returns a file descriptor to
the user. The kernel also maintains a count of the number of times this device file has
been opened and increments this counter on each successful open(2) call. The kernel
uses this information to determine when to call the driverc1ose routine.

If your driver returns an errno value to the kernel, the kemnel returns -1 to the user and
sets the global variable errno to the errno value returned by your driver.

S{J N\A\‘\ .
Chapter 3: Block Device Drivers 3-8 ”k/

The driverclose routine

The kemnel calls the driverclose routine on the last close(2) of the block device. If
several processes have opened a device, the driverclose routine is called once when
the last process that has opened the device closes it.

The kernel maintains a count of the number of times the device file has been opened,
and calls the driverclose routine only if this is the last close of the device file.

Note that "called on the last close" actually means that the driverc1lose routine is
called only on the last close of a unique device number. Thus, for a disk that has
different device numbers (device files) to represent different partitions on the disk, the
driverclose routine will be called each time a partition is closed. Your block device
driver needs to make sure that all partitions on a single disk have been closed before
performing any final driver close functions.

The driverclose routine is called as follows:

void driverclose (dev, flag)
dev_t dev;

int flag;

where
e devis the device number.

¢ flag corresponds to the flags from the oflag field of the open system call. Specific
values for the flag parameter are listed in the £_£1ag field of the file descriptor
data structure (in the header file <sys/file.h>).

e driveris the device prefix.

The driverclose routine is used to remove the connection between the user process
and the device. The functions of a driverc1ose routine might include reinitializing
driver data structures and device hardware. The driverclose routine should do any
necessary processing to make the device available to be opened later.

Performing 1/O (using the strategy routine)

Block device drivers use the kernel buffer cache to move data to and from a physical
device. Instead of providing separate read and write routines, a block device driver
uses a single st rategy routine to move data between the buffer cache and a device.

The main functions of the driverst rategy routine are to place the buf structure for

the I/O request onto the device's active I/O request queue and to call a start routine to
begin 1/O. '

Chapter 3: Block Device Drivers

3-9

The driverst rategy routine is invoked with a pointer to a buf structure. For block
device drivers, the kemel fills out all fields in the buf structure with information about
the 1/0 request before calling the driverst rategy routine.

The driverstrategy routine is called as follows:

void driverstrategy (bp)
struct buf *bp;

where

e bpis a pointer to the buf structure containing information about the I/O request.
The b_un.b_addr field of the bu£ structure contains the address of the buffer
being read or written.

e dnriver is the device prefix.

Your driverst rategy routine uses information in the buf structure to perform the
I/O request. For example, the buf structure indicates the direction to transfer the
data, the device the I/O request is directed to, and the number of bytes to transfer.

Your driverst rategy routine should schedule the I/O. This scheduling often .
involves calling another routine called the driverstart routine. The driverstart
routine usually takes care of the low-level details of the I/O transfer, including
managing the request queue of buffers waiting to send or receive data. ~

After scheduling the 1/0, your driverst rategy routine should return to the calling
routine. Your driverst rat egy routine must not issue a call to biowait () or

sleep (). The calling routine has the responsibility of determining whether or not to
wait for the I/O request to finish.

Writing to a block device

‘When a user process writes to a block device, the kernel copies the data from the user's
buffer to a buffer in the kemel buffer cache. The kernel fills out a buf structure with
information about the I/O request. Then the kernel invokes the associated block
device driverstrategy routine, passing a pointer to a buf structure as a parameter. The
driverstrategy routine schedules the transfer of data between the kernel buffer and the
device, and then returns to the kernel.

After scheduling the 1/O, your driverstrategy routine should return to the calling
routine. Your driverstrategy routine must not issue a call to biowait () or sleep ().

The calling routine has the responsibility of determining whether or not to wait for the
/O request to finish.

Chapter 3: Block Device Drivers 3-10

For write (2) requests, the kemel usually returns to the user without waiting for the
I/O to complete. Thus write (2) requests are typically asynchronous. That is, when
the kernel returns from a write (2) on a block device, you are not guaranteed that the
data has actually reached the device. You are only guaranteed that the kernel has
copied the data to the kemel buffer cache and that the device driver has scheduled the
data for 1/0.

Reading from a block device

When a user process reads from a block device, the kemel first checks the buffers in the
kernel buffer cache for the requested data. If the data is in the buffer cache, the kernel
copies the data from the kernel buffer to the user’s buffer.

If the data is not in the buffer cache, the kernel calls the associated block device
driverst rategy routine. The driverst rategy routine transfers the data from the
device to a buffer in the kemnel buffer cache. After the driverst rategy routine
transfers the data to a buffer in the kernel buffer cache, the kernel copies the data to the
user's buffer.

After scheduling the I/O, your driverst rategy routine should return to the calling
routine. The calling routine has the responsibility of determining whether or not to
wait for the I/O request to finish.

When the kernel calls driverst rategy as the result of 2 read (2) on a block device
file, the kemel usually does wait for the I/O to complete.

The driverst rategy routine can also be used to perform raw I/O. In this case, the
character device driver's driverread and driverwrite routines call the kemel routine
physio (). Parameters to physio () include a pointer to a buf structure, pointer to a
uio structure, pointer to the driverst rategy routine, the device number, and a
read/write flag.

Physio() fills out the buf structure passed to it with information specified from the
other parameters in the call. Then physio () invokes the driverstrategy routine,
passing the buf structure as a parameter. Raw /O is further described in a following
section.

The block device start routine

The driverst rategy routine calls another routine provided by the driver called the
driverstart routine. The driverst rategy routine calls driverstart to initiate the
first I/O operation for a device.

Chapter 3: Block Device Drivers

EA

S

The driverstart routine locates the data on the device from the minor number and
block number fields (b_dev and b_blkno) and uses the buffer address
(b_un.b_addr) to ndennfy where data should be transferred.

The block device driver maintains a queue of buffers that are being processed for I/O.
The driverstart routine places the buf structure passed to it on the active I/O queue.
If there are no pending requests, the driverstart routine calls lower-level routines to
begin the 1/O transfer for this buf structure. If there are pending requests on the
device, driverstart returns to the calling routine..

You can also call the driverstart routine from the driver interrupt routine. The
driver interrupt routine is described in the next section.

The block device interrupt routine

The interrupt routine of a block device driver handles the interrupt generated after the
1/O operation is complete. The interrupt routine then calls the driverstart routine to
initiate /O for the next buf on the active I/O queue. The interrupt routine continues
to call the start routine to initiate I/O if there is a request to be acted upon and then
returns.

When all data is transferred, the driver interrupt routine calls biodone () or "\

wakeup () to notify any processes waiting for the I/O to complete that the I/O request
has finished.

-

Trace of an 1/O request on a block device driver

Figure 3-1 summarizes the flow of control of an I/O request on a block device driver.

The following paragraphs describe how a block device driver processes an I/0
request.

Chapter 3: Block Device Drivers 3-12 A

Agure 3-1
Reading from or writing to a block device

Chapter 3: Block Device Drivers 3-13

Block device drivers use the kernel buffer cache to move data to and from a physical
device. After a user process makes a read (2) or write (2) system call, a strategy
routine is called to move data between the buffer cache and a device. The strategy
routine locates the data on the device from the device number and block number
fields (o_dev and b_blkno) of the buf structure and uses the buffer address
(b_un.b_addr) to identify where data should be transferred.

For read (2) requests, the kernel searches the buffer cache for the requested block. If
the requested block is in the cache, the kernel returns the block immediately to the user
program without physically reading the device. If the block is not in the cache,the
kernel assigns the block a free buf structure and buffer, and then calls the

driverst rategy routine to handle the data transfer. If no free buffers are available,
the kernel puts the user process to sleep until a buffer is released from another process.

The kernel fills in the buf structure with information about the I/O request. The
b_flags field is set to B_READ or B_WRITE to indicate the direction to transfer data.
The kernel sets the b_ dev field to the device number. The b_un.b_addr field is set
to point to the kernel buffer to which data is to be transferred into or out of.

The strategy routine first verifies that the block address (found in the buf structure) is
valid for the logical device being read or written. If the physical device is divided into
several logical devices, the strategy routine must check the requested block to see that
it is in the partition specified by the minor number.

The strategy routine places the I/O request on the active queue. The strategy routine
then checks to see if the device is busy. If the device is busy, the read must sleep until
the device becomes available. An I/O request may be placed in the queue in other
than first-in-first-out order. For instance, your driver can search the queue and place
the I/O request in an order that reduces disk arm movement. (You can use the
disksort () routine to order the queue in this manner.)

For write (2) requests, the kernel informs the disk driver that it has a buffer whose
contents should be written, and the disk driver then schedules the block for I/O. If the
disk driver finds a buffer that contains the data, the driver writes the data immediately.
Otherwise, the least recently used buffer is reassigned to the write request and the write
is performed by marking the buffer as “dirty.”

After 1/O is complete, the device sends an interrupt to the processor. The driver’s
interrupt routine is called to remove the buf structure from the active I/O queue, to
check the queue for more requests, and to call the biodone () routine to wake up any
sleeping processes. The buffer is placed back on the available list

The interrupt routine then calls the start routine to start 1/O for the next buffer on the
active I/O queue. The start routine checks the status of the device, checks and marks
the I/O queue for active requests, selects the 1/O device, and then calls 2 command
process routine to initiate the I/O process. This interrupt-start mechanism continues
until all I/O requests are processed.

Chapter 3: Block Device Drivers 3-14

%\ﬂ,f

Raw I/O

As previously described, block 1/0 involves using the buffer cache to transfer data
between the user space and the device. This process can be slow, because read and
write operations are done a block at a time, and buffer operations such as transferring
a block from one buffer to another and flushing out filled buffers must be done.

Your device driver might need to provide the ability to perform raw I/O. This means
that data is transferred directly between the device and user address space, without
using the data cache. Raw I/O is very useful for backup and restore programs, because
your driver can read or write more than one block at a time. For example,a driver can
read tape drive files into memory quickly or write tape files onto a magnetic tape
cartridge quickly, because the data is input or output in large “chunks.”

Your device driver will need to provide entry points in the cdevsw table for driverread
and driverwrite routines in order to perform raw 1/O.

Your driverread and driverwrite routines can call the kernel routine physio () to
perform read and write operations for unbuffered I/O. By using physio (), you can
use buf structures and the same strategy routine as used by a block device driver.

Thus, as with buffered I/O, the buf£ structure's device number and block number fields
identify where to find data on the disk, and the buf£ structure 's address field identifies
where the data should be transferred.

Disks are normally not handled as true block devices. More commonly, they use both
the block device and character device (raw 1/O) interfaces. For example, Figure 3-2

shows the interface to a typical disk driver. As shown in the figure the driverread and
driverexrite routines referenced by the cdevsw structure are used to perform raw 1/O.

Chapter 3: Block Device Drivers

3-15

Fgure 3-2 _
Reading from or writing fo a block device using raw I/O

Chapter 3: Block Device Drivers 3-16

gf oo }

The driverread and driverwrite routines call physio (), passing a buf structure,
uio structure, pointer to the driverst rategy routine, device number, and read/write
flag as parameters. Physio () fills in fields of the buf structure. For example,

physio () setsthe b_un.b_addr field to point to the user's buffer.

Then physio () calls the driverst rategy routine. The driverst rategy routine is
usually the same strategy routine invoked as the result of a read (2) orwrite(2) on
a block device file. The driverst rategy routine queues the request and calls the
driverstart routine to begin I/O. '

After the strategy routine returns to physio (), physio () waits for the I/O to
complete by putting the user process to sleep.

When the transfer completes, the driver interrupt routine awakens physio () by
calling biodone (). Physio () then updates the uio structure and and returns to the
driverread or driverwrite routine.

The diagnostic print routine

The diagnostic print routine of the block device driver can be used to print error,
messages on the console when device errors occur.

Performing initialization on a device driver

Your driver can provide an initialization routine called driverinit, where driveris
the device prefix for your driver. During autoconfiguration, the kernel searches the
object file of your driver for a routine with the name driverinit. If the kemel finds
such a routine, the kernel adds this information to a list of driverinit routines to call
during bootup.)

If the kernel does not find a driverinit routine for your driver, the kemel simply
proceeds with initialization. You do not have to provide a driverinit routine.

If you do provide a driverinit routine, the kernel will call your driverinit routine
during system initialization. However, you can tell the kernel at what stage in the
startup kernel code to invoke your driverinit routine.

You do this by using the p opt flag in your master script file. Some of the options to
this command specify whether to call this routine with interrupts disabled or enabled.
Refer to Chapter 12 for 2 complete description of the various options to this
parameter.

Typical functions performed in a2 driverinit routine include initializing hardware,
performing diagnostics, and any other code that is needed to make your device
available to be used by the system.

Chapter 3: Block Device Drivers

3-17

Kernel routines for block device drivers

This section briefly describes kernel routines that your block driver can call to perform
specialized functions. See Appendix B for a reference section describing each
routine’s calling sequence and its parameters and return values. (In addition,
Appendix B contains other kernel routines that you can use in a block device driver.)

Waiting on I/0

The kernel provides two functions for suspending and resuming execution during block
I/O transfers: biowait () and biodone (). (The iodone () and iowait ()

routines are defined to refer to the biodone () and biowait () routines respectively,
in <sys/buf.h>).

Drivers that have allocated their own buffers and are waiting for data transfer to
complete call biowait (), which puts the user process to sleep, waiting for /O to
complete on the buf structure. The kernel also calls biowait () to put the user
process to sleep when waiting for read (2) requests to complete.

The driver interrupt routine calls biodone () to wake up the process or processes
waiting on the buf structure when the data transfer finishes.

Buffer routines

You can use these routines to manipulate a buffer in the cache:

¢ clrbuf ()—The clrbuf macro zeroes the buffer and sets the b_resid field of the
driver to 0.

¢ geteblk ()—The geteblk () routine retrieves a buffer from the buffer cache and
returns a pointer to the associated buf structure to the calling routine. If no buf
structures are available, geteblk () puts the calling process to sleep until one
becomes available. Thus, your driver should not call geteblk () during interrupt
handling.

® brelse ()—After your driver is finished using a buffer that was previously allocated
by geteblk (), your driver must call brelse() to return the buffer and buf
structure to the kemel. brelse () retumns the buf structure to the list of free buf
structures and awakens any processes that might be sleeping on that buf structure,
or which might be waiting for this buf structure.

Chapter 3: Block Device Drivers 3-18

P

A

»

Chapter 4

Character Device Drivers

4-1

fﬁ(“r\\?{z
9

This chapter describes how to write a basic character device driver. The chapter
discusses the various character buffering and control structures first, and then
describes the open, close, read, write, ioctl, select, and interrupt routines of
character device drivers. For specific information on terminal device drivers and
Streams device drivers, see Chapters S and 6.

Overview

Character device drivers control the activity of all those devices that do not buffer
their data in the kernel buffer cache. These devices form a large and varied group, and
the operations of different devices may require very different device drivers.

You can think of character device drivers as having two or more layers, as illustrated in
Figure 4-1. The uppermost layer are those routines accessed through the cdevsw table.
These routines might call middle layer routines to handle common functions or to take
care of device-specific operations.

For example, a terminal and a printer might share a middle layer of code that

performs functions common to both drivers. However, the terminal and printer

driver may have different lower layers to handle device-specific operations such as

setting the baud rate. o

A device driver is not required to have a middle layer of routines. The device driver Nt
can contain all the code necessary to process the I/O request, then call low-level
routines to initiate and control the hardware operations.

The lowest layer routines are those routines or managers that control the hardware
interfaces to the system.

Whenever there is one hardware interface, a single piece of code is used to access all
devices. This piece of code might be a manager or a driver. For example, one driver

commonly controls all of the serial ports, regardless of which devices are attached to
them.

Another example of code that controls a hardware interface is the SCSI Manager. The
SCSI Manager controls all accesses to the SCSI port. Higher-level drivers interface to
the SCSI Manager, allowing the SCSI Manager to take care of the low-level hardware
aspects of controlling transactions on the SCSI bus.

Terminal device drivers can use the tty subsystem buffering structures and line
discipline routines to handle data buffering in a consistent, structured way. Printers
can also use the tty structures. These data buffering structures and routines are
described fully in Chapter S, “Terminal Device Drivers.”

Chapter 4: Character Device Drivers 4-2 7%;

Streams device drivers are a special implementation of character device drivers. You
can implement a terminal device driver as a streams device driver. Streams device
drivers also use certain kernel defined data structures. Streams device drivers are
discussed in Chapter 6, and streams terminal device drivers are discussed in Chapter
7.

The rest of this chapter focuses on the character device drivers that are not terminal
device drivers or streams device drivers.

Chapter 4: Character Device Drivers 4-3

Figure 4-1
The layers of a character device driver

Chapter 4: Character Device Divers 4-4

.

The character device driver interface

Each character device driver in the system must have a cdevsw structure associated
with it. (The cdevsw table is described in *“The Character Device Switch Table” section
in Chapter 2.) The cdevsw structure contains pointers to driver routines that
correspond to system calls.

The cdevsw structures are stored in the cdevsw table. The kernel uses the major number
to index into the cdevsw table and calls routines stored in the cdevsw structure at that
index. The pointers to driver routines stored in the cdevsw structure are:

* driveropen
e driverclose
e driverread
e driverwrite
e dnriverioctl
e driverselect

where driver is replaced by the device prefix for your driver.

Your character device driver must provide routines for each entry in the cdevsw
structure according to the needs of your device. For example, a printer device driver
usually does not require a driverread routine. Routines that your driver does not
implement are assigned a default entry of either nulldev or nodev in the
corresponding cdevsw structure entry by autoconfig.

In addition, your character device driver can provide two other entry points

accessible by the kermel:

e driverint

® driverinit

The driverint routine is used as an interrupt routine. The driverinit routine is an
optional routine your driver can provide to perform initialization functions. These two

routines are discussed in the sections "Performing Initialization on a Device Driver"
and "Handling Character Device Interrupts". '

The following sections describe the character device driver routines with entries in the
cdevsw structure that correspond to system calls. Appendix A summarizes the

interface each routine must supply, including parameters, calling sequence and return
values.

Chapter 4: Character Device Drivers

4-5

Preparing a character device for 1/0O

The kernel calls the character device driver’s open routine each time a user program
makes an open (2) - system call on a character device file. The kernel extracts the
major number from the device file and uses this number to index into the cdevsw
table. The kernel calls the character device driver's open routine stored in the cdevsw
structure at this index.

The driveropen routine

The driveropen routine is used to get the device ready to perform I/O. This
preparation might include any initialization not performed by the driverinit
routine. Other functions are device dependent, but often include initializing data
structures and setting the configuration of the device.

The kemel calls the driveropen routine as follows:

int driveropen (dev, flag, ndeuvp)

dev_t dev, *ndeyp;
int flag;

where

* dev is the device number. The device number contains the major and minor
number of the device file. A character device driver should check to see that the
minor number passed to it as an argument is valid for the device being called. If
not, the driver should return an error value to the kemel.

¢ flag corresponds to the oflag parameter specified by the user in the open (2) call.
(See open(2) in A/UX Programmer’s Reference for a description of oflag
values.) Specific values for the flag parameter are listed in the £_f1lag field of the
file descriptor data structure (in the header file <sys/file.h>).

¢ ndeuypis a pointer to a dev_t, which is used in clone open operations for character
devices. This parameter is used mainly by streams device drivers.

e driver is the device prefix.

The driveropen routine is called with three parameters: dev, flag, and ndevp. The
first parameter is the device number of the device file being opened. The driveropen
routine can use the kernel macro minor to extract the minor number from the device
number. Your driver can encode the minor number with driver specific information.
For example, when a driver is used to control more than one device, the minor
number is usually encoded to indicate the device number or id number of the device.

Chapter 4: Character Device Drvers 4-6

Your driver can then use the minor number to identify the particular device to which
the I/O request is directed. Your driver can also set up arrays indexed by the minor
number. Using the minor number in this way lets your driver keep track of which
request is associated with a particular device.

After you decide how to encode the minor number for your device and how your
driver will use the minor number, remember to create the device file for your device in
either an init script or startup script.(The init and startup scripts are used with
autoconfig(IM) and are described in Chapter 12). For example, a driver might use
a certain bit in the minor number to allow the user to select the speed of the output
device. Then you would need to create multiple device files in your init or startup
script for each different speed setting.

The flag parameter in the driveropen call corresponds to the oflag parameter
specified by the user in the open (2) call. The kernel translates the oflag values of
0_XXXX into their corresponding flag values of FXXXX. For example, O_NDELAY
becomes FNDELAY; O_RDONLY, O_WRONLY and O_RDWR are translated into two flags,
FREAD and FWRITE. The flags of interest to a driver are FREAD, FWRITE, and
FNDELAY. The action your driver takes if any of these flags are set is driver dependent.
For example, if a user specifies O_RDONLY, it is up to your driver to decide what a read
only request means for your device.

Your driver does not have to implement actions for any of these flag values. For
example, the O_NDELAY flag usually has meaning only for terminal type devices.

When coding your driver, you need to decide whether you want your device to be an
exclusive open device or not. An exclusive open device means only one process is
allowed to access the device at a time. For example, tape device drivers are usually
exclusive open devices, in order to prevent the data of one user from becoming
interwoven with that of another user.

Typically exclusive open devices are implemented in the device driver by setting a
flag, for example, DVROPEN. When the driveropen routine is called, the driver checks
the value of this flag. If the flag is set, another process is using the device. In this case,
the driveropen routine refuses to grant access to the new request by returning an error.

If the flag is not set, then another process is not using the device, so the driver sets
DVROPEN. This process now has exclusive access to the device, until the flag is cleared.
The flag is usually cleared by the driver in the drivercloseé routine.

After your driveropen routine performs any functions required by your device, return
a value to the kernel indicating the success or failure of the open request. For example,
if initialization did not succeed, you probably want to return an error and refuse to
allow the user to gain access to the device.

If your driver returns a nonzero positive errno value to the kernel, the kernel returns a
-1 to the user, and sets the global variable errno to the value returned by your driver.

Chapter 4: Character Device Drivers

If your driver returns zero indicating success to the kernel, the kernel marks the file as
being open, and returns a file descriptor to the user process. The user process uses this
file descriptor in subsequent read(2), write(2), close(2), ioct1(2), and
select(2) calls on this device.

" The kernel also maintains a count of the number of times this device file has been
opened, and increments this counter on each successful open(2) call.

Closing a character device

After a user process finishes all I/O requests on a device, the user process calls
close (2) to relinquish access to the device.

The kernel maintains a count of the number of times the file has been opened, and
calls the driverclose routine only if this is the last close of the device file. The kernel
implements this policy to prevent one user from closing a device while another user is
still using the device.

The driverclose routine

The kermnel calls driverc1ose routine only on the last close of the device file; that is, if
no other processes have the device open.

The kernel calls the driverclose routine as follows:

void driverclose (dev, flag)
dev_t dev;

int flag:;

where
¢ dev is the device number.

e flag corresponds to the flags from the oflag field of the open(2) system call.
Specific values for the flag parameter are listed in the £_f1lag field of the file
descriptor data structure (in the header file <sys/file.h>).

e driveris the device prefix.

The driverclose routine is used to remove the connection between the user process
and the device. The functions of a driverc1ose routine might include reinitializing
driver data structures and device hardware. The driverclose routine should do any
necessary processing to make the device available to be opened later.

Chapter 4: Charoéter Device Divers 4-8

If the device is an exclusive open device, the driverclose routine typically clears any’
flags that were previously set to indicate the device was open. This clearing of flags
allows other processes to gain access to the device.

Reading from and writing to a character device

The driverread and driverwrite routines of character device drivers are called as a
result of the read (2) and write (2) system calls respectively.

The driverread and driverwrite routines of character device drivers have direct
access to the user's buffer. You decide what method of buffering to implement in your
character device driver.

The kernel passes two parameters to the driverread and driverwrite routines: the
device number and a data structure called the uio (user I/O) structure. The uio
structure describes the data transfer.

Information in the uio structure includes a pointer to the user's buffer and the number
of bytes to transfer. The kernel fills in the uio structure before calling the devxce
driver. The uio structure is defined in <sys/uio.h> as follows:

struct uio {

struct iovec *uio-iov;

int uio-iovent;
int uio-offset;
int uio-seg;
int ulo-resid;

}:
where

¢ uio-iov is a pointer to a buffer containing uio-iovent number of I/O vectors.
Each I/O vector specifies the base (iov-base) and the length (iov-1en) of one
transfer.

e uio-ioventis the number of I/O vectors.
e uio-offset is the current offset into the file.

* uio-seg is a segmentation flag that can be either UIOSEG_USER (user space) or
UIOSEG_KERNEL (kernel space). This flag is only used by the kernel; your driver
can ignore this flag.

* uio-resid is initially set to the total size of the transfer request.

The iovec structure contains a pointer to the user's data and the number of bytes to
transfer. The iovec structure is defined as follows:

Chapter 4: Character Device Drivers 4-9

R

struct iovec{
caddr_t iov-base;
int . iov-len;
}:
where

e iov-base is a pointer to the user's buffer associated with this I/O vector.
¢ iov-1len is the number of bytes to transfer for the buffer pointed to by iov_base.

Read(2) and write (2) requests use only one iovec structure. An array of iovec
structures are only used in readv (2) and writev (2) system calls. The system calls
readv(2) and writev (2) allow you to specify more than one buffer in a single read
or write request. This process is also referred to as scatter-gather I/O.

In scatter-gather I/O, blocks of data to be written don’t have to be contiguous in user
memory. Also, when reading from a device into memory, the data comes from the
device in a continuous stream, although it doesn’t have to be placed in contiguous

portions of user memory. A single iovec structure is used to describe each contiguous
area in memory.

Your driver must keep the uio structure updated. Your driver can use uiomove () to
move data and to update the uio structure automatically. Or your driver can use
physio () to transfer data. Physio () also takes care of updating the uio structure for
your driver.

In addition, the kernel routines ureadc () and uwritec () can be called to move
data one character at a time. If your driver doesn't use uiomove (), physio(),
ureadc () oruwritec (), your driver must update the iovec and uio structures.

The driverread routine

The kernel calls the driverread routine as a result of a read (2) on a character device
file.

The driverread routine is called as follows:

int driverread (dev, ui0)

dev_t dev;

struct uio *uio;

where

¢ devis the device number.

* wuiois a pointer to the uio structure for the I/O request.

A
Chapter 4: Character Device Drivers 4-10 s

e dniver is the device prefix.

The kernel invokes the driverread routine with the device number and uio structure as
parameters. The driver extracts the minor number from the device number (using the
kernel macro minor) and typically uses this number to associate the request with a
particular device.

The uio structure contains all the information the driver needs to know about the I/O
request. One of the fields in the uio structure contains a pointer to the user's buffer. So
the driver can buffer the data according to the requirements of the device, or can
directly transfer the data between the user's buffer and the device.

The kernel provides two major routines to assist drivers in performing the 1/O
operation. Your driver can use the kernel routine physio () to directly transfer data
between the user's buffer and the device. Your driver can use the kernel routine
uiomove () to buffer data between the user's buffer and a device. These two routines
are discussed in more detail in the sections "Data Transfers using physio ()" and
*Data Transfers using uiomove () ".

The driverwrite routine

The kernel calls the driverwrite routine as a result of a write(2) on a character
device file.

The driverwrite routine is called as follows:

int driverwrite (dev, uio)

dev_t dev;
struct uio *wuio;
where

¢ devis the device number.
* uiois a pointer to the uio structure for the I/O request.
e dniver is the device prefix.

The kernel calls the driverwrite routine with the device number and uio structure as
parameters. The driver extracts the minor number from the device number (using the
kernel macro minor) and typically uses this number to associate the request with a
particular device.

The uio structure contains all the information the driver needs to know about the I/O
request. One of the fields in the uio structure contains a pointer to the user's buffer. So
the driver can buffer the data according to the requirements of the device, or can
directly transfer the data between the user's buffer and the device.

Chapter 4: Character Device Drivers

The kernel provides two major routines to assist drivers in performing the I/0
operation. The kernel routine physio () can be used by drivers that directly transfer
data between the user's buffer and the device. The kernel routine uiomove () canbe
used by drivers which buffer data between the user's buffer and a device. These two
routines are discussed in more detail in the following sections.

Data transfers using physio()

Your character device driver can call the kernel routine physio () to perform raw
1/O (also referred to as physical I/O). The term raw 1/O or physical 1/O is used to refer
to a device driver that directly transfers data between the user's buffer and the device.

You call physio () from your driverread or driverwrite routines. physio () takes
care of many details of the I/O transfer, such as locking the user's buffer into memory,

updating the uio structure, and unlocking the user's buffer when the transfer is
complete.

Your driverread or driverwrite routines can call phys io () with the following
parameters:

physio (strat, bp, dev, rw, wuio)
int (*strat) ():

struct buf *bp;

dev_t dev;

int rw;

struct uio *wio;

where
® Sstratis a pointer to the driverstrategy routine. This usually is the same
driverst rategy routine as used by the block device driver for this device.

* bpis a pointer to a buf structure. The buf structure is described in detail in Chapter
3.

¢ devis a device number that the driverread or driverwrite routine was invoked
with.

e rwis a flag that indicates the direction to transfer the data.

e uiois a pointer to the uio structure the driverread or driverwrite routine was
invoked with.

Chapter 4: Character Device Drvers 4-12

O

physio () takes information from the uio structure, device number, and rw flag and
translates it to equivalent information in the buf structure. physio () locks the user's
buffer in memory and calls driverst rategy, passing the buf structure as a
parameter. Just as the uio structure fully specifies the /O request for the driverread
and driverwrite routines, the buf structure contains all the information the
driverst rategy routine needs to perform the I/O.

The driverst rategy routine can be the same routine as that used by a block device
driver. Refer to Chapter 3 for more information on the functions of a driverstrategy
routine.

The driverst rategy routine simply schedules the 1/O and returns to the calling
routine. The calling routine is the kemel when invoked as the result of a read (2) or
write (2) on a block device file. The calling routine is physio () when

driverst rategy is invoked as the result of 2 read (2) or write (2) ona character
device file.

The routine that calls driverst rategy has the responsibility of determining whether
or not to wait for the I/O request to complete. physio () always waits for the /O
request to finish by calling biowait (). physio () passes the buf structure as a
parameter to biowait (). The call to biowait () puts the user process to sleep until a
corresponding call to biodone () is made. Doing this means that when the /O
request completes and your driver interrupt routine is called, your interrupt routine
mustissue a call to biodone () to awaken the user process.

When the transfer completes, your driver interrupt routine should set fields in the buf
structure indicating information about the actual data transfer. Your driver interrupt
routine should specifically set three fields in the buf structure: b_error, b_flags,
and b_resid.

Your driver interrupt routine should set b_error to an errno value and set B_ERROR
in the b_£1lags field if an error occurred in the 1/O transfer. Otherwise your driver
should set b_error to zero to indicate the I/O transfer was successful.

The b_resid field should be set by your driver interrupt routine to the number of

bytes not transferred for the I/O request. If all bytes were transferred, set b_resid to
zero.

After setting appropriate fields in the buf structure, your driver interrupt routine
should call biodone () to awaken the user process; physio () will then continue to
execute. physio () updates the uio structure according to information specified in
the buf structure. If the uio structure indicates more data needs to be transferred
(only true in the case of a readv (2) or writev (2) system call), physio () again
sets up the buf structure and invokes driverst rategy until all the I/O vectors have
been processed.

Chapter 4: Character Device Drivers

s

After the 1/0 transfer is complete, physio () updates the uio structure and returns a
value indicating the success or failure of the request. physio () returns whatever value

- was specified in the b_error field of the buf structure. Thus you must be sure your
driver interrupt routine sets this value properly. This allows your driverread or
driverwrite routine to check the return value of physio () and interpret any error
value accordingly.

Using physio() fo read from a device

The following paragraphs present an example of the way a character device driver can
use physio () to accomplish an I/O request. Consider a SCSI tape driver called tc
(for tape controller). Assume this driver provides the following high level routines
accessible through the cdevsw table: tc_open, tc_close, tc_read,
tc_write, and tc_ioctl. In addition the tc driver contains an interrupt routine
called tc_ret. This particular tape driver only allows one request per device.

Assume a user process has already opened this device. This example traces a read(2)
request on the tape drive, from the user request, through the kernel and tape driver, to
the device, and from the device back to the user process. This process is illustrated in
Figure 4-2.

When a user process issues a2 read (2) request to the tape, the kernel processes the

request. The kemel fills out the uio structure related to the I/O request. For example, ,

the kernel fills in the number of bytes to transfer and a pointer to the user's buffer. The S
kernel uses the major number to index into the cdevsw table and calls tc_read.

The kemel invokes tc_read with the device number and a pointer to the uio
structure describing the I/O request. tc_read checks the minor number to make sure
this is a request to a valid device.

tc_read uses a private buf structure. This data structure is the same buf structure
defined by the kemel, but note that this buf structure is not associated with the kernel
buffer cache. This buf structure belongs to the device driver.

tc_read calls physio (), passing a pointer to tc_strategy, a pointer to the uio
structure, the buf structure, the device number, and the rw (read/write) flag.
physio () uses this information to fill in fields of the buf structure. For example,
physio () fillsin b_dev with the device number, b_£1lags with a value from the rw
flag, b_un.b_addr with the address of the user's buffer as specified in iov_base of
the uio structure, and b_count with the length of the I/O transfer, as specified in
iov_len of the uio structure. physio () then calls tc_strategy.

tc_strategy is invoked with a pointer to the buf structure that describes the /O
request. tc_strategy uses information from the buf structure to build the
appropriate SCSI command for the read request.Then tc_strategy calls a driver
start routine,tc_start.

Chapter 4: Character Device Drivers 4-14 s

Figure 4-2
The flow of a read(2) request on the example tc driver

Chapter 4: Character Device Drivers 4-15

tc_start calls a SCSI Manager routine to start the I/O transaction. The SCSI Manager
routine queues the request and returns to tc_start. tc_start then returns to
tc_strategy, which in turn returns to physio ().

physio () waits for the I/O to complete by issuing a call tobiowait (). biowait ()
puts the user process to sleep until a corresponding call to biodone Q is issued. The

kernel routines biowait () and biodone () can be used by drivers to synchronize
1/0, and are described in Appendix B.

At this point, the /O request has reached the hardware. After the I/O request has been
accomplished (the requested data has been read from the tape drive), the SCSI
Manager is notified. When the hardware finishes the transaction, the SCSI Manager
notes which request has completed. The SCSI Manager maintains a data structure that
associates requests with higher level drivers. The SCSI Manager calls the interrupt
routine (tc_ret) of the higher driver associated with this request.

tc_ret is the interrupt routine of the tape driver. The SCSI Manager calls tc_ret
when a request completes on the tape drive. The SCSI Manager passes an error code as
one of the parameters to tc_ret. This error code indicates the success or failure of
the request. If an error occurred, tc_ret interprets the error code and decides how to
handle the error. In this case, tc_ret sets b_error to an errno value, sets B_ERROR
inb_flags,and setsb_resid accordmgly ~If the request was successful, tc_ret sets
theb_error and b_resid fields in the buf structure accordingly.

After setting fields in the buf structure, tc_ret calls biodoneQ. The call to
biodone () issued by tc_ret awakens the process that had been waiting on I/O.
physio () then continues to execute and updates the uio structure from values set in
the buf structure. physio () returns the value setinb_error to tc_read. tc_read
then finishes any processing and returns a value to the kernel mdxcatmg the success or
failure of the I/O request. The kernel then returns a value indicating the success or
failure of the system call to the user.

Data transfers using uiomove()

Your character device driver can call the kernel routine uiomove () to move data
between the user's buffer pointed to by the uio structure and a private buffer used by
your driver. uiomove () takes care of updating the uio structure, locking and
unlocking the user's buffer in memory, and copying the data.

Drivers that need to buffer the data transferred between the user's buffer and a device
often call uiomove (). For example, a printer driver that needs to format the data,

expanding tabs and other characters, and adding device specific protocol, might call
uiomove ().

Chapter 4: Character Device Divers 4-16

Your driver can call uiomove () as follows:

int uiomove (address, byte_count, flag, *ui0)

caddr_t address;

int byte_count;

int flag:

struct uio *wio;

where

e address is the address of the buffer where data transfer will occur.
e byte_count is the number of bytes to transfer.

¢ flagis either UIO_READ or UIO_WRITE, indicating whether to copy data into or out
of the buffer specified by address.

e wufois a pointer to the uio structure.

If your driver calls uiomove (), you must include as parameters the address of a
private buffer belonging to your driver, the number of bytes to transfer, a pointer to
the uio structure, and a flag indicating the direction to transfer the data.

If your driver specifies UIO_READ in the flag parameter, data is copied from your
driver's buffer to the user's buffer pointed to by the uio structure.

If your driver specifies UIO_WRITE in the flag parameter, data is copied from the
user's buffer pointed to by the uio structuré into your driver's buffer.

To use uiomove (), your driver needs a private buffer into which to transfer data into
or out of. You can allocate your own storage area in your driver, or you can call the
kernel routine geteblk () to get a block of memory for your driver.

Your driver can call geteblk (), specifying the desired size of memory to allocate.
geteblk () returns a pointer to a buf structure in the kemel buffer cache. The
b_un.b_addr field of the buf structure contains a pointer to the base address of the
requested size of memory.

Your driver can call geteblk () as follows:

struct buf* geteblk (size)
int sfze;

where

¢ sizeis the requested size of the buffer.

Chapter 4: Character Device Drivers

4-17

The memory allocated by geteblk () is actually a buffer from the kernel buffer cache.
geteblk () sets the B_BUSY flag in the b_£1lags field of the buf structure to indicate
that the buffer is in use. Doing this gives your driver exclusive access to this buffer.

When you call geteblk (), you are really "borrowing" a buffer from the kernel buffer
cache. For this reason, when your driver is finished using the buffer, your driver
should return the buffer to the kernel buffer cache by calling brelse (). brelse () is
a kernel routine that returns the buffer and buf structure to the kernel buffer cache.

Be aware that if no buf structures are available, geteblk () puts the calling process to
sleep () until one becomes available. Thus, geteblk () must not be called in an
interrupt handler.

Forawrite (2), the driverwrite routine first allocates a private driver buffer to hold
the data. Most drivers call geteblk () for this purpose. The driver then calls
uiomove () to copy the data from the user's buffer to the driver's buffer. If the driver
called geteblk (), the driver passes the address in the b_un.b_addr field of the buf
structure as one of the parameters to uiomove (). The driver then formats the data in
the driver's buffer and sends the data from this buffer to the hardware.

After the hardware accomplishes the write request, the driver interrupt routine should
call brelse () to return the buf structure and buffer previously allocated by
geteblk().

For a read (2), the driverread routine first makes a request to the hardware to read
the desired number of bytes of data into the driver's private buffer. Most drivers call
geteblk () to obtain a buffer to use for the I/O transfer. Then the address of this
buffer is given to the hardware as the address to transfer data into.

After the data has been transferred to the driver's buffer, the driver calls uiomove ()
to transfer the data from the driver's buffer to the user's buffer. After the data has been
transferred to the user's bufler, the driver should call brelse () to return the buf
structure and buffer previously allocated by geteblk ().

Performing control and miscellaneous functions on a
device

The ioctl (2) (/O control) system call provides a general entry point for device and
driver specific commands. Your driver can use ioctl (2) to allow a process to set
hardware device options, software driver options, or other driver dependent
functions.

The ioctl (2) system call is available for character device drivers only. Block device
drivers do not provide a driverioctl routine.

A

Chapter 4: Character Device Drivers 4-18

Parameters to the ioctl (2) system call are a file descriptor, the command to be
performed, and an argument to the command. A user process invokes the ioct1 (2)
system call with the following parameters:

ioctl (flldes, request, arg)
int fildes, request;

where

e fildes is a file descriptor returned from a previous create (2), open (2), dup(2),
or fcntl(2) system call.

e request is 2 command that is driver dependent. The value of this parameter often
determines what the user should specify for the arg parameter.

o argis the address of an argument associated with the command. The type and value
of arg is driver dependent. Most drivers pass an address of a structure, allowing
various arguments to be specified in different fields of the structure.

For example, to perform an ioctl (2) on the console to get the current tty state, you
could use the following ioctl (2) command:

ioctl(fd, TCGETA, &t):;

In this example, TCGETA is an ioctl (2) command supported by the driver, and &t
is the address of a termio structure.

Refer to Section 7 of the A/UX System Adminstrator's Reference for a list of
commands that individual drivers support in the request field of the ioct1(2) system
call. You can also look in the header file <sys/ioctl.h> for a list of various request
parameters.

To use the ioctl (2) system call in 2 user program, you must include the header file
<sys/ioctl.h> in the code for the user program. Remember that if you are defining
new request parameters for your driver, you must include definitions of these values in
a header file. In addition, be sure to supply this header file to your users so they can
perform ioctl (2) system calls on your device.

The driverioctl routine

The driverioct 1 routine is called as a result of 2 ioct 1(2) on a character device file.
You can use the driverioctl routine to perform control operations on a device, to
get status from the device, to change the configuration of a device, or for other device
and driver dependent functions. Usually you use driverioctl routines to perform
miscellaneous activities such as rewinding a tape or ejecting a floppy disk.

The kernel calls the driverioct 1 routine as follows:

Chapter 4: Character Device Drivers

int driverioctl (dev, cmd, addr, mode)
dev_t dev;

int cmd, mode;

caddr_t adar;

where
e dev is the device number.

e cmdis a command argument indicating the type of operation to be done. The value
of cmd corresponds to what the user specified in the request parameter of the
ioct1(2) system call. The specific value of cmd is driver dependent. You define
values for this parameter specific to your driver according to the directions given in
a following paragraph.

© addris the address of the arguments to the command. The kernel copies the
argument specified by the user into kernel memory and passes this address to the
driver. This process allows the driver to copy data freely into or out of the argument
in kernel memory space. When the driverioctl routine returns to the kemel, if
any data is to be returned to the user in the arg parameter, the kernel copies the
data from kernel memory to the user's buffer.
The kernel is responsible for copying any data specified by the arg parameter
between the user's buffer and the driver in ioctl (2) system calls. This means the
driver does not have to invoke copyin () or copyout (), although the driver may
have to appropriately cast the address passed to it in the addr parameter.

e modeis an argument that contains values set when the device was opened. The
driver can use mode to check whether the device was opened for reading or writing.

e driveris the device prefix.
The kernel invokes the driverioctl routine with the device number, the mode, a

command, and an argument that normally serves to pass parameters between a user
program and a driver. The cmd parameter is defined as follows:

#define cmd_name aa(x,y,t)
where

¢ cmd_name is the name of the command, such as TCGETA, I_PUSH,
VIDEO_SIZE, or MOUSE_BUTTON.

* aais replaced by _I0, _IOR,_IOW, or _IOWR. The macros for _IO, IOR, _IOW,

and _IOWR are found in <sys/ioctl.h>. The meanings for these values are as
follows: ‘ :

_Io No arguments are passed between the
user and the driver.

_IOR The user reads information from the
driver (the driver returns data to the
user).

Chapter 4: Character Device Drivers 4-20

P

IOW The user writes information to the
driver (the user passes data to the
driver).

_IOWR Data flows both from the user to the
driver and also from the driver to the
user.

¢ xis a unique letter used by your driver to encode the I/O request.

¢ yis a number that distinguishes between various command parameters for your
driver.

¢ tindicates the type of the data structure that will be passed in the arg parameter in
the ioctl (2) system call.

For example, the mouse driver encodes one of its cmd parameters as follows:
#define MOUSE_BUTTON _IOR(M,1,unsigned char)

This definition says that whenever a user specifies MOUSE_BUTTON in the request field
ofan ioctl (2) onthe /dev/mouse device file, the data structure in the arg
parameter must be of type unsigned char. The _IOR indicates data is returned to
the user in the arg parameter (the mouse driver returns data).

A user program could contain the following code to see whether the mouse button is up
or down:

#include <sys/ioctl.h>
#include <sys/mouse.h>
#include <fentl.h>
#include <errno.h>

main ()
{

int fd, ret;
unsigned char mousestate;

if ((fd = open("/dev/mouse™, O_RDONLY)) == -1)

{

printf ("error in open,errno number: %d \n ",errno);
exit (1) ;

}

if ((ret = ioctl(fd,MOUSE_BUTTON, émousestate)) == -1)
{

printf (™ error in ioctl,errno number: %d \n ",errno):
exit(1);

}

if (mousestate == 0)
printf("the current mouse state is mouse up \n"):

Chapter 4: Character Device Drivers

4-21

if (mousestate == 1)
printf (" the current mouse state is mouse down \n"):;

}

This program first performs an open(2) on the mouse device file. If the request is
successful, the kernel returns a file descriptor to the user. The user then performs an
ioct 1(2), passing the file descriptor, the request name (MOUSE_BUTTON), and an
argument as parameters. The mouse driver is invoked with the device number, the
command name (MOUSE_BUTTON), and the address of the argument to the
command.

The address of the argument is actually a copy in kernel space of the argument
specified by the user. This allows the driver to copy the state of the mouse button
directly into this area of memory. After the mouse driver returns to the kernel, the
kernel copies this data into the argument specified by the user.

The user now has the current state of the mouse button available in the mousestate
variable. If mousestate is 0, the mouse button is down. If mousestate is 1, the
mouse button is up. Note that the state of the mouse button only applies to the moment
when the mouse driver was invoked.

Checking a device for 1/0 (select)

A/UX provides the select (2) system call to allow for synchronous I/O
multiplexing. A user process specifies which file descriptors to check for their
readiness to perform I/O. The user process specifies whether to check each file
descriptor for reading, for writing, or for exceptional conditions.

Recall that the select (2) system call is invoked as follows:

select (nfds, readfds, writefds, exceptfds, timeout)
int nfds, *readfds, *writefds, *exceptfds;
struct timval *timeowt;

where

readfds, writefds, and exceptfds are bit masks where each file descriptor fis
represented by the bit 1<<f,

nfds is the number of file descriptors checked, from the bits 0 through nfds-1.

timeout specifies whether the select (2) call should block or not. If the user
specifies 2 nonzero pointer in this parameter, the pointer points to a timeval
structure that indicates the maximum amount of time to wait for the selection to

complete. If the user specifies the timeowt as zero, the select (2) call blocks
indefinitely.

Chapter 4: Character Device Diivers 4-22

,,,,,,

o
\

A file descriptor is a value returned from a previous open (2) call, and corresponds to
a particular device file. When a user calls select (2), the kemnel calls the
driverselect routine associated with each file descriptor. If two or more file
descriptors are associated with the same major number of a device, the kernel calls the
driverselect routine multiple times, once for each file descriptor.

In addition, if a file descriptor is being selected for more than one function,for
example, for both reading and writing, the kernel calls the driverselect routine is
called twice: once specifying that the driver check the device for readiness to read,
and again specifying that the driver check the device for readiness to write.

Select (2) updates each file descriptor mask (readfds, writefds, exceptfds) to
indicate which file descriptors are ready, based on the value returned by each
driverselect routine.

The return value of select (2) indicates the total number of ready file descriptors. If
the time limit specified in t{meout expires, select (2) returns zero. If an error occurs
select (2) returns -1 to the user process.

The driverselect routine
The kernel calls the driverselect routine as follows:

driverselect (dev, flag)
dev_t dev;

int flag:

where

e devis the device number. Your driver can use the minor macro to extract the
minor number and determine which device the select request applies to.

¢ flag specifies whether to check the device for readiness to read, write, or for an
exceptional condition. The paramter flag is FREAD if the driver is to check if the
device is ready for reading. Flag is FWRITE if the driver is to check if the device is
ready for writing. Flag has the value zero (0) if the driver is to check for an
exceptional condition.

If your device is always ready for reading or writing, you do not have to provide a
driverselect routine. The cdevsw entry for driverselect can contain seltrue. If
seltrue appears in the adevsw entry for driverselect, when a user invokes

select (2) on the corresponding device, the kemel will return TRUE for that device,
by setting the appropriate bit in the file descriptor masks.

Chapter 4: Character Device Drivers 4-23

Performing initialization on a device driver

Your driver can provide an initialization routine called driverinit, where driveris
the device prefix for your driver. During autoconfiguration, the kernel searches the
object file of your driver for a routine with the name driverinit. If the kernel finds
such a routine, the kernel adds this information to a list of driverinit routines to call.

If the kernel does not find 2 driverinit routine for your driver, the kernel simply
proceeds with initialization. You do not have to provide a driverinit routine.

If you do provide a driverinit routine, the kernel will call your drfverinit routine
during system initialization. However, you can specify to the kernel at what stage in the
startup kernel code to invoke your driverinit routine.

You do this by using the p optflag in your master script file. Some of the options to
this command specify whether to call this routine with interrupts disabled or enabled.
Refer to Chapter 12 for a complete description of the various options to this
parameter.

Typical functions performed in a driverinit routine include initializing hardware,
performing diagnostics, and any other code that is needed to make your device
available to be used by the system.

Handling character device interrupts

A driver must provide an interrupt routine for handling device interrupts. Exactly how
and when interrupts are generated depends upon the device sending the interrupt. For
example, each slot device generates only one interrupt for all conditions. Thus, the
way your driver handles interrupts also depends upon the device.

How your driver handles interrupts also depends on the lower-level manager or low-
level code that your driver interfaces with. For example, to perform I/O on a SCSI
device, your driver calls 2 SCSI Manager routine. One of the parameters to this routine
is a pointer to a request block data structure. Your device driver must fill out one of the
fields in this structure with a pointer to the interrupt routine of your device driver.
Then when the request completes on your device, the SCSI Manager can invoke your
driver interrupt routine.

Slot device drivers provide an interrupt routine called driverint, where driveris
replaced by the name of your driver. The interrupt routine of a slot device driver is
defined during autoconfiguration. To add your driver to the kemel, you create a
master script file. You specify the flags vs in the master script file to indicate that your
driver is a slot device driver that receives interrupts. If you specify the flags vs in this
file, autoconfig (1M) will add the address of your slot device driver interrupt
routine to the appropriate entry in the slot interrupt vector table.

Chapter 4: Character Device Drivers 4-24

When an interrupt occurs on your slot card, the kernel indexes the slot interrupt vector
table and calls the routine stored at this address. The kernel passes a single parameter,
called args (defined in <sys/reg.h>) to slot device driver interrupt routines. The
kernel fills out various fields of this structure. In particular, the a_dev field of the args
structure contains the slot number of the card that interrupted. This structure allows
your driver to determine which of its slot cards interrupted. You can also use the slot
number to determine the slot address space for the slot card.

Refer to Chapter 12 for more information on the master script file and the
autoconfiguration process. Refer to Chapter 9 for more information on slot device
drivers.

Chapter 4: Character Device Drivers 4-25

?ﬁwh\\:
N

O

Chapter 5

Terminal Device Drivers

5-1

S

Terminal devices are special types of character devices that accept, send, and process
data from an interactive terminal. They differ from other character drivers in that they
perform semantic processing of data and use special routines io buffer data to and
from a terminal device.

The A/UX system provides a structured interface to many of the buffering structures
and I/O operations of the terminal device driver . This chapter describes the data
structures that handle data buffering and shows you how to write terminal device
drivers that interface with these structures.

You can also write terminal device drivers as streams device drivers. If you want to
write a streams terminal driver, read Chapter 6, "Streams Device Drivers" and Chapter
7, "Streams Terminal Drivers". This chapter focuses on traditional terminal device
drivers that do not use streams.

Buffering and control structures

The buffering structures used to handle data input and output t a terminal device are
clists and cblocks, the ccblock structure, the tty structure, the line discipline, and
the termio structure.

The clist and cblock structures

The basic terminal buffering structure is the clist. A clist is the head of a linked list

queue of character blocks called cblocks. Figure 5-1 shows the relationship between a
clist and cblocks. '

Chapter § Terminal Device Drivers 5-2

Figure 5-1
Clist structure

Chapter 5 Terminal Device Drivers 5-3

The clist structure is as follows:

struct clist {
int c_cc;
struct cblock *c_cf;
struct cblock *c_cl:
}i
where

O c_cc is a count of all the characters in the clist.
O c_cf is a pointer to the first cblocks in the clist.
O c_cl isa pointer to the last cblock in the clist.

The cblock structure is illustrated in Figure 5-2. Each cblock structure in the clist has the

following form:

struct cblock {

struct cblock *c_next;

char ‘ c_first;

char c_last;

char c_data[CLSIZE];
);
where

O c_next isa pointer to the next cblock on the clist.

O c_£first is a pointer to the first character in the c_data array.

O c_last is a pointer to the last character in the c_data array.

O c_data isa 64 element character array that stores characters received from or

sent {0 a terminal.

Space for cblocks is allocated at boot time.

Chapter 5 Terminal Device Drivers 5-4

Figure 5-2
Cblock structure

Chapter § Terminal Device Drivers 5-5

A
S

e,

The ccblock structure

The ccblock(character control block) structure points to a clist entry. The ccblock is
defined as follows: ‘

struct ccblock (
caddr_t c_ptr;
ushort c¢_count;
ushort c_size;

b2

where

e c_ptr is a pointer to the character array (c_data) of the cblock.

e c_count is the character count.

¢ c_size is the size of the character array of the cblock.
Both c_count and c_size are initially set to the size of the cblock character array. e
c_count is then decreased by the number of characters in the cblock character

buffer. The number of characters in the buffer is the difference between c_size and
c_count. :

The ity structure

Every terminal device in the system has one tty structure (defined in
<sys/tty.h>) associated with it. This structure contains information needed to
perform terminal I/O. This information includes pointers to the raw, canonical, and

output queues; and a pointer to a device driver command processing routine. The tty
structure is as follows:

#define NCC 8

struct tty {
struct clist t_rawg;
struct clist t_cang;
struct clist t_outq;
struct ccblock t_tbuf;

struct ccblock t_rbuf;

Chapter § Terminal Device Drivers 5-6

int (* t_proc) ();

ushort t_iflag;

ushort t_oflag;

ushort t_cflag;

ushort t_lflag;

short t_state;

short t_pgrp:;

char t_line;

char t_delct;

char t_term;

char t_tmflag;

char t_col;

char t_row;

char t_vrow;

char t_lrow;

char t_hgent;

char t_dstat;

short t_index;

unsigned char t_cc[NCC];

struct proc *t_rsel;

struct proc *t_wsel;

struct ttychars t_chars;
}:

The first three structures, t_rawgq, t_cang, and t_outgq, are clists. The first clist
structure, t_rawgq, is the raw input queue. The t_rawq clist stores raw input data that
the terminal’s interrupt handler has caught and stored. The second dlist structure,
t_cang, is the canonical queue. This queue stores “cooked” input data, that is, data
after the line discipline converts special characters in the raw clist (such as the erase
and kill characters) into their canonical forms. These forms are called canonical
because the input is processed in a predefined way before it reaches the queue. The

third clist structure, t_outgq, is the output queue used to store data that will be sent to
the terminal.

Chapter 5 Terminal Device Drivers

5-7

t_rbhf and t_tbuf are ccblock structures. Both t_rbuf and t_tbuf contain
pointers to clist entries.The t_rbuf, t_tbuf,t_rawgq, t_cang, and t_outqg
structures are contained in the tty structure, as shown in Figure 5-3.

Chapter § Terminal Device Drivers 5-8

S

Figure 5-3
Terminal data structures

Chapter § Terminal Device Drivers 5-9

‘,\‘kﬂ/‘

The tty structure fields that are important to someone writing a device driver are as
follows:

¢ t_rawgq, t_cang, and t_outq are the raw, canonical, and output queues as just
described..

e t_tbuf and t_rbuf are the device transmit and receive buffers, respectively.

e t_proc is the address of the device driver’s command processing routine (see
“The Driver Command Process Routine” given later in this chapter).

e t_iflag,t_oflag,t_cflag, and t_l£flag are the input, output, control, and
line discipline modes, respectively (see termio(7) in the A/UX Programmer’s
Reference for definitions of these modes).

e t_state maintains the internal state of the device and the device driver. The state

is a composite of one or more bits set in this 16-bit field. The bit definitions are as
follows:

TIMEOUT A delay timeout is in progress.
WOPEN The driver is waiting for an open to complete.
ISOPEN The device is open.

TBLOCK The driver has sent a control character to the terminal to block
transmission from the terminal.

CARR_ON This is a software image of the carrier-present signal. It is used with serial
chips that supports modem control. For more about this bit, see “Modem
Control” given later in this chapter.

BUSY Output is in progress.
OASLP The processes associated with the device should be awakened when output

completes.

IASLP The processes associated with the device should be awakened when input
completes.

TTSTOP Output has been stopped by a CONTROL-S character received from the
terminal. '

EXTPROC A peripheral device is performing semantic processing of data.

TACT A timeout for the device is in progress.
CLESC The last character processed was an escape character (\).
RTO A timeout for a device operating in raw mode is in progress (An example

would be if canonical processing is taking place).

TTIOW The process associated with the device is sleeping, waiting for the output to
the terminal to complete.

Chapter § Terminal Device Drivers §-10 \L/

TTXOFF Transmission to the terminal is suspended because a CONTROL-S was
received from the terminal.

TTXON Transmission to the terminal is enabled because a CONTROL-Q character
' was received from the terminal.

e t_pgrp identifies the process group associated with the device. It is used to send
signals to the process group.

e t_line holds the line discipline type specified in the c_line element of the
termio structure (a structure that holds values used for ioctl (2) operations).

e t_delct keeps track of the number of delimiters found while performing semantic
processing of data.

e t_col records the current column position of the cursor on the terminal.
e t_row records the current row position of the cursor on the terminal.
e t_dstat can be used by the driver to record driver-defined states.

e t_cc[NCC] is an array that holds the control characters specified in the c_cc
member of the termio structure.

The line discipline

All character devices have a cdevsw structure in the cdevsw table. The cdevsw structure
contains pointers to device driver routines corresponding to system calls. The kernel
indexes into the cdevsw table and invokes the appropriate device driver routine stored
in the character device driver's cdevsw structure.

A terminal device driver is invoked with the same parameters as other character
drivers. Once invoked, however, terminal device drivers process the request in a
different manner than other character device drivers.

Terminal device drivers use the 1inesw structure, which contains pointers to routines
that manipulate character data and buffers. The routines in the 1inesw structure are
collectively known as the line discipline. After a terminal driver is invoked by the
kernel, the terminal driver typically calls a line discipline routine to perform the /O
request:

The linesw structure is defined as follows:
struct linesw {

int (*1_open) ():

int (*1_close) ();

int (*1_read) ();

int (*1_write) ():

int (*1_ioctl) ():

Chapter 5§ Terminal Device Drivers

5-11

int (*1_input) ():

int (*1_output) ():

int (*1_mdint) ():
)i

The 1inesw structure contains addresses of line discipline open, close, read, write,
ioctl, input interrupt, output interrupt, and modem control routines. The line
discipline routines maintain the clists, do input preprocessing and output character
translation, and perform other terminal services (described in termio(7) in A/UX
Programmer’s Reference). The device driver only needs to control the
communication line device, and to load and read the device registers.

Line discipline 0 is the system default. The routines for line discipline 0 are as follow:

e ttopen Open a terminal device

e ttclose Close a terminal device

e ttread Read a terminal device

e ttwrite Write to a terminal device

e ttioctl Perform device-dependent operations

e ttin Handle terminal input interrupts

e ttout Handle terminal output interrupts)
The t_line field of the tty structure contains the line discipline index into the line

discipline switch table. This field can be a value other than 0 (for line discipline 0) if
you implement a protocol other than the system default.

The termio structure

The termio structure (defined in <sys/termio.h>) holds values used for ioctl
operations (such as when the stty command calls an ioctl routine to set terminal
parameters). It has the following form:

#define NCC 8

struct termiof
unsigned short c_iflag;
unsigned short c_oflag;
unsigned short c_cflag;
unsigned short c_lflag;
char c_line;

unsigned char c_cc([NCC];

Chapter 5 Terminal Device Drivers 5-12

yi

where

c_iflag s the input mode of the terminal.

c_oflag is the output mode of the terminal.

c_cflag is the hardware control mode of the terminal.
c_1flag s the local mode of the terminal.

c_cline is the line discipline for the terminal.

c_cc is an array of special control characters.

For the specific values that can be set in these fields, see termio(7) in the A/UX
Programmer’s Reference.

Reading from a terminal

Reading characters from a terminal involves processes both at the user level and the
hardware level. Figure 54 shows how a character is read from a terminal using the
system default, line discipline 0.

Chapter 5 Terminal Device Drivers

5-13

Figure 5-4
Reading a character from a terminal

Chapter § Terminal Device Drivers

5-14

When the device hardware receives a character from a terminal, it interrupts the CPU,
causing the device driver interrupt function to be entered. The character driver
interrupt routine services the device hardware and transfers characters from the device
to the receive buffer (t_rbuf) of the device’s tty structure. Each character is checked
for validity (parity), and start and stop characters (CONTROL-Q and CONTROL-S). If
an invalid character is found, the read interrupt routine must take appropriate action,
such as aborting the character transmission or asking for retransmission. It then calls
the line discipline 0 input interrupt function, ttin, to transfer characters from the
receive buffer to the raw queue (t_rawq). ttin also copies characters from the
receive buffer into the transmit buffer (t_tbu£) and calls ttxput to echo them to the
screen.

If the number of characters in the raw queue exceeds a level called the high-water
mark, ttin calls the device driver command process routine to send a stop
character to the device to suspend input until the number of raw queue characters falls
below a low-water mark. High-water marks vary according to the baud rate. (The
ratio of the high-water mark to the low-water mark is roughly 9 to 1.)

By suspending input, other processes can get blocks. When the raw queue character
count exceeds 256 characters, ttin flushes the terminal input queues. If an sty
character is found (see stty(1) for a description), ttin sends the appropriate signal
to the process group associated with the device. If processes associated with the device
are sleeping (during a call to ttread) and ttin finds a delimiter character, ttin
awakens the sleeping processes. The ttin function also takes care of echoing the
characters input back to the terminal by putting them in the output queue as they
arrive.

When the terminal is operating in raw mode, the tty structure contains the number of
characters needed and the amount of time waited before processes associated with the
device are awakened. If the minimum character count has been met, ttin awakens
processes associated with the terminal. If the character count has not been met and a
time has not been specified, ttin calls timeout to awaken the sleeping process after
the time period specified.

After a user program calls the read(2) system call, the line discipline read routine,
ttread, is called after a user has typed in a character. tt read first transfers the
characters from the raw queue to the canonical queue and calls the canon routine to
perform canonical processing of data as characters are transferred. If no characters
are available, it sleeps on the address of the raw queue until characters become
available. To do this, tt read checks if there are characters on the canonical queue. If
no characters are found, tt read places characters from the raw queue onto the
canonical queue. This process continues until the number of characters requested has
been transferred (and if no errors occur). If a delimiter is found, the routine takes
characters from the canonical queue and calls copyout () to move them to the user
data space.

Chapter § Terminal Device Drivers

§-15

Before returning, ttread checks to see if input is blocked. If data transmission from
the terminal has been blocked because the number of characters in the raw input queue
exceeded the high-water mark, and if the read has reduced the number of characters to
below the low-water mark, t t read calls the device driver command process routine
to resume transmission from the terminal.

Writing to a terminal

Writing characters to a terminal involves the output queue (t_outq). A transmit buffer
is used to buffer characters that will be written. Figure S-S5 shows how a character is
written to a terminal using the system default, line discipline 0.

Chapter § Terminal Device Drivers 5-16

Figure 5-5
Wiriting a character to a terminal

Chapter § Terminal Device Drivers 5-17

After a user program makes a write(2) system call, the terminal driver write routine is
called, which in turn calls the line discipline write routine. The line discipline 0 write
routine is called t twrite; this routine moves the characters to be sent to be output
from the user data space to the output queue and calls ttxput to output the contents
of the transmit buffer to the terminal. If the output buffer is empty, the line discipline
output routine is called to move characters from the output queue to the buffer.

After a character is printed on the screen, an interrupt is generated that causes control
to be passed to to the driver transmit interrupt handler. This interrupt indicates that
the terminal is ready to accept another character for transmission. If the device
doesn't generate transmit data interrupts, this routine should pause for as long as it
takes a character to be transmitted between each character transmission. The driver
write interrupt routine gets the characters from the transmit control buffer and places
them into the device transmit register to output the next character. The driver then
sends the next character in the transmit buffer to the device. The line discipline output
interrupt routine is called to refill the transmit buffer with characters from the output
queue.

The parts of a terminal device driver

The cdevsw routines found in other character device drivers are also found in a
terminal device driver. (See Chapter 4 for general information about character device
drivers). Unlike other character drivers, however, terminal drivers must provide
pointers to line discipline routines that perform terminal-specific operations. These
routines are described next.

The open routine

The open routine of the terminal device driver is invoked with two parameters: the

device number and a flag value. Chapter 4 describes the general functions of a driver
open routine.

The terminal device driver open routine calls the following line discipline open
routine:

(*linesw(tp->t_line].l_open) (tp);

tp->t_line is an index into the linesw table. The routine pointed to by the 1_open
entry in the linesw structure at this index is invoked.

The line discipline routine establishes a connection between a process and a device,
allocates a cblock for the receive buffer of the tty structure and calls a driver
command process routine with arguments tp and T_INPUT.

Chapter 5 Terminal Device Drivers 5-18

The close routine

The close routine of the terminal device driver is invoked with two parameters: the
device number and a flag value.Chapter 4 describes the general functions of a driver
close routine.

The terminal device driver close routine calls the following line discipline close
routine to close a device:

(*linesw(tp->t_line].l_close) (tp);

tp->t_line is an index into the linesw table. The routine pointed to by the 1_close
entry in the linesw structure at this index is invoked.

This line discipline routine transmits any characters in the transmit buffer (t_tbuf)
to the terminal, clears all t ty buffers and queues, resets the ISOPEN bitinthe tty
structure passed to it as an argument, and returns all used cblocks to the list of free
cblocks. After calling the driver close routine, the terminal link disconnects and
control returns to the calling program.

The read routine

The read routine of the terminal device driver is invoked with two parameters: the
device number and the uio structure. The line discipline routines update the uio
structure for the terminal driver, and take care of many other aspects of performing
the 1/0. '

The terminal device driver read routine calls the following line discipline read
routine:

(*linesw(tp->t_line].l_read) (tp, uio):

tp->t_1line is an index into the linesw table. The routine pointed to by the 1_read
entry in the linesw structure at this index is invoked.

This line discipline routine performs canonical processing upon raw queue data, and

then transfers the data to the canonical queue. After processing, data is transferred
from the canonical queue to user data space.

The write routine

The write routine of the terminal device driver is invoked with two parameters: the
device number and the uio structure. The line discipline routines update the uio
structure for the terminal driver, and take care of many other aspects of performing
the 1/O.

Chapter 5§ Terminal Device Drivers

5-19

The terminal device driver write routine calls the following line discipline write
routine:

(*linesw([tp->t_line].l_write) (tp, uio):

tp->t_line is an index into the linesw table. The routine pointed to by the 1_write
entry in the linesw structure at this index is invoked.

This line discipline routine transfers characters from user data space to the output
queue as long as the high-water mark isn’t exceeded. As characters are put on the
output queue, processing is done to expand tabs, and add delays for newline, carriage
return, and backspace characters. When the high-water mark is reached, the routine
sleeps on the output queue address. The line discipline write routine then calls the
driver command process routine to initiate or resume output to the device.

The ioctl routine

The device driver ioctl routine normally calls the line discipline routine ttiocom with
the same arguments that the driver’s ioctl function was called with.Driver ioctl routines
set parameters related to buffering and character processing. Two ioct1(2)
commands, TCGETA and TCSETA, are used to set up terminal characteristics in the
termio structure and send these commands to the device. For example, your driver
can enable the CONTROL-S and CONTROL-Q keys and set characters for erasing lines
and interrupting programs. When your driver calls an ioctl routine, it is passed a
pointer to 2 termio structure that the line discipline uses to read in the terminal
parameters and to set up the terminal.

The input and output interrupt routines

After receiving an input interrupt, the device interrupt routine calls the line discipline
input interrupt routine to process newlines, carriage returns, and uppercase characters
(as specified in the tty structure); to place the converted characters in the raw queue;
and to echo characters to the screen. The input interrupt routine also calls the driver
process control routine to stop or restart input from the device, if necessary.

The line discipline write routine calls the line discipline output interrupt routine to
move characters from the cutput queue to the transmit buffer. This routine
implements the actual timing delays needed during output. After detecting a delay in
the output queue, the routine calls the kernel timeout () function to arrange for an
entry after a specified time period has elapsed. This delayed entry invokes the driver
command process routine to resume output.

Chapter § Temrminal Device Drivers 5-20

The modem interrupt routine
This routine is currently unsupported.

The driver command process routine

The device driver must provide a command process routine (also called the proc
routine) to process device-dependent operations. The t_proc member in the tty
structure points to the command process routine for the line discipline routine that
was initialized when the device was opened. The command process routine has the
following format:

preflxproc(tp, cmd)

struct tty *#;

int cmd,

where

e prefix is the device prefix.

¢ pis the address of the device's tty structure.

e c¢md is an integer command, as described next.

The commands are defined in <sys/tty.h>. For line discipline 0, cmd can be one
of the following:

T_OUTPUT Checks to see if the t _state member of the tty structure is busy or
suspended. If so, T_OUTPUT does nothing. If t_state is not busy,
the transmit control block is checked and, if empty, T_OUTPUT calls
the line discipline output interrupt routine to move characters from
the output queue to the transmit control block. A character is then
output (if not done by the driver transmit interrupt routine) or
t_stateis setto BUSY.

T_TIME Notifies the driver that delay timing for a break, carriage return, or
other character has completed. This command makes sure that a
break signal is not sent to the device and falls through to T_OUTPUT.

T_SUSPEND Suspends output to the terminal (that is, a CONTROL-Q character has
been received). T_SUSPEND sets the t_state member of the tty
structure to TTSTOP. T_SUSPEND is called when a user program
invokes ioct1(2) with the command argument TCXON and the third
argument equal to 0.

Chapter § Terminal Device Drivers

§-21

T_RESUME Resumes output to the terminal. T_RESUME is called when a user
program calls i oct1(2) with the command argument TCXON and the
third argument equal to 1. Both T_RESUME and T_WFLUSH fall
through to T_OUTPUT.

T_BLOCK Blocks further input when the input queue reaches the high-water
mark. T_BLOCK turns off TTXON and turns on TTXOFF and TBLOCK
int_state.

T_UNBLOCK Allows further input when the input queue falls below the high-water
mark. TTXOFF and TBLOCK are reset.

T_RFLUSH Resets TTXOFF and TBLOCK if TBLOCK is set; otherwise, T_RFLUSH
does nothing. The purpose of T_RFLUSH is to flush pending input (if

any).
T_WFLUSH Clears all characters from the transmit buffer.

T_BREAK Sends a 0.25 second break to the device. T_BREAK sets TIMEOUT in
: t_state and calls timeout with a value of ttrstrt as the function
argument. T_BREAK is called when a user calls ioct1(2) with
TCSBRK as the command argument and 0 as the third argument.

T_INPUT Prepares a device to receive input. T_INPUT is called by the line
discipline 0 ioctl routine when the line discipline changes. The
command processing routine makes sure that the device can accept
input.

T_PARAM Notifies the driver that the device parameters have changed and that
the parameter setting routine should be called to change hardware
settings.

Modem control

Modem control is an optional feature that allows a driver to acknowledge signals on a
serial line. Normal terminal operations occur on a direct connect line where the
carrier signal is unimportant. For modem operations, such as for a dial-in line, a
driver must be able to detect changes in the carrier signal.

For modem control to exist, the serial controller hardware must support the feature. If
your system’s serial board generates a modem control interrupt, a drop in the carrier
detect is easily seen as a hang-up. For boards without modem control interrupts, the
driver must use timeouts to poll the device for state changes.

To accomplish modem control,the following ioctls are provided. Note that not all
devices support any or all of them. UTOCTTSTAT is always supported for those devices
that support modem control.

Chapter 5 Terminal Device Drivers 5-22

UIOCTTSTAT

UIOCMODEM

UIOCNOMODEM

UIOCDTREFLOW

UIOCEMODEM

UIOCNOFLOW

UIOCFLOW

This ioctl returns 3 bytes. The first byte is 1 if UIOCMODEM is enabled
and is 2 if UTOCEMODEM is enabled. The second byte is 1 if
UIOCDTRFLOW is enabled. The third byte is 1 if UIOCFLOW is
enabled.

The default is UIOCMODEM/UIOCNOF LOW. These ioctls are
“remembered” when a device is closed,and then reopened. The
following four ioctls are mutually exclusive. (Here DCD is the input
and DTR is the outpud).

Modem control (DTR/DCD) is enabled. DCD is required before a
device can be opened. If removed, the device is “*hung up”; upon
opening, DTR is asserted.

Modem control is not enabled. DTR is still asserted, but DCD is
ignored and device open operations always complete without waiting.

DCD (on some printers this is the DTR line) is used for flow control.
DCD must be asserted before characters can be transmitted.

European-style modem control (DTR/DCD/RI) is enabled. DCD is
required before 2 device can be opened. If removed, the device is
*hung-up”; upon opening the device, DTR is not asserted until an RI
input is detected.

The following ioctls are also included. In these ioctls, RTS is the
output and CTS is the input. They are mutually exclusive.

Hardware flow control is disabled. RTS is asserted before transmitting
data (or it is asserted continuously). CTS is ignored.

Hardware flow control is enabled. RTS is asserted before transmitting
data. CTS must be asserted by the other end before transmission can
begin (which is required for every character).

Chapter 5 Terminal Device Drivers

5-23

O

A~

Chapter 6

Streams Device Drivers

6-1

In this chapter, you'll learn how a stream passes information from a user process to a
device. You'll also learn about parts of a stream, Streams modules and drivers, and
the data structures needed to operate in a Streams environment. This chapter is not
intended to be a complete reference for all Streams tools and facilities—rather, you
should use it as an introduction to the most important features of streams drivers.
Before you write a Streams device driver, you should read the Streams Programmer
Guide by AT&T.

To help you write Streams-based terminal drivers, A/UX provides the ttx library, a

set of kernel support routines. With this library, writing a Streams terminal driver is

similar to writing a traditional character device driver. You can find details about this
library in Chapter 7. For a list of differences between AT&T’s System V Release 3

- Streams and the version supported by A/UX (System V Release 2.1), see Appendix F.

What is Streams?

A stream is a full-duplex processing and data transfer path between a driver in kernel
space and a process in user space. Streams is a collection of system calls, kernel
resources, and kernel utility routines that can create, use, and dismantle a stream.
Streams defines standard interfaces for character input/output within the kernel, and
between the kernel and the rest of the A/UX system. To implement these interfaces, a
set of system calls, kernel resources, and kernel routines are provided.

By having a standard interface and mechanism, drivers can be modular and portable
with easy integration of high-performance network services and their components. A
set of library routines and facilities provides buffer management, flow control,
scheduling, multiplexing, and asynchronous operations of streams and user
processes. One advantage of Streams drivers is that you can insert modules into a
stream to process data that passes between a user process and the driver. Streams is
upwardly compatible with the character I/O user interface; thus, it's better to write
Streams drivers instead of standard character drivers.

Chapter 6: Streams Device Drivers 6-2

#a,

Parts of a stream

A stream has three parts:

e 32 stream head

¢ optional modules

¢ a stream-end (which contains the driver)

Data in a stream is said to travel downstream from the stream head to the stream end
or upstream from the stream end to the stream head. Streams passes data through a
stream in the form of messages, which are linked message blocks consisting of data
structures and a buffer block.

A stream is shown in Figure 6-1.

Chapter é: Streams Device Drivers

6-3

Figure 6-1
View of a stream

Chapter 6: Streams Device Drivers

6-4

The stream head provides the interface between the stream and the user process. Its
main function is to process Streams-related user system calls. It is an integral part of
the kernel.

A module processes data that travels between the stream head and driver. A stream
can contain zero or more modules, each of which is associated with two queue
structures (described later in this chapter).

The stream end is the part of the stream closest to the external device interface. The
stream end contains the Streams driver, which is a special type of module.

Building a stream

A stream is initially constructed when a user process makes an open(2) system call
referencing a Streams special file. This call causes a kernel resident driver to be
connected with a stream head to form a stream. Subsequent ioct1(2) calls select
kernel resident modules and cause them to be inserted into the stream.

The first step in building a stream is creating a minimal stream containing a stream
head and a Streams driver. This step takes place by allocating and initializing head and
driver structures (which is done automatically when the Streams driver is opened,
linking modules to form a stream and calling the driver open routine). The second
step in building a stream is to add optional modules, if any, to the stream. (Another
term for adding a module is push; removing a module is known as a pop.) Modules
are added in last-in-first-out order.

Streams modules and drivers

A Streams module is a pair of queues that are used to perform intermediate
processing on messages flowing between the stream head and the driver. One queue is
used to perform functions on messages passing upstream through the module, and the
other queue is used to perform functions on messages passing downstream through the
module. A module can function as 2 communication protocol, a line discipline, or a
data filter.

A Streams driver is the stream end, which is the closest end to the external device
interface. A Streams driver can be a device driver or a software driver called a pseudo-
device driver. Like a module, a driver is composed of two queues, but a driver has
additional attributes in a stream and in the operating system. The principal functions
of a device driver are device handling, and transforming data and information that
pass between the external interface and a stream.

Chapter 6: Streams Device Drivers

6-5

There are two significant differences between modules and drivers. First, a device
driver must be accessible from an interrupt and from the stream. Second, a driver can
have multiple streams connected to it. Multiple connections occur when more than
one minor device uses the same driver. Drivers occupy a file system node and can be
opened like any other device. Modules, on the other hand, don't occupy a file system
node, but are identified through a separate naming convention and are inserted into a
stream in last-in-first-out order. Because modules aren’t associated with processes,
they can't gain access to information in the u-dot. The only system calls that modules
and drivers can interact with directly are open(2) and close(2).

Data structures

The following data structures provide the Streams driver interface to the operating
system:

e streamtab
e ginit
* module_info

These need to be set up once for each driver (not once for each device). They refer to 7
each other as well as to the routines that are called to perform the various stream ;
functions. The streamtab data structure must be declared external because it is

referenced externally and all the data structures are accessible from it. The other data

structures are declared static.

The streamtab structure contains pointers to the driver’s read and write ginit
structures. The ginit structure contains a pointer to the put, service, open, and close
procedures. module_info contains a pointer to the processing procedures.

Messages

Streams passes data between a driver and the stream head in the form of messages. A
message consists of one or more message blocks. These message blocks can be linked
and placed in 2 message queue. When several message blocks make up one message,
the type of the first block determines the message type and contains links to the
preceding and next message blocks.

Chapter 6: Streams Device Drivers 6-6

Streams maintains its own message storage pool. Messages are allocated as single
blocks, each of which contains a data buffer of a certain size. If processing causes the
data in 2 message to exceed the bufler size, the procedure can allocate 2 new message
containing a larger buffer for it, or it can allocate a new message that holds the new
data and links the two messages together. Use the allocb utility to allocate message
storage from the Streams pool . (These utility routines are described in AT&T’s
Streams Programmer Guide). This utility returns a message block containing a buffer
of the size requested (or larger) or NULL, if the request fails. You can specify the level
of message pool priority (BPRI_HI, BPRI_MED, and BPRI_LO) to let you better
allocate Streams memory resources.

When dealing with messages and message queues, a driver should always use the
Streams utility routines described later in this chapter. To make it easier to push
modules arbitrarily on the stream, modules shouldn’t require the data inanM _DATA
message to follow a particular format, such as a specific alignment. A module
shouldn’t change the contents of a data block referenced by other modules. Use the
copymasg utility to copy the data to a new block.

Message types

Each messages has a defined message type that identifies the contents of the message.
The message type is a defined set of values identifying the contents of a message
block and message. Modules and drivers can generate most of these message types.
There are two levels of message queuing priority: priority and ordinary. When a
message is queued, the putgq utility places priority messages first-in-first-out at the
head of the message queue. Priority messages are not subject to flow control, so their
associated queue is always scheduled. Ordinary messages are placed in the message
queue after priority messages.

The most commonly used types are as follows:
e M_DATA contains ordinary data.
M_PROTO contains internal control information and associated data.

M_PCPROTO is like M_PROTO, except for priority differences and additional
attributes.

M_IOCTL contains an ioctl request.
M_IOCACK and M_IOCNAK contain a reply from an ioctl.

(For a complete list and descriptions of all the message types, see AT&T’s Streams
Programmer Guide.)

M_DATA messages are generally sent bidirectionally on a stream, and their contents
can be passed between a process and the Stream head. The allocb routine creates

M_DATA messages by default. (For more information, see*Utility Routines” given later
in this chapter.)

Chapter é: Streams Device Drivers

6-7

Ny ar/

M_PROTO and M_PCPROTO messages carry service interface information among
modules, drivers, and user processes. These messages are sent bidirectionally on a
stream and their messages can be passed between a process and the stream head. An
M_PROTO message block typically contains implementation-dependent control
information. The contents of the first message block is the control part, and any
following M_DATA message blocks are the data part. M_PCPROTO has the same format
and characteristics as M_PROTO, but is called a priority message and is not subject to
flow control. This means that when an M_PCPROTO message is placed on a queue, its
service routine is enabled. Only one M_PCPROTO message can be in the read queue at
a time; if another message arrives, it is discarded and its message blocks freed.

Processing message blocks

A process sends and receives characters on a stream using write(2) and read(2)
system calls. When user data enters the stream head or external data enters the driver,
the data is placed into message blocks for transmission on the stream. For upstream
processing, these message blocks are transferred to the stream head, which extracts
and copies the contents of the message blocks to user space. For downstream i
processing, the stream head copies data from user space to message blocks, which are
sent to the driver.

Message structures

Two message structures are contained in a message block: |

* msgb, the message block

e datab, the data block

The msgb data structure links messages on a queue, links message blocks together, and

manages read and write operations for the associated buffer (the data block). This
structure contains pointers used to locate the data currently contained in the buffer.

The datab data structure points to the data block, which contains the message type,
buffer limits, and control variables. This structure has pointers to the fixed beginning
and end of the buffer.

Queues

A queue is a data structure that is associated with a statically compiled module.
Queues always come in pairs—one queue is for upstream (read) processing and the
other is for downstream (write) processing. Figure 6-2 shows two modules, each of
which consists of two queues.

Chapter 6: Streams Device Drivers 6-8 “

Figure 6-2
Upstream and downsiream queues

Chapter 6: Streams Device Drivers 6-9

;':f"/m\:
N

Each of the two queues are operated on independently from the other, so each can
have different processing functions and data. As shown by the directional arrows in
Figure 6-2, queues have direct access to the adjacent queue in the direction of message
flow. A queue also has access to its mate’s (upstream or downstream queue) messages
and data.

A queue can contain or point to messages, processing procedures, or data. Messages
are dynamically attached to the queue on a linked list as they pass through the module.
A queue typically contains put and service routines (see “The Put Routine” and “The
Service Routine” in this chapter), a message queue, and a private data area. The read
queues in 2 module also contain the open and close procedures for the module. A
developer may choose to provide private data if required to perform message
processing (for example, state information and translation tables).

Three data structures form each queue:

e queue_t is the primary structure, which contains various modifiable values for the
queue. Only the contents of q_pt r (pointer to a private data structure), q_minpsz
(minimum packet size accepted by this queue), q_hiwat (message queue high-
water mark), and q_lowat (message queue low-water mark) can be modified.

ginit is a pointer to queue-processing procedures. A single common ginit o
structure pair is shared among all the queue pairs opened from the same cdevsw e
entry. All modules and drivers with the same st reamtab (that is, fmodsw or

cdevsw entry) point to the same upstream and downstream ginit structure or >
structures. This module is read-only.

¢ module_info contains identification and limit values. All modules and drivers
with the same st reamtab point to the same upstream and downstream
module_info structure or structures. This module is read-only; however, the four
limit values are copied to queue_t, where they can be modified.

Driver flow control

Flow control is the Streams mechanism that regulates the flow of messages within a
stream and the flow from user space into a stream.

To control downstream (write) flow, you can set flow control values (mi_hiwat) and
(mi_lowat) in the downstream module_info structure. Streams then copies this
information into the q_hiwat and q_lowat fields in the queue structure of the queue
to set high-water and low-water marks. When a message is passed to the downstream
put procedure, this procedure determines whether the device is busy. If so, it calls
putq to enqueue the message. putq checks to see if the enqueued character count
exceeds the high-water limit and halts message transmission until the count falls below
the low-water mark (q_lowat).

Chapter 6: Streams Device Drivers 610

Upstream (read) flow control is done with the noenable and genable utilities.
noenable disables the driver read service procedure. Messages are sent if the driver
input interrupt routine determines that messages can be sent upstream. Otherwise, the
message is enqueued until the queue becomes unblocked. genable allows a2 module
or driver to be scheduled.

An example of how to use these two routines would be 2 buffer module that calls
noenable to inhibit its service procedure and its put procedure to enqueue
messages until a certain byte count or time has been reached. Then the module could
call genable to gather messages in its message queue and forward them as a single,
larger message.

Utility routines

Streams provides a number of utility routines that you can use to write your Streams
driver. The following list describes the function of and arguments to each of these
routines. For 2 complete description of each routine, including calling sequence and
parameters, see AT&T’s Streams Programmer Guide.

Utility Function

allocb Allocate a message block. The arguments to this routine are the
minimum size of the data buffer and the priority of the allocation
request.

backg Get a pointer to the previous queue. The argument to this routine is a
pointer to the current queue.

canput Test for room in a queue. The argument to this routine is a pointer to
the queue to be searched.

copyb Copy a message block. The argument to this routine is a pointer to the
message block to be copied.

copymsg Copy a message. The argument to this routine is a pointer to the
message block to be copied.

dubp Duplicate a message block descriptor. The argument to this routine is
a pointer to the message block descriptor to be duplicated.

dupmsg Duplicate 2 message. The argument to this routine is a pointer to the
message to be duplicated.

flushg Flush a queue. The arguments to this routine are a pointer to the queue
where message queue resides and a flag indicating what type of
messages will be flushed.

Chapter 6: Streams Device Drivers

6-11

freeb

freemsg

getq
linkb

msgdsize
OTHERQ
putbg
putctl
putctll
putnext
putq

genable

qreply

gsize

Chapter 6: Streams Device Drivers 6-12 L

Free a rhessage block. The argument to this routine is a pointer to the
message block descriptor to be freed.

Free all messageblodcéina message. The argument to this routine is a
pointer to the message containing message blqcks to be freed.

Get 2 message from a queue. The argument to this routine is a pointer
to the queue containing the message to be removed.

Concatenate two messages. The argument to this routine are pointers
to the two messages to be concatenated.

Get the number of data bytes in a message. The argument to this
routine is a pointer to the message containing data bytes to be
returned. '

Get a pointer to the mate queue. The argument to this macro is a
pointer to a queue (read or write) whose mate queue pointer is
returned.

Return a2 message to the beginning of a queue. The arguments to this
routine are pointers to a queue where the message will be returned and
to the message itself.

Put a control message. The arguments to this routine are a pomter toa
queue where the put procedure is located and the control message 7
type. : "

Put a control message with a 1-byte parameter. The arguments to this
routine are a pointer to a queue where the put procedure is located,
the message type, and a 1-byte parameter.

Put a2 message to the next queue. The arguments to this macro are a
pointer to the calling queue and a pointer to the message to be
passed.

Putamessageonaqueue.’l‘heargumentstothismutineareapointer
to the queue where the message queue is located and a pointer to the
message to be put on the queue.

Enable a queue. The argument to this routine is a pointer to the queue
to be enabled.

Send a message to a-stream in the reverse direction. The arguments to
this routine are a pointer to the originating queue and a pointer to the
message to be sent.

Find the number of messages in the queue. The argument to this
routine is a pointer to the queue where the messages are located.

Get a pointer to the read queue. The argument to this routine is a
pointer to the write queue in the same module.

rmvb Remove 2 message block from a message. The argument to this
routine are a pointer to the message block and a pointer to a message.

splstr Set processor level. There are no arguments to this routine.

unlinkb Remove a message block from the message head. The argument to

this routine is a pointer to the first message block.

WR Get a pointer to the write queue. The argument to this routine is the
read queue pointer.

Streams device/module routines
The following routines are found in every Streams device driver or module.

The open routine

The device open routine is called every time a process opens a device. This causes a
kernel resident driver to be connected with a stream head to form a stream. A stream is
created on the first open(2) system call made to a character special file corresponding
to a Streams driver. A driver open routine has user context, so it can gain access to the
u-dot and may call sleep (), although it must always return to the caller. In Streams
open routines, all sleeps must be done with the PCATCH option (see sleep(kernel) in
Appendix B). If the sleep returns, then the open routine should return failure.

The close routine

The last close (2) system call dismantles the stream and closes the file. Dismantling
consists of popping any modules on the stream, and closing the driver and the file.
The close routine can delay before popping any modules to allow any messages on the
module’s write message queue to be drained by module processing. On return from
the driver close routine, any message left on the driver’s message queues are freed,
and the queue_t and header structures are deallocated. Like the open routine the
driver close routine has user context, so it can gain access to the u-dot and may call
sleep, although it must always return to the caller.

The close routine closes a device. It is called when the last process thai has the device

open closes it. Note that th:s routine is called once, while the open routine is called
many times.

Note: Streams frees only the messages contained on a message queue. The driver close
routine must free any messages used internally by the driver.

Chapter 6: Streams Device Drivers

6-13

The put routine

A queue’s put routine receives messages from the preceding queue. It provides the
only entry point into one queue from a preceding queue. This routine first receives a
message, does optional processing on it, then calls the putq utility. putgq places the
message on the tail of the message queue, schedules the queue for execution, then calls
the service routine.

Put routines are generally required in pushable modules and there should be separate
routines for upstream and downstream processing. Each queue must define a put
routine in its qinit structure for passing messages between modules. A put routine
must use the put q utility to enqueue a message on its own message queue. This is
needed to maintain the fields of the queue_t structure consistently.

Put routines must never sleep because they have no user context.

The service routine

A queue’s optional service routine receives messages queued by the put routine. The
main purpose of a service routine is delayed processing. It must be present for flow
control. '

The service routine gets the first message from the message queue with the getq utility,
processes the message and passes it to the put procedure of the next queue with
putnext. This processing continues in a first-in-first-out basis until the queue is empty
or flow control blocks further processing, after which the service routine returns to the
calling program. Service routines are optional. They have no user context, so they
must never call the kernel sleep routine. A service routine must return to the caller
after execution.

The service routine must use the Streams getq utility to remove a message from its
message queue. The service routine should process all messages on its message queue
unless the stream is blocked. To process a message, a service routine must do the

following:

1. Remove the next message from the message queue using getq. If there is no
message, return. ’ :

2. If the canput utility fails, this is not a priority message, and the message is to
be put on the next queue, then go to step 3. Otherwise, go to step 4.

3. Replace the message using putbq, and exit the service procedure. Flow

control will back-enable the service procedure. Back-enable is described later
in this section.
4. Process the message as necessary and return to step 1.

Chapter 6: Streams Device Drivers 6-14 A

Queues have both high-water and low-water marks. The high-water mark is the
maximum number of messages that can be put on a queue (say g1). The low-water
mark is the level at which a queue can begin to schedule new messages. After the high-
water mark for g1 is reached, new messages are put on another queue (¢2) and the
canput routine returns 0. This routine also sets a flag in g7 so when its low-water mark is
reached, g2 will be scheduled for service. This process is known as a back-enable.

The put and service procedures give your driver rapid response along with queueing
functions. The put procedure allows rapid response to certain data and events such as
software echoing of input characters, because it is granted a higher priority than
schedules service routines. Queueing defers processing of the service procedure until
all queues are processed. Service routines allow processing time to be more evenly
spread between multiple streams.

Streams scheduling

When a2 message is placed on an empty queue, it is scheduled. This means that its
service routine will be called in the near future after all interrupts are serviced and the
processor is running at processor level spl10. Service routines have no process
context. Other ways to schedule a queue are by means of the genable routine and by
back-enabling from flow control.

Cloned devices

A cloned device is a Streams device that returns an unused minor device number when
initially opened, rather than requiring the minor device number to be specified in the
open(2) call. Cloned devices can be useful when a user process wants to connect a new
stream to a driver, regardless of which minor device is opened. To help your driver
open a cloned device, Streams provides the clone open facility. The clone driver (see
clone(7)) is a system-dependent Streams pseudo-device driver.

When an open(2) system call is made to a cloned device’s Streams file, open causes a
new stream to be opened to the clone driver and the open procedure in the clone to be
called. :

A cloned device has a2 major number corresponding to the clone device driver and
minor number corresponding to the major number of the target driver.

Chapter 6: Streams Device Drivers

6-18

@

O

Chapter 7

Streams Terminal Drivers

7-1

This chapter describes how to write a Streams-based terminal driver. In particular the
chapter describes how to use a group of A/UX kernel routines called the ttx library.
The purpose of these routines is to make Streams terminal drivers work like traditional
character drivers. The main difference between traditional character drivers and
Streams drivers is that Streams drivers deals with messages and queues, rather than
cblocks and clists.

If you wish, you can write your own Streams-based terminal driver. The advantage of
using the ttx library package is that it provides almost all the Streams interfacing
code, so it makes writing a Streams terminal driver that much easier.

Note: The ttx library is not a generic part of a Streams driver. If you wish to write a
driver that is portable to other systems, you must not use this subroutine library. For
general information about writing standard Streams drivers, see Chapter 6.

At the end of this chapter you'll find a skeleton Streams driver that you might want to
use as a guide for writing your own driver.

‘Streams line discipline '

Streams is 2 mechanism that provides a way of controlling how information is
processed on its way to and from devices. For TTY-style devices (such as términals),
this controlling mechanism is normally done using the Streams module line, which is
actually a line discipline. The line processes characters as they are sent to and from a
terminal. It provides functions such as:

e echoing

e erase and kill processing

¢ flow control

e ioctl(2) processing (see temuo('l))

e character editing (for example, turning carriage returns into line feeds)

In traditional character drivers, both the driver and the line discipline perform these
functions. In Streams terminal drivers, however, the driver is specifically responsible
for output flow control (recognizing XON/XOFF) and ioctls from termio(7) that

directly affect the device (in particular, the parts that control thmgs like baud rate,
parity, number of stop bits, and character size).

The line discipline does the rest. The two parts differ because the driver must be able
to operate without the line discipline being present on the Stream. This structure
allows greater efficiency in operations that don't require the line discipline. A
Macintosh II device without a line discipline module pushed onto it is said to be
operating in r@aw or uncooked mode.

7-2 Chapter 7: Streams Terminal Drivers

Communicating with the line discipline is done by passing messages back and forth
along the queue. Because the code to do this is the same for all character devices, the
ttx library has been written to make it easier to write a Streams driver. Thus, you don't
have to know about Streams in order to write a Streams terminal driver—you just have
to know how to use a basic skeleton driver.

Data structures

As mentioned in Chapter 6, the st reamtab, qinit, and module_info data
structures provide the driver interface to the operating system. They are set up once
for each driver and reference each other, as well as the routines that perform various
Streams functions. Remember that the following structures must reference the Streams
put and service routines:

ttx_rsrvc Streams read service routine
ttx_wputp Streams write put routine
ttx_wsrvc Streams write service routine

The reference to the Streams read put routine should be NULL. You must also add the
addresses of your driver’s open and close routines. The st reamtab data structure
must be declared extern because it is referenced externally and all the data structures
are accessible from it. The other data structures should be declared static.

The open and close routines are the only ones that are ever called in process context.
This means that they are the only ones that can reference the u-dot, copy data to and
from processes, or call sleep. Because these routines are called from kernel routines
that allocate dynamic data structures, they must always sleep with the PCATCH signal
set. With PCATCH set, a signal is not delivered to wake the sleeping process until after
the open or close is complete and the dynamic data structures (such as the queues and
the stream head) are disposed of.

Each Streams t ty structure must have a data structure allocated for it of type st ruct
ttx. This data structure is normally called the ttx structure. It is referenced by the
device's stream queue (via the q_pt r field) and contains most of the context that is

needed for operating a terminal-style device. The ttx structure contains the following
fields:

t_q Pointer to the read queue attached to this device

t_rm Pointer to the current input buffer

t_xm Pointer to the current output buffer

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>